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Kurzfassung

Cloud Computing bildet die Basis für hochgradig verteilte und ressourcen-intensiven Big
Data Anwendungen. Deren Aufgabe ist es die von intelligenten Objekten, Multimedia,
sozialen Medien, Forschung und Unternehmen erzeugten Datenmengen zu verarbeiten.
Jeder in der Datenverarbeitung involvierte Akteur hat seine eigenen Methoden um
Störungen zu verwalten. Diese isolierte Betrachtungsweise ist im Falle von Cloud-basierten
Big Data Analyse Anwendungen hinderlich. Der Ausfall eines einzigen Elements der
verteilten Anwendung hat Auswirkungen auf den gesamten Analyse Prozess.

Das Ziel dieser Diplomarbeit ist es Grundlagen zu erarbeiten, die die Cloud-basierte
Big Data Analyse Anwendung als Ganzes und unter Einbeziehung ihrer spezifischen
Bedürfnisse betrachtet. Realisiert wird dieses Ziel durch die Durchführung einer Stake-
holder Analyse inklusive der Identifikation von Rollen und Akteuren, der Identifikation
und Beschreibung generischer Anwendungsfälle, einer Studie typischer Störungen, der
Entwicklung einer Klassifikation von Cloud-basierten Big Data Analyse Störungen und
dem Erfassen von Metriken, die für die Identifikation und Klassifizierung von Störungen
benötigt werden.

Wir haben eine generische Architektur eines Verwaltungssystems für Störungen entwi-
ckelt, die den unterschiedlichen Bedürfnissen von Cloud-basierten Big Data Analyse
Anwendungen angepasst werden kann. Die Basis dieser Architektur bilden Stakeholder,
Anwendungsfälle, Klassifikation und Softwarekomponentendiagramme. Merkmale beste-
hender Architekturen wurden erfasst und in den Kontext von Cloud-basierten Big Data
Anwendungen übersetzt. Ein Prototyp samt Testszenario bewertet die Architektur und
belegt deren Realisierbarkeit.
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Abstract

Cloud Computing delivers the resources for highly distributed and resource intensive
Big Data applications that analyses the massive amount of data produced by Internet of
Things (IoT), multimedia, social media, operation of enterprises, trading of enterprises
and scientific research. In the data transformation process various stakeholders add their
knowledge and expertise. The problem is that each of them has its own methodologies
and routines for incident management but none of them sees the process as a whole. A
failure of single elements in the data transformation process can lead to a domino effect
that impacts the whole process.

This thesis aims to deliver groundwork regarding an incident management process by
applying an end-to-end approach that considers the specific needs of Cloud-based Big
Data analytics. We present a stakeholder analysis including roles and actors. We
describe the necessary generic use cases that need to be implemented. An incident survey
details the characteristics of incidents of Cloud-based Big Data analytics. We develop a
classification of cloud hosted Big Data analytic incidents from the survey. Metrics are
added to describe the important elements in the data transformation process.

We introduce a generic architecture of an incident management system that can be
adapted to the specific needs of Cloud-based Big Data analytics applications. By
delivering common building blocks like stakeholders, use cases, classifications and software
component diagrams, the essentials of existing architectures are captured and put into the
perspective of the Cloud-based Big Data analytics application. We deliver a prototype
for the evaluation of the architecture and we illustrate with a test scenario the viability
of the generic architecture.
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CHAPTER 1
Introduction

Cloud Computing, Big Data and IoT are emerging technologies that are often considered
individually but in reality they are interconnected. IoT produces vast amounts of data,
Big Data’s main purpose is the analysis of enormous unstructured and structured data
sets and Cloud Computing delivers a platform that can flexibly satisfy high demands on
storage technology, computing power and Internet throughput required by Big Data. With
the move away from self hosted infrastructure and into the cloud, the way incidents are
identified changes significantly and has to be adapted to the requirements of the different
stakeholders. This thesis abstracts the Cloud-based Big Data analytics application to
establish a generic architecture for incident management.

1.1 Problem Description

The three technology paradigm Cloud Computing, Big Data and IoT are linked in their
emergence. Cloud Computing at the peak of the Gartner hype cycle in 2010[43] forms
the basis for resource intensive applications like Big Data. Big Data emerged at the
peak of the hype cycle in the year 2013[44] fully embracing the potential and abilities
of Cloud Computing. Enabled by the maturity of Big Data IoT entered the hype cycle
in 2014 [45]. IoT stayed there for 2015[46] and re-emerged in form of IoT platforms in
2017[47]. Cloud Computing is the key enabler for Big Data and Big Data is the key
enabler for the analysis of IoT data. But to this point and partly caused by the fast
emergence of Cloud Computing, Big Data and IoT, they are separated regarding incident
management. To the best of our knowledge there are no tools to support a coherent
end-to-end view of the incident detection, classification and management of Cloud-based
Big Data analytics. Several difficulties depend on the deployment model of the cloud.
Infrastructure as a Service (IaaS) typically provides more events, monitoring data and
alerts then Software as a Service (SaaS) and Platform as a Service (PaaS) since in this
deployment model the Cloud Service Customer (CSC) usually has more control over
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1. Introduction

the underlying operating infrastructure[32]. The large number of involved parties (e.g.
other CSCs, Cloud Service Partner (CSN),... ) complicates cloud incident handling
compared to conventional incident management, where only one particular organisation
is involved[87].

Incident handling for one particular organisation is a mature and understood topic[63]
[64] [65] [90] [91]. Incident handling in Cloud-based Big Data analytics is complicated
by the key characteristics of Cloud Computing, Big Data and IoT. Key characteristics
for Cloud Computing include accessibility of resources over the network (broad network
access), services consumed by multiple users (multi-tenancy), fast decrease and increase of
resources (rapid elasticity and scalability) and no control or knowledge over the location
of resources (resource pooling)[35]. Some key characteristics for Big Data[62] [40] are the
size of data (Volume), the speed of incoming and outgoing data (Velocity), the sources
and types of data (Variety) and the messiness and trustworthiness of data (Veracity). Key
challenges of IoT regarding data generation are real-time processing and the enormously
large amount of produced data[95][2].

The thesis will progress the field of incident management in Cloud-based Big Data
analytics by:

1. Supporting stakeholders establishing an incident management process in Cloud-
based Big Data analytics applications

2. Identifying missing support regarding key incidents

There are several approaches and recommendations for Cloud Computing incident man-
agement [88][58] of different organisations like Computer Emergency Response Team
Coordination Centre (CERT/CC), National Institute of Standards and Technology
(NIST) [57], International Organization for Standardization (ISO)[34], European Union
Agency for Network and Information Security (ENISA), SANS Institute and IT Infras-
tructure Library (ITIL) but there is no study regarding a generic end-to-end model and
architecture for incident management in Cloud-based Big Data analytics.

This thesis aims to answer the following research questions:

RQ1: What is the current state of the art of development of incident management/detec-
tion in Cloud-based Big Data analytics and what are the next steps to improve
it?

RQ2: What are current challenges that organisations experience when they are trying
to establish incident management in an environment where Big Data applications
analyse IoT data on top of hosted CSs?

Currently there is no consistent definition of incidents in Cloud-based Big Data analytics.
There are no certifications for tools, practices and trainings related to Cloud-based Big

2



1.2. Methodological Approach

Data analytics incident handling. The first research question addresses the problem that,
while Cloud-based Big Data analytics popularity is increasing, the incident management
capabilities of the various stakeholders involved in Cloud-based Big Data analytics do
not evolve fast enough and are often isolated from applications and cloud-hosted external
systems.

The different deployment models of CSs add complexity to the challenge of an incident
management system. Service level agreements are the core of any incident management
endeavour in Cloud-based Big Data analytics and need to be integrated in a thorough
incident management system.

The major aim of the thesis is to provide support for incident management in cloud
hosted Big Data systems. This includes the following objectives:

O1: A systematic study of the three involved technologies and their specific needs
regarding incident management.

O2: Finding stakeholders and use cases specific to the scenario

O3: Conduct a survey of incidents specific to Cloud-based Big Data analytics with IoT
data input

O4: Find metrics applicable for incident detection

O5: Introduce a generic architecture for an incident management system

O6: Illustrate the feasibility of the architecture by implementing a proof-of-concept with
already existing software

The sixth objective is a practical approach on the topic of incident management. This
objective explains how to access and collect relevant data for the incident management
process from the systems involved in Cloud-based Big Data analytics. The purpose of the
sixth objective is to prove that the generic architecture derived from the second, third,
fourth and fifth objective conceptually works. The practical approach either analyses
live - incident relevant - data from IoT or simulates incidents to prove the feasibility of
the generic architecture.

1.2 Methodological Approach
The first step is a study of traditional incident management as well as new developments
that are specific to Cloud Computing, Big Data and IoT. The study emphasises how the
split responsibility of the different stakeholders changes the current incident management
process. The outcome of the study is a list of generic stakeholders and corresponding
use cases that are necessary for a generic incident management system. The next step is
an incident survey that finds and describes incidents that are specifically tailored to the

3



1. Introduction

system seen as a whole. The study identifies the set of incidents that - if not managed -
negatively impact the progress of Cloud-based Big Data analytics. The set of incidents
delivers an information basis for a classification that enables the design of a generic
incident management architecture. The components of the architecture are implemented
in a proof-of-concept:

The proof-of-concept consists of different parts, conceivable at the moment:

P1: A raw data collector which uses the interfaces of the services to gather relevant
data for the incident management process. The raw data collector is extensible
so that future manageable applications can be added to the incident management
system.

P3: A rule-set that performs incident detection and classification on the clean data set
to identify distinct incidents.

The proof-of-concept is very extensible to satisfy the diversity of Cloud-based Big
Data analytics. The last step provides conclusions and future work regarding incident
management of Cloud-based Big Data analytics.

1.3 Contributions

This thesis introduces a new generic architecture for incident monitoring and classification
in Cloud-based Big Data analytics. An intensive related and background research delivers
the basis for the following contributions:

(i) Stakeholder analysis, identifying generic use cases, roles and actors tailored to the
requirements of Cloud-based Big Data analytics.

(ii) Incident survey identifying generic high-level incidents specific to Cloud-based Big
Data analytics.

(iii) Generic classification scheme for incidents of Cloud-based Big Data analytics
including a set of exemplary key-value metrics.

(iv) Describing software components of a generic architecture for incident management
of Cloud-based Big Data analytics.

(v) Implementing a proof-of-concept of the generic architecture for incident man-
agement of Cloud-based Big Data analytics. The software used in the proof-
of-concept is released as open source under https://github.com/rdsea/
bigdataincidentanalytics.

4
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1.4 Thesis Structure
The rest of the thesis is structured as follows:

• Chapter 2 present the intensive related work and background research.

• Chapter 3 shows the stakeholder analysis and relevant use cases for the generic
incident management architecture.

• Chapter 4 the results of the incident survey are presented and the classification is
described with the exemplary set of key-value metrics.

• Chapter 5 specifies the monitoring requirements and presents the software compo-
nents of the generic architecture.

• Chapter 6 presents the proof-of-concept.

• Chapter 7 summarises the findings of this thesis and the future work is outlined.
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CHAPTER 2
Background and State Of The Art

2.1 Cloud Computing
Cloud Computing is a term that emerged in the last few years, there are mainly two
definitions of Cloud Computing one from NIST [76] and one from ISO. [37] "Cloud
Computing is a paradigm for enabling network access to a scalable and elastic pool of
shareable physical or virtual resources with self-service provisioning and administration
on-demand" [37].

Cloud Computing touches several research fields and it is difficult to define the various
areas of application. The most common classification from NIST divides the service
models in (1) SaaS (2) PaaS and (3) IaaS. The ISO standard adds an additional layer
by differentiating between cloud capabilities (application, infrastructure and platform)
and cloud service categories. The later represents a group of CSs that possess a common
set of qualities. The complexity and growth of cloud services is best illustrated by the
vast amount of as-a-Service offerings and categories: Sugam Sharma in [95] from 2016
lists 78 new as-a-Service models. This illustrates how fast the as-a-Service modality of
Cloud Computing is evolving and how narrow the basic classification into three service
models (SaaS, PaaS, IaaS) is. The explosive growth of service models is partly due
to the fact of the big growth of data and the need of ubiquitous information access.
Another driving factor is that data as well as information have emerged as one of the
most valuable resources in the 21st century. The growth of data has fuelled the need for
new computation models and raised the overall available data that is in demand globally
across all disciplines[95]. The key characteristics of Cloud Computing influencing incident
management are "broad network access, measured service, multi-tenancy, on-demand
self service, rapid elasticity and scalability, resource pooling and payment on a as-need
basis"[35].

Cloud Computing and Big Data are connected. The emergence of Cloud Computing
provides solutions for the storage and processing needs of Big Data[19]. Cloud Computing
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has to handle the incoming flow of information of IoT while delivering the basis for the
Cloud-based Big Data analytics application that generates value out of the collected
data.

The International Organization for Standardization defines in [35] three major roles in
Cloud Computing, Cloud Service Provider (CSP), CSC and CSN. The CSC uses CSs
from the CSP and/or the CSN. The CSC performs business administration and manages
the used CSs. The CSN supports the CSC and/or CSP in their activities. The CSP
makes CSs available. The CSP focus lies on the provision, maintenance and delivery of
CSs to the CSC. The extensive set of activities the CSP delivers includes but are not
restricted to providing services, deploying services, monitoring services, providing audit
data and managing the business plan.

2.2 Internet of Things

IoT combines aspects and technologies of ubiquitous computing, pervasive computing,
Internet Protocol, sensing technologies, communication technologies and embedded
devices. The building block of this paradigm is the smart object, an everyday object
infused with intelligence that collects data from the environment, interacts/controls
the physical world and is interconnected to other smart objects to exchange data and
information[16].

