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Deutsche Kurzfassung

Das Verstandnis von elektronischen Korrelationsphanemestellt eine der grél3ten Her-
ausforderungen der Festkorperphysik dar. In den letzteda®Ben hat sich die dynamische
Molekularfeldtheorie (DMFT) als die "Standardmethode"Karrelierte fermionische Systeme
etabliert, welche weit tber eine stérungstheoretische B#bag hinausgeht und auch heute
noch Grundlage von theoretischen Weiterentwicklungenbsink DMFT lassen sich heutzu-
tage nicht nur viele Phanomene gut verstehen, etwa der iéeiMott-Isolator Ubergang, son-
dern es ertffnen sich sogar Moglichkeiten der Vorhersagktranischer Eigenschaften fir
Materialien in denen ein effektives Einteilchenbild ureaahend ist.

Allerdings hat auch die DMFT ihre Grenzen: Zum einen beruhasf der Annahme, dass
elektronische Korrelationen rein lokal sind. Zum anderandelt es sich historisch gesehen um
eine Methode, welche zuvorderst niederenergetische éiteglerade zu beschreiben versucht.
In der Tat existieren Systeme und physikalische Eigensehdiir welche diese Beschrankun-
gen nicht moglich ist.

In der vorliegenden Arbeit versuche ich diese beiden Problavelche Gegenstand inten-
siver Bemuhungen in der aktuellen Forschung sind, anzugaetdihVege aufzuzeigen, welche
eine bessere Beschreibung korrelierter Materialien enctigih. Dazu stelle ich die Kombina-
tion von DMFT mit zwei etablierten Methoden vor, die beidé¢ der Feynmanschen Diagram-
matik basieren: Die Hedinsch&W Naherung ¢: Greensche Funktionil: abgeschirmte
Wechselwirkung) und die funktionale Renormierungsgruppst Wahrend man mi&z 1/
hoherenergetische Freiheitsgrade erfassen kann, ist fildéribage auch niedrigdimensionale
Systeme, in welchen Korrelationen manifest nichtlokatlsau beschreiben.

In Kapitel 1 werden diese drei Methoden (DMFE}V und fRG) eingefiihrt. Der erste Teil
des Kapitel behandeV und diskutiert weitere Naherungen, die oft notig sind, G in
realistischen Berechnungen zu verwenden. Im zweiten Ted die fRG eingefuhrt und ihre
diagrammatischen Grundlagen erklart. Schlussendlich aiurch die DMFT und als Anwen-
dungsbeispiel der Mott-Ubergang besprochen.

In Kapitel 2 wird die Kombination vorGIW und DMFT, welche auct/W+DMFT genannt
wird, eingefuhrt. Die Methode wurde bereits vor einem Jahnt vorgeschlagen und hat viele
konzeptuelle Vorteile gegentiber z.B. lokale Dichteappration (LDA)+DMFT, einer an-
deren, sehr erfolgreichen realistischen Erweiterung vii-D. Leider ist jedoch die Implemen-
tierung derGW+DMFT Methode fur realistische Berechnungen technisch i&u@efwendig,
weshalb es bisher nur wenige Beispiele tatsachlicher Anwmgeh gibt. Deshalb wird hier
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die Implementierung einépuasiteilchen Naheruntiir GIW+DMFT vorgeschlagen, deren nu-
merischer Aufwand vergleichbar ist mit jenem von LDA+DMMAIM Beispiel des korrelierten
Metalls SrVQ zeigen wir die Vorteile unserer Methode und vergleichemstexperimentellen
Photoemissionsspektren, sowie mit Resultaten der etelieDA+DMFT Methode.
SchlieRlich wird inKapitel 3 die “DMF2RG” eingeflihrt, eine neuartige Kombination
zwischen DMFT und fRG. Der grol3e Vorteil dieser neuen Methistledass der fRG-Fluss
hier bereits von Anfang an die nicht-perturbative PhysikDIRIFT beinhaltet. Zudem werden
nicht-lokale Fluktuationen durch den Fluss unverfélsotdlien Kanalen berechnet. Als erstes
Beispiel fur die Anwendungsmaoglichkeiten der DR Methode wird das zweidimensionale
Hubbard-Modell bei halber Fillung betrachtet, insbesomderden die elektronische Selbsten-
ergie sowie einige Zweiteilcheneigenschaften (die staésSpinsuszeptibilitat und die 4-Punkt
Vertexfunktion) berechnet. Die vielversprechenden Enggse und der Vergleich mit anderen
Methoden, wie etwa der “dynamical cluster approximati@CA) und Quanten-Monte-Carlo-
Methoden zeigt die gorRen Perspektiven, diese neuen’B@MVethode zu verwenden.



Introduction

Our ability to understand, predict and control the progsrof the materials around us is at
the basis of many technological applications that are sigggbie world as we know it. Most of
these applications are based on our deeper comprehendioe @liantum properties of matter.
Even so, theguantum realnis still far from being completely explored, and represents of
the most important frontiers for our physical understagdifihere are still several interesting
phenomena that remain elusive to us, like the high temperatwperconductivity (HTC) or
guantum criticality, and many more phenomena that stilt ¥zabe unveiled.

Remarkably, the common thread of many of these phenomenassittbed by the relevant
role played by the electronicorrelations This represents a striking difference from the more
conventional situation, where, thanks to the screeninpefrteraction and to Landau’s Fermi
liquid theory, we can think of the motion of each electronfaiswas independent form the one
of the others

On the contrary, in$trongly correlatédsystems the individual motion of each electron is
deeply influenced by the presence of all the others. Theétieal description of this situation
is much more challenging, which has stimulated and is gtithdating us to think out of the
box. In fact, in the presence of correlations, often we caneason in terms of a simple col-
lection of single electrons anymore. Instead collectivelesoarise which involve all, or many,
(valence) electrons, such as, e.g., a string of misalighectrenic spins in the case of spin
polarons, also studied in this thesis. Understanding whatltehavior is, and how it affects
the macroscopic properties of the systems represents dhe ofajor challenges in the field of
modern condensed matter.

There are three main strongly interconnected paths to aelies goal: The experimental
exploration, the purely theoretical analysis, and the astadpnal (humerical) approach. In this
thesis we are focused on the two latter aspects, and on timections between them, i.e., how
a mathematical theory can be implemented numerically taiobesults, when, as it is almost
always the case, an analytical solution is not feasible.

One of the main starting points of this thesis’ work, is thexayical mean-field theory
(DMFT). This approach is based on the mapping of a latticdlpra onto a single impurity
site. The physics captured by DMFT can be understood camsgdéhe limit where it becomes
exact: the limit of infinite dimensions. In this limit the aal fluctuations average out and
the physics becomes purely local, from which the name "mgdd-f while on the other hand,
the fluctuations in time are fully retained, and hence the@ddynamic". Although this limit
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might sound exotic, DMFT has proven to be an extremely ssfgkt®ol in the description of
strong electronic correlations, succeeding where all greupbative methods are bound to fail,
such as for the description of the Mott metal insulator titeors This is possible because, in
DMFT the local physics is treated non perturbatively. Fasthreasons the last fifteen years
have seen the rise of DMFT, in combination with density fioral theory (DFT+DMFT), as
the tool-of-choice to study strongly correlated materials

Unfortunately, however, the "mean-field" nature of DMFT nfiests itself in a number of
physical situation of interest: This is when the nonlocatelations, neglected by DMFT, play
a major role, as, e.g., in low-dimensional systems, or fetesys close to a quantum phase tran-
sition. A second drawback of DMFT is that, due to the high cataponal cost of the solution
of its many-body problem, it can treat only a restricted nemif degrees of freedom. Hence,
it is necessary to downfold the high energy degrees of fr@edbthe original Hamiltonian,
for which the strong electronic correlations are less irtgoay onto a low-energy Hamiltonian,
which is then treated in DMFT. The downfolding procedurewbweer, is not uniquely defined
and, in practice, it requires the introduction nab-initio parameters, in particular to repre-
sent the screened Coulomb interaction in the low-energy tbeman. This represents a major
drawback for the predictive power of DMFT-based methods.

To overcome these drawbacks we need to make a further effdg@beyonddMFT. To
this end, the strategy that we will follow consists in combgnthe strengths of DMFT with
those of two other methods which, taken singularly due tar therturbative nature, are not
suited for the description of materials in the strongly etated regime. These methods are the
GW which is capable to deal directly with the full expressiortled Coulomb interaction, and
the functional renormalization group, which, is ideallyted to study in an unbiased way the
competing instabilities of a system. However, combining thxeories, is a nontrivial task: This
can only work if the two methods act in synergy. Therefore oheur major efforts consisted
in bridging DMFT withGW first, and fRG then in the most effective way.

The combination ofZ1/ and DMFT was already proposed more than one decade ago in
a seminal paper [24] by Biermann and coworkers. While the d&am on paper of the new
method, named W +DMFT, is particularly elegant, its practical implememntathas been hith-
erto difficult and it was achieved only in a few cases. Thigdfic, but very important, aspect
represents the focus of our work: We have implemented a dieghcheme, which combines
some of the strengths @f/ with the ones of DMFT for the case of a prototypical material,
the strongly correlated metal Sr\yQOln order to obtain an implementation feasible at a relative
cheap computational cost, we have traded some of the elegétite original theory in favor of
a further "quasiparticle” approximation ¢nl1/, obtaining a method which is doable at an effort
similar to the one required by more the more standard DFT+DIsl§orithms. The application
of this method to the case of Sry{@llowed us to show an improved agreement of our results
with the experiments as compared to the DFT+DMFT resultsthEtmore, a comparison of
our results with those of rigorous (and cumberso#y+DMFT implementations shows that
the main features of the latter are correctly reproduced.

With the combination of DMFT with fRG, instead, we aimed at detént issue: The treat-
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ment of correlations over all length scales for systems wotinpeting instabilities in the regime
of intermediate to strong electronic coupling. One of theshrfamous examples in this respect
is given by the two-dimensional Hubbard model used to desdhe copper-oxide layers sup-
posed to be one of the most crucial ingredients for the basienstanding of high-temperature
superconductivity in the cuprates. Already at weak coupldue to the reduced dimensionality
and hence to the properties of the Fermi surface, a very ihetsg diagrams arises, ranging
from superconductivity, antiferromagnetism, ferromagme, and different types of charge or-
der. This reflects the emergence of several comparablggseales in the systems, a problem
ideally suited for fRG, that can deal unbiasedly with the ageat instabilities. However, the
weak coupling limitation of the fRG only allows for indicatjrwhat the situation in the strong
coupling regime, relevant for HTC, might be. At the same tiahee to the reduced dimen-
sionality and to the importance of nonlocal correlations BPIMalone also fails in describing
these phenomena. We show, however, that a combined appro#G @and DMFT, can be
derived exactly and is applicable to this class of situatiofmhe nonperturbative description
of the local correlations in DMFT is combined with the unl@ddreatment of competing in-
stabilities of fRG. From the theoretical point of view we hal®wn by means of a Feynman
diagrammatic analysis, that, even in its first most simpiplementation, is the fRG formalism
to avoid any double counting of diagrams, and we have alsgeod the diagrammatic con-
tent of DMPPRG to that of other diagrammatic extensions of DMFT. On thetpral point of
view we have performed the first implementation of the mdireind applied to the test case
of a two-dimensional Hubbard model, obtaining promisingufes. Motivated by this, we are
confident that the work presented in this thesis can reptesground zero for several further
developments and high impact applications in the field @grqum many-body theory.
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Outline

One of the main challenges that we have experienced durmgvttk of this thesis has
been represented by the complex communication betweenepedp different scientific back-
grounds. This aspect is reflected in the style of this thdmsause some concepts that may
sound obvious to people experienced, for example, in fRG eamdre difficult to assimilate
for someone more trained in DMFT, amite versa For this reason we decided to be pedagog-
ical in several parts of the thesis, especially when thetfit approaches used are introduced.
At the same time, as we aim at the combination of differentties, we devoted quite some
effort trying to clarify the physical content of each of thetfmeir range of applicability and their
representation in terms of Feynman diagrams.

The main structure of the thesis is organized as follows.fiFsechapter, is devoted to the

presentation to the three existing approaches to electommrelations that we are going to use
afterwards, arranged in an ideal order of complexity of theesponding Feynman diagrams:
First theG1V, based on ladder diagrams, then the fRG, based on parquetmisgand, finally,
DMFT which includes all possible local diagrams. More inalletafter briefly describing
density functional theories, we will focus on th81 equations. First we will derive the exact
set of Hedin’s equation and then t6&1” approximation to them.
The second part of this chapter is devoted to fRG. This will balyzed in the language of
Feynman diagrams: first the exact hierarchy of flow equetiwill be derived, then the trun-
cation to it, necessary for making the problem tractabld, vei discussed, and eventually the
corresponding diagrammatic content will be shown. Theiseds concluded by an overview
of the most common choices for the cutoff functions.

Finally we will turn our attention to DMFT. This will be firsterived in a more standard way.
Then we will also propose a more unusual derivation, basédrational integral methods. The
chapter is concluded by a brief discussion about the DMFErg&gn of the Mott transition.

The second chapteris devoted tazW+DMFT. The method will first be introduced, em-

phasizing howzWW and DMFT can be integrated in a single, formally eleganthoet&nd the
possible advantages of doing this. The practical impleatant, however presents several tech-
nical complication, and, in a second part of the chapter, vieowopose a simplified scheme,
which relies on a quasiparticle approximation to tH#” self-energy. We will discuss then
how, with this approximation, we can perform quasipartiGlé’+DMFT calculations keeping
substantially unaltered the DFT+DMFT main steps.
In the last part of this chapter, we present the results oétetiesting our quasipartiolelV +DMFT
implementation in VASP for the correlated metal Sry@he improvement over conventional
DFT+DMFT is shown by a comparison with experimental datanaly our results are com-
pared with those obtained within a much more demandifig+DMFT calculation, exhibiting
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good agreement for the main features.

In the third chapter we present DMERG, our novel approach, obtained by combining
DMFT and fRG, to study electronic correlations on all lengthles. In the first part of the
chapter we present the state-of-the-art methods to tremtgselectronic correlations beyond
DMFT. This way we emphasize how our new method, exploitirggdtiengths of fRG, can be
competitive with already established approaches. Spadifi we will then demonstrate how
the flexible structure of fRG allows us to include in an algfumically simple way the local
nonperturbative physics of DMFT as a starting point for floevfequations. We will then use
the results obtained in the first chapter to understand itgrammatic content of DMIRG.

After that, we will demonstrate the applicability of the nesheme, by presenting our first
practical implementation of DMIRG. As a test case, we applied it to the two-dimensional
Hubbard model, obtaining results for the self-energy, e susceptibility, and the one particle
irreducible vertex. The former are shown to be in qualigathgreement with results obtained
by cluster extension of DMFT and lattice quantum Monte Cadspectively. A complete
understanding of the results for the vertex has not yet baelgndgained, but its importance for
future studies as well for the interpretation of alreadyagied results, encourages us to further,
more accurate, analysis. This directly leads us to our csimmhs and to a rich outlook of further
possible improvements, in-depth analysis and possiblicapipns of our newborn approach.

The thesis is completed by the conclusion chapter in whiclredtly recapitulate the con-
tent of the thesis and the main achievements obtained indtttze future perspectives of our
research work.






Chapter 1

Different methods for different
correlations: GW, fRG, and DMFT

In this chapter we prepare the ground for the discussion ofntiaén results of this thesis,
presented in the other two chapters. To this end we introdueethe three existing approaches
to electronic correlations that we are going to use afterwamsanged in an ideal order of
complexity of the corresponding Feynman diagrammaticestFiheGW based on ladder dia-
grams for the charge screening, then the fRG, based on padiggrams, and, finally, DMFT
which includes all possible local diagrams. More in detaiftea briefly describing density
functional theories, we focus on tli&d1 equations: First we derive the exact set of Hedin’s
equations and then th@WW approximation to them. The second part of the chapter is téeivo
to fRG. This is analyzed in the language of Feynman diagrdins$ the exact hierarchy of flow
equations will be derived, then the truncation to it, necegfar making the problem tractable,
will be discussed, and eventually the corresponding diagnatic content will be shown. The
section is concluded by an overview of the most common ahfuicthe cutoff schemes. Finally,
we will turn our attention to DMFT. This will be first derived irrather standard way. However
we will also propose a less common derivation, based on fumadtiotegral methods, which
is closer to the spirit of the new developments describetierother chapters. The chapter is
concluded by a short discussion about the DMFT descriptioth@ Mott transition. We have
arranged the chapter so that each section is independent fhe others, being self-contained
and, unless when strictly necessary, we have tried to avolthiealities, rather focusing on
the physical content of the methods, to facilitate the negadif those who are familiar with one
of the methods and are experts of the others.

The present thesis is focused on the electronic propertiesrmlensed matter at low tem-
peratures. Withow temperaturesie mean the temperature interval up®?¢10?) K, or equiva-
lently up to©(0.1) eV. The limiting energy scale is essentially set by the mgltemperature
of the crystal: For higher temperatures the motion of the icannot be considered to be re-
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stricted to small vibrations around the position of theidatisites, and the Born-Oppenheimer
approximation [28], that we are going to discuss in the feita, does not hold anymore.

On the other hand, when lowering the temperature we encosexeral other energy scales,
connected with collective excitations or with spontanesysimetry breaking. For example
ferromagnetic or antiferromagnetic transitions usualbgw for temperatures beloWy ~
O(10% — 10*)K, while superconductivity is hitherto restricted to temgteres belowl; ~ 137
K.

Consequently, we want to describe the systems of interasfj asHamiltonian which cap-
tures the physical properties at these energy scales, Wbileimplicity, it may neglect, or
treat in a simplified way those effects which supposedly diy play a marginal role, like for
example the ionic motion. Considering this, the Hamiltortiaax we will use to describe the
electronic properties reads:

He=> |-

h2A,; e2 Z 1 e2 1

: —_ |+ = e —— 1.1
2m +; 47T€0’I'i—Rl| +2;47T€0’I'i—rj‘7 ( )

Ho Hee

whereA; is the Laplacian operatom represents the electron massis the position of electron
1, with charge—e and spino;, andR; is the position of the nucleuswith chargeZ;e, h is the
reduced Planck constant ands the vacuum dielectric constant. The Hamiltonian (1.9ady
involves two important approximations:

e The neglecting of relativistic corrections (and of any matgion besides the Coulomb
one);

e The so-called Born-Oppenheimer approximation [28]: Theekegof freedom associated
with the motion of the nuclei have been decoupled from thes@fi¢he electrons.

The latter is possible due to the fact that the nuclei movedhslower than the electrons, due to
the high ratio between the masses of protons and neutrortharwhe of electrons. Therefore,
in the present approximation, the set of positidlRs } is considered fixed, i.e. they are the
equilibrium position of the nuclei in the periodic latticEhe Coulomb interaction between the
nuclei and the electrons then effectively acts as an extpotantial. However, the determina-
tion of the sef{ R, } for a real material is itself not an easy task, and sometitrisslietermined
experimentally instead of being computed from first pries.

It is often desirable to go beyond the Born-Oppenheimer aqymation, and treat the mo-
tion of the nuclei at least perturbatively around the efQuilim position. This can be done by
including a term in the Hamiltonian accounting for the stiexhelectron-phonoooupling: The
vibrations of the lattice are treated as quanta, cgfeehonsinteracting with the electrons [43].
In some cases the electron-phonon coupling can be very tangope.g., it is at the origin of
conventional low-temperature superconductivity.

Let us focus on the terms constituting the Hamiltonian (IThe first term accounts for the
standard kinetic energy of the electrons; The second terth&Coulomb interaction between
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the electrons and the nuclei. As mentioned, this term canlasseen as an external potential
termu.,(r). Such a potential often (and in all the cases we will conidessesses translational
invariance under displacement of a lattice ve®or

Vext (T + R) = Vexs (). 1.2)

This symmetry has very important consequences, due Bltwh theorenjl4], and guarantees
the conservation of the total momentum. Finally, the thedrt accounts for the Coulomb
interaction between the electrons and is the most difftcuiteat.

1.1 Electronic correlations

The Coulomb interaction between the electrons makes twmnelatedi.e. the motion of
one electron is influenced by the motion of all the othergniaily, due to the interaction term
Uee, the Hamiltonian (1.1) is non-separable. Indeed, if the Gmil interactions were so small
that one could safely neglect them, it would be possible itevtine /V particle electronic wave
function solution of the Schrddinger equation definedtbgs the Slater determinant of the one
electron wave functiong,,,(r). Thesey,,(r) would be the solutions of the single particle
eigenvalue equation:

h2A,;
2m

H(ﬂ/}nko = (_ + Uext<r>> 2/}nka - Enkwnhﬂ (13)

with eigenenergies, being theband energiesf thenth band. Furthermore, due to the above-
mentioned periodicity of the external potential, the ometiple functions),,., are Bloch func-
tions [14]:

Unio () = €75 0 (1), (1.4)

with u(r + R) = u(r), for R being a lattice vector.

In realistic situations, however, the Coulomb energy canlligadve neglected: The ratio
between kinetic and potential energy fréf,. is notsmall. To estimate the ratio let us proceed
as follows: First let us assume that particles occupy a volumé&/r3. Then the minimum
kinetic energy per particle will be, due to the uncertaintyngiple, O(h*/mr3). The Coulomb
energy per particle, instead, can be estimate@@&s$/¢yr,), under the assumption that every
particle interacts mainly with its nearest neighbors [4jeTatio between potential and kinetic
energy will therefore be roughly proportional t9/ay = r,, ag = 0.529A being the Bohr
radius. Neglecting the electron-electron interaction Mdae reasonable in the limit of high
density, corresponding tQ < 1. This is not true in conventional metals whetas usually of
orderO(1), and therefore potential and kinetic energy are of the sawheroHence one needs
to deal with the full complexity of the Hamiltonian (1.1).

The exact numerical solution is, however, not feasiblesalyefor an extremely smatP(10)
number of particles. Besides, the knowledge of the full waxefion is, by large extent, also
not particularly useful, since one is only interested in thermodynamic properties of the
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system, rather than in the motion of the individual elecstofio overcome these difficulties
several techniques have been developed so far to tackleghe @ectron problem in condensed
matter physics during the last century,. Among them, a vecgassful one is thiecal density
approximation (LDA) of density functional theory (DFT), which will be desioed in the next
paragraph. The success of LDA in computing the electrorapgnties of most materials and in
particular of metals is an extremely surprising informatim spite of the large Coulomb energy
a description in terms dffectivelyindependent particles, callgdiasiparticles, in several (but
not all) cases works very well. The electron-electron extéon is accounted for by affective
potentialacting on the quasiparticles.

A posteriori it is possible to say that this is a consequettleeo~ermi liquid theory due to
the adiabatic continuity8], in the absence of electronic phase transitions, onecoatinuously
connect the excitation of the system in which the electiecteon interaction is ideally turned
off with the (single-particle) excitations of the interiagt system. When this picture becomes
guestionable, and therefore LDA fails to describe the prtogeeof the system, one talks about
strongly correlated materialsThese require a more sophisticated treatment of the etectr
interactions.

1.2 LDA: mapping onto independent particles

A quite widespread, though unsatisfactory, definitionha strongly correlated community
states thak strongly correlated material is a material for which LDASaThen, as pointed out
by Robert O. Jones [90] it is of great importance to have arfgedf what LDA can do and in
which cases it is successful. This is what we are going tadsm this paragraph.

LDA is a ground state theory: it is designed for the calcolabf the ground state energy:

(V| He | W) :/d4x1.../d4xN\Il*(X1,...,XN)’He\If(xl,...,XN), (1.5)

wherex; is a shorthand for;, o;, and [ d*z; = 3~ [ d*r;, andN is the number of particles.
To gain some physical insight we introduce the reduced tensitrix:

P (x,x') = N/d4x2.../d4xN\I/(x,X2,...,XN)\I/*(X',XQ, o XN); (1.6)
and the one- and two-particle densities, witk= (r, o) andx’ = (r', ¢’):

nM(r) = Zp(l)(x,x) :NZ/d%g.../d4xN|\Il(x,x2,...,xN)|2, 1.7)

n@(r,r') = N(N - 1)Z/d4x3.../d4ZCN’\I/(X,X/,X3,...,XN>’2. (1.8)
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With this we rewrite the total energy as:

/d4x’/d4x6(x—x’) (£A+Uext(1‘)) pM(x,x') +
/d3 /d3 /47T60|r—r/’>] (1.9)

On physical grounds, let us split the two particle densitinia terms, introducing the so-called
correlation hole functior(r, r’):

n?(r,r') =nW(r) [nV (') + h(r,r)]. (1.10)

The first term in the above equation is nothing more than teability of finding an electron
in the positionr and a second one in the positidrassuming that there is no correlation between
the two electrons (not even the one arising from the Pauicgple).

All the complication has simply been shifted to the hole tioit. The latter accounts for the
fact that the conditional probability of having one eleatat the position’ given that another
electron is at the positionis notthe product of the two one-patrticle densities. In fact towno
the density of the second electron, one has to take into attioel negative density (correlation
hole) that the first electron leaves behind in the rest obfhece and that depends on its position
r.

A big step forward to find the ground state energy is due torkad Sham [103]. Their idea
relies on the Hohenberg-Kohn theorem [67], which statestlieaground state properties of a
full many body problem can be found by solving an effectivegg particle problem associated
with an effective potentidl*®[n(r)], which is a functional of the ground state density) only.
Given this effective potential the ground state energy @aadiermined using a Ritz-variational
scheme, as the functional minimum of the energy functiontl respect to the density.

At first sight the gain is not apparent: We have traded\apatrticle problem, that we are
not able to solve, for a single-particle problem defined byotential that we do not know.
However, the most important information of the Hohenbeji theorem is that the ground
state energy is a functional of the density alone, and ndi@fitave function. This formalizes
an idea that dates back to Dirac, who already in the 19302/384:

[...] the whole state of the atom is completely determinedHiy electric den-
sity; it is not necessary to specify the individual threeeinsional wave functions
that make up the total electric density. [...]

Following Kohn and Sham, we next write the total energy fioml as:

n (¢
En®™] = Tyln®)] + / 1 v (r / i / i ) 4 B n®)
47reo|r — 1/
(1.11)
WhereT, is the kinetic energy of a system abn-interacting electrons with densityn(")

which are taken as a reference system. The second term asdounthe interaction of the
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electrons with the lattice ions. The third term is the Coul@nkrgy that a system of electrons
with densityn") would have if they were classical particles. It is easy tothaethis arises by
including the first term of Eq. (1.10) in the last one of Eq.-9)1 Finally the last ternF,. is
calledexchange and correlation energyand includes all the unknown terms that have been
neglected so far.

It consists of two contributions: (i) a potential and (ii) imétic energy one.

The former (i) describes the decrease of the Coulomb repulsgtween electrons in the
same spin state due to the Pauli principle and pure comwaelafifects due to the fact that elec-
trons do not move independently from each other. This teametimes called exchange and
correlation term, reads:

3 0,21 5, €h(r,r)
UXC_/ d*r nl >(r)§/ d*r Treolr 2| (1.12)

The second contribution (i), also included #)., accounts for the difference between the
true kinetic energyl’ of the interacting system and the kinetic eneffgyof a reference non-
interacting system with the same densifijn(!)] — Ty[nV]. This term originates from the fact
that in the presence of the Coulomb interaction the wave foimaif the system is deformed,
compared to the one of the noninteracting system, even titbesystems share the same elec-
tron density. In other words the interacting system will imize its total energy and therefore
adjust its wave function to reduce the potential energy afpttice of having a higher kinetic
energy compared to the noninteracting system.

Up to now no approximation has been made. The energy has gest &xpressed as a
functional of the electron density alone, and then has beénis a known part and in an
unknown part, in which all the difficulties are hidden. Oretbther hand such a splitting is
very convenient, because all the quantities bytin Eq. (1.11) can be evaluated exactly, and
therefore we only need an approximation for the exchangecarrdlation energy.

However, before discussing the possible approximatioerses forF, ., let us discuss now
how to obtain a single particle Schrédinger equation fromehergy functional, Eq. (1.11).
First, let us write the density in terms of one-electron whwectionsg;:

N
n(r) =) ) eix)” (1.13)
Now the functional (1.11) is minimized with respect to thés, yielding:
R2A off
G+ V) — ] ) . (1.1

Here the effective one-particle potential (depending @ndhrticle density) has been identified

with:
e2n (1) §Ey[nY]

Veff = Ve d3 / ’
(1) = Ve (x) +/ " 4mep|r — 1| onM(r)
and thee;’s appearing in Eq. (1.14) are the Lagrange multipliers useidnpose the orthog-
onality of the one-electron wave functions. Let us stress #ifi this construction is aimed at

(1.15)




1.2 LDA: mapping onto independent particles 15

the calculation of the ground state energy. This means hiea¢ tis no theoretical argument to
attribute a physical meaning to the Lagrange multipligissand to the one-particle wave func-
tions ¢;'s. One is, in principle, only allowed to see them as the ergéres and eigenvectors
of a simplified one-particle problem that can be used as l&oodhe calculation of the ground
state energy of a many-body problem.

However, the great success obtained by the LDA is also dueetempirical observation
that very often the Lagrange multipliees can be identified with theeal excitations of the
many-body system. Therefore these are used to compute lstbacture. In this sense LDA
does not give onlground state properti@s a system, but also thexcitation spectra

Approximations for the exchange and correlation energy

The last step that we need to actually employ the densitytifumed theory described above
is the definition of an approximation fat,.. It is only at this level that some approximation
will be introduced: up to now we have only exactly rewrittee problem in a form more suited
for developing an approximate scheme.

The namdocal density approximatigin a strict sense, refers to the original approximation
proposed by Kohn and Sham, who assumed:

E. = Z/d?’r nW(1r)exe[n™M (1)), (1.16)

wheree,.[n(V)] is the exchange and correlation energy per particle ledrmogeneous electron
gaswith densityn"), that can be obtained, for example by means of quantum Monte Ca
calculations [32]. The name explicitly refers to the fadttthe integrand in Eq. (1.16) only
depends on théocalvalue of the electron density. So in this approximation tbembgeneous
electron gas is used as reference system.

What one hopes for is that the error made in the estimationeotithange and correla-
tion potential is small enough to give reasonable resulis,jibgeneral the approximation is
well justified only in the limits of slowly varying densiteeand very high densities [89]. The
simplest generalization of LDA is thiecal spin density approximatidh SDA), which general-
izeSEXC[ng)(r), nf)(r)] to the exchange and correlation energy per particle of a hemeous
electron which is allowed to undergo a spin polarization.

Besides LDA, several other approximations have been desédltpimprove the descrip-
tion of the exchange and correlation energy, also includiog local terms in the functional.
This led to several other approximated schemes, inclugingfample the generalized gradient
approximation (GGA), hybrid functionals and LDA+U. All tte methods, based on the map-
ping of the interacting problem onto an effective singletigke problem go under the name of
density functional theory. However, with a little abuse otation we will often refer to them
simply as LDA.

To summarize, in all DFT methods some system, most usuaihtimogeneous electron
gas, is taken as reference for developing an approximatinthe exchange and correlation
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energy of the real system. Surprisingly this approximatiery often yields very good results
not only for theground state properties of the system but also for thecitation spectrg i.e.
the bandstructure.

Solution of the one-particle Schrédinger equation

To complete the discussion about the LDA methods, we onlg tediscuss the numerical
solution of Eq. (1.14). This can be done in a self-consistey following the protocol below:

i. Choose a set of starting one-particle wave functiosis), e.g., atomic ones, and calculate
the density»(V, by Eq. (1.13).

ii. Calculate the effective potentiai°®(r) associated with the densityf") (r).
iii. Solve the Kohn Sham equations. (1.14) yielding the neavevfunctionss;“".
iv. Compute the new density from the new wave functions usigg(E13).

v. Compare the old and the new density, and iterate (congnwith ii) until the difference is
smaller than some threshold valyg, .

vi. Once self consistency is reached identify the density(r) with the ground state density

n(r).

From this self-consistent density one can finally comph&eground state energy, and, as men-
tioned, also the bandstructure.

The approach described above is implemented in severat@adelable to the scientific
community, which mainly differ in the choice of the basispétions, and it is now the standard
for calculating properties of solids. In the following welWdescribe a different approach,
the GW approximation, which allows to go beyond LDA (or DFT), skieping into account
the full complexity of the Hamiltonian, and which, on the ¢pterm, is a good candidate for
becoming the new standard for the computation of propesfisslids.

1.3 GW: Hedin’s equations and theGW approximation

Even though the LDA has proven to be a very powerful tool, éhigra number of cases
for which LDA and related methods fail. An important examate semiconductors, for which
the spectral gap is systematically underestimated cordparéhe experimental values, up to a
factor 50% in the case of germanium.

The reason for this discrepancy has been attributed to #sepce of extendegh® states,
whose exchange and correlation interaction is approxithate quite poor way by the local
exchange of LDA. Apart from this, as we will discuss later,A BIso fails for the description
of the transition metal oxides (TMO), even at a qualitatieel. For example it does not give
the insulating behavior of many TMO's.
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Also from the theoretical point of view it would be desiralitehave a method that goes
beyond LDA, at least in two respects. These are, first, thetfat a deep reason for the iden-
tification of the spectra with the eigenvalues of the aaxylione-particle problem is missing,
and, second, the fact that LDA is based on the estimationeoékthange and correlation en-
ergy from a calculation (often numerically) done for the lng@neous gas. This, as we will
discuss in the third chapter, makes the combination of LD#waidiagrammatic method, such
as DMFT, more difficult.

For all these reasons, it is strongly desirable to devicdau= that go beyond LDA, allow-
ing for a better treatment of the correlations. A first pbgy that people have explored is the
improvement of the functiondl,.. However the approaches developed so far in this direction,
like GGA or LDA+U, were not able to solve the main problems in a systematic Wayhe
case of GGA, for example the improvement compared to LDA wasiy quantitative, rather
than qualitative, and not universally better. On the otrerchLDA+U, besides introducing
undesirable fitting parameters, often does not predictteect ground state. It predicts a too
strong tendency towards polarized states, and it opens i glap density of states too easily .

An alternative approach consists in using techniques basegiantum field theory. In this
context the quantity of main interest is the (one-parti@egen’s function, defined as:

G, w2) = (T ()9 (w2)]), (1.17)

wherez; is a shorthand notation for position in (imaginary) time apace, a spin index and
eventually also other quantum numbers (e.g. band index}- (ry,71,01). The operators’

are in the Heisenberg notation, afidstands for a time ordered product. Knowing the Green’s
function one is able to compute:

e the ground state energy;

¢ the expectation value of any one-particle operator (ancespondingly from the knowl-
edge of am-particle Green'’s function the ground state of anyarticle operator, e.g. the
spin or charge susceptibility);

¢ the one-electron excitation spectrum, that in principle loa directly compared with pho-
toemission experiments.

A very important quantity is the self-ener@y (w).

1
Cw—ea = Y (w)

Gx(w) (1.18)
where the Green’s function has been Fourier transformedireagaency/momentum representa-
tion, i is the chemical potential, arg is the eigenenergy of a quasiparticle of momentkum
the noninteracting system (momentum and frequency coasenvhas been implicitly assumed
by taking a Green’s function that depends only on one frequand momentum argument; for
simplicity we disregard a possible spin and orbital dependdere.).
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Figure 1.1: The Hartree diagram (on the left) accounts for the inteoactif one electron with
the background electronic density. The Fock diagram (onriti®) is the lowest order
diagram encoding exchange effects.

S

Figure 1.2: Selected self-energy diagrams at second order perturbtitémry in the interac-
tion. A straight line represents a noninteracting Greemsfion, a wavy line represents an
interaction vertex.

The self-energy accounts for all the interaction effectthim Green’s function. In the ab-
sence of interaction, the Green'’s function can be trivialynputed diagonalizing the noninter-
acting Hamiltonian and the self-energy is zero. In the preseof an interactiorV, i.e., the
vertex associated with the interaction part of the Hamiétor¥,.. expressed in second quan-
tization, this does not hold anymore and computing the eseéfrgy becomes involved. The
first thing that one can think of, to compute the self-eneigya perturbative expansion in the
interaction. In doing so the first two terms contributing@(w) at the lowest order in the
interactionV are the ones depicted in Fig. (1.1), the so called Hartred~aoK ternd.

The approximation obtained by truncating the perturbagixgansion for the self-energy to
the two diagrams in Fig. 1.1 is called the Hartree-Fock agpration (HFA). It is now well
known that while the HFA works reasonably well only for atgrakeady for insulating solids
the HFA predicts a far too large gap, due to the neglecdtaréening effectthat reduce the
Coulomb repulsion. The description of metals is even worgeA Bredicts qualitatively wrong
results, like a zero density of states at the Fermi level.

If one wants to improve on HFA while still maintaining a pefiative approach a naive

1Details about the Feynman diagrams can be found in the sthtigaature, see e.g. [1,43,119]. Unless stated
otherwise, in the graphic representations of the Feynmagrams, a single line depicts@ninteractingsreen’s
function, a double line amteractingGreen’s function and a wiggled line an interaction vert&xand frequency
momentum ands spin must be conserved at every vertex. Timgethblack lines represent thexternal legsof
the diagrams, they are reminders for the direction of therimog or outgoing particles, but do not represent a
Green'’s function.
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way of proceeding would be the inclusion of higher order chagg, like those (shown in Fig.
1.2. However this approach is bound to fail. Indeed at thesities of relevance for metals
(rs > 1) the perturbation series does not converge at any finitercadd one has to device
better approximation techniques.

In this respect the seminal work of Lars Hedin was very imgar{59]. He, already in
1965,

e rewrote and reorganized a set of equatiarell known to the Green’s function people
in a way that is particularly suited for devising approxiroas. These equations are now
calledHedin’s equations

e suggested a simple approximation to take into accountsicrgeffects (for the Coulomb
interaction). This is made possible by the resummatianfatite orderof a certain class
of diagrams, motivated by physical reasons. This approxamagoes under the name of
GW approximation.

We will discuss Hedin’s equations and th81 approximation to them in the next para-
graph.

1.3.1 GW diagrammatics

In this paragraph we will derive Hedin’s equations. Comparethe original derivation
[59], which is based on the functional integral, we will usrdna different language based on
Feynman diagrams.

The first of Hedin’s equations relates the one-particles@iefunction with the self-energy.

Let us consider the expansion of the Green'’s function in $esfrfFeynman diagrams. The
diagrams generated at the lowest orders are shown in FigOh& can identify two classes of
diagrams contributing to the Green'’s function: Diagranag tan be cut in two halves by cutting
one fermionic line, and therefore callete-particle reducible, and diagrams that cannot be
divided by cutting one fermionic line, callexhe-particle irreducible (IP1).

It is quite natural to collect all the one-particle irredalei diagram into a single structural
unity usually callecself-energy operator(or simply self-energy) and denoted byr, r’, 7), or
equivalently, in frequency and momentum spaesy; (iw, ).

By doing so, we can rewrite all the diagrams contributing te @reen’s function as it
is shown in Fig. 1.4, where the self-energy has been repesdry a shaded circle: every
irreducible diagrammatic contribution is included in tledfsnergy, while every reducible con-
tribution can be obtained by forming a chain of noninteragtsreen’s function and self-energy
insertions.

2We are always assuming that we have translational and tinagiance therefore the Green’s function depends
only on one argument in momentum and frequency space. Theeatimd frequency dependence can be expressed
either in real time and frequency or in terms of imaginary time and Matsubara frequencieg = n/3(2n+1),

with g = m% the inverse temperature.
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Figure 1.3: Selected diagrams contributing to the Green’s functioroupé second order in the
interaction. The diagrams on the second line are one-pantieducible, i.e., they contribute
to the self-energy. The diagrams on the third line, inst@ae,one-particle reducible, i.e.,
they do not contribute to the self-energy, and can be gesttiad a chain of self-energy
insertions.

The diagrammatic equation in Fig. 1.4 is the known as Dysom&gn, and its mathematical
expression, in real and momentum space reads:

G(11) = G'(11) + / d2d2'G°(12)%(22")G°(2'1) + (1.19)
/ d2d2'd3d3'G°(13)%(33))G(3'2)£(22") G (2'1) + ...

= G'(11") + /d2d2’G(12)2 22/)G0(2'1");

(22)
Gi(iw,) = Gyliwn) + Gy (iwn) Sk (iwn ) Gy (iw,) + (2.20)
Gk (1w Gy (1w ) S (iwn ) G (iwy,) +
= G (iwy,) + G (iw,) Sy (iwn ) Gy (iw,,).

To compactify the expression, we are denoting with a numbéhe argument a set of space
and time coordinates as well as a spin index.
The solution of the equations above can be written as:

Gy = <[G51—2}1>(11/); (1.21)

1

Giliw,) = [(GR(iw,) " = Siliw,)] (1.22)
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Figure 1.4: Diagrammatic representation of Dyson equation.

where the matrix inversion in the first equation involvesiawersion in spatial and temporal
coordinates.

Eq. (1.21), or equivalently (1.22), are the desired equatiehich connect self-energy and
Green’s function. We will refer to them disst Hedin’s equation (either in real or momentum
space).

In our line of thought we have started from the diagrammatiga@sion of the Green’s
function, used the property of one-particle irreduciiitio define the self-energy, from which
we have derived the Dyson equation. Equivalently, from afional integral point of view
we can define the self-energy as the difference betweenrtégarticle irreducible (1P1) one-
particle vertex for the interacting systdm") (1,1') = [G]afl/) and the 1PI one-particle vertex

for the non-interacting systeirf” (1,1/) = [Go}ah,):
(Goly — (Gl = 2(1,1). (1.23)

This equation is just a different way of writing Eq. (1.21pwever it can be seen as a definition
for the self-energy, from which one can derive Eq. (1.19) abvantage of this perspective is
that it highlights the relation between the self-energy #dred1PIl one-particle vertex function,
which in turn can be obtained from functional derivafiowia the so-callecffective action
I'[¢, #] (a quantity related to this functional will be discussedha hext sections). Taking Eq.
(1.23) as a definition for the self-energy, one can indeenvstat the diagrammatic contribu-
tions to it are the one-particle irreducible diagrams descr above. More details about this
approach can be found in reference [134].

To derive the next of Hedin’s equations we introduce the ephofirreducibility in the in-
teraction. We represent an interaction vertéxoy a wiggled line. For our purposég11’; 22’)
is the Coulomb interaction vertex appearing in the intecagbiart of the Hamiltonian written in
second quantization. A diagram will be callegtiucible in the interactioiit can be separated
into two halves by cutting one interaction line, otherwiswvill be irreducible in the interac-
tion. This concept is introduced in analogy with the (more statidane-particle irreducibility
to introduce two new diagrammatic elements: The screertedhictionlV and the polarization
operatorP, shown in Fig. 1.5. The screened interaction is defined astim of all Feynman
diagrams which connect the left and right side by interastid. As the self-energy is account-

3In an almost equivalent way the self-energy can also be @efrom the derivative of other functionals, like,
e.g., theeffective interactiorfiunctional [156].
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Figure 1.5: Relation between the screened interactionrepresented by a double wiggled line,
and the polarization operatét, denoted by a square.

ing for the fact that the electrons interact among themseitweheir motion, the polarization
accounts for the fact that the Coulomb interaction in a medsisereened. Indeed, the interac-
tion of the electrons is different in a medium than in vacudtach electron will polarize the
background charges, scatter other electrons, and takenganiective excitations.

These effects are considered in the polarization, thatspdasole analogous to the one of
the self-energy for the electron propagator: it collectaistructural unit all the irreducible
diagrams that correct the bare interaction. Itis easy tohsethat all the diagrams contributing
to W can be obtained by forming a chain of polarizatiBrand bare interactio#r, like in Fig.
1.5. The only formal difference compared to Eq. (1.19) cstssin the fact that, while the
(single-particle) Green'’s function and the self-energyehanly two indices, the interaction,
the polarization and the screened interaction are fourtpaibjects, depending on four indices.
Indeed the polarization is related to the two-particless@igfunction. Translated into formulas
the equation of Fig. 1.5 reads:

W(11;22)) = V(11';22) +/d3d3’V(11’;33’)P(3’3;4’4)W(44’;22’). (1.24)

The four indices of the screened interaction label the glaréind the hole that are created at the
two ends of the diagram. As it is defined the polarizatiortiisa complicated object, that can
be still separated in two structurally different parts: amected part and a disconnected one, as
shown in Fig. 1.6, or equivalently by the relation:

P(11;22) = G(12)G(21) + / d3d3'G(13)G(3'1)T*(33:44)G(42)G(24).  (1.25)

Eq. (1.25) isHedin’s third equation: The disconnected part is simply the product of two
Green’s functions, while the connected one containvgraex function I'* that corrects the
independent propagation of the particles, and includestrgy body effects at the two-particle
level. It explicitly accounts for the scattering betweea particles. The vertex that we have
denoted with[™ is the one-particle irreducible vertewhich is, as the superscript™ shall
indicate, also irreducible in the interactich.

