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3. Gutachter: Professor Dr. Sc. Alexander Belyaev
Institute of Applied Mathematics and Mechanics
State Polytechnical University of St. Petersburg
29, Polytechnicheskaya st., 195251, St.Petersburg, Russia

Wien, Juli, 2014

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



Vorwort

Diese Dissertation ist das Ergebnis der Forschungsarbeit, die ich auf der Technischen Uni-
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Abstract

The evaluation of the response of a structure in the time domain is without any doubt
one of the main tasks in structural dynamics and earthquake engineering. In order to
create proper models, which are able to describe the main behavior of the system, a high
dimensional spatial discretization by e.g. finite elements is often inevitable.

High dimensionality demands computational effort. In the literature a large number
of numerical and analytical methods are discussed to solve linear and nonlinear ordinary
differential equations, but they all involve high dimensional matrix operations that either
lead to a long calculation time and/or demand a huge amount of computational storage.

This dissertation deals with model order reduction (MOR) of linear and nonlinear sys-
tems in order to minimize the computational effort while preserving the main properties
of the dynamical system. The proper orthogonal decomposition (POD) method provides a
low dimensional description of a high dimensional process and is presented in this work as
useful model order reduction method in earthquake engineering and structural dynamics.
Several new strategies based on the POD method are discussed.

The POD method is applied to earthquake excited linear and nonlinear frame structures.
Nonlinearities are a result of plastic material behavior and of friction based seismic isolation
devices located at the basements of the structure. In the linear case the POD method is
compared to the method of modal truncation. It provides a useful alternative to the classical
method. In the nonlinear case an accurate approximation of the response is achieved. The
POD method is implemented in that way that snapshots (observations) are taken by inte-
grating over a small time period of the beginning of the earthquake excitation and with this
information the transformation matrix into the POD subspace is generated. Subsequently,
the system is integrated numerically over the whole time period in the reduced space. In
the nonlinear case it is important to capture the relevant nonlinear behavior in the snapshot
time period in order to be able to describe the nonlinear response.

The MOR reduction procedure utilizing the POD is expanded to more than one earth-
quake excitation. With the information of the response of the structure to a small time
segment of one earthquake a transformation matrix is generated, which is not only used to
reduce the system with this excitation but also for the reduction process of this structure
excited by other earthquakes. The new strategy, which is called ”universal” POD MOR
strategy in this work, is tested on far-fault and near-fault events.

Subsequently, this ”universal” MOR method is verified on a three-dimensional nonlinear
building construction. The nonlinear effect is realized by a bilinear stress-strain curve in
axial direction in order to model elastic-plastic material behavior. The method is tested on
six representative earthquake events. Not only for the two but also for the three dimen-
sional test object the ”universal” MOR strategy provides accurate approximations of the
full system if the nonlinear motion forms can be mapped in the snapshot matrix.

The ”universal ” MOR strategy is applied to realize high dimensional nonlinear Monte
Carlo Simulations using explicit numeric integration. The procedure is tested on a two-
dimensional nonlinear frame structure with a moderate number of degrees of freedom in
order to compare the results of the reduced with those of the full simulation. The introduced
Monte Carlo Simulation strategy is presented on a high dimensional more complex model,
where the advantages can be pointed out entirely. The combination of POD reduction and
explicit integrators does not only provide a fast calculation procedure but also the possibility



to implement a multithreaded algorithm, which allows the calculation of a large number of
sample records.

The full eigenvalue solution becomes expensive if the number of degrees of freedom is
large. Therefore, even the analytic calculation algorithms are time-consuming. A modal
truncation with only a small number of lower modes associated with the solution of only a
small part of the eigenvalue problem often leads to an effective and accurate approximation
of the full problem. This method fails for impact problems, where high frequency motions
are responsible for stresses and forces near the impact point of the structure. For this class
of problems a new hybrid MOR strategy is presented. The high frequency motions are
captured in the snapshots, which are taken directly after the impact time instant. The low
frequency motion is captured by the truncation of a few lower modes, which are added into
the snapshot matrix. An accurate approximation can be achieved by the application of this
method, whereas the method of modal truncation fails completely.



Kurzfassung

Die Berechnung der Antwort einer Struktur im Zeitbereich ist ohne Zweifel einer der wichtig-
sten Herausforderungen im Erdbebeningenieurwesen und in der Strukturmechanik. Um
geeignete Modelle zu erzeugen, mit denen das grundsätzliche dynamische Verhalten beschrieben
werden kann, ist eine hoch-dimensionale räumliche Diskretisierung durch z.B. finite Ele-
mente oft unerlässlich.

Hoch-dimensionale Berechnungen sind kostspielig. Es existiert eine Vielzahl an analytis-
chen und numerischen Methoden zu Lösung von linearen und nicht linearen gewöhnlichen
Differenzialgleichungen, jedoch sind diese alle mit kostspieligen Matrixoperationen verbun-
den, die zu langen Rechenzeiten führen oder große Speicherkapazitäten benötigen.

Diese Dissertation befasst sich mit Modellreduktionsmethoden linearer und nichtlinearer
Systeme um den Rechenaufwand zu minimieren, jedoch dabei die wichtigen Eigenschaften
des dynamischen Systems beizubehalten. Die ”Proper Orthogonal Dekomposition” (POD)
Methode ist in der Lage eine niedrig-dimensionale Darstellung eines hoch-dimensionalen
Prozesses zu erzeugen. In dieser Arbeit wird sie als sinnvolle Modellreduktionsmethode im
Erdbebeningenieurwesen und in der Strukturmechanik vorgestellt. Einige neue Strategien,
die auf das Prinzip dieser Methode aufbauen, werden diskutiert.

Die POD Methode wird bei einer erdbebenangeregten linearen und nichtlinearen Struk-
tur angewendet. Nichlinearitäten werden durch Reibungselemente hervorgerufen, die unter
den Fundamenten der Struktur angebracht sind. Im linearen Fall wird die POD Methode
mit der Methode der Modalen Reduktion verglichen. Hier stellt sie eine sinnvolle Alterna-
tive zu dieser klassischen Methode dar. Im nichtlinearen Fall stellt sich heraus, dass die
POD Lösung eine gute Approximierung zur Lösung des gesamten Systems ist. Die POD
Methode ist so realisiert, dass ”Schnappschüsse” (Beobachtungen) gemacht werden, indem
zu Beginn der Erdbebenanregung über eine kurze Zeitspanne numerisch integriert wird, und
mit diesem Informationsgehalt die Transformationsmatrix in den reduzierten Raum erstellt
wird. Anschließend wird das System im reduzierten Raum über die gesamte Zeitspanne
des Erdbebens numerisch integriert. Im nichtlinearen Fall ist es essentiell nichtlineares Ver-
halten im Beobachtungszeitraum zu erfassen um in der Lage zu sein nichlineare Moden zu
definieren.

Die neue Modellreduktionsstrategie wird auf ein größeres Anwendungsgebiet als nur für
eine einzige Erdbebenanregung erweitert. Mit der Information eines kleinen Ausschnittes
des Antwortverlaufes zu einer Erdbebenanregung wird eine Transformationsmatrix gener-
iert, die nicht nur für die Transformation des Systems mit dieser Anregung in den reduzierten
Raum herangezogen wird, sondern auch zur Reduktion derselben Struktur, angeregt durch
andere Erdbebenschriebe. Diese neue Strategie, in dieser Arbeit ”universelle” Modellreduk-
tion, wird für Erdbeben, die nahe dem Epizentrum und weit weg vom Epizentrum gemessen
wurden, getestet.

Anschließend wird die ”universelle” Modellreduktionsstrategie für hoch-dimensionale
nichtlineare Monte Carlo Simulationen angewendet, die mithilfe expliziter numerischer Inte-
gration durchgeführt werden. Die Prozedur wird an einer nichtlinearen zweidimensionalen
Rahmenstruktur mit einer verhältissmäßigen geringen Anzahl an Freiheitsgraden getestet
um einen Vergleich mit der Lösung des nichtreduzierten Modells zu ermöglichen. Die
vorgestellte Monte Carlo Simulation wird nun an einer vergleichsweise hochdimensionalen
nichtlinearen Gebäudestruktur getestet, wo die Vorteile der neuen Strategie voll zur Wirkung



kommen. Die Kombination von POD Reduktion und expliziter Integration zeichnet sich
nicht nur durch eine beträchtliche Verringerung der Berechnungszeit aus, sondern auch
durch die Möglichkeit Multithread Algorithmen zu implementieren, wodurch die Anzahl
der Stich-Proben nochmal beträchtlich erhöht werden kann.

Die Berechnung des vollen Eigenwertproblems ist für hoch dimensionale Systeme sehr
rechenintensiv. Folglich werden auch analytische Lösungsalgorithmen zeitintensiv. Durch
die Abspaltung einer geringen Anzahl von niedrigfrequenten Strukturmoden muss nur mehr
ein kleiner Teil der Eigenwertanalyse durchgeführt werden. In der Strukturmechanik führt
diese Modale Reduktion oft zu einer genauen Annäherung des vollen Problems. Diese
Methode versagt z.B bei der Berechnung von Stoßproblemen, wo Kräfte und Spannun-
gen in der Nähe des Kontaktes von der Antwort der hochfrequenten Moden abhängen.
Aus diesem Grund wird eine neue Hybrid-Modellreduktionsstrategie vorgeschlagen. Die
hochfrequenten Bewegungsformen werden in den Schnappschüssen durch Zeitintegration di-
rekt nach dem Kontakt berücksichtigt. Die niedrigfrequenten globalen Moden werden durch
wenige niedrigfrequente Strukturmoden realisiert und zur Snapshot-Matrix hinzugefügt. Die
Approximation der Hybridmethode ist vielversprechend, wo die klassische Methode der
Modalen Reduktion versagt.
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1 Motivation

An important task in structural dynamics is the evaluation of the solution of a dynamical
system. Models in structural dynamics consist of a system of partial and/or ordinary dif-

structure

excitation /
force function

response

dynamical system

Figure 1: Overview basic goal

ferential equations, supplemented with boundary conditions. It is often defined that the
right hand side describes an external force function, the excitation, and the left hand side
describes the structural resistance dependent on the state variables, the displacement vector
and its derivatives. The main goal of the engineer is to calculate the reaction of a struc-
ture subjected to external influences, i.e. to evaluate the maximum displacements and the
maximum internal forces to be able to predict structural resistance. Fig. 1 gives a sketch
to focus on the main idea of this work, which is to obtain a useful approximation of the
solution of the differential equation as fast as possible.

In engineering it is common practice to determine three-dimensional structures and cre-
ate two-dimensional surrogate models that are able to describe the main dynamical behavior
of the system. Often this process is not trivial and demands a lot of experience.

Figure 2: Simple modeling

Fig. 2 presents a rather easy symmetric and consistent supporting structure of a building
and its linear three degrees of freedom surrogate model. Here the aim must be to capture
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as much dynamic information into the surrogate model as possible, but even here essential
motion patterns, such as torsional modes, are neglected. The next step is to create a more
complicated surrogate model in order to describe also torsional and other essential motion
forms, or to switch to other modeling strategies. As even for rather simple structures
modeling as presented in Fig. 2 can be a difficult challenge, it is risky or even sometimes
impossible to capture all important motion patterns of a complicated asymmetric structure.

Figure 3: Examples for complicated non symmetric structures

Fig. 3 presents structures, that require a spacial discretization, e.g. by finite elements,
in order to create proper models. Finely meshed models lead to high dimensional equations
of motion that demand a lot of computational storage and/or time. The implication is to
switch to low dimensional descriptions that approximate the full process as accurately as
possible.

Therefore, this work presents model order reduction strategies that have potential con-
cerning the application in earthquake engineering as well as other problems in structural
dynamics for linear as well as nonlinear systems.

In the following an academic example of model order reduction is presented, which
demonstrates the basic idea of this dissertation. It should be mentioned that theoretical
details are not explained in this motivation example, however, the reader is referred to the
theoretical parts of this dissertation. Imagine a structure, e.g. the FE discretized structure
on the right side of Fig. 3, subjected to a harmonic ground induced motion ẍg = x0 cos νt.
Now the goal is to find the harmonic oscillation of the structure in the stationary state, i.e.
after the transient effect, which is equivalent to the particular solution of the differential
equation to the force function induced by the ground motion. The high dimensional linear
equation of motion is then

Mẍ + Cẋ + Kx = −Mẍg .

The particular solution to the differential equation is then the summation of particular
response functions in the uncoupled modal space

x =
n∑
k=1

Φka0,k cos (νt− β) = Φa0 cos (νt− β) = ap cos (νt− β) ,

where the vector a0 and the delay angle β can be evaluated by insertion of the solution ansatz
function into the equation of motion. Generally all modes must be considered to obtain the

2



exact solution vector although different components of x oscillate with the same oscillation
frequency however with different amplitude. As a consequence it should be possible to
describe the oscillation by only one displacement pattern (which is a linear combination of
all modes) and therefore by one equation of motion.

The observation of the solution vector at arbitrary different time instants leads to a
matrix that is assembled of a set of s records of the deformation status of the structure at
these time instants

XS = [x(t1),x(t2), ...,x(ts)] ,

which leads in this special case of the particular solution response function to the assumed
harmonic excitation to

XS = [ap cos (νt1 − β), ap cos (νt2 − β), ..., ap cos (νts − β)] .

Obviously, all column vectors in this observation matrix are linearly dependent, i.e. they
form a singular matrix with the rank 1. Consequently the singular value decomposition of
this rectangular n× s matrix leads to only one singular value, which differs from zero

s =

(
s∑
i=1

cos2 νti
n

) 1
2

‖ap‖ ,

which is equivalent to the non-zero eigenvalue of the matrix XT
S XS. In this context to this

one singular value, which is non zero, there exists one corresponding left singular vector ϕ
that is equivalent to the first eigenvector of the matrix XT

S XS.
As a consequence it is possible to describe the particular response function of the n

dimensional equation of motion to a harmonic excitation by a single degree of freedom
system applying only one deterministic displacement pattern without error, while for modal
analysis (i.e. the full solution procedure) all modes of vibration have to be considered in
order to obtain the exact response function.

It has to be mentioned that this is an academic example, as the reduction process requires
already the solution function, but based on this idea this work creates model order reduction
strategies, which have huge potential of future applications in earthquake engineering and
structural dynamics.

2 Introduction

Generating of low dimensional and simplified models is an important and often challenging
skill. But often a system can have a more complex dynamic behavior and the utilization
of basic models would lead to wrong approximations or to an oversimplification. Complex
systems demand complex models in order to provide a sufficiently accurate approximation
of the dynamic behavior. In this context the spacial discretization of dynamic systems by
the finite element (FE) method has become common practice in engineering and structural
dynamics.

The calculation of the response of a linear or nonlinear structure to an arbitrary excita-
tion, i.e. the solution of the second order differential equations of motion in the time domain,

3



is mostly the basis for investigations of the behavior of a system concerning structural failure.
Numeric integration of high dimensional systems is, depending on the considered method,
time consuming or requires a lot of computational storage. Even the solution of linear ordi-
nary differential equations (ODE) requires excessive computational effort as the calculation
of the eigenvalue problem includes large matrix operations. Consequently, it can be deter-
mined that high dimensionality demands computational effort. Although the capacity of
computers is constantly increasing, the models being used are constantly being refined, and
therefore finite element calculations with thousands (or even millions) degrees of freedom
(DOF) are still very time-consuming. Especially in dynamical systems the amount of cal-
culation time may increase dramatically when using a finely meshed model. As mentioned
in Qu (2004) although the computer capacity doubles every 18 months (Moore’s law) the
demand of storage and speed will grow similarly, which has been demonstrated in the last 50
years of finite element analysis. Additionally one of the engineer’s main tasks is the design
of structures, which is an iterative process that requires lots of recalculations in order to
optimize the properties of the system. In this context the Monte Carlo method has become
very popular in the last decades as it is a useful strategy for analyzing nonlinear problems.
For calculation procedures that demand days or even weeks the application of the Monte
Carlo simulation would exceed any limit of acceptance, i.e. a practical realization would be
impossible. In such a setting the question for reduced order models (ROM) naturally arises.

Model order reduction (MOR) has become a huge field of research with many application
areas. The aim is a simplification of a dynamical model by capturing its essential features.
The first studies in this context came from Fourier in the year 1807, where he published the
idea of approximating a function by the sum of a few trigonometric terms. Cornelius Lanczos
(1893-1974) provided the basis for the Lanzcos and Arnoldi methods, or more generally
known as Krylov methods. He searched for a way to reduce a matrix in a tridiagonalized
form and Arnoldi realized that a smaller matrix could be a good approximation of the full
matrix (Antoulas (2005), Schilders et al. (2008)).

The research field of model order reduction boomed in the 1980’s, when the utilization
of computers and with it the demand of the calculation of high dimensional models became
omnipresent. Asymtotic Waveform Evaluation (AWE) was introduced by Pillage and Rohrer
(1990) as one of the first and basic MOR algorithms. The transfer function is described
by a Padé approximation, which is the realization of the ratio of two polynomials. The
further development was done by Feldmann and Freund (1995), who introduced the Padé
via Lanczos (PVL) method, where the Padé approximation is calculated by the application
of a two sided Lanczos algorithm. The computational effort is comparable to the AWE
method but PVL is more robust. Obadasioglu and Celik (1998) presented a new algorithm
named passive reduced-order interconnect macro modeling algorithm (PRIMA) based on
the Arnoldi process. In Knockaert and Zutter (1999) and Knockaert and Zutter (2000)
a reduced order multiport modeling algorithm based on the decomposition of orthogonal
scaled Laguerre functions is proposed. They claim that the link with Padé approximation,
the block Arnoldi process and singular value decomposition (SVD) leads to a simple and
stable implementation of the algorithm. It should be mentioned that the presented methods
(often they are called Krylov based methods as well) are applicable to algebraic equations.
Laplace transformation has to be applied in order to transform the system described by the
differential equation to a purely algebraic equation. Additionally a collective disadvantage
of these methods is the limited application to only linear systems.
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Another group of reduction methods that are more closely related to this work are
truncation methods. The basic idea is to truncate the dynamic system at some point.
Modal truncation is a basic and very effective method for linear systems and is applied
several times in this dissertation. Important papers are Davidson (1966), Guyan (1965),
Bampton and Craig (1968). It is probably the oldest method in structural dynamics but
often one of the most effective MOR strategy as well. The method of modal truncation
is presented in section 3.4.1. An important method of this group is truncated balanced
realization (TBR) as well. Here the reader is referred to Antoulas (2005).

The review papers of Rega and Troger (2005) and Koutsovasilis and Beitelschmidt (2008)
give profound information about model order reduction for dynamical systems and present
relevant literature in this field of research. The book of Qu (2004) provides an overview to
model order reduction in FE analysis by the application of truncation methods.

Qu (2004) sub-classifies MOR methods for FE applications into three basic categories:
physical coordinate reduction, generalized coordinate reduction and hybrid coordinate re-
duction. The physical coordinate reduction is the most straightforward method. The re-
duced order model is obtained by removing a part of the physical coordinates. As a con-
sequence, the coordinates of the reduced model belong to a subset of the full model. The
generalized coordinate reduction represents the main category for the methods used in this
work. Two examples for generalized coordinates are modal and Ritz coordinates. The
hybrid coordinate reduction is a combination of the first two mentioned reduction methods.

This work concentrates on MOR strategies using the proper orthogonal decompostion
(POD) and its advantages in comparison to the method of modal truncation. The aim
is to find a set of deterministic modes (POD modes). The POD provides an optimal low
dimensional description of a high dimensional process in the least square sense and has
found application in various fields of research including turbulent fluid systems and coherent
structures, wind engineering, image processing, dynamics of structures, and others. The
method is also known as Karhunen-Loeve decomposition and principal component analysis.
Additional it should be added up front that the singular value decomposition (SVD) is
closely related with the POD as it realizes the calculation of the POD modes and the POD
values in a stable algorithm.

First ideas have arised from the paper of Pearson (1901), who dealt with a representation
of a system of points by the best fitting lines and planes, which is a mathematical basis for
the now omnipresent SVD algorithm. Another early work was realized by Hotelling (1935),
who presented an iterative scheme of the calculation of principal components. The theory
of the POD was first mentioned by Kosambi (1943), the Karhunen-Loeve decomposition by
Karhunen (1947) and Loeve (1946) as statistical formulations. In the field of turbulence and
coherent structures basic works have been done by Holmes et al. (1996) and Sirovich (1987),
who discusses the orthogonal decomposition of the covariance and introduces the method of
snapshots, a powerful strategy based on the POD method. A research field, where the POD
is also a frequently used term, is the area of wind engineering. Examples are Bienkiewicz
et al. (1995), Wang et al. (2010) and Kikitsu et al. (2008).

In the field of structural dynamics POD was first used in the early 1990’s by Cusumano
et al. (1993), who presented an experimental study of dimensionality in an elastic impact
oscillator. Others followed such as Feeny and Kappagantu (1998) and Kappagantu and
Feeny (1999), where the POD modes for dynamical systems are discussed together with
their relationship to normal modes. Further work was done in Kappagantu and Feeny
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(2000a) and Kappagantu and Feeny (2000b), where the POD modes from an experimental
set up in their former papers are used for numeric simulations and validation. A profound
overview work of MOR techniques in connection with POD give Kerschen et al. (2005)
and a physical interpretation of the POD modes are provided by Kerschen and Golivani
(2002). Liang et al. (2002) give a summary of POD methods and in Kerschen and Golivani
(2002) a physical interpretation of the POD modes is done and its relation to singular value
decomposition is facilitated.

Tubino et al. (2003) used the POD method for investigating the seismic ground motion
of the support points of a structure and denominates POD as a very efficient tool to simulate
those multi-variate processes. Kerschen and Golivani (2003) investigated the POD based
on auto-associative neural networks and illustrated the proposed procedure using data from
a three-dimensional portal frame. Ritto et al. (2010) measured the efficiency of the POD
method and compared it to the method of Modal Analysis using the example of a bar with
an axial displacement field.

This work investigates MOR strategies using the POD in the field of earthquake en-
gineering and structural dynamics. In this context a new MOR strategy for linear and
nonlinear structures under transient excitations is presented. The innovative focal point of
the section 4.1 is the application of the POD as a useful model reduction technique in earth-
quake engineering and as a consequence for structures under transient excitations for linear
and nonlinear structures. This section is based on the paper of Bamer and Bucher (2012).
The main goal of POD is its applicability to the analysis of nonlinear structures. However,
before complex nonlinear structures under earthquake excitations can be treated, MOR by
the POD method for linear systems under earthquake excitation should be analyzed.

The POD method is used in such a way that snapshots are taken by integrating the
equations of motion over a short initial time period of the earthquake from which the
reduced order model (ROM) is assembled. This ROM is time integrated over the whole
time period (earthquake duration) and finally transformed back to the dimension of the
original model. The main idea for both the linear and nonlinear system is to demonstrate
that the information of the response within a small part of the random excitation is sufficient
to draw conclusions about the response to the entire random process. For an application
example see e.g. Bucher (2009a). Firstly, it has to be tested if it makes sense to use the
POD method for model reduction of an earthquake excited linear system. Here the output
of modal truncation provides a useful reference solution. In section 4.2 the application of
the procedure to linear structures is presented. Subsequently, in section 4.3 the strategy
is applied to a nonlinear structure. The nonlinearities are caused by friction-based seismic
isolation devices. The nonlinear example shows the applicability of the POD method for
nonlinear structures under earthquake excitations. Error estimations are performed in the
linear and the nonlinear case and the property of optimality of the POD method is shown
by proving that only a small number of POD modes is sufficient to provide very accurate
solutions of the reduced order model in comparison to the full model. In addition the error
of the POD - reduced system, which is not only related to the number of used POD modes
but also to the number of snapshots, is quantified and analyzed using a time-independent
quantity. The main aim for using this method is on the one hand to reduce substantially the
calculation time and on the other hand not to lose required accuracy due to the approximate
nature of the reduced order system. All numeric integration procedures are realized by
the central difference method here. Sections 4.3.3 and 4.3.4 include the discussion of the
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numerical efficiency, where accuracy is set in relation to calculation time, and the conclusion,
where all results are assessed and an outlook for future works is given.

In section 4.4 the POD modes are calculated with the information of one nonlinear
earthquake excited structure, and subsequently are used to reduce this structure excited
by another transient excitation with similar properties (i.e. frequency content). The new
universal MOR approach is presented by using two main kind of earthquake excitations:
far-fault and near-fault earthquake records. These two types of earthquake motions are well
known as qualitatively quite different, e.g. Chopra and Chintanapakdee (2001).

A test structure (nonlinear frame system) is excited by a record data of a transient
excitation (i.e. Fukushima foreshock). The structure is integrated over a small time period
within the main period of the earthquake (”snapshot time period”), in contrast to section
4.1, where the snapshot matrix is calculated by integration over the initial time period of the
earthquake excitation. With this information the universal transformation matrix for model
order reduction is assembled. The structure, which is now excited by the main acceleration
data, is transformed into the reduced space and integrated over the whole time period.

It is demonstrated that earthquakes with similar properties (e.g. frequency range, spacial
properties) are suitable for this new reduction method. On the one hand with the informa-
tion of a foreshock event or an event with similar properties it is possible to draw conclusions
about the resistance of structural failure to the main earthquake excitation. This excitation
can be a generated earthquake based on the properties of the first excitation (i.e. foreshock),
but in this work acceleration record data are used to demonstrate this MOR method. The
advantage of this approach is that the POD modes are calculated according to real data
and not artificially generated transient excitations and therefore contain information of real
measured earthquake records.

The new POD strategies are discussed on planar, considerably simple linear frame struc-
tures resting on nonlinear friction elements. In this section the ”universal” POD strategy
is presented on a three dimensional nonlinear building construction. The nonlinearities are
realized by a bilinear elastic-plastic stress-strain curve in axial direction. The method is
tested on six earthquake records.

Section 4.6 discusses the application of the new approach, which is presented in sec-
tion 4.4, for nonlinear high dimensional Monte Carlo simulations. As the calculation of
one response is very time consuming the procedure of a Monte Carlo simulation, i.e. the
calculation of a whole sample set of excitations, would exceed any limit of acceptance. It is
suggested to obtain the observation matrix by a small part of the response of the nonlinear
structure to one excitation sample and use this response information to assemble a POD
surrogate model for every other excitation sample. In order to present the applicability of
this method a statistical evaluation of the responses to 1000 excitation samples on a simple
planar frame structure with a considerably small number of DOF is conducted. Additionally
the new Monte Carlo Simulation procedure together with the POD reduction is applied to a
three-dimensional nonlinear building structure with a large numbers of DOF by developing
a multi-thread algorithm.

The exact calculation of linear high dimensional structures becomes disproportionally
expensive because the eigenvalue problem includes the matrix factorization of the stiffness
matrix and the evaluation of all eigenvectors. Modal truncation is often very effective to
approximate the system by a small number of modes accurately. For calculations such as
impact problems, where a broad frequency band is excited, the classical method of modal
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truncation fails, since high frequency motions that are responsible for local peak stresses and
forces are not considered in the reduced model. The idea is to capture local high frequency
motions by taking snapshots directly after the impact time instant using a direct integration
method and additionally feed the snapshot matrix with a small number of the global low
frequency truncated normal modes. These here so-called hybrid POD modes are able to
approximate the solution much more accurately than the method of modal truncation does.

3 Theoretical fundamentals

Two main topics are discussed in this dissertation, i.e. numerical integration and model
order reduction.

Dynamic equilibrium is described by a system of differential equations. Especially if a
structure is discretized in space (semi discretization process) it is described by a system of
second order ordinary differential equations. This section deals with a variety of methods
to solve these equations in the linear and the nonlinear case. Advantages and disadvantages
of the different algorithms are elaborated.