An important concept regarding the management of incidents related to IoT are the
three different phases that illustrate the physical-cyber world interactions of smart
devices[16]. During the collection phase the device uses procedures for sensing the physical
environment. It collects real-time physical data and constructs a general perception of
it. The IoT device delivers the collected data to applications and servers during the
transmission phase. During the processing, managing and utilisation phase information
flows are analysed and processed, data is forwarded to applications and services and
feedback is provided to control the applications[16].

IoT devices produce an enormously large amount of data that needs to be stored,
processed, analysed and visualised efficiently to create value from it. The concepts of
Cloud Computing and Big Data offer solutions to the demands of IoT by elastically
providing the necessary resources and robust services to handle the data needs of IoT. The
data challenges of IoT, the necessity of robust but affordable computing resources and
the automation in humans routine tasks promised by IoT push the agenda of as-a-Service
Cloud Computing models and Big Data[95].

Data generated by IoT pose several challenges. The data collection in the context of
sensors often exhibit natural errors and incompleteness that lead to pollution in the
stored data and in succession to errors in the processing of the whole data set[2]. IoT
applications often require real-time processing that put high demands on the underlying
systems since real-time processing needs significantly more resources than near real-time
and/or batch processing. Real-time processing also changes the sequence of activities in
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the Big Data abstraction regarding several pre processing steps that cause even more
stress on computing resources.

Another challenge posed by IoT are the large volumes of data that subsequently stress
storage and processing capabilities of the underlying system[2]. The generation and
acquisition phase of the Cloud-based Big Data analytics application is simulated with
collected real life samples. Regarding analytics IoT can be viewed as a sensor network
that needs real-time analysis or as a way to collect massive amounts of data for later
analysis in a batch based system.

This duality leads to a split in incident management. Incidents that occur during (near)
real-time analysis and incidents that can manifest during the batch based analysis. Real-
time data processing is used in web-analytics, security event monitoring, optimising
devices (IoT devices based on behaviour and usage) and control system related tasks
(SmartGrid)[74].

IoT, Big Data and Cloud Computing are interdependent technologies and therefore
incident management has to view these systems as a whole. IoT has a large volume of
data traffic, involves diverse data from heterogeneous sources and produces inherently
messy unstructured data at high velocity [3]. This data characteristics of IoT lead
to challenges in terms of processing and storage of the data[2]. These problems are
only solvable with the techniques employed by Big Data. Big Data needs flexible and
foremost vast amounts of resources. This amount of resources can only be supplied by
Cloud Computing that enables Big Data applications with a scalable and elastic pool of
shareable physical or virtual resources[37].

2.3 Big Data

Initially Big Data was defined by the 3V model from Doug Laney where the 3V stand
for Volume, Velocity and Variety[62]. This definition however has been extended by IDC
which added Value[40] and by Microsoft and IBM which added Veracity or Variability
as a fourth characteristic. The trend to use words starting with a "V" continued and
currently some of the key characteristics associated with Big Data are volume, velocity,
variety, veracity, value, variability, volatility and validity.

There are various definitions of generic frameworks for Big Data but one that has been
tested against established Big Data applications is from Pääkkönen and Pakkala [83].
They developed a reference architecture that is mapped to several use cases including
Facebook, LinkedIn, Twitter and Netflix. Big Data sources are IoT, multimedia, social
media, operation of enterprises, trading of enterprises and scientific research[19].

Big Data acquisition includes data extraction, loading, pre-processing and data storage
where it is kept for further processing. During data collection raw data is acquired
from specific data sources. Data transportation transfers the raw data to the storage
infrastructure. Data pre-processing reduces noise, redundancies and inconsistencies,
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improves data quality and integrates data from different sources to improve analysis
accuracy and reduce storage expense[19][103].

The data storage system is divided into hardware infrastructure and data storage methods
or mechanism. The storage methods are classified into file systems, databases and
programming models. File systems constitute the foundation of the applications notable
here are Google’s file system (GFS) and the Hadoop Distributed File System (HDFS).
Database technology used for Big Data is mostly Not only SQL (NoSQL) since relational
databases cannot meet the challenges on categories and scales that are accompanied
by Big Data. The database programming model employed in Big Data has to support
large-scale parallel programs. This improves the performance of NoSQL and mitigates
performance differences compared to relational databases[19] [103].

Another important Big Data concept is the shift of the data life cycle process. The
common process steps consist of collection, preparation, analysis and action. Big Data
shifts this process because of dataset characteristics and the time window for the end-to-
end data life cycle. One example is the difference between the Extract-Load-Transform
and the Extract-Transform-Load model. Dataset characteristics in Big Data applications
with high volume need the data stored in a raw state before the data is cleaned and
organised. This concept is described as schema-on-read where the preparation steps
like cleaning, transformation and integration are performed when the data is read from
storage[77].

Throughout this thesis the following definition of [77] will be used: "Non-relational models,
frequently referred to as NoSQL, refer to logical data models that do not follow relational
algebra for the storage and manipulation of data"[77]. The development and enhancement
of information technologies lead to the generation of large amounts of data at a rapid
rate. The efficient analysis of the data needs specialised analysis methods[19] [103] [52].

The goal of this thesis is to develop incident monitoring, detection, identification and
classification process for Cloud-based Big Data analytics, with the primary function of
processing vast amounts of IoT generated data. The first step here is the abstraction of
the Big Data system to its core elements. The most fitting representation for this purpose
is the generic framework from [83]. The possible set of data sources is restricted by the
fixing the origin of data to IoT. This includes transportation and logistics, healthcare,
smart environment, personal and social domain, wireless sensor networks, smart society,
supply chain management and industry[89][16].

As soon as one element of the architecture is realised with a CS some stakeholders may
change like the CSC, the CSP or the CSN. These roles are split into several other roles.
It is important to notice that a party can occupy more than one role. For example a CSC
can consume and offer cloud services and is therefore also a CSP for a different CSC [36].

The responsibility and the competence for the incident management process depends on
the element of the Big Data architecture it is associated with. Every part of the Big
Data architecture can be realised with cloud services. The Big Data Acquisition can be
realised with protocols like AMQP and Java Message Service and tools like Storm, S4,
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Kafka, Flume or Hadoop[17]. The Big Data Analysis can be realised with methods like
web mining, data mining, stream mining, machine learning and tools like MapReduce,
Microsoft Dryad, Greenplum and Hana[103][19]. The Data Storage can be realised with
distributed file systems like HDFS or GFS, database systems like NoSQL or NewSQL
and programming models like MapReduce or Dryad. The Big Data Usage includes
MapReduce, Hive, Pig and Jaql for Hadoop-based approaches, Scope for Dryad and
Dremel or Sazwall for GFS[17]. The list above gives an impression of the building blocks
and their corresponding realisation via CSs.

The Big Data analysis process uses analytical tools or methods to inspect, transform
and model data to extract value[52]. The possible methods differ regarding the latency
requirements of the application. Data is characterised according to the time span it needs
to be analysed, e.g. real-time, near real-time or batch. This leads to the distinction
between stream processing (real-time or near real-time) and batch processing[74].

Figure 2.1: Quality of Analytics

Analytics stands for the discovery of meaningful pattens in data. It is used to refer to the
methods, their implementations in tools, and results of the use of the tools as interpreted
by the practitioner. Therefore Big Data couples analytics implementations design and
data storage design[77]. Analytics from stream data processing are stream pattern
matching, complex event processing, use of linked data, semantic approaches, entity
summarisation, data abstraction based on ontologies, communication work-flow patterns
and mobile analytics[52][22]. Analytics for batch based processing can be distinguished
regarding the degree of structure of the data from the IoT devices such as structured,
semi-structured or unstructured[52].

There are various possibilities to group Cloud-based Big Data analytics processes together
in phases. The National Institute of Standards and Technology orders them in [78]
regarding the value of the information. Demchenko et al. define a Big Data life-cycle [23]
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that is embedded in a corresponding framework. Both offer possibilities for classification.
Curry et al. describe a Big Data value chain in [22]. Kumaresan distinguishes [10]
regarding platform layers and components. Another possibility is the distinction regarding
the analytics workflow from [11]. Sharma’s distinguishing factor are aspects of Big Data
[95].

2.4 Stakeholder

The definition of a stakeholder is a person who has a stake in the success of the system[14].
But before identifying the relevant stakeholders the relevant parts of the system have to be
identified[97]. Stakeholders in generic architectures are different because the application
and design takes place in a broader, less-defined context which leads to a larger and
less-defined stakeholder base[6]. It is important to identify the key stakeholders instead of
generating an exhaustible list of possible stakeholders. The 4+1 model[60] is a well-known
application-class framework that only has one dimension and exactly 4 views, logical,
development, process and physical view. These views relate to different stakeholders and
their concerns[48]. The four basic stakeholder classes users, developers, integrators and
system engineers provide a very generic guidance regarding important stakeholders for a
generic architecture.

Stakeholders for a generic architecture have to be identified. Basic and generic types of
stakeholders are used as a starting point to identify the relevant stakeholders in the generic
architecture. The next step, in defining the relevant stakeholders, is the identification of
the underlying architecture and of the involved technologies and their interactions. It is
important to notice that the roles are informative in nature, they are generalised and
don’t intend to be normative or imply any business or deployment model[78].

A generic architecture has to account for the interplay between Cloud Computing, IoT
and Big Data. Therefore the reference frameworks are combined and reduced to the
relevant stakeholders for incident monitoring, detection and classification. The data
provider or data source is represented by the IoT devices. The deployment of the Big
Data framework can either be directly on physical resources or on top of an Cloud
Computing framework. In this case the framework is realised via a CSP.

2.4.1 Incident Management

"Incident management is the process responsible for managing the life-cycle of all incidents.
Incident management ensures that normal service operation is restored as quickly as
possible and the business impact is minimised"[65]. Incident management is a subsequent
operation of event management. Event management monitors all events that occur
through the Information Technology (IT) infrastructure, if the event is significant it
may initiate anyone or a combination of incident-, problem- or change tasks. An event
represents any change of state that is significant for the management of an IT service. In
a general sense, an event is a discrete change of state or status of a system or device[86].
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This implies that without the proper classification of an event no incident will be generated.
ITIL defines an incident "as an unplanned interruption to an IT service or reduction in
the quality of an IT service or a failure of a Configuration Item that has not yet impacted
an IT service"[64]. The main difference between incidents, events and service requests
is that events and service requests do not represent or are related to a disruption[64].
Following an approach from [87] the incident handling process is reduced to four main
phases, preparation, detection and analysis, incident response and post-incident.

The incident management needs to be automatic and manual. The incoming data is
filtered - inspected via stream processing for any known problems - and stored. The data
residing in storage is used for analysis to identify incidents manual that the automatic
monitoring is not yet aware of[101].

Monitored services and configuration items have to be measured if they are logging event
data into the monitoring system. Records have to be analysed, the logged events have to
be aggregated and filtered for incidents and the incidents have to be classified. Analyses
are only feasible if they result in an action taken, the identified incidents have to be
resolved and their root cause identified in the post-incident or post-mortem analysis[96].
A post-mortem is a description of an incident, its impact, the actions needed to mitigate
or resolve it, the root cause and the actions undertaken to prevent the incident from
reoccurring[90].

This thesis focuses on the identification of incidents in Big Data systems processing
IoT data hosted on CSs over the identification of an disruptive or possible disruptive
event. The preparation includes the definition of incident models. This includes time and
location of the incident (When) and an incident description. The incident description
provides information what failed (Where) , which areas are affected (What) and what
caused the incident (How). The what, where, when and how are the context dimensions
of the incident. The incident cause can be divided into the direct cause (the immediate
event that resulted in an outage), the root cause (the key problem) and contributing
factors[31] [20]. Root Cause Analysis (RCA) is beyond the scope of this thesis.

There are different ways incidents are created in the incident management system. The
event system can automatically create incidents based on predefined rule sets that
matches certain events and/or correlation of events to incidents. The rules are based
on knowledge from already known event-incident-correlations. Stakeholders can create
incidents manually. This only applies to incidents that are not known to the automatic
correlation and filter system of the event management. Domain experts can develop new
event-incident-correlations from the logged event data and add them to the event system
for the automatic detection of future incidents[64].

Incident matching is the procedure that matches incident classification data against
known problems, incidents, events and known errors. This procedure is necessary since
many incidents are experienced regularly and appropriate resolution actions are well
known. The incident matching process needs a known-error-database that can match
incident classifications against known errors. This process can solve redundant incidents
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effectively by finding resolutions quickly where possible[64].

Post-incident analysis and post-mortem culture is the final phase of the incident manage-
ment process and starts after the incident has been resolved. Information and results
from this phase deliver feedback for the improvement of the other phases. The collected
information from other phases assists in learning and improving the incident management
processes from a technical and managerial perspective[87]. Blameless post-mortem culture
evaluates what happened, how effective was the response, what needs to be done different
in the future and how to prevent this incident from happening in the future[90]. Some
aspects of post-incident analysis is connected with problem management and RCA which
is not the focus of this thesis. The important aspect here is that the processes of incident
detection, classification and matching are influenced by the post-incident analysis in the
regard that generated knowledge from post-incident is used to improve all these processes.

2.5 Software reference architecture
Architecture can be seen as the high-level structure of a system that describes fundamental
aspects of the system and gives guidance to anyone who actually has to design and build
the system. Architecture frameworks provide guidance but the sheer amount of available
architectures complicate the search for the fitting architecture to a specific problem.
Greefhorst et al. proposed a set of base dimensions as a distinction criteria between
different architectures [48].

Bass et al. defined a reference architecture as a reference model mapped onto software
elements that cooperatively implement the functionality of the reference model and the
data that flows between them. They defined a reference model as the decomposition of a
problem into parts that cooperatively solve the problem[13].

"A software reference architecture is a generic architecture for a class of system that is
used as a foundation for the design of concrete architectures from this class"[6]. The
generic nature of reference architectures leads to uncertainty regarding the architecture
goal definition and design.

