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Kurzfassung 
 
In dieser Arbeit wird ein neues Modell zur Simulation von Spannungs-Dehnungs 

Diagrammen in Abhängigkeit von Temperatur, Dehnrate und Materialzustand in 

Aluminiumlegierungen beschrieben. Der Materialzustand wird dabei unter Zuhilfenahme der 

Simulationssoftware MatCalc in Abhängigkeit der thermo-mechanischen Vorgeschichte 

modelliert. Die Simulation des dehnungsabhängigen Spannungs-Anteils beruht auf einer 

Entwicklung der durchschnittlichen Versetzungsdichte als Funktion von Temperatur und 

Dehnrate. Zur Modellierung des dehnungsunabhängigen Spannungs-Anteils wird zuerst die 

Streckgrenze bei 0K berechnet wobei unterschiedliche Verfestigungsmechanismen wie z.B. 

Mischkristall-, Ausscheidungs- oder Korngrenzenverfestigung berücksichtigt werden können. 

Ausgehend von der Streckgrenze bei 0K wird das Materialverhalten bei gegebener 

Temperatur und Dehnrate mithilfe eines physikalischen Modells zur thermischen Aktivierung 

beschrieben. Das beschriebene Modell wird mit experimentellen Daten, die zum Teil im Zuge 

dieser Arbeit entstanden sind verglichen und kalibriert. Im Zuge dieser Arbeit sind auch 

mehrere Fachartikel in anerkannten wissenschaftlichen Journalen veröffentlicht worden. 
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Abstract 
A novel and comprehensive model addressing the stress strain response under uniaxial 

loading over a wide range of temperatures, strain rates and material states is developed and 

introduced. Temperature and strain rate dependence of the yield stress are derived on the 

basis of an idealized material concept of a box-shaped and periodical dislocation-obstacle 

interaction profile. The model for strain hardening is based on an extended Kocks-Mecking 

evolution equation for the average dislocation density and discussed in terms of the 

temperature- and strain rate-dependence of the initial strain hardening rate and the 

saturation stress for stage-III hardening. The model covers both, low temperature 

deformation due to dynamic recovery and vacancy-assisted climb leading to static recovery 

at elevated temperatures. The model is finally validated on experimental data for solid 

solutions and artificially aged aluminium alloys. 
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1 Introduction 

Aluminium alloys are known for their good specific strength, weldability and corrosion 

resistance. From the first discovery of precipitation hardening in aluminium alloys in 1906 

(Duparc, 2005), the unique combination of mechanical properties and light weight has since 

led to an ever increasing interest in aluminium alloys especially in fields where the reduction 

of weight is of importance. The outstanding mechanical properties of Al-X alloys mainly stem 

from a high potential for solid solution hardening, e.g. +172MPa with Mg (Uesugi and 

Higashi, 2013), and an even higher potential for precipitation strengthening, e.g., in 2xxx, 

6xxx and 7xxx alloys, where a strength of 600-700MPa (Fribourg et al., 2011) can be reached 

while maintaining reasonable ductility. Unfortunately, forming processes in Al solid solutions 

are complicated by the effect of dynamic strain ageing (DSA) in certain temperature and 

strain rate regions, which can lead to negative strain rate sensitivity, serrated flow and 

decreased ductility. This combination of high industrial relevance and complex underlying 

physical processes has fostered great scientific interest and has led to numerous publications 

on this topic. Creep of aluminium alloy, e.g. was investigated by (Li et al., 1997).  (Hu et al., 

2016) presented a crystal plasticity extended models for the tensile behaviour of aluminium 

alloys. The variation of strain rate sensitivity of an aluminium alloy in a wide strain rate range 

was studied by (Yan et al., 2016).  Cyclic plasticity and the Bauschinger effect were subject to 

investigations by (Yoshida and Uemori, 2002). Dislocation density based models on strain 

hardening were recently introduced by (Csanadi et al., 2014), (Silbermann et al., 2014) and  

(Bertin et al., 2013). The formability of AA5083 and AA6061 was investigated through 

experimentation by (Liu et al., 2010). High-velocity impact failure of 6061-T6 aluminum was 

investigated by (Ahad et al., 2014) and shock wave propagation in Al single and polycrystals 

by (Lloyd et al., 2014). Damage models were subject to the work of (Mengoni and Ponthot, 

2015) and (Tutyshkin et al., 2014). Yield surface evolution in AA6061 and annealed 1100 Al 
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was presented by (Khan et al., 2009), (Khan et al., 2010a), (Khan et al., 2010b) and (Pandey 

et al., 2013). The anisotropic behaviour in AA 2090-T3 aluminium alloy was studied by (Safaei 

et al., 2014). 