Two methods to reduce a high dimensional set of equations of motion to a representa-
tive low dimensional one are introduced: the classical modal truncation, which is practically
limited to the application to linear systems and the nonclassical proper orthogonal decom-
position method, which can be applied to nonlinear systems as well.

A mathematical toolbox is provided that allows to combine algorithms of the two differ-
ent groups in order to present new methods and strategies in earthquake engineering and
structural dynamics and to reduce computational effort by preserving a required level of
accuracy.

3.1 Equations of motion

The dynamic equilibrium is assembled by the sum of all on the system acting forces and
terms of inertia dependent on time (cf. Bathe (1995))

Fi(t) + Fd(t) + Fk(t) = Fex(t) . (1)

The length of the vectors that appear in this equation define the dimension n of the system,
i.e. the number of degrees of freedom (DOF). Fi, Fd and Fk are the term of inertia, the
dissipative damping force vector and the inertial restoring force vector. They are acting
opposite to the direction of motion and are therefore located positive on the left side of the
force equilibrium (Bathe (1995)).

The term of inertia, Fi = Mẍ, depends on the mass of the system and the acceleration,
to which this mass is subjected to. The distribution of the mass is defined by the mass
matrix M, which is in structural dynamics mostly realized by a spacial discretization using
the finite element (FE) method (semi-discretization). ẍ = d2x

dt2
denotes the second derivative

of the coordinate x, i.e. the acceleration. This work examines only systems with non
variable mass, therefore M is constant and symmetric and positive definite.

The restoring force vector Fk depends on the displacement vector x and (in the case of
plastic or visco-plastic material behavior) on the velocity vector ẋ. In the special case of
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a linear elastic material behavior the restoring force is Fk = Kx, where K is the stiffness
matrix, which is symmetric and real. K is obtained by the FE discretization process. If the
system is nonlinear Fk is calculated directly from the stresses obtained by the deformation
x. Depending on the solution algorithm, i.e. explicit or implicit, the force Fk can be directly
used in the solution process or a tangent stiffness matrix is calculated based on the internal
restoring force vector Fk(x).

The damping force is mostly governed by damping values, which are chosen empirically
or experimentally. This work applies velocity proportional damping, Fd = Cẋ, where C
is the damping matrix and ẋ = dx

dt
is the first derivative of the vector x with respect to

time, i.e. the velocity. In this work the classical Rayleigh damping strategy, where C =
a0M+a1K is defined as a linear combination of mass- and stiffness matrix , is applied, which
has advantages concerning the diagonalization process within the linear solving algorithms.
For detailed information about the evaluation of a Rayleigh damping matrix the reader is
referred to e.g. Chopra (2001) or Craig and Kurdila (2006).

The vector Fex denotes the sum of all on the system acting external forces consisting
mainly of the excitation force F(t) and the gravitational force. Practically the external
force vector is often known from measurements at equidistant time intervals. In the special
case of an earthquake excitation, the excitation vector is evaluated based on measured
ground acceleration data or by a sampling procedure using a filtered white noise excitation.
However, every force function can be defined by sample points, dependent on the sampling
rate, with adjustable accuracy.

3.2 The linear system

The n dimensional set of equations of motion of a linear damped system is a set of ordinary
second order differential equation (ODE) (cf. Chopra (2001))

Mẍ + Cẋ + Kx = F(t) . (2)

The goal is to find the solution x(t), i.e. the response of the structure defined by the constant
matrices M, C and K excited by an arbitrary force function F(t).

3.2.1 Natural vibration

The homogenous undamped problem is governed by (cf. Chopra (2001))

Mẍ + Kx = 0 . (3)

and the solution ansatz is (cf. Chopra (2001))

x(t) = φi,me
−iωit , (4)

where the vector φi and the number ωi are invariant with respect to time. Insertion of the
solution ansatz and its second derivative into Eq. (3) leads to the n-dimensional eigenvalue
problem (cf. Chopra (2001)): [

K− ω2
iM
]
φi,m = 0 . (5)
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Based on the property that K and M are both positive definite and symmetric, which is
assured for all structures prevented form rigid body motion, the eigenvalues ωn are all real
and positive. To each eigenvalue ωi, called the ith natural frequency or natural vibration
frequency, there exists an independent vector φi,m, called the ith mode shape of vibration
or modal mode (Chopra (2001)).

The natural modes satisfy the orthogonality condition (cf. Chopra (2001))

φT
i,mKφj,m = 0 and φT

i,mMφj,m = 0 for i 6= j (6)

Because in this dissertation Rayleigh damping is implemented, and therefore the damping
matrix C is a linear combination of mass and stiffness matrix, the orthogonality condition
is valid for the damping matrix as well (cf. Chopra (2001)):

φT
i,mCφj,m = 0 for i 6= j . (7)

It makes sense to define a spectral matrix, where the squared eigenfrequencies are ordered
in a diagonal matrix in ascending order according to (cf. Chopra (2001))

Ω =


ω2

1

ω2
2

. . .

ω2
n

 (8)

and a modal matrix, in which the modes are arranged according to the spectral matrix(cf.
Chopra (2001))

Φm = [φ1,m, φ2,m, · · · , φn,m] . (9)

For the numerical solution of the eigenvalue problem the reader is referred to Bathe (1995).
Dependent on the magnitude of high dimensionality of the system, i.e. if n is a large number,
the numerical evaluation of the eigenfrequencies and mode shapes may require a substantial
computational effort and storage.

3.2.2 Modal analysis

A new vector of coordinates qm is defined through the sum of n independent expressions
φi,mqi,m (cf. Chopra (2001))

x =
n∑
i=1

φi,mqi,m = Φmqm . (10)

Insertion of this transformation property into Eq. (2) and left multiplication by ΦT
m leads

to the linear equation of motion in the modal space (Chopra (2001))

mmq̈m + cmq̇m + kmqm = fm(t) , (11)

where mm = ΦT
mMΦm = diag[m∗

i ], cm = ΦT
mCΦm = diag[c∗i ], km = ΦT

mKΦm = diag[k∗i ]
due to the orthogonality condition, Eq. (6), are diagonal matrices, and fm(t) is the modal

10



force vector. Thus the coupled n-dimensional Eq. (2) is transformed into n independent
single degree of freedom (SDOF) systems in the modal space (Chopra (2001))

miq̈i + ciq̇i + kiqi = fi(t) , (12)

which can be solved separately applying a closed form or numeric solution ansatz for this
linear ODE with an arbitrary force function. In this work most of the closed form solution
methods for SDOF systems are presented for the decoupled coordinate qm, which is trans-
formed back into the full coordinate x by the transformation condition in Eq. (10). For
more detailed information about modal analysis and its properties the reader is referred to
Chopra (2001).

3.2.3 Duhamel Integral

The Duhamel integral represents a closed form solution of the second order ODE in Eq.
(12) excited by an arbitrary force function f(t). Considering a function value at a time
instant τ the small duration impulse at the time point τ is f(τ)∆τ and the response to this
impulse is (Clough and Penzien (1995))

dq(t) =
1

mωd
e−ζωt sin[ωd(t− τ)]dτ , (13)

where ωd = ω
√

1− ζ2 is the damped natural frequency. A sketch is shown in Fig. 4. A

f (t)

t
τ

t− τ ≥ 0

f (τ )

dτ

dq(t)

Figure 4: Response to the small duration impulse (Clough and Penzien (1995))

summation of all impulse responses leads to the convolution integral (Duhamel integral)
(Clough and Penzien (1995)):

q(t) =
1

mωd

∫ t

0

f(τ)e−ζωt sin [ωd(t− τ)]dτ . (14)

Here the initial conditions q(t = 0) = 0 and q̇(t = 0) = 0 are assumed. The calculation of
the general response requires the initial conditions q(t = 0) = q0 and q̇(t = 0) = q̇0, which
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leads to the general response function (c.f. Clough and Penzien (1995))

q(t) = e−ζωt
[
q0 cosωdt+

q̇0 + q0ζω

ωd
sinωdt

]
+

1

mωd

∫ t

0

f(τ)e−ζωt sin [ωd(t− τ)]dτ , (15)

where the first part of the response function is the homogenous solution of the ODE and
the second part is the convolution integral (Duhamel integral).

If f(τ) is a simple function the Duhamel integral is an alternative method to the classical
solution of the equation of motion. But for an arbitrary force function that is described
numerically an analytic solution of the Duhamel integral does not exist. In this context the
integration must be realized numerically. From the numerical point of view the application
of the Duhamel integral in the time domain is often inefficient as for every time step the
integral has to be evaluated again, which depends on the implementation code.

3.2.4 Piecewise analytic response

The numerical description of the excitation is provided by data points which are measured
or generated. The space between these data points, which are mostly defined equidistant
over the whole time definition period, needs to be defined by polynomial functions. The
goal is to find an analytic solution in the defined continuous time interval between the data
points and consequently move forward to the next continuous time interval.

The simplest approximation attempt is the application of a piecewise constant excitation
(i.e. a polynomial of order zero), which can deliver useful results if the time interval ∆t
between the data points is small, see Fig 5.

f (t)

tti ti+1 ti+2

fi

fi+1
fi+2

fi−1

ti−1

∆t ∆t ∆t

Figure 5: Approximation of an excitation by a piecewise constant excitation function

The exact step by step solution procedure to a piecewise constant excitation function,
considering the initial displacement q(t = ti) = qi and the initial velocity q̇(t = ti) = q̇i at
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time instant ti is (cf. Clough and Penzien (1995))

qi+1 = e−ζω∆t [A cos (ωd∆t) +B sin (ωd∆t)] +
fi
k

q̇i+1 = −ζωe−ζω∆t [A cos (ωd∆t) +B sin (ωd∆t)] (16)

+e−ζω∆t [−Aωd sin (ωd∆t) +Bωd cos (ωd∆t)]

A = qi +
fi
k
, B =

−ζωA+ q̇i
ωd

.

The assumption of higher order polynomials within the time interval ∆t can lead to an
increasing accurateness of the solution, especially when ∆t is large. Fig 6 presents a linear
varying loading during the time step. Within the time interval ti ≤ t ≤ ti+1 the force

f (t)

tti ti+1 ti+2

fi

fi+1
fi+2

fi−1

ti−1

∆t ∆t ∆t

Figure 6: Realization of an excitation force by a piecewise linear force function

function is described by (cf. Clough and Penzien (1995))

f(t) = fi +
∆fi
∆ti

t , ∆fi = fi+1 − fi (17)

and the step by step response procedure by consideration of the initial conditions q(t =
ti) = qi and q̇(t = ti) = q̇i is (cf. Clough and Penzien (1995))

qi+1 = e−ζω∆t [A cos (ωd∆t) +B sin (ωd∆t)] + a0p + a1pt

q̇i+1 = −ζωe−ζω∆t [A cos (ωd∆t) +B sin (ωd∆t)] (18)

+e−ζω∆t [−Aωd sin (ωd∆t) +Bωd cos (ωd∆t)] + a1p

a0p =
fi
k

+
∆fic

∆tk2
, a1p =

∆fi
∆tk

, A = qi − a0p , B =
q̇i + ζωA− a1p

ωd
.

For linear structures under transient excitation the application of this approximation is the
most efficient way to solve problems with a moderate number of degrees of freedom (DOF).
Naturally any analytic force function can be defined by discrete points as well and the error
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of the response can be reduced to any acceptable value by scaling down the length of the
time step. In the case of given measured data a refinement is not possible. However, a
better interpolation function can be used to improve the representation of reality, but it
is up to the engineer to decide if this is necessary. The numerical implementation of the
piecewise analytic solution is presented in Appendix A.1.1.

3.2.5 Transformation into the state space and modal analysis

The orthogonality condition of the natural modes in Eq. (6) with respect to mass and
stiffness matrix is the reason for the diagonalization of the equation of motion. The classical
Rayleigh damping formulation is a linear combination of mass and stiffness matrix, and
therefore, it is diagonalized by the application of modal modes as well. If nonclassical
damping is utilized, the equation of motion is not diagonalizable by modal modes any more.
In this dissertation only Rayleigh damping is implemented, and thus non-diagonalization of
the damping matrix by modal modes is not considered. Much more attention is drawn to
the fact that the transformation by a set of deterministic orthonormal modes (e.g. POD
modes) does not necessarily diagonalize the mass-, stiffness- and damping matrix in the
equations of motion. I.e., another strategy must be applied in order to obtain the analytic
solution of the linear ODE.

Subsequently the equations of motion (2) are transformed into the state space by the
introducing the variables y1 = x and y2 = ẋ. The first order linear ODE is then (cf. Clough
and Penzien (1995) and Veletsos and Ventura (1986))(

ẏ1

ẏ2

)
=

(
0 I

−M−1K −M−1C

)(
y1

y2

)
+

(
0

M−1F(t)

)
→ ẏ = Gy + g(t) , (19)

where G is the 2n× 2n system matrix and g(t) is the excitation vector in state space. The
second order differential equation with n DOF is now transformed to a first order differential
equation with 2n DOF.

The homogenous problem is (cf. Veletsos and Ventura (1986) and Guckenheimer and
Holmes (1983))

ẏ = Gy , (20)

with the ansatz function y(t) = Φeλt leads to the eigenvalue problem (cf. Guckenheimer
and Holmes (1983))

[G− λiI] Φi = 0 . (21)

The eigenvectors are assembled in the 2n × 2n eigenmatrix Φ = [Φ1,Φ2, ...,Φ2n] and the
2n eigenvalues appear in conjugated complex pairs. Eq. (19) can now be diagonalized by
the transformation z(t) = Φy(t) (cf. Veletsos and Ventura (1986))

ż = Φ−1GΦz + Φ−1g −→ ż = diag[λi]z + gm , i = 1...2n (22)

into the decoupled modal state space, and Eq. (22) can be written as a set of 2n independent
single degree of freedom linear first order ODE (Guckenheimer and Holmes (1983))

żi = λiz + gi . (23)

14



3.2.6 Piecewise analytic response in the state space

The step by step solution of a linear first order SDOF ODE to a piecewise constant force
function as shown in Fig. 5 under consideration of the initial condition z(t = 0) = z0 is (cf.
Chopra (2001))

zi+1 =

(
zi +

fi
λi

)
eλi∆t − fi

λi
. (24)

Correspondingly, the step by step response to a linear excitation function as presented in
Fig. 6 is (cf. Chopra (2001))

zi+1 =

(
zi −

−fi − a1
λ

λ

)
eλ∆t − a1

λ
∆t+

−fi − a1
λ

λ
, (25)

where a1 = fi+1−fi
∆t

is the slope of the excitation function within the time interval ti ≤ t ≤
ti+1.

For the sake of completeness the piecewise analytic solution of the SDOF state space
equation to a piecewise constant and piecewise linear force function is presented but the
implementation is based on the following procedure: The solution of the first order ODE in
Eq. (19) is (Guckenheimer and Holmes (1983))

y = yh + yp = eGty0 + eGtc(t) , (26)

where c(t) is evaluated by insertion of the particular solution ansatz into the equation of
motion (19), and y0 = [x0, ẋ0]T is composed of the initial conditions. The full solution in
the state space is then (cf. Guckenheimer and Holmes (1983))

y(t) = −G
[
I− eGt

]
g . (27)

The calculation of the term eGt is then realized by the eigenvalue factorization of G into
Φ−1ΛΦ, where Λ is a diagonal matrix with complex conjugated eigenvalues. The exponen-
tial term is therefore (cf. Bellman (1970))

eGt = Φ−1eΛΦ = Φ−1


eλ1

eλ2

. . .

eλ2n

Φ . (28)

The implementation code of the analytic solution in the state space is presented in Appendix
A.1.1.

3.2.7 Direct time integration

The expression direct means in this context that integration can be applied in the coordinate
x and no transformation of the equations is needed. There exist more reasons why someone
would choose a purely numerical method to calculate the response of a system. Definitely
the most relevant one is that for the treatment of nonlinear systems analytic solutions often
do not exist, and therefore, the application of direct time integration is necessary to solve
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the problem. The treatment of linear systems by analytic or exact methods involves the
analyzation of the eigenvalue problem ( Eq. (5)), which demands plenty of computational
effort for large system matrices because a matrix inversion and an iterative solution proce-
dure has to be conducted to calculate all eigenvalues and eigenvectors. In this case the direct
methods can be an effective alternative in transient analysis. Additionally one important
reason can be the engineer’s convenience, as if a numeric algorithm is once implemented
there is a broad area of application (i.e. linear and nonlinear response analysis).

Direct numeric integration is basically defined by two main ideas. Firstly, the dynamic
equilibrium is assumed to be satisfied at discrete time points, which are mostly equidistant
and defined by the prior time discretization. Secondly, an assumption for the displacement
x(t), the velocity ẋ(t) and the acceleration ẍ(t) is done within each equidistant time interval
∆t. The integration schemes differ merely because of these assumptions and thus each
method has different features concerning accuracy, stability and computational effort.

All these methods can basically be classified in two groups, i.e. explicit and implicit
time integration schemes, each of them with advantages and disadvantages. Generally for
explicit methods the computational effort for each time step (calculation step) is relatively
small but, since they are not unconditionally stable, the time step must be considerably
small. Many implicit methods on the contrary benefit from the property of unconditional
stability. Consequently, the definition of the magnitude of the time step is only dependent
on the required level of accuracy.

A variety of direct time integration methods for differential equations describing dy-
namical systems does exist in the literature. However, in this dissertation only a few rep-
resentative methods are applied. In Chopra (2001) and Bathe (1995) the most important
direct integration methods for structural dynamic problems are presented and the practical
application of several algorithms is discussed.

Explicit methods In the step by step procedure the solution vector xi+1 at time ti+1

is directly calculated by considering the equilibrium condition at time ti, i.e. the solution
vector xi+1 is only a function of either the excitation or the structural stiffness at time ti
(and not ti+1). The consequence is that no iteration is required in the algorithm.

The basis for explicit numeric integration is provided by Leonhard Euler in his work
Institutionum calculi interalis (1768), simply called Euler’s method here. Displacement and
velocity are approximated by a first order polynomial

xi+1 = xi + ẋi∆t

ẋi+1 = ẋi + ẍi∆t , (29)

where ẍi is obtained considering the linear equation of motion (2) at time instant ti

ẍi = M−1 [−Cẋi −Kxi + F(ti)] . (30)

Since this is a first order approximation the error of the Euler’s method is proportional to
the square of the time step. The approximation of a simple harmonic oscillator shows that
the numerical solution by Euler’s method grows to infinity with increasing time. Therefore,
for many problems the level of accuracy of this method is insufficient and thus often higher
order methods should be applied.
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A second order approximation, the central difference approximation, is the most widely
used explicit technique in large scale dynamical systems because the possible time step is
maximum among all possible order two approximations while preserving a high level of
accuracy.

∆t ∆t

ti−1 ti ti+1

x(t)

t

xi−1

xi

xi+1

Figure 7: Central difference approximation, geometric assumptions for a SDOF system

The forward and backward taylor expansions of the solution vector x(t) with the expan-
sion vector xi = x(ti) at time instant ti are (cf. Greenberg (1998))

xi+1 = xi + ∆t ẋi + ∆t2
ẍi
2

+ ∆t3
...
x i

6
+O(∆t4) (31)

xi−1 = xi −∆t ẋi + ∆t2
ẍi
2
−∆t3

...
x i

6
+O(∆t4) . (32)

They provide the basis for the geometrical assumption of the central difference approxima-
tion shown in Fig. 7. Summation of xi+1 and xi−1 leads to the central difference approxi-
mation of the acceleration at time instant ti (cf. Dokainish and Subbaray (1989a))

ẍi =
xi+1 − 2xi + xi−1

∆t2
+O(∆t2) , (33)

subtraction of xi+1 from xi−1 leads to the central difference approximation of the velocity
at the time instant ti (Dokainish and Subbaray (1989a))

ẋi =
xi+1 − xi−1

2∆t
+O(∆t1) . (34)

The result is a second order approximation of the acceleration with an error term of order
two. Therefore, the error is divided into four if the time step is divided into two. The
velocity therm is a first order expression with an error of order one. Eq. (33) leads directly
to the basic Verlet integration scheme (cf. Verlet (1967)):

xi+1 = 2xi − xi−1 + ẍi∆t
2 +O(∆t4) . (35)

Verlet (1967) used it in the 1960’s for problems of molecular dynamic. This integration
method is very efficient for conservative systems or systems without velocity dependent
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terms as it has an error term of the order of four. It has symplectic properties and is
therefore appropriate for calculations concerning gravitational astronomy where a long time
stability is necessary. For more information about symplectic integrators, especially the
symplectic Verlet method, the reader is referred to e.g. Hairer et al. (2003) and Verlet
(1967). Another form of the Verlet integration scheme is the velocity Verlet algorithm
where the result of the displacement and the velocity is calculated in one integration loop.

Damping plays an important role in problems concerning dynamics of structures and can
therefore not be neglected. Another strategy needs to be chosen to implement the central
difference approximation. In this context the acceleration term in Eq. (33) and the velocity
therm in Eq. (34) is inserted into the equations of motion (2), which leads to an explicit
expression of the displacement in the next time step (c.f. Chopra (2001) and Dokainish and
Subbaray (1989a))

xi+1 = D−1

{[
2M−∆t2K

]
xi +

[
∆t

2
C−M

]
xi−1 + ∆tFi

}
−D−1

[
O(∆t4) +O(∆t2)

]
,(36)

where D = M+ ∆t
2

C. The big advantage of this method is that no factorization of the stiff-
ness matrix is necessary. However, the the matrix D needs to be inverted once. Therefore,
this algorithm has the best efficiency concerning computational effort if a diagonal mass
matrix and a diagonal damping matrix is assumed. The error

R =

[
M +

∆t

2
C

]−1 [
O(∆t4) +O(∆t3)

]
= O(∆t2) (37)

is of order ∆t2, where D−1 is of order ∆t−1 and the residual composed of the acceleration
and the velocity residual is of order ∆t3.

Every calculation loop involves two already known displacement vectors, xi and xi−1.
Therefore a special start procedure must be employed, which contains not only the initial
values x0 and ẋ0 but also the artificial initial value x−1. The second order backward Taylor
expansion according to Eq. (31) leads to

x−1 = x0 −∆tẋ0 + ∆t2
ẍ0

2
, (38)

where ẍ0 is obtained by insertion of the initial values, x0 and ẋ0, into Eq. (2) according to
Eq. (30).

The big drawback of explicit methods is the lack of stability. The investigation of
stability is here presented based on the paper of Leech et al. (1965), who were one of the
first scientists, who dealt with the stability problem of the finite difference approximation
used to solve the dynamic equation of motion (2). Eq. (39) - (52) can be compared with the
paper of Leech et al. (1965).The undamped free vibration is described by the homogenous
problem

Mẍ + Kx = 0 . (39)

If ∆t is invariant with respect to time, the time at the ith time step is t = i ∆t and the
finite difference equivalent of Eq. (39) is

xi+1 − 2xi + xi−1 + ∆t2M−1Kxi = 0 . (40)
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In this context the error is

εi+1 − 2εi + εi−1 + ∆t2M−1Kεi = 0 . (41)

The solution ε = δeαt is assumed and and insertion of this ansatz function at the time
instants ti−1, ti and ti+1 into Eq. (41) leads to:[(

ζ − 2 +
1

ζ

)
I + ∆t2M−1K

]
δ = 0 , ζ = e−iα∆t . (42)

The eigenvalue problem can then be written as

[P− βnI] δn = 0 , (43)

where P = M−1K and βn = − 1
∆2

(
ζ − 2 + 1

ζ

)
with the eigenvalues βn, which are equivalent

to the eigenfrequencies of the system defined by P:

βn = ω2
n . (44)

The number n denotes the number of the corresponding natural frequency, and if M and
K are symmetric, real and positive definite, every ω2

n is real and positive. It follows

ω2
n = − 1

∆2

(
ζ − 2 +

1

ζ

)
(45)

or

ζ2 + 2Aζ + 1 = 0 , (46)

where A = 1
2
∆t2ω2

n − 1 and the solution for ζ1,2

ζ1 = −A+
(
A2 − 1

) 1
2 and ζ1 = −A−

(
A2 − 1

) 1
2 . (47)

The solution of Eq. (41) is then

εi =
[
c1ζ

i
1 + c2ζ

i
1

]
δ . (48)

c1 and c2 are constant numbers and δ is a constant vector. Consequently ζ1 and ζ2 are

|ζ1,2| ≤ 1 , (49)

which is equivalent to∣∣∣−A+
(
A2 − 1

) 1
2

∣∣∣ ≤ 1 and
∣∣∣−A− (A2 − 1

) 1
2

∣∣∣ ≤ 1 , (50)

leading to the boundary −1 ≤ A ≤ 1 and

0 ≤ 1

2
∆t2ω2

n ≤ 2 . (51)
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The left hand side is fullfilled for every time step ∆t but the right hand side reads as

∆t ≤ 2

ωn
, (52)

where n denotes here the maximum possible value, consequently ωn defines the highest nat-
ural frequency. The conclusion is that the application of the finite difference approximation
only implies conditional stability. If the condition in Eq. (52) is not fullfilled, i.e. if the
chosen time step exceeds a critical value, the solution grows exponentially to infinity. For
very finely meshed models the highest natural frequency of the system is very large and as
a consequence the critical time step is very small. In this context a large number of calcu-
lation loops has to be processed during the whole calculation time history, which involves
considerably large amount of computational effort and hence time consuming procedures.

Implicit methods This work deals only with the Newmark family of methods (Newmark
(1959)) although there exist many other schemes such as the Wilson Θ and the Houbolt
method. An overview of the most important implicit integration schemes the reader is
provided in Dokainish and Subbaray (1989b). The presentation of the Newmark method in
this work is mainly based on Chopra (2001), consequently Eq. (53) - (63) can be compared
to those presented in Chopra (2001) or Dokainish and Subbaray (1989b).

The integration scheme is based on the following equations:

ẋi+1 = xi + [(1− γ) ∆t] ẍi + γ∆tẍi+1 (53)

xi+1 = x + ∆tẋi +

[(
1

2
− β

)
∆t2
]

ẍi + β∆t2ẍi+1 , (54)

where the parameters β and γ define the variation of the acceleration (typical: β = 1
4

and
γ = 1

2
). As the acceleration vector ẍi+1 appears on the right hand side of both equations an

implicit step is necessary to solve the equations. However, a noniterative formulation exists
for linear systems.

Noniterative formulation The displacement, velocity and acceleration vectors and the
excitation vector is now transformed into incremental quantities:

∆xi = xi+1 − xi , ∆ẋi = ẋi+1 − ẋi , ∆ẍi = ẍi+1 − ẍi , ∆Fi = Fi+1 − Fi . (55)

By consideration of these incremental representations the Newmark equations can be rewrit-
ten as

∆ẋi = ∆tẍi + γ∆t∆ẍi and ∆xi = ∆tẋi +
∆t2

2
ẍi + β∆t2∆ẍi , (56)

where the second equation leads to an explicit formulation of the incremental acceleration

∆ẍi =
1

β∆t2
∆xi −

1

β∆t
ẋi −

1

2β
ẍi (57)

and insertion of Eq. (57) into the first incremental equation of Newmark’s formulation gives

∆ẋi =
γ

β∆t
∆xi −

γ

β
ẋi + ∆t

(
1− γ

2β

)
ẍi (58)
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The incremental formulation of the equation of motion at time instant t = ti+1 is

M∆ẍi + C∆ẋi + K∆xi = ∆Fi (59)

and insertion of Eq. (57) and Eq. (58) into Eq. (59) leads to the incremental displacement

∆xi = K̂−1∆F̂i (60)

at time instant t = ti+1, where

K̂ = K +
γ

β∆t
C +

1

β∆t2
M (61)

and

∆F̂i = ∆F̂i +

(
1

β∆t
M +

γ

β
C

)
ẋi +

[
1

2β
M + ∆t

(
γ

2β
− 1

)]
ẍi . (62)

If ∆xi is known the incremental velocity ∆u̇i, and acceleration ∆üi can be calculated, and
finally the relations (55) lead to the displacement xi+1, the velocity ẋi+1 and the acceleration
ẍi+1 at the time point ti+1.