Concrete architecture has a specific context. It reflects the business goals of stakeholders.
The identification of key architecture elements is well-studied and extensively published.
A reference architecture facilitates system design and development for multiple projects.
It designs applications in broader and less-defined context. The stakeholder base of a
reference architecture is larger and less-defined.

Angelov et. al. propose a model that is based on three dimensions and corresponding
sub-dimensions: the goal dimension, the context dimension and the design dimension[6].
A reference architecture balances these three dimensions.

The generic nature of a reference architecture makes them applicable in multiple, different
contexts where every context represents a set of stakeholders and their requirements.
The design of a generic architecture has to be on a high level of abstraction to guarantee
its usage in different contexts[6].
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Reference architectures offer a way to systematically reuse architectural knowledge when
developing new software systems. They are the common denominator of a collection of
similar systems. This collections always share a common technology domain, application
domain or problem domain. The design of a reference architecture is usually done by
capturing the essentials of existing architectures of a group of products and by taking
into account future needs and variability[39].

Regarding the design strategy of a reference architecture there are two approaches,
designing the reference architecture from scratch or designing it from existing architecture
artefacts. This refers to the distinction of research-driven and practice-driven design of
reference architectures[7]. Research-driven architectures provide a futuristic view of a
class of systems while practice-driven builds on already existing architecture artefacts
[39].

The type of generic architecture proposed in this thesis is based on a classical, standardi-
sation architecture to be implemented in multiple organisations. The design strategy is
practice-driven since there are available artefacts for Big Data systems, Cloud Comput-
ing, IoT and incident monitoring, detection and classification. The acquisition of data
collects information about available artefacts. The construction of the basic structure
of the generic architecture is derived from the collected information. The construction
includes the documentation of the generic architecture in architecture views and consists
of common building blocks like stakeholders, use cases and software component diagrams.
Variability is guaranteed since the design of the generic architecture is on a high level of
abstraction. The evaluation of the architecture is done with a proof of concept.

2.6 Taxonomies
"A taxonomy is a classification scheme that partitions a body of knowledge and defines
the relationship of the pieces"[86]. Classification processes use taxonomies for separating
and ordering.

Most of the references apply to the security incident management field, nonetheless the
same criteria are applicable in any incident context if and only if they are generic and
don’t specify a concrete scenario[5] [71]. Since the most research in this area is done in
the research field of security the methods and definitions postulated there are used to
identify the basic requirements of taxonomies and subsequently classifications.

List of terms is a list of single defined terms. This is a very simple straightforward
approach. This method tends to have problems regarding mutually exclusivity. An
exhaustive list is unmanageable long and difficult to apply. Another shortcoming is that
this kind of list ignores relationships between different types of incidents. Any type of
incident taxonomy using list of terms usually is a product for a very specific case with a
narrow focus[51].

Lists of categories are a variation of lists of terms by grouping several terms in broader
categories to counter the problem regarding the unmanageable amount of individual
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Figure 2.2: Computer and Network Incident Taxonomy taken from [51].

terms. The problem is that this list suffers from most of the same problems as one large
list of terms[51].

Result categories group all incidents in basic categories that describe the result of the
incident. An example is the incident of loosing one node in a cluster which leads to a
significant reduction in the overall performance. The incident is classified regarding the
corresponding result of the incident. This approach reduces the amount of categories but
it limits the possible insight and information[51].

Matrixes classify based on dimensions. This allows categorisation of incidents with
individual cells that represent a combination of different incident categories and incident
types. One of the simplest ways is illustrated in [33] where the matrix has two dimensions.
The additional dimensions in comparison with lists has advantages but the terms inside
the matrix cells and the connections between them have to be intuitive and logic[51].

Elnagdy et al. [28] proposed a incident classification using ontology-based knowledge
representation.

2.7 Monitoring

Monitoring is the basis of incident management. Monitoring forms the most basic layer
of service reliability and incident management that enables more advanced elements
including, incident detection, incident classification, incident response, "post-mortem"
and RCA. The hierarchy of this elements is illustrated in Figure 2.3[90].
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Figure 2.3: Incident Management Hierarchy taken from [90].

Incident detection and classification for services relies heavily on monitoring data collected
at runtime. This includes service-level logs, performance counters, and machine/process/service-
level events. In general various types of monitoring data has to be collected since each
type of data usually only reflects specific aspects and components of the monitored system.
Lou et al. sorted the monitoring data for a software service in three main types[68]:

(i) Performance counters

(ii) Events from the underlying operating system

(iii) Logs created by various components

There are different approaches when it comes to the identification of metrics that have to
be monitored. Lou et al. [68] employ a data driven incident management that uses class
association rules to identify incident beacons for monitoring. This method has been tested
in large-scale online services at Microsoft™. The solution had two driving factors, first
most incidents in the monitored system lasted less then 2 hours which led to over-fitting
problems when using other algorithms. Second, when compared with classification-based
techniques that order every incident in a single model, the false negative ratio was lower
with the class association rules model[68].

Another viable approach regarding incident identification is complex event processing,
where flowing information items are filtered and combined to form higher-level events.
This model detects occurrences of particular patterns of low-level events, filters them
and decides if they are relevant for the complex event processing systems[21].

Murphy et al. describe in detail the application Borgmon that monitors the large-scale
cluster manager Borg[100] at Google™. Borgmon is a distributed time-series monitoring
solution for the job scheduling infrastructure Borg from the year 2003. To facilitate
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mass collection of required metrics, a standardised format was developed that enables
instrumentation of the application. The generated time-series are stored in in-memory
databases and regularly check pointed to disk. The rule evaluation is kept so simple that
it practically resembles a programmable calculator[90].
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CHAPTER 3
Use Cases and Challenges

3.1 Motivating Scenario
Let us consider a case of Base transceiver station (BTS)s providing wireless communication.
BTSs consist of different equipment working together like transceiver, power amplifier,
filter, low noise amplifier, duplexer, antenna system and power module. The BTS is
usually equipped with alarm management that is capable of detecting equipment and
environment alarm [98]. The various equipment produces data that is fed to an IoT
gateway. For further processing, the data is forwarded to a message broker then the data
is streamed into a data store with a non relational model and processed. Figure 3.1
shows a high level system architecture of a Big Data application processing IoT log data
from BTS.

The BTSs form a large-scale, geo-distributed system providing network services to millions
of users. The system delivers data to a Cloud-based Big Data analytics application for
further processing consisting of the following parts:

(i) The data source such as IoT or data collectors that deliver the data assets

(ii) Data extraction Software such as message brokers, that deliver connectivity

(iii) Data loading and preprocessing that push the data assets into data stores

(iv) Data stores that save the data assets

(v) Data analysis structures

(vi) Interfacing and visualisation

The owner of the different parts of the system can vary. Analysis and/or visualisation of
data is of interest for the data end user. The owner of the IoT, the message broker, the
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Figure 3.1: Base Transceiver Station Processing of Log Files.

processing platforms and the underlying physical infrastructure do not have to be the
same.

The CSP role varies with the degree of outsourcing that in turn varies for different
deployments. Every service can be realised by a CS. The incident classification uses the
abstraction of the cloud based system so that there is no distinction between self hosted
parts or CSs regarding the collection of monitoring data. Therefore the distinction is not
between different deployment models of CSs (IaaS, PaaS,...) but instead it focuses only
if CS can provide the necessary data for the analysis of an incident or not.

Access to data needed to identify an incident has to be provided for any service in the
scenario by its owner. The owner of the system has to be able to identify any incidents
as if the complete scenario is self hosted. The stakeholders of the CSs are superimposed
with the roles of the cloud based system abstraction regarding the perspective of the
incident analysis. For example it does not matter if an incident is caused by a role from
the cloud based system abstraction or from a role of the CS that superimposes a cloud
based system role. The basis of the analysis is provided by monitoring data from the
services.

The loss of control of self hosted infrastructures due to usage of CSs makes monitoring
cloud deployments of Big Data frameworks paramount. Since the CSC gives away control,
the mechanism for monitoring and in succession for the collections of incident relevant
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event data need to be mature. The CSP needs to deliver all necessary data to guarantee
the same efficient incident management as a self hosted system.

There is no adhered standard regarding monitoring and incident management and this
can lead to a famous Cloud Computing specific problem, vendor lock-in. CSP typically
employ incident management systems and monitoring solutions that comply with the
needs of their companies and without standards this can lead to vendor lock-in where
the costs of switching to a different provider and creating the incident management
process from scratch pose a significant obstacle. The various stakeholders of the scenario
must have a common understanding over standard procedures regarding the mutual
administered incident process.

Traditional incident management approaches do not cover all properties of Big Data
systems processing IoT data, the amount of processed data, the geographical distribution
and the complex interaction between the different system components pose problems.
As a result the incident management takes place in the separate parts of the Big Data
system isolated from each other whereas it has to view the system as a whole. This way
it can identify root causes of incidents whilst ignoring ownership of singular components.

The combination of the different architecture models, the deployment models and the focus
on incident monitoring, classification and analysis leads to the following stakeholders:

1. System Orchestrator orchestrates the system the data scientist is one actor of this
stakeholder

2. Data provider creates data and pushes them into the Big Data application

3. Application provider provides algorithms and methodologies

4. Framework or Service Provider, CSP offering services, platforms, software and
infrastructure

5. Data Consumer interfaces with the application and visualises deliverables

The system orchestrator integrates the Big Data applications into an operational vertical
system. This stakeholder defines the requirements of the system including policy, gover-
nance, architecture, resources, and business requirements. The system orchestrator can
be divided into actors like the data scientist and the architect. The actor data scientist for
example is responsible for the selection of the data source and defining the requirements
for data collection, storage, preparation, analysis and visualisation and the choice of the
analytical model[79].

The data provider introduces new data into the Big Data system. The data provider
stores captured data. The data in storage waits for further processing. Mapped to
the motivating scenario, the data provider collects data from IoT and transfers it into
message brokers.
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The application provider executes the manipulations of the data life cycle meeting the
requirements of the system orchestrator. The activities can be split up into different
phases. Regarding the example this stakeholder establishes the mechanism that is
necessary to meet the requirements postulated by the system orchestrator[79].

The framework provider offers services or resources for the Big Data application. Re-
garding the motivating example this is the owner of the CS that offers IaaS, PaaS and
SaaS[79].

The data consumer receives the value output from the Big Data system. The data from
the data provider gets enriched by the data application provider who is orchestrated by
the system orchestrator. The data consumer searches, visualises and analyses the IoT
processed data[79].

Figure 3.2: Stakeholders.

Big Data also extends the simple one-phased data pipeline pattern to a multiphase data
pipeline where the output of one program becomes the input of the next. Any incident in
one of the phases of the pipeline renders the whole output of the pipeline worthless. The
design of a data pipeline refers to a program under the control of a periodic scheduling
program. This kind of pipeline is generally stable as long as there are sufficient resources
available. In the motivating scenario incidents have to be identified in both kinds of data
pipelines. This includes jobs that exceed their run deadline, resource exhaustion, hanging
processing chunks and trouble caused by uneven work distribution. The multiphase data
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pipeline also has different requirements regarding monitoring. It needs to have real-time
information instead of metrics reported only on completion[90].

3.2 Use Cases

3.2.1 Monitoring

Data analytics Monitoring

Figure 3.3: Use Case Monitoring Data Analytics.

Requirements:

1. The system orchestrator defines data analytics requirements

2. The application provider and the system orchestrator develop metrics that reflect
on the beforehand defined requirements

3. The application provider builds monitoring agents corresponding to the defined
metrics

4. The monitoring agents watch over the compliance of the defined metrics
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5. If a metric is not met the monitoring agent sends an event

Without events there is no detection of incidents. It is impossible to anticipate all
monitoring needs for a specific use case or domain beforehand. The monitoring layer
has to be generic enough to accept new monitoring agents from the application provider.
This monitoring tools have to be implemented in a way that the detected events are
stored with all the other events. This guarantees that every event can be processed in
the incident system independent from the source of its creation.

An example scenario for this use case is the data scientist who needs to save a certain
amount of merged data logs per minute into the storage system. Therefore the data
scientist defines metrics with the provider of the data extraction tool and the provider
delivers a monitoring layer that monitors the amount of saved data logs per minute.

Service Level Agreement (SLA) monitoring

Figure 3.4: Use Case Monitoring SLA.

Requirements:

1. The system orchestrator, the data user and the data provider define SLAs including
Service Level Indicator (SLI), Service Level Objective (SLO) and consequences if
an SLO is not met

2. The application provider develops monitoring agents corresponding to the needs of
the SLO
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3. The monitoring agent watches over the compliance to the SLO of the SLI

4. If a metric is not met the monitoring agent sends an event

The incident system needs to support SLOs, SLIs and SLAs. SLO are a very important
tool to define acceptable values for monitored qualities of the Big Data application and
the CS. These values are managed directly by the stakeholders[90].

An example scenario for this use case is a data provider who has liabilities to the system
orchestrator and the system orchestrator has liabilities to the data user. In the BTS
scenario the extracted and merged data is subject to SLAs triggering consequences for
the data provider if the data is highly unreliable and in consequence raises costs for the
data scientist.

System Architecture monitoring

Figure 3.5: Use Case Monitoring System Architecture.

Requirements:

1. The system orchestrator defines system architecture requirements

2. The framework/service provider and the system orchestrator develop metrics that
reflect on the beforehand defined requirements
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3. The framework/service provider builds, supplies or configures monitoring agents
corresponding to the defined metrics

4. The monitoring agent service watches over the compliance to the defined metrics

5. If a metric is not met the monitoring agent sends an event

An example scenario for this use case is a messaging infrastructure that is hosted on
Amazon Web Services. The architects of the Big Data application specify requirements
regarding the scaling of the messaging service for peak times. This requirements have to
be monitored so that if Amazon Web Services fails to meet this metrics possible SLAs
are used for consequences.

