
Variations on Task Scheduling for

Shared Memory Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Martin Wimmer
Registration Number 0007126

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Jesper Larsson Träff

The dissertation has been reviewed by:

(Kunal Agrawal) (Marina Papatriantafilou)

Wien, 28.04.2014
(Martin Wimmer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Martin Wimmer
Dr. A. Schärf-Straße 3/1/7, 2353 Guntramsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First and foremost, I want to thank my advisor, Jesper Larsson Träff, without whom this thesis
would not have been possible. He was an academic mentor to me, was always there for me
when I needed help, but also gave me a lot of freedom to develop independently.

I want to thank Philippas Tsigas and Daniel Cederman for our long and fruitful coopera-
tion and several research visits that helped shape many of the research results in this work.

Countless discussions and conversations with Sascha Hunold and Francesco Versaci helped
me gain a deeper understanding of many topics. They also provide for great conversations on
non-academic topics, thus making sure I never want to miss out on a lunch-break with them.

My students Manuel Pöter, Jakob Gruber and Martin Kalany helped me by building up
in-depth expertise on particular topics related to my work, and improving my understanding
of these topics in discussions.

I thank the PEPPHER project, University of Vienna and TU Vienna for providing funding
and infrastructure for this work. Apart from giving me a place to work and machines to work
on, this enabled valuable research visits, the participation in conferences and summer schools.

In advance, I want to thank the reviewers Kunal Agrawal and Marina Papatriantafilou for
taking the time to review this thesis, and to travel to Vienna for my defense. I hope for many
interesting and challenging comments.

I also want to thank all other colleagues from the parallel computing research group at TU
Vienna: Alexandra Carpen-Amarie, Christine Kamper, Markus Levonyak, Angelos Papatri-
antafyllou, Margret Steinbuch, Antoine Rougier. Thanks as well to my colleagues from Uni-
versity of Vienna where I spent the first years of my academic career: Enes Bajrovic, Siegfried
Benkner, Wilfried Gansterer, Yuriy Kaniovskyi, Martin Köhler, Erich Marth, Eduard Mehofer,
Sabri Pllana, Martin Sandrieser, Alexander Wöhrer. I also want to thank the colleagues from
Chalmers University, which I visited several times, for making me feel at home there: Yiannis
Nikolakopoulos, Thomas Petig and Valentin Tudor

Finally, I want to thank my parents and my sister for their continuous support and for
always believing in me, my friends Gerhard, Milena, Nathalie and Patrick for encouraging
my academic pursuits, and Armin, Ramona and Simon for always being there for me, for
keeping me sane while I was working on this thesis, as well as for the countless evenings that
were documented in the book.

iii

Abstract

This thesis provides an in-depth discussion of task scheduling for shared memory systems.
The topic is approached in a vertical manner, starting with high-level programming model
aspects, and moving down to low-level implementation details. On the programming model
level existing task-parallel programming models are discussed, as well as programming pat-
terns that can be used on top of task parallel models. This is supplemented by extensions
to these models and patterns developed in the context of this work. One such extension is
strategy scheduling, which allows for tighter interaction between a task-parallel program and
the scheduling system. Strategy scheduling is intended to bridge the gap between specialized
scheduling systems, optimized for specific applications, and generic task schedulers.

Theoretically and practically efficient run-time systems are required to support task schedul-
ing. While work-stealing has been proven to be an efficient approach for general task schedul-
ing, more complex techniques are required to support the presented extensions to the task
parallel model. The main goal here is to provide good load balancing, while at the same time
reducing communication to increase the scalability of applications. Another concern in task
scheduling is memory usage. For a large class of task parallel applications efficient greedy
schedules exist that will only use the same space per processor as a space-efficient execution
on one processor.

Both the run-time system and programming patterns require supporting concurrent data
structures. Such data structures have been developed in the context of this work and are
discussed in detail. To enable good scalability, the concurrent data structures in this work all
provide strong progress guarantees. Most are lock-free, which guarantees that at least one
participant will progress in a bounded number of steps. Some data structures presented in
this work are wait-free, guaranteeing progress for all participants.

The techniques presented in this work have been used to create a task scheduling frame-
work called Pheet. Pheet was originally designed as a vehicle for evaluation of new schedul-
ing techniques, and therefore has a highly flexible plug-in architecture based on C++ template
meta-programming. This allows to replace any single component in the task scheduling sys-
tem, while keeping the rest of a configuration the same, in order to enable direct (performance)
comparison between different implementations of a specific component. Pheet is accompa-
nied by the Pheet benchmark suite containing a variety of task parallel micro benchmarks.
The Pheet benchmark suite is used to evaluate the performance of Pheet components. While
Pheet was originally developed as a tool for research and teaching on task parallel program-
ming, it has developed into a fully fledged scheduling framework, which has been released
as open source software.

v

Kurzfassung

Diese Arbeit beschäftigt sich mit dem Problem des Task-Scheduling, der Ablaufplanung für
parallel ausführbare Aufgaben, auf parallelen Systemen mit gemeinsamen Speicher. Für den
Aufbau der Arbeit wurde ein vertikaler Ansatz gewählt, bei dem das Thema auf allen Ebenen
diskutiert wird. Begonnen wird auf der Ebene der Programmiermodelle mit einer Beschrei-
bung existierender Modelle, sowie von Entwurfsmustern für task-parallele Programme. Die-
se Modelle und Entwurfsmuster werden in Folge erweitert. Eine dieser Erweiterungen baut
auf sogenannten Strategien auf, einem Konstrukt das eine engere Interaktion zwischen task-
parallelen Programmen und dem Task-Scheduler ermöglicht. Der Einsatz von Strategien zielt
darauf ab, die Brücke zwischen generischen Task-Schedulern und spezialisierten, auf eine
bestimmte Applikation optimierten Task-Schedulern zu schließen.

Task-parallele Programmiermodelle bedingen den Einsatz von Task-Schedulern die so-
wohl theoretisch als auch praktisch effizient sind. Diese Effizienz wurde für Work-Stealing,
einen weit verbreiteten Ansatz zum Task-Scheduling, bewiesen, doch viele der in dieser Arbeit
gezeigten Erweiterungen des task-parallelen Programmiermodells benötigen Task-Scheduler
die über Work-Stealing hinausgehen. Das Primärziel hierbei ist die Ausführungszeit und den
Speicherverbrauch einer task-parallelen Applikation zu beschränken, und dabei die Kommu-
nikation zwischen Prozessoren klein zu halten.

In einem weiteren Teil dieser Arbeit werden Ansätze zur Synchronisation, sowie Daten-
strukturen die parallele Zugriffe erlauben, diskutiert. Diese sind für die Implementierung von
effizienten Task-Schedulern notwendig, sowie als Unterstützung der in dieser Arbeit disku-
tierten Entwurfsmuster. Der Fokus dieser Arbeit liegt auf Ansätzen die Fortschrittsgarantien
für Synchronisation geben können. Die meisten der vorgestellten Synchronisationsalgorith-
men und Datenstrukturen sind lock-free, was den Fortschritt zumindest eines Synchronisati-
onsteilnehmers in einer beschränkten Anzahl an Schritten garantiert. Manche der vorgestell-
ten Algorithmen sind auch wait-free, und garantieren somit den Fortschritt für alle Teilnehmer.

Die vorgestellten Algorithmen und Techniken wurden genutzt, um eine Programmierbi-
bliothek namens Pheet zu implementieren. Pheet wurde ursprünglich als Plattform entwi-
ckelt, die es erlaubt, schnell neue Task-Scheduler und Synchronisationsalgorithmen zu entwi-
ckeln und mit anderen zu vergleichen. Um dies zu ermöglichen, setzt Pheet auf einer Plug-
In-Architektur auf, die auf C++ Template-Metaprogrammierung basiert. Durch diese Archi-
tektur ist es möglich, einen großen Teil der Komponenten von Pheet auszutauschen, ohne
die restliche Konfiguration zu verändern. Dies ermöglicht den direkten Vergleich mehrerer
Implementierungen einer Komponente. Um diesen Vergleich zu vereinfachen, enthält Pheet
eine Reihe von kleinen Benchmark-Applikationen über die verschiedene Implementierungen
verglichen werden können. Pheet war ursprünglich als Forschungs- und Unterrichtswerkzeug
gedacht, ist aber in Zwischenzeit zu einer vollwertigen Programmierbibliothek zur Entwick-
lung von task-parallelen Applikationen angewachsen und ist als Quelloffene Software öffent-
lich verfügbar.

vii

Contents

1 Introduction 1
1.1 Motivation and Inspiration . 1
1.2 History . 2
1.3 Challenges . 3
1.4 Pheet . 3
1.5 Structure . 4

2 Programming Models 5
2.1 Task Parallelism . 5
2.2 Programming Models based on Task Parallelism 6
2.3 Memory Models . 11
2.4 Locality Awareness . 12
2.5 Task Priorities . 14
2.6 Parallel Tasks/Mixed-mode Parallelism . 17
2.7 Scheduling Strategies . 19
2.8 Hyperobjects . 24

3 Task Scheduling 29
3.1 Related Work . 29
3.2 Requirements to the Scheduling Model . 32
3.3 Space Bounds . 35
3.4 Priority Scheduling . 40
3.5 Victim Selection . 43
3.6 Stealing Policies . 44
3.7 Mixed-mode Scheduling . 45

4 Data Structures and Synchronization 49
4.1 Linearizability and Progress Guarantees . 49
4.2 Terminology . 50
4.3 Wait-free Memory Reuse . 51
4.4 Deterministic Team-building . 53
4.5 Reducer Hyperobjects . 63
4.6 Finisher Hyperobjects . 67

5 Ordered Containers 73
5.1 Semantics for Concurrent Ordered Containers . 73
5.2 Priority Work-stealing Queue . 75
5.3 Centralized k-priority Queue . 81
5.4 Hybrid k-priority Queue . 86
5.5 Two-level Concurrent Ordered Container . 91

ix

x CONTENTS

5.6 Root Container based on Work-stealing Deques 96
5.7 Log-structured Merge-tree (LSM) . 106
5.8 Concurrent LSM Priority Queue . 111
5.9 Conclusions and Future Work . 127

6 The Pheet Framework 129
6.1 Design goals . 130
6.2 Interface . 130
6.3 Framework Structure . 134

7 The Pheet Benchmarks 139
7.1 Setup . 139
7.2 Methodology . 139
7.3 Unbalanced Tree Search . 142
7.4 Graph Bipartitioning . 146
7.5 Quicksort . 151
7.6 Prefix Sums . 155
7.7 Triangle Strip Generation . 163
7.8 Single-source Shortest Paths . 165
7.9 Future Work . 171
7.A Appendix: Theoretical Analysis of the SSSP Algorithm 172

8 Summary and Outlook 177
8.1 Lessons Learned . 177
8.2 Outtakes . 178
8.3 Future Work . 178
8.4 Final Remarks . 178

Bibliography 181

1
Introduction

Task scheduling has become a standard model for exploiting parallelism, and is especially
popular for shared memory systems. It has the advantage of being oblivious of the amount
of parallelism available in a system.

The focus of this thesis is to present extensions to the task-parallel programming model,
both to make the model suitable for more applications, as well as to simplify the implemen-
tation of efficient task-parallel programs. Efficient non-blocking data structures and synchro-
nization primitives were developed to support this.

1.1 Motivation and Inspiration

One topic of interest for this thesis is the task-parallel programming model. What makes the
task-parallel programming model so interesting is that programs written in this model are
oblivious of the parallelism available in a system. Programmers need to be concerned with
understanding the concrete machine their program is running on and do not have to deal
with load balancing. Instead, the model exposes all potential parallelism in an algorithm, and
has a run-time system dynamically distribute available work to idle processors. Of particular
interest to this thesis are the task-parallel programming languages Cilk [25], Cilk++ [97] and
X10 [38]. Many ideas found in this work are based on, or inspired by work done on these
programming languages.

Our work on schedulers was originally inspired by work-stealing schedulers, in partic-
ular the so-called ABP work-stealing algorithm by Arora, Blumofe and Plaxton [11]. What
makes work-stealing an interesting algorithm to study is its decentralized nature and the
small amount of communication required for load-balancing, which is essential for scalabil-
ity. Even though later work in this thesis moved away from pure work-stealing approaches,
work-stealing still serves as a benchmark for scalability. Furthermore, the main ideas behind
work-stealing were a significant inspiration to scheduler designs developed over the course of
this work.

There were multiple factors that sparked our interest in non-blocking synchronization
primitives and data structures. First and foremost, the implementation of the ABP work-
stealing algorithm requires the use of a lock-free deque implementation for the work-stealing
algorithm. The book The Art of Multiprocessor Programming by Herlihy and Shavit [81] pro-
vided a good introduction into non-blocking algorithms and data structures that allowed the
practical implementation of ABP work-stealing. Herlihy and Shavit’s book also inspired the
lock-free implementation of all other synchronization primitives required by a task-parallel
programming model, some of which could not be found in the literature. Finally, an intense
cooperation with Philippas Tsigas and Daniel Cederman helped to push forward our work on
lock-free synchronization.

1

2 Chapter 1 Introduction

1.2 History

Originally this work arose from the PEPPHER project1. The goal of PEPPHER was to improve
performance portability and programmability of applications on heterogeneous many-core
architectures. The programming model conceptualized in the PEPPHER project was based on
task-parallelism with so-called component tasks. A component task is a generic version of a
task, for which multiple implementation variants can exist for different types of processors.
Component tasks are allowed to be implemented in a variety of programming models, and
can be parallel as well, allowing them to be run on more than one processor. Programmers
have the ability to annotate tasks allowing the scheduling system to make informed decisions
when scheduling tasks.

Some of the work presented in this thesis was started in an attempt to tackle some of the
challenges posed by PEPPHER [19]. Due to the complexity of those challenges we decided
to focus on a simpler model than PEPPHER at first, with an option to later generalize the
work. Thus, our work was focused on homogeneous multi-core architectures with a shared
memory. Since the challenges posed by this more restricted model already turned out to be
extremely interesting, a decision was later made to study this topic in more depth instead of
generalizing to a more complex model.

The first problem that we worked on was to support the scheduling of parallel tasks in a
scalable scheduler. This resulted in an implementation of the mixed-mode parallel programming
model [147], which is presented in Section 2.6, as well as the deterministic team-building algo-
rithm [146] presented in Section 4.4, which extends work-stealing to support the mixed-mode
parallel programming model.

One difficulty that we ran into in our early work was the lack of a methodology for imple-
menting and evaluating schedulers. This sparked the creation of Pheet, a framework for writ-
ing and evaluating task schedulers, related synchronization primitives and data structures.
As a side-effect, Pheet became a fully functional library for writing task-parallel applications.
For Pheet to be able to provide efficient performance counters, a wait-free version of reducer
hyperobjects [141] was implemented. For efficient transitive termination detection of tasks fin-
isher hyperobjects [141] were developed. A wait-free memory reuse scheme [141] was developed
at the same time since it was required for implementing finisher hyperobjects in a wait-free
manner.

In later work we were focused on how a scheduler can be informed about properties of
tasks to make more informed scheduling decisions, a functionality motivated by the task an-
notations in PEPPHER. This resulted in the concept of scheduling strategies [142,143], which are
presented in Section 2.7, an extension to task-parallel programming models, where tasks can
be associated with instances of so-called strategy objects that can be provided by programmers
to the scheduling system to give the scheduler information about the behaviour of tasks.

One aspect that turned out to be important with regard to scheduling strategies was the
ability to influence the order in which tasks are executed by the scheduler. This spawned
a separate line of work based on the priority task scheduling model [144, 148] presented in
Section 2.5. Priority task scheduling presents unique challenges with regard to the container
data structures used for storing tasks in a task scheduler, challenges that resulted in work on
scalable relaxed priority queues, many of which are discussed in Chapter 5.

1The research leading to these results was partially funded by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 248481 (PEPPHER Project, www.peppher.eu)

www.peppher.eu

Challenges 3

1.3 Challenges

The efficiency of a task-parallel application is dependent on many factors. One such factor
is the programming model, where the focus lies on programmer productivity. Programmers
should be able to write and maintain correct and efficient programs effectively. In some
cases this results in trade-offs between the efficiency of a program, and the complexity of the
programming model. Our philosophy in such cases is to keep the programming model simple,
as long as the impact on program efficiency is reasonable. While program transformations by
a compiler can help to bridge this gap in many cases, work on compilers is out of the scope of
this work and will not be discussed. Programming models are discussed in detail in Chapter 2.

Another factor relevant for efficiency of a task-parallel program is the (run-time) scheduler
used to execute the program. The choice of scheduling policies has a large influence on
time, space and communication bounds of an application, thus influencing the efficiency of a
program. For run-time schedulers there exist trade-offs between the complexity of a scheduler,
and the granularity of tasks. The more fine-grained tasks are, the more lightweight a scheduler
has to be, to ensure that the cost of a scheduler does not outweigh its gains. Scheduling is
discussed in Chapter 3.

Finally, synchronization primitives and container data structures for storing tasks inside a
scheduler also have an impact on the performance of a parallel program. Here the goals are
to provide low overhead and good scalability while fulfilling all guarantees required by the
programming model and scheduling system. Good scalability can often be achieved with the
use of non-blocking algorithms with strong progress guarantees. While there are often lim-
its to the overhead and scalability of generic algorithms, specialization and relaxation can help
increase efficiency. Specialized data structures, like hyperobjects (Section 2.8) and the wait-free
memory manager (Section 4.3) allow for higher efficiency by restricting the use of these prim-
itives, thus allowing the implementation to be based on certain assumptions. Relaxed data
structures (Section 5.1) relax some of the guarantees provided by a data structure to reduce
the amount of synchronization required and to work around bottlenecks. Synchronization
algorithms and container data structures used for storing tasks in scheduling systems are
discussed in Chapters 4 and 5.

1.4 Pheet

Most of the presented work is practical in nature, and was implemented and tested on shared
memory systems. Due to the wide variety of factors that can influence program efficiency as
discussed in the previous section, it quickly became clear that it is important to have a struc-
tured way by which new extensions to programming models, schedulers and synchronization
primitives can be compared.

We developed the Pheet framework2 (Chapter 6) to solve this problem. Pheet is a fully
functional task-parallel programming library written in C++ that can be used to implement
task-parallel programs. It provides a simple to use programming interface, thus enabling the
quick parallelization of common algorithms with only little overhead.

What makes Pheet unique, though, is its plug-in architecture that allows many aspects
of Pheet to be exchanged. This, for example, allows an application written in Pheet to be
run with different task schedulers by only changing a single line of code. Or, to compare
two different implementations of task queues, the task-queue used by a scheduler is replaced,
but the scheduler itself stays the same. The scheduler decision is made at compile-time, thus
allowing the compiler to perform optimizations based on the structure of a scheduler. As

2www.pheet.org

www.pheet.org

4 Chapter 1 Introduction

an example, Pheet provides a scheduler that will turn a parallel algorithm into a sequential
execution by treating task spawns as function calls. Evaluating the scheduler decision at
compile-time enables the compiler to perform function inlining and to resolve tail recursions
similar to a sequential program.

Even though Pheet provides a generic plug-in interface it provides enough flexibility to
extend the programming model. Each scheduler can provide arbitrary extensions to the pro-
gramming model accessible to all applications that use the scheduler. An application that
relies on an extension can also be executed with another scheduler that provides the same
extension, but will not compile on a scheduler without support for the extension.

Pheet is accompanied by a set of micro-benchmarks, which are presented in Chapter 7.
Each benchmark is implemented in the Pheet plug-in architecture, thus not only allowing to
configure Pheet differently for multiple experiments, but also allowing to compare multiple
implementation variants of the benchmark. This allows to provide both generic implemen-
tations usable on any scheduler, as well as specialized implementations that rely on specific
extensions to schedulers.

1.5 Structure

This thesis is structured as follows: Chapter 2 focuses on extensions to the task-parallel pro-
gramming model that both help to simplify writing parallel programs and help writing ef-
ficient task-parallel programs by exploiting their structure. Chapter 3 discusses implications
of programming model extensions on the schedulers and their bounds. Chapter 4 presents
implementations of programming primitives from Chapter 2, as well as supporting data struc-
tures for the implementation of schedulers. The most important type of supporting data
structure for schedulers is a container for storing tasks. Chapter 5 presents a wide variety of
such containers, each with different trade-offs with regard to scalability and guarantees on
the order in which items are returned. The Pheet framework, which was used to implement
and evaluate the contributions of this work is presented in Chapter 6. Pheet is accompanied
by a set of micro-benchmarks, which are used to evaluate the contributions of this work in
Chapter 7. A summary and outlook on future work, as well as work that did not find its way
into this thesis, is given in Chapter 8.

2
Programming Models

The focus of this chapter is to present contributions to parallel programming models with a
focus on models for task parallelism. It discusses parallel programming languages, program-
ming patterns, interfaces to scheduling systems and synchronization primitives.

2.1 Task Parallelism

In the task parallel model, parallelism is explicitly exposed by the programmer. A program
in this model consists of small units of work, the so-called tasks. Given a set of tasks V =
V1, . . . , Vn, a partial order ≺ on V determines dependencies between tasks. If, for any i, j ∈
1, . . . , n, Vi ≺ Vj, then Vj must not be executed before Vi finished executing. Tasks with no
precedence constraints between each other can be executed in any order as well as in parallel.

Task parallel computations can be modelled as a directed acyclic graph (dag) of tasks G =
(V, E), as shown in Figure 2.1, where the tasks V are represented by vertices and the prece-
dence constraints E by arcs in the dag. A task x ∈ V can be executed if and only if
∀p = yx ∈ E, y ∈ C, where C ⊆ V is the set of all tasks that have completed their execu-
tion.

We distinguish between static and dynamic dags of tasks. In a static dag all tasks and
their priority ordering are predefined before the execution. Such dags are often found in
deterministic applications on data where the structure is known beforehand, like dense linear
algebra applications. A dynamic dag, on the other hand, comes from a task-parallel execution,
where tasks are created dynamically depending on the data and previous results. Such dags
are required for irregular applications, like branch-and-bound algorithms, but can be used for
any kind of task-parallel application. In this work we focus on the execution of dynamic dags.

1

2

3

4

5

6 7

8

Figure 2.1: A directed acyclic graph.

5

6 Chapter 2 Programming Models

2.1.1 Scheduling

The task parallel model by itself is independent of the number of processors available in a
parallel machine, as well as their capabilities and topology, but instead exposes all potential
parallelism to a scheduler. A schedule is a mapping of tasks to a processor in a specific order
that respects the partial order of tasks, thereby determining when the task will be executed.
We focus on schedules where each task is executed exactly once (unlike e.g. idempotent
work-stealing [107]).

We distinguish between offline and online scheduling. An offline schedule is a schedule that
was statically pre-calculated for a concrete machine. Tasks scheduled to the same processor
have to be scheduled so that all precedence constraints are fulfilled. Precedence constraints
between tasks scheduled to different processors are maintained based on synchronization
mechanisms that ensure that the next scheduled task at a specific processor is only launched
when all predecessors have been executed.

Offline schedules can be very efficient, since an optimal schedule can be calculated for
a task-parallel application. Also, the only overhead imposed on the application by an of-
fline schedule is the overhead for synchronization between processors. In practice, optimal
schedules can only be calculated for small dags, due to scheduling being an NP-complete
problem [63]. In addition, offline scheduling requires full information about the dag, in-
cluding execution times of tasks. This makes offline scheduling impossible for scheduling of
dynamic dags, tasks with non-deterministic execution times, as well as for multiprogrammed
systems [45], where task execution times can vary depending on other applications running
on the same machine.

For this reason, most task-parallel programming models today rely on online scheduling.
Greedy online schedules have been shown to yield asymptotically optimal execution time
up to a factor of two, and can be efficiently calculated at run-time for task-parallel applica-
tions [26, 65]. We concentrate on online scheduling in this work. Details on the scheduling
techniques necessary to support our model of task parallelism are discussed in Chapter 3.

2.2 Programming Models based on Task Parallelism

There exists a wide variety of programming models based task parallelism. In this section we
classify these models by generality, starting with the most general models.

2.2.1 Constructing a Dag

The most straightforward way for implementing task-parallel applications is to construct a
dag of tasks, and to schedule its execution. In the StarPU library [15], for example, a dag
is constructed by instantiating tasks and specifying dependencies between them. Dags in
StarPU are dynamic, so additional tasks can be added to the dag throughout the execution. In
StarPU data is passed between tasks explicitly, and memory transfer is managed by the run-
time system, making it suitable for systems with distributed memory. This is mainly used
to support heterogeneous systems, where different processing units with separate memories
work on a single computation, as is common with GPUs (graphics processing units).

While a specific programming model based on dags may place further restrictions, oper-
ating on a dag affords the greatest flexibility and therefore the greatest potential parallelism,
since no restrictions are placed on the dag. This comes at the price of being difficult to pro-
gram and error-prone, however. Cycles are easily introduced into the graph and can only be
recognized at run-time for dynamic graphs. Agrawal et al. [6] showed that it is possible to
efficiently execute dags of tasks on top of a stricter programming model, making it possible to

Programming Models based on Task Parallelism 7

use a stricter model in general and resorting to dags only when required to achieve sufficient
parallelism.

2.2.2 Futures

A popular model for task-based programming are futures. It is used in Intel Threading Build-
ing Blocks [93], C++11 tasks [129], Multilisp [72], Mul-T [91] and COOL [37] among others.
An example program implemented with futures is shown in Listing 2.1. In this model, a se-
quential program is annotated with spawn directives. Each spawn directive creates a parallel
task out of the following expression (typically a function call). Each spawn directive returns
a future, which is a synchronization variable that stores the result of the spawned expression,
as soon as it has been evaluated. Synchronization is performed by waiting on futures.

Listing 2.1 Pseudocode for the quicksort algorithm implemented with futures.

1 void quicksort(int* begin, int* end) {

2 if(begin == end) return;

3

4 int* middle = partition(begin, end);

5 future<void> f1 = spawn quicksort(begin, middle);

6 future<void> f2 = spawn quicksort(middle + 1, end);

7

8 f1.wait();

9 f2.wait();

10 }

11

12 void main() {

13 . . .
14 quicksort(begin, end);

15 . . .
16 }

Programming models based on futures can support all task dags that have a single source
and sink vertex. Typically, such dags also have in-degree and out-degree of at most two for
all vertices, but this is not a strict requirement of the model. As long as the model restricts
futures to only be accessed by tasks following in a sequential execution (which is typically
the case for programming models with futures), it is not possible to introduce cyclic depen-
dencies, and converting every task spawn into a function call will yield a valid sequential
program. Nonetheless, when executed in parallel, the number of deviations from a sequential
execution can be expected to be higher than for stricter models [127], thus introducing higher
synchronization overhead and making the execution harder to reason about.

2.2.3 Async/Finish

Like programming models based on futures, the async/finish model, introduced with the X10
programming language [38], extends sequential programs with statements for parallelism.
Tasks are spawned using a spawn directive (which is called async in X10, hence the name
async/finish), and synchronization is performed using the finish statement. The finish state-
ment is a synchronization directive that blocks progress until all (potentially parallel) work of
the expression following the finish statement has been executed. This includes transitively
spawned tasks, tasks spawned by other tasks affected by the finish statement.

8 Chapter 2 Programming Models

Listing 2.2 Pseudocode for the quicksort algorithm implemented with a finish statement.

1 void quicksort(int* begin, int* end) {

2 if(begin == end) return;

3

4 int* middle = partition(begin, end);

5 spawn quicksort(begin, middle);

6 spawn quicksort(middle + 1, end);

7 }

8

9 void main() {

10 . . .
11 finish quicksort(begin, end);

12 . . .
13 }

An example is given in Listing 2.2. There, no synchronization is performed at the end
of each quicksort task. Instead, the first call to quicksort is preceded by a finish statement,
which ensures that all tasks transitively created within the quicksort function have finished
executing before execution proceeds after the finish statement.

In a parallel program based on the async/finish model, a sequential execution of the pro-
gram, created by ignoring all spawn and finish directives, is always a valid execution of
the parallel program. This also ensures that the dag is acyclic, thereby making the program
deadlock-free if no other blocking means of synchronization apart from finish are used. Fur-
thermore, this property greatly simplifies the reasoning about the execution, since a parallel
execution can be related to the sequential execution. This property is used to calculate bounds
on time, space and communication cost of task schedulers relative to to a sequential execution,
which is discussed in Chapter 3.

The dags supported by the async/finish model fall into the class of terminally strict dags [4],
which are planar dags where tasks are only allowed to synchronize with ancestors, and where
a task is not allowed to synchronize with an ancestor later than its parent, or tasks spawned
later by the parent. Typically, dags of an async/finish computation have unbounded in-degree,
and an out-degree of two.

Listing 2.3 Cilk5 code for the quicksort algorithm.

1 cilk void quicksort(int* begin, int* end) {

2 if(begin == end) return;

3

4 int* middle = partition(begin, end);

5 spawn quicksort(begin, middle);

6 spawn quicksort(middle + 1, end);

7

8 // Not really needed due to the implicit sync at end of function

9 sync;

10 }

11

12 void main() {

13 . . .
14 quicksort(begin, end);

15 . . .
16 }

Programming Models based on Task Parallelism 9

1

2 3

4

5

6 7 8

9

(a) Original

1

2 3

4/5

6 7 8

9

(b) Series

1/5

2 3

4/9

6 7 8

(c) Parallel

Figure 2.2: Construction of series-parallel dags.

2.2.4 Spawn/Sync

The spawn/sync model, which was made popular by Cilk [25], like the async/finish model,
allows to parallelize a sequential program by adding spawn and sync statements. A spawn

statement can be put before a function call, to allow the function call to be executed as a task
in parallel with the function that called it. The sync statement is used to synchronize with
tasks. Unlike futures, the sync statement does not synchronize with a specific task, but with
all tasks spawned by the function. In addition, there is an implicit sync at the end of each
function.

An example program is given in Listing 2.3. There, recursive calls to the quicksort function
are executed in parallel. The sync at the end of the quicksort function synchronizes with the
spawned subtasks, so that the function will only terminate if its subtasks terminated. Due to
the implicit sync at the end of a function, the sync statement is purely optional in this case.

The spawn/sync model restricts the dags that can be supported to fully strict dags, which
are restricted in the sense that a spawned task always has to synchronize with its parent.
Furthermore, since the sync statement synchronizes with all tasks spawned by the parent, the
dag also has all properties of a terminally strict dag, making the dag planar. Similar to the
async/finish model, the resulting dags have unbounded in-degree and an out-degree of 2.

2.2.5 Nested parallel

The most restrictive common model for task parallelism is the nested parallel model, which
is a fork/join model, where a sequential thread of execution forks into multiple parallel tasks,
each performing the same operations on different data. As soon as all parallel tasks have been
executed, the parent thread can proceed with its execution.

Nested parallel programs always have series-parallel dags, which are dags with a single
source and a single sink, which can be constructed by combining multiple series-parallel dags
in the following manner, as depicted in Figure 2.2: series: two dags are combined, by merging
the source of one with the sink of the other (Figure 2.2b); parallel: two dags are combined by
merging their sources and their sinks(Figure 2.2c).

One example of a nested parallel programming language is NESL [23], a functional pro-
gramming language. An example quicksort implementation in NESL is shown in Listing 2.4.
It slightly differs from the other quicksort examples given, in that the partitioning step is also
parallelized, but is not performed in-place.

The original OpenMP standard also conformed to the nested parallel model, but since the

10 Chapter 2 Programming Models

Listing 2.4 A nested parallel implementation of the quicksort algorithm in NESL (taken
from [23])

1 function Quicksort(S) =

2 if (#S <= 1) then S

3 else

4 let a = S[#S/2];

5 S1 = {e in S| e < a};

6 S2 = {e in S| e == a};

7 S3 = {e in S| e > a};

8 R = {Quicksort(v): v in [S1,S3]};

9 in R[0] ++ S2 ++ R[1];

introduction of the task directive in OpenMP 3.0 [16] its model of parallelism is close to the
spawn/sync model.

2.2.6 Other models

One model that is popular for the development of research prototypes of task schedulers is
continuation passing style. In this model, continuations (parts of a task following a blocking syn-
chronization) are explicitly implemented as separate tasks, and communication between tasks
is performed using messages. An example written in an old version of Cilk (which was at that
point based on continuation passing style) is presented in Listing 2.5. While this style is not
very elegant to program, it greatly simplifies the development of a parallel runtime system.
One main difficulty that schedulers face if continuation passing style is not used is discussed
in Section 3.2.3. Many task-parallel programming languages, like Cilk [25], Cilk++ [97] and In-
tel CilkPlus, rely on continuation passing style internally, but have a compiler that transforms
a program from a model simpler than continuation passing style (e.g. spawn/sync).

Listing 2.5 Fibonacci algorithm written in continuation passing style in an old version of Cilk
(taken with slight modifications from [25])

1 thread fib (cont int k, int n) {

2 if (n<2) {

3 send_argument (k,n);

4 } else {

5 cont int x, y;

6 spawn_next sum (k, ?x, ?y);

7 spawn fib (x, n-1);

8 spawn fib (y, n-2);

9 }

10 }

11

12 thread sum (cont int k, int x, int y) {

13 send_argument (k, x+y);

14 }

In the StarSs programming language [113], a sequential program is extended by annotating
function implementations as tasks. Whenever the given function is called within a program,
the runtime system is allowed to execute it in parallel with the function that called it. Each
task is also annotated with its memory access patterns. Whenever two tasks A and B, where
A comes before B in a sequential execution need to access the same data, and at least one of

Memory Models 11

these accesses is a write access, then A comes before B in the partial order of tasks. StarSs
allows programs to be parallelized by only modifying functions that are called and making
them tasks. There is no need to modify the code that calls those tasks, since there are no
explicit spawn operations and synchronization directives. Instead, these are implicitly han-
dled by the runtime system. The main disadvantage of this model is that it is hard to handle
irregular memory access patterns, which can easily lead to a dag stricter than required for the
program. In addition, due to the lack of loop parallelization, task spawns inside a loop will
be performed sequentially, one after the other, thereby reducing potential parallelism. While
a heroic compiler might be able to parallelize this in some cases, this is hard to achieve in all
cases.

2.3 Memory Models

A memory consistency model defines the order in which changes to shared data become
visible to other processors. While sequential consistency [95] is arguably the most intuitive
and simple to program model it is also difficult to realize efficiently in hardware, and for this
reason most common processor architectures rely on relaxed memory consistency models [2].

While hardware memory consistency models are out of the scope of this work, it has be-
come common for programming models and languages to provide their own, relaxed memory
model [9, 16, 24, 93, 101, 129]. These logical memory models are independent of the actual hard-
ware they are executed on, and are translated to the hardware memory consistency model
by the compiler or the library implementation. They have in common that they all define
the notion of a data race (a conflicting access to a shared non-synchronization variable, from
which at least one is a write) and provide a sequentially consistent execution for data-race-free
programs. For most models, the behaviour of a program with data races is undefined. One
notable exception to this is the new Java memory model [101]. Since the Java programming
language was designed to also execute untrusted, and therefore potentially malicious code, it
is necessary for Java to preserve causality even for programs with data races. This way, an
attacker cannot use data races to set pointers to out-of-thin-air values.

The new C++ memory model [28], on the other hand, was designed with high performance
and scalability in mind. For this reason it allows anything to happen for programs with data
races. To support fine-grained synchronization, variables can be declared as atomic types.
Atomic types in C++ are treated as synchronization variables, all accesses are atomic, and their
behaviour for concurrent accesses is well defined, so that such variables cannot introduce a
data race. Behaviour of concurrent writes to such variables is still non-deterministic though,
since depending on the order of these writes a different value might be stored. In addition,
the C++ memory model allows programmers to specify the memory ordering requirements for
every operation on an atomic type. This allows the programmer to minimize synchronization
cost by only enforcing order between operations where it is necessary.

The merit of modern memory consistency models in programming languages is that the
programmer is freed from having to think about the properties of the hardware, which might
vary. Instead, programmers are required to thing about which ordering constraints on op-
erations on shared variables. This is achieved by happens-before relationships that can be
established by the programmer. An example of a happens-before relationship is shown in
Listing 2.6. In this example, the variable y is written, and afterwards the value 1 is written to
the atomic variable x with the requirement of the write being a release operation. A release
operation ensures that after the written value is read by another thread using an acquire or
stronger operation, this thread will also see all writes that the previous thread performed be-
fore updating x. Thus, the write to y happens before any thread observes x == 1. This greatly

12 Chapter 2 Programming Models

Listing 2.6 Simple C++ example of a happens-before relationship.

1 atomic<int> x(0);

2 int y = 0;

3

4 void function1() {

5 y = 42;

6 // Release ensures that if a thread sees x == 1, 42 has been written to y

7 x.store(1, std::memory_order_release);

8 }

9

10 void function2 {

11 // Acquire ensures that all writes released by a store of the observed value

12 // happened before the acquire

13 if(x.load(std::memory_order_acquire) == 1) {

14 // Will be true if x == 1

15 assert(y == 42);

16 }

17 }

simplifies reasoning about the correctness of synchronization, while at the same time making
the algorithm hardware independent.

Dag consistency [24] is an early logical memory consistency model for task-parallel pro-
gramming models, which allows reads to return different values if they all correspond to
valid serial orders, with the restriction that they must respect the dependencies in the dag of
the task-parallel computation. Essentially, dag consistency establishes happens-before rela-
tionships between tasks that have dependencies on the dag. The advantage of this model is
that, while it allows a relaxed memory model to be used on the hardware level, the program
still behaves like a sequentially consistent program for operations with clear dependencies on
the dag.

Since dag consistency is a fairly natural fit for task-parallel applications, it is desirable
to support this in a task-parallel programming model. Fortunately, this is easily achieved
for data-race-free programs when using a modern software memory consistency model as a
base. To achieve this, a happens-before relationship must be established between everything
that happened before a task was spawned, and the time when a thread starts executing that
task. Under the C++ memory model this can be achieved, by storing newly created tasks
in the task queue using a release operation, and reading tasks from task queues using an
acquire. All schedulers implemented as part of this work fulfil dag consistency for data-race-
free programs.

2.4 Locality Awareness

The shared memory programming model provides the programmer with a single global ad-
dress space, where all memory accesses are treated equally with regard to the model, and it is
assumed that all memory accesses take roughly the same time. While this model was feasible
for a long time, since processor speed was the limiting factor for computations, processor
speeds have increased at a higher rate than the speed of memory accesses, leading to the
so-called memory wall [12, 149], where memory access latency becomes the limiting factor for
computations. There are two ways, in which this can be counteracted: caching and non-uniform
memory access (NUMA).

Locality Awareness 13

Caches are small, low-latency memories that exploit temporal and spatial locality to reduce
memory access latency in many cases. This has the effect that many memory accesses be-
come fast, but accesses that cannot take advantage of temporal or spatial locality will take
significantly more time, a fact that is not visible in the programming model. Also, to fully ex-
plore the memory bandwidth, it is necessary for the programmer to take advantage of spatial
locality as much as possible. In addition, in a parallel setting, writes to a memory location
will lead to the invalidation of said memory location in all other processor’s caches. This will
also invalidate adjacent memory locations, leading to cache thrashing in false-sharing situations,
where two processors regularly write to adjacent memory locations thereby invalidating the
other processor’s cache every time.

In non-uniform memory access (NUMA) systems, the system is split into multiple NUMA
nodes, which are groups of processor (cores) that own part of the shared memory. While it
is still possible to access memory from another NUMA node, and this memory is still cache
coherent, memory accesses to another NUMA node incur much higher costs with regard to
memory access latency and bandwidth. Both caches and NUMA require programs to be
implemented in a locality aware fashion. We understand locality aware programs as programs
that take into account differences in memory access latency.

One provably good model for locality aware algorithms is the cache oblivious model by
Frigo at al. [62]. Cache oblivious algorithms are optimized to reduce the number of memory
accesses, similar to the I/O model by Aggarwal et al. [5], but with the difference that no as-
sumptions are made about the size of the caches or the depth of the cache hierarchy. Cache
oblivious algorithms can be shown to be optimal for any type of cache hierarchy under the
assumption that an optimal paging strategy is used. Frigo et al. [62] have shown that it is
possible to simulate such an optimal strategy with only a constant factor overhead. The cache
oblivious model does not take NUMA costs into account, though.

2.4.1 Task parallelism and locality awareness

The main idea behind task parallelism is that the programmer does not need to be aware about
the actual processors a program is executed on, but instead can concentrate on exposing as
much parallelism as possible. This bears similarities to the global address space model of
shared memory, where the programmer is oblivious of where data is stored, since in the
task model the programmer is oblivious of where a task is executed. Task schedulers, like
the parallel depth first (PDF) scheduler [100] have been developed that provide bounds on the
amount of cache misses with regard to the cache misses encountered by a sequential execution
of the same program.

While we do not intend to enforce any specific model of locality aware scheduling on
the programmer, we believe it is important for a task-scheduling system to have a concept
of locality, which is also exposed to the programmer. For this, we introduce the concept of
places. A place, by our definition denotes a single worker thread in a scheduling system and
its supporting data-structures. A place is bound to a specific processing unit and will never
be migrated to another processing unit. A task, which is executed at a specific place will stay
in this place until the end of its execution.

Each place is assigned a unique id in the range from 0 to P− 1, where P is the total number
of places in the system. The numbering also reflects the memory hierarchy, so that places
assigned to processors close to each other in the memory hierarchy will also have id’s close
to each other. Places can serve multiple purposes: They can simplify the implementation of
parallel algorithms and data structures for task-parallel programming systems, by uniquely
identifying processing units. If two memory accesses come from the same place, they are
guaranteed to have happened in a specific order, and the later of these memory accesses will

14 Chapter 2 Programming Models

observe the changes made by the previous one. This allows to create place specific local view
on shared data, for which no synchronization is needed for accesses, even if those accesses
come from unrelated tasks.

Another important aspect of places is that they allow a notion of distance in the memory
hierarchy. The distance in the memory hierarchy between two places is related to the number
of caches that the processing units those places are assigned to do not share. The larger the
memory distance between two places, the higher the cost for one place to read memory last
accessed by the other. To allow for NUMA-awareness, in addition to the normal memory
distance it should be possible for programmers to query the NUMA distance between two
places, with the distance 0 being returned for two places on the same NUMA node.

With the help of task priorities, which are presented in the next section, it is possible for
programmers to influence the schedule of a task-parallel program. For data-parallel appli-
cations it can be of advantage to query for each block of data the NUMA node at which it
is stored, and then to preferably execute tasks operating on each block of data at a place
assigned to the same NUMA node as the memory. Unfortunately, on current systems such
queries are fairly expensive making them impractical for most applications. We hope that on
future systems this will be improved, since this will greatly simplify the creation of NUMA-
aware algorithms in the task-parallel programming model.

2.5 Task Priorities

A common programming pattern, both for sequential, as well as for parallel algorithms is the
pattern of a work pool. Work stored in such a work pool is processed in some order, and each
unit of work may in turn lead to new units of work being added to the pool. One well-known
example of an algorithm based on work pools is Dijkstra’s algorithm for single-source shortest
paths [7].

The task-parallel programming model is an implementation of the work pool pattern for
parallel programming systems, where each task represents a unit of work, and requires the
programmer to implement all parallel applications in this kind of pattern. While this makes
the task-parallel programming model a natural fit for implementing applications based on
work pools in parallel, some such applications are surprisingly difficult to implement in a task-
parallel programming model. The reason for this is, that some applications based on work
pools place requirements on the order in which work is returned from the pool. Dijkstra’s
algorithm, for example, uses a priority queue ordered by the tentative distance value of each
node.

Task-parallel runtime systems, on the other hand, typically have a hard-coded execution
order of tasks. The classical ABP work-stealing algorithm [11], for example, lets each worker
thread execute its own tasks in a LIFO order, and worker threads running out of work will
steal the oldest task from a random victim. While this execution order is provably efficient for
applications based on a function-level parallelization of a sequential program, as discussed in
Chapter 3, such an execution order is insufficient for the parallelization of algorithms based on
work pools. Such algorithms can still be implemented in a task-parallel programming model
by maintaining a separate ordered work-pool, and feeding the task-scheduler dummy tasks,
each of which will then access the actual work pool. This approach is clearly a work-around,
and instead of helping, the task-parallel programming model is in the way of the programmer
and imposes additional overheads.

We introduce the model of priority task scheduling [142–144, 148] to address this shortcom-
ing. With priority task scheduling, the task scheduler is made aware of the prefered execution
order of tasks, and uses a concurrent priority queue implementation that is able to fulfil the

Task Priorities 15

ordering constraints required by the algorithm. This enables the parallel implementation of
any algorithm relying on work-pools, as long as an efficient concurrent priority queue imple-
mentation suitable for this problem is available.

While some algorithms, like Dijkstra’s algorithm, rely on specific execution orders in the
work pool, others that do not can still profit from priorities. Branch-and-bound algorithms,
like the graph bipartitioning algorithm presented in Section 7.4 can use heuristics to explore
promising branches first, thereby leading to branches being cut off earlier, and in turn re-
quiring less work. Other algorithms, like prefix-sums (as presented in Section 7.6), can com-
bine two passes on data into one if the tasks are executed in the right order. Other appli-
cations can benefit from a locality aware task schedule, which gives priority to tasks that
access data already in the cache or stored on the NUMA node the worker thread is executing
on [69, 128, 140]. Another common heuristic is to prioritize tasks on the critical path [126].
Resource obliviousness has been achieved with a special priority scheduling scheme [42].
A variety of task-parallel application kernels that profit from prioritization is presented by
Lenharth et al. [99]. They postulate that a global priority ordering for tasks is often not benefi-
cial for performance, and that different priority orderings within the same application/system
are required.

2.5.1 Types of Priorities

In this section we discuss the types of priorities that can be encountered in an application.
In general, priorities only apply to ready tasks. A task for which some dependencies are not
satisfied will never be executed, even if it has a priority higher than any other task in the
system.

Discrete priorities The simplest way of maintaining priorities for tasks is by assigning a
discrete priority value to each task. In the simplest variant, the number of discrete values
is very small (e.g. two values: high priority and low priority), which can be realized by
maintaining a separate task queue for each priority value. A task queue will only be accessed,
if all task queues of higher priority are empty.

If more values for priorities are supported, for example if priorities are 32-bit integers, it
is possible to support more complex priority scheduled applications, and in fact most (but
not all) of the priority scheduled applications in Chapter 7 can be implemented with discrete
priorities, given enough discrete values. While our first priority scheduler prototype was
based on discrete priority values, we realized that it is often hard to quantify the priority of
a task as an integer without prior knowledge of the other tasks that will be created. A badly
chosen task priority can easily lead to future tasks requiring priority values out of the bounds
of allowed priority values.

Discrete priority values can, for example, be found in Intel Threading Building Blocks [93],
where three priority values (high, medium and low) are supported. StarPU [15], supports a
wider range of priority values, but the concrete range of values supported depends on the
scheduler that is used.

Comparison based Higher flexibility and better programmability can be achieved by mov-
ing to comparison based priorities, an approach common for generic implementations of pri-
ority queues, as is found in the standard libraries of popular programming languages like
Java and C++. In this case, the programmer provides the scheduling system with a compara-
tor, a comparison operator for tasks, that tells the scheduling system, which of two tasks to
prioritize. The comparator needs to be transitive, to ensure a total order of tasks.

16 Chapter 2 Programming Models

Most of our work on priority scheduling concentrates on comparison-based priorities,
since they provide an elegant abstraction to the programmer, while at the same time allowing
for efficient scheduler implementations.

Pareto priorities As a generalization of discrete priority values, pareto priorities allow to
assign a multi-dimensional priority value to each task. Given a set of ready tasks, pareto
priorities ensure that the next task to be executed is a pareto optimum, a task for which the
partial solution is not dominated by the partial solution of any other task.

The advantage of multi-dimensional priorities is that they only establish a partial ordering
on tasks, giving the scheduling system more flexibility as to which task to execute next. In a
parallel execution this can greatly reduce the number of processors attempting to execute a
specific task in comparison to one-dimensional priorities, thereby leading to better scalability.
This requires more complex priority queues, however, which we are currently working on and
plan to present in future work. Pareto priorities can be useful for the multi-criteria shortest
path problem [102], where exploring pareto optima first has been shown to be beneficial for
parallel executions [119].

As a further generalization, to omit problems with discrete priority values, a comparator
for each dimension can be used in a pareto set instead of giving the scheduler direct access to
the values.

General partial orders Pareto priorities can again be generalized by not providing specific
priorities, but instead a general partial ordering on tasks using a comparison operator. We
believe that it is hard to develop efficient data structures for this problem, so that the cost of
maintaining such a relation can easily outweigh the gains from using a general partial order
instead of comparison based priorities or pareto priorities. Also, we are not aware of any
applications that can profit from partial orders but are not covered by pareto priorities.

Specialized schemes For some applications, higher efficiency can be achieved by specialized
priority queues. One example of an algorithm requiring this is the ∆-stepping algorithm [104],
which may hold back the execution of certain work to bound the potentially useless work be-
ing performed. While there is no real point in writing a specialized priority task scheduler
for a single algorithm, since such an algorithm can also be implemented in a different pro-
gramming model, the use of strategies, as described in Section 2.7 can enable the use different
algorithms relying on different priority queues inside a single task scheduler. This can allow
to use the most efficient data structure for an algorithm, while at the same time allowing the
task scheduler to distribute available processing units between all algorithms running in the
application.

2.5.2 Locality aware priority scheduling

Prioritization of tasks can be used to provide locality optimizations to task-parallel applica-
tions. The execution order of tasks in classical ABP work-stealing algorithm [11] already per-
forms surprisingly well for this for many applications due to high temporal locality (locally
spawned tasks are executed depth-first, tasks spawned by other threads are only executed
when own task queue is empty).

While the ABP work-stealing algorithm works well for applications, where a sequential
execution is cache efficient, some applications may profit from problem specific locality opti-
mizations. For algorithms with little temporal locality in a sequential execution a completely
different execution order for tasks may be better. Also, for an application that relies on prior-
ities, the LIFO/FIFO prioritization is not an option.

Parallel Tasks/Mixed-mode Parallelism 17

To support locality optimization, the prioritization of tasks is allowed to vary for each
place. This means that each place would execute tasks in a different order. To achieve this,
some of our comparison-based priority queue implementations allow the comparator to return
different results depending on the place that calls the comparator. As an example, a strategy
may store the NUMA node the data a task operates on is stored on. With such a strategy,
tasks can then be ordered by NUMA distance (see Section 2.4), so that tasks with low distance
to a given place will be preferably executed by that place. This could, for example be used
in the prefix sums benchmark presented in Section 7.6 to let each worker thread preferably
execute tasks operating on NUMA-local blocks of data.

2.6 Parallel Tasks/Mixed-mode Parallelism

Complex applications often call for a mixture of approaches to parallelization both for ease of
expression as well as for achieving a desired efficiency on the available system architecture.
A concrete example is applications that exhibit a mix of parallelism between task parallelism,
where tasks that have no dependencies do not need to communicate with each other and
tightly coupled parallelism between threads (processes) working on different parts of the same
data structure with requirements for synchronization and data sharing between these threads
(processes). Such a mixture of task and data parallelism is sometimes called mixed-mode paral-
lelism (or mixed data and task parallelism), and this term will be used in the following.

We proposed an extension to the task parallel model [146, 147] by supporting parallelism
inside tasks, where a task can be executed by P ≥ 1 processors (threads). Multi-processor
(thread) tasks are used for implementing the tightly coupled, data parallel parts of applica-
tions, and require that the requested threads start execution of the task more or less syn-
chronously. In order to facilitate communication within such tasks the allocated, scheduled
threads will have a virtual consecutive rank. Furthermore, localized collective synchroniza-
tion constructs, like barriers are provided that will synchronize between processors working
on the same task.

A similar model for mixed-mode parallel tasks was presented by Kessler and Hanson [87].
The crown scheduling algorithm by Kessler et al. [88] provides mixed-mode parallel scheduling
for streaming task collections a model stricter than the model we support. Like our team-
building algorithm presented in Section 4.4, they simplify finding a good schedule, by only
allowing team sizes to be powers of two.

Another model to integrate tight synchronization in a task-parallel model was presented
by Dummler et al. with communicating parallel tasks [51, 52]. In this model, communication
relations between tasks can be specified, thus allowing such tasks to communicate during
their execution. The scheduling system has to ensure that such tasks are co-scheduled at the
same time on different worker threads.

In scheduling theory, tasks which by themselves are parallel, are called malleable or moldable
tasks [50]. The difference between these terms is that malleable tasks can gain or lose worker
threads while executing, whereas moldable tasks have a fixed number of worker threads while
executing. Nonetheless, the term malleable is also often used to describe moldable tasks.

There is a large body of related work concerned scientific applications that mix task and
data parallelism [17,36,47,116,130]; other natural, mixed-mode applications include combina-
torial searches [46, 150] and image processing [92].

A model that allows to analyze benefits and trade-offs in mixed-mode parallel applications
was proposed by Chakrabarti et al. [36]. Otherwise, literature is often concerned with efficient
scheduling of mixed-mode parallel applications, mostly in centralized, static approaches, see
also [114]. Much work has dealt with mixed-mode parallelism as a means to structure and

18 Chapter 2 Programming Models

reduce communication in distributed memory systems [47]. Likewise, there has been con-
siderable work on integrating task and data parallelism in HPF, see for instance [49, 58, 115].
Also the data parallel OpenMP framework has recently been extended with constructs for
task parallelism [16].

2.6.1 The programming model

In our model, we distinguish between normal, serial tasks and mixed-mode parallel tasks. By
default, a task is a sequential task, which allows standard task-parallel applications to be
easily migrated to a mixed-mode parallel programming model. When a task is marked as
mixed-mode parallel, it can be executed by a team of threads instead of a single thread. A
team is a group of (worker) threads working on processing a single task in an SPMD-like
manner. A team is formed by an algorithm that we call deterministic team building, which is
described in Section 4.4. Teams are built before the execution of a task and all threads stay on
the team until the task finishes executing. The size of the team is decided by the programmer
at spawn time.

Our mixed-mode parallel model caters mainly to tightly coupled parallelism, which is
parallelism with a high amount of synchronization between threads. For this reason it is
preferable to minimize the cost of synchronization between threads in a team, which is why
teams are chosen, so that memory distance is minimized. As an example, in a multi-socket
system with 8-core processors, it is guaranteed that a team consisting of up to 8 threads
will have all 8 threads pinned to a different core in the same socket. Threads in a team are
locally numbered from 0 to t− 1, where t is the team size. The numbering also reflects the
memory hierarchy, in that the threads are grouped as to minimize memory distance (see also
Section 2.4.1. Essentially, a team is chosen out of a block of subsequently numbered places,
and the numbering inside a team corresponds to the place id’s minus the offset.

Contrary to standard, serial tasks, the function body of a mixed-mode parallel task is
executed multiple times in parallel, once by each worker thread in the team assigned to the
task. The only way to distinguish between the worker threads is by the local id of each thread
in the team. In addition, the total size of a team can be queried, allowing for static data
distribution schemes and collective synchronization.

2.6.2 Extension to the model

While the original model presented in previous work [146,147] would only start execution of a
parallel task as soon as all worker threads are ready, we have later relaxed these requirements
to reduce idle time. Instead, we now provide an additional blocking statement, after which it
is guaranteed that all threads of a team have started executing the current task.

2.6.3 Issues with the model

The main issue with the current model is that the programmer has to explicitly request a
specific number of worker threads for a team. This does not fit well with the task model, where
the programmer normally is oblivious of the number of processors in a system. Also, to make
an informed decision as to what the best team size is, one would require both information
about the scheduler load when the task is executed, as well as the scalability of the mixed-
mode parallel algorithm. Neither the programmer, nor the scheduling system have enough
information to make a good decision. We intend to explore the possibility of using strategies
in future work to make a more informed decision about the number of threads working on a
team when a task is being executed.

Scheduling Strategies 19

2.7 Scheduling Strategies

Standard task-parallel programming models are oblivious to most properties of individual
tasks and treat tasks equally. While this is enough for a scheduler to create an asymptotically
optimal schedule for an application, in practice a lot can be gained by giving the runtime
system more information about tasks.