The disadvantage of this method is that the matrix K̂ must be inverted, which can
be expensive if the dimension is high. The advantage is the property of stability of the
Newmark method. The algorithm is stable if the following condition is fulfilled:

∆tωn
2
≤ 1√

2

1√
γ − 2β

. (63)

For the parameters γ = 1
2

and β = 1
4

the critical time step grows to infinity, which means
that the Newmark method is unconditionally stable if a constant acceleration within the
time step is assumed.

3.3 Nonlinear systems

The n dimensional set of equations of motion of the nonlinear damped system is the ODE
(cf. Chopra (2001))

Mẍ + Cẋ + R(x) = F(t) , (64)

where the vector R(x) is the vector of the nonlinear restoring forces. In this dissertation
the mass- and damping matrix is constant, although systems with variable mass matrices
and nonlinear damping matrices could be included. In this work nonlinearities depend only
on R(x).

Piecewise analytic or closed form solutions are presented in the sections 3.2.3 and 3.2.4
but for nonlinear problems according to Eq. (64), they are very rare and mostly approxi-
mations or simply do not exist. Direct numerical time integration is essential to obtain the
response. The limitation of solution algorithms to numerical methods leads automatically
to the discussion of computational efficiency.
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3.3.1 Direct time integration

The big advantage of numerical integration methods is their broad area of application.
In this context they can be utilized to solve nonlinear problems, where the application of
analytic or exact procedures would not make any sense. As the approximation assumptions
of displacement, velocity and acceleration do not depend on the linearity or nonlinearity of
the structure the equations are based on those presented in section 3.2.7.

Explicit time integration - central difference approximation for nonlinear sys-
tems Substitution of the central difference approximation, Eq. (33) and (34), in the non-
linear set of equations of motion (64) leads to the explicit formulation of the displacement
at time instant t = ti+1

xi+1 = D−1

{
2Mxi −

[
M− 1

2
∆tC

]
xi−1 + ∆t2Fi −∆t2R(xi)

}
+ R(O2) , (65)

where D = M− 1
2
∆tC, which is analogous to the response of linear systems. The vector of

the restoring forces depends on the displacement at time ti, in case of plasticity it depends
additionally on the sign of the velocity and in case of visco-plasticity on the magnitude of the
velocity as well. Therefore, the explicit formulation of xi−1 can be calculated an iteration.
Thus, the central difference scheme is one of the simplest methods for nonlinear systems.
The residual term is of second order, which is the same as for the linear system. Hence ,
the level of accuracy here can be compared to the level of accuracy of linear systems.

Solutions cannot be compared to exact solutions as they mostly do not exist. Thus, the
correctness of the solution should be checked applying other numerical integration schemes.

Implicit time integration - Newmark method for nonlinear systems The nonlin-
ear incremental equilibrium equation reads as (cf. Chopra (2001) or Bathe (1995))

M∆ẍi + C∆ẋi + ∆Ri = ∆Fi (66)

and consideration of Eq. (60) leads to the relation (cf. Chopra (2001) or Bathe (1995))

K̂sec,i∆xi = ∆F̂i , (67)

where (cf. Chopra (2001) or Bathe (1995))

K̂sec,i = Ksec,i +
γ

β∆t
C +

1

β∆t2
M (68)

and Ki is the secant stiffness matrix from time instant ti to ti+1, as demonstrated in Fig. 8.
The secant stiffness is not known since it depends on the displacement at time instant

ti+1. Thus, another algorithm has to be applied in order to obtain xi+1, which is discussed.
The tangent stiffness matrix K1

T,i is calculated using the restoring force that depends on
the displacement x0

i , R(x)i (for further information the reader is referred to publications
dealing with nonlinear finite element problems, e.g. Bathe (1995)). Considering Eq. (68)
and substituting K̂sec,i with K̂0

T,i and in this manner Ksec,i with K0
T,i leads to the tangential

incremental equilibrium equation of the initial iteration step (cf. Chopra (2001))

K̂1
T,i∆x1

i = ∆F̂i . (69)
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Figure 8: Secant stiffness K̂sec,i and tangent stiffness KT,i

The complete Newton Raphson iteration procedure is given in Table 1 and illustrated in
Fig. 9. For the sake of clarity, i denotes the number of the time step and j the number of
the iteration loop within the time step.

1 Initial conditions

x0
i+1 = xi R0 = R(xi) ∆r1 = ∆F̂i

2 Iterative calculation

2.1 calculate Kj
T from Rj−1 and then K̂j

T considering Eq. (68)

2.2 K̂j
T∆xj = ∆Rj =⇒∆xj

2.3 xji+1 = xj−1
i+1 + ∆xj

2.4 calculate Rj = R(xji+1)

2.5 ∆f j = Rj −Rj−1 +
(
Kj
T −KT

)
∆xj

2.6 rj+1 = rj −∆f j

Table 1: Newton Raphson iteration within the time step ti to ti+1 (cf. Chopra (2001))

This algorithm converges very fast, but the recalculation of K̂j
T and the calculation of

the inversion in order to solve the linear systems of equations to obtain xji+1 becomes time-
consuming if high dimensional models are used, i.e. if the tangent stiffness matrix becomes
large. Therefore often a more efficient algorithm is used: the modified Newton Raphson
algorithm.

In this procedure the tangent stiffness matrix is only calculated once per time step. As a
consequence K̂T does not depend on the number of iterations. Table 2 presents the iteration
procedure of the modified Newton Raphson algorithm illustrated Fig. 10.

The number of iterations is larger than for the standard Newton Raphson iteration
but the computational cost per iteration step is much smaller since no assembling and
factorization of K̂T is necessary. It is possible to operate over more than one time step with
the same tangent stiffness matrix as well if the number of iterations does not become too
large.
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F̂

x(t)

xi xi+1

∆F̂i

∆x1 ∆x2

x1
i+1 x2

i+1

r1

f 1

K̂1
T

r2

f 2
K̂2

T

Figure 9: Newton Raphson iteration (cf. Chopra (2001))

1 Initial conditions

x0
i+1 = xi R0 = R(xi) ∆r1 = ∆F̂i

(calculate KT from R0 and then K̂T considering Eq. (68) =⇒ K̂−1
T )

2 Iterative calculation

2.1 ∆xj = K̂−1
T ∆Rj

2.2 xji+1 = xj−1
i+1 + ∆xj

2.3 calculate Rj = R(xji+1)

2.4 ∆f j = Rj −Rj−1 +
(
Kj
T −KT

)
∆xj

2.5 rj+1 = rj −∆f j

Table 2: Modified Newton Raphson iteration within the time step ti to ti+1 (cf. Chopra
(2001))
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∆x1

∆F̂i

x1
i+1 x2

i+1

∆x2

∆f 1

∆r1
∆r2

∆f 2

K̂T

Figure 10: Modified Newton Raphson iteration

3.4 Model order reduction

The main goal of the most model order reduction (MOR) techniques is primarily to define
a transformation matrix T ∈ Rn×m, m � n to approximate the coordinate vector x ∈
Rn through a reduced coordinate vector qr ∈ Rm by the relation (cf. Koutsovasilis and
Beitelschmidt (2008))

x = Tqr

so that the dynamic properties of the system are preserved and the error is small. The
notation of the variables n,m ∈ N, the number of DOF of the system and the dimension in
the reduced subspace, are used consistently in this work.

The projection of the linear system defined by Eq. (2) into that subspace leads to the
second order ODE (cf. Koutsovasilis and Beitelschmidt (2008))

mrq̈r + crq̇r + krqr = fr , (70)

where mr = TTMT, cr = TTCT, kr = TTKT ∈ Rm×m are mass-, damping- and stiffness
matrix and fr = TTF(t) ∈ Rm×1 is the force vector in the reduced subspace. It should be
noted that the reduced system matrices mr, cr and kr are not necessarily diagonal. In this
work this procedure is called transformation by T.

The projection of the nonlinear system defined by Eq. (64) leads to the equation of
motion (cf. Koutsovasilis and Beitelschmidt (2008))

mrq̈r + crq̇r + r = fr , (71)

in the reduced subspace, where mr, cr and fr are equivalent to those in Eq. 70. The vector
of the restoring forces in the reduced subspace is

r = TTR(x) = TTR(Tqr) . (72)
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Consequently the vector of the restoring forces must be calculated on the full system at
every time step.

3.4.1 Modal truncation

Modal truncation is a very old and simple but also very effective MOR method. First
papers appeared in the 1960’s dealing with the problem of modal dimension reduction (e.g.
Davidson (1966), Guyan (1965), Bampton and Craig (1968)). Following the method of
modal analysis and respectively the method of modal truncation is excessively prepared
in e.g. Chopra (2001), Qu (2004), Silva (2007). This method is very popular due to
its simplicity and accuracy but it has a limited area of application for nonlinear systems.
Additionally the frequency band of the excitation force has to be known and comparatively
narrow, otherwise a truncation of only a few modes can not consider the complete main
dynamic behavior of the system.

In engineering applications dynamical systems with thousands and more DOF are often
used but depending on the excitation force vector only a few lower L (L� n) modes are of
interest for the calculation:

x(t) =
L∑
i=1

ϕm,iqm,i = Φm,rqm,r . (73)

This method is called modal truncation (Qu (2004)). If the excitation forces are in the
middle frequency range, the number of considered modes L would have to be very large.
As a consequence one can use low-high modal truncation scheme where only the modes
between the L1th and the L2th mode are considered:

x(t) =

L2∑
i=L1

ϕm,iqm,i = Φm,rqm,r . (74)

Substitution of the relation in Eq. (73) into the linear equation of motion [2] and left
multiplication with Φm,r leads to the L dimensional coordinate in the reduced modal space

mm,rq̈m,r + cm,rq̇m,r + km,rqm,r = fm,r , (75)

where the reduced modal mass -, damping and stiffness matrices, which are transformed by
Φm,r, are the diagonal square matrices of the dimension L and fm,r is the L dimensional
modal force vector transformed by Φm,r.

3.4.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) (Chatterjee (2000), Volkwein (2008a), Volk-
wein (2008b), Holmes et al. (1996), Qu (2004), Liang et al. (2002)) is a straight forward
method for obtaining a low dimensional uncorrelated process of a correlated high dimen-
sional or even infinite dimensional process. Holmes et al. (1996) examine the theoretical
background of the POD and its properties profoundly. The aim of the POD calculation
is to find a set of ordered orthonormal basis vectors in a subspace so that samples in a
sample space are expanded in terms of l basis vectors in an optimal form. This means that
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the POD is able to find an orthonormal basis, which describes a observation vector in a
subspace better than any other orthonormal basis can do. A measure for this problem is
the mean square error (Qu (2004))

E
{
‖x− x(l)‖2

}
≤ E

{
‖x− x̂(l)‖2

}
, (76)

where x ∈ Rn×1 is the random vector, x(l) is the approximation of this random vector in
an l dimensional POD subspace and x̂(l) is the approximation of the random vector by any
other possible orthonormal basis. Therefore the random vector can be expressed as (cf. Qu
(2004))

x = Φpqp , Φp = [ϕp,1, ϕp,2, ..., ϕp,s] and qp = [qp,1, qp,2, ..., qp,s] , (77)

where ϕp,i are the POD modes and qp,i denote the coordinates in the POD subspace and s
is the number of realizations of the random vector. This leads to the objective function of
the optimization problem (cf. Qu (2004))

ε2(l, t) = E
{
‖x− x(l)‖2

}
→ min (78)

subject to the orthonormality condition (cf. Qu (2004))

ϕT
p,iϕp,j = δij (i, j = 1, 2, ..., s) . (79)

The transformation into the l dimensional POD subspace is a truncation of the first l lower
POD modes (cf. Qu (2004))

x(l) ≈ Φp,rqp,r , Φp,r = [ϕp,1, ϕp,2, ..., ϕp,l] , l < s� n . (80)

In structural dynamics systems are discretized in space and time and the random vector
is realized by s observations at different time instants (cf. Han and Feeny (2003))

Xs = [xt1 ,xt2 , ...,xts ] =

 x1(t1) · · · x1(ts)
· · · · · · · · ·
xn(t1) · · · xn(ts)

 . (81)

These observations xti are called snapshots and therefore in the literature often the obser-
vation matrix Xs is called snapshot matrix. xt,i can be measurements or they are solution
vectors of a dynamical system at different time instants (Chatterjee (2000)). If µ is the
expectation of all observations then the sample covariance matrix Σs of the random vector,
which is realized by the observation matrix, is defined by (cf. Kerschen et al. (2005))

Σs = E{(x− µ)T (x− µ)} . (82)

The POD modes and the POD values are defined by the eigensolution of the sample co-
variance matrix. If the data have zero mean the covariance matrix is (cf. Kerschen et al.
(2005))

Σs = Xs
TXs (83)

and the POD is realized by the singular value decomposition of the observation matrix
Xs. The POD modes ϕp,i are equal to the left singular vectors and the POD values λp,i to
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the singular values of Xs, which are all real and positive and arranged in an rectangular
diagonal matrix in descending order. The energy, which is contained by the snapshot matrix
is defined by the summation of the POD values, i.e. V =

∑n
i=0 λp,i. As a consequence the

energy ratio of the ith POD mode is (cf. Kerschen et al. (2005))

Vi =
λp,i∑n
i=0 λp,i

. (84)

In dynamic problems often the sum of only a few POD values often captures 99.99 percent
of the total energy included in the observation matrix, which reflects the big advantage of
the POD, i.e. the property of optimality with respect to the energy in a least square sense.

According to Liang et al. (2002) there are three schemes that can realize the POD. These
are the Karhunen-Loeve Decomposition (KLD), the Principal Component Analysis (PCA)
and the Singular Value Decomposition (SVD). It should be noted that in a finite-dimensional
space the schemes can be converted into one another, so that formally they are equivalent.

Singular value decomposition The Singular Value Decomposition (Chatterjee (2000),
Volkwein (2008a), Volkwein (2008b), Holmes et al. (1996), Bronstein et al. (2001)) can
be viewed as the generalisation of the eigenvalue problem and is the decomposition of a
rectangular n × m matrix A into three matrices.

A = UΣVT (85)

U = [U1, ...,Un] is a n × n orthonormal matrix in which the columns are the eigenvectors
of the matrix ATA, V = [V1, ...,Vm] is a m × m orthonormal matrix in which the columns
are the eigenvectors of the matrix AAT and Σ is a n × m rectangular diagonal matrix
containing the singular values, which are equal to the square roots of the eigenvalues of
AAT (or, equivalently of ATA) in descending order. The columns of U are called the
left singular vectors and the columns of V are called the right singular vectors. The SVD
realizes the POD, the mathematical proof is given in Volkwein (2008a).

For detailed information about KLD and PCA the reader is referred to Liang et al.
(2002).

Practical computation of a POD basis The practical computation of the ith POD
basis vector is as follows (cf. Volkwein (2008a))

ui =
1√
λi

Xsvi i = 1...l , (86)

where vi are the first l left singular vectors and λi are the first l singular values of Φp,r

(Volkwein (2008a)). The POD basis Φp,r with l considered basis vectors is (cf. Volkwein
(2008a))

Φp,r = [u1, ...,ul] with (l� n) . (87)
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3.5 Summary

This section provides tools, which can be utilized to solve in homogenous linear problems
with arbitrary force functions. The force functions are defined piecewise continuous by
interpolation polynoms of order 0 and 1. The formally closed solution by the Duhamel
integral and piecewise analytic solution algorithms are presented under consideration of the
diagonalization of the equations using the mode superposition. Additionally the piecewise
analytic solution in the state space, for nondiagonizable matrices is shown. Direct time in-
tegration is introduced. Explicit time integration is presented with emphasis on the second
order central difference method as well as implicit methods by the example of the Newmark
algorithm. On the one side explicit integrators have the property of low cost matrix oper-
ations per time step but on the other side the problem of stability forces the time step of
the algorithm to be very small. Thus the number of time steps that must be worked off is
very large. The Newmark method is unconditionally stable if a constant acceleration within
one time step is assumed. Therefore the number of time steps depends only on the level of
required accuracy. Although the Newmark method belongs to the family of implicit time
integrators, it is possible to define an explicit formulation for linear systems. However, the
Newmark method requires the factorization of the stiffness matrix, which can be very time
consuming if the dimensions are high.

Nonlinear problems in structural dynamics require numeric time integration algorithms
in order to obtain the response function. Therefore an extension to the direct integration
methods for linear systems needs to be applied. In this context the central difference approx-
imation as example for explicit integration schemes and the Newmark method as example
for implicit integration schemes for nonlinear systems is discussed. Based on the informa-
tion of section 3.2.7 the central difference approximation can easily be adapted for nonlinear
systems. Only the linear restoring force Kxi is substituted by the vector of the nonlinear
restoring force R(xi). From this point of view the direct numeric integration schemes for
nonlinear systems are not a closed operation since the calculation of the vector of the restor-
ing forces depends on the nonlinearity. The problem of stability is comparable to that of
linear problems. The explicit formulation of the Newmark method would lead to inaccurate
response functions, and therefore an iterative formulation is presented. The Newton Raph-
son iteration is discussed. This algorithm is inefficient as in every iteration step the tangent
stiffness matrix must be assembled and inverted, which leads to unacceptable calculation
times. As a consequence the modified Newton Raphson iteration is presented. Tough this
algorithm does not converge so fast, a lot of computational effort can be saved since the
cost per iteration step is considerably smaller.

4 The proper orthogonal decomposition as model or-

der reduction method in earthquake engineering

4.1 Application of the proper orthogonal decomposition for struc-
tures under transient excitation

Time integration of the full system over the snapshot time period provides the snapshot
matrix Xs. According to section 3.4.2 the POD - basis Φp,r is calculated, which should
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be capable of representing the main behavior of the system. The POD basis is the trans-
formation matrix into the l - dimensional POD subspace, where time integration over the
whole time period happens. The approximated solution in the POD subspace can now be
transformed back into the full space. A sketch of the realization of the POD strategy in this
context is given in Fig. 11.
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Figure 11: Left subplot: transient excitation (earthquake), right subplot: calculation scheme

An earthquake record is presented as example for a transient excitation, i.e. the north-
south component of the El Centro Earthquake. (http://www.vibrationdata.com/ elcen-
tro NS.dat). The acceleration time history with a sampling rate of 1/50 [s] is shown in Fig.
12. In the following the response of a linear high dimensional structure is calculated apply-
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Figure 12: NS acceleration of the El Centro earthquake

ing the proposed MOR procedure using the POD. In order to evaluate the results the POD
solution is compared with outcomes using the classical method of modal truncation and the
full solution. After proving the adaptability of this procedure it is applied to a nonlinear
structure.
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4.2 The procedure for linear structures

4.2.1 Linear dynamic model

The dynamical system is chosen as a two dimensional Y × Z frame system representative
for civil engineering applications. Y denotes the number of stories and Z the number of
bays of the frame system. The system is discretized by finite beam elements. For detailed
information about finite beam elements the reader is invited to study Bathe (1995).

The following parameters are chosen:

• geometrical parameters : Y = 3, Z = 5, elements per column... 5, elements per beam...
5, total height = 20× Y , total width = 20× Z

• structural parameters : E = 2.0×1011 [N/m2], ρ = 7850 [kg/m3], rectangular cross section
of the beam elements... 0.3× 0.3 [m], damping coefficient ζ = 0.01 (implemented for
both Rayleigh damping coefficients)

A script has been written, which allows to adapt Y , Z, the total height and width and
the element size of the beam elements not only for the beams but also for the columns
(Appendix A.4.1). Hence it is possible to increase or decrease the DOF in order to test the
solution of the ROM in comparison to the full model. The structure is simply supported at
the base. Fig. 13 shows a sketch of the structure.

Figure 13: Discretized three-story structure with five bays, hg(t) denotes the horizontal
displacement of the first floor at the left corner (Bamer and Bucher (2012))

Full system The set of equations of motion for a dynamic system under single-point
earthquake excitation reads as (Chopra (2001))

Mẍ + Cẋ + Kx = −Mẍg(t)f . (88)
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The right hand side describes the excitation of the structure due to an earthquake excitation.
ẍg(t) is the ground acceleration depicted in Fig. 12 and f is the quasi-static influence vector.
In case of only horizontal ground accelerations the entries of f , which are related to the
horizontal degrees of freedom, are one, all others are zero.

In order to compare the results of the full and the reduced solutions the full response x
is obtained by time integration using the method of central differences, which is applicable
to nonlinear systems as well. The correctness of the solution is tested by applying two other
algorithms. According to the transformation of Eq. (10) the decoupled system is solved
by the by a piecewise analytic solution algorithm presented in Eq. (16) and transformed
back to the coordinate x. Additionally the Newmark algorithm presented in Eq. (53) is
implemented. The full response functions of the central difference algorithm, the piecewise
analytic algorithm and the Newmark algorithm coincide sufficiently accurately. the appro-
priate algorithm depends on the level of high dimensionality. While the Newmark method
and piecewise analytic methods are limited considering high dimensionality because of the
matrix inversion of the stiffness matrix and iteration in each time step, the method of central
differences is not so limited considering storage and much larger systems can be calculated.
Therefore for both calculations, the full and the reduced system, the computational time of
the central difference method is compared.

The critical time step of the central difference method is according to Eq. (52)

∆tcrit =
Tn
π

(89)

where Tn = 2π
ωn

is the smallest period of vibration. The finer the structure is discretized,
the smaller is the smallest oscillation period and as a consequence the smaller is the critical
time step. If the chosen time step is larger then the critical time step explicit integration
methods become unstable and the solution grows exponentially to infinity (see section 3.2.7
as well).

The chosen time step ∆t for the calculation is 10−5 seconds. Although the number
of DOF is only 456, the calculation is already fairly time-consuming (computational time
350 [s]). The smallest period of vibration is 6.56× 10−4 seconds and the critical time step
is therefore 2.09× 10−4 seconds.

POD - reduced order model In order to derive the snapshot matrix Xs, composed of
the snapshot vectors, the full system is integrated numerically over a short time period of
the beginning of the earthquake record. According to Eq. (86) and (87) the first l POD
basis vectors (POD modes) are calculated and arranged into the POD basis matrix Φp,r.
Insertion of the POD transformation relation in Eq. (80) into Eq. (88) and multiplying
with Φp,r leads to the reduced linear equation of motion in the POD - subspace,

Mpodq̈ + Cpodq̇ + Kpodq = Fpod(t) (90)

where Mpod = Φp,r
TMΦp,r, Cpod = Φp,r

TCΦp,r, Kpod = Φp,r
TKΦp,r and Fpod(t) =

Φp,r
TF(t), considering that Mpod, Cpod and Kpod are not necessarily diagonal matrices.

This equation is a particular realization of Eq. (70). In contrast to modal analysis and
modal truncation the system is not uncoupled and it can be solved by numeric integration
using the central difference approximation. Application of Eq. (80) leads subsequently to
the approximation of the full displacement vector x.
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In this example 100 snapshots are taken in the first 2 seconds, which means the POD basis
for this system is assembled with the information of only the first 2 seconds of the earthquake.
The number of the considered POD basis vectors l is chosen as 2 for this example. The
reduced system is now integrated numerically by the method of central differences for which,
similar to the modal reduction, the critical time step can be dramatically enlarged compared
to the full calculation.

The reduced model leads to a very accurate approximation of the full model with a short
snapshot period and only 2 POD modes (∆t = 0.02 [s] , calculation time 4 [s]). Using the
POD method it is not necessary to analyze the excitation about frequency content, because
the POD basis vectors describe the excited system in this time period, in which the snapshots
are taken, optimally. Since these POD modes are used for the remaining excitation period,
the main error depends only on the changing of the behavior of the excitation force in the
remaining time period compared to the snapshot time period.

Modal truncation reduced order model According to Eq. (75) the first two modes are
considered in the reduced modal matrix Φm,r, which means that 456 DOF are approximated
by only two uncoupled eigenmodes. Applying the method of modal truncation one should
investigate the excitation. Otherwise it could be possible that the frequency range of the
excitation is not close to the eigenfrequencies of the used modes and the approximation
through modal truncation could fail, which is actually a disadvantage in comparison to the
POD method.

Due to the reduction of the DOF the cost of calculation in every time step decreases
and as Tn increases to 1.56 seconds, the critical time step gets larger and the number of
necessary time steps decreases dramatically, which is the main responsible factor for the
saving of computational time. While the full calculation takes a few minutes, the ROM
through modal truncation takes only a few seconds (∆t = 0.02 [s] , calculation time 3 [s]).

Comparison of results - error estimation Fig. 14 shows the horizontal displacements
of the first floor (left corner), hg(t) (cf. Fig. 13). The solution of the full model is approx-
imated accurately not only by the modally reduced system but also by the POD reduced
system. Although modal truncation is an effective method for earthquake excited linear
structures, the POD method provides a powerful alternative.

In order to obtain more information of the error through model order reduction, the
mean horizontal error is calculated:

Emean(t) =

∑nh

i=1 xi(t)− xi,red(t)
nh

. (91)

Emean(t) is the mean error of the horizontal displacements of every node, xi is the ith
horizontal component of the solution vector of the full system X(t), xi,red is the ith horizontal
component of the solution vector Xred(t) and nh denotes all horizontal DOF. Fig. 15 presents
the mean error of the modally reduced system Emean,modal(t) and Fig. 16 the mean error of
the POD reduced system Emean,POD(t). The error of the modally reduced linear system is
the sum of those modes, which are not included in the reduced calculation. In this case it is
the mean of all horizontal displacements of the third to the nth mode. The POD error shown
in Fig. 16 is obviously larger than the modally reduced error presented in Fig. 15. A small
phase shift of the POD solution can be observed caused by the fact that not the complete
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Figure 14: Horizontal displacements based on different solution procedures (Bamer and
Bucher (2012))
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Figure 15: Mean modal truncation error, Emean,modal(t) (Bamer and Bucher (2012))

frequency information of the earthquake excitation is contained in the snapshot time period
at the beginning of the excitation. From the engineering point of view the approximation
of both methods is sufficiently accurate. Additionally the errors are both within a range
that can be observed approximating analytic full solutions by numerical approximations
applied to the full system as well, therefore the error is neglect able concerning engineering
problems.

POD modes Fig. 17 depicts the first six POD modes, which depend not only on the
dynamical system but also on the excitation.

The importance of these modes can be visualized by using the error, which is caused by
the approximation of the system through the modes,

E = X−Xred , (92)

where X = [x1,x2, ...,xs] describes the exact solution,Xred = [x1,red,x2,red, ...,xs,red] is the
reduced solution and s is the number of time steps. To get information about the error
dependent on the number of considered modes, the variances (i.e. the diagonal elements
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Figure 16: Mean POD reduction error, Emean,POD(t) (Bamer and Bucher (2012))
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Figure 17: POD modes of the linear system (Bamer and Bucher (2012))

of the covariance matrix D = 1
s−1

ETE) are added. Fig. 18 shows the first invariant of
the covariance matrix D within the snapshot time period as a function of the considered
modes. Since the POD satisfies the condition that the quadratic error is smaller then the
quadratic error caused by any other orthonormal set of basis vectors of the same dimension,
the error caused by the POD modes must be smaller than the error based on normal modes.
Fig. 19 represents the first invariant of the covariance matrix D dependent on the number
of considered modes within the whole time period of the excitation. It demonstrates that
there is hardly any difference between POD and modal reduction when using only 3 or more
modes.

For this specific example, the conclusion can be drawn that the approximation of the
solution is not essentially improving when using more than three POD modes.