Some of these applications, e.g., finite element simulations, require material properties in 

the form of flow curves as input data, where even small variations of the input data can 

cause significant deviations in the resulting simulation (Umbrello et al., 2007). Traditionally 

such data is obtained through experimentation, which is expensive and time-consuming. A 

reduction of experimental cost by combining experiment with the simulation of 

temperature, strain rate and material state dependent stress-strain curve data is thus highly 

desirable. With the development of specialized simulation software, e.g., the thermo-kinetic 

software package MatCalc (Kozeschnik, 2017), it is possible nowadays, to predict the 

material state, i.e., atoms in solid solution, grain size, precipitation size, distribution, growth 

and coarsening in multi-component, multi-phase and multi particle systems (Svoboda et al., 

2004),(Kozeschnik et al., 2004a), (Kozeschnik et al., 2004b). Using these tools enables the 

development of physically based models on temperature, strain rate and material state 

dependent stress strain curves and closes the gap between finite element and thermo-

kinetic simulation. 
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2 Objectives 

The aim of this work is the development of a model on the temperature, strain rate and 

material state-dependent flow curve prediction based on results from MatCalc thermo-

kinetic simulation on precipitation state, solute content and grain size for either basic studies 

of physical mechanisms occurring during thermo-mechanical treatment or for using these 

curves as input for finite element simulation. Consequently, one requirement is the accurate 

reproduction of experimental stress-strain curves from low to high temperatures in a 

continuous and steady manner. Additionally, the model should deliver a realistic dislocation 

density evolution as function of temperature, strain rate and material state, as this is a major 

input parameter for the modelling of precipitation kinetics (heterogeneous nucleation sites) 

as well as of recrystallization and recovery. 
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3 State of the Art 

This chapter is initiated with a definition of stress and strain, which is followed by a 

description of the macroscopic shape and general appearance of stress strain curves using 

the concept of deformation stages. Subsequently, deformation mechanisms are discussed in 

the light of thermal activation. The evolution of microstructural state parameters during 

plastic deformation and the most important scaling laws relating microstructural state 

parameters and stress are described afterwards. Following this, constitutive and state 

parameter based models for stress-strain curves are reviewed.  

3.1 Definition of stress and strain 

In the present work, stress,  , and strain,  , are defined as true stress and true strain 

according to 

AF  and  (1) 

 0ln hh , (2) 

where F  is the applied force, 0h  is the initial height/length of the specimen, and h  the 

height/length measured during deformation. A  is the actual cross-section that is either 

directly measured or derived from h  and the assumption of constant volume and no 

barrelling, according to hhAA 00 . In polycrystalline materials the Taylor factor, M , is 

commonly used to relate the true stress with the critical resolved shear stress,  , acting on a 

slip plane according to 

  M . (3) 

The Taylor factor M  is an average orientation factor, which depends on texture and the 

crystallographic nature of the material (Mecking et al., 1996). It has a numerical value of 3.06 

for fcc (Kocks, 1970) and was first derived by (Taylor, 1938), see also (Canova et al., 1984) 

and (Hansen and Huang, 1998). The macroscopic strain,  , is related to the resolved strain, 

 , acting on a slip plane via M  . Consequently also the strain rate, M   , is related to 
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the resolved strain rate,  , through the Taylor factor. A very useful quantity is the strain 

hardening rate that is defined as 






d

d
 . (4) 

The resolved strain hardening rate,  , is given as 2M . It should be emphasised here, 

that the definition of strain,  , according to Eq. (2) requires information about the 

‘undeformed’ sample dimensions in the form of the initial height/length 0h , which cannot be 

measured a posteriori, when the sample is already deformed. The strain hardening rate,  , 

on the contrary, can be measured directly at any instant, is characteristic for a specific  

material state and is thus – together with   – to be preferred as state parameter over   in 

physical modelling. This work considers both   vs.   and   vs.   relations. 