4The vertex irreducible in the interaction must not be coetusvith the more standard [134}e-particle
irreducible vertexthat we will discuss mainly in the section about fRG, cf. .Skd.
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Figure 1.6: Diagrammatic expression of the relation between the prtian operator”, the
separated Green’s functions (bubble term) and the verteraoonI™. Since the polariza-
tion cannot include interaction-reducible diagrams iadtef using the vertek we have to
express the equation in term Bf (more details are given in the text).

Second line: In terms of real space or momentum (but not inrliab representation) two
indexes can be contracted to a single one.

Hedin’s fourth equation is obtained by relating the vertdx* to the particle-hole irre-
ducible vertex irreducible in the interactidly,. This relation is given by the standard Bethe-
Salpeter equation, i.e. the equivalent of the Dyson equdtiothe vertex. Indeed, the vertex
'™ will contain some Feynman diagrams that can be separategloirhalves by cutting one
incoming and one outgoing Green’s function line. Such diagg will be calledparticle-hole
reducible while all the particle-hole irreducible diagrams can blemted in another structural
unity, called particle-hole irreducible vertex irredueilin the interactiord’;, .

All the diagrams contributing tb* can be generated by summihg, and a geometric series
of repetitions ofl '} connected by two Green’s function, (Fig. 1.8):

[*(11%;22') = T, (11 22') + / d3d3'd4d4'T*(11; 33')G(3'4)G (4'3),, (44, 22').  (1.26)

Some remarks are necessary here: To avoid that some diagramsunted twice in Eq. (1.24),
we should not include i all the diagrams that can be generated as a ladder of intaractd
pairs of particle hole Green’s functions, otherwise suegdims would be counted twice when
calculatinglV via Eq. (1.24). This can be easily done by imposing figtdoes not contain
the diagram consisting of the bare interactiormlone, therefore we get:

[, (11,22) = Tp(11,22) — V(11,22), (1.27)

wherel',, (11, 22') is the "standard" particle-hole irreducible vertex. In thigioal formulation
of his equations, Hedin [59] related the derivative of tHéeerergy with respect to the Green’s
function with the particle-hole irreducible vertex:
IX(11)
L= ——-=. 1.28

P 5G(212) (1.28)
This is a standard field theoretical relation. In terms offifean diagrams this relation follows
from the observation that differentiation with respectte Green’s function means removing
one Green’s function line, see Fig. 1.7 and Ref. [22].
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Figure 1.7: By means of selected Feynman diagrams we illustrate thardiftiation o®: with
respect ta= yields the particle-hole irreducible vertex.

However, in considering the work of Hedin, we should keep indrthat, since he worked
out his equations for the case of the uniform electron gasolé incorporate from the very
beginning the Hartree term in the noninteracting Hamikoncanceling the energy contribution
due to the positive ions. For this reason in our formulatign @.28) reads:

5(2(11/> - EHartree)
5G(22)

I, = (1.29)

Before we can move to the derivation of the last Hedin’s eguative have now to inves-
tigate the relation between the two-particle Green’s fiamot; > and the polarization operator
P, and correspondingly betwe&nandI™*. Thetwo-particle Green’s functiors defined as:

G (11522) = (TR (1) (2)P ()9 (2)]). (1.30)

It describes the correlated propagation of two particliesan be splitin a connected part and
a disconnected one. The latter is given by the product of ingies particle Green’s functions:

GP(11;22) = G(11)G(22) + G(12)G(21') + G& (11; 221). (1.31)

Following Ref. [134] we relate the two particle-connecte@&r's function with the one-particle
irreducible vertex functiom':

GP(11;22) = / d3d3'G(13)G(3'1)T'(33';44")G(4'2)G(24). (1.32)
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Figure 1.8: Diagrammatic representation of the Bethe-Salpeter equdteween the irre-
ducible vertex in the particle-hole chanrig}, and the particle-hole reduciblgé*. The
particle-hole irreducible vertek?, collects the Feynman diagrams which cannot be sepa-
rated into left and right part by cutting two Green’s funatiines. All diagrams are then
generated by the Bethe-Salpeter equation.
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Figure 1.9: Diagrammatic representation of the relation betweamdI ™. This relation can be
obtained by an iterative procedure, inserting Eq. (1.2Bqn(1.33), and finding an iterative
solution forI". Using the polarization operatd? and the screened interactid¥i one can
collect the generated diagrams in the form shown in the éigur

Comparing this with Eq. (1.25), we see how the connected gatteopolarization and the
connected part of the two-particle Green’s function aratesl. As in Eq. (1.26), the one-
particle irreducible vertex can be expressed in terms opérécle-hole irreducible vertek,y,,
using a Bethe-Salpeter equation:

[(11:22") = Ty (11';22)) + / d3d3'd4da'T(11';33)G(3'4) G(4'3)Tp, (44':22').  (1.33)

For later use let us expre$sin terms of[™*. To do this we insert Eg. (1.27) in Eq. (1.33).
Diagrammatically one can understand the contributiont dnae by performing an iterative
solution forI". By doing so, and collecting the generated diagrams in tefrpslarization and
screened interaction, using equations. (1.25) and (1d2%),can easily convince himself that
all the generated diagrams can be expressethe form shown in Fig. 1.9.

Mathematically Fig. 1.9 translates (omitting the argurseriteach function and the integra-
tion signs) to:

F=T"+I"GGW + WGGT* + I"WT™* + W. (1.34)

We are now in the position to consider the last Hedin’s equoatibat connects the self-
energy with the vertex™. We will proceed as follows: First we will use the Heisenberg
equation of motion to relate the self-energy and the twaigarGreen’s function. Then we
will use the relations derived above to express the twoigarGreen’s function in terms df*,
and to obtain the desired equation.

SFor a more formal derivation see Ref. [63].
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Let us start from the derivation of the equation of motioneTime evolution of an operator
in the Heisenberg representation can expressed in termssoofmmutator with the Hamiltonian:
() -
1= = W), (1.35)
T1

From the equation above we derive an equation of motion foteen’s function:

- U d2’£5(2’ — 1)+ he(12)| G(2'1) +

/ d3'd2d2'V (13, 2 2)(Tp (31 (2)0 (2T (1)) = 6(1 — 1), (1.36)

The expectation value of four field operators is the twakpkr Green’s function. From Eqg.
(1.36) for a non-interacting systevi (11, 22") = 0) one can express the noninteracting Green’s
function as:
a _1
Gg(l, 1,) =—|=—+ ho . (137)
or (1)

Substituting Eq. (1.37) back in Eq. (1.36) gives:
/dz’G51(1,2’)G(2’,1’) +/d3’d2d2’V(13’,2’2)G(2)(3’1’;21’) =5(1 -1, (1.38)
multiplying all terms times=!(1’,4) and integrating ovet’ yields:
Gol(1,4) —G71(1,4) = / d3d2d2'd1'V (13';2'2)G?(3'2';21)G~1(1',4). (1.39)

Inserting Eq. (1.32) and (1.31) for the two-particle Greefeinction, and comparing with Eq.
(1.23) yields:

(1,4) =— / d3d2d2'd5'd6d6'V (13, 2'2)T(5'6', 46)G(3',5')G(2', 6') G (6, 2)
- / 4342’V (13;24)G(3,2) — / d2d2'V (14;2'2)G(2'2). (1.40)

The diagrammatic representation of the equation abovetieifirst line of Fig. 1.10.

To close the set of Hedin’s equations, we only need now toessEq. (1.40) in terms of
['*. We show how this is possible in a diagrammatic way. First vgeiinthe diagrams shown
in Fig. 1.9 or equivalently expressed in Eq. (1.34) in Eq4Q). In this way the self-energy
can be expressed in terms of the diagrams shown in Fig. 1.h& diagrams Al, A2 and
A3 in Fig. 1.11 can be collected together and form the secaagram of the second line of
Fig. 1.10. After some inspection, one can see that the diagfabeled B1, B2, B3 can be
grouped in the diagram shown in the first line of Fig.1.12 biyoducing the block labeled A
and shown in the second line of Fig 1.12. Again, in the first thagrams of the block A (Fig.
1.12, second line) one can recognize the diagrams formangdharization multiplied times the
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Figure 1.10: Equation of motion for the self-energy, expressed in terhis @irst line) andl™
(second line)

screened interaction. Finally, expressing Eq. (1.24) eneuivalent formP = V-1 — W/,
and substituting for the polarization in the block A one géis first diagram in second line
of Fig. 1.10. Expressing such result in mathematical terimesgthe desired result, namely
Hedin's fifth equation:

$(1,4) = / d3d2d2'd5'd6d6' W (13',22)1(5'6',46)G(3', 5)G(2', 6)G(6,2)
- / 4342’V (13, 24)G(3,2) — / d2d2'W (14:2'2)G(2'2). (1.41)

In summary, we have re derived the set of five Hedin’'s equatid.21), (1.24), (1.25),
(1.26) and (1.41), correspondfhtp equations (A13), (A20), (A24), (A22) and (A23) respec-
tively in the original paper [59]. This set of equatioissexactand is only a rearrangement
of standard equation of quantum field theory: solving the@ctly is as difficult as solving
the original problem. However, they offer a better stargouint for developing perturbative
approximations.

1.3.2 GW approximation

As it was known already in 1965 [59], expanding the self-ggen terms of the bare in-
teractionV does not take into account a very important process for siefdle screening of
the interaction. In fact, whenever an external "test" chasgedded to a metallic system the
existing charge will rearrange to minimize the Coulomb pbé&renergy. As a consequence
each electron will not see the "bare" test charge, but a "setBarharge that also accounts for
the polarization of the medium. The most striking consegaef this is the fact that the inter-
action, instead of being long ranged, i®.1/r, in a medium becomes effectively short ranged,

6\We stress once more that in his derivation Hedin followed anvedent but different route: he incorporated
the Hartree potential in the noninteracting Hamiltoniaar fhe case considered by Hedin, of an uniform electron
gas, incorporating the Hartree potential in the nonintimgdiamiltonian is straightforward. He could then derive
all his set of equation by appropriate functional derivatiBollowing this approach is possible also for nonuniform
systems, like in Ref. [12].
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Figure 1.11: Expansion of the Heisenberg equation of motion in termis*of

i.e., < e~"krr /ras correctly predicted by Thomas-Fermi theory, vith being the Thomas-
Fermi momentum, which depends on the details of the mediumidered. In this paragraph
we will discuss how, starting from the Hedin’s equations,c&e obtain a perturbation theory
that keeps screening into account. In the next section welisduss physically the meaning of
the contributions taken into account.

The approximation is obtained by neglecting completelyvigex corrections, i.e. setting
-n = 0. Then the Bethe-Salpeter Eq. (1.25) gives:

I =0. (1.42)

Doing so we only consider the disconnected part of the p#ian operato”. Correspond-
ingly the propagation of an electron-hole excitation, diésd by P, is simplified by the in-
dependent propagation of the electron and the hole (eachhamweever described by a full
interacting Green'’s function). The polarization then rezkito the so-called Lindhardt bub-
ble [119]:

POWVA(117;,22) = G(12")G(21"). (1.43)
Substituting Eq. (1.43) in Eq. (1.24) yields the simplestrf@f screened interaction:

WOEWA(117;22") = V(117;22) + W (11'; 33" ) PEWA(3/3; 4; 4)V (44'; 22'), (1.44)
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Figure 1.12: The block A includes the diagrams B1,B2 and B3 defined in Figl.1.1

and using the equation of motion (1.41) the self-energy ineso
YEWA(1) = —i / d2d2'G(2'2)W (12';21), (1.45)

to which one should add the Hartree texi¥*™<¢(11’). From this, the Green'’s function can be
obtained using Eq. (1.21):

G(11") = Go(11") + / d2d2'G(12) [S9V(22') + BMartree(22')] Go(2'7). (1.46)

The new closed set of equations should be solved self censligt

A first approximation consists in taking, for G in Eq. (1.43) for the polarization, as was
done for the first time by Hedin [59], who applied his equasido the uniform electron gas,
obtainingd the first results of th&'1W approximation. The results obtained by Hedin were very
promising in spite of the seemingly crude approximationfalet, it turns out that the success
of the approximation depends on the fact that it allows ferititlusion of a class of diagrams
for the screened interaction, i.e., those diagrams olddigesumming an infinite series of bare
interaction and Green'’s function particle-hole bubblkat are crucial [119], in the description
of screening. In the literature, for historical reasong often refers to the approximation that
takes into account only the bubble diagrams in the screesfitige interaction as the random
phase approximation (RPA). Clearly, ¥V, the screened interactidii contains the informa-
tion of the RPA screening. Importantly, it can be seen thathécase of the homogeneous
electron gas [119], the RPA screened interaction shows tine sxponential decay correctly
predicted by the Thomas-Fermi screening—"*¥ /r, and is therefore effectively short ranged.

’Besides this, Hedin has also shown that it is possible torgemether Ward conserving approximation [59].
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However, RPA is capable to capture more than this exponediedy. In fact, unlike what
happens in Thomas-Fermi approximation, which is a purelticsapproximation, the screen-
ing of the interaction in RPA, and thereforeiV, is dynamic: The screened interactidiiy
acquires a nontrivial frequency and momentum dependenoamg®eyond the RPA approx-
imation is very complicated, and not much is known about fifiece of vertex corrections to
the polarization. Some attempts have been done to incluteedobwest orders perturbative
diagrams neglected by RPA [119]. This is however less tritfiah it might appear. Further-
more for strongly correlated electron system one shoulcerpeéct that this brings substantial
improvements. Another possibility consists in includinghe screening of the interaction not
only the ladder diagrams in the particle-hole (direct) cteas considered by RPA, but rather
the one-loop parquet diagrafriacluding also the other two channels, namely particlgiglar
and particle-hole crossed. In fact, in general, there arstramg reasons to justifg priori
the fact that the RPA diagrams alone are sufficient to ca@lithe most important processes
contributing to the interaction. These issues are addieissa slightly different contextin
Ref. [71] making use of fRG methods. Nevertheless, as we stmlhsthe next paragraph, also
neglecting completely the vertex corrections, ¢hié” approximation has been successfully ap-
plied, in the last few decades, to the study of real mateyisiesn, providing results in good
agreement with LDA for weakly correlated metals, where bu#thods work well, and results
in better agreement with the experiments than the LDA ontharcase of insulators and semi-
conductors, and more recently also transition metal oxatgmictides superconductors, like,
e.g., in Ref. [175].

1.3.3 Actual implementations ofGW: quasiparticle GW

The self-consistent solution of the Hedin’s equation abeven in thez11 approximation
form, is still an extremely complicated task for real mattsi°.

For this reason in recent years several (further) appraiamsito tackle th&>1/ equations
have been developed. This gave rise to a full new class ofadsthThis makes it sometimes
not so easy to understand the main approximations employeddh specific implementation.
In other words today a series of different methods go undegéneric name GW”

More in detail there are two points that require particukmec

¢ the level of self-consistency;

8The parquet diagrams, and the one-loop approximation witliscussed in the section about the fRG diagram-
matics, cf. Sec. 1.4.2.

9The author of Ref. [71], rather than on RPA focuses on comstdsRPA (cCRPA) [13,131]. The cRPA is used
to downfold the interaction of a full Hamiltonian on a lowesgy one, and therefore the low-energy degrees of
freedom are not allowed to take part in the screening of ttegation. The screening from the high energy degrees
of freedom, however, is performed in cRPA considering ladtiagrams in the particle-hole direct channel. In
Ref. [71] it is shown how to include, at the model level, alsoquet diagrams using the fRG formalism. The result
is a much more rich frequency structure for the interacti@ntthe one obtained in cRPA.

10 et us note that the full self-consistent solution of &) equations is doable for small systems, like
molecules. On the other hand the calculation for solidsireguthe treatment of a larger number /epoints,
which strongly increases the computational effort.
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¢ the treatment of the self-energy.

Let us see what are the methods that arise from dealing ierdiff ways with these two points.

Level of self-consistency MostGW calculations start from a preliminary LDA bandstructure
calculation. The next step is the computation of the padaion. This is done starting from the
knowledge of the eigenvalues and eigenfunctions of LDA. Timelhardt bubble is expressed
using the Lehman representation of the Green’s functiod]f14

(Ynk—qle” T ) (Y| e~iat G |Vnk—q)

w + €n'k—q — €Enk + insgn[en’k—q - Gnk}

)

1
Po(G.G\w) = 5 Z}(?wkmlkq — fur)

(2.47)
wherewy is the k-point weight, f,, is the one electron occupancy of the stale n is an
infinitesimal complex shiftq andk are wave vectors in the Brillouin zonds and G’ are
reciprocal vectors of the lattice. In the equation abovestiia sum has been substituted with
the factor two in front of the expression, while the spin oedi have been suppressed. This is
sometimes referred to dsst chargepproximation, as it would correspond to the response of
the system to a spineless (test) charge in RPA.

Using the LDA wave function and the polarization above one campute the screened
Coulomb interactioni’;,, and, after convolution with the LDA Green’s function, thél” self-
energy:X = iGoWj. In this approximation Green’s function, polarization awlf-energy are
computed in a non-self-consistent way, and the approxanasi referred to a&, W, approxi-
mation.

This approximation already yields improved results coragan LDA, but still depends
crucially on the LDA underlying calculation. To further imgve on this, however, itis desirable
to go beyond a single shat, ¥, calculation on top of LDA, going in the direction of a self-
consistentGW. This is not a trivial task and there are several ways to @ddkat have been
explored.

On the one hand, one possibility consists in realizing adptlate of the Green’s function
andof the screened potential. This approach has been followoretthé free electron gas [68] as
well as for metals and semiconductors [162]. The resultgiobt in this way, however, did not
turn out to be satisfactory. This is explained considerirgg the shift of spectral weight from
the quasiparticle peaks into satellites causes a sulateeduction of the screening. This results
in an overestimation of the bandwidth and of the bandgapse®asre as the underestimation
in LDA. For this reason it is still not completely clear howliable fully self-consistenGW
approximationwithout vertex correctionare [166]. Furthermore this approach is technically
extremely demanding.

For these reasons different partially self-consistentr@gghes have been developed, in
which one updates the quasiparticle eigenvalues in then@ré&enction and/or in the dielec-
tric function, while the one-electron wave functions argtkiexed to the LDA solution. The
advantage of these partially self-consistent approadahmpared to the fully self consistent one
is twofold: on the one hand the problem of the shift of speéeteight to the satellites is less
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severe, and on the other hand the computational burdersisiézsry. However, to proceed in
this direction some further simplification to the self-egeis required. This is described in the
next paragraph.

Treatment of the self-energy: the quasiparticle approximaion

In the partially self-consistent approaches:td” one is interested in the calculation of the
guasiparticle energies,. If one assumes that the wave functions are kept fixed at b L
value, the quasiparticle energies can be computed sedfistently solving the diagonal matrix
elements of the quasiparticle (QP) equation [80, 165]:

€Enk = Re[<¢nk|T + Vion + VHartree + E(Enk)|wnk>]a (148)

wherevp. e 1S the Hartree potential, and(e,) is the self-energy operator computed at fre-
guencyw = ¢,x. TO obtain a solution of the above equation one can proceedtiitely, ob-

taining the quasiparticle energy, " at the iterationV + 1 linearizing the self-energy around

N .
enk-

67]2[k+1 - 67]’2[1( + anRe[Wnk’T + Vion + VHartree + 2<€7]¥k)|¢nk> - 67]:[1(]» (149)

with Z,,,c being the renormalization factor:

8 —1
Zne= (1= Reltnd 506 Ly load) (1.50)

If one relies on a single-shot, 11, on top of LDA one simply gets, after one iteration only of
equation (1.49):

SoWo — (LPA 7 W Re[(Wn|T 4 Vion + Viartree + Z(€0) |thni) — €424, (1.51)

The solution of this set of equations is a new set of quasgbaktnergies. For everlypoint the
self-energy is computed at a single frequén@and all the quasiparticle weight is transferred
from the original LDA quasiparticle energyP* to the GW quasiparticle energy. Since the
frequency dependence as well as the imaginary part of thieseigy have been neglected,
there is no incoherent spectral weight at frequenciesréifitefrom the quasiparticle energy and
the excitations of the system are given by infinitely longetl quasiparticles at the new set of
energies. The effect of the interaction, included via@& self-energy, is therefore a shift of
the excitation energy in exactly as in a one-particle petlror these reasons we will refer to
this approximation as quasiparticl8V (qpG'W).

We also notice that these methods, whatever the degree afmeistency applied, still
depend on the wave functions, computed in LDA, and therefoag have problems in the
treatment of systems for which the LDA gives unreliable hsq166].

YActually, since the numerical derivative of the self-eneig required, the self-energy is computed also at
frequency values,, + dw ande, — dw.
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Comparison of different schemes

As there is a number of similar possible approximations thainge only by the degree of
self consistency, it is not clear which approximation igé&gustifieda prioriand only the com-
parison with experiments camposterioranswer this question, at least partially. Traditionally
the quantity that is used to test the quality of/8" calculation is the quasiparticle band gap.
Indeed it is known, that it is not correctly computed by LDAsbd approximatiort$, which
usually yield a bandgap way too small compared to the ex@stiah one. In Ref. [166] three
quasiparticlezW method are tested against the experimentally measuredaphor a number
of materials. Namely the authors consider:

e one shot qpryIWy;
o partially self-consistent gpily;
e self-consistent(at the quasiparticle levelY 4.

The main result is summarized in Fig. 1.13. One can see taajdH, W, bandgaps are already
much closer than LDA to the experimental values, but arksshilt too small for all the consid-
ered materials except carbon. A partial self-consistenbgtantially improves the results, and
apart for ZnO, the computed bandgap is always less than 10%eExperimental one. It is
also shown that there is a linear correlation between tlog arithe predicted bandgap and the
error in the dielectric constant computed at the RPA levels phoves that an accurate predic-
tion of the screening properties of a given material is nemgsfor an accurate calculation of its
bandgap. This is also important when considering the resbitained with the self-consistent
gpGW approximation: While gV, usually underestimates the bandgap it is slightly overes-
timated by q@-1W. The reason for this is that, if one neglects the vertex ctioes, the RPA
screening is not sufficient to give a good estimate of théedtec constant.

From such a systematic analysis the authors could conchadd¢hte method that best pre-
dicts the bandgap is the i3, even if this is probably caused by a fortunate cancellation
errors. The predicted band gap is usually only around 3%-&fller than the experimental
one. The most important deviations from the experimentaigdicted smaller bandgap occurs
for materials having shallow states. For these a treatment at the perturbative levelifi& 1V
based methods, can hardly be sufficient.

1.4 Functional renormalization group

In the previous section aboGtV we have seen how the inclusion of a subclass of diagrams
could substantially improve the results of plain pertudratheory, and we have also given an
argument to justify the selection of such diagrams, comsigehe important role that they play
in the screening of the Coulomb interaction.

2In LDA the bandgap can be computed interpreting the eigelegabf the Kohn-Sham equation as the quasi-
particle energy. This is not fully justified: The bandgamé a ground state property.
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Figure 1.13: Quasiparticle band gaps computed in LDA (marked as PBE, ldts)),dy=o W,
and g+, plotted against the experimental ones, for several nadse®n both axis a loga-
rithmic scale has been used. One can see a substantial iempeov of q-, W, and q@=W,
as opposed to LDA, that tends to underestimate the band defigure is reproduced from
Ref. [166].

There are important cases, however, where this procedui sufficient to take the most
important physics into account. This typically happens if

¢ the physical properties of the system are influenced byifitcompeting instabilities
e correlation effects become too strong.

In these cases more involved many-body approaches areedqtiurthermore, due to the
complexity of the many-body approaches, one often has toddyathe ambition of treating all
the degrees of freedom on the same footing, and ratheratesteself to dow-energyHamilto-
nian, on which the other degrees of freedom are downfolded.renormalization group sense
this corresponds to formally integrating out all the higleryy degrees of freedom, for which
the correlation effects are less relevant. The low-energgittonian is then approached with
the most appropriate many-body method to treat the phyagécts that are expected to be
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more relevant. The downfolding procedure itself, howeigenften very complicated, and in

practice, one has to definermodel/Hamiltonian, like, e.g., the Hubbard Hamiltonian [77], to
describe the problem. The model Hamiltonian is a further@gmation to the low-energy

one, that can be required either to avoid the complicatiothefdownfolding or because the
downfoalded Hamiltonian might still be to difficult to s@\{for a given many-body method) or
contain too much information than required to capture tisesal physics of the problem.

While we will discuss the theoretical tools to be used to ttleaistrong correlations later on
(cf. Sec. 1.5), in the present chapter we focus on the firgsason, i.e., the one of competing
instabilities, which can arise also in a weak-coupling megjin presence of nontrivial nesting
properties, or in general, when, at lower energy scalesarrent that includes the charge-
channel only, likeGW, is not sufficient.

As a paradigmatic example of this we can consider the Hubiadktl in two spatial dimen-
sions: In the case of half-filling and with nearest neigtsbleoppingt only, the noninteracting
Fermi surface of the system will be perfectly nested. Thismsethat the low-temperature
particle-hole fluctuations corresponding to the nestiagtor [hereQ = (7, 7)], will be large
and eventually logarithmically divergent as the tempewatsi lowered to zero. From these di-
vergent fluctuations one expects an instability of the grbstate towards antiferromagnetism.
At the same time, if one increases the ratja of the next neighbors hoppingover the near-
est neighbors hoppingor changes the filling, the perfect nesting property of tleenk sur-
face will be lost, and other kinds of instabilities will enger In particular, the checkboard
commensurate antiferromagnetic fluctuations, with waeger (7, 7), will now compete with
incommensurate antiferromganetistiiwave superconductivity and even ferromagnetism for
t' /t sufficiently large. From a diagrammatic perspective tlais be understood as follows: In
the first case due to the perfect nesting there is one subitigyp{i.e. the one associated with
the nesting vector) that dominates over the others and dfispatalysis restricted to diagrams
in the corresponding channel, for example an appropriate RBder resummation, is often
an accurate approximation. In the second case however nmdbing channel can be clearly
identified. Hence for a correct description of the systemd(af its instabilities) one should
include diagrams in all channels as well as the coupling antbem. This task is much more
difficult: While it is rather easy to express the ladder daags in a given channel in terms of
a geometric series (for example like it is done for the sa@danteractionil” in the previous
section), there is no simple way of computing infinite resoations of diagrams in which the
channels mix among each other. The diagrams in which thenehamix are those needed to
accurately describe the competing instabilities.

A very efficient way that emerged in the last fifteen yeardéal with this kind of problems
makes use of thieinctional Renormalization Group (fRG) [129,141], which is the main topic
of the present section. From a very pragmatic point of viéwg,is for us the main motivation to
introduce fRG: It allows us to sum parquet diagrams in a syatierand unbiased way. On the
other hand, we should recall here that fRG is a powerful teglethat goes beyond this, being
also connected, as the name suggests, with Wilson’s ideaoktiormalization group [185],
as well with Shankar’'s modern renormalization group teghes [164].
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The main idea behind fRG is to rewrite a problem which we areahtg to solve exactly
in terms of a set of coupled differential equations, whosegration would provide thexact
solution of the problem. For practical purposes, howeverjitegration of the full set of differ-
ential equations cannot be performed in general, as it sporeds to compute exactly the flow
of a functional which is typically not feasible for a nontrivial case. Thaymo circumvent
this is to formally expand the functional in terms of its dative with respect to the fields and
study their flow. The expansion of the functional flow, hox@e, would generate a set of cou-
pled differential equations involving functions of arlity high degrees of freedom. Obviously
to make possible a numerical treatment of these equatiomsioouldiruncatethe set of flow
equations at a certain level. It is only at this point that ppraximation, in an otherwise exact
set of equations, is introduced. In this respect fRG can be ae@n excellent starting point
for devising new approximations, numerically affordatbhel superior to standard lowest order
perturbation theory or resummation of ladder diagrams @lecsed channel in RPA.

In the next subsection the fRG equations will be derived ascldised in more detail. There-
after we will show the relation between the diagrammaticteonof fRG with the one of the
so-called parquet approximation [22], which is, in usuaesa very complicated to solve even
numerically [187]. In this context the main approximatiarsed in fRG, as well as the main
cutoff schemesvill be introduced. Finally, we will discuss the major ackeenents of fRG
over the last fifteen years, focusing in particular on theuhes for the two dimensional Hubbard
model.

1.4.1 Derivation and diagrammatic elements of fRG

The namdunctionalrenormalization group stems from the fact that the flow ¢igna can
be obtained directly for a generatiidunctional [134], and eventually expanded into the fields.
This also stresses one important difference compared towWssenormalization group: The
flowing quantity is a functional, andot some coupling in the Hamiltonian. In the literature
several review papers [5,129, 141, 157] and textbooks [1®8], are now available in which
the aforementioned derivation is elucidated in detail. elléollowing Jakobs and coworkers
[83, 84] we prefer to present first a derivation of the flonuatjons which focuses more on
the diagrammatic aspects of fRG, and which is specific forahe particle irreducible (1PI)
vertex functions. Such a diagrammatic derivation will beoahelpful in the discussion of the
diagrammatic content of fRG.

Let us start from the action describing a spif2 fermionic system, which we write as:

S, ¥] = Solvh, 9] + Sine[, ¥, (1.52)

with ¢) being Grassman’s variables [134]. The first term represtdrg Gaussian part of the
action:

SO = _TZ/ddkEk,o(iwn)QO(kv iwn)ilwkouwn)' (153)

Bysually are obtained for the generating functional of tharsted Green’s function, of the one particle
irreducible vertex functions or of the amputated conne@sgkn’s functions (effective interaction).
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whereyy , (iw,) andyy , (iw,) are the Grassman’s variables associated with the creatibn a
annihilation operators in a Hamiltonian formulation. Fon@ninteracting system with band
dispersiore, and chemical potential the propagato§, (k, iw, ) reads:

1

Go(k, iwy) = — (Yo (iwn) Y (iwn))o = PRa— (1.54)

and the symbo|...), denotes the expectation value within the system defineti&wnttionS,:

_ D[, Y] e
D, pleSoly]
This functional integral can be computed exactly, due toGhessian form of,. In the more

general case all the complications are originated by treation term, that for the case of an
instantaneous two-body interaction we assume to be of tlwniog form:

(.o (1.55)

3
Sint = QT—V dkd?k d%q Z Zka,qakg(mn)ak,w,(zwn/ﬂ'ﬂm)wk,g/(iwn,)zpkw(zwnmm),
e (1.56)
with ©,,, being a bosonic Matsubara frequené€y;, = T'7(2m) andw, = T7(2n + 1) being
a fermionic Matsubara one. The form of the interaction iscHpge& by Vi . Here we have
assumed SU(2) spin-rotational and translational invagawhich allows us to restrict the mo-
mentum summation to three independent sums, due to momexanservation. If additional
(e.g. orbital) degrees of freedom are involved the fieldsi@cquire a further index and a
summation over four indexes would become necessary.

We focus, in the following, on two models in particular, i.aetAnderson impurity model
(AIM) and the two-dimensional Hubbard model with onsiteenatction. In the former the sums
over the momentum indexes are suppressed everywhere jtstoceesponds to a single impu-
rity model without spatial dependence. In this case theadin absence of a magnetic field)

is completely defined by (i) the Gaussian propagator:

1
iwn — 1 — Awy)’

Ganv(iwn) = (1.57)
with A(w,) being the hybridization function, and (ii) by the couplifigof the quartic part of
the action. On the other hand, in the Hubbard model with ersieraction the momentum
dependence of the Gaussian part is retained, while thexrgment of the interaction is
structureless in momentum spadéarq = U, which corresponds, in a lattice model in real
space to an interaction only between fermions sitting orsémee lattice site. From this moment
on, to simplify the notation, we will often refer to the inéetion simply ag/, even if the locality
of the interaction is not necessary for the derivation offR@ equations.

The basic idea of fRG is to obtain a one-parameter family efaiife actions, by making
the Gaussian propagat@s explicitly dependent on an additional parameter

Go(k,iw,) — Go(k, iw,) = Go(k, iw,) fA(k, iw,). (1.58)
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The explicit form of theregulating functionf* does not need to be specified at the moment,
and several possible alternative choices will be presdatedon (cf. Subsec. 1.4.2).

Upon this substitution also the effective action acquires@ependenceS — S*. The
nontrivial, interacting part of the action is lafhchangedy this substitution; however all the
functional integrals like the one for the grand canonicatipan function:

7 = / D[, e S, (1.59)
or the one for the imaginary time ordereeparticle Green’s function:
G (kyiwy, ..., kniw,|Kyiw), ..., K. iw!) =
_% / D[y, ¢]€_Sm’w] Uiy (iw1).. Ui, (Wn)@kgl (W;)-'@kg (iwf), (1.60)

acquire aA-dependence. The advantage of the procedure that we arg goitescribe is
that if the A-dependence of the Gaussian propagator is smooth andedifigile we are able
to compute also thé-derivative of quantities which can be in principle obtalrmpeerforming
functional integrals (involving non Gaussian term), likeg., the one in Eq. (1.60). Assuming
that we know the result of the functional integration, saydaeneric quantity=*, at some
value A, and that we are able to compute Atsderivative for all the values of in the interval
[Ag, '], then we can obtain the value of the functional integFal for any value ofA in the
interval by integrating a (standard) differential equatio

A
FN = / dA OzFA. (1.61)
Ao
Usually, one refers to an equation in the form of Eq. (1.61fj@s equation for the quantity
F. In particular, the relevant quantities for the physicadteyn we are interested in will be
recovered for\g,, when fA4i» = 1. In this way a functional integration, which we are not able
to perform, is traded for a standard integration of a diffdied equation.

Up to now this procedure is exact, but of little use unless vedent more concrete and
specify some physical quantities for which we want to obthmflow equations. It turns out
that a convenient choice are theparticle vertex function®neparticle irreducible (1PI),,.
These are defined as the sum of all the connected Feynmaradiagvithn incoming andn
outgoing legs, which do not fall apart cuttimgefermionic internal line. Let us stress that this
is just one among several possible choices. In fact, onel@sb focus on other quantities, like,
e.g. the connected Green'’s functions. This would corredpowther fRG schemes [129, 189].

Let us remember that an equivalent definition of the 1Pleseftinctions can be given in
terms of expansions in the fields of a 1P| generating funeti®[, )] [134]. It is possible to
obtain a flow equation directly for the 1PI generating fuocél, as it is usually done in most of
the functional derivations mentioned above, [5,104,129%, 156, 157]. This way, one obtains
an equation for a functional, which turns out to be managgeably after an expansion in the
fields: the final result is the hierarchy of equations fog &P vertex functions, which we will
derive below following a different (diagrammatic) path.
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Figure 1.14: Diagrammatic representation of thlederivative of a third order diagram con-
tributing the the two particle 1PI vertex.

Let us start by writing the expansion for the ZRparticle vertex™® at a given scald as:

Th= Y d),. (1.62)

da . €1Pl,

n,m

1P1,, denotes the set @fll diagrams, of all orders, contributing Q' the n-particle 1P| vertex;
dﬁ,m is a selected diagram belonging to this set of perturbatideran in the interaction (but,
obviously, having: incoming and outgoing legs). As such, it can be expresseldeaintegral

of a product om — n Green’s functiong', fulfilling momentum and frequency conservation
at each interaction vertex, times a factor accounting ferititeraction at each vertex. In the
integral, the only terms that depend dnare the Green'’s function, since we have explicitly
assumed that the interaction part of the actioh-isdependent. Therefore, tiederivative of
I'A can be written as the sum of terms in each of which one of ther@sdunction is derived
with respect to\:

= > Y / d'k; > A (7)0aG0 (K, iwy), (1.63)

dA elPIn] 1,2m—n wj

whered, (j) corresponds to the diagradt},, with the only difference that thg-th Green’s

n,m

function (and the relative integration) is removed. Mathénally:

= Z/ddka dyy () Go (K, ;). (1.64)

Wy

Introducing a new diagrammatic element fiyG; (k;, iw;), which we denote by a single
slashed line, we can represent diagrammatically the ¢nnioins to the derivative of the vertex
function, as it is done in Fig.1.14 for a specific third ordigmgram. Let us observe that the
A-derivative does not change the topology of the diagraras, the diagrams contributing to
oAT'A are the same contributing 1}, but with each Green’s function line substituted once by
a slashed line.

Let us now focus on the diagrarﬂsfm contributing to the\-derivative of the 1PI vertexes.
We will show that these diagrams can be expressed as a cloagdoflone-particle irreducible
blocks connected by Green’s functions lines and a singihstdline. To see this we notice that
d? . is by definition one-particle irreducible, hence each diag obtained removing a Green'’s
function line can be written as a chain of irreducible subekt connected by Green’s function
lines (see for example Fig. 1.15). Being in the form offainas soon as the diagram with
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Figure 1.15: Schematic illustration of the ring shaped diagrams coutitig to the derivative
of a Feynman diagram in fRG. Diagramsindd are topologically the same, but the slashed
line, corresponding to the derivative of a Green’s funci®iocated in two different posi-
tions. Removing the slashed lines one obtains one-paredeciblediagrams. For example
in diagramd it would be possible to separate the self-energy insertiosky blue) by cut-
ting one Green’s function line. Upon reinserting the slaslie the diagrams must form
a ring structure, that guarantees one-partioleducibility. Changing the position of the
slashed line one obtains different vertex structure (comgagrams ande). In diagrams
c and f the self-energy insertion has been reabsorbed inltbesedcreen’s function lines,
represented by the double lines.

a Green'’s function removed contains more than one blockahesparticlereducible Upon
reinserting the missing Green’s function, the diagtam must be 1PI. This is the case only if
the chain closes into a ring shaped structure once the Gré&enction line is restored. We refer
to diagrams of this form asng-diagrams, in which each vertex is connected to the neighégor
one by a single Green’s function line. The considerationvabdoes not hold only for the
diagramd’, ,,, but also for its derivativel; .. The only difference is that in the latter case in
place of the missing Green’s function is reinserted\iderivative, i.e. a slashed line takes the
place of a non slashed one, as shown in Fig. 1.15.

After having understood the shape of the diagrams contrigub 9,T'2 we have to sum
them up. This is done in two steps: First, (i) we sum up all tlaghms sharing the same ring

structure, but different sub blocks. Next, (ii) we sum ugtladise diagrams which have the same
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vertex structure, but different self-energy insertions.alh example we can imagine that we are
interested in those diagrams contributingdtd™2, in which one of the sub-blocks has only two
legs and two sub-blocks have four legs (see Fig. 1.15a). dagy to imagine that summing
these diagrams including all the possible diagrams cartirij to each sub-block will give us

a diagram in which the sub-blocks are respectively sultetitby the one-particle (1PI) vertex
function, i.e. the self-energy>*, and by the two-particle 1PI vertex function, il&} (see Fig.
1.15b). Let us then suppose that we want to sum all the selfiggrinsertions on the Green’s
function line connecting two given vertex functions. We hawe possibilities: The slashed
line, corresponding t@, G5 may or may not be between the two considered vertexes. In the
latter case the two vertexes can be connected by a dressed’Sfenction:

G =Gl +Gavhgl + (1.65)

which accounts for all the diagrams with different self4gyeinsertions, and is represented by
a double line. Instead all the diagrams in which the slashme$ lis located between the two
vertexes can be summarized in a diagram introducing the@kedsingles scalgropagator:

Sh = (14GM8A +.)0WGM 1 + 32268 + )
9(Gy) " - _ OG*

BTN G = O\ |EA:const.7
as shown diagrammatically in Fig. 1.15 by a slashed douiée li

Considering the discussion above, thelerivative of the vertex functioh? is obtained as
follows: First draw all the rings including 1PI vertex furamsI™® with 1 < m < n + 1 and
with incoming external indexek,, w, ..., k,w, and outgoing external index&s,w;, ...k ,w; .
One of the lines connecting the vertex functions must be glesiscale propagatas®, while
all the others are full propagatofg*. Then evaluate the ring diagrams performing the internal
summation and following the standard diagrammatic rules.

The derivative of each-particle 1PI vertex function, and therefore its flow egoiaf in-
volves all the 1PI vertex functions with up f&n + 1) amputated legs. In fact, it is easy to
see that closing two of the legs of ant+ 1-particle 1PI vertex with a single-scale propagator
one obtains a diagram in the allowed ring structure @ithamputated legs, i.e., this diagram
contributes to the\-derivative of then-particle vertex'2. On the other hand it is not possible
to generate diagrams of ring structure withlegs using vertexes of more thant+ 1 particles:
This structure allows to saturate only two of the externgslef a vertex. As a consequence of
the fact thav,I'? depends also OEQH, we obtain an infinite hierarchy of flow equations.

For practical purposes, the treatment of vertexes with ritwea four legs is not feasible
and therefore one usualtyuncates the flow equations by taking all the 1PI vertex functions
I'A of ordern > 2 equals to zero. This approximation is motivated by the faat the original
interaction in Eq. (1.56) is a two-particle interaction.eféfore, if (as is done in most fRG flows,
see below) we start frorﬁ(‘)XO = 0 the vertex functions with more than two legs vanish at the

= GNG)'GHGY TGN = —a!

(1.66)

Ystrictly speaking the self-energy is not exactly the ontigla 1PI vertex function [134], but they differ by a
noninteracting Green'’s function line.
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Figure 1.16: Flow equations for the self-ener@y* (light blue block), and the one-particle 1PI
vertexI'2 (green block). The last term of the derivative Iof contains the three-particle
1PI1 vertexI™} (orange block), which in a truncated scheme is usually mégde In order to
translate these diagrams into equations one needs taugtaldirection and a spin to each
of the internal lines.

beginning of the flow, but can grow bigger during the flow. Bygtecting these vertex functions
our flow equations ar@otexact anymore, but they can still be used to get approxinesiats
for the self-energy and the two particle vertex functiomsfact it is reasonable to believe that
at weak or moderate-coupling theparticle vertex functions will not become too big and the
approximation is justified. More formal arguments abow torrectness of this approximation
are given, for example, in Ref. [157].

In this respect fRG can be seen agaormalization group baseday of doing perturbation
theory, and in a subsequent paragraph we will investigates imodetail the relation between
diagrams of perturbation theory and diagrams of fRG.

The flow equations for the self-energy and the one-parfiflevertex can be written apply-
ing the standard [1, 134] diagrammatic rdfes the diagrams shown in Fig. 1.16. In a very
compact notation the flow equations, after truncating tined-particle 1PI vertex, i.el} = 0,
read:

Xt = T'hoSh (1.67)
Oy = Tho(S*oGM ol . (1.68)

Here the symbol ¢” stands for the standard summation over all internal \@gs, i.e., momen-
tum integration as well as spin and Matsubara frequency fatiom In most situations one has
to truncate the flow equations by imposing thigt= 0, i.e., the flow equations are truncated at
the three-patrticle level. In this case the flow equationtifia two-particle 1PI vertex includes
a diagram, in the form of &rmionic loop i.e., two fermionic lines connect two vertexes. The
topological structure of this diagram (or diagrams, if weleitly specify the direction and the
spin of the internal lines) is topologically the same as tiagihms obtained in the context of
(Shankar’s) modern renormalization group [164], in a ciantilexpansion of the interaction

51n the diagrams in Fig. 1.16, and in general whenever we dattisbute a specific direction to the internal
lines, vertex blocks represent the fully antisymmetrizedaxes, as explained, e.g., in Ref. [1] cf. Sec. 9.1.
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part of the action at the quadratic order. In modern rendma@bn group framework these di-
agrams are calledne-loopdiagrams, a term that we will also use here to refer to therdiag
obtained at this truncation level.

Including 1PI vertexe$® of highern in the flow equations allows us to include in the
flow equation for the two-particle 1Pl vertex, also diageamith more fermionic loops. For
example it is easy to see, as we will show, how including (epamially) the contribution of
the three-patrticle vertex generateg-loopdiagrams. This will be discussed in the following,
where we discuss also how retaining the most significantritartion of the three-particle ver-
tex in the flow equation of the two-particle vertex allows fmportant improvements, in the
diagrammatic content produced and in the fulfillment of Wdard identities.