The invariant of the covariance matrix D is here presented as possibility to measure
the error of the approximated solution vector as a function of time by only one scalar.
Therefore, within the snapshot time period the optimality condition of the POD method,
i.e. no other orthonormal basis does exist that is able to approximate the solution within
the snapshot time period more accurately, is confirmed. This is shown in Fig. 18. Due to
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matrix D in the snapshot time period
(Bamer and Bucher (2012))
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Figure 19: Invariant of the covariance
matrix D in the whole observation pe-
riod (Bamer and Bucher (2012))

frequencies of the earthquake record that do not appear within the snapshot time period
(or only related with a small energy content) there are motions patterns that cannot be
described by the POD modes in the whole time period. Fig. 19 demonstrates this property
clearly. Where the method of modal truncation is able to approximate the solution with
only one mode accurately, the POD method requires three modes for an accurate solution.
Numerically there is hardly any difference concerning computational effort by integration of
a one-dimensional or three-dimensional system, as for both systems the critical time step is
much smaller than the resolution time step of the earthquake record. I.e. the POD method
can be qualitatively compared to the method of modal truncation. A downside is that the
snapshot matrix has to be calculated but on the other hand if dimensions become so high
that the factorization of the stiffness matrix, when using the method of modal truncation,
would exceed the limits of storage, the presented POD procedure could be executed as the
central difference algorithm is economical concerning storage as well as the SVD algorithm
if the number of columns of the snapshot matrix is smaller than the number of rows (i.e.
DOF).

4.3 The procedure for nonlinear structures

4.3.1 Nonlinear dynamic model

The consistent Y ×Z frame system exhibits the same geometrical and structural parameters,
however, Z + 1 nonlinear friction elements are added to represent friction bearings. The
dynamic model of these elements is shown in Fig. 20. k0 + k1 describes the main stiffness
of the element. When the critical friction force r is exceeded, only spring k0 is active. The
friction elements can only be loaded in longitudinal direction by force H(t). The whole
frame system is shown in Fig. 21. The properties of the friction bearing elements are chosen
as k1 = 30000 N/m, k0 = 10000 N/m, r = 50 N .
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Figure 20: Finite friction element (Bamer and Bucher (2012))

Figure 21: Planar frame structure with friction elements at the supports (Bamer and Bucher
(2012))
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Full system The coupled set of equations of motion for the nonlinear system subjected
to earthquake excitation reads as

Mẍ + Cẋ + R (x) = −Mẍg(t)f . (93)

Numeric integration is the only useful possibility to derive the solution and as well as for
the linear system it is realized by the central difference approximation.

Due to the small ∆tcrit (2.09 × 10−4 [s]), the time step is chosen as 10−5[s], the total
number of DOF is 462 and the computational time is 3150[s].

A part of the dissipation of energy comes from the viscous damping of the structure but
the contributions comes from the friction work supplied form the friction elements. This
means, that only a part of the whole energy supplied by the earthquake records arrives the
actual linear part of the frame structure. Therefore the relative displacements of the frame
structure and the friction elements are of great interest and responsible for the magnitude
of internal forces.

POD - reduced order model Firstly, the Xs-matrix is calculated and then the Φp,r-
matrix (see section 3.4.2), which is the transformation matrix containing the l considered
POD basis vectors. 200 Snapshots are taken in equidistant time instants at the beginning
of the earthquake record. Thus a snapshot time period of 4 [s] is chosen. In order to
compare the quality of result a second POD computation is performed as well, where 20
snapshots every 0.02 [s] are taken, i.e. a snapshot time period of 0.4 [s] at the beginning of
the earthquake record is applied. Inserting Eq. (80) into Eq. (93) and left multiplication
by Φp,r leads to the l - dimensional nonlinear differential equation

Mpodq̈ + Cpodq̇ + Φp,r
TR (Φp,rq) = Fpod(t) . (94)

This reduced nonlinear differential equation is solved by the method of central differences
considering that R (Φp,rq) = R (x) still has to be calculated for the full system at every
time step. Nevertheless, the total amount of calculation is much smaller compared to the
full system, because if only l (i.e. four) POD modes are considered, the critical time step
for the reduced systems is much larger than for the full system. Again the transformation
presented in Eq. (80) leads the response in the physical coordinates x.

Comparison of results - error estimation The horizontal displacements of the left
corner in the first floor, hg(t) (cf. Fig. 21), of the full system and the POD-reduced sys-
tems are shown in Fig. 22. The horizontal displacements of the bearing and the relative
displacements are presented in Fig. 23 and 24. The relative displacement is the difference
of the horizontal displacement of the left support to the displacement in the the first floor
(left corner) hg(t). It is responsible for stresses and forces in the linear part of the structure.
The results in Fig. 22 - 27 show the results of the computations. Not only the displace-
ments, i.e. hg(t), the horizontal displacement of the left support and the relative horizontal
displacement of the structure but also shear forces and moments of the full solution are
approximated accurately by the solution obtained by the POD method, if 200 snapshots
are applied. However, the POD calculation procedure does not provide satisfactory approx-
imations using 20 snapshots, i.e. only 1/10 of the length of the snapshot time period applied
before. At about the first 20 seconds of the response history is usefully approximated but
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the error increases with time and not only a phase shifting appears but also an overesti-
mation of the maximum displacement of about 50 % can be observed (cf. Fig. 22 - 24).
Obviously not only the main frequency content can be captured within this time period of
0.4 seconds but also the activation of sliding by the nonlinear friction elements. Thus the
choice of an appropriate length of the snapshot time period is essential for the quality of
the approximation applying the POD MOR strategy. However there is no mathematical
criteria to determine a priory the length of the snapshot time period to ensure that an ac-
curate approximation can be obtained. Much more this is an ”engineering decision”, where
understanding of dynamics as well as a certain level of experience is required.

The mean error of all horizontal displacements with respect to time, Emean,POD(t), which
is calculated according to Eq. (91), is shown in Fig. 25. While the error of the 200 snapshots
approximation is negligible the error of the 20 snapshots approximation increases dramat-
ically with time. Consequently the choice of the length of the snapshot time period is the
most important decision when using the POD method. Also the bending moments and the
shear forces as a function of time of the full system and the POD - reduced systems are
calculated and presented in Fig. 26 and 27. The results of the shear forces and the moments
point out the conclusions presented in Fig. 22 - 24.
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Figure 22: Horizontal displacement left corner in the first floor - full system compared to
POD reduced system (Bamer and Bucher (2012))

4.3.2 POD modes

Fig. 28 presents the first 6 POD modes of the nonlinear system equivalent to section 4.2.1.
They look similar to linear structural modes but they carry nonlinear information of the
friction elements.

In Fig. 29 the importance of the POD modes is shown, which are described by their
corresponding singular values (i.e. POD values). The POD values carry information about
the energy content of the corresponding POD mode. The POD is defined by the eigenvalue
solution of the sample covariance matrix, i.e. if zero mean is assumed, of the matrix XT

s Xs

(cf. Eq. (83)). Since the eigenvalues of the sample covariance matrix are equivalent to the
singular values of the snapshot matrix, Fig. 29 is comparable to Fig. 18, where the trace
of the covariance matrix D, i.e. the first invariant of the covariance matrix of the error, is
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Figure 23: Horizontal displacement - left bearing, full system compared to POD reduced
system (Bamer and Bucher (2012))
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Figure 24: Horizontal displacement - relative, full system compared to POD reduced system
(Bamer and Bucher (2012))
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Figure 25: Mean POD error, Emean,POD(t) (Bamer and Bucher (2012))
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Figure 26: Bending moment left corner in the first floor - full system compared to POD
reduced system (Bamer and Bucher (2012))
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Figure 27: Shear force left corner in the first floor - full system compared to POD reduced
system (Bamer and Bucher (2012))
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Figure 28: POD modes of the nonlinear system (Bamer and Bucher (2012))
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presented. The advantage using the singular values as benchmark for the importance of the
POD modes is that only one calculation procedure is conducted instead of more calculations
applying different numbers of POD modes.
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Figure 29: Singular values of the cor-
responding POD modes (Bamer and
Bucher (2012))

4.3.3 Numerical efficiency

For the practical applicability of a numerical approximation method such as the POD it
is essential to investigate the trade-off between accuracy and computational effort. Obvi-
ously, the results of an analysis based on reduction method can be made more accurate by
including more basis vectors. This increases on the other hand the computational effort in
a disproportional way, because of the property of optimality, which characterizes the POD.

In this context, it is important to have a qualitative assertion of the error through a
scalar, which can be represented by the first invariant of the covariance matrix D (see
section 4.2.1). This scalar is related to the computational time. The first invariant of the
covariance matrix depends on the number of snapshots but also on the number of used POD
modes. As only a few POD modes describe the main behavior of the system (which is the
property of optimality) the approximation of the system is not noticeably improved when
using more then 5 modes (see Fig. 19 and 29). The critical time step in this configuration (5
used POD modes) is larger than 0.02 [s], which is the resolution of the earthquake record.

Hence, the main interest concerning computational time and accuracy should be drawn
to the number of used snapshots, by using a fixed number of POD modes, which allows to
identify the largest possible time step (which is typically given by the time resolution of
the earthquake record). The computational time, which increases linearly with the number
of snapshots, is influenced only by assembling the snapshot matrix and the POD basis.
Since the number of POD modes is fixed, there is no dependency to the computational
time. Simultaneously, the first invariant of D drops rapidly with an increasing number of
snapshots (see Fig. 75). This figure clearly shows that the accuracy cannot be improved
substantially when using more than 40 snapshots. Beyond that point only the computation
time increases but no additional accuracy is gained.
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Figure 30: Invariant of D and calculation time as a function of the used snapshots (Bamer
and Bucher (2012))

4.3.4 Conclusion

The analysis of structural systems under severe time-variant (transient) excitation such
as impact loads or earthquakes frequently requires the severe consideration of nonlinear
structural effects. Consequently, the dynamic analysis must be carried out by utilizing
suitable time integration schemes. Due to their simplicity, explicit methods are very popular.
However, they typically require the time step to be smaller than a critical value. In many
cases, this critical time step is so small that the computation time exceeds acceptable limits.

One possible approach to overcome this difficulty is the application of reduction meth-
ods, which attempt to eliminate the high-frequency components from the response and in
this way increase the critical time step. In this dissertation the Proper Orthogonal De-
composition technique (POD) is applied as model order reduction method for structures
under earthquake excitation. Although earthquake excitations are random processes, the
approximation of a system through the POD method by considering snapshots only in a
small time period is very accurate. The advantage of the POD method over the method
of modal truncation is the property of optimality and its applicability for the analysis of
nonlinear systems.

The numerical results of the application to both linear and nonlinear structural models
indicate that the POD method is indeed a very powerful method for reducing the degrees of
freedom. By varying the number of POD modes retained in the analysis and by varying the
number of snapshots used to compute the POD modes, the method provides much flexibility
to adjust the balance between computational effort and desired accuracy.

It can be expected that the POD method also works for more general structures although
in this paper only the two test objects, a linear and a nonlinear frame system, have been
analyzed. In addition, the focus of further analysis should not only be the testing for
more general types of structures but also the investigation concerning structural safety and
probabilistic design where the saving of time and computational effort plays an essential
role.
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4.4 A universal model order reduction method

The main idea is to use one POD basis for the dimension reduction of the structure subjected
to different earthquake excitations in order to save time and computational effort. As
this consideration represents an expansion to the strategy presented in section 4.1 firstly a
similar structure with the same nonlinear properties (i.e. friction elements) is chosen for the
demonstration. Afterwards this strategy will be further demonstrated by the application of
high dimensional building constructions with nonlinear material parameters.

The snapshot matrix Xs is taken from the response of the structure to one transient
excitation (i.e. Fukushima foreshock). The structure is time integrated over a short snap-
shot time period of the foreshock acceleration. The starting point does not have to be
at the very beginning of the earthquake but somewhere in the middle (e.g. 50 seconds in
the Fukushima foreshock record), where the main period of excitation is happening. The
wavelet transformation of the excitation provides the frequency content dependent on time
and supports to find the optimal starting time point of the snapshot time period. From
the snapshot matrix Xs the POD modes ϕi are calculated and the first l POD modes (l
defines the chosen dimension in the POD subspace) assemble the transformation matrix
Φp,r = [u1, ...,ul], which transforms the full coordinate x into the reduced coordinate qp,r

as presented in Eq. 80. The approach to obtain this universal transformation matrix is
shown in Fig. 31.
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Figure 31: Approach for universal POD modes (transformation matrix)

The same structure is now excited by a second transient ground acceleration (i.e. Fukushima
earthquake record). The set of equations of motion for the structure (Eq. (93)) is now trans-
formed into the POD subspace using the universal transformation matrix Φp,r as shown in
Figure 31 (no system identification through a snapshot matrix gained by integrating over
a small time period of this earthquake is calculated). The ROM is now time integrated
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over this transient excitation. Only a small number, l, of POD modes is often sufficient to
approximate the full solution accurately. Taking more POD modes into account would not
change the quality of the approximated solution noticeable but the critical time step would
be scaled down and the calculation time would be enlarged. The reason is the property of
optimality, which characterizes the POD method (4.1). Because of the smaller number of
DOF, the critical time step increases and the calculation time decreases considerably.

Consideration t0 being the first and tend the last time step, the solution matrix [qp,r(t0),
qp,r(t1),..,qp,r(tend)] in the POD subspace is obtained and the transformation (Eq. 80)
leads to the response in the physical coordinate [x(t0),x(t1), ..,x(tend)]. Fig. 32 presents the
calculation approach for this universal POD reduced system subjected to the Fukushima
earthquake.

Get universal transformation matrix B Transformation into POD subspace (ROM)
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Reduced solution matrix [q(t0),q(t1), ..,q(tend)] Full solution matrix [x(t0),x(t1), ..,x(tend)]

Time integration of the ROM over excitation 2 (i.e. Fukushima earthquake)

Figure 32: Approach for MOR with universal POD modes

In summary, the most time consuming factor is the calculation of the snapshot matrix
Xs because the full system must be integrated over the snapshot time period using a very
small time step. But as mentioned, it is not necessary to calculate a snapshot matrix for
each earthquake record. Once a snapshot matrix is determined the POD basis can be used
as universal POD basis for the structure excited by earthquakes with ”similar” properties
(i.e. similar frequency range).

This procedure can be used for an estimation of structural damage. The foreshock of an
earthquake is analyzed to obtain the POD modes, which can then be used to analyze this
structure subjected to a stronger generated earthquake with similar properties and prevent
possible damage in an acceptable expenditure of time. The advantage is that these modes
carry information of real measured data in contrary to the POD investigation using only
one generated transient excitation, where POD modes are calculated purely according to
artificial values.
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In alternative statistical methods (i.e. Monte Carlo method) this universal reduction
method can be seen as an advantage as well, where the numerical effort plays an essential
role. Using the Monte Carlo method, thousands transient excitations and their responses
are analyzed, dependent on the desired probability of failure. The demand of calculation
time can grow unacceptably by investigating high dimensional models. Using a ”universal”
ROM the whole calculation time can be decreased dramatically.

4.4.1 Dynamic structure - test object

The structural realization is similar to that presented in section 4.3.1. A two dimensional
frame system is used as a test object for building constructions. The height of each storey is 4
meters. The width of the structure is 4×8 meters. The modulus of elasticity of the material
is 3.57×1010 N

m2 , which should present a linearized approximation of the material parameter
of reinforced concrete. The cross section of the columns is quadratic (0.2 m× 0.2m) and is
identical for all columns in the structure. The cross section of the bars is is also rectangular
(0.2 m× 1.4 m) and is also identical for all bars in the structure. The base of the structure
is equipped with friction-based seismic isolation devices (friction isolators), which separate
the structure from the ground and should avoid structural failure in case of an earthquake
(analog to the nonlinear friction elements in section 4.1). A simplified structural model is
presented in Figure 33.

4
m

4
m

4
m

4
m

8 m 8 m 8 m

Figure 33: Building construction

The system is discretized by linear finite beam elements (column elements and bar
elements). In the structural model all friction-based isolation devices are represented by
one friction isolator on the left side of the structure. This friction-based seismic isolation
device (friction isolator) discussed in section 4.3.1, is responsible for the nonlinear response
of the structure. Subsequently, the horizontal displacement of the first floor, h(t), and the
horizontal displacement of the slide bearing, hg(t), is visualized. Important magnitude of
the results is the relative horizontal displacement, hrel, i.e. is the difference of h(t) and hg(t)
that is actually responsible for the internal forces and stresses.
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Figure 34: Left hand side: Finite element discretized structure, right hand side: friction
isolator

4.4.2 Earthquake excitation

Two types of earthquake records are discussed: one type represents far-fault earthquake
excitations, the other near-fault earthquake excitations.

Far-fault earthquake excitations Two ground acceleration data of the Fukushima
earthquake in March 2011 are used. One is the record of the Fukushima foreshock (2011)
and the second the record of the Fukushima main earthquake (2011). Both data sets have
been recorded at the station FKSH16 in Fukushima in Japan, which is located about 200 km
away from the epicenter. Figure 35 gives information about the geographical situation of the
Fukushima foreshock and the Fukushima main earthquake and the record station FKSH16
(image data have been taken from Google Earth and subsequently adapted). Detailed in-
formation (date and time, lateral coordinate of the epicenter Φe, longitudinal coordinate of
the epicenter λe, lateral coordinate of the station Φs, longitudinal coordinate of the station
λs, distance to the epicenter d, magnitude M) is given in Table 3. Figure 36 presents the
east-west acceleration data of the ground, ẍg, of the Fukushima foreshock and the corre-
sponding Morlet wavelet transformation. Fig. 37 presents the east-west acceleration data
of the ground of the Fukushima main earthquake and the corresponding wavelet transfor-
mation. Record data are taken from Kyoshin-Network (2012).

The result of the wavelet transformation of the foreshock record presented in Fig. 36
shows that the maximum values of wavelet power spectrum appear between second 40
and 70. For the determination of the snapshot time period not only the intense and the
frequency of an earthquake is important, which could be evaluated by application of the
classic fourier transformation, but also the intensity and frequency content as a function of
time. Thus, it is recommendable to chose the snapshot time period within this time interval,
i.e. 40 ≤ ts ≤ 80 [s]. In the main earthquake period, i.e. second 40 to 80 a maximum
value of the wavelet power spectrum of about 0.2 [m2/s3] is observed. The frequency content
of the Fukushima main record (cf. Fig. 37) is similar to that of the Fukushima foreshock
record, however the maximum value of the wavelet power spectrum is about 6 [m2/s3], i.e.
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earthquake date/time Φe λe Φs λs d M

foreshock
2011.03.09

38.328◦ 143.278◦ 37.764◦ 140.377◦ 262 km 7.3
14:45:00

main event
2011.03.11

38.103◦ 142.860◦ 37.764◦ 140.377◦ 219 km 9.0
11:45:00

Table 3: Information data of the Fukushima foreshock and the Fukushima main earthquake

about 30 times larger.

FKSH16
record station

epicenter foreshock

epicenter main earthquake

Figure 35: Geographical visualization of the epicenters and the record station FKSH16;
note that this is a photo using GoogleEarth (https://earth.google.com) to illustrate the
geographical distance

Near-fault earthquake excitations Two near-fault ground accelerations recorded in
California are used. One is the record of the Imperial Valley earthquake (1979), the other the
record of the Northridge earthquake (1994). Both acceleration data are recorded less than
eight kilometers from each epicenter. Detailed information (date and time, lateral coordinate
of the epicenter Φe, longitudinal coordinate of the epicenter λe, record station, distance
to the epicenter d, magnitude M) about the record data is given in Table 4. Figure 45
presents the normal-fault acceleration components of the ground, ẍg, of the Imperial Valley
earthquake and its corresponding Morlet wavelet transformation and Figure 46 presents the
normal-fault acceleration components of the ground of the Northridge earthquake and its
corresponding wavelet transformation. Earthquake data are taken from PEER (2012) from
the University of California.

The results of the wavelet transformations in Fig. 45 and 46 show that both earthquakes
have about the same maximum value of the wavelet power spectrum, i.e. 30 [m2/s3]. Although
the maximum peak of the Northridge spectrum is at a higher frequency than the peak of
the Imperial Valley spectrum. However they have similar properties concerning frequency
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Figure 36: Top: East-west acceleration record of the Fukushima foreshock, bottom: Morlet
wavelet transformation of the Fukushima foreshock accelerogram, note that time scales are
different
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Figure 37: Top: East-west acceleration record of the Fukushima main earthquake, bottom:
Morlet wavelet transformation of the Fukushima main earthquake accelerogram, note that
time scales are different
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earthquake date/time Φe λe record station d M

Imperial Valley
1979.10.15

32.617◦ −115.317◦ El Centro
1.2 km 6.5

23:16:00 Array 6

Northridge
1994.01.17

34.213◦ −118.537◦ Rinaldi Receiving
7.5 km 6.7

12:30:00 Station FF

Table 4: Information data of the Imperial Valley earthquake and the Northridge earthquake

content. Based on the results of the Imperial Valley spectrum it is advisable to chose the
snapshot time period somewhere in the time interval 3 ≤ ts ≤ 10 [s] in order to obtain the
optimal POD approximated result.
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Figure 38: Top: Imperial Valley acceleration, bottom: Morlet wavelet transformation of the
Imperial Valley acceleration

4.4.3 Numerical demonstration

Far-fault earthquake excitation example The nonlinear set of equations of motion,
Eq. (93), obtained by the finite element structure presented in Fig. 34, is integrated by
the central difference method in the snapshot time period (50 ≤ tsnapshot ≤ 50.8 [s]) of
the Fukushima foreshock. With this information the universal POD modes are calculated.
Only four modes are used for the MOR of the system.

The reduced equation of motion in the POD subspace, Eq. (90), is now integrated over
the whole time period with a chosen time step of ∆t = 0.01 s, which is the resolution of the
earthquake record. The full system is calculated as well to assess the quality of the reduced
solution. Displacements h(t), hg(t) and hrel(t) of the full solution and the POD reduced
solution are shown in Fig. 40.
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Figure 39: Top: Northridge acceleration, bottom: Morlet wavelet transformation of the
Northridge acceleration

An accurate approximation of the response due to the full computation can be observed
in the time histories of the horizontal displacements h(t), support displacements hg(t) and
relative displacements hrel(t). This special example follows the same MOR procedure as
discussed in section 4.3, only the snapshot time period is not chosen at the very beginning
of the record but the 80 snapshots are taken at a time section within the record (i.e. (50 ≤
tsnapshot ≤ 50.8 [s]) in an equidistant time interval of 0.01 seconds. If the snapshots are
calculated at the very beginning of the record in this special example no POD basis can
be generated with sufficient information about linear and nonlinear behavior. However, the
results presented in Fig. 40 confirm the results of section 4.3, where the POD method is
applied to the El Centro record.

The utilized four universal POD modes are displayed in Figure 41. They look similar to
normal modes, but actually they are ”modules” of the nonlinear system carrying information
of the structure and the excitation.

The structure excited by the Fukushima main record is transformed into the POD sub-
space by the universal transformation matrix, which contains the four universal POD modes.
Time integration by the central difference method leads to the approximated POD solution.
The full solution of the system is also calculated.

Displacements h(t), hg(t) and hrel(t) of the response due to the full computation and
the POD reduced computation are presented in Fig. 42. The nonlinear effect of the friction
elements at the support is not as accurate as at the results presented in Fig. 40 or 22.
Obviousely the nonlinear sliding effect of the friction element cannot be captured in the
snapshot time period calculated integrating over a small time section of the Fukushima
foreshock record. However, the maximum relative displacements hdel(t) are overestimated
of about 10 percent, which can still be seen as a useful approximation for civil engineering
problems.

51



0 50 100 150 200 250 300
-0.01

0.00

0.01

Time [s]

h
(t
)

[m
]

full system
POD system

0 50 100 150 200 250 300
-0.01

0.00

0.01

Time [s]

h
g
(t
)

[m
]

0 50 100 150 200 250 300
-0.01

0.00

0.01

Time [s]

h
re
l(
t)

[m
]

Figure 40: Displacements of the Fukushima foreshock full model and POD reduced model
(equivalent to 4.3)
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Figure 41: Universal POD modes

In order to assess the result of the full and reduced system, error estimations are done.
The mean error Emean(t) for both earthquake records is calculated according to Eq. (91)
and presented in Fig. 43 and 44.

Obviously the universal POD response of the structure excited by the Fukushima main
earthquake approximates the full system very accurately. As expected the universal POD
error in Fig. 43 is larger than the POD error in Fig. 44, which can be explained that
the POD modes, calculated with the frequency information of the snapshot time period
in the foreshock, do not exactly contain the same frequencies as in the Fukushima main
earthquake. Consequently a phase shift of the universal POD solution and the full solution
appears. Additionally the there is a huge difference of intensity concerning the Fukushima
foreshock and the Fukushima main earthquake. Therefore, the nonlinear sliding effect of the
friction elements cannot be described in the snapshot time period in the Foreshock record.
Consequently, in the application of universal MOR it is also advantageous that not only
earthquakes with same frequency content but also with similar energy content are chosen.

Nevertheless the approximation of the Fukushima main earthquake is promising by using
the universal POD method although a huge difference in magnitude and energy content of
these two records can be observed. This can be seen as an example of robustness of this
universal MOR procedure.

Universal POD reduction should only be implemented for similar transient excitations
(earthquakes), i.e. the dominant frequencies of the excitation should be in a similar range
and the main frequencies should occur in the snapshot time period. Additionally the in-
tensity of the records should be in a similar range. Otherwise an accurately approximated
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Figure 42: Displacements of the Fukushima earthquake full model and POD reduced model
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Figure 43: Mean error of horizontal displacements - Fukushima foreshock
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Figure 44: Mean error of horizontal displacements - Fukushima earthquake
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solution of the reduced system cannot be guaranteed.

Near-fault earthquake excitation example The calculation approach is analogous to
the one described in section 4.4.3. The POD modes are obtained by integration over the
snapshot time period of the Imperial Valley earthquake. The starting point of the snapshot
time period is second 7, 80 snapshots are calculated and four POD modes are utilized in the
universal transformation matrix. Fig. 45 presents the full and the reduced solutions, h(t),
hg(t) and hrel of the Imperial valley earthquake, see also section 4.1. Fig. 46 presents the
full and the universal reduced solutions, h(t), hg(t) and hrel of the Northridge record. Error
estimations are presented in Fig. 47 and 48.
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Figure 45: Displacements of the Imperial Valley earthquake full model and POD reduced
model (equivalent to 4.3)

4.4.4 Numerical efficiency

The number of DOFs (224) of the structure is rather moderate, but the dynamic system
is seen as test object for the universal POD method. Nevertheless the full calculations
by application of the central difference algorithm are considerably time-consuming. The
computational time depends, considering the rather moderate number of DOFs, on the
number of iterations but hardly on the matrix operations in one loop. The chosen time
step, which is actually smaller than the critical time step, is 10−4 seconds for each system
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Figure 46: Displacements of the Northridge earthquake full model and POD reduced model
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Figure 47: Mean error of horizontal displacements - Imperial Valley earthquake
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Figure 48: Mean error of horizontal displacements - Northridge earthquake
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earthquake full calculation POD calculation universal POD calculation
Fukushima foreshock 1661 19 + 6 -
Fukushima earthquake 2265 - 28

Imperial Valley 302 3 + 6 -
Northridge 231 - 2

Table 5: Calculation time [s]: Full calculation (central differences), POD calculation, uni-
versal POD calculation (calculation time of the snapshot matrix: 6 seconds)

in this section. The chosen time step in the POD reduced subspace is always equal to the
resolution of the earthquake record, which is the maximum possible value. The condition
for using the earthquake resolution as time step is that the critical time step of the POD
reduced system has to be larger than the time resolution of the earthquake records, which is
obviously always the case in this example. As a consequence the time of the POD calculation
depends on the sampling rate of the earthquake record and in addition on the assembling
process of the snapshot matrix. Table 5 presents the calculation times of the full systems, the
POD reduced systems (equivalent to section 4.1) and the universal POD reduced systems.
Furthermore, universal POD reduced calculations are even more optimized in the sense of
computational effort because the recalculation of the snapshot matrix is not necessary.