3.2 Stages of deformation 

According to (Diehl, 1956) and (Diehl et al., 1955) a plot of stress over strain can be divided 

in five well separated stages. These stages are reviewed in the following subsections.  

 

3.2.1 Stages I and II 

Stage I occurs in single crystals and is often referred to as ‘easy glide’. It is characterized by a 

fairly low strain hardening rate of G4
I 102  (Nabarro et al., 1964), where G  is the shear 

modulus. After a certain amount of strain, the strain hardening rate increases significantly 

indicating a transition to stage II. The point of transition between stages I and II is not well 

reproducible and depends on chemical purity, prior handling, surface conditions (Nabarro et 

al., 1964) and crystallographic orientation. The strain hardening rate in stage II, II , reaches 

levels of 20G  (Estrin, 1996), is almost independent of temperature and strain-rate and only 

slightly dependent on single crystal orientation. However, as pointed out by (Reed, 1972), 

stage II is observed to be temperature dependent to a certain degree in pure Al. Stage II is 

the first stage to sometimes occur in polycrystalline material. Fig. 1 (a) shows a schematic 

representation of Stages I and II, (b) shows some experimental results on pure copper. 
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 (a) (b) 

  
Fig. 1 (a) Schematic representation of stages I and II, adapted from (Diehl, 
1956). (b) Shear stress versus shear strain curves for single crystals in 
99.98% Cu with varying orientations. The markers show the beginning and 
end of Stage II adapted from (Kocks and Mecking, 2003) .  

 

3.2.2 Stage III 

Stage III occurs in succession to stage II. Stage III is the most important deformation stage 

during tensile testing and most constitutive relations aim at modelling the ‘parabolic nature’ 

of stage III behaviour. It is characterized by a decreasing strain hardening rate, III , with 

increasing stress and a strong dependence on temperature and strain rate. In stage III, the 

dominant mechanism of dislocation annihilation is dynamic recovery (Kocks, 1976), (Kocks 

and Mecking, 2003). For the annihilation process to occur, cross-slip of screw dislocations is 

essential. Constitutive and physical models dealing with stage III hardening are described in 

section 3.5. Fig. 2 shows stage III hardening for (a) polycrystalline aluminium and (b) copper 

at various temperatures and strain rates. 
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(a) (b) 

 

 
Fig. 2 Stage III hardening in (a) polycrystalline aluminium for different temperatures and 
strain rates (solid lines 0.016 s-1 and dashed line 1.6 s-1) adapted from (Kocks, 1976) and (b) 
polycrystalline copper for different temperatures and strain rates (solid lines 10-4 s-1and 
dashed lines 1 s-1) adapted from (Kocks and Mecking, 2003). 

 

For the characterization of stage III, it is often useful to plot the strain hardening rate  , as 

defined in section 3.1, as a function of stress  . Fig. 3 shows a plot of   vs.  (Kocks-plot) 

for the experimental data in Fig. 2 (b).  

 

 
Fig. 3 Strain hardening rate as function of 
stress for the experimental data on 
polycrystalline copper in Fig. 2 (b) adapted 
from (Kocks and Mecking, 2003). 

  

It is observed, that a plot of   vs.   shows an almost linear relation between initial strain 

hardening rate and saturation stress in stage III. This relation is observed also in a series of 

other materials, e.g. for Al and stainless steel (Kocks, 1976), 7xxx series aluminium alloy 
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(Fribourg et al., 2011), Al-Cu (Deschamps et al., 1996), Al-Mg (Jobba et al., 2015) and is 

characteristic for stage III. 