Multiphase Pipeline Monitoring

Figure 3.6: Use Case Monitoring Multiphase Pipeline.

Requirements:

1. Define data pipelines

2. Define collaboration between data pipelines

3. Define requirements regarding the collaboration of data pipelines

4. Define metrics that reflect the defined requirements

5. Develop an monitoring agent that is able to monitor the defined metrics

6. The Agent has to be flexible configurable since monitoring requirements change
constantly
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An example scenario for this use case is voluminous log data from the different systems
that is extracted and merged together by the data provider, sent to Hadoop[49] and
analysed. An error during the merging process leads to stored values that negatively
influence the result of the analysis. Every data pipeline that contributes to the analysis
has to be monitored in a way that enables RCA to determine where in the chain of data
pipelines the incident happened.

Regulation Monitoring

This use case is similar to that of SLA monitoring. The SLA is a regulation, SLOs are
necessary objectives to achieve regulatory compliance and the consequences are defined
by the legislation of the regulator. The data provider stakeholder is the first stakeholder
in the data value chain that has to comply with regulations. The system orchestrator
stakeholder needs to monitor regulatory compliance throughout every data pipeline.

An example scenario for this use case is a data provider extracting and pushing data
from BTSs. The data provider has to comply to regulations regarding data processing of
telecommunication networks. The system orchestrator monitors the compliance of the
data provider to all regulations from the state, regarding the processing of data from
telecommunication networks.

3.2.2 Use Cases Detection

Automatic Incident Detection/Identification

Figure 3.7: Use Case Detection Automatic.

Requirements:

1. The monitoring agents send events to the event management

2. The event management logs the event
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3. The different stakeholders develop a rule set for incident detection that fulfils the
different requirements

4. The incident detection aggregates, correlates, filters and logs events regarding
defined rules

5. The incident detection service identifies incidents by analysing events

6. The incident detection service logs and classifies incidents

7. The incident detection service matches incidents against known errors

8. The application developer is responsible for developing the event management
service and the monitoring agents

The automatic incident detection has to be extensible. There are various models to
identify incidents from processing events. The stakeholders must have the possibility to
add flexible new ways of incident detection to the system like complex event processing
[69]. This applies to the automatic and the manual model in every stage of the processing
of events regarding their properties and their possible escalation to incidents. Modules
have to be added that incorporate different basic models of incident detection and
identification.

An example scenario for this use case is a messaging service extracting log files from the
IoT devices. It sends events via a monitoring agent directly to the event management.
The event management system logs the event. The data scientist has defined that
a specific combination of temperature readings from a specific IoT device has to be
logged only if they occur several times in a row. The incident management filters the
events corresponding to this rule. The incident detection system checks if the specified
requirements are met and if it is a positive check an incident is classified and logged.

Manual Detection/Identification

Requirements:

1. A user of the incident management system can add incidents that got reported via
different methods like web interface, telephone call or Email

2. A user can read logged events

3. A user can read logged incidents

4. A user can detect incidents, every detected incident has to be classified, logged and
matched

There is a need for manual incident detection/identification. After the events have been
processed and saved for automatic incident detection, the stakeholders can access the
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Figure 3.8: Use Case Detection Manual.

event and incident data to search for possible incident patterns that are not yet known.
In succession the newly discovered incidents can be translated for the automatic incident
detection process as illustrated in Figure 3.13.

Events and incidents have to be stored centrally. Since it is a system that is managed
from different stakeholders every one has to have access in a reasonable way. Incidents
and events are stored centrally. This enables the different stakeholders to see the events
and incidents in the complete picture of the other systems. This guarantees that the
whole system is monitored by one solution and not by an isolated application that can
only act in a limited area. In complex systems the incident cause can be a combination
of the failure of one or more systems and the involved systems are likely not all owned
by one singular stakeholder.

An example scenario for this use case is a data scientist who accesses the incident
management system and browses through the different logged incidents and events. The
data scientist recognises specific events reporting Global Positioning System (GPS)-
locations of IoT devices that do not make sense. The automatic incident management
system has no rule regarding this specific case so the corresponding events did not trigger
the automatic generation of an incident. The data scientist logs the corresponding event
and classifies it as a data error.

Incident classification

• The different stakeholders need to define a body of knowledge regarding the specific
classification needs of the Big Data application.

• Classification rules have to be defined that are able to automatically categorise
incidents in classes.
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Figure 3.9: Use Case Detection Classification.

• The classification rules are applied by either the user of the incident management
system in the manual use case and the incident detection service in the automatic
use case.

The taxonomy is needed for the classification/categorisation of incidents. The deployed
classification scheme needs to be precise regarding the structure and the possibility
to add new rules to the taxonomy. The taxonomy needs to be simple with as few
categories as possible. The taxonomy identifies the stakeholder that is responsible for
the resolution of the incident. The taxonomy identifies where the incident stems from.
Every domain has its own unique ontology. The IoT domains of multimedia, social media,
operation of enterprises, trading of enterprises and scientific research have completely
different ontologies and while some generic structure remains static most of the vocabulary
describing, categorising and classifying incidents will change. The proposed taxonomy
has to take into account that every stakeholder has to adapt the taxonomy corresponding
to the ontology of the domain.

An example scenario for this use case are stakeholders involved in the Big Data application
who have developed a taxonomy regarding the classification of incidents in their collectively
provided Big Data service. An IoT device sends inconsistent temperature data. The
incident is detected and the incident detection service classifies this incident as a data
extraction incident before it is logged into storage.

Incident matching

• Classified incidents are automatically matched against a known-error database.

• The incident management user defines rules that decide if an incident matches a
known error.
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Figure 3.10: Use Case Detection Matching.

Incident classification data is matched against a known-error database to resolve redundant
incidents efficiently. Any user of the incident management system is capable of solving a
known incident that is sufficiently described in a corresponding knowledgebase entry. If an
automatic resolve process is in place the identified incident can be solved automatically.

An example scenario for this use case is a user of the incident management system who
gets a warning that an incident has happened in the cleaning process of a data asset. The
incident management user opens the incident and sees that it has already been matched
against the known error of a temperature reading out of bound from a very unreliable
sensor in the network. The user already knows how to resolve this incident and starts to
follow the prescribed steps from the knowledgebase entry regarding this specific incident.

3.2.3 Use Cases Analysis

Shared Incident Knowledge Base

• Every user of the incident knowledgebase has to write an entry that describes how
the incident has been handled.

• Every user of the incident knowledgebase has the ability to read entries of resolved
incidents

The detection of incidents needs knowledge about the monitored system. Since the
knowledge is split between various stakeholders that may represent different companies
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Figure 3.11: Use Case Shared Knowledgebase.

with different goals, it is imperative that the knowledge is well organised and well
documented. There need to be a central mechanism to share knowledge learnt from past
incidents[68].

An example scenario for this use case is an incident caused by a device sending GPS
positions that are on a different continent. The data provider resolves the incident
manually by exchanging the corresponding GPS module on the IoT device. After
resolving the incident the data provider creates an entry in the knowledgebase and
describes which events led to the identification of the malfunctioning device and how
the root cause was identified. The data scientist who initially detected the wrong GPS
entries reads the entry.

Reporting

• The different stakeholders use reporting to acquire an overview over incidents and
events

• The reporting reads event and incident information from the central storage

An example scenario for this use case is a service provider of the distributed files systems
who wants to know how often the system in the last 24 hours logged events regarding a
specific computer in the cluster. The service provider generates a report and controls the
output.
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Figure 3.12: Use Case Reporting.

Post Incident

• The user analyses incidents after they have been resolved

• What happened

• What has to be done differently in the future

• How effective is the process

• How to prevent this incident in the future

• The outcome of the analysis is incorporated in the rule sets of the different use
cases

Since the incident management process is always changing, it is not possibly to configure
all necessary rules once and never change them in the future. Therefore the process
generates feedback in the post-incident analyses (post-mortem or corrective and preventive
action culture). The deliverables of this process are changes in the rule sets of the different
services involved in the incident detection, classification and management process.

An example scenario for this use case is a data scientist who encounters an error in one
of the results of the analysis process. The following investigation reveals an incident in
the data processing software during the cleaning of the data assets. The data assets show
impossible readings from sensors that until now are not identified in an event. The data
scientist starts the process to expand the corresponding rule sets so that in the future this
newly identified incident is automatically detected and reported during data cleaning.
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Figure 3.13: Use Case Post Incident.
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CHAPTER 4
Incident Classification

4.1 Introduction
The classification process focusses on the automatic classification during incident creation.
It is tempting to classify incidents at the end of the process but it is not recommended.
The classification process has to be simple and reproducible to ensure that all incidents
of the same type will be classified in the same way[33]. Multi-level incident categorisation
describes an incident that is mapped to several categories in order to not loose any
interesting information[64].

Incidents are classified according to a classification schema. The classification process
determines the incident class with as much information as it can possible accumulate.
This includes the person that reported the incident, data from monitoring systems,
referring databases and other sources like relevant log files. The classification of incidents
can at least take place at three different moments in the incident management process[64]
during creation, during resolution or after resolution.

The incident classification scheme is recommended to be based on a taxonomy. A tax-
onomy leads to a systematic and regular incident management process. It produces
meaningful statistics and delivers a common language regarding incidents for all stake-
holders involved in the monitored system.

Taxonomies are established according to the team using it and specific to the system
used by the team. The goal of this thesis is to develop an open taxonomy that can be
easily expanded for the specific needs of different Big Data applications. A valid basic
taxonomy consists of incident classes and types. The classes are practical and universal
so that they do not get outdated easily. The incident types are part of the description of
the incident.

The development of a taxonomy for a specific scenario works with the involved team to
acquire meaningful but scenario specific incident classes and types. This is not possible
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4. Incident Classification

in the case of a generic architecture since the taxonomy has to be flexible enough to serve
as many as possible types of Big Data applications. The taxonomy has to be expandable
so that new incident categories can be added easily into the existing schema.

This leads to the following guideline to establish a stable, generic, long-term schema for
classification. The taxonomy has to be simple with as few categories as needed. The
categories are generic. Taxonomies that are already widely in use have to be considered
during the creation of the taxonomy. Statistics about incident frequency can serve as an
initial indicator[33]. The last consideration is how to treat an incident that does not fit
into any category. There has to be a defined approach that is consequently used after
the release of the taxonomy.

The driving element in Big Data are data assets. Data assets consist of grouped records
and records consist of grouped data elements. Data elements are defined by their type
and corresponding metadata. Characteristics of the data element are format, value,
vocabulary, metadata, semantic, quality and veracity. A record is a group of data
elements and is defined by format, complexity, volume, metadata and semantics. A
dataset is a group of records with the characteristics quality and consistence. As an
example if the data element is a temperature reading, the record is the temperature
reading accompanied by a time stamp and the data asset is the whole transmission from
a BTS device[79].

Figure 4.1: Data Asset

Data flows through the system comparable to a conveyor belt, there are several stations
where the data is processed and changes its state. One process may change the data
state and forward the data. Other processes may compress, transform or load the data.
During every change of state of the data asset, there is the possibility to monitor events
and detect and classify incidents accordingly. There is often the analogy that data is
the new oil referring to Clive Humby an UK mathematician. “Data is the new oil. It’s
valuable, but if unrefined it cannot really be used. It has to be changed into gas, plastic,
chemicals, etc. to create a valuable entity that drives profitable activity; so must data
be broken down, analysed for it to have value.” [53] Therefore the focus of the incident
process has to lie on the element it evolves around, data.

The smallest unit of interest regarding incident detection is the data pipeline. Every
process in Big Data consists of data pipelines that consist of three processes:

1. Read data

2. Transform data

3. Output data
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Figure 4.2: Data Pipeline

These core elements are part of state transitions of data assets and in all of them incidents
can happen. This is illustrated in Figure 4.2. In Big Data pipelines are chained together
to multiphase pipelines. The number of pipelines chained together is the depth of the
pipeline illustrated in Figure 4.3.

Figure 4.3: Data Pipeline Depth

The data pipeline concept can be mapped to the abstraction from Pääkkönen et. al. [83]
with data flow, functionality and data source as the most basic elements. The interaction
is illustrated in Figure 4.4.

Figure 4.4: Steps in Data Pipeline

37



4. Incident Classification

4.2 Survey of Incidents

4.2.1 Functionality Job Specification and Scheduling Incidents

The correct execution of jobs and tasks in the different phases is essential for the meaning-
fulness of the analysis. Since Big Data applications are based on several interdependent
data pipelines the correct sequence of executing different pipelines is adamant. Failure of
jobs and failure of tasks from failed jobs strain a significant amount of resources from
clusters and are therefore an important source of resource efficiency, analytics time and
cost[91]. This is relevant for data pipelines and multiphase data pipelines since the one
represents the job (multiphase) and the other represents the tasks corresponding to a job
(single data pipeline from a k-depth multiphase pipeline).

IC What Where When How
QoA Job sequence is

broken
Job specifi-
cation - Job
scheduling

Analysis
phase

The jobs did complete in a spe-
cific order. If one job in the chain
fails a notification has to be cre-
ated. Example: One job in the
sequence fails but the successive
jobs execute ignoring the failed
job and deliver false analytic re-
sults.

QoA Job does not
finish

Job specifi-
cation - Job
scheduling

Analysis
phase

A defined job in the analysis pro-
cess does not finish after a fixed
time frame. Example: The anal-
ysis job is the successor of the
cleaning job and the cleaning job
does not finish therefore the anal-
ysis job can never start.

QoA Non-
idempotent job
interrupted

Job specifi-
cation - Job
scheduling

Analysis
phase

A non-idempotent job like data
cleaning was interrupted. The
repetition of the job leads to dif-
ferent results. Example: The
cleaning of sensor data regarding
a specific measurement stops half-
way through, if the job is started
again the already cleaned data is
ruined.

QoA Job scheduling Data
pipeline

Any
phase

Unsuccessful job execution[92].