4.4.5 Conclusion

Based on section 4.1 a new model order reduction strategy by the proper orthogonal de-
composition method is presented. By integrating over a small part of the response of a
nonlinear structure subjected to one earthquake the transformation matrix for model order
reduction is assembled and the structure, excited by another earthquake, is transformed
into the reduced space and subsequently integrated over the whole time period. Numer-
ical examples are presented not only on far-fault but also on near-fault excitations. The
far-fault excitation pair is the Fukushima foreshock earthquake record and the Fukushima
main earthquake record. The numeric demonstration shows that this pair of earthquakes is
not that adequate for this MOR strategy in contrary to other example pairs. Although they
show similar properties concerning frequency content they are completely different concern-
ing intensity, i.e. a scaling factor of about 30 is observed. The nonlinear effect cannot be
captured in the snapshot time period integrating over a small selected time period of the
foreshock record since the excitation is too weak to induce sliding of the friction elements.
However, the full solution of the Fukushima main earthquake can be approximated with
an error of about 10 % of the maximum displacement. This is still a useful approximation
concerning civil engineering problems, which demonstrates the robustness of this method,
i.e. the strategy does not completely fail if there are not optimal conditions concerning the
input parameters. The near-fault excitation pair is the Imperial Valley earthquake record
and the Northridge earthquake record. The wavelet transformations show similar properties
concerning frequency content and maximum energy. The wavelet power spectrum shows a
clearly defined time window for the calculation of the snapshots. The approximation of the
imperial valley excited structure, analogous to the ”standard” POD strategy discussed in
section 4.1, as well as approximation of the Northigde excited structure, i.e. the example for
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the new ”universal” POD strategy, show accurate results. The mean error of both examples
dependent on time are comparable in the magnitude and insignificantly small, which can be
compared to the POD error of the El Centro example in section 4.1, i.e. ”standard” POD
strategy.

Furthermore it can be expected that this MOR method works not only for systems
with many more DOFs but also for more complex structures. Because of the occurrence
of frequencies that are not captured in the snapshots a phase shifting of the response can
be observed, but the error can be neglected for problems concerning civil engineering. It
is obvious that the the calculation of a POD reduced system is sufficient to predict the
response of a structure to an earthquake excitation from the engineering point of view.
On the one hand this method should make it possible to draw conclusions very fast about
the resistance of a structure to an earthquake excitation because of the information of an
earthquake with similar properties. On the other hand this method provides the basis for
the realization of high dimensional Monte Carlo investigations regarding structural safety.

4.5 Application of the universal model order reduction strategy
to structures with elastoplastic material properties

In section 4.1 the new MOR strategy was presented and tested on linear and nonlinear
structures. In section 4.4 this MOR strategy was expanded to a broader application area
using one transformation matrix for different transient excitations. Strategies were applied
to relatively simple and uniform linear and nonlinear planar models (test objects) so far.
Nonlinearities were realized by friction elements in order to model friction based seismic
isolation devices. Although nonlinear reactions can be observed in the response histories,
nevertheless the structure, which rests on these friction bearings, behaves linear.

This section introduces the application of the ”universal” MOR strategy on a more com-
plex nonlinear three dimensional building structure subjected to six different earthquake
records. It should be mentioned that the records seem to have rather near-field character-
istics.

4.5.1 Structural model

Elasoplastic material in the axial stresses and strain curve of the beam elements is imple-
mented as presented in Fig. 49. E1 describes Young’s modulus of the linear material and E2

is the post-yield Young’s modulus. fyd defines the yield strenght. For detailed information
about the modeling of elastoplastic material behavior the reader is referred to Bathe (1995).

The three-dimensional building construction is realized by a finite element discretized
mesh. Floor sections are modeled by shell/plate triangle elements and the columns are
realized by beam elements including the nonlinear material parameters presented in Fig.
49. The shape of the building is motivated by the appearance of hotels and casinos in
Las Vegas. A three-dimensional visualization of the building is given in Fig. 50. A plan
of the structural design of one story of the building shows the left subplot of Fig. 51 on
the left side and the corresponding FE discretized mesh of one storey is displayed on the
right subplot. In the implementation the number of stories is variable. The chosen number
is seven. Every column per storey is discretized by three nonlinear beam elements. The
columns are designed by a quadratic cross section (0.25 × 0.25 [m]) and for the floors a
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Figure 49: Stress strain behavior of a yielding material with strain hardening

thickness of 0.4 [m] is chosen. The floors are designed on purpose to ensure considerably
large plastic deformations in order to test the nonlinear MOR strategy.

The structure is subjected to ground acceleration only in x-direction. The ground ac-
celeration in y-direction is is set as zero for all calculations in this section and section 4.6.

Figure 50: 3-D visualization of the building and direction of the earthquake excitation

The natural mode shapes of the linearized structure, i.e. if the axial stress component
of the beam elements does not exceed fyd, are presented in Fig. 52.

Upfront the structure is excited by the harmonic ground acceleration ẍg = x0 sin νt
(x0 = 5 [m/s2], ν = 3 [rad/s] ) in order to test the nonlinear effect of the system to a
rather simple excitation, where the behavior of the response function can be pre-estimated
qualitatively. The system response is derived by the application of two methods the central

59



Construction plan of one storey [m],
columns with quadratic cross section

0.25× 0.25 [m], floor dimension d = 0.4 [m]

FE mesh of one story, shell / plate elements
in magenta and nonlinear column elements

in blue

Figure 51: Left side: construction plan of one storey; right side: FE discretized mesh of one
storey

Natural mode shape 1,
ω1 = 2.98 [rad/s],
f1 = 0.47 [1/s]

Natural mode shape 2,
ω1 = 3.02 [rad/s],
f1 = 0.48 [1/s]

Natural mode shape 3,
ω1 = 3.27 [rad/s],
f1 = 0.52 [1/s]

Natural mode shape 4,
ω1 = 8.98 [rad/s],
f1 = 1.42 [1/s]

Natural mode shape 5,
ω1 = 9.79 [rad/s],
f1 = 1.43 [1/s]

Natural mode shape 6,
ω1 = 14.63 [rad/s],
f1 = 1.56 [1/s]

Figure 52: First 6 natural mode shapes of the linearized structure with the corresponding
eigen angular frequencies and eigen frequencies

60



difference approximation and the Newmark method. Fig. 53 shows the harmonic excitation
and Fig. 54 the corresponding response in the time domain, i.e. the horizontal displacement
of the red marked node shown in Fig. 50 and the hysteresis, i.e. the moment My as function
of the horizontal displacement x in order to investigate the level of nonlinear behavior of
the structure.
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Figure 53: Harmonic ground acceleration
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Figure 54: Left subplot: relative storey displacement x of the output node, right subplot:
hysteresis - displacement x and moment My

The response is calculated by the Newmark method and verified by the Central difference
algorithm. It can be seen that for a harmonic excitation with a magnitude of about 5 [m

s2
]

considerably large nonlinear deformations occur. In this context it makes sense to move on
to the next step and investigate the universal MOR strategy with transient excitations.

4.5.2 Numerical demonstration

Six different earthquake excitations are used to demonstrate the universal MOR strategy.
The excitation set includes the Bam earthquake (2003) in Iran and the following five repre-
sentative events in California: Northridge Rinaldi (1994), Imperial Valley (1979), Landers
(1992), Loma Prieta (1989), North Palm Springs (1986). Table [6] presents a list of the
events taken from PEER (2012) from the University of California.

The response to the the Northridge Rinaldi record, is used to assemble the snapshot
matrix. 300 snapshots are taken in equidistant time periods spread over the whole history of
the earthquake response. The truncation of the POD transformation matrix (POD modes)
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Event time location ∆t T d M PGA
Bam 2003 Iran 0.05 - 6.6 7.16

Northridge Rinaldi 1994 California / Newhall 0.005 14.945 6.7 6.7 5.23
Imperial Valley 1979 California / Huston Road 0.01 39.38 10 6.5 4.79

Landers 1992 California / Barstow 0.02 79.98 36 7.3 4.13
Loma Prieta 1989 California / Gilroy 0.02 39.98 12 7.0 9.51

North Palm Springs 1986 California / Palm Springs 0.02 59.98 6.7 6.0 9.99

Table 6: Earthquake excitation list; ∆t [s] resolution of the record data, T [s] duration of
the record, d [km] distance from epicenter, M moment magnitude, PGA [m/s2] peak ground
acceleration

is chosen that 99 % of the total energy of the snapshots is captured. The number of modes
is therefore 17. The first four modes are shown in Fig. 55.

POD mode 1 POD mode 2

POD mode 3 POD mode 4

Figure 55: Universal POD modes

The modes are similar to the natural modes of the linearized system. However, they
carry nonlinear reactions of the system to the earthquake excitation. Otherwise, it would
not be possible to approximate plastic deformations as presented in this example.

In the following the ground excitation records are presented together with the response
functions of the characteristic output node in Fig. 50, i.e. the horizontal response in x
direction and the hysteresis realized by the bending moment My dependent on the horizontal
displacement x. The responses are presented in Fig. 56, 57, 58, 59, 60 and 61.
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Figure 56: Response to the Bam earthquake, left subplot: relative storey displacement x of
the output node, right subplot: hysteresis - displacement x and moment My
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Figure 57: Response to the Northridge earthquake, left subplot: relative storey displacement
x of the output node, right subplot: hysteresis - relative displacement x and moment My
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ẍ
g

[m s2
]

0 40
-0.2

0.0

0.2

Time [s]

D
isp

la
cm

en
tx

[m
]

-0.2 0 0.2
-1000000.0

0.0

1000000.0

Displacement x [m]

M
y

[N
m

]

Newmark full
POD - reduced

Figure 58: Response to the Imperial Valley earthquake, left subplot: relative storey dis-
placement x of the output node, right subplot: hysteresis - relative displacement x and
moment My
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Figure 59: Response to the Landers earthquake, left subplot: relative storey displacement
x of the output node, right subplot: hysteresis - relative displacement x and moment My
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Figure 60: Response to the Loma Prieta earthquake, left subplot: relative storey displace-
ment x of the output node, right subplot: hysteresis - relative displacement x and moment
My
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Figure 61: Response to the Palm Springs earthquake, left subplot: relative storey displace-
ment x of the output node, right subplot: hysteresis - relative displacement x and moment
My
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4.5.3 Conclusion

The ”universal” MOR reduction presented in section 4.4 has been applied to a more complex
structure with different nonlinear properties, i.e. elasto plastic material behavior. The nu-
merical examples demonstrate that POD reduced model can describe the nonlinear behavior
of the structure and that an accurate approximation of the full system is possible. Hence,
the expectation that the POD MOR procedure is applicable for more complex structures
with a higher degree of nonlinearity is confirmed.

4.6 An optimized Monte Carlo simulation strategy by the proper
orthogonal decomposition

Estimations of structural resistance to various kinds of excitation is without any doubt one
of the main problems in engineering. Especially analyzation of earthquake excited structures
involve uncertainties not only in the excitation but also in the structure that necessitate
expensive calculation procedures in order to compute probabilities of structural failure or
to design structures from the human safety and from the monetary point of view.

The analysis requires the application of high dimensional nonlinear finite element struc-
tures in order to describe the behavior of the system as realistic as possible. The problem
of nonlinear random vibrations is very difficult and often analysis is based on linearization
methods, which try to describe the mean value and covariance function of the response of
the structure, referred to as equivalent linearization (Bucher (2009b)).

An alternative method, which describes an artificial realization, is the well known Monte
Carlo (MC) method. It estimates exact response statistics of randomly excited structures,
which can be seen as random computation experiments (Roberts and Spanos (1990)). Shi-
nozuka (1972) considers the Monte Carlo method as extremely useful for numerical analysis
of nonlinear structures subjected to random excitation.

In case of structural dynamics, samples of a certain kind of excitation (e.g. earthquake)
are generated and responses are calculated, i.e. by numeric integration. Depending on cer-
tain confidence levels a large number of samples is necessary to obtain acceptable estimation
of the response statistics. Therefore even SDOF systems often demand a very large amount
of computational effort. For multi degrees of freedom (MDOF) systems, especially nonlinear
problems, where the computation of the response to only one sample excitation can already
be very time consuming, the required calculation time using the MC method would exceed
any limit of acceptance. MOR is a definitive necessity in this context.

4.6.1 Earthquake sampling

The ground acceleration ẍg(t) is composed of a filtered white noise excitation a(t) and an
envelope function e(t) (Bucher (2009b)):

ẍg(t) = a(t) e(t) . (95)

For the filter a Kanai-Tajimi model is used, where the ground acceleration ẍg(t) is defined
as a linear combination of the displacement and velocity of a system with a SDOF. This
SDOF system is characterized by the natural frequency ωg and the damping ratio ζg. The
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power spectral density of the ground acceleration is (Bucher (2009b))

Saa(ω) = S0

4ζ2ω2
g + ω4

g(
ω2
g − ω2

)2
+ 4ζ2

gω
2
gω

2
. (96)

The filtered white noise excitation a(t) in Eq. (95) is generated based on the power spectral
density.

The envelope function

e(t) = 4

[
exp

(
− t

4

)
− exp

(
− t

2

)]
(97)

is necessary to represent the time-dependent intensity of the ground motion. Some examples
of generated earthquakes are shown in Fig. 62.
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Figure 62: Samples of generated earthquakes - ground acceleration ẍg(t); S0 = 0.1 [m2/s],
ζ = 0.3 [−], ωg = 15 [rad/s]

4.6.2 ”Universal” POD reduction - statistical evaluation

In this section another application of ”universal” model order reduction by the POD method,
which is much more appropriate for MC simulation, is presented. The snapshot matrix is
calculated by integrating over a small time period of one generated earthquake excitation
of the sample training set, and subsequently the ”universal” transformation matrix Φp,r is
computed. Every system is now truncated into the ”universal” POD subspace using Φp,r

and the approximated response is computed. One Monte Carlo run with 1000 samples is
performed. The parameters of the power spectral density using the Kanai-Tajimi filter are
S0 = 0.1 [m2/s], ωg = 15 [rad/s] and ζ = 0.3 [−]. The full response is calculated as well for
the purpose of comparison. A sketch of the approach of this reduction strategy is presented
in Fig. 63 for the sake of clarity.

The test structure is nonlinear and is analogous to the one in section 4.4.1, which is
presented in Fig. 34. A linear frame structure is resting on a nonlinear friction element,
which connects the structure with the ground.

The big advantage of this so called ”universal” POD approach is that the time consum-
ing procedure, i.e. the calculation of the snapshot matrix and following the transformation
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structure earthquake excitation 1

time integration

solution / part of solution

POD-basis Φu

MOR / POD-subspace

time integration

reduced solution

precalculation (once only)

generate earthquakestructure

transformation

full solution

universal POD-calculation

snapshot matrix Q

full system

1000 samples

Figure 63: Calculation approach of the universal POD reduction with generated earthquakes

matrix Φp,r, is performed only once for all computations concerning this structure. Espe-
cially when high dimensional models are generated an immense computational effort can be
saved by the utilization of only one transformation matrix for all response calculations.

Taking into account that µh = E[hrel] and σh = E[(hrel − µh)2] the error of the expec-
tation Eµ = µh,full − µh,POD and the error of the standard deviation Eσ = σh,full − σh,POD
are calculated. Statistical evaluations is presented in Fig. 64.

The results reveal out that the reduced system is an accurate approximation of the
results of the full system (in most cases more than adequately accurate for civil engineering
problems). An angular phase shift of the POD solution in comparison to the full solution is
observed as a result of the occurrence of frequencies appear that are not considered in the
observation matrix (i.e. snapshot matrix). Often it is sufficient to choose a small time period
at the beginning to assemble the observation matrix, but it is possible to define another
time period within the excitation time period as well in order to improve the accuracy of
the calculation. In this case an investigation of the frequency range dependent on time
would make sense (i.e. wavelet transformation). Sometimes it can help to calculate the
whole first excitation sample and spread the snapshots over the whole time period of the
transient excitation. However, an improvement of the quality of the reduced solution is not
guaranteed.

4.6.3 ”Universal” POD reduction - Monte Carlo Simulation numerical exam-
ple

Based on the statistical investigations of the previous section on a rather simple system,
subsequently a numerical demonstration of the Monte Carlo procedure together with the
POD strategy on a more complicated structure is presented. The dynamic structure is
the ”Las Vegas” building according to Fig. 50, where the ”universal” MOR strategy is
already presented with a set of six earthquake records. Elasto-plastic material properties
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Figure 64: Results of the statistical evaluation 1000 sample transient excitations; Left top:
Mean of the horizontal displacement µh; Right top: standard deviation of the relative
horizontal displacement σh; Left bottom: Error of the mean relative horizontal displacement
Eµ ; Right bottom: Error of the standard deviation of the relative horizontal displacement
Eσ

are implemented in the beam elements according to Fig. 49. In order to ensure that the
right number of plastic hinges is activated in the snapshot matrix in order to guarantee
an accurate approximation of the full system with high probability a test run with ten
earthquake samples is done. It turns out to chose the full responses to three earthquake
samples in order to assemble the snapshot matrix. 120 snapshots are taken spread in
equidistant time instants over the three response histories. The test run is presented in
Appendix A.

Threshold The aim is to design the dimension of the side length of the quadratic cross
section of the columns, b. The Monte Carlo Simulation procedure is done calculating 5×104

sample earthquakes within each design cycle. Each earthquake sample leads to a nonlinear
response history of every DOF. Fig. 65 presents those DOF that are utilized for the calcu-
lation output. If the maximum output of the relative storey displacement in the first floor
exceeds a defined value (treshold), it is assumed that the structure fails, i.e.

max ‖x1‖
{
< xmax → structure resists
> xmax → structure fails

, (98)

where i = 1 . . . 7 denotes the number of storey.
For an estimation of the threshold parameter a predetermined deformation curve for the

columns is defined. An applied deformation in the floors leads to the assumed function of
the bending moment within the column of the first storey, which is shown in Fig. 66. The
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Figure 65: 3-D visualization of the building construction and direction of the earthquake
excitation samples; degree of freedom for the response output x1

∆x1

M1

Figure 66: Applied deformation x1 and corresponding function of the bending moment of
the column in the first storey
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maximum elastic deformation of the ground storey is then

∆xel =
fydh

2

1.5Eb
, (99)

where h denotes the height of one storey. Consequently for a b of 0.25 an elastic limit for
the ground storey a deformation x of 0.05 [m] can be estimated. A threshold for the ground
storey deformation x of 0.1 [m] in x-direction is chosen. This corresponds with an additional
plastic deformation of 100 % with respect to the maximum elastic range. Additionally it has
to be mentioned that the maximum deformation in y-direction is about 1 % proportional to
the maximum deformation in x-direction. Therefore, the part of the maximum deformation
in y-direction is neglected for the Monte Carlo simulation procedures.

Numerical demonstration From the aspect of calculation speed the Newmark method
is comparable to the reduced POD strategy for this particular example. The number of
DOF is appropriate for the required storage, which is about 1.1 GB and is acceptable
for modern computers. The specific type of nonlinearity allows not to recalculate and
factorize the stiffness matrix at every time step but to use one stiffness matrix over a longer
integration time period for the Newton Raphson iteration procedures. The stiffness matrix
is calculated once based on the range, where the structure behaves linearly and therefore
no yielding appears (i.e. due to the beginning ascending slope of the stress-strain curve). If
there is no yielding no iteration is done, if the material yields the modified Newton Raphson
iteration (see Table 2) is performed using the calculated stiffness matrix. Consequently
only one stiffness matrix has to be calculated and factorized once before the calculation
procedure. This simplification of the Newmark algorithm provides in this specific example
a considerably time-saving algorithm to compare the reduced solution with the solution due
to the full calculation. Thus the reduced solution is compared with the Newmark integrated
solution of the full system. However, if more complicated material behavior is implemented
a recalculation and factorization of the stiffness matrix can be necessary, in contrary to the
central difference algorithm, where a recalculation as well as an factorization of the stiffness
matrix is not performed. For the Monte Carlo calculations the combination of the Central
difference method and the POD reduction has enormous advantages as this procedure needs
only a minimum amount of computational storage (with a comparable time effort at this
specific example). Therefore it is possible to run several time integration algorithms (i.e.
calculation of responses to a sample earthquake) parallel on one computer if the processor
has more than one core. The Monte Carlo Simulation is realized by activating five to 30
separated calculation procedures (threads) to speed up the computational time by a factor
of about five to 30.

Firstly, a set of a priori Monte Carlo simulation runs is conducted. The earthquake
samples are calculated according to section 4.6.1. The parameters for the calculation of the
power spectral density applying the Kanai-Tajimi filter are S0 = 0.1 [m2/s], ωg = 15 [rad/s]
and ζ = 0.3 [−]. 103 samples per run are conducted using the ”universal” MOR procedure.
Ten runs are done varying b by 0.02 [m]. The starting value for b is 0.2, i.e. a range of
0.2 [m] ≤ b ≤ 0.38 [m] is performed. For every run a new sample set is generated. The peak
ground acceleration of the sample earthquakes is comparable to those presented in Table 6.

For every run a new universal POD basis is calculated. 120 snapshots are taken from
the response of the structure to three generated earthquakes applying the input parameters
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presented in Fig. 62. The snapshots are spread equidistant over the the responses to the three
earthquake excitations. Appendix B shows a small test run of ten generated earthquakes
including the calculations of the full system applying the Newmark method and the reduced
calculations applying the universal POD algorithm.

The result of the first Monte Carlo simulation is shown in Fig. 67. Because of the large
mass of the floors, i.e. d = 0.4 [m], the dimension b of the quadratic cross section of the
columns gets considerably large if a low probability of failure is required. However, the
presentation of this numerical example is not so much focused on practical results but more
on the numerical strategies.

It can be seen that for larger dimensions of b, i.e. b = 0.36−0.38 [m] a higher number of
samples is required to provide more reliable results of the probability of failure. Therefore
three runs with 104 sample earthquakes are performed. The results can be seen in Fig. 68.
The results obtained by the first Monte Carlo run (103 samples per run) are pointed out
blue and the results obtained by the second Monte Carlo run (104 samples per run) are
pointed out red in Fig. 68.
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Figure 67: Results of the first Monte Carlo simulation with a threshold of xmax = 0.1 [m]
in the first floor; for every point 103 samples are performed

The results of the 104 to the 103 Monte Carlo sample run shows indeed differences as
presented in Fig. 68. Especially for a value of b = 0.37 [m] the number of samples of the firs
Monte Carlo run is way to small to present results, which are not zero. The second Monte
Carlo run, where the number of samples is ten times higher, is able to provide a useful
probability of failure of the structure. The conclusion is that a dimension b of 0.37 [m] has
to be chosen if a probability of failure of under 0.001 and a dimension b of 0.36 [m] has to
be chosen if a probability of failure of under 0.01, i.e. one %, is required.

4.6.4 Conclusion

The goal of this part is to provide a reduced Monte Carlo simulation strategy in order to
realize the application of high dimensional models. The innovative focal point is that the
full system has only to be calculated once in order to obtain the observation matrix and with
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Figure 68: Results of the second Monte Carlo simulation with a threshold of xmax = 0.1 [m]
in the first floor; for every blue point 103 samples are performed; for every red point 104

samples are performed

this information to assemble the deterministic transformation matrix containing the POD
modes. With this transformation matrix the whole Monte Carlo simulation is conducted.
Firstly the MC calculation procedure has been tested on a rather small and simple model,
which has been used on other sections before, in order to be able to compare the statistical
output of the full with the reduced system. Although the excitation samples differ from each
other the reduction strategy is promising and the approximation error is negligible for civil
engineering applications. Secondly the design of a more complicated structure is realized
using the Monte Carlo Simulation procedure together with the POD method. Advantages of
this method together with the practical implementation are carved out. Firstly eight Monte
Carlo simulation runs with 103 samples varying the dimension of the quadratic cross section
of the columns are performed. In order to produce reliable results concerning the probability
of failure a considerably high number of Monte Carlo samples within one run is necessary.
Therefore Monte Carlo simulation runs with 104 samples in a smaller range, which is chosen
due to the result of the first Monte Carlo simulation runs, is performed. This is possible for
high dimensional systems applying the ”universal” MOR strategy as presented. Obviously
the presented new strategy indeed creates the possibility to do artificial realizations on high
dimensional structures in an expenditure of time, which is practically justifiable.

5 A new hybrid model order reduction strategy for

impact problems

A novel hybrid MOR technique is presented, which includes the classical modal truncation
and the nonclassical POD method. The analytic solution of a linear problem requires modal
analysis, which creates the possibility to uncouple the DOF. Unfortunately if the number
of DOFs becomes high the calculation of the eigenvalue solution becomes expensive in an
disproportional way because the stiffness matrix must be inverted and in order to calculate
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the exact response all eigenvectors must be evaluated. The second disadvantage can be
avoided by a truncation of a large number of high frequency modes if the frequency content
of the excitation affects only a small number of lower modes, which is very effective for
earthquake excitation. However often this procedure requires much experience or an exten-
sive investigation of the frequency content of the excitation. For impact problems, where a
large frequency range is excited, the application of modal truncation, i.e. a cut off of higher
frequency modes, cannot approximate the full solution without loss of the high frequency
response, which can be responsible for maximum stresses and forces in the structure. There-
fore this section present a new strategy which considers lower modes and selected higher
frequency deterministic modes in order to increase accuracy within a minimum effort of
time.

The impact load is realized by a simple idealization based on Ziegler (1998). The time
period of contact is assumed to be zero, and thus the velocities of the two bodies are
subjected to an abrupt change. Conservation of momentum leads under consideration of
a collision factor, which defines the level of plasticity, to the velocities before and directly
after the contact time instant. The level of plasticity is zero for following calculations, as a
consequence a completely elastic impact is assumed. Consequently the impact load can be
described by the solution of the free damped vibration subjected to an initial velocity vector
ẋ0, where all components are zero except those, which are allocated to the spacial impact
point within the FE discretized mesh. For more detailed information about this idealization
of the impact problem the reader is referred to Ziegler (1998).

The aim is not to focus on the huge field of contact problems but much more on the
generation of an excitation that covers a broad frequency band in order to test the new
model order reduction method.

The homogenous linear damped set of equations of motion of the MDOF system is
equivalent to Eq. (2) without force function

Mẍ + Cẋ + Kx = 0 (100)

and the full response function is due to the initial conditions x(t = 0) = 0 and ẋ(t = 0) = ẋ0,
the sum of all decoupled homogenous solutions in the modal space (cf. Chopra (2001))

x(t) =
n∑
i=1

ϕm,iqm,i , qm,i = e−ζiω0,i

[
q̇0,i

ωd,i
sinωd,it

]
, (101)

where q̇0 = Φr
−1ẋ0. This solution is equal to the responses to piecewise analytic functions

presented in Eq. (16) and (18) with a zero vector as force function. An approximation of
the global response of the structure can be realized by the truncation of k modes, where k
is a small number, k � n (i.e. modal truncation, see section 3.4.1). Although the inversion
of the stiffness matrix is necessary the computational effort can be reduced significantly
by the numerical evaluation of only a small number of modes. However, high dimensional
movements, which are responsible for the main content of internal stresses and forces due
to the impact load, cannot be captured by the low dimensional truncation. By taking more
modes into account an accurate approximation of the exact response is not guaranteed
because the mode number, where to truncate high frequency motion, is not known and can
therefore only be estimated empirically.