 

3.2.3 Stages IV and V 

Stage III is followed by a stage (IV) of constant strain hardening rate in the order of 

magnitude of stage I, i.e., G4
IV 102  . A comprehensive review on large strain 

deformation is given in (Gil Sevillano et al., 1981a) and (Rollet, 1988). Stage IV hardening is 

often not observed in tensile testing due to prior necking of the specimen and it is thus very 

often investigated using torsion experiments (Zehetbauer and Seumer, 1993), (Zehetbauer 

M., 1993), (Les et al., 1997) or compression testing (Asgari et al., 1997). Stage IV was first 

characterized by (Langford and Cohen, 1969), where large strains were attained by wire 

drawing and subsequent tensile testing. Most interestingly, this stage is almost insensitive to 

alloy composition (Kocks, 1985) and (Ryen et al., 2006b). Stage IV is sometimes followed by 

stress saturation (Zehetbauer and Seumer, 1993), (Zehetbauer M., 1993) that is then 

referred to as stage V. Several possible causes for the occurrence of stage IV have been 

discussed in literature (Mecking and Grinberg, 1979) and merged into modelling approaches 

(Galindo-Nava and Rivera-Díaz-Del-Castillo, 2012), (Pantleon, 2005) and (Prinz and Argon, 

1984). Fig. 4 (a) shows experimental stress strain curves depicting stages III, IV and V in 

polycrystalline copper for different temperatures, (b) shows related Kocks-plots.  
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(a) 

 
(b) 

 
Fig. 4 (a) Shear stress vs. shear strain showing stages III, IV and V in 
polycrystalline copper for different temperatures (77K, 293K, 373K 
and 473K) and a strain rate of 10-2 s-1 derived by torsion testing. (b) 
Strain hardening rate vs. shear stress, T = 293K, strain rates x 10-2 s-1, 
+ 10-4 s-1 adapted from (Zehetbauer M., 1993).  

 

Fig. 5 summarizes the stages of deformation in polycrystalline materials in a schematic view, 

where (a) depicts a plot of stress vs. strain and (b) the corresponding Kocks-plot. 

 



10 
 

(a) (b) 

  
Fig. 5 Schematic representation of deformation stages in (a) a plot of stress vs. strain and (b) 
of hardening rate vs. stress (Kocks-plot). 0 is the strain hardening rate at stage III start and 

 is the saturation stress. 

 

Fig. 5 (b) also depicts the strain hardening rate at stage III start, 0 , and the theoretical 

saturation stress,  , of stage III if no stage IV occurs. For the sake of simplicity, 0  is simply 

referred to as initial strain hardening rate and   as saturation stress in the following.  

3.3 Temperature and strain rate dependence of stress strain curves 

It is common knowledge that the strength of a material is a function of temperature and 

strain rate. Intuitively, it is clear that materials are ‘soft’ at higher temperatures and are 

stronger when the rate of deformation is increased. In metallic materials this correlation has 

two major causes: (i) an increase in dislocation mobility with increasing temperature and (ii) 

the temperature dependence of the material state, e.g. the stability of a precipitation state. 

In this section the material state is assumed to be stable and any temperature and/or strain 

rate dependence of the stress strain curve is a consequence of a change in dislocation 

mobility or in deformation mechanism.  

 

3.3.1 Deformation mechanisms 

Deformation by dislocation slip is the dominant deformation mechanism in face-centred 

cubic (fcc) metals with elevated stacking fault energy and in body-centred cubic (bcc) metals 

at intermediate and high temperatures. In hcp metals, mechanical twinning is of major 
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importance (Bolling and Richman, 1965a), (Bolling and Richman, 1965b), (Christian and 

Mahajan, 1995). The incremental strain carried by one dislocation and the direction of 

distortion within the crystal are indicated by the Burgers vector b . In addition to glide within 

a slip plane, dislocations can leave their glide plane by cross-slip or – at elevated 

temperature – by vacancy-assisted climb. Both mechanisms require thermal activation and it 

is believed that these mechanisms are the main reason for the temperature and strain rate 

dependence of stress strain curves. Cross-slip is the dominant annihilation mechanism at 

medium to high temperatures. It is restricted to screw dislocations and leads to dynamic 

recovery (Mott, 1952), (Schoeck and Seeger, 1955), (Seeger, 1957), (Jackson, 1985) and 

(Kocks and Mecking, 2003). Existing models for the mechanism of thermally activated cross-

slip are analysed and compared in (Püschl, 2002). Dislocation climb requires diffusion of 

vacancies and is, thus, time-dependent. As a consequence, strain rate sensitivity is generally 

higher in regions where dislocation climb is dominant (Weertman, 1956), (Weertman, 1957), 