Three-particle vertex and two-loop truncation Let us anticipate a very typical choice for
the initial conditions of the flow and assume tigt® = 0 for all momenta and frequencies.
This corresponds, in RG language, to suppressing all theuitions, on all energy scales, at
the beginning of the flow, . In this ca§g® = U andl"2,, = 0, i.e., at the beginning of the flow
the n-particle vertex functions with > 2 vanish. Therefore the three diagrafhsontributing

to OT'y in Fig. 1.17 are respectively of ordé}(U*), O(U*) andO(U?). If we want to retain
only the lowest order contributions arising frdr} in the flow for ©* andI'y, we can restrict
ourselves to the lowest order diagram, which, in a compatettion'’, reads:

OAY = DAGATAGATL S + THGATL SATAGA + TASATAGATYGA + O(U%).  (1.69)

To obtain the lowest order contribution Bf to the flow of "}, we should integrate Eq. (1.69).
To this extent let us first substitute the single-scale pgaporS* = aAGA|zzconst. with the
derivative of the full Green’s function with respect\toWithin a perturbation theory analysis,
this is allowed at the third order ifY since the error that we make in the substitutionxis
(OAZMTATATSY ~ O(U*). Then we rewrite Eq. (1.69) as a total derivative, by lettihg
A-derivative act also on the vertexE$, and again notice that the error that we make in doing
S0 isoc (OAY)TATS ~ O(U*). In this way we obtain:

A
rd / Or(TAGATAGATAGN) + O(UY) = TAGAT) GATAGA, (1.70)
0

where in the last equation we have retained only the terms tiprd order inU. Reinserting
Eqg. (1.70) forTy in the flow equation for the two-particle 1PI vertex we ohtéie diagrams
shown in Fig. 1.18. In particular, diagrarh@ndc in Fig. 1.18 contairtwo fermionic loops
hence the namavo-loop approximatiofd1,96]. The diagram in Fig. 1.12&as a much easier
structure than the third one. In fact in 10li8e extra loop containing the single-scale propagator
topologically has the form of a self-energy insertion. Oa tther hand, diagram 1.48as the
typical form of a parquet diagram. This can be seen consigdhat one can group the loop

16By looking at the diagrammatic structure@if one can see that the lowest order diagram is the one corgsistin
of a ring in which the sub-block? is repeated: times.
"Here to avoid lengthy expression we suppress all the indaxesntegrals.
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Figure 1.17: A-derivative ofl'%.

on the right in a single vertex block. We refer to this loopraernal since the loop variables
of the externalloop enter in its argument. This can also be seen in termsvofparticle
reducibility : The third diagram in Fig. 1.18 falls apart in two pieces bytiog the loop lines
of the externalloop, and only afterwards also theternalloop can be split in two pieces by
cutting two fermionic lines.

Conservation of Ward identities and Katanin substitution One possible way of estimating
the improvement of the two-loop approximation comparedh&odne-loop one is by analyzing
the violation of the Ward identity for the charge conservafi@b]. The Ward identities [1,181]
are a set of a relations that the vertex functions must Fuffibrder that the conservation of
physical quantities is respected. However in approximatetisns of a given problem the
Ward identities may be violated. This is also the case for fRemever we truncate the flow
equations at a given order. Following Katanin [95] it is pbisto derive a Ward identity,
relative to charge conservation, which connects the sedfgy and the two-particle 1Pl vertex.
By further deriving the Ward identity with respectt@ne can see that the violation to the Ward
identities, when truncating the flow equations, involesrs which are o® (U?), i.e. the Ward
identity is fulfilled only within the accuracy)(U?). Repeating the same steps for the two-loop
approximation one can further see that, in this case, the Wardity is fulfilled with accuracy
O(U*). This shows the advantage of using a more complicated tap-dpproximation rather
than a one-loop one. Technically, the inclusion of the taopl diagram in Fig. 1.18b) is not
complicated: By inspection of such diagram one can recogh&éerivative of the self-energy,
and hence the following substitution, often call€atanin substitution
A A AOXN 0 OGh

St =S5t -G 8_AG =8
accounts for the diagram in Fig. 1.18b). The inclusion ofdlagram in Fig. 1.18c) is instead
more involved [41].

In practice, it has been observed that using the Katanintitutosn improves the conver-
gence properties of the flow equations, and therefore itbegs often applied, even without
the inclusion of the overlapping two-loop diagrams in tlenl Only more recently it has been
possible to implement a full two-loop approximation, wittomising results [41, 98].

(1.71)
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Figure 1.18: Contributions ta),I'; at the two-loop truncation level

1.4.2 Diagrammatic content of fRG

While it is clear that the fRG can be regarded adiagrammatic theory(i.e., its equa-
tions can be expressed in terms of Feynman diagrams), it isocnobvious understanding how
its diagrammatic content can be explicitly related to thecsjc subset of diagrams of other
diagrammatic approximations, like e.@sth order perturbation theory, fluctuation exchange
(FLEX), or parquet approximation. This is due to the fact ihahe fRG a new diagrammatic
element, the single-scale propagator, comes into the playthe corresponding 1Pl vertexes
can be obtained only after integrating a set of differerdggaation, which is not present in the
other diagrammatic theories. Without truncation, the irdégn could be done exactly and the
diagrams would coincide with the exact ones. However, singgcation is unavoidable, the
differential equations cannot be integrated exactly. Ia #ituation the question about which
(or how) diagrams are resummed, by integrating the flow gous, becomes highly nontrivial.

In the following we address this specific issue proceedirngvo steps: First we will rewrite
the flow equations in a less compact way and highlight tebannelstructure; then we will
formally integrate them by iteration in order to compare them to céip@roximations.

As afirst step let us rewrite explicitly the one-loop flowegions for the self-energy and the
1PI two-particle vertex. To this extent we just have to apgpb/diagrammatic rules and specify
the direction of the internal propagators and label theragidines in the flow equations of Fig.
1.19.

XM (1|1) = /d2SA(2)r§(2,1’|2,1); (1.72)
TS (12[12) = Ta(U212) + TA(1'2'[12) + T (1'2'[12). (1.73)

Here the label = (iwy, k1, 01 ) denotes the set of Matsubara frequency, momentum antfspin
Accordingly, the integralf d1 is a shorthand fo")", >~ [ d’k. The quantitiesy,, with

x = pp, ph — d, ph — ¢, correspond respectively to the contribution of the fitagdam, middle
three diagrams, and last diagram on the right hand side of Eig9 respectively, and the
subscript denotes the particle-particle, particle-hotead and particle-hole crossed channels.
In Fig. 1.19 the dashed lines inside the two-particle veseenote spin conservation and the

18And possibly also other degrees of freedom, e.g. an orlpitx.
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Figure 1.19: Explicit flow equations in the one-loop approximation te ttow equation for
the two particle 1PI verteX’. The first diagram on the right hand side corresponds to the
particle-particle channel, the second, third and fourtitespond to the particle-hole direct
(or sometimes particle-hole bubble) channel, and the @étlresponds to the particle-hole
crossed channel (or sometimes particle-hole exchange).

ordering of the creation and annihilation operators assediwith the vertexes. The reason for
such a classification will be apparent in a moment. We canheséatt that for a translationally
invariant system the arguments of the vertex functions atéependent:

AN < 81 -1, (1.74)
Ma212) o« 6(1'+2 —1-2), (1.75)

to fix one of the two internal indeces in the loops of Fig. 1.I3ing so the contribution of
each channel reads:

Top(12]12) = / d3 (1.76)
(U231 + 2/ = 3)[S*(3)GM (1" + 2/ — 3) + G(3)SHM (1" + 2 — 3)|IT2(3(1 + 2/ — 3)[12),

Ton—a(1'2']12) = / d3 (1.77)
DYA31B+1 —1)[S*B)GM1 —1+3) +GA3)SM 1 — 1+ 3)TH((3+ 1" —1)2/|32) +
MY (U3[1(3+ 1" — 1)) [SY3)GH(1 — 1+ 3) + GA(3)S* (I — 1+ 3)T2((3+ 1" —1)2|23) +
L3(U3|(3+1 = DD[SAB)GM 1 —1+3) + G(3)S*(1I' — 1+ 3)T3((3 + 1" — 1)2'|32)

Ton_c(1'2/]12) = / d3 (1.78)
(1342 —1)32) [SA(3)GM2 — 1+ 3) + G*(3)S™ (2 — 1+ 3)| I3 (32'[1(3+ 2/ — 1))

From the argument of the Green’s function and single-sced@ggator in the internal loop
one can see the reason for the subdivisiordgf? in three channels. In fact the Green’s
function and the single-scale propagator in each of thestbl@sses of diagrams depends either
on the loop argument, i.e., the integration variabie equations (1.76-1.78), and on a single
momentum and frequency transféf:+ 2’ for 7,,, 1’ — 1 for T,;,_q and2’ — 1 for T,;,_.. This
dependence plays a major role: assume that at a given/sd¢héetwo-particle vertex is a well
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behaved function; then the only possible divergencé,h’ can be driven by a singularity
in the bubble appearing in the internal loop. This kind ofedgence is not surprising: it is
closely related to the divergence of the renormalized xartdRPA. In some studies [36, 191]
only those terms for which the internal loops exhibit a siagdependence in each of the three
channels were retained in the derivation of the flow equatiof the divergent couplings. This
approach, dubbed sometime®logy model, is particularly interesting for systems wilbar
Fermi surface nesting: It is assumed that the nonsingularstelo not affect qualitatively the
physics of the competing instabilities, which is mostlyatatined by the structure of the Fermi
surface, and consequently, by the corresponding singgiarthe loop diagrams. This can be
particularly relevant, for example, for one dimensionateyns, or two dimensional systems
with flat Fermi surfaces. However, in contrast with what and in references [36, 191] the
fRG scheme doesotinclude in the flow equations only the most divergent cdmitions, but it
allows to take into account also nonsingular diagrams thatgive quantitative changes in the
final results.

Two-particle vertex parametrization Before proceeding with the discussion let us discuss
the most natural parametrization of the arguments of thegarticle 1PI1 vertex. This will be
needed in the third chapter, and is connected with the chaegemposition described above.
The two-particle 1PI vertex can be parametrized in termbi@e independent frequencies and
momenta. A convenient choice is represented by the follgvbosonic frequencies and mo-
menta transfer:

m = 1+2 (1.79)
A= -1, (1.80)
X = 2 -1 (1.81)

This choice is strongly physically motivated: It corresgsrto the frequency and momen-
tum transfer in the three channels described above, andftinerconstitutes, at least at weak-
coupling, the "natural" argument for the (full) vert&% Indeed, this parametrization captures
the frequency dependence of the weak coupling structuréilseofocal 1PI vertex [94, 149].
Conversely, the original (fermionic) Matsubara freques@ed incoming/outgoing momenta
can be expressed as:

y:;n+A—X), T:;H—A+XL (1.82)
1 1
1= (T-A-X) 2= (I +A+X),

Let us notice in passing that if we define the bosonic Matsaufr@quencies aQy; = 27/ fny,
Qa = 27/Pna andQy = 27 /Sny, the only allowed combinations for the three frequencies ar

19At weak-coupling, one can expect that the main structurébeofLPI vertex will be the ones associated with
the lowest order diagram@(U?), which have the frequency and momentum dependence des@fiove. We
note, incidentally, that these diagrams @&ne-particle reducible, and therefore not present in tilve-particle
irreduciblevertex.
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those withn; +na +nx 0dd, to preserve the fermionic frequency of the Matsubaguiencies.

Iterative solution of the flow equations

We are finally in the position to show explicitly which diagna are generated by the flow.
To this extent let us maintain the fermionic frequency andnmota parametrization of the
vertex and solve the flow equations (1.72) and (1.76-1.i@giively. Let us stress from the
very beginning that the iterative solution is used only fedagogical purposes. In principle,
one can not attribute a too specific physical meaning to iberinediate result (at a certain
integration step), since the iterative solution obviousdyresponds to the true solution of the
problem only after convergence. Let us denote? a\nng‘)A the self-energy and two-particle
1PI vertex function at the iteration At the O-th order in the iteration we assume:

TOA = pho (1.83)
r{V4 = 1o, (1.84)

which do not depend on. Therefore the integration of equations (1.72) and (1.43) loe
readily performed, and we obtain, for the self-energy dfterfirst iteration:

AN=A
WA = sho(1) + [/dz GN(2)Iho(12]12) — The(12[21) (1.85)
A'=Ag
= Th(1) + Sgp(1) — Sik(1).

The interpretation of this result is straightforward if wars the flow with a vanishing Gaussian
propagatorjé‘0 = 0. In this case the initial conditions aF#'® = 0 andI'° = U. By reinserting
these in Eq. (1.85) one can easily see that the obtained iethé first order perturbation theory
result, i.e., the “standard” Hartree-Fock diagrams.

In general, if we started the flow from a nonvanishing chaitg; the corresponding initial
condition for the self-energy and the 1PI two-particle @envould have been different. In this
case, the flow equations generate a téif. — 5% which corrects an initial conditiofo
non vanishing from the beginning. The topological form @& tarm generated by the floW}.,
however, wouldnotchange compared to the previous case: It still consistseoHtrtree and
the Fock diagramdqutthis time with two important differences: (i) the vertexashe diagrams
are notU anymore, but rathelFQO, corresponding to the specific choice of the initial Gaassi
propagator, (ii) the Green’s function lines are dressedhieyself-energy:®e. However,:0
is by definition theexactself-energy of the problem defined by the acti$i?, hence already
includes the Hartree and Fock diagrams of that specifioaclio avoid double counting these
diagrams need to be subtracted, and thiaugomaticallydone by the lower boundary of the
integral indA, which gives—ZgoF, and removes the redundant contribution to the self-energy
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For the two-particle vertex we obtain:

rOM12) = Tho(1'2]12) + [/d:a{ (1.86)
XN (3,1 +2 = 3R (1'2]3(1 + 2/ — 3))I50(3(1 + 2 — 3)]12)
+ NGB T = 1301313+ 17— 1)TH0((3+ 1" — 1)2']32)
+ NGB U = 1301313+ 17— 1)TH°((3+ 1" — 1)2']23)
+ V(B = T E3)TR(U3|(3+ 1 — DITH((3 41— 1)2/[32)
’ A=A
+ MB,2 -1 PE+2 — )P EZNE+2 - )}
'=Ao
, A=A
= [2(12[12) + |[TD0 0N o TM0(172/[12) vn

Wherex(1,2) = G*(1)G*(2). The result of Eq. (1.86), if our initial condition &' = 0, is
the second-order perturbation theory expression for thex¢96]. Correspondingly, similarly
to what happens for the self-energy, if we start from a d#fiféyless trivial, choice for the initial
Gaussian propagator, one gets a correction to the initiadgarticle 1Pl verte>F§‘°, including
one-loop diagrams built with the Green’s function bubblet® problem at the final scal&
and the initial vertex function. Again the lower boundanttod integral automatically removes
the diagrams that would be otherwise counted twice.

Obtaining the next step in the iteration is more involvedt We focus on the two particle
vertex and substitute the result of equation (1.86) for #réex, and dress the Green’s function
with the self-energy obtained by (1.85) in the right hane sitithe flow equations. To generate
diagrams up to the third order in the two-particle vertex,smlastitutergl)A only for one of the
two vertexes on the right hand side of the equation. We caimdissh the following classes of

diagrams:

e one diagramin which the two vertexes are bolh':

A
P98 12/ (12) = Tho(1'2[12) + / AN Th0 o POV o Tho, (1.87)
Ao

with P@A(12) = GA(1)S2(2) + SA(1)GA(2), with the Green’s function lines dressed
by the self-energy at the previous iteratlf*. Due to theA-dependence oE(MA the
integration overA can not be performed as easily as in the previous iteratione $*

is not in the form of a total\-derivative. On the other hand, if we apply the Katanin
substitution Eq. (1.71) to the single-scale propagatar jtkegral can be performed and
gives a correction to the two-particle vertex identicallie bne of Eq. (1.86), but with

the propagators in the bubb}¢? computed with the self-energy of the previous iteration
DA,

e Ladder type diagrams like the ones shown in Fig. 1.20. We use the symho| -
to specify the summation over the internal indexes, butithclg only diagrams reducible
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Figure 1.20: Ladder type diagrams generated at the second step in ativieesalution of the
flow equations. The blue box represem%)’v, while the gray one represerif§°. Here
the long line crossing two Green’s functions marks the pgapars the loop on which the
A-derivative acts.

either in the particle-particle, particle-hole direct @rficle-hole crossed channel respec-
tively (i.e., reduciblen the specified channel). Then such a diagram, e.g., in ahntcfe-
particle channel reads:

A
Iy (1212) = / dA' T3 o, A 0, Th 0, P@A o T (1.88)

AX

+ / dN 1—‘90 Opp pEN Opp Ao Opp A Opp Fé\o.

Ao
Once again, this integral cannot be performed straightiodly, even using the Katanin
substitution: Forming a total-derivative would be possible only if all the lines in the
two terms were dressed with the same self-energy, whichigeetly not the case. How-
ever this looks, to some extent, suspicious: From the streaif the flow equations it
appears that self-energy and vertex are always kept at the seale\. In fact, this prob-
lem reflects the arbitrariness in the iterative solutioradystem of coupled equations,
which does not have a meaning at each iteration step. Hermgelieniting ourselves to
illustrative purposes, it is desirable to keep all the in&kdines dressed with theame
self-energy. A possible way to obtain this is proceedingaddews: First compute the
self-energy from the two-particle vertex at the previoesdtion; then, plug the new self-
energy and the old two-particle vertex for computing an tpdiaertex using equations
(1.76-1.78). Finally insert again this “intermediate’eésex just obtained in the flow
equations (1.76-1.78) to compute the final vertex functidimis is reminiscent of the
internal loop iteration that is sometimes needed in thaiikes solution of the parquet
equations [187]. Following the prescription just desdiitier the iterative solution, we
have that all the lines in the diagrams like the ones showngn E20 are dressed with
the same self-energy. Doing so (and using the Katanin sutigti) we are now able to
integrate Eq. (1.88) by forming a totAtderivative and we obtain a standard ladder dia-
gram with two loops. Such diagrams are generated in all dilarseparately. These are
the diagrams that can be generated by means of RPA.

e Parquet-type diagrams like the one shown in Fig. 1.21. In this class of diagrams a
block containing a loop (internal, according to the defamtgiven above) in some given
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Figure 1.21: Parquet type-diagram generated in the second step of ativeesolution of the

flow equations. The blue box represeﬂTl%)A/, while the gray one represeriig®. In this
case the internal loop is particle-hole and the externalpamecle-particle.

channel, say for example particle-hole direct, subsstotee of the two bare vertexes that
build up the external loop in a different channel, say forregke particle-particle. Also

in this case we can not form a tot&lderivative: The single-scale propagator acts only on
the line of the external loops, there is no diagram in whiehdérivative acts on the lines
of the internal loop, and, hence, even applying the Katamsstution is not sufficient to
form a total derivative. For simplicity, let us restrict setves to the third ordé&tin the
two-particle vertexU. At this order we can approximate the single-scale propagath

the total derivative of the Green’s function. Doing so, tieggdam of Fig. 1.21 evaluates
to:

A
/ dN' Tho Opp PN Opp rio Oph Vv Oph Ao = (1.89)
Ao

Ag A Ag A Ag
['5° opp X opp I'5” 0pn X opn T -

A
/ dA’ FQO Opp XAI Opp FQO Oph PY Oph rho,
Ao
The last term is identical to the one in Fig. 1.21, but with lime denoting theA-
derivative switched from the external propagator to therimtl one. There is no diagram
that cancels this contribution at the truncation level aééparticle vertex. Such a di-
agram is however present at the two-loop level (see Fig)1.A8osteriori this is not
surprising after all, and we could have seen this in a diffeveay. The derivative of a
third order parquet-type diagram is shown in Fig. 1.14. mhéde up of four contributions.
It is easy to see that upon removing the slashed line the tagraims on the left can be
put in the form of two blocks with four legs connected by a Gredunction. These two
blocks belong to the two-particle 1PI vertex, and theretbeefirst two diagrams of Fig.
1.14 are included in the flow with truncation at the levelloé three-particle vertex. On
the contrary removing the slashed line from the two rightnaiiegrams in Fig. 1.14 one
obtains a block wittsixlegs, i.e., a block included in titbreeparticle vertex. Truncating
at the level of the three-particle vertex we do not includesthdiagrams in our flow equa-

201t would be more appropriate to say that we restrict ourseteesome order irFQ“. However for the time
being we take the freedom of assuming that the initial veideof the same order of the interaction. Practically
this is always the case.
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Figure 1.22: Lowest order contribution to the flow of the four-particlBlivertexI's.
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Figure 1.23: Top row: Contributions td"} at the fourth order irFQO, arising from the four-

particle 1PI. Bottom row: Some selected contributions athinee loop level to be included
in the flow of the two-particle 1PI vertex.

tion. These diagrams are exactly the same that we miss toddotal A-derivative in the
iterative solution, as illustrated before. We will argueetathat even if those diagrams
are of third order in the interaction, in many cases (in patér for aregularizingcutoff)
the neglected diagrams (i.e. those in which the singleesgmadpagator is acting on the
internal loop) are less relevant than the ones includedtficse in which the single-scale
propagator is acting on the external loop).

double counting subtraction terms generated by the lower boundary of the integral
overdA. Structurally these diagrams are the same as the diagraws stbove, but with
the internal loop lines being substituted by the Green’sfions at the scala,. The role

of these diagrams is very important, as they guarantee thaéw diagram generated by
the flow is counted twice. This means, in practice, thatlal torresponding diagrams
already included in the initial condition, but evaluatedhwthe initial Green’s function,
are removed. It is important to stress here that within the flRé&edure the removal of
double counting diagrams is intrinsically encoded in thenfalism, i.e. it is not necessary
to subtract them by hand (as for example in LDA+DMFT). In theeofGe = 0 all these
diagrams vanish identically.
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An intriguing question is the following: by retaining thealging terms at the fourth order in
'Y, can we obtain something similar to the Katanin substitufar the parquet type diagrams
(like those of Fig 1.21)? The answer is indeed positive. tFise would need to take into
account the lowest order contribution in the flow equatibhi$. It is clear that this contribution
is constituted by a ring of four two-particle 1PI vertexesicected by three Green’s function
and one single-scale propagator, as shown in Fig.1.22rtimgé¢his diagram in the flow for the
three- and two-particle 1PI vertex generates respectoialyrams with two and three loops, as
in Fig. 1.23. In particular, the diagrams d) and f) of Fig3lt#ave the required structure to allow
for the substitutiors® — 9,G* in the diagram of Fig.1.21. Let us also observe in passirag, th
the fourth diagram of the bottom row of Fig. 1.23 is the lowastertwo-particleirreducible
diagram, and hence it cannot be generated within a paf§approximation [22, 149].

From the analysis above we can draw some conclusion abouwtidiggammatic content
of fRG. Truncating the equation hierarchy at the level of thee¢-particle vertex, the flow
equations for the vertex are in the form of equations (1.78)Ldiagrammatically shown in
Fig.1.19, hence also the name one-loop approximation feithncation level. In an iterative
solution, we recover the results of first order perturbattweory for the self-energy, and second
order perturbation theory for the vertex after the firstaten. By further iterations of the flow
equations, we obtain diagrams which have the topology dfuystrdiagrams, but due to the
neglection of three- and more particle vertex, are onlyapproximatiorto them. The reason
for this lays in the fact that, structurally, the parquetgdéans consist of a sequence of nested
loops. Recasting a diagram in the form of a total derivativihwéspect ta requires that the
single-scale propagators acts once on every loop lineeddstruncating the flow equation at
some level, one is able to include only those diagrams in kvhie single-scale propagator acts
on the outermost loops. For example truncating at the levéhe three-particle vertex one
obtains the one-loop approximation, and the single-scalpggator acts only on the lines of
the outer loop.

As a further example let us consider the diagrams in Fig. .1184he top row we show
a diagram of fourth order in the interaction with three nédt®ps. TheA-derivative of this
diagram consists of six diagrams, in which a single-scatpagator substitutes each of the
the Green'’s function lines. Of these six diagrams, the twih e single-scale propagator on
the outermost loop can be obtained already truncating thve @équations at the level of the
three-particle vertex. This is shown in the middle row of.Fig24: One can substitute the
vertex labeled 1 with a block of a loop and two vertexes oletiat the previous iteration;
eventually substituting a block containing a loop also fog tiagram labeled 2, in the next
iteration, one recovers the desired diagram. At the nexi-loesting level, to obtain a diagram
in which the single-scale propagator substitutes one ofateen’s function lines of the first
internal loop, one needs to consider a diagram with two Ipligesthe one shown in in the left

21The “parquet approximation” must not be confused with fle@quet equations. The parquet equations are
an exact relation between the two-particle reducible xegeand the two-particle irreducible (2PI) one, while
the parquet approximation consists in replacing the 2Pexewith its lower order contribution to calculate the
two-particle reducible verteces.
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Figure 1.24: Example of how a diagram is generated in the iterative smuti the flow equa-
tions.

of bottom row of Fig. 1.24. Then, at the next iteration stefsdituting the vertex labeled 3
with a block containing one loop one obtains the desiredrdmutton. Finally, the diagrams
in which one of the fermionic lines of the innermost loop iastled can not be obtained by
substituting any of the vertexes by a block containing a Jo@p, it is not obtained at the one-
loop level. These diagrams can be obtained only in an apmpiion that includes from the
beginning, in the flow equations for the 1PI two-particlate&, diagrams with three nested
loops, which can be ascribed to the leading order contobuti the four-particle vertex. Only
if all these contribution are included one can form the tdiiivative of the diagram that we
are considering.

As mentioned, in a one-loop approximation scheme, thesefee would obtain the dia-
grams of second order perturbation theory at the first stegndterative procedure. Higher
order contributions would be generated in the next itengtidout an exact identification with
perturbative diagrams is not possible for them. Topoldbjicthe generated diagrams (at this
approximation level) are in the form of a sequence of nestegd, and consequenttyo-
particle reducible: It will always be possible to split the diagrams in two payscutting the
lines of the mosexternaloop. Hence the structure of the diagrams generated at #ére(and
two- ) loop truncation level is exactly the same of the diagsancluded in the parquet ap-



1.4 Functional renormalization group 55

proximation. Arguably, even if the diagrams of the parqumiraximation are not reproduced
exactly, due to the truncation, the fRG will, in many casegtwa the main contribution to
them. The connection between parquet approximétiand fRG that we have elucidated using
a diagrammatic procedure is shown in Ref. [25, 26] regardiegprroblem from the opposite
perspective, i.e., they started considering the parquabapnation as a perturbative approxi-
mation for the vertex and shown that retaining only the legaiontributions they lead to the
one-loop renormalization group equations. We will come kadke approach of Ref. [26] at
the end of this section. Two-particle irreducible diagrdmegond the bare interaction are not
included in the parquet approximation. The lowest ordesphewever, can be in principle be
obtained in fRG in a three-loop truncation scheme, i.e.jntg the leading order contribution
from the four-particle vertex allows, in principle, to goyloed the parquet approximation, in
an fRG framework.

In general if we retain contribution up to theloop (i.e., we keep the leading order contri-
bution from then + 1-particle 1PI vertex) we reproduce, after th¢h iteration the perturbation
theory result up to the order + 1 for the two-particle 1PI vertex. Among the generated dia-
grams, all the 2PI diagrams, up to the given approximatideQmould be included. By further
iterating, we will build approximately otheeduciblediagrams, but no more irreducible ones
will be generated.

Finally let us conclude with two important remarks: First,raentioned, the results of an
iterative solution must be taken with a grain of salt, and reasolution one can not rigorously
isolate the contributions of some perturbation order. 8dcae have often implicitly assumed
thatT')° = U, which is the typical case, but not strictly necessary. bt fae will see in the
following that one can also start fromi3® already containing nontrivial correlation effects.

Hitherto, most of the fRG calculations have been performetbeabne-loop approximation
level, since including an higher number of loops raiseséhellof the computational challenge
significantly: Only a few calculations at the two-loop léW&ave been performed [41, 96] with
a still manageable computational cost.

Choice of the cutoff

In this section we will discuss some possible cutoff chaicés particular we will first
discuss the mostonventionalchoices, in the sense that they are suited for starting tve fl
from a problem which includes only “trivial” correlatian(i.e.I'y° = U), or in other words, a
problem in which all the fluctuations, at all energy scab® suppressed. This is opposed to
the cutoffs that already include some nontrivial correlateffects in the beginning of the flow,
like the recently introduced hybridization cutoff [102]rfan impurity problem, or the cutoff
used in DMERG, that will be the main topic of the fourth chapter.

Due to the truncation, the final result, of the fRG flow, duetlie truncation, will be in-

22\We also mention that some similar relations were obtainexlalghe russian school, see, e.g., Ref. [191] and
reference therein. Here some equations close to the onesedbop renormalization group are obtained starting
from the perturbative expansion of the vertex using theated "Sudakov trick. It is very difficult, however, to
find a description of this trick in the western literature.
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fluenced by the cutoff used, through the choice of the ihitsalvable” action S*°, but also
through the details of the Gaussian propagator for eacleva#lty. Therefore it is necessary to
choose appropriately in order to grasp the relevant. Theréna main guidelines to be in prin-
ciple considered in this choice: the regulator property tnredunbiasedness, i.e., the property
of treating on the same footing all the channels.

The regulator properties are connected with the way ingiabimay arise due to the proper-
ties of the Fermi surfac e . To see this, let us consider thergéaxpression of the susceptibility
in the random phase approximation (RPA):

RPA X’
S — 1.90
X Y (1.90)
Here we have omitted the specific momentum and frequencaynaegts, and denoted with
x some general susceptibility of the systexd;represents the bare Green’s function bubble,
whose general expression is of the form [4]:

X069, q) o /dk ﬁ(fk) — n(&k+q) 7 (1.91)

i) — (ex — €xiq)
with n being the Fermi function, angl the energy measured from the Fermi level. A diver-
gence in the expression of Eq. (1.90) for some value of frequand momentum signals the
tendency of the system towards an istability, and requiréfarent treatment. Especially at
low temperature more than one susceptibility may divergeking it difficult to find out which
is the leading one. Let us illustrate how this happens withesexamples. Trading the integral
over the momenta for an integral over the density of stateés = | dkd(e — ex) we obtain the
following expression fof2 = 0 andq — 0 at low temperature:

on(e)

X’ (i =0,q — 0) o /deN(e) e = N(0). (1.92)

In two dimensions, or in general in presence of a Van Hovewargy of the density of states
the quantity/V (0) is logarithmically divergent.

Another divergence in two dimensions and with nearest fighhopping dispersiog, =
—[2t(cos(k,) + cos(k,)] happens foQ = (7, 7), the nesting vector at half-filling (the Fermi
surface is perfectly nest&l. In this case:

n(e —ep) —n(—e — eF)'
2e

X’ (2 =0,Q) = / deN (¢) (1.93)

In this case the divergence is even stronger as the fundionegrate is large for small values
of e: the contribution coming from the energy region close to Fleemi surface is the most
important. Since the two dimensional Hubbard model at fillilig has also a Van Hove singu-
larity in the density of states, the system has two divergasteptibilities in the particle-hole

23In the words of Shankar: Each point on the Fermi surface goes to another point on thaiReirface upon
adding a vectof). This means that, if we shift the figure &Y, the shifted figure (in the repeated zone scheme)
will fit perfectly with the original like something out of E&er’s drawings[164]
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crossed channel. The RPA is able to treat the@ngularly the “renormalization” of the sus-
ceptibility at a wave vectog depends only on the bare susceptibility at that vector, ambi
influenced by the other, possibly divergent, susceptibgi In this case RPA predicts, for the
half filled Hubbard model, an instability of the system todsthe symmetry breaking associ-
ated with the stronger susceptibility, i.e., the antiferegnetic one associated with the nesting
vector, which is eventually correct. We will see soon how aulagzing cutoff allows us to
better tackle this problem.

The other requirement that we want from a regulating fumcigothe unbiasedness. This
means that we want our cutoff to allow for a treatment on tmeestooting of all the channels
and of all the momentum and frequency combinations, inalgidoth the diverging and the non
diverging ones.

Regularizing cutoffs The main contributions to the bubble diagrams come from élggon
of the momentum space in the immediate vicinity of the Ferunfage, see equations (1.92)
and (1.93). Our aim is to sum up these contributions to thegnal step by step, by getting
gradually closer to the Fermi surface, and eventually redayg the divergence at the very end
of the flow.

This is closely related to the original spirit of Wilson renwlization group, in which, start-
ing from high energy, some energy (or distance) scale isugildintegrated out, to obtain, in
the end of the flow, the solution of the problem in which ak thnergy scales are taken into
account.

In our framework we can reach this goal by assuming that thes§an propagator has the
following form:

G (iw) = Gi(iw)O, (iw, k), (1.94)
where©, is a function equal to one for energy or momentum larger tharctutoff A (which
dimensionally is an energy) and equal to zero for energy amerdum smaller than, the
momentum being measured from the Fermi surface. In this stayting from some value of
much bigger than all the other typical energy scales of tieblpm, we can gradually include
fluctuations of smaller momentum, by decreashigl the original Green’s function is restored.
In this way the most divergent terms in the bubble are roufimiged to:

D
X  log [—max(iﬂ, T A)] , (1.95)

D being the scale for the kinetic energy of the system. Thigesgion may diverge only for
small A, i.e. when the fluctuations have been taken into accourit titeeenergy scales.

At some particular scalg, the vertex functiomy generated during the flow may become
very big compared to the other energy scales of the probleheaentually diverge by further
lowering the cutoff. In this case, one has to stop the fRG fEnge in this regime the truncation
can not be considered a good approximation any more. If op#orsop at some nonzero scale,
the algorithm is (usually) not able to describe a physicéibac The low energy degrees of
freedom have not been taken into account yet. However, dviénsi not assured that the
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instabilities that emerge first in the flow are the ones tinathe end survive at the end of
the flow, we can use the two-particle 1Pl vertex at the “gliog scale” as an indication of
the emergent instabilities for the real physical system.e Tétopping scale” itself can be
considered, in certain circumstances and with a grain @f aalan indication of the critical
temperature at which the system would enter in a broken dpasg We note here that there is
some freedom in the explicit choice of the functi®R. A typical choice goes under the name
of momentum shell cutoff This corresponds to taking

G (iw) = Gic(iw)0(|&| — A), (1.96)

with ¢ being either the usual Heaviside step function, or some #medoversion of it. In the
case of a sharp step function thederivative ofG* is nonzero only in a momentum shell with
|€x| — A. This is the reason for the nansengle-scale propagatorits support is reduced to
momenta with a single energy (measured from the Fermi seixfawith this choice of the
cutoff we take into account one momentum shell at a time,irgetyradually closer to the
Fermi surface. This is reminiscent of the gradual treatroétie momenta in Wilson’s [185]
renormalization group or in (Shankar’s) [164] modern remalization group. In particular, we
also note that in the loop equations for the two-particldese(1.76-1.78) it appears a single-
scale propagator and a Green'’s function, the single-scap@gator in modern RG terms ioh-
shell’, while the A-dependent Green’s function is not. This situation is aldés¢he one of the
field theoretical approacttescribed by Shankar [164], in which one of the internal pgator
momenta is at the cutoff and the other has support up to tlodf amatiue.

This kind of cutoff has been widely used, for example in thalgtof the two dimensional
Hubbard model. Unfortunately, however, the momentum €ugaegulating but not unbiased:
The particle-hole processes with different momenta aré&reated in a uniform way [70]. To see
this, let us consider the expression of the susceptibiliytite for small values of momentum
qa, Eq. (1.92), which has contribution only in the momentum'cvag/vhere% # 0. This is
true only in a small momentum shell around the Fermi surfdosidth ~ 7. Therefore in
a momentum shell cutoff scheme, these processes, which vesually lead to a divergent
susceptibility, will be only taken into account far < T'. In the presence of other divergence
tendencies we may have to stop the flow before we reach thesca 7', and therefore before
we are able to include the effect of particle-hole excitaiovith small momentum transfer.
Even if there are no strong tendencies to divergences tloegses with a different momentum
transfer will be treated at higher cutoff scales, in cornttashe idea of unbiasedness. To better
deal with this point also other cutoff schemes have beersddyvi

By looking at the the expression in Eq. (1.95), we evince tliatie want to avoid the
divergence of the susceptibility before the low energy degrof freedom have been considered,
we can also act either on temperature or on the frequency.

Let us first discuss thé&requency cutoff. In this case we assume the regulating function
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O, (iw, k) to be a function of the frequency only. One possibility is arphcutoff?, like [94]:
O4(iw, k) = O(Jw| — A). (1.97)

Another possibility [79] is to use a smooth function, likelre so called2-scheme. In this case
the regulating function would be:

w2

A possible drawback of the momentum shell cutoff and of tegdiency cutoff is that if we
have to stop the flow at the stopping scale, the system defined by the actiéit¢, which con-
tains only fluctuations of energies higher than the stogpicale, does not strictly correspond
to the physical system we are interested in, for which flatttuns of all energies are allowed.
However, if we consider the frequency cutoff, the GaussiapagatoiGc has support only at
high frequencies, and the corresponding action can belljoogerpreted as a physical action
at a higher temperature.

For these reasons, it is sometimes useful to adopt a physitzf. Eq. (1.95) suggests that
such a possibility can be given by using the temperatur# dsea cutoff. This is the spirit of
thetemperature flow scheme [73,74]. In this scheme the fields are rescaled gtheerature
in a way that does not affect the interaction part of the acticherefore, in order to cancel the
temperature dependence%f; in Eq. (1.56) we rescale the fields according to:

Or(w, k) = (1.98)

Geo (i) = T 1, (i0),  Giep(iw) = T 19 (iw). (1.99)

Rewritten in the new fields, the action depends explicitlytloe temperature only in its Gaus-
sian part, that is proportional 52 (see also Eqg. 1.53). Theparticle 1PI vertex function
expressed in the new fields, and the one expressed in the original fieltls are related by:

T,=T3%T,. (1.100)
Therefore one can perform the flow starting from high terapge for they fields, and then
obtain the vertex functions for the original problem. Tharthg point for the flow is at high
temperature, in which cadé = U. The temperature flow is unbiased. As a consequence, the
temperature flow can produce qualitatively different tesstrom the momentum shell cutoff
ones, especially if particle-hole processes with small matonm transfer play an important role.
This happens, for example, in the two dimensional Hubbardeheith next nearest neighbors
hopping [74], where a ferromagnetic instability may emdagyesome values of the parameters.

Non-regularizing cutoff The ones discussed up to now are the more common cutoff choice
which possess regulating properties: i.e. the logarithdiviergence of the bubbles is recovered
only in the very end of the flow. However, if we study a systemwhich we do not expect a

240r some generalization of it to take into account the fact tha Matsubara frequencies are defined on a
discrete grid [94].
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particularly strong divergence due to the Fermi surfaceeriies, or in other words if we do
not expect divergences for the bare bubble, we can tredteatiégrees of freedom at the same
time and use the coupling strength as flowing quantity. Thike basic idea of thiateraction
cutoff [72]. To realize this task we have to rescale the fields in § What, effectively, the
ratio between the potential and kinetic energy is changetigaving formally untouched the
interaction part of the action. To this extent we introducewtiplicative factor in the Gaussian
part of the action:

Sy=T) / dkef, (i) A2 Go (K, iw,) T A T2 en (i), (1.101)

with the flow paramete having in this case the dimension of a pure number. The palysic
system we are interested in is recoveredfot 1. To understand the physical meaning of the
interaction cutoff we formally rescale the fields accogin:

bro(iw) = A 3o (iw), Gy (iw) = A7y, (iw). (1.102)

In this way the Gaussian part of the action would formally\omdependent, while the interac-
tion part would become proportional A¢. We can absorb this factor in an effective interaction
UM = A2U, and interpret the new action as the one of a (physically defihed) system with

a U” rescaled interaction for every given value of the cutbffThe flow can then be started
atA = 0", i.e. from an infinitesimally small interaction, until tlegiginal bare interactiod/ is
recovered. As it clear from Eq. (1.101) thedependent propagators reads:

GA (K, iw,)] ™" = A2 Go(K, iwy) ' A2, (1.103)

hence the cutoff acts in the same way on all the modes anddherieis also referred to as a
flat cutoff

Hybridization cutoff Let us close this small overview of cutoff choices with theetly
introducedhybridization cutoff [102]. We will also come back on this topic at the end of
the third chapter. The hybridization cutoff is designed reat the problem of an impurity
embedded in a bath, in particular in view of a possible apibn as impurity solver for DMFT
or its cluster extensions [101]. The idea of the cutoff isuassg as starting point for the
flow the exact solution (for the self-energy and the 1Pl exrtof a small exactly solvable
portion of the system, such as, e.g., an isolated atom, atieeiflow gradually activating the
hybridization with the rest of the system. To this end, ththba discretized and represented
as a chain of noninteracting sites attached to the impuNgxt, a small portion of this chain,
called "core” and including the interacting site, is singdetiand solved exactly. The size of this
portion is mainly determined by the maximal system sizedhatcan solve exactly. Finally, the
hybridization of the end site of the core with the rest of thain is restored, and the self-energy
and vertex function of the impurity computed through thevflequations. Although this cutoff
is not completely successful in reproducing the Kondo pts/i02], it's application as impurity
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solver for DMFT [101] gives satisfactory results for bothakeand strong coupling regime.
This highlights the important role played by the self-catesit hybridization function in DMFT

and at the same time indicates a possible way to approacbregstoupling correlation regime
in fRG. These two points will be discussed more in Sec. 1.5 ahde3pectively.

Regularizing cutoffs and neglected terms in the perturbatve expansion.

After having discussed some possible cutoffs, we are nowarpbsition to better analyze
the diagrams that are neglected in a one-loop approximgdithre fRG equations. In particular
we focus on diagrams such as the one presented in Fig. le2lthe lowest order parquet dia-
grams. We have already mentioned that integrating by paetdidgram in the figure one gets,
besides the parquet diagram without the single-scale gadpes, the integral of an identical
diagram but in which the single-scale propagator replanesobthe internal loop lines.

This last contribution is unpleasant since (i) it only asiskle to the truncation of the flow
equations, and (ii) it is of the same perturbative order @nititeraction as the retained diagram.
Therefore it is desirable to show that the retained diagm@ansribution is much larger than the
neglected one. A general argument is difficult to find, diszause the relative weight of the
retained and neglected diagrams (that would be needed amadtactly the parquet diagram
without single-scale propagators) crucially depends @ndinoff choice. To see this let us
compare the situation for a regularizing cutoff (e.g., frexcy cutoff), and a non regularizing
cutoff (e.qg., interaction cutoff).

The latter case is easier: neglecting everywhere the selfgg in the Green’s function and
considering thatt* = AG, we obtainS* = % =G, " = GAG* = A°GG, andPA =
oax® = 2AGG. Therefore it can be easily seen that, since the cutoff fanctoes not operate
selectively in frequency or momentum space, the integnads @\ are independent from the
integrals over the momentum and frequency variables, ambeaerformed separately. Hence,
the contribution of every diagram is independent on thetjwrsof the single-scale propagator
in the loop: The neglected and retained diagrams have the sagight.

The situation is different in the case of cutoffs that operslectively in momentum or
frequency space. In this case since the integral @¥eand those over the internal loop variables
do not factorize and an analytic evaluation is more involvElis issue as been addressed by
Binz and coworkers in Ref. [26]. In particular in Appendix B offR€6] it is analyzed a parquet
diagram consisting of a particle-particle loop embeddealparticle-hole crossed one (which is
the same diagram we will analyze numerically in the follogyiabtaining the same results). The
authors of Ref. [26] show that, assuming perfect nesting ®F&rmi surface and an infrared
cutoff (i.e., a cutoff excluding the low-energy degreesretefiom, like the momentum cutoff),
the contribution to the\-derivative of the diagram arising from the derivative of thternal
loop lines is negligibly small compared to the contributemising from the derivative of the
external loop. Therefore, they conclude that, if a diagrameducible in a channel (e.g., in
this case in the particle-hole crossed channel), the maitribation to itsA-derivative will be
obtained by deriving only the propagators connecting tieglircible blocks and not deriving the
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Figure 1.25: Parquet-type diagram studied numerically. In the top Imediagram is shown
with all the fermionic lines being Green’s function, copeading to calculation (i) described
in the text. In the bottom line we show the four contributi@nthe A-derivative of the
diagram. Integrating all the four contributions oviY corresponds to calculation (ii) in the
text. The contributions have been separated #f, ‘retained in one-loop fRG, and 7i”
neglected in one-loop fRG.

irreducible blocks themselves [26]. This justifies the bo@p truncation of the flow equations,
at least for systems with nested Fermi surfaces. This arguimesomewhat analogous to the
results obtained by Shankar [164] in the framework modenonmmaalization group. In Ref.
[164], in fact, he argués that it is possible to relate the sum over all loops to the loog-
result. The argument is based on an analogy with the smadhpeter of thel /N expansion,
made possible by phase space arguments, which are beyoscbibe of this thesis.