Both the global lower frequency and the higher frequency modes, which are responsi-
ble for peak stresses and forces close to the impact area, must be considered for a more
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accurate approximation. High frequency motions can be captured in the observation ma-
trix, which is composed of the solution vectors in a small finite time period instantaneously
after the impact. The response in this small time period is calculated numerically. As
very effective method for this purpose the Newmark method for linear systems (see section
3.2.7) is chosen, which is an implicit time integration scheme but has an explicit formula-
tion for linear systems (requiring a matrix inversion) and is unconditionally stable for an
average acceleration approximation within one time step. Since this observation matrix
Xs = [x(t1), x(t2), ..., x(ts)] contains only high frequency information for a small time in-
terval t0 ≤ t ≤ ts, the low frequency modes of the modal truncated matrix Φm,r (Eq. 73),
which describes the global behavior, are added to the observation matrix

Xh = [Xs,Φm,r] =

 x1(t1) x1(t2) · · · x1(ts) ϕm,11 ϕm,12 · · · ϕm,1k
...

...
. . .

...
...

...
. . .

...
xn(t1) xn(t2) · · · xn(ts) ϕm,n1 ϕm,n2 · · · ϕm,nk

 . (102)

This now so-called hybrid snapshot matrix Xh contains local and global information
and the POD is realized by the singular value decomposition of the hybrid observation
matrix (see section 3.4.2). The left singular vectors are the hybrid POD modes and the
singular values give information about the energy content of the corresponding hybrid POD
mode. Since the singular values are arranged in an rectangular matrix in descending order,
a regulated truncation of the hybrid POD modes is conducted, according to Eq. (80) and
(84), where 99 percent of the total energy of the system is captured in the observation
time period. The transformation matrix into the hybrid subspace is now x ≈ Φhqh, where
Φh ∈ Rn×l , l� n and qh ∈ Rl×1 is the coordinate in the hybrid subspace.

The equation of motion in the hybrid subspace is

mhq̈h + chq̇h + khqh = 0 , (103)

where mh, ch, kh ∈ Rl×l are not diagonal matrices. The equation of motion is transformed
into the state space according to Eq. (19) and this linear ODE is after adaptation of Eq.

(23) to a zero force vector and under consideration of the initial condition yT
0 =

[
xT

0 , ẋ
T
0

]T
and the modal transformation z(t) = Φy(t) solved in the state space according to Eq. (27).

Subsequently, the combination of a numerical and an analytical procedure is introduced.
This combination can be realized by using different numerical methods. The aim is to benefit
from the advantages of the different methods in order to improve efficiency while preserving
required accuracy conditions. As a consequence, e.g., the selection of the numerical time
integration method to obtain the observation matrix depends on the size of the system.
Therefore if dimensions become very high, the central difference approach will be more
effective than the Newmark method. Thus it is up to the engineer to decide, which time
integration algorithm is used to calculate the snapshot matrix.

5.1 Numerical demonstration

A three dimensional linear portal frame structure is generated. The FE structure is as-
sembled by beam and shell/plate elements as presented in Fig. 69. The impact point is at
the left corner in the first floor, the mass is hitting the structure at the impact point in
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Figure 69: Portal frame structure with beam and plate/shell elements; lx = 10, ly = 10,
h = 5[m]; number of DOF = 1911; the impact point as well as the horizontal displacement
h(t) and the bending moment M(t) are highlighted in red

x-direction, as presented red marked in Fig. 69. An algorithm has been developed, which
makes it possible to change the number of stories, the number of horizontal frames in x and
y direction and the number of elements per story. As a consequence the new method can
be tested and compared to classical methods dependent on the level of high dimensionality
of the structure.

The first three structural global modes are depicted in Fig. 70. The hybrid observation
matrix is assembled by 50 observations, which are calculated numerically by the Newmark
method (∆t = 0.001[s]) and from the first ten normal modes. The first three hybrid POD
modes are shown in Fig. 71.

The results, i.e. horizontal displacements h(t) and the bending moment M(t) (defined
red marked in Fig. 69) are presented in Fig. 72 and 73, showing the full analytic, the modal
truncated and the hybrid reduced response. The displacement is approximated more accu-
rately by the hybrid method than by the method of modal truncation. The approximation
of the bending moment is accurately by the hybrid method, where the method of modal
truncation fails completely. In Fig. 74 the energy content of each POD mode is shown
in relation to the entire energy of the system in the observation time period according to
Eq. (84), representing the property of optimality. It is shown that taking more than 25
snapshots in an equidistant time period of 0.001 [s], i.e. a snapshot time period of 0.25 [s]
the result does not improve noticeable.

Normal mode 1 Normal mode 2 Normal mode 3

Figure 70: First 3 normal modes
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Hybrid POD mode 1 Hybrid POD mode 2 Hybrid POD mode 3

Figure 71: First 3 POD modes
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Figure 72: Displacement response h(t) (the lines of the hybrid truncation solution and full
response cover each other)
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Figure 73: Bending moment response M(t) (note: the lines of the hybrid truncation response
and full solution cover each other but modal truncation fails completely)
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Figure 74: Energy content of the hybrid POD modes
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Figure 75: Computational time as a function of the numbers of DOF

5.2 Numerical efficiency and limits

Here the calculation times of the full analytic, the numerical Newmark and the new hybrid
method is discussed. The efficiency with respect to the numbers of DOF is revealed in
Fig. 75. It is shown that the hybrid truncation method reduces the computational effort
compared to the classical methods by preserving a demanded level of accuracy in contrast
to the modal truncation strategy. Generally the computational time is reduced by a factor
of 1/2.

The error of the reduced system is the difference of the full solution x and the hybrid
solution xh, i.e.

E = x− xh . (104)

A scalar value for the error of the hybrid response is the first invariant of the covariance
matrix ΣE = E{(E− µ)(E− µ)T} of the error of the complete result, where µ = E{E} is
the expectation of the error (cf. section 4.3 as well). In Fig. 76 the error in form of the first
invariant of the covariance matrix is presented as a function of the number of observations.
As observations were taken every 0.001[s] the observation time period of 0.5[s] is equivalent
to 500 observations.

According to the outcomes of Fig. 76 it can in the main be concluded that the error
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Figure 76: First invariant of the error covariance matrix as a function of the observation
time period

decreases with increasing number of observations. However, a significant improvement of
the solution when taking more than 25 observations in an observation time period of 0.025
seconds into account is not achieved.

5.3 Conclusion

A new MOR procedure for impact problems is presented, i.e. the so-called hybrid reduc-
tion method. Modal truncation captures the global low frequency content and the proper
orthogonal decomposition describes local high frequency motions. It is shown that this hy-
brid reduction method is indeed able to approximate not only the displacement- but also
the internal force response accurately where the classical method of modal truncation fails
completely and the utilization of the analytic solution and numerical methods are much
more time consuming.

6 General conclusion

The spacial discretization by the FE method in earthquake engineering and structural dy-
namics leads often to high dimensional linear and nonlinear systems. Therefore, the calcula-
tion of the response of a structure to an earthquake excitation applying numeric integration
methods comes along with either expensive matrix operations (e.g. matrix factorizations)
or to a large number of calculation loops, which depends on the type of numeric algorithm,
i.e. implicit or explicit numeric integration. In structural dynamics the Newmark method
(i.e. implicit numeric integrator) has established because of its property of unconditional
stability (depends on the choice of two input parameters) and high accuracy. The downside
is that a factorization of the stiffness matrix is, dependent on the problem, at least once
or also repeatedly required in the calculation process. As a consequence the application
of implicit numeric integration algorithms is limited concerning the number of DOF of the
system, because a huge amount of storage is required. In this dissertation the application
of explicit integration methods is applied that is not limited because of required storage but
of calculation time. To overcome this problem MOR strategies based on the combination
of the central difference algorithm and the POD method are presented that should provide
accurate approximations of the responses to the full system in a fractional amount of time.
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This dissertation deals with MOR reduction strategies applying the POD method. The
presented MOR strategy is applied to simple earthquake excited structures and is conse-
quently improved concerning more complicated structures and methodical changes. Addi-
tionally a new MOR strategy for linear impact problems applying the POD is presented.

The POD method is applied to a planar linear and nonlinear frame system excited by the
El Centro earthquake record. The POD method is realized by integrating over a small part of
the beginning of the excitation, i.e. the snapshot time period, in the physical coordinate and
with this information the POD basis, i.e. the transformation matrix into the POD reduced
subspace, is generated. Subsequently, the reduced system is integrated over the whole time
period and then the coordinate in the reduced POD subspace is transformed back into the
physical coordinate. This procedure is presented on the linear frame structure. Here the
POD method is a useful alternative to the method of modal truncation. Additionally it
has advantages to the method of modal truncation as it does not need a factorization of
the stiffness matrix and is therefore not limited concerning number of DOF. Furthermore,
nonlinear reacting friction bearings are added to the planar frame system in the basements.
The application of the POD method produces accurate approximations of the full solution if
nonlinear reactions are activated within the snapshot time period. Not only displacements
but also moments and shear forces are calculated, which are approximated accurately as
well applying the POD method. Error estimations are done dependent on the used number
of POD modes and the length of the snapshot time period. The result is that only a small
number of POD modes is necessary for an accurate approximation. If the snapshot time
period is too short, the essential motion patterns cannot be described by the POD modes,
which leads to inaccurate approximations.

The POD method is extended to a ”universal” MOR strategy. The idea is that the POD
basis is calculated by integrating over a small time period of one earthquake. Subsequently,
this transformation matrix is not only used to solve the structure excited by this excitation
but also the structure excited by another earthquake with similar properties. Therefore,
in this dissertation the transformation matrix called ”universal” POD basis or ”universal”
transformation matrix. This new strategy is now presented on a similar planar nonlinear
frame system (nonlinearities are again caused by a friction element at the basement of
the structure) on two main types of earthquake excitation records, i.e. near-fault and
far-fault records. The far-fault excitation pair is the Fukushima foreshock record and the
Fukushima main earthquake. The structure is integrated in a small time period in the
middle of the Fukushima foreshock record, the POD basis is generated and subsequently the
structure is integrated over the whole Fukushima foreshock time period in the reduced POD
subspace. This procedure is equivalent to the procedure applied to the El Centro earthquake
before. The approximation is accurate, consequently the ”standard” POD procedure is again
verified. The ”universal” transformation matrix is now used to transform the structure
excited by the Fukushima main earthquake into the reduced POD subspace, integrate over
the whole time period and transform back into the physical coordinate. The approximation
applying this strategy is not as accurate as for the standard POD procedure. This is
because the intensity of the Fukushima foreshock record is smaller by a factor of thirty.
Therefore, nonlinear reactions cannot be captured in the snapshot matrix and consequently
not described at the response to the Fukushima main earthquake. An overestimation of
about 10 % of the maximum displacement can be observed. Generally spoken this is still
a useful approximation in civil engineering problems. The near-fault earthquake excitation
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pair is presented by the Imperial Valley and the Northridge record. The ”universal” POD
basis is calculated by integrating over a small part in the middle of the Imperial Valley
record. Subsequently the structure is integrated over the whole time period of the Imperial
Valley record in the reduced space, i.e. the ”standard” POD reduction procedure, and
over the whole time period of the Northridge record , i.e. the ”universal” POD reduction
strategy. Not only by the ”standard” but also by the ”universal” POD strategy the full
response is approximated accurately as these two records are similar concerning frequency
content and intensity.

The ”universal” POD strategy is now applied to a more complicated three-dimensional
nonlinear building structure discretized by linear shell/plate elements (floors) and nonlinear
beam elements (columns). The nonlinearities are caused by a bilinear stress-strain relation
in axial direction of the beam elements. Six earthquake records are presented, i.e. the Bam
earthquake record (2003), Northridge Rinaldi record (1994), Imperial Valley record (1979),
Landers record (1992), Loma Prieta record (1989), North Palm Springs record (1986). The
”universal” POD basis is calculated by integrating over the Northridge earthquake record.
300 snapshots are taken spread over the whole time period of the response to the Northridge
earthquake record. Accurate approximations of the full response functions can be observed.
Merely the approximation of the response to the Imperial Valley earthquake record shows
small differences. This is caused by the fact that plastic hinges appear that are not developed
in the Northridge earthquake. Therefore, these plastic reactions cannot be described in the
reduced system.

A new Monte Carlo simulation technique is presented applying the ”universal” POD
reduction strategy. A small Monte Carlo test run is performed on the nonlinear planar con-
siderably simple frame structure (same test structure presented for the ”universal” MOR
strategy on far-fault and near-fault records). The responses to 1000 earthquake samples are
calculated in the physical coordinate. The POD basis is obtained by a small part of the re-
sponse of one generated sample earthquake. Subsequently the POD approximated response
to all sample earthquakes is calculated. The responses of full and the reduced systems are
statistically evaluated and error estimations are done. The results of this optimized Monte
Carlo simulation strategy are promising. Therefore this new Monte Carlo simulation strat-
egy is demonstrated on the design of a nonlinear three-dimensional building construction,
which was already applied for the presentation of the ”universal” MOR strategy. The aim
is to design the length of the cross section b of the beam elements. The threshold is chosen
as 0.1 [m] of the elastic deformation in the first floor in x-direction. At first ten sample
runs with 103 samples are done in order to estimate the parameter b. Subsequently, in
order to assess small probabilities of failure, some sample runs with 104 samples are real-
ized in a smaller range. The Monte Carlo simulations in the reduced space are performed
by multithread algorithms in order to emphasize the advantages of the combination of the
POD method and the central difference algorithm, i.e. small amount of storage and short
computational time.

A ”hybrid” MOR strategy is presented. Impact problems excite a wide frequency con-
tent. Where the main global displacements can be approximated considerably accurate by
some low natural modes, stresses and forces near the impact point depend on high frequency
modes. For high dimensional systems the calculation of the full linear response requires the
solution of the eigenvalue problem and with it the factorization of the stiffness matrix and
additionally an iterative procedure to compute all eigenvalues and eigenvectors, which re-
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quires a lot of computational effort. Consequently, by a truncation of a few lower modes
it is possible to describe stresses and forces near the impact point. Therefore a ”hybrid”
method is proposed, where a snapshot matrix is composed by numeric integration of the
system directly after the impact time instant in order to describe high frequency motion.
Additionally a few lower natural modes are added to this snapshot matrix in order to de-
scribe global low frequency motion. The strategy is tested on a linear three-dimensional
structure. The results are promising. An accurate approximation of the displacements and
the stresses and forces can be observed calculating only over a small snapshot time period
directly after the impact time instant, where the method of modal truncation is not able
to approximate the displacement history as accurate as the new ”hybrid” method does and
fails completely describing stresses and forces near the impact point.
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lanczos process. IEEE transactions on computer-aided design of integrated circuits and
systems, 14(5):639–649, 1995.

Michael Greenberg. Advanced Engineering Mathematics. Springer, 2nd edition, 1998.

John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer, 1983.

R. C. Guyan. Reduction of stiffness and mass matrices. American Institute of Aeronautics
and Astronautics, 3(2):380–380, 1965.

E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the
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A Implementation Codes

In order not to interrupt the flow of information and to focus on the main scope of this
dissertation the following section describes the background of the presented calculation pro-
cedures. All implementations have been done using the program slangTNG, which is a
dynamic orientated program created in C++. Important parts of of the library for this
work are the ”tmath”-library, where the main matrix operations as well as several eigen-
value solvers of high dimensional matrices are implemented not only for dense but also for
sparse arrays. Also important for this dissertation is the FE library, which includes the
implementation of linear and nonlinear beam elements, plate/shell elements thetraeder ele-
ments, the dynamic model of friction based isolation devices, etc. The program is free and
can be downloaded from the homepage of Bucher (2014), where more detailed information
about the extent of the libraries is presented as well. The script language is LUA, which is
used because of its outstanding velocity. For information about this script language, which
is also the leading script languages for games, and a comprehensive manual the reader is
referred to the homepage of Ierusalimschy et al. (2014).

A.1 Implementation of piecwise analytic solution methods

A.1.1 Implementation of the response calculation of a structure to a piecewise
constant force function

1 --------------------------------------------------------------------

2 --------- function vectorization of a diagonal matrix ---------------

3 --------------------------------------------------------------------

4
5 function diag(matrix)

6 vector = tmath.ZeroVector(matrix:Rows())

7 vector:SetOnes ()

8 x = matrix*vector

9 return x

10 end

11
12 --------------------------------------------------------------------

13 --------- function create a vector with ones -----------------------

14 --------------------------------------------------------------------

15 function ones(dimension_rows ,dimension_cols)

16 local output = tmath.ZeroMatrix(dimension_rows ,dimension_cols)

17 for i = 1 , dimension_rows do

18 for k = 1 , dimension_cols do

19 output [{i-1,k-1}] = 1

20 end

21 end

22 return output

23 end

24
25 --------------------------------------------------------------------

26 ----------- function piecewise analytic response --------------------

27 -- input:

28 -- structure ... object with structural information

29 -- C ... damping matrix

30 -- F ... force matrix (ndof x timesteps)

31 -- delta_t ... time step

32 -- x_0 ... initial displacement

33 -- x_0_punkt ... initial velocity

34 -- truncation ... request for modal truncation (type: boolian)

35 -- output:

36 -- x ... solution matrix (ndof x timesteps )

37 -- functions called: diag(...), ones(...)
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38 --------------------------------------------------------------------

39 --------------------------------------------------------------------

40
41 function analytic_solution(structure , C, F, delta_t , x_0 , x_0_punkt , truncation)

42
43 local ndof = structure:GlobalDof ()

44 local number_of_modes

45 if truncation == 0 then

46 number_of_modes = ndof

47 else

48 number_of_modes = 10

49 end

50
51 -- modal analysis

52 local M = structure:SparseMass ()

53 local K = structure:SparseStiffness ()

54
55 local eig_s , phi = K:Eigen(M,number_of_modes -1)

56
57 local M = M:Expand ()

58 local K = K:Expand ()

59
60 local modal_m = phi:Transpose () * M * phi

61 modal_m = diag(modal_m)

62 local modal_k = phi:Transpose () * K * phi

63 modal_k = diag(modal_k)

64 local modal_c = phi:Transpose () * C * phi

65 modal_c = diag(modal_c)

66
67 local omega_0 = (modal_k:CW() / modal_m):CW() ^(1/2)

68 local modal_zeta = modal_c:CW() / (omega_0:CW()*modal_m *2)

69 local zeta = modal_zeta

70 local one_vector = ones(modal_zeta:Rows() ,1)

71 local omega_d = omega_0 * (one_vector - modal_zeta:CW()^2):CW()^(0.5)

72
73 -- force

74 local f_modal = phi:Transpose () * F

75
76 local Q = tmath.ZeroMatrix(modal_m:Rows(),F:Cols())

77
78 local inv_phi_tr = phi:Transpose ()*M

79 local q_0 = inv_phi_tr * x_0

80 local q_0_punkt = inv_phi_tr *x_0_punkt

81
82 for i = 1 , acc:Rows() do

83 local A = q_0 - f_modal:GetCols(i-1):CW() / (modal_m:CW() *omega_0:CW()^2)

84 local B = ( q_0_punkt + (omega_0:CW()*A):CW()*zeta ):CW() / omega_d

85
86 q_0 = f_modal:GetCols(i-1):CW() / (modal_m:CW()*omega_0:CW()^2) + (

(omega_0:CW()*zeta*delta_t *(-1)):CW():Exp() ):CW() * (A:CW()*

(omega_d*delta_t):CW():Cos() + B:CW()* (omega_d*delta_t):CW():Sin())

87 q_0_punkt = ( (omega_0:CW()*zeta*delta_t *(-1) ):CW():Exp() ):CW()* ( (

(omega_0:CW()*A):CW()*zeta *(-1) + omega_d:CW()*B ):CW()

*( omega_d*delta_t):CW():Cos() - ( (omega_0:CW()*B):CW()*zeta + omega_d:CW()*A

):CW() * (omega_d*delta_t):CW():Sin() )

88
89 Q[{0,i-1}] = q_0

90 end

91
92 local x = phi*Q

93
94 return x

95 end

Implementation of the response calculation of a structure to a piecewise constant
force function in the state space
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1 ---------------------------------------------------------------------------------

2 ----------- solution in the state space for not diagonalizable matrices ---------

3 -- input:

4 -- m ... mass matrix (sparse)

5 -- k ... stiffness matrix (sparse)

6 -- c ... damping matrix (sparse)

7 -- force ... force matrix (ndof x timesteps)

8 -- delta_t ... time_step

9 -- x_0 ... initial displacement

10 -- x_0_punkt ... initial velocity

11 -- output:

12 -- Q ... solution matrix (ndof x timesteps )

13 ---------------------------------------------------------------------------------

14 ---------------------------------------------------------------------------------

15 -- c Franz Bamer

16
17 function analytic_solution_state_space(m,k,c,force ,delta_t ,x_0 ,x_0_punkt)

18
19 local m = m:Expand ()

20 local c = c:Expand ()

21 local k = k:Expand ()

22
23 -- generate systemmatrix G

24 G = tmath.ZeroMatrix(k:Rows()*2,k:Rows()*2)

25 G[{0,k:Rows()}] = tmath.Identity(k:Rows())

26 G[{k:Rows() ,0}] = - tmath.Inverse(m) * k

27 G[{k:Rows(),k:Rows()}] = - tmath.Inverse(m) * c

28 local inv_G = tmath.Inverse(G)

29
30 local Q = tmath.ZeroMatrix(G:Rows(),force:Cols())

31
32 -- initial condition in the state space

33 local y_0 = tmath.ZeroVector(G:Rows())

34 y_0 [0] = x_0

35 y_0[k:Rows()] = x_0_punkt

36
37 -- excitation in the state space

38 local inv_m = tmath.Inverse(m)

39 local g = tmath.ZeroMatrix(G:Rows(),force:Cols())

40 for i = 1 , force:Cols() do

41 g[{k:Rows(),i-1}] = inv_m*force:GetCols(i-1)

42 end

43
44 -- calculate incremental matrix e^{G*delta_t}

45 local eig = tmath.MatrixEigenUnsym(G*delta_t)

46 local Z = eig:Exponential ()

47
48 for i = 1 , g:Cols() do

49 y_0 = Z*y_0 - inv_G*( tmath.Identity(G:Rows()) - Z) * g:GetCols(i-1)

50 Q[{0,i-1}] = y_0

51 end

52
53 Q = Q:GetRows(0,k:Rows())

54
55 return Q

56 end

A.2 Implementation of numeric time integration methods for lin-
ear systems

A.2.1 Implementation of the central difference algorithm for linear systems

1 ------------------------------------------------------------------

2 ----------- central diff algorithm for linear systems ------------

3 -- input:
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4 -- K ... stiffness matrix (sparse)

5 -- M ... mass matrix (sparse)

6 -- C ... damping matrix (sparse)

7 -- force ... force matrix (ndof x timesteps)

8 -- x_0 ... initial displacement

9 -- x_0_punkt ... initial velocity

10 -- delta_t ... time step

11 -- output:

12 -- x_erg ... solution matrix (ndof x timesteps )

13 ------------------------------------------------------------------

14 -- c Franz Bamer

15
16 function central_diff_linear(K,M,C,force ,x_0 ,x_0_punkt ,delta_t)

17
18 local dt = 0.0001

19 local M = M:Expand ()

20 local C = C:Expand ()

21 local K = K:Expand ()

22
23 --initial calculations

24 local U = x_0

25 local U_0_2_punkt = tmath.Inverse(M) * ( - C*x_0_punkt - K*x_0)

26 local U_minus1 = U - x_0_punkt*dt + U_0_2_punkt*dt^2 * 0.5

27
28 local k_dach = M / dt^2 + C / (2*dt)

29 local k_dach_inv = tmath.Inverse(k_dach)

30
31 --constants and storage reservations

32 local a = M / dt^2 - C / (2*dt)

33 local b = K - M*2 / dt^2

34 local t = delta_t

35 local i = 1

36 local x_erg = tmath.ZeroMatrix(U:Rows(),force:Cols())

37 local F = tmath.ZeroVector(force:Rows())

38 local R = tmath.ZeroVector(M:Rows())

39 local U1 = tmath.ZeroVector(M:Rows())

40
41 -- integration loop

42 while i < force:Cols() do

43
44 if (t >= delta_t -0 .000001 and t <= delta_t +0 .000001) then

45 F = force:GetCols(i-1)

46 t = 0

47 x_erg[{0,i-1}] = U

48 i = i + 1

49 print(i)

50 end

51 collectgarbage ()

52
53 R = F - a*U_minus1 - b*U

54 U1 = k_dach_inv*R

55 U_minus1 = U

56 U = U1

57
58 t = t + dt

59
60 if (U[{3 ,0}] >10000) then

61 print(’time step exceeds critical value ---> unstable ’)

62 break

63 end

64 end

65
66 return x_erg

67 end

A.2.2 Implementation of the Newmark algorithm for linear systems
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1 ------------------------------------------------------------------

2 -------------- newmark integration algorithm linear --------------

3 -- input:

4 -- K ... stiffness matrix (sparse)

5 -- M ... mass matrix (sparse)

6 -- C ... damping matrix (sparse)

7 -- force ... force matrix (ndof x timesteps)

8 -- delta_t ... time step

9 -- x_0 ... initial displacement

10 -- x_0_punkt ... initial velocity

11 -- output:

12 -- x_erg ... solution matrix (ndof x timesteps )

13 ------------------------------------------------------------------

14 -- c Franz Bamer

15
16 function newmark(K,M,C,force ,delta_t ,x_0 ,x_0_punkt)

17
18 local K = K:Expand ()

19 local M = M:Expand ()

20 local C = C:Expand ()

21
22 local gamma = 0.5

23 local beta = 0.25

24
25 local x = tmath.Matrix(force)

26 x:SetZero ()

27
28 --initial calculations

29 local u_0 = x_0

30 local u_0_punkt = x_0_punkt

31 local u_0_2punkt = tmath.Matrix(u_0)

32 local k_dach = K + C * gamma/(beta*delta_t) + M * 1/( beta*delta_t ^2)

33 local inv_k_dach = tmath.Inverse(k_dach)

34 local a = M * 1 / (beta*delta_t) + C * gamma/beta

35 local b = M * 1 / (2* beta) + C * delta_t * (gamma /(2* beta) - 1)

36
37 local f_minus_1 = tmath.ZeroVector(K:Rows())

38
39 -- integration loop

40 for i = 1 , force:Cols() do

41
42 local delta_p = force:GetCols(i-1) - f_minus_1

43 local delta_p_dach = delta_p + a * u_0_punkt + b * u_0_2punkt

44 local delta_u = inv_k_dach * delta_p_dach

45 local delta_u_punkt = delta_u * gamma /(beta*delta_t) - u_0_punkt * gamma/beta +

u_0_2punkt * delta_t * (1-gamma /(2* beta))

46 local delta_u_2punkt = delta_u * 1 / (beta * delta_t ^2) - u_0_punkt * 1 /

(beta*delta_t) - u_0_2punkt * 1 / (2* beta)

47
48 local u_1 = u_0 + delta_u

49 local u_1_punkt = u_0_punkt + delta_u_punkt

50 local u_1_2punkt = u_0_2punkt + delta_u_2punkt

51
52 u_0 = u_1

53 u_0_punkt = u_1_punkt

54 u_0_2punkt = u_1_2punkt

55
56 f_minus_1 = force:GetCols(i-1)

57
58 x[{0,i-1}] = u_1

59 print(i)

60
61 end

62
63 return x

64 end
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A.2.3 Numerical demonstration and test of the presented numeric time inte-
gration methods for linear systems

1 ----------------------------------------------------

2 -------- linear time integration testfile ----------

3 ----------------------------------------------------

4 -- c Franz Bamer

5
6 -- request for recalculation

7 analytic = true

8 analytic_state_space = true

9 central = true

10 newmark_integration = true

11
12 dofile(’function_structure_2d.tng ’)

13 dofile(’function_generate_earthquake_force.tng ’)

14 dofile(’function_rayleigh.tng ’)

15
16 dofile(’function_central_diff_linear.tng ’)

17 dofile(’function_analytic_solution.tng ’)

18 dofile(’function_analytic_solution_state_space.tng ’)

19 dofile(’function_newmark.tng ’)

20
21
22 dofile(’file_input.tng ’)