(McQueen and Ryan, 2002). At temperatures close to melting and low strain rates other 

diffusion-driven mechanisms (Nabarro, 1948), (Herring, 1950), (Lifshitz, 1963), (Coble, 1963), 

(Raj and Ashby, 1971), (Hirth, 1972), (Gifkins, 1976), (Shan, 2004) that do not involve 

dislocations and recrystallization (Luton and Sellars, 1969), (Doherty et al., 1997) become 

relevant. A good overview of deformation mechanisms as a function of temperature and 

strain rate are given in the form of deformation mechanism maps as introduced by (Frost 

and Ashby, 1982) where each deformation mechanism is described with an individual rate 

equation. Fig. 6 shows an exemplary deformation mechanism map for pure Al with a grain 

size of 10µm. 
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Fig. 6 Deformation mechanism map for pure Al with 
a grain size of 10µm reproduced from (Frost and 
Ashby, 1982). 

 

In the following, two rate equations – one for low and intermediate temperatures and one 

for high temperatures – are discussed in more detail. Diffusional flow, mechanical twinning 

and recrystallization are out of the scope of this work and are not further investigated in the 

present work. 

 

3.3.2 Low temperature plasticity 

The mobility of a dislocation is fundamentally described by the Orowan equation (Orowan, 

1940),  

bv  , (5) 

relating the macroscopic strain rate,  , with the dislocation velocity,  , the Burgers vector 

and the average moving dislocation density,  . According to (Eyring, 1936), (Schoeck, 1965), 

(Argon, 1996) and (Frost and Ashby, 1982), the dislocation velocity for low and intermediate 

temperatures is expressed through an Arrhenius Ansatz in the form of 

 















 


kT

G
cv


exp  (6) 

where G  is the Gibbs energy, k  is the Boltzmann constant and T  is the temperature in 

Kelvin.  G  is often assumed to be  
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p
q

FG



























ˆ
1 , (7) 

where ̂  is the yield stress at 0K also referred to as mechanical threshold (MTS) (Kocks et 

al., 1975), p , q  are material-dependent exponents and F  is an activation energy. 

According to (Frost and Ashby, 1982), F  can be written as 3aGbF  , where a  is a factor 

between 0.2 and 2. A combination of Eqs. (5), (6) and (7) gives an expression for the 

temperature and strain rate-dependent yield stress, reading 
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







. (8) 

Eq. (8) has been applied successfully in steel (Burgahn et al., 1996), (Schulze and Vohringer, 

2000) and (Dahl and Krabiell, 1979) and in Al-alloys (Leyson and Curtin, 2016), (Leyson et al., 

2010) and (Soare and Curtin, 2008). However, at a certain critical temperature, 0T  , the 

delivered stress becomes zero and Eq. (8) loses its physical meaning. 0T  is consequently an 

upper limit for the application of Eq. (8) and for 0TT   other, high temperature models must 

be applied. 

 

3.3.3 High temperature plasticity 

At elevated temperatures, the mobility of a dislocation is determined by diffusional 

processes, such as vacancy-assisted climb. According to (Hirth and Lothe, 1991), the velocity 

at which an edge dislocation climbs under a local normal stress can be expressed as  

 



bkT

Dv , (9) 

where vD is the lattice diffusion coefficient and   the atomic or ionic volume. If, in addition 

to that, the mobile dislocation density is expressed by the Taylor equation, the rate equation 

in dependence of stress can be written as   

n

v

GkT

GbD
A 











 1
 ,  (10) 

where   is approximated with 3b , 1A is the Dorn-constant and n  is an exponent in the range 

of 1-7. The case of 3n  is often referred to as ‘Natural creep law’ as is follows directly from 

Eqs. (5) and (9). This natural creep law is obeyed by some materials, for example Al-Mg solid 

solutions (Kocks, 1998). In general, the Dorn constant, 1A , is heavily material dependent with 
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its values ranging from 1 to 1015. Equations in the form of Eq. (10) are referred to as power-

laws due to their dependence on the exponent n  and have been successfully applied and 

modified frequently. For further reading see (Sellars and Tegart, 1966), (Jonas, 1969), (Nix et 

al., 1985), (Li et al., 1997), (Nes, 1995), (El-Danaf et al., 2008a), (El-Danaf et al., 2008b),  

(Spigarelli et al., 2003),  (Evans and Wilshire, 1996) and (Tello et al., 2010).  