We presented scheduling strategies [142, 143] as a mechanism to inform a work-stealing
scheduling system about properties of individual tasks in order to influence and improve the
execution. A strategy can be associated with a task at spawn time. In contrast to scheduling
policies that are global in nature, the scope of a scheduling strategy is an individual task. This
allows to influence the scheduler behavior for a single task without incurring possibly negative
effects for (all) other tasks. Scheduling strategies are composable, and different strategies can
be used in a single task-parallel execution because there is a well-defined way in which such
strategies interact.

2.7.1 Spawn to call

For tasks with small granularity, spawn overhead can significantly influence the total appli-
cation execution time. On the other hand, too coarse grained tasks may lead to too little
parallelism or less than optimal load-balancing. Spawn overhead can be reduced by convert-
ing task spawns to function calls at run-time [53]. This should preferably be done dynamically,
when the scheduler has a large number of unprocessed tasks in its queues, thereby trading
excess parallelism for a lower scheduler overhead. We have noticed that this simple heuristic
can lead to a significant performance improvement for applications with either small vari-
ance in task granularity (algorithms on same-sized blocks) or decreasing task granularities
(divide-and-conquer algorithms).

For other types of algorithms, this heuristic can be problematic since it is oblivious to
task granularity. In the worst-case, high granularity tasks would be converted to function
calls, and low granularity tasks put into the task queues. Strategies avoid such pathologies by
allowing for specifying how and when tasks can be converted to function calls, based on the
granularity of a given task and available parallel work.

Strategies make it possible to control the conversion of task spawns to synchronous func-
tion calls based on a user-defined function. This function has access to both information about
the task, as well as the state of the runtime system, which is the number of tasks in the queues.

With added compiler support strategies can become even more useful, since they can work
as a more dynamic replacement to a cutoff value, a value, typically hard-coded by program-
mers, below which an algorithm is executed sequentially. Since work on compilers is out of
the focus of this work we have not implemented this. Without compiler support, it is still
preferable to keep a cutoff in task implementations, due to the higher overhead of strategies.

2.7.2 Scheduling policy choice

There are two main policies by which task spawns can be handled: work-first and help-first. In
the work-first first policy, a spawned task is executed immediately by the thread that spawned
it, leaving the continuation to be executed by other threads, whereas in the help-first policy the
continuation is executed first. Both policies are discussed in Chapter 3. While the work-first
policy is guaranteed to lead to an asymptotically optimal execution in relation to a sequential
execution [27], there are applications which can profit from a help-first scheduling policy [68].

Due to the limitation of our scheduling system to the help-first scheduling policy, for
reasons discussed in Section 3.2.3, we do not support policy choices for scheduling strategies.

20 Chapter 2 Programming Models

28 27 26 25 24 23 22 21

12
W

ork 1
2

Tasks

Figure 2.3: Difference between stealing half the tasks and half the work.

Nonetheless we agree with Guo et al [68] who argue that it is a useful extension for scheduling
systems to support both policies.

2.7.3 Number of tasks to steal

For work-stealing systems it is well known that it is usually better to steal half the work in-
stead of only a single task [20], the advantage being that work available in one queue quickly
disseminates to the whole system. In standard work-stealing systems the amount of work
incurred by the tasks is not known (by the scheduler), and stealing half the work is approx-
imated by stealing half the tasks. In many cases, this approximation is highly inaccurate.
For example, in many divide-and-conquer algorithms the amount of work is halved at each
spawn. To steal half the work in such algorithms it would be sufficient to steal only the task
with the largest amount of work, instead of half the tasks.

Our system allows the programmer to specify a transitive weight for each task, which is
an estimate of the work that will be generated by a task and its descendants. The transitive
weight associated with tasks can be used to estimate the work required by each new task and
its descendants. This allows the stealing procedure to terminate as soon as half the work has
been stolen, irrespectively of the number of tasks in the queues.

An example is depicted in Figure 2.3. There, the first task in the queue requires an esti-
mated work of 28, and each following task requires only half the work of its predecessor. This
is a common behaviour for divide-and-conquer algorithms. Now for such algorithms it is
sufficient to steal the first task. Stealing half the other tasks, on the other hand, would lead to
most of the work being stolen, requiring the original owner to steal back work at some point.

2.7.4 Dead tasks

For certain applications, like search-based algorithms, tasks can be speculatively created in
order to achieve more parallelism. Newly calculated results can make some of these specula-
tively created tasks obsolete so that they do not need to be executed any more. Strategies allow
the user to expose such dead tasks so that they can be removed early and will not be stolen by
other threads. Support for speculative executions was added to Cilk [112] and OpenMP [133]
using an abort command. Our approach is instead based on lazy recognition of dead tasks
with the help of strategies. This allows for more efficient implementations of scheduler data
structures, since often the cost of removing the task from the data structure can be omitted.
This is discussed in more detail in Chapter 4.

Scheduling Strategies 21

Standard Work-stealing

FIFO MostPromisingFirst AlgX

AlgXSort AlgXFilter

Figure 2.4: A hierarchy of scheduling strategies with LIFO/FIFO as the base strategy.

2.7.5 Specifying parallelism

The mixed-mode parallel model discussed in Section 2.6 allows a task to be parallel in itself.
Throughout the development of the mixed-mode parallel model we realized that the decision
as to how many processors are used to execute a mixed-mode parallel task cannot easily be
made without information about other parallel work available. Strategies can allow to make
this decision dynamically at runtime using both information about the application as well
as information from the runtime system. So far our work on mixed-mode scheduling and
scheduling strategies was performed on separate scheduler prototypes, this functionality is
left for future work on a scheduler that combines these techniques.

2.7.6 Task execution order

An application specific execution order of tasks can lead to higher efficiency (performance,
memory usage, quality of the results) compared to a fixed execution order like last-in-first-out.
This is discussed in detail in Section 2.5. Strategies can be used to suggest an execution order
to the scheduling system by giving the user a means to prioritize tasks of the same type. In the
simplest case, prioritization is implemented by a comparison function that takes two instances
of strategies of the same type and determines which should be preferred over the other. Since
each instance of a strategy is associated with a single task, the prioritization of an instance
leads to the prioritization of a task.

In a more complex setting, a strategy can enforce the use of a pareto priority queue to order
tasks of the same type. Each such strategy is then associated with a pareto set, which is used
to determine a partial ordering between tasks.

Each type of strategy can be associated with a different scheduler data structure, allow-
ing for a different kind of priority ordering and different guarantees. While work-stealing
based priority queues only guarantee priority order for locally created tasks, ρ-relaxed prior-
ity queues can guarantee global ordering within certain bounds (see Section 5.1). Also note
that conversion of spawns to function calls may violate the prioritization.

2.7.7 Composability

A major design goal of scheduling strategies is composability. It should be possible for dif-
ferent applications or parts of the same application that use different strategies to run concur-
rently within the same, single scheduler. While this is simple to achieve for properties that
are specific for individual tasks, like for the conversion of task spawns to function calls, it is
much more difficult for prioritization.

22 Chapter 2 Programming Models

We solve the composability problem by imposing a hierarchy on strategies as shown in
Figure 2.4. Strategies of different types are composed by the strategy of their lowest common
ancestor. Since the hierarchy has a single root, any two strategies have at least one common
ancestor. A standard work-stealing strategy is the default root strategy. The hierarchy allows
for different algorithmic kernels in a single application to use different strategies as indicated
in Figure 2.4. While some kernels might rely on the base strategy, another kernel might
exhibit better performance with a strategy that enforces a FIFO (first-in-first-out) order on
tasks. Search algorithms, on the other hand are often faster with strategies where the most
promising path is explored first. More complex, real applications often consist of different
algorithmic kernels. In Figure 2.4 we included an algorithm, AlgX, which calls both sorting
(AlgXSort) and filtering (AlgXFilter) kernels inside. Both kernels might require specialized
strategies for efficient execution. In addition, AlgX might need to reduce its critical path
length by ordering different calls to sort and filter. This behavior can be achieved with a
common base strategy for both the sorting and the filtering strategy for AlgX.

Regarding the priority ordering imposed by strategy, an absolute ordering on tasks with
different type of strategies is enforced by always letting child strategies overrule their ances-
tors. For the strategies in Figure 2.4, this results in the FIFO strategy overruling the standard
work-stealing strategy. This is done by first ordering all tasks by the standard work-stealing
strategy, and then moving all tasks relying on the FIFO strategy for which the FIFO ordering
is violated further to the front to the first position where the FIFO constraints are met.

2.7.8 Syntax of strategies

In our implementation of Strategies in the Pheet framework (see Chapter 6), a scheduling
strategy is a class derived from a base strategy class that implements base functionality re-
quired by all strategies, and a default behavior. Strategies derived from the base strategy can
provide different behavior, for example a different prioritization of tasks, by overriding the
default behavior. The constructor of a strategy class is allowed to take any kind of parameter
the programmer desires, which allows strategies to act on problem specific information. An
instance of the strategy class is created and stored for each spawned task. These objects are
then used by the scheduler to make scheduling decisions for the specific task and to determine
the execution order of the stored tasks.

Algorithm 2.7 depicts an example implementation of a strategy that provides depth-first
execution for locally spawned tasks, and a breadth-first execution for tasks created at other
places. It assumes a tree-like algorithm where all tasks in the subtree will be generated. The
constructor of the strategy stores the depth of the given task, as well as the place at which the
task was spawned.

To enable conversion of task spawns to function calls, which is disabled by default, we
provide an implementation of the can call method. This method is called by the scheduler
for every task that is spawned with a strategy of this type, and will convert the task spawn
into a function call if the method returns true. Since, in a depth-first execution the transitive
granularity of tasks can be expected to become smaller with increasing depth, it is sufficient
to specify a cutoff, after which tasks are executed as function calls. The concrete cutoff chosen
depends on the algorithm that uses the strategy.

The prioritize method determines the execution order of tasks. It takes a reference to
a second strategy object of the same type as parameter and should return true if the task
associated with the current instance of the strategy should be executed before the other task,
and false otherwise. Algorithm 2.7 implements different behaviors depending on whether
a task was spawned in the same place or not. Tasks spawned in the same place are prior-
itized for locality reasons and are executed in depth-first order. To facilitate locality-aware

Scheduling Strategies 23

Listing 2.7 Example strategy for a tree-like algorithm with local depth-first local execution
and breadth-first stealing.

1 class DepthFirstStrategy : public Pheet::Environment::BaseStrategy {

2 public:

3 // Self-reference, by convention

4 typedef DepthFirstStrategy Self;

5

6 // Base class, required by Pheet

7 typedef Pheet::Environment::BaseStrategy BaseStrategy;

8

9 // Priority queue to be used by the scheduler

10 typedef LSMLocalityTaskStorage<Pheet, Self> TaskStorage;

11

12 DepthFirstStrategy(int depth)

13 :place(Pheet::get_place()), depth(depth)

14 {}

15

16 /*

17 * Allow spawns to be converted to calls if number of tasks is enough for all places

18 * (works well, since granularity of tasks is decreasing due to depth-first)

19 */

20 bool can_call(TaskStorage task_storage) const {

21 // CUTOFF is an algorithm dependent tuning parameter

22 return task_storage.size() > CUTOFF;

23 }

24

25 bool prioritize(DepthFirstStrategy& other) {

26 if(this->place == Pheet::get_place()) {

27 // This task has been spawned at this place

28 if(other.place == Pheet::get_place()) {

29 // If both tasks are spawned locally go depth first

30 return depth > other.depth;

31 }

32 // Prefer local task

33 return true;

34 }

35 else if(other.place == Pheet::get_place()) {

36 // Only other task was spawned at this place, so prefer other task

37 return false;

38 }

39

40 // Calculate memory distance

41 int d1 = Pheet::get_distance_to(this->place);

42 int d2 = Pheet::get_distance_to(other.place);

43 if(d1 != d2) {

44 // Take task with smaller memory distance

45 return d1 > d2;

46 }

47

48 // For non-local tasks with same distance go breadth-first

49 return depth < other.depth;

50 }

51 private:

52 Pheet::Place* place;

53 int depth;

54 };

24 Chapter 2 Programming Models

scheduling, we provide strategy objects with a way to calculate the memory distance between
different places. For tasks spawned by other places, we prefer the execution of tasks with
small memory distance between the place that spawned the task, and the place that will exe-
cute it. Tasks spawned by places with the same memory distance are executed in breadth-first
order to increase the expected amount of locally spawned work.

2.8 Hyperobjects

Hyperobjects are efficient mechanisms to coordinate accesses to shared variables and data-
structures in task-parallel programming models, where each thread can operate on its own
coordinated local view of the shared data. Synchronization between local views is restricted
to occur at well-defined points in the execution, which correspond to synchronization points
in the task-parallel application, and can be left to the hyperobject implementation.

Hyperobjects are known from the Cilk++ programming language [97], where they were
primarily used to implement reducers. Hyperobjects allow implementation of very general
reducers that can support any (complex) data type. In addition, the reduce operation does
not need to be commutative, associativity suffices. A more efficient implementation of hy-
perobjects was presented by Lee et al. [96]. Leiserson and Schardl [98] used hyperobjects to
implement a work-efficient parallel breadth-first search algorithm. There, a bag reducer is
used to collect nodes that should be processed in the next layer of the algorithm. In our own
work, we used reducer hyperobjects for the implementation of performance counters and to
collect results in search-based algorithms.

In previous work [141], we provided an alternative model for hyperobjects that does not
require programming language or runtime support and may therefore be used with any task-
parallel programming system. Although less streamlined than the Cilk++ model, it has the
advantage of not making any assumptions about the task model, and not requiring runtime
system support. With our model hyperobjects can be provided as a standalone library that
can be used in any task-based runtime system. Our model allows for efficient wait-free im-
plementations of hyperobjects as shown in Sections 4.5 and 4.6.

Finally, we present the novel family of finisher hyperobjects for transitive termination de-
tection based on reference counting. These hyperobjects can be used to efficiently implement
task synchronization primitives like finish. However, finishers can also be used to manage
reference-counted resources, e.g. shared pointers and copy-on-write pointers.

2.8.1 Related work

While they do not make the connection to hyperobjects, the finish accumulators presented by
Shirako et al. [122] are a reduction primitive with strong similarities to reducer hyperobjects.
As with hyperobjects the structure of a task-parallel computation is used to reduce synchro-
nization. As with our reducer hyperobject implementation, the final result of a reduction can
be retrieved at the end of a finish region, thus giving the construct the name finish accumulators.
Even though the name might suggest it, finish accumulators are not finisher hyperobjects.

Hyperqueues [138] are a specific type of hyperobject that is designed to support producer-
consumer queues inside task-parallel programs. Like in our model of hyperobjects, hyper-
queues need to be explicitly passed on to task, and in addition the programmer needs to
specify whether the queue will be used by a producer, a consumer or both in the subtask and
all its descendants. Tasks in producer mode can fill a queue in order of a sequential execu-
tion with concepts similar to standard hyperobjects. A task in consumer mode will only be
executed by the runtime system if all its predecessors in sequential order that also access the
queue in consumer mode have completed executing.

Hyperobjects 25

2.8.2 Associative reducers

Associative reducer hyperobjects allow to perform associative operations on any variable or
data-structure in parallel by multiple tasks. The reducer guarantees that from the user’s point
of view, the operations are performed in the same order they would have been performed in
a sequential execution of the program. The final value of a reducer can be retrieved as soon
as all parallel tasks that have access to the reducer hyperobject have finished executing.

2.8.3 Finishers

The novel finisher hyperobject provides wait-free reference counting. In parallel executions
it maintains local reference counts at each thread. A uniqueness check can be performed
for a finisher at any time. A finisher is unique if only a single copy of the given finisher
exists, meaning that the reference count equals one. In addition, finisher hyperobjects can be
configured to call a cleanup function when the last copy of the hyperobject is destroyed.

Shared pointers (resources)

One application of reference counting with finisher hyperobjects is garbage collection for
shared resources with reference counting similar to the standard C++ shared ptr class. For
this, a shared pointer needs to be stored in conjunction with the finisher. Whenever the last
finisher is destroyed, the last reference to the shared data is destroyed as well so that it can be
deleted.

Copy-on-write pointer

As a special case of reference counted pointers, we propose the copy-on-write pointer, which
may be used to pass on references to large data-structures that are rarely modified and where
modifications should only be visible to subtasks. It provides shared pointer semantics for read
accesses. When a write is requested, exclusive access to a copy of the data-structure has to be
established. If there are multiple copies of the hyperobject referencing the same resource, a
copy of the referenced data is created.

Finish regions

Finisher hyperobjects can also be used to maintain finish regions for transitive termination
detection of tasks in the async/finish model (see Section 2.2.3. In practice, we integrated the
concepts from the finisher hyperobjects directly into our schedulers, so that the hyperobject is
not visible to the user. The findings of our work on hyperobjects allowed us to improve the
efficiency of finish regions, and to make them wait-free.

2.8.4 Computation model

To gain an intuition as to how our model of hyperobjects works, and how it is connected to the
task-parallel programming model, we need to revisit the way, in which a task-parallel com-
putation can be modelled. For our explanation we will assume the spawn/sync (Section 2.2.4)
model for simplicity, but our model also works without need for adaptations in the async/finish
(Section 2.2.3) and futures (Section 2.2.2) models.

Figure 2.5 shows the dag a task-parallel computation in the spawn/sync model. Each node
represents a single statement in the computation. Edges represent computation dependencies.
We call nodes with two outgoing edge spawn nodes (nodes 3 and 5 in Figure 2.5). These nodes
contain a spawn statement, which creates a new task that can be executed in parallel. One of

26 Chapter 2 Programming Models

1 2 3

4 5

6 7

8 9 10 11 12

13 14 15 16 17 18

Figure 2.5: A dag in the spawn/sync model.

the outgoing edges, which points to the instructions of the newly spawned task, is called the
spawn edge. By convention, we draw spawn edges pointing upward. The other edge is called
the continuation edge and is drawn horizontally by convention.

Sync nodes (nodes 11 and 16 in Figure 2.5) represent a synchronization point between two
tasks (a task and its parent in the fully strict spawn/sync model), where one task waits for
one or more tasks to finish executing. Sync nodes are represented by nodes with more than
one incoming edge. One of these edges is a continuation edge, the others are called sync edges.
Only when all incoming edges have been reached by the computation (we say in this case that
the sync node is satisfied), will the outgoing edge of the sync node be followed.

All three models supported by our hyperobjects (spawn/sync, async/finish and futures)
have in common that they have clear semantics for a sequential execution, based on the dag
of the parallel execution. The execution order of a sequential execution is shown in Figure 2.5
by the numbering of the nodes. At a spawn node a sequential execution will always follow
the spawn edge first, until an unsatisfied sync node is reached. Only then will the execution
backtrack to the next continuation edge and follow this edge next.

2.8.5 Hyperobject model

Hyperobjects exploit the dag structure of task-parallel computations. Whenever a spawn
node is reached, a hyperobject is copied, and the spawned task will operate on a different
copy of the hyperobject than the continuation. These copies will then be merged back into
a single copy at a sync node. We call these copies local views of the hyperobject. The main
feature of hyperobjects is that no synchronization is required for accessing a local view, since
each local view is only accessed by a single thread. Synchronization is only performed when
synchronization is performed in the task-parallel computation as well, thereby intuitively
allowing to bound the number of synchronization operations for each hyperobject.

In our model, the spawn and join nodes are made visible to the hyperobject by the pro-
grammer. Whenever a new local view might be required, since a new task is spawned, a copy
of the hyperobject has to be created by the programmer. At join nodes this copy has to be
destroyed, thereby informing the hyperobject of a join.

Although this solution is perhaps less elegant than Cilk++ hyperobjects, which can be
used like shared variables, our approach also has a few advantages. First, our model does not
make any strictness assumptions about the computation. Second, every access to a Cilk++ hy-
perobject requires an expensive hash-table lookup, whereas our model relies on fast accesses
to local stack variables. Finally, hyperobjects in our model can be implemented independently
of the runtime system. Cilk++ hyperobjects require some helper data-structures to be stored
with each stack-frame used by a task. These helper data-structures then need to be merged by

Hyperobjects 27

the run-time system every time a stack-frame is destroyed. This reliance on run-time system
support makes adoption to run-time systems other than Cilk++ difficult, which might be a
reason why hyperobjects have not yet been widely adopted for environments other than Cilk.

Our model of hyperobjects, where copies of the hyperobject need to be created and de-
stroyed with new tasks, fits well with an object oriented framework. There, hyperobjects can
be passed to subtasks by-value, which essentially leads to a copy being created for each task.
As soon as the task finishes executing, the copy automatically runs out of scope, thereby
deleting the hyperobject and marking a join node. This object-oriented framework also makes
hyperobjects exception-safe. As long as the destruction of (task-)local variables is ensured by
the programming language and task-scheduling framework, hyperobjects in our model will
behave correctly even in case of exceptions.

Listing 2.8 Pseudocode demonstrating the use of hyperobjects.

1 /* With scheduler support, the finisher hyperobject does not

2 * actually need to be passed to subtasks, and is only shown

3 * (in gray) for demonstrative purposes.

4 */

5 void find_smaller(int limit, int* begin, int* end,

6 list_reducer<int> red, finisher f) {

7 if((end - begin) > 1) {

8 int* pivot = begin + (end - begin)/2;

9 spawn find_smaller(limit, begin, pivot, red, f);

10 spawn find_smaller(limit, pivot, end, red, f);

11 }

12 else if(*begin < limit)

13 red.add(*begin);

14 // No synchronization needed inside this task.

15 }

16

17 void main() {

18 int[] data = {3, 5, 8, 4, 2, 7, 6, 1};

19 list_reducer<int> red;

20 finisher f;

21 find_smaller(6, data, data + 8, red, f);

22 // Synchronization with subtasks only occurs here

23 f.finish();

24 // result now contains the list {3, 5, 4, 2, 1}

25 list<int> result = red.reduce();

26 }

Algorithm 2.8 shows a parallel array searching algorithm implemented in the async/finish
model that makes use of hyperobjects. It searches for numbers smaller than limit in a given
array by recursively splitting the array until one element remains. If the remaining element is
smaller than limit it is added to the list reducer, a hyperobject that builds a list of elements.
Note that the reducer preserves the ordering of elements in the array, although the tasks may
be executed in any order.

The algorithm also makes use of a finisher hyperobject for transitive termination detection
of tasks. It provides blocking synchronization until all copies of the finisher are destroyed,
which is when all subtasks have terminated. The finisher hyperobject is only explicitly shown
for demonstrative purposes. In practice, the finisher will be integrated directly into the sched-
uler, and hidden from the user.

To illustrate the advantages of hyperobjects more concretely, we provide an implementa-

28 Chapter 2 Programming Models

Listing 2.9 Pseudocode demonstrating the find smaller algorithm without hyperobjects

1 list<int> find_smaller(int limit, int* begin, int* end) {

2 list<int> result;

3 if((end - begin) > 1) {

4 int* pivot = begin + (end - begin)/2;

5 list<int> a =

6 spawn find_smaller(limit, begin, pivot);

7 list<int> b =

8 spawn find_smaller(limit, pivot, end);

9 // Explicit sync needed in this case

10 sync;

11 result.append(a);

12 result.append(b);

13 }

14 else if(*begin < limit)

15 result.append(*begin);

16 return result;

17 }

tion of the find smaller algorithm without hyperobjects. This is shown as Algorithm 2.9.
While this is a perfectly valid way of implementing the same algorithm, it has some disad-
vantages. First, it requires a synchronization in each task to make sure that the return value
of subtasks becomes available. This synchronization is not necessary with hyperobjects, since
different local views are combined as soon as they are available. In addition, hyperobjects
can reduce the amount of merging necessary. In Algorithm 2.9 a separate list is created and
filled for each task, regardless of whether these tasks are executed in parallel, and those lists
are merged afterwards in a parent task. Hyperobjects, on the other hand, automatically reuse
lists when they are used in a sequential order, which reduces the total amount of merging
operations performed.

3
Task Scheduling

In this chapter we discuss the properties of task schedulers required in order to support the
programming models in Chapter 2. This also directly relates to the schedulers used in the
Pheet framework, which is presented in Chapter 6.

3.1 Related Work

3.1.1 Early work

Some of the first results on task scheduling for multiprocessing systems were published by
Graham in 1966 [65, 66]. The work arose from the observation that execution times can vary
for parallel workloads. In some cases an increase in the number of processors would even
increase the execution time. Graham created a model of a parallel execution and provided
bounds for the possible variations in execution time. The model for parallel executions used
by Graham is based on a set of tasks T = T1, . . . , Tm, for which a partial order is given. These
tasks are processed by n identical processing units. Graham introduced the concept of a list
schedule. A list schedule is based on a list of tasks, which can be any permutation of the set
of tasks T. In a list schedule an idle processor scans through the list of tasks, until it finds a
task that has not been executed, and for which all precedence constraints are fulfilled. This
task is executed next by the given processor without delay. Each task can be executed exactly
once. If no task is found by an idle processor, the processor remains idle. As soon as another
processor finishes executing a task all idle processors recheck the task list for new work.

Graham was able to obtain bounds for the variation in execution time in his model. The
bounds are based on the comparison of two arbitrary list schedules L and L′. The first one is
executed in time ω on n processors, and the second one in ω′ time on n′ processors. It can be
shown that for any L and L′ the execution time is bounded by : ω′

ω ≤ 1 + n−1
n′ if ω′ ≤ ω. For

fixed number of processors n, any execution which takes time ω∗ fulfils the following bound
with regard to to the best possible execution time ω0: ω∗

ω0
≤ 2− 2

n+1 . If there is no partial
ordering (tasks can be executed in any order), this bound can be improved to ω∗

ω0
≤ 4

3 −
1

3n .
List schedules are a way of modelling greedy schedules, since for any greedy schedule, a

corresponding list schedule can be constructed. This means that the bounds by Graham can
be applied to any type of greedy task scheduling. Therefore, it was already shown by Graham
that any greedy schedule is within a factor two of optimal. What is ignored in the model of
Graham is the cost of communication and the cost of scheduling tasks.

Another bound relevant for task scheduling was established by Brent in 1974 [30]. Brent
analysed how general arithmetic expressions can be evaluated in parallel. One Lemma in
Brent’s work (Lemma 2), which was a small building block used to prove the bounds pre-
sented in Brent’s work, is of particular interest. It states that given a computation with t unit

29

30 Chapter 3 Task Scheduling

time operations, which can be executed in q time steps in parallel, this computation can be per-
formed in t + q−t

p time steps. Ironically, even though it was only a side result in Brent’s work,
this is what is now known under the name Brent’s theorem. Later results on task scheduling
provided similar results based on the work and span of a task graph.

3.1.2 Functional programming

Functional programming languages are a natural fit for task scheduling. In their purest form
function calls in a functional programming language exhibit no side-effects, allowing them to
be executed in parallel with other function calls. As an example, many concurrent Lisp lan-
guages [41,60,86] were based on the side-effect-free subset of Lisp. In cases where side-effects
are allowed, functional programming languages typically provide mechanisms to encapsulate
side-effects.

A particularly interesting functional programming language is the Multilisp language by
Halstead [71, 72]. It is based on the Lisp dialect Scheme [132]. Multilisp supports the relax-
ations to side-effect freedom provided by Scheme. Multilisp was one of the first systems to
use work-stealing. Halstead already observed that, while most parallel executions can lead to
an explosion in space usage this is not the case when tasks in the local task queue are executed
in last-in first-out (LIFO) order. Halstead even suggested to steal tasks in FIFO order as it is
now done in most modern work-stealing systems. The relationship between stack depth of a
serial execution and space usage of a parallel depth first execution was also established, but
no bounds were given. It is unclear, whether it is possible to give space bounds for Multilisp,
since it is possible that the LIFO order is broken whenever the execution of a task is preempted
due to a wait condition.

3.1.3 Space bounds

One of the first space bounds for dynamic task scheduling was established by Burton in
1988 [33] for executing trees of tasks. A tree of tasks is defined by Burton as a DAG where tasks
always synchronize with their parent task, which conforms to the definition of a fully strict
computation. It is shown how a program that requires s units of storage sequentially can be
executed in parallel on a machine with s units of storage per processor. Processors are mapped
to a virtual tree of processors, where communication can only happen between parents and
children. Assuming that the sequential space usage for the transitive (including all children)
execution of a task is known, the additional space usage for expanding a task out of order
can be calculated. Child tasks are scheduled for execution, and tasks are only stolen if this
does not violate the space bounds. This leads to a mixture of a breadth-first and a depth-first
execution where depth-first is the common case.

First space bounds for greedy task schedules were provided by Blumofe and Leiserson [26].
They show that there always exists a greedy schedule for strict computations, which only
uses P times the space of a corresponding sequential execution, where P is the number of
worker threads of the scheduler. They also show that execution time for greedy schedules
is always within a factor of two optimal (TP ≤ T1

P + T∞), by improving on the time bounds
by Graham [65, 66] and Brent [30]. This result also implies that given enough parallelism in
relation to the depth of the task graph, any greedy execution is close to optimal.

The proof for the space bound by Blumofe and Leiserson is first shown for depth-first
computations (a class of computations quite similar to nested parallel computations), and
then it is shown that time and space can always be bounded for strict computations. They
also show that this is not possible for general computations, where either the time or the
space bound has to be sacrificed in favour of the other. Nonetheless, any parallel computation

Related Work 31

can be strictified by sacrificing some potential parallelism. Blumofe and Leiserson observed
that any schedule that, P being the number of processors, only uses space of P times the
sequential space can be seen as efficient, since the time-space product is independent of P.
Blumofe and Leiserson presented both a centralized and a distributed scheduler for strict
parallel computations. The centralized one always executes the P tasks with biggest activation
depth, P being the number of processors, while the distributed one is based on a work-sharing
like concept with restrictions to allowed activation depth.

Blelloch et al. [22] managed to further improve the space bound for nested parallel pro-
grams. They identified a class of task schedules, which can be processed on a PRAM in
O(w/p + d), while using O(s1 + pd) space, w being the size of the DAG, d it’s depth, p the
number of processors and s1 the space usage of a space-efficient sequential execution. The
bound is achieved by bounding number of premature nodes being processed at any point in
time to (p− 1)(d− 1) for this class of schedules. A premature node is a node that is executed
even though it is not the next node to be executed in a sequential list schedule. The first proof
only works for dags with binary fanout, but converting a dag to binary fanout will increase
the depth of the dag by a log-factor. This can be omitted by using a lazy task creation scheme,
so that only constant space is used for any nested parallel region, regardless of the fanout. An
algorithm is also provided for synchronizing an arbitrary number of parallel tasks.

While the scheduler developed by Blelloch et al. had good asymptotic space bounds, it
had too high overheads to be practical. It requires a global rescheduling of threads after
every instruction to fulfil the space bounds, and it is possible that a thread is moved to a
different processor at every time step, leading to a high cost of communication. Narlikar and
Blelloch [108] developed a practical scheduler with similar bounds that is able to operate in a
non-preemptive and asynchronous manner. The scheduler performs a depth-first scheduling,
where after executing p tasks (p being the number of threads) the first idle thread selects
the p deepest tasks to be executed next by all threads. The memory bound is achieved by
restricting each node in the DAG to allocate at most K units of memory, and to preempt itself
as soon as it needs more. Nodes that need to allocate more than K units of memory can be
modelled as a tree of nodes performing no-ops and allocating K units of memory each. Under
the assumption that all processors operate in fixed (synchronized) timesteps, it is possible to
upper bound the memory used by out of order tasks.

3.1.4 Work-stealing

Work-stealing is a now popular scheduling technique that dates back to work by Burton [34]
and Halstead [71]. Blumofe and Leisterson [27] have shown that space and communica-
tion bounds can be given for work-stealing schedulers, and that time-bounds can be given
for work-stealing under dedicated environments. Tighter bounds for the same setting were
presented later by Tchiboukdjian et al. [134]. Arora et al. [11] provided time bounds for
work-stealing on multiprogrammed environments, as well as a lock-free implementation of
deques for work-stealing schedulers. Most current work on deques for work-stealing builds
upon the so-called ABP work-stealing deques (named after the authors Arora, Blumofe and
Plaxton). Acar et al. [1] analysed the data locality of work-stealing schedulers, and provided
upper bounds on the number of cache misses for nested parallel applications. Spoonhower et
al. [127] extended the bounds on work-stealing to task-parallel programs with futures. They
do this by bounding the number of deviations from a sequential execution.

32 Chapter 3 Task Scheduling

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11 v12

v13 v14 v15 v16 v17 v18

Figure 3.1: The structure of a task-parallel computation.

3.2 Requirements to the Scheduling Model

In this section we describe and motivate the requirements we place on the scheduling model.
Some of the requirements differ from what can be found in related work, and where possible
we provide bounds on the schedulers in our model.

3.2.1 Structure of a computation

A task-parallel execution in our context can be modelled as a dag of instructions G = (V, E),
where V is the set of instructions, and E represent the precedence constraints between in-
structions. A task is a chain of instructions in the dag, starting at the first instruction after a
spawn edge, and ending at the last instruction before a synchronization edge. Edges between
instructions in a task are called continuation edges. Such a chain of instructions is sometimes
also referred to as a thread [27] in related work. We will refrain from using the term thread to
describe such a chain of instructions in this work to omit confusion with the worker threads,
which are used by the scheduler to execute tasks. A strand [61] is a subsequence of instructions
in a task that contains no parallel control (no spawn and synchronization edges).

We represent task graphs by a formalism similar to the one used by Blumofe and Leiser-
son [27]. Figure 3.1 shows an example dag, with each Γi representing a separate task. Hori-
zontal edges represent continuation edges inside a task, edges pointing upwards are spawn
edges, and edges pointing downwards are synchronization edges.

In a sense, such a task graph can be seen as two separate graphs, one describing the
relationship between single instructions, and one describing the relationship between tasks.
Two tasks connected by a spawn edge are called parent and child task, where the parent is the
task, which is the source of the spawn edge. An ancestor of a task is any task from which the
given task can be reached only by spawn edges between tasks.

The node v1 is the root of the computation. In our model, each node may have at most two
outgoing edges, one of which has to be a continuation edge. We allow for an arbitrary large
number of ingoing synchronization edges to a single node. We restrict our model to be ter-
minally strict [4], which means that synchronization between tasks will occur whenever a task
terminates, and that a task that terminates is only allowed to synchronize with an ancestor.
Figure 3.2 shows an example terminally strict dag. This can be contrasted with fully strict (Fig-
ure 3.1) and nested parallel computations, where a task always has to synchronize with its par-
ent. Whenever a terminally strict computation branches (due to a spawn operation), there is a
single synchronization point at which these branches unite again. All additional branches cre-
ated between the spawn and its corresponding synchronization point are required to synchro-

Requirements to the Scheduling Model 33

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11 v12

v13 v14 v15 v16 v17 v18

Figure 3.2: A terminally strict dag.

nize no later than the synchronization point. To put it in other words: Whenever a node in the
dag has two successors, these represent two branches B1 = (V1, E1) and B2 = (V2, E2), which
are disjoint subgraphs of G. In terminally strict computations, both branches have exactly one
direct successor node {v ∈ V \ (V1 ∪V2)|(∃e1 = xv, e2 = yv ∈ E) =⇒ x ∈ V1 ∧ y ∈ V2}.

3.2.2 Restrictions to execution

In our model, we also restrict the way in which a task graph is allowed to be executed on
a real machine. As is common in fine-grained task scheduling systems, the execution of a
task is non-preemptive, meaning that the runtime system is not allowed to migrate a task to
another processor or to pause the execution of a task in favor of another at an arbitrary point.
Instead, a task can only be descheduled (paused), whenever it spawns another task (to execute
the spawned task), or when it has to synchronize with other tasks, and one of these tasks is
still executing. The Pheet framework presented in Chapter 6 is even stricter in the sense, that
a task that has been descheduled due to a spawned task or due to a synchronization point
cannot be migrated to another processor. Even though we do not place this restriction on the
general model, we discuss the theoretical implications of this restriction in Section 3.2.3.

There are two main policies that a scheduling system can employ when a new task is
spawned. It can either continue executing the current task, and leave the spawned task to
be executed later, potentially by another thread, or it can deschedule the current task, and
start executing the spawned task, leaving the original task to be executed later, potentially by
another thread. The former is called the help-first policy, and the latter the work-first policy [68].
The work-first policy has the advantage of behaving more similar to a sequential execution,
a property useful both for theoretical bounds (see Section 3.1.3), as well as for programming
patterns that imitate the behaviour of a sequential program, like reducer hyperobjects (see [61]
and Section 2.8.2).

Priority scheduling, on the other hand, which is described in Section 2.5, is a programming
pattern that is also useful in a sequential setting, but lends itself well for parallelization. It
can be used for applications where programmers previously had to manually maintain a pool
of work-units for which a preferred execution order exists, which is not a simple depth-first
execution order. In such a priority scheduled application it is desirable, even in its sequential
semantics, that each task first generates all its subtasks, before choosing a subtask to execute.
Only in this way a priority ordering between subtasks of a task can be established. This
necessitates a help-first scheduling policy. Since priority scheduling is an integral part of
this work, we focus on help-first scheduling, and provide theoretical bounds, previously only
known for work-first scheduling, where possible.

34 Chapter 3 Task Scheduling

3.2.3 Migration of descheduled tasks

In our model of non-preemptive scheduling there are only two cases in which a running task
can be paused and descheduled in favor of another task: (i) when a new task is spawned and
the scheduler continues with the execution of the newly spawned task, or (ii) when a task
needs to wait for other tasks to finish. For both cases, the bounds presented in this chapter
are based on the assumption that an idle thread can pick up such a descheduled task and
continue executing it.

In practice, this is not supported in the Pheet framework. To support this, Pheet appli-
cations would either need to be implemented in continuation passing style, similar to older
versions of Cilk [83], or Pheet would need to implement additional synchronization mecha-
nisms specifically for this case, thereby increasing complexity of the framework and the cost
of synchronization. While continuation passing style can be hidden from the programmer
by having a compiler transform a program into continuation passing style, as it is done in
newer versions of Cilk [83, 97], this is not feasible for standalone libraries like Pheet. In addi-
tion, forbidding the migration of a task in all cases, allows tasks to take advantage of thread
ids to synchronize accesses with other threads, an issue that was also relevant for the design
of OpenMP [16], as well as locality information as provided by places (see Section 2.4.1) to
optimize memory accesses.

There are two main issues arising from forbidding the migration of descheduled tasks.
First, it only works with a help-first scheduling policy, since in a work-first scheduling policy
all parallelism arises from descheduled tasks being made available to other threads for execu-
tion. In our case, since we need to rely on help-first scheduling for priority scheduling, this
is not a problem. The second issue is that whenever a task waits for other tasks to finish, the
thread may choose to execute another task in the meantime. This can lead to the task being
executed blocking progress of the waiting task, potentially increasing the length of the critical
path.

In practice, the second issue is not as problematic as it may seem. In most cases, there is
either enough parallelism to ensure that progress is not blocked by the additional task that
is executed, or the task that blocks the execution is one of the tasks the other task is waiting
for anyway. The use of terminally strict computations also allows to reduce the number of
synchronization points in comparison to fully strict scheduling. This problem is even smaller
when relying on work-stealing, as shown in the following lemma:

Lemma 3.2.1. As long as a thread only executes locally spawned tasks it cannot block progress of
its synchronization condition. (Assuming the standard LIFO execution order for local execution, and
FIFO order for steals.)

Proof. In terminally strict executions, if a task needs to synchronize at a certain point, so need
all tasks spawned transitively by it or after it until the synchronization point. Due to the local
LIFO execution order, all tasks spawned from the given task, and all transitively spawned
tasks will be executed by the local thread before any other tasks. For another thread to steal
such a spawned task, there cannot be any older tasks available at the same thread since tasks
are stolen in FIFO order. Therefore, if a task relevant for the synchronization point is stolen
this means that no tasks irrelevant for the synchronization point are available at that thread.

In the end, if the next task to execute is not relevant for the synchronization point, it is
guaranteed that the synchronization condition is met, since all relevant tasks must have been
executed locally, and no tasks have been stolen. Otherwise the local task queue of the given
thread must be empty.

Based on this knowledge it is also possible to extend work-stealing schedulers to only
allow stealing of tasks, if the stolen tasks are required for the synchronization condition. To

Space Bounds 35

find out whether a stealing victim has tasks relevant for the stealing condition, it is sufficient
to check whether an arbitrary task in the victim’s deque is relevant. This is shown by the next
lemma:

Lemma 3.2.2. For any thread other than the thread waiting for the synchronization condition either
all or none of the tasks in the thread’s task queue are required for the condition.

Proof. In work-stealing, a thread will only steal work if its deque is empty, and it will steal a
single task. The deque of that thread will then fill only with descendants of that task. Due
to the terminally strict condition these descendants will be required for the synchronization
point, if their parent is required. Therefore either all spawned tasks will be required or
none.

While a work-stealing scheduler that is only allowed to steal tasks relevant for its synchro-
nization point could help guarantee that progress of a task with synchronization cannot be
blocked by an independent task, forbidding the execution of independent tasks can reduce
the utilization of processors in cases of sufficient parallelism. Also, these results do not ap-
ply to more complex schedulers like steal-half work-stealing schedulers (see Section 3.6) and
priority schedulers.

In our case, due to the negligible practical implications, we decided on forbidding the
migration of descheduled tasks. While we do not encourage doing this in general for task
schedulers, we believe there are cases where the costs of supporting such a feature outweigh
the gains.

3.3 Space Bounds

As described in Section 3.1.3, first space bounds for greedy task schedules were given by
Blumofe and Leiserson [26]. They showed that for any strict computation there exist greedy
schedules that use O(S1P), S1 being the space used by a sequential execution, and P being
the number of processors. Such greedy schedules are both time- and space-efficient. In later
work [27], they showed that for fully-strict computation, work-stealing fulfils those space
bounds. These results for work-stealing were generalized to terminally strict computations by
Agarwal et al. [4].

All discussed space bounds have in common that they assume a work-first schedule, where
a task is immediately executed by the thread that created it, while the continuation is left for
other threads to execute. The space bounds by Blelloch et al. [22] do not place this require-
ment, but only work for nested parallel executions, on task graphs with constant out-degree
under a scheduler that is wasteful with regard to communication.

We base the proofs of our space bounds on a dag that we call a task space graph, as shown
in Figure 3.3. A task space graph is a task graph, where each edge is assigned an edge weight.
Positive edge weights represent additional memory that is allocated by the next instruction,
and negative edge weights represent memory that is freed.

The space usage of any state in any parallel execution can be represented by a connected
sub-graph G′ = (V ′, E′) of the task space graph that includes the root node of the task graph.
The graph is restricted in the sense that for each node v it will only contain an outgoing
edge e ∈ E′+v if it contains all ingoing edges of the same node: e ∈ E′+v =⇒ E′−v = E−v
(an instruction will only be executed if all dependencies are satisfied). The sum of all edge
weights in G′ is the total amount of space usage at this point of the execution. A graph is
a valid task space graph if for all valid states the space usage is greater or equal zero for all
valid states.

36 Chapter 3 Task Scheduling

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11

v13 v14 v15 v16 v181 5

2

3

1

0

−4

0 1 0 0
−

8

3 0 −3 −1 0

Figure 3.3: A task space graph.

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11

v13 v14 v15 v16 v181 5

2

3

1

0

−4

0 1 0 0

−
8

3 0 −3 −1 0

Figure 3.4: The state of a sequential execution that uses the maximum space, represented by
a sub-graph of the task space graph.

3.3.1 Sequential execution

A state in a sequential execution can also be represented as a sub-graph of the task space
graph. Such a sub-graph represents a state in a sequential execution if and only if on every
node that has an outgoing spawn edge, the outgoing continuation edge is only included in
this sub-graph if the spawn edge is included, as well as all edges and nodes reachable from
the spawn edge up until the corresponding synchronization edge. The maximum space usage
of a sequential execution, S1, can be found by finding the sub-graph with the maximal sum of
edge weights, which represents a valid state in a sequential execution, as shown in Figure 3.4.

Lemma 3.3.1. A sub-graph of the task space graph of a terminally strict task graph represents a state
in a sequential execution if and only if on every node that has an outgoing spawn edge, the outgoing
continuation edge is only included in this sub-graph if the spawn edge is included, as well as all edges
and nodes reachable from the spawn edge up until the corresponding synchronization edge.

Proof. We prove that any state in a sequential execution can be represented by such a sub-
graph by induction on the sub-graph. At the beginning of the execution, the sub-graph only
contains the root vertex and no edges. On every step of the sequential execution a single edge
rooted at a vertex in the sub-graph is added, as well as the vertex the edge points to, if it is not
already in the sub-graph. The graph is constructed in a depth-first manner, and preference is
given to spawn edges over continuation edges.

Space Bounds 37

For the first state in the execution, no edges are included in the sub-graph, so the lemma is
trivially true. Whenever a spawn edge is included, as well as a continuation edge from a node
that has no outgoing spawn edges, the criteria are also fulfilled. A continuation edge from a
node that also has an outgoing spawn edge can only be added when the spawn edge has been
explored. Due to depth-first execution this requires all edges only reachable from the spawn
edge to be included as well before the continuation edge is added. Due to the terminally strict
property of the task graph this includes all edges reachable from the spawn edge up until the
synchronization edge.

The inverse, that any such sub-graph represents a sequential state, is trivially true, since
the definition of the graph is based on the construction rules.

3.3.2 Work-first schedules

For the sake of completeness we now present space bounds on work-first schedules based on
task space graphs. The bounds are well known [27], of course, but were not obtained based
on task space graphs, which are a contribution of this thesis.

Similar to sequential executions, a state in a work first execution can be represented by a
certain group of sub-graphs of the task space graph. Work-first executions follow the rules of
a sequential execution, therefore the same rule as for sequential executions applies to contin-
uation edges from nodes with spawn edges. Due to parallelism, this rule can be violated up
to P− 1 times for any state as shown in Lemma 3.3.2.

Lemma 3.3.2. A sub-graph of the task space graph represents a state in a work-first execution, if and
only if for all except at most P− 1 continuation edges the criteria for states of a sequential execution
are fulfilled.

Proof. Threads in a work-first execution can have two states: busy and idle. A busy thread is
processing some task, and the next instruction it will execute is the instruction following the
previous instruction it executed in a sequential execution. Once a busy thread cannot execute
the next instruction in sequential order, which can happen if that instruction was executed by
another thread, the thread will become idle.

Idle threads look for a continuation that is available to execute and will not be executed by
a busy thread next. Such continuations become available whenever a task is spawned, since
the thread that spawned it executes the spawned task first. Such a thread will become busy,
and will execute the continuation next.

Since any such continuation can be chosen by an idle thread, up to P − 1 continuation
edges in the task space graph may not fulfil the criteria of a state in a sequential execution. A
thread may only become idle again whenever it encounters a continuation that was already
executed by another thread, thereby reducing the number of continuation edges in the task
space graph that do not fulfil the criteria of a state in a sequential execution by one.

We will now show that work-first executions will never use more than S1P space based on
task space graphs.

Theorem 3.3.3. The space usage of a work-first execution is upper bounded by S1P space, where S1 is
the space usage of a sequential execution, and P is the number of processors.

Proof. We prove this by induction on P, the number of processors. For the base case, P = 1
the space bound is trivially fulfilled, since there are no divergent continuation edges. We now
show that if another processor is added, the bound still holds. From the task space graph of a

38 Chapter 3 Task Scheduling

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6

v13 v14

v7

v8 v9 v10 v11

v15 v16 v181 5

2

3

1

3 0

0

−4

0 1 0 0
−

8

−3 −1 0

Figure 3.5: A state in a work-first execution represented by a sub-graph of the task space
graph.

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11

v13 v14 v15 v16 v181 5

2

3

1

0

−4

0 1 0 0

−
8

3 0 −3 −1 0

Figure 3.6: A valid sequential state right before the divergent continuation edge between v3
and v13.

parallel execution we can extract a sub-graph that resembles a state in a sequential execution.
We know that the sum of all edges in any such sub-graph cannot be greater than S1.

We also know that there exist at most P− 1 edges that do not fit a sequential execution. As
an example, in the graph from Figure 3.5, the edge from v3 to v13 diverges from a sequential
execution. For each divergent edge we can construct two sub-graphs, both representing states
in a sequential execution of the same task graph. The first, which is shown in Figure 3.6 sub-
graph represents the state in a sequential execution right before the divergent continuation
edge would be processed. The second sub-graph, shown in Figure 3.7, includes all edges of
the first sub-graph as well as all edges reachable from the divergent continuation edge that
conform to a sequential execution. The difference between the sums of edge weights of the
second and the first sub-graph is the additional space used due to one additional processor.
Since both sub-graphs represent states in a sequential execution, both must have a total edge
weight w in the range 0 ≤ w ≤ S1. Therefore the difference between the sums of edge weights
of two such sub-graphs cannot be greater than S1. Since there are at most P − 1 divergent
continuation edges by Lemma 3.3.2, and each divergent continuation edge can contribute at
most S1 additional space, the total space bound is S1P.

Space Bounds 39

Γ1

Γ2

Γ3

v1 v2 v3

v4 v5

v6 v7

v8 v9 v10 v11

v13 v14 v15 v16 v181 5
2

3

1

0

−4

0 1 0 0

−
8

3 0 −3 −1 0

Figure 3.7: A valid sequential state that includes the divergent continuation edge between v3
and v13 and all edges from the state of the work-first execution reachable from it that conform
to a sequential state.

3.3.3 Help-first schedules

In our model of help-first scheduling, a task is always executed to the end, before the next
task is chosen for execution. This next task is chosen in the same manner as for work-first
scheduling. The main difference in the task space graph is that a spawn edge can only be part
of a sub-graph representing a state in a help-first execution if the continuation edge starting
at the same node, and all following continuation edges in the same strand are also in the
sub-graph.

Theorem 3.3.4. The space usage of a help-first execution for tasks is upper bounded by S1P(d− 1)o
space, where S1 is the space usage of a sequential execution, P is the number of processors, d is the
maximum spawn depth of the task graph, and o is the maximum out-degree of tasks in the graph (a task
may spawn up to o sub-tasks).

Proof. Similar to work-first executions (Theorem 3.3.3) we calculate the bound for help-first
execution by the number of continuation edges that diverge from a sequential execution. A
help-first execution by a single thread can have up to (d− 1)o diverging continuation edges, d
being the spawn depth of the task graph, and o the maximum out-degree of tasks. This comes
from the fact that each task is executed to the end, and contains up to o task spawns. This can
happen (d− 1) times, since the task at depth d will not spawn any new tasks. All other threads
will pick up a spawned task, and by executing the task can create up to (d− 2)o diverging
continuation edges. In total there can be no more than P(d− 1)o diverging continuation edges,
giving an upper space bound of S1P(d− 1)o.

Many task-parallel algorithms (e.g. most divide-and-conquer algorithms) have a constant
out-degree for tasks, making it possible to improve the bound to O(S1Pd). Furthermore, for
most applications the space used by all continuation edges of a task is O(os1), where o is
the out-degree of the task, and s1 the space used by the continuation edges until the first
spawn edge. This comes from the fact, that memory is mainly allocated before a spawn to
accommodate all data required for the spawned task. All memory required directly by a task
is typically allocated at the beginning of the task, before the first spawn. If all spawned tasks
have memory requirements within a constant factor of each other, the whole task will allocate
O(os1) memory for its subtasks. This enables us to improve the space bound to O(S1Po)
for such applications, and to O(S1P) if these applications also have constant out-degree for
tasks. Such applications are fairly common, in fact this bound applies to all our benchmark

40 Chapter 3 Task Scheduling

applications in the Pheet benchmark suite (Chapter 7), except for the applications relying on
priority scheduling like single-source shortest path.

3.4 Priority Scheduling

Priority scheduling differs from normal task scheduling due to the fact that the order in which
tasks are executed is decoupled from the order in which they are created. In a normal task
scheduling system, the order is mainly dependent on the policy of the scheduler, of which the
most prominent ones are the work-first and help-first policies [68]. These policies determine the
behaviour of the application regarding time, space and communication.

With priority scheduling, on the other hand, the responsibility for the behaviour of the
application is put into the hands of the programmer. Depending on the application, they
enable the programmer to improve the runtime behaviour, by saving time, reducing space
usage and/or reducing the communication required by the application.

Due to the shift of responsibility in favor of the programmer it is hard to provide general
bounds on the behaviour of priority schedulers. Instead, the design of priority scheduled
applications requires programmers to consider space requirements. Care has to be taken,
since the concrete bounds can also vary depending on the guarantees the scheduler gives on
the priorities, which depends strongly on the semantics of the data structures used by the
scheduler, as discussed in Section 5.1. In the following sections, we will discuss bounds for
common classes of priority scheduled applications.

3.4.1 Semantics

In priority scheduling, a (partial) ordering between all tasks in flight (tasks that have been
spawned, but not yet executed) is established by the programmer. This ordering can vary
between threads due to locality considerations. We use the term prioritize to describe a relation
between two tasks. We say a task is prioritized over another task if it precedes that task in the
ordering.

To improve scalability, the scheduling system is allowed to break the order according to
certain relaxations that reduce the need for synchronization. Depending on the (type of)
application, these relaxations may break certain bounds. For each application and class of
applications we will discuss the relaxations that can be safely used with them.

3.4.2 Local depth-first schedules

One common class of priority scheduled applications is the class of local depth-first schedules.
These kinds of schedules are typically used for applications that work well with standard
work-stealing schedulers, but where it can be of advantage if subtasks of one task are exe-
cuted in a specific order rather than the order determined by the scheduling policy. Examples
include, but are not limited to, the graph bipartitioning, quicksort and prefix sums applica-
tions in Sections 7.4, 7.5 and 7.6.

Main Restrictions

The main restriction placed on local depth-first schedules is that each thread is required to
prioritize tasks spawned by itself over tasks spawned by other threads. This means that, for
each thread, locally spawned tasks need to be executed before all tasks spawned by other
threads. Furthermore, for tasks spawned by the same thread, tasks with higher depth in the
dag of tasks are prioritized.

Priority Scheduling 41

This class of priority schedules does not place any restrictions as to how a thread prioritizes
tasks at same depth spawned by the same thread. Also, no restrictions are placed on how a
thread prioritizes tasks spawned by other threads.

Lemma 3.4.1. In local depth-first schedules tasks in flight spawned by the same thread with same depth
always have the same parent.

Proof. We prove this by contradiction. Assume it would be possible for two tasks A and B
with different parents spawned by the same thread to be in flight at the same time. We further
assume w.l.o.g. that A is spawned before B. For B to be spawned before A is executed, it is
required for the parent of B to execute before A. This would either require the parent of B to
have a depth greater or equal the depth of A, which contradicts that A and B have the same
depth, or that A was spawned by a thread other than the thread executing the parent of B,
which contradicts that A and B were spawned by the same thread.

Space Bounds

It is obvious that the behaviour of a local depth-first priority schedule is very similar to a
help-first schedule: Each task is executed to its end, thereby spawning all this task’s children.
Each thread executes spawned tasks in a strict depth-first manner. Therefore, analogous to
help-first schedules, space bounds can be calculated based on the number of continuation
edges that diverge from a sequential state in a state represented by a sub-graph of the task
space graph. This yields an upper bound on space usage of S1P(d− 1)o, where S1 is the space
usage of a sequential application without priorities, P the number of threads, d the maximum
spawn depth, and o the maximum out-degree of tasks.

As with help-first schedules, these bounds can be improved for applications with constant
out-degree of tasks, as well as for applications where the space used by all continuation edges
of a task is O(os1), o being the out-degree of the task, and s1 the space used by the continuation
edges until the first spawn edge. If both criteria are fulfilled, a priority scheduled application
with a local depth-first schedule will use O(S1P) space. These criteria are fulfilled for all our
priority scheduled Pheet benchmarks with local depth-first schedules.

Allowed Relaxations

Local depth-first schedules do not require much synchronization, since, similar to work-
stealing, only locally spawned tasks are executed by each thread until there a none left. For
this reason it is sufficient if each thread is guaranteed not to skip any locally spawned task
when prioritizing tasks, a property that is fulfilled by all data structures presented in this
work (but not for the spray-list [10], a concurrent relaxed priority queue by Alistarh et al.).

3.4.3 Global depth-first schedules

In a global depth-first execution all threads will prioritize tasks with the highest spawn depth,
regardless of the thread that spawned the task.