23
24 -- generate structure object

25 structure =

structure_2d(H,L,anzahl_riegel ,anzahl_stiel ,anzahl_stockwerke ,anzahl_rahmen ,false)

26 -- built mass -, stiffness and damping matrix

27 M = structure:SparseMass ()

28 K = structure:SparseStiffness ()

29 C = rayleigh(K,M)

30
31 -- visualize structure

32 v = graph.Graph3D(’structure ’)

33 tri = structure:Draw (3)

34 v:Triangles(tri)

35 v:Autoscale ()

36 v:Rotate (10,1,0,0)

37 v:Render ()

38 v:Collada(’structure.dae ’)

39 structure_output = structure:Sketch (0,0,1,0,0)

40 tmath.CBDrawLines(structure_output , "structure_linear.cb")

41
42 -- load transient excitation

43 earthquake = tmath.MatrixInput(’Bam.txt ’)

44 timeplot = earthquake:GetCols (0)

45 acc_x = earthquake:GetCols (1)

46 acc_y = tmath.Matrix(acc_x)

47 acc_y:SetZero ()

48 earthquake_force = generate_earthquake_force(acc_x ,acc_y ,M,structure)

49 delta_t = timeplot [1] - timeplot [0]

50
51 --initial conditions

52 x_0 = tmath.ZeroVector(M:Rows())

53 x_0_punkt = tmath.ZeroVector(M:Rows())

54
55 if central == true then

56 -- central difference integration

57 X_central_diff = central_diff_linear(K,M,C,earthquake_force ,x_0 ,x_0_punkt ,delta_t)

58 tmath.Output(X_central_diff ,’X_central.txt ’)

59 else

60 X_central_diff = tmath.MatrixInput(’X_central.txt ’)

61 end

62
63 if analytic == true then

64 -- piecewise analytic solution
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65 x_analytic = analytic_solution(structure , C, earthquake_force , delta_t , x_0 , x_0_punkt ,

0)

66 tmath.Output(x_analytic ,’x_analytic.txt ’)

67 else

68 x_analytic = tmath.MatrixInput(’x_analytic.txt ’)

69 end

70
71 if analytic_state_space == true then

72 -- piecewise analytic solution in the state space

73 x_analytic_state_space =

analytic_solution_state_space(M,K,C,earthquake_force ,delta_t ,x_0 ,x_0_punkt)

74 tmath.Output(x_analytic_state_space ,’x_analytic_state_space.txt ’)

75 else

76 x_analytic_state_space = tmath.MatrixInput(’x_analytic_state_space.txt ’)

77 end

78
79 if newmark_integration == true then

80 x_newmark = newmark(K,M,C,earthquake_force ,delta_t ,x_0 ,x_0_punkt)

81 tmath.Output(x_newmark ,’x_newmark.txt ’)

82 else

83 x_newmark = tmath.MatrixInput(’x_newmark.txt ’)

84 end

85
86 -- ouptput: horizontal degree of freedom in the left corner

87 selection = structure:GetNodeIndex(anzahl_stiel)

88 selection_matrix = structure:GetAllDisplacements ()

89 selection_matrix [{selection -1,0}] = 1

90 selection_vector = structure:ToDofDisplacements(selection_matrix)

91 index = 0

92 for i = 1 , selection_vector:Rows() do

93 if selection_vector[i-1] == 1 then

94 index = i

95 break

96 end

97 end

98
99 -- visualization of the response in the left corner

100 plot = graph.Graph("Response in the left corner", "Bright")

101 plot:AxisLabels("Time [s]", "displacement in x direction [m]")

102 plot:Plot(timeplot:Transpose (),X_central_diff:GetRows(index -1), 2, "central diff")

103 plot:Plot(timeplot:Transpose (),x_analytic:GetRows(index -1), 2, "analytic")

104 plot:Plot(timeplot:Transpose (),x_analytic_state_space:GetRows(index -1), 2, "displacement

analytic state space")

105 plot:Plot(timeplot:Transpose (),x_newmark:GetRows(index -1), 2, "newmark")

106
107 -- write output into text files

108 output_file = tmath.ZeroMatrix (2,timeplot:Rows())

109 output_file [{0 ,0}] = timeplot:Transpose ()

110 output_central = output_file

111 output_central [{1 ,0}] = X_central_diff:GetRows(index -1)

112 tmath.Output(output_central:Transpose (),’output_central_linear.txt ’)

113 output_analytic = output_file

114 output_analytic [{1 ,0}] = x_analytic:GetRows(index -1)

115 tmath.Output(output_analytic:Transpose (),’output_analytic_linear.txt ’)

116 output_analytic_state_space = output_file

117 output_analytic_state_space [{1 ,0}] = x_analytic_state_space:GetRows(index -1)

118 tmath.Output(output_analytic_state_space:Transpose (),’output_analytic_state_space_linear.txt ’)

119 output_newmark = output_file

120 output_newmark [{1 ,0}] = x_newmark:GetRows(index -1)

121 tmath.Output(output_newmark:Transpose (),’output_newmark_linear.txt ’)
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Figure 77: Linear test frame structure
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Figure 78: Response: Horizontal displacement of the left corner
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A.3 Implementation of numeric time integration methods for non-
linear systems

A.3.1 Implementation of the central difference algorithm for nonlinear systems

1 --------------------------------------------------------------

2 --------central diff algorithm for nonlinear systems ---------

3 -- input:

4 -- structure ... object with structural information

5 -- M ... mass matrix (sparse)

6 -- C ... damping matrix (sparse)

7 -- force ... force matrix (ndof x timesteps)

8 -- x_0 ... initial displacement

9 -- x_0_punkt ... initial velocity

10 -- delta_t ... time resolution of the excitation

11 -- output:

12 -- x_erg ... response (ndof x timesteps)

13 --------------------------------------------------------------

14 -- c Franz Bamer

15
16 function time_integration_central_diff_nonlinear(structure ,M,C,force ,x_0 ,x_0_punkt ,delta_t)

17
18 local dt = 0.0001

19
20 --initial calculations

21 local U = x_0

22 structure:SetDofDisplacements(U)

23 structure:GlobalUpdate ()

24 local U_0_2_punkt = - structure:GlobalResForce () - C:Dot(x_0_punkt)

25 local U_minus1 = U - x_0_punkt*dt + U_0_2_punkt*dt^2 * 0.5

26
27 local Keff = M:Add(C, 1/dt^2, 1/dt/2)

28
29 --constants and storage reservations

30 local a0 = 1/dt^2

31 local a1 = 1/(2* dt)

32 local a2 = 2/dt^2

33 local a3 = dt^2/2

34 local t = delta_t

35 local i = 1

36 local time_ = 0

37 local timeplot_ = tmath.ZeroMatrix (1,force:Cols())

38 local x_erg = tmath.ZeroMatrix(U:Rows(),force:Cols())

39 local F = tmath.ZeroVector(force:Rows())

40 local R = tmath.ZeroVector(M:Rows())

41 local U1 = tmath.ZeroVector(M:Rows())

42
43 -- integration loop

44 while i < force:Cols() do

45 if (t >= delta_t -0 .000001 and t <= delta_t +0 .000001) then

46 F = force:GetCols(i-1)

47 t = 0

48 x_erg[{0,i-1}] = U

49 i = i + 1

50 print(i)

51 end

52 collectgarbage ()

53 R = F - structure:GlobalResForce () + M:Dot(U*2/dt^2 - U_minus1/dt^2) +

C:Dot(U_minus1 /2/dt)

54 U1 = Keff:Solve(R)

55 structure:SetDofDisplacements(U1)

56 structure:GlobalUpdate ()

57 U_minus1 = U

58 U = U1

59 t = t + dt

60 if (U[{3 ,0}] >10000) then

61 print(’time step exceeds critical value ---> unstable ’)

62 break
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63 end

64 end

65
66 return x_erg

67 end

A.3.2 Implementation of the Newmark algorithm for nonlinear systems

1 ----------------------------------------------------------------

2 ------------------ function nonlinear Newmark -------------------

3 -- input:

4 -- structure ... object with structural information

5 -- K ... stiffness matrix (sparse)

6 -- M ... mass matrix (sparse)

7 -- C ... damping matrix (sparse)

8 -- x_0 ... initial displacement

9 -- x_0_punkt ... initial velocity

10 -- delta_t ... time resolution of the excitation

11 -- force ... force matrix (ndof x timesteps)

12 -- output:

13 -- x_erg ... response (ndof x timesteps)

14 ----------------------------------------------------------------

15 -- c Franz Bamer

16
17 function newmark_nonlinear(structure ,K,M,C,x_0 ,x_0_punkt ,delta_t ,force)

18
19 local X = tmath.ZeroMatrix(x_0:Rows(),force:Cols())

20
21 local dt = delta_t

22
23 local a0 = 4/dt^2

24 local a1 = 2/dt

25 local a2 = 4/dt

26 local a3 = 1

27 local a4 = 1

28 local a5 = 0

29 local a6 = dt/2

30 local a7 = dt/2

31
32 -- Effective " stiffness" for Newmark method

33 local Keff = K:Add(M, a0):Add(C,a1)

34 control.Interactive(true)

35 print(’effective stiffness matrix generated ’)

36 control.Interactive(false)

37
38 local U = x_0

39 local V = x_0_punkt

40 local A = tmath.Matrix(V)

41 -- Newmark loop NOTE: this implements the Newton -Raphson iteration using the initial

effective stiffness within one time step

42 for i=0,force:Cols() -1 do

43
44 local R1 = force:GetCols(i) + M:Dot(A + V*a2 + U*a0) + C:Dot(V + U*a1)

45 local U1 = Keff:Solve(R1)

46 for k=0,5 do

47 structure:SetDofDisplacements(U1)

48 local R = R1 - structure:GlobalResForce () - M:Dot(U1*a0) - C:Dot(U1*a1)

49 local Rnorm = tmath.Norm(R)

50 if (Rnorm < 1) then break end

51 local DU = Keff:Solve(R)

52 U1 = U1+DU

53 end

54 print(i)

55 local V1 = U1*a1 - U*a1 - V

56 local A1 = V1*a1 - V*a1 - A

57 U = tmath.Matrix(U1)

58 V = tmath.Matrix(V1)
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59 A = tmath.Matrix(A1)

60 structure:SetDofDisplacements(U)

61 structure:GlobalUpdate ()

62 X[{0,i}] = U

63 end

64
65 return X

66 end

A.3.3 Numerical demonstration and test of the presented numeric time inte-
gration methods for nonlinear systems

1 ----------------------------------------------------

2 ------- nonlinear time integration tests -----------

3 ----------------------------------------------------

4
5 -- request of the central difference calculation procedure

6 central = true

7 -- request of the newmark calculation procedure

8 newmark_integration = true

9
10 -- load function to create the structure object

11 dofile(’function_structure_2d.tng ’)

12 -- load function to

13 dofile(’function_generate_earthquake_force.tng ’)

14 dofile(’function_rayleigh.tng ’)

15
16 dofile(’function_time_integration_central_diff_nonlinear.tng ’)

17 dofile(’function_newmark_nonlinear.tng ’)

18
19 dofile(’file_input.tng ’)

20
21 -- create object with structural and geometrical information

22 structure =

structure_2d(H,L,anzahl_riegel ,anzahl_stiel ,anzahl_stockwerke ,anzahl_rahmen ,true)

23 -- create mass and stiffness matrix (sparse)

24 M = structure:SparseMass ()

25 K = structure:SparseStiffness ()

26 -- create Rayleigh damping matrix (sparse)

27 C = rayleigh(K,M)

28
29 -- graphical visualization of the structure

30 v = graph.Graph3D(’structure ’)

31 tri = structure:Draw (3)

32 v:Triangles(tri)

33 v:Autoscale ()

34 v:Rotate (10,1,0,0)

35 v:Render ()

36
37 -- load transient excitation

38 earthquake = tmath.MatrixInput(’imperial_valley.txt ’)

39 timeplot = earthquake:GetCols (0)

40 acc_x = earthquake:GetCols (1)

41 acc_y = tmath.Matrix(acc_x)

42 acc_y:SetZero ()

43 earthquake_force = generate_earthquake_force(acc_x ,acc_y ,M,structure)

44 delta_t = timeplot [1] - timeplot [0]

45
46 --initial conditions

47 x_0 = tmath.ZeroVector(M:Rows())

48 x_0_punkt = tmath.ZeroVector(M:Rows())

49
50 if central == true then

51 -- central difference integration algorithm

52 X_central_diff_nonlinear = time_integration_central_diff_nonlinear(structure , M, C,

earthquake_force , x_0 , x_0_punkt , delta_t)

53 tmath.Output(X_central_diff_nonlinear ,’X_central_nonlinear.txt ’)
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54 else

55 X_central_diff_nonlinear = tmath.MatrixInput(’X_central_nonlinear.txt ’)

56 end

57
58 if newmark_integration == true then

59 -- newmark time integration algorithm

60 x_newmark_nonlinear = newmark_nonlinear(structure , K, M, C, x_0 , x_0_punkt , delta_t ,

earthquake_force)

61 tmath.Output(x_newmark_nonlinear ,’x_newmark_nonlinear.txt ’)

62 else

63 x_newmark_nonlinear = tmath.MatrixInput(’x_newmark_nonlinear.txt ’)

64 end

65
66 -- ouptput: horizontal degree of freedom in the left corner

67 selection = structure:GetNodeIndex(anzahl_stiel)

68 selection_matrix = structure:GetAllDisplacements ()

69 selection_matrix [{selection -1,0}] = 1

70 selection_vector = structure:ToDofDisplacements(selection_matrix)

71 index = 0

72 for i = 1 , selection_vector:Rows() do

73 if selection_vector[i-1] == 1 then

74 index = i

75 break

76 end

77 end

78
79 -- visualization of the response

80 plot = graph.Graph("Response in the left corner", "Bright")

81 plot:AxisLabels("Time [s]", "displacement in x direction [m]")

82 plot:Plot(timeplot:Transpose (),X_central_diff_nonlinear:GetRows(index -1), 2, "central

diff")

83 plot:Plot(timeplot:Transpose (),x_newmark_nonlinear:GetRows(index -1), 2, "newmark")
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Figure 79: Nonlinear test structure with the friction isolator presented in section 4.3

98



0 40
-0.1

0

0.1

Time [s]

x
h
(t
)

newmark
central diff

Figure 80: Response: Horizontal displacement of the left corner

99



A.4 Implementation of mechanical models

In order to be able to vary the number of DOF of the structures the implementation includes
the possibility to change geometrical properties, e.g. number of stories, numbers of frames,
etc. two implementation codes are presented.

A.4.1 Two dimensional frame structure

1 ---------------------------------------------------------------------

2 ---------------- 2 dimensional frame structure ----------------------

3 -- input parameters :

4 -- H ... height of one storey

5 -- L ... length of one frame

6 -- anzahl_riegel ... number of elements per beam

7 -- anzahl_stiel ... number of elements per column

8 -- anzahl_stockwerke ... number of storeys

9 -- anzahl_rahmen ... number of frames

10 -- nonlinear ... request for nonlinear friction elements (boolian)

11 ---------------------------------------------------------------------

12 -- c Franz Bamer

13
14 function

structure_2d(H,L,anzahl_riegel ,anzahl_stiel ,anzahl_stockwerke ,anzahl_rahmen ,nonlinear)

15
16 -- define parameters for friction elements

17 local k0 = 4000000

18 local k1 = 400000

19 local fric = 10000

20
21 local s = fem.Structure("Rahmensystem")

22
23 -- create material ( linearized concrete)

24 local mat = s:AddMaterial (1026, ’LINEAR_ELASTIC ’)

25 mat:SetData(tmath.Matrix ({{3 .57 * 10000000000 , 0.3, 2500}}))

26
27 -- create nonlinear friction element

28 local mat = fem.Material_FPS (1028)

29 mat:SetData(tmath.Matrix ({{k1 , k0 , fric , 1}}))

30 s:AddMaterial(mat)

31
32 local sec = s:AddSection (2048, "RECT", 0)

33 sec:SetData(tmath.Matrix ({{ b, b}}))

34
35 local sec = s:AddSection (2049, "RECT", 0)

36 sec:SetData(tmath.Matrix ({{ b, 1.5*b}}))

37
38 local sec = s:AddSection (2050, ’RECT’ ,0)

39 sec:SetData(tmath.Matrix ({{ b, 3*b}} ))

40 sec:SetColor(tmath.Matrix ({{255 ,0 ,0 ,255}}))

41
42 -- create reference_node -------------------------------------------------

43 local number_ref_node = 100000000000

44 s:AddNodes(tmath.Matrix( {{ number_ref_node , -L/2, -L/2, 0 }} ))

45 local n = s:GetNode (100000000000)

46 n:SetAvailDof( tmath.Matrix( {{ 0,0,0,0,0,0 }} ))

47 --------------------------------------------------------------------------

48
49 -- create column elements

50 local nodes = tmath.ZeroMatrix(anzahl_stiel*anzahl_stockwerke +1,2)

51 for k = 1, anzahl_rahmen +1 do

52 for i = 1, anzahl_stiel*anzahl_stockwerke +1 do

53 nodes[{i-1,0}] = (k-1)*L

54 nodes[{i-1,1}] = H / anzahl_stiel *(i-1)

55 end

56 for i = 1 , nodes:Rows() do

57 s:AddNodes(tmath.Matrix( {{ (k-1)*( anzahl_stiel*anzahl_stockwerke +1) + i,

nodes[{i-1,0}], nodes[{i-1,1}], 0}} ))
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58 n=s:GetNode ((k-1)*( anzahl_stiel*anzahl_stockwerke +1) + i) --fuer setavaildof zugriff

auf den erstellten knoten

59 n:SetAvailDof(tmath.Matrix ({{1, 1, 0, 0, 0, 1}})) -- ebenes Problem!

60 end

61 for i = 1, anzahl_stiel*anzahl_stockwerke do

62 s:AddElements("RECT", 1026, 2048, tmath.Matrix( {{(k-1)*anzahl_stiel*anzahl_stockwerke

+ i, (k-1)*( anzahl_stiel*anzahl_stockwerke +1)+i,

(k-1)*( anzahl_stiel*anzahl_stockwerke +1)+i+1, number_ref_node }}))

63 end

64 end

65 local non = (anzahl_stiel*anzahl_stockwerke +1) * (anzahl_rahmen +1)

66 local noe = (anzahl_stiel*anzahl_stockwerke) * (anzahl_rahmen +1)

67
68 -- create beam elements

69 for k = 1, anzahl_rahmen do

70 for i = 1, anzahl_stockwerke do

71 s:AddNodes(tmath.Matrix( {{ non + i, (k-1)* L + L / anzahl_riegel , i*H, 0}} ))

72 n=s:GetNode(non + i) --fuer setavaildof zugriff auf den erstellten knoten

73 n:SetAvailDof(tmath.Matrix ({{1, 1, 0, 0, 0, 1}})) -- ebenes Problem!

74 s:AddElements("RECT", 1026, 2049, tmath.Matrix( {{noe + i,

(anzahl_stiel*anzahl_stockwerke +1)*(k-1) + i*anzahl_stiel +1, non+i,

number_ref_node }}))

75 end

76 non = non + anzahl_stockwerke

77 noe = noe + anzahl_stockwerke

78 end

79
80 local previous_node_first = non -( anzahl_stockwerke*anzahl_rahmen)+1

81 for j = 1, anzahl_rahmen do

82 for k = 1, anzahl_stockwerke do

83 for i = 1, anzahl_riegel -2 do

84 if i == 1 then

85 previous_node = previous_node_first + (j-1)*anzahl_stockwerke +(k-1)

86 end

87 s:AddNodes(tmath.Matrix( {{ non+i, (j-1)*L + L / anzahl_riegel *(i+1), k*H, 0}} ))

88 n=s:GetNode(non+i) --fuer setavaildof zugriff auf den erstellten knoten

89 n:SetAvailDof(tmath.Matrix ({{1, 1, 0, 0, 0, 1}})) -- ebenes Problem!

90 s:AddElements("RECT", 1026, 2049, tmath.Matrix( {{noe + i, previous_node , non+i,

number_ref_node }}))

91 previous_node = non+i

92 end

93 non = non + anzahl_riegel -2

94 noe = noe + anzahl_riegel -2

95 end

96 end

97
98 local previous_node = non - (anzahl_stockwerke*anzahl_rahmen *( anzahl_riegel -2)) +

anzahl_riegel -2

99 local next_node = anzahl_stockwerke*anzahl_stiel +1 + anzahl_stiel + 1

100 for k = 1, anzahl_rahmen do

101 for i = 1, anzahl_stockwerke do

102 s:AddElements("RECT", 1026, 2049, tmath.Matrix( {{noe + i, previous_node , next_node ,

number_ref_node }}))

103 previous_node = previous_node + anzahl_riegel -2

104 next_node = next_node + anzahl_stiel

105 end

106 next_node = next_node +1

107 end

108
109 if nonlinear == true then

110 local noe_nonlinear = 100000000

111 local previous_node = 1

112 local next_node = anzahl_stiel*anzahl_stockwerke +1 + 1

113 for i = 1, anzahl_rahmen do

114 s:AddElements("RECT", 1026, 2049, tmath.Matrix( {{ noe_nonlinear + i, previous_node ,

next_node , number_ref_node }}))

115 previous_node = next_node

116 next_node = next_node + anzahl_stiel*anzahl_stockwerke +1

117 end

118 noe_nonlinear = noe_nonlinear + anzahl_rahmen
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119 -- add node for fps element

120 local number_fps_node = 500005

121 s:AddNodes(tmath.Matrix( {{ number_fps_node , -L/2, 0, 0 }} ))

122 local n = s:GetNode(number_fps_node)

123 n:SetAvailDof( tmath.Matrix( {{ 0,0,0,0,0,0 }} ))

124 -- add fps element

125 s:AddElements("FPS", 1028, 2050, tmath.Matrix ({{ noe_nonlinear + 1, number_fps_node , 1,

number_ref_node }} ))

126
127 local node_bearing = 1

128 for i = 1, anzahl_rahmen + 1 do

129 n = s:GetNode(node_bearing)

130 n:SetAvailDof( tmath.Matrix( {{ 1,0,0,0,0,1 }} ))

131 node_bearing = node_bearing + anzahl_stiel*anzahl_stockwerke + 1

132 end

133 else

134 local node_bearing = 1

135 for i = 1, anzahl_rahmen + 1 do

136 n = s:GetNode(node_bearing)

137 n:SetAvailDof( tmath.Matrix( {{ 0,0,0,0,0,1 }} ))

138 node_bearing = node_bearing + anzahl_stiel*anzahl_stockwerke + 1

139 end

140 end

141
142 local ndof = s:GlobalDof () ---- this method has to be executed before the calculation

procedure

143
144 return s

145 end

A.4.2 Three dimensional frame structure

In the same manner as for the two-dimensional frame structure a three-dimensional test
object is generated, where the number of frames in x- and y-direction can be changed as the
number of elements per column and the number of elements per frame in x- and y-direction:

1 ------------------------------------------------------------------

2 -------------- generate 3d frame structure -----------------------

3 ------------------------------------------------------------------

4 -- c Franz Bamer

5
6 -- define number of nodes for the columns

7 -- note: this function is only called in frame_structure_3d

8 function column_basis_nodes_definition(anzahl_rahmen ,anzahl_riegel ,L,T)

9 -- nodes from column elements to plate elements

10 local column_basis_nodes = tmath.ZeroMatrix (( anzahl_rahmen +1)*( anzahl_plane +1) ,4)

11 local counter = 1

12 for j = 1 , anzahl_plane +1 do

13 for i = 1 , anzahl_rahmen + 1 do

14 column_basis_nodes [{counter -1 ,0}] = (anzahl_riegel*anzahl_rahmen

+1)*anzahl_riegel *(j-1) + anzahl_riegel *(i-1) + 1

15 column_basis_nodes [{counter -1 ,1}] = (i-1)*L

16 column_basis_nodes [{counter -1 ,2}] = (j-1)*T

17 column_basis_nodes [{counter -1 ,3}] = j

18 counter = counter + 1

19 end

20 end

21 return column_basis_nodes

22 end

23
24
25 ------------------------------------------------------------------

26 -- start main function to generate the structure -----------------

27 -- H ... heigth of one storey

28 -- L ... length of one frame in x direction

29 -- T ... length of one frame in y direction

30 -- anzahl_riegel ... number of nodes in x and y direction
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31 -- anzahl_stiel ... number of elements per column

32 -- anzahl_sockwerke ... number of storeys

33 -- anzahl_rahmen ... number of frames in x direction

34 -- anzahl_plane ... number of frames in y direction

35 -- b ... side length of the cross section of the beam elements

36 -- h ... height of the shell plate elements

37 ------------------------------------------------------------------

38 function frame_structure_3_d(H, L, T, anzahl_riegel , anzahl_stiel , anzahl_stockwerke ,

anzahl_rahmen , anzahl_plane , b, h)

39
40 local s = fem.Structure("Rahmensystem 3d")

41
42 local mat = s:AddMaterial (1026, ’LINEAR_ELASTIC ’)

43 mat:SetData(tmath.Matrix ({{3 .57 * 10000000000 , 0.3, 2500}}))

44
45 local sec = s:AddSection (2048, "RECT", 0)

46 sec:SetData(tmath.Matrix ({{ b, b}}))

47
48 local sec = s:AddSection (2049, "RECT", 0)

49 sec:SetData(tmath.Matrix ({{ b, b}}))

50 sec:SetColor(tmath.Matrix ({{0 ,200 ,200 ,200}}))

51
52 local sec = s:AddSection (2 , "SHELL" , 0 --[[ geometrisch linear --]] )

53 sec:SetData(tmath.Matrix ({{h}}))

54 sec:SetColor(tmath.Matrix ({{0 ,0 ,200 ,200}}))

55
56 local nodes_per_row = anzahl_riegel*anzahl_rahmen +1

57 local nodes_per_column = anzahl_riegel*anzahl_plane +1

58 local non_per_storey = nodes_per_row*nodes_per_column

59 local element_length = L/anzahl_riegel

60 local element_width = T/anzahl_riegel

61
62 local column_basis_nodes = column_basis_nodes_definition(anzahl_rahmen , anzahl_riegel ,

L, T)

63
64 local reference_nodes = tmath.ZeroMatrix(anzahl_plane +1,1)

65 for plane = 1 , reference_nodes:Rows() do

66 -- reference_node ---------------------------------------------------------

67 local reference_node = 1000000000 + plane

68 s:AddNodes(tmath.Matrix( {{ reference_node , -L/2, -L/2, -(plane -1)*T }} ))

69 local n = s:GetNode(reference_node)

70 n:SetAvailDof( tmath.Matrix( {{ 0,0,0,0,0,0 }} ))

71 --------------------------------------------------------------------------

72 reference_nodes [{plane -1 ,0}] = reference_node

73 end

74
75 local elements_per_row = nodes_per_row -1

76 local elements_per_column = nodes_per_column -1

77 local noe_per_storey = elements_per_row*elements_per_column *2

78
79 local non = 0

80 local noe = 0

81 -- plate elements

82 for stockwerke = 1 , anzahl_stockwerke do

83 local counter = 1

84 local x_node = 0

85 for j = 1 , nodes_per_column do

86 for i = 1 , nodes_per_row do

87 local y_node = (j-1)* element_width

88 local number_of_node = (stockwerke -1)*non_per_storey + (j-1)*nodes_per_row + i

89 --number_of_node = non + (j -1)* nodes_per_row + i

90 s:AddNodes(tmath.Matrix( {{ number_of_node , x_node , stockwerke*H, -y_node }} ))

91 local n = s:GetNode(number_of_node) --fuer setavaildof zugriff auf den erstellten

knoten

92 n:SetAvailDof(tmath.Matrix ({{1, 1, 1, 1, 1, 1}})) -- in jede richtung frei drehbar