3.4 Deformation-induced microstructure evolution 

Besides macroscopic quantities, such as stress, strain, temperature and strain rate, also, 

microstructural quantities need to be considered for the understanding of plastic 

deformation. Experimental techniques for the determination of deformation-induced 

microstructure evolution, the concept of microstructural state parameters and the Taylor 

equation are described in this section. 

 

3.4.1 Microstructural observation 

A variety of experimental techniques has been developed for the direct or indirect 

observation of dislocations and deformation-induced microstructures. An early overview on 

experimental techniques is given in (Nabarro et al., 1964), where measurement of density, 

stored energy, electrical resistivity, surface effects, slip lines and surface markings, etch pits, 

magnetic saturation, nuclear magnetic resonance and X-ray diffraction are listed under the 

section of indirect measurement techniques. For direct observation, TEM (Malin and 

Hatherly, 1979), (Gil Sevillano et al., 1981a), (Hughes and Nix, 1989) and EBSD (Hurley and 

Humphreys, 2003) are used intensively nowadays. Fig. 7 (a) shows an exemplary TEM 

micrograph of a dislocation structure of a Fe-43at%Al single crystal, (b) shows an EBSD 

micrograph of deformation-induced microstructure in a single phase Al-0.1Mg alloy. 

 



15 
 

(a) (b) 

 
 

Fig. 7 (a) Dislocation entanglement in an Fe-43at%Al single crystal, adapted from 
(Messerschmidt et al., 2006) (b) EBSD relative Euler orientation map showing substructure 
after 50% rolling reduction in a single phase Al-0.1Mg alloy, adapted from (Hurley and 
Humphreys, 2003).  

 

The deformation-induced microstructure is often observed to take the form of cells or 

subgrains that are well characterized by a mean subgrain diameter,  , and a mean 

misorientation angle,  , between neighbouring subgrains (Furu et al., 1995). The number of 

immobilized dislocations is quantified with an average dislocation density,  , that has the 

unit of m/m3. Average dislocation density, subgrain size and misorientation angle are 

referred to as microstructural state-parameters. In general, these state-parameters show 

specific tendencies as function of stress and strain that can be formulated in the form of 

‘scaling laws’. Fig. 8 shows a schematic representation of microstructural state parameters 

and stress as a function of strain. 
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Fig. 8 Schematic representation of state 
parameters and shear stress evolution as a 
function of shear strain at room temperature, 
adapted from (Ryen, 2003).  

 

3.4.2 Scaling laws 

The microstructural state parameters and the macroscopic yield stress,  , are related to 

each other through so called ‘scaling laws’ (Sauzay and Kubin, 2011). The most important of 

these scaling laws is the Taylor equation, which was first derived by (Taylor, 1934) and reads 

 1gMGb   , (11) 

where MGbg 1  and  is a strengthening coefficient. The value of  is determined by the 

geometrical arrangement of dislocations and is, thus, weakly dependent on strain 

(Mughrabi, 2016). Theoretical estimates for the strengthening coefficient were performed 

by (Saada, 1960), (Baird and Gale, 1965) and (Schoeck and Frydman, 1972) with 3.0 being 

the most precise estimate according to (Sauzay and Kubin, 2011).  
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The second scaling law is the principle of similitude (Gil Sevillano et al., 1981a), (Holt, 1970), 

(Staker and Holt, 1972), (Sauzay and Kubin, 2011) that relates the dislocation density to the 

subgrain diameter, reading 

 KMGb , (12) 

where K  is a constant, (Nes, 1994), (Nes, 1995), (Nes and Furu, 1995) and (Furu et al., 

1995). Fig. 9 shows a compilation of results on dislocation density vs. resolved shear stress.  