Space Bounds

While, on average, a global depth-first priority schedule can be expected to use less space than
a corresponding local depth-first schedule, the upper bound on space cannot be improved
without additional constraints to the scheduler, since theoretically each thread can execute
one task at each depth before a deeper task becomes available. Nonetheless, the similarity to

42 Chapter 3 Task Scheduling

help-first schedules allows to again upper bound the number of continuation edges diverging
from a sequential state in a sub-graph of the task space graph to P(d− 1)o.

To obtain a stricter bound for global depth-first priority schedules a scheduler must be
allowed to preempt a task at memory allocations, similar to the scheduler by Narlikar and
Blelloch [108].

Allowed Relaxations

As with local depth-first schedules, a global depth-first schedule only requires that no locally
spawned tasks are ignored by any thread. With this restriction, the worst case execution
coincides with a local depth-first execution, which, as discussed in Section 3.4.2, still has the
same space bounds. In practice, priority queues with stronger guarantees will lead to less
space usage on average, since threads will execute tasks at higher depths first, but will not
improve the worst-case.

3.4.4 Prioritized work pool

There exist applications, like our parallel SSSP benchmark in Pheet (Section 7.8), where the
priority scheduler takes the role of a priority queue used to decide which work unit to process
next.

Space Bounds

For prioritized work pools, the model of a sequential execution is different than for other
schedules, because even in the sequential case, a unit of work (task) is first completely pro-
cessed, and all its successors put into the priority queue (all subtasks are spawned), before
another unit of work is processed. A sequential unit based on a prioritized work-pool uses S1
space.

In a parallel algorithm it is necessary for more than one unit of work being processed at
the same time, thus violating the sequential order of execution. This has to be taken into
account for the space bounds. We introduce S∗1 , the space bound of the sequential application
if the priority queue is replaced by a bag that returns items in an arbitrary order (for Dijkstra’s
algorithm for SSSP, S∗1 = S1). We assume for our proofs that the priority queues are space-
optimal and use space linear in the number of items stored in them.

Lemma 3.4.2. An application based on a concurrent prioritized work pool with purely local ordering
semantics (as defined in Section 5.1.2), will use at most O(S∗1 P) space, where S∗1 is the space bound for
a sequential execution with a bag, and P the number of worker threads (processors).

Proof. With local ordering semantics, each thread will behave no worse than a sequential
execution on a bag. Apart from that, no guarantees can be given on the space, so each thread
can use up to O(S∗1) additional space.

Lemma 3.4.3. With a ρ-relaxed priority queue (see Section 5.1.3), the bound can be improved to
O(S∗1 + P + ρ), under the assumption that processing a single unit of work uses constant space.

Proof. Since we are comparing to a sequential execution on a bag, the order in which tasks
are executed by multiple threads cannot influence the space bound. The space bound can
thus only be influenced by the size of the priority queue, and the additional space used for
processing each unit of work. Under the assumption that each unit of work uses constant
space to process, a parallel execution will require O(P) additional space for each thread to
process a unit of work concurrently.

Victim Selection 43

A ρ-relaxed priority queue can use O(ρ) additional space for storing items compared to a
non-relaxed priority queue, since up to ρ items are not synchronized with other threads.

The bound for a linearizable priority queue is O(S∗1 + P) by Lemma 3.4.3, since a lineariz-
able priority queue is ρ-relaxed priority queue with ρ = 0. Our current implementations of
ρ-relaxed priority queues presented in Chapter 5 are not space optimal and will thus always
use O(S∗1 P) space similar to containers with local ordering semantics. In future work we plan
to work on space-optimal ρ-relaxed priority queues.

3.5 Victim Selection

In the original work-stealing algorithm, a thread will steal work from a random victim when-
ever it runs out of work. While this randomized work-stealing algorithm is provably time-
and space-efficient [27], concerns exist about its scalability on large-scale systems, particularly
distributed memory systems, and NUMA systems, where the cost of communication between
different processing units can vary. Previous work on communication bounds for randomized
work-stealing suggests good scalability [1, 27] in relation to a sequential execution by bound-
ing the number of deviations from a sequential execution, but assumes that communication
costs are constant.

A detailed analysis of victim selection for parallel depth-first search was performed by
Sanders [118]. His analysis includes both synchronous and asynchronous algorithms for ran-
domized victim selection.

3.5.1 Deterministic victim selection

The deterministic victim selection (DVS) algorithm by Varisteas and Brorsson [139] is an alter-
native approach to victim selection, where a machine is modelled as an n-dimensional grid,
and each thread deterministically selects a victim from its neighbours. Varisteas and Brorsson
were able to show improved performance compared to a randomized victim selection policy.
It is not clear however how this policy influences the communication costs exactly. Further-
more, since in DVS work can only be stolen from direct neighbors, there can be a delay until
an idle worker thread gets a chance to steal a task. Since there is a delay between a worker
starting to execute the last task in its queue, and its next steal attempt, there does not seem
to be a way to bound this delay. Also, the delay can be expected to grow with the number of
processors in a system. Thus, the scalability of DVS to large systems is questionable.

A victim selection scheme for parallel depth-first search algorithms that bears some sim-
ilarities to DVS was presented by Rao and Kumar [94]. Rao and Kumar have shown that a
victim selection algorithm that only selects neighbours in a hypercube as victims will require
the problem size to grow polynomially with the number of processors to maintain efficiency
in certain cases. This issue was resolved by Sanders [118] by regularly randomly permuting
work between all processing units. While this can ensure a good load-balancing, the high
additional communication costs make it unclear whether this algorithm is useful in practice.
Also, the blocking collective nature of permutations makes this algorithm unsuitable for mul-
tiprogrammed environments.

3.5.2 Hierarchical victim selection

In our schedulers [142, 143, 145, 146, 148] we rely on a hierarchical victim selection policy. This
includes non-work-stealing schedulers that rely on spying instead of stealing (see Section 3.6).
Hierarchical victim selection is a semi-random victim selection policy where randomness is

44 Chapter 3 Task Scheduling

P1 P2 P3 P4 P5 P6 P7 P8

Figure 3.8: An example processor hierarchy.

used to ensure that the chances of a worker thread finding work are similar to randomized
work-stealing. At the same time, victim selection is guided by the machine hierarchy, giving
preference to victims with smaller communication costs.

For hierarchical victim selection, the scheduling system must be divided into different
places, as described in Section 2.4.1. Each worker thread of the scheduler is associated with
a different place, and is bound to a specific processing unit. The machine is modelled as a
binary tree as presented in Figure 3.8, where each place is a leaf in the binary tree. The distance
between places in the tree is used as a distance metric for hierarchical victim selection.

Whenever a victim needs to be selected, hierarchical victim selection will select a random
victim out of all victims with the same distance d. The victim selection algorithm will first
select a victim with d = 1, and then increment d every time a steal/spy attempt fails. A
successful steal/spy attempt will reset d to 1. Also, d will wrap around to 1 whenever the
maximum distance in the hierarchy is reached.

3.6 Stealing Policies

In the classical work-stealing algorithm a thread that runs out of work selects a victim, steals
its oldest task, and executes it immediately. For divide-and-conquer applications this strategy
is relatively efficient, since the oldest task can be expected to create a large amount of work.
As soon as work was spawned from the stolen task, the thread that stole work can also be
used as a stealing victim, thus increasing the chances of other threads finding work.

Berenbrink et al. [20] have shown, however, that for general task-based applications, steal-
ing half the work from a victim’s deque is an efficient policy. Hendler and Shavit [75] have
presented a work-stealing deque that allows to steal half the work from a victim with only
a constant number of synchronization operations. One disadvantage of stealing more than
one task, however, is that a task can be stolen more than once, and it can even occur that
a thread has to steal its own tasks back. This can lead to more deviations from a sequen-
tial execution compared to the original work-stealing algorithm resulting in more non-local
memory accesses. Also this puts higher stress on the work-stealing deques, since a task can
be inserted into and removed from multiple deques during its lifetime. If only a single task
is stolen, this task is executed immediately and does not need to be reinserted into a deque.
Better load-balancing can be achieved by stealing half the actual work instead of half the tasks,
which can be done with strategies (Section 2.7), but this requires the programmer to inform
the scheduling system about the granularity of tasks.

An alternative approach to ensure good distribution of work is to let each worker thread
store its last victim. Whenever a thread runs out of work, it will first attempt to steal work
from its last victim, and only select a new victim if the steal attempt fails. When a victim is

Mixed-mode Scheduling 45

selected using a victim selection policy (see Section 3.5), and this victim is out of work, the
last victim of the victim is first checked for work, before selecting another victim based on a
victim selection policy. Thus, a thread that steals only a single task will still help to propagate
work from its victim, while preserving the properties of work-stealing where only a single
task is stolen.

Finally, we present spying, an alternative to stealing, where a task can be stored with
multiple worker threads. As soon as one thread starts executing a task, it will be invalidated
for all other threads to ensure a task is only executed once. Whenever a thread runs out of
work, it will select a victim according to its victim selection policy and copy all tasks from
its victim. Spying allows for an even better distribution of tasks compared to steal-half work-
stealing, since a worker thread has the chance to spy a specific task at more than one victim.
However, since tasks can be stored in more than one queue, queues will be longer on average
than work-stealing deques.

3.7 Mixed-mode Scheduling

The mixed-mode parallel programming model presented in Section 2.6 allows a task to be
parallel, thus requiring more than one processor to execute. For our implementation of the
mixed-mode parallel programming model in Pheet we use the team-building algorithm from
Section 4.4. The team-building algorithm is allowed to deviate from the execution order of
a normal work-stealing applications for tasks that require a different number of threads to
execute: A task that requires a smaller amount of threads can be executed before a task with
larger threads requirement, regardless of their original execution order. This violates some
of the properties necessary to obtain the work-stealing bounds. In this section we discuss
what bounds can still be shown for mixed-mode scheduling, and how the algorithm can be
improved to achieve better bounds.

3.7.1 Time bounds

We first look at the time bounds of work-stealing schedulers with team-building. Time bounds
for greedy schedulers can be obtained as follows [26]: Either all threads are busy processing
work, which cannot use more than T1/P time in total, where T1 is the time needed by a
sequential execution, and P the number of threads, or at least one thread is guaranteed to
process the critical path, which takes T∞ time to process. A parallel execution with a work-
stealing scheduler is thus guaranteed to take no more than O(T1/P + T∞) time.

Similar time-bounds can be achieved for a greedy mixed-mode parallel schedule, where
at each time step the scheduler will greedily choose a set of tasks to execute that maximizes
the utilization of threads. A greedy schedule will guarantee that, given sufficient parallelism,
at least P/2 + 1 threads will process work at each time-step. Thus a mixed-mode parallel
schedule can be executed greedily in O(2T1/P + T∞) time.

Unfortunately, the team-building scheduler cannot fulfil this property, since tasks with
smaller thread requirements will be executed before tasks with larger thread requirements.
Thus, a single task requiring a single thread to execute can block the execution of a task that
requires P threads. Due to this, the only time bound that can be given for a team-building
scheduler is that it will execute in O(T1) time, since at each time step it is guaranteed that at
least one thread will execute a task.

46 Chapter 3 Task Scheduling

4

4

2

2

1

2 1

1

Figure 3.9: Connected components of tasks with same space usage.

4

4

2

2

1

2 1

1

Figure 3.10: Merged components with same predecessor component.

3.7.2 Space bounds

Space bounds for greedy schedules (see Section 3.3) can be obtained by upper bounding
the number of deviations from a sequential execution. To obtain space bounds for mixed-
mode parallel schedules we upper bound the additional deviations compared to a task-based
execution where all tasks require only a single thread to execute.

Assuming that the number of threads required by a task does not follow some regular
pattern, there can be an arbitrary number of deviations from a parallel execution with only
single-threaded tasks. However, it is still possible to obtain a space bound for applications
based on their task graph. To obtain the number of deviations, one needs to delete all edges
between tasks with different thread requirements from the task graph, as shown in Figure 3.9.
The number of connected components in the graph is an upper bound on the additional de-
viations compared to an execution without mixed-mode scheduling. A tighter upper bound
can be obtained by adding connecting edges between components that have the same pre-
decessors in the original task graph, thus reducing the number of components as shown in
Figure 3.10.

For divide-and-conquer applications, like quicksort (Section 7.5.4), where team-sizes are
strictly non-increasing, or mergesort, where team-sizes are strictly non-decreasing with the
depth of the task-graph, the number of additional deviations is bounded by the number of
different team sizes. In practice for our mixed-mode quicksort algorithm no additional space
is used, since the deviations that occur due to team-building have no influence on the space
used.

3.7.3 Future work

Current time bounds on mixed-mode scheduling with deterministic team-building are weak,
thus making the model only useful for well-behaved applications for which stronger bounds
can be shown. It might, however, be possible to create a feasible greedy mixed-mode scheduler

Mixed-mode Scheduling 47

that has a greedy policy with a preference to tasks with higher thread requirements, which
can obtain good general time bounds for mixed-mode scheduling.

Another approach to obtain feasible time bounds is to restrict the type of applications
allowed. Crown scheduling [88], for example, only works on tasks without dependencies,
thus giving the scheduler the opportunity create efficient greedy schedules. Similar results
should be possible for applications where tasks are only allowed to spawn sub-tasks with
non-increasing or non-decreasing thread requirements.

Finally, the use of strategies can help make thread requirements more dynamic, by allow-
ing the scheduler to set the thread requirement before starting to execute a task. This can help
to work around pathological cases.

4
Data Structures and Synchronization

This chapter discusses the implementation of data structures and low-level synchronization
primitives that are required to support the programming models and patterns presented in
Chapter 2 and the schedulers from Chapter 3. The focus lies on non-blocking implementations
with strong progress guarantees, and proofs for linearizability and the progress guarantees
are provided. Unless otherwise specified, all code examples in this chapter assume acquire/re-
lease semantics for all operations on shared memory locations. While the actual implementa-
tions often contain additional relaxations, we believe this provides the best compromise for
readability, while still allowing for efficient implementations on most of the commonly used
processor architectures. All code examples are given in C++ with some simplifications to
improve readability. Ordered container data structures are discussed separately in Chapter 5.

4.1 Linearizability and Progress Guarantees

Reasoning about the correctness of a synchronization algorithm requires a consensus on what
behaviour is seen as correct. Sequential consistency [95] is a correctness condition that requires
operations on a single concurrent object to take effect in program order. This property is not
compositional, however, meaning that for two concurrent objects, sequential consistency for
accesses to each object does not imply that the combined history for accesses to both objects
is sequentially consistent [81].

Linearizability [82] is a correctness condition stronger than sequential consistency that re-
quires all operations on a concurrent object to take effect instantaneously at some point be-
tween invocation and response. The point at which such an operation takes effect is called
a linearization point. Since linearizable operations take effect instantaneously they are compo-
sitional, it can however be argued that this comes at an additional cost [14]. Note, however
that this does not imply that an operation composed out of linearizable operations is also
linearizable [35].

Progress guarantees can be used to reason about the efficiency and scalability of a syn-
chronization algorithm. A non-blocking or obstruction-free algorithm is an algorithm, which, if
executed in isolation, will finish executing in a bounded number of steps. This means that,
contrary to locks, a suspended thread cannot infinitely block the progress of other threads.
The lock-free progress guarantee is stronger in that it guarantees for at least one thread to
progress in a bounded number of steps regardless of actions by other threads. However, lock-
free algorithms are not starvation-free, since only a single thread is guaranteed to progress, but
there are no guarantees as to which thread will progress. Fairness can be achieved with the
wait-free progress guarantee, which guarantees all threads to achieve progress in a bounded
number of steps.

49

50 Chapter 4 Data Structures and Synchronization

It is always possible to construct a concurrent lock-free [80,81] and wait-free [79] algorithm
for access to a concurrent object based on an arbitrary sequential algorithm. Constructing such
an algorithm can incur large overheads, however, and it was generally believed that overhead
for making any algorithm wait-free was too high to be practical [57, 81, 90]. Recent work
by Kogan and Petrank [90] suggests otherwise by presenting a methodology for efficiently
implementing a wait-free algorithm out of any lock-free algorithm.

An efficient implementation of lock-free and wait-free algorithms requires the use of oper-
ations with consensus number [79] greater than one, which are operations which can be used to
implement a wait-free consensus protocol for more than one thread. Many algorithms require
operations of consensus number P or higher. This necessitates the use of read-modify-write
operations, which are able to both atomically read and write a value in a single statement.
For the algorithms presented in this work we use fetch-and-op (mainly fetch-and-add) to atom-
ically update a shared variable by applying an associative operation to it. In addition, we
use compare-and-swap (CAS) to reach consensus between threads, since it is the only operation
supported by most of the commonly used shared memory architectures with an infinite con-
sensus number, making consensus with an arbitrary number of threads possible. A CAS is a
conditional write statement that will only perform the write if the current value of the same
memory location equals a specified value.

4.2 Terminology

ABA Problem The term ABA problem describes situations where an object in memory appears
to be the same as last observed, even though it was changed to some other value in
the meantime, and then back to the expected value. As an example, a stack might
appear to be unchanged when a thread always finds the same item at the top as on a
previous access, while in reality, items might have been removed in the meantime, and
the expected object only added back to the stack later.

Contention An access to a memory location is contended, whenever more than a single thread
attempts to modify the same location. Contention is a limiting factor for scalability,
due to memory traffic, and even more for operations that cannot be combined by the
hardware like CAS [70].

Happens-before relation We say an operation A happens-before an operation B if for any exe-
cution it is guaranteed that B will observe the effects of A. Happens-before relations are
transitive.

Local An object in memory is local to a specific thread if it was allocated by that thread. Some
algorithms allow passing ownership of an object in memory to another thread. In that
case, an object is local to its current owner.

Observation A thread observes a specific state of a shared object by reading members of said
object. Since an observation can consist of multiple reads and is not necessarily atomic,
inconsistent states can be observed.

Spurious failure If an operation is allowed to spuriously fail, it is allowed to fail even if no
external condition for failure is met. In non-blocking synchronization it is common to
allow operations to spuriously fail as long as another thread is making progress. Such
operations can then be used as parts of a lock-free algorithm.

Wait-free Memory Reuse 51

4.3 Wait-free Memory Reuse

Memory management for concurrent data structures can be non-trivial, since it is often hard
to guarantee that no thread is still accessing an object that is ready for deletion. For algorithms
that provide lock-free or wait-free progress guarantees, the same progress guarantees need to
be provided by the memory management scheme.

A wide variety of concurrent reference counting schemes exist [48,106,131,136,137], but the
costs are prohibitive for many applications, since a read-modify-write operation is required
every time a reference is created or freed. Hazard pointers [105] remove the necessity of using
a read-modify-write operation. Instead they require a thread to read a list of hazard pointers
from each thread before an object can be freed. This might lead to scalability problems on
future architectures with large numbers of threads. Quiescent-state-based reclamation [74], epoch-
based reclamation [59] and drop the anchor [29] all divide an execution into different epochs, and
only allow an object to be freed once all threads have entered epochs after the point where an
item became inaccessible.

In this section we present a wait-free memory reuse scheme that is based on the idea of
garbage collection. The scheme is very lightweight, requiring only O(1) amortized overhead
for finding an item to reuse. The low cost comes at the cost of flexibility, since this scheme
is restricted to the management of uniform items, which are ABA-safe, and for which there
exists a way to recognize when they can be reused. Also, while the pool of items to reuse can
grow, if necessary, it can never shrink.

4.3.1 The algorithm

The idea behind the wait-free memory reuse algorithm is simple: The user specifies the type
of item that is stored in the memory pool, as well as a function that can be used by the memory
reuse scheme to check whether an item in the pool can be reused. Each place (thread, see also
Section 2.4.1) maintains its own memory pool that stores items in a circular linked list. The
pool contains both reusable items and items that are in use. Every time an item is requested,
the algorithm traverses the linked list, and checks for an item that can be reused. As soon as
a reusable item is encountered this item is returned. If no reusable item is found, a new item
is spliced into the circular linked list and returned to the user.

Listing 4.1 Our wait-free memory reuse algorithm.
1: while head.next 6= tail do
2: if reusable(head.next.item) then {Item is reusable}
3: head, tail ← head.next, tail.next {Advance both head and tail}
4: if head 6= tail then {Make sure not to overtake head}
5: tail ← tail.next {Advance tail a second time}
6: end if
7: return head {We found a reusable item}
8: else {View is still in use}
9: head← head.next

10: end if
11: end while
12: {No reusable item found, allocate and splice in new item}
13: r ←new item()
14: r.next, head.next← head.next, r
15: head, tail ← head.next, tail.next
16: return head

52 Chapter 4 Data Structures and Synchronization

The algorithm is presented in Listing 4.1. Each thread has its own pool of items, therefore
the algorithm is not required to be thread-safe. To ensure that the algorithm does not check
the whole pool every time an item is requested, two pointers into the pool are maintained:
head and tail. The head pointer always points to the last item that was checked for reuse.
The tail pointer ensures that only two items are checked for reusability on average. The head
pointer is never allowed to reach the tail pointer, therefore whenever the next element to check
for reusability is the element pointed to by tail, the algorithm is required to allocate a new
item, and to splice it into the pool. The tail pointer is only advanced in two cases: whenever
a reusable item was found, or when a new item is spliced in. To ensure that the pool does
not grow too large, tail needs to be advanced more than once on average whenever a reusable
item is found. In our implementation we advance it twice, unless head = tail.

4.3.2 Bounds and progress guarantees

Lemma 4.3.1. The memory management is wait-free assuming both the reuse check, and the memory
allocation routine are wait-free.

Proof. Each check performed by the memory reuse algorithm is followed by an advancement
of head. The advancement of head is limited by tail, which in turn can only advance after
either a reusable item was found, or a new item was allocated, which both in turn lead to
a termination of the algorithm. Thus, since there is a bound on advancements regardless of
what other threads do, the algorithm is trivially wait-free.

Lemma 4.3.2. The memory reuse algorithm has amortized complexity O(1).

Proof. We use an amortization argument, where for every reusable item that is found no
more than one non-reusable item can be traversed. Since the function terminates whenever
a reusable item is encountered, the number of non-reusable items that are traversed will not
exceed the number of function calls.

For this, we define a potential function Φ. The potential function is defined by the number
of times head is allowed to advance before its successor is tail. The pool is initialized to
head.next = tail in the beginning, resulting in Φ = 0.

We argue that each non-reusable item that is encountered will reduce the potential by
1, since in this case head is advanced, but not tail. Every reusable item that is encountered
decreases the potential by at most 1, since head is advanced once, and tail at most twice.

Whenever head.next = tail all the potential has been used up, resulting in Φ = 0. In this
case a new item is allocated and spliced into the linked list. Since the splicing in happens
between head and tail, this increases the potential by 1. Since the newly created item is
guaranteed to be reusable, and is returned by the function, the increase in potential is justified.

Lemma 4.3.3. The number of items i that are allocated for the memory pool of a given thread will never
exceed 3nmax, where nmax > 0 is the maximum number of items in use at the same time throughout
the execution.

Proof. For our argument we reuse the potential function Φ from Lemma 4.3.2. We take an ar-
bitrary point in time during the execution and show that it is impossible for the memory pool
to contain more than 3nmax items. The pool is initialized with a single item. We distinguish
between two situations: Φc ≥ nmax and Φc < nmax, where Φc is the potential of the memory
pool at the beginning of a cycle. We say the memory manager has completed a cycle whenever
head returns to its starting position.

Deterministic Team-building 53

For the first case, Φc ≥ nmax, we know that no new items will be allocated on a single
cycle, since Φ cannot decrease by more than nmax items on a single cycle. If the total number
of items in the pool i ≥ 2nmax + 1, it is guaranteed that Φ will not go below nmax after any
number of cycles, thus the pool will not grow from this point on. The reason for this is that on
each cycle nmax + 1 items are encountered that will increase the potential. While the potential
may not grow in all cases, since the potential is capped at Φ ≤ i− 1, when the cap is reached,
the potential can only decrease by at most nmax.

We now look at the other case Φc < nmax. Here we argue that for any cycle c, ic + gc ≤
3nmax, where ic is the size of the pool at the beginning of the cycle, and gc the growth of
the pool during the cycle. Since growth is always coupled with a decrease in potential, we
can trivially infer that ∀c, gc ≤ nmax − Φc. For ∀c, ic ≥ 2nmax + 1 it is trivial to show that
∀c, Φc ≥ ic − 2nmax, leading to:

∀c, ic + gc ≤ ic + nmax −Φc ≤ ic + nmax − ic + nmax = 3nmax

4.4 Deterministic Team-building

In this section we present the team building algorithm [146] which extends a (work-stealing)
scheduler to support the mixed-mode parallel model presented in Section 2.6. The mixed-
mode parallel model allows a task to require more than one worker thread to execute, thus
necessitating for worker threads to build a team of worker threads, which will all execute
the given task at the same time. Our team building algorithm builds upon the philosophy
of work-stealing, where each worker thread operates on its own deque of tasks and only
communicates with other threads when absolutely necessary. In the original work-stealing
algorithm this is only the case whenever a thread runs out of work. In our team-building
algorithm communication also becomes necessary once a team needs to be built to execute a
task.

We call the team building algorithm presented in this section the deterministic team-building
algorithm, since it builds upon the premise that once a worker thread decides to execute a par-
allel task, and starts building a team, the structure of the team is deterministically decided.
Due to this, each thread that encounters a team being built can immediately determine which
worker threads are supposed to be part of the team, and which id will be assigned to each
thread in the team. If two overlapping teams are being built by different threads, a determin-
istic tie-breaking scheme is used to decide which team will be built first, and all threads that
are part of both teams are guaranteed to eventually join the correct team.

4.4.1 Algorithm

We extend work-stealing to cater for mixed-mode parallelism, where tasks requiring a certain,
determined number of processors or threads for their execution can be dynamically spawned.
This thread requirement is denoted by r. In the standard task-parallel work-stealing setting
r = 1 for all tasks, whereas we want to allow for any 1 ≤ r ≤ P number of required threads,
P being the number of processors in the system (requirements r > P are of course infeasible).
Thread requirements are fulfilled by building teams of worker threads for tasks with r > 1.
When a team of r threads has been formed for some task, the task can be executed. Threads
in a team are numbered consecutively, such that a thread can identify the other threads in the
team and communicate with them. Since in our approach each worker thread is pinned to a
specific processing unit in the system, we use the terms thread and processor interchangeably.

The deterministic team-building algorithm is based on a machine model, where the machine
is represented as a tree. The leaves in this machine model are individual processing units,

54 Chapter 4 Data Structures and Synchronization

T1,8

T1,4

T1,2

P1 P2

T3,4

P3 P4

T5,8

T5,6

P5 P6

T7,8

P7 P8

Figure 4.1: The team-building hierarchy hierarchy.

each of which is associated with a single worker thread of the scheduler. The distance be-
tween leaves can be used to estimate relative communication costs between leaves. A pair of
two leaves with a distance in the tree greater than some other pair of leaves, will not have
lower communication cost in the real machine. Due to the requirements of the team-building
algorithm, this hierarchy is further refined into a binary tree. A similar hierarchy is used in
Pheet (Chapter 6) to support places (Section 2.4.1) and to implement victim selection policies
for schedulers (Section 3.5).

In the simplest case, which we will assume to simplify the presentation of the team-
building algorithm, we assume that P, the number of processors (worker threads), is a power
of two and thus the machine model a full binary tree. In Section 4.4.9 we explain how this re-
striction can be lifted. This binary tree can be used to group processors into teams of different
sizes, as shown in Figure 4.1, where team sizes are always a power of two. The binary tree is
divided into different levels starting at the leaves. At level 0 (leaves) there exist P individual
tree nodes, each representing a team containing a single worker thread. At level 1, there are
P
2 teams of size 2 each. At level i, there exist P

2i teams of size 2i each. The topmost level is
log P− 1, which consists of a single team containing all worker threads.

To execute a task with a thread requirement r, a thread tries to build up a team of t
processors, where 1 ≤ t ≤ r. The decision to execute such a task is made by a single worker
thread, which we call the coordinator of the team. After making the decision to execute a
task, the coordinator determines the team size t by choosing the largest possible t ≤ r. The
threads in a team are numbered by the leaves in the binary tree from left to right starting at 0.
Given only r and the global id of the coordinator, other threads can infer the exact structure
of the team, including the id of each individual thread. As an example, for the hierarchy in
Figure 4.1, for r = 5 and thread P6 being the coordinator of the team it can be determined that
the team will consist of the four threads P4 − P7, where the id of each thread inside the team
will be its global id minus 4.

As presented here, the model is restricted to processor hierarchies where the number of
processors is a power of two, and team sizes are also restricted to be powers of two. We will
later show that both restrictions can be lifted, although lifting the second restriction can lead
to less efficient schedules in many cases.

4.4.2 The team building scheduler

As with our other schedulers we divide our scheduling system into different places (see Sec-
tion 2.4.1), where each place is associated with a single worker thread, and is pinned to a
specific processing unit. In the following we present the data structure storing all information
relevant for a specific place. Each place has a fixed (integer) id I, 0 ≤ I < P, which is used to
determine the victim for work-stealing and team-building attempts as well as to compute the

Deterministic Team-building 55

local thread ids in a team. We assume that the place data structure can be accessed by other
places with the help of a lookup table indexed by I, the place id. In the following we describe
all members stored in the place data structure:

• The unique thread id I, 0 ≤ I < P.

• A double ended queue Q of spawned tasks. Local accesses always happen at the bottom,
while stealing is done from the top of the queue. The queue needs to be able to only
return tasks for certain levels in the processor hierarchy. A simple way to do this is to use
log P− 1 queues instead of a single queue, one queue for each level in the team-building
hierarchy.

• The id c of the coordinator of the team the place is currently part of. If the place is
a coordinator, c = I. This is always the case when scheduling tasks with r = 1, or
when attempting to steal work from other places. An invariant of the team-building
work-stealer is that a coordinator is always set.

• An integer r storing the thread requirement for the next task to be executed.

• A reference to a ready task T that can be executed by the current team. As soon as the
coordinator of a team sets T, all threads in the team can start execution of the task.

• A countdown G for the ready task that is initialized to t− 1 before T is set (t ≤ r is the
team size of T). Each non-coordinator thread must atomically decrement this field when
it starts executing the task. As soon as G = 0, the coordinator can be sure that execution
has started by all threads in the team, and can then reset T.

The following methods are needed for team-building. In Section 4.4.3 we show how to
implement them in a lock-free manner.

• registerThread(I) is called by threads trying to join a team. It takes the id of the
calling thread as parameter. The method first checks whether the given thread is eligible
for the team, and if this is the case registers the thread for the team.

• When a thread wants to drop out of a team to start working on something else, it must
call dropThread(I). This tries to remove the thread from the team, and returns true on
success. A call to this method is only successful if the team is not yet built. If a team has
been built, only the coordinator can free threads from it.

• The coordinator can check if the team-building process has finished by teamBuilt().
No thread may by its own leave a team after it has been built. The coordinator can reuse
and if needed downsize an already built team.

• The coordinator (only) can disband an already built team by disbandTeam().

• inTeam(I) is used by threads to check whether they are still members of a team. This
may not be the case if the coordinator has disbanded the team, or if the team has been
resized.

56 Chapter 4 Data Structures and Synchronization

Listing 4.2 The modified stealing procedure for team building (stealTasks())
1: `← 1
2: while 2` ≤ p do
3: x ←getVictimForLevel(`) {Victim thread at level `; random or deterministic depend-

ing on policy}
4: xc← x.c {The victim’s coordinator}
5: xcr ← xc.r {The thread requirement of the team being built}
6: if xcr ≥ 2` then {Victim’s coordinator requires this thread for execution of its task}
7: xc.registerThread(I) {Join this team}
8: c← xc {and set coordinator}
9: return

10: else
11: {Steal from victim instead}
12: if Q.popappend(x.Q, 2`−1) > 0 then
13: {At least one task stolen}
14: return
15: end if
16: {Nothing to steal, next level in the hierarchy}
17: `← `+ 1
18: end if
19: end while
20: {No success in stealing procedure}
21: backoff()

4.4.3 Implementation

A key property of work-stealing is that threads do local work as long as work is available,
and only resort to stealing when they run out of work. Deterministic team-building preserves
this property, since each team will work on the coordinator’s local queue of tasks for the
current level in the processor hierarchy. Only when a team runs out of work, it is disbanded,
and the modified stealing procedure started. Pseudocode for stealing procedure is shown in
Listing 4.2.

A worker thread will only start to steal whenever it is not being coordinated by another
thread, and it has run out of tasks to process, including tasks requiring teams. For team-
building, the victim selection policy (see also Section 3.5) is required to be hierarchical in
nature. The policy used in Listing 4.4 iterates through the levels in the team-building hierar-
chy, and selects a single victim at each level. Only if the victim at level ` neither has work
to steal, nor is part of a team which also requires the stealing thread to join, the stealing
procedure will proceed to the next level in the hierarchy. This scheme ensures that a thread
in a stealing procedure will encounter a team being built with a certain probability. The
probability is higher the more threads have already encountered the same team.

If the stealing procedure encounters a thread that is part of a team that the stealing thread
is also supposed to be a part of, it will join the team and exit the stealing procedure. Otherwise
it will attempt to steal at least one task. This is done with the popappend(q, maxTeam) method
of the queue structure. It tries to pop a number of tasks from the queue q and append them
to its own queue. This call is only allowed to steal tasks with a thread requirement that is at
most maxTeam, which is 2`−1 in the stealing procedure. The reason for this is that there is no
point in stealing a task that requires both the stealing thread and the victim to execute.

The team-building scheme is lazy, which means that a thread will only find out about

Deterministic Team-building 57

Listing 4.3 The polling procedure for threads building a team (pollPartners(r))
1: `← 1
2: while 2` ≤ r do
3: x ← getVictimForLevel(`) {Partner thread at level `; random or deterministic depend-

ing on policy}
4: xc← x.c {The victim’s coordinator}
5: xcr ← xc.r {The thread requirement of the team being built}
6: if xc 6= c then {Victim has a different coordinator}
7: if xcr ≥ 2` then {Victim’s coordinator requires this thread for execution of its task}
8: {Conflicting teams being built, choose}
9: if chooseTeam(c, xc) = xc then

10: {Other team wins, switch}
11: if c.dropThread(I) then
12: {May fail if team at c has already been successfully built}
13: xc.registerThread(I) {Join other team}
14: c← xc
15: return
16: end if
17: end if
18: {Our team wins, other threads will eventually switch}
19: else
20: {Steal from victim instead}
21: if Q.popappend(x.Q, 2`−1) > 0 then
22: {At least one task stolen}
23: if c.dropThread(I) then
24: {Try to drop from team being built}
25: c← I {Thread becomes coordinator and will attempt to execute task}
26: end if
27: return
28: end if
29: {Nothing to steal, next level in the hierarchy}
30: end if
31: end if
32: `← `+ 1
33: end while
34: if ¬ c.taskIsReady(I) then
35: backoff()
36: end if

a team being built whenever it selects a victim that is part of this team during the stealing
procedure. This fits well with the philosophy of work-stealing, where a thread only commu-
nicates when it has nothing better to do, and no extra coordination overhead is introduced.
Nonetheless, this also means that a team will only be built when each thread required for the
team has finished processing its local work. To speed up this process, a helping scheme is
introduced, where threads that join a team steal work from threads needed for the team. In
this way, threads attempting to build a team will help other threads in this queue finish their
work, so they can proceed to join the team.

The pollPartners() procedure shown in Listing 4.3 implements this helping scheme.
Each thread that is part of an unfinished team will repeatedly call this procedure in an at-

58 Chapter 4 Data Structures and Synchronization

Listing 4.4 The procedure called by a thread to get the next task to execute (getTask())
1: task←⊥
2: repeat
3: if c 6= I then
4: {Thread is in team coordinated by another thread}
5: if c.T 6=⊥ then
6: {The coordinators task is ready, and thread is in team}
7: return c.T
8: else if c.inTeam(I) then
9: pollPartners(c.r)

10: else
11: c← I
12: end if
13: else if Q.isEmpty() then
14: if teamBuilt() then
15: {Out of work, so team is not needed anymore}
16: disbandTeam()
17: end if
18: stealTasks()
19: else
20: {Thread is coordinator}
21: if teamBuilt() then
22: T ← Q.popBottom(r)
23: return T
24: else
25: pollPartners(r)
26: end if
27: end if
28: until task 6=⊥

tempt to steal work requiring smaller teams from other threads. The procedure bears a lot of
similarities to the stealTask() procedure presented in Algorithm 4.2. The main differences
are that the only victims that will be selected are threads required for the team. Also, if an-
other team being built is encountered, which also requires the participation of the stealing
thread, a deterministic tie-breaking scheme needs to be employed to ensure that eventually
all threads will join the same team. In our polling procedure, the tie-breaking scheme is en-
capsulated in the procedure chooseTeam(I, J), which must be deterministic, commutative
and transitive (e.g. by always choosing the thread with the lower id). We also require that
chooseTeam(I, J) always chooses smaller teams over larger ones.

We now put the pieces together in the getTask() procedure shown as Listing 4.4. This
procedure is called whenever a thread is ready to process the next task. It distinguishes
three different situations. If the thread is not the coordinator of the team it is in it calls
the pollPartners() procedure until either the team is ready, a task has been stolen, or the
team-building cancelled due to a conflict. Otherwise, if the thread is a coordinator, it is
either out of work, which means that the team can be disbanded and stealing can start us-
ing the stealTasks procedure, or team-building is still in progress, which means that the
pollPartners() procedure is called, or the team is ready. In case the team is ready, the next
task with thread requirement r is retrieved from the queue using the popBottom(r) method
and then prepared for execution by the team.

Deterministic Team-building 59

4.4.4 Basic properties

Teams are always built out of consecutive threads. The threads that are allowed to join a
team of a certain size at a certain coordinator are static and deterministic as they have to be
members of the same group of processors at a certain level in the processor hierarchy. Due
to the requirement that threads in a single group in the processor hierarchy are numbered
consecutively, the threads in a team are numbered consecutively as well. By subtracting the
(known) lowest id of a thread in the group from the thread ids, team-local thread ids in the
range [0, t − 1] can easily be computed. If the processor hierarchy can be represented as a
full binary tree, finding the id of the first thread in the team is particularly easy and requires
finding only the most significant bit in the team size t. This can often be done by a hardware
instruction, or in O(log log t) steps.

An important property of work-stealing is that as long as a thread can execute tasks it does
not have to communicate with other threads. With the cohorting optimization presented in
Section 4.4.7 this property can be extended to teams, where threads in a team will never need
to communicate outside the team, until no more tasks for the given team size are available in
the coordinator’s queue.

4.4.5 Correctness

Lemma 4.4.1. Assume the computation is finite. A thread I has spawned a task requiring r ≥ 1
threads. This task will eventually be executed.

Proof. For r = 1 the case is clear. Tasks requiring a single thread will be popped or stolen and
executed before tasks using more threads. No coordination is required before execution, so
the task will eventually be executed, as in standard work-stealing.

Let r > 1 and assume the task is coordinated by I (it might have been stolen from some
other thread). Eventually the other threads will join the team for the task as they run out of
tasks requiring less than r threads. These will be executed because threads waiting for the
formation of the large team help smaller teams to empty their task queues. Threads joining
the team set their coordinator to I such that other threads that have to join the team eventually
see that the team is coordinated by I. When all threads have joined the team the task will be
executed.

Lemma 4.4.2. If two or more threads trying to build teams compete for threads to join their team, the
conflict is resolved deterministically.

Proof. Assume that thread x and thread y both try to build a team and compete for the same
threads to join the team. Over time each of the threads will join one of the competing teams.
As soon as a thread has joined a team, it will poll the other threads required for the team,
and eventually see the other team. In this case, the chooseTeam(I, J) function is called to
resolve the conflict, which is required to be deterministic and commutative. Assume the team
of thread x is deterministically chosen over the team for thread y. Each thread in team y will
then switch to team x as soon as it meets a thread in team x. Over time all threads will have
joined team x. As chooseTeam(I, J) is also required to be be transitive, the argument extends
to more than two conflicting teams.

In our current implementation, chooseTeam selects the team with the smaller thread re-
quirement, and selects the team with the smaller coordinator id on a tie. This fulfils both the
transitivity and commutativity requirements.

60 Chapter 4 Data Structures and Synchronization

Lemma 4.4.3. Each task is executed exactly once by each of the threads in a team.

Proof. A task is always managed by only one thread (the coordinator) and cannot occur in
two queues at the same time. When a task is stolen, it is first removed from one queue, before
being added to the other one. The start of task execution is managed by the coordinator by
storing a reference to the task in T. Each thread will remember the last task it executed for
the team. A task may only be executed by a thread in a team if a reference to it is stored in T
at the coordinator and the task is not the same as the previously executed task. Thus, a task
will never be executed twice.

Before starting to execute a task, each thread atomically decrements the countdown vari-
able G at the coordinator. The coordinator is only allowed to modify T when G = 0, which is
only the case when all threads in the team have started execution of the task. Since no thread
will execute T again if it was the last task it executed, each thread will decrement G exactly
once. Also, the coordinator may only disband a team after announcing T when G = 0. This
shows that the task will eventually be executed by all threads of the team.

4.4.6 Lock-free implementation of the registration mechanism

A central aspect of the deterministic team-building algorithm is the registration mechanism
which we now show how to implement in a lock-free fashion. Each place maintains a reg-
istration structure R that is modified by a compare-and-swap (CAS) operation when a thread
registers or deregisters from a team. The coordinating thread does not need to use compare-
and-swap operations. The registration structure is used for keeping track of a team being built
for a task currently at the bottom of the thread’s queue, and contains the following fields:

• The number of required threads r for the task at the bottom of the queue. This is modified
every time a new task is added to the bottom of the local queue.

• The number of acquired (or registered) threads a, which is the number of threads currently
registered for the team. Only threads that are required for a team of size r can be
registered. If a new task is added to bottom that requires more threads, this number can
stay. If it requires less threads, we have to reset it to the number of teamed threads and
increment the new counter N (see below) to ensure that no invalid thread has registered.

• The number of teamed threads t is set to the size of the team by the coordinator after
all threads have registered, therefore fixing the team. By default t is set to 1, which
means that the team consists of a single thread (the coordinator). Teams can be shrunk
by setting t to the new team-size. Disbanding a team means shrinking a team to size 1.

• The new counter N is incremented every time the coordinator decides to reset the number
of acquired threads to the current team size t, in order to signal to all acquired threads
that team-building has to start over again. This happens every time the coordinator
calls the disbandTeam() method. It is also incremented in some cases where teams are
resized, but as team resizing is an optimization not required for the basic algorithm, we
do not cover it here.

The full registration structure can be packed into a 64-bit integer, and thus all fields up-
dated by a single 64-bit CAS instruction by assigning 16 bits to each field. For smaller numbers
of hardware threads a 32-bit CAS suffices. In theory N would have to be unbounded, but in
practice a sufficiently large, finite N with wrap around suffices.

Now we describe how the registration structure is accessed and updated:

Deterministic Team-building 61

• registerThread(I) atomically increments the number of acquired threads a using a
compare-and-swap operation. The thread that registers for the team locally stores the
current value of N at the time of incrementing a.

• dropThread(I) tries to decrement a, therefore reversing the registration. If N has changed
since the last call to registerThread(I), the thread has already been dropped by the
coordinator, and therefore decrementing is not required. If a = r, or the given thread id
is part of the already built team of size t, dropping out is forbidden, and therefore fails.

• teamBuilt() first checks whether the thread requirement changed since the last call. If
this is the case, the team is disbanded as described below, and team-building restarted
by setting r to the new thread requirement. (In our actual implementation teams are
resized when possible to reduce team-building overhead.) Otherwise, the algorithm
checks whether a = r. If this is the case, the team is fixed by setting t = r. This does not
require atomic operations, as the registration structure may not be modified by other
threads after all threads have registered for a team.

• disbandTeam() atomically overwrites the registration structure with a new version. In
the new version r = 1, t = 1, a = 1 and N is incremented. This does not require a
compare-and-swap, but only an atomic write to the integer containing the registration
structure.

As currently implemented we estimate the extra overheads in deterministic team-building
as follows: an extra CAS used when a thread registers to or deregisters from a team. If all tasks
require r = 1 the algorithm coincides with a locality-aware work-stealing scheduler where
log P− 1 victims are checked before the backoff(). The additional CAS is never executed in
this case.

4.4.7 Optimizations

The following optimizations have been omitted in the algorithm description to simplify pre-
sentation:

• When stealing tasks, the last stolen task is not appended to the deque but instead re-
turned immediately from the stealTasks() function. This is necessary to prevent situ-
ations where a task is stolen back and forth with no thread being able to execute it.

• We have observed that stealing the largest (wrt. team size) possible task from a victim
will often result in more efficient schedules. This comes from the fact that a thread only
steals from a thread at a certain level if all victims at lower levels had empty queues.
Therefore, the chances are high that the stealing thread will be able to build up a team.

• To reduce the team-building overhead, we allow cohorting of tasks which require the
same team size. This means that after executing a task, the coordinator of a team will
give the team another task requiring a team of same size to execute. If no such task
exists, the coordinator will attempt to shrink the team to a size for which it has tasks, or
if no such tasks exist it will disband the team.

4.4.8 Arbitrary team sizes

We now indicate how to cope with the case where each task is assigned a team of size t =
r, ∀r ≤ P. To support this, it is first necessary to determine how a team of arbitrary size is
deterministically built. This can be easily done by taking the next-bigger team-size in the

62 Chapter 4 Data Structures and Synchronization

T1,7

T1,4

T1,2

P1 P2

T3,4

P3 P4

T5,7

T5,6

P5 P6

P7

Figure 4.2: The team-building hierarchy hierarchy.

team-building hierarchy 2r > t′ ≥ r and leaving out t′ − r threads. The threads being left out
are either the t′ − r leftmost or rightmost threads, depending on which are further away from
the coordinator.

The polling procedure of the team-building algorithm also has to be modified to ensure
that none of the left out threads are ever selected as stealing victims. Thus, the exact range
of processor ids needs to be used as parameter for the victim selection algorithm used by the
polling procedure.

In general, we expect that allowing arbitrary team sizes will often lead to the threads left
out of the next-bigger team being idle, thus leading to a less efficient schedule. So unless the
application requires the number of threads in a team to be exactly the requested number, we
recommend allowing the scheduler to choose smaller team-sizes aligned to the hierarchy for
higher efficiency.

4.4.9 Arbitrary number of hardware threads

We finally extend to the general situation where the number of processors in a system is not
a power of two. To support this, the algorithm needs to be extended to work with binary
trees that are not full binary trees. Most parts of the algorithm will work for such binary
trees without modification. Care only has to be taken when determining team sizes at a
specific level in the hierarchy, which is not 2` and can even vary depending on the processor.
Instead, each node in the binary tree representing the hierarchy needs to store the first and last
processor id contained in the team, as shown in Figure 4.2, to allow the scheduler to calculate
the team size for each team individually.

4.4.10 Notes on the current implementation in Pheet

The team-building algorithm presented in this section has been implemented in a precur-
sor to Pheet, and performance results for this implementation have been shown in previous
work [146, 147]. A scheduler for mixed-mode parallelism has been implemented for Pheet
as well and while it is true to the original philosophy some modifications and optimizations
were made.

The registration structure used for the lock-free implementation of team-building has been
updated and now only requires two of the original four members of the registration structure
(r and a) to be stored in a single integer that is updated atomically.

A more controversial modification is that the Pheet implementation does not allow a task
to be stolen, once the team-building process was started for it, even if that process is later
cancelled in favor of a competing team. This allows interleaving some of the execution of the
task with the team-building process, thus reducing the cost of team-building, but can lead to

Reducer Hyperobjects 63

load imbalance. While in practice this does not seem to be a problem for the applications we
tested, we expect that this can lead to worse bounds for the scheduler.

4.5 Reducer Hyperobjects

Associative reducer hyperobjects (see Section 2.8), allow to perform associative operations on
any variable or data-structure in parallel by multiple tasks. The reducer guarantees that from
the user’s point of view, the operations are performed in the same order they would have
been performed in a sequential execution of the program.

4.5.1 Algorithm

As defined in our general model of hyperobjects in Section 2.8.5, each task carries around its
own copy of the hyperobject. This copy is associated with a single structure called the local
view. A local view contains part of the data, which can be updated by the task without the
need for synchronization, and will be combined with other pieces of data after the task has
terminated. In addition, the local view contains information for synchronization with other
local views.

Data for reducer hyperobjects is represented by an object-oriented data type, which we
call a monoid. In mathematics, a monoid is a triple consisting of a set, a binary operation over
the set, and the identity value. The monoid class used for hyperobjects captures the properties
of a specific monoid and allows to apply it to specific data. An instance of the monoid class
stores a single value out of the set, and provides a function that allows to reduce two values
into a single value using the binary operation over the set, as well as a function to reset the
value back to the identity of the set. An example monoid for constructing lists is shown in
Listing 4.5. In the remainder of this section we use monoid to denote instances of the monoid
class, not the algebraic structure.

Listing 4.5 Pseudocode for a list-reducer monoid, which can be used to construct lists of
integers.

1 class ListReducerMonoid {

2 void reduce(list<int>& other) {

3 data.append(other);

4 }

5

6 void reset() {

7 data.clear();

8 }

9

10 list<int> data;

11 }

For associative reducers, there is a one-on-one relationship between a copy of a reducer
hyperobject and the local view it is associated with. This does not mean that a reducer always
references the same view during its lifetime. Whenever a task is spawned that receives its
own copy of the hyperobject, the new copy will receive the original local view, while a new
local view is created for the original copy of the hyperobject used in the continuation. This
is necessary to maintain the illusion of a sequential execution for this hyperobject. As shown
in Figure 4.3, a sequential execution (represented by the numbers on the nodes) is depth-first
and will always first follow spawn edges before exploring continuation edges. To ensure the

64 Chapter 4 Data Structures and Synchronization

Γ1

Γ2

Γ3

1 2 3

4 5

6 7

8 9 10 11 12

13 14 15 16 17 18

Figure 4.3: A task-parallel execution.

Γ1

Γ2

Γ3

1 2 3

4 5

6 7

8 9 10 11 12

13 14 15 16 17 18

Figure 4.4: The local views used by a hyperobject in a task-parallel execution.

values stored in local views of reducer hyperobjects are constructed in sequential order as
well, local views always need to be passed on to the spawned task.

The new copy of the hyperobject, which is created at a task spawn, will also store a pointer
to the local view that was created for the continuation as successor view. While the local view of
a copy of the hyperobject can change throughout the execution, its successor view will never
change. This pointer can then be used to reduce both views back into a single view, thus
maintaining the illusion of a sequential execution order. Figure 4.4 shows all local views used
for the dag from Figure 4.3. Reducing all local views with their predecessors (in any order)
until only a single local view remains will yield the same results as a sequential execution.

4.5.2 Implementation

An associative reducer hyperobject is implemented as a small data-structure that is passed on
to subtasks by value. A reducer hyperobject has the following fields:

• A reference to a local view v. Changed on every copy operation.

• A reference to the successor view s. Initialized when a copy is created. Constant for this
copy.

The local view data-structure consists of the following fields:

• The data m, which is an instance of the monoid class.

Reducer Hyperobjects 65

• A reference to the predecessor view p, initialized to ⊥.

Algorithm 4.6 shows how the copy operation for reducers is implemented. The newly
created reducer is linked to the original view, and a new view is created for the original
reducer. The newly created view is also stored as successor view in the newly created reducer.
The intuition for this is that the original hyperobject is used in the continuation (→ successor)
of the task.

Listing 4.6 copy(r)()
1: nr.v← r.v {New reducer gets old view}
2: r.v←new view() {Old red. gets new view}
3: nr.s← r.v {Store successor view}
4: return nr

For reducer hyperobjects the main objective of the destructor (see Algorithm 4.7) is to
perform a reduction. It reduces its own monoid with its predecessor’s monoid, and makes
the predecessor view its active view. This can be performed multiple times. As soon as no
predecessor is available (p =⊥), reduction terminates, and the reducer makes its own value
available to another hyperobject. This is done by setting the p field of its successor view to
point to its own local view.

Listing 4.7 destruct(r)()
1: while r.v.p 6=⊥ do {has predecessor}
2: p← r.v.p {Store predecessor}
3: p.m←reduce(p.m, r.v.m)
4: delete r.v {delete current view}
5: r.v← p {set view to predecessor}
6: end while
7: r.s.p← r.v {Notify successor view}

For the sake of simplicity, the algorithm presented here does not contain any means for
termination detection. Instead we rely on the programmer to provide proper termination
detection using a finisher hyperobject, a finish region or other synchronization primitives,
similar to finish accumulators [122]. If all tasks using a certain reducer have been created in-
side a finish region, it is guaranteed that at the end of the region all predecessors are available.
The programmer can then request the reduced value, which is obtained by a final reduction
of all remaining values, similar to the reduction performed in the destructor.

4.5.3 Optimization

For sequential executions it is desirable that all operations are performed on a single instance
of a monoid, removing the need to perform (potentially expensive) reductions on monoids.
It can be observed that for a sequential execution the first operation on a monoid is always
performed after all predecessor pointers have been set. One way to exploit this is to perform
a check for potential predecessors before adding a value to a previously unused monoid. If
a predecessor exists a reduction may be performed immediately, but no need exists to reduce
the monoids as one monoid still contains the identity. This means that a merge operation can
be omitted. We call this type of reduction folding.

With folding it is also possible to reuse local views. Every time a local view with an unused
monoid is folded it is put into a list for reuse. Only views folded as part of a sequential

66 Chapter 4 Data Structures and Synchronization

execution by a single thread can be reused. In a sequential execution, the number of views
created per hyperobject will never exceed the stack-size, therefore the list of reusable nodes is
bounded.

Finally, the destruction and reduction algorithms require a strong memory consistency
model to enforce an ordering between operations. Whenever it is clear that a view and its
successor/predecessor are both owned by the same thread, the memory model can be relaxed
and fences omitted.

4.5.4 Correctness

Lemma 4.5.1. Reduction operations on local views preserve associativity with respect to a sequential
execution.

Proof. We define a sequential ordering of operations in a task-parallel application to be the
ordering occurring when all task spawns are converted into synchronous function calls. By
definition, the monoid used by a reducer has to be associative, therefore the order in which
reductions are performed does not matter as long as the sequence of operands is not changed.

On each spawn, two separate execution paths are created, and each builds its own linked
list of local views, which contains the operands of the associative operation. The original local
view is passed on to the spawned task. A new local view is created for the continuation. In
a sequential execution, the spawned task would be executed before its continuation, therefore
all reduce operations in the spawned task need to occur before operations in the continuation.
Since the continuation has no access to the original local view, this is obviously the case.

In the continuation a new local view is used. Due to associativity it is allowed to perform
reductions inside. After the spawned task has completed executing, the original local view
will become available as predecessor of the new local view. Both views can now be reduced
to a single one, which again preserves order.

Lemma 4.5.2. With exception for the predecessor field p all fields in a local view can only be accessed
by a single thread at any point in time.

Proof. There is a one-on-one relationship between reducers and local views. Since a single
reducer cannot be shared between threads, only a single thread can access the local view
through a reducer. The linearization point of the destructor of a reducer hyperobject is when
its local view is passed on as predecessor to another local view. It is the last operation in
the destructor, so that no members of the hyperobject are accessed after it. The view that
gets access to the view of the deleted hyperobject is again only accessible by a single thread,
therefore its list of predecessors is only accessible by this thread as well.

Lemma 4.5.3. The p field is written at most once for each local view.

Proof. A reducer hyperobject contains a pointer to a successor view, which is only used once
to modify the p field in the successor view. The pointer to the successor is always set to point
to a view created in the previous statement, therefore a view is only accessible through a
single successor pointer. As there is at most one successor pointer pointing to each local view,
and it is used exactly once for writing the p field, the p field is written at most once for each
local view.

Theorem 4.5.4. Reducer hyperobjects are wait-free, assuming a wait-free memory allocator.

Proof. The copy operation only consists of wait-free operations and is therefore trivially wait-
free. The destruction operation consists of a reduction and a single assignment. If reduction

Finisher Hyperobjects 67

is wait-free so is destruction. Reduction iterates through all currently available predecessors
of a local view. During the iteration more predecessors may become available, but the local
views that are predecessors of a given view are bounded by the application regardless of
whether they are already available or not. Therefore the iteration is bounded by the number
of predecessors.