Table 4.1: Job Specification.
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4.2.2 Typical Incidents in Contemporary CS

Typical incidents in contemporary CSs can propagate to incidents in the Cloud-based Big
Data analytics application. Failures in the datacenter hosting a CS can negatively impact
SLA with the CSC. The work in [12] divides the datacenter into IT infrastructure, power
system and cooling system. The IT infrastructure is divided into processing, storage,
networking and software. Any incidents in these elements have the possibility to disrupt
the Big Data analysis application running on top of CSs that is deployed in the datacenter.
According to Endo et. al. [30] the main reasons for outages are infrastructure or software
failures, planning mistakes, human error, or external attacks.

IC What Where When How
QoS Subsystem fail-

ure [94]
Datacenter Any

phase
IT infrastructure, power system
and cooling system errors that
negatively impact the availabil-
ity of the CS that is dependent of
this subsystems.

QoS Software
failures

Datacenter Any
phase

Failure in applications, opera-
tional systems, or hypervisors.

QoS Planning mis-
takes or exces-
sive datacenter
usage

Datacenter Any
phase

Server and network-component
performance bottlenecks, UPS
overloading, and the production
of too much heat.

QoS Human inter-
vention related

Datacenter Any
phase

External attacks and errors by an
organisation’s internal staff, such
as a typo in code or a system mis-
configuration.

QoS Security re-
lated

Datacenter Any
phase

Data breaches, weak identity, cre-
dential and access management,
insecure APIs, system and ap-
plication vulnerabilities, account
hijacking, malicious insiders, ad-
vanced persistent threats, data
loss, insufficient due diligence,
abuse of CSs, nefarious use of CSs,
denial of service and shared tech-
nology vulnerabilities[4].

Table 4.2: CS Incidents.

4.2.3 Typical Incidents in Contemporary IoT

Typical incidents in contemporary IoT can propagate to incidents in the Cloud-based
Big Data analytics application[56].
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4.2.4 Functionality Data Storage Incidents

A simple distinction between the different data storage models encountered in Big Data
is given in Figure 4.13.

IC What Where When How
QoS Software com-

ponent data
store

Data Stor-
age

Any
phase

Performance related values such
as latency, ineffective indexes,
scale up, data level or scale out
parallelism error, ineffective par-
titioning key

QoS Software com-
ponent data
store

Data Stor-
age

Any
phase

Resource exhaustion connected to
memory, network or storage space

QoA Software com-
ponent data
store

Data Stor-
age

Any
phase

Functional errors concerning data
persistence, data replication, data
consistency, data durability, even-
tual consistency, timeline consis-
tency

QoS Software com-
ponent data
store

Data Stor-
age

Any
phase

Reliability and availability issues

QoS Software com-
ponent data
store

Data Stor-
age

Any
phase

Relational storage properties such
as atomicity, consistency, isola-
tion, durability

QoA Software com-
ponent data
store

Data Stor-
age

Any
phase

Data integrity issues

Table 4.4: Big Data Storage Incidents.

4.2.5 Data Extraction, Transformation, Loading and Preprocessing
Incidents

Data acquisition, with the focus on gathering, filtering and cleaning of IoT data, is
challenging. The data consists of a variety of objects and sensors that employ different
methods for data representation and semantics[16]. The first component of this process
are protocols that allow the collection of structured, semi-structured or unstructured
information for IoT data sources. The second component contains frameworks that
process the collected data and the third component consists of technologies that store
the retrieved data persistently[22].
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4.2.6 Quality of Analytics Incidents

QoA balances cost, performance and data quality. Typical incidents are illustrated in
Table 4.6.

IC What Where When How
QoA Response time

too high.
Functionality Any

phase
The response time of a function
(data ingestion, extraction, stor-
age, processing, ...) is higher than
previously defined as acceptable.

QoA Scalability mal-
function

Functionality,
network,
process

Any
phase

A system, network or process is
not able to handle the growing
amount of work.

QoA Elasticity mal-
function

Functionality Any
phase

The system is not able to adapt
to workload changes matching the
current demand[50].

QoA Data quality Functionality Any
phase

This case is split into several inci-
dents as illustrated in Table 4.7

QoA Analytics cost
too high

Functionality Any
phase

The cost of the analysis is higher
than previously defined.

QoA Analytics time
too high

Functionality Any
phase

The time to analyse the data is
higher than previously defined.

QoA Resource effi-
ciency

Functionality Any
phase

Essential for cost minimisation.

Table 4.6: Quality of Analytics.

4.2.7 Data Quality Incidents

Data quality is a critical requirement for the data consumer according to Karkouch et.
al. [56]. The following incidents regarding data quality are notable in the context of IoT.
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The necessity for data cleaning is linked with errors during data collection. IoT data
collections are inherently inaccurate because of the limitations of the hardware[1]. Data
cleaning identifies incorrect, inaccurate, incomplete, missing or unreasonable data and
modifies or deletes it to improve data quality[18]. Data cleaning methods differ greatly
regarding their field of application. Applications implement mechanism for data cleaning
within their logic. This leads to a limited application-specific data cleaning post-process
with increased development and deployment cost[55][56]. IoT has two points of contact
with data cleaning. First, when it is seen as a live system and the cleaning happens in
stream. Second, when collected sensor data is stored and analysed at a later point in
time. This leads to different methodologies:

1. The more general method, define and determine error types, search and identify
error instances, correct the uncovered errors[70]

2. The method for already stored data, explore the data set, detect possible problems,
attempt to correct detected errors[102]

During data cleaning data formats, completeness, rationality and restriction are inspected[18].
A system for cleaning IoT sensor data consists of four major components: user interface,
stream processing engine, anomaly detector and data storage. Popular models for data
cleaning are regression models, probabilistic models and outlier-detection models[2].

4.2.8 Human Action Related Incidents

Incidents with root causes related to human errors illustrated in Table 4.8.

IC What Where When How
QoS Software infras-

tructure
Where Any

phase
Misconfiguration. Example: Vari-
ous jobs are queued and the next
job is dependent on the outcome
of its predecessor due to miscon-
figuration of the queue the analy-
sis results are worthless.

QoS Software Where Any
phase

Programming error in an applica-
tion. Example: An application
has a bug that leads to a malfunc-
tion of a data processing function-
ality.

Table 4.8: Human Action Related.
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4.3 Implementation of Incident Classification

Incidents are distinguished regarding the data processing functionality in which they
occur. The abstraction from [83] gives the reference functionalities and functional areas
that are used to distinguish incidents. The functionalities and functional areas that are
used to classify incidents might vary regarding the scenario the classification is used in.
The approach is to deliver the most granular hierarchy that is conceptual enough to give
every possible domain the chance of a successful mapping. The functionality taxonomy
is illustrated in Figure 4.7

In a distributed system where the responsibility is shared between different stakeholders
quality is of the utmost importance. The quality domain regarding data processing
applications is split between QoA and QoS. QoA includes data quality, analytics time
and analytics cost. QoS includes performance and cost. The quality criteria are linked
to the business view of the Big Data application. The instrumentation, monitoring
and enforcement happen via SLO, SLA and SLI. Reduction of quality is an important
issue in a distributed system where it forms an important basis of violations between
different stakeholders. The owner of services and systems may differ from the application
developer, the data scientist and the data user but all of them have to adhere to SLAs to
provide an overall satisfactory result as illustrated in Figure 4.5.

Figure 4.5: Taxonomy Quality.

Another important classification aspect is the incident cause which can be categorised
into technological, human action and natural phenomenon. The incidents can be caused
by some natural phenomenon that negatively impacts big things like data centres or
little things like IoT devices. Technological causes include incidents that are beyond the
application developer’s control i.e. bugs in platforms or infrastructure hardware failures.
Incidents like programming flaws or misconfiguration are classified as human action as
illustrated in Figure 4.6.

Figure 4.6: Taxonomy Cause.

One requirement of the incident management system is that every incident can be assigned
to a stakeholder who is responsible for its resolution. Since the system is not owned
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4.3. Implementation of Incident Classification

Figure 4.7: Taxonomy Functionality.

by one stakeholder alone, every incident has to have an owner. By overcoming the
boundaries between the different stakeholders the overall functionality of the incident
management system is improved. If the system is malfunctioning every stakeholder needs
to know who is responsible for the incident and therefore responsible for the resolution
of the incident. This adds the stakeholder taxonomy referenced in Figure 4.8 to the
classification. Every stakeholder has various actors that deliver more granularity if needed.
The list of stakeholders, their roles and their actors are based on the work of the National
Institute of Standards and Technology[79].
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4. Incident Classification

Figure 4.8: Taxonomy Stakeholder.

Data pipelines can be assigned to phases. Phases combine several data pipelines under
one logical entity. The taxonomy has the focus on data assets and therefore it uses phases
that describe the life-cycle of the data assets. The four phases used in the taxonomy are
illustrated in Figure 4.9 with potential sub-categories.

Figure 4.9: Taxonomy Phase.

ITIL introduces the concept of the configuration item as the unit that generates events
and is therefore the base element of any incident. Configuration items typically include IT
services, hardware, software, buildings, people and formal documentation such as process
documentation and service level agreements [64]. Lou et al. define the term service-
incident beacons which describes a small subset of system metrics that are symptoms
pointing to the cause of the incident. Service-incident beacons are a combination
of metrics with unusual values that produce a symptom[68]. This definition can be
seen as a combination of configuration item and event detection. A service-incident
beacon is the set of configuration items and the corresponding metrics that define if the
configuration items work within specification. Since configuration items vary regarding
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their respective domain the used terms in the taxonomy have to be generic enough to
suffice the requirements of a generic architecture.

The locality of an incident in a distributed system is complicated because data processing
functionalities are realised with software and software runs on system software and
infrastructure. Systems are often realised with containers or virtualised components
which adds to the problems regarding their classification. Figure 4.10 illustrates the
different elements of locality.

Figure 4.10: Taxonomy Locality.
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The effect of an incident can be grouped into three categories regarding ITIL: the
unplanned interruption of a service, the reduction of quality of a service and the failure
of a system or service that has not yet impacted the application illustrated in Figure
4.11[64].

Figure 4.11: Taxonomy Effect.

The data states can be reduced to two states, data in processing and data at rest. Data
at rest is the state where data is stored and not processed. In this state incidents like
storage failures can happen. This state is also realised via the data storage functionality.
The state in processing is every state where the data is processed by a functionality
and therefore exposed to incidents stemming from applications, systems and so forth as
illustrated in Figure 4.12.

Figure 4.12: Taxonomy Data State.

All the classification criteria and their relationships are illustrated in Figure 4.14. The
classification is implemented in a Neo4J graph database that illustrates how the different
elements are connected.

50



4.3. Implementation of Incident Classification

Fi
gu

re
4.
13

:
Ta

xo
no

m
y
D
at
a.

51



4. Incident Classification

Figure 4.14: Classification Graph

52



4.4. Usage and Extensibility

4.4 Usage and Extensibility

4.4.1 Usage

The classification fulfils different purposes: First, it illustrates the key points of incident
management in Cloud-based Big Data analytics applications. The classification of
incidents regarding a complicated system with various aspects needs to be reduced to
the very essentials. An architecture has to be generic so that the application of the
architecture fits different purposes. The graph gives an excellent view of the different
aspects that have to be taken in consideration when designing an incident management
system for Cloud-based Big Data analytics applications.

Second, since the classification is already realised in a graph database it can be extended
easily and used for any scenario for classifying incidents in Cloud-based Big Data analytics
applications. The graph is in a form where the nodes are generic classes that have to be
extended with specifics from the application that needs to be monitored. Therefore an
implementation of the graph can be reduced to the nodes, edges and properties that are
needed for a specific scenario. For example a specific data processing functionality adds
nodes, edges and properties to refine the generic structure of the classification.

Third, the graph provides a reduction of a generic Cloud-based Big Data analytics
application. It illustrates the inner workings of the application.

The first step in using the classification is the analysis of the Cloud-based Big Data
analytics application. The process has to be understood and the different data pipelines
have to be ordered regarding their data processing functionality. This is done by
assigning the different used services to the corresponding data processing functionalities
as illustrated in Figure 3.1. The different steps of the data pipeline are classified regarding
their data processing functionalities.

Every data pipeline is realised with a functionality, every functionality runs on software
that again runs on system software which is hosted on infrastructure. If a data asset is
currently not part of a data pipeline, it is at rest and uses the data storage functionality.
The different data pipelines are classified regarding the phase they are assigned to. This
means that an application like a messaging service that is assigned to the data collection
phase has to be associated with this phase to successfully classify it.

The software implementing the data processing functionality and the supporting software
and infrastructure are owned by stakeholders. This guarantees that for every part involved
in the Big Data application a responsible stakeholder can be identified.

4.4.2 Extensibility

If the generic classification graph is not sufficient for a concrete problem, the graph
can be expanded to the individual needs. Since the model here represents a generic
architecture the classes represent the smallest denominator regarding the Cloud-based
Big Data application. This means that every implementation of the generic architecture
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has to add the relevant characteristics to these basic classes. This includes but is not
limited to:

(i) Specific functionalities, stakeholders and configuration items

(ii) Quality goals

(iii) Fine grained incidents

The classes in the graph are main classes that can be expanded regarding the represented
scenario. Every additional class has to be linked to a generic class. The architecture can be
used to catch security incidents, processing incidents, violating SLOs, software incidents
or hardware incidents on the operating level. The generic nature of the classification
guarantees that a responsible person is found via the dimension of the stakeholder. The
classification describes when a state change of a data asset led to an incident, where it
happened and who is in charge for resolving the incident. These are the basic classification
parameters that need to be captured to guarantee an incident management system that
can be used by all involved parties similarly.

The taxonomies from Chapter 4.3 already extends the basic nodes of the generic model
but these extensions are theoretical in nature and no concrete examples. Figure 6.6 shows
possible nodes with common storage software from the Big Data application area. This
illustrates how the graph can be extended to assign concrete software to corresponding
classes of the generic architecture.