 

 
Fig. 9 Forest dislocation density vs. resolved flow 
stress. Reprinted from (Basinski and Basinski, 1979) 

 

The ‘scaling laws’ are the basis for many state parameter-based models of stress strain 

curves as later introduced in section 3.5.3. 

3.5 Modelling of stress strain curves 

Models that have been found to appropriately reproduce experimentally derived stress-

strain curves with the help of analytical functions are reported in this section. These models 

can be divided in two groups: (i) constitutive models, where stress is modelled ‘only’ as a 
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function of strain and (ii) state parameter-based models where the stress strain curve is 

derived from the evolution of one or more microstructural state parameter. An individual 

subsection is dedicated to the Voce hardening law (Voce, 1955), as this law is – on the one 

hand – a constitutive model and – on the other – the basis of most physical state parameter-

based models.  

 

3.5.1 Constitutive models 

One of the earliest constitutive relation for the reproduction of stress strain curves was given 

by (Ludwik, 1909), reading 

nk  0 ,  (13) 

where n  is the hardening exponent, k  is a constant and 00    is the initial yield stress. 

Three parameters, 0 , k  and n  are required for parameterization of Eq. (13) that are easily 

derived form a double logarithmic plot of stress over strain. Applying  dd  as criterion 

for necking (Gensamer, 1938), it is easily shown that nm  , where m  is the strain at 

maximum load. It was also shown by (Hollomon, 1945) that the initial yield stress, 0 , is 

related to n  in rather simple fashion. In constitutive models, it is common to express the 

temperature and strain rate-dependence of the stress as 

      ref,,,   TfT , (14) 

which comprises the product of a strain-dependent master-curve,   ref , according to Eq. 

(13) and a temperature and strain rate-dependent function,  ,Tf . An example of this 

‘product form’ is the Freiberger Ansatz (Schmidtchen and Spittel, 2011), where, for cold 

deformation,  

3421 mmmTm
eeA     (15) 

is applied and for hot deformation 

  TmmTmmmTm
eeeA 875421 1    .  (16) 

Eqs. (15) and (16) have been parameterized for a large number of materials and are part of 

the data-base Landolt-Börnstein (Spittel and Spittel, 2009). Table 1 summarizes the 

functional dependence of a selection of constitutive models and indicates whether they are 

following the “product form” Eq. (14) or not.  
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3.5.2 Voce hardening law 

An alternative constitutive law was introduced by (Voce, 1955), reading 
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where   0c  is the critical strain, 0  is the initial strain hardening rate,   the 

saturation stress and 0  the initial yield stress, for a definition see section 3.2.3. This law 

describes an exponential relation between stress and strain and was originally introduced as 

a constitutive stress-strain curve model. In differential form, the Voce hardening law reads  
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where 01 h  and  02h . The Voce hardening law shows several important differences 

in comparison to power-laws, which are (i) stress saturation is reached at a certain level of 
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strain, (ii) the initial strain hardening rate, 0 , and the saturation stress,  , as defined in 

section 3.2.3 are direct input parameters of the model and (iii) a linear relation between 

strain hardening rate,   , and stress,  , is predicted by the model and is, thus, in good 

accordance with experimental observations for stage III, see section 3.2.2. 

 

3.5.3 State parameter-based models 

State parameter-based models (Kocks, 1976), (Estrin and Mecking, 1984), (Kubin and Estrin, 

1990), (Estrin, 1996), (Nes, 1997), (Roters et al., 2000), (Marthinsen and Nes, 2001), (Barlat 

et al., 2002), (Tóth et al., 2002), (Beyerlein and Tome, 2007), (Austin and McDowell, 2011), 

(Fan and Yang, 2011), (Gao and Zhang, 2012), (Galindo-Nava et al., 2012), (Hansen et al., 

2013), (Bertin et al., 2013), (Li et al., 2014), offer more physical insight than constitutive 

models and give access to the evolution of observable parameters, such as, e.g., the 

dislocation density. Such models are commonly founded on (i) the Taylor equation Eq. (11) 

and (ii) a differential equation for the average dislocation density evolution in the form  













d

d

d

d

d

d 

 , (19) 

where the generation of dislocations due to plastic deformation is accounted for in the 

dislocation storage term,  dd  , whereas the annihilation of dislocations due to dynamic 

recovery is accounted for in the term  2kdd  . The storage term is commonly related to 

the mean free path, L , of mobile dislocations (Barlat et al., 2002) through  

bL

M

d

d







 . (20) 