On a different perspective, since analytical evaluatioesi#ficult and need to restrict one-
self to specific situations (e.g., perfect nesting of thenktesurface), one can rely on numerical
techniques, for example by evaluating numericallyAheerivatives of the lowest order parquet
diagrams and comparing for these the contributions arisom the derivative of the internal
and of the external loop lines. This approach, althoughdésgant than analytical estimations,
has the advantage of being flexible and easily generaézabdlifferent choices of the cutoffs
and general Fermi surfaces. In particular, we have analyagterically the third order parquet
diagram shown in Fig. 1.25, for the dispersion of a two dinms Hubbard model at half-
filling with nearest neighbors hopping only, and onsitemction/. We neglected everywhere
the self-energy and did the numerical calculationat fitetaperaturd’. We have evaluated the
diagram in two different ways:

(i) direct evaluation from standard perturbation theory;

25¢cf. Sec. VII of Ref. [164]
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(i) evaluation of the integral ovedA of the four diagrams obtained by substituting one of
the Green’s function lines with a single-scale propagdiottom row of Fig. 1.25). As a
cutoff we have assumed a frequency cutoff at finite tempeeatollowing Ref. [94]:

if =77 > |w| — A,
+BEY i T < Jw| - A < AT, (1.104)
if lw| = A > 7T,

O(lw| - A) =

O o= O

and S (k, w) = Gk, w)O(|w| — A).

The numerical evaluation following (i) and (ii) has provitithe same result (within the nu-
merical error) as expected. Furthermore, the evaluatipnging the fRG procedure allowed
us to disentangle the contribution of the retained (Figd).2and of the neglected diagrams
(Fig.1.2%:). This way we have checked that the contribution coming ftbeintegration of
Fig.1.25 is typically one order of magnitude larger than the one cgnfiiom the integration

of Fig.1.2%, for all the values of momentuthand temperature considered. Although this nu-
merical analysis does not allow for a definitive assessrabotit the validity of the one-loop
approximation, it provides a further indication that thejonaole is played by the diagrams
retained in the one-loop approximation (for the cutoff adesed). However, this should be

verified case by case, and supported with physical intuitesd, whenever possible, with ana-
lytical or semi-analytical evaluations.

26The diagram, due to energy and momentum conservation, dsgenthree momentum and frequency vari-
ables. The three frequency variables have been assumedetgubéto the lowest Matsubara frequency, while
several combinations of momentum variables have beenzathly
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1.5 Dynamical mean-field theory

In the present section we will discuss ttignamical mean field theory (DMFT). DMFT
has been the first method to give a reliable nonperturbateseription of the Mott transition,
and is nowadays one of the most powerful tools for the desonf strongly correlated sys-
tems. Hence it is not surprising that it has been describadvery large number of references,
and that it has been derived in several different ways, sge,Refs. [46, 48, 60].

Therefore we will not try to give an exhaustive overview abBWFT, for which we refer
to the literature, but we will rather present it in a way togaee the ground for the combination
with GIW and with fRG, which we will discuss in the following chapters.

To this end we will present two different derivations of DMFhe first one uses an easier
formalism and is intended to show the physical content of DMFhe second one makes use
of a more involvedunctional integraformalism and is intended to show the formal similarities
as well the differences with fRG.

In this perspective we will first introduce what is the ideshind DMFT, i.e., the exten-
sion of standard mean field theories to quantum problemsisibyg alocal approximation to
describe the properties of lattice models for solids. Thenwl describe in which limits this
approximation becomes exact: the limitinfinite dimensions, but also in thenoninteracting
and in theatomic limit. At this point we will be in the position to tackle a more tetdat
discussion and deal with the derivation of the DMFT self ¢stesicy equations, that allow the
mapping of a lattice model onto anderson Impurity Model (AIM). These two points, (i)
the description of a lattice problem with a local approximatand (ii) the mapping onto an
impurity site, constitute the heart of DMFT.

The limit of infinite dimensions will serve us as a guide talerstand what kind of physics
we are able to capture by the DMFT approximation. In view oater use, we will propose
two possible complementary pictures to visualize DMFT: @adne hand we can imagine that
we are approximating a finite dimensional problem by the Aifdich better describes its local
physics, or, on the other hand, we can imagine to approxithatéocal physics of the finite
dimensional lattice with the one of an approprigexiliary) infinite dimensional problem

To make contact with the fRG techniques we will discuss amradtéve derivation of DMFT,
following the lines of the discussion presented in Ref. [4B]is derivation is based on the defi-
nition of an effective action functional of the local Gregfinction and is related to the Baym-
Kadanoff [19] and Luttinger-Ward [117] approach. As an exbngb successful application of
DMFT we will touch upon the DMFT description of the Mott trainen. We will not discuss
here, instead, the combination of DFT and DMFT methods aitoexhab-inito treatment of
strongly correlated materials.

1.5.1 Dynamical mean field

One of the most essential model Hamiltonians that is ablaptuce the relevant physics of
strongly correlated materials is the Hubbard Hamilton&®, 7, 92] (and its generalizations,
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e.g., to many bands). In general, this Hamiltonian dessritv® kinds of processes: The hop-
ping of an electron from one site to another one and the ensoglyof doubly occupying a
lattice site.

If we focus on one lattice site only (in a one band case), taeedour possible configura-
tions: |0), | 1), | 4) and| 1,]). The configuration of the site can change as the electrops ho
back and forth to the neighboring sites: If we loakly at this single sitéhe lattice plays the role
of a bath and guarantees the electrons the chance to hopfateechanging the configuration
of the site, which is still a full quantum problem.

This idea can be formalized in the following way: Insteadarfisidering the lattice problem
with all its degrees of freedom, we can approximate it witingle site problem, embedded in
an effective bath, drastically reducing the number of dege& freedom. In this way we keep
track of thelocal physics of each site: We do not focus mherethe electrons are going or
coming from, buton the given sitethe electrons still feel the interaction among each other.

However, a given electron on the sitavill not feel the interaction with a time averaged
electron density on the site, but an interaction that wipeted on the quantum state of the site
1 at a specific timer. In this sense the questiamhere(on which site) the other electrons are
hopping is not relevant, but the questimhenan electron is coming back still is: In this sense
the physics iglynamig i.e., time dependent.

Once we approximate the lattice physics with the one of deisite embedded in an effec-
tive bath, we need to perform two main steps to accomplishask:

¢ we have to define the equations that connect the latticdgmoto the effective bath in a
self-consistent way;

¢ we have to solve the impurity problem (which remains a quantany body problem).

While the solution of the many body problem can be achieve@weral different ways using
different techniquedihpurity solvers), the problem of defining the self-consistent bath is more
fundamental and we will focus on it in the following.

Self-consistent AIM

To be specific let us focus on a single band Hubbard model se/titamiltonian can be
written as:
H = (ty + pdij)cle;p + U iy (1.105)
ij,0 i
Heret;; is the hopping amplitudé/ is the Coulomb interaction is the chemical potential:lg
(¢;,) creates (annihilates) an electron of spiat the lattice sité. The quantity that describes
the dynamical state of the lattice sites the local Green’s function:

Gloco (T — T') = —(Teip(1)c (1), (1.106)

10

FromdG); , one can read out the probability that the lattice site is pmxliat some given time
or that the electron can hop back or forth from the bath: Ihésrelevant quantity to describe
the embedding in an effective medium.



66 Different methods for different correlations: GW, fRG, and DMFT

As stated above, our aim is finding the local problem thatdbss the state of a site of the
lattice problem. The Hamiltonian that describes the locabfem of an impurity embedded in
a bath can be written in the form of the AIM:

HAIM = Hatom + Hbath + Hcoupling- (1107)
The first term describes the on-site interaction betwe@mgp and spin-down fermions:
Hapom = Uﬁ’Tﬁi + N(ﬁT + ﬁ’i)? (1108)

where the chemical potentialis used to fix the occupation on the site, and= c/ c_, with c],
andc, the creation and annihilation operators of the impuritg.sit
The “form” of the effective bath is encoded in the two followings team

Hyun = Y &aj,a, (1.109)

lo

Hcoupling = Z Vi(ajgco- + CLalo—), (1110)
lo

the operators,, define anauxiliary set of fermions, with dispersion defined Byand hopping
amplitude to the impurity given by;. The set ok;’s andV;’'s will be referred to as ‘Anderson
parameters

The details of the AIM defined by Eq. (1.107), i.e., its Anslem parameters, have to be
determined considering that we want it to describe the lpbgkics of a lattice site, which,
in turn, is completely defined by the local Green’s functiequation (1.106). Therefore one
wants to determine that particular AIM whose interacting@rs functionG2™ (7 — 7/) =
—(Tc,(7)ct (")) anu is equal to the local one of the lattice:

Cloco (T — 7') = GAM(7 — 7). (1.111)

Whenever this condition is met the one-particle physics eriripurity site and on each lattice
site is the same, regardless of what happens respectiviie tauxiliary fermions and to each
other lattice site. In fact, sharing the same local Greamstion, the single impurity and the
lattice site will also give the same results for the single-particle local operators like, e.g.,
the magnetization or the (local) density of states. To lfulie requirement (1.111) one has to
fix the Anderson parameters defining the auxiliary fernsigrandV;. However, even assuming
that our impurity solver allows us to solve exactly the AlMdaio computeGA™ we still do
not know the local Green'’s function of the latti¢k,.,. Therefore solving equation (1.111) is
not possible until we define an approximation for the loced&h’s function. In DMFT we will
chose an approximation f@¥,,. that involves the AIM Green'’s function itself. We will see tha
this gives rise to the DMFT self consistency cycle: The AlMatmines the self-energy that
enters in the local Green’s function, and the local Greanigfion obtained this way determines
a new AIM. However before discussing how to find the selfsistency equation it is useful to
switch to an effective action formalism for the AIM.
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This is particularly convenient since the auxiliary fermsan the Hamiltonian (1.107) are
noninteracting’, and can be therefore easily integrated out. This yield$ali@wing effective
action:

1 ’ g ! A -1 / ! o
SAIM:_B/O dT/O dr ;1%(7')@0 (T—T)¢U<T)+U/O drny(T)ny (7). (1.112)

Here the action is expressed in terms of the Grassman vesiabdnd«) associated with the
annihilation and creation operators of the impurityis the inverse temperature. The Gaussian
part in the action (1.112) is specified by the noninteragtBreen’s function of the AIM (also
called Weiss field}j,. It is related with the Anderson parameters of the auxilzath fermions

by:

Go' = iwn+p— Aliwy), (1.113)

. Vi|?
A == 1.114
(twn) o & ( )

l

and A(iw,,) is usually referred to as theybridization function The action (1.112) has the
appropriate form to describe the single site embedded ittiadasince it does now depend
only on the Grassman variables of the impurity site. The tquadratic in the fields in the
action (1.112) describes processes in which a fermion gawvesaches the impurity site, while
the term proportional té/, quartic in the field, is responsible for the local Coulompuision.
The fact that the Gaussian propagafiaris time dependent is essential to describtarded
processef which a particle leaves the site at a timeand comes back on the site at a time
7/ after propagating in the bath during the time interval- 7. Conversely, this can also be
analyzed in frequency space: The fact that the Weiss fielcetguency dependent implies that
the particle that hops to the impurity site or leaves it cavehdifferent energies, and fermions
of different energies have different probabilities to hop.

Go can be considered tlguantum counterpadf the effectivemean fieldof classical statis-
tical mechanics, since its functional form is used to repmgsn an effective way, the relation
between a site and the lattice. This is also the origin fom@m@meWeiss fieldattributed toG,.
Until now, we did not yet introduce any specific approximatior the local Green’s function,
but we only stated that if we know the local Green’s functidm dattice problem we can also
find the AIM whose Green'’s function equals the local one & kattice. However this is of
little or no use until we define an approximation to find tleedl lattice Green’s function. The
guideline that suggests the best approximation comes fnenmnfinite dimensional limit of a
lattice model. In this case the mapping onto an AIM is exaet, not only one can find an
AIM having the same local Green’s function of the lattice rmlpdbut it is possible to calculate
exactlythe local Green'’s function of the lattice from the solutidracelf-consistent AIM.

2"Here we mean that there is no term in the Hamiltonian (1.1@ypbd the quadratic one in the operators of
the auxiliary fermions. However, strictly speaking, thexsome interaction between the auxiliary fermions due
to their linear coupling with the impurity. This can be moasiy seen formally integrating out the degrees of
freedom of the impurity.
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Infinite dimensional limit

The infinite dimensional limit of a lattice (Hubbard) modehs pioneered in 1989 by Met-
zner and Vollhardt [130]. This limit, although sounding &gpturns out to be very useful. In
fact it represents the limit in which the dynamical meandfideory, intended as a mean field
theory in space but not in time, becomes exact. This is ana®tp the what happens for a
classical spin system where, in the infinite dimensiomaltlithe mean field approximation (in
spaceandtime) becomes exact [130]. For a quantum model, like the Hrblimodel, this is
not the case, since a static mean field approximation, ssitheaHartree-Fock approximation,
does not allow to obtain an exact result, even in the infiditeensional limit [130]. This is
very reasonable: In infinite dimensions the fluctuatiomspace are averaged out, while there
is no suppression for the fluctuations in time, and theeetore needs dynamical mean field.

Before discussing the physics, let us make a short remark #itmnomenclature. We refer
here to the limit of infinitedimensionsccording to the original paper in which it was proposed.
However, rather than the number of dimensions, it is thediaation number, i.e., the number
of neighbors to which an electron can hop from a given sitackvis really important. In this
way the limit can be made also for lattices, like the Bethedattfor which the dimension is not
well defined. Obviously for a hypercubic latticedrdimensions with nearest neighbor hopping
the coordination number is= 2d.

Following Metzner and Vollhardt [130] we refer to the spexdase of a Hubbard Hamilto-
nian in the form (1.107), where the two sums range over tles sit ad-dimensional lattice. In
the case of a hypercubic lattice with nearest neighborsinggpe kinetic term can be diago-
nalized in momentum space, with eigenvalues:

d
e =—2t Y cosk;, (1.115)
j=1

with ¢ the hopping amplitude arld = (&, ko, ..., k4) the momentum vector. From this one can
evaluate the density of statéXe) = (27)~%2Y", d(e — ), which in the infinite dimensional
limit, due to the central limit theorem, reads [130]:
c 2
2t\/3) ] , (1.116)

1
D(e) = St (ed) 2 exp [— <

i.e., the density of states is a Gaussian distribution withancetv/2d “=5° co. The kinetic
energy per lattice site of the noninteracting model equessecond moment of the density of
states, i.e., the variance for a Gaussian density of statesefore the energy scale associated
with the kinetic energy diverges in infinite dimensions fised ¢.

On the other hand, the potential energy per lattice sites chmd scale with the number
of dimensions. In this situation the model (1.105) would tal: It would not describe a
competition between kinetic and potential energy. To avbisl we assume that the hopping
amplitude scales according to theoper scaling

toct*/V/2d, (1.117)
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with t*/U ~ O(1). In this way the variance stays finite, and the model stiatibes the
competition between kinetic and potential energy in thetlin— co.

Let us note [46] that this agrees with the scaling of the ergkanteraction between nearest
neighbors, for statistical mechanics models, that takesaim: J;; « J*/z, which is needed
to recover the essential physics involved in the magnedigsition of those models. In fact, it
can also be seen that in the limit of largehe Hubbard model can be mapped an-a/ model,
with superexchangé;; o tfj/U. In this case the proper scaling Eqg. (1.117) guaranteesitbat
superexchange scales likgz.28

The proper scaling was derived above in the special caseygfexrtubic lattice with nearest
neighbors hopping only. This can be generalized to a systgmlenger range hoppings by
introducing the quantity;_; which counts the number of equivalents sites at the (Maahptt
distance| i — j || from the site: [60]. It can be seen that assuming a scaling of the form

tiy o<t/ Zljizj) (1.118)

with ¢;; being independent of;;; guarantees a finite kinetic energy also in the ligjt_;; —
Q.

Let us assume now the proper scaling of the form of Eq. (1.ah8)see how it affects the
diagrammatics of DMFT.

Locality of the self-energy Let us focus on the self-energy. In this derivation we folline
lines of Ref. [60]. The proper scaling imposed on the hoppmgld@ude, implies that also the
noninteracting Green’s function scales in the same way:

1
V2=l
This can be easily seen by the definition of the Green’s fondh real space [60].

The interacting and noninteracting Green’s function amneated via the Dyson equation
1.21. Therefore, unless the self-energy tends to zero nhondysthan the hopping amplitude
whenZ;,_; — oo, the interacting Green’s function will scale like the ndeiracting one. In
the end we will find that the self-energy is purely local,rééfere validating thisnsatz

Due to the assumed locality of the Coulomb interaction, inynRean diagram, the interac-
tion line?® always connects a lattice sitavith itself. Let us consider a diagram contributing to
the self-energy, like the one shown in Fig. 1.26. The siimsd; are connected by three lines
and each of them brings in a factﬁ’ﬂ_if”, hence the diagram scales with a facqﬁf”. This
factor implies that, for # j, in the limit of Z;,_;; — oo the diagrams vanishes. This is not
the case fofocaldiagrams, i.e. those with= j which stay of orde)(1) even in the limit of
infinite coordination. Therefore the nonlocal self-enedipgrams in which two different sites

Gy (w) o (1.119)

28\e also mention that the idea of the proper scaling is, in s@nses related to the one of theV expansions,
in which one writes a theory in terms of fermions withcomponents. The difference is that in this case one usually
introduces a term /N to avoid the divergence of the interaction energy, rathan thf the kinetic one [164].

29In the Feynman diagrams that we show in this chapter we reptése Coulomb interaction as a wiggled line.
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Figure 1.26: Feynman diagram for the self-energy. In the limit of infeaxdimensions it con-
tributesonlyif i = j.

B)

< \

Figure 1.27: A) Non skeleton Feynman diagram for the self-energy. B) Sécoder Feynman
diagram in terms of dressed Green’s functions.

are connected by at least three Green'’s function lines malewant compared to the ones, topo-
logically identical, in which the three Green’s functionds connect the same site. Focusing
on skeleton diagrams (the ones relevant for the self-ehengy can see that whenever in the
diagram there are two sitesand; thesemustbe connected byt leasthree Green'’s function
lines, either directly or through other sit&sin any case their contribution will scast least
like 1/2 %2

Hence all the nonlocal self-energy diagrams are irreleand the only relevant diagrams
in the limit of infinite dimensions are the purely local onas announced the self-energy in this
limit is purely local:

Lij(w) = 6;8(w), (1.120)
Yk(w) = X(w). (1.121)

This also justifies the initial ansatz on the scaling of thteiacting Green’s function.

Mapping on the AIMin d — oo We shall now come back to our original problem and dis-
cuss how to calculate the local Green’s function of an itdimiimensional lattice by pinpoint-

3OMore precisely one can talk of independent paths that cdrthecsite: to the sitej. Each one brings in at

least a factoz /2 .
[li—3lI
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ing and solving the self-consistent AIM. Let us stress thathe limit of infinite dimensions
the proper scaling has to be the one described above, to &dloan exact relation. We will
then assumehat the relation (1.121) holds, as an approximation, aisthe case of a finite
dimensional lattice.

We have just shown that in infinite dimension the only diagsdhat contribute to the self-
energy are the local skeleton (i.e., built witlteractingGreen’s function lines) ones. Topolog-
ically, therefore, the diagrams contributing to the selésgy of an infinite dimensional lattice
are equal to those that contribute to the self-energygdraeralAIM, which include only local
Green’s function lines by definition. If we further assurhattalso the (local) interaction term
is the same for the impurity and for each individual lattide,shen the self-energy diagrams
of the two systems, besides being topologically equivaleiit also assume exactly the same
value if the localinteractingGreen’s function lines are the same. In other words, sinee th
diagrams are topologically the same tlhwactionalthat gives the self-energy as a function of
the interacting Green'’s function is the same for the AIM aodthe infinite dimensional lat-
tice. Therefore, the knowledge of the AIM that fulfills E4..{11), i.e., that has the same local
Green’s function as the infinite dimensional Hamiltoniatso impliesthe knowledge of the
lattice self-energy, since the two self energies of the twoolehs are the same:

Y(w) = SAM(w). (1.122)

We can next make use of the Dyson equation to express the loeahG functions of the lattice
and of the AIM in function of the self-energy:

_ D(e)
Gloco(w) = /de PR Ea——T L (1.123)
GAMw) = [g5(w) = 2M(w)] (1.124)

Equation (1.122) can be used to assume that the self enamgesations (1.123) and (1.124)
are the same. Reinserting them in Eq. (1.111) we obtain andit@lation for the Weiss field
Gy of the AIM that satisfies equation (1.111):

(Gl (w) —Z(w) ' = / de

where the self-energy¥ can be calculated from the solution of the AIM. In general\tfieiss
field of the AIM that fulfills Eq. (1.111) is not known. Thei@e equation (1.125) can be
regarded as self-consistencyequation: If one is able to find an AIM with an associated Weiss
field Gy(w) and self-energy:(w) that fulfill equation (1.125) one also knovexactlythe self-
energy and local Green'’s function of the infinite dimensilpproblem specified by the density
of statesD(¢). In practice the problem of solving equation (1.125) arfses the fact that the
self-energy is not known a priori, but one has to solve a maoyy problem. The usual way to
deal with equation (1.125) is by making use of the followiedf sonsistency cycle:

D(e)

1.125
iw—€+p—X(w) ( )

(i) Start from a reasonable guess, e.g., for the self-energy
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(i) compute a new Weiss fiel@, by inverting Eq. (1.125).

(iif) Solve the new AIM defined by the new Weiss field. In thdwgmn of the AIM problem
several different impurity solvers can be used,;

(iv) iterate, inserting the new self-energy in Eq. (1.12%¢p (ii).

Self-consistency will be reached when, for a given accyrdugyquantities (e.g. the self-energy
or the Weiss field) computed in the new iteration equal thesarfi¢he previous iteration. When-
ever self-consistency is reached one knowsak&ctself-energy and local Green'’s function of
an infinite dimensional problem, which would have beeneaxiely difficult to obtain from a
direct solution (e.g., using exact diagonalization, qguemMonte Carlo, or any other technique)
of the lattice original problem.

Approximation for finite dimensions In finite dimensions, in general, the self-energyst
purely local. However, in several situations as we will dixse below, we can still assume
that relation (1.122) holds as approximation for the self-energy of a finite dimensional
problem. This implies that we assume a purely local selfggnalso in the finite dimensional
case, neglecting its the nonlocal part. Under the assumpti@ local self-energy, equation
(1.122), the local Green'’s function can be computed usingsob equation of the form (1.123),
where the density of statd3(e) refers now to the finite dimensional lattice. The local Gree
function obtained this way can be the inserted in Eq. (1.1dréquivalently in Eq. (1.125), to
form together with equation (1.122) a set of approximatémhsistent equations. This set of
equations is at the basis of tBMFT approximation .

The self-energy="MFT | obtained at self consistency,assumedo be the DMFT approxi-
mation for the self-energy of the finite dimensional prableéObviously this is not exactly true:
We are neglecting the nonlocal part of the self-energy, arvadently, its momentum depen-
dence. Through the Dyson equation the momentum dependétive self-energy also enters
in the local Green'’s function. Therefore also equationi1)Jlonly holds approximatively, and
the AIM describes in an approximate way the local physics tattece site (cf. footnote 31).
Let us stress, however, that this does not depend on the@uediether an impurity problem
that describes it exactly exists (at least at the one patigsiel) but on the fact that we do not
know how to find the right AIM, and we have to rely on an approation to find it. At the
same time, while the self-energy momentum dependence leated, the interacting Green’s
function remains momentum dependent, due to the momentpendence of7,(k, w).

The physical condition that we have to keep in mind when wetwaapply DMFT is that
we are going to neglect the nonlocal self-energy. This iegplhat if we have physical reasons
to believe that the nonlocal fluctuations, that translate strong momentum dependence of the
self-energy, might play a key role, DMFT must be either dided, or supported with the results
from some DMFT extensions or other techniques that allowtHer(at least partial) inclusion
of nonlocal fluctuations.
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Other limits where the DMFT is exact One of the main strengths of DMFT is that it is able
to accurately describe the two opposite limits of weak anshst coupling. This is not the case
for many other approximations. For example, focusing orndigfilled Hubbard model, a good
description of its physics can be obtained in the weak cagpkgime by means of perturbation
theory, e.g., Hartree-Fock (or BCS) like theories. Also tiggae of (very) strong coupling can
be described in a perturbative way, after projecting outlih#bly occupied states and mapping
on at — J model at weak coupling/ < t*/U < t). However these perturbative approaches
work only in one of the two limits.

On the other hand DMFT is exact in both limitsmdn-interacting bandsand ofisolated
atoms regardless of the number of dimensions. Let us briefly sivwy this is the case. The
non-interacting limit is (trivially) given by = 0. Then the self-energy of the lattice ks
independent by definition, as it vanishes for evkfgoint. Equation (1.125) simply gives:

Go(w) = Gie(w). (1.126)

loc

In this limit (andonly in this limit) the Gaussian propagator of the AIM associateth the
lattice problem by the approximation (1.122) equals theimtenacting local propagator of the
lattice.

In the opposite limit, that of isolated atoms, the self-gyds local by definition, as each
atom is isolated. Formally this is obtained by removing B# hoppings among the atoms:
ti; = 0, or equivalentlye, = 0. The density of states reduces t@-function: D(e) = d(e).
As a consequence, the self consistency equation (1.128) exfpressing,(w) in terms of the
hybridization functionA(w), reduces to:

1
iw— B(w)’
i.e., the hybridization function vanishes for all the vaué its argument\ (w) = 0.

Remarkably DMFT is exact in both limits, and provides an iptéation between them
for intermediate coupling regimes. This is important beeail allows to describe not only
the two regimes of strong and weak coupling but also the (nsoreplicated) intermediate
regime on the same footing In the interpolation between the two physical situatiorieeg
role is played by the evolution of the hybridization functid (w). Let us stress here, that in
spite of appearing in the noninteracting part of the aumilialM, the hybridization function,
in a DMFT calculation, already carries crucial informatioout the correlations of the lattice
model, i.e., through equations (1.111) and (1.125) it ddpen the interaction. In fact this
guantity can be interpreted as a “quantum” generalizabba classical mean field [49]. More
specifically we have seef(w) vanishes in the atomic limit, Eq. (1.127). Moreover the low
frequency behavior of the hybridization function plays tnacial role in the Mott transition:
A(w — 0) = 0 corresponds to a Mott insulating solution. Besides thix) héforethe Mott
transition is approached, the hybridization function eleovery important features about the
new energy scales arising in the lattice problem [62], f@regle a three peak structuredfw)
is associated with the emergence of a kink in the self-enérlgg connection can be made more
explicit analyzing the Mott transition in a Landau theorgrfrework, as done in [106,107, 150].

(iw — A(w) — B(w)) " = (1.127)
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Aucxiliary model In view of the upcoming discussion about DKFG let us elaborate further
about the concept of the auxiliary model in DMFT. As discuisabove, in DMFT we approx-
imate the self-energy of a lattice model with the one, logatlefinition, of an AIM. We have
often referred to the latter as anxiliary model. We try now to better investigate the connection
of the auxiliary model with the lattice one, making the distion between finite and infinite
dimensions.

In infinite dimensions the proper scaling and the localityhe self-energy guarantee that
the lattice self-energy can be compugedctlyfrom the one of the auxiliary model: In this limit
DMFT is not an approximation butraapping This is not the case in finite dimensions. In this
case thephysicalmeaning of the auxiliary model is less well defined. Indelee auxiliary
model can be thought of as that model that best approximiagdetal quantities of the lattice
one under the approximation that the lattice self-enerdgycaf:.

However, in view of the combination with fRG, it might be insttive to envision the
auxiliary model in an equivalent way. Let us notice explcthat in Eq. (1.125) the lattice
entersonly through the noninteracting density of stat$c). This means that, as long as
we focus on the paramagnetic phase [48, 133], we can findralegigferent lattices which
share the same density of states and are therefore desbyilitbd same AIM in DMFT. More
specifically, we can define awixiliary infinite dimensional latticewith hoppingt;;, which has
the same density of staté¥¢) of the finite dimensional lattice we are interested in. Tifenite
dimensional lattice defined by the infinite dimensionappimgst;; will share with the auxiliary
AIM the same self-energy and local Green’s function, whiclnifinite dimensions are exact.
Therefore one can equivalently think of DMFT as havaggproximatedthe self-energy and
local Green'’s function of a finite dimensional lattice witlhe ones of thenfinite dimensional
auxiliary lattice which has the same density of states. Thissideration will turn useful in
defining an fRG-like flow equation in the context of DNVIRG.

1.5.2 Functional perspective on DMFT

In the following we would like to present a different derinat of DMFT, based on the
definition of aneffective actionI'|G], which is afunctional of the local Green’s function.
This second derivation will not add information about thggibal content of DMFT, already
discussed in the previous paragraphs using a formalism ass/ihvolved. Instead here we
wish “to Kill two birds with one storie®: On the one hand, we want to show that the local
Green'’s function in DMFT can be obtained fwnctional minimization of an effective action
functional. On the other hand we want to explicitly show sdorenalsimilarities between the
functional that we will use to derive DMFT and the generatingction for the one-particle
irreducible functions studied in fRG (see footnote 38). Thenmon idea is that both in fRG

31Theexactlocal Green’s function of the lattice mod@l,c. (w) = [Y- (G, (w) ™! — Sk (w))] ~! is, in general,
different from the DMFT one. Strictly speaking the AIM thatdt describes the local properties of the lattice model
is the one whose interacting Green'’s functiortis., (w), which does not necessarily coincide with the AIM of
DMFT at self consistency.

32This sentence has been already used in a scientific worlRee¢§164].
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and in DMFT one can start from a simpler form of the functiomiaht one knows how to treat
exactly and then ‘flow” to the more complicated functional in which one is intdeabin. In
DMFT: We will start from a functional corresponding to a pretul in which the hopping is com-
pletely suppressed, i.e. we will start from atomic problemand then switch on the hoppings.
There are however important differences. Indeed to obtarphysical quantities of interest
in the generating functionals one has to evaluate theirtiomal derivatives, and this is done
in two different ways in fRG and in DMFT, therefore yieldingawdifferent answers. These
answers are complementary in the sense that in fRG one drepsgyiher order vertex functions
(with the truncation of the flow equations) but keeps a ca@rphomentum and frequency de-
pendence, while in DMFT one rather gives up the momentumrabgece, while retaining a
nonperturbative description.

The presentation below is based on the one given in Ref. [46]at&kapproaches are
presented in [86] and [34, 35]. In Ref. [34] the connectionuaein the functional derivation
of DMFT and the common Green’s function methods early dgpaddby Baym and Kadanoff
(BK) [19] and Luttinger and Ward (LG) [117] is also stressedbdith cases one builds a func-
tional of the Green’s function so that its stationary poineg the physical value of the Green’s
functions. The main difference consists in the fact thatevine BK and LW functionals de-
pend on thdocal and nonlocalGreen’s functions, the DMFT functional depends only on the
local one. Obviously, also in the case of the BK and LG theahesfunctionals cannot be
computed exactly and one has to rely on approximations.

The rest of this section is organized as follows. First wé @ghstruct the effective action,
i.e., the functional of the local Green’s functidfiz] which is stationary for the physical value
of the local Greens functio@,.:

I [G]

6G
We stress that this functional can be formally constru@edctly[134] using some standard
relations in the functional integral formalism. Of courBe tomplication comes when we want
to compute the functional, or its derivatives, a task thgquines approximations.

Then, before discussing the DMFT approximation to the fionet, we will present an
“ fRG intermezzb. To stress the analogy between the construction of the DMimnctional
and the fRG one we will report the fRG flow equation for the 1Réetive action functional
'}, Whose structure is formally similar to the “flow equatshthat lead to the construction
of the DMFT functional. We hope, with this comparison, to stiate further analysis or refined
approximations.

Then, we will focus again on the DMFT functional, and presbetapproximation that we
will use to compute it explicitly, i.e., we will see how thewderpart of Eq. (1.122) arises in
the functional derivation framework. Once we have definedbagt to compute approximately
the functional we still have taninimizeit. In doing that we will recover theelf-consistency
condition, Eq. (1.125). Finally we will discuss the diffaces between the DMFT approxima-
tion and the fRG one. The main steps that we will follow in thisqedure are sketched in Fig.
1.28.

= 0= G = G (1.128)
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G1 (iwn)
1) Infe] G (iwn)
G3(iwn)
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Figure 1.28: Schematic representation of the derivation of the DMFT eseifsistency equa-

tions using an approximate functional of the local GreeaigtionI'pyrr[G]. The first step
consists in the construction of the exact effective actiworctional of the local Green’s func-
tion. The argument of the functional is an arbitrary functaf frequency or time~. The
effective action functional is constructed in a way thasisiationary for the physical value
of the local Green’s function (step 2). Hence, by minimizirig:] one obtains the physical
valueG,,. of the local Green'’s function. The knowledge of the local &rs function of the
lattice is sufficient to determine an AIM which has the saoeal physics of each lattice site,
i.e., the same Green’s function. The steps 1) and 2) can baaflyr achieved but require
the integration of functional integrals which, in geneiale not doable. Therefore in step
3) we approximate the effective action function&l:— I'pyer. TO this end, we assume
that the self-energy of the lattice is approximated by the @imna (self-consistent) AIM. The
minimization of the approximated functional, then, cop@sds to the requirement that the
impurity Green'’s function equals the local one of the la&tfwith the approximated self en-
ergy). This way, the DMFT self-consistency cycle is defin@tie local Green’s function
is determined by the AIM through the self-energy, and, atstémme time, the choice of the
specific AIM is defined by the minimal condition for the furanal, through the requirement
G(loc = GAIM-

Construction of the effective action

on

Before starting with the derivation of the effective actitet,us state the obvious and focus
the definition of the object we are going to construct: &ffective action’[G]. I is afunc-

tional i.e., its argument is &unctionG(w) of a singletime argument, which can be specified in
imaginary frequency or timer. G is notnecessarily the local Green'’s function of the system
we are considering. However, we are goingctmstructhe effective action in a way that its
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argumentat its stationary poift is the physical local Green’s function of the system, that we
call Gio.. G has the physical meaning of local Green’s function, whitegéneral, we cannot
attribute a specific physical meaning@ and we have to regard it just as the argument of the
functional. In this section, unless we specify the momena&sgument, the symbak is used
for a function of the time or frequency only, and one shoultlganfuse it with the Green’s
function of the system.

To write the effective action in a manageable form, we stgrttnsidering a one band
Hubbard Hamiltonian, explicitly dependent on a paramatgt6]:

HY = A ticle, + UZnMi (1.129)

ij,0
= A / ErY ey, +U D  ngn. (1.130)

For A = 0 the Hamiltonian (1.130) is purely local (atomic problemile for A = 1 it
corresponds to the lattice Hamiltonian we are interestedLiat us explicitly notice that\
multiplies only the part of the Hamiltonian that @giadratic in the creation and annihilation
operators To make an analogy with fRG, we can define from Eg. (1.130)AXh#ependent
noninteracting Green'’s function associated with:

G (iwn, k) = [QF (iwn, k)] ™" = (iwn + p — M) " (1.131)

This quantity* is the coefficient of the quadratic term in the fields in adtional integral
formulation. The latter is based on the acti6f associated with the HamiltoniaH”, that
reads:

SMap, ] = Z / Pkt (iw,)[Gh (1w, K)] o (iwn) + U mgmgy,  (1.132)

wn,o'

with n, (1) = v¥,, (7). (7). Let us notice that the actioft* depends om only through the
propagator of the Gaussian pa¥{. The first functional that we construct is tigenerating
functional for the local connected Green’s functionof the Hamiltonian/Z*. To do this in the
functional integral formalism, we couple a tebitinear in the fields to docal source term3®

33We are not going to discuss two important points here: (iytieesentabilitgondition and (i) thestability of
the functional. The representability condition correggmnn this context, to the question whether one can always
find an AIM whose Green'’s function equals the local one of létice. The stability issue corresponds to the
guestion whether the vanishing of the functional derivatjields a true minimum, or a saddle point. This problem
is still open in DMFT and is discussed in Ref. [35], and it ispibly also connected with the recently exposed
divergences of the vertex [85,160]. For a (brief) discussibthese two points, as well of the connection with the
BK and LW functionals, we address the reader to Ref. [46].

34The quantityQ? is introduced here to make contact with the notation of ReX9] generally used in the fRG
literature.

35We will refer equivalently to the source terra either in time or frequency domain. For a more general de-
scription of the generating functional for the connecteddsrs functions, of the source terms, and of the Legendre
transformation in functional integral context we refer tef134], specifically Sec. 2.4.
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A(r)
G\aw) = ~In [ DuDTexp(-5"w.7)
8 8 B
- [Lar [ S a@i, a0 (1.133)
Or, expressing explicitly the actiaft*, Eq. (1.132):
B
g8 = —tn [ DuDGesp{ [ darl=H .01+ 3 G ()00 + )t (7)]
B
- [ ar @, 0.0} (1139

The reason why we chose to couple the bilinear térpir);, (') to the local source will be
apparent in a moment.

The interactinglocal Green’s function ofZ* (or equivalently ofS*) is defined a¥ the
following expectation value:

= fD@Dq/’Eia(T)%a(O)e*SAW@]

A
G <T> fDEDw e*SA[wﬂ]

loc

(1.135)

This quantity can be expressed particularly easily [13#]githe generating functional (1.133),
as we can see by differentiatifgvith respect to the source, for vanishing value of the source

field:
0GMA]

= G (iwy). 1.1
OA(iwn) |, Cloc it0n) (1.136)
In complete analogy with equation (1.136), we can definddhewing quantity:
. SGAA]
A . =
G iwn; A = 52 (ion)’ (1.137)

This quantity is the equivalent of a local Green’s function &n action thatncludesthe cou-
pling to the source\. The quantityG*[iw,; A] depends on its time and frequency argument,
but alsoon (i) the source field\(w) and (ii) on the parametet.

The generating functional (1.134) that we have defined isnational of the sourcé(r),
which, being the argument of the functional, is an arbitrfanyction, while the local Green’s
function of the actiorS* can be computed by functional derivation with respect tostharce
only for vanishing value of the sourcéHowever the functiona*[A] is not the one we are

36We assume that no spin symmetry breaking happens, and treetieédocal Green'’s function does not depend
on the spin.

370One has to consider that in Ref. [134] the source is coupléuktéield, while here we have coupled the source
to a bilinear in the field, that is why a physical quantitkdithe Green’s function, is given byfast derivative of
the generating functional with respect to the source, antbyra secondierivative.
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looking for, as can be seen considering equation (1.136)he physical local Green’s function
is not obtained by functional minimization. The problenmhiatithe generating functiong)* [A]

is not a functional of the local Green’s function, but of tleeisce. To write a functional of the
Green’s function we can use equation (1.137): Instead oiguas argument of the functional
the sourceA itself we can use the local Green’s function that can be nbthin the presence
of A. We stress that this local Green’s function is also, in pglegian arbitrary function: To
every different function corresponds a different souretfiwhile of course thphysicaialue
of the Green’s function is uniquely determined (for everjuesof A) by the condition that the
source vanishes. To finally obtain a functional with theuieed properties we need to perform
alLegendre transformation. This is done in two steps:

(i) First we formally invert Eq. (1.137), and look &t as a function ofG: A = A*[G]
is the function that inserted in Eq. (1.137) giv@$[A*G]] = G. HereG and A are
functions of a frequency or time argument only. The quasitvith aA subscript, instead,
are quantities that involve a functional integration, liguation (1.137) foG* and its
inversion forA*. They depend on their frequency or time argument, on andtinetion
(i.e., the source\ for G* and the functiorGG for A*) and onA and therefore, implicitly
on the Hamiltoniani .

(i) Then we define the following functional af:

rG] = GhAMG)) - /ﬁ dr AT GG (7). (1.138)

0

The functional (1.138) is theffective actionof the local Green’s function. By construction
it obeys the following relation [134]:

STAG]

2= —aNa) (1.139)

From Eq. (1.136) one can see that the physical local Greantgibn corresponds th (G ] =
0, and therefore Eq. (1.139) tells us that the effective adScstationary folG = G2 _. Hence
the functional just defined is the one we are looking for: Phgsical value of the local Green’s
function is stationary for the effective action (1.138).eTnctional just defined is similar, in
its construction, to the one used in (the 1PI version of) fREB[E. We refer to the functional
(1.138) as the effective action of the local Green’s furrctio

The construction of the effective action (1.138) is quitensard, but we have obtained
just aformal expression for it. What we want to do now is finding a way to caiepit, at
least in an approximate way. To this end thelependence of the Hamiltonian (1.130) that
we have required from the beginning will turn out useful. &ctf we start with noting that

we are able to compute the value of the functioh&lfor A = 0. This can be done exactly

38 In fRG using the 1PI generating functional, or effectivei@eicorresponds to a specific choice of the func-
tional [129]. However there are also other possible fumats, for example the effective interaction.
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since the Hamiltoniad/*=° is purely local. In this situation the argument of the expuiz
in the generating functional (1.134) for the Hamiltoni&®=°, for every value of the source
A, is equal to theaction of an AIM in which the source\ plays the role of the hybridization
function:

B
Sam|A] = —% Z%U(iwn)[iwn + 1 — Aiwy) ¥ (iwy,) + U/O drny(m)n (), (1.140)
and therefore the generating functional (1.134) itéeffthe lattice at\ = 0 equals the free
energy of the AIMFa1n:
Fam[A] = G20[A]. (1.141)
In equations (1.140) and (1.141) we have stressed in theremgis of the action and of the free
energy of the AIM that they have to be seen as functions of decg, in the language of the
generating functional of the lattice, or as functionalshaf hybridization in the language of the
action of the AIM. Therefore computing the Green’s functi@h=" in presence of the source
A corresponds to the solution of the AIM with hybridizatiomtdion A(w,,). This is for sure
possible: Thanks to the development in impurity solvers are@mpute the Green'’s function
G iw; Al for every value of the hybridization functiah(iw). Conversely we can, in principle,
invert the relation to find the hybridization functiah=°[iw, G] of the AIM whose Green'’s
function isG(iw). To this end we write the effective actidi'=° expressing the free action in
terms of A%[G: ,
TO[G] = Fan[AYG] — / drG(r) A G, (1.142)
0
Similarly to section 1.4 for fRG, we know the effective actianA = 0, and we want to

compute it atA = 1. This is possible if we can evaluate thederivative of the effective action
dI™* /dA, and then integrate ovelr:
A=1 A=0 Lo dr G

=G =r [G]+/O dA T
It is worth noting that this decomposition for the effectiumctional of the lattice problem at
A = 1in terms of a contribution ah = 0, i.e., for the simpler case without hopping taken
as “reference system”, plus an integral that describesaalgal switching on of the hopping,
is still exact. The gain from this decomposition is that tippraximation that will be made
involves only the term in the integral in Eq. (1.143). Thisalso similar to what is done
in LDA, where the reference system is the noninteractingtede gas (the analogy is better
explained in Ref. [46]).

To computel™=" using equation (1.143) we have to start by computing\thierivative of

I'*. This can be done by deriving Eq. (1.138) with respect:to

G dgh . /5 g {dAA[T; G] 9GA[A)
0

(1.143)

aN TN ING

A=AMG]

_AANm G } (1.144)

A=AA[G]

dA
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where the first term in the integral comes from the applaato the chain rule tg*[AY[G]].
Due to Eq. (1.137) the argument of the integral vanishes hadlerivative of the effective
action equals the derivative 6f* at fixed value of the sourcA*[G]:

dri[G) dgh
A = ah |

(1.145)

By noting thaiG" depends or only through the sources and through the inverse propagator
Q% (1.131) of the Gaussian part of the action (1.132) we obtain:

A . J—
deng} - %Z / &k Q (Vo (1w )V (i) | - (1.146)

Wn O

where(...)|; denotes the expectation valirethe presence of the sourte'[G):

(e = [ DYDY ... e=S WA drdt v )
-G = f DzDDE e—SAw@]_foﬁ dr AN (1) (7)1 (0)

, (1.147)

and a dot denotes/&derivative: Q) = Q2 /dA. Finally, noting that)? (iw,, k) = e we can
express the derivative of the effective action in terms ef@reen’s functions computed in the
presence of the source:

A G
d/g I _ %Z/dk G (iwn, k) - (1.148)

WO

The right hand side of this equation can be identified with kinetic energy computed in the
presence of the source. Eq. (1.148) inserted in Eq. (1.148)s the exact expression for the
effective action functional.

This is the last exact expression for the effective actiat tie are able to obtain. From
now on, to proceed further, we have to rely on some approximatvhich in this case is the
DMFT approximation. Before switching to that step, howewerthe next subsection we will
show that equations (1.145) and (1.146) are formally smdahe equations that define the
fRG flow equations for the 1PI generating functional.