A table of value attribute lists accompany the nodes of the classification graph. Metrics
for different parts of the Cloud-hosted Big Data application vary regarding their intended
quality goals(QoA or QoS), monitored applications, systems and services. Developing
a standard set of key value attribute pairs that fit any implementation of the generic
architecture is futile. The following rule is applied on every scenario individually, only
measure when recording, only record when analysing and only analyse when it is followed
by action[96]. Instrumentation, monitoring and classification are a closed process that
needs to be designed and implemented thoughtfully.

The value attribute list concentrates on the four golden signals latency, traffic, errors
and saturation that deliver a decent coverage of a service and can be seen as starting
points for any implementation of the generic architecture[90].

The following abbreviations are used in the value attribute lists. The abbreviation INT
is a variable of the 32-bit integer data type. The abbreviation INT64 is a variable of
the 64-bit integer data type. The abbreviation INT[] is an array of variables of the
integer data type. The abbreviation STRING is a variable of the string data type. The
abbreviation STRING[] is an array of variables of the string data type. The integer data
type is used to store numbers and the string data type is used to store a sequence of
characters.
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Functionality Data Storage The values listed in Table 4.9 are an excerpt from the
Google Cloud Platform metrics for BiqQuery, an enterprise data warehouse. Real world
examples are better at illustrating the possibilities of value attribute combinations since
they are not theoretical. Examples that are already implemented also do not have to be
connected with a possible implementation and/or example. A gauge represents a value
that can go up and down. A distribution also known as histogram, samples observations
(usually things like request durations or response sizes) and counts them in configurable
buckets. It also provides a sum of all observed values.

Attribute Name Attribute Value
uploadedBytesBilled Uploaded bytes billed per minute. INT64, Byte/min
executionTimes Distribution of queries execution times. Distribution

Table 4.9: Functionality Data Storage

Functionality Data Extraction Metrics for messaging applications are illustrated in
Table 4.10.

Attribute Name Attribute Value
messagingRoundtrip Start subscriber, start publisher, publish message, re-

ceive message. Seconds
queueMessagesTotal Total number ready and unacknowledged messages in

cluster. INT64

Table 4.10: Functionality Data Extraction

Infrastructure Metrics relevant for SLAs and provided by the framework and service
provider are illustrated in Table 4.11.

Attribute Name Attribute Value
processStarttimeSeconds Start time of the process since unix epoch in seconds.

seconds
processCPUSecondsTotal Total user and system CPU time spent in seconds.

seconds

Table 4.11: Infrastructure
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System Software A functionality is a software and is executed atop of system soft-
ware that is hosted on infrastructure. The system software delivers metrics from the
infrastructure layer listed in Table 4.12.

Attribute Name Attribute Value
CPUCoreThrottle Number of times the CPU core has been throttled.

INT64
CPUFreq Current CPU thread frequency in Hertz.
uName Exposes system information as provided by the uname

system call. String

Table 4.12: System Software

Functionality Data Processing, Extraction, Transform, Load and Analysis
Metrics of data processing functionalities with data in the state of data-in-pipeline are
listed in Table 4.13.

Attribute Name Attribute Value
workersExecutor Size of the workers executors. Gauge[INT]
memUsedMb Memory used by the worker in MB. Gauge[INT]
workers Number of workers. Gauge[INT]
aliveWorkers Number of alive workers. Gauge[INT]
threadpoolActiveTasks Gauge for executor thread pool’s actively executing

task counts. Gauge[INT]
threadpoolCompleteTasks Gauge for executor thread pool’s approximate total

number of tasks that have been completed. Gauge[INT]

Table 4.13: Processing Functionality

Job Scheduler Generic attributes regarding job schedulers are listed in Table 4.14.

Attribute Name Attribute Value
appsSubmitted The number of applications submitted. INT
appsCompleted The number of applications completed . INT
appsPending The number of applications pending . INT
appsRunning The number of applications running. INT
appsFailed The number of applications failed. INT

Table 4.14: Job Scheduler

Stakeholder Stakeholders are responsible for software, systems and services. This way
every part of the Cloud-based Big Data analytics application is attributed to a stakeholder
that in succession is reliable for the unobstructed operation of the parts the stakeholder
is responsible for. The corresponding metrics are illustrated in Table 4.15
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Attribute Name Attribute Value
stakeholderSoftware Array of software elements this stakeholder is respon-

sible for. STRING[]
stakeholderInfrastructure Infrastructure elements this stakeholder is responsible

for. STRING[]
stakeholderService Service elements this stakeholder is responsible for.

STRING[]

Table 4.15: Stakeholder

Quality The QoS and QoA have to be defined over metrics that are measured and
monitored in the Cloud-based Big Data analytics application. The defined parameters
for quality are key elements for SLAs between stakeholders. The quality parameters refer
to measurements from software and infrastructure and set acceptable limits for them.
Several parameters are listed in Table 4.16.

Attribute Name Attribute Value
availabilityStreamProcessing Measured in percent per year. INT[]
accuracySensorData Number of readings that are above the maximum ab-

solute systematic error α in one month. INT
analysisTime Time summed up for all applications involved in the

data processing in a specific multiphase data pipeline
in seconds. INT

Table 4.16: Quality
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Incident The incident description is not dependent on specific functions used in the
Big Data application. It describes the incident and references the contributing factors.
While the incident document is relevant until the effects of the incident are mitigated
the post-incident has the purpose to identify the root cause and deliver insights into the
incident management process. Metrics for the incident description are listed in Table
4.17.

stakeholderResponsible A unique stakeholder responsible for the resolution of
the incident. STRING

stakeholderAffected An array of stakeholders that is affected by the incident.
STRING[]

pointInTime A unix time stamp. INT
events A set of events that are responsible for triggering the

incident. INT[]
incidentTimeline An array of time, user-name and text field that de-

scribes the resolution of the incident stepwise . Ar-
ray[INT][STRING][STRING]

status A field showing the status of the incident. STRING
cause The root cause of the incident. STRING
effect The effect of the incident. STRING

Table 4.17: Incident
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CHAPTER 5
Incident Monitoring

5.1 Important Aspects of Incident Monitoring

The system described in the motivating scenario is distributed over several stakeholders
and there are many potential causes for an incident. The data from various sources has
to be correlated to obtain incidents[68].

Monitoring of incidents in Cloud-based Big Data analytics applications is a challenging
task. Big Data systems pose a highly complex problem space with many potential
causes that trigger incidents and therefore different types of monitoring data needs to
be collected to properly classify and identify an incident. This leads to the challenge of
large-volumes of irrelevant data that gets collected during the monitoring of Big Data
applications. Each type of collected data only reflects certain aspects of the monitored
system and the data has to be aggregated and filtered to detect an incident. Another
big problem is the incomplete and disaggregated knowledge of incidents in Big Data
applications. The monitored system is composed of many components that are provided
by different stakeholders each with a set of experts regarding their own domain, the
monitoring application has to be centralised and all stakeholders need to have access to
the monitoring system to coordinate the incident resolution efforts[68].

Monitoring has to be as simple as possible and it is not to be combined with other aspects
of inspecting complex systems such as system profiling, single process debugging, load
testing or traffic inspection. The monitoring system has to be kept simple and clear
if the need arises loosely coupling it to other inspecting systems is the better strategy.
According to Richard et. al.[90]:

1. The rules identifying incidents have to be simple predictable and reliable.

2. Data collection, aggregation and alerting routines that are never used are removed.
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3. Metrics that are collected but not used are candidates for removal.

The correct identification, aggregation, filtration and correlation of events form the basis
of incident detection. The patterns that describe the set of events that identify an incident
have to be defined. Information from different sources has to be correlated and relations
between patterns has to be identified[73]. When designing rules, in general simpler
and faster monitoring systems are preferable to systems that try to learn thresholds or
automatically detect causality. We do not use complex dependency hierarchies because
they have limited success rates. Therefore monitoring systems and their employed rule
sets have to be kept simple and comprehensible for every stakeholder. In a Cloud-based
Big Data analytics application, aggregation is the cornerstone of rule evaluation. An
Aggregated set of time-series from the tasks in a job entails taking the sum to treat the
job as a whole[90].

Measurement resolution has to be chosen appropriately, very frequent measurements yield
good data sets but they are expensive to collect store and analyse. Measurements take
their toll on the monitoring systems resources and on the resources of the monitored system
itself. If set incorrectly measurements can lead to incidents regarding the performance[90].

We follow the guidelines of Murphy et al. and focus on the four golden signals of
monitoring:

1. Latency, the time it takes to service a request

2. Traffic, high-level system specific metric that measures the demand placed on the
monitored system

3. Errors, requests that fail explicitly, implicitly or by policy

4. Saturation, the level between wasteful and system degrading utilisation

Systems that are not entirely self hosted and therefore under the administration from
different stakeholders rely on SLAs. SLAs define non-functional requirements of the
services specified in QoA and QoS. Reduction of the quality of a service is one of the three
major incident classes and it is necessary to monitor the adherence to the SLAs. SLAs
include obligations, service pricing and penalties in the case of agreement violations[29].
The monitoring of SLA results from the definition of SLO and SLI. The availability of
necessary measurement data for SLIs is not guaranteed SLI because the system is not
entirely self hosted. The CSP needs to establish the means that make the monitoring
of SLIs possible otherwise the other stakeholders cannot control the compliance to the
defined SLA and thereby rendering them meaningless[29].

A monitoring solution has to offer interfaces on all important elements of the Cloud-based
Big Data analytics application to enable the stakeholders to adapt the monitoring system
to the specific needs of their unique application. In the following Chapter 5.2 the software
components of our generic architecture are described.
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5.2 Architecture

Relationship with the classification. The classification surveyed incidents and
ordered them to classes. The classes describe stakeholders, locations, cause, effect,
functional and non-functional parts, data states and phases. The connection between
monitoring and classification is that monitored resources can only be classified if the
connection between classifiers - stemming from monitoring - and incident classes -
originating from the classification - is realised with a comprehensive rule-set. The
metadata needed to classify an incident has to be gathered during monitoring. The
classification also provides a plan for the parts of any Big Data application that has to
be monitored. Data pipelines and multiphase data pipelines have to be monitored since
they are the core of every Big Data application. The different elements contributing
to the Big Data application have to mapped to the reference architecture from [83]
to identify their functional area. The functional areas run on software, infrastructure
or platforms that have to be identified and monitored. The different data refinement
steps are divided in phases. The incident classification can only be done when the
necessary information is available. The information is always collected and provided
by the monitoring respectively the event management. The classification cannot exist
without the monitoring and the monitoring needs the classification to identify important
points to monitor. The classification illustrates places where incidents might occur and
defines the metadata that is needed from the monitoring to apply classification rules.

Points of data collection. The life-cycle of a data asset in every Big Data application
can be split into different pipelines and grouped into multi phase data pipelines. Every
single one of the data pipelines influences the analysis results. A Big Data application
can be broken down into data pipelines, their connections and their relations. Since the
data pipelines are the places where data is refined and value is added it is imperative to
monitor not only the correct execution of the data pipeline illustrated in Figure 5.1 but
also the interdependencies inside a multi phase data pipeline.

Figure 5.1: Monitoring Data Pipeline.

There is also a distinction between multi phase data pipelines that can be monitored
partly as illustrated in Figure 5.3 and multi phase data pipelines where every part can
be monitored independently as illustrated in Figure 5.1.
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Figure 5.2: Monitoring Multi Phase Data Pipeline.

Figure 5.3: Monitoring Multi Phase Data Pipeline partly.

Data pipelines use data processing functionalities to create value out of data. This
functionalities have to be identified and subsequently monitored. The set of functionalities
are grouped into functional areas. A functionality enables the transformation of data
and can happen several times in a single multiphase data pipeline. The functionality is
the centre of the data pipeline. It is the next generalisation of the building blocks of the
Cloud-based Big Data analytics application as illustrated in Figure 5.4. Data processing
functionalities can now be combined to build different multi phase data pipelines to
illustrate the various value adding data pipelines designed by the data scientist.

Figure 5.4: Monitoring Multi Phase Data Pipeline Functionalities.

Functionalities are realised with software and software runs on infrastructure and system
software. Functionalities are classified in functional areas and multiple functionalities can
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be realised on singular software components. Beside the monitoring of the value adding
process the architecture that enables this processes has to be monitored. The software
and the infrastructure that hosts and realises the Big Data application can - in case of a
failure - lead to the reduction of service quality, unplanned interruption and/or failure
without impact. Value is added with a data processing functionality carried out in a
data pipeline, the functionality is realised with software and runs on infrastructure as
illustrated in Figure 5.5. Any part in this chain that fails leads to incidents in the parts
on top of it. For example if a virtual machine fails and not enough computation power
is available to run a processing software within the defined parameters, this leads to a
slowed function refining data and to an error in a multiphase pipeline that is monitored
as a reduction in service quality.

Figure 5.5: Monitoring Software and Infrastructure.

Data monitoring. Every data pipeline in a Cloud-based Big Data analytics application
is classified regarding their functionality. Every functionality has specific requirements
that need to be fulfilled and monitored. The data analytics monitoring requires that every
step that refines the data and adds value to it is monitored for potential events, alerts
and incidents. The different functionalities are illustrated in Figure 4.14. For every part
involved in the refinement of the raw data, the data engineer has to define metrics that
have to be monitored. Monitoring agents have to be implemented or configured to deliver
the corresponding metrics for the identification of incidents. The data monitoring focuses
completely on the functionality of the value adding parts of the Big Data application.
The data monitoring has as goal the QoA. It defines the requirements of the applied
functionalities and develops and monitors metrics for the overall analysis process. The
QoA monitoring is directly connected to the definition of SLAs to achieve the goals of
the different stakeholders.