Exclusive access is guaranteed for both monoids used in a single reduction by Lemma 4.5.2
since the monoids are stored in local views. Due to the exclusive access, no synchronization
is required inside the reduce operation, which makes it wait-free. All other operations used
in a reduction are trivially wait-free as well, which makes the whole reduction operation
wait-free.

4.6 Finisher Hyperobjects

In this section we present a high-level overview of the wait-free reference counting algorithm
used to implement finisher hyperobjects.

As described in our model for hyperobjects in Section 2.8.5, a hyperobject is a lightweight
data-structure that mainly consists of a pointer to its local view. The local view is where the
reference counting is performed. Contrary to associative reducers, where the sequential order
of execution needs to be preserved, a local view can be shared by multiple copies of the
hyperobject. For finisher hyperobjects each local view is associated with a operating system
thread. As long as all copies of a hyperobject are owned by the same thread, all will reference
the same local view.

Certain fields of a local view are only allowed to be modified by the thread the local view
is associated with. Whenever a copy of a finisher hyperobject is passed on to another thread,
this thread will encounter a local view where it is not allowed to modify all fields. If it needs
to modify one of those fields, it has to create a new local view to do that. The new local view
will store the previous local view as its parent.

The local view of a finisher hyperobject is used for reference counting. It has a local
counter, which counts all copies of the hyperobject that use this local view, as well as all local
views that have the given local view as parent. At the end of the lifetime of a copy of a finisher
hyperobject, it decrements the reference count of its own view. If the finisher was the last one
to reference it, the local view can be cleaned up. If the local view has a parent, this requires to
decrement the reference count of the parent in a thread-safe manner. If no parent exists, this
means that no more copies of the finisher hyperobject exist, allowing for clean-up.

4.6.1 Implementation

We now provide details of the finisher hyperobject implementation. Central to a hyperobject
is the local view, which is a data-structure containing the following fields:

• The thread id t.

• A pointer to the parent view p. For the initial view this is a null-reference.

• The local reference count l. Incremented when a finisher is copied and decremented
when a local copy is destroyed. Initialized to 1.

• Number of copies finished by another thread r. Incremented atomically whenever a
view referencing this view is cleaned up. Initialized to 0.

68 Chapter 4 Data Structures and Synchronization

• A flag f used to atomically decide which thread is responsible for clean-up. To avoid an
ABA-problem an integer is used. Even values stand for views in use, odd for cleaned
up views. Initialized to 1.

The true reference count for each local view is the difference l − r. As long as at least one
reference to a view exists, the invariant l > r holds. If l = r, the last reference to the view has
been removed and the view can be cleaned up. We say a hyperobject is unique, if for all its
views l = r + 1.

As mentioned before, the finisher hyperobject only consists of a reference (called v) to
the local view data-structure described above. Finisher hyperobjects are used with value
semantics in an object-oriented sense, so that each time a finisher is passed on (e.g. to a
subtask) or stored, a copy constructor is called.

Listing 4.8 copy(f)()
1: f .v←active view(f .v) {Get own view}
2: n f ← f {Clone finisher}
3: f .v.l ← f .v.l + 1 {Increment local reference count}
4: return n f

Algorithm 4.8 shows how a finisher hyperobject is copied. After copying a finisher, both
copies reference the same local view. The copy constructor increments the local reference
count l. Our model requires that a hyperobject may only be copied by the thread that owns
it. Therefore, no synchronization is required when accessing l.

Listing 4.9 destruct(f)()
1: v←active view(f .v) {Get own view}
2: v f ← v. f {Store flag}
3: v.l ← v.l − 1 {decrement local reference counter}
4: if v.l = v.r ∧ CAS(v. f , v f , v f + 1) then
5: p← v.p {Store parent pointer}
6: while p 6=⊥ ∧ p.l = p.r do {Predecessor can also be cleaned up}
7: v, p← p, p.p {Move to parent}
8: v f ← v. f {Store flag}
9: vr ←get and increment(v.r)

10: if ¬(v.l = vr + 1 ∧ CAS(v. f , v f , v f + 1)) then {No need to clean up next view}
11: return
12: end if
13: end while
14: end if

When a copy of the finisher hyperobject reaches the end of its lifetime, its destructor is
called, which is shown in Algorithm 4.9. The destructor decrements the local reference count
l, and checks whether l = r. In this case, no more references to the view exist. The last thread
accessing the local view is required to perform some clean-up. It is possible that more than
one thread sees l = r. A compare-and-swap (CAS) setting the flag field to an odd value ensures
that only one thread performs clean-up.

On clean-up, if the local view has a parent p, the thread that is responsible for clean-up has
to signal that a remote reference has been finished by atomically incrementing p.r. Again, if
l = r for the predecessor view, the view needs to be cleaned up. As before, a compare-and-swap
on the flag field is needed to ensure that clean-up is only performed once.

Finisher Hyperobjects 69

A hyperobject may change hands after creation since the copy operation is performed in
the context of the parent task. To ensure that the view referenced by the finisher hyperobject
is owned by the current thread, a check is performed at the beginning of both the copy
constructor and the destructor (Algorithms 4.8 and 4.9), which is every time the l field of the
local view needs to be modified accessed. This ensures that a new local view is created any
time a hyperobject changes hands. Algorithm 4.10 depicts this check. If the t field of the local
view differs from the thread id the hyperobject must have changed hands in the meantime.
In this case, a new local view is created for the given thread, and a reference to the previous
view stored in p. The previous local view is not modified. All future accesses to the currently
accessed copy of the hyperobject use the newly created local view. Since views cannot be
safely deleted, we use our wait-free memory manager from Section 4.3 to manage views. A
view can be reused by the memory manager, as soon as f is set to an odd value.

Listing 4.10 active view(v)()
1: {Check for view ownership}
2: if v.t =thread id() then {Owner of this view}
3: return v
4: else {Not the owner - Clone the view}
5: c←acquire view() {Get new view}
6: c.t←thread id()
7: c.p, c.l, c.r ← v, 1, 0
8: c. f ← c. f + 1 {Mark view as in use}
9: return c

10: end if

4.6.2 Shared pointer

Finisher hyperobjects can be used to manage a shared pointer, so that referenced data is
automatically deleted when the last pointer is destroyed. If the shared pointer is stored with
the finisher, the data can be deleted when the last finisher is deleted (l = r in the root local
view).

To allow shared pointers that store null-pointers, and to allow reuse of shared pointers,
we make the following modifications to the finisher algorithm:

• No local view is assigned to shared pointer hyperobjects storing null pointers.

• Whenever new data is assigned to the pointer, a new root local view is created.

• Whenever a shared pointer containing data is assigned to new data or null, l is decre-
mented, and the local view cleaned up if necessary.

• Whenever a shared pointer is assigned the value of another shared pointer, this is treated
like a copy operation.

4.6.3 Copy-on-write pointer

To implement a copy-on-write pointer based on a shared pointer hyperobject, the normal
dereferencing operation of the pointer has to return a reference to an immutable value. In
C++ this can be done using the const keyword. In addition, a copy-on-write pointer has an
access method, which we call get writable().

70 Chapter 4 Data Structures and Synchronization

If l = r + 1 in the local view and all its predecessors (uniqueness), it is guaranteed that the
data referenced by the pointer is not shared. Therefore get writable() can return the pointer.
Otherwise, the data is copied, and a new local view created for the hyperobject (with p←⊥).
The old local view is dereferenced by decrementing l and clean-up performed if necessary.

4.6.4 Finish region

Finish regions may easily be implemented using finishers, by passing a copy of a finisher to
each subtask. For nested finish regions, only the innermost finisher needs to be passed on to
subtasks. The finish condition is met if the finisher is unique, which is when for all local views
l = r + 1. In this case the only copy of the finisher left is the original copy. The functionality of
finisher hyperobjects can be embedded directly into a scheduling system, so it is not required
to pass around finisher hyperobjects. The implementation of finish regions in Pheet is based
on finishers.

4.6.5 Optimizations

With finishers one can observe that in most computations many local views in finishers are
actually leaves. We define that a local view is a leaf when no finisher referencing it is passed
on to another thread. In the destructor it is possible to recognize a leaf when the last finisher
referencing it is destructed. If l = 0 after decrementing, all copies of the finisher have been
destructed locally. In this case, no synchronization is needed for the clean-up operation and
the atomic compare-and-swap on f variable can be omitted.

If a local view is unique (l = r + 1), it is guaranteed that only one thread can access it. In
this case, a thread is allowed to change the owner of a local view if necessary to omit creating
a new local view. Also, if a local view is unique, r does not need to be incremented atomically.

4.6.6 Correctness

We now prove that our finisher implementation is correct, linearizable and wait-free.

Lemma 4.6.1. At any point in the computation, the invariant l ≥ r always holds. If l = r at some
point, it stays this way.

Proof. Each local view is initialized with l = 1 and r = 0, because in the beginning a single
finisher references it. We now look at some local view, which we will call vv. Each time a
finisher with v → vv is created, vv.l is incremented. No other finisher may reference vv, and
since l is only decremented in the destructor of a finisher, the invariant l ≥ 0 holds. For l to
be incremented, at least one hyperobject must exist to be copied, which is only when l > 0.

To increment vv.r, a local view lv (lv 6= vv) has to have vv as its parent (lv.p → vv) and
enter clean-up. When a new local view with lv.p → vv is created, it takes over a single
finisher from vv by changing its local view pointer from v → vv to v → lv. Therefore, vv.l
can be bounded to be at least the number of new local views with p→ vv, since for each such
view one finisher does not reference vv any more, but did not decrement vv.l. For n views
with p → vv, we will therefore have l ≥ n in vv. At the same time, each clean-up of a view
results in only one increment of r in its parent, which is ensured by the atomic flag variable.
Therefore r ≤ n. This implies l ≥ n ≥ r. If l = r, both l and r will never change. For l to be
incremented, l > n is required, which contradicts l = r. Since r is never decremented, and all
other changes would violate l ≥ r, both l and r will not be modified after l = r.

Lemma 4.6.2. A local view can never be cleaned up before all finishers referencing it or its successors
have been destructed.

Finisher Hyperobjects 71

Proof. Assume it would be possible to clean up a local view before all finishers referencing it
have been destructed. This would require some thread to observe l = r without this being the
case. A thread may observe a value of a variable different to its actual value, if the value has
changed since it was read out of memory. By Lemma 4.6.1 we know that l ≥ r. Assume that
l > r, but some thread observes l = r. For this to happen, either the observed l must be lower
than its actual value, or the observed r higher.

Since r is never decremented, the observed value can never be higher than its actual value.
Therefore, the observed l must be lower than its actual value. The owner of the local view
will always observe the correct value for l, since it is the only thread modifying it. Other
threads only read l during clean-up. There, the value for l is read after the value for r. This
ensures that the observed value for l is not older than the observed value for r. Since r is never
decremented, if l = r is observed it must have been true at some point. By Lemma 4.6.1, l
and r will not change after l = r, so if l = r is observed this must be true, which contradicts
l > r.

Lemma 4.6.3. Clean-up of local views is always started.

Proof. Assume that clean-up is not started for a local view. In this case, all threads must ob-
serve l > r. As both the destruction algorithm as well as the clean-up algorithm for local views
are linearizable by Theorem 4.6.4, an ordering between decrements to l and increments to r
is established. The last operation will observe the changes to l and r by all other operations,
which contradicts that all threads must observe l > r.

Theorem 4.6.4. All operations on finishers are linearizable and wait-free.

Proof. The copy operation for finishers reads shared variables, and writes to a single variable
that may only be read by other threads. In addition it may acquire a new view from the
memory manager, which is wait-free by Lemma 4.3.1. Therefore it is trivially wait-free. The
linearization point for copy is the write to l.

The linearization point for the destructor is the decrement of l. After this point, threads are
allowed to clean up the local view if no more references to it exist. If clean-up is necessary, the
thread performs wait-free two-thread consensus using an atomic compare-and-swap operation.
On failure, the thread may exit the destructor, and as there are no loops or recursions it is
trivially wait-free.

clean-up of a local view is similar to the destruction of a finisher, only that instead of a
decrement to l, the variable r of the predecessor view is atomically incremented. The incre-
ment of r is the linearization point of the clean-up. The only exception is if there is no parent
view, then the compare-and-swap to the flag variable of the previous view is the linearization
point.

We have shown that all parts of the destructor are wait-free. For the destructor as a whole
to be wait-free it is necessary that there is only a bounded number of clean-ups to perform.
This is the case, since the parent pointers of a local view are initialized when the local view is
initialized. The list of parents never changes for a local view during the view’s lifetime, so its
length bounds the number of clean-ups performed by a destructor.

5
Ordered Containers

In this chapter we look at containers, bag-like data structures that offer the operations push and
pop. With push, an item can be added to the container, and pop returns a previously added
item and removes it from the container. In addition, some ordered containers may support the
operation peek, which operates similarly to pop but does not delete the returned item from
the container.

We use the term ordered container to describe containers for which there exists a specific
order in which items are returned by pop. For some ordered containers, the order is deter-
mined by the order of item insertions (e.g. in queues and stacks), whereas for others the order
is determined by properties of the inserted items (e.g. heaps).

Concurrent implementations of ordered containers are an important part of task schedul-
ing systems, where they are used to store tasks. The main focus of this chapter is to look at
concurrent ordered containers that are useful for task scheduling systems, but some of the
presented containers can be useful outside the context of task scheduling as well.

5.1 Semantics for Concurrent Ordered Containers

Except for the Log-structured merge-tree presented in Section 5.7, all ordered containers pre-
sented in this chapter are concurrent implementations that allow multiple threads to push

and pop items at any point in time. Unless otherwise specified, we allow pop operations to
spuriously fail, as long as at least one thread is guaranteed not to fail on its next pop opera-
tion. Depending on the requirements of the application, different semantics can be used for
an ordered container.

5.1.1 Global ordering semantics

The strictest possible semantics for concurrent ordered containers is to linearize all push and
pop operations by all threads with regard to each other. This will often lead to high congestion
on concurrent pop operations, since all threads will attempt to remove the same item, and only
one can succeed. For stacks, congestion can be reduced with elimination [76], but this is not
applicable to all types of orderings.

5.1.2 Purely local ordering semantics

In a purely local setting, each thread maintains its own ordered container, which it accesses
using push and pop operations. When a thread accesses the ordered container of another
thread, its operations are linearized with the operations of other threads on the same ordered
container. Operations on ordered containers owned by different threads are not linearized

73

74 Chapter 5 Ordered Containers

with regard to each other. Purely local semantics can for example be found in work-stealing
deques [11, 39].

Shared items

Some concurrent ordered containers maintain one ordered container per thread, but allow
an item to be accessible from more than one local ordered container. While there is still no
global order on operations, pop operations on shared items need to be linearized with regard
to all local containers from which the item is accessible. This does not imply that the popped
item needs to be the next item in order for every local ordered container it is contained in.
Ordering constraints are still only maintained locally for each container. However it implies
that if an item is the next item in order in a local container then that container will return the
item, unless another thread is faster.

5.1.3 Relaxed semantics

Implementing a correct, linearizable globally ordered container often has inherent costs asso-
ciated with it. Some ordered containers have inherent sequential bottlenecks where ordering
constraints limit push and/or pop operations to only allow one thread to succeed at any point
in time.

For stacks it is possible to work around this bottleneck in a correctly linearizable manner
using elimination [76], where corresponding push and pop operations are matched and thus
never directly access the stack. For other concurrent ordered containers a slightly weaker ver-
sion can be achieved by weakening the correctness conditions. Quiescent consistency [13,121] is
a correctness condition weaker than linearizability and sequential consistency, which requires
operations to occur one at a time. Only operations separated by a period of quiescence (a
period with no accesses to the container) are required to occur in their real-time order. Quies-
cent consistency allows the relaxed version of the skiplist-based priority queue by Lotan and
Shavit [81, 120] to match pop operations to concurrent push operations, as long as the item
inserted by push has a higher priority than any item that existed in a previous quiescent state.

Both elimination and quiescently consistent priority queues require that the number of
push operations that can be matched to pop operations is roughly the same as the number of
pop operations. If these numbers diverge, bottlenecks will again occur for the more frequent
operation.

Quantitative or ρ-relaxation

Afek et al. [3] have presented an alternative consistency model called quasi linearizability. Their
model builds on the notion of linearizability, but allows operations to occur out of a correct
linearizable order. While operations may appear to be out of order, quasi linearizability puts
a upper bound on the distance each operation is allowed to have from a correct linearizable
order of operations. Quasi linearizability has been mainly used as a consistency condition for
FIFO queues [3, 18, 89], but is not restricted to these. Later work by Henzinger et al. [77] has
provided a different model closely related to quasi linearizability, which is called quantitative
relaxation.

We use the term ρ-relaxation [144, 148], to describe quantitative relaxation on concurrent
ordered containers, where an upper bound, ρ, can be given on the number of items that can
be skipped on data structure accesses (pop and peek). We say an item is skipped whenever an
item is not returned on an access, even though the item that was returned would have to be
returned after the skipped item according to global ordering semantics. For our containers
this include cases where a null-value is returned, signalling an empty container.

Priority Work-stealing Queue 75

A

ρ
tρ

s

(a) push(A)

A

B ρ
tρ

s
(b) push(B)

A

B

C

ρ
t

ρ
s

(c) push(C)

A

B

C

D

ρ
tρ

s

(d) push(D)

A

B

C

D

ρ
t

ρ
s

(e) pop(C)

A

B

ρ
t

ρ
s

(f) pop(D)

Figure 5.1: Temporal vs. structural ρ relaxation on a stack for ρ = 2. The items that can be
relaxed by structural ρ-relaxation are marked with ρs, temporal with ρt.

We distinguish between temporal and structural ρ-relaxation. Temporal ρ-relaxation is a
property based on the recency of items, closely related to quasi linearizability. A temporally
ρ-relaxed ordered container is only allowed to skip the ρ most recently added items. Temporal
ρ-relaxation can be applied globally, so that only the ρ most recent items added by any thread
can be skipped, or locally, where the ρ most recent items by each thread can be skipped.

Structural ρ-relaxation, unlike temporal ρ-relaxation is not concerned with when an item
was added. It is only concerned with the amount of items that are allowed to be skipped at
any point in time regardless of their recency.

Figure 5.1 helps to illustrate the differences between temporal and structural ρ-relaxation
based on a stack for ρ = 2. While for the freshly initialized stack both types of ρ-relaxation
allow the stack to skip the two items on the top of the stack on pop, temporal ρ-relaxation
will not allow a thread to skip B after two more items have been added, regardless of how
many items have been removed in the meantime. This makes temporal ρ-relaxation stricter
than structural ρ-relaxation.

5.1.4 Combining ρ-relaxation with local ordering

In practice, many scalable implementations of ρ-relaxed data structures automatically exhibit
local ordering semantics, where each thread will never skip items that it created. This ensures
that a thread will always return a locally added item next if it has the highest priority, unless
another thread takes it first.

5.2 Priority Work-stealing Queue

To support task-parallel programming model with priorities, as described in Section 2.5, it is
necessary for a task scheduler to use a concurrent priority queue as a task queue. Our first
approach was to stay within the work-stealing model [11], where each worker thread operates
on its own task queue, and steals work from another thread’s task queue whenever it runs
out of work locally.

5.2.1 Internal structure

To separate between the concerns of maintaining an efficient priority queue, and allowing
other threads to steal items, our local priority task queues are split into two parts: A linked
list containing items (tasks) in order of creation, which we call the stream, and a sequential
priority queue, which operates on references to items in the stream.

76 Chapter 5 Ordered Containers

5.2.2 Implementation of the stream

The stream is implemented as a linked list of items where items are stored in order by age
from oldest to newest item, which can be traversed by all threads. When an item is removed
either due to a pop or due to a steal operation, it is marked as taken in the stream. Each item
in the stream has the following members:

• id: The id of the item. Items are numbered in order of creation, and it is guaranteed
that each item has a lower id than its successor (unless a wraparound occurs, but this
does not change the correctness of the algorithm).

• next: A pointer pointing to the successor in the stream. Can be modified by the owner,
but read by all threads.

• taken: A flag that can be atomically modified by any thread to mark an item as logically
removed. To avoid an ABA problem, taken is an integer, initialized to the id of the item.
An item is taken if its value does not equal the id.

• references: An integer representing the number of threads currently processing the
given item. It is atomically incremented and decremented by other threads.

• num pred: The number of items for which the next pointer points to this item. This
includes items that have been unlinked from the stream but might still be accessed by
other threads.

• key: The key used to order items by priority.

• data: The actual data stored with the item. (For task queues, this is the task.)

Items are managed by the wait-free memory reuse scheme presented in Section 4.3 and
will be reused as soon as they have been taken and it is safe to reuse them. Items may be
reused even if there are still priority queues with references to an item, and for this reason
the taken flag has to be implemented in an ABA-safe manner. An item cannot be reused as
long as other threads are processing the given item (references 6= 0). Also, we guarantee
that regardless of how long a thread holds a reference to an item in the stream, it will always
be able to continue processing the stream without encountering an item twice or missing an
active (non-taken) item. This requires that following the next pointer will eventually lead to
the next active item, even for items that have already been unlinked from the stream. An item
that still has a next pointer pointing to it cannot be reused even if no thread holds a reference
to it at the moment. What can be done is to create shortcuts whenever next pointer points
to an item that has already been taken, thus making an in-tree out of a linked list. This has
two effects: First, all leaves of the in-tree are safe to be reused if they are taken and no more
references to them exist. We use the field num pred to track how many items still point to a
given item, thus allowing us to recognize leaves. When they are reused, their successor might
become a leaf as well. Second, shortcutting also reduces the number of taken items a thread
has to process until it finds the next active item.

To minimize the number of taken items a thread has to go through in the stream to find an
active item in the worst case, and to reduce the number of shortcutting operations necessary,
we only allow shortcutting operations to be performed that will result in a specific binomial
tree. The shape of the binomial tree is predetermined by the id’s of items. Possible shortcuts
for items with id’s 0− 8 are shown in Figure 5.2. The resulting binomial tree after shortcutting
is shown in Figure 5.3. The algorithm for creating shortcuts is presented in Listing 5.1. Item
id’s are numbered continuously and there are no id’s missing in the stream before a shortcut

Priority Work-stealing Queue 77

0 1 2 3 4 5 6 7 8

Figure 5.2: Binomial shortcutting.

0

1 2

3

4

5 6

7

8

Figure 5.3: Binomial shortcut tree. (Dotted edges represent edges that were shortcut)

is made. Under this assumption, it is possible to determine whether the successor of a node is
supposed to be in the same tree branch by performing a bitwise and between the node’s id and
the successor’s id. If the bitwise and returns the node’s id, both nodes are guaranteed to be in
different branches. As an optimization we also allow further shortcuts to be created whenever
an item is a leaf. To ensure thread safety exclusive access needs to be guaranteed to a node
for shortcutting (but not necessarily its successor). For priority work-stealing we achieve this
by only letting the owner of a node perform the shortcutting algorithm.

Listing 5.1 The binomial-tree shortcutting algorithm for items.

1 StreamNode* next = node->next;

2 if(next == nullptr)

3 return;

4 StreamNode* nnext = next->next;

5 while(nnext != nullptr && // There exists a successor to create a shortcut to

6 next->taken != next->id && // Item was already taken

7 (next->id & nnext->id) != next->id) && // No shortcutting possible for successor

8 (node->num_pred == 0 || // Node is a leaf

9 // or shortcut corresponds to an edge in the binomial tree

10 ((node->id & next->id) == node->id) {

11

12 // Shortcut

13 node->next = nnext;

14

15 // Next node got rid of one predecessor

16 --next->num_pred;

17 // Shortcut node got a new predecessor

18 ++nnext->num_pred;

19

20 // Try creating shortcut for successor node as well

21 next = nnext;

22 nnext = next->next;

23 }

78 Chapter 5 Ordered Containers

5.2.3 The push operation

A push operation is fairly straightforward. It first retrieves a reusable StreamNode from the
memory pool, stores the item in it, and adds it to the stream. Then it puts a reference to the
StreamNode into its local priority queue. The code is shown in Listing 5.2. To simplify the
algorithm the stream is initialized with a single sentinel node, which is marked as taken, so
we can assume that the stream always contains a node.

Listing 5.2 The push operation in priority work-stealing.

1 void push(Key key, Data data) {

2 StreamNode* node = node_memory_pool.get_item();

3 node->id = stream->tail->id + 1;

4 node->next = nullptr;

5 // Taken is initialized to the id, to avoid an ABA problem

6 node->taken = node->id;

7 // Number of other threads referencing the node

8 node->references = 0;

9 // In the beginning only one node will have this node as successor

10 node->num_pred = 1;

11

12 // Store key and data in the node

13 node->key = key;

14 node->data = data;

15

16 // Add node to stream

17 stream->tail->next = node;

18

19 // Add reference to item to local priority queue

20 // The node id needs to be stored separately for ABA safety

21 priority_queue->push(key, tuple(node->id, node));

22 }

5.2.4 The pop operation

The pop operation removes the highest priority item from the priority queue and then attempts
to atomically mark the item in the stream as taken using a compare-and-swap. On success, this
item is returned, otherwise the operation has to be repeated until either an item is returned
or the queue is empty. When a thread runs out of local work, it will attempt to steal items
from another thread. Pseudocode for the pop operation is presented in Listing 5.3.

5.2.5 The steal operation

A steal is performed whenever the local priority queue of a worker thread is empty on a pop

operation. The steal operation will select a victim thread according to its victim selection
policy (see Section 3.5), and then scan the stream of a victim thread, and sort the encountered
items locally by priority. It will then attempt to steal the highest priority items from the other
thread. We allow steals to use different priorities than are used in the local priority queues.
This reduces congestion, and also allows the priority queue to emulate the behaviour of a
work-stealing deque.

Listing 5.4 shows a largely simplified version of the steal operation. After a victim is
selected, the stream of the victim is processed and all items stored in a temporary priority

Priority Work-stealing Queue 79

Listing 5.3 The pop operation in priority work-stealing.

1 Data pop() {

2 while(!priority_queue.empty()) {

3 // Pop item from priority queue

4 auto node_tuple = priority_queue.pop();

5

6 // Decompose tuple

7 int id = node_tuple.first;

8 StreamNode* node = node_tuple.second;

9

10 // Node was not yet taken and we succeed in marking it as taken

11 if(node->taken == id && node->taken.cas(id, id+1)) {

12 return node->data;

13 }

14 }

15 return steal();

16 }

Listing 5.4 A simplified version steal operation for a given victim in priority work-stealing.

1 Data steal() {

2 // Select a victim and store its stream in stream_node

3 StreamNode* stream_node = ...

4

5 // Use temporary priority queue to sort items

6 PriorityQueue pq;

7

8 // The first steam_node is always a sentinel node so we can skip over it

9 while(stream_node->next != nullptr) {

10 StreamNode* next = stream_node->next;

11 // Register with next node

12 next->registered.atomic_increment(1);

13 // Deregister from old node

14 stream_node->registered.atomic_decrement(1);

15

16 // Transition to next node

17 stream_node = next;

18

19 // Add node to temporary priority queue

20 pq.push(stream_node->key, tuple(stream_node->id, stream_node));

21 }

22

23 while(!pq.empty()) {

24 // Try to take and return highest priority item, similar to pop

25 ...

26 }

27 }

80 Chapter 5 Ordered Containers

queue. Finally, the stealing thread will pop the highest priority item from the priority queue
and attempt to mark it as taken, similar to the pop operation.

5.2.6 Optimizations

To simplify the presentation of the algorithm, it contains some inefficiencies. One obvious
cost is associated with the reference counting necessary for processing the stream, which can
be easily reduced by grouping items into blocks, and performing reference counting per block
instead of individual items. Also, blocks will increase efficiency of memory accesses, since
they allow turning the linked list into a linked list of arrays.

The biggest problem with the presented algorithm is the steal operation, where each steal
requires scanning the whole stream of the victim and storing all items from the stream in a
priority queue. Our current implementation in Pheet resolves this by caching both the pointer
to the stream and the temporary priority queue, so that subsequent steal operations between
the same two threads are only required to scan items added in the meantime. In addition,
stealing half the work (see also Section 2.7.3) instead of a single item allows to amortize the
cost of scanning the stream over the stolen work.

Both optimizations are not without costs: A disadvantage of stealing half the work is that,
depending on how items are prioritized exactly, a thief might steal all high priority items
from its victim. Caching streams will create a memory overhead of O(P2), where P is the
number of worker threads (places) in the system, a cost that can become prohibitive in future
architectures. Limiting the size of the cache, on the other hand, would reduce the effect of
caching for more or less random victim selection policies. In addition, even if the memory
overhead is not an issue, the overhead of parsing a stream is only reduced whenever the same
victim is visited twice within a time-frame where many of the previously encountered items
still exist. For larger numbers of threads the chances of choosing the same victim twice within
a certain time-frame decrease.

From today’s point of view we would solve stealing in priority work-stealing differently.
Instead of stealing half the items, we would steal a single item, but cache the victim from the
last steal operation, as well as the StreamNode and the temporary priority queue. Whenever
we would run out of work, we would attempt to steal from the same victim again, unless
the victim is also out of work, in which case we could delete both the cached StreamNode

and priority queue and look for a new victim. Since we believe that spying, as used by our
newer concurrent priority queues (e.g. the concurrent LSM in Section 5.8), provides even better
results than can be expected from this approach, these improvements were never implemented
in Pheet.

5.2.7 Correctness

We will now show that our priority work-stealing queues are both lock-free and linearizable.
For linearizability we require purely local semantics as described in Section 5.1.2. Thus, all
operations (push, pop and steal) that modify items owned by a specific thread (place) need
to be linearizable with regard to each other, but do not need to be linearizable with regard to
operations on items owned by another thread.

Lemma 5.2.1. The push operation is wait-free.

Proof. A new StreamNode is retrieved from our memory pool using our wait-free memory
manager from Section 4.3. Apart from this, the only synchronization performed by push is
adding the node to the stream, which is performed in a wait-free manner using an atomic
write operation.

Centralized k-priority Queue 81

Lemma 5.2.2. The push operation is linearizable.

Proof. The linearization point for the push operation is when the node is linked into the stream.
From this point on an item is visible to all threads, and can be taken by any thread.

Lemma 5.2.3. The steal operation is lock-free.

Proof. A steal will progress in the stream on each iteration, which means that it will even-
tually reach the end of the stream, unless the owner makes progress and adds new items.
Once the priority queue is filled, steal will attempt to mark items as taken. If it succeeds,
the algorithm terminates, otherwise another thread has made progress by marking that item
as taken first.

Lemma 5.2.4. The steal operation can be made linearizable.

Proof. The linearization point for steal needs to be in-between the time when the last node
in the stream is encountered, and when a new node is added by the owner. The presented
simplified implementation is not linearizable, since the stealing thread might try to mark
an item as taken, which was marked as taken after a new item was added to the stream.
Since the newly added item might have a higher priority than the item that will finally be
returned (or steal might not return an item at all as if the queue were empty), this will
violate linearizability. This can be easily fixed, though, by always rechecking the stream for
new items, whenever an attempt to mark an item as taken fails.

It is worth noting that stealing more than one item cannot be linearized that easily, and
thus our implementation in Pheet does not have a linearizable steal operation for priority
work-stealing.

Lemma 5.2.5. The pop operation is lock-free.

Proof. The first part of pop is wait-free, since each iteration will remove a single item from
the local priority queue, which will never be updated by other threads. Thus, the number of
iterations is bounded, regardless of whether it fails to return an item. The second part of pop
resorts to steal, which is lock-free by Lemma 5.2.3.

Lemma 5.2.6. The pop operation is linearizable.

Proof. The pop operation is linearized with regard to steal operations, either when an already
modified taken flag is encountered, or when it attempts to mark an item as taken.

5.3 Centralized k-priority Queue

Purely local ordering semantics, like the semantics provided by priority work-stealing are
insufficient for an efficient execution of applications like our parallelized single source shortest
path algorithm presented in Section 7.8. The centralized k-priority queue [142–144, 148] was
our first attempt to implement a concurrent priority queue with stronger ordering guarantees.
It is based on a centralized data structure design that is capable of supporting global ordering
semantics. Since it has been shown that global priority queues exhibit a lot of congestion
when used as part of a scheduling system [99], we appl¡ a temporal ρ-relaxation scheme (see
Section 5.1.3) to the priority queue, which allows each thread to skip up to ρ of the most recent
items. The priority queue also provides local ordering semantics in addition to the ρ-relaxed
semantics (see also Section 5.1.4).

82 Chapter 5 Ordered Containers

B1
k=1

A1
k=1

A2
k=5

B3
k=5

B2
k=5

...

...
A1

B1 A2

B3

B1 B2

A1

Global Array

Place A – Priority Queue Place B – Priority Queue

Figure 5.4: Centralized k-priority queue. Each place maintains its own priority queue with
references to items in the global array. The newest (rightmost) items in the global array are
only visible to the place that created them.

5.3.1 Internal structure

The basic idea of the centralized k-priority data structure is to create a global priority ordering
between all the items stored in the priority queue, while allowing each thread to miss up to
k of the newest items. As with the priority work-stealing queue from Section 5.2 we separate
the concerns of synchronization and maintaining priorities. Synchronization is performed
using a global, shared array, which is used to share items between all threads and to maintain
information about which items must be globally visible to ensure that only the k most recent
items are missed. Randomization is used to improve scalability when adding elements to the
global array. Priorities are maintained using local priority queues for each place (thread). This
is depicted in Figure 5.4. Any sequential implementation of a priority queue can be used for
the local priority queues, since each priority queue is only accessed in the context of a single
place, and therefore only by a single thread.

5.3.2 The push operation

The push operation stores the item, together with some additional information. For an item
to be visible to all threads, it needs to be added to the global array. The items in the global
array are stored in an order close to sequential. A task may only be placed up to k positions
away from its correct sequentially consistent position.

Pseudocode for the push operation is shown in Listing 5.5. There, we choose a random
position in the range from tail to tail+ k and try to put the item into the array at the chosen
position, if the position has not yet been taken by another item. In case the position is taken,
a linear search is performed inside the tail to tail+ k range until a free position is found
or all positions have been checked. If all positions are taken, tail can be updated to tail+ k
and the search restarted. This scheme for adding items to an array was inspired by the k-fifo
queues of Kirsch et al. [89].

As soon as the item has been added to the global array, a reference to it is added to the
priority queue of the place at which it was created. This ensures that the centralized k-priority
queue will exhibit local ordering semantics in addition to ρ-relaxed semantics as described in
Section 5.1.4.

5.3.3 The pop operation

Pseudocode for the pop operation can be found in Listing 5.6. The pop operation checks
whether tail has changed since the last time it was checked, and if so adds all the newly
added items to the local priority queue. Each place maintains its own head index into the

Centralized k-priority Queue 83

Listing 5.5 Pseudocode for push in the centralized k-priority queue.

1 void push(Place place, Key key, Data data) {

2 Item it = new Item(place, key, data);

3

4 // Attempt until successful

5 while(true) {

6 int t = tail;

7

8 // Choose a random offset at which to put item

9 int offset = rand(0, k - 1);

10

11 // try all indices in k-range starting at offset

12 for(int i = offset; i < offset + k; ++i) {

13 int pos = t + (i % k);

14 // A tag of -1 refers to a taken item. We store pos

15 // in the tag field to omit the ABA problem

16 it.tag = pos;

17 // Try to put item into global array

18 if(global_array[pos].cas(null, it)) {

19 // Item was succesfully put into array

20 // Now put a reference into local priority queue

21 ItemRef ref = new ItemRef(pos, it);

22 place.prio_queue.push(key, ref);

23 return;

24 }}

25

26 // No more free slot found, try updating tail

27 // One thread will succeed, no need for checking which

28 tail.cas(t, t + k);

29 }

30 }

global array, to track which items have already been seen. Tasks that have been created by the
same place can be omitted, since they were already added to the priority queue at the push
operation. Next, the highest priority task is removed from the priority queue, and an attempt
is made to mark the item as taken, by atomically setting the tag of the item to −1 using a
compare-and-swap operation (CAS). Only one thread can succeed in updating the tag. In case
of failure, the global array is rechecked for new tasks before trying again.

If the priority queue is empty, there can be up to k tasks stored after tail waiting for their
execution, stored in the tail of the global array and its k subsequent positions. Since there are
at most k tasks stored after tail, no priority ordering needs to be guaranteed if there are no
tasks before the tail, and a random position can be checked for a task to execute. Since we
allow for spurious failures on pop as long as another thread is making progress (executing a
task), it is not necessary to exhaustively search for all tasks stored after tail, a random attempt
to find an item suffices.

5.3.4 Additional implementation details

So far we have assumed that the global array used for storing items is unbounded. In practice,
we implemented the global array as a linked list of arrays. Whenever an index is requested
that is outside the bounds of the existing arrays, a new array is allocated and added to the
end of the linked list using a single compare-and-swap operation.

84 Chapter 5 Ordered Containers

Listing 5.6 Pseudocode for pop in the centralized k-priority queue.

1 Data pop(Place place) {

2 // Check for new items in global array

3 while(place.head < tail) {

4 if(global_array[place.head].place 6= place) {

5 ItemRef ref = new ItemRef(place.head, global_array[place.head]);

6 place.prio_queue.push(ref);

7 }}

8

9 ItemRef ref;

10 while(ref = place.prio_queue.pop()) {

11 Data data = ref.it.data;

12 // Take item atomically by setting tag to -1

13 if(ref.it.tag.cas(ref.tag, -1)) {

14 // Success, return data

15 return data;

16 }

17 // Recheck for new items in global array again

18 ... // (not shown)

19 }

20

21 // Priority queue is empty, try to find random item

22 int offset = rand(0, k - 1);

23 if(global_array[tail + offset] 6= null) {

24 Item it = global_array[tail + offset];

25 Data data = it.data

26 // Take item atomically by setting tag to -1

27 if(it.tag.cas(tail + offset, -1))

28 return data;

29 }

30 return null;

31 }

Each array in the linked list can be deleted as soon as all tasks stored in the array have
been executed and the head indices of all places point to positions in arrays that are successors
of the given array. The first condition can be lazily checked using our wait-free memory
manager from Section 4.3. The second condition can be checked by atomically decrementing
a reference counter whenever a head index moves on to the next array. If the reference counter
was initialized to the number of places in the beginning, it is guaranteed that no place will
scan the array for new tasks once the counter reaches zero.

It is also necessary to clean up the structure for storing items. Again we use our wait-free
memory manager, and allow such a structure to be reused for a new item as soon as the
previous item has been marked as taken. The use of a tag for each item, which is initialized
to the item’s position in the global array, guards against the ABA-problem, since positions for
items are strictly increasing. Also, since items may be reused directly after the compare-and-
swap, the data to return by a pop has to be read out before the compare-and-swap.

Both the head and tail indices in the data structure are strictly growing, therefore it
is necessary to take a possible wraparound into account. We use 64-bit values, which en-
sures that wraparounds will only occur after a long time. Due to the long timespan between
wraparounds, we consider it unlikely that an ABA problem will occur due to colliding indices.

While not shown here, we allow the parameter k used for quantitative relaxation to be

Centralized k-priority Queue 85

specified per item. The semantics for this are, that an item with a given value k can only be
returned by a pop operation if no more than k items with a k less or equal the k-value of the
returned item are skipped. To support this, the pop operation has to be modified, so that k is
a parameter that is passed to the function instead of a global constant. Also, the value for k
needs to be stored with the item. For the pop operation, the case where a random item behind
tail is selected needs to be modified. First, a maximum value for k needs to be known that
can be used to limit the random selection. In addition, if an item is found due to random
selection it may only be returned if its k value does not exceed its distance to the observed
tail. Otherwise we might skip more than k items, which can be the case if tail was updated
in the meantime.

5.3.5 Correctness

In this section we argue that the centralized k-priority queue fulfils temporal ρ-relaxed seman-
tics, is lock-free and linearizable.

Lemma 5.3.1. The centralized k-priority queue fulfils temporally ρ-relaxed semantics for ρ = k.

Proof. The execution can be divided into epochs, where an epoch ends whenever tail is up-
dated to a new value. In each epoch, up to ρ = k items can be added to the data structure
without becoming immediately visible to all threads. After k items have been added, tail has
to be updated before another item can be inserted, thus starting a new epoch.

Both push and pop operations need to be linearized within the epoch associated with the
observed value of tail. As long as pop operations can be correctly linearized with regard to
each other, the actual linearization order of push operations in the same epoch does not play a
role, since the number of push operations in an epoch is bounded by ρ and only items added
in the current epoch may be skipped.

Lemma 5.3.2. Even when allowing k to be specified per item, the centralized k-priority queue fulfils
temporally ρ-relaxed semantics, where an item may only be returned if no more than ρ = 2k− 1 items
with similar or stricter ρ-requirements are skipped (ρ = 2k − 1). Structural ρ-relaxation is fulfilled
with ρ = k. A push operation may be linearized to a later epoch than the epoch of the observed value of
tail, as long as the tail of the epoch it is linearized to has not passed the position of tail.

Proof. We follow the argument from Lemma 5.3.1 where an execution is divided into epochs.
The difference here is that an item added in a given epoch will not necessarily be visible in
the next epoch, if it has a value for k larger than the item that triggered the epoch transition.

Both push and pop operations still need to be linearized within the epoch associated with
the observed value of tail. Structural ρ-relaxation is still fulfilled with ρ = k, since the array
after tail only allows storing at most k items with a smaller or equal value for k. Thus, a pop

operation for an item with any k will skip at most k higher priority items for which k is less
or equal the k of the returned item.

The bound for temporal ρ-relaxation is slightly weaker, since after an item with any value
for k has been added, up to 2k− 2 additional items with less or equal k can be added in the
worst case, before tail is guaranteed to be moved past the item, thus guaranteeing it to be
globally visible.

Lemma 5.3.3. The push operation is lock-free

Proof. All memory allocation inside push is done using the wait-free memory manager from
Section 4.3. The push operation tries to find an empty slot in the global array to insert its item.
It searches k positions from a local copy of the tail index. If no empty slot is found, the tail

86 Chapter 5 Ordered Containers

is moved forward at least one step, either by the current thread or a concurrent thread. This
is repeated until an empty slot is encountered. If no empty slot is found, or the CAS used to
insert the item fails, another thread must have succeeded in inserting at least one item. This
is in accordance with the lock-free property.

Lemma 5.3.4. The push operation is linearizable according to temporally ρ-relaxed semantics.

Proof. The linearization point of a push operation is the time at which a reference to the item
is successfully written to the global array. It is guaranteed that the linearization point of push
will not fall into an epoch where tail has advanced past the item, as required by Lemma 5.3.2,
since tail can only be advanced past positions in the global array that contain items.

Lemma 5.3.5. The pop operation is lock-free.

Proof. The pop operation has to check the global array for new items. This can be done in
a bounded number of steps if no other thread is making progress or adds new items. After
reading the global array, the operation tries to acquire one of the tasks referenced in the
priority queue. The size of the priority queue only grows when another thread is making
progress and adds new items to the global array.

Lemma 5.3.6. The pop operation is linearizable according to temporally ρ-relaxed semantics.

Proof. According to Lemma 5.3.1, pop operations need to be linearized within the epoch of the
last observation of tail, and also with regard to each other. Therefore, we choose to use the
last observation of tail as linearization point. The only time when pop operations conflict,
requiring a specific linearization order, is when two pop operations attempt to pop the same
item, or if a pop operation observes an item that was already marked as taken by another
thread. In these cases, the thread that fails to take the item will re-read tail afterwards, thus
ensuring its linearization point is after the linearization point of the successful thread.

5.4 Hybrid k-priority Queue

The hybrid k-priority queue attempts to combine the advantages of both priority work-stealing
queues, as presented in Section 5.2 and the centralized k-priority queue from Section 5.3. The
main idea is that each place maintains its own, local priority queue, and that synchroniza-
tion is only performed if either a place runs out of work, or if the guarantees provided by
ρ-relaxation are violated. To achieve this, we build upon the local variant of temporal ρ-
relaxation: A pop operation is allowed to skip at most the ρ = k most recent items by each
thread (see also Section 5.1.3). The priority queue also provides local ordering semantics as
described in Section 5.1.4, so that no locally created items will ever be skipped by a thread. For
structural ρ-relaxation this leads to a bound of up to ρ = k(P− 1) items that can be skipped
in total, where P is the number of places (threads) in the system.

5.4.1 Internal structure

The hybrid k-priority data structure consists of three components: (a) a global list storing
items visible to all places, (b) one local item list per place, containing up to k items that are not
guaranteed to be visible to all places, and (c) one priority queue per place storing references to
items in the global and local lists, ordered by priority. As with both the priority work-stealing
queue in Section 5.2 and the centralized k-priority queue from Section 5.3, we separate the
concerns of synchronization and maintaining priorities. Synchronization is performed using
both the global and the local lists of items. After more than k items have been added to a local

Hybrid k-priority Queue 87

B1
k=1

B2
k=1

A1
k=10

A2
k=1

A3
k=1

C1
k=0

A4

C1 A2

A5 A1B2

B3
k=8

B4
k=8

B3

C1 B4

A1 A2A3

B2 B1A6B1 A3

A4
k=10

A5
k=10

A6
k=5

Local list – remaining_k=5

Priority Queue

Local list – remaining_k=7

Priority Queue

...

Global List

Place BPlace A

Figure 5.5: Hybrid k-priority data structure. Each place maintains its own priority queue with
references to items. Each place adds new items to its local list as long as the ρ-relaxation
guarantees are not violated. If adding a new item would violate these guarantees, the local
list is appended to the global list, and a new local list is created.

list of items, the place that owns this list makes all local items globally visible by moving them
to the global list. All places are required to regularly check the global list for new items.

Priorities are maintained using the local priority queues per place. Such a priority queue
stores references to all items in the local linked list of items, as well as to all items in the
global list. An item can be referenced by multiple priority queues at the same time, which is
required to guarantee that no more than the k most recent items at each place are skipped by
other places.

5.4.2 The push operation

The push operation (see Listing 5.7) adds a new item into the data structure. The push oper-
ation proceeds as follows: first, the task is inserted into the local list of the given place, and a
reference is stored in the local priority queue of the place. Afterwards, a check is performed
whether more tasks can be added without needing to publish any of the locally stored tasks,
which is the case if the size of the local list is smaller than k. If any of the locally stored tasks
needs to be made available globally, the local list of tasks is atomically appended to the global
list. A new, empty local list is then created, which will be used in the next push operations.

5.4.3 The pop operation

The pop operation (see Listing 5.8) pops a reference to the highest-priority item from the local
priority queue and tries to mark the task as taken by setting the taken flag with an atomic
test-and-set operation. If it succeeds the item is returned. To make sure that no more than
k item per place are skipped, the local priority queue has to be regularly updated with the
newest additions to the global list. This is always done before a task is popped from the
priority queue.

If the priority queue is empty after processing the global list, an attempt is made to find
tasks stored locally at another place. This is called spying. Spying is related to stealing in
the work-stealing algorithm in that a victim is selected and scanned for items that have not

88 Chapter 5 Ordered Containers

Listing 5.7 Pseudocode for push in the hybrid k-priority queue.

1 void push(Place place, Key key, Data data) {

2 Item it = new Item(place, key, data);

3 // Place task in local list and priority queue

4 place.local_list.add(it);

5 place.prio_queue.push(new ItemRef(it));

6

7 // All items need to be made globally visible

8 // to not violate the ρ-relaxation requirement

9 if(place.local_list.size() == k) {

10 // Add local list to global list

11 do {

12 processGlobalList(place)

13 } while(¬global_list.tail.next.cas(null, local_list.head));

14 // Create a new local list

15 place.local_list = new List();

16 }

17 }

18

19 // Add references to unread items from

20 // the global list to the local priority queue

21 void processGlobalList(Place place) {

22 while(place.iterator 6=global_list.tail) {

23 Item it = place.iterator.item()

24 // Do not add local or already taken tasks

25 if(it.place 6= place and ¬it.taken)
26 place.prio_queue.push(new ItemRef(it));

27 place.iterator = place.iterator.next;

28 }

29 }

yet been taken. The main difference is that items that are encountered during spying are not
removed from the owner’s local list of items. Instead, references to all encountered items
are stored in the priority queue of the spy. This is necessary to avoid breaking the ordering
guarantees for the victim, but also greatly simplifies synchronization.

Spying is only required when the global list of items is empty, which also implies that no
more than k items from each place are available. Due to this ρ-relaxation cannot be violated
regardless of which item is returned next. While spying still makes an effort to return higher
priority items before low priority items, the semantics of spying are designed to reduce syn-
chronization costs to a minimum. Due to this, the spy is allowed to skip any number of items
while scanning whenever an inconsistent state is encountered, and it will never retry reading
an item. Due to spying it is possible for a place to store up to two references to a single item
in its priority queue, one copy coming from spying, one from the global list. This does not
affect the correctness however, since an item can only be marked as taken once.

5.4.4 Additional implementation details

For efficiency reasons, our implementation of the hybrid k-priority data structure does not use
linked lists, but instead uses a linked list of arrays, which can be implemented in a manner
similar to priority work-stealing, as described in Section 5.2.

Again, our wait-free memory manager from Section 4.3 is used to manage the data struc-

Hybrid k-priority Queue 89

Listing 5.8 Pseudocode for pop in the hybrid k-priority queue.

1 Task pop(Place place) {

2 do {

3 processGlobalList(place);

4 // Try to take the highest priority task

5 while(¬place.prio_queue.empty()) {

6 Ref r = prio_queue.pop();

7 if(¬r.item.taken) {

8 Task ret = r.item.task;

9 if(r.item.taken.test_and_set()))

10 return ret;

11 }

12 processGlobalList(place);

13 }

14

15 // If the priority queue is empty, add references

16 // to remote tasks from a pseudo-random place

17 List vl = getRandVictim().local_list;

18 foreach(Item it in vl) {

19 if(it.place 6= place and ¬it.taken)
20 place.prio_queue.push(new ItemRef(it));

21 }

22 } while(¬place.prio_queue.empty());
23 return null;

24 }

ture used to store all information about an item. Although we have not implemented this,
we believe that alternatively, items can also be stored in-place in the linked list of arrays for
higher efficiency. The data structure for items can be reused as soon as an item was taken,
thus opening up the possibility of an ABA problem. To guard against this, items are associ-
ated with an id, and the taken flag is an integer of same size as the id. Similar to our priority
work-stealing algorithm from Section 5.2, an item is seen as taken, whenever the taken flag
does not match the id of the item. The id is stored alongside the item in the priority queue
of each place to allow checking whether an item has been taken without running into ABA
problems.

Spying does not put any tasks into the local task list of the spy (contrary to steal-half
work-stealing), which makes the spy appear as being out of work when selected as a victim
by other spies. To ensure a proper distribution of tasks throughout the whole system, each
place stores a reference to its last successful spying victim. In case a victim is encountered
with no local work, its last successful spying victim is checked instead.

As with the centralized k-priority queue, we allow k to be specified per item. To achieve
this, we keep track of the minimum k encountered in the local list of a place, and require the
local list to be published whenever the size of the local list equals the minimal k or if a new
item added by push has a k smaller or equal the list size.

5.4.5 Correctness

In this section we argue that the hybrid k-priority data structure fulfils temporal ρ-relaxed
semantics, is lock-free and linearizable.

90 Chapter 5 Ordered Containers

Lemma 5.4.1. Assuming k > 0, the hybrid k-priority queue fulfils local temporally ρ-relaxed semantics
where the ρ = k most recent items of each place are allowed to be skipped, except for locally created
items. The hybrid k-priority also fulfils structurally ρ-relaxed semantics for ρ = k(P− 1).

Proof. The execution can be divided into epochs, where a new epoch begins whenever a local
list of items is appended to the global list. In each epoch, up to ρ = kP active items can exist
outside the global list. Since each thread is guaranteed not to skip its own items, no more
than ρ = k(P− 1) items can be skipped by a pop operation under the assumption that it is
linearized in the epoch associated with the state of the global list the pop operation observed.
Thus, the hybrid k-priority queue fulfils structurally ρ-relaxed semantics for ρ = k(P− 1).

Since each place will publish its local list of items before more than k items are added, and
since this will trigger an epoch transition, no more than the ρ = k most recent items per thread
can be skipped, thus fulfilling temporal ρ-relaxation semantics with ρ = k per place.

Lemma 5.4.2. Both the temporal and the structural ρ-relaxation bounds from Lemma 5.4.1 still apply
even when allowing k to be specified per item. Whenever an item with any k is returned by a pop

operation, no more than (the most recent) ρ items with less or equal k will be skipped.

Proof. All items added to the same local list of items are treated as if they had the same value of
k, which is the minimum of all k values of items in the local list. The list is published whenever
a new item would violate the requirements of ρ-relaxation. Thus, temporal ρ-relaxation per
place is still fulfilled when allowing varying values for k.

For structural ρ-relaxation, it is guaranteed that when a pop operation returns an item
associated with any value for k, each other place will either have at most k items in its local
list, or only items with a k larger than the k of the returned item. Therefore still at most
ρ = k(P− 1) items with less or equal k can be skipped by a pop operation.

Lemma 5.4.3. The push operation is lock-free.

Proof. All memory allocation in push relies on the wait-free memory manager from Section 4.3.
When there are less than k items in the local list, the entire push operation is done locally and
is thus wait-free. When the local list has k items, it is added to the global list. This step
requires making sure that the entire global list has been read and then adding the local list
to the end. Adding the local list to the global list can fail if another place adds its list first,
but this means another place made progress. Reading and adding to the global list is thus
lock-free.

Lemma 5.4.4. The push operation is linearizable according to ρ-relaxed semantics.

Proof. All push operations are linearized when the item is added to the local list. Before this
point the task is not visible to any other thread, while after the point it can be spied and
taken by any thread. Since publishing the local list is performed by the same thread as push

it is guaranteed that a push operation will fall into an epoch between the last time the same
thread published a local list, and the time the list containing the item is published (regardless
of whether the item is taken in the meantime). Within this time-frame no more than k items
can be added, so that ρ-relaxation guarantees are fulfilled.

Lemma 5.4.5. The pop operation is lock-free.

Proof. At certain points the pop operation needs to make sure it has read the entire global list.
The global list can only grow if another place is making progress, which makes reading the
list lock-free. Multiple places may try to acquire the same item, but only one will successfully
take it. The number of already taken items can only grow if another place is making progress.

Two-level Concurrent Ordered Container 91

If the priority queue is empty and the global list has been read, an attempt is made to spy
on the local list of another place. The length of the remote local list is bounded by k, making
spying wait-free.

Theorem 5.4.6. The pop operation is linearizable according to ρ-relaxed semantics.

Proof. A pop operation is linearized at the point when the global list was checked for new
items. When two pop operations conflict on an item, the pop operation that did not take the
item has to recheck the global list to ensure its linearization point is after the linearization
point of the conflicting pop operation, since the pop operation might already have been lin-
earized in a later epoch. It is also necessary to recheck the global list directly after spying,
since spying might have found an item added in a later epoch.

5.5 Two-level Concurrent Ordered Container

Due to the separation between synchronization and priority queue implementation, the con-
current priority queues presented in the previous sections can be modified to implement
concurrent versions of any type of ordered container. This can be used to support specialized
priority queues for specific applications (see also Section 2.5.1), or even to compose different
priority queues inside a single data structure as required by strategies (see Section 2.7.7).

Nonetheless, the synchronization mechanism being oblivious of the type of ordered con-
tainer in use can also be a disadvantage, since it is impossible for the synchronization algo-
rithm to take advantage of the ordered container’s structure. This leads to double bookkeep-
ing for items, and maintenance work being performed once for the synchronization mecha-
nism and once for the local ordered container. In addition, if some of the items stored in the
data structure require a strong synchronization mechanism to maintain ordering guarantees,
this mechanism needs to be used for the whole application. This can reduce scalability when
used as part of a task scheduling system, where not all tasks require strong guarantees on
their execution order.

In this section, we present a concurrent ordered container that can be used to compose
different types of concurrent ordered containers into a single data structure. Such a data
structure helps to support composable scheduling strategies as presented in Section 2.7.7, by
allowing tasks with specific strategies to use a concurrent ordered container specialized to the
problem, while at the same time providing a clear set of rules for ordering items with different
strategies. This is made possible by a two-level approach to the data structure design, where
at the root level a single concurrent ordered container determines the order between all items
stored in the container, and at the leaf level items of same type can be reordered with regard
to each other depending on their specific ordering requirements.