Comparison with fRG flow equations

In order to make a comparison with fRG, we write the flow equaifor a functional similar
to the effective action of the local Green’s functib[G]. There are two main differences
however. The first one is that in fRG one does not look only ealguantities, and the second
one is that one usually works with functionals expresse@ims$of the expectation value of
the fields themselvesand not in terms of expectation values of bilinear formsh# fields.
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DMFT fRG
Functionals GMAJ, TG Ginln. 7, Tihe[¢, 9]
Source(s) A(T) n(x), 7(x)
Coupling Vi (T)1hig (0)A(7) (7, ¢) + (¥, 1)
Expectation values GA = &2 Pt = —Bg;% P _596;%
"Flow" equations | Eqgs. (1.146), (1.148 Egs. (1.157), (1.158)
Approximation Local self-energy | Truncation of the hierarchy of flow equations

Table 1.1: lllustration of the main quantities involved in the functad derivation of DMFT
and relative comparison with fRG quantities.

This means that in defining the counterpart of the genegdtinctional (1.134) the sources are
coupled to the fields, and not to a term bilinear in them. Thgdndre transformations defined
consequently.

Let us also note explicitly that the choice of the Hamiltorsid/* (1.130) defines a one
parameter family of Gaussian propagat6is (1.131), which is well suited to fully determine
an fRG flow, and one could keep, in principle, the samdependent actionS* for an fRG
flow or for a DMFT integration of the (nonlocal) effectivetaan. We will use from now on
the subscriptrc to emphasize that the functional,[n, 7] andT'4;4 [, ¢] are not the same
as the functionals defined above, although they play a aimille. Let us start by defining the
generating functional of the connected Green’s functi@9[134] as:

gf/}{G n, 7] = — ln/Di/}Dae—SAWWH(TN/J)-I-(%W)' (1.149)

Here the sourcesg(z),7j(x) are not local and depend on a full set of quantum numbevkich
collects, e.g., position (momentum), imaginary time (freacy) and spin, and the round brack-
ets denote a scalar produ¢f, g) = [ dz f(z)g(z). The "expectation values" of the fields can
be defined from the functional derivatives of equation 4B8)lwith respect to the sources:

5GA
o = - ifg(} (1.150)
_ SCA
3 = e (1151)

These relations can be formally inverted to express thecssyrin terms of the expectation
values of the fields:

o (e, 9.7 (0. 0] = &, (1.152)

R R R ) ) (1.153)

With these definitions the effective action is obtained perfing the following Legendre trans-
formation [129]:

Piral0: @] = (0. 0, ¢) + (6,70, 9]) + Gmaln [0, 017" [, 9] (1.154)
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Let us follow the notation of Ref. [129] and define the matrixite second derivatives of
' [0, #] with respect to the fields as:

T PTihg
TA[g ] = 8¢(a2c’r>§:z;(x) 8¢ég’F)fAi¢;(x) . (1.155)

0¢(x")0b(x) ¢ (z")dp(x)

It can be seen [129, 134] that the inverse of the quantityneefin Eq. (1.155) can be directly
connected with the Green’s function computed in presendbeotources. Let us define the
matrix Q2 by:

- / _ Qé}(ﬂ?,%,) 0
Qb (z,2)) = < 0 —Qg(x’,x))’ (1.156)

Using these definitions we can write [129] thederivative of the effective action, i.e., the fRG
flow equation for the 1PI functional as:

dl [, ¢ dGh [, 7]
fRsA = —ijAn ) ot .37 7 (1.157)
_ . 1 . _
= —(6,Qov) — 5{ Qo [y, ¥~} (1.158)

Equations (1.145) and (1.157) are similar: The derivatianeeffective action can be expressed
in terms of the derivative of the respective generating fional at fixed value of the sources.

The formal analogy between equations (1.146) and (1.158)oie obscure, but one can
see it° considering that the second derivative of the effectivefiomal '}, is basically the
inverse of a Green’s functions, see Refs. [129, 134].

In spite of the formal analogies, the approximations usexpdicitly compute the derivative
of the (otherwise exact) functionad®™ /dA anddl',/dA are very different in DMFT and
fRG, therefore yielding results that are valid in differeagimes. In the fRG framework, the
problem is dealing witl"?[¢, ¢], which is still a functional of the fieldg and¢. As we have
seen in section 1.4 , this problem is usually tackled by amesjon around zero in, ¢, which
generates a hierarchy of differential equations for themargicle irreducible vertex functions.
A subsequent truncation of the hierarchy is then neededttoroé finite set of equations. Due
to the truncation, the approximation is reliable for weaknoderate values of the coupling,
while the frequency and momentum dependence of the vedaebe maintained. In the next
paragraph we will see that in DMFT one uses a completely miffeapproximation.

390ne can also check that the terniy, Q4) appearing in Eq. (1.158) but not in Eq. (1.146) is due to tice fa
that the sources are coupled to the fields in the former aadéoea bilinear of the fields in the latter, and therefore
the Green’s function is obtained by a second derivative efgignerating functional?; w.r.t. ton, 7, and by a
first derivative ofG* w.r.t. A. This can be seen most easily by explicitly writing thelerivative of theGgrg and
comparing it to the second derivative w.r.t. the sources.
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DMFT approximation to the effective action

Until now we have just defined a functioniat [G], so thaf*=1[G] is the effective action for
the system we are interested in. We stress that this funti®eaact No approximation is in-
volved. However we could have formally written the exaceefive action functional from the
beginning, without making use of theintegration of the kinetic energy described above. The
reason why we have introduced thelependence is that it allows to rewrite the effective action
in the form (1.143), which is convenient for what we are damegt, i.e., finding an approxima-
tion to practically use the effective action functionaldéed, also in the form of Eq. (1.143) to
compute the effective action functiorialt[G] we have to evaluatg, [ d*k e G*(k, iw,)|
i.e., the kinetic energy in the presence of the soukééG]. Computing exactly this quantity
is, in general, not possible. In the presence of this soueeanstraint the value of the local
Green'’s function:,, (w)vi, (w))|e¢ = G, but even in this case we still do not know the value
of the nonlocal Green’s functiarin general the constraint on the local Green’s functiomalo
is not sufficient to determine the kinetic enetgy

Therefore to proceed further we define the self-energy aatea with theA dependent
Hubbard model, in presence of the soutc¥(iw,,):

1
iwn + 1 — AMiw,) — Aee — DAk, dw,; AA]
Let us underline that, as specified by thesuperscriptA? is the source that guarantees that
the interacting local Green’s function of the Hamiltoniait assumes the valug (which in
generaldoes not neetb be thephysicalvalue of the local Green’s function). The problem of
determiningA”* (w) is not possible in general, since the Hamiltoniaf for non zero values of
A is a lattice Hamiltonian with non vanishing hopping ammigs. This is different foA = 0,
in which case one has to solve an AIM rather than a lattice maden one can invert Eq.
(1.137) to find the source tereh’[G] that givesG as local Green’s function. This source, seen
as hybridization function, defines an AIM, with self-engrg® and Green’s functiod’. Let
us remark here that in principle the self-enebgfydepends on the hybridization function that
defines the AIM, which in turns is a functional 6f. The DMFT approximation that we are
going to follow from now on consists in replacing the selbegy " with the self-energy at
the beginning of the flonc*=Y, i.e., the self-energy of the AIM whose local Green’s fuomti
is G, at least for the purpose of the calculation of the kinetiergy in equation (1.148). This
approximation isequivalento the one defined by equation (1.122). Performing the gulish
equation (1.159) yields for the local Green'’s function:
A D(e)

& iwn) = /d€iwn + 1= AMiw,) — Ae — XO0(iw,)
Defining the Hilbert transform associated with the densitgtatesD (¢) asD(z) = [ deD(e) =
Eq. (1.160) reads:

G (k, iw,) = (1.159)

(1.160)

GM(iw,) = %D((A—A),

40A notable exception is the Bethe lattice with infinite cootinty [46].

(1.161)
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with
A =i, + p— A iw,) — X20(iw,), (1.162)

Following [46], we write the self-energy’ in terms of the local Green'§ function and of
the hybridization functiom\, inverting the Dyson equation:

Y (wp) = iwy + p — A%w,) — G(w,) ™. (1.163)
Substituting it in Eq. (1.162) we obtain:
A = A%iw,) — AP (iw,) + Gliw,) ™" (1.164)

To obtain an expression fak” (iw,) in terms of A°(iw,,) let us introduce the inverse of the
Hilbert transformR with D[R(g)] = g which, combined with equations (1.161) and (1.164)
gives:

AMiwn; G(iw,)] = G(iw,) ™t + A%[G(iw,)] — AR[AG (iw,,)]. (1.165)

Inserting the relation just obtained in the equation forkimetic energ§*, equation (1.148),
in the DMFT approximation of a local self-energy, equatitri60), we obtain:

dF%lVIFT[G] —
o — 533 ermcna = (1-166)
= BZ{—%4—%6‘(@'%)}2[1\6’(2’%)]}. (1.167)

The integral overle has been performed by summing and subtrac®yG(w,,)) in the numer-

ator. The subscriptyrr is used to emphasize that the functional that we are usingtisxact

anymore, but is obtained with the DMFT approximation (1)18Binally, combining (1.167)
and (1.143) we obtain the effective functional of the loca¢&h’s function in the DMFT ap-
proximation:

F%EIFT[G] = Famu[A - = Z G (iwn ) A° (iwy,)
/ dA— ZG iwn ) RIAG (iwy,)]. (1.168)

Here we have dropped the tefiiA since it does not depend @i and therefore does not con-
tribute to functional derivatives. Eq. (1.168) is a clos&dression for the effective functional
of the local Green'’s function of the lattice in the DMFT apgiroation: Under this approxima-
tion we are able, in principle, to compute the effective tiomal also for non vanishing values
of A. Eq. (1.168) still involves the solution of a many body pehltrough the implicit relation
that connects with the source\’[G].

4IStrictly speaking, the sum over, must be performed with a convergence factorO" .
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Minimization of the functional Our task is not yet accomplished: We have found a way to
compute the functional, but we are interested intisimum of its functional derivativevith
respect ta. Therefore what we are going to do nownisnimize the functionall'3, ;. The
physical value of the local Green’s functi6i,.(iw,) (in the DMFT approximation) is the one
that minimizes the effective action:

' pumrr[G]

Using the fact thadT° /6G = — A this reduces to:
AVicoy] = —2 / Car L S Gl ) RIAG (i) (1.170)
Y 0G(wn) Jo B4 " e '
Using the relatioff R[AG] + AGOAR[AG] = 0,[AR[AG]], Eq. (1.170) becomes:
. ) 1

In this equation we appended the subscriptr to the source\’ to emphasize that this is the
specific value of the source that minimizes the effectiioad 4 L. in the DMFT approxima-
tion. In other wordsA?, .1 is the hybridization function of the AIM whose Green’s fuioct
is thephysicalocal Green’s functiorty,,. of the Hamiltonian*=!, under the DMFT approxi-
mation. Equation (1.170) assumes a familiar form expregstia hybridization function\® in
terms of the self-energy, Eq. (1.163), rearranging the $eaand taking the Hilbert transform of

both sides:
D(e)

Clocliton) = /deiwn + p— € — Zpmrr(iwy,)’
which is nothing more than the usual DMFT self consistenayatign (1.125). In the func-
tional framework the self consistency relation guarantieasthe effective action functional (in
the DMFT approximation) is minimal for the self-consist&reen’s function. The same self-
consistency equation also corresponds\to![G] = 0, which is to be expected considering
thatéTA=1 /§G = A*=1, and this quantity must vanish when the derivative is evallifor the
physical local Green’s function.

Let us stress that we did not rely on any expansion in thedjeddd therefore we did not
need to truncate a hierarchy of flow equations, as was doifie@ This is the cornerstone
for the success of DMFT in strong coupling problems: The @gproximation that we have
made is assuming a specific (local) form of the self-energthe derivation of an effective
functional. Whether this approximation works or not is nounditly related with the strength
of the couplingU/t (i.e., since there is no perturbative expansions and thianpater does
not need to be small), and we have seen that both the limitarutking and atomic limit are
exactly reproduced. The quality of the approximation is endirectly related on how well the
self-energy is approximated by a local one. If this is notdase our estimation for the kinetic

(1.172)

42To evaluate the lower boundary of the integral also notelthat ,o R[z] = 1/x.
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energy contribution to the effective action will be quiteopo Those are the cases in which
we will have to work out approximations aimed at the inclasad nonlocal correction to the
DMFT self-energy.

1.5.3 DMFT description of the Mott transition

One of the main successes of DMFT is the qualitative and gatiné description of the
Mott metal insulator transition. Here we will briefly rewiethe main points of the DMFT
description of the Mott transition. The aim is to show what #re strengths of DMFT and to
highlight the role played by the AIM.

The Mott transition is the paradigmatic phenomenon thasesa material predicted to be
conducting by bandstructure theory to become insulatirggtdistrong electronic correlations.
The physical mechanism behind the Mott transition was wtded already several decades ago:
In an half filled system and in absence of strong Coulomb spuithe electrons have available
states for the hopping and the system is metallic. Howevhaemnithe Coulomb repulsion is
stronger a double occupation on a lattice site is enerdticastly. As a consequence, in the
limit where U is much bigger than the hopping amplitugesvery site is occupied exactly by
one electron and the electrons can not move anymore, ieg. bgcome localized.

While the two limits of weak and strong Coulomb interaction @venderstood long ago,
a qualitative and quantitive description of the transitregion has been elusive until it was
studied by DMFT. In fact, unlike in the two other limits, inetfransition region the problem is
nonperturbative, since a really small parameter is missing a correct description of it should
take into account several different energy scales: Theglag of potential and kinetic energy
gives rise to a new energy scale (reminiscent of the Kond@eéeature in isolated impurities)
which is often orders of magnitude smaller than the hoppmgldaude or the Coulomb repul-
sion. We refer to the literature for a more thorough discussioparticular to Ref. [45,81] for a
“material perspective” and to [46,48] for a DMFT point ofew. Let us focus on the DMFT de-
scription of an Hubbard model in infinite dimensions anctdss one by one the main features.
In the main points of this discussion we follow Ref. [46].

Fermi liquid. The original energy scales are roughly given by the kinetiergyc D (D
being half the bandwidth) and the potential enesgyl/. For low temperature®’ and in the
metallic state the system will be in a Fermi liquid state reloterized by @uasiparticle weight
Z,which in DMFT isk independent: The fraction of spectral weight in every queasicle peak
is the same for eacty. For higher temperatures the assumptions of Fermi liquedmn|[1] do
not hold any longer. This temperature is referred toaserence temperatueg.. At very low
temperatures the quasiparticle weight evolves continydt@mm Z = 1 for the noninteracting
case taZ — 0 asU approaches finite critical value for the Mott transition.

Hubbard bands While the Fermi liquid theory is a low energy theory which domt de-
scribe the high energy incoherent excitations, DMFT gives access to them. In fact, the
fraction 1 — Z of spectral weight that does not constitute the quasiparfieak needs to be
transferred to some other incoherent excitations. Consigléhek-summed spectra, the inco-
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herent spectral weight forms the so-called upper and lowsdbidrd bands, roughly centered at
—U/2 andU/2. This unveils the connection with the underlying local gesh: The spectrum
of an isolated atom at half-filling consists of two delta keat—U /2 andU/2. In the lattice
case these peaks broaden to form the Hubbard bands, witreagyesost of moving one elec-
tron from the lower to the upper Hubbard band being propoéiido the energy necessary to
form a double occupation, i.ex U. Hence, in DMFT, we obtain three peaks spectruoom-
posed of two Hubbard bands and a quasiparticle peak of aakiwidth.Z D, which collects
the quasiparticle excitations.

Kondo physics The reduction of the quasiparticle weighitwhen increasind/ and the
formation of a three peak structure is not surprising: Itlasely resembling the evolution of
the spectral function in the Kondo problem (at half fillig6]. To some extent this is to be
expected: In both cases the self-energy is given by theisolof an AIM. However a closer
look reveals a dramatic difference: In the case of the Kormdblpm the quasiparticle weight
decreases likeZ o ev (in the limit of largeU), therefore vanishing only wheli approaches
infinity, while the critical value for the Mott transitiorsifinite. The reason for this difference
has to be looked for in the difference in the form of the hylzation function. Indeed in the
description of the Kondo problem the hybridization funnotie kept constant a& is changed,
while in the lattice problem the hybridization function @eyls onU through Eq. (1.125). In
particular, in DMFT, the hybridization function acquirea@ntrivial frequency structure, while
a common, but not unique, assumption to describe the Kormldgm isA(w) = —il'sign(w).
The hybridization function in DMFT indeed is not only a contgional tool but has a physical
meaning by itself. In the metallic phase, close to the Mahsition, it shows a three peak
structure, which is connected to the formation of new enexgples associated with the so-
called “kinks” in the self-energy [62]. On the other hangketvanishing of the hybridization
function forw — 0 is related to the Mott transition in an insulating state [[LO&s a bottom
line there is a lot that can still be learnt from the underdiag of the Kondo physics, applied
to the specific AIM that fulfills the self consistency equaeis for some given lattice in DMFT.

Insulating phaseWhenU exceeds some critical value, DMFT gives an insulating smhut
This is associated with the vanishing of the quasiparticéégi 2 and with the formation of
unscreened local moments, as can be inferred from the temoperdependence of the local
susceptibilityyi,. o< 1/7", which follows the Curie la#?. Importantly, due to the presence of
the local moments, the entropy of the insulating phadagker than the one to the metallic
phase.

First order phase transitionThe Mott transition in DMFT is a first order phase transitio
This is confirmed by the fact that in a region of the phase miamit is possible to stabilize two
different solutions, an insulating and a metallic one. Tieaavhere this is possible is delimited
by two linesU.,(T) andU(T") [27, 48], that represent respectively the minimal valud/of
for which one can obtain an insulating solution and the maxkivalue ofU for which it is
possible to obtain a metallic solution. The two lines meet atitical endpoint. The real first

“3We have assumed a paramagnetic solution, if we would haveedidor it [48], in absence of frustration, we
would have obtained an antiferromagnetically orderedtsmiu
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order transition line can be found by minimizing the freergydtherefore the entropy plays an
important role).

The discussion above shows that DMFT is able to capture wifesrent regimes using
a single framework: The weak and the strong coupling regirttest can be described also
with other techniques, and the more challenging interntediegime that includes the Mott
transition region. Fot/ values slightly smaller than the critical.; DMFT reveals important
physical analogies between the lattice systems and a Koysterss at strong coupling, and
accounts for the appearance of new energy scales. Finalislstress that, remarkably, the
DMFT description of the Mott transition, rigorously examtly in infinite dimensions, agrees
very well with the experimental observations collecteddeveral materials [46, 48], e.g., for
SrvV0; [163].

DMFT in the symmetry broken phase An application of DMFT in the broken phase, ob-
tained in the work of this thesis, can be found in Ref. [171]evethe antiferromagnetic regime
of the Hubbard model in infinite dimensions is studied at kvaad strong coupling. In partic-
ular it is discussed that the mechanisms that stabilize nisetaf long range order, in the two
coupling regimes, are different. Surprisingly, this alswé consequences for the optical con-
ductivity, which usually is supposed to depend only weakiytloe spin degrees of freedom.
Finally, it is also argued that the theoretical predictias already been observed in the optical
conductivity of LaSrMnQ. For more details we address the reader to the original papét.






Chapter 2

Merging GV and dynamical mean field
theory: the GW+DMFT method

This chapter is devoted to the combination(f” and DMFT. The method is first in-
troduced, emphasizing ho&/ and DMFT can be integrated in a single, formally elegant,
method and the possible advantages of doing this. The pedathplementation, however,
presents several technical complication, and, in the @rart of the chapter, we propose
a simplified scheme, which relies on a quasiparticle appration to theGW self-energy.
Hence we discuss how, with this approximation, one can perfarasigarticleGW+DMFT
calculations keeping substantially unaltered the DFT+DMiain outline. In the last part of
this chapter, we present the results obtained testing ousigaaticle G1V+DMFT implementa-
tion in VASP for the correlated metal SryOrhe improvement over conventional DFT+DMFT
is shown by a comparison with experimental data. Eventualiyresults are compared with
those obtained within a much more demanding, &V +DMFT calculation, exhibiting good
agreement for the main features.

This chapter is partially based on Ref. [170], [Taraet@l., Phys. Rev. B8, 165119 (2013)],
but considerably extends it.

2.1 Advantages oflGIWW+DMFT

The local density approximation (LDA) plus dynamical me&id theory (DMFT) ap-
proach [10, 60, 61, 108, 113] has been a significant stepai@hior calculating materials with
strong electronic correlations. This is because -on toh@fDA- DMFT includes a major part
of the electronic correlations: the local ones. In receatye DA+DMFT has been applied suc-
cessfully to many materials and correlated electron phemagranging from transition metals
and their oxides to rare earth and their alloys, for reviegesRefs. [60, 108].

For truly parameter-freab initiocalculations, however, two severe shortcomings persjst: (
the screened Coulomb interaction is usually treated as astatlje parameter in LDA+DMFT



92 Merging GIW and dynamical mean field theory: theGW+DMFT method

and (ii) the so-called double counting problem, i.e., itificult to determine the electronic cor-
relations already accounted for at the local density appration (LDA) level. These shortcom-
ings are intimately connected with the fact that the noedimdependence on the electronic den-
sity of density functional theory does not match with the grandy, Feynman-diagrammatic,
structure of DMFT. These problems can be mitigated, but pbtesl, by constrained LDA
(cLDA) calculations [37,52,126], which can be exploitedetdract two independent parame-
ters: interaction and double counting correction. [126]12

A conceptually preferable and better defined many-body@ggh is achieved if one sub-
stitutes LDA by theG'W approximation, [12,59] described in Sec. 1.3. This apgipaamed
GW+DMFT, was formalized for the first time by Biermann, Aryadsgtan and Georges, in
2003 [24], who also applied a simplified version of it in alrséc calculation for Ni. Com-
pared to standard LDA+DMFTGW +DMFT presents important conceptual advantages both
regarding (i) the choice of the Coulomb parameter and (iilitngble counting problems. How-
ever this is only possible at a much higher computationakpri

2.1.1 GW + DFMT: a brief functional perspective

As it is stressed in Ref. [173], to overcome the difficultiéshee LDA+DMFT based meth-
ods, it is desirable to have a theory that:

1. is formulated in the Green'’s function language;
2. deals directly with the long-range Coulomb interaction;

3. retains the nonperturbative character of the dynamieamiield theory.

The GW+DMFT approach that we are going to discuss fulfills thespine@ments. This can
be explicitly seen by constructing a specific Baym-Kadahafictional [24,173] appropriate to
derive theGIW+DMFT approximation. Once the approximation to the funméibis done the
physical quantities of interest can be computed by calitigdhe stationary points of the Baym-
Kadanoff functional, as mentioned in Sec. 1.5.2. More iripalar, the functional of Ref. [24]
directly follows from the ones introduced by Refs. [3, 35]dats main feature (as well its main
difference from the functional of Sec. 1.5.2), is that ibatonly a functional of the interacting
Green’s! function G, but it is alsoa functional of thescreened Coulomb interactioniV.
Therefore, by finding the stationary points of the functibwith respect to its arguments one
obtains the values of the Green’s function and of the sce@wilomb interaction [24]. The

ILet us note that her€ does not denote thlecal component only of the Green’s function (as in Sec. 1.5.2),
but also the nonlocal part.
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explicit form of the exact functional that we considés:
1 1
LG, W] =TrlnG+Tr[(G; -G 1G] —5Tr 1nW+§Tr[(V*1—W*1)W]+\If[G, wWl. (2.1)

V(r — r’) is the Coulomb potentiagg,1 = iw + u — v. — vy is the bare Green’s function
of the solid, withv. being the crystal potential ang;(r) = [ d* V(r — r')n(r’) the Hartree
potential. All the complication is contained in the many padrrection [173)V |G, W], which

is the part of the functional that we will have to approximaten appropriate choice of the
approximation applied to the functional leads directly lte &1/ +DMFT equations. Some
light on the diagrammatic content & can be shed by performing a functional derivation of it
for stationary points of yielding [24, 173] the self-energy and the polarization operatét:

or ow

— = -1 — -1 — E E = — 2.2
6G 0=G G ’ oG’ (2:2)
T I N
sp = 0= WT=VT-P P2 (2.3)

i.e., diagrammatically is the sum of all skeleton diagrams that are irreducible vagpect to
both the one-electron propagator and the interaction.linke self-energy. defined here does
not include the Hartree diagram, which is explicitly inobadinto the bare Green’s functigp;.
The equations above, show that the interacting Green’stibmand the screened Coulomb
interaction enter in a very similar fashion in the effectaaion (2.1). At the same time one
can see the analogy between the role of the bare Green’sdarigy and the one of the bare
Coulomb interactiorV/, as well between the self-energyand the polarization operatét.

Let us stress that until now we have just rewritten the effecaction in the form (2.1),
which is exactby definition. The advantage of the expression (2.1) is thet well suited
for making approximation on the many-part of the functiowé-, 1¥’]. With the appropriate
approximation one can obtain the effective actiofy . pyvrr, Which leads to thé&'W+DMFT
approach. Specifically the approximation consists inaeiplg the nonlocal pértof the -
functional [3] with theGW approximation: Vqoy = —%TrGWG, and adding to it thel-
functional of aself-consistenfnderson impurity model (AIM o [GRR WRR] whereR

2To obtain the functional of the Green'’s functiandthe screened Coulomb interaction one can [35] start from
the free energy functional of the solid and use an Hubbarat@tovich transformation to decouple the quartic
term in the fermionic fieldg). This introduces a set of bosonic fieldsThe action written in terms of the bosonic
and fermionic fields assumes a particularly symmetric fdinom which the functional follows straightforwardly.
This action, see Ref. [35] Eq. (24), consists of a quadratimtin the fermionic fields, with propagat6t;, a
quadratic term in the bosonic fields with propagatbrand a coupling of the formpiy between bosonic and
fermionic fields. This also shows the similar role playedthis context by the bare Green’s functi¢; and
the bare Coulomb interaction. The functioddz, W] written in equation (2.1) is then obtained in the standard
way coupling the field to appropriate sources, performitggendre transformation and expressing explicitly the
sources in term off andW [24, 35].

3To further emphasize the analogy betwégrihe propagator of the fermionic field, aiid we stress that [173]
W can also be defined as the correlation function of bosors@aions corresponding to density fluctuations, i.e.,
the propagator of the Hubbard-Stratonovich field decagpthe Coulomb interaction term.

4We do not enter in the details here, for which we refer to [24}, e just note that in order to perform this
operation one needs to specify a basis set, like the mayirtadhlized Wannier functions [125] or linearized
muffin tin orbitals [6]: locality refers to sites index@s not to position in space.
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denotes a lattice position. Hence the nonlocal part ofitHeinctional is treated by keeping
only the leading order if¥’, while the local part requires a nonperturbative treatnagct can
be calculated from an impurity model as in DMFT. This can bstified a posterioriby the
observation [190] that (at least for systems whose physinstitoo low dimensional [15,173])
the self-energy diagrams of higher orde#ingive mainly a local contribution which advocates
the use of DMFT, while for the nonlocal diagrams a leadingeoapproximation, like thé&'WW/
one is sufficient.

The specific form attributed to the functionBF"W+PMET[G 17/] encodes two essential
points of the method:

(i) The minimization of the functiondl oy, pyvrer iNVOIves the functional derivates of both
VUaow and Y. This implies thatGIW+DMFT should be implemented using a self-
consistency cycle (see below) that involves b6y and DMFT, i.e., the separated self
consistency of DMFT and'WV alone, like one would have in a one-shot calculation, is, in
principle, not sufficient. However, as we will see, very daesults can be obtained also
within non self-consistent calculations.

(i) Importantly, W11y depends on both the Green’s function and the screened Couhbenb
action. This implies that one does not only have to find aseifsistent Weiss fiel@ v,
see, e.g., Sec. 1.5, but also a self-consistent interaititwat together with it defines the
AIM. In other words, inGW+DMFT the self-consistency requirement is extended also
to a two-particle quantity, i.e., the local projection oéthcreened interaction, which is
required to equal the impurity screened interaction [173].

Let us explicitly observe that for the AIM the "auxiliary imgetion"/ and the auxiliary Weiss
field Ganv play a similar role. As the Weiss fieldamy, also the auxiliary interactioty will
acquire a nontrivial frequency dependence due to the sagen the interaction operated by
other electrors This is also at the origin of the absence of free paramateteimethod: Once
we have specified the bare Green'’s function and the barg flamge) Coulomb interactiovi

in real space the parameters to associate to the AIM arenalotgelf consistently.

2.1.2 GW+DMFT self consistency from a diagrammatic point of view

We now turn our attention to th€ W +DMFT self-consistency cycle. Instead of following
the functional approach we will rather focus on the Feynmagrdms, and the result will be
the same if we take the right combination of diagrams for #leenergy and the polarization
operator. Specifically, DMFT will give a nonperturbativ@tion for thelocalpart of the self-
energy and of the polarization, hence the best that one cas tdocombine the local DMFT

SPossibly, not all the bands will be taken into account int® BMFT part of the calculations, since solving
an AIM with O(10) bands is already technically very demanding. If it is theecasly the bands close to the
Fermi level will be described by DMFT, while all the otherslivide treated only at thé&1V level. In this case
the frequency dependence of the interaction will accoust &br the screening of all the bands not treated in
DMFT. [173]
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self-energy and polarization (obtained solving an AIM)d &ine nonlocalz 1V self-energy and
polarization. Doing so, the connection with the functioftamalism [24] is clear considering
the approximation described above fogy . pver @nd the diagrams that one can obtain by its
derivation, equations (2.2) and (2.3). In the rest of theagaaph, we will mainly follow the
lines of Ref. [63]. Let us also note here that, while the fumaail written in terms o/, which
incorporates the Hartree potentig}, acquires a more symmetric form, in the following we
find more clear treating explicitly the Hartree term. Befpreceeding with the self-consistency
scheme, it is necessary to specify a local basis set. OngéstBpecified, the quantities with
which one has to deal, like, e.g., the Green’s function otbelomb interaction, are matrices in
orbital space and depend either on a set of discrete laic®rsR. (or on a momentum vector
k). Their local projection, therefore, is well defined, eftpe local component of the Green’s
function will be denoted byGRE, TheGIW+DMFT self-consistency cycle then consists of the
following steps:
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Do LDA calculation, yieldingG) (w) = [wl + ul — & 1.
CalculateGW polarizationP“W (1) = —2i [ d2 G(1 + 2)G(2),

If DMFT polarizationPPMFT is known (after the 1st iteration), include it

P(k,w) = PV (k,w) - Y P (qw) + PPV ().
q

With this polarization, calculate the screened interaction:
W(k,w) = V(k)[1 - V(k)P(k,w)]

CalculaleS" ™™ = 3, Gq(r = 0-)V(k — q) and S,

Calculate=Y (r,v;w) =i [ & G(r,v';jw + )W (r, ;).

Calculate the DMFT self-energg®FT and polarizationP®MFT as follows:

Calculate the auxiliary Weiss field
(6% (w) = [GRR| ™} (w) + PMFT (), sPMFT_( in 1st iteration

Calculate the auxiliary interaction:
U Hw) = [WBB=1(w) 4 PPMFT () PPMFT_( in 1st iteration
[

Solve impurity problem with effective action

Sant = ~(0,(6°10) + 3, [ dr G, (0 (rUr = 7T () (7,

resulting inG apv and the susceptibility -

CalculatexPMFT () = [GY N (w) — [Gami] (W),

PPMET () = U~ w) — [U — Uxaald] 7} (w).

Obtain the totat7WW+DMFT self-energy:

2(1(,&)) EGW k, w ZEGW k w)+2Hartree(k)_Eggrtree+2Dl\/IFT(w)'
Kk

From this andz?, calculateG*V(w) ™! = GL(w) ™! — Zx(w).

lterate withGy = GL°" until convergence, i.gGyx — GL*V| <e.

Figure 2.1: Flow diagram of th&>1/+DMFT algorithm (adapted from [63]).

() In most GW calculations, the starting point is a conventional denkityctional theory
calculation, for example LDA, that yields a set of one-alecrbitals| ¢y ) (bold symbols
denote matrices in orbital space) and one-eleétemergies,. Accordingly the Green’s
function can be computed as:

! 1 . !
(G () = - > el p1 —ad™, (2.4)
k

with 1 being the chemical potential, ard, the number ok-points used for the sum. In
the first step, when no self-energy fra@’’+DMFT is known, this LDA Green'’s function

5We remind that the interpretation of the eigenvalues of therk8ham equation as one-particle energies does
not have a strong theoretical justification, see Sec. 1.2.
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(ii)

is directly used in step (ii) as interacting Green’s funatio
Knowing the Green'’s function, one can calculate ¢i8” polarization:
P (1) = —2i/d2 G(1+2)G(2). (2.5)

Here, as in Sec. 1.3, to simplify the notation we dse= (k;,w) and the integral is
intended over a frequency and momentum variable. The fastmm the equation above
corresponds to the spin summation.

(i) From the polarization operator, in turn, the local @okation has to be subtracted since

(iv)

v)

(vi)

this can (and has to) be calculated more precisely within DM#cluding also a local
vertex correction. Mathematically this reads:

P(k,w) = PV (k,w) ZPGW q,w) + PPMFT (), (2.6)

Next, the screened interactid is calculated from the bare Coulomb interaction and the
overall polarization operator:

V(k)
1-V(k)Pk,w)
V (k) andW (k, w) are the bare and screened Coulomb interaction projectedtantocal
basis. For example the bare interaction matrix reads:

Vil = (oo VIR, (2.8)
with 4, j, £ andl being the orbital indexes. The frequency dependence ofdiezsed
interaction thus arises from the one of the polarization.

W(k,w) = (2.7)

Now, we are in the position to calculate tli&1” self-energy. The first term is the
Hartree diagrant,which can be calculated straightforwardly in imaginarydimyielding
EHartroc:

T =3 " Gg(r = 07)V(k - q), (2.9)

and the corresponding local contributiff2 ¢, which we need to subtract later to avoid
a double counting as it is also contained in the DMFT.

The second term of th€W self-energy corresponds to the exchange diagavith full
Green'’s function and screened interaction):
d !/
W (e rw) =i / Z—G(r r';w+ W )W(r, r'; o). (2.10)
s

’Let us note explicitly that in several cases the Hartree isrdirectly included in the bare Green’s function,
like, e.g., in Ref. [24].
8For illustrative reasons, we give here the expression o$éiifeenergy as a function of the position vecters

andr’.

However to make use of this self-energy i6v@’+DMFT scheme, one needs to project this self-energy on

some basis set. For more details we refer to the literatuye,Ref. [165] Eq. (10) for a complete expression of the
self-energy on a specific basis set, and Ref. [12] for a muweough discussion about the basis sets in numerical
implementations of7 V.
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(vii) The GV self-energy and polarization operator obtained this wagha be supplemented

by the corresponding DMFT local ones calculated from an@mate auxiliary AIM. The
latter is defined by an auxiliary propagator (Weiss fieiffw), as well by an auxiliary
interactionl4 (w). With these two quantities, the action of the auxiliary AlMds:

Sai = —% S, (10) (G2 (i) o ()43 / A7 (7)o (P (T =7 o (7)o (7).

" " (2.11)
where we have omitted a summation over the band indexes.

(viii) The Weiss fieldG° can be obtained by asking that, at self-consistency, tha Breen’s

(ix)

)

(xi)

function of the lattice equals the Green’s function of th&/Al
6" (@) =[G w) + =PV (w). (2.12)

In the first iteration, when no previous self-energy frora iolution of an AIM is available
one can assumEPMFT — (. This equation is almost identical to the one that gives the
Weiss field in DMFT, Eq. (1.125). However it should be notealttim Eq. (2.12) the local
Green'’s function of the lattice is dressed bl-@lependent self-energsee step (xii), and
not by the local one of the AIM alone, as in DMFT.

In a completely parallel fashion one can obtain the bari interactionl (w):
U (w) = W7 w) + PP (w). (2.13)

Here the local screening is removed from the interactioocesitwill be again included by
DMFT. In Eqg. (2.13) the polarization of the auxiliary AIM @dy plays the same role as
the self-energyo"MFT in the equation for the bare Green'’s functigh Eq. (2.12).

Once the action of the AIM (2.11) has been completelyridiit has to be solved for
its interacting Green’s functiofx A1\ and two-particle charge susceptibiligyarn. This
step, performed with an impurity solver, is probably onehaf inost demanding from the
computational point of view, together wilhe calculation of the frequency dependent
polarization and self-energy GV .

From Gy and xanv One can compute the new self-energy and polarization aperat
respectively:
EOMET () =[G (w) — [Gama] (W), (2.14)
PP (W) = U (w) — U — Uxanild] 7 (w). (2.15)

The steps from (vii) to (xi) are the ones that explicitly itw@® an impurity action, and
therefore form the "DMFT block" of the self-consistency @cl

%At the model level the solution of the AIM is for sure more itwed than theGW part. In real material,
instead, since for convergency reasons one can not restigseelf to a few bands in th@WW, its computational
cost is comparable with that of the impurity solver.
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(xii) After having obtained the new self-energy of the AIM w&ee in the position to sum all
the terms contributing to th&@ W +DMFT self-energy: The local one from the AIM, and
the nonlocal Hartree and exchange:

z]GVV—i—Dl\/IF"I‘(k7 CU) — EGW(k, w) _Z EGW (k, w) +2Hartree(k) _ E(Iilcartree+EDl\lFT(w).
k
(2.16)

(xiii) The new Green'’s function to be used in the next stepalsuated using the Dyson equa-
tion with the self-energy just obtained:

[GE™] ™ (w) = [Gi] M (w) = BT (K, w). (2.17)

(xiv) The new Green’s function is used to start a new iteratwd the self-consistency cycle,
starting from step (ii). The self consistency is eventuedigched when the Green’s func-
tion from the new iteration equals the one from the previoestion.

A critical point is the physical meaning of the auxiliaryenaction of the AIM. In particular, it
can be considered aare interactiohwith respect to the AIM, in complete analogy with the
definition of the bare Green§": If the interaction was decoupled via an Hubbard-Strataiov
transformation{/ would appear as the bare propagator for the bosons that plecihe inter-
action. However, exactly as the Weiss field carries inforamabout the hopping from and
to neighboring sites, the interacti@ contains information about theonlocal screening to
the interaction, as can be seen considering equations (2.8) and (2.13). The point here is
made even more subtle considering that there can be bandb wéke part to the screening
of the Coulomb interaction that are usually neglected in tMFD part of the calculation, in
a so-calledorbital-separated scherfte73]. Therefore the screening from these bahdseds
to be taken into account X, which, hence, from the point of view of the lattice is farrfro
being bare. Altogether equations (2.12) and (2.13) can &w&ed [24] as aepresentability
assumption, i.e., one is asking that the local components ahd W are equal to the ones
obtained by the auxiliary action (2.11) once a suitable @hddr the auxiliary Weiss fielg’
and auxiliary interactiod{ is made. This choice is not known a priory and one has to résort
the self-consistency cycle to find the right auxiliary AlWhe flow diagram in Fig. 2.1 already
shows that th&'W+DMFT approach is much more involvEdhan LDA+DMFT. However, it
has the advantage that, at self consistency, there is ndedooibnting problem, since the LDA
enters only in the first step, and also the Coulomb interaag8cacalculatedab initio in a well
defined and controlled way. Hence, ad hocformulas or parameters need to be introduced or
adjusted.

It has to be noted that in the flow diagram that we have presewe did not discuss the
important point of the appropriate choice of the basis sétis s nontrivial: The DMFT, as

10This screening is done at the RPA level: The polarizationingrfrom bands neglected in DMFT is computed
by Eqg. (2.6) and takes part to the screenindf For more details about this point see Ref. [173], Sec. Il C.
1For a comparison of the flow diagrams of the two approachespene, e.g., Fig. 11 and Fig. 15 of Ref. [60].
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mentioned above, required@calbasis set that describes the narrder f orbitals, which are
expected to be the most strongly correlated orbitals. Orother hand th&1V is naturally
formulated in real ok space and is presently implemented, e.g., in LMTO [12] ojgqutor
augmented wave (PAW) basis [165]. The switching betweerethes representations is non
trivial. It can be done by a downfolding [7] or by a projectionto Wannier orbitals, e.g.,
using maximally localized Wannier orbitals [111, 125] or engier projection onto thée (or
f) part of the wave function within the atomic spheres [2, 9h tBe DMFT side, the biggest
open challenges are to actually perform the DMFT calculatiovith a frequency dependent
Coulomb interactiori/(w) and to calculate the DMFT charge susceptibility or polaiiza
operator. In particular DMFT calculations with a freque@pendent{ interaction have been
only recently tested at the model level [15, 16, 54, 76], andap of an LDA calculation for
BaFeAs, [182] and SrvVQ [31] (other calculations with a frequency dependent irdioa,
but in aGW+DMFT context are listed below).

A measure of the difficulty of the implementation of t6&)’+DMFT method can be given
comparing the number of realistic calculations for mateneerformed using this method with
the number of material calculations in LDA+DMFT: While th&té&a, during the last ten years, is
of the order of a few hundreds, only a few materials calcorfegiare reported withi&'1W+DMFT,
in particular one for Ni [24], some for SrV{J155, 170, 173, 174], and one for adatom sys-
tems [58], in none of which a full self consistency has bedmea®d. Following these con-
sideration, if one wants to make further progress in raalistlculations for materials using
GW+DMFT at a reasonable computational cost it is necessaroepd with further approxi-
mations.

In the following paragraph we present one possible appratian that allows to com-
bine some aspects 6¢fI} with the DMFT at a computational cost comparable with the one
of LDA+DMFT. This approach makes use ofgaasiparticle approximation (gp) to the self-
energy, see Sec. 1.3.3, and is therefore namédigpDMFT. The quality of the approximation
will be demonstrated for the correlated metal Spy@nd compared to the results obtained in
LDA+DMFT [116, 135, 136, 140, 163] as well to those of photagsion spectroscopy [163].
We find the q@-W+DMFT spectra to be quite similar to the LDA+DMFT ones due fuagtial
cancellation of two effects: The reducéd bandwidth in comparison to LDA and the weaker
screened Coulomb interaction. An important difference,éwaw, is in the position of the lower
Hubbard band, which in gpiV+DMFT agrees better with the experiments. Importantly, the
guasiparticle approximation to the self-energy negldwseffects of frequency dependence of
the self-energy, and therefore a consistent approximadidine Coulomb interaction has to be
assumed, i.e., we takestaticapproximation also for the Coulomb interaction. This is allear
by performing a calculation including &g factor, introduced by Casukt al. in Ref. [30], to
mimic the frequency dependence of the calculation. Thdtseshtained this way are quite dif-
ferent from the ones of qplV+DMFT without Z5 factor, and are in worse agreement with the
spectroscopy experiments. To further understand thiskandbte of the frequency dependence
of the interaction (and self-energy) we will compare ounissto the ones obtained with the
computationally more expensivell +DMFT implementation of Refs. [173,174], in which the
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frequency dependent of the self-energy and of the intenacsifully taken into account.

2.1.3 qp&W implementation in VASP

Let us briefly outline the relevant methodological aspe@tse starting point of our calcu-
lation is theGW implementation within (VASP) [165]. Specifically, we firperformed Kohn
Sham density functional theory calculations using thelldeasity approximation for Srvo
at the LDA lattice constant of = 3.78 A and determined the Kohn Sham one-electron orbitals
|¢nx) @and one-electron energies.. The position of the GW quasiparticle peaE§kP were
calculated by solving the linear equation

ESP = e+ Zose X Re[(dnic| T + v + v + 2V (K, w0 = €n1) | dnic) — €nicls (2.18)

whereT is the one-electron kinetic energy operator apdndvy are the crystal potential and
the Hartree-potential, respectively¢" is the G, W, self-energy, and’,, is the renormaliza-
tion factor evaluated at the Kohn-Sham eigenvalues [80, B&®& below. The original Kohn
Sham orbitals are maintained at this step.