System architecture monitoring. The focus of data monitoring lies on the the value
adding process of data refinement. The system architecture monitoring focusses on
infrastructure and software. This includes monitoring requirements regarding software,
hardware, network, scaling and elasticity. This part of monitoring concentrates on the
parts of the system that enable the data processing functionalities of the Cloud-based
Big Data analytics application. QoA defines metrics for the data domain, QoS defines
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metrics for the system architecture.

Service level agreements. A possible incident is the degradation of a service. In a
Cloud-based Big Data analytics application, where different stakeholders are responsible
for the QoS of software and infrastructure parts, the degradation of a service can also incur
a violation of SLAs. The Quality objectives are defined over SLO that are measured by
SLI. The SLI have to be monitored for any violations regarding the negotiated SLAs that
reflect the QoA and QoS goals of the Cloud-based Big Data analytics application. The
necessary requirements to measure SLIs have to be fulfilled by the application provider.
When a Cloud-based Big Data analytics application is developed the monitoring needs of
the various stakeholders have to be considered during the development phase. Getting
meaningful monitoring data from an application that is not build to deliver it can prove
impossible.

Shared responsibility. The distinction between the different monitoring elements
and their assignment to data analytics and system architecture is owed to the fact that
the system is hosted in a shared environment. The Cloud-based Big Data analytics
application is realised in various degrees with CSs. A distinction has to be made to
attribute the incidents exactly to the stakeholder owning the corresponding part of the
system illustrated in Figure 5.6.

Figure 5.6: Monitoring Cloud Services.

5.2.1 Software Components

Our proposed architecture has several core components that are necessary for the
monitoring of incidents of a Cloud-based Big Data analytics application.

• The monitored system or service
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• The monitoring agents embedded in the monitoring layer

• The central logging

• The incident and detection and classification module with the centralised rule set

• The visualisation

The monitored system or service. The monitored system or service generates events
that form the basis of incidents. It has an instrumentation module that enables the
stakeholders to configure exactly which metrics from the system/service are collected. It
has a module that offers an interface to fetch the instrumented metrics and a configuration
interface that allows to configure the component.

Figure 5.7: Software Component System or Service.

The emitted metrics have different forms, e.g. performance counters, events from the
underlying operating system or logs created by an application. The components have to be
configured or programmed to generate the metrics that are needed by the monitoring. It is
important to specify the frequency of the generation of emitted metrics within meaningful
limits. Otherwise it is possible that instrumentation negatively affects performance and
becomes its own source of incidents.

The monitoring layer. The provided metrics are fetched, processed and forwarded
to the central logging component. This layer hosts various monitoring agents that are
tailored to their purpose. The different capabilities of the monitoring agent are affected
by the type and form of metrics they monitor. One possibility of a monitoring agent is an
agent polling the system metric CPU utilisation with a predefined frequency, aggregating
the data, filtering the data and deciding on basis of a configured rule set when to generate
events. This kind of monitoring agent is shown in Figure 5.8.

Another form of agent can be embedded into the application it monitors. This is the
case for Log4j, a Java-based logging utility from Apache that has built-in log levels and
messages. These functionalities are embedded in the monitoring agent in case of the CPU
utilisation. The logged data is saved to the file system, filtered, aggregated, evaluated.
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Figure 5.8: Software Component Monitoring Agent.

The data is then fetched by a monitoring agent or directly forwarded by the application
to the logging system, both cases are illustrated in Figure 5.9.

Figure 5.9: Software Component Embedded Monitoring Agent.

The two examples above illustrate the flexibility of the monitoring layer. The different
systems and services need monitoring that is tailored to their requirements. This means
that the modules employed in monitoring agents can differ from a very complex agent
that aggregates, filters and evaluates metrics before creating events to a very simple
agent that forwards primed metrics like log data directly into the logging system.

Central event and incident logging. This component is the endpoint of the monitor-
ing layer, any agent delivers his events to the central logging. The central logging offers
interfaces for the monitoring agents to write event information into the central logging.
The information stored in the central logging is accessible for the stakeholders to analyse
and infer incidents. The central logging needs interfaces that enable graphic solutions to
build dashboards from the saved data. The component provides options for stakeholders
to manually add incidents if they are procured outside the automatised systems. Figure
5.10 illustrates the model view of the component.

Detection and classification. The events from all monitored systems and services are
centrally stored in the logging component. In the detection and classification component
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Figure 5.10: Software Component Central Logging.

a centralised rule set is responsible for the filtering, aggregation and correlation of events
to detect and classify incidents. This component is separated from the central logging to
enable modularity. The different stakeholders have different requirements regarding the
instrumentation, monitoring and transfer of events and the detection and classification of
incidents. The approaches employed have to be flexible so that the incident management
can cover the whole Cloud-based Big Data analytics application. The rule set has
to be as simple, predictable and reliable as possible and has to be coordinated with
instrumentation and monitoring. The rule set has to be centrally accessible to enable
the user to adapt the rules to changing requirements. If an incident detection is rarely
exercised it has to be removed. The centralised rule evaluation keeps the configuration
small but through its expressiveness powerful. Figure 5.11 illustrates the component.

Figure 5.11: Software Component Detection Classification.
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Visualisation. The monitored metrics and the detected incidents can be visualised
with dashboards. This is one possibility to visualise the data - logged by the monitoring
layer - and the incidents detected and classified by the corresponding component. The
visualisation component needs access to the logging component to aggregate, filter and
visualise the data regarding defined selectors. The component also needs an interface
for the users to define what is visualised and how it is visualised. The component is
illustrated in Figure 5.12.

Figure 5.12: Software Component Visualisation.

In a Cloud-based Big Data analytics application it is imperative that the different
components can be implemented in various ways to match the requirements of the
monitored system or service. Any component illustrated here connects to the other via
interfaces and it is always possible to swap or add components that better fulfil the
needs of the user of the system. Every stakeholder can implement their own components
like monitoring agent or instrumentation and add them to the system. The logging
and rule evaluation has to be kept central and simple. The system enables users to
use different visualisation components against the same set of data. Different incident
identification techniques like complex event processing can be added to the detection
component to satisfy the needs of the various stakeholders. Figure 5.13 illustrates the
different components and their connections.
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CHAPTER 6
Prototype and Experiment

In this chapter the generic architecture for classification and monitoring of incidents in
Cloud-based Big Data Analytics is implemented guided by a test scenario to illustrate
the feasibility of the architecture. A short example with open source software lowers the
entry barrier for other implementations of the generic architecture in different domains.
The prototype shows with an example how the architecture is applied to a scenario.

6.1 Prototype
The evaluation of our generic architecture is done by one possible implementation. The
components of our architecture can be realised with different applications and technologies
but to prove the viability of our architecture one possible implementation is done.

The implementation uses the so called Elastic Stack that bundles different applications
in one platform. The stack comprises of the following components:

1. Elasticsearch[26], a distributed RESTful search and analytic engine that centrally
stores the data

2. Logstash[67], server-side data processing pipeline

3. Kibana[59], visualisation of Elasticsearch data

4. Beats[15], single-purpose data shipper

The choice of used software is just one out of many possibilities but it fulfils all the
criteria for the implementation of our generic architecture. Beats and Logstash realise
the monitoring agent component that can apply integrated filtering. Filebeats is a
specialised version of Beats and can be used to filter log files and transfer interesting
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events directly - or over a Logstash instance - into Elasticsearch. The log files are a
typical implementation of a system that collects metrics and emits them into log files on
their host’s file system. Since most of the Big Data data processing functionalities are
written in Java[54], Log4j[66] a configurable Java-based logging utility from Apache is
used to emit event data from applications into log files. Log4j therefore fulfils all the
instrumentation and emitting requirements of the system or service component of the
generic architecture.

Another possibility of a monitoring agent is Telegraf[99], an agent for collecting and
reporting metrics and data. Prometheus[84] is a tool that generates alerts based on
time-series data like Borgmon[90] from Google. We chose Elasticsearch as central logging
store since its usage is widespread and therefore accepts a lot of monitoring agents out of
the box or via plugins. Elasticsearch offers storage for custom events programmed by the
application provider. This need may arise if for the control of various data pipelines the
out-of-the-box means from the data processing functionalities don’t suffice.

The decision to use commonly available and widespread technology was done consciously
to help others adapt the architecture. By using commonly available technology the
implementation of the generic architecture is encouraged and real life examples can be
adapted to the specific needs of the managed application.

Where necessary Logstash can function as a data pipeline to process and refine monitoring
data before it is saved into Elasticsearch. Logstash can also be used as an intermediary
messaging system to control the flow of data into Elasticsearch. The refinement of data
becomes necessary if metadata has to be added to enable rule evaluation regarding the
detection and classification of incidents.

The detection and classification component is a collection of simple rules that applies the
search and analytic capabilities of Elasticsearch to filter, correlate and detect incidents.
The classification uses the Neo4J database described in Chapter 4.3. The incident
detection and classification component can be realised with a set of Python scripts, this
way the implementation is kept simple, flexible and expandable. It is important that the
different stakeholders will apply various methodologies to detect incidents therefore the
central logging of events and alerts has to offer various options of connection. This enables
a wide spectrum of algorithms to satisfy the different needs of the various stakeholders.

The visualisation component is realised with Kibana since it is designed to work on top of
Elasticsearch. The visualisation component has to access the event and incident central
logging component to access and visualise the stored and analysed data.

Every incident that has to be detected needs to be implemented through the chain
of components. For example, the monitored application is a simple one phase data
processing step. Specific incidents can be identified by first implementing Filebeats on
all the servers running a map reduce job. The Filebeats are configured to transfer all log
messages with a level of "WARN" or higher to the Elasticsearch. The Filebeats enrich
the documents with metadata in from of the host name and the name of the monitored
application. A Python script searches the entries for a specific warning that happens
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when the map reduce job - implemented in Java - has not enough memory and fails. In
this case the Python script discovers the log messages and evaluates with the rule set
that an incident occurred and classifies it as a data analysis incident in the analysis phase
in the map reduce software. The script generates an incident. A dashboard in Kibana is
configured to visualise any open incidents.

This example illustrates to measure only when recording, record only when analysing
and analyse only when it leads to action. Every incident has to be seen as a product of
instrumentation, monitoring, analysis and visualisation. It has to be defined beforehand
what has to be monitored, what metrics a system or service emits and how to evaluate
with rules if or if not a set of events comprises an incident.

Figure 6.1 shows the implementation and the corresponding mapping of the generic
architecture.

Figure 6.1: Implementation Monitoring.

6.2 Test System

The test system that is watched for incidents is a simplified version of the motivating
scenario of BTSs spanning a whole country and providing wireless communication. A
simplified version of the system described by I & A computing lab from Vietnam[61] is
illustrated in Figure 6.2

The first part of the scenario is the simulation of data generated by IoT BTSs. This
part reflects the data acquisition part of the abstraction. The log files are taken from
actual BTS. The data from the log files is read with a small application written in
Python that uses the Pika library[81] to transfer the data to a RabbitMQ[85] message
broker. The message broker hosts a non-durable fanout exchange with a durable queue
to store the byte messages from the Python application. The protocol of the message
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Figure 6.2: Simplified Motivating Scenario.

broker is AMQP. The byte messages are sent from different Raspberry Pi single-board
computers generation 2 and 3 model B. The amount of messages sent simultaneously can
be manipulated by (i) starting several processes and/or (ii) starting processes on several
computers.

Apache Apex is split into Apex-core[8] and Apex-malhar[9] where the latter offers various
interfaces for message brokers. Apex is a Apache Hadoop YARN native platform and
consists of ports, operators and streams. Apex is written in Java and uses Maven for
deployment. The initial data pipeline was built in the following way: a Python script
reads from a *.csv file - beforehand collected - real-life data and feeds it into RabbitMQ.
Apex is used to subscribe to the exchange, read the messages from RabbitMQ and stream
them to the Hadoop file system (HDFS)[49]. Apex reflects one instance of the processing
part of the scenario. In this scenario the inputport is RabbitMQ and the outputport is a
lineOperator that saves the byte message from RabbitMQ into the Hadoop file system.
The RabbitMQ inputport of Apex had several problems some of them remained unsolved
and the most pressing was that it needed to use the default user of RabbitMQ which
is deactivated for external access. The inputport is not capable of any authentication
scheme therefore the RabbitMQ server was configured to accept the default user with no
password.

The combination of these two applications made the access of monitoring data complicated
since YARN creates the directories from logging with insufficient access rights for potential
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monitoring agents. The libraries Apex-malhar offered at that time where not working
together with RabbitMQ, if the recommended setup from RabbitMQ was respected. In a
first version this scenario was set up on a Rasperry Pi[80] which had to be abandoned since
it led to inexplicable errors regarding the Hadoop ecosystem. The first idea was to make
it more portable and distributed while keeping it affordable but Big Data applications
need a lot of resources and are just not made for small computers like the Pi.

The current version of the data source part of the test system that simulates the
BTS devices is realised by IoT Cloud Samples project[93]. This system uses real BTS
monitoring data and simulates with Docker-containers[24] the data provider of a big telco
infrastructure from Vietnam. This part of the test system consists of sensor containers[42]
that read from a *.csv file the collected real BTS monitoring data from the Vietnamese
telco provider and ingestion containers[41] that are realised with the open source MQTT
Broker Mosquitto[72]. This part of the test scenario starts the sensor containers and the
corresponding ingestion containers (for the sensors to log their messages) with Docker
Compose[25] and Pipenv[82]. This part completely covers the data provider site of the
simplified motivating scenario. The Listing 6.8 illustrates the rough idea behind the
operating mode of the sensors.