5.5.1 Internal structure

The two-level container consists of a two-level hierarchy of individual ordered containers,
laid out as a tree. We call the container at the root of the tree the root container, and the
other containers the leaf containers. The root container stores all items added to the two-level
container, whereas leaf containers only store disjoint subsets of items. Interaction only occurs
between the root container and a leaf container, for items stored in the leaf, but never between
two leaves.

The root container determines the order in which items are returned by a pop operation.
Leaves can override this order for its own items, but never for items of other types. To allow
for more flexibility, a leaf is allowed to store additional information, not accessible to the

92 Chapter 5 Ordered Containers

A

B

C

D

root

B

D

A

leaf

peek()

(a) peek()→ A

A

B

C

D

root

B

D

leaf

peek()

(b) peek()→ D

A

B

C

root

A

leaf

peek()

(c) peek()→ C

A

B

root

B

leaf

peek()

(d) peek()→ B

Figure 5.6: Ordering semantics in the two-level concurrent ordered container: The leaf over-
rules the ordering of items stored in it, but cannot influence the ordering of items not in the
leaf.

root, alongside all its items. To make this possible, the leaf is responsible for the memory
management of the data structure storing an item. The memory management scheme used
by the leaf needs to be at least as strict as required for the root. For items that are not stored
in any leaf, the root container also takes over the role of the leaf.

5.5.2 Ordering semantics

Each container enforces ordering constraints on the items it owns as well as the items that
were shared with it. Since ordering constraints by two containers may contradict each other,
disambiguation is necessary. Generally, ordering constraints of leaves overrule ordering con-
straints in the root. So two items that both occur in the same leaf container will be ordered
according to this container and not the root.

To give a better understanding of how the ordering constraints are enforced, we now give
a small example, which is presented in Figure 5.6. For this we assume a two-level container
with a single root and a single leaf container. Four items, A, B, C and D are stored in the
two-level container. From the items stored in the two-level container, only C is not stored in
the leaf. We assume that the root container would return its items in the order D, C, B, A,
whereas the leaf would return its items in the order A, D, B.

Now, as explained before, a leaf container overrules the ordering of the root when contra-
dictions occur. There is a contradiction on A, which is supposed to come before D according
to the leaf. Since the leaf overrules the root, the final order will therefore be A, D, C, B. It is
important that B is still not allowed to be executed before C since executing it after C does not
contradict the ordering rules of the leaf.

For efficiency reasons, if there are multiple valid orderings in a leaf, any of these orderings
can be chosen and used to overrule the ordering of the parent container. This is even allowed
in cases where there exists an ordering that does not contradict the root, and another one that
does. So if, in the previous example, the order of B and D in the leaf is irrelevant (e.g. because
both of them have an equal key, if the leaf is a priority queue), then both A, B, D, as well as
A, D, B are valid orderings in the leaf, resulting in either A, B, D, C or A, D, C, B for the total
order depending on which ordering is chosen by the leaf.

Two-level Concurrent Ordered Container 93

5.5.3 The base class for stored items

Each container in the two-level data structure can have its own implementation for the data
structure for storing items owned by it, optimized for its requirements. Since items are shared
between containers, a common way to access functions for all containers is necessary. In the
description of this data structure we use an object-oriented interface to make this possible.

Listing 5.9 Pseudocode for the base class for items stored in the multi-level container.

1 class StoredItem {

2 public:

3 // Check to see whether an item is still active

4 // (Has not yet been taken by any thread)

5 virtual bool active(int expected_version);

6

7 // Atomically take item from container. Only one thread may succeed.

8 // Item will be inactive afterwards

9 virtual bool take(int expected_version);

10

11 // The container responsible for the management of the item

12 Container* leaf_container;

13

14 // The actual data

15 Data data;

16

17 // A version number used to get around the ABA problem

18 int version;

19 }

The common interface for items stored in the multi-level data structure is shown in List-
ing 5.9. It provides the method active to check whether an item is still logically part of
the data structure, and the method take, which atomically tries to (logically) remove the item
from the container. Only one thread can succeed in taking an item, and after a successful take
all threads will see the item as inactive. In addition a pointer to the leaf container is stored
alongside the item. A version number is also stored with items and is used to get around the
ABA problem when an instance of the StoredItem class is reused. Calls to active and take

both require an expected version to be specified and will only succeed if the version matches
the current version of the item. All implementations of take are required to increment the
version number on success. Items may only be reused after version has been incremented.

5.5.4 The push operation

The push operation, for which pseudocode is shown in Listing 5.16, first determines which
data structure needs to be used when the leaf container for the item calls the allocate item

function of the leaf to allocate an instance of the StoredItem class for storing the item. After-
wards, the item is first stored in the leaf container using push, and then in the root.

5.5.5 The pop operation

Listing 5.11 shows how the pop operation is implemented. First the next item in order ac-
cording to the root container is determined using its member function peek. Next, the leaf
container for the returned item is determined. The leaf is then checked for the next item ac-
cording to its own ordering using peek. The item returned from the root container is passed

94 Chapter 5 Ordered Containers

Listing 5.10 Pseudocode for push in the two-level container.

1 void push(Item item) {

2 // Get leaf data structure for this type of item

3 Container* leaf = leaves[item.type];

4

5 // Let leaf allocate the data structure for storing the item

6 StoredItem* leaf->allocate_item(item);

7

8 // Push item to the leaf

9 leaf->push(item);

10

11 if(leaf != root) {

12 // Push item to the root (makes item visible to all threads)

13 root->push(item);

14 }

15 }

on to peek as a boundary item, to ensure that only items are returned that come before the
boundary item according to the ordering semantics of the leaf. Finally, an attempt is made to
mark the item returned by the leaf container as taken, and the item is returned if this succeeds.

To ensure linearizability of pop operations it is necessary to guarantee that the result of
peek is still the same when peek is called for the leaf container. To ensure this, peek returns
an ABA-safe snapshot, which contains the item, the version number of the item, as well
as additional, implementation-specific information that is used to guarantee that if the same
snapshot is returned later, no higher priority item existed in that container at any time between
the two calls to peek. This is used as a kind of transaction to ensure that the result is only
returned if no changes potentially invalidating the result occurred in the meantime.

5.5.6 Correctness

In this section we argue that the two-level concurrent ordered container is lock-free and lin-
earizable under the assumption that the specialized data structures used inside are lock-free
and linearizable.

Lemma 5.5.1. The push operation is lock-free.

Proof. The push operation does not perform any synchronization by itself, and instead only
calls functions of the root and leaf containers. Since each function is called only once, if these
functions are lock-free, so is push of the two-level container.

Lemma 5.5.2. The push operation is linearizable.

Proof. The linearization point for the push operation of an item depends on how a correspond-
ing successful pop finds the item.

• The linearization point of the push operation on the root container, if the item is already
returned by the peek on the root container, or when the boundary item returned by the
root container was added after the item.

• The linearization point of push on the leaf container, if the boundary item returned by
peek on the root container was pushed to the root container before this item was added
to the leaf container.

Two-level Concurrent Ordered Container 95

Listing 5.11 Pseudocode for pop in the two-level container.

1 Data pop() {

2 while(true) {

3 // ABA-safe snapshot of the result of peek.

4 auto root_p = root->peek();

5

6 // Item that should be returned next according to the root container

7 StoredItem* si = root_p->item;

8

9 if(si == nullptr)

10 return nullptr;

11

12 Container* leaf = si->leaf_container;

13

14 // Use the item from the root container as boundary item for leaf->peek

15 auto leaf_p = leaf->peek(si, root_p->version);

16 StoredItem* si2 = leaf_p->item;

17

18 Data data = si2->data;

19 // Return data, if boundary was valid all the time,

20 // and we manage to mark item as taken

21 if(root_p == root->peek() && si2->take(leaf_p->version)) {

22 return data;

23 }

24 }

25 }

• The linearization point of when the boundary item was added to the root container if
this happened between the two push operations on leaf and root.

Lemma 5.5.3. The pop operation is lock-free.

Proof. The pop operation consists of a loop, which is repeated until either the root container
does not return an item (either because it is empty, or due to a spurious failure), or when
a valid item is found and marked as taken. An item will not be seen as valid if it cannot
be guaranteed that the result from peek on root was still the same while calling peek on the
leaf. This can only happen if another thread made progress by either adding an item to, or
removing an item from the root container. An unsuccessful attempt to mark an item as taken
can only occur if another thread succeeded in marking the item as taken.

Lemma 5.5.4. The pop operation is linearizable.

Proof. A successful pop call is linearized at the linearization point of the last call to peek on the
leaf container. At this point it is guaranteed that the given item fulfils the composed ordering
constraints from the root container and the leaf. A failed pop is linearized at the linearization
point of peek on the root container.

5.5.7 Generalization to more than two levels

Scheduling strategies, as presented in Section 2.7, allow complex hierarchies of strategies,
where each type of strategy brings with it different ordering constraints. This requires a
generalization of the two-level concurrent ordered container to arbitrary levels.

96 Chapter 5 Ordered Containers

Fortunately, this is fairly straightforward to do: The push operation needs to be modified
to traverse the hierarchy of containers starting at the leaf container and moving on through the
parents until the root container, calling push on each container on the way. The pop operation
needs to traverse the hierarchy in the other direction, from the root to the leaf, requesting an
ABA-safe peek snapshot at each level, and using the result from peek as a boundary item at
the next level.

5.6 Root Container based on Work-stealing Deques

In this section we present a data structure based on work-stealing deques that can be used as
a root container for the two-level concurrent ordered container. The behaviour is similar to
ABP work-stealing [11]: It provides purely local semantics with stack-like behaviour for local
accesses. When a thread runs out of work it will attempt to steal the oldest task from a victim
thread.

5.6.1 Internal structure

The root container consists of a centralized component, shared by all threads, and multiple
places. A place is associated with a single worker thread, which is called the owner of the place.
Each place contains a deque for items. The owner of a place accesses its deque like a stack.
To be consistent with other literature on work-stealing deques, we have these stack-like local
accesses occur at the bottom end of the deque. The top end is reserved for remote accesses, and
is only accessed by the local thread if top and bottom refer to the same element.

Each deque consists of a (virtual) array of infinite size, where top and bottom are marked
by indices t and b. The bottom index b can only be accessed by the owner of the deque, and
can be both incremented and decremented. The top index t, on the other hand, is accessed
by all threads using atomic compare-and-swap operations, but will never be decremented. An
item stored at index i in the array, which is owned by the root container, is in the deque iff
t ≤ i < b.

A main difference between this and other implementations of work-stealing deques is that
the root container is also responsible for storing items that are managed by other containers,
which is required for it to be part of the two-level concurrent ordered container. This requires
for pop operations to be split into peek and take operations, and for the root container to work
correctly and efficiently even for items stored at a leaf container, for which the leaf container’s
implementation for take is used. The root container will only later see that an item has been
taken, and has to clean out such items after they have been removed. With a few modifications
to the standard work-stealing algorithms it is possible to skip inactive items without need for
complex synchronization. It can happen that an item has been marked as taken by a leaf,
but has not been removed from the root container so far. If such an item is then reused, this
can lead to an ABA problem in the root container. This is avoided in our implementation by
storing the version number of the stored item alongside the reference to the item and skipping
all items with a version mismatch.

5.6.2 Implementation of the centralized component

The centralized component of the root container is mainly used to relay calls to member
functions to the place associated with the current thread. This is shown for the push method
in Listing 5.12. We assume that each thread in the system is associated with a unique place-id
and that these id’s are subsequently numbered starting from 0, a standard feature in the Pheet

Root Container based on Work-stealing Deques 97

framework presented in Chapter 6. This place-id is then used as an index in an array of places
to gain access to the place-specific component of the data structure.

Listing 5.12 Pseudocode for the push method of the root container

1 void push(StoredItem* item) {

2 // Get the id of the place associated with the current thread

3 int place_id = get_place_id();

4

5 // Call push for the given places

6 this->places[place_id]->push(item);

7 }

5.6.3 Implementation of stored items

Items owned by the root container do not need much auxiliary data to be implemented. The
only additional information that is required is the place at which the item is stored, as well as
the index at which it is stored in the local deque of the place. This can be seen in Listing 5.13.
To check, whether an item at index i is active, it suffices to check whether t ≤ i < b. After
these checks, the version needs to be checked to ensure ABA-safety.

We say an item is managed by the root container, if the root container is also the leaf
container for the given item. This means that the root container is responsible for the memory
management of the item, but also that the item will be stored in no other container than the
root. Items managed by the root container will always only be stored in a single deque, which
is the deque of the place that called push for the given item. Also, items cannot occur in any
deque more than once. Since all accesses to items are made ABA-safe by the version number,
an item managed by the root container can be reused as soon as it has been marked as taken,
and for this we use our wait-free memory manager from Section 4.3.

Listing 5.13 Pseudocode for the implementation of items owned by the root container.

1 class RootStoredItem : public StoredItem {

2 // The place the item is stored in

3 RootContainerPlace* place;

4

5 // The index at which it is stored

6 int i;
7

8 public:

9 // An item is active if t ≤ i < b
10 bool active(int expected_version) {

11 return i >= place->t && index < place->b
12 && version == expected_version;

13 }

14

15 // Omitted, will be described later

16 bool take(int version);

17 }

The member function take is shown separately in Listing 5.14. This function is called both
for local, as well as for steal accesses. Only one thread may succeed in taking an item, and
afterwards the item will not be active any more. Similarly to other work-stealing algorithms,

98 Chapter 5 Ordered Containers

a take by the owner first starts off by decrementing b. The decrement needs to be sequentially
consistent with updates to t by other threads. This ensures that the value of t that will be read
next is the highest value for t any thread that misses the decrement to b will see. If after the
update, b is still greater than t, it can safely be processed. If b equals t, the local thread needs
to synchronize with stealing threads with a compare-and-swap to t. The thread that succeeds to
increment t will successfully take the item. In case b < t, the queue is already empty, and a
take will fail. In this case, b will be set to the value of t. This is safe since even before the last
update to t is guaranteed to have been the last update, since it removed the last element.

Listing 5.14 Pseudocode for the implementation of take for items owned by the root container.

1 bool take(int expected_version) {

2 // Read out local values

3 int i = this->i;
4 auto p = this->place;

5

6 // ABA safety check

7 if(this->version != expected_version)

8 return false;

9

10 if(p->id == get_place_id()) {

11 // Local access, take by decrementing b
12

13 // Decrement b (requires sequential consistency)

14 --p->b;
15

16 if(p->b > p->t) {

17 // There was more than one item in-between, item can be safely taken

18 return true;

19 } else if(p->b == p->t &&

20 p->t.cas(p->b, p->b + 1) {

21 // Needed to update t and succeeded

22 ++p->b;
23 return true;

24 } else {

25 // Safe, since t is guaranteed not to change at this point

26 p->b = p->t;
27 }

28 } else {

29 // Steal access, take by incrementing t
30

31 // Check whether queue is not empty or fail

32 if(i >= p->b) return false;

33

34 // Try taking item (requires sequential consistency)

35 if(p->t.cas(i, i + 1)) return true;

36 }

37 return false;

38 }

Stealing accesses in take always work on the top end of the deque. It is only safe to be
performed if t < b. Due to sequential consistency between writes to t and b, the value read
for b for this check is guaranteed to be no older than the value for t. Steal accesses only occur
for items at the bottom of the deque, therefore we can assume that t = i for the item being

Root Container based on Work-stealing Deques 99

stolen, where i is the index stored with the item. A compare-and-swap on t that only succeeds
if t = i ensures that only one thread can succeed in taking the item. No ABA problem can
occur for stealing accesses since t is never decremented.

5.6.4 The allocate item method

The allocate item method, which is shown in Listing 5.15, is only called for items owned by
this container, and is responsible to allocate memory for storing an item and to return a refer-
ence to it. We use the wait-free memory manager from Section 4.3 for memory management.

Listing 5.15 Pseudocode for the allocate item method of the root container

1 StoredItem* store_item(Data data) {

2 // Create an object storing the item along with auxiliary data

3 RootStoredItem* ref = RootStoredItemPool.get_item();

4

5 // Increment version number for item to omit ABA problem

6 ++ref->version;

7

8 // Initialize

9 ref->data = data;

10 ref->leaf_container = this;

11 ref->place = this->places[get_place_id()];

12

13 // Store index at which item will be stored

14 ref->i = b;
15

16 return ref;

17 }

5.6.5 The push method

The push method of the root container is fairly straightforward, and is comparable to the push

operation in the work-stealing deques by Arora et al. [11]. This can be seen in Listing 5.16.
An item is stored at position b in the array, and b is incremented afterwards, making the item
visible. The version number of the item is stored alongside the item, to avoid an ABA problem
where threads attempt to steal already reused items.

Due to the fact that items managed by leaf containers can be marked as taken in any
order, it can occur that some items in the range between t and b are marked as taken. For
efficiency reasons such items can be skipped without synchronization. This can lead to stealers
encountering an inconsistent state due to an ABA problem whenever an item is removed from
the bottom, and a new item is pushed into the same position. To omit this, we increment the
epoch of our deque whenever such a case occurs, thus resulting in a spurious failure on steals.

5.6.6 The peek method

The peek method is presented in Listing 5.17. It returns the item stored at the bottom of
the deque. If it encounters inactive items on the way, it will physically remove those items
by either updating b, if the queue is not empty, or by updating t for an empty queue. It is
sufficient to update t using an atomic write, because any write to t by other threads that might
be overwritten due to this is guaranteed to write a value less or equal to b.

100 Chapter 5 Ordered Containers

Listing 5.16 Pseudocode push method in the place specific part of the root container

1 void push(StoredItem* ref, int item_version) {

2 // Omit a problem where stealers may encounter an inconsistent state

3 // by incrementing epoch whenever a push follows a pop

4 if(decremented_b) {

5 ++epoch;

6 decremented_b = false;

7 }

8

9 // Store reference in the virtual array

10 items[b].ref = ref;

11 // Store version number of item along with reference to avoid an ABA problem

12 items[b].version = item_version;

13

14 // Increment b, thus making item visible

15 ++b;
16 }

The return value of peek is an ABA-safe snapshot of the result, which contains the version
number of the item, and the epoch of the queue in addition to a reference to the item.

5.6.7 The spy method

When a thread runs out of work in its local deque, it tries to steal work from another thread.
Due to the structure of the two-level container, which splits a pop into a peek and a take

operation, it is necessary to do the same for stealing. Therefore, we split a steal into a spy and
a take operation. In the root container, a spy operation will only be called if the local deque
is empty, and only a single item will be spied. This item will not be stored locally.

To give deterministic results, thus allowing the two-level container to call peek twice and
get the same results as long as the previously returned item has not been taken, spy will
cache the result. If the item stored in the cached result is still active, it will be returned.
Otherwise, spy selects a potentially different victim according to its victim selection policy
(see Section 3.5). For this victim, the spy from method is called, which is shown in Listing 5.18.

The spy from method works similar to pop but starts at the top of the queue instead of the
bottom. It will first take a snapshot of epoch, t and b, and will then search the queue for an ac-
tive item. If an active item was found, the epoch is rechecked, to ensure a consistent state was
encountered. This might not be the case, if b was decremented and later incremented again,
thus making it possible that some of the scanned positions were modified while scanning.

After ensuring that a consistent state was encountered, an attempt is made to update t to
the position before the spied item, thus permanently skipping all encountered inactive items.
For items managed by the root container, this is necessary for the correctness of the take

operations, for all other items this is not necessary, but reduces the amount of items other
threads will need to scan on their spy operations. Finally, after t was updated, the validity of
the item is rechecked, and the item then returned if it is still valid.

5.6.8 Implementing a virtual array of infinite size

So far we have worked on the assumption that there exist an infinite global array of items.
For the root container, this infinite array can be replaced by a doubly linked list of fixed-size
arrays. Both ends of the deque are marked by pointers to the top and the bottom block. Each

Root Container based on Work-stealing Deques 101

Listing 5.17 Pseudocode of the peek method in the place specific part of the root container

1 struct RootPeekState {

2 StoredItem* item;

3 int version;

4 int epoch;

5 }

6

7 RootPeekState peek(StoredItem* boundary) {

8 // Take snapshot of t and b
9 int t′ = t;

10 int b′ = b;
11

12 while(b′ > t′) {

13 RootPeekState state;

14 state->item = items[b′ − 1].ref;
15 state->version = items[b′ − 1].version;
16

17 // Skip inactive items (only happens for items managed by other containers)

18 if(!state->item->active(state->version)) {

19 --b′;
20 continue;

21 }

22 state->epoch = epoch;

23

24 // Item is active, it is safe to update b
25 b = b′

26

27 // Found an item, return it

28 return state;

29 }

30

31 // No item found, update t to the value of b to signal queue is empty

32 t = b;
33

34 // Try to find an item to steal

35 return spy();

36 }

block is assigned an offset, which is used to translate global indices for t and b into indices in
a block. Offsets for blocks are strictly increasing, and a newly added block has the offset of its
predecessor incremented by its block size.

The bottom block pointer is only accessed by the owner of the deque, and always points
to the block that stores the item at position b. The pointer to the top block can be updated by
all threads. Whenever a block only contains indices smaller than t, stealing threads will try to
update the top block pointer to the block that contains the index t and to unlink all previous
blocks from the linked list. To avoid conflicts, a lock is used to protect this update operation.
Threads that fail to acquire the lock can still perform a steal operation, therefore progress is
not blocked.

To support infinitely growing indices on finite integer types, wraparounds for indices
need to be supported. To support this, all comparisons between indices need to take potential
wraparounds into account. This can be done by comparing the difference between two indices
to 0 instead of doing a direct comparison. This is safe, as long as the length of a deque (b− t)

102 Chapter 5 Ordered Containers

Listing 5.18 Pseudocode for the spy from method in the place specific part of the root con-
tainer.

1 RootPeekState spy_from() {

2 // Return value

3 RootPeekState state;

4

5 // Take a snapshot of the epoch, t and b (exactly in this order)

6 state->epoch = epoch;

7 int t′ = t;
8 int b′ = b;
9

10 // Iterator

11 int i = t′;
12

13 while(b′ > i && !items[i].ref->active()) {

14 // Skip inactive items

15 ++i;
16 }

17

18 if(b′ ≤ i || b ≤ i) {

19 // No more items stored in original range, fail

20 return null;

21 }

22

23 state->item = items[i].ref;
24 state->version = items[i].version;
25

26 if(e != epoch) {

27 // Encountered state might be inconsistent, therefore fail

28 return null;

29 }

30

31 // Try to correct t if items were skipped. (Sequential consistency needed)

32 if(t′ 6= i && !t.cas(t′, i)) {

33 // Some other thread was faster, may still progress if item is not managed

34 // by root container, in this case the CAS to t is just maintenance work

35 if(state->item->leaf_container == this) return null;

36 }

37

38 // Ensure that item is still valid after t was updated

39 if(b ≤ i || state->epoch 6= epoch) return null;

40

41 return item;

42 }

Root Container based on Work-stealing Deques 103

never exceeds half the range of the (unsigned) data type used for indices. An index type with
a size similar to the system pointer type should therefore suffice, since the system will run
out of memory before a wraparound leads to a problem.

5.6.9 Memory management

For a correct implementation of the root container in systems without garbage collection, it
is necessary to perform memory management for items stored in the container. For this, the
wait-free memory manager presented in Section 4.3 is used. An item can be reused as soon
as it is not active any more, meaning that another thread succeeded in taking it. To avoid
ABA problems, we add a version number for each item to the interface for stored items. The
version number is stored alongside the pointer to the item in the deque, and whenever a check
is performed whether an item is active, it also checks whether the version number of the item
is still the same as the version number stored alongside the pointer to the item. All containers
used in the multi-level ordered container need to update the version number of their items,
before they are reused.

The blocks that are used as a replacement for the virtual global array also require memory
management, which is again done by a reuse scheme for each block. Empty blocks found at
the bottom end can simply be left in the list, since the next time a new block is needed, it
will be added at the bottom end. So whenever a bottom block becomes empty, the bottom
block pointer is moved to the predecessor, but the predecessor still has the previous bottom
block as its successor. When a new bottom block is needed, the current bottom block is first
checked for a successor. Blocks becoming empty at the top end, on the other hand, will
never be needed and therefore need to be reused. When they are unlinked from the linked
list of blocks, a flag is set marking them ready for reuse, and again the wait-free memory
manager from Section 4.3 is used to find a new block to use when required. To avoid an ABA
problem with reused blocks, before an item is successfully spied a consistency check needs to
be performed on the expected index of the item, and the indices serviced by the block.

5.6.10 Correctness

In this section we argue that the root container is lock-free and linearizable. The methods
active, take, allocate item and push are trivially wait-free and proofs are omitted.

Lemma 5.6.1. The active check for items is linearizable, unless it is part of an inconsistent state,
which will always lead to a spurious failure of spy.

Proof. A successful active check has its linearization point when t is read. This is trivial for
the owner, since it is the only thread that can change b and version. For stealing threads, if
the given item is in the deque, it must have been in the deque at some point before the call to
active or it would not have been found. Since t cannot be decremented, and the last item in
the deque is always taken by an increment to t, if t was read and the item stored at position t
then it must have been active when t was read.

An exception to this is when a spy operation scans items in the deque, while the owner
removes an item, only to push a new item in place of the old one. This can lead to an inconsis-
tent state. While no guarantees can be given on the results of active on an inconsistent state,
Lemma 5.6.7 guarantees that spy will fail when an inconsistent state is encountered.

A failed active check is linearized either at the read of t, if the item was stored at a
position smaller than t, at the read of b if it was stored at a position greater or equal to b, or
at the read of version if the item was already reused in the meantime.

Lemma 5.6.2. The push operation is linearizable.

104 Chapter 5 Ordered Containers

Proof. The push operation has its linearization point when b is incremented. The increment
to epoch can be linearized separately, since a spy operation with its linearization point after
the increment to epoch, but before the linearization point of push either spuriously fails or
observes a correct state.

Lemma 5.6.3. The take method is linearizable.

Proof. A successful take by the owner of the deque is linearized when b is decremented. If t
needs to be updated as well, it is linearized with regard to other threads trying to update t at
the successful update to t. A failed take by the owner is linearized when t is read, or on a
failed update of t.

Successful take operations by threads other than the owner are linearized when t is up-
dated, or when b was updated by the owner to equal t, whichever comes first. The update to
b will only occur if a single element remains in the queue and the owner wants to take it as
well. For this to be linearizable, the updates to b and t that attempt to take an item need to
be sequentially consistent. Failed take operations by threads other than the owner have their
linearization point either at the read of b or at a failed update of t.

Lemma 5.6.4. The peek method is wait-free if spy is wait-free.

Proof. The peek method may skip items already processed by other threads, but the amount of
items that can be skipped is bounded by the difference between b′ and t′. This comes from the
fact t′ is a snapshot that does not change, and b′ is decremented at each iteration. Either peek
succeeds, or at some point t′ ≥ b′ and the deque is empty, leading to a spy operation. The
owner of the deque is the only thread that can call the peek method. It is also the only thread
that will push new items to the deque, which would increment b. Therefore it is guaranteed
that peek will skip at most b′ − t′ items, or no items at all if b ≤ t′. Since all checks in the peek

method are wait-free, and the number of items to be checked is bounded, peek is wait-free, if
spy is wait-free.

Lemma 5.6.5. The peek method is linearizable.

Proof. If the deque is found to be non-empty, the linearization point of a peek is at the lin-
earization point of the active check for the returned item. Otherwise the linearization point
is the linearization point of the spy operation.

Lemma 5.6.6. The spy method is wait-free.

Proof. The spy method selects a victim and calls spy from for the victim. The spy from method
only checks the range of items available at the beginning of the call, and ignores any items
added afterwards. Each item is looked at exactly once until either an active item is found, or
no more items exist in this range of items. Since all checks performed on items are wait-free
and the number of checks is bounded, spy from is wait-free.

Lemma 5.6.7. A spurious failure will occur for spy whenever an inconsistent state is encountered.

Proof. An inconsistent state occurs in spy if the version number read is the version number
of another item than the item read, or if an inactive item is skipped, which is replaced by an
active item later. In both cases b is decremented while spy is scanning the deque, so that spy
scans past the bottom of the deque. This will either be recognized if after the scan b ≤ i or if
the epoch is updated in the meantime, which is always done before b is incremented after a
decrement, guaranteeing that spy will see an epoch change if it missed out on the decrement
because of the later increment of b.

Root Container based on Work-stealing Deques 105

The semantics of spy allow spurious failures as long as another thread makes progress. If
an item is returned, the only restrictions are that it has to be active at the linearization point of
spy and that there are no more active items before it. For items owned by the root container,
another restriction is that the item has to be stored at t in the deque at the linearization point
of spy.

Lemma 5.6.8. The spy method is linearizable.

Proof. A successful spy has its linearization point in the successful spy from call. A failed spy

can be linearized at any point in the call, since spurious failures are allowed.
A successful spy from is linearized at the linearization point of the call to active for

the item that is returned. Since spurious failures are allowed, an unsuccessful call can be
linearized at any point during the call.

Lemma 5.6.9. The spy from method always returns the first active item after t.

Proof. The spy from method looks at items in order starting from the item at position t. It is
only allowed to skip an item and move on to the next if the item is inactive. For an active item
to occur before the returned item, this item has to be added after the active check to the item
previously stored in the same position. For an item to be added at a certain position there
cannot be any active items stored at a position after the item, due to the stack-like behaviour
of accesses by the owner. If an active item is observed at a position after the first active item
by the spying thread, this item must either be observed before the push of the new item, or
the observed item must have been added after the other item has been added.

If the item was observed before the push this means that at the time of observation there
were no active items before the observed item, and that b was greater than the position at
which the item was stored. For a push of an item stored before the observed item to occur
after this was observed, b would need to be decremented to a position before the item. This
cannot happen, since b is only decremented to the position behind an active item, if an active
item is found, or by marking an active item at this position as taken. It can never go to a
position with smaller index unless there is another active item there. Since there are no active
items at smaller indices, this is not possible.

If the observed item was added after the skipped item, this means that the spying thread
observed a value for b greater than the position of the item at the beginning of the iteration.
For an item to be added at a position before the observed item, b must have first been decre-
mented, leading to an increment of the epoch if b is incremented again later, leading to a
guaranteed failure as shown in Lemma 5.6.7.

Lemma 5.6.10. For quiescent states of the owner (when the owner does not make any calls to the
queue), the invariant b ≥ t holds under the assumption that take operations and active checks by
leaf containers also exhibit sequentially consistent behaviour.

Proof. The invariant can only be broken when either the owner decrements b, or any thread
increments t. The owner will only decrement b if it encounters an active item. On a peek

operation, b is decremented to the position above the active item if there are no active items
above the encountered item. Since the item is still active, it is guaranteed that at the lineariza-
tion point of the call to active t < b for the new value of b. Also, since at this point there are
no active items above the item, it is guaranteed that t cannot be incremented above b.

On take, b will be decremented to the position below the active item. This might conflict
with an increment to t. Since this will only occur if before t = b− 1, this is guaranteed to lead
to a later increment of b, thus protecting the invariant b ≥ t for quiescent states.

106 Chapter 5 Ordered Containers

18 12 11 9 7 3 3 2 11 4 13

(a) A log-structured merge-tree (LSM)

18 12 11 9 7 3 3 2 11 4 13 8

(b) Adding a new item to an LSM

18 12 11 9 7 3 3 2 11 4 13 8

(c) After the first merge

18 12 11 9 7 3 3 2 14 11 8 4

(d) After the second merge

Figure 5.7: A log-structured merge-tree (LSM)

If take operations by leaf containers do not provide sequential consistency, additional
protective measures need to be made to ensure the invariant b ≥ t in quiescent states. The
reliance on sequential consistency on work-stealing deques is a general issue of the classical
work-stealing algorithm, and may lead to scalability issues on architectures with a strongly
relaxed memory consistency model.

5.7 Log-structured Merge-tree (LSM)

In this section, we present a priority queue based on log-structured merge-trees. We present this
priority queue here in spite of it being purely sequential, since it is the base for the concurrent
log-structured merge-tree presented in the next section.

Log-structured merge-trees [110] originally come from the database community, where
they are used as a disk-based index structure. They consist of a logarithmic number of sorted
arrays. They provide high efficiency for applications with a large amounts of item retrievals
and removals, and rare lookups. A fact that makes this data structure very useful for priority
queue implementations, is that finding the minimum or maximum item can be done much
faster than other lookups. The fact that the data structure is optimized to reduce the number
of disk accesses and has a low non-contiguous disk accesses shows that it has the potential
for implementing a cache-efficient data structure for shared memory as well.

The LSM presented in this section was thought up independently, based on requirements
for concurrent relaxed priority queues, and inspired by merge-sort. The connection to the
data structure used in the database community was only made later. Therefore it may differ
from related work in many aspects.

A log-structured merge-tree (LSM) is a type of priority queue that operates on a logarith-
mic number of sorted arrays as depicted in Figure 5.7a. New elements that are added to the
LSM can either be added to the end of one of the existing arrays, if they fit the sorting order,
or added as a new array. The element with the highest priority in the LSM can be found
by looking at the highest-priority element in each array. In order to guarantee logarithmic
lookup time for retrieving the maxima and minima, the number of sorted arrays has to be
kept logarithmic. This is achieved by merging arrays of similar size like in the merge-sort
algorithm.

Log-structured Merge-tree (LSM) 107

5.7.1 The algorithm

Our LSM variant operates on sorted arrays of fixed size, where sizes are powers of two. We
will assume that the arrays are sorted in ascending order by priority. A linked list is used to
store all arrays in the LSM. No two arrays of same size are allowed in this linked list, and each
array in the list needs to be smaller than its predecessor.

The push operation creates a new array of size 1, which is filled with the item passed on
to the push. This item can then be added to the linked list as long as there is no other array
of size 1 in the list. If the list already contains a same-size array, a new array with double the
size is created, and both arrays merged into the new array and then deleted. The new array
will then be added to the list, unless the list already contains a same-size array, which will
trigger another merge.

Figure 5.7a shows an example LSM, with arrays of sizes 8, 2 and 1. When a new item is
added, it is put into a new array of size 1, which cannot be added to the list, since an array
of size 1 already exists in the list (b). To resolve this, both arrays of size 1 are merged into
an array of size 2, which again cannot be put into the list, due to another array of size 2 (c).
Both arrays of size 2 are then merged into an array of size 4. Since there is no array of size 4
in the list, it can be added to the list (d). Pseudocode for the push operation is presented in
Listing 5.19.

Listing 5.19 Pseudocode for the push method of an LSM.

1 void push(Item item) {

2 // Create new array of size 1 and store item in it

3 ItemArray* new_array = new ItemArray(item);

4

5 // Check whether tail of list has same size

6 while(!list.empty() && list.back()->n == new_array->n) {

7 // Create new array of double size and merge the existing arrays into it

8 ItemArray* merged = new ItemArray(new_array->n * 2);

9 merge(list.back(), new_array, merged);

10

11 // Delete old arrays

12 delete list.back();

13 delete new_array;

14 list.pop_back();

15

16 // Continue on with the merged array

17 new_array = merged;

18 }

19

20 // Add new array to end of list

21 list.push_back(new_array);

22 }

To find the item with the highest priority in an LSM, as required by the peek operation
(shown in Listing 5.20), it needs to perform a linear search through the linked list. It compares
the highest priority items from each (sorted) array against each other and returns the item with
the highest priority of all items. The implementation shown in Listing 5.20 assumes peek is
only called when the LSM is not empty, semantics common for serial containers in C++.

The pop operation, which is shown in Listing 5.21, first searches for the array containing
the highest priority item, similar to peek. It then removes the highest priority item from the
array. Even if an item is removed from an array, this does not change the size of the array, only

108 Chapter 5 Ordered Containers

Listing 5.20 Pseudocode for the peek method of an LSM.

1 Item peek() {

2 ItemArray* best = null;

3

4 // Iterate through list (C++11 style)

5 for(auto i = list.begin(); i != list.end(); ++i) {

6 // Compare priorities of best and current array and replace best array if needed

7 if(best == null || best->peek() < *i->peek()) best = *i;

8 }

9

10 return best->peek();

11 }

how full the array is. As soon as the array is half full (or half empty, for pessimists), the array
needs to be shrunk to half the size. This may trigger a single merge with the array following
the given array.

Listing 5.21 Pseudocode for the pop method of an LSM.

1 Item pop() {

2 list::iterator best = list.end();

3

4 // Iterate through list (C++11 style)

5 for(auto i = list.begin(); i != list.end(); ++i) {

6 // Compare priorities of best and current array and replace best array if needed

7 if(best == list.end() || *best->peek() < *i->peek()) {

8 best = i;

9 }

10 }

11 // Pop best item from its array

12 Item ret = *best->pop();

13

14 // Check whether array needs to be resized

15 if(*best->filled <= *best->n / 2) {

16 // Array is only half filled, shrink to half the size

17 *best->shrink(*best->n / 2);

18

19 // Check whether a merge is required

20 if((best + 1) != list.end() && *best->n == *(best + 1)->n) {

21 ItemArray* merged = new ItemArray(*best->n * 2);

22 merge(*best, *(best + 1), merged);

23

24 // Delete previous arrays from list and add new array instead

25 delete *best;

26 delete *(best + 1);

27 list.erase(best, best + 2);

28 list.insert(best, merged);

29 }

30 }

31 }

Log-structured Merge-tree (LSM) 109

5.7.2 Extensions

This section presents some extensions that are not required to make the LSM work, but help
improve on its properties. One such extension allows the reuse of sorted arrays, which reduces
the need for memory allocation to cases where the LSM runs out of space. For this, the LSM
pre-allocates two arrays of each size, up until the size of the biggest array currently in use.
Each array has a flag associated with it to tell whether it is currently used in the linked list.
Since only one array of each size is allowed to be in use in the linked list, there will always be
one array of each size available that can be used as a target for a merge. Whenever a merge
requires an array of a size bigger than all preallocated arrays, two new arrays of the given size
will be allocated. When the largest block is shrunk, all arrays of same size can be deleted.

In an LSM, merges can be omitted whenever presorted data is added. To omit such merges,
whenever an item is added to an LSM, the array at the tail is checked to see whether putting
the new item at its end would violate the sorting order of the array. If the new item fits in, it
is added to the end of the array. If the array is full, it can be grown to double the size to fit the
new item, unless an array of the new size already exists in the linked list. If the item cannot be
added to the linked list, a new array of size 1 is created as in the normal case. Care has to be
taken for cases where a push that grows an array is followed by a pop that removes the same
item, since such a pop would normally shrink an array. This can be resolved by only virtually
shrinking the array the first time, and only physically shrinking an array if it is only filled by
25% or less. This can even be done with preallocated sorted arrays, since it is guaranteed that
there will be no other array with the same physical size in the linked list after the shrink until
the given array is consumed by a merge operation.

Sometimes it is desirable to remove items from the LSM even if they are not the highest
priority items. This can be easily done for items that are the last items in one of the sorted
arrays. For all other items, a lazy removal scheme can be used, where an item is marked as
removed, and will be physically removed whenever an array is shrunk, grown or merged with
another array. Each sorted array can keep track of the number of active items in it. Whenever
the number of active items falls below the threshold for shrinking, the array can be shrunk,
and all items that have been marked as removed can be removed.

5.7.3 Time and space bounds

Lemma 5.7.1. The upper bound on the number of sorted arrays in the linked list is 1 + log2 n, where
n is the number of items stored in the LSM.

Proof. Array sizes are powers of two, and only one array of each size is allowed to exist in
the linked list. If all arrays are fully filled with items, it is clear that no more than 1 + log2 n
arrays will be used to store these items. Now we assume that if the arrays are not fully filled,
an additional array is needed. Since each array has to be more than half filled with items, the
number of items available for an additional array is less than n

2 . Since 1 + log2 n arrays are
already in use, and each array can only be used once, an additional array would have a size
greater than n. Since there are less than n

2 items to store, and the array has a size greater than
n, this contradicts the property that an array has to be more than half filled.

With the extension for presorted data, we allow an array to be virtually shrunk once
without being physically shrunk. This conforms with the bound, since still only one array of
each virtual size is allowed in the linked list.

Lemma 5.7.2. An LSM uses O(n) space to store n items.

Proof. Arrays that are used to store items have to be more than half filled, therefore a constant
amount of space is used per item. With the extension for presorted data, arrays have to be

110 Chapter 5 Ordered Containers

filled by more than 25%, which is only a constant factor increase in space usage. Merging will
allocate an additional array smaller than 2n, before deleting the merged arrays, which is also
only a constant factor increase in space usage.

With the use of preallocated arrays, two arrays of each size are allocated. Since no arrays
larger than the largest array in use are kept and an array has to be half filled to be in use, the
biggest available array has to be smaller than 2n (or 4n with the extension for presorted data).
Since array sizes are all powers of two, and only two of each size are kept, the sum of all array
sizes will stay below 8n, resulting in a constant space usage per item.

Lemma 5.7.3. The push operation has amortized complexity O(log n).

Proof. Creating an array of size 1 and storing an item in it can be done in constant time. If
no items are removed in the meantime, one merge operation on two items has to be per-
formed every second time, another merge operation on four items needs to be performed
every fourth time, and so on. After adding n items, at most n− 1 merge operations have been
performed that processed at most n log2 n items, resulting in an amortized complexity per
push of O(log n).

If some items are removed in the meantime, but no array needs to be shrunk because
of that, the merges will still occur at the same time. Not more than n

2 − log n items can
be removed without an array being shrunk, which is less than a factor of 2 difference and
results in the same amortized complexity for push. If a pop operation shrinks an array in the
meantime, and this triggers a merge, one merge operation is taken away from push resulting
in less work.

If, on the other hand, an array is shrunk and no merge is required this will lead to an
additional merge on a future push operation that would not have happened otherwise. We
amortize these merges over the push operations that added the items that were removed to
create the additional merge. To create an additional merge operation for n items, n items
must have been pushed originally to create an array of size n. For the array of size n to be
shrunk to size n

2 half the items must have been removed from the array before the shrink.
Even if the array was never fully filled, this only means that the missing items were already
removed in one of the arrays that were merged to create this array, without resulting in a
shrunk array. Same argument counts if one of these arrays was never fully filled. Therefore,
for a premature merge of n items to occur, n

2 items must have been removed from the array
before the merge. Since each item is only counted for a single shrink operation, and each
such item must have been added by a previous push operation, there is a constant amortized
overhead from premature merges.

Lemma 5.7.4. With the extension that supports presorted data, the push operation has amortized
complexity O(1) if only presorted data is added.

Proof. With presorted data, only a single array is used that is doubled in size whenever it is
filled up with items. Adding an item at the end of such an array can be done in constant time.
Doubling the array in size can be amortized over all push operations since the last growth.
Each such push operation pays for two items being copied to the array of double size.

When items are removed, an array might be shrunk again, but it is only physically shrunk
if it is filled by at most 25%. To reach a fill state of 25%, at least 25% of the items previously
stored in the array need to be removed first. These items must have been added by a previous
push operation, and each such item pays for one item being copied when the shrunk array
needs to be grown again.

Concurrent LSM Priority Queue 111

Theorem 5.7.5. The peek operation has complexity O(log n).

Proof. Finding the highest priority item in a single sorted array can be done in constant time.
Since the number of arrays in the linked list is bounded by Lemma 5.7.1 to 1+ log2 n, the peek

operation will use O(log n) time.

Theorem 5.7.6. The pop operation has amortized complexity O(log n).

Proof. Removing the highest priority item from a sorted array can be done in constant time. A
pop may trigger the shrinking of the array, which requires all remaining items in the array to
be copied. Since, at least half the items have to be removed from an array before it is shrunk,
each of the items removed by a previous pop pays for an item being copied.

If an array is shrunk due to a pop operation, this may also trigger a single merge operation
with another array of same size as the newly shrunk array. Again, since the shrinking oper-
ation required half the items to be removed first, each previously removed item pays for one
item in each of the arrays that are being merged.

Both shrinking, and merging take time linear in the number of items, and each item taking
part in these operation is paid for by a previous pop operation, the amortized complexity for
removing an item from an array is constant.

A pop operation is required to first find an item to remove, which has complexity O(log n),
as described in Lemma 5.7.5. Therefore the total amortized complexity of pop is O(log n).

5.8 Concurrent LSM Priority Queue

In this Section we present a concurrent priority queue based on on the serial LSM presented
in Section 5.7. It provides local semantics with shared items as defined in Section 5.1. The
implementation presented in this section is intended to be used as a container in the two-
level concurrent ordered container from Section 5.5. The changes necessary to convert the
presented implementation into a standalone priority queue are described where it is required.

5.8.1 Internal structure

Our concurrent LSM uses a decentralized scheme, where each thread maintains its own local
LSM. We call all data owned by a single thread, including the local LSM a place. The concurrent
LSM also has a centralized component, which is mainly used to relay method calls to a specific
place, similar to the centralized component of the root container described in Section 5.6.2. It
will not be described separately for the concurrent LSM. All the methods described below are
for the place-specific components.

5.8.2 Benefits of using LSM for concurrency

Log-structured merge-trees have many properties that make them desirable to be used in a
decentralized concurrent priority queue. One such property is the simplicity of creating a
consistent snapshot. If merge operations are performed in the right order, then the LSM will
have a consistent state at any time. Since a merge is not performed in-place, the state of an
array is unchanged until the merged array is put into the linked list instead of the arrays it
consists of. Storing the items in sorted arrays also leads to good cache efficiency.

Another benefit of LSMs for concurrency is the lazy sorting of data. This means that
all data is regularly touched, newer data more often than older data, allowing the LSM to
recognize and remove data processed by other threads. This can also be used to allow for
items being removed from the outside, as required for the elimination of dead tasks feature

112 Chapter 5 Ordered Containers

presented in Section 2.7.4. Also, if data is added in a presorted or partially presorted manner,
most items will be removed without ever being sorted before. But even for random data and
random push and pop operations, newly added items are more likely to be removed first, since
older data will have a tendency to have lower priorities or would have been popped earlier
otherwise. This reduces the number of items that are merged in practice.

In a concurrent setting presorted data is very common, since whenever a thread runs out
of local items, it will copy items from another place. Since items that are copied are partially
presorted this will reduce the amount of merges other threads will perform on data coming
from another thread.

5.8.3 Implementation of stored items

An item that is stored in the concurrent LSM is stored in a separate object that stores auxiliary
data along with the item. The implementations for these items conforms to the interface for
items in the two-level container described in Section 5.5.3. Pseudocode for the implementation
of items is shown in Listing 5.22.

Listing 5.22 Pseudocode for the implementation of items owned by the concurrent LSM.

1 class LSMStoredItem : public RCStoredItem {

2 // Flag to mark item as taken, and to tell when it was taken

3 int taken;

4 // Key used for sorting items

5 Key key;

6 // Owner of item

7 LSMPlace* place;

8

9 public:

10 // An item is active if taken == expected_version

11 bool active(int expected_version) {

12 return taken == expected_version;

13 }

14

15 // To take an item change taken to not equal expected_version

16 bool take(int expected_version) {

17 return taken.cas(expected_version, expected_version + 1);

18 }

19 }

To mark an item as taken, a single integer field named taken is updated using a compare-
and-swap operation. To omit an ABA problem, an item is seen as active, whenever taken

equals the version number, and inactive otherwise.

5.8.4 The sorted arrays

One main difference between the concurrent and the serial LSM is how sorted arrays are han-
dled. To reduce the amount of synchronization needed in systems without garbage collection,
we forbid sorted arrays to ever be deleted. In this way, reference counting for sorted arrays can
be completely omitted. Instead, sorted arrays are reused as soon as they have been removed
from the linked list. This also means that the concurrent LSM can never shrink, when the
number of items is reduced, but will never grow beyond the bounds for the highest number
of items that were stored in the LSM at a single point in time.

Concurrent LSM Priority Queue 113

Since sorted arrays are never removed, we can allow for arrays to always only be shrunk
logically, never physically. This can be done since the number of arrays of logical size bigger
than the shrunk array will not grow before the shrunk array has been merged with another
array. We place the restriction for all arrays in the linked list that an array of bigger logical
size than another array may never have a smaller physical size. It is allowed for both arrays to
have the same physical size, though. To ensure this, a merge operation may use an array of a
bigger physical size than necessary to store a merged array. It is guaranteed that no more than
two arrays of each physical size will occur in the linked list of such an LSM. For this reason,
no more than three arrays of each size need to be allocated. This is shown in Lemma 5.8.11.
With a few tricks this can be reduced to two as for the serial LSM, but since this can lead to
one additional array size being allocated in some cases, without being needed, the gains of
this are questionable and will not be discussed here.

Each position in a sorted array will store a reference to a stored item, alongside with the
version number of the item to ensure ABA safety.

5.8.5 The allocate item method

The allocate item method is shown in Listing 5.23. Items are allocated using the wait-free
memory manager from Section 4.3, and afterwards the item is initialized. When implemented
as a standalone priority queue, the allocate item method is not part of the external interface,
but only called internally by push.

Listing 5.23 Pseudocode for the allocate item method of the root container

1 LSMStoredItem* allocate_item(Data data) {

2 // Create an object storing the item along with auxiliary data

3 LSMStoredItem* ref = LSMStoredItemPool.get_item(item);

4

5 // Increment version number to omit ABA problem

6 ++ref->version;

7

8 // Initialize

9 ref->data = data;

10 ref->leaf_container = this;

11 ref->taken = ref->version;

12 ref->place = this->places[get_place_id()];

13

14 // Retrieve key

15 ref->key = data.key;

16

17 return ref;

18 }

5.8.6 The push method

The push operation for the concurrent LSM, which is presented in Listing 5.24 already takes
into account presorted data. Whenever the array at the tail of the linked list has space for
an additional item, and the new item has higher priority than all previously stored items, it
can be added to the array at the tail. In addition, since adding the item may increase the
logical size of the array at tail, the item is only added if there is no predecessor array, or the
predecessor array has a logical size more than double the number of items in tail.

114 Chapter 5 Ordered Containers

In case that the item cannot be added to the array at tail, a new array is created, and
filled with the item. In the concurrent LSM arrays are never physically grown to minimize the
number of modifications to the linked list. Therefore, to allow for constant insertion times for
pre-sorted data, the biggest available array that satisfies all invariants is used. If the linked
list is empty, this is the biggest array that has been allocated by the LSM. Otherwise it is an
array of a size smaller than the current tail. Only if tail has size 1, an array of size 1 is used,
which will trigger a merge when linking in the array. After the item has been put into the
selected array, it is atomically linked to the linked list using the link in method described in
the next section.

Listing 5.24 Pseudocode for the place-specific push method of a concurrent LSM.

1 void push(StoredItem* item, int item_version) {

2 Key key = item->key;

3

4 // Check whether item can be added to existing array

5 if(tail != null && tail->peek()->key <= key

6 && tail->filled < tail->physical_n

7 // And that there are no two arrays of same logical size after adding the item

8 && (tail->prev == null || tail->prev->logical_n > tail->filled * 2)) {

9 // Put item into existing array and return

10 tail->items[tail->filled]->ref = item;

11 tail->items[tail->filled]->version = item_version;

12

13 ++tail->filled;

14 // Update logical size if necessary

15 if(tail->logical_n < tail->filled) tail->logical_n *= 2;

16 return;

17 }

18

19 // We need to create a new array. Make it as big as possible for presorted data

20 ItemArray* new_array;

21 if(tail == null) {

22 // If no tail is allocated take the biggest available array size

23 new_array = get_biggest_allocated_array();

24 } else if(tail->logical_n > 1) {

25 // Get array of size smaller than the logical size of tail

26 new_array = get_array_of_size(tail->logical_n / 2);

27 } else {

28 // Get smallest possible array size (will lead to a merge)

29 new_array = get_array_of_size(1);

30 }

31

32 // Put item into new array

33 new_array->items[0]->ref = item;

34 new_array->items[0]->version = item_version;

35 new_array->filled = 1;

36

37 // Link array into list

38 link_in(new_array);

39

40 return;

41 }

Concurrent LSM Priority Queue 115

5.8.7 The link in method

The link in method is responsible for atomically linking a new array into the linked list of
sorted arrays, while keeping all invariants intact. It is called by the push operation presented
in the previous section. To make this possible all necessary merges with other arrays are
performed before the new data becomes visible. Since the linked list is accessed concurrently
by all threads, it needs to be maintained directly by the container, contrary to the serial LSM,
which can use the linked list through an abstract interface. In the concurrent LSM an item is
in the linked list iff it is reachable from the head of the list. The tail and predecessor pointers
in the linked list are only used as shortcuts by the owner and will never by accessed by other
threads.

Listing 5.25 Pseudocode for the link in method of a concurrent LSM.

1 void link_in(ItemArray* new_array) {

2 // Merge new array in if necessary

3 ItemArray* other = tail;

4 ItemArray* to_free = null;

5 while(other != null && new_array->logical_n == other->logical_n) {

6 // Create new array of double size and merge it in

7 ItemArray* merged = new ItemArray(other->logical_n * 2);

8 merge(other, new_array, merged);

9

10 // Free previous temporary array and continue with merged array

11 clear_array(new_array);

12 new_array = merged;

13 to_free = other;

14 other = other->prev;

15 }

16

17 // Since new item has not been published, merged array cannot be empty

18 // Connect new array to linked list

19 new_array->prev = other;

20 if(other != null) other->next = new_array;

21 else head = new_array;

22 tail = new_array;

23

24 // Free arrays that have been merged

25 while(to_free != null) {

26 ItemArray* tmp = to_free;

27 to_free = to_free->next;

28 clear_array(to_free);

29 }

30 }

Pseudocode for the link in method is shown in Listing 5.25. It is guaranteed that the
array being linked into the list has a physical size smaller than the physical size of the current
tail, and that it has a logical size smaller or equal the logical size of the tail. If the tail has the
same logical size as the new array, this means that a merge operation is required. For this, the
tail and the new array are merged into an array of physical size double the logical size of the
source arrays. The merged array then takes the place of the new array and the previous new
array is freed. The tail is not modified by the merge and is kept in the linked list.

If the predecessor of the tail has the same logical size as the merged array, another merge
operation is performed, which creates a new merged array and frees the previous merged

116 Chapter 5 Ordered Containers

array. The merging process then continues through the predecessors of the last array from the
linked list that has been merged, until an array is reached with logical size bigger than the
logical size of the merged array, or all arrays in the linked list have been merged in.

After the merging is completed, the resulting new array is put into the linked list atomi-
cally, thereby atomically replacing all arrays that were merged into it. As soon as either the
head pointer directly points to the array, or the next pointer of another array has been set to
point to the array, the new array becomes visible.

A merge operation is allowed to clean out all inactive items during the merge, which
means that the resulting array can contain less items than the arrays that were merged into
it. Nonetheless it is guaranteed that the merged array will not be empty, since it contains a
single new item that will only become visible to other threads when the result of the merge
becomes visible. Care has to be taken, if items can become inactive due to an external reason,
as with the elimination of dead tasks feature of our scheduling system, which is described in
Section 2.7.4. In this case, link in needs to check whether the new array is empty after all
merges have been performed. If this is the case, all items that were merged will be removed
from the linked list, and no new array will be added.

5.8.8 The merge method

The merge method of the LSM performs a classical two-way merge of two arrays and stores
the result in a third array. The two arrays being merged are not modified by the merge. Due
to the simplicity of this scheme, no code is shown for the merge. The only difference to a
normal merge operation is that inactive items are ignored during the merge, and the resulting
array can be smaller than the sum of its parts. A merge is allowed to ignore duplicates when
recognized. It is not required to recognize all duplicates. When copying items, merge needs
to increment the reference count for each copied item.

5.8.9 The clear array method

The clear array method is called whenever an array is not in use any more, and can be
prepared for reuse. This is done by incrementing the version counter of the array before
setting the variable filled to zero.

5.8.10 The peek method

The core of the peek method is similar to the peek method of its serial counterpart. The highest
priority items in each array are compared against each other, and the item with the highest
priority returned. This can be seen in Listing 5.26. The main difference to the serial version
is that a boundary item is passed on to the peek method. Due to concurrency, peek may
encounter inactive items. Therefore, the peek method of the sorted arrays will automatically
clean out any inactive items before returning the highest priority item. If the number of items
in an array falls below half the logical size of the array, the logical size of the array is reduced,
and it is merged with its successor if necessary using the merge shrunk method.