Equation (2.18) can be obtained after a linearization ofsié-energy around the LDA
single particle energies:

IXEW (K, w)

aw }w:enk
N ~~ >

Egnk

ZGW(kv E:?lf) ~ EGWO{? W= 6nk) + (Eglf - 6nk)- (2'19)

Since the off-diagonal components of the self-energy amdlsme concentrate on the diagonal
components only. This yields the following equation for thmsiparticle poles:

E (bnecll — il i) = (bl T + ve + v1 + DK, €nte) — Enkcnic| Pric), (2.20)

which is exactly equation (2.18) once the quasiparticl®neralization factor7,, is expressed
in terms of the derivative of the self-energy:

Zpe = (1= &) (2.21)

The Kohn Sham orbitals expressed in the projector augmevaed (PAW) basis are then pro-
jected onto maximally localized Wannier functions [125]ngsthe Wannier90 code [132]. To
construct an effective low-energy Hamiltonian for thgvanadium orbitals, we follow Faleev,
van Schilfgaarde and Kotani and approximate the frequeepgrdents 1V, self-energy by
an Hermitian operatof that reproduces the position of the quasiparticle peakiseobtiginal
self-energy exactly [33,42]:

Fse = {6l (0 B + S0, B (2.2

This approximation is commonly used @IV calculations, in particular for self-consistent
calculations, since fully frequency dependent calcuretiare computationally very demanding.
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In practice, for the present calculations, we have apphedstightly more involved proce-
dure to derive an Hermitian approximation outlined in Re6d], although this yields essen-
tially an almost identical Hermitian operatéfmn,k. Furthermore, the off diagonal components
are found to be negligibly small, also in the Wannier basid, lzanceforth disregarded. The fi-
nal Hermitian and-point dependent operatéf is transformed to the Wannier basis and passed
on to the DMFT code, where it is used to constructlthdependent self-energy by adding the
local DMFT self-energy.

This gpzW+DMFT procedure allows to maintain the structure and oatbhthe common
DFT-DMFT scheme and can be easily adopted in any DMFT codstedwl of the LDA one-
electron matrix elements, the @pl” ones are passed to the DMFT. To avoid a double counting
of the local part of the g/ Hermitian operator we have to subtract it. In the case of the
degeneraté,, orbitals the double counting correction basically yieladyoa constant shift.
The double counting correction can be performed in the folg way. What we have to do
is subtracting the local part of all gV self-energy contributions. i.e., the local part of the (i)
Y(k, enx), (i) & and (i) €,xe,x terms in equation (2.20). We define their local part as the
one-centeR = 0 component of the Wannier representation:

_ 1 .
Aij = 5= D UnP An (UL (2.23)

whereN;, is the number of k-points addé?) the unitary matrix for the transformation of Bloch
vectors| ¢,k ) to Wannier statefuv;o). For A, (k) = X(k, €,x), &nk, @ndE ke these averages
are computed, transformed back to the Bloch basis using édéﬁrand subtracted in Eqg. (2.20).
With the local part subtracted, Eq. (2.20) becomes

E2§7n1<¢nk‘ 1— gnk + En|¢nk> - <¢nk‘T+Uc+UH+E(k7 6nk) _in_gnkenk+€11_€n’¢nk> . (224)

This yields the bandstructure without local quasiparteddf-energy contributions. The
Hamiltonian corresponding to this bandstructure is subsetly transformed again to the Wan-
nier basis and passed to the DMFT. Let us emphasize thatoitas part of thequasiparticle
GW self-energy is very different from the local part of a freqag-dependent fulGWW self-
energy. In the latter case, we naturally obtain also a frequelependent local pait! =
>« 2(k,w). In our case of the quasiparticle linearization of thg” self-energy [Eq. (2.20)],
we obtain three frequency-independent terms stemming tihernonstant¥,,] and linear terms
[ €, andée0]in Eq. (2.20), respectively. This is consistent with theZgfg approximation. Let
us note though that doing (i) the gp approximation and (iBtsacting the local part does not
commute. For a comparison with the double-counting caoedh approximations that main-
tain the frequency dependence of the self-energy see R&3.174].

This procedure neglects lifetime broadening and any frequelependence of theV self-
energy beyond its linear part. Let us also note that hithegalid not perform self-consistency
on theGW part. TheGW part of the calculation has been performed by Merzuk Kaltakhe
group of Georg Kresse at the University of Vienna.
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Fig. 2.3 shows the obtaineg@l, 1V, bandstructure, which for thig, vanadium target bands
is about 0.7 eV narrower than for the LDA. The oxygeband (below-2 eV) is shifted down-
wards by 0.5 eV compared to the LDA, whereas the vanadiyibands (located about 1.5eV
above the Fermi-level) are slightly shifted upwards by ®.2la the LDA, the top most vana-
dium ¢y, band at thel/ point is slightly above the lowest, band at thd’ point, whereas the
Gy W, correction opens a gap between theande, states.

Within this Wannier basis, we also calculate the screened @Guuloteraction using the
random phase approximation (RPA). As described in Ref. [1f8r]an accurate estimate of
the interaction value to be used in DMFTT{™¥T), only the local screening processes of the
to, target bands of SrvVQare disregarded since only these are considered later oMATD
This approach [137] is similar to the constrained RPA (cRPAIjih the difference being that
in cRPA alsonon-localscreening processes of thg target bands are disregarded which are
not included in DMFT. Depending on the material and dopinglethere might be a difference
between/PMFT andU<RPA, However, for the case of Sr\iQthis difference is very minor, and
we hence only considér®¥T in the following.

Here some remarks are in order. First, we explicitly not¢ e valuel/°M''T corresponds
to thestatic value of the interactiont/PM¥T = yPMET((, — (), i.e., the frequency dependence
of the interaction, arising from the RPA polarization, is leeted. This assumption is justified
considering that we are also neglecting the frequency dkpwre of the>WW self-energy, as
we are also going to show mimicking the frequency dependefite interaction using th&€p
factor. Second, we observe that quite counterintuitidéR'** turns out to be slightly larger
than U°RPA | in spite of the fact that the nonlocal contribution to thdapiaation is allowed
to screen the interaction iT®M¥T and not inURPA, This effect has been attributed [137]
to Friedel oscillations of the nonlocal polarization, whialso strongly depends on the filling
of the system: While for lower filings (of the,, manifold) the nonlocal screening effects is
negativei.e., it increases the value of the interaction insteadeafeasing it, for higher filling
the nonlocal screening effect beconpesitive

In Fig. 2.2 we shoW the frequency dependence of the cRPA interadtidin our notation
U°RPAY compared to the local part of the fully RPA screened intéwactlV. The latter is
computed allowingall bands (including the,, ones) to screen the interaction through the RPA
polarization (it corresponds to th& defined in the paragraphs above if we assiitne P
for the local and nonlocal part). We can distinguish threéedint regimes for the frequency
dependence af/ (andW): (i) a first regime forw < 15eV, (ii) a second regime for 15V
w < 35eV, and a third regime fow larger than 35eV. In the first region (i) the interaction
U°RPA stays more or less constant. From a comparison Witlit is clear thatU<RPA is flat
because the particle-hole excitations in thg bands have been suppressed. In the second
region (i) W and U°RPA are very close, and show a dramatic frequency dependenaacdaro
w ~ 15eV, corresponding to the plasma frequency of the systemlp|, 1n the third region
(ii) the screening is rather ineffective and the value & fiereened interactions is close to the

12The data are provided by J. M. Tomczak, see also [173].
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bare one. If there was no region (i) in which the interactiays more or less constant it would
appear hard to justify at all a calculation with a statie= 0 calculation.

ReW [eV]

ImW [eV]

O 5 10 15 20 25 30 35 40
w[eV]

Figure 2.2: Frequency dependence of the real and imaginary part of thesitreened RPA
interactionl¥ (w) and of the cRPA interactioll (w) for SrVO;. For the latter, the,, bands
are not contributing to the screening. One can see that afriequencied? exhibits a
nontrivial frequency dependence, attributed to particdée processes taking place in the
vicinity of the Fermi level. On the other harid stays more or less flat up to ~ 15eV,
corresponding to the plasmon frequency of the system. Fgelddrequencies the screening
is not effective anymore. and the two interaction conveggéhe unscreened valué =~
O(20eV). The data have been provided by J. M. Tomczak [174].

With our calculations, we carefully compare@@d’+DMFT with LDA+DMFT and exper-
imental results. In both cases, we use (frequency-indegrghthteractions obtained from this
locally unscreened RPA and cLDA. The Kanamori interactiorapeeters as derived from
the locally unscreened RPA are: intra-orbital Coulomb rapalg¢/PMFT = 3 44 eV; inter-
orbital Coulomb repulsiot/®M¥T = 2.49eV; Hund’s exchange and pair hopping amplitude
JPMFT — 0 46 eV. These values are, for Sr\{Oalmost identicdf to the cRPA [137]. In

13Note that the values differ slightly from the VASP values lsled in Ref. [137] since with additional data,
we have further improved the extrapolation.



2.1 Advantages olGW+DMFT 105

:\\k/ N / %\
S 1T\ &

&R r X M T R T X M r

Figure 2.3: (Color online) Upper panelz, W, quasiparticle bands (red, grey) in comparison to
LDA (black). The Fermi level sets our zero of energy and iskedras a line. Lower panel:
Wannier projected,, bandstructure fronis, W, (red, grey) and LDA (black). Thg, target
bands bandwidth is reduced by0.7eV in GWV.

cLDA, on the other hand, somewhat larger interaction patarasavere obtained and are em-
ployed by u$* for the corresponding calculationd/<*PA = 5.05eV, U*PA = 3.55eV,
JEPA — .75 eV [163].

For the subsequent DMFT calculation, we employ the Wirzbirga w2dynamics code
[139], based on the hybridization-expansion variant [188}he continuous-time quantum
Monte Carlo method (CT-QMC) [153]. This algorithm is partialyafast since it employs
additional quantum numbers for a rotationally-invaria@atiidmori interaction [139]. The max-
imum entropy method is employed for the analytical contiimmaof the imaginary time and
(Matsubara) frequency CT-QMC data to real frequencies [88].

All our calculations are without self-consistency, whichto some extend justified for
SrVG;: Since the three,, bands of SrvVQ are degenerate, DMFT does not change the charge
density of the low-energy,, manifold and hence self-consistency effects are expeotde t
small within LDA+DMFT. This is, in principle, different fo&1W+DMFT. Here, the frequency
dependence of the DMFT self-energy might yield some feddlzdieady for a simplified
Faleev, van Schilfgaarde and Kotani quasiparticle sellsstency [33,42]. Finally, as antici-
pated above, we also test tlg-factor renormalized>1/ bandwidth withZz = 0.7 obtained
in [30] for mimicking the frequency dependence of the cRPA&iattion.

Results for SrvO;

For analyzing the differences betweentjy+DMFT and LDA+DMFT we analyze and
compare five different calculations in the following:

1. LDA+DMFT@UPA (conventional LDA+DMFT calculation with the cLDA interach
UPA = 3 55eV),

Note, that cLDA tends to overestimate the Hund's exchahggee [60], so that in subsequent LDA+DMFT
calculations smaller values dfhave been employed [186] For ttiesystem SrVQ this smaller value off mainly
influences the upper Hubbard band.
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Figure 2.4: Comparison of the imaginary part of the DMEJ, self energies vs. (Matsubara)
frequencyw for SrvVO; at inverse temperature = 40 eV—! as computed in five different
ways: employing g/ and LDA Wannier bands, the locally unscreened RPA interaction
UPMFT — 9 49 eV and the cLDAU*PA = 3.55 eV, as well as the&Z =0.7 renormalization

[30].

2. LDA+DMFT@QUPMFT (LDA+DMFT calculation but with the locally unscreened RPA
interactionU/PMFT = 2. 49 eV),

3. qpGW+DMFTQUPMFT (qpGW+DMFT calculation withUPMFT = 2 49 eV),
4. qpGW+DMFTQUPA (qpGW+DMFT calculation but withl/<MPA = 3.55 eV),
5. qpGW+DMFTQUPMFT | Z5—0.7 (as 3. but with a Bose renormalization factg).

Let us first turn to the imaginary part of the local self-eqewhich is shown as a function
of (Matsubara) frequency in Fig. 2.4. The self-energy sadirst impression of how strong
the electronic correlations are in the various calculatiorhis, in Matsubara frequency space,
can be inferred from the imaginary part of the self-energytlie first few Matsubara frequen-
cies, which (for a metallic solution) carries the inforneatiabout the renormalization factor
and the quasiparticle lifetime, and therefore contain tlestmelevant information about the
electronic correlations. The high frequency tail of th&-selergy, on the other hand, decays
like lim,,,, .o X(iw,) = —U?*(n — 1)n/w,, wheren is the occupation of each band, which, in
the case of SrvQ due to the degeneracy of tig, bands, is fixed. Therefore the high en-
ergy tails of the self-energy carry only the trivial infortitan about the value of the interaction
used in the calculations, and only very little message abimitcorrelations, hence compar-
ing the self-energy of the different calculations one stauhinly focus on the low frequency
part, and in particular its slope. The LDA+DMREI/PMFT self-energy is the least correlated
one, somewhat less correlated than LDA+DMFT*PA due to the smaller locally unscreened
Coulomb interaction{{PMFT = 2.49eV < 3.55eV= UPA). For the same reason also the
gpGW+DMFTQUPMFT self-energy is less correlated than that of & /gp+DMFTQUPA

calculation.
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Scheme Z  dintra Dier Diier
LDA+DMFT @QU<tPA 0.51 0.004 0.013 0.009
LDA+DMFT QUJPMFT 0.67 0.007 0.016 0.013
gpGW+DMFTQUPMFT 0.57 0.005 0.014 0.010
qpGW+DMFT@U-PA 0.39 0.003 0.010 0.007
gpGW+DMFTQUPMFT Zp —0.7 0.36 0.003 0.009 0.006
experiment [124,163, 168] ~0.5-0.6

Table 2.1: DMFT quasiparticle renormalization facto#sfrom the five different calculations
atinverse temperature= 40 eV~!. Also shown are the pairwise double occupations within
the same orbitad;,;,, and between different orbitals with the sazﬁéer and opposite spin
d* . The “standard” LDA+DMFTQUPA and qu> W +DMFTQUPMFT calculations are

inter*

similarly correlated and well agree with experiment. Usihg cLDA interaction{/°“P4)
for qpGW+DMFT or the locally unscreened RPAPMFT) for LDA+DMFT vyields a too
strongly and too weakly correlated solution in comparisnexperiment, respectively. Note
that quzIW+DMFT becomes even more strongly correlated, if the Boserrealization
factor is included.

If we compare LDA+DMFT and gfW+DMFT on the other hand, the LDA+DMFT self-
energy is less correlated than theCtjy +DMFT one, if the Coulomb interaction is kept the
same. This is due to the 0.7 eV smale¥ t,,-bandwidth in comparison to LDA. This obser-
vation also reflects in the DMFT quasiparticle renormdl@afactorsZ, which were obtained
from a fourth-order fit to the lowest four Matsubara freqcies, see Table 2.1. In other words,
GW self-energy, including part of the correlations, providetirther renormalization factor
reducing the bandwidth in comparison to LDA.

However, the effect of the smalléfll bandwidth is partially compensated by the smaller
UPMFT interaction strength. Altogether this yields rather samielf energies of the standard
approaches: LDA+DMFRUPA and q7 W +DMFTQUPMFT | see lower panel of Fig. 2.4.
This also reflects in very similar renormalization factordable 2.1,7 = 0.51 vs. Z = 0.57,
which both agree well with experimental estimates of 06{024, 163].

Since one important difference is the strength of the itéya, it is worthwhile recalling
that UPMFT is defined as the local interaction strength at low freqigscWhile this value is
almost constant within the range of thg-bandwidth, it approaches the bare Coulomb inter-
action at larger energies, exceedirngeV, as we discussed above, see Fig. 2.2. It has been
recently argued and shown in mottedalculations [30] that the stronger frequency-dependence
of the screened Coulomb interaction at high energies is efagice and can be mimicked by a
Zpg-renormalization factor for the bandwidth. The latter cardetermined from the frequency

15See also Ref. [54], for a further comparison with a full freqay-dependent calculation.
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dependence of the interaction using the relation [Z)]:= exp (% [ dw %), and its eval-
uation in the case of Srv{J30] yields Z5 =0.7.

We have tried to take this into account in they +DMFTQUPMFT |z, =0.7 calculation.
Due to the additional bandwidth renormalization, this akdtion is very different from all
others and yields the largest quasiparticle renormatimatie.,Z = 0.36 is smallest.

This too small quasiparticle weight can be understood devist in the calculation of
the DMFT self-energy, th&g factor mimics the effect of the frequency-dependence of cRPA
screened Coulomb interaction, which is much larger at higipfencies. In a fully frequency de-
pendeniGWW calculation, this is properly matched by a corresponditaige G self-energy
at large frequencies. However, within the quasiparti@datiment of th&; 11" self-energy (which
represents a linear approximation around the LDA quasgb@renergy to its frequency depen-
dence) such high frequency contributions of tH& self-energy are not included. As our
results show, in this case, it is hence more consistent nattode the frequency dependence
for the Coulomb interaction only, which th#&; factor emulates.

Next, we compare th&-integrated spectrum in Fig. 2.5. At low-frequency we firne t
same trends as for the self-energy results: th@1gpDMFT and LDA+DMFT at UPMFT
andU°PA| respectively, yield a rather similar spectrum. In patdcuthe quasiparticle peak
has a similar weight and shape. However, a difference isdatnlarger frequencies: the
gpGW+DMFT Hubbard bands are closer to the Fermi level in compari® LDA+DMFT
(see Sec. 2.1.4). If we perform pV+DMFT and LDA+DMFT at the “wrong” interaction
strength (i.e..U°"PA and UPMFT, respectively), we obtain a noticeably stronger and weaker
correlated solution, respectively. This trend is alsceat#d in the double occupations presented
in Table 2.1. Finally, as in the case of the self-energy, W@W{+DMFTQUPMFT Zp =0.7
solution is much more strongly correlated.

2.1.4 Comparison to photoemission spectroscopy

1
0.8 |
z, 06 | LDA@UCLPA —--
: LDA@UPMFT
3 0.4 GW@UPMFT —
< qpGWE@!
0.2 |

321012 3 45
w [eV]

Figure 2.5: Spectral function for SrvVQ(t,, orbitals only) computed in five different ways
as in Fig. 2.4. At lower temperatures the central peak gdisshightly sharper and higher,
albeit the temperature effects frafn= 25 to 40 eV! are small.
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An obvious question is whether LDA+DMFT or g3V +DMFT vyields “better” results.
This question is difficult to answer and for the time being msort to a comparison with
experimental photoemission spectroscopy (PES) [163]. ¢d&w one should be well aware of
the limitations of such a comparison. On the theory sideirthelved approximations common
to the calculations, as, e.g., neglecting non-local catiehs beyond the DMFT an@\V level,
or further effects, such as the electron-phonon couplindp@iphotoemission matrix elements,
might bias the theoretical result in one way or the other. l@nexperimental side, care is in
place as well, although the PES results have consideralpiyowed in the last years due to better
photon sourcé§. Furthermore, in Ref. [163] an oxygenbackground has been subtracted,
which by construction removes all spectral weight below ibgion identified as the lower
Hubbard band.

Fig. 2.6 compares the proposed LDA+DMFT andX4p+DMFT (with and without Bose
renormalization) with PES experiment. To this end, the teecal results have been multiplied
with the Fermi function at the experimental temperatur@@€ and broadened by the experi-
mental resolution of 0.1 eV. The height of the PES spectrusnben fixed so that its integral
yields 1, i.e., accommodates ofig-electron, as in theory.

The qEzW+DMFTQUPMFT and LDA+DMFTQU P4 have a quite similar quasiparticle
peak, which also well agrees with experiment, as it was dyréadicated by the quasiparticle
renormalization factor. A noteworthy difference is the ifoa of the lower Hubbard band
which is at—2 eV for LDA+DMFTQU*PA and~ —1.6eV for qpGW+DMFTQUPMFT, The
latter is in agreement with experiment and a result of theecedGW bandwidth. Let us note
that the sharpness and height of the lower Hubbard band vech teepends on the maximum
entropy method, which tends to overestimate the broadeofinige high-energy spectral fea-
tures. Hence, only the position and weight is a reliablelteduhe calculation.

As we have already seen, the Bose-factor renormalizédpDMFTQUPMFT |z, —=0.7
calculation is distinct from both, gl +DMFTQUPMFT and LDA+DMFTQUMPA, |t is also
different from experiment with a much more narrow quasipketpeak and a lower Hubbard
band much closer to the Fermi level. A similar differencenssn statid/ on the one side and
frequency dependent was reported in Ref. [30]. A difference of this magnitude iadeto be
expected.

Our results also compare well with those obtained withinemovolved schemes, like those
presented in Ref. [173, 174], in which@V +DMFT calculation is performed for SrVQ In
this works the frequency dependence of the self-energkentanto account, and a dynamical
interactionl{ (w), obtained by cRPA, is employed. While tlh81 self-energy and the value
of the interactiori/(w) are not treated self consistently, a full self consistescgahieved for
the Green’s function in DMFT [173]. A careful analysis of threquency and momentum
dependence of th@1V self-energy, similar to the one carried out for the firstdim Ref. [175],
allows the authors of [173] to show that th8V self-energy can be essentially separated in
two contributions: (i) adynamicalpart which is essentiallyocal, (ii) and a static nonlocal

®The surface sensitivity in PES has also been discussed eeently for the case of SrvQsee Ref. [192].
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Figure 2.6: Comparison of LDA+DMFTUPA | qpGW+DMFTQUPMFT (without and with
Bose renormalizatio®z =0.7) and experiment. The position of the lower Hubbard band is
better reproduced in gpiV+DMFT whereas the central peak is similar in LDA+DMFT and
gpGW+DMFT. The Bose renormalization G/ +DMFT differs considerably (photoemis-
sion spectra reproduced from Ref. [163]).

part. These two contributions to the self-energy have appeffect on the LDA bandstructure,
which partially cancel each other: The local and dynamidrioution (i) tends toshrinkthe
bandstructure (i.e., to shift coherent spectral weighs@ldo the Fermi level, reducing the
coherent quasiparticle energies) while the nonlocal aaticstontribution (ii) tend to enlarge
the bandstructure (i.e., shifting the quasiparticle exiwh energies more far away from the
Fermi level). In a combination with DMFT only the nonlocalntobution (ii) needs to be
retained, resulting in effectively enhandedlependence of the bandstructure compared to LDA.
However in theWW+DMFT calculations of J. M. Tomczadt al.[173,174], this effect is more
than compensated by the frequency dependence of the itbexawhich, for larger values
of the frequency approaches the bare Coulomb value: in spaédandstructure with a larger
bandwidth theZ factor is in the right value range, in comparison with theeskpent, and hence
with our qpzW+DMFT calculation. On the other hand our approximate tremtinof theG11/
self-energy, which neglects the frequency dependenceed@ftii self-energy that is linearized
beforeremoving the local contributidn, yields an effective nonlocal g9/ Hamiltonian with

a reducedbandwidth compared to LDA. As discussed above, combiniigydpproximation
with a frequency dependent Coulomb interaction would yiela@ correlated result, while
using a consistent static approximation also for the sedfrgy yields results in agreement with
the ones of Ref. [173, 174]. However there are some featuag¢€ém only be captured by the

This is rather different from the qp Hamiltonian obtainedii3], Eq. (48), where the quasiparticle approxi-
mation is performeafter having removed the local self-energy contribution.
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more elaboratedW+DMFT scheme of Refs. [173, 174]. In particular, while theesgnent
in the vicinity of the Fermi level is quite good, and the higinid spectral weight of the central
peak of the spectrum is well reproduced by ou&dp+DMFT, the transfer of spectral weight
to satellites and excitations far away from the Hubbard bdadpecially in the unoccupied part
of the spectrum) can only be reproduced within a schemedkasttinto account the frequency
dependence of the Coulomb interaction and ofGh& self-energy.

2.2 Conclusion

We have carried out a careful comparison of LDA+DMFT X +DMFT (specifically,
quasiparticleG,W,+DMFT) and experiment for the case of Sry,Qwhich is often consid-
ered to be a “benchmark” material for new methods for clated systems. To this end,
the LDA or GyW, quasiparticle bandstructure was projected onto maximadtglized Wan-
nier orbitals for thef,, bands. For these in turn correlation effects have been leddclion
the DMFT level. If we take the locally unscreened RPA intacacf{or the similar cRPA one)
for the qzWW+DMFT and the cLDA interaction for LDA+DMFT, the two apprdaes yield
rather similar self energies and spectral functions at grenklevel. These also agree rather
well with photoemission spectroscopy. A noteworthy difiece between these two calcula-
tion is found, however, for the position of the lower Hubbhehd, which is better reproduced
in qpGW+DMFT. Similar spectra were also obtained by Tomcealal. [173, 174] using a
GW+DMFT calculation including the frequency dependence efittteraction.

From a principle point of view also a LDA+DMFT calculationtwia locally unscreened or
cRPA Coulomb interaction is possible and employed in theditee. In the static limit, these
cRPA interactions are typically smaller than cLDA values. |édst for SrvVQ, these smaller
interaction values yield too weak electronic correlatidnsed for LDA+DMFT calculations.

Our calculations are performed using th&” implementation of one of the most widespread
DFT codes. The implementation that we proposed has the tay@athat it substantially keeps
the same procedure employed in LDA+DMFT, as well as a confgf@@mputational cost, but
with several advantages compared to it. At the theoret®adlithe interaction value for the
DMFT can be determinedb initio in a consistent way, and a well defined treatment of the
double counting is possible. Besides this, the descriptidhenlower Hubbard band in SrvO
is also improved. Therefore, while a self-consistent arly fiilequency dependent scheme
would be preferable, due to the high difficulty of the methiodbes not seem realistic that a full
GW+DMFT can overtake the standard LDA+DMFT scheme, at leaftaérforeseeable future,
and our qi-W+DMFT scheme might represent a valid alternative to it.






Chapter 3

Combining dynamical mean field theory
and functional renormalization group:
The DMF°RG

In this chapter we present DMRG, our novel approach, obtained by combining DMFT
and fRG, with the aim of studying electronic correlations diegagth scales and at all coupling
straights. In the first part of the chapter, we present theest#-the-art methods to treat strong
electronic correlations beyond DMFT. This way we emphasizedw new method, exploiting
the strengths of fRG, can be competitive with already estlhéll approaches. Specifically, we
show how the flexible structure of fRG allows us to includenralorithmically simple way
the local nonperturbative physics of DMFT as a starting pdan the flow equations. We will
then use the results obtained in the first chapter to undexstthe diagrammatic content of
DMF?RG. After that, we demonstrate the applicability of the neleste, by presenting our
first practical implementation of DMHRG. As a test case, we apply it to the two-dimensional
Hubbard model at half filling, obtaining results for the memtum and frequency resolved self-
energy, spin susceptibility, and one patrticle irreducilsbrtex. The former two are shown to
be in qualitative agreement with results obtained by clusteension of DMFT and lattice
guantum Monte Carlo respectively. Finally we conclude theptdrawith a outlook of further
possible improvements, in-depth analysis and possiblécgpipns of our newborn approach,
and a brief summary of our findings.

The material presented in this chapter is partially takemfirarantcet al., Phys. Rev. Lett.
112 196402 (2014), Ref. [169].

The very idea of introducing a new method that combines DMRd f&G arises from the
desire of developing a scheme which is, at the same timgiased(towards any channel) and
non-perturbative (in the electronic interaction). For this reason we propaseheme that
inherits the non-perturbative character of DMFT, whileiaddo its local physics the non-local
fluctuations in all the channels by means of fRG.
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Explaining how to achieve this goal is the main subject offits part of this chapter: We
will focus first on the physical idea that drives us in deyhg the new method, and then we
will deal with the formal details. However before introdngiDMFRG, we will present some
of the state-of-the-art methods that inclutan-local correlationsn top of a DMFT treatment
of the local ones. This discussion is aimed at motivating eimpvel diagrammatic technique,
such as DMFRG, may be helpful, being complementary, and even superipenific respects,
with the ones¢luster anddiagrammatic) already existing.

After this discussion, we will show the feasibility of the thed, presenting numerical re-
sult for a special case, i.e. the two-dimensional Hubbardehat half filling. The presentation
will be first focused on the practical implementation of thethod, and on the several further
approximations involved, and, subsequently, will be desldd the analysis of the results, also
in comparison with the ones obtained with fRG and DCA. Finaleywill also propose an alter-
native path to improve the present formulation of DV®G, introducing an auxiliary problem
which might be more suited than the original one for an fRGtineat in the strong-coupling
regime.

3.0.1 Introduction and motivation

As we have discussed in the previous chapters, correlatett@h systems display undoubt-
edly some of the most fascinating phenomena of condensedmpétysics, including, among
the others, superconductivity, which we will discuss maoréetail later, and quantum critical-
ity.

Besides these phenomena belonging to the “more traditicc@idensed matter area, the
accurate study of the strongly correlated regime of latticglels is becoming more important
also in the context of cold atoms. In fact the tremendous nesxyin trapping, cooling, and
controlling atoms in an optical lattice is offering the pibdgy of “simulating” a lattice model
in a different context from the one usually studied in corimecwith real materials. Although
the physics involved in cold atoms experiments is argualdyencomplicated (as it involves,
e.g., the specific form of the Feshbach resonances and dfapping potentials), the cold
atomic systems are appealing for their cleanness (absémpt®oons) and for their incredibly
high tunability. The considerations above have justified huge effort devolved in the last
several years to the study of phenomena involving strongtrel@c correlations. However,
most of the approaches developed so far have not been abéatatdhe same timeiith all
the aspects of strongly correlated electron problems. $ete the striking example of the high
temperature superconducting cuprates to show where theutties arise.

The case of cuprates The technological potential of high temperature superootas is vir-
tually unlimited, and several applications have alreadgnbesed in different fields, ranging
from frontier research in high energy particle physics fia magnets that deflect the flux at
LHC) to medical devices (for example in the devices used femticlear magnetic resonance).
Obviously, even more applications would be possible if weavadle to find the way of “design-
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Figure 3.1: Schematic representation of the phase diagram of cupiadegl(a) and pnictides
(panel b) for hole and electron doping. Adapted from Ref. [18]

ing” material to further increase the critical temperatjat the moment the highest recorded
critical temperature at ambient pressuré3gK for the so called Hg-1223 compound). Obvi-
ously, before a reliable material design is possible, itasassary to understand the essence
of the mechanism behind the superconductivity in the disoed materials. Even today, more
than 25 years after the discovery of cuprate supercondtyctly Bednorz and Miuller, these
task has not been completely achieved. However, almost theeades of intensive research
made several points clear:

e The relevant physics happens in the copper oxide planeshvdainstitute the common
elements of all cuprates;

e The parent compounds, that become superconducting upongi@we usually strongly
correlated (Mott) antiferromagnets below their respechiéel temperature;

e Doping the parent compound a nontrivial phase diagram esseithe Néel temperature
quickly drops and a pseudogap opens in the spectral fundibm all the phase diagram
is rather rich, as it is shown in Figure 3.1, and includesjdaesssuperconductivity also
magnetic ordering and ““strange metal” phases;

e The superconducting pairing function hag.a_,» character: It has a nontrivial spatial
dependence in the copper-oxide planes;

e For hole doping, in the underdoped region of the phase diagraseudogap [159, 172]
opens below some temperatufé. The signature of the pseudogap is the opening of a
gap in the spectrum for some directions of the momentum. H&tgre of the pseudogap
and its connection with the superconductivity has beenestilhp intensive discussion in
the literature, see, e.g., [159] and references therein.

From the theoretical point of view, there is no general casss yet about the minimal
model that can be used to describe the cuprates. Howeverbdlieved, and the experience
has shown, that most of the features of the cuprate phaseathagncluding the pseudogap,
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can be understood using a two dimensiaiagle band two-dimensional Hubbard model as
early suggested by Anderson [159]. We will adopt this modéhefollowing, even if it is still
debated what is the role played by multi-band effects, itigaar due to the hybridization with
the p-bands of oxygen.

From the points listed above one can see why the descriptiomppates is so difficult: On
the one hand the strong electronic correlations, due to dypscreened Coulomb interaction
on the copper @ orbitals, prevent the full success of perturbative methtile fRG) alone.
On the other hand, the main non perturbative method whicblesta study strong electronic
correlations, i.e. DMFT, fails due to the low-dimensiohabf the copper oxygen layers, where
the main physics is supposed to happen. Due to its spatiat-firdd character DMFT alone
is not able to deal with the strongly non-local self-enesgkich reflects the appearance of the
pseudogap, nor with the momentum dependence of the paiumuagion.

Even if DMFT is not sufficient, a lot of progress has been maglag, among other methods,
approaches which extend DMFT, like the cluster extensismsh as cellular DMFT (cDMFT)
or dynamical cluster approximation (DCA), which are mairdgudsed on the treatment of (short-
range) strong electronic correlations. At the same timenef#fRG is only able to address the
weak coupling regime, thanks to the unbiased inclusion afyeet-like diagrams, it has allowed
to gain a deep insight about the competing instabilitiehétivo-dimensional Hubbard model.
These two approaches, cluster extensions of DMFT and fR@sfon different aspects of the
problems and have different limitations. Cluster DMFT melhare by construction limited
to describe short correlation lengths (see below) and fimer¢he obtained results do not fully
describe the cuprate situation, where long range ordealzegl. Moreover, the results obtained
with cluster methods require a nontrivial extrapolatiorthie limit of infinitely large cluster.
At the same time the perturbative analysis of fRG has to beopedd in a parameter range
which is far away from the one expected to be relevant for thgates: The analysis of the
weak coupling instabilities may serve only as an indicafmmwhat the situation is at strong
coupling.

In fact the discussion above can be considered quite panadiicp fRG and DMFT allow to
study complementary aspects of a correlated problem. Toiwates us in combining the main
strength of DMFT (nonperturbative treatment of purely latiagrams) with the one of fRG
(unbiased, but perturbative, treatment of competing bilii@s) in a single novel approach.
This method is coined DMIRG, and it can be considered either as a diagrammatic extensio
of DMFT or as a new starting point for an fRG flow. With this, we anethat it aims at the
inclusion of non-local diagrams in a perturbative (diagnaaic) way on top of the nonper-
turbative local diagrams of DMFT. The main difference frdme bther existing diagrammatic
extensions of DMFT is the fact that the way non-local diaggare computed relies on fRG.
To understand the great potential gain of the use of fRG, bgfoesenting the DMIRG, we
will first introduce the standard (cluster and diagramujatixtensions of DMFT.

We note that fRG has been recently also used in the study dighesc In this case the electronic correlations
are supposed to be less strong while the interplay of sebarals, with different topologies of the Fermi surfaces
is more important [115].
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3.0.2 Extensions of DMFT

As discussed in chapter 1.5, DMFT represent the “gquantuertension of the classical
(static) mean-field theory [47]. More formally, it provisliéhe exact solution of a quantum
many-body Hamiltonian in the limit of infinite spatial dimgions  — o) [48]. Hence DMFT
allows for an accurate (and non-perturbative) treatmett@purely localpart of the correla-
tions. At the same time, the mean-field nature with resp@thé¢ spatial degrees of freedom
implies that all thenon-localspatial correlation are completely neglected.

Several approaches have been developed in the past twoeddoadclude non-local corre-
lations beyond DMFT. These can mainly be classified intsteluand diagrammatic extensions
of DMFT. The philosophy behind these approaches is diftemed therefore they are suited to
analyze different questions and regimes in a complementagy Let us discuss the cluster
extensions first.

Cluster extensions

With the increasing computational power and the progredsampurity solvers, in recent
years it has become possible to solve, numerically exantiyéth high efficiency, bigger and
bigger cluster of impurities. Since DMFT is based on a mapmha lattice problem onto
a single AIM embedded in a self-consistent bath, the mostrabéextension of it consists in
mapping a small portion of the lattice problem on a clusterststing of V. > 1 impurity sites
embedded in a self-consistent bath. In this way the coroglatinside the cluster are treated
exactly (or numerically exactly), while the correlatiores/ond the cluster size are treated at the
dynamical mean field level using the self-consistent effedbath. This procedure is the basic
idea behind the so-calleduster extensionsf DMFT.

There are two possibilities to define the cluster: it can beedeither inreal spaceor in
momentum space Defining the cluster in real space is more intuitive, as smeply needs
to single out a portion of the lattice and associate to it ateluof impurities. The hoppings
between the impurities as well the interaction on them ape feed at the lattice value, while
the cluster embedding is defined self consistently. Thigragch is namedellular DMFT
(CDMFT) [109,114].

In the same direction goes tivariational cluster approach? (VCA) [143]. In VCA the
lattice is represented by a small cluster, but in this casgtead of treating the correlation
beyond the cluster by embedding the cluster in a self-ctamgibath (like in CDMFT), one
deals with it by (i) attaching uncorrelated bath sites attbendaries of the cluster; and by (ii)
determining in variational way also the on-site energies laoppings between the correlated
cluster sites, to take effectively into account the cotrefes beyond the cluster size and to
overcome the drawback of having a discrete embedding (litetf) ®f the cluster instead of a
continuous one.

An equivalent way to proceed consists in defining the clustenomentum space: The

2Sometimes also called variational cluster perturbatieoti [159].
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Brillouin zone is dived inVN, patches, the self-energy being assumed constant in eatdh pat

Tho() = 3 )¢l ). (3.1)

Here((k,7) equals one if the momentuia belongs to the patchand zero otherwise. The
self-energy of each patch is then computed solving seltistently a cluster ofV,. sites. This
approach is known adynamical cluster approximation (DCA) [64, 65, 122]. As cDMFT,
DCA relies on the fact that, at least in systems of high din@rsdity, the frequency dependence
of the self-energy is supposed to be more important than tmmentum one [64], and the latter
can be therefore be approximated well enough by an ansalte ddotm of equation (3.1). For
both (cDMFT and DCA) methods, it is also important to noti¢attfor small cluster sizes the
geometry of the cluster (or, in other words, how the Brillomone is dived in patches) turns
out to play an important role, with some geometries beingenfiavorable than others [21].

An appealing feature of the cluster methods is that theyigeoan interpolation between
the DMFT, corresponding t&/. = 1, and the exact solution, which is recovered in the limit of
an infinite cluster sizel(/N. — 0). Since the correlations inside the cluster are treatedtlyxa
cluster methods, and DCA in particular, have been able taithesguite accurately short-range
non-local correlations, and phenomena which are assdandth them, like the opening of the
pseudogap in the spectrum of the two-dimensional Hubbamketet half filling [87], as well
as finite doping [51, 118]. Furthermore, it can also be séenthe Néel temperature for the
antiferromagnetism at half filling is reduced with increggscluster size [123], and that it is
possible to find a divergent susceptibility associatedwitl,>_,» pairing, for finite tempera-
tures, compatible with a Kosterlitz and Thouless (KT) [4,206] transition [123]. However
due to the space dependence of the order parameter the genggrwith the cluster size is
only very slow [122]. Moreover it is physically clear that ariever approaching a (second
order) phase transition, which involves a divergent catreh length¢ the convergence of the
results with the cluster size will become slower and slowerce the number of cluster sites
required to reproduce the correlations will increase togetwvith. For the very same reason,
the cluster methods are not able to give an accurate ansgemdiag the critical exponents at
the transition.

In fact, the analysis of the critical exponents requiresstinely of the critical region, which,
in temperature, corresponds to the immediate vicinity ef ¢htical temperaturd” — 7, <
1. In this temperature regime a divergent length scale appsarce the correlation length
diverges asx (T' — T,)~ ", that will soon exceed the length of the longest correlatithat can
be described exactly within a cluster, with scales with thenber of cluster sites likev "/,
All the correlations beyond this length will be capturedyoat the mean field level (in space),
and hence the authors of reference Ref. [123] conclude tha¢ @nough to the transition the
critical exponents reproduced in DCA reduce back to the niiedshones, reflecting the mean
field treatment of the correlations beyond the size of thistelr. Conversely, phenomena which
arise from correlations related with a narrow region of peatal space, such as the vicinity of
a Van Hove singularity [82], are very hard to describe [55¢lunster approaches.



119

It has also to be stressed that increasing the size of thieecisscomputationally extremely
challenging: Due to the increase of the size of the Hilbeatspassociated with the cluster the
computational effort increases with the number of sitess a@lso limits the possibilities of the
cluster calculations for multi orbital systems, which wabukquire further computational effort.
Besides this one should also consider that usually the clisssolved using quantum Monte
Carlo methods, and this might imply, away from half fillinggtemergence of the so-called sign
problem, for large values of the Hubbard interaction [122].

The take home message from the discussion above is thatukercinethods are very
powerful in dealing with the short-range correlations, ethare treated very precisely, but
might have to be supported with other methods for the armbysihe long range correlations
arising in the proximity of (quantum) phase transitions argfabilities. To this aim, one such
possibility is making use of the diagrammatic extensionBM T described below.

While the most powerful cluster techniques have been deedlap Refs. [64, 109, 114],
historically the idea of treating short range correlatiosgg more than one impurity can be
traced back to the work of Schiller and Ingersent [161]. Is gaper the authors discuss about
1/d (d representing the number of dimensions) corrections tortfieite dimensional limit of
DMFT: Due to the proper scaling of the hopping (sec. 1.5) wéenergyX;; scales like
1/dV=il, || i — j || being the Manhattan distance between the siteslj, and therefore:

The [...] summation of all skeleton diagrams with no intée slistance greater than
n constitutes a systematic approximation scheme correbetorderl /d".

In turns, the non-local Green'’s function between sites ataamiattan distance smaller than
can be computed from the solution of an actiomef 1 impurities. In other words, by defining
a problem containing + 1 impurities we are able to describe (i) the Green'’s functibnfor

| i —j ||< n and (ii) the leading diagrams ih/d, up to the ordert /d". Correspondingly,
the Weiss field ofn + 1 impurities (which takes a matrix form) needs to be computdtl s
consistently.

Such so-called1’/d expansiori, however, is different from the other cluster expansions
described below in some important aspects. First, theeslwghich is solved in thé /d ap-
proximation does not correspond to a small portion of thiéckatas in cDMFT or DCA), but
is rather an auxiliary tool, defined to compute the local and-local Green’s function for dis-
tances inside the cluster size. Secondly, on the conceptial of view, thel/d expansions
can be regarded as being at the border between diagrammédtauster extensions of DMFT:
The parametet/d serves as “small” perturbative parameter, and the diagnatic content of
the approximation is controlled, in the sense that it isroldagich diagrams can be attributed to
the theory and which not. In this respect, the impurity @ustre introduced as an aid for the
approximation, which is anyway derived diagrammaticallize first order correction/d was
included for the Falicov-Kimball model in Ref. [161] by inttacing an action involving two
impurities. The correction obtained using th&l approach are very small and this approach
has not been very successful, possibly also due to the vaitetl size of the cluster that one
was able to solve exactly when the method was proposed. dttereot many studies have
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been performed in this direction.

Diagrammatic extensions

The common idea behind the diagrammatic extensions of DMFassuming the DMFT
as the zeroth order approximation, pinpointing a parantéegris supposed to be small and
selecting a subclass of diagrams which corresponds to sommedf perturbative expansion in
the supposedly small parameter, while keeping the nonfbative local physics of DMFTas
starting point for the expansion.

Several approaches of this kind have been proposed. Hialigtithe first attempt to extend
DMFT was thel /d expansion [161], which shares aspects of the cluster ameafiagrammatic
extensions of DMFT. In this case the perturbative parametgven byl /d. Thel/d expansion
allows for the inclusion of short range correlations only:tte orderl /d" are exactly included
only correlations extending to the firstneighbors, and increasinginvolves the solution of a
bigger auxiliary cluster of interacting impurities, thne limiting the method to short length
correlations.

A second attempt has been tried in Ref. [154], where the metised has been coined
DMFT+X. At odds with the previous one (and with the ones that we vabalibe below)
this approach is mostly phenomenological: It is supposatidhe can split the self-energy in a
local part and a non local part, in an additive fashion. Thwallcelf-energy is then computed
solving an appropriate AIM, while the non-local one is ob& using some other approxima-
tion scheme, taking into account, e.g., interactions wihective modes or order parameter
fluctuations. It is clear that in this case the “small” perbative parameter is given by the
non-local self-energy itself. Of course the quality of tippoximation depends on a number of
factors, like the effective smallness of the non-local-selérgy, the approximate way how this
is computed, and the assumption of an additive form of theesedrgy.

A third class of more "mature" diagrammatic methbllas been developed starting from the
second half of last decade, and includes dynamical verggsoajmation (O0'A) [147,176], dual
fermion (DF) [55, 151] and, more recently, the one particteducible approach (1PI) [146].
In these methods the idea is building subclasses of diagusming “standard” perturbative
approaches (e.ga-order perturbation theory, ladder-like diagrams, patdjie diagrams) but
using “building blocks” (i.e., Green’s functions, twoapticle interactions...) which already
include all the local physics captured by DMFT.

Let us consider, as an example, a simple resummation of latldgrams. In standard
perturbation theory these diagram are built up using aslimgjlblock the bare Green’s function
and the bare interaction vertex (i.€.jn the case of a single-band Hubbard model). Such ladder
approximation is valid iU is small enough, i.e., in the perturbative regime. A posigytiior

3Strictly speaking, in self-consistent schemes one takesdmperturbative local physics of an auxiliary AIM
as a starting problem. This AIM does not need to be the santeeasie of DMFT.