93 x_node = x_node + element_length

94 counter = counter + 1

95 end

96 x_node = 0

97 end
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98 local counter = 1

99 for j = 1 , elements_per_column do

100 for i = 1 , elements_per_row do

101 s:AddElements("TRIANGLE3N", 1026, 2, tmath.Matrix ({{ noe + counter , (stockwerke -

1)*non_per_storey + (j-1)*( elements_per_row +1) + i , (stockwerke -

1)*non_per_storey + (j-1)*( elements_per_row +1) + i+1, (stockwerke -

1)*non_per_storey + j*( elements_per_row +1) +i }}))

102 counter = counter + 1

103 s:AddElements("TRIANGLE3N", 1026, 2, tmath.Matrix ({{ noe + counter , (stockwerke -

1)*non_per_storey + (j-1)*( elements_per_row +1) + i+1 , (stockwerke -

1)*non_per_storey + j*( elements_per_row +1) + i, (stockwerke -

1)*non_per_storey + j*( elements_per_row +1) +i+1 }}))

104 counter = counter + 1

105 end

106 end

107 local noe = noe + counter

108
109 end

110
111 local non = non_per_storey*anzahl_stockwerke

112 local noe = noe_per_storey*anzahl_stockwerke

113 local non_columns_per_storey = (anzahl_stiel -1)*column_basis_nodes:Rows()

114 local noe_columns_per_storey = (anzahl_stiel -2)*column_basis_nodes:Rows()

115
116 -- beam elements

117 local counter

118 for stockwerke = 1 , anzahl_stockwerke do

119
120 local column_length = H/anzahl_stiel

121 for columns = 1 , column_basis_nodes:Rows() do

122 for i = 1 , anzahl_stiel - 1 do

123 local number_of_node = non + (stockwerke -1)*non_columns_per_storey +

(columns -1)*( anzahl_stiel -1) + i

124 s:AddNodes(tmath.Matrix( {{ number_of_node , column_basis_nodes [{columns -1,1}],

(stockwerke -1)*H + column_length*i, -column_basis_nodes [{columns -1 ,2}]}} ))

125 local n=s:GetNode(number_of_node) --fuer setavaildof zugriff auf den erstellten

knoten

126 n:SetAvailDof(tmath.Matrix ({{1, 1, 1, 1, 1, 1}})) -- in jede richtung frei drehbar

127 end

128 end

129 counter = 1

130 for columns = 1 , column_basis_nodes:Rows() do

131 for i = 1 , anzahl_stiel -2 do

132 s:AddElements("RECT", 1026, 2048, tmath.Matrix( {{ noe + counter ,

non+(stockwerke -1)*non_columns_per_storey +( anzahl_stiel -1)*(columns -1) + i,

non + (stockwerke -1)*non_columns_per_storey +

(anzahl_stiel -1)*(columns -1)+i+1, reference_nodes [{

column_basis_nodes [{columns -1,3}]-1,0 }] }}))

133 counter = counter + 1

134 end

135 s:AddElements("RECT", 1026, 2048, tmath.Matrix( {{ noe + counter , non

+(stockwerke -1)*non_columns_per_storey+

(anzahl_stiel -1)*(columns -1)+anzahl_stiel -1, (stockwerke -1)*non_per_storey +

column_basis_nodes [{columns -1,0}], reference_nodes [{

column_basis_nodes [{columns -1,3}]-1,0 }] }}))

136 counter = counter + 1

137 end

138
139 end

140 noe = noe + counter

141 counter = 1

142 for stockwerke = 2 , anzahl_stockwerke do

143 for columns = 1 , column_basis_nodes:Rows() do

144 s:AddElements("RECT", 1026, 2048, tmath.Matrix( {{ noe + counter , non

+(stockwerke -1)*non_columns_per_storey+ (anzahl_stiel -1)*(columns -1) + 1,

(stockwerke -2)*non_per_storey + column_basis_nodes [{columns -1,0}],

reference_nodes [{ column_basis_nodes [{columns -1,3}]-1,0 }] }}))

145 counter = counter + 1

146 end

147 end
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148 noe = noe + counter

149 local running_number_nodes = non_per_storey*anzahl_stockwerke +

non_columns_per_storey*anzahl_stockwerke

150
151 for columns = 1 , column_basis_nodes:Rows() do

152 local number_of_node = running_number_nodes + columns

153 s:AddNodes(tmath.Matrix( {{ number_of_node , column_basis_nodes [{columns -1,1}], 0,

-column_basis_nodes [{columns -1 ,2}]}} ))

154 local n=s:GetNode(number_of_node) --fuer setavaildof zugriff auf den erstellten knoten

155 n:SetAvailDof(tmath.Matrix ({{0, 0, 0, 1, 1, 1}})) -- in jede richtung frei drehbar

aber nicht verschiebbar (gelenkig gelagert)

156 end

157 counter = 1

158 for columns = 1 , column_basis_nodes:Rows() do

159 s:AddElements("RECT", 1026, 2048, tmath.Matrix( {{ noe + counter , non +

(anzahl_stiel -1)*(columns -1) + 1, running_number_nodes + columns ,

reference_nodes [{ column_basis_nodes [{columns -1,3}]-1,0 }] }}))

160 counter = counter + 1

161 end

162
163 local ndof = s:GlobalDof () ---- always execute this method

164
165 return s

166 end

167
168
169 ------------------------------------------------------------------

170 ----- find dof for initial velocity and output -------------------

171 ------------------------------------------------------------------

172 function frame_structure_3_d_node_selection(structure , number_of_storey , number_column_x ,

number_column_y , anzahl_rahmen , anzahl_riegel , L, T)

173
174 column_basis_nodes = column_basis_nodes_definition(anzahl_rahmen ,anzahl_riegel ,L,T)

175 local nodes_per_row = anzahl_riegel*anzahl_rahmen +1

176 local nodes_per_column = anzahl_riegel*anzahl_plane +1

177 local non_per_storey = nodes_per_row*nodes_per_column

178
179 local number_column = (number_column_y - 1) * (anzahl_rahmen +1) + number_column_x

180
181 local selection = (number_of_storey -1)*non_per_storey + column_basis_nodes [{

number_column -1,0 }]

182
183 local auswahl_matrix = structure:GetAllDisplacements ()

184 auswahl_matrix:SetZero ()

185 local selection = structure:GetNodeIndex(selection)

186 auswahl_matrix [{selection ,0}] = 1

187 local velo = structure:ToDofDisplacements(auswahl_matrix)

188 return velo

189 end

190
191 ------------------------------------------------------------------

192 -- find number of element for force output ---------------------

193 ------------------------------------------------------------------

194 function frame_structure_3_d_element_selection(anzahl_riegel , anzahl_stiel ,

anzahl_stockwerke , anzahl_rahmen , anzahl_plane)

195
196 local nodes_per_row = anzahl_riegel*anzahl_rahmen +1

197 local nodes_per_column = anzahl_riegel*anzahl_plane +1

198 local noe = (nodes_per_row -1)*( nodes_per_column -1)*2

199 noe = noe*anzahl_stockwerke

200 noe = noe + anzahl_stiel

201 return noe

202 end
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A.4.3 Three dimensional building construction - Las Vegas building

The three dimensional building construction is composed of linear triangle shell / plate
elements and nonlinear beam elements. Nonlinearities are realized by a bilinear stress -
strain curve in axial direction with strain hardening. In this work this structure is called
Las Vegas building as the construction is motivated by the appearance of some hotels and
casinos in Las Vegas. Two functions are presented: one function for the generation of
the structure and one function for finding the desired DOF of the response after the time
integration procedure.

1 ---------------------------------------------------------------------

2 ---------------- Las Vegas building ---------------------------------

3 -- input:

4 -- h_storey ... height of one storey

5 -- number_of_stories ... number of stories

6 -- output:

7 -- structure ... object with all structural information

8 ---------------------------------------------------------------------

9 -- text files loaded:

10 -- load coordinates of nodes for one storey: nodes_plates.txt

11 -- load element identification : elements_plates.txt

12 -- load column nodes identification : column_elements.txt

13 ---------------------------------------------------------------------

14 -- c Franz Bamer

15
16 function building_las_vegas_w_c(h_storey ,number_of_stories)

17
18 local s = fem.Structure("building construction")

19 local nodes_plates = tmath.MatrixInput(’structure_and_earthquake/ functions_structure/

3d_geometrical_data_round_w_c/ nodes_plates.txt ’)

20 local elements_plates = tmath.MatrixInput(’structure_and_earthquake/

functions_structure/ 3d_geometrical_data_round_w_c/ elements_plates.txt ’)

21 local column_matrix = tmath.MatrixInput(’structure_and_earthquake/

functions_structure /3 d_geometrical_data_round_w_c/ column_elements.txt ’)

22
23 local mat = s:AddMaterial (302, "LINEAR_ELASTIC")

24 mat:SetData(tmath.Matrix ({{3 .57 * 10000000000 , 0.3, 2500}})) -- linearized concrete

25
26 -- define plastic material

27 local mm = s:AddMaterial (8, "ELASTIC_PLASTIC_1D")

28 mm:SetData(tmath.Matrix ({{2 .1e11 , .3, 7850, 2.4e8 , .01 }}))

29
30 local sec = s:AddSection (301 , "SHELL" , 0 --[[ geometrisch linear --]] )

31 sec:SetData(tmath.Matrix ({{0.3}}))

32 sec:SetColor(tmath.Matrix ({{0 ,0 ,200 ,200}}))

33
34 local sec = s:AddSection (2 , "SHELL" , 0 --[[ geometrisch linear --]] )

35 sec:SetData(tmath.Matrix ({{0.2}}))

36 sec:SetColor(tmath.Matrix ({{0 ,0 ,200 ,200}}))

37
38 local sec = s:AddSection (1 , "SHELL" , 0 --[[ geometrisch linear --]] )

39 sec:SetData(tmath.Matrix ({{0.4}}))

40 sec:SetColor(tmath.Matrix ({{200 ,200 ,200 ,200}}))

41
42 local sec = s:AddSection (3 , "RECT", 0 )

43 sec:SetData(tmath.Matrix ({{0.25 ,0.25 }}))

44 sec:SetColor(tmath.Matrix ({{0 ,0 ,200 ,200}}))

45
46 local x = nodes_plates:GetCols (1)

47 local y = nodes_plates:GetCols (2)

48
49 for storey = 1 , number_of_stories do

50 for i=1, nodes_plates:Rows() do

51 s:AddNodes(tmath.Matrix( {{ (storey -1)*nodes_plates:Rows() + i, x[i-1], y[i-1],

(storey -1)* h_storey }} ))

52 local n=s:GetNode(i) --fuer setavaildof zugriff auf den erstellten knoten

53 n:SetAvailDof(tmath.Matrix ({{1, 1, 1, 1, 1, 1}})) -- in jede richtung frei drehbar
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54 print(’plates nodes ’, storey , i)

55 end

56
57 for i = 1, elements_plates:Rows() do

58 s:AddElements("TRIANGLE3N", 302, 1, tmath.Matrix ({{

(storey -1)*elements_plates:Rows() + i, (storey -1)*nodes_plates:Rows() +

elements_plates [{i-1,1}], (storey -1)*nodes_plates:Rows() +

elements_plates [{i-1,2}], (storey -1)*nodes_plates:Rows() +

elements_plates [{i-1 ,3}]}}))

59 end

60
61 end

62
63 local non = nodes_plates:Rows()*number_of_stories

64 local noe = elements_plates:Rows()*number_of_stories

65 local non_per_column = 3

66 local length_column_element = h_storey / non_per_column

67 local number_reference_node = 1000000000

68 s:AddNodes(tmath.Matrix( {{ number_reference_node , 0, 0, 0 }} ))

69 local n=s:GetNode(number_reference_node)

70 n:SetAvailDof(tmath.Matrix ({{0, 0, 0, 0, 0, 0}})) -- fest

71
72 local non_vorher

73 local noe_vorher

74 for k = 1 , number_of_stories -1 do

75 for i = 1 , column_matrix:Rows() do

76 non_vorher = non

77 noe_vorher = noe

78 s:AddNodes( tmath.Matrix( {{ non_vorher+i, x[ column_matrix [{i-1,1}]-1 ] , y[

column_matrix [{i-1,1}]-1 ], (k-1)*h_storey + length_column_element }} ))

79 local n=s:GetNode(non_vorher+i)

80 n:SetAvailDof(tmath.Matrix ({{1, 1, 1, 1, 1, 1}}))

81 s:AddElements("RECT", 8, 3, tmath.Matrix ({{ noe_vorher+i, (k-1)*nodes_plates:Rows() +

column_matrix [{i-1,1}], non + i, number_reference_node }}))

82 end

83 non = non + column_matrix:Rows()

84 noe = noe + column_matrix:Rows()

85 for i = 1 , column_matrix:Rows() do

86 s:AddNodes( tmath.Matrix( {{ non+i, x[ column_matrix [{i-1,1}]-1 ] , y[

column_matrix [{i-1,1}]-1 ], (k-1)*h_storey + length_column_element *2 }} ))

87 local n=s:GetNode(non+i)

88 n:SetAvailDof(tmath.Matrix ({{1, 1, 1, 1, 1, 1}}))

89 s:AddElements("RECT", 8, 3, tmath.Matrix ({{ noe+i, non_vorher+i, non + i,

number_reference_node }}))

90 end

91 noe = noe + column_matrix:Rows()

92 for i = 1 , column_matrix:Rows() do

93 s:AddElements("RECT", 8, 3, tmath.Matrix ({{ noe+i, non+i, k*nodes_plates:Rows() +

column_matrix [{i-1,1}], number_reference_node }}))

94 end

95 non = non + column_matrix:Rows()

96 noe = noe + column_matrix:Rows()

97
98 end

99
100 -- boundary conditions

101
102 for i = 1,nodes_plates:Rows() do

103 local n = s:GetNode(i)

104 n:SetAvailDof( tmath.Matrix( {{ 0,0,0,0,0,0 }} ))

105 end

106
107 local ndof = s:GlobalDof () -- this method has to be executed before the calculation

procedure

108
109 return s

110 end
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Additionally a function is written, which localizes the degrees of freedom for the re-
sponse output. The localizing function of the Monte Carlo calculations is presented as
representative example for this type of functions.

1 ---------------------------------------------------------------------

2 ---------------- Las Vegas building response output -----------------

3 -- input:

4 -- structure ... object containing structural information

5 -- output:

6 -- select_vector ... vector with selected degrees of freedom

7 ---------------------------------------------------------------------

8 -- note: localize the dof in x direction of column 6 in

9 -- every storey

10 ---------------------------------------------------------------------

11 -- c Franz Bamer

12
13 function get_displacments(structure)

14
15 local auswahl_matrix = structure:GetAllDisplacements ()

16 auswahl_matrix:SetZero ()

17 local select1 = 96

18 local select2 = 181

19 local select3 = 266

20 local select4 = 351

21 local select5 = 436

22 local select6 = 521

23 local select7 = 606

24 select1 = structure:GetNodeIndex(select1) -- intern counter begins with 0 !!!!!!!

25 auswahl_matrix [{select1 ,0}] = 1

26 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

27 for i = 1 , auswahl_vector:Rows() do

28 if auswahl_vector[i-1] == 1 then

29 select1 = i

30 end

31 end

32
33 auswahl_matrix:SetZero ()

34 auswahl_vector:SetZero ()

35 select2 = structure:GetNodeIndex(select2)

36 auswahl_matrix [{select2 ,0}] = 1

37 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

38 for i = 1 , auswahl_vector:Rows() do

39 if auswahl_vector[i-1] == 1 then

40 select2 = i

41 end

42 end

43
44 auswahl_matrix:SetZero ()

45 auswahl_vector:SetZero ()

46 select3 = structure:GetNodeIndex(select3)

47 auswahl_matrix [{select3 ,0}] = 1

48 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

49 for i = 1 , auswahl_vector:Rows() do

50 if auswahl_vector[i-1] == 1 then

51 select3 = i

52 end

53 end

54
55 auswahl_matrix:SetZero ()

56 auswahl_vector:SetZero ()

57 select4 = structure:GetNodeIndex(select4)

58 auswahl_matrix [{select4 ,0}] = 1

59 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

60 for i = 1 , auswahl_vector:Rows() do

61 if auswahl_vector[i-1] == 1 then

62 select4 = i

63 end

64 end

65
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66 auswahl_matrix:SetZero ()

67 auswahl_vector:SetZero ()

68 select5 = structure:GetNodeIndex(select5)

69 auswahl_matrix [{select5 ,0}] = 1

70 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

71 for i = 1 , auswahl_vector:Rows() do

72 if auswahl_vector[i-1] == 1 then

73 select5 = i

74 end

75 end

76
77 auswahl_matrix:SetZero ()

78 auswahl_vector:SetZero ()

79 select6 = structure:GetNodeIndex(select6)

80 auswahl_matrix [{select6 ,0}] = 1

81 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

82 for i = 1 , auswahl_vector:Rows() do

83 if auswahl_vector[i-1] == 1 then

84 select6 = i

85 end

86 end

87
88 auswahl_matrix:SetZero ()

89 auswahl_vector:SetZero ()

90 select7 = structure:GetNodeIndex(select7)

91 auswahl_matrix [{select7 ,0}] = 1

92 local auswahl_vector = structure:ToDofDisplacements(auswahl_matrix)

93 for i = 1 , auswahl_vector:Rows() do

94 if auswahl_vector[i-1] == 1 then

95 select7 = i

96 end

97 end

98
99 select_vector = tmath.ZeroVector (7)

100 select_vector [0] = select1

101 select_vector [1] = select2

102 select_vector [2] = select3

103 select_vector [3] = select4

104 select_vector [4] = select5

105 select_vector [5] = select6

106 select_vector [6] = select7

107
108 return select_vector

109 end

A.5 Earthquake generation

Implementation of the earthquake generation

1 --------------------------------------------------------------------------

2 ------------------- earthquake sampling ----------------------------------

3 -- input:

4 -- N ... number of sample points

5 -- dt ... time step ( resolution )

6 -- output:

7 -- generated earthquake ... matrix output: first column time , second column excitation

history

8 --------------------------------------------------------------------------

9 -- c Christian Bucher , CMSD -VUT January 2011 , Franz Bamer

10
11 function generate(N,dt)

12 local NN=N/2

13 local ommax = math.pi/dt

14 local domega = ommax/NN

15 local omegas = tmath.Matrix(NN)

16 omegas:SetLinearRows (0, ommax)

17 local PSD = psd(omegas);

109



18 local var = tmath.Sum(PSD)*2* domega

19 local SQPS = (PSD*ommax):CW():Sqrt()

20 local re=stoch.Simulate(NN ,1):CW()*SQPS

21 local im=stoch.Simulate(NN ,1):CW()*SQPS

22 local x

23 x = spectral.IFT(re:AppendCols(im), domega)

24 local var1 = stoch.Sigma(x:Transpose ())[0]^2

25 local t = tmath.Matrix(x)

26 for i = 1, t:Rows() do

27 t[{i-1,0}] = dt*(i-1)

28 end

29 local e = tmath.Matrix(t)

30 e:SetZero ()

31 for i = 0 , t:Rows() -1 do

32 e[i] = 4*( math.exp(-0.25*t[i]) - math.exp(-0.5*t[i]))

33 end

34 local a = tmath.Matrix(t)

35 a:SetZero ()

36 a = e:CW() * x

37 local generated_earthquake = tmath.ZeroMatrix(a:Rows() ,2)

38 generated_earthquake [{0 ,0}] = t

39 generated_earthquake [{0 ,1}] = a

40 collectgarbage ()

41 return generated_earthquake

42 end

Line 12 calls the function, which calculates the power spectral density

1 --------------------------------------------------------------------------

2 ------------------- power spectral density -------------------------------

3 -- input:

4 -- oms ... input vector (frequency content)

5 -- output:

6 -- ps ... power spectral density

7 --------------------------------------------------------------------------

8 -- Christian Bucher , CMSD -VUT January 2011 , Franz Bamer

9
10 function psd(oms)

11 local N = oms:Rows()

12 local ps = tmath.Matrix(N)

13 local zeta = 0.3

14 local S_0 = 0.1

15 local omegag = 15

16 for i=0, N-1 do

17 local omega = oms[i]

18 ps[i] = S_0 * (4* zeta ^2* omegag ^2 + omegag ^4) / (( omegag^2-omega ^2)^2 +

4*zeta ^2* omegag ^2* omega ^2)

19 --ps[i] = 1./(1 -1.8*omega ^2+ omega ^4);

20 end

21 collectgarbage ()

22 return ps

23 end

Implementation of the calculation of the effective earthquake excitation on a structure

1 ----------------------------------------------------------------

2 ------------- generate effective earthquake force --------------

3 -- input:

4 -- acc_x ... excitation in x direction

5 -- acc_y ... excitation in y direction

6 -- M ... mass matrix (sparse)

7 -- structure ... object with structural information

8 -- output:

9 -- force ... matrix output: one force vector at every time point

10 ----------------------------------------------------------------

11 -- c Franz Bamer

12
13 function generate_earthquake_force(acc_x ,acc_y ,M,structure)

14
15 local force = tmath.ZeroMatrix(M:Rows(),acc_x:Rows())
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16
17 local auswahl= structure:GetAllDisplacements ()

18 auswahl:SetZero ()

19 local acc_vec = tmath.ZeroVector(M:Rows())

20 for i = 1 , acc_x:Rows() do

21 for k = 1 , auswahl:Rows() do

22 auswahl [{k-1,0}] = acc_x[i-1]

23 auswahl [{k-1,1}] = acc_y[i-1]

24 end

25 acc_vec = structure:ToDofDisplacements(auswahl)

26 force[{0,i-1}] = - M:Dot(acc_vec)

27 end

28 return force

29 end

A.6 Damping

1 ----------------------------------------------------------------

2 ------------------ function Rayleigh damping -------------------

3 -- input:

4 -- K ... stiffness matrix (sparse)

5 -- M ... mass matrix (sparse)

6 -- output:

7 -- C ... damping matrix (sparse)

8 ----------------------------------------------------------------

9 -- c Franz Bamer

10
11 function rayleigh(K,M)

12
13 local eval , evec = K:Eigen(M, 17)

14 local freq = eval:CW():Sqrt()/2/ math.pi

15
16 local zeta1 = 0.04

17 local zeta2 = 0.04

18 local omega1 = freq [0]*2* math.pi

19 local omega2 = freq [1]*2* math.pi

20
21 local alpha = 2*( zeta1*omega1 - zeta2*omega2)/( omega1^2-omega2 ^2)

22 local beta = 2* omega1*zeta1 - alpha*omega1 /2

23
24 local C = K:Add(M, alpha , beta)

25
26 return C

27 end
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B Test run demonstration of the Monte Carlo Simu-

lation for a three-dimensional building structure

According to section 4.6.3 a small test run of ten earthquake samples and the solution by
application of the Newmark method for the calculation of the full system and the ”universal”
POD method for the calculation of the reduced system. The three-dimensional nonlinear
structure is presented in Fig. 65. The response of the left corner (first floor) of the full
and the reduced solution as well as the corresponding earthquake samples are presented in
Fig. 81 - 90. The ”universal” POD basis is calculated by taking 120 snapshots spread in
equidistant time intervals over the responses to the first three earthquake excitation samples.
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Figure 81: Left subplot: earthquake sample excitation 1; right subplot: response x1 in the
left corner (first floor)
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Figure 82: Left subplot: earthquake sample excitation 2; right subplot: response x1 in the
left corner (first floor)
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Figure 83: Left subplot: earthquake sample excitation 3; right subplot: response x1 in the
left corner (first floor)
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Figure 84: Left subplot: earthquake sample excitation 4; right subplot: response x1 in the
left corner (first floor)

0 20
-10

0

10

Time [s]

ẍ
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Figure 85: Left subplot: earthquake sample excitation 5; right subplot: response x1 in the
left corner (first floor)
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Figure 86: Left subplot: earthquake sample excitation 6; right subplot: response x1 in the
left corner (first floor)
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Figure 87: Left subplot: earthquake sample excitation 7; right subplot: response x1 in the
left corner (first floor)
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Figure 88: Left subplot: earthquake sample excitation 8; right subplot: response x1 in the
left corner (first floor)
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Figure 89: Left subplot: earthquake sample excitation 9; right subplot: response x1 in the
left corner (first floor)
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Figure 90: Left subplot: earthquake sample excitation 10; right subplot: response x1 in the
left corner (first floor)
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ζ = 0.3 [−], ωg = 15 [rad/s] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

63 Calculation approach of the universal POD reduction with generated earth-
quakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

64 Results of the statistical evaluation 1000 sample transient excitations; Left
top: Mean of the horizontal displacement µh; Right top: standard deviation
of the relative horizontal displacement σh; Left bottom: Error of the mean
relative horizontal displacement Eµ ; Right bottom: Error of the standard
deviation of the relative horizontal displacement Eσ . . . . . . . . . . . . . . 69

65 3-D visualization of the building construction and direction of the earthquake
excitation samples; degree of freedom for the response output x1 . . . . . . . 70

66 Applied deformation x1 and corresponding function of the bending moment
of the column in the first storey . . . . . . . . . . . . . . . . . . . . . . . . . 70

67 Results of the first Monte Carlo simulation with a threshold of xmax = 0.1 [m]
in the first floor; for every point 103 samples are performed . . . . . . . . . . 72

68 Results of the second Monte Carlo simulation with a threshold of xmax =
0.1 [m] in the first floor; for every blue point 103 samples are performed; for
every red point 104 samples are performed . . . . . . . . . . . . . . . . . . . 73

69 Portal frame structure with beam and plate/shell elements; lx = 10, ly = 10,
h = 5[m]; number of DOF = 1911; the impact point as well as the horizontal
displacement h(t) and the bending moment M(t) are highlighted in red . . . 76

70 First 3 normal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
71 First 3 POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
72 Displacement response h(t) (the lines of the hybrid truncation solution and

full response cover each other) . . . . . . . . . . . . . . . . . . . . . . . . . . 77
73 Bending moment response M(t) (note: the lines of the hybrid truncation re-

sponse and full solution cover each other but modal truncation fails completely) 77
74 Energy content of the hybrid POD modes . . . . . . . . . . . . . . . . . . . 78
75 Computational time as a function of the numbers of DOF . . . . . . . . . . 78
76 First invariant of the error covariance matrix as a function of the observation

time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
77 Linear test frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
78 Response: Horizontal displacement of the left corner . . . . . . . . . . . . . . 94
79 Nonlinear test structure with the friction isolator presented in section 4.3 . . 98

118



80 Response: Horizontal displacement of the left corner . . . . . . . . . . . . . . 99
81 Left subplot: earthquake sample excitation 1; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
82 Left subplot: earthquake sample excitation 2; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
83 Left subplot: earthquake sample excitation 3; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
84 Left subplot: earthquake sample excitation 4; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
85 Left subplot: earthquake sample excitation 5; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
86 Left subplot: earthquake sample excitation 6; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
87 Left subplot: earthquake sample excitation 7; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
88 Left subplot: earthquake sample excitation 8; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
89 Left subplot: earthquake sample excitation 9; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
90 Left subplot: earthquake sample excitation 10; right subplot: response x1 in

the left corner (first floor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

119



List of Tables

1 Newton Raphson iteration within the time step ti to ti+1 (cf. Chopra (2001)) 23
2 Modified Newton Raphson iteration within the time step ti to ti+1 (cf. Chopra

(2001)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Information data of the Fukushima foreshock and the Fukushima main earth-

quake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Information data of the Imperial Valley earthquake and the Northridge earth-

quake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Calculation time [s]: Full calculation (central differences), POD calculation,

universal POD calculation (calculation time of the snapshot matrix: 6 seconds) 57
6 Earthquake excitation list; ∆t [s] resolution of the record data, T [s] duration

of the record, d [km] distance from epicenter, M moment magnitude, PGA
[m/s2] peak ground acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 62

120