The peek method is required to only return items with a priority at least as high as the
priority of the boundary item or the boundary item itself. If the boundary item is stored in
the local LSM, this is guaranteed. If it is not, it can happen that the peek operation will only
find items with lower priorities, or no item at all if the local LSM is empty. In this case, the
spy method is called, which will copy items from the owner of the boundary item to the local
LSM. The boundary item will also be added separately, in case spy fails to copy the boundary
item. Afterwards, if the boundary item is still active, the peek operation is repeated, until

Concurrent LSM Priority Queue 117

Listing 5.26 Pseudocode for the peek method of a concurrent LSM.

1 struct LSMPeekState {

2 StoredItem* item;

3 Key key;

4 int version;

5 }

6

7 LSMPeekState peek(StoredItem* boundary, int boundary_version) {

8 while(true) {

9 // Fail if boundary item is not active spying

10 if(!boundary->active(boundary_version)) {

11 return null;

12 }

13

14 LSMPeekState best = null;

15

16 // Iterate through list

17 for(ItemArray* i = head; i != null; i = i->next) {

18 // Get highest priority item out of the sorted array

19 // Automatically cleans out inactive items

20 LSMPeekState item = i->peek();

21

22 // Check whether resizes and merges are needed

23 while(i->filled <= i->logical_n / 2) {

24 // Logical size needs to be reduced

25 i->logical_n /= 2;

26

27 // Merge with successor if necessary

28 i = merge_shrunk(i);

29

30 // Merged array is empty

31 if(i == null)

32 break;

33

34 // Rerun peek

35 item = i->peek();

36 }

37 if(best == null ||

38 (peek != null && best->key < item->key) best = item;

39 }

40

41 // Check whether found item is the boundary item

42 // Or an item with greater or equal priority

43 if(best != null && best->key >= boundary->key) {

44 return best;

45 }

46

47 // Boundary was not spied yet, spy items from owner of boundary

48 spy(boundary->place);

49

50 // Add boundary to LSM

51 push(boundary, boundary_version);

52 }

53 }

118 Chapter 5 Ordered Containers

either an item with priority greater or equal the boundary item is found, or the boundary
item becomes inactive. An inactive boundary item leads to a spurious failure of peek.

When implemented as a standalone priority queue, the peek method of the concurrent
LSM will be implemented differently, since there is no boundary item. In this case, the peek

method will call spy on a victim selected according to the victim selection policy of the LSM,
whenever the local LSM is empty.

5.8.11 The spy method

Listing 5.27 Pseudocode for the spy method of a concurrent LSM.

1 void spy(LSMPlace* place) {

2 // Read head from place and retrieve version number

3 ItemArray* i = place->head;

4

5 // Loop through ItemArrays

6 while(i != nullptr) {

7 int f = i->filled;

8 // Copy items

9 for(int j = 0; j < f; ++j) {

10 StoredItem* si = i->items[j]->ref;

11 int v = i->items[j]->version;

12

13 if(si != null && si->active(v)) {

14 // Push reference to spied item into the local LSM

15 push(si);

16 }

17 }

18 // Find next array to look at

19 i = i->next;

20 }

21 }

The spy method, which is shown in Listing 5.27, is called by a place whenever it has a
boundary item that is better than all items stored in the local LSM. The goal of spy is to copy
as many items stored in the LSM of a victim as possible in a wait-free manner. There is no
guarantee that spy will copy a reference to a certain item. We allow for spy to discontinue
spying, when an inconsistent state is encountered for arrays.

The spy method proceeds by iterating through the linked list of sorted arrays and copying
all active items found in these arrays. Since the linked list might change in the meantime, and
blocks can be unlinked from the list or even reused, there is no guarantee that all items will
be encountered.

5.8.12 The merge shrunk method

The merge shrunk method, which is shown in Listing 5.28, is called whenever an array is
logically shrunk. It performs merges on arrays if necessary. The merge shrunk method starts
with the array that was shrunk, and checks whether the logical size of its successor is greater
or equal its own logical size. If this is the case, both arrays are merged. An array of the same
physical size as the physically smaller array is chosen as the merging target, unless it does not
fit all data, then an array of double the physical size of the physically smaller array is used.
Since a merge operation automatically cleans out all inactive items, the logical size of the

Concurrent LSM Priority Queue 119

Listing 5.28 Pseudocode for the merge shrunk method in the concurrent LSM.

1 ItemArray* merge_shrunk(ItemArray* i) {

2 ItemArray* begin = i;

3 ItemArray* next = i->next;

4 int size = i->physical_n;

5

6 // Loop as long as logical size of successor is greater or equal i

7 while(next != null && next->logical_n >= i->logical_n) {

8 ItemArray* merged = get_array_of_size(size);

9 merge(i, next, merged);

10

11 // Clear i if it is the result of a previous merge

12 if(i != begin) clear_array(i);

13 // Prepare for next iteration

14 i = merged;

15 next = next->next;

16 // Next merged array will have half the size

17 size /= 2;

18 }

19

20 // Check if merge occured

21 if(i != begin) {

22 // If merged array is empty, cut the list and clear merged array

23 if(i->filled == 0) {

24 if(begin->prev == null) {

25 tail = null;

26 head = null;

27 } else {

28 tail = begin->prev;

29 tail->next = null;

30 }

31 clear_array(i);

32 } else {

33 // Link in i

34 if(next == null) tail = i;

35 else next->prev = i;

36 i->next = next;

37 i->prev = begin->prev;

38

39 // Becomes visible here

40 if(begin->prev == null) head = i;

41 else begin->prev->next = i;

42 }

43 // Clear old arrays

44 while(begin != next) {

45 ItemArray* tmp = begin->next;

46 clear_array(begin);

47 begin = tmp;

48 }

49 }

50 return i;

51 }

120 Chapter 5 Ordered Containers

resulting array may be smaller than originally expected. This can trigger a subsequent merge
with the successor of the previously merged arrays in the linked list. As with the link in

method, all merges become visible at a single point in time, which is when the merged array
becomes reachable from the head of the linked list.

Care has to be taken not to put an empty array into the list. A merge operation may result
in an empty array if all items in the merged arrays are inactive. In case this happens, all arrays
that took part in the merge are removed from the list and no new array is added to the list.

The physical size for the first merged array is chosen to be equal to the physical size of
the shrunk array. Every subsequent array will have half the size of the previous array. This
guarantees that only one array of each size is used for merges in merge shrunk, while at the
same time making sure that no physical size is used that is smaller than the physical sizes of
the merged arrays, as shown in Lemma 5.8.15.

5.8.13 Supporting the elimination of dead tasks feature

To support elimination of dead tasks, a feature required provided by some of our task scheduling
systems, help is required from the data structure used for storing tasks. In a concurrent LSM
this feature can be easily supported, by adapting the active check for items stored in the
LSM. In addition to checking, whether an item has been processed by another thread, the
active check can also check for dead items (tasks), allowing the item taken method and
merge operations to automatically clean out these items.

5.8.14 Optimizations

There are corner cases where a spy operation mostly encounters inactive items. This can
occur in cases where the thread being spied at rarely accesses its local LSM, thereby making
maintenance work that cleans out inactive items rare. In applications where the priority
ordering varies between threads this effect can also occur for certain pathological cases. This
is not a problem for the complexity of the concurrent LSM as long as the number of inactive
items is within a constant factor of the total amount of items. In cases where delays between
accesses by threads can be arbitrarily long this is not the case any more. This can be resolved
by limiting the number of inactive items that will be spied from each array in relation to the
spied active items.

To do this, spy counts both the number of active and inactive items encountered while
spying at an array. When the ratio of active to inactive items falls below a certain threshold,
the spying thread moves on to the next array. For higher robustness, a constant number of
inactive items can be encountered before they are counted. To ensure that each item has a
chance to be encountered by a spy operation, the offset in the array at which spying starts is
chosen randomly, and spy wraps around the array.

5.8.15 Correctness

In this section we argue that the concurrent LSM is lock-free and linearizable. The methods
active, take, store item and verify are trivially wait-free and linearizable and proofs are
omitted.

Lemma 5.8.1. The push operation is wait-free if the link in operation is wait-free.

Proof. Adding an additional item to the tail array is trivially wait-free, since no thread can
interfere with it. Each thread has its own pool for arrays of all sizes, therefore getting a new
array and filling it is also wait-free. So if link in is wait-free, so is the push operation.

Concurrent LSM Priority Queue 121

Lemma 5.8.2. The push operation is linearizable.

Proof. If the item is added to the tail array, the push operation is linearized when the counter
filled is incremented for the tail array, which makes the item visible to all threads. In case
a new array is used, the item does not become visible to other threads, until the new array
becomes visible in the linked list. Therefore in this case the linearization point of link in is
also the linearization point of push

Lemma 5.8.3. The link in operation is wait-free.

Proof. The link in operation merges the new array with arrays in the list, until it has either
been merged with all arrays in the linked list, or the merged array has a logical size smaller
than all remaining arrays in the linked list. The number of arrays in the linked list is fixed at
call-time, and no new arrays can be added by other threads. Progress cannot be hindered by
other threads, therefore link in is wait-free.

Lemma 5.8.4. The link in operation is linearizable.

Proof. The linked list is not modified up until the merge operations are finished. An array, and
all the items contained within is in the LSM when it is reachable from the head of the linked
list. The linearization point of link in is when the new array is made visible by an update to
the head or next pointers. The update to the head or next pointers also atomically removes all
arrays that were merged into the new array from the LSM. The active items contained within
those arrays are still reachable in the LSM through the new array.

Lemma 5.8.5. The peek method is wait-free if spy is wait-free.

Proof. The peek method iterates through the local linked list of arrays, which is wait-free since
the linked list cannot be modified by other threads. It might be required to remove inactive
items from sorted arrays, which is bounded by the number of items in an array, and to merge
arrays, which is bounded by the number of arrays. If the boundary item was not in the linked
list, a spy operation will try to copy all items stored at the place owning the boundary item.
The boundary item will be added to guarantee that on the next iteration either the boundary
item or a higher priority item is returned, or that the boundary item is inactive, allowing peek

to fail, thus making peek wait-free if spy is wait-free.

Lemma 5.8.6. The peek method is linearizable.

Proof. A successful peek method is allowed to return items after they have become inactive,
as long as they are the highest priority items in the local LSM. A successful peek can therefore
be linearized at any point throughout the call of peek after the last change to the local LSM.
Since the local LSM cannot be modified by other threads, the local LSM can only be changed
during the call to peek when a spy operation is performed. Therefore, a successful call to peek

can be linearized at any point throughout its execution after the last call to spy.
Since peek is allowed to spuriously fail, a failed call to peek can be linearized at any point

in time throughout the call to peek.

Lemma 5.8.7. The merge shrunk method is wait-free.

Proof. Each iteration of the merging process in merge shrunk consumes two arrays to create
one new array. The progress of the merging operation cannot be hindered by other threads.
No new arrays can be added by other threads, therefore the number of merge operations is
bounded by the number of arrays in the local linked list. This makes merge shrunk wait-
free.

122 Chapter 5 Ordered Containers

Lemma 5.8.8. The merge shrunk method is linearizable.

Proof. The state of the linked list is not changed throughout the merging process. A call to
merge shrunk is linearized when the merged array is made visible in the linked list instead of
the arrays that were merged into it. Since an array is in the linked list iff it is reachable from
the head, the linearization point is when either the head or the next pointers are updated. If
the merged array is empty after the merge, the new array is not put into the linked list. In
this case, the linearization point of merge shrunk is when all arrays that were merged into the
now empty array are cut off from the linked list by an update to the head or next pointer.

Lemma 5.8.9. Logical sizes of arrays in a local LSM are strictly decreasing outside of peek method.
While peek is being executed, this order will only be violated for a single array.

Proof. New arrays are only added to the tail of the local linked list using the link in method.
Sizes of arrays are chosen so that the newly added array is smaller than its predecessor, unless
the predecessor has size 1. On size 1 the new array is merged with the current tail. Since
both arrays have the same logical size, the merged array will have at most double the logical
size of the arrays being merged. Since logical sizes are strictly decreasing, and logical sizes
are always powers of two, the predecessor of the last merged array in the list will have at least
double the size of the arrays from the last merge. This means that either the merged array has
exactly the same size, which will trigger another merge with similar results, or the merged
array will be smaller.

An array in a local LSM may never grow logically, but it may be logically shrunk when
peek is called. After it has been shrunk, this single array may violate the ordering for logical
sizes. This is fixed by a call to the merge shrunk method directly after the array has been
logically shrunk. Since peek is only called by the owner of the local LSM, and merge shrunk

is called before peek terminates or another array is shrunk, only a single array in the local
LSM may violate the order of logical sizes.

The merge shrunk method merges successor arrays with the shrunk array until either
no more successor exists, or no successor with logical size greater or equal the merged ar-
ray exists, thereby enforcing strictly decreasing logical sizes. Since logical sizes were strictly
decreasing before the shrinking of the array, and since logical sizes are powers of two, the
successor of the shrunk array is guaranteed to have a logical size of at most a quarter of the
shrunk array’s predecessor. For this reason it is guaranteed, that the merge operation will not
yield an array of logical size greater or equal its predecessor.

Lemma 5.8.10. The merge targets chosen by merge shrunk will always fit the data being merged in.

Proof. The first array used as merge target by merge shrunk has the same physical size as the
shrunk array. The physical size of an array can never be less than its logical size. A merge
operation will only occur if the array was logically shrunk, which means that the logical size
of the shrunk array is guaranteed to be smaller than the physical size. Also, since logical
sizes are strictly decreasing (Lemma 5.8.9), an array can never have a logical size greater or
equal the physical size of its predecessor. Both logical and physical sizes are powers of two,
therefore both the shrunk array and its successor will have a logical size of at most half the
physical size of the shrunk array. Therefore, since the merge target has the same physical size
as the shrunk array, it is guaranteed to fit the data.

A subsequent merge may occur in merge shrunk if some items are cleaned out during
the merge, making the logical size of the merged array less or equal the logical size of its
successor. Since logical sizes are strictly decreasing, the successor will have a logical size less
or equal half the size of the previous array that was merged in, which is a quarter of the
physical size of the merged array. A merge will only occur if the merged array has a logical

Concurrent LSM Priority Queue 123

size less or equal the logical size of the successor, which means that the merged data from
both arrays will fit an array of half the physical size of the previous merged array.

5.8.16 Time and space bounds

Lemma 5.8.11. The upper bound on the number of sorted arrays in the local LSM is 2 + log2 n where
n is the number of items stored in the local LSM, including inactive items.

Proof. The proof is similar to the proof of Lemma 5.7.1. Array sizes are powers of two, and
only one array of each logical size is allowed to exist in the linked list. There is a single
exception to this rule, which is that an array that is being processed by the peek method can
have the same logical size as another array in the list. As shown in Lemma 5.7.1, if no two
arrays of same (logical) size can exist in the list, the number of sorted arrays in the list cannot
be higher than 1+ log2 n. Since we allow for a single array to violate this rule in the concurrent
LSM (see Lemma 5.8.9), the bound increases to 2 + log2 n.

Lemma 5.8.12. If no items are ever cleaned out by peek, the arrays in a local linked list of an LSM
will have strictly non-increasing physical sizes.

Proof. New items are always added to the tail of a local LSM, and arrays in the local LSM
can never grow physically. Whenever the tail runs out of space a new array is added to the
tail, which has a physical size of half the logical size of the previous tail. This leads to strictly
decreasing physical sizes in the local LSM. If the tail array has the physical size 1, no smaller
array can be put into the local LSM. Instead, another array of size 1 is created for the new item,
and merged into the existing list by the link in method. All merges performed by link in

operate on two arrays of same logical size. To be able to fit all merged data, all data is merged
into an array of physical size double the logical size of one of the arrays being merged in.

Logical sizes of arrays are strictly decreasing as shown in Lemma 5.8.9. Since only powers
of two are used for array sizes, it is guaranteed that each array has at least double the logical
size of its successor. The physical size of an array can never be smaller than its logical size,
therefore a merged array cannot have a physical size greater than the physical size of its
predecessor in the list.

Lemma 5.8.13. The physical size of an array added by link in will never exceed the logical size of its
predecessor. It will only have the same physical size as its predecessor, if for the predecessor the physical
size equals the logical size.

Proof. As shown in Lemma 5.8.9, logical sizes of arrays in a local LSM are strictly decreasing.
The physical size of a merged array is chosen to be double the logical size of one of the arrays
being merged (both have the same logical size). For a merged array to have physical size n,
each of the arrays being merged needs to have the logical size n

2 . Since logical sizes are powers
of two and strictly decreasing, this requires the predecessor to have a logical size of at least n.

Since the physical size of an array cannot be smaller than its logical size, the predecessor
must have a physical size of at least n as well. The only possible case for the merged array
to have the same physical size as its predecessor is if the predecessor has both physical and
logical size n.

Lemma 5.8.14. If no items are ever cleaned out by peek, the physical size nA of any array A in a local
LSM is nA ≥ nB2δAB , where nB is the size of a successor of A in the local LSM, and δAB denotes the
number of arrays in-between A and B.

Proof. The proof is by induction on δAB. The base case if B is the direct successor of A, so that
δAB = 0. In this case nA ≥ nB, which means that array sizes are strictly non-increasing. This

124 Chapter 5 Ordered Containers

has already been shown to be true for Theorem 5.8.12. For the case δAB = 1, it needs to be
shown that nA ≥ 2nB. We know that the logical size of A is less or equal nA, and the successor
of A will have at most half that logical size. From Theorem 5.8.13 it can be deduced that nB
cannot exceed the logical size of its predecessor, which is at most nA

2 . This confirms nA ≥ 2nB.
In the general case, the logical size of the predecessor of B will be less or equal na

2δAB
, which

also restricts the physical size of B.

Lemma 5.8.15. An array merged by merge shrunk will always have a physical size greater or equal
the smallest and less or equal the largest array that was merged in.

Proof. The first array used as merge target by merge shrunk has the same physical size as the
first array, and any subsequent merge will use a smaller array. Therefore it is trivial to see that
the merged array will never be larger than the largest array that was merged in.

Both Lemma 5.8.12 and Lemma 5.8.14 work under the assumption that peek does not
remove any items. The method merge shrunk is the only point in peek where arrays are
merged and therefore the only method that could lead to a violation of the given theorems. If
the merged array from merge shrunk stays within the bounds provided by the physical sizes
of the arrays that it replaces, both theorems must still be true after the merge.

A merge shrunk that performs a single merge, will consume two arrays, to produce one
merged array of same physical size as the array that was shrunk, which is the first of the
merged arrays. Any additional array that is merged in will halve the physical size of the
merged array. We call the shrunk array A, and the last array that was merged in B. The
physical size of the merged array M can be calculated as nM = nA

2δAB
, where δAB is the number

of arrays between A and B in the local LSM, which are all merged into M. Since physical
sizes of arrays are strictly non-increasing, it can be safely assumed that B has the smallest
physical size of all arrays that were merged in. With the bound from Lemma 5.8.14, nM can
be expressed with nB as nM ≥ nB2δAB

2δAB
= nB.

Lemma 5.8.16. The physical size nA of any array A in a local LSM is nA ≥ nB2δAB , where nB is the
size of a successor of A in the local LSM, and δAB denotes the number of arrays in-between A and B.

Proof. Lemma 5.8.14 shows that this is true if no items are removed by peek. The only
place in peek, where physical sizes in a local LSM may change is the merge operation in
the merge shrunk method. This merge operation is guaranteed to yield a merged array with
physical size no bigger than the biggest and no smaller than the smallest array that was
merged in as shown for Lemma 5.8.15.

To show that nA ≥ nB2δAB still holds after a call to merge shrunk, three cases need to be
looked at. The first case is the case, where A is a predecessor of the merged arrays and B is
a successor. We say that δAB is the number of arrays between A and B before and δ′AB after
the merge. Since a merge consumes two or more arrays to create a single new array we know
that δ′AB < δAB. Based on this we can show that nA ≥ nB2δAB > nB2δ′AB .

The second case that needs to be looked at is when B is the first of the arrays being
merged by merge shrunk, and A is one of its predecessors. We say that M is the merged
array. Since physical sizes are strictly non-increasing, B is the biggest of the merged arrays.
From Lemma 5.8.15 we therefore know that nM ≤ nB. Since δAB = δAM we therefore have
nA ≥ nB2δAB ≥ nM2δAM .

The last case to be looked at is when A is the last of the arrays being merged and B one
of its successors. The merged array is called M. Physical sizes of arrays are strictly non-
increasing, therefore A is the smallest of the arrays being merged. Using Lemma 5.8.15 we
can show that nM ≥ nA ≥ nB2δAB .

Concurrent LSM Priority Queue 125

Lemma 5.8.17. Physical sizes of arrays in a local LSM are strictly non-increasing.

Proof. This follows from Lemma 5.8.16. For any two arrays A and B, where B is the direct
successor of A, we can show that nA ≥ nB.

Lemma 5.8.18. No more than two arrays of same physical size follow each other in the local linked list
of a thread.

Proof. This also follows from Lemma 5.8.16. For any two arrays A and B, where there is at
least one array in-between A and B, we can show that na ≥ 2nB.

Theorem 5.8.19. No more than three arrays of each physical size need to be allocated per thread in a
concurrent LSM.

Proof. Since each thread maintains its own local LSM and uses its own arrays for it, it suffices
to show that no more than three arrays are in use for a single local LSM. Physical sizes in the
local LSM of a thread are strictly non-increasing as shown in Theorem 5.8.17. No more than
two arrays of same physical size can follow each other as shown in Theorem 5.8.18. Therefore,
at most two arrays of each physical size will be used in a local LSM. Merge operations per-
formed in the methods link in and merge shrunk may require up to two additional arrays.
One array, which holds the result of a previous merge, and another array that is used as merge
target. It remains to show that either the arrays used for the merge have different physical
sizes, or the local LSM only contains a single array of the given physical size if both arrays
used by the merge have the same size.

In the link in method, merges start at the tail of the list, and are only continued if the
merged array has a logical size equal to the logical size of the predecessor of the last array
that was merged in. Since logical sizes are strictly decreasing, this requires logical sizes of the
merged arrays to be strictly increasing throughout the execution of link in for the algorithm
to continue. The physical size of the merged arrays is always chosen to be equal to the
expected logical size. The expectation is that the logical size will be double the logical size
of its predecessor, and the algorithm only continues merging if the expectation was fulfilled.
Therefore, no two additional arrays of same physical sizes are used by link in.

The merge shrunk method halves the physical size of the array used for the merge on each
merge, therefore no two arrays of same physical size are used throughout the execution of
merge shrunk.

Lemma 5.8.20. The merge shrunk method will never allocate arrays of a size bigger than any previ-
ously used array.

Proof. The merge shrunk method uses an array of same physical size as one of the arrays being
merged as its first merge target. Since one of the arrays being merged already has the same
physical size, this size cannot be previously unused. All subsequent merges will always use
smaller arrays than the array of the initial merge.

Theorem 5.8.21. A new array of size n is only allocated if at least n
2 + 2 items are stored in the local

LSM of which at least n
4 + 1 must have been active at a single point in time.

Proof. A new array of size n is only allocated if required by a merge operation. In link in

a merge is performed for two arrays of same logical size, and the merged array will have a
physical size that fits both arrays, which is double the logical size of one of the arrays being
merged. To require a merged array of size n, both arrays must have a logical size of n

2 . The
physical size of these arrays must be n

2 as well, or arrays of size n would have already been
allocated. An array must have at least n

4 + 1 items stored in it to have a logical size of n
2 .

126 Chapter 5 Ordered Containers

Therefore there must be at least n
2 + 2 elements stored in the local LSM before an array of size

n is allocated by link in.
While the first array used by link in in a merge operation comes from the local LSM, this

is not the case for the second array. The second array is either a result of a previous merge
in link in, or an array of size 1 containing a new item. In both cases all items in the second
array must have been active at a single point in time. If the array was the result of a merge,
all items must have been active when observed by merge, or some of these items would not
have been copied to the merged array. Since no new items can be added to an array during a
merge, all these items must have therefore been active at the beginning of merge. In the other
case, where the second array is an array of size 1 containing a new item, the item in the array
is guaranteed to be active, since it has not been added to the local LSM at this point, making
it impossible for another thread to take it. In both cases, the second array must have at least
n
4 + 1 items stored in it, which must have all been active at a single point in time.

As shown in Lemma 5.8.20, merge shrunk will never allocate a new array, so except for
arrays of size 1 all arrays will be allocated by link in.

5.8.17 Notes on the current implementation in Pheet

The concurrent LSM was implemented in Pheet for use in task schedulers for strategy schedul-
ing (see Section 2.7). Both task priorities (Section 2.5) and recognizing dead tasks (Sec-
tion 2.7.4), which are standard features of our scheduling system, require for the data structure
to directly access an instance of the strategy object. Due to the generality of our model it was
necessary to provide stronger protection for accesses to strategy objects, so that we decided to
protect accesses to items by other threads than the owner with a lock-free reference counting
scheme. While we make use of some optimizations to reduce the need for communication in
the reference counting scheme, the current implementation still suffers from scalability prob-
lems due to the high cost of reference counting. In future work we plan to improve scalability
of the implementation by either providing a more efficient protection scheme, or making it
possible to avoid the protection altogether.

5.8.18 Supporting ρ-relaxed ordering guarantees

In the following we will describe the modifications that need to be made to the concurrent
LSM priority queue to implement a k-LSM priority queue, which is a priority queue that
provides ρ-relaxation guarantees. It is possible to provide support for both temporal and
structural ρ-relaxation, similar to the hybrid k-priority queue from Section 5.4. In this section
we restrict ourselves to supporting structural ρ-relaxation, since it allows for higher scalability.

In the concurrent LSM, each thread maintains its own local LSM, which consists of arrays
of items, sorted by priority. To maintain structurally ρ-relaxed semantics we allow a thread
to globally announce an array, thus requiring all threads to scan it, and to copy all items
into their local LSM. Announcements are maintained as a globally accessible linked list with
pointers to sorted arrays. Announcements are stored in chronological order, and as soon as
all threads have seen an announcement it can be reused.

During a push operation, A thread will globally announce all previously unannounced
arrays in its local LSM whenever the number of items in its unannounced arrays reaches
k. Since each merge of arrays cleans out inactive items, this does not give any temporal ρ-
relaxation guarantees. Due to this, a thread may never announce an array, if the number of
unannounced items never exceeds k, regardless of the number of push operations. It does
provide structural ρ-relaxation guarantees, however, with ρ = k(P− 1), since no thread can
have more than k unannounced items.

Conclusions and Future Work 127

5.9 Conclusions and Future Work

Quantitative relaxation is a fairly new technique for improving the scalability of concurrent
ordered containers, and we expect many new containers to be developed in the next few
years. To our knowledge, the centralized k-priority queue and the hybrid k-priority [144,
148] were the first published implementations of quantitatively relaxed priority queues. The
spraylist by Alistarh et al. [10] is a skiplist-based, structurally relaxed, priority queue, for which
probabilistic upper bounds on the relaxation can be given. While the spraylist provides good
throughput for large amounts of items, the upper bounds provided by the relaxation are too
weak to work well with small amounts of items, and thus will lead to a more or less random
pop operation in such cases.

We see high potential in LSM for the implementation of relaxed concurrent priority queues,
due to its efficient use of memory bandwidth (both merges and spying require reading and
writing whole sorted arrays, not just single elements), and due to the regular maintenance
provided by the frequent merge operations. Also the maintenance of a local LSM per thread
reduces communication cost on NUMA architectures. One main issue with our current ap-
proaches is that they mainly focus on reducing the overhead of insertions. While contention
is also reduced on pop as a side-effect, this is not always the case, thereby limiting scalability
in general.

In future work we plan to explore alternative implementations of concurrent LSM priority
queues that, in addition to using relaxations to reduce insertion overhead, will use further
relaxations to reduce pop overhead as well. In addition we plan to work on concurrent pareto
priority queues, which reduce contention on pop for cases where only a partial ordering
between items exists.

6
The Pheet Framework

Pheet is a C++ template library for implementing task parallel applications in the tradition of
Intel Threading Building Blocks [93] and C++11 tasks [129]. It provides an easy to program
interface, while maintaining a good performance and a low overhead of scheduling tasks.

Even though Pheet can be used as a standalone library for writing task-parallel applica-
tions, its real value lies in its configurability. Almost every performance relevant aspect in
the system can be replaced in a modular manner at compile time, which allows to quantify
the contribution of different scheduler components and data-structures to application perfor-
mance. The system also allows to compile multiple configurations of a component into a
single program.

In addition, Pheet provides various fine-grained performance counters that can be enabled
individually at compile time, which gives an insight into the scheduler and its supporting
data-structures. When disabled, each performance counter is optimized away by the compiler.
Pheet is accompanied by a set of microbenchmarks, which are presented in Chapter 7. These
benchmarks enable us to quickly evaluate new prototype schedulers, data structures and
algorithmic primitives.

For a long time Pheet has been an internal research tool, and in fact most of the con-
tributions presented in this work have been developed with the help of Pheet. Pheet has
also been used as a tool for teaching in a lecture on advanced multiprocessor programming,
where students learn how to implement efficient concurrent data structures. In this lecture,
Pheet allows students to focus on the implementation by providing an interface into which
the data structures implemented by the students can be plugged in. The concept of places
(Section 2.4.1), the integrated wait-free memory manager (Section 4.3), and the large library
of synchronization primitives also greatly simplify implementation of such data structures.
The students can evaluate their implementations by running Pheet benchmarks that use their
data structures, and can compare their implementations to state-of-the-art implementations
and implementations by other students.

In the year 2013 Pheet reached the maturity that allowed us to release it as an open source
project1 under the Boost Public Licence. This allows Pheet to reach a more general audience,
allowing it to be used both by application developers that require a library for task paral-
lelism, as well as researchers working on schedulers and concurrent data structures. While
the main development platform for Pheet was Linux on x86 processors, the code is written in
an operating-system and hardware independent manner that should allow it to run on differ-
ent operating systems, as well as, different general purpose shared memory processors. The
only restrictions that we need to place on the platform is that a C++ compiler and standard
library that support most of the C++11 standard needs to be available, as well as the hwloc
library [32], which we use to configure Pheet to the topology of the hardware it is run on.

1http://www.pheet.org

129

http://www.pheet.org

130 Chapter 6 The Pheet Framework

6.1 Design goals

Pheet was designed around the idea that almost every performance-relevant aspect of a task-
scheduling framework should be configurable. The programmer should be able to take a
program written for the framework and run it under various configurations. (e.g., run with
different schedulers but otherwise identical configuration). The following considerations have
been taken into account when deciding how to provide this configurability:

• The programmer should be able to configure each single performance-relevant aspect in
a test program separately.

• Preferably, it should be possible to run tests with different configurations side-by-side
inside a single program.

• There should be no significant runtime overhead incurred by the possibility of choosing
different variants compared to an implementation where the choice is hard-coded.

• Each implementation should come with its own detailed performance counters, and
while implementations should be able to use the same performance counters, it should
also be possible to define implementation-specific performance counters to better un-
derstand the performance of a specific implementation.

• It should be possible to enable and disable performance counters individually, and dis-
abled performance counters should not incur any performance overhead over code writ-
ten without performance counter.

• The interface should not be rigid. Each implementation should provide some basic fea-
ture set to ensure compatibility, but other than that it should be possible to provide ad-
ditional functionality in some implementations (e.g., spawn methods that have a specific
scheduling strategy as parameter). It should be possible to mix and match implementa-
tion variants. If a non-standard feature is used on an implementation variant that does
not support it, a compile-time error should be thrown.

• Type-safety, even on aspects that are configurable.

In addition to the configurability goals, Pheet should nonetheless be an easy to use stan-
dalone library for task-parallelism. With a simple and efficient interface it should be possible
to get a larger number of kernels and applications implemented in the framework. This will
allow us to run more tests and comparisons with the framework.

Because of those requirements, the choice was made to use C++ templates as a meta-
programming mechanism to allow configurability of performance-relevant aspects at compile-
time. The term Modern C++ Design [8] has been coined for this type of application design. We
rely on the newest C++ standard C++11 [129], which greatly simplifies creating a programming
interface that fulfils our requirements due to new templating features, and also provides a new
memory model [9], which allows for efficient hardware and operating-system independent
implementations of fine-grained synchronization mechanisms.

6.2 Interface

The interface for the library is designed to be as simple as possible, without sacrificing flexibil-
ity or performance. A typical task-parallel application/kernel, only requires the programmer
to remember a small set of basic commands: spawn, call and finish. The complexity of the
high configurability is hidden from the user with default configurations.

Interface 131

As an example, we present a simple parallelization of the quicksort algorithm. Listing 6.1
gives an example of a sequential quicksort implementation that we will parallelize with Pheet
throughout this section.

Listing 6.1 Simple implementation of quicksort.

1 #include <functional>

2 #include <algorithm>

3

4 void quicksort(int* begin, int* end) {

5 if(end - begin <= 1)

6 return;

7

8 int* middle = std::partition(begin, end - 1,

9 std::bind2nd(std::less<int>(), *(end - 1)));

10 std::swap(*(end - 1), *middle); // move pivot to middle

11

12 quicksort(begin, middle);

13 quicksort(middle + 1, end);

14 }

15

16 int main(...) {

17 [...]

18 // start quicksort

19 quicksort(begin, end);

20 }

6.2.1 Simple parallel quicksort

A simple parallel implementation of quicksort in Pheet is shown in Listing 6.2. To paral-
lelize quicksort using Pheet, first Pheet has to be configured by including the Pheet header,
and defining a type for Pheet. This single typedef hides all the configuration of Pheet in a
single statement, and is initialized with the recommended default values. The trick here is,
that pheet::Pheet is, in fact, based on a templated class with a large amount of template
parameters for which reasonable default values have been chosen. The typedef then gives
the configuration a name, which is used by the application when accessing Pheet. Essentially,
the name Pheet used by the application is an alias for a specific configuration of Pheet. To
reconfigure Pheet, only the typedef needs to be changed as shown in the next section.

In addition, the first recursive function call to quicksort is replaced by a Pheet::spawn

statement. Code executing Pheet calls has to be enclosed in a Pheet environment, which main-
tains all the parallelism in the background. It is initialized using the RAII (Resource acquisi-
tion is initialization) pattern [129]. As long as the variable of the type Pheet::Environment

is in scope, all Pheet statements can be used. As soon as it runs out of scope, all par-
allel executions in Pheet are finished and Pheet is cleaned up. The next statement after
Pheet::Environment runs out of scope will only be executed after all tasks spawned inside
the Pheet environment have finished executing.

In practice, due to the overhead incurred by spawning tasks, an efficient parallel imple-
mentation of quicksort should provide a cutoff value at which it switches to the sequential
algorithm. While we do not show such a cutoff here for simplicity of the code, such a cutoff is
used in the quicksort benchmark provided as microbenchmark with Pheet and presented in
Section 7.5.

132 Chapter 6 The Pheet Framework

Listing 6.2 Simple parallel implementation of quicksort in Pheet.

1 #include <functional>

2 #include <algorithm>

3

4 // Configure Pheet

5 #include <pheet/pheet.h>

6 typedef pheet::Pheet Pheet; // Default configuration

7

8 void quicksort(int* begin, int* end) {

9 if(end - begin <= 1)

10 return;

11

12 int* middle = std::partition(begin, end - 1,

13 std::bind2nd(std::less<int>(), *(end - 1)));

14 std::swap(*(end - 1), *middle); // move pivot to middle

15

16 Pheet::spawn(quicksort, begin, middle);

17 quicksort(middle + 1, end);

18 }

19

20 int main(...) {

21 [...]

22

23 // Initialize pheet environment

24 {Pheet::Environment p;

25 // start quicksort

26 quicksort(begin, end);

27 } // At the end of the Pheet scope, quicksort is guaranteed to be finished

28 }

6.2.2 Configuring Pheet to use a different scheduler

One of the main features of Pheet is its configurability. Most components of Pheet can easily be
replaced. As an example, if none of the advanced features are required, the standard scheduler
of Pheet can be replaced by the lightweight BasicScheduler. This can be done by using the
::WithScheduler member of Pheet as shown in Listing 6.3. The member ::WithScheduler

of Pheet is a template alias that refers to a templated type that is identical to the type it is
contained in, except for the scheduler that is replaced by the scheduler specified as template
parameter. Many types in Pheet contain such members starting with ::With that allow to
reconfigure types without the need to specify a whole list of template arguments.

6.2.3 Finish regions

While the Pheet environment contains an explicit finish, it might be necessary to explicitly
synchronize between tasks throughout a parallel execution. Pheet relies on the async/finish
model (Section 2.2.3) for task synchronization. In Pheet there are two flavors of finish: finish
calls, and finish regions. A finish call, which is shown in Listing 6.4, calls a single function
(or task object), and ensures that all transitively spawned tasks in this function have finished
executing before proceeding to the next step.

Finish regions, on the other hand, allow to encapsulate multiple lines of code into a single
region. At the end of the region, Pheet implicitly waits for all transitively spawned tasks to
finish executing. Finish regions are declared using the RAII pattern similar to Pheet envi-

Interface 133

Listing 6.3 Reconfiguration of Pheet to use the BasicScheduler.

1 #include <functional>

2 #include <algorithm>

3

4 // Configure Pheet

5 #include <pheet/pheet.h>

6 #include <pheet/sched/Basic/BasicScheduler.h>

7 typedef pheet::Pheet::WithScheduler<pheet::BasicScheduler> Pheet;

8

9 void quicksort(int* begin, int* end) {

10 if(end - begin <= 1)

11 return;

12

13 int* middle = std::partition(begin, end - 1,

14 std::bind2nd(std::less<int>(), *(end - 1)));

15 std::swap(*(end - 1), *middle); // move pivot to middle

16

17 Pheet::spawn(quicksort, begin, middle);

18 quicksort(middle + 1, end);

19 }

20

21 int main(...) {

22 [...]

23

24 // Initialize pheet environment

25 {Pheet::Environment p;

26 // start quicksort

27 quicksort(begin, end);

28 } // At the end of the Pheet scope, quicksort is guaranteed to be finished

29 }

ronments. For this, we create an instance of the Finish class in the given scope as shown in
Listing 6.5. As soon as the Finish object runs out of scope, the Finish region ends, and the
next statement is only executed if all tasks transitively spawned inside the finish region have
finished executing.

6.2.4 Task class

While the use of functions in task spawns allows for a simple parallelization of sequential calls,
it has one limitation: There is no separation between task initialization work, which should
be performed in the context of the spawning thread, and the actual task execution. Also,
advanced schedulers may delete tasks without them ever being executed, thereby making it
necessary to separate clean-up from the task execution. For this reason, Pheet also allows the
use of task classes instead of function pointers.

Like task functions, task classes can be used with spawn, call and finish statements.
Since a task class is a type, it is not passed to those statements as a normal parameter, but
as a template parameter instead, as shown in Listing 6.6. The constructor of the task class
will be called in the context of the spawning thread immediately when the task is spawned.
The operator() method represents the actual function body of the task, and will be executed
when the task is executed. Finally, the destructor will be called whenever a task is deleted
from the scheduling system, regardless of whether it was executed or not.

134 Chapter 6 The Pheet Framework

Listing 6.4 Quicksort example in Pheet with a finish call.

1 #include <functional>

2 #include <algorithm>

3

4 // Configure Pheet

5 #include <pheet/pheet.h>

6 typedef pheet::Pheet Pheet; // Default configuration

7

8 void quicksort(int* begin, int* end) {

9 if(end - begin <= 1)

10 return;

11

12 int* middle = std::partition(begin, end - 1,

13 std::bind2nd(std::less<int>(), *(end - 1)));

14 std::swap(*(end - 1), *middle); // move pivot to middle

15

16 Pheet::spawn(quicksort, begin, middle);

17 quicksort(middle + 1, end);

18 }

19

20 int main(...) {

21 Pheet::Environment p;

22 [...]

23

24 // start quicksort

25 Pheet::finish(quicksort, begin, end);

26 }

6.3 Framework Structure

Pheet has a modular structure, where each basic building block of the framework is realized
as a concept for which there can be multiple implementations. Concepts are a common tech-
nique in generic programming and are well-known since the introduction of the C++ Standard
Template Library (STL) [84]. In general, a concept describes a set of syntactic and semantic
requirements for a type. Any type conforming to a certain concept can be used as input to an
algorithm or data-structure requiring this concept. There has been an effort to provide sup-
port for concepts in the C++ standard [67], but as of now the proposal has not been accepted
for inclusion. In our framework, a concept is provided as a textual description of the interface,
and its semantics.

One example of a concept used in the framework is a Mutex. A Mutex should provide
a lock() and an unlock() method. The lock() method is a blocking method that only
returns after a lock has been acquired. Different lock implementations all conform to the
same interface, but perform differently depending on lock congestion, and the system the lock
is used on. Optionally, an implementation can also provide a try lock(long int time ms)

method, which tries to acquire a lock. If it does not succeed in a given time-frame, the method
returns false. This method is optional and not provided by implementations, since it is not
required in many applications, and it makes some mutex implementations more complex, or
even more expensive.

On a higher level, the framework is built from different parts, namely: Primitives, Memory
management, Data-structures, Execution models and Schedulers, which will be described in the
following sections.

Framework Structure 135

Listing 6.5 Quicksort example in Pheet with a finish region.

1 #include <functional>

2 #include <algorithm>

3

4 // Configure Pheet

5 #include <pheet/pheet.h>

6 typedef pheet::Pheet Pheet; // Default configuration

7

8 void quicksort(int* begin, int* end) {

9 if(end - begin <= 1)

10 return;

11

12 int* middle = std::partition(begin, end - 1,

13 std::bind2nd(std::less<int>(), *(end - 1)));

14 std::swap(*(end - 1), *middle); // move pivot to middle

15

16 Pheet::spawn(quicksort, begin, middle);

17 quicksort(middle + 1, end);

18 }

19

20 int main(...) {

21 Pheet::Environment p;

22 [...]

23

24 {Pheet::Finish f; // declare finish region

25 // start quicksort

26 quicksort(begin, end);

27 quicksort(begin2, end2);

28 } // End of finish region, both lists will be sorted after this point

29 }

6.3.1 Primitives

The primitives in our work-stealing framework are basic building blocks for parallel appli-
cations that are needed by other parts of the framework, but are also made available to the
users. Currently, the following primitives are provided:

• Mutexes: Simple mutex implementations. Are rarely used, as the framework generally
tries to use lock-free techniques. They are provided nonetheless to allow for simple
comparison between lock-based and lock-free data-structure implementations. Also,
they are a valuable research and teaching tool for testing out new lock implementations.

• Backoff: Generally used in lock implementations and lock-free data-structures to reduce
congestion. Different implementations may use different backoff strategies. By default
we use an exponential backoff, which is capped at a certain maximum backoff.

• Barriers: A simple low-level barrier that also provides signal/wait semantics. (Inspired
by Phasers [123], although not as powerful)

• Finishers and Shared Pointers: Finisher hyperobjects used for transitive termination
detection (e.g. for pointers).

136 Chapter 6 The Pheet Framework

Listing 6.6 Task classes in Pheet.

1 class TaskImplementation : public Pheet::Task {

2 public:

3 RecursiveParallelPrefixSum2OffsetTask(/* task parameters */)

4 {

5 // Constructor - perform initialization here (in context of spawning thread)

6 }

7

8 virtual ~RecursiveParallelPrefixSum2OffsetTask() {

9 // Destructor - perform clean-up here

10 }

11

12 virtual void operator()() {

13 // Task body - This will be executed when task is executed

14 }

15 };

16

17 int main(...) {

18 Pheet::Environment p;

19 [...]

20

21 Pheet::finish<TaskImplementation>(/* task parameters */);

22 }

• Reducers: Contains both ready-to-use reducer hyperobjects (max-, min- and sum-reducers
for scalar types), as well as interfaces that allow to implement reducer hyperobjects for
different types and operators.

• Performance counters: Using reducers, they provide a simple way to measure different
performance relevant aspects inside the framework and in applications. Each perfor-
mance counter can be activated and deactivated separately, and deactivated performance
counters should not lead to any performance overhead.

6.3.2 Memory management

A collection of memory management methods that simplify the implementation of concurrent
data structures, including the wait-free memory manager described in Section 4.3. Unfortu-
nately, hazard pointers [105] cannot be added to this collection, since they are protected by US
Patent US 20040107227 A1. As an open source framework, Pheet therefore cannot make use
of any concurrent data structures that require hazard pointers.

6.3.3 Data structures

Pheet contains a wide variety of (mostly concurrent) data structures, many of which are pre-
sented in Chapter 4. While it would be useful for the user, the focus of Pheet is not on
providing a full library of concurrent data structures. Instead, it contains mainly specialized
data structures required by one of the schedulers.

6.3.4 Execution models

An execution model is an abstraction of the concrete hardware the system is running on. It
provides a scheduler with information about processing resources in the system, as well as,

Framework Structure 137

information on the memory hierarchy. The execution model is modelled as a tree, where the
leaves represent the processing resources, and the other nodes represent levels in the memory
hierarchy that are shared between processing resources. A similar approach for modelling the
machine is employed in [56].

Pheet uses the hardware model to initialize the places (Section 2.4.1) of a scheduler, and
to bind each place to a specific processing unit or group of processing units. In addition,
Pheet contains a virtual distance metric that is related to the communication costs between
two places. It is guaranteed that for two places with a certain distance, the communication
costs will not be lower than if one of these places communicates with a place with smaller
distance. In addition, Pheet is NUMA-aware, allowing an application to see whether two
places are located on different NUMA nodes. We also plan to allow applications in Pheet
to check whether a certain memory location is NUMA-local in the future, as soon as this is
efficiently supported by common operating systems and hardware.

An execution model does not necessarily have to exactly represent the system it is running
on. One may simulate a system with more processing resources by over-subscription, or make
only a part of the machine accessible to the scheduler. By default, Pheet uses a machine model
that wraps functionality from the hwloc [32] library, and which automatically initializes Pheet
to take advantage of all (shared memory) processor cores in a machine.

6.3.5 Schedulers

Schedulers are the central part of Pheet and tie together all components. There is a common
subset of functionality each scheduler has to support, like spawn and finish. There is no re-
striction as to what additional features a scheduler is allowed to provide. As a baseline, Pheet
provides a scheduler called the SynchroneousScheduler, which will sequentially execute a
parallel algorithm written in Pheet, by treating any task spawn as a function call. This is both
useful to debug the sequential semantics of a program, as well as to provide baseline sequen-
tial performance of the parallel algorithm without scheduler overhead. As another baseline,
Pheet provides the BasicScheduler, a lightweight work-stealing scheduler with no additional
functionality.

The advanced schedulers provided by Pheet include a mixed-mode scheduler, which sup-
ports the mixed-mode parallel programming model presented in Section 2.6, and various
flavours of schedulers with support for strategies. The first strategy scheduler based on pri-
ority work-stealing (Section 5.2) is called the StrategyScheduler. The BStrategyScheduler

(the B stands for bounded) allows for bounds on the priority inversions of tasks by using the
centralized k-priority queue (Section 5.3) or the hybrid k-priority queue (Section 5.4). Finally,
the latest model of strategies that allows each strategy to use a different data structure for
storing tasks is used by the StrategyScheduler2. This scheduler is based on the two-level
ordered container presented in Section 5.5. Due to its flexibility, allowing both bounds on
priority inversions where needed and low overhead work-stealing deques for other tasks,
StrategyScheduler2 will be used as the default scheduler in Pheet in the future.

7
The Pheet Benchmarks

To allow for an experimental evaluation of each aspect of the Pheet framework, Pheet is
accompanied by a set of microbenchmarks, each aimed at evaluating specific aspects of the
framework. In this chapter we describe each benchmark application separately, motivate its
inclusion in the Pheet framework, and discuss the insights gained through this benchmark.

7.1 Setup

We used two shared memory systems for the evaluation. One is a Intel Xeon based system
comprising four Intel Xeon E7-8850 processors with 20 cores each, leading to a total of 80
cores. Additional parallelism can be achieved with simultaneous multi-threading, but since
many applications are memory bandwidth bound on this architecture, Pheet is not configured
to take advantage of this by default. This system has 1TB of main memory. To simplify
the discussion throughout this chapter, this system will be referred to by the name Mars
throughout this chapter. A chart, showing the processor and memory hierarchy of Mars is
shown in Figure 7.1.

The other system that we use for evaluation is an AMD Opteron based system consisting
of four AMD Opteron 6168 processors with 12 cores each, leading to a total of 48 cores. This
system has 128GB of main memory. We will refer to this system by the name Saturn. The
processor and memory hierarchy is shown in Figure 7.2.

We rely on two compilers for our experiments: GCC 4.8.2 and the Intel C++ compiler 14.0.1.
All programs are compiled using the -O3 flag to enable standard compiler optimizations.

7.2 Methodology

Experiments were performed for both machines and on both compilers. Results are always
shown for both machines, but only for one compiler (typically the compiler with better se-
quential performance). In most cases, the code created by both compilers behaves similarly
and only the absolute performance differs. In cases where code shows different behaviour on
another compiler this is mentioned in the text.

All results shown are mean values over at least 20 experiments. Confidence intervals are
shown for all values. If no confidence interval is visible for a value this means that the interval
is too small to be visible and thus confidence is high. For benchmarks with high variance in
results we use more than 20 experiments to achieve reasonable confidence intervals. Where
applicable we use different (random) inputs of same input size for each of the experiments
and each implementation variant is executed on exactly the same inputs. For random inputs
this is achieved by fixing the random seed for each of the experiment.

139

140 Chapter 7 The Pheet Benchmarks

Machine (1024GB)

NUMANode P#0 (128GB)

Socket P#0

NUMANode P#4 (128GB)

Socket P#4

NUMANode P#5 (128GB)

Socket P#5

NUMANode P#6 (128GB)

Socket P#6

NUMANode P#7 (128GB)

Socket P#7

NUMANode P#1 (128GB)

Socket P#1

NUMANode P#2 (128GB)

Socket P#2

NUMANode P#3 (128GB)

Socket P#3

L3 (24MB)

L3 (24MB)

L3 (24MB)

L3 (24MB)

L3 (24MB)

L3 (24MB)

L3 (24MB)

L3 (24MB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

Core P#0 Core P#1 Core P#2 Core P#8 Core P#9 Core P#16 Core P#17 Core P#18 Core P#24 Core P#25

PU P#0

PU P#120

PU P#81

PU P#121

PU P#82

PU P#122

PU P#83

PU P#123

PU P#84

PU P#124

PU P#85

PU P#125

PU P#86

PU P#126

PU P#87

PU P#127

PU P#88

PU P#128

PU P#89

PU P#129

PU P#1

PU P#41

PU P#2

PU P#42

PU P#3

PU P#43

PU P#4

PU P#44

PU P#5

PU P#45

PU P#6

PU P#46

PU P#7

PU P#47

PU P#8

PU P#48

PU P#9

PU P#49

PU P#10

PU P#50

PU P#11

PU P#51

PU P#12

PU P#52

PU P#13

PU P#53

PU P#14

PU P#54

PU P#15

PU P#55

PU P#16

PU P#56

PU P#17

PU P#57

PU P#18

PU P#58

PU P#19

PU P#59

PU P#20

PU P#60

PU P#21

PU P#61

PU P#22

PU P#62

PU P#23

PU P#63

PU P#24

PU P#64

PU P#25

PU P#65

PU P#26

PU P#66

PU P#27

PU P#67

PU P#28

PU P#68

PU P#29

PU P#69

PU P#30

PU P#70

PU P#31

PU P#71

PU P#32

PU P#72

PU P#33

PU P#73

PU P#34

PU P#74

PU P#35

PU P#75

PU P#36

PU P#76

PU P#37

PU P#77

PU P#38

PU P#78

PU P#39

PU P#79

PU P#40

PU P#80

PU P#90

PU P#130

PU P#91

PU P#131

PU P#92

PU P#132

PU P#93

PU P#133

PU P#94

PU P#134

PU P#95

PU P#135

PU P#96

PU P#136

PU P#97

PU P#137

PU P#98

PU P#138

PU P#99

PU P#139

PU P#100

PU P#140

PU P#101

PU P#141

PU P#102

PU P#142

PU P#103

PU P#143

PU P#104

PU P#144

PU P#105

PU P#145

PU P#106

PU P#146

PU P#107

PU P#147

PU P#108

PU P#148

PU P#109

PU P#149

PU P#110

PU P#150

PU P#111

PU P#151

PU P#112

PU P#152

PU P#113

PU P#153

PU P#114

PU P#154

PU P#115

PU P#155

PU P#116

PU P#156

PU P#117

PU P#157

PU P#118

PU P#158

PU P#119

PU P#159

Figure 7.1: Processor and memory hierarchy of the Mars system as presented by the lstopo

utility of the hwloc library [32].

Methodology 141

Machine (128GB)

Socket P#0 (32GB) Socket P#1 (32GB)

Socket P#2 (32GB) Socket P#3 (32GB)

NUMANode P#0 (16GB)

L3 (5118KB)

NUMANode P#1 (16GB)

L3 (5118KB)

NUMANode P#2 (16GB)

L3 (5118KB)

NUMANode P#3 (16GB)

L3 (5118KB)

NUMANode P#4 (16GB)

L3 (5118KB)

NUMANode P#5 (16GB)

L3 (5118KB)

NUMANode P#6 (16GB)

L3 (5118KB)

NUMANode P#7 (16GB)

L3 (5118KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB) L1d (64KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5

PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#5

PU P#6 PU P#7 PU P#8 PU P#9 PU P#10 PU P#11

PU P#12 PU P#13 PU P#14 PU P#15 PU P#16 PU P#17

PU P#18 PU P#19 PU P#20 PU P#21 PU P#22 PU P#23

PU P#24 PU P#25 PU P#26 PU P#27 PU P#28 PU P#29

PU P#30 PU P#31 PU P#32 PU P#33 PU P#34 PU P#35

PU P#36 PU P#37 PU P#38 PU P#39 PU P#40 PU P#41

PU P#42 PU P#43 PU P#44 PU P#45 PU P#46 PU P#47

Figure 7.2: Processor and memory hierarchy of the Saturn system as presented by the lstopo

utility of the hwloc library [32].

142 Chapter 7 The Pheet Benchmarks

To have the same starting conditions for all experiments, the input data is freshly allo-
cated and generated the same way before each experiment. Also, task schedulers are freshly
initialized before each experiment and shut down and destructed afterwards.

Our primary metric of evaluation is execution time of the benchmark. The execution time
is measured inside the application and does not include the time for generating/loading the
input data, initializing/shutting down the scheduler or verifying the result. Depending on the
application we use additional performance counters for our evaluation, which are explained
in the application specific sections.

7.3 Unbalanced Tree Search

We start off with the Unbalanced Tree Search (UTS) benchmark by Olivier et al. [109]. This
synthetic benchmark spawns a large number of small tasks, corresponding to nodes in a
unbalanced search tree, according to a given distribution. The decision on how many subtasks
to spawn from a given task is made with the help of a hash of the parent descriptor and
the child index. This makes it possible to get the exact same tree every time, based on the
parameters used to initialize the tree.

UTS is a useful benchmark to evaluate dynamic load balancing techniques. Each task in
UTS is extremely lightweight, thereby exposing the overhead of the scheduling system. Since
tasks are computation bound and do not share any memory with other tasks, memory band-
width is not an issue with UTS, which allows to measure the raw scalability of a scheduler on
a given system.

The UTS benchmark provides two types of search trees that can be used: binomial trees
and geometric trees. In the binomial tree, each node has m children with probability q, and no
children with probability 1− q, where m and q are parameters of the class of binomial trees.
The depth of the tree follows a power law. Information about where in the tree a node is
located cannot be used to infer the number of its ancestors, thus making the binomial tree
the perfect adversary for dynamic load balancing techniques. The geometric tree, on the other
hand, follows a geometric distribution. Due to the long tail of geometric distributions, some
nodes will have significantly more descendants than others, resulting in extremely unbalanced
trees. Contrary to binomial trees, sub-trees closer to the root have a larger expected size.