4For completeness we also mention other diagrammatic mettRef [56] in which the short range correlation
of DCA are supplemented with long range ones by means of &ufition exchange (FLEX) approximation, and
so-called multiscale methods, like the one of Ref. [167].
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acceding a non-perturbative regime of largéconsists in keeping fixed the topology of the
subclass of diagrams (the ladder diagrams, for exampleejf are well motivated physically)
but using building blocks which are already nonperturlegtand include the strong correlation
at best as we can do, i.e., at the DMFT level. In first appraion, this means that the ladder
diagrams are to be built using a non-local Green’s functwhi¢h already should keep into
account the local self-energy of DMFT) in place of the fulid&reen’s function, and the local
one particle irreducible vertex, fully irreducible in thedder channel considered, of DMFT.
In this way the building blocks of the perturbation theoryeally include nonperturbatively
the effects of the interaction, at least at the local levelugh the self-energy and the vertex.
Since the DMFT is nonperturbative, and the DMFT diagramsraskeided in the theory from
the beginning, also the resulting new theory will be nonpdxtive in the purely local diagrams,
i.e., no selection on the "topology" of the purely local degs is made. However, if the new
theory will provide a good approximation for the problem sioiered essentially depends on
how the non-local correlation effects can be captured bydthgrammatic selection done. In
other words, the approximation will work only if a "perturbha’ (i.e., Feynman diagrammatic)
treatment of the non-local physics is possible. In this sghe discriminating criteria for the
quality of the approximation igotthe size of the ratio//D (D being the bandwidth), but
rather how important are the non-local diagrams, negletted the DMFT and not generated
by the perturbative expansion. In this respect, for examiple clear that the theories might
work better for very large values @f, where the physics is closer to the atomic limit, than
in the region of intermediate values 0f [152]. For example, in the case of the half filled
three dimensional Hubbard model the problematic regionbesathe one around the maximal
Neél temperature for the antiferromagnetic transitior/|1dvhere a crossover between Slater
and Mott antiferromagnetism is expected [171]. Furtheertbe existence, or not, of @rhall
parametéerfor non locality depends also dmowthe building blocks are defined, and different
choices of the building blocks give rise to different appnoations.

The DI'A, for example, relies on the assumption that the two-plartidly irreducible vertex
is purely local. This way, the locality condition of DMFT igised from the one particle level of
the self-energy to the two particle level of the two-padicteducible (2PI) two particle vertex
Air. The "control parameter” in this case would be the non-locaif the fully irreducible
vertexA;,,: If the exact fully irreducible vertex is local enough, th€®approximation is well
justified. From the practical point of view, the conditiohlocality of A;,, should be translated
in some diagram resummation, which can be carried out ngaiBri Keeping in mind that the
solution of the parquet equations would formally allow tdasb the exact full 1PI vertex, when
the exact frequency and momentum dependent 2P| vertex dsassaput, it is clear that the
best that one can do, is summing all the parquet diagramssafhstituting the local 2PI vertex
to the momentum dependent one. However the resummatiorrgégtadiagrams (see also the
section about the diagrammatics of DRMRG) is a very difficult task, and, if allowed by the
physics of the problem under consideration, one can ragstrict himself to ladder diagrams
instead of parquet ones. In this case one does not need tharfetucible local vertex, but
rather the irreducible vertex in the one channel that is usdte ladder resummation. This
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approximation is often referred to &slderDI'A [147].

A related approach is the dual fermion (DF) one [55, 151]his tase one makes use of an
Hubbard-Stratonovich transformation (HST) to introducme new auxiliary (dual) fermionic
degrees of freedom, which are noninteracting but couplé@dootiginal electrons. The trans-
formation allows to formally integrate out the original degs of freedom of the system. The
price to pay for that is that the in the action of the dual fernsiappears a complicate interaction
term, that, when the transformation is chosen properhglires terms including the product of
four and more fermionic fields, whit coefficients relatedthe two- and more particle vertices
of the local problem consideréd The first approximation in DF, considered that the Hubbard
Stratonovich transformation is obviously exact, is neggcthe terms with more than four
fields, that would be not easy to treat numerically. Thisesebn the idea that the three- and
more particle verticésare small and can be neglected. The problem now reducesvingol
approximatively (here is the second approximation of DE)ghoblem in dual space, and then
map the results back to evince the non-local vertex andesadfgy of the original electrons.
The advantage is that the HST was chosen from the beginnitigasthe local part of the inter-
action can be integrated out and the dual fermions have twatéor the non-local effects only.
Whenever the local part of the interaction is really the majug, then, it is reasonable to treat
the DF action in a perturbative fashion. To this extent, aretben choose a subset of diagrams
to construct using as building blocks the (two-particlégraction and the Green’s function of
the dual fermions, which are respectively related with dual two particle vertex and with the
non-local part of the self-energy [151]. To summarize thef®imion approximation will be
then successful if (i) the terms beyond the quartic one indiled action which are neglected
are small (in turns this means that the three particle loealex must be small) and if (ii) the
dual problem allows for a perturbative treatment. Howetlez,choice of the diagram used in
the perturbative treatment remains important, and alsbighdase the best that one can (and
sometimes have to [188]) do is choosing a parquet-like aqpmration.

Finally, the recently introduced 1Pl approach [146] présenunifying aspects of both
DI'A and DF. In this approach one tries to extract as much inftona as possible from a
resummation of ladder-type diagrams. In fact, this resutiamas performed in such a way
to include, exploiting the introduction of further auxityafermionic fields, also diagrammatic
contributions from the other channels, without making usthe parquet formalism.

It has to be stressed thai B, DF and 1PI, unlike the cluster methods, include correti
at all length scalesalthough in an approximate way. It is in this respect thagdienmatic
and cluster methods cab be indeed considemdplementary. A beautiful example of the
capabilities of the diagrammatic methods is the accuraserg®ion of the critical properties,
see, e.g., the calculation of the critical exponents, wihiak been performed inIA for the

SIn first approximation the local problem can be the one of DMHowever this is not necessary, and the
proposed scheme [151] is self-consistent.

SHere we do not specify furthevhatkind of vertex, since it depends on a non-unique choice ofHiebard-
Stratonovich transformation. With the choice of [151] thetiees to employ are the two and more particle Green’s
functions.
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Figure 3.2: Inverse AF spin susceptibility as a function ‘bffor differentU values. Lower
inset. Inverse DMFT susceptibility with a MF/ (= 1: linear behavior) critical exponent.
Upper inset: larget” interval. Reproduced from Ref. [147].

case of the three-dimensional Hubbard model [147], see3y.and in DF for the two-, three-
and four-dimensional Falicov-Kimball model [11].

However there is still a caveat: Even when it is possible findea "small control param-
eter" for the physics beyond DMFT, it is still necessary teeseand compute subclasses of
diagrams that encodes much as possibibe relevant non-local physics. In most cases, in fact,
keeping only the lowest diagrams in perturbation theorysdus allow for big improvements,
and it is needed to use resummationrginite set of diagramsalthough, restricted to some spe-
cific topology, like in ladder or parquet approximationplissible, the resummation of parquet
diagrams is the best that one can do, and allows for the ¢dreatment of competing instabil-
ities. However this is in general an extremely hard task, iamdost cases one has to restrict
himself to ladder diagrams. In specific cases, as thoseettaa Refs. [11, 147], this can be a
good approximation, i.e., when there are reason to beligaedne instability dominates over
the others. However in more general situations, typicatlg does not know a priori whether
a ladder channel dominates over the others or not, exactlythg cuprate situation. In these
cases a ladder approximation can produce rather biasetsresu

It is in this kind of situations that using DMRG may become appealing: As we have
already discussed, thanks to fRG we have the possibility wipeding parquet-like diagram (in
the sense of Sec. 1.4.2), which we will use to obtairuabiasedreatment of the electronic
correlations beyond DMFT iall channelsin the next section we will formalize the method and
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we will see how these parquet-like diagrams are obtainetgusie non-perturbative building
blocks of DMFT.

Sinitial

>

Figure 3.3: Sketchy representation of the difference between the atdrfiRG flow and the
DMF2RG one. Each point of the “parameter space” correspondbécattion associated
with a different gaussian propagator (but the same interateérm). The goal is computing
field integrals relative to the action labell&,;.., by performing a flow that starts from
an action that we are able to sol&,{;;.;). Choosing a cutoff corresponds in our sketchy
representation to the selection of a path in the parameseesObviously if no approxima-
tion is done at the end of the flow one would end with the saraeltéor the field integrals
that one would have integratin§...;... However, due to the truncation, we are not able
to integrate exactly along the path, and therefore we migbtquite off from the desired
result, as represented in the figure. This makes the chéitetarting action very impor-
tant. In a conventional fRG one usually starts from a problemwhich all the fluctuations
are suppressed: the propagator of the gaussian term iscial@gntzero in the beginning of
the flow. This corresponds to the case dendigg;., in the figure. Increasing the value of
the interaction the full action contains gradually more correlations that meglected in
the initial one, and are only partially recovered during flbev. Therefore the result of the
integration of the flow equations can be quite differentirthe exact result. In DMIRG
the starting pointSpyrr corresponds to the action of the AIM associated with the DMFT
solution of the lattice problens.;;... Therefore it contains already a possibly big part of
the correlations, i.e., the local ones. In the flow only a kengart have to be built: The
starting point of DMERG is “closer” to the final action than the starting point ifG. As
a consequence one can expect that the results obtainedelgyanig the flow equations of
DMF?RG might be closer to the exact result.
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3.0.3 From infinite to finite dimensions

The idea behind DMIRG can be visualized pictorially as flowing from the solutioh
an infinite dimensional system to the solution of a finitendnsional one, as we represented
schematically in Fig. 3.3.
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Figure 3.4: Schematic illustration of the DMIRG approach, showing the evolution of the
Gaussian par€&} of the action from DMFT to its exact expression for a two-dirsienal
system. The (truncated) flow equations for the self-enéifjyand the two-particle vertex
I'* are explicitly given in terms of Feynman diagrams.

The infinite dimensional system is introduced becausentlza solved exactly, by means
of DMFT, and therefore it can be taken as a starting pointRgs fAs discussed in the chapter
about DMFT, the solution of the infinite dimensional prahblés obtained, in practice, from the
one of an AIM embedded in a self-consistent bath, which agisoior the effects of the rest of
the system, i.e., for the other sites of the lattice. In facthe single band case, the only lattice
quantity entering in the DMFT self consistency equatioriZb) is the density of statgge),
and a DMFT calculation for a finite and for an infinite dimemsal lattice, will yield the same
resultg, provided that the density of states of the noninteractystesns are the same. However,
only in the case of really infinite dimensional lattices tbeal physics will be described exactly
by the AIM self-energy and Green'’s function, otherwise ill we an approximation. For this
reason in Fig. 3.4 the "infinite dimensional” starting pdmats been sketched by an impurity
site surrounded by a cloud, representing the effective bathe self-consistent AIM that is
replacing the hopping. As we flow towards the finite dimensil lattice of our interest the
embedding cloud is supposed to fade out while the latticgimgps gradually activated. This
is the basic idea of DMIRG that we are going to express more formally in the next papgr

This is true if no symmetry breaking takes place [48].
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Method

Let us start by briefly recapitulating the standard fRG teghe, already discussed in the
fRG chapter 1.4, which makes it easier, then, to clarify ho&'yMFT approximation can be
combined with it.

We consider an interacting problem defined by the action:

B _
Shattice = —/ drdr’ Z wkg(T)G?att(k, T — T')_lwkg(T/) + Sint. (3.2)
0 ko

Here, Y. (7)(x,7) are the Grassmann variables [134] corresponding to treiore(annihi-
lation) of a fermion with spin projectioa =1, | of momentumk at imaginary timer. G9..,

is the free propagator of the finite dimensional systemcihieads explicithGY, . (k, iw,) =
(iw, — e+ p) "L in terms of the fermionic Matsubara frequencies= 7/3(2n+ 1), the energy-
momentum dispersiog, and the chemical potential All the terms beyond the Gaussian one
are contained ib;,;. In the simplest case, for the interaction of a single bandiddod model,

this reads: 5
Swi = U /0 A7 Gy () (7)o, (7)o (7). (3.3)

The Grassman variables, (1;,) correspond to the creation (annhilation) of a fermion ohsp
projections on the lattice site. The Grassman variables in real and momentum space are
related by a Fourier transform:

77Z)]'z7 (7_) - Z e_iRij)ka(T)a wja(T) = Z eiRjk'lkaa(T); (34)
k k
Vo (1) = Z eiRij)ia (1), Vio(T) = Z e_iRjk¢i0 (7). (3.5)

HereR; is the lattice position of the sitg. The summatior) , is intended over the first
Brillouin zone. As usual Grassman fields can also be expdesséerms of the Matsubara
frequencies:

_ g o B ,
e (wn) = /0 dre”"" by (T), Ve (W) = /o dre™" o (T); (3.6)
2chr (T) - Z eiwnTQ/_}kcr (Wn)7 wka (T) - Z eiwnq—wka (wn>; (37)

(the same transformation applies to the fields expressezhirspace).
In general, the fRG procedure, described in Sec. 1.4 can benatized conceptually in
three steps [129, 141]:

1. First a “solvable” action §;,;) is introduced as initial starting point. Here, “solvable
means that at the beginning the “problematic” (i.e., n@ugsian) parts of the original
action are excluded (e.g., the degrees of freedom closetBdtmi level). Note tha$,,;
differs from the originalS,,; only in its Gaussian part.
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2. A one-parameter family of action$® is defined. These actions smoothly interpolate
between the solvable action for the initial value of the pater (i.e., ifA = Ay, St =
Sinitial ) @and the physical one at the end (for= Ag,: SMr = Spaiice). This corresponds
to a continuous change of the Gaussian propagator Qi t0 Spattice-

3. The evolution of all (1PI)n-particle vertex functions of the actiod®' as a function of
A is determined from a set of coupled differential equaticasied “flow equations”.

The formal derivation of this procedure, as well as of thevfequations for the vertex func-
tions is presented exhaustively in the literature, see, thg recent reviews Refs. [129, 141]
as well in chapter 1.4. By integrating this set of differendguations, one caim principle
evaluate exactly all 1Ph-particle vertex functions of the actia# of the problem of interest
by computing the flow from the corresponding vertex funeti@f the solvable model, indepen-
dently on which specific choice was made for it. However,ha presence of a two-particle
interaction, the hierarchy of flow equations couples:th@article vertex functiod?, with the
(m + 1)-particle one, i.e., the set of flow equations is in genénéhite. Hence, in practice
one needs to truncate the equations: As an approximati@agsumed that all the 1PI-vertex
functions withm bigger than some value (typically.,,.. = 2) are neglected. Within this
approximate treatment, the choice of the initial actiondmees obviously important.

More specifically, by retaining only the one-particle \etfunction (self-energy) and the
two-particle vertex, and setting the three-particle vettezero, the truncated flow equations
assume the form:

oaxr = ThoS,, (3.8)
Oy = Tho(SyoGy)ol'y. (3.9)

Here the symbol ¢” stands for the standard summation over all internal \a@as, i.e., momen-
tum integration as well as spin and Matsubara frequency saatiom At each vertex, energy,
spin, and momentum is conserved according to the convetibmgrammatic rules. The sym-
bols 4, T'}, G, and S, stand respectively for the self-energy, two-particle eertdressed
Green’s function and single scale propagator, as defindaeimain text. The initial condition
for these differential equations; i, FQ““ are obtained by solving the initial “solvable” action
Sini-

Their explicit expression in terms of frequency, momenthsgpin summations can be found,
e.g., in Refs. [129] and in Chapter 1.4. The main differencenftbe conventional fRG ap-
proach, is that in DMFRG we aim at including a major part of the correlated physicsady
at the level of the initial “solvable” action. This is ceinly possible for the non-perturbative,
but purely local, correlations of DMFT, because the DMFTusioh of several models and
realistic problems of solid state physics can be obtaingd Abthe one and the two-particle
level [54, 138, 149], providing the input for the truncatémixf.

The formal implementation of this idea requires evidenblydplace the initial action with
a one describing the non-perturbative local physics of tMFD solution and then to set up
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the flow to the final actiorS,.;.. Of the desired problem (whewdl correlations, namely also
thosebeyondDMFT, are eventually included). Due to the flexibility ofafiRG scheme, there
are several ways to realize this in practice. A first attecgt be obtained considering that,
from a mathematical point of view, as DMFT corresponds togka&ct solution of a quantum
many body Hamiltonian in the limit of infinite dimensiong (~ oc), the most intuitive way
might be realized by building up a “dimensional” flow fromh = oo to the actual dimensions
(e.g.,d = 2 or 3) of the problem of interest. In this case, one would staninftbe action of an
infinite dimensional lattice (e.g., hypercubic) and thegmaeterA should gradually turn off the
hopping in all directions, except the physical ones of thalfproblem.

This can be done considering the family of actions assatiatt the following Hamiltoni-
ans in the limitd — oo :

) 2 - Z {\/%l [f(A)€ryky + Néry k,] — M} CLaCkJ

ko

+U Z Mt (3.10)

with n,;, = clacia.

Here the momenta in the first sum atelimensionalk = (ky, ks, ..., k) while the second
sum extends over the lattice sites ofl alimensional lattice. The operatoe§, (c,,) create
(annihilate) a fermion of momentuik and spino, n;, is the number operator counting the
fermions of spins at the lattice site.

To be specific, let us assume that the energigs refer to a two dimensional square lattice
with nearest neighbors hoppinge, x, = —2t(cos k; + cos k). The infinite dimensional limit
of this lattice is obtained whef = 1 and f(A) = 1 takingeg, x, = —2t(cos ks + ... + cos k).
The factor\%d accounts for the proper scaling: it guarantees that theikieeergy does not
diverge in the limitd — oo (see sec. 1.5). The termsandf(A) are used to interpolate between
the Hamiltonian ind and two dimensions. For example, assuming the followinmffar f(A):

FIA) =1+ (1—A)(V2d—1), (3.11)

one recovers thé — oo limit for A = 1, while for A = 0 one restores the two dimensional
lattice Hamiltonian. To each Hamiltonian then, one can,ringiple, associate an actias.
The most intuitive of doing this is just using the standardreection between the action and
hamiltonian formulation:

S == [ S dal=0 + sy — ., (3.12)

where HA [y, 1] is the Hamiltonian expressed in terms of the Grassman figldsd) instead
of the usual creation and annhilation operatorsnd ¢'. It should be noted, however, that
these actions aré dimensional: Formally even the final action should be \eritin terms of
Grassman variables ofdadimensional lattice, and therefore it is not equal to thesptat action
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Siattice (3.2), Of the two dimensional lattice we are interested iowdver, since at the end of
the flow the hopping to the extrd— 2 dimensions is suppressed the corresponding Grassman
variables are decoupled from the physical ones and canégrated out.

A possible way of circumventing the problem is building “lbyand” a family of action
by defining an appropriate propagator for the gaussiangddhe action that depends only on
the two-dimensional physical momentum. This can be doneitiag the interactingGreen’s
function in the following way:

1
G (ky, ki wp) = : " (3.13)
b Z iwn = (1= Ay — A=22¢ + p— S8 (ky, ko, wn)

! 1
T[Ny, Ky don)] L — S8Ry, Kooy ) (3.14)

This equation has to be seen as an implicit expression fartagator™ of the Gaussian part
in the following action:

1 . _
SA = B Z Eklkzo(wn) [CA(kla k?a an)} 1Ck1k20-(wn) + Sint' (315)

Equation (3.14) and (3.15) define a one parameter familycbbas suited for a flow. In fact
Eq. (3.13), in the beginning of the flowA(= 1) does not depend ok, and %, and reduces
to the DMFT self consistency equation (1.125), which, istweeminding, is exact in infinite
dimensions. Therefore*=!(k,, k2, w,) = Guyp(wn), WhereGy,,,(w,) is the gaussian propagator
of the AIM which has the same local Green’s function of thenié hypercubic lattice with
rescaled hopping/v/2d, and the initial actiors,,,, would coincide with the solvable action of
the AIM associated to the hypercubic lattice.

In spite of its rather intuitive picture, however, such tiensional” flow equation scheme,
is not the most suitable choice to be adopted in practice.fif$teeason is of practical nature:
The gaussian propagator defined by Eq. (3.13) is extremagbhyeasant, as it requires the in-
version of an implicit equation that includes also the s@lérgy. Since in the flow equation
also the derivative of the propagator is required it is enidbat a different definition of the
propagator at intermediate scaleis required. The second, and most important, reason is of
conceptual nature. In fact, one should consider that in wfast applications, and in particular
in those aiming at the realistic description of materials|AEY is employed as aapproximation
for describing the local physics of a givdmite-dimensional system, and no limit of infinite
dimensions is actually taken. Indeed, it would be ratherlmensome to define a rigorous and
general procedure for connecting on a Hamiltonian leveleday case, a finite dimensional lat-
tice with its infinite dimensional limit. In particular, ghHamiltonian for a real system involves
complicated hopping amplitudeg, which are not limited to the nearest neighbors and which
are also often not isotropic. Therefore, even if it was theest thing to do (and it is not, as

8EQ. (3.13) can actually be made explicit only in the case obeehtzian density of states, while it is well
known that the density of states associated with the ifidinensional hypercubic lattice is gaussian, see chapter
about DMFT.



130 Combining DMFT and functional renormalization group: The DMF?RG

we discuss below), it would not be clear how to generalizehthygpings to those of an infinite
dimensional lattice.

To understand why "generalizing the hopping'dte- oo is not the right thing to do, let us
rethink of our goal, referring to the schematic represemtatf the flow of Fig. 3.3. We want
to obtain the correlations in the actidh,:;.., which are difficult to access directly, because, in
presence of;,, they have to be computed solving an integral over Grassraaables that go
beyond the Gaussian term. fRG allows us to circumvent thegnattion. As discussed above,
the first step is a different choice of the “solvable” amti from S;,;1i. This new action is
represented by another point in the parameter space of RgAR& usual choice in fRG would
be an actionS, which is solvable because the fluctuations are completghpiessed by the
choice of the Gaussian propagator, which often is assumednpletely vanish in the initial
action. The choice of the explicit-dependence of the propagator then singles out a path in
the “action space”. Integrating along this line we areeatn obtain the correlations & ;-
However, due to the truncation, some error is accumulatenpathe path. For this reason we
want to start from an action which, besides being solvablaldo as close as possible, in some
physical sense, to the final one. Therefore the questiokMisich is the solvable action that,
in a DMFT perspective, is closest to the lattice one? A pdssihoice isS,,,, defined above.
However a much better choice is given by the effective aaioihe DMFT solution Spyirr),
i.e., the action of the auxiliary AIM associated to the DMRJlwion of the specific, finite
dimensional problem of interest, i.e.:

SpuMFT = —/BdeT/ Z Cio(T)Gar (T — ') " 'Cio(T') + Sint, (3.16)
0 ic
In fact we have seen in Sec. 1.5.2 that the acfggr is the local action whose interacting
Green'’s function equals the local Green’s function of thebfgm of interest, under the DMFT
approximation. It was also discussed that this action iaiobtl as the minimum of an appro-
priate functional of the local Green’s function, which eages our idea that it is closer to the
final action.

The DMFT self consistency condition (1.125), which in thadtional context arises natu-
rally as a condition for the minimum of the functional, invesonly the density of states of the
lattice problem and no other details of the lattice, whicBMFT is the relevant quantity rather
than the hopping itself. For example the density of stateab@ftwo dimensional lattice with
nearest neighbors hopping:

2D _ 1
p*P(e) = EE ; (e — ex), (3.17)

is certainly different from the density of states of theialiHamiltonianH*=!, i.e., the density
of states of the hypercubic lattice with nearest neighbopping, which is a Gaussian function.
On the other hand it is possible, in principle, to find amxiliary infinite dimensional Hamil-
tonian with hoppingg,; so that its density of states equal®’(¢). For this auxiliary infinite
dimensional Hamiltonian the DMFT solution is exact. Therefwe have two possible ways of
looking at our starting point in DMIRG:
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e From an action perspective, we start our flow from the sefisistent actiorSpypr Of
the DMFT impurity problem that approximates the local phgsif the lattice problem
we want to study and we gradually attribute a momentum dep@elto the gaussian
propagator, until it equal&?,..;

e From an Hamiltonian perspective, we start our flow from aiinite dimensional aux-
iliary Hamiltonian with hopping amplitudes;, and gradually change the hopping until
the hoppings ind — 2 dimensions are suppressed and the Hamiltonian equals the tw
dimensional one.

This physically motivates our choice for the starting paihDMF*RG.

Now let us see how we can put in practice our intent of comgutire correlation beyond
DMFT, i.e. how do we single out a path in the parameter spaweparform the integration of
the flow equations:

1. Find the impurity actiobpyrr Whose self-energy and Weiss field fulfill the DMFT self
consistency condition;

2. Solve the quantum many-body problem associated withitipsirity action, extracting
the 1PI one-Lpyrr(w,)] and two-particle I'pyer (11, vo; V4, v4)] vertex functions;

3. Finally, useXpypr(w,) andT'pyver(v1, ve; vy, v4) as initial condition for the fRG flow-
equations (3.8), (3.9) for the self-energy and the vertextions.

This way the local correlated physics captured by DMFT wdlgresent from the very begin-
ning of the flow, and the local and non-local correctiong twill be generated unbiasedly in all

channels by the fRG algorithm, via the numerical solutionhef &ssociated differential equa-
tions (see also section about the diagrams). The exact fosmob equations is defined by the
choice ofS* (cutoff) and by the truncation scheme. While for the latterhage assumed the

most simple truncation at the two-particle level, the cudbibice will be discussed in the next
subsection.

Cutoff scheme of DMPRG

For DMF*RG, a quite natural cutoff choice is a linear interpolatiortted Gaussian part
(G (k, w,) ') of the action fromS; ;a1 = Spmrr, Where

B
SpMFT = —/ drdr’ Z Cio(T)G (T — 7)) " Lein(T) + Sine, (3.18)
0 [l
t0 Sk = Siattice- The interpolated Gaussian propagator reads explicitly:
G?\(kv iw)il = f<A>gglM<Zw>il + [1 - f(A)]G?att(ka iw)ila (319)

where f(A) is an arbitrary smooth function of such thatf(A;,;) = 1 and f(Ag,) = 0. In
practice without loss of generality one can take\) = A with A;,; = 1 andAg, = 0, as any
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alternative choice of (A) can be reabsorbed in a change of variables in the integratitire
flow equations.

We note that the cutoff schen®" defined by Eq. (3.19) is similar to the “interaction
cutoff” [72] in standard fRG, since it does not operate anlestve cut on specific regions
of the momentum and/or frequency space. The implementafi@encutoff analogous to the
frequency cutoff in standard fRG, might read

G (k,iw) ™" = [1 = 0(|Jw| — A)]Gan(iw) ™" + O(jw] — A) Gl (i, k), (3.20)

whered(z) is the Heavyside step function, or some smoothened versiarQiearly, as long as
the impurity problemSp =+ does not show any infrared divergencies, this cutoff is lagyg.
Evidently all possible cutoff schemes are equivalent indase of a non-truncated flow. In
the actual implementation however, a frequency- or mommsdutoff, which can regularize
infrared divergences of the problem, might be more suitesiudy the regime in the proximity
of (quantum) phase transitions. Its effective implemeatathowever, is numerically more
involved than the simple cutoff of Eq. (3.19) and subjectutufe investigations.

3.0.4 Diagrammatic content

We will turn our attention now to the diagrammatic content dfIEFRG. The derivation
of the diagrams included in DMIRG follows directly from the diagrammatic analysis of fRG
described in 1.4.2, and it will allow us to understand whic@gdams are added to the standard
diagrammatics of DMFT and fRG. This will allow us at the endlastsection to compare the
diagrammatic content of DMARG to the one of DA in its parquet and ladder implementations.

As we have discussed in 1.4.2, the diagrams generated bgtdgration of the flow equa-
tions can be written explicitly by formally solving the floequations in an iterative fashion.
The way this was done in Sec. 1.4.2 was quite general: We didssatme specifically any
choice of the initial, condition, therefore what we have torbw is specializing to DMFRG
the results obtained there.

Let us first discuss the diagrammatic content of the DMFTiahtondition andpypr (V)
andT'pyer (11, va; 14, 1), trying to understand its relation with the standard fRG. @hestion
can be posed in the following way: Let us suppose that we toptain the local (but nontrivial)
initial condition of DMFRG (i.e., the one- and two-particle 1Pl vertices®frr) using an
fRG flow starting from an actios, which suppresses all the fluctuations and flowing to the one
of the auxiliary AIM. What diagrams would we lose comparedi® initial condition obtained
in DMFT? Of course if we were able to avoid the truncation @& flow equations we would
obtain the same diagrams since both, fRG without truncatiwhthe solution of the AIM in
DMFT are exact. However in presence of a truncation, the fR@tsable to recover all the
diagrams of the exact solution. In particular, with the usuacation at the level of the three-
particle vertex the fRG will reproduce only parquet-like gliams (with the approximations
already specified in Sec. 1.4.2). A typical diagram whicmiduded in the DMFT solution of
Spurr but not in the one of fRG, is the so-called “envelope diagrashown in Fig. 3.5a).
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Figure 3.5: Examples of diagrams included in different theories. Daagra) is included in
DMFT, but not in fRG with truncation at the six point vertex;dgram b) is included in fRG,
but not in DMFT (as long as # j); Diagram c) is included in DA and, at a certain ex-
tent, also in DMERG. Diagram d) is the part of diagram c) which is neglected inBRIG;
The line cutting the Green’s function propagator stands$tHerfact that the integral over the
derivative of the internal bubble is neglected. Diagramsdhcluded in DMERG, and in
ladder-O0X'A, but only if ; = 4. Finally diagram f) is not included in any of the diagram-
matic extensions of DMFT mentioned until now, unless allghe labels are equal (or if the
distance between the sites is small, in the case of tHexpansion).

This diagram is the lowest order two-particle irreducihiegdlam, and can be generated in fRG
only keeping vertices of an higher number of particles inftoer equations (see Sec. 1.4.2).
More in general, the fRG truncated at the level of the threéigharlPl vertex will miss all
the two patrticle irreducible diagrams contributing to thd YertexI'pyer. In turns, also the
self-energy will be different. In truncated fRG, the selkeayy is not related to the 1PI vertex
by the equation of motion, but rather by perturbation thdiky equations and, together with
the vertex, it does not fulfill exactly Ward identities [9%)n the other hand, this is not the case
in DMFT: Since the self-energy and the vertex are obtainewh fihe exact solution of the AlM,
they are related by the equation of motion, and they resphediMard identities.

Let us now focus on the diagrams that are generated alondave his can be under-
stood specializing to the case of DREG the discussion that was kept general in Sec. 1.4.2:
The starting point of the flow is now constituted B,y andI'pyrr. All the parquet-like
diagrams are now generated by building iteratively ongldiagrams in all the channels with
the 1PI two-particle vertex of DMFT, which, in this conteplays the role that is played by
the bare interactioly in the diagrammatics of the parquet approximation (PA). [Boify this
point, let us remind that the parquet equations form an es@tcof equations [22] when the
fully-irreducibletwo-particle vertex, momentum and frequency dependektasvn and used
to build all the two-particle reducible diagrams (in all tbleannels). The simplest approxima-
tion, namely the parquet approximation, early introducgthle Soviet school [142], consists in



134 Combining DMFT and functional renormalization group: The DMF?RG

substituting the bare interactidn to the fully-irreducible two particle vertex, i.e., suppseng
its frequency and momentum dependence and works only fdt Brigaaction values.

We should emphasize here that the tggarquet-likediagrams is used in the same sense
specified in Sec. 1.4.2 as opposed to the more standarcadiagef the PA. It is necessary to
make this difference since in truncated fRG, and hence in BR@; the diagrams generated by
the flow have the topological structure of the PA diagramg,dye not computed exactly. In
fact, the truncation has two consequences. The first oneais instead of generating all the
diagrams one is restricted to the PA ones. The fully irreldleailiagrams, at the one-loop trun-
cation level, are discarded. At higher truncation levelly dine lowest order fully irreducible
diagrams are be generated, the maximum order of generegedaible diagrams depending on
the specific truncation level. The second consequenceaistiie diagrams are not computed
exactly even within the PA. To understand what is the negtecbntributions one can imag-
ine a parquet diagram as a sequence of nested loops. In fRGrésa’s function lines that
constitute these loops acquireladependence. Any given diagram can be then formally ob-
tained by an iterative integration of the flow equationsia®s in Sec. 1.4.2. As discussed in
Sec. 1.4.1, the derivative of the diagram is given by a sumagfrdms in which one Green’s
function line is substituted by ita-derivative represented by a smashed line, representing a
A-derivative of the Green’s function, see Eq. (1.63) and Ei@4. Without truncation all these
diagrams, with one smashed line substituting a propagamare generated by the fRG flow
equations. In presence of truncation, however, this ism@icase. Truncating at the level of
then-particle vertex only diagrams in which the derivative amighen-1 outermost loop lines
are generated, while the remaining contribution is negbkciThis explains the nomenclature
“parquet-like”: The diagrams generated in truncated fR@re the same topology with the par-
guet diagrams, but reproduce them only partially. The dafenquality of this approximation
crucially depends on a proper choice of the cutoff, thatt ssargued in Sec. 1.4.2, can be used
to minimize the effects of the neglected contributions.

After this necessary remark we can go back, now, at the a@ralfthe DMPRG diagram-
matic content. A better approximation, compared to the BAbtained with DA, by replacing
the two-particle irreducible vertex in the parquet equatiby the local fully irreducible vertex
of DMFT?, i.e. its momentum dependence is suppressed while theenegjudependence is
retained. Hence one includes all the local fully irredueillagrams nonperturbatively, while
the (mostly nonlocal) corrections to DMFT for the 1PI verted the self-energy are obtained
through the parquet equations. An example of a diagramrmdadan this way is shown in Fig.
3.5¢): two non-local loops, involving the Green'’s functiGyy are built on the irreducible local
“envelope” diagram. The diagrams of DMRG are topologically very close to the ones of
DI'A. In fact in both theories, all the local 1PI diagrams (twarticle reducible and irreducible)
are included’, while all nonlocal diagrams are of the parquet type: Twdiplarreducible in

%In the full DT'A treatment, the local vertex is not necessarily the one ofilbut can to be obtained in a self-
consistent way, with the self-consistency being at the paricle level rather than at the one-particle one [176].

10 et us stress again that when we refefdoal diagramstrictly speaking we mean the diagrams of an auxiliary
self-consistent AIM, where the self consistency is at the-particle level (DMFT and DM¥RG) or at the two-
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one channel. The main difference is that in DNRG the diagrams are do not coincide exactly
with the ones generated by the parquet equations, as wesdestabove: For example a diagram
with the topological structure of the one in Fig. 3.5c) isaclg included in DMERG, since it
consists of two non-local loops, built on a local fully irtezible vertex, but is not computed
exactly. The neglected contribution equals the integrar dvof the diagram shown in Fig.
3.5d), where each Green'’s function line has to be intendelépendent, and th&-derivative
acts on the two smashed lines.

At a first glance, moreover, one might be puzzled by yet agrotdpparent difference:
While in DI'A the non-local parquet diagrams are built on the fully ireitble local vertex,
in DMF?RG one builds them starting from the 1Pl local vertex. In faging to use the 1Pl lo-
cal vertex directly in the parquet equations df ®would generate the local parquet diagrams
twice, since they are already included in the 1PI local veltgyrr(v, v/, w), with dramatic
double counting issues. Consequently At is necessary to use the fully irreducible vertex
I, 1, which is, however, a much more complicated object to deti,veis we explain below.
It is important to stress here that, instead, there is no léazdunting of diagrams in DMIRG.
In fact (cf. Sec. 1.4.2) itis the fRG formalism itself that ¢émkcare of this double counting: In
the formal iterative solution of the flow equations, the ¥Bitex at the iteratiom + 1 can be
obtained from an integral fromy;,;; to Ag, of Eq. (3.9), where the right hand side is computed
from the vertex and the Green’s function at the previousitenn-th iteration. If one was able
to integrate the flow equations without the truncation, onald perform the integral ovek
analytically and obtain, at this iteration step, a collectof diagrams, where the Green’s func-
tion lines have to be computed at the boundaries of the iakeghile the interaction vertex is
held fixed at its initial valud'p\rr. Evaluating the upper boundary of the integral we generate
the new diagrams which involve non-local lines with momemidependent Green’s function
G (k,w) = GY . (k,w). The evaluation of the lower boundary gives topologicatlgri-
tical diagrams with opposite sign and with some of the Gre@&mction lines evaluated at the
beginning of the flow, i.e., in DMERG, local. This is the contribution that would otherwise be
counted twice and, in this way, is removed completely. Irspnee of truncation the analytical
integration is not possible anymore, or is possible onhhmery first iteration steps. On the
other hand the role of lower boundary of the integral rem#iessame, i.e., subtracting the 1PI
parquet-like diagrams which fall apart cutting thezallines!?. In the DI'A framework several
results can be obtained using a ladder approximation, iteateel channel, instead of solving
the parquet equations (laddef=B). In this way it is possible to include important non-local
contributions which might be essential for the physics ef slgstem, but the competition and
the feedback between the channels is missed, so the apliycabthis scheme crucially de-
pends on the physical problem of interest. On a diagramrpatitt of view, the diagram c) in
Fig. 3.5 is not included in ladderdDA, because it includes two bubbles that belong to ladders

particle level 'A. Hence, even with the same topology the local Green’s fandines might not be the same.

11| et us remark that this is possible only because in our agpreg do not touch the interaction part of the
action along the flow. If the interaction part of the actiorstead, is changed one might need involved corrections
to avoid double counting of diagrams [145].
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in different direction. Diagram 3.5e) instead is includiedt only provided thaj = i.

From the discussion above we evince that the diagrammatienbof DMPRG is topolog-
ically similar with the one of D'A, when the latter is solved in its parquet implementationisT
implementation of D'A, to which we refer aparquetDI’'A, however is extremely demanding
numerically, and only recently it have started to be exmlor€here are two main difficulties
in this implementation. The first one is, obviously, of tacal nature, as the set of parquet
equations are extremely difficult to solve [187]. The set@sue is much deeper: The input
of the parquet equations oflA is the local two-particle irreducible two-particle vextd;,, in
DMFT. This quantity is neither directly accessible via a sweang process in QMC, nor can
be computed in ED using a Lehmann representation. Rathen ibeabtained starting from
the two-particle Green’s function and inverting a set of BeBalpeter equations. Besides the
technical complication of this operation, the second mohlis related to the strong-coupling
divergencies of the irreducible vertex. In fact it has besported [85, 160], that the fully irre-
ducible vertex of DMFT diverges at low frequencies even Wweflorethe Mott transition takes
place. This divergence is not connected with any symmeegaling and does not cause any
non-analytic behavior of the response functions. In fde,ghysical origin of the divergence
still remains elusive, although it has been argued thapitagents @recursof the Mott tran-
sition, as it should always take place at lower value gian those of MIT (see Ref. [85,160]).
Independently of its physical interpretation, it is evitlérat in presence of this divergence, it
is not possible to obtain the fully irreducible local verteithout running into this singularity
problem, and as also stated in Ref. [85], it is preferable fiarneulate the parquet equations in
a way that they do not involve the 2PI vertex, but rather thie wRich is exactly what is done
in DMF’RG.

3.1 Application to the 2D Hubbard model

As a first application of DMFRG, we now show, results for a prototypical model of corre-
lated fermions, the two-dimensional Hubbard model. We td¢lcat many aspects of its physics,
and especially the interplay of antiferromagnetism andestgnductivity in this model have
been studied by weak coupling truncations of different io@s of the fRG already some time
ago [57,69,91,189]. More recently, these analysis havaimeg some attention in the context
of fRG studies that include the frequency dependence of thesictions either fully on a smaller
number of frequencies [178], or using a decomposition ietonfonic bilinears [79]. In stan-
dard second-quantization notation, the Hubbard Hamdionvith nearest-neighbors hopping,
on which we are going to focus, reads [77]:

H=—t Z clcig+ U Z NNy, (3.21)
(ij)o ¢

wheret denotes the nearest-neighbor hopping amplitude on a stptiioe andU the local
Coulomb repulsion. In the following, we will define our enirgin terms ofit = 1, and fix the
average particle density to half filling = 1. In this case, the momentum transfer(ef +7)
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corresponds to perfect (antiferromagnetic) nesting orsthuare shaped Fermi surface. As we
have discussed in Sec. 3.0.1 the two dimensional Hubbaraih®donsidered to be proto-
typical for the cuprates, and therefore it has been largelyied in that context. This applies,
however, to cases with slightly different fillings and inding also next nearest neighbors hop-
ping, which show a rich phase diagram and different competistabilities. As a test case for a
new method, instead, we found more convenient to focus onra simple situation, where the
physics is largely dominated by the tendency towards antifieagnetic fluctuations, due to the
perfect nesting. Let us recall that, while the physics atkneEupling can be easily understood
in terms of nesting of the Fermi surface. At stronger couyplither physical mechanism be-
come more important. This has been analyzed systematisalig case for the Hubbard model
in infinite dimensions, studied in Refs. [158] and [171],9tshown that even if at weak- and
strong- coupling the ground state is antiferromagnetie,pghysical mechanism that drives the
symmetry breaking is very different: at weak-coupling tmset of long-range is stabilized by
a gain in the potential energy, while at strong coupling by gn the kinetic energy.

In our DMP?RG study we integrated the truncated flow equations numiritsy means of
a sixth order Runge-Kutta method. We have included the selfggrfeedback in the equations
for the self-energy>® and for the vertex™. To keep the numerical effort under control we
used a channel decomposition of the interaction vertexaira the one of Ref. [94], while we
decided to discretize the Brillouin zone in square patchékowt making any further specific
approximation, like those of [78, 79] where the momentumeahelence is fixed to a specific
choice of form factors. The details about the vertex paramaion are given below.

Parametrization of the two-particle vertex

Before describing our parametrization, let us focus on thevéRex main features. The
two-particle vertex is a difficult quantity to study numaally, since already in the one band
translational invariant case, it depends on three momerddhaee frequencies, making a nu-
merical analysis quite demanding (even in simple termsarhge memory). In recelityears,
however, also thanks to the increased computational pdahetywo-particle vertex has started
to be investigated in its complexity. Most of the studiesybwer, focused only on some of the
features of the vertex, and, even nowadays, a comprehesmst/systematic knowledge of the
frequency and momentum behavior of this object is partiadigsing. In fact, the momentum
dependence of the vertex has been analyzed (at weak couiplisgveral fRG studies while its
frequency dependence has been explored in the DMFT frankewdosimultaneous treatment
of its frequency and spatial argument, instead, has beamalot within a DCA study of the dy-
namical susceptibilities (e.g., see Ref. [118]), and in a D@praach based on fRG as cluster
solver [100, 101].

More in detail, the momentum dependence of the vertex has &gaored within theV-

2Some semi analytical studies of the vertex has been pertbforising on specific limits of the frequency
arguments, with a more direct connection to physical prigeepf the system under consideration. For example
the two particle vertex has been studied in relation to thenFkquid properties of a system in Refs. [39, 40].
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patch renormalization group scheme [75, 157], in which ceglectts the frequency of the ver-
tex and divides the Brillouin zone inty patches. The momentum dependence of each patch
is then projected onto the Fermi surface. This way it is fidedd observe a nontrivial momen-
tum dependence of the vertex arising along the flow, syriglated with the emergent leading
instabilities of the system. A different approach to deahwvihe frequency dependence is the
one first proposed by Husemann and Salmhofer [79], whergahex is decomposed in three
channels and for each channel the main momentum dependemantified and treated with
higher accuracy, while the dependence on the other two mam&himited to a restricted set

of basis functions.

A complementary line of investigation is the one followedhr DMFT framework [54,110,
149]. In this case one focuses on the local two-particleaxest the auxiliary AIM (by definition
momentum independent) keeping fully the Matsubara frequeependence. The calculation
of the vertex can be then performed, numerically exactihegiusing quantum Monte Carlo
methods [54] or by means of exact diagonalization [148, 1UBparticular in ED, our method
of choice in the calculation of the vertex that we are showiirthe following, one can compute
the two-particle Green'’s function using the Lehman reprdeon, and from it one can extract
the irreducible vertex, by amputating the external leg<l[18 drawback of the method is that
the bath has to be discretized and described by a small nurhbath sites, which in our case
was five. This is, however, already enough to observe therivaal frequency structures of
the vertex. We have also checked that the frequency strisctbet we observe are in good
agreement with the ones computed in QMC using the vertex atedpusing the w2dynamics
code [139] by M. Wallerberger.
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Figure 3.6: On the left, diagrammatic representation of the two-plrti®| vertex functiod™};
the arrows mark the position of the incoming and outgoingted@s. On the right, DMFT
vertex functlonFHAX as a function ofl and X at fixed A (A = 27T ns; ny = 20) for the
Hubbard model on a three dimensional cubic lattice with estareighbors hopping aid=
0.5D,T = 0.038D (D measures the half bandwidth). The color coded values areures
in units of D. Please note that in DMFT the main features of the vedexiotdepend
significantly on the details of the lattice, but mostly ore tbandwidth, or more precisely,
on the second momentum of the density of states, thereferéottowing considerations
apply in general, including the two dimensional case dbedrin the main text. The white
background color corresponds to the asymptotic valueached by the vertex. On the top
of this, one can recognize three structur@s vertical line afl = 0, 7) a horizontal line at
X = 0, andiiz) a broader (hardly discernible at thiisvalue) cross structure on the diagonals
atll = +X. The origin of the three structures has been analyzed in BR48]] While
the structures) andii) are well reproduced by the frequency dependence apprarima
described in the text, the cross structure is not capturgtidgpproximation. Please notice
that the white corners on the right of the density plot cqroesl to frequencies not included
in the frequency window of our data set.