1 import pika
2 import csv
3 import time
4 from c o l l e c t i o n s import OrderedDict
5
6 connect ion = pika . BlockingConnect ion ( pika . ConnectionParameters ( host=’

1 9 2 . 1 6 8 . 3 3 . 6 3 ’ ) )
7 channel = connect ion . channel ( )
8
9 with open ( ’ /home/manfred/mqqtTest/IoT/ iot −t e s t −data . csv ’ ) as c s v f i l e :

10 reader = csv . reader ( c s v f i l e )
11 s o r t e d l i s t = sor t ed ( reader , key=lambda t : t [ 2 ] )
12 f o r i , row in enumerate ( s o r t e d l i s t ) :
13 channel . bas i c_publ i sh ( exchange=’ apex ’ ,
14 routing_key=’ r k t e s t ’ ,
15 body=s t r ( ’ , ’ . j o i n ( row ) ) )
16 p r i n t ( s t r ( ’ , ’ . j o i n ( row ) ) )
17 time . s l e e p (1 )
18 i f ( i >= 30) :
19 break
20
21 connect ion . c l o s e ( )

Listing 6.1: An previous version of the data input. This illustrates how data is fed into
the messaging infrastructure. The same approach is used in the final version by the
sensor containers.

The next part of the scenario enters various domains of different stakeholders. The system
orchestrator - here realised as the data scientist actor - is involved in the whole scenario,
any incidents stemming from the data source to data processing are of interest to this
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stakeholder as soon as they influence the outcome of the analysis. The data extraction is
realised with an Apache Nifi[38] server. The main purpose of this service is to extract
the data from the messaging infrastructure and ingest it into the storage infrastructure.
This step can include different data preprocessing steps. The configuration of Apache
Nifi works via Browser and is illustrated in Figure 6.3. There are two processors, one
to consume the MQTT messages and a second to write the messages into the HDFS.
There is one message queue that connects the two processors. It is possible to add several
Big Data mechanics like filtering and/or data preprocessing tasks between the two Nifi
processors. Apacha Nifi is a streaming application and therefore offers different methods
to manipulate the data sets during their transition to the HDFS.

Figure 6.3: Apache Nifi Configuration.

The data is stored in the HDFS. The Hadoop installation used in the test scenario is a
single node cluster. Despite being a highly distributable application the installation runs
only on one node. Other parts of an standard Hadoop installation is Hadoop YARN, a
framework for job scheduling and cluster resource management and Hadoop MapReduce,
a YARN-based system for parallel processing of large data sets. These two parts are
standard Big Data analysis applications that are used to process the collected data sets.

6.3 Application of the Generic Architecture

The first step was the identification of all the classification information and adding them
to the classification graph. Regarding the generic architecture the management of an
incident always includes the following steps :

1. Instrumentation

2. Collection
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3. Central storage

4. Incident detection and classification

The functionality of the different elements involved in the test scenario are defined using
the generic architecture. The phases can be assigned in the same way as the functionality.
In the next step the multiphase data pipeline has to be identified and represented in the
classification illustrated in Figure 6.4

Figure 6.4: Test Scenario Data Pipeline.

6.3.1 Instrumentation

We show how the instrumentation of the application generating monitoring data works.
This illustrates the first part of the incident life-cycle.

The instrumentation is partly provided by the applications itself as illustrated in Figure
5.9. In the case of Apache Nifi generates messages regarding the state of the application
and stores them in log files. Logstash searches the log files for a defined pattern, enriches
it with information necessary for the classification and sends it to Elasticsearch illustrated
in Listing 6.2. This concludes the instrumentation.

1 #D e f i n i t i o n input
2 input {
3 f i l e {
4 path => "/ opt / n i f i / n i f i −1.4.0/ l o g s /∗"
5 id => " n i f i L o g s t a s h "
6 s t a r t _ p o s i t i o n => " beg inning "
7 codec => m u l t i l i n e {
8 pattern => "^%{TIMESTAMP_ISO8601} , "
9 negate => true

10 what => " prev ious "
11 }
12 }
13 }
14
15 #add p o s s i b l e f i l t e r s
16 f i l t e r {
17 grok {
18 match => { " message " => "%{DATESTAMP: date },%{NUMBER: e r ro r code } %{

LOGLEVEL: l o g l e v e l } %{GREEDYDATA: syslog_message }"}
19 }
20 }
21
22 f i l t e r {
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23 i f [ l o g l e v e l ] == "INFO" {
24 drop { }
25 }
26 }
27
28 #D e f i n i t i o n o f output j u s t w r i t e s to the command l i n e
29 output {
30 e l a s t i c s e a r c h {
31 id => " n i f i 1_Plug in "
32 index => " n i f i l o g f i l e s "
33 hos t s => [ " l o c a l h o s t : 9 2 0 0 " ]
34 }
35 stdout { codec => rubydebug }
36 }

Listing 6.2: The configuration of the second part of the instrumentation of an application
in the Cloud-based Big Data analytics data pipeline. The index is set so that the
application can be identified and classified in the central logging.

6.3.2 Classification and Central Storage

We show how a central storage for incidents and events is realised with open source
components. We illustrate how the basic classification has to be extended to cover the
collected monitoring data.

The next step is the central storage, in the prototype this is realised with an instance of
Elasticsearch. The usage of dashboards supplied by Kibana simplifies the administration.
The image in Figure 6.5 illustrates that for the example of the indexed messages from
the Apache Nifi element of the data pipeline of the test scenario.

Figure 6.5: Kibana Dashboard for Apache Nifi.
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Before classification and detection can happen various nodes are added into the classifica-
tion. Since the classification is a graph database nodes, edges and properties describing
the data pipeline have to be added.

1 CREATE ( ApacheNif i : DataPipe l ine {name : ’ ApacheNifi ’ } )
2 CREATE (MQTT: DataPipe l ine {name : ’MQTT’ } )
3 CREATE (HDFS: DataPipe l ine {name : ’HDFS’ } )
4 CREATE ( Linux : SystemSoftware {name : ’ Linux ’ } )
5 CREATE ( Archibald : I n f r a s t r u c t u r e {name : ’ Archibald ’ } )
6 CREATE ( FrameworkProvider : Stakeho lder {name : ’ Framework Provider ’ } )
7 CREATE ( Provider1 : FrameworkProvider{name : ’ Framework Provider One ’ } )
8 CREATE ( Provider2 : FrameworkProvider{name : ’ Framework Provider Two’ } )

Listing 6.3: The usability of the classifiaction is only guaranteed when the corresponsing
analysis work is done beforehand and the various data pipeline elements are added to
the classification database.

1 ( ApacheNif i ) − [ : IS ]−>( DataPipe l ine ) ,
2 (MQTT) − [ : IS ]−>( DataPipe l ine ) ,
3 (HDFS) − [ : IS ]−>( DataPipe l ine ) ,
4 (MQTT) − [ :PREDECESSOR]−>(ApacheNif i ) ,
5 ( ApacheNif i ) − [ :PREDECESSOR]−>(HDFS) ,
6 ( ApacheNif i ) − [ :BELONGSTO]−>(DataLoadingPreprocess ing ) ,
7 ( ApacheNif i ) − [ : IS ]−>( Appl i cat ionSo f tware ) ,
8 ( ApacheNif i ) − [ :BELONGSTO]−>( Preparat ion ) ,
9 ( ApacheNif i ) − [ : DataAssetState ]−>( InProce s s ing ) ,

10 ( ApacheNif i ) − [ : HostedOn]−>(Linux ) ,
11 ( Linux ) − [ : IS ]−>(SystemSoftware ) ,
12 ( Stakeho lder ) − [ : IS ]−>(FrameworkProvider ) ,
13 ( Provider1 ) − [ :OWNS]−>(ApacheNif i ) ,
14 ( Provider2 ) − [ :OWNS]−>(HDFS) ,
15 ( DataProvider ) − [ :OWNS]−>(MQTT) ,
16 ( Provider1 ) − [ : IS ]−>(FrameworkProvider ) ,
17 ( Provider2 ) − [ : IS ]−>(FrameworkProvider ) ,

Listing 6.4: The corresponding relationsships.

The added edges and properties to nodes enable the classification of a detected incident.
The last step is a as-simple-as-possible rule to identify an incident. As stated in the
research the openness of the Elasticsearch installation offers various interfaces to apply
incident analytics. Different stakeholders need different analytics and any imaginable
analytic procedure can be applied to the centrally stored data. The classification always
remains central and it can be extended to fulfil the needs of the stakeholders.
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Figure 6.6: Classification Example.
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6.3.3 Simple Identification and Classification Rule

We show how a simple rule that identifies an incident is implemented, by analysing the
centrally stored data and classifying it using the classification graph.

A simple rule written in Python identifies, classifies and writes the incident back into
Elasticsearch adding id and index so that it can be easily searched in the Kibana
dashboard. This example specifically searches for errors regarding the connectivity to the
HDFS and the MQTT message container. If any of them is unreachable, the rule deducts
that the element itself and/or the predecessors in the corresponding data pipeline have a
problem. The corresponding owners and pipeline elements are added to the incident.

Figure 6.7: Test Scenario Data Pipeline Incident.

The simulated incident is the complete failure of one part of a data pipeline. The
centralised logging is searched for potential base events and alerts that suffice the
requirements of an incident. The events are scanned to find out if they are already part
of an incident, in that case they are ignored and no new incident is created. The Python
script uses the Elasticsearch Python library[27].

1 DATABASE = GraphDatabase ( " http :// l o c a l h o s t :7474 " , username=" neo4j " ,
password=" Ztu5C ! : " )

2 data = {}
3
4 #Search f o r i n c i d e n t s
5 RESPONSE = CLIENT. search (
6 index=’ n i f i l o g f i l e s ’ , body={
7 " s i z e " : 100 , " query " : {
8 ’ bool ’ : {
9 ’ must ’ : [

10 { " match " : { ’ l o g l e v e l ’ : ’ERROR’ }} ,
11 { " match " : { ’ message ’ : ’HDFS ’ }}
12 ] ,
13 ’ must_not ’ : [
14 { " match " : { ’ p a r t o f i n c i d e n t ’ : ’YES ’ }}

Listing 6.5: A simple search for events in the created index.

In the next step the Neo4j database is queried for the classification data. The script
traverses the database and returns the corresponding values that are needed for the
creation of the incident. The connection to the graph database is realised with the
neo4jrestclient[75].
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6.3. Application of the Generic Architecture

Errors that already caused an incident are not used for another incident. Events or alerts
get an additional field to mark them as already being part of an incident.

1 de f change_events ( ) :
2 " " " Adds the events to the cor re spond ing i n c i d e n t s " " "
3 f o r h i t in RESPONSE[ ’ h i t s ’ ] [ ’ h i t s ’ ] :
4 i f "HDFS" in h i t [ ’ _source ’ ] [ ’ message ’ ] :
5 p r i n t ( ’HDFS e r r o r : ’ + h i t [ ’ _source ’ ] [ ’ e r r o r code ’ ] + h i t [ ’ _id ’ ] )
6 i f ’ events ’ in data :
7 data [ ’ events ’ ] . append ( h i t [ ’ _id ’ ] )
8 e l s e :
9 data [ ’ events ’ ] = [ h i t [ ’ _id ’ ] ]

10 CLIENT. update ( index=’ n i f i l o g f i l e s ’ ,\
11 doc_type=’ doc ’ ,\
12 id=h i t [ ’ _id ’ ] , \
13 body={
14 " s c r i p t " : " ctx . _source . p a r t o f i n c i d e n t = ’YES ’ "
15 }
16 )

Listing 6.7: The events or alerts are marked.

The last step is the creation of the incident. The data collected consists of the participating
events and the results of the classification from the graph database. The collected data
is written back into the Elasticsearch central logging.

1 de f c r ea t e_ inc iden t ( ) :
2 " " " Creates an i n c i d e n t " " "
3 r e s u l t = CLIENT. index ( index=" i n c i d e n t " , doc_type=’ doc ’ , body=data )
4 p r i n t ( r e s u l t [ ’ c r ea ted ’ ] )

Listing 6.8: The incident is written into the database.

Now the incident is added to the corresponding index in the Elasticsearch database and
becomes searchable. The incident contains the identification tags from all the events it is
based on.
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6.3. Application of the Generic Architecture

This proof-of-concept illustrates a simple rule that realises the concept of generating
rules as simple as possible. Since the data and the corresponding created incident are all
stored in a central logging unit any user of the system has access to them. The use of
Python to create a rule is only one possibility. The central logging unit in this example
is accessible with a wide variety of tools and enables any stakeholder to design rules in
their preferred programming language.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
Our intensive related and background research delivers the basis for all the other con-
tributions, our stakeholder analysis, our specification of generic use cases for incident
management, our incident survey, our classification, our metrics, our specification of
monitoring requirements, our development of software component diagrams and our
proof-of-concept of a generic architecture of an incident monitoring and classification sys-
tem for incidents in Cloud-based Big Data systems. We found a motivating scenario that
helped orienting in a field with high complexity. We identified use cases and stakeholders
considering the new challenges stemming from technology paradigms and combined them
with proven standards. Our incident survey delivered input to identify key points in this
technological area of expertise. Another contribution is our classification of incidents
based on our survey and our research regarding cloud computing, IoT and Big Data. The
combination of the survey with the classification delivered exemplary metrics regarding
quality goals like QoA and QoS. We developed monitoring requirements and combined
them with all the other intermediate contributions to deliver the software components
of our generic architecture. The thesis finishes with a proof-of-concept regarding the
implementation of our generic architecture with open source technologies. This example
illustrates the feasibility of our prototype and reiterates how the generic architecture has
to be applied.

The software used in the proof-of-concept is released as open source under https:
//github.com/rdsea/bigdataincidentanalytics.

7.2 Future Work
There are several use cases that have been identified in the research but were not examined
in the prototype. The next step is to introduce the system to a real case scenario and
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7. Conclusion and Future Work

implement more and more sophisticated rules. The generic architecture presented in this
thesis develops the understanding and illustrates the possibilities in the field of incident
management in Cloud-hosted Big Data analytics. The prototype presented here is a
proof-of-concept to verify the feasibility of the architecture.
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