7.3.1 Aim of this Benchmark

The main purpose of the UTS benchmark in Pheet is to measure the overhead and scalability
of different schedulers in the Pheet framework. Tasks in UTS are extremely lightweight,
both concerning execution time, and memory usage, and require only local information to
compute. Thus, a large part of the execution time is used by calls to the scheduler. We use
this fact to compare the overheads of different schedulers.

With the UTS benchmark we also evaluate the potential performance improvements due
to the spawn to call conversion feature of our strategy schedulers (see Section 2.7.1). This
feature is used to decrease the scheduler overhead by converting task spawns into function
calls whenever sufficient parallelism is available. For geometric trees, the expected size of a
sub-tree rooted at a specific node is dependent on the depth of the node, with the expected
size decreasing with higher depth. To take this into account, the task spawns of higher depth
have a lower threshold for number of concurrently available tasks necessary to achieve this
result. For binomial trees this is not the case, but the fact that the expected size of the subtree
is the same for every node can be used to convert task spawns to function calls whenever
there is sufficient parallelism, which is the case whenever the number of tasks available for
execution exceeds a certain threshold.

Unbalanced Tree Search 143

7.3.2 Implementation

The UTS benchmark in Pheet is based on the original UTS benchmark code, which has been
adapted for the use in Pheet. We provide two implementations, a baseline task-parallel imple-
mentation that does not use any Pheet specifics, and an implementation that takes advantage
of strategies.

Listing 7.1 shows the implementation of UTS tasks with strategies. The baseline imple-
mentation is not shown, since it only differs when spawning a child task where a normal
spawn statement is used without a strategy. A task in UTS expands a single node by cre-
ating nodes for all its children and then spawning a new task for each child. Each node is
initialized with its own random seeds by the rng spawn method from UTS. The parameter
computeGranularity can be used to increase the granularity of the computation by calling
rng spawn multiple times. Since we were mainly interested in exposing the overhead of our
schedulers by keeping granularity low, we kept this parameter at 1 for all our measurements.

Listing 7.1 Implementation of the UTS task with strategies in Pheet.

1 virtual void operator()()

2 {

3 Node child;

4 int parentHeight = parent.height;

5 int numChildren;

6

7 numChildren = uts_numChildren(&parent);

8 auto childType = uts_childType(&parent);

9

10 // record number of children in parent

11 parent.numChildren = numChildren;

12

13 // construct children and push onto stack

14 if (numChildren > 0)

15 {

16 int i, j;

17 child.type = childType;

18 child.height = parentHeight + 1;

19

20 for (i = 0; i < numChildren; i++)

21 {

22 for (j = 0; j < computeGranularity; j++)

23 {

24 // computeGranularity controls number of rng_spawn calls per node

25 rng_spawn(parent.state.state, child.state.state, i);

26 }

27 Pheet::spawn_s<Self>(UTSStrategy(child.height), child);

28 }

29 }

30 }

The implementation of the UTS strategy is shown in Listing 7.2. It implements the
can call method, which can be used by the scheduler to determine whether a task spawn can
be converted into a function call. The strategy allows the scheduler to convert task spawns to
function calls, whenever the number of tasks in the task queue is at least 4. For the first tasks
being spawned, the threshold is slightly higher, both to spread work to other places more
quickly, as well as to make tasks close to the root more likely to be stolen, which is relevant

144 Chapter 7 The Pheet Benchmarks

for geometrically distributed UTS trees.

Listing 7.2 Implementation of the UTS strategy in Pheet. (simplified)

1 class UTSStrategy : public BaseStrategy {

2 public:

3 UTSStrategy(int height)

4 :height(height){}

5

6 /*

7 * Checks whether spawn can be converted to a function call

8 */

9 inline bool can_call(TaskStoragePlace* p) {

10 if(height >= 8)

11 return p->size() >= 4;

12 else

13 return p->size() >= 12 - (unsigned)height;

14 }

15

16 private:

17 int height;

18 };

7.3.3 Results

We have performed our experiments on various trees generated by UTS. Since trees generated
by UTS have an extremely high variance in size and structure, it is not sensible to aggregate
performance measurements on different trees. Instead, each experiment was performed on
a specific tree, and repeated 20 times for each implementation. We ran the experiments on
both the Intel compiler and GCC. The behaviour and scalability of UTS is the same on both
compilers. Since the code generated by the Intel compiler is faster, we only show the results
obtained with the Intel compiler. An exception to this is the experiment on the large tree
shown in Figure 7.4, which, due to its long running time, was only compiled and run with
GCC.

In our experiments we compare the following variants of UTS:

Sequential A sequential execution of UTS without a task scheduler. Each task spawn is
converted into a function call at compile time. This sequential execution is a good
baseline for measuring the task scheduling overhead.

Strategies This implementation uses scheduling strategies as described in Section 7.3.2 to
convert task spawns into function calls at run-time whenever sufficient parallelism is
available to reduce scheduler overhead. (StrategyScheduler2 in Pheet)

Strategy Scheduler A UTS implementation that does not make use of strategies, but is ex-
ecuted on a scheduler that is capable of supporting strategies. This implementation
is used to measure the overhead of supporting strategies in a scheduler. It uses the
StrategyScheduler2 from the Pheet framework. Since UTS does not require task prior-
ities, the root container of the two-level concurrent ordered container (see Section 5.6) is
used to store UTS tasks.

Work-Stealing A standard work-stealing scheduler provided as a baseline for task-parallel
executions. It uses the BasicScheduler from the Pheet framework.

Unbalanced Tree Search 145

0

1

2

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0

1

2

3

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Strategies
Strategy Scheduler
Work−Stealing

Figure 7.3: Average execution time of UTS on a geometric tree with 4130071 nodes on Mars
(left) and Saturn (right). (UTS parameters: T1 -t 1 -a 3 -d 10 -b 4 -r 19, Intel compiler)

0

250

500

750

1000

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0

500

1000

1500

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Strategies
Strategy Scheduler
Work−Stealing

Figure 7.4: Average execution time of UTS on a geometric tree with 1635119272 nodes on Mars
(left) and Saturn (right). (UTS parameters: T1XL -t 1 -a 3 -d 15 -b 4 -r 29, GCC)

Results for running the UTS benchmark for a small tree with 4130071 nodes based on a
geometric distribution for both Mars (left Figure) and Saturn (right Figure) are shown in Fig-
ure 7.3. As described before, we kept the granularity of tasks in UTS as small as possible
to expose the overhead of task schedulers. The overhead of task scheduling compared to se-
quential UTS is clearly visible on both machines, but already with two threads some speedup
can be achieved. On Saturn, the algorithm scales well, achieving a speedup of 10.9 on 48 cores
for the standard work-stealing algorithm with regard to the sequential baseline. Even better
scalability is achieved when using strategies, with a speedup of 15.7.

The results of this experiment also show that the strategy scheduler does not have any
visible overhead compared to a standard work-stealing scheduler if no strategies are used. In
fact it is even faster for smaller numbers of threads, which means that the deques used by
the strategy scheduler are more efficient than their counterparts in the original Pheet work-
stealing scheduler.

On Mars it was not possible to achieve the same scalability with all implementations. For
both the strategy scheduler and the standard work-stealing scheduler the costs of stealing
tasks from other NUMA nodes outweighed the gains on average, leading to a slowdown
when using more than 20 threads. The use of strategies to convert task spawns into function
calls helps to get rid of this bottleneck, however, resulting in a speedup of 6.6 on 80 threads.

Results for a large tree with otherwise similar parameters are shown in Figure 7.4. Similar
results can be observed as for a smaller tree, but higher scalability is achieved with a speedup
of 51.3 on Mars and a speedup of 32.9 on Saturn compared to the sequential implementation.

Figures 7.5 and 7.6 show results for a medium sized binomial and a hybrid tree. In both
cases the trends are similar to what we have shown for the geometric tree.

146 Chapter 7 The Pheet Benchmarks

0

10

20

30

40

50

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0

20

40

60

80

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Strategies
Strategy Scheduler
Work−Stealing

Figure 7.5: Average execution time of UTS on a binomial tree with 111345631 nodes on Mars
(left) and Saturn (right). (UTS parameters: T3L -t 0 -b 2000 -q 0.200014 -m 5 -r 7, Intel
compiler)

0.0

0.5

1.0

1.5

2.0

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0

1

2

3

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Strategies
Strategy Scheduler
Work−Stealing

Figure 7.6: Average execution time of UTS on a hybrid tree with 4132453 nodes on Mars
(left) and Saturn (right). (UTS parameters: T4 -t 2 -a 0 -d 16 -b 6 -r 1 -q 0.234375 -m

4 -r 1, Intel compiler)

7.4 Graph Bipartitioning

The branch-and-bound paradigm is generally well suited to parallelization [43]. Efficient
parallel branch-and-bound implementations rely on a concurrent data structure for storing
unexplored subproblems [78, 85, 117].

We focus on the well-known, NP-hard graph bipartitioning problem [111] where the ver-
tices of an undirected, weighted, n-node, m-edge graph are to be partitioned into two sets
with given sizes with minimum total cut weight. The branch-and-bound algorithm for graph
bipartitioning fixes a single node at each step, by assigning it to one of the sets for each
branch. For bounding (elimination) of sub-problems we use a simple, easily computable
lower bound [40]. Incrementally updating the lower bound for each new node subproblem
takes O(n log n + m/n) (amortized) steps.

7.4.1 Aim of this benchmark

Performance of graph bipartitioning depends on the order in which sub-problems are ex-
plored. Finding close to optimal solutions early on allows to cut off branches that might
otherwise be explored, thus greatly reducing the execution time. We use simple heuristics to
determine promising branches, which are then prioritized in a priority scheduler.

Branch-and-bound algorithms are well suited for task parallelism, due to the high granu-
larity per task for many tasks. Nonetheless, the granularity of tasks greatly varies for different

Graph Bipartitioning 147

branches, with granularity strictly decreasing with each node that is assigned to a set. For
tasks with small granularity, the overhead of the scheduling system becomes visible, and due
to a large number of fine-grained tasks in each execution this has a visible impact on total
execution time. We use the spawn2call feature of our strategy schedulers (see Section 2.7.1)
to reduce this overhead. Since spawn2call overrides prioritization of tasks, parameters have
to be chosen carefully to achieve a reasonable balance between early exploration of promising
branches and reduction of scheduler overheads.

7.4.2 Implementation

We encapsulated the actual logic for maintaining sub-problems, branching and calculating the
lower bounds into the class SubProblem, which allows to keep the parallel implementation
separate from the logic for branching and bounding. This fits well with the Pheet philosophy,
and allows us to mix and match parallel implementations with bounding implementations.
The branching operation is performed by the method split, which splits the given sub-
problem into two sub-problems by assigning a single, previously unassigned node to one of
the two subsets.

We encapsulated the actual logic for maintaining sub-problems, branching and calculating
the lower bounds into the class SubProblem, which allows to keep the parallel implementation
separate from the logic for branching and bounding. This fits well with the Pheet philosophy,
and allows us to mix and match parallel implementations with bounding implementations.

Whenever a subproblem represents a unique solution (with no more branching possible),
this can be determined using the can complete method. The method complete solution is
then used to calculate the actual solution. The value of the currently best known feasible so-
lution is kept in a global variable that is updated atomically by complete solution whenever
a better solution is encountered. Due to the atomicity requirement, it is not efficient to store
the whole solution in this global variable, but instead we only store the value. This value can
be retrieved using the get global upper bound method of a sub-problem. The full solution is
stored in a reducer hyperobject, which is updated by the update solution method.

The parallel algorithm

Our actual parallel implementation of graph bipartitioning with strategies is shown in List-
ing 7.3. For better readability we omitted the memory management for sub problems in this
code. Again, we do not show the code for the baseline implementation without strategies,
since it only differs at the spawn statements.

In our implementation of graph bipartitioning a task is responsible for a single branching
operation, where a single node of the graph is assigned to one of the two subsets. This
is achieved using the split operation of the sub-problem. For each of the resulting two
sub-problems the task then checks whether it represents a unique solution, and otherwise
recursively calls itself to further expand the sub-problem.

Strategies

We experimented with different strategies for an efficient execution of graph bipartitioning.
Listing 7.4 presents a strategy, which we call the estimate strategy that resulted in comparably
good performance. The main intuition behind this strategy is that the execution order of
tasks is guided by a heuristic that is guided by an estimate of the actual solution value. Tasks
spawned at a single place will always be executed in order of lowest estimate. While the actual
estimate is dependent on the implementation of SubProblem, we require this estimate to be

148 Chapter 7 The Pheet Benchmarks

Listing 7.3 Implementation of the graph bipartitioning task with strategies in Pheet. (simpli-
fied)

1 virtual void operator()()

2 {

3 // Split into two sub problems. One will be stored in the original sub problem,

4 // the other in sub_problem2

5 SubProblem* sub_problem2 =

6 sub_problem->split();

7

8 if(sub_problem->can_complete()) {

9 sub_problem->complete_solution();

10 sub_problem->update_solution(best);

11 }

12 else if(sub_problem->get_lower_bound() < sub_problem->get_global_upper_bound()) {

13 Pheet::spawn_s<Self>(Strategy(sub_problem),

14 sub_problem, best);

15 }

16

17 if(sub_problem2->can_complete()) {

18 sub_problem2->complete_solution();

19 sub_problem2->update_solution(best);

20 }

21 else if(sub_problem2->get_lower_bound() <

22 sub_problem2->get_global_upper_bound()) {

23 Pheet::spawn_s<Self>(Strategy(sub_problem2),

24 sub_problem2, best);

25 }

26 }

fairly pessimistic, so that in most cases at least one of the sub-problems created by a split

will have a lower estimate than its parent, resulting in a depth-first execution in most cases.
To reduce communication required between places, tasks spawned by other places will

not be executed ordered by estimate, but instead the task with the highest uncertainty will be
executed first. The uncertainty is defined as the difference between the estimate and its lower
bound. We base this strategy on the assumption that tasks with higher uncertainty will tend
to generate more work, thereby reducing the need to steal work from other threads. In this
case we let all places attempt to expand this node, and take the additional congestion into
account in the hopes of finding a good upper bound faster.

In addition to manipulating the execution order of tasks, graph bipartitioning also takes
advantage of the elimination of dead tasks and spawn-to-call features of strategies. The elimina-
tion of dead tasks feature is used as an additional bounding measure whenever a new, tighter
upper bound was found after a task was spawned.

The spawn-to-call feature can reduce the overhead of the task scheduler by reducing par-
allelism if enough parallelism is available. Since converting task spawns to function calls
may work against the heuristics that ensure that the best solution is found faster, it is only
performed whenever the gains of these heuristics are expected to be negligible. The best com-
promise we found (shown in Listing 7.4) was to enable spawn-to-call conversion for tasks that
are expected to only yield little additional work, which are tasks for which the lower bound is
close to the global upper bound. The exact boundary at which task spawns are converted to
function calls depends on the number of tasks stored in the queues, to ensure that sufficient
parallelism is available at all times.

Graph Bipartitioning 149

Listing 7.4 Implementation of the graph bipartitioning strategy in Pheet. (simplified)

1 class EstimateStrategy : public BaseStrategy {

2 public:

3 // Inform scheduling system about the preferred priority queue implementation

4 typedef PriorityQueueImplementation TaskStorage;

5

6 EstimateStrategy(SubProblem* sub_problem)

7 :place(Pheet::get_place()),

8 sub_problem(sub_problem),

9 estimate(sub_problem->get_estimate()),

10 uncertainty(sub_problem->get_estimate() - sub_problem->get_lower_bound()),

11 lower_bound(sub_problem->get_lower_bound()),

12 global_upper_bound(sub_problem->global_upper_bound)

13 {}

14

15 bool prioritize(Self& other) {

16 Place* p = Pheet::get_place();

17 if(this->place == p) {

18 if(other.place == p)

19 return estimate < other.estimate;

20 else

21 return true;

22 }

23 else if(other.place == p) {

24 return false;

25 }

26 return uncertainty > other.uncertainty;

27 }

28

29 bool dead_task() {

30 return lower_bound == *global_upper_bound;

31 }

32

33 /*

34 * Checks whether spawn can be converted to a function call

35 */

36 inline bool can_call(TaskStoragePlace* p) {

37 // Retrieve newest value for the global upper bound

38 size_t ub = *global_upper_bound;

39 // Do not bother creating a task if this branch will be cut off

40 if(lower_bound >= ub)

41 return true;

42 size_t diff = ub - lower_bound;

43 size_t open = (diff / (1 + (ub/sub_problem->size))) >> 1;

44

45 return open < 28 && (p->size()*p->size() >> open) > 0;

46 }

47

48 private:

49 Place* place;

50 SubProblem* sub_problem;

51 size_t estimate;

52 size_t uncertainty;

53 size_t lower_bound;

54 size_t* global_upper_bound;

55 };

150 Chapter 7 The Pheet Benchmarks

7.4.3 Results

We have performed our experiments on Erdős-Rényi random graphs [54, 64]. All measure-
ments shown in this section are averages over 100 experiments on the same type of graph, but
with different random seeds. For each implementation variant of the algorithm the same 100
random graphs were used for better comparability.

In our experiments we compare the following variants of graph bipartitioning:

Sequential A sequential execution of the branch and bound algorithm, where all task spawns
are replaced by function calls.

Work-Stealing Baseline implementation based on work-stealing that does not use strategies.

Priority Work-Stealing Strategy-based implementation that uses priority work-stealing (Sec-
tion 5.2).

Centralized k Strategy-based implementation that uses the centralized k-priority queue from
Section 5.3 for storing tasks.

Hybrid k Strategy-based implementation that uses the hybrid k-priority queue from Sec-
tion 5.4 for storing tasks.

CLSM Strategy-based implementation that uses the concurrent LSM priority queue from Sec-
tion 5.8 for storing tasks.

Some of the presented schedulers, name centralized k, hybrid k and priority work-stealing,
rely on an older version of the interface for strategies, and therefore use a strategy different
from the strategy presented in the previous section, which is the best strategy for graph
bipartitioning found in previous work [142, 143]. The new strategy for graph bipartitioning
used for the CLSM implementation is still a work in progress, and while it tries to imitate
the behaviour of the old strategy it has not yet been tuned to the same extent, thus better
performance results can be expected for the older implementation.

Results for dense graphs of size n = 35 and edge probability p = 90% are shown in
Figure 7.7. The shown results were obtained using the Intel compiler. Results obtained with
GCC show similar behaviour on both machines, but provide worse absolute performance, and
will therefore not be shown separately. It can be seen that task priorities can even help improve
the performance in the sequential case, with a 9% improvement over the sequential execution
for priority work-stealing. The algorithm provides good scalability on both machines. On
Mars, a speed-up of 18.5 over the sequential implementation can be achieved with the hybrid
k-priority queue on 40 threads (there is some slowdown when moving from 40 to 80 threads,
though), and on Saturn the speed-up is 21.3 on 48 threads.

What can be seen is that, if well optimized, strategies can help to improve both perfor-
mance and scalability. The implementation of graph bipartitioning that uses our new model
(CLSM) for strategies is still a work in progress, and thus it is visibly slower than the well-
tuned old implementations based on strategies for small numbers of threads. It nonetheless
already provides a significant performance advantage over the parallel implementation with-
out strategies. With higher numbers of threads this implementation is even able to match the
performance of the other strategy.

In Section 7.8.5, we show that there are large differences in the overheads of the data
structures used by schedulers to store tasks, with centralized k having the highest overhead.
What is interesting to see in Figure 7.7 is that central k, hybrid k and priority work-stealing,
which are all based on the same strategy, have roughly the same performance. This shows
that due to conversion of task spawns to function calls, the actual number of tasks stored in

Quicksort 151

0.0

2.5

5.0

7.5

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

2.5

5.0

7.5

10.0

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Work−Stealing
Priority Work−Stealing
Centralized k
Hybrid k
CLSM

Figure 7.7: Average execution time of graph bipartitioning on dense random graphs Mars
(left) and Saturn (right). (n = 35, p = 90%, Intel compiler)

0

1

2

3

4

1 2 3 5 10 20 40 80

Places/Threads (P)

T
im

e
un

til
 s

ol
ut

io
n

(s
)

0

1

2

3

4

5

1 2 3 6 12 24 48

Places/Threads (P)

T
im

e
un

til
 s

ol
ut

io
n

(s
)

Sequential
Work−Stealing
Priority Work−Stealing
Centralized k
Hybrid k
CLSM

Figure 7.8: Average time until the best solution was found for graph bipartitioning on dense
random graphs Mars (left) and Saturn (right). (n = 35, p = 90%, Intel compiler)

any of the task queues is small enough so that the overhead becomes negligible. The good
scalability also shows that this optimization does not have a visible impact on parallelism.

While converting task spawns to function calls to reduce scheduler overhead is an opti-
mization that can help throughout the execution of the algorithm, prioritization of tasks can
help reduce total work, by finding good solutions faster. As soon as the best solution was
found, nothing can be gained by prioritization of tasks. To better show the gains from pri-
oritization, in addition to the total execution time we also measured the last time the global
solution was updated, which is the time at which the best solution was found. This metric
has a high variance, since there is an element of chance involved, but it gives an insight into
the usefulness of a heuristic for prioritization nonetheless.

The results of these measurements are shown in Figure 7.8. What can be seen is that the
heuristics provide significant gains due to strategies. Since these gains are higher than for
the total execution time, this effect can not be explained by the conversion of task spawns to
function calls, and must therefore come from the prioritization of tasks.

For comparison, we now also show results for sparse graphs. Total execution time is
shown in Figure 7.9, the time until the optimal solution was found is shown in Figure 7.10.
The results are fairly similar to the results for dense graphs. We tested graph bipartitioning
for several other graph sizes and densities, with similar results (not shown here).

7.5 Quicksort

Quicksort is a textbook algorithm commonly used to demonstrate divide-and-conquer al-
gorithms. As with many divide-and-conquer algorithms parallelization of this algorithm is

152 Chapter 7 The Pheet Benchmarks

0.0

0.5

1.0

1.5

2.0

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Work−Stealing
Priority Work−Stealing
Centralized k
Hybrid k
CLSM

Figure 7.9: Average execution time of graph bipartitioning on sparse random graphs Mars
(left) and Saturn (right). (n = 59, p = 10%, Intel compiler)

0.0

0.3

0.6

0.9

1 2 3 5 10 20 40 80

Places/Threads (P)

T
im

e
un

til
 s

ol
ut

io
n

(s
)

0.0

0.5

1.0

1 2 3 6 12 24 48

Places/Threads (P)

T
im

e
un

til
 s

ol
ut

io
n

(s
)

Sequential
Work−Stealing
Priority Work−Stealing
Centralized k
Hybrid k
CLSM

Figure 7.10: Average time until the best solution was found for graph bipartitioning on sparse
random graphs Mars (left) and Saturn (right). (n = 59, p = 10%, Intel compiler)

straightforward: recursive calls to quicksort are independent of each other and can there-
fore be executed concurrently. This makes quicksort a convenient textbook example for task
parallel programming as well, as seen in Section 2.2.

In spite of its popularity, the straightforward parallelization of quicksort has limited scal-
ability, a fact which is often overlooked. This comes from the fact that the partitioning step
is not parallelized, thus creating an expected critical path of length O(n). Since a sequen-
tial Quicksort execution has expected time O(n log n), the maximum achievable speedup is
O(log n), which is not sufficient for weak scaling. Halstead [72] first presented a task parallel
implementation of quicksort that also parallelizes the partitioning step, but with an algorithm
that does not work in place. Tsigas and Zhang [135] provided an in-place algorithm for quick-
sort with a parallel partitioning step, but the algorithm assumes a data parallel programming
model, and cannot be easily combined with standard task-parallel programming models. Us-
ing mixed-mode scheduling, we were able to implement a variant of the Tsigas and Zhang
quicksort algorithm for task parallel programming models [146, 147].

7.5.1 Aim of this benchmark

Due to its popularity as a textbook example, quicksort implementations are available for most
task-parallel programming models. This allows for easy performance comparisons between
different such programming models.

We use quicksort to demonstrate the usefulness of mixed-mode scheduling for this appli-
cation. While the improved performance is not due to the scheduler, but due to the algorithm
that exposes more parallelism, the lack of task-parallel in-place algorithms for parallel parti-
tioning gives a good argument for mixed-mode scheduling.

Quicksort 153

In addition, we have implemented an algorithm that uses strategies to always explore the
smaller sub-problem first and leaving the larger sub-problem to be stolen.

7.5.2 Implementation

Our parallel implementation of quicksort, which is shown in Listing 7.5, is a typical textbook
implementation, which partitions the data and recursively spawns more work until a cutoff,
at which it switches to a sequential algorithm.

Listing 7.5 Implementation of the quicksort task in Pheet. (simplified)

1 virtual void operator()()

2 {

3 if(length <= CUTOFF)

4 sequential_quicksort(data, length);

5

6 unsigned int * middle = std::partition(data, data + length - 1,

7 std::bind2nd(std::less<unsigned int>(), *(data + length - 1)));

8 size_t pivot = middle - data;

9 std::swap(*(data + length - 1), *middle); // move pivot to middle

10

11 Pheet::spawn<Self>(data, pivot);

12 Pheet::call<Self>(data + pivot + 1, length - pivot - 1);

13 }

7.5.3 Strategies

We have also implemented an algorithm based on strategies to see whether it is possible
for a simple algorithm like quicksort to profit from strategies. Since the algorithm is executed
sequentially after a cutoff there is not much to be gained from converting task spawns to func-
tion calls, therefore we focused on priority scheduling. Prioritization uses a simple scheme
shown in Listing 7.6, where locally spawned tasks are always prioritized, with the task on the
smallest subsequence always being executed first, and other threads stealing tasks operating
on the longest subsequence.

Listing 7.6 Implementation of the prioritization function in the quicksort strategy in Pheet.
(simplified)

1 bool prioritize(QuicksortStrategy& other)

2 {

3 Place* p = Pheet::get_place();

4 if(this->place == p) {

5 if(other.place == p) {

6 return length < other.length;

7 }

8 return true;

9 } else if(other.place == p) {

10 return false;

11 }

12 return length > other.length;

13 }

154 Chapter 7 The Pheet Benchmarks

7.5.4 Mixed-mode parallel algorithm

The mixed-mode parallel exposes additional parallelism compared to the quicksort algorithm
presented in the previous section, by executing the partitioning step in parallel in case of
insufficient parallelism in the algorithm. The array is divided into N blocks of size B, and the
root task is allowed to be executed by a team of size T ≤ N

8 + 1. After partitioning, the team is
divided up between the sub-tasks as shown in Listing 7.7. Since the current Pheet scheduler is
allowed to use more than the requested number of threads to execute a mixed-mode parallel
task whenever these threads would otherwise be idle, an additional check is made to ensure
team sizes do not grow beyond the number of blocks in a sub problem.

Listing 7.7 Implementation of the mixed-mode quicksort task in Pheet. (simplified)

1 virtual void operator()()

2 {

3 procs_t team_size = Pheet::Environment::get_place()->get_team_size();

4 if(team_size == 1) {

5 // Switch to non mixed-mode algorithm

6 Pheet::template call<Quicksort>(data, length);

7 return;

8 }

9

10 // Run parallel partitioning algorithm for whole team

11 partition();

12

13 // Make sure all threads have finished partitioning

14 barrier.barrier(0, team_size);

15

16 // Maximum number of processors used for sub-teams

17 procs_t team_max = std::min(team_size, ((length / BLOCK_SIZE) / 8) + 2);

18 // Divide up team for the subtasks

19 procs_t team_size1 = std::max((pivot * team_max) / length, 1);

20 procs_t team_size2 = team_size - team_size1;

21

22 // Spawn mixed-mode sub-tasks processors

23 Pheet::spawn_nt<MMQuicksort>(team_size1, data, len);

24 Pheet::spawn_nt<MMQuicksort>(team_size2, data + pivot + 1, length - pivot - 1);

25 }

For the partitioning step, a modified version of the parallel partitioning algorithm by Tsigas
and Zhang is used [135]. In this algorithm, the array is divided into blocks, and each thread
will grab one block from each side of the array and swap items between those blocks similar
to a standard partitioning algorithm. After finishing to process a block, a thread will attempt
to get another block from the same side. Our algorithm [147] differs from Tsigas and Zhang’s
algorithm in what happens once all blocks from one side have been grabbed. While in their
algorithm one thread will process all remaining blocks sequentially, our algorithm has threads
with larger thread-ids yield their blocks to threads with lower thread-ids.

7.5.5 Results

We run our sorting algorithms on arrays of 107 (32-bit) integers. We base our experiments
on a uniformly random data distributions, and a gauss distribution for the arrays. Experi-

Prefix Sums 155

0.0

0.5

1.0

1.5

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.5

1.0

1.5

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Work−Stealing
Strategy
Mixed−Mode

Figure 7.11: Average execution time of quicksort on the random data-set on Mars (left) and
Saturn (right). (n = 107, Intel compiler)

ments for mixed-mode scheduling with additional data distributions can be found in previous
work [146].

In our experiments we compare the following variants of graph bipartitioning:

Sequential A sequential implementation of quicksort.

Work-Stealing The parallel quicksort algorithm from Section 7.5.2 executed on a work-stealing
scheduler.

Strategy The priority scheduled quicksort algorithm from Section 7.5.3, run on a scheduler
that uses the concurrent LSM priority queue for maintaining the task execution order.

Mixed-Mode The mixed-mode parallel algorithm that uses relies on the parallel partitioning
step.

Results on random arrays are shown in Figure 7.11. We have measured the performance
both for the Intel compiler and GCC, but since the behaviour of the application is the same
on both compilers, with only a small performance difference, we only show the results for the
Intel compiler.

What can be seen is that the all parallel algorithms provide reasonable scalability on a
single NUMA node, but cannot scale beyond that. This is expected, since this benchmark
currently is not optimized for NUMA architectures, resulting in the whole array being located
on a single NUMA node. Both the standard work-stealing algorithm and the algorithm based
on strategies provide reasonable scalability, given the scalability bottleneck due to the sequen-
tial partitioning step. The prioritization of smaller sub-arrays due to strategies provides a
small performance advantage over the standard work-stealing algorithm, due to better cache
locality, regardless of the number of threads.

On small numbers of threads the mixed-mode parallel algorithm provides performance
similar to the work-stealing algorithm, with a small overhead due to the higher scheduler
overhead. The advantages of using a parallel partitioning step become apparent when scaling
up the algorithm.

Performance for the gauss data distribution is shown in Figure 7.12. There is no visible
difference in behaviour for to the random data distribution.

7.6 Prefix Sums

Prefix sums or scan is a commonly used algorithmic primitive, which is the base for many
(parallel) algorithms [21]. The problem is for an array of numbers to calculate the prefix sum

156 Chapter 7 The Pheet Benchmarks

0.0

0.5

1.0

1.5

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.5

1.0

1.5

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Work−Stealing
Strategy
Mixed−Mode

Figure 7.12: Average execution time of quicksort on the gauss data-set on Mars (left) and Saturn
(right). (n = 107, Intel compiler)

3 5 2 8 4 7 3 5 9 7 1 4 2 3 7 3

18 19 21 15

(a) First pass: Calculating block sums

0 18 37 58

(b) Calculating exclusive prefix sums for auxiliary array

3 8 10 18 22 29 32 37 46 53 54 58 60 63 70 73

0 18 37 58

(c) Second phase: Calculating prefix sums per block with offset

Figure 7.13: A parallel prefix sums algorithm.

(the sum of all items before a certain item) for each item in the array. This can be easily done
sequentially in a single pass, by linearly scanning through all items and updating the array
(hence the synonym scan).

The sequential algorithm cannot be parallelized, though, due to data dependencies be-
tween iterations of the algorithm. Instead, the standard algorithm for parallel prefix sums [21]
requires two passes on the data as shown in Figure 7.13. In the first pass (a), the data is split
into multiple blocks, and the sum of all elements in a block is calculated and stored in an
auxiliary array with one element per block. Next, the prefix sums are recursively calculated
for the auxiliary array (b). Finally, in the second pass (c), the prefix sums are calculated for
each block, with the offset being taken from the auxiliary array.

7.6.1 Aim of this benchmark

Prefix sums is a commonly used algorithm, and a basic primitive used for the implementa-
tion of many other algorithms. Prefix sums has a high ratio of data accesses with regard to
computation, making it memory bandwidth bound on many current shared memory archi-
tectures. Vectorization allows to further improve this algorithm’s performance, but puts an
even higher strain on the memory bandwidth. This allows to explore the limits on scalability

Prefix Sums 157

due to memory bandwidth for different architectures.
Another point that makes prefix sums an interesting benchmark is that any parallel algo-

rithm requires more work than the sequential algorithm [125]. This opens up possibilities for
adaptive algorithms that will smoothly blend between the sequential and parallel algorithms
depending on the available parallelism.

7.6.2 Basic implementation

Listing 7.8 Implementation of the prefix sums main task in Pheet.

1 virtual void operator()() {

2 if(length > BlockSize) {

3 size_t num_blocks = ((length - 1) / BlockSize) + 1;

4 aligned_data<unsigned int, 64> auxiliary_data(num_blocks);

5

6 // Calculate offsets

7 Pheet::finish<OffsetTask>(data, auxiliary_data.ptr(), num_blocks, length);

8 // Prefix sum on offsets

9 Pheet::finish<ExclusivePrefixSums>(auxiliary_data.ptr(), num_blocks, pc);

10 // Calculate local prefix sums based on offset

11 Pheet::finish<LocalSumTask>(data, auxiliary_data.ptr(), num_blocks, length);

12 } else {

13 // Perform sequential prefix sums on block if only one block exists

14 . . .
15 }

16 }

Listing 7.9 Implementation of the prefix sums OffsetTask in Pheet.

1 virtual void operator()() {

2 if(blocks == 1) {

3 // Sum up block

4 unsigned int sum = 0;

5 for(size_t i = 0; i < length; ++i) {

6 sum += data[i];

7 }

8 auxiliary_data[0] = sum;

9 } else {

10 // Recursively spawn tasks

11 size_t half = blocks >> 1;

12 size_t half_l = half * BlockSize;

13

14 Pheet::spawn<Self>(data + half_l, auxiliary_data + half, blocks - half,

15 length - half_l);

16 Pheet::call<Self>(data, auxiliary_data, half, half_l);

17 }

18 }

Our basic algorithm for prefix sums is based on the two-pass algorithm described above.
Listing 7.8 shows the function body of the main task in our implementation in Pheet. In
the first phase, the array is split into equally sized blocks (which should be aligned to cache
lines), and an auxiliary array is created, which will store the sums of elements in each block.

158 Chapter 7 The Pheet Benchmarks

Then, the OffsetTask is called, which recursively spawns tasks, where each task sums up a
single block and stores the value in the auxiliary array as shown in Listing 7.9. As soon as
all OffsetTasks finished executing, exclusive prefix sums need to be created for the auxiliary
array, which is done by a recursive call to the prefix sums algorithm.

Finally, as soon as the prefix sums of the block offsets are available, the prefix sums for
each block can be calculated independently, since the auxiliary array contains the sums of all
items before the first element of each block. This is done in the LocalSumTask, for which the
function body of the task implementation is shown in Listing 7.10. Similar to the OffsetTask,
the LocalSumTask recursively spawns more tasks until there is a single task available for each
block.

Listing 7.10 Implementation of the prefix sums LocalSumTask in Pheet.

1 virtual void operator()() {

2 if(blocks == 1) {

3 // Sum is initialised to the sum of all items before the first element

4 // in the block

5 unsigned int sum = auxiliary_data[0];

6 // Sequentially calculate prefix sums for block

7 . . .
8 }

9 else {

10 // Recursively spawn tasks

11 size_t half = blocks >> 1;

12 size_t half_l = half * BlockSize;

13

14 Pheet::spawn<Self>(data + half_l, auxiliary_data + half, blocks - half,

15 length - half_l);

16 Pheet::call<Self>(data, auxiliary_data, half, half_l);

17 }

18 }

7.6.3 Adaptive algorithm

The main drawback of the basic algorithm for prefix sums is that it always has to pay the
overhead for parallelism by requiring two passes on the data, even if it is executed only by a
single thread. We developed an adaptive algorithm that will smoothly blend the sequential
and the parallel algorithm together to ensure that the overhead for parallelism is only paid in
case there exists actual parallelism. The main idea behind the algorithm is to have a single
thread process the blocks in sequential order as in the sequential algorithm (while still putting
the sums of the blocks into the auxiliary array), until a block is encountered that has been
processed by another thread. This way, a second pass is only required for all blocks that have
been processed in parallel.

Our basic prefix sums algorithm can be easily adapted to this adaptive algorithm by mod-
ifying the main task and the OffsetTask of the original algorithm. The implementation of
the main task is shown in Listing 7.11. The main difference to the original algorithm is that
a counter variable is used to keep track of the sequentially processed blocks. Prefix sums for
the auxiliary array are then only calculated for the last sequentially processed block and all
blocks that were processed in parallel. The LocalSumTask is only called for all blocks that
were processed in parallel and uses the same implementation as the original algorithm.

Prefix Sums 159

Listing 7.11 Implementation of the adaptive prefix sums main task in Pheet.

1 virtual void operator()() {

2 if(length > BlockSize) {

3 size_t num_blocks = ((length - 1) / BlockSize) + 1;

4 aligned_data<unsigned int, 64> auxiliary_data(num_blocks);

5 // Counts how many blocks have been processed sequentially

6 std::atomic<size_t> sequential(0);

7

8 // Calculate offsets

9 Pheet::template finish<OffsetTask>(data, auxiliary_data.ptr(), num_blocks,

10 length, 0, sequential);

11 size_t seq = sequential.load(std::memory_order_relaxed);

12 // Were any blocks executed in parallel?

13 if(seq < num_blocks) {

14 // Prefix sum on offsets

15 Pheet::finish<ExclusivePrefixSums>(auxiliary_data.ptr() + seq - 1,

16 num_blocks + 1 - seq, pc);

17

18 // Calculate local prefix sums based on offset

19 Pheet::finish<LocalSumTask>(data + (seq * BlockSize),

20 auxiliary_data.ptr() + seq, num_blocks - seq, length - (seq * BlockSize));

21 }

22 }

23 else {

24 // Perform sequential prefix sums on block if only one block exists

25 . . .
26 }

27 }

The modified version of the OffsetTask is shown in Listing 7.12. As in the basic imple-
mentation, this task will recursively spawn more instances of itself, until a task is available for
each block. When processing a single block, the adaptive algorithm distinguishes between the
sequential and the parallel case. If the block id equals the number of sequentially processed
block this means that the given block is also processed sequentially. In this case, the algorithm
will retrieve the offset from the previous block out of the auxiliary array, and then calculate
the prefix sums for the given block. Finally, when the prefix sums are calculated, the element
in the auxiliary array corresponding to the given block is filled with the sum of all elements
until the end of the given block. This includes all elements in the preceding blocks as well.
As a last step, the counter for the sequentially processed blocks is incremented to signal that
another block has been processed sequentially.

7.6.4 Strategies

One thing that makes the adaptive algorithm so useful is that it will even reduce the total
amount of work if there is some parallelism available, since for all blocks up until the first
block processed in parallel only a single pass is required. To maximize this effect, it is best
if all threads that do not process blocks in a sequential order preferably process blocks as far
away as possible from the sequentially processed blocks. The adaptive algorithm has already
been written such that it can achieve such a behaviour up to a certain point on a work-stealing
scheduler. When recursively splitting blocks, the algorithm will always first create the task for
the right half of the array before recursively calling itself for the left half. This way blocks will

160 Chapter 7 The Pheet Benchmarks

Listing 7.12 Implementation of the adaptive prefix sums OffsetTask in Pheet.

1 virtual void operator()() {

2 if(blocks == 1) {

3 // Have all blocks before this block been sequentially processed

4 if(block_id == sequential.load(std::memory_order_relaxed)) {

5 // Calculate offset

6 unsigned int sum = (block_id == 0)?0:auxiliary_data[block_id - 1];

7 // Sequential prefix sums

8 . . .
9 // Store sum in auxiliary array

10 auxiliary_data[block_id] = sum;

11 // This block has been processed sequentially as well

12 sequential.store(block_id + 1, std::memory_order_release);

13 }

14 else {

15 // Sum up blocks, this is a block that is processed in parallel

16 unsigned int sum = 0;

17 for(size_t i = 0; i < length; ++i) {

18 sum += data[i];

19 }

20 auxiliary_data[block_id] = sum;

21 }

22 }

23 else {

24 // Recursively spawn tasks

25 size_t half = blocks >> 1;

26 size_t half_l = half * BlockSize;

27

28 Pheet::spawn<Self>(data + half_l, auxiliary_data, blocks - half,

29 length - half_l, block_id + half, sequential);

30

31 Pheet::call<Self>(data, auxiliary_data, half, half_l, block_id, sequential);

32 }

33 }

be stored in a work-stealing deque in order from the rightmost range of blocks to the leftmost.
Due to the first-in first-out behaviour of typical steal operations, a work-stealing scheduler will
steal the rightmost range of blocks first, and only steal more blocks when all blocks have been
processed. Nonetheless, the more threads are in the system, the more random the choice of
block to process becomes, making the gains from the adaptive algorithm small.

In previous work [142, 143] we used scheduling strategies to ensure such an adaptive
behaviour. For this work we were able to implement an adaptive algorithm without the use of
strategies. To find out whether more performance can be gained by using strategies, we have
also implemented a variant of the adaptive algorithm that relies on strategies.

7.6.5 Vectorization

In cases, where the memory bandwidth is not exhausted by the conventional algorithm, vec-
torization can help to further accelerate the algorithm. This can be easily done for the first
phase, and this is done automatically by some compilers. The second phase, where prefix
sums are calculated separately for each block, requires replacing the sequential prefix sums
algorithm with a parallel one to make it vectorizable. In contrast to the coarse-grained parallel

Prefix Sums 161

0.0

0.1

0.2

0.3

0.4

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.1

0.2

0.3

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Parallel
Vectorized
Adaptive
Strategies

Figure 7.14: Average execution time of prefix sums on Mars (left) and Saturn (right). (n = 108,
GCC)

algorithm, this fine-grained parallelization for vectorization works on subsequent elements in
an array. For this, our algorithm performs element-wise shifts on the given vector and adds
the shifted vector to the original one. The amount the vector is shifted is doubled on every
step. We manually unrolled the loop performing those shifts for higher performance.

7.6.6 Results

We run our prefix sums algorithms on arrays of 108 (32-bit) integers. The numbers shown
are mean values from 20 experiments. Since the Intel compiler generated significantly slower
code on Saturn for the parallel algorithms, we show results for GCC.

In our experiments we compare the following variants of graph bipartitioning:

Sequential A sequential implementation of prefix sums.

Parallel Algorithm The basic parallel algorithm, run on a work-stealing scheduler

Adaptive The adaptive algorithm run on a work-stealing scheduler

Strategies The algorithm with strategies, run on a scheduler with a k-LSM priority queue and
k = 8.

Results are shown in Figure 7.14. The overhead of the parallel algorithm over the sequen-
tial, due to the required second pass over the data, is clearly visible. Nonetheless, the overhead
is not a factor of two, since the compiler is able to automatically vectorize the first phase of
the algorithm. The gains from manually vectorizing the algorithm are small, and in some
cases the vectorized code is even slower than the original code. This is different from our ob-
servations in previous work [145], where we achieved significant performance improvements
due to vectorization. The main reason for this is that we now rely on a different parallel algo-
rithm for parallel prefix sums, which is easier for compilers to automatically vectorize, thus
achieving better performance by default.

The adaptive algorithm comes close to sequential performance, since it only performs
a single pass over the data. On more than one thread, both the parallel and the adaptive
algorithm scale well and are able to beat sequential performance. On Saturn some additional
NUMA performance overhead can be seen for 24 threads. The algorithm is scalable to NUMA
architectures nonetheless, and on 48 threads a significant speed-up can be seen. To achieve
NUMA scalability it is necessary for the input data to be distributed over all NUMA nodes.

Even though the algorithm based on strategies tends to perform less work compared to
the adaptive algorithm, the additional overhead for priority scheduling outweigh the gains.

162 Chapter 7 The Pheet Benchmarks

0.0

0.5

1.0

1.5

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.5

1.0

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Parallel
Vectorized
Adaptive
Strategies

Figure 7.15: Average execution time of four instances of prefix sums on Mars (left) and Saturn
(right). (n = 108, GCC)

Furthermore, scalability limits of the k-LSM priority queue result in significantly worse scala-
bility of the algorithm. In previous work [142,143] we used our algorithm based on strategies
as an argument for using strategies. Our new adaptive algorithm, makes the algorithm based
on strategies obsolete, however.

The performance advantage of the adaptive algorithm over the parallel algorithm quickly
decreases with higher numbers of threads, since the amount of blocks on which only a single
pass is required becomes smaller. The good thing about the adaptive algorithm is that it does
not provide a slowdown compared to the parallel algorithm, and thus can always be used as
a replacement for it. Whenever the prefix sums algorithm cannot utilize the full parallelism
of the system, either due to other algorithms running on the same scheduler, or due to other
applications running in a multiprogrammed environment, the adaptive algorithm can auto-
matically reduce the amount of work. This is shown in Figure 7.15, where four instances of the
prefix sums algorithm are run at the same time. As can be seen, the performance advantage
of using the adaptive algorithm persists to larger numbers of threads.

7.6.7 Future work

Our current algorithm implementations do not take into account NUMA effects, where com-
munication costs may differ depending on whether a processor accesses a block that is stored
locally or at a different NUMA node. By actively querying such NUMA locality information
for each block in the array, it should be possible to achieve a NUMA-aware schedule, which
reduces communication costs in-between NUMA nodes and therefore increases scalability of
the algorithm.

7.7 Triangle Strip Generation

The generation of triangle strips to represent 3D models is a common optimization to improve
rendering performance. Instead of providing individual triangles to the rendering hardware,
adjacent triangles are combined into strips, where vertices appearing in two adjacent triangles
only have to be transmitted once. This lowers the number of vertices from 3n to n + 2. In the
optimal case one would need only one triangle strip to represent the entire model. Finding
such a strip can however be reduced to the NP-complete problem of finding an Hamiltonian
path in a dual graph of the model, where nodes represent triangles and edges represent
adjacent triangles. This problem is thus best solved using heuristics.

Triangle Strip Generation 163

7.7.1 Aim of this benchmark

The main reason for including this benchmark into Pheet is to show that strategies can lead to
qualitatively better results, as well as performance improvements. In this case, the quality can
be measured by the number of generated triangle strips (the less the better) and the length of
these strips. To achieve a higher quality, strategies employ a heuristic for prioritization that
preferably picks nodes with a low number of neighbours.

7.7.2 Implementation

For this benchmark we have used a version of the so called SGI algorithm [55]. A node on
the graph is randomly picked from the set of nodes with the lowest degree. This is done to
minimize the number of single triangle strips. A strip is then built by adding neighbouring
nodes to the strip at both ends. Priority is given to nodes with a low number of neighbours.
When no more nodes can be added to the strip, a new node is randomly picked and a new
strip is started. This is repeated until all nodes are part of a strip.

The benchmark uses two types of tasks. The first is the StartTask, which at spawn-time
is assigned a pointer to a possible node to start a triangle strip from. The strategy for this
type of task stores the number of neighbouring nodes that are not part of a strip, and it uses
that to prioritize tasks. Generating a strip is a relatively quick operation, so it is suitable for
spawn-to-call transformation and is thus given a low transitive weight. Spawning a StartTask

for every node in the graph would be wasteful, as many will be part of other triangle strips
and thus not eligible to start a new strip from. Instead we provide a second type of task,
the SpawnTask, to gradually spawn new StartTasks when needed and only for eligible start
nodes. This task spawns new StartTasks for a given interval of nodes. It does not allow
the task to be transformed into a call. The two strategies are composed by a common parent
strategy that gives priority to SpawnTasks when stealing and to StartTasks when working
locally.

7.7.3 Results

The data used for the benchmark is the 3D model Lucy from the Stanford 3D Scanning Repos-
itory1. The model consists of around 28 million triangles.

In our experiments we compare the following variants of triangle strip generation:

Standard A parallel algorithm without strategies.

Strategies A variant with strategies based on priority work-stealing.

The triangle strip implementation in Pheet is currently not maintained, and thus no im-
plementations on newer schedulers are available. We decided to show the results nonetheless,
since it is an interesting example that shows that strategies can be used to improve the quality
of results as well.

Execution times for both Mars and Saturn are shown in Figure 7.16. For Saturn, the imple-
mentation based on strategies is consistently faster compared to the standard parallel imple-
mentation. This confirms results from previous work [142, 143]. On Mars, a scalability issue
reproducibly occurs for less than 20 threads. So far, we were not able track the cause of this
issue, but we assume that this comes from a bug in the implementation of the algorithm with
strategies.

1http://graphics.stanford.edu/data/3Dscanrep

http://graphics.stanford.edu/data/3Dscanrep

164 Chapter 7 The Pheet Benchmarks

0

2

4

6

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0

2

4

6

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Standard
Strategies

Figure 7.16: Average execution time of triangle strip generation on Mars (left) and Saturn
(right). (Model: Lucy, GCC)

0e+00

2e+05

4e+05

1 2 3 5 10 20 40 80

Places/Threads (P)

N
um

be
r

of
 s

tr
ip

s
ge

ne
ra

te
d

0e+00

2e+05

4e+05

1 2 3 6 12 24 48

Places/Threads (P)

N
um

be
r

of
 s

tr
ip

s
ge

ne
ra

te
d

Standard
Strategies

Figure 7.17: Number of triangle strips generation (lower is better) on Mars (left) and Saturn
(right). (Model: Lucy, GCC)

The objective of a good heuristic for triangle strip generation is to reduce the number of
triangle strips generated. Thus, the number of triangle strips generated can be used as a
metric for the quality of the result. We show the number of strips generated in Figure 7.17.
What can be seen is that for the standard parallel algorithm the number of strips generated
increases with the number of threads. For the algorithm based on strategies, on the other
hand, less triangle strips are generated for higher numbers of threads. It is interesting to note,
that the number of strips generated in parallel is even less than for the sequential execution
in many cases.

7.8 Single-source Shortest Paths

Single-source shortest paths (SSSP) is another classic algorithmic problem that has been well
studied both in the sequential and the parallel context [7, 31, 44, 73, 104]. To our knowledge,
the first publicly known work-efficient (in the average case) parallel algorithm for the single
source shortest path problem was the ∆-stepping algorithm by Meyer and Sanders [104].

7.8.1 Aim of this benchmark

We use the single-source shortest paths problem to demonstrate how the priority task schedul-
ing programming model can enable programmers to implement a parallel algorithm for
single-source shortest paths with only a few lines of code. In addition, we made use of
the fact that SSSP has been extensively studied and is well understood to analyse what guar-
antees concerning the execution order of tasks a scheduling system needs to provide in order

Single-source Shortest Paths 165

to be useful for the implementation of the SSSP algorithm. While our parallel algorithm for
SSSP is certainly not the fastest or most scalable, it provides valuable insights about ordering
semantics of priority queues. The knowledge gained from this analysis was used for the im-
plementation of the k-LSM priority queue presented in Section 5.8.18, and we expect to gain
additional insights leading to even more efficient priority queues in future work.

7.8.2 The parallel algorithm

We base our implementation on a simple parallelization of Dijkstra’s algorithm. Dijkstra’s
algorithm maintains a tentative distance value for each node in the graph. At each iteration,
a node relaxation is performed, where the tentative distance values of the neighboring nodes
are updated if the path through the relaxed node is shorter. At termination, the distance from
the source node is available for each node. A priority queue is used to decide the order in
which nodes are relaxed; the priority ordering guarantees that each node is relaxed exactly
once.

Our parallel version relaxes multiple nodes in parallel. Due to the parallelization some
node relaxations might be performed prematurely, when a node is not yet settled, which means
that its distance value is not final. These nodes will have to be re-relaxed when their distance
values are updated. Premature relaxations are therefore useless work.

7.8.3 Implementation

Listing 7.13 Implementation of the SSSP main task in Pheet.

1 virtual void operator()() {

2 // Retrieve distance value

3 size_t d = graph[node].distance.load(std::memory_order_relaxed);

4

5 // Explore all outgoing edges

6 for(size_t i = 0; i < graph[node].num_edges; ++i) {

7 // Get id of target node

8 size_t target_id = graph[node].edges[i].target;

9 // Retrieve tentative distance value for node

10 size_t old_d = graph[target].distance.load(std::memory_order_relaxed);

11 // Calculate distance when going through this node

12 size_t new_d = d + graph[node].edges[i].weight;

13 // Update tentative distance if a better distance value was found

14 while(old_d > new_d) {

15 if(graph[target].distance.compare_exchange_strong(old_d, new_d,

16 std::memory_order_relaxed)) {

17 // Spawn task for updated distance value

18 Pheet::spawn_s<Self>(

19 Strategy(new_d, &graph[target].distance),

20 graph, target, new_d, pc);

21 break;

22 }

23 }

24 }

25 }

In our parallel implementation, which is presented in Listing 7.13, each node that has to be
relaxed corresponds to a task in the scheduling system. For the sake of comparability to other

166 Chapter 7 The Pheet Benchmarks

works on single-source shortest paths, we will use the terms node and relax instead of task and
execute throughout this section. Whenever the tentative distance value of a node is updated,
a new task is spawned and prioritized based on the tentative distance value. This is similar
to Dijkstra’s algorithm, which utilizes a priority queue storing nodes ordered by tentative
distance value to determine the next node to relax. In our case, the part of the priority queue
is taken over by the scheduling system.

We diverge from Dijkstra’s algorithm whenever a better distance value is found for an
active node in the priority queue. Instead of updating the priority using a decrease key oper-
ation, we reinsert the node into the priority queue. This is necessary due to the fact that our
current schedulers do not allow changing the priority of a task once it has been submitted
to the scheduling system. The previous instance of the same node will be recognized by the
scheduling system as a dead task (see also Section 2.7.4), allowing the priority queue to get
rid of the node at its earliest convenience. All this is achieved using a scheduling strategy (see
also Section 2.7) for which the implementation is shown in Listing 7.14. For better readability,
boilerplate functions and type definitions have been omitted in the listing.

Listing 7.14 Implementation of the SSSP strategy in Pheet. (simplified)

1 class Strategy2SsspStrategy : public BaseStrategy {

2 public:

3 // Inform scheduling system about the preferred priority queue implementation

4 typedef PriorityQueueImplementation TaskStorage;

5

6 Strategy2SsspStrategy(size_t stored_distance,

7 std::atomic<size_t>& current_distance)

8 : stored_distance(stored_distance), current_distance(¤t_distance) {}

9

10 bool prioritize(Self& other) {

11 // Tasks with smaller distance execute first

12 return distance < other.distance;

13 }

14

15 bool dead_task() {

16 // A task is recognized as dead if the tentative distance has been updated

17 // since it was created

18 return current_distance->load(std::memory_order_relaxed) < stored_distance;

19 }

20 private:

21 size_t stored_distance;

22 std::atomic<size_t>* current_distance;

23 };

7.8.4 Theoretical analysis

In previous work [144, 148] we have analysed the SSSP algorithm to gain an understanding
of the requirements on the ordering semantics for concurrent priority queues. The analysis
is based on a simplified model of task-parallel computations: execution occurs in temporal
phases and, in each phase, up to P nodes are selected from a priority queue and relaxed in
parallel. Our analysis is restricted to Erdős-Rényi random graphs [54, 64].

The goal of this analysis was to show that, for quantitatively relaxed priority queues, an
upper bound on the amount of useless work generated can be given, and that this amount
is small compared to useful work. In addition, we hoped to gain an insight into the exact

Single-source Shortest Paths 167

semantics of quantitative relaxation required to achieve such bounds. One important result
of this analysis was that, to achieve reasonable bounds, it is sufficient to provide structural
ρ-relaxation guarantees (Section 5.1.3). This opened up the possibility to implement more
scalable ρ-relaxed priority queue which are not required to provide temporal ρ-relaxation
guarantees. One result coming out of this is the new k-LSM priority queue sketched in Sec-
tion 5.8.18. While this priority queue is still a work in progress, we were already able to use it
for our experiments in this section.

The full analysis of the SSSP algorithm can be found in Appendix 7.A.

7.8.5 Results

We give averages over executions on these 20 graphs. Since no visible difference exists between
the results obtained with GCC and the Intel compiler, we only show results obtained with the
Intel compiler.