To show the frequency structures of the vertex, we use heredhventions and defini-
tions of Ref. [149] (in particular in particle-hole notatiol). In general for an SU(2) sym-
metric interaction and for a single band translationallyairmant system -- as we show in Fig.
3.6a)-- the vertex function depends on two spins, threeuegies, and three momenta vari-
ables, while the fourth frequency and momentum can be figgdiring energy and momentum
conservation:

13please note, however, that there the two-particle 1PIxéstebeledF and does not depend on the momenta,
while here it is called™?, and is in general momentum dependent.
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2,00’

Lo (K K k) i= T vKio, (V' +w)kyo' 5 (v +w)kio, V(K] +ky —ki)o’ ).
outgoingvelectrons incomingvelectrons
(3.22)

Herer andy’ are fermionic Matsubara frequencies, whilés a bosonic Matsubara frequency.
Physically this describes the scattering of a hole of energyvith an electron of energy + w.

As we have discussed in Sec. 1.4.2 the most natural frequesmeynetrization for the weak
coupling structure, that can be also used for the implentientaf a frequency parametrization
similar to the one of previous fRG studies [94] is a notatiotemnmns of thredoosonicMatsubara
frequencies [94] defined as follows:

I = v+v+w, (3.23)
A = rv—v+w) =—w, (3.24)
X = V4w—(v+w) = - (3.25)

As for the spin indexes by exploiting the SU(2) symmetry weehd 00, 148]:

Tyt () K k) = Ty &7 (I K k) — T (1, K ). (3.26)

Hence, we can concentrate on the verf@m only (all the other spin combinations can be
obtained by symmetry) [93, 148].

Even by restricting ourselves to th¢ sector, the vertex 1‘unctioﬁ§‘,N displays, in general,
a rather complicated structure in momentum and frequenagesp
To keep under control the numerical effort required by otst iDMFRG calculations we de-
cided to parametrize the frequency dependencE3ofollowing previous experience in fRG
studies [94], as follows:

PO () Ky k) = U+ Do () K ) + T g () Kk ) + Doy (K da). (3.27)

2,pp 2,ph—c

This corresponds to approximating the complicated depwelef ') on the three bosonic
frequenciesl], A, X, assuming that the scattering amplitude among two pastickn be
completely decomposed in three different channels, pesparticle, particle-hole direct, and
particle-hole crossedp, pp — d, ph — ¢). This assumption is not exact for a genericas one
could immediately see already by looking at the DMFT vertaxction, like the one shown in
Fig. 3.6. Following Ref. [94], for the single impurity Anders model, or Ref. [79], for a lat-
tice system, one can derive the flow equations directlyﬁerfunctionsf‘gxzppvphfd,phfc. This
is possible because one can associate each function witbcdisichannel: particle-particle,
particle-hole direct and particle-hole crossed, andmatte uniquely* each diagram to a spe-
cific channel.

As described in detail in Refs. [94,149], the bosonic freqygrarametrization and decom-
position of the vertex is consistent with the lowest-ordertyrbation theory foFQT 1» see also

14t least at the truncation level of the three-particle veftl].
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Sec. 1.4.2. In fact, each bosonic frequency correctly dessithe frequency transfer associ-
ated with the lowest ordecJ(U?)] nontrivial*® diagrams contributing to the 1PI vertex. These
diagrams are simply fermionic loops in the three channeld vath each of them is associated
one of the three bosonic momentum transfers. This way, tBerbo frequency parametriza-
tion and vertex decomposition capture the main vertex &tras up toO(U?) and one expects
them to be reliable for moderate valueslof The neglected structures appearing on the diag-
onals, instead, can be easily associated to processesch whe of the incoming or outgoing
frequencies is small, and mainly arise from diagrams ofitbider in the interaction. Hence,
at weak coupling, these structure will be suppressed coedpiar the vertical and horizontal
ones. However, when the value Gfis increased, the structure not captured by Eq. (3.27) will
become gradually more important, making the vertex decaitipn unreliable. This is one of
the reason why we have hitherto restricted our numericalysta moderatd/ values in the
following.

The last point left to be discussed is how to extract theahitbndition for the three functions
in Eq. (3.27) from the fully frequency dependent DMFT verfgi:X which contains more
information than we need for the decomposed vertex. By lapkinFig. 3.6b), one sees that
the problem consists in how to get rid of the cross structiaige{ediii) in the caption of Fig.
3.6 which depends on all the frequencies. However, thetsireiander consideration fades out
becoming gradually broader and less intense as the thigdidérecy is increased. Therefore to
extract one of the three functions, say, el ;1;1;;“, it suffices to take a cut ilipyrr keepingA
and X fixed at some very large values and.X:

Dok Ko ky) = RSN (3.28)

2,pp

Even within this approximated scheme for the frequency deéeece, to further speed up
the calculations, we have found useful to consider only tla¢sMbara frequencies on a given
grid, inspired to the logarithmic grid used in Ref. [94] foeth = 0 case. Practically, instead
of taking all the (bosonic) Matsubara frequencies assediaith any integefn < N.., With
Nuax the number of frequency used in the calculation, we haveidered only the (positive
and negative) frequencies associated with the integensatkby:

i, if i <a;
0, — a+2(z"—a) ?fa<i-§2a; (3.29)
3a+4(i —a) if 2a <i < 3a;

with a being some integer number, while whenever in the flow it wesassary to compute the
vertex at a frequency not belonging to the grid we have usetkar interpolation. This choice
is well motivated considering that the bosonic structusetonly a rather small spread around
zero frequency, and therefore the only thing that one habkéclcis that: is large enough to
describe accurately these structures, while less accigaeguired by the large frequency tails.

SWe do not consider here the trivial constant "backgroundhefvtertex equal.
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Figure 3.7: Flow of the largest componend.(..) of the two-particle vertex function, i.e., in
our case] in the particle-hole crossed channel, for zero transfejueacy (, — v; = 0),
antiferromagnetic momentum transfé, (— k| = (7, 7)) andk, = (0,7), ko = (7,0)
computed by fRG, with interaction cutoff;,; [72] (inset) and DMERG (main panel) for
the two-dimensional half-filled Hubbard modeliat= 1, at different (inverse) temperatures.

On the other hand this choice of frequencies on a grid shauldenexpected to work well in the
description of the full frequency dependent vertex, sinaeould fail in the description of the
diagonal structures, which are not centered at small vaitiasy of the bosonic frequencies.

Our momentum parametrization is a tradeoff between contiput effort and accuracy of
the description: The momentum-dependence is taken intwuatby discretizing the Brillouin
zone into patches with constant coupling function. If fimoegh, this discretization captures
the angular variation of the coupling function along therkiesurface with good precision. For
simplicity, we restrict ourselves tpatches, which already includes important physical aspect
of the 2D system [50]. We decided for this kind of parametrization toidvhe restriction of
the momentum dependence to specific form factors, like 8, [@nd rather have a coarse, but
general, description of the momentum dependence of thexefithis is probably one of the
parts of our calculation that can be most easily improved systematic way, in particular
making use of some of the symmetries of the vertex in momespace.

Numerical results

Our calculations for the two-particle vertex function aetf-€nergy are reported in Figs. 3.7
and 3.8-3.9, respectively. In Fig. 3.7 we plot the largestjgonent §,,..,.) of the vertex function,
which -- at half-filling -- is found in the particle-hole cseed channel for zero frequency and
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antiferromagnetic momentum transfée, — k; = (w, ). This reflects the tendency of the
system to antiferromagnetic ordering due to the perfedimgsf the Fermi surface.

The data, which refer to a weak-intermediate regifie=(1), clearly show that the DMARG
mitigates the fRG tendency to a loWw-divergence of the flow: We still obtain a converged
DMF?RG result forg,.. at 3 = 1/T = 10, whereas the fRG flow for the vertex is manifestly
divergent. The fRG data presented in Fig. 3.7 have been autaifith the interaction cutoff,
but we have verified that these results are robust with tdpethe choice of the cutoff, by
comparing the data also with those obtained with a sharpuénecy cutoff, like the one of
Ref. [94]. We also remind here that the interaction cutoff isnegularizing, but this problem
is mitigated by the fact that we are working at finite tempera, and, on the other hand, this
cutoff is the most similar to the simple cutoff that we havesdn for DMERG.

Quantitatively, by fixing an upper-bound fgr,.., we observe that the temperature at which
it is reached is slightly decreased in DMEG compared to fRG for moderate values of the
interaction (up td/ = 0.75) while is significantly decreased froffi~ 0.125 (fRG) to~ 0.085
(DMF2RG) atU = 1. This is attributed to the damping effect of the local catieins, captured
from the very beginning in the flow of DMARG. In fact the DMFT self-energy is included in
the propagators from the beginning of the flow, making thessImetallic. We emphasize that
this “divergence”, observed also in DMRG, is not associated with a true onset of a long-
range order. In principle, it is possible to adapt the fRG saléo access also the disordered
phase at lowef’ [17], though such an extension goes beyond the scope of &ésemirthesis.
The growth of the 1PI vertex, in fact, is associated, to a @eny of the system towards a
strong coupling regime [157], where the form of the intei@acis usually simplified, because
some dominant term in the coupling appear, each correspgndisome emergent instability.
However, extending the analysis about the "three regimesiedfow defined in Ref. [157], i.e.,

a first regime associated with high energy scales, a seammthavhich the couplings grow, and
a third one of strong coupling, to the case of DV®G, also depending on the specific choice
of the cutoff, is a nontrivial task, considering that theialicondition, for larger values of the
coupling, might already include nonperturbative effeotsf the three- and more particle vertex.

Let us also note here that the temperatures for which thélgadupling diverges are rather
high. In particular these temperatures are higher than &et témperature of DMFT [99, 147]
(which, in DMFT, is also finite, violating the Mermin-Wagniireorem [128]). With our present
setup it is difficult to rationalize this empirical obsetican. On the one hand thinking of the
"divergence temperatures" in terms of Néel temperaturengesdat misleading, as explained
above. On the other hand, it cannot be excluded that thisgiwee temperatures in DMRG
are artificially enhanced by our approximation to the verte particular, while it is difficult to
understand what might be the effect of using a fully freqyetependent vertex, one can expect
that increasing the number of momentum patches will deertfasdivergence temperature. In
fact, the coarse discretization of the Brillouin zone migttifigially enhance the feedback in
the flow equation of combinations of momenta for which thetexe is particularly large. For
example the vertex with momentum transfer =) will represent several momentum transfers
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Figure 3.8: Comparison of the results for the imaginary part of the femucelf-energy of
the two-dimensional Hubbard model féf = 1, ands = 10, calculated within DMFT
(k-independent, in black) and DMRG, for differentk-vectors (the color coding of the
differentk is defined in the inset, note that the values oflfk, iw,) for k = (0,0) and
(m,m) coincide because of the particle-hole symmetryfiset Scheme of thes-patches
discretization used for the calculations.

within the discretized patches, on the right hand side oflthve equations. This is confirmed
empirically confirmed by the fact that using a coarser diization of the Brillouin zone, using
only four patches, leads to much larger divergence tempesit A definitive answer to this
guestion, however, can only be given by comparing with femtimproved, implementation of
DMF?RG.

Self-energy We now turn to the analysis of the self-energy results obthivith the DMFRG
flow at the lowest temperature considered, i®e= 10. Here, the fRG flow diverges, and it is
worth to compare the DMIRG results with the original DMFT data, see Fig. 3.8. As expect
in 2D, the non-local correlations captured by the DIRG strongly modify the DMFT K-
independent) results, determining a significant momerdapendence of the self-energy at low
frequencies: While in DMFT a metallic solution, with a moder&ermi-liquid renormalization
of the quasi-particle mass, is obtained, in DV®& we observe a strong enhancement of the
imaginary part of the self-energy at the Fermi surface. bt,fat the “antinodal” point ,

0), where the largest value efImY is found, the low-frequency behavior is manifestly non
guasi-particle-like, indicating the destruction of therResurface in this region of the Brillouin
zone. Deviations from the DMFT metallic results, albeislesarked, are found at the “nodal”
point (3, 5), for which one cannot exclude, at this temperature, a vasioresence of strongly
damped quasi-particle excitations. The significant réidacof —ImX w.r.t. DMFT, observed
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Figure 3.9: Comparison of the imaginary part of the self-energy b= 0.5,0.75, n = 1,
and3 = 10, calculated by fRG and DMIRG, for differentk-vectors (color coding as in
Fig. 3.8).

at (0,0) or (m,7), does not imply metallicity since these points are far afrayn the Fermi
surface; and the real part of the self-energy is also styomghanced w.r.t. DMFT.

In Fig. 3.9, we compare the DMRG self-energy data with the fRG. The comparison can
only be performed at weaker coupling and/or highehan in Fig. 3.8, as the fRG flow needs to
converge. Our numerical data of Fig. 3.9 indicate that ircthesidered parameter region (same
T, but weaker interaction than in Fig. 3.8) the fRG and DIRE yield qualitatively similar
results for thek dependent self-energy. Considering that in IRE local correlations have
been included non-perturbatively via DMFT, this confirrne validity of previous fRG analysis
of the Hubbard model at weak and moderate interaction. Asémee time, the applicability of
DMF2?RG goes beyond the weak-to-intermediate coupling of the fRI@wimg for the study
of parameter regions where the Mott-Hubbard physics ‘&g captured by DMFT becomes
important.

As a further test, we have directly compared the self-enefdyMF?RG with the one of
DCA. Unfortunately, in the DCA or cDMFT literature it is not wHuo show the self-energy
on the Matsubara axis, while usually the the spectra, obtliia maximum entropy method
for analytic continuation on the real axis, are shown. Theetauantity is not ideally suited
for a methodological comparison, as it is affected by an tamwil uncertainty due to the ill-
definiteness of any analytical continuation procedurend¢ée we have made a comparison with
new (unpublished) DCA calculations, performed by Olle Guasan for the specific set of data
of Fig. 3.9, i.e., foiU = 3t, 5 = 10.

As also recently reported for the case of DCA results in thiewdsions [44], one observes
a visible cluster dependence of the self-energy resultslémster-sizes ad/. = 8, 16,... up to
100, especially at low energies. Hence, it is difficult to dragfiditive and rigorous conclusions.
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Figure 3.10: Comparison of the imaginary part of the self-energy as a fanaif the Matsub-
ara frequency (Int(k, iw,,)) computed in DMFT (black empty circles), DMRG (green
solid circles), with the (unpublished) DCA data (blue cotbeymbols, see legend) by Olle
Gunnarsson for different cluster siz&s for the parameter sét = 0.75, 7' = 0.1. The blue
arrows indicate the trend shown by the DCA data when the cls&e V., is increased.

Nevertheless, looking at Fig. 3.10, we can clearly see timtésults of DMFRG do show a
similar qualitative behavior as DCA. In particular, theynmeguce well both the high-frequency
tail of the self-energy and the trends of the (much more ingm)y low-frequency corrections
w.r.t. the DMFT self-energy for ak-points. In this respect, both DCA and DMRG find that
non-local correlations increase the incoherent part otahefrequency self-energy mostly at
the anti-nodal poink = (0, 7), whereas Ink at the nodal poink = (7/2, 7/2) is less changed
compared to DMFT. We also observe that the changes of theesetfyy far from the Fermi
Level present the same trend in DCA and DIN®G, i.e., the reduction of IX is compensated
by a corresponding enhancement of Ratk = (, ) [or (0,0)].

From a more quantitative viewpoint we found that, while tek-energy data at the smallest
Matsubara frequency obtained with the conventional fRGlajspa sort of systematic down-
wards shift for all k-points w.r.t. the DCA data, such an ‘séf” is not present in the DMAIRG
results. In the latter case, the most visible differencetwa DCA consists in a larger overall
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Figure 3.11: Comparison of the imaginary part of the self-energy at theekivMatsubara
frequency (ImX(k, iwp)), with wy = 7T") computed in fRG (purple triangles) and DREG
(black circles), with the (unpublished) DCA data (coloreangpls, see legend) by Olle
Gunnarsson for different cluster siz&s for the parameter sét = 3¢, 5t = 10.

k-dispersion (or spread) of Im at the smallest Matsubara frequency. In this respect, hexyev
we should point out that for our parameter $ét€ 3¢, 5 = 10), the corresponding DCA results
appears not fully converged yet w.r.t. the cluster gize On the contrary, for cluster sizes big-
ger thanV, = 16, they display a net trend towarddaagerk-dispersion of Im> by increasing
N,, i.e., in the direction of the results of DMRG. At the same time, increasing the number of
patches used to discretize the Brillouin zone in DIRE we expect a trend towardssaaller
k-dispersion of ImY, i.e., in the direction of the DCA results. This expectatiam de moti-
vated by an argument similar to the one given above for therdance temperature: A more
refined description of the momenta should mitigate theugrfice of the largest components of
the vertex in the flow equations. Also in this case, howefigyre studies will be needed for
a more systematic benchmark of DRFREG with respect to DCA (or other cluster methods). In
this respect, the reduction of tlkespread of the self-energy might be a good indicator for the
specific choice of the cutoff more appropriate for a givepliementation.

Spin-spin susceptibility

A further insight on the non-local correlations capturedthy DMFPRG is given by the
analysis of the momentum/frequency-dependent suscigpihiwhich in DMFPRG can be ex-
tracted from the two-particle vertex. The frequency/motaendependent susceptibility can be
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Figure 3.12: Temperature dependence of the momentum resolved staticsspceptibility
S(q,i2=0)= foﬂ dr Y=, €"99C (4, 7), See text, computed with DMRG atU = 1 for
different temperatureg(= 1/0).

computed as:
B
S(q,Q) = / dTZ g9 C (15, 7), (3.30)
0

ij
whereC'(r;;, 7) is the time dependent spin-spin correlation function:

C(riy,7) = % D (S:(R+114,7)S.(R,0))
= % > Al iny () = Ay Ry (DI R(0) — 2 R (0)). (3.31)

where N is the number of lattice sites in the sum ougr andn,, the number operator for
the spin projectiort in the z direction at the lattice site. The spin susceptibility can be then
expressed in terms of the two-particle Green’s functiort thka can compute at the end of
the flow. A similar definition of the susceptibility is adtgul in Ref. [101], where it is also
shown how to rewrite it explicitly in terms of the two-pafédGreen’s functions for theU(2)
symmetric case.

In Fig. 3.12, we show the DMARG results for the momentum-resolved spin-susceptibility
at zero frequency(q, i2=0). This quantity is most important at half-filling, where nmegic
fluctuations predominate, and it is experimentally acitésse.g., via neutron spectroscopy.
Our results are in qualitative agreement with the QMC datRefs. [23, 184] and show the
major role played by antiferromagnetic fluctuations, watipronounced peak &t 7), grow-
ing upon decreasing. Furthermore, we also note that the evolution of gheependence of
S(q, 2 = 0) for decreasing temperatures is also consistent with thigsieaf [112] and [29],
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where numerical results obtained with diagrammatic exéerssof DMFT were compared with
QMC. At low T, the ferromagnetic fluctuations also get enhanced duedo/déim Hove sin-
gularity at the Fermi level, this explains the fact that tlwnp (0,0) becomes a local max-
imum for S(q,i2 = 0) at low temperatures, here only visible as relative enhaeoéraf
S(q = (0,0),iQ2 = 0) w.r.t S(q = (0,1I),i©2 = 0). This behavior can be observed also in the
bare bubble, i.e. without considering the vertex correctio

Frequency and momentum dependence of the vertexLet us now turn to a more quantita-
tive analysis of the vertex, as obtained within our first lempentation of DMERG. With our
momentum parametrization we ha¥eémomenta combination for each ﬁﬁ‘f. This number
can be reduced considering the symmetries in momentum ,spateven so the number of
functions to analyze remains quite large. Therefore wedselcto focus on a particular subset
of four combination of incoming and outgoing momenta of tee®x, labeled;;, i = a, b, ¢, d,
see Table 3.1.

A A ) dp=Ki+ky | gma=ki—-ki | agm.=ky—ki
Ya (07 7T) <7T7 0) (07 7T) (ﬂ-v 7T) (07 0) (7‘—7 _ﬂ-)

b (Ov 7T) (ﬂ-’ O) (7T7 0) (ﬂ—v 7‘—) (*7‘—? W) (07 0)

ge (Ovﬂ) (O’ﬂ—) (7T,0) (070) (*7‘—77T) (*777)

9gd (07 7T) <07 7T> (07 7T) (07 O) (07 O) (07 O)

Table 3.1: Combinations of momenta shown for the analysis of the veff&e. columns from
two to four refer to the incoming and outgoing momenta, wtfike last three columns refer
to the momenta transfer in each channel, in analogy with disetic frequencies.

Our choice is the same of Ref. [97], and is well motivated adersing that it allows for
an "antiferromagnetic" momentum transfer(gfr, £7) (marked in red in the table) or for a
"ferromagnetic" momentum transfer @f, 0) (marked in blue) in each channel.
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Figure 3.13: Frequency dependence of the real part of the three funcﬁé@s with ¢ =
pp,ph —d,ph —c and2 = II, A, X respectively, at the end of the flow for a selected
choice of the momentum arguments, see Table 3.1. The detaoéf = 0.75 and7 = 0.1.
Please note that the scale on thaxis is different for the three channels. In all the three
cases the enhancement compared to DMFT is noticeable andvradn Furthermore for
each channels the four curves are paired in two couples. Byrigat the definition of the
g;'S, one can further see that the two curvei“éf which have a similar behavior are those
which share the same momentum transfer insttolannel, e.gk + ki, for pp.

The results for the frequency dependent vertex functioashown in Fig. 3.13, where is
also shown, in black, the initial condition from DMFT. Thetdan the figure refer to the case
of U = 0.75andT = 0.1. Let us stress that in the discussion below we focus omghabpart of
the vertex, and that we will often refer to vertekRanneld¢o specify each of the terms in which
the 1Pl two particle vertex has been decomposed. It is evithe in all the three channels
the frequency dependence induced by the flow is nontriaad, even within our simplified
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frequency parametrization, it becomes richer than the ¢ri@MFT. As a general trend, we
observe that for each channel the four curves are arrangaaipairs, with the curves of each
pair showing a very similar frequency dependence. Thigcéslthe fact that there is a dominant
momentum dependence associated with the momentum tramsifier channel considered. For
example in the particle-hole crossed charf]’"g;tf_;gh_C the main momentum dependence is on the
transfer frequency,,_. = k; — k;, as one can see considering that the momenta combination
are paired ag,-g. andg,-g4. As we have also anticipated at the beginning of the sectien,
maximum of the vertex function is reached in the particléelovossed channel for momentum
transfer(r, ), i.e., g, andg.. In this channel, due to the tendency of the system towards
strongly enhanced antiferromagnetic fluctuations, tlegdiency structure is not particularly
rich, being mostly affected by the strong increase (w.r.tFEAYlof the vertex corresponding to
the antiferromagnetic momentum transfer and a slight fggon for the momentum transfer
(0,0).

In the other two channels the situation is much more involvadithe frequency dependence
induced by the flow does not only changeantitativelythe DMFT structure, but also alters it
qualitatively Let us focus in particular to the vertex function in the detparticle channel. In
this case, already the initial condition of DMFT has a diéiersign from the one of the patrticle-
hole channels, i.e., charge fluctuations reduce the ictiera The effect of the flow for the
two-momenta transfer®), 0) and (+7, =), corresponding respectively te-g;, and g,-gs, is
strikingly different. In fact, in the former case qf, = (0, 0) the flow leads to an enhancement
of the (negative) corresponding initial vertex of DMFT.

On the other hand, the frequency dependend@glg for the antiferromagnetic momentum
transfer goes in the opposite direction and becopuess#tive(i.e., with the same sign (ffg,ph,c)
apart for the single frequenady = 0, for which it changes sign.

As a side remark, let us remind that not much is known aboufréguency dependence
of the vertex functions in fRG, and especially about the ¢ftéthe frequency decomposition
of the vertex, equation (3.27), that we have employed herpogsibility to better understand
the frequency dependence arising from the fRG flow, woulddeamparing the 1PI vertex
as obtained in a full treatment of the frequencies and in ambladecomposed approach, for
a single impurity Anderson model. In this case, in fact, bibil implementations have been
achieved [94], also showing the efficiency of the channebdeposition, which, gives similar
results to the full frequency implementation. For the sfiecase of the single impurity Ander-
son model one could also compare the vertex with those of QMEDo(like the one that we
are using as starting point in DMRG).

Despite these technicalities, which call for further inigetions, it is clear that the 1PI
vertex exhibits a very rich frequency and momentum depeceldrat will need to be analyzed
and understood in future studies. Hence in future studiesillibe important to understand
which are the main features of the vertex that are connecttdtiae physical properties of
the system. An important step in this direction is undeditagn how the vertex, computed
numerically on the Matsubara frequency axis, can be coedewith its frequency relevant
limits on the real frequency axis [85], and in turns, with thendau’s parameters in Fermi
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liquid theory [39, 40].

3.2 Summary, open guestions ad outlook

In the course of the work that lead to the present thesis, we ldroduced the new ap-
proach that we named DMRG, and that exploits the synergy of treatilogal DMFT corre-
lations as well agion-localcorrelations generated by the fRG flow. To test the new method
we have applied it to the D Hubbard model, finding that, due to the inclusion of all loca
correlations by the DMFT starting point, the divergencehs fRG-flow for the interaction
vertex is pushed to lower temperatures, where significantlocal corrections to DMFT are
found. At the same time, in the temperature interval wheth FRG and DMERG converge,
the self-energy results are qualitatively similar, supipgrthe results of previous fRG studies
at weak-to-intermediat&. Quantitatively, the most visible effect of DMRG compared to
fRG consists in a strongé-dependence of the self energy for the considered parasretelr
a suppression of the “pseudocritical” temperature atchhtihe vertex diverges. We consider
these findings of our first implementation very promising.

At the same time, however, due to the novelty of the approaelgre aware that the issues
to be addressed in the future are yet many more than thosédhatalready been analyzed.
Therefore, in this conclusive section, we would like to dszin detail the several possible di-
rections that, we believe, should be followed to bring MRE at an equal or possibly superior
level of applicability as other diagrammatic extension®MFT.

Practical improvement on the implementation From a practical point of view, it will be
necessary to improve the present implementation of the adetim particular regarding the
frequency and momenta parametrization. An improvementerfrequency parametrization
is essential to capture the diagonal structure of the vede& Fig. 3.6, whose neglect can
only be well justified at weak coupling. The improvement be momentum parametrization,
instead, might be important to reduce spurious effect ofthese discretization of the Brillouin
zone, like an artificial enhancement of the pseudocritieaiperature, and of the overall low-
frequency momentum spread of the electronic self energy.

Theoretical open issues Besides the problems connected with the practical impleatient
there are also some theoretical aspects that need to beigated. These are related to two
main interconnected issues: (i) the proper choice of a tataf (ii) the possibility of accessing
the strong coupling, possibly Mott insulating, regime iegence of a truncation of the flow
equations.

As for the choice of the cutoff, we have already noted thattiteff employed in Sec. 3.1
is not regularizing. There we have already proposed a diftechoice of the cutoff, Eq. (3.20),
that instead is regularizing. On a diagrammatic point ofwi¢he choice of the cutoff also
determines the part of parquet diagrams that is neglectedadthe truncation, see Sec. 1.4.2.
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There we have argued that, with a suitable choice of the Gukef retained contribution of the
parquet diagrams is the dominant one [26]. However, theyaisabf Ref. [26] applies well to
"standard" regularizing cutoffs and is not easy to genegdlizthe cutoff of DMERG, even
in the formulation of Eqg. (3.20). Hence, a numerical analydithe lowest perturbative order
diagrams, as also suggested in section 1.4.2, might be #tesdl@tion to gain more insight in
the search for future, better regularizing cutoffs in DIRG.

Furthermore the choice of the cutoff in DNIRG is related to an additional problem to
which we refer as theflow in infinite dimensions. In fact, as we have extensively discussed
in Sec. 1.5, in the limit/ — oo the DMFT solution becomes exact. Therefore it would be
desirable that for any given density of stajgg) considered as the density of states of an
infinite dimensional problem and starting with the selfisistent self-energy of DMFIpypr
the integration of the flow equations maintains the DMFTultssas a solution. As originally
suggested by W. Metzner and A. A. Katanin, mathematically ¢biresponds to asking that for
every value ofA the local Green’s function stays constant along the flovndf $elf-energy is
kept at the DMFT value:

G = [ e St ~ Gl 632)

WhereGpryr IS the DMFT Green’s function. Deriving with respectAothe above equation
one can see that it also corresponds to the requirementhihdbddal single scale propagator

vanishes:

dGloc W,
SR (wn) = — 3= 15 ) oy =0 (3.33)

As one can check from Eq. (3.32), at the beginning and at tdeo&the flow this condition
coincides with the DMFT self-consistency condition, iieis fulfilled if Gpypr(iw,), Xpver
andG{__ are respectively the exact local Green’s function, exdtesergy and Weiss field of
the self-consistent AIM of the infinite dimensional profevith density of stateg(e). On the
other hand, requiring that Eq. (3.32) is fulfilled for evesglue of A is more complicated, and
it can be seen that our choice of the cutoff of Eq. (3.19) dagduffill this condition, i.e., if
we applied our flow in infinite dimensions we would incortigqoredict a flowawayfrom the
exact DMFT solution.

A possible condition for a choice of a cutoff that fulfills E.32) is shown in the following.
First let us rewrite a generalization Eq. (3.13) faba— oo dimensional problem with density

ple):

1
Gy, ke, o kpywy) =

. €kpyq. kg )
kpireba 1n = (1= A)ery g,y — A=2555=% 4 11— Ypmpr (wn)

(3.34)
Ypurr IS the DMFT self-energy associated with a density of states HereA acts as a
multiplicative factor for the energies We do not need to specify the energy dispersion in the
extrad — D dimensions;,, . x,, We just assume that it is associated to a density of stéte¢s
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Summing ovelk;, ..., kp, and passing from the summations to the integral over thsityeof
states, the\-dependent Green’s function can be written as:

S |
A (wn) eae iwy, — (1= A)e — Aé' + p — Spymrr(wn)

Requiring (3.32) at the beginning of the flalv= 1 and comparing with the definition of the
DMFT self consistency:

(3.35)

p(e)
n— €+ 1 — Xpumer(wn)’

Gpwmrr(iw,) = /de . (3.36)
iw

one can see thai(c) = p(e). Defining p,.(¢) the density of states of the energy dispersieg,
i.e., p.(e) = £l e can rewrite Eq. (3.35) for a generic value'of

=]
loc / P(1-A) (6)10/\(6 — EI)
p— ) . 7
GRS (wn) /dEd6 iwy, — € + it — YpmrT(Wn) 230

Comparing with Eq. (3.36), we obtain:

[ denis@nte €)= ple (3.38)

that should be fulfilled for every value of. Taking a Fourier transform on both sides of the
equations, one can get rid of the convolution, and obtainca@aton in terms of the product
of the Fourier transform of the density of states on the lafichside. It can be further seen
that Eq. (3.38) has a simple solutionyife) is a gaussian density of states, i.e., the density of
states of an hypercubic lattice in infinite dimensions. lewer for a general density of states,
e.g., a two-dimensional one, solving Eq. (3.38) is moradliff. Clearly finding a solution to
this problem for a general density of states would be veryaele because it would guarantee
that the DMERG flow is exact in the limit of infinite dimensions. Obvioyslin general in
finite dimensions, the condition (3.32) should be fulfillenly for the initial value of the self-
energy>pvrr, and therefore it willnotimply that the local single scale propagator vanishes
along all of the flow. In fact, when the flow is applied to aifendimensional problem, a
nonlocal A-dependent self-energy will be generated and includingegsiback in the single
scale propagator it will also acquire a non vanishing loeat.p

Also connected to the choice of the cutoff in DRMEG is the question about the regime of
applicability of the method. In fact, in Ref. [157] argumeate presented that justify the use
of a truncated equations.. These are based on phase spaadecations, which are difficult to
apply to the case of DMIRG. Hence, one should think to a different analysis to betielet
stand the regime of applicability of the method. Importanthis question is related with the
possibility of acceding to a strong coupling, possibly Mo#ulating, regime within DMFRG.
This issue can be reformulated in terms of the existence il parameter associated with the
non-locality of the problei?, and of the possibility to treat it in a perturbative way. @iys-
ical understanding is that in the Mott insulating regime pinysics becomes more localized

®More precisely on the non deviation from the purely localgiby of DMFT
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and therefore the local description provided by DMFT migéiresent a good starting point.
When this is the case the 1PI two-particle vertex, might beritesd already quite well by the
local DMFT picture, and the non-local corrections to it ntigje viewed as a sort of "small
parameter". Then the fRG flow should only provide a smallertioution to the final result.
However one should be very careful in making these condidesa In fact, at strong coupling,
the local vertex of DMFT is much enhanced compared to thadyréarge, i.e., nonperturbative,
interaction value. Therefore the feedback on the right Isael of the flow equations might be
very large, leading very soon to a divergence of the intevactAt the same time, the insulat-
ing propagators, associated with a divergent self-enevdlymoderate this feedback, possibly
avoiding spurious divergences of the flow equatiofis.

The question about the existence of a small perturbativenpater can also be approached
in a slightly different way, taking advantage of the studiéfefs. [100, 101]. There, the fRG
was used as impurity solver for DMFT showing results coesistvith previous studies, not
only for the weak coupling regime but also for the Mott insimig one. More in detail the self-
consistent AIM of DMFT was mapped on a model containing aeraxting impurity attached
to a chain of noninteracting sites. The problem was thenagmbred using the hybridization
cutoff introduced in Ref. [102]: First the chain is dividedan'core system", containing the
interacting impurity and a small number of sites, and a "batitaining the rest of the sites,
see Fig. 3.14. Then, in the beginning of the flow, the hylation between the core system
and the bath is switched off, and therefore the core can heddaxactly. Afterwards the
hybridization is gradually restored.

The important information, from our perspective, is thédeing: The attempt of a direct
calculation of the vertex function of the interacting imippivas not always successful, since
for larger couplings leads to a divergent flow. On the otlerdcthe problem can be approached
in a different way: First the interacting impurity (as wellthe sites of the core but ort€) can
be formally integrated out. One therefore remains with glsimteracting site. The interaction
on this site can the be treated by means of fRG, leading to mangént results. The final step is
tracing back the quantities obtained through the flow tacttreesponding vertex of the impurity
site, i.e., the one we were originally interested in. This/vaa essentially nonperturbative
problem (the one of the impurity) is treated by solving, gsiRG, a perturbative one (the
one of the originally noninteracting site whose vertex asmputed by the flow). In general,
however we are interested in Hubbard models in wtaabhsite is interacting, and therefore

"We should also note here that, up to date, not many calcutaliofRG have been performed in a gapped
system, like it would be the Mott insulating one, and it is ocoinpletely clear what it can be expected performing
the flow in a system not in the Fermi-liquid regime from thejimming. At the best of our knowledge, the only
calculation in fRG starting from a gapped system is repoiriesi recent work from Eberlein and coworkers [41],
where a small gap was assumed from the beginning of the etilmulto describe the pairing in the attractive
Hubbard model. The flow could the coupling associated witresconductive pairing would then grow during the
flow and reach very large values, but the calculation coel@iyway concluded.

18This site is usually the one at the end of the core system.rBéffie integration of the other degrees of freedom,
in the action, the fields associated to this site appear quidratically and linearly. After the integration there ar
also higher order terms corresponding to the remainderedintieraction on the impurity. More details are given
in Ref. [102].
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Figure 3.14: Schematic illustration of the subdivision of an infiniteadh of sites into a "core"
and a "bath" system. The core system is integrated exactlye Wie interaction with the
rest of the bath sites is restored with the cutbffThe figure is reproduced from Ref. [102].

the application of this procedure will be more involved. Bas goal, one can first make use
of an Hubbard-Stratonovich transformation to introducew set of auxiliary (dual) fermions,
like in the DF approach [55, 151]. As in the case of the chastdbed above, these fermions
are interacting only through their hybridization to the "ploal" fermions®. If the physics is
local enough the auxiliary fermion problem can be approdgesturbatively by means of fRG.
Eventually, the solution of the auxiliary problem can becé back to calculate the relevant
guantities of the original one. At the moment this idea reprgs just one possibility, but
we believe that it is an interesting direction to be explorethe near future for an efficient
description of the whole phase diagram from weak to strongplag.

Possible applications Clearly, after having tested our first implementation of DIRG on
the two-dimensional Hubbard model at half filling, we wolike to use the newborn method
to approach more challenging problems. Thestchallenging problem is for sure the one of
the Hubbard model in the regime of interactions, hoppingsfdimg relevant for the cuprates.
Having access to this regime, we could not only test our nethateagainst a large amount
of data available in the literature, but we could also hopgaio new insight in the interesting
physics associated with the opening of the pseudo-gaph&uechnical improvements would
be needed to also increase the number of bands that one aamtBMFRG. However, this
should be possible considering the non exponential scafitfte method, and this would allow
us to explore more realistic multi orbital situations [12P1], as well the intriguing physics of
system with multiple fermi surfaces pockets, like the iromncpides [115].

A completely different line of investigation could be folled to treat an extended Hub-
bard model within DMERG. In fact, while DMFT is very effective in the treatment okth
local interaction, the non local ones are only treated, akenlimit of infinite dimensions, at

9n this action there is no quartic term in the auxiliary feoms but only a linear coupling to the original ones.
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Figure 3.15: Schematic illustration of a benzene molecule (carbon atmsvn in blue) con-
tacted to metallic environments (in red and orange). Algpoagented are the hopping chan-
nelst, ', t” between the correlated sites, and the hybridization sthevig The figure is
reproduced from Ref. [180].

the Hartree-Fock level, e.g., along the line of #ieinitio DT'A [177]. Hence, improving this
approximate treatment in finite dimensions using fRG is imesappealing. Finally, the last
application that we would like to mention, but probably tivstfthat we are going to study,
is represented by nanoscopic systems [179, 180]. In p&tiome could consider finite-size
Hubbard clusters with periodic boundary conditions (whgcant translational invariance). In
fact, for systems involving only a few atoms, the Brillouimeacontains only a discrete number
of k-points, and therefore several different approachesydicty a numerically exact solution,
become feasible. For example, for nanoscopic systems lsaspmssible to solve the the par-
guet equations with a relatively manageable computatiefiait (and without relying on any
arbitrary sampling of the Brillouin zone). This offers a gadthnce to gain further insight on
the physical content of different approximations, by cetly comparing the fRG result against
the ones obtained within the parquet approximation, as agthe DMERG and O'A ones.
In this respect, nanoscopic systems represent an exceleydround for further testing our
theory, and a comparison with existing results would be § s&ingent test for the quality of
our approximation.

Conclusion We emphasize, to conclude, the potential of the BRIE approach to extend the
channel unbiased treatment of the fRG to the strong-coupéiggne, where the Mott-Hubbard
physics already captured by DMFT will play a more importaiérand qualitative changes in
the self-energy and susceptibility results are expectée. flExibility of the DMFPRG scheme

and its ability to avoid the sign-problem of a direct QMC treant of non-local physics beyond
DMFT look promising for future, unbiased studies of cortielas in realistic multi-band models.
We hope that DMERG may serve as a first bridge between two different methaus$tfze two

related scientific communities), this way stimulating eosger "hybridization" between the
two approaches, that might lead, in the future, to yet betelerstanding of correlations in the
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complicated regime that, up to now, DMFT and fRG alone are biat ® correctly describe.



Chapter 4

Conclusions

Mastering the physics of strong electronic correlatiopsasent a pivotal challenge for con-
densed matter physics as well as a prospective resourcattoeftechnological applications.
In this thesis we have engaged this quest from a theoretichtamputational point of view.
The well established starting point for our investigatias been the state-of-the-art method for
treating strongly correlated systems, namely dynamicamfeld theory (DMFT). Our strat-
egy relies on combining the main strength of DMFT, i.e., ltdity to treat nonperturbatively
the local correlations, with the advantages of two différaethods, namely thé€'WW approxi-
mation and the functional renormalization group (fRG). B0 approaches are the so-called
GW+DMFT and the novel DMFERG respectively. Both aim at overcoming some of the main
limitations of DMFT.

Within GW+DMFT we addressed the problem of realistic calculation aterial proper-
ties with predictive powerFor this to be possible, it is essential to avoid any paranféting
procedure and, instead, modeling the studied system frstrpfiinciples, i.e.ab-initio. GW is
capable of computing accurately nonlocal exchange cdiwaland, in azW+DMFT frame-
work, offers the chance to do so while accurately treatingnsf local electronic correlations
at the local level of DMFT. Unfortunately, the practical ilementation of this method has
proven to be technically extremely involved, thus hampeiis application to realistic cal-
culations. In the course of this thesis we have shown how,imgakse of a "quasiparticle”
approximation to th& 1V self energy, we can circumvent some of the most challengegss
of the full GW+DMFT, while still preserving, at least partially, its adwages. This way, our
specific implementation, to which we refer ag¢jy +DMFT, provides a valid alternative both
to more standard combinations of density functional theorg DMFT (DFT+DMFT) and to
more involved implementations 6t/ +DMFT. Compared to the former, it has the advantage
of avoiding the introduction of fitting parameters, in pautar for the Coulomb interaction, and
of ad hocdouble counting corrections. Compared to the latter, ousigaéticle implementation
is more flexible and computationally cheaper.

We have tested the efficiency of Gp’+DMFT for the case of the correlated metal Sr)/O
Our results compare well with more demanding implementatiaf G1V+DMFT as well with
experimental results. Remarkably, we obtained improvedltesompared to DFT+DMFT at
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a similar computational cost. Hence, while on the long runla@WW+DMFT implementation
definitively remains the final goal, the quasiparticle lempentation proposed in this thesis de-
serves to be considered as an interesting option for thé-&#ron future, and for the applications
to particularly complex or large systems.

If within gpGW+DMFT our main contribution was the implementation of anaiint al-
gorithm in an already existing method, with DRWRG we undertook the more ambitious goal
of combining, for the first time, two methods, i.e., DMFT afiRlG, in a novel approach. The
purpose of the novel method is the treatment, at least at tlieehfevel, of the strong electronic
correlations at all length scales. This scope is beyondaaetr of both DMFT and fRG taken
separately, due to the local nature of the former and to theibative limit imposed to the
latter by the truncation of the flow equations. On the oth&mdy exploiting the complemen-
tary strengths of the two methods, we have theoreticallygdesl a new algorithm with high
potential. This is because, ideally, the nonperturbatgall physics of DMFT is taken as a
starting point for the fRG flow, which then treats the nonlagarelations. Thanks to the fRG
structure, these are unbiasedly generated in all the clgmtlewing for a theoretical treatment
of competing instabilities, which is not possible in scherhased on the summation of ladder-
type diagrams, such as many of the state-of-the-art diagetio extensions of DMFT. To test
the method we have accomplished the first implementatiddMF>RG and we have applied
it to a well studied case, i.e., the half-filled two-dimemsal Hubbard model. In spite of the
additional approximation required in our numerical impéartation, we obtained results both
for one and two-particle quantities in qualitative agreehwéth those of other well-established
methods, such as cluster extensions of DMFT or lattice quar¥lonte Carlo. These first
positive results pave the way for future progress in quantuamy-body physics. From the
methodological point of view, two questions stand out asrpnent. The first is the one regard-
ing the best choice of the cutoff, in particular regardisgé@gularizing nature and the properties
of the "flow in infinite dimension%. The second is the applicability of DMRG to describe
nonlocal correlations in the strong coupling regime. Thewaer to these questions is beyond
the scope of our first implementation, but motivates furitadies, both from the point of view
of the technical implementation as well from a purely théoet perspective. Being able to
provide a positive answer to these questions, we can be lsar®MFPRG provides a great
opportunity opening new ways towards the understandingsifihating physics.
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