The following variants of SSSP are shown:

Sequential A sequential implementation of Dijkstra’s algorithm for SSSP that relies on a
binary heap as priority queue.

Priority Work-Stealing Our parallel SSSP algorithm run on our priority work-stealing sched-
uler.

Centralized k Our parallel SSSP algorithm run on a scheduler that uses the centralized k-
priority queue as task queue.

Hybrid k Our parallel SSSP algorithm run on a scheduler that uses the hybrid k-priority
queue as task queue.

CLSM Our parallel SSSP algorithm run on a scheduler that uses the concurrent LSM priority
queue as task queue.

k-LSM Our parallel SSSP algorithm run on a scheduler that uses the k-LSM priority queue, a
ρ-relaxed version of the concurrent LSM priority queue as task queue.

For our first set of experiments we fixed the parameter k for the hybrid k-priority queue
and the k-LSM priority queue to 1024. For the centralized k-priority queue we used k = 512,
since it does not support larger values for k. Both the concurrent LSM and k-LSM priority
queues are still work in progress, and we are aware of some bottlenecks in the current im-
plementation that limit scalability. While the results shown for these priority queues in this
section already look promising, we expect even better results to be achievable in the future.

To gain an insight into the useless work performed by the parallel algorithm, we have
counted the number of node relaxations executed by the SSSP benchmark. In a sequential ex-
ecution, where always an active node with minimal distance label is relaxed next, the number
of node relaxations will always equal the number of nodes in the graph, since each node is
relaxed exactly once. All additional node relaxations performed by the parallel algorithm are
therefore useless work.

This can be seen in Figure 7.18. On a single processor, all variants perform exactly 10000
node relaxations, which is the number of nodes in the graph. With rising number of threads,
the executions relying on priority queues with only local ordering semantics (Priority Work-
Stealing and CLSM) perform a high amount of useless work. CLSM performs less node
relaxations than priority work-stealing due to the use of spying, instead of stealing.

The ρ-relaxed priority queues perform significantly less useless work. For the k-LSM
priority queue, which provides structural ρ-relaxation with ρ = k(P− 1) the amount of useless

168 Chapter 7 The Pheet Benchmarks

0

10000

20000

30000

1 2 3 5 10 20 40 80

Places/Threads (P)

N
od

es
 r

el
ax

ed

0

5000

10000

15000

20000

25000

1 2 3 6 12 24 48

Places/Threads (P)

N
od

es
 r

el
ax

ed

Sequential
Priority Work−Stealing
Centralized k
Hybrid k
CLSM
k−LSM

Figure 7.18: Node relaxations performed by SSSP on dense random graphs on Mars (left) and
Saturn (right). (n = 105, p = 50%, Intel compiler)

0.00

0.25

0.50

0.75

1 2 3 5 10 20 40 80

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.00

0.25

0.50

0.75

1 2 3 6 12 24 48

Places/Threads (P)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Sequential
Priority Work−Stealing
Centralized k
Hybrid k
CLSM
k−LSM

Figure 7.19: Average execution time of SSSP on dense random graphs on Mars (left) and Saturn
(right). (n = 105, p = 50%, Intel compiler)

work still increases visibly with rising numbers of threads. This can be expected since a larger
number of threads allows more tasks to be skipped. Slightly better results for the same k
can be achieved by the hybrid k-priority queue, since it provides temporal ρ-relaxation in
addition, but the benefits are small in comparison to the additional synchronization overhead.
The smallest amount of useless work is performed by the centralized k-priority queue. Even
with 80 threads on Mars it only performs 80 useless node relaxations.

Although ρ-relaxed priority queues perform significantly less work, the actual perfor-
mance advantage is much smaller. Execution time for all variants is shown in Figure 7.19.
What can be seen is the high overhead of the parallel algorithm on all schedulers compared
to a sequential execution. This can be explained by the small granularity of tasks, and the
reinsertion of tasks for a specific node whenever a new distance label was found. Nonethe-
less, some speedup can be achieved with two or more threads on Mars and three threads on
Saturn. No scalability can be achieved when using more than one NUMA node, and even
some slowdown can be seen. The current implementation stores the whole graph on a single
NUMA node. We tried an implementation that distributes the graph to all NUMA nodes, but
it had even worse scalability, and thus the results shown here do not take this into account.

Even though the centralized k-priority queue performs almost no useless work, its limited
scalability makes it impractical for such a fine-grained algorithm. The other ρ-relaxed algo-
rithms show better scalability, but even there the performance advantage over priority work-
stealing is limited, even though priority work-stealing performs significantly more work. The
best performance is achieved by the concurrent LSM though, which even outperforms its
ρ-relaxed counterpart.

To gain better insight into the influence of the parameter k on performance and guaran-

Single-source Shortest Paths 169

0

5000

10000

15000

1 2 4 8 16 32 6412
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

k

N
od

es
 r

el
ax

ed

0

5000

10000

15000

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

k

N
od

es
 r

el
ax

ed

Centralized k
Hybrid k
k−LSM

Figure 7.20: Node relaxations performed by SSSP on dense random graphs for varying k on
Mars (left, P = 20) and Saturn (right, P = 12). (n = 105, p = 50%, Intel compiler)

0.0

0.1

0.2

0.3

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

k

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

0.0

0.2

0.4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

k

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Centralized k
Hybrid k
k−LSM

Figure 7.21: Average execution time of SSSP on dense random graphs for varying k on Mars
(left, P = 20) and Saturn (right, P = 12). (n = 105, p = 50%, Intel compiler)

tees provided by the ρ-relaxed priority queue, we also compare different values of k. Since
the parallel SSSP algorithm does not scale to multiple NUMA nodes, we have restricted our
experiments to a single NUMA node (P = 20 on Mars and P = 12 on Saturn).

The number of node relaxations for varying k are shown in Figure 7.20. As can be seen,
the amount of additional useless work created stays small for all variants for k ≤ 1024. For
larger k, the amount of useless work increases up until a certain point where both the hybrid
k-priority queue and the k-LSM priority queue keep all their work locally, and thus have
behaviour similar to the concurrent LSM. The amount of useless work created by the k-LSM
priority queue increases more abruptly than for the hybrid k-priority queue since it only fulfils
structural ρ-relaxation requirements.

The execution times for varying k are presented in Figure 7.21. Both the hybrid k-priority
queue and the k-LSM priority queue have worse performance than the centralized k-priority
queue for small k, but allow for larger k to be used, which can help to improve performance
and scalability. For the centralized k-priority queue performance peaks around k = 32. The
small, but visible slowdown can be explained by the linear search through k elements which
is required in the worst case for every insertion.

Notes on the experiments

The priority queues and the SSSP algorithm are topics of current research, and the experiments
here present a snapshot of this research. Due to this, some results that are shown here differ
from results presented previously [144, 148]. Since this previous work some performance
regressions have occurred, especially with regard to scalability on NUMA systems, and it is

170 Chapter 7 The Pheet Benchmarks

0

20

40

60

80

0 50 100

Phase

N
um

be
ro

fs
et

tle
d

no
de

s

0

128

512

ρ

0.000

0.005

0.010

0.015

0 50 100

Phase

h
t*

0

128

512

ρ

0

20

40

60

80

0 50 100

Phase

N
um

be
r

of
 s

et
tle

d
no

de
s

Lower Bound

Simulation

Figure 7.22: From left to right: nodes settled per phase; difference between biggest and small-
est tentative distance of nodes relaxed per phase; comparison between the theoretical bound
and the simulation. (n = 10000, P = 80, p = 50%)

not yet clear what has caused these regressions.
The performance of the centralized k-priority queue for small k is a positive surprise, on

the other hand. Recent improvements to this priority queue are most likely the cause of this
change, and we are still investigating the implications of those changes.

7.8.6 Simulation

We have used a simulator to bridge between the findings of our theoretical model and the
experimental results. While we developed our theoretical model, the simulator helped un-
derstand why ρ-relaxation gives such strong guarantees. The simulator uses the phase-wise
execution model used in the theoretical analysis and allows us to vary the parameters P and
ρ. The simulator stores all active nodes in a single array sorted by distance value. Execution
proceeds in phases, where in each phase the first P nodes from the array are relaxed. At the
end of each phase the array is updated with all new active nodes.

If ρ > 0, newly created active nodes are marked with a sequence id. To ensure randomness,
nodes created in a single phase are shuffled first before assigning sequence id’s. The nodes
with the ρ highest sequence id’s are stored separately from the sorted array of nodes. These
nodes represent the nodes that might be ignored due to the ρ-relaxation. An exception is
made if a node has the lowest distance value of all nodes. This node is guaranteed to be
relaxed in the next phase, and is therefore added to the array of active nodes. A deterministic
tie-breaking scheme is used to ensure that only one node has the lowest distance value of all
at any time. In case that less than P nodes are available in the array, a random selection of all
other active nodes is relaxed by the other places.

Simulation results

We ran our simulator in a setting that closely resembles the setup used in our experiments.
We use exactly the same 20 random graphs used in the experiments and report the mean. The
number of places, P, is set to 80, which corresponds to the 80 cores of the machine used in our
experiments. We use three values for ρ: 0, which represents an ideal priority data structure,
128 and 512.

The first graph in Figure 7.22 depicts the number of nodes settled in each phase throughout
the simulation. It can be seen that for most of the execution almost all nodes that are relaxed
are already settled. Non-settled nodes are only encountered in the first phases. For higher ρ
some variation can also be observed towards the end when a significant amount of nodes is
not visible to all places. Throughout most of the execution almost all of the nodes that are
relaxed are already settled.

The middle graph in Figure 7.22 shows h∗t , the difference between the largest and smallest
distance value of nodes relaxed in each phase. After only a few iterations, all of the nodes

Future Work 171

that are relaxed have distance values close to each other, and the distance values only grow a
bit at the end of the execution, a bit more with higher ρ. It is easy to see the close relationship
between distance values and nodes settled per phase.

Finally, the last graph in Figure 7.22 gives a comparison between the theoretical lower
bound and the number of settled nodes in the simulation. It can be seen that the calculated
theoretical lower bound on the number of settled nodes, and the number of nodes settled in
the simulation are very close.

7.9 Future Work

The set of Pheet benchmarks is in constant flux, with new benchmarks being added if needed,
and redundant or unmaintained benchmarks being removed. In the following we explain the
areas in which we plan to expand the Pheet benchmarks in the future.

One important area is the comparability to other task scheduling frameworks. For this
we plan to port and maintain a subset of the Pheet benchmarks to the commonly used task
scheduling frameworks Intel CilkPlus, Intel Threading Building Blocks (TBB) and OpenMP.
This will improve comparability of results obtained with Pheet, and will help to expose any
performance and scalability bottlenecks of Pheet.

Another topic that we plan to improve upon is the scalability of our memory-bound bench-
marks in NUMA environments. For this, we intend to utilize priority scheduling to ensure
that each worker-thread preferable executes tasks operating on data stored in the same NUMA
node.

Finally, we plan to add benchmarks that help us to further expand and evaluate the Pheet
framework. We are currently working on a benchmark for the multi-criteria shortest path prob-
lem [119], which we see as an interesting application of priority scheduling. We expect that bet-
ter scalability for this algorithm can be achieved by using a concurrent pareto priority queue
instead of a normal priority queue in the scheduler. For better evaluation of the container
data structures used inside the Pheet framework (presented in Chapter 5) we also plan to im-
plement benchmarks that allow to test their throughput directly, outside of a task scheduling
context. This will allow to gain more insight into the scalability bottlenecks of these containers.

7.A Appendix: Theoretical Analysis of the SSSP Algorithm

The goal of this analysis is to show that, using ρ-relaxed priority queues, the amount of useless
work generated is small compared to the actual work, and that bounds can be given on the
amount of useless work generated. This analysis has been published in previous work [144].

For the theoretical analysis we use a simplified model of task-parallel computations: the
system operates on a global pool of nodes (tasks), which are ordered by their tentative distance
value. Execution occurs in temporal phases and, in each phase, up to P nodes with the lowest
tentative distance values are relaxed. We assume an ideal priority queue, in which all nodes are
visible to all places at the beginning of each phase. We are interested in upper bounding the
amount of useless work that is performed during each phase. Similar bounds have previously
been obtained for ∆-stepping and other SSSP algorithms [103, 104].

7.A.1 Formal model

We are given an undirected graph G = (V, E) (with n = |V| and m = |E|), a source node
s ∈ V and a positive weight function λ : E → R+. For each temporal step t we maintain
a partition of V into two subsets: V = At ∪ Bt, of sizes αt and βt (∀t αt + βt = n). The set

172 Chapter 7 The Pheet Benchmarks

At = {at(1), at(2), . . . , at(αt)} contains the active nodes, Bt = {bt(1), . . . , bt(βt)} the inactive
nodes. For each node v ∈ V we also keep a tentative distance δt(v) ∈ R ∪ {∞}. Let dt(i) =
δt (at(i)), we assume the nodes in At to be ordered by dt, with ties broken arbitrarily, i.e.,
∀i ∈ {1, α− 1} dt(i) ≤ dt(i + 1). Initially (t = 0) we have A0 = {s}, Bt = V \ {s}, δ0(s) = 0
and δ0(v 6= s) = ∞. In each phase (up to) P active nodes Φt = {at(1), . . . , at(P)} with lowest
dt are selected and relaxed, so that at the end of the phase the tentative distance of a generic
node w ∈ V is

δt+1(w) = min
{

δt(w), min
v∈Φt
{δt(v) + λ(v, w)}

}
.

Any node (whether active or inactive) which had its tentative distance updated is moved into
At+1, relaxed nodes which were not updated are moved into Bt+1, all the other nodes remain
in their former sets for the next time phase. The algorithm terminates, at some time τ < n,
when there are no more active nodes, i.e., Aτ = ∅ and Bτ = V, with the nodes reachable from
s having a finite distance.

We restrict our analysis to Erdős-Rényi random graphs [54,64] of parameters n and p, i.e.,
graphs with n nodes, for which each of the (n

2) possible edges has independent probability p to
occur. Furthermore, we assign, independently for each edge, a weight uniformly distributed
between 0 and 1: ∀e ∈ E, λ(e) ∈ U]0, 1]. We assume the source node s to be chosen uniformly
at random in V. In order to ensure, w.h.p., the connectedness of the graph, we also assume
p > (1+ε) ln n

n for some ε > 0.

7.A.2 Useless work

We say that a node is settled at time t when its tentative distance is equal to its final distance.
Every time that a node which is not settled is relaxed, useless work is performed, since the
node will need to be relaxed again when its tentative distance is going to be updated (Di-
jkstra’s algorithm only relaxes nodes which are settled, thus performing only useful work,
but, on the other hand, it is hard to parallelize because of its dependencies). The following
theorem (proof in Section 7.A.3) bounds the useless work Wt performed by our algorithm as
a function of dt.

Theorem 7.A.1. Let Wt be the useless work performed at time t by our algorithm, using an ideal
priority queue, and let ht(i, j) = dt(j)− dt(i). We can bound Wt from above as:

Wt ≤
P

∑
j=1

1−
j−1

∏
i=1

n−1

∏
L=1

(
1− (p ht(i, j))L

L!

) (n−2)!
(n−1−L)!

 .

Remark 7.A.2. A simpler (but weaker) form of this bound can be obtained by substituting ht(i, j) with
h∗t = maxi,j ht(i, j) = ht(1, P).

7.A.3 Proofs and lemmata

In order to simplify the analysis, we assume the following property to hold when the number
of nodes n is large. The property has been experimentally validated using the simulator
presented in Section 7.8.6.

Conjecture 7.A.3. Throughout the execution of the ideal priority queue SSSP algorithm, for all values
of t ∈ N, 1 ≤ i < j ≤ P and h ∈]0, 1], the probability that there is a path of weight less than h
between at(i) and at(j) is bounded from above by the probability that such a path exists in a random
graph, between two (uniformly) random nodes.

Appendix: Theoretical Analysis of the SSSP Algorithm 173

Lemma 7.A.4. Let h ∈]0, 1] and let πL = (π0, π1, . . . , πL−1, πL) be a path in G chosen uniformly
at random among the paths of length L, such that the subpaths π′ = (π0, . . . , πL−1) and π′′ =
(πL−1, πL) both have weights smaller than h. Let f L(λ) be the probability density function associated
with the total weight λ(πL) = ∑L

i=1 λ(πi−1, πi). We can write f L as

f L(λ) =

λL−1

hL λ ∈]0, h]
1
h −

(λ−h)L−1

hL λ ∈]h, 2h]
0 otherwise .

Proof. The proof is by induction on L.
Base case. For L = 1, since the edge weight is uniformly distributed between 0 and 1, we

clearly have

f 1(λ) =

{
1
h λ ∈]0, h]
0 otherwise .

Induction. We assume now that the inductive hypothesis holds for all values l ≤ L. Let
f l
h be the probability density function obtained by conditioning its weight λ(πl) to be smaller

than h, i.e.,

f l
h(λ) =

{
lλl−1

hl λ ∈]0, h]
0 otherwise .

We have λ(πL) = λ(π′) + λ(π′′), where π′ and π′′ are subpaths of length L and 1. Since
λ(π′) and λ(π′′) are independent, the density function f L+1 can be obtained by convolution
of f L

h and f 1
h :

f L+1 = f L
h ∗ f 1

h ⇒ f L+1(λ) =

λL

hL+1 λ ∈]0, h]
1
h −

(λ−h)L

hL+1 λ ∈]h, 2h]
0 otherwise ,

which concludes the induction.

Corollary 7.A.5. The probability that a (uniformly random) path πL has λ
(
πL) < h, conditioned to

λ(π′) < h and λ(π′′) < h, is equal to 1
L .

Proof. Just integrate f L between 0 and h.

Proof (Theorem 7.A.1). Let 1 ≤ i < j ≤ αt and let πL
t (i, j) = (π0 = at(i), π1, . . . , πL = at(j)) be

a path between at(i) and at(j) of length L; we denote the weight of πL
t (i, j) as

λ
(

πL
t (i, j)

)
=

L−1

∑
k=0

λ(πk, πk+1) .

A node at(j) is not settled if and only if there exists i < j such that there exists a path
πL

t (i, j) with λ
(
πL

t (i, j)
)
< dt(j)− dt(i). Note that the non-existence of a particular path with

weight less than ht(i, j) does not decrease the probability for another different path not to
exist. Therefore, being ht(i, j) = dt(j)− dt(i) ≤ 1, the probability qt(j) that at(j) is settled can
be bounded as

qt(j) ≥
j−1

∏
i=1

n−1

∏
L=1

Pr
[
@πL

t (i, j) : λ
(

πL
t (i, j)

)
< ht(i, j)

]
=

j−1

∏
i=1

n−1

∏
L=1

(
1− rL

t (i, j)
)

,

174 Chapter 7 The Pheet Benchmarks

where rL
t (i, j) is the probability that a path πL

t (i, j), with weight less than ht(i, j), exists. As-
suming that we are relaxing the first P nodes of At, we can compute the expected value of the
useless work performed at time t as Wt = ∑P

j=1 (1− qt(j)). Let r̃L
t (i, j) be the probability that

a particular path πL
t (i, j) exists, with weight less than ht(i, j); we can bound rL

t (i, j) as

rL
t (i, j) ≤ 1−

(
1− r̃L

t (i, j)
) (n−2)!

(n−1−L)! .

Note that there exists a path πL
t (i, j) with weight less than ht(i, j) if and only if the two

subpaths π′ = (π0, . . . , πL−1) and π′′ = (πL−1, πL) exist, their weights are smaller than ht(i, j),
and so is the sum of their weights. Because of Conjecture 7.A.3 and Corollary 7.A.5 we have
r̃1

t (i, j) = p ht(i, j), which finally implies

r̃L
t (i, j) =

r̃L−1
t (i, j)r̃1

t (i, j)
L

=

(
r̃1

t (i, j)
)L

L!
,

rL
t (i, j) ≤ 1−

(
1− (p ht(i, j))L

L!

) (n−2)!
(n−1−L)!

.

7.A.4 k-priority data structures

We can adapt our theoretical framework to support ρ-relaxed priority queues, which allow
that up to ρ tasks may not be visible to all places, and may therefore not be executed even
though they would have been with the ideal data structure. The bound of Theorem 7.A.1 can
be adapted by changing the sum over all j’s to only the j’s corresponding to nodes at(j) which
have been actually relaxed (∑P

j=1 → ∑j∈Rt
, with Rt = {j : at(j) has been relaxed}). Similarly

to the previous case, a simpler form of this bound can be obtained by substituting ht(i, j)
with h∗t , defined as the difference between the largest and smallest tentative distance of nodes
relaxed at time t, which implies h∗t ≤ maxi,j ht(i, j) = ht(1, P + ρ).

7.A.5 Weakening the requirements of ρ-relaxation

Our first implementations of ρ-relaxed priority queues, namely the centralized (Section 5.3)
and the hybrid k-priority queue (Section 5.4) rely on temporal ρ-relaxation (see Section 5.1.3),
allowing only the last ρ items added to the data structure to be ignored (ρ items per thread
for the hybrid k-priority queue). As it turned out, our theoretical model does not require the
temporal formulation of ρ-relaxation, the weaker structural formulation suffices.

This result opened up possibilities for relaxed priority queues that achieve similar bounds
but do not need to maintain the temporal property, leading to the development of the k-LSM
priority queue (Section 5.8.18).

8
Summary and Outlook

The work in this thesis, which was originally started as an attempt to implement an extension
to the task scheduling model, has grown to a work that spans three separate fields related to
parallel computing: Programmability, Scheduling and (non-blocking) Synchronization.

Our work on programmability aspects was concerned with providing an easy to use pro-
gramming model and programming patterns for task parallelism, as well as, extensions to the
task parallel programming model that can both help to make the model more general, and,
thus, suitable for more applications and to simplify the implementation of efficient programs
in the task parallel model. Furthermore, not all of the presented extensions to the task parallel
programming model can be supported by standard task schedulers, and thus it was necessary
to develop new schedulers that can support these models.

Efficient implementations of the presented task parallel programming models require ef-
ficient synchronization primitives. The most important such primitives are task queues, which
have a significant impact on the scalability of a task scheduler. Furthermore, the order in
which tasks are returned by a task queue can have a huge impact on time-, space- and com-
munication bounds of a scheduler.

The work in these three fields resulted in Pheet, a task-parallel library that supports the
presented programming models. Its plug-in architecture makes Pheet interesting on its own,
making it a useful tool for research and teaching that enables the rapid prototyping and
evaluation of new schedulers and synchronization primitives.

8.1 Lessons Learned

While each of the fields touched by this thesis provides enough open problems to justify a
thesis on its own, this work shows that new insights can be gained by adopting a broader
view. As an example, a scalable task queue implementation is of limited use, if the resulting
scheduler has bad time- and/or space bounds. At the same time, due to resource limitations,
there is always a trade-off between the depth at which a problem is analysed, and how broad
the adopted view is. So even for this work compromises were made, and fields like compilers
and real-world applications based on the task-parallel programming model left out.

Touching more than one field, and, thus, working with more than one community also led
to the sobering observation that the current system in academia often discourages interdisci-
plinary work. In the peer reviewing process, reviewers tend to demand more details and a
deeper discussion of work in their field of expertise, even if it is not the main contribution of
a work. As an example, it is easier to publish work about a concurrent priority queue, than to
publish work that also puts this priority queue in context, hence giving a better understanding
as to what the requirements of such a priority queue are. The reason for this is that it leaves

175

176 Chapter 8 Summary and Outlook

reviewers dissatisfied who are domain experts for the context and not priority queues.

8.2 Outtakes

The development of a large and complex library like Pheet pushes the limitations of the pro-
gramming language it is implemented in. This naturally results in the development of new
programming patterns to work around these limitations. It also sparks ideas for extensions
to programming languages to work around such limitations. Similarly, work on non-blocking
synchronization primitives helps to understand the limitations of current hardware synchro-
nization primitives, and creates ideas as to how these limitations can be solved.

While all of these ideas would be interesting contributions on their own, they all have in
common that they are out of the scope of this work. Due to limited resources these ideas had
to be left unexplored.

8.3 Future Work

Current work focusses on strategies, and in particular the priority scheduling aspect. The
ultimate goal is to support an arbitrary hierarchy of strategies, and to only pay for the over-
head of priority scheduling if necessary. The two-level concurrent ordered container from
Section 5.5 is a first step in this direction. We plan to build upon this design to support
complex composed applications efficiently.

The efficient implementation of concurrent priority queues is a topic interesting on its own,
and we are working on both priority task queues as well as standalone priority queues. The
implementation of standalone priority queues, will also allow for a direct comparison with
other priority queue implementations, thus putting our work into context.

Our current focus is on quantitatively relaxed priority queues, and we believe that there is
still room for improvement both with regard to scalability, as well as ordering guarantees. Our
new concurrent LSM priority queue already shows promising behaviour, but so far there is
still room for improvement with regard to a ρ-relaxed implementation. Since all of our current
ρ-relaxed priority queues only relax the insertion of items into the priority queue, there can
still be a high congestion for the removal of the highest priority item.

Finally we are planning to perform a complete and fair benchmark study of Pheet and
other task scheduling frameworks to gain more insight into performance and scalability of
Pheet. For this we plan to port the Pheet benchmarks to other common task-parallel program-
ming models and systems. We also intend to port the recent problem based benchmark suite [124]
to Pheet, which will give us access to a wider range of task-parallel applications.

8.4 Final Remarks

Research is a learning experience, and writing a thesis covering four years of research is an
important opportunity to reflect upon the lessons learned. It allows to revisit old work under
a new light, and to apply knowledge gained over the years to improve upon this work. To use
a common saying: You are your own worst critic, and therefore results of such reflection are not
always flattering. At the same time, being able to criticise one’s own work shows how oneself
developed since the time the work was initially done.

In research, every question answered opens up a multitude of new questions. Each so-
lution one finds is only a part of a bigger puzzle, and research has a tendency to never be
finished. Due to this, starting to write a thesis is a very rewarding experience. It allows to
draw a line, and creates the illusion of producing something final and polished. In the end,

Final Remarks 177

this is an illusion. This thesis should be read as a snapshot taken after four years of research,
which contains many interesting ideas, some already published, and many more that are not.
This work certainly provides more than enough material to fill another four years of research.
Therefore, such a thesis can never be complete, but it can be the start of something bigger.

Bibliography

[1] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of work stealing.
Theory of Computing Systems, 35(3):321–347, 2002.

[2] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: a tuto-
rial. IEEE Computer, 29(12):66–76, December 1996.

[3] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-Linearizability: Relaxed con-
sistency for improved concurrency. In 14th International Conference on Principles of Dis-
tributed Systems, OPODIS ’10, volume 6490 of Lecture Notes in Computer Science, pages
395–410, Berlin, Heidelberg, 2010. Springer.

[4] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrapatna K Shya-
masundar, and Katherine Yelick. Deadlock-free scheduling of X10 computations with
bounded resources. In 19th ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’07, pages 229–240, New York, NY, USA, 2007. ACM.

[5] Alok Aggarwal and S Vitter, Jeffrey. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, September 1988.

[6] Kunal Agrawal, Charles E Leiserson, and Jim Sukha. Executing task graphs using
work-stealing. In 24th IEEE International Parallel and Distributed Processing Symposium,
IPDPS ’10, pages 1–12. IEEE Computer Society, 2010.

[7] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network Flows. Prentice-
Hall, 1993.

[8] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

[9] Andrei Alexandrescu, Hans Boehm, Kevlin Henney, Doug Lea, and Bill Pugh. Memory
model for multithreaded C++. Technical Report N1680, The C++ Standards Committee,
2004.

[10] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The SprayList: A scalable
relaxed priority queue. Technical Report MSR-TR-2014-16, Microsoft Research, February
2014.

[11] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001.

[12] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,

179

180 BIBLIOGRAPHY

Samuel Webb Williams, and Katherine A Yelick. The landscape of parallel comput-
ing research: A view from berkeley. Technical Report UCB/EECS-2006-183, University
of California, Berkeley, 18 December 2006.

[13] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks. Journal of the ACM,
41(5):1020–1048, 1994.

[14] Hagit Attiya and Jennifer L Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, May 1994.

[15] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

[16] Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico
Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of
OpenMP tasks. IEEE Transactions on Parallel and Distributed Systems, 20(3):404–418, 2009.

[17] Henri E Bal and Matthew Haines. Approaches for integrating task and data parallelism.
IEEE Concurrency, 6(3):74–84, 1998.

[18] Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman. CAFÉ: Scalable
task pools with adjustable fairness and contention. In 25th International Conference on
Distributed Computing, DISC ’11, Lecture Notes in Computer Science, pages 475–488,
Berlin, Heidelberg, 1 January 2011. Springer.

[19] Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff, Philippas Tsigas, Uwe Dolinsky,
Cedric Augonnet, Beverly Bachmayer, Christoph Kessler, David Moloney, and Vitaly
Osipov. PEPPHER: Efficient and productive usage of hybrid computing systems. IEEE
Micro, 31(5):28–41, 2011.

[20] Petra Berenbrink, Tom Friedetzky, and Leslie Ann Goldberg. The natural Work-Stealing
algorithm is stable. SIAM Journal on Computing, 32(5):1260–1279, 2003.

[21] Guy E Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,
38(11):1526–1538, November 1989.

[22] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. Provably efficient scheduling for
languages with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1 March
1999.

[23] Guy E Blelloch and John Greiner. A provable time and space efficient implementation of
NESL. In 1st ACM SIGPLAN International Conference on Functional Programming, ICFP ’96,
pages 213–225, New York, NY, USA, 1996. ACM.

[24] Robert D Blumofe, Matteo Frigo, Christopher F Joerg, Charles E Leiserson, and Keith H
Randall. DAG-consistent distributed shared memory. In 10th International Parallel Pro-
cessing Symposium, IPPS ’96, pages 132–141, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[25] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

BIBLIOGRAPHY 181

[26] Robert D Blumofe and Charles E Leiserson. Space-Efficient scheduling of multithreaded
computations. SIAM Journal on Computing, 27(1):202–229, 1998.

[27] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999.

[28] Hans-J Boehm and Sarita V Adve. Foundations of the C++ concurrency memory model.
In 2008 ACM SIGPLAN Conference on Programming Language Design and Implementation,
volume 43 of PLDI ’08, pages 68–78, New York, NY, USA, June 2008. ACM.

[29] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the anchor: Lightweight
memory management for non-blocking data structures. In 25th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’13, pages 33–42, New York, NY, USA,
2013. ACM.

[30] Richard P Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–206, April 1974.

[31] Gerth Stølting Brodal, Jesper Larsson Träff, and Christos D Zaroliagis. A parallel pri-
ority queue with constant time operations. Journal of Parallel and Distributed Computing,
49(1):4–21, February 1998.

[32] Francois Broquedis, Jerome Clet-Ortega, Stephanie Moreaud, Nathalie Furmento, Brice
Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: A generic
framework for managing hardware affinities in HPC applications. In 18th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Processing, PDP ’10, pages
180–186. IEEE Computer Society, 2010.

[33] F Warren Burton. Storage management in virtual tree machines. IEEE Transactions on
Computers, 37(3):321–328, 1988.

[34] F Warren Burton and M Ronan Sleep. Executing functional programs on a virtual tree
of processors. In 1981 Conference on Functional Programming Languages and Computer
Architecture, FPCA ’81, pages 187–194, New York, NY, USA, 1981. ACM.

[35] Daniel Cederman and Philippas Tsigas. Supporting lock-free composition of concurrent
data objects. In 7th ACM International Conference on Computing Frontiers, CF ’10, pages
53–62, New York, NY, USA, 2010. ACM.

[36] Soumen Chakrabarti, James Demmel, and Katherine Yelick. Models and scheduling
algorithms for mixed data and task parallel programs. Journal of Parallel and Distributed
Computing, 47(2):168–184, December 1997.

[37] Rohit Chandra, Anoop Gupta, and John L Hennessy. COOL: An object-based language
for parallel programming. IEEE Computer, 27(8):13–26, 1994.

[38] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In 20th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
519–538, New York, NY, USA, 2005. ACM.

[39] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In 17th ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA ’05, pages 21–28, New York,
NY, USA, 2005. ACM.

182 BIBLIOGRAPHY

[40] Jens Clausen and Jesper Larsson Träff. Implementation of parallel branch-and-bound
algorithms – experiences with the graph partitioning problem. Annals of Operations
Research, 33:331–349, 1991.

[41] S Cohen, R Rosner, and A Zidon. Paralisp Simulator (reference manual), 1983.

[42] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores.
In 37th International Colloquium Conference on Automata, Languages and Programming,
ICALP ’10, volume 6198 of Lecture Notes in Computer Science, pages 226–237, Berlin,
Heidelberg, 2010. Springer-Verlag.

[43] Teodor Gabriel Crainic, Bertrand Le Cun, and Catherine Roucairol. Parallel branch-and-
bound algorithms. In El-Ghazali Talbi, editor, Parallel Combinatorial Optimization, pages
1–28. Wiley, 2006.

[44] Andreas Crauser, Kurt Mehlhorn, Uli Meyer, and Peter Sanders. A parallelization of
dijkstra’s shortest path algorithm. In Mathematical Foundations of Computer Science 1998,
pages 722–731. Springer Berlin Heidelberg, 1 January 1998.

[45] Mark Crovella, Prakash Das, Cezary Dubnicki, Thomas LeBlanc, and Evangelos
Markatos. Multiprogramming on multiprocessors. In 3rd IEEE Symposium on Parallel
and Distributed Processing, IPDPS ’91, pages 590–597. IEEE Computer Society, 1991.

[46] Lawrence A Crowl, Mark Crovella, Thomas J Leblanc, and Michael L Scott. The ad-
vantages of multiple parallelizations in combinatorial search. J. Parallel Distrib. Comput.,
21(1):110–123, April 1994.

[47] Frederic Desprez and Frederic Suter. Impact of mixed-parallelism on parallel imple-
mentations of the strassen and winograd matrix multiplication algorithms. Concurrency
and Computation: Practice and Experience, 16(8):771–797, 2004.

[48] David L Detlefs, Paul A Martin, Mark Moir, and Guy L Steele, Jr. Lock-free reference
counting. Distributed Computing, 15(4):255–271, 1 December 2002.

[49] Manuel Diaz, Bartolome Rubio, Enrique Soler, and Jose M Troya. Integrating task and
data parallelism by means of coordination patterns. In 15th International Parallel and
Distributed Processing Symposium, IPDPS ’01, pages 1077–1077. IEEE Computer Society,
April 2001.

[50] M Drozdowski. Scheduling for Parallel Processing. Computer Communications and Net-
works. Springer, 2010.

[51] Jörg Dümmler, Thomas Rauber, and Gudula Rünger. Communicating Multiprocessor-
Tasks. In Languages and Compilers for Parallel Computing, pages 292–307. Springer Berlin
Heidelberg, 1 January 2008.

[52] Jörg Dümmler, Thomas Rauber, and Gudula Rünger. Programming support and
scheduling for communicating parallel tasks. Journal of Parallel and Distributed Com-
puting, 73(2):220–234, February 2013.

[53] A Duran, J Corbalan, and E Ayguade. An adaptive cut-off for task parallelism. In
2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 1–11, Piscataway, NJ, USA,
November 2008. IEEE Press.

BIBLIOGRAPHY 183

[54] Paul Erdös and Alfréd Rényi. On random graphs. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

[55] Francine Evans, Steven Skiena, and Amitabh Varshney. Optimizing triangle strips for
fast rendering. In 7th Conference on Visualization, VIS ’96, pages 319–326, Los Alamitos,
CA, USA, October 1996. IEEE Computer Society Press.

[56] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Hous-
ton, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan. Sequoia: Programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[57] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit. Obstruction-Free algo-
rithms can be practically Wait-Free. In Distributed Computing, Lecture Notes in Com-
puter Science, pages 78–92. Springer Berlin Heidelberg, 1 January 2005.

[58] Ian Foster, David R Kohr, Jr., Rakesh Krishnaiyer, and Alok Choudhary. A Library-
Based approach to task parallelism in a Data-Parallel language. Journal of Parallel and
Distributed Computing, 45(2):148–158, September 1997.

[59] Keir Fraser. Practical lock-freedom. PhD thesis, King’s College, University of Cambridge,
2004.

[60] Daniel P Friedman and David S Wise. Aspects of applicative programming for parallel
processing. IEEE Transactions on Computers, C-27(4):289–296, 1978.

[61] Matteo Frigo, Pablo Halpern, Charles E Leiserson, and Stephen Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In 21st ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’09, pages 79–90, New York, NY, USA, 2009. ACM.

[62] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Symposium on Foundations of Computer Science, FOCS ’99,
pages 285–297, New York, NY, USA, 1999. IEEE Computer Society.

[63] Michael R Garey and David S Johnson. Computers and Intractability: a guide to NP-
completeness. W. H. Freeman and Company, New York, 1979.

[64] Edgar N Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):1141–1144,
1959.

[65] Ronald Lewis Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 1966.

[66] Ronald Lewis Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416–429, 1969.

[67] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and
Andrew Lumsdaine. Concepts: Linguistic support for generic programming in c++. In
21st ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, pages 291–310, New York, NY, USA, 2006. ACM.

[68] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and help-first
scheduling policies for async-finish task parallelism. In 23rd IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’09, pages 1–12. IEEE Computer Society,
2009.

184 BIBLIOGRAPHY

[69] Yi Guo, Jisheng Zhao, Vincent Cavé, and Vivek Sarkar. SLAW: A scalable locality-
aware adaptive work-stealing scheduler. In 24th IEEE International Parallel and Distributed
Processing Symposium, IPDPS ’10, pages 1–12. IEEE Computer Society, 2010.

[70] Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. NB-FEB: A universal scalable
Easy-to-Use synchronization primitive for manycore architectures. In Principles of Dis-
tributed Systems, Lecture Notes in Computer Science, pages 189–203. Springer Berlin
Heidelberg, 1 January 2009.

[71] Robert H Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In 1984
ACM Symposium on LISP and Functional Programming, LFP ’84, pages 9–17, New York,
NY, USA, 1984. ACM.

[72] Robert H Halstead, Jr. MULTILISP: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[73] Yijie Han, V Y Pan, and John H Reif. Efficient parallel algorithms for computing all
pair shortest paths in directed graphs. In 4th ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’92, pages 353–362, New York, NY, USA, 1992. ACM.

[74] Thomas E Hart, Paul E McKenney, Angela Demke Brown, and Jonathan Walpole. Per-
formance of memory reclamation for lockless synchronization. Journal of Parallel and
Distributed Computing, 67(12):1270–1285, December 2007.

[75] D Hendler and N Shavit. Non-blocking steal-half work queues. In 21st Symposium on
Principles of Distributed Computing, PODC ’02, pages 280–289, New York, NY, USA, 2002.
ACM.

[76] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm.
In 16th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’04, pages
206–215, New York, NY, USA, 2004. ACM.

[77] Thomas A Henzinger, Christoph M Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.
Quantitative relaxation of concurrent data structures. In 40th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, pages 317–328, New York,
NY, USA, 2013. ACM.

[78] Kieran T Herley, Andrea Pietracaprina, and Geppino Pucci. Fast deterministic parallel
branch-and-bound. Parallel Processing Letters, 9(3):325–333, 1999.

[79] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, January 1991.

[80] Maurice Herlihy. A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems, 15(5):745–770, 1993.

[81] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers, 2008.

[82] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, July 1990.

[83] Christopher F Joerg. The Cilk System for Parallel Multithreaded Computing. PhD thesis,
Massachusetts Institute of Technology, 1996.

BIBLIOGRAPHY 185

[84] Nicolai M Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley,
2012.

[85] Richard M Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack
search and Branch-and-Bound computation. Journal of the ACM, 40(3):765–789, 1993.

[86] Robert M Keller, Frank C H Lin, and Jiro Tanaka. Rediflow multiprocessing. In 28th
IEEE Computer Society International Conference, COMPCON ’84. IEEE Computer Society,
1984.

[87] Christoph W Kessler and E Hansson. Flexible scheduling and thread allocation for
synchronous parallel tasks. In ARCS Workshops, 2012, pages 1–7, February 2012.

[88] CW Kessler, N Melot, P Eitschberger, and J Keller. Crown scheduling: Energy-efficient
resource allocation, mapping and discrete frequency scaling for collections of malleable
streaming tasks. In 23rd International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation, PATMOS ’13, pages 215–222, 2013.

[89] CM Kirsch, M Lippautz, and H Payer. Fast and scalable k-FIFO queues. Technical
Report 2102-04, Department of Computer Sciences - University of Salzburg, June 2012.

[90] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
In 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, vol-
ume 47 of PPoPP ’12, pages 141–150, New York, NY, USA, February 2012. ACM.

[91] David A Kranz, Robert H Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel lisp. In 1989 ACM SIGPLAN Conference on Programming Language Design and
Implementation, volume 24 of PLDI ’89, pages 81–90, New York, NY, USA, June 1989.
ACM.

[92] D Krishnaswamy and P Banerjee. Exploiting task and data parallelism in parallel hough
and radon transforms. In 1997 International Conference on Parallel Processing, pages 441–
444, August 1997.

[93] Alexey Kukanov and Michael J. Voss. The foundations for scalable multi-core software
in intel threading building blocks. Intel Technology Journal, 11(4), 2007.

[94] Vipin Kumar and V Nageshwara Rao. Parallel depth first search, part II: Analysis.
International Journal of Parallel Programming, 16(6):501–519, 1 December 1987.

[95] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

[96] I-Ting Angelina Lee, Aamir Shafi, and Charles E Leiserson. Memory-mapping sup-
port for reducer hyperobjects. In 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, pages 287–297, New York, NY, USA, 2012. ACM.

[97] Charles E Leiserson. The Cilk++ concurrency platform. Journal of Supercomputing,
51(3):244–257, 2010.

[98] Charles E Leiserson and Tao B Schardl. A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers). In 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 303–314, New York,
NY, USA, 2010. ACM.

186 BIBLIOGRAPHY

[99] A Lenharth, D Nguyen, and K Pingali. Priority queues are not good concurrent priority
schedulers. Technical Report TR-11-39, Department of Computer Science, The Univer-
sity of Texas at Austin, 2011.

[100] Vasileios Liaskovitis, Shimin Chen, Phillip B Gibbons, Anastassia Ailamaki, Guy E Blel-
loch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Michael Kozuch, Todd C Mowry, and
Chris Wilkerson. Parallel depth first vs. work stealing schedulers on CMP architectures.
In 18th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’06, pages
330–330, New York, NY, USA, 30 July 2006. ACM.

[101] Jeremy Manson, William Pugh, and Sarita Adve, V. The Java memory model. In 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’05,
pages 378–391, New York, NY, USA, 2005. ACM.

[102] Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem. European
Journal of Operational Research, 16(2):236–245, May 1984.

[103] Ulrich Meyer. Average-case complexity of single-source shortest-paths algorithms:
lower and upper bounds. Journal of Algorithms - Special issue: Twelfth annual ACM-SIAM
symposium on discrete algorithms, 48(1):91–134, 2003.

[104] Ulrich Meyer and Peter Sanders. ∆-Stepping: A parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114–152, 2003.

[105] Maged M Michael. Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, 2004.

[106] Maged M Michael and Michael L Scott. Correction of a memory management method
for Lock-Free data structures. Technical report, University of Rochester, 1995.

[107] Maged M Michael, Martin T Vechev, and Vijay A Saraswat. Idempotent work steal-
ing. In 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’09, pages 45–54, New York, NY, USA, 2009. ACM.

[108] Girija J Narlikar and Guy E Blelloch. Space-efficient scheduling of nested parallelism.
ACM Transactions on Programming Languages and Systems, 21(1):138–173, January 1999.

[109] S Olivier, J Huan, J Liu, J Prins, J Dinan, P Sadayappan, and CW Tseng. UTS: An
unbalanced tree search benchmark. Languages and Compilers for Parallel Computing, pages
235–250, 2007.

[110] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1 June 1996.

[111] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

[112] Ruben Perez. Speculative parallelism in Intel Cilk Plus. Master’s thesis, Massachusetts
Institute of Technology, 2012.

[113] Judit Planas, Rosa M Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical Task-
Based programming with StarSs. International Journal of High Performance Computing
Applications, 23(3):284–299, August 2009.

BIBLIOGRAPHY 187

[114] Andrei Radulescu and Arjan J C Van Gemund. A low-cost approach towards mixed
task and data parallel scheduling. In International Conference on Parallel Processing, pages
69–76, 2001.

[115] S Ramaswamy, S Sapatnekar, and P Banerjee. A framework for exploiting task and data
parallelism on distributed memory multicomputers. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1098–1116, November 1997.

[116] Thomas Rauber and Gudula Rünger. Mixed task and data parallel executions in general
linear methods. Scientific Programming, 15(3):137–155, January 2007.

[117] Peter Sanders. Fast priority queues for parallel branch-and-bound. In Parallel Algorithms
for Irregularly Structured Problems (IRREGULAR), volume 980 of Lecture Notes in Computer
Science, pages 379–393, 1995.

[118] Peter Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche, volume 10/463 of
Fortschrittsberichte VDI. VDI-Verlag, 1997. PhD Thesis.

[119] Peter Sanders and Lawrence Mandow. Parallel label-setting multi-objective shortest path
search. In 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 215–224, 2013.

[120] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In 14th International
Parallel and Distributed Processing Symposium, IPDPS ’00, pages 263–268. IEEE Computer
Society, 2000.

[121] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Transactions on Computer Systems,
14(4):385–428, November 1996.

[122] Jun Shirako, Vincent Cavé, Jisheng Zhao, and Vivek Sarkar. Finish accumulators: An
efficient reduction construct for dynamic task parallelism. In Languages and Compilers for
Parallel Computing, Lecture Notes in Computer Science, pages 264–265. Springer Berlin
Heidelberg, 1 January 2013.

[123] Jun Shirako, David M Peixotto, Vivek Sarkar, and William N Scherer. Phasers: A uni-
fied deadlock-free construct for collective and point-to-point synchronization. In 22nd
International Conference on Supercomputing, ICS ’08, pages 277–288, New York, NY, USA,
2008. ACM.

[124] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Kyrola, Har-
sha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The problem
based benchmark suite. In 24th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’12, pages 68–70, New York, NY, USA, 2012. ACM.

[125] Marc Snir. Depth-size trade-offs for parallel prefix computation. Journal of Algorithms,
7(2):185–201, June 1986.

[126] Fengguang Song, A YarKhan, and J Dongarra. Dynamic task scheduling for linear al-
gebra algorithms on Distributed-Memory multicore systems. In International Conference
for High Performance Computing, Networking, Storage, and Analysis, SC ’09, pages 1–11,
November 2009.

188 BIBLIOGRAPHY

[127] Daniel Spoonhower, Guy E Blelloch, Phillip B Gibbons, and Robert Harper. Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel futures. In
21st Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 91–100,
New York, NY, USA, 2009. ACM.

[128] Mark S Squillante and Edward D Lazowska. Using processor-cache affinity informa-
tion in shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and
Distributed Systems, 4(2):131–143, 1993.

[129] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th
edition, 19 May 2013.

[130] Jaspal Subhlok and Gary Vondran. Optimal use of mixed task and data parallelism
for pipelined computations. Journal of Parallel and Distributed Computing, 60(3):297–319,
March 2000.

[131] Hakan Sundell. Wait-Free reference counting and memory management. In 19th IEEE
International Parallel and Distributed Processing Symposium, IPDPS ’05, page 24b. IEEE
Computer Society, 2005.

[132] Gerald Jay Sussman, Harold Abelson, and Julie Sussman. Structure and interpretation
of computer programs. New England Journal of Public Policy, 1985.

[133] Oussama Tahan, Mats Brorsson, and Mohamed Shawky. Introducing task cancellation to
OpenMP. In OpenMP in a Heterogeneous World, pages 73–87. Springer Berlin Heidelberg,
1 January 2012.

[134] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-Louis Roch, and Julien Bernard.
A tighter analysis of work stealing. In Algorithms and Computation, pages 291–302.
Springer Berlin Heidelberg, 1 January 2010.

[135] P Tsigas and Yi Zhang. A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000. In 11th Euromicro Workshop on Par-
allel, Distributed and Network-Based Processing, PDP ’03, pages 372–381. IEEE Computer
Society, February 2003.

[136] John D Valois. Lock-free linked lists using compare-and-swap. In 14th ACM Symposium
on Principles of Distributed Computing, PODC ’95, pages 214–222, New York, NY, USA,
1995. ACM.

[137] John D Valois. Lock-free data structures. PhD thesis, Rensselaer Polytechnic Institute Troy,
1996.

[138] Hans Vandierendonck, Kallia Chronaki, and Dimitrios S Nikolopoulos. Deterministic
scale-free pipeline parallelism with hyperqueues. In International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’13, pages 32:1–32:12, New
York, NY, USA, 2013. ACM.

[139] Georgios Varisteas and Mats Brorsson. Palirria: Accurate on-line parallelism estimation
for adaptive Work-Stealing. In Proceedings of Programming Models and Applications on
Multicores and Manycores, PMAM’14, pages 120:120–120:131, New York, NY, USA, 2007.
ACM.

[140] Boris Weissman. Performance counters and state sharing annotations: a unified ap-
proach to thread locality. In 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’98, pages 127–138, 1998.

[141] Martin Wimmer. Wait-free hyperobjects for task-parallel programming systems. In 27th
IEEE International Parallel and Distributed Processing Symposium, IPDPS ’13, pages 803–
812. IEEE Computer Society, 2013.

[142] Martin Wimmer, Daniel Cederman, Jesper Larsson Träff, and Philippas Tsigas. Config-
urable strategies for work-stealing. CoRR, abs/1305.6474, 05 2013.

[143] Martin Wimmer, Daniel Cederman, Jesper Larsson Träff, and Philippas Tsigas. Work-
stealing with configurable scheduling strategies. In 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13, pages 315–316, New York, NY,
USA, 2013. ACM.

[144] Martin Wimmer, Daniel Cederman, Francesco Versaci, Jesper Larsson Träff, and Philip-
pas Tsigas. Data structures for task-based priority scheduling. CoRR, abs/1312.2501,
09 December 2013.

[145] Martin Wimmer, Manuel Pöter, and Jesper Larsson Träff. The Pheet task-scheduling
framework on the Intel Xeon Phi coprocessor and other multicore architectures. In
Workshop on Multi-threaded Architectures and Applications, MTAAP ’13. IEEE Computer
Society, 2013.

[146] Martin Wimmer and Jesper Larsson Träff. Work-stealing for mixed-mode parallelism
by deterministic team-building. In 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 105–115, New York, NY, USA, 2011. ACM.

[147] Martin Wimmer and Jesper Larsson Träff. A work-stealing framework for mixed-
mode parallel applications. In Workshop on Multi-threaded Architectures and Applications,
MTAAP ’11. IEEE Computer Society, 2011.

[148] Martin Wimmer, Francesco Versaci, Jesper Larsson Träff, Daniel Cederman, and Philip-
pas Tsigas. Data structures for task-based priority scheduling. In 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, pages 379–380,
New York, NY, USA, 6 February 2014. ACM.

[149] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of the obvious.
ACM SIGARCH Computer Architecture News, 23(1):20–24, March 1995.

[150] Bwolen Yang and David R O’Hallaron. Parallel breadth-first BDD construction. In 6th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, volume 32
of PPoPP ’97, pages 145–156, New York, NY, USA, June 1997. ACM.

Curriculum Vitae

Name Martin Wimmer

Place of Birth Vienna, Austria

Research Interests

Parallel Algorithms, Graph Algorithms, Task Scheduling, Data Structures, Non-blocking Syn-
chronization, Programming Languages and Models, Compilers, Parsing

Education

2010 – 2014 PhD in Computer Science at Vienna University of Technology

2007 – 2010 Master in Scientific Computing at University of Vienna

2000 – 2006 Bachelor in Business Informatics at University of Vienna

Teaching Experience

2012 – 2014 : Developed and taught part of a graduate course on Advanced Multiprocessor
Programming at Vienna University of Technology.

2011 Taught an undergraduate course on Theoretical Computer Science at University of Vienna

2011 Developed and taught part of a graduate course on The Art of Multiprocessor Programming
at University of Vienna

2010 Teaching assistant in a graduate course on High Performance Computing at University of
Vienna

2009 Teaching assistant in a course on Computational Drug Design at University of Vienna

Professional Experience

2014 Lecturer at Vienna University of Technology

2013 Research assistant at Vienna University of Technology

2010 – 2012 Research assistant in the PEPPHER project

2008 – 2010 Research and teaching assistant at University of Vienna

191

Publications

1. Martin Wimmer, Francesco Versaci, Jesper Larsson Träff, Daniel Cederman, and Philip-
pas Tsigas. Data structures for task-based priority scheduling. In 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, pages 379–380.
ACM, 2014.

2. Martin Wimmer, Daniel Cederman, Francesco Versaci, Jesper Larsson Träff, and Philip-
pas Tsigas. Data structures for task-based priority scheduling. CoRR, abs/1312.2501,
2013.

3. Martin Wimmer. Wait-free hyperobjects for task-parallel programming systems. In 27th
IEEE International Parallel and Distributed Processing Symposium, IPDPS ’13, pages 803–
812. IEEE Computer Society, 2013.

4. Martin Wimmer, Manuel Pöter, and Jesper Larsson Träff. The Pheet task-scheduling
framework on the Intel Xeon Phi coprocessor and other multicore architectures. In
Workshop on Multi-threaded Architectures and Applications, MTAAP ’13. IEEE Computer
Society, 2013.

5. Martin Wimmer, Daniel Cederman, Jesper Larsson Träff, and Philippas Tsigas. Work-
stealing with configurable scheduling strategies. In 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13, pages 315–316. ACM, 2013.

6. Martin Wimmer, Daniel Cederman, Jesper Larsson Träff, and Philippas Tsigas. Config-
urable strategies for work-stealing. CoRR, abs/1305.6474, 2013.

7. Christoph W. Keßler, Usman Dastgeer, Mudassar Majeed, Nathalie Furmento, Samuel
Thibault, Raymond Namyst, Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff, Mar-
tin Wimmer. Leveraging PEPPHER Technology for Performance Portable Supercomput-
ing. In International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’2012, pages 1395–1396. IEEE Computer Society, 2012.

8. Martin Wimmer and Jesper Larsson Träff. Work-stealing for mixed-mode parallelism
by deterministic team-building. In 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 105–115. ACM, 2011.

9. Martin Wimmer and Jesper Larsson Träff. A work-stealing framework for mixed-
mode parallel applications. In Workshop on Multi-threaded Architectures and Applications,
MTAAP ’11. IEEE Computer Society, 2011.

10. Martin Wimmer. Programming Models for Parallel Computing. Master’s Thesis. 2010.

	Introduction
	Motivation and Inspiration
	History
	Challenges
	Pheet
	Structure

	Programming Models
	Task Parallelism
	Programming Models based on Task Parallelism
	Memory Models
	Locality Awareness
	Task Priorities
	Parallel Tasks/Mixed-mode Parallelism
	Scheduling Strategies
	Hyperobjects

	Task Scheduling
	Related Work
	Requirements to the Scheduling Model
	Space Bounds
	Priority Scheduling
	Victim Selection
	Stealing Policies
	Mixed-mode Scheduling

	Data Structures and Synchronization
	Linearizability and Progress Guarantees
	Terminology
	Wait-free Memory Reuse
	Deterministic Team-building
	Reducer Hyperobjects
	Finisher Hyperobjects

	Ordered Containers
	Semantics for Concurrent Ordered Containers
	Priority Work-stealing Queue
	Centralized k-priority Queue
	Hybrid k-priority Queue
	Two-level Concurrent Ordered Container
	Root Container based on Work-stealing Deques
	Log-structured Merge-tree (LSM)
	Concurrent LSM Priority Queue
	Conclusions and Future Work

	The Pheet Framework
	Design goals
	Interface
	Framework Structure

	The Pheet Benchmarks
	Setup
	Methodology
	Unbalanced Tree Search
	Graph Bipartitioning
	Quicksort
	Prefix Sums
	Triangle Strip Generation
	Single-source Shortest Paths
	Future Work
	Appendix: Theoretical Analysis of the SSSP Algorithm

	Summary and Outlook
	Lessons Learned
	Outtakes
	Future Work
	Final Remarks

	Bibliography