With the assumption that the mean free path is indirectly proportional to the square root of 

the dislocation density, 



A
L 

,
 (21) 

Eq (19) delivers the well-known Kocks-Mecking equation reading 





21 kk

d

d
 , (22) 

where bAMk 1  and A  is a proportionality constant. The Kocks-Mecking (KM) model 

(Essmann and Mughrabi, 1979), (Kocks, 1976), (Mecking and Kocks, 1981), (Gil Sevillano et 

al., 1981b), (Estrin, 1996), (Kocks and Mecking, 2003) is one representative of a state 
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parameter-based model on plastic deformation and is the basis of the present model on 

strain hardening. With the Taylor equation,
 1g

, the KM model is alternatively written 

as  






22

211 kgk

d

d
 , (23) 

which is an equivalent form of the Voce hardening law, Eq. (18). Consequently, the shape of 

the stress-strain curves modelled with the KM-model are – like in the case of the Voce 

hardening law – characterized by the initial strain hardening rate, 0 , the saturation stress, 

 , and the critical strain, c . The fundamental relations between 1k , 2k , 1h , 2h , 0  and    

read 

1
11

0
2

h
kg

 , (24) 

2

1

2

11

h

h

k

kg
 . (25) 

Fig. 10 (a) shows a schematic view of a generic stress-strain curve calculated with Eq. (22) 

and Eq. (11), (b) shows the corresponding Kocks-plot.  

 

(a) (b) 

  
Fig. 10 (a) Schematic representation of a stress-strain curve according to the KM-model, Eq. 
(22) (b) corresponding Kocks-plot. 
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Eq. (22) does not contain any explicit temperature or strain rate dependence except if 1k  or 

2k  are functions of temperature or strain rate. In most dislocation density-based models 

(Kocks, 1976), (Kubin and Estrin, 1990), (Estrin, 1996), (Galindo-Nava et al., 2012), (Nes, 

1997), (Roters et al., 2000), 1k  is assumed to be temperature-independent (except for the 

temperature-dependence of the shear modulus), whereas 2k  is treated as a temperature 

and strain rate-dependent parameter. As a consequence, many state parameter-based 

models, e.g. (Roters et al., 2000), (Galindo-Nava et al., 2012), (Nes, 1997), (Kocks, 1976) 

predict an athermal initial strain hardening rate and only the saturation stress is a function 

of temperature and strain rate, see Eqs. (24) and (25). The analysis of the temperature and 

strain rate-dependence of strain hardening is then reduced to an analysis of the temperature 

and strain rate-dependence of the saturation stress and the expression for 2k  is derived 

from Eq. (28) and the assumption of a constant 0 .  

In the next section a modelling framework for temperature and strain rate-dependent 

stress-strain curve modelling is derived and analysed, where the framework is based on a 

state-parameter approach for an average dislocation density. It should be emphasized that 

multi-parameter models, such as the ones from (Barlat et al., 2002), (Kubin and Estrin, 1990), 

(Tóth et al., 2002), (Roters et al., 2000) and (Nes, 1997) are out of the scope of the present 

work and are not further investigated here. 
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4 Model development 

In this chapter, a model for the temperature, strain rate and material state-dependent flow 

curve prediction is developed based on the background given in section 3. In the following 

analysis, the yield stress is represented by the sum of a strain-independent initial yield 

stress, 0 , and a strain-dependent stress, p , also referred to as the plastic stress, which can 

be modelled separately as 

p0   . (26) 

The model for the initial yield stress, 0 , is introduced first, based on the concepts of the 

material state-dependent mechanical threshold stress and a thermal activation framework. 

The thermal activation framework is based on a material concept of an idealized box-shaped 

and periodical dislocation-obstacle interaction profile. In a subsequent section, a dislocation 

density-based model for the calculation of the plastic stress, p , is presented and analyzed, 

based on an extended KM-model. The explicit functional relations given in this section 

constitute a major result of the present work. 

4.1 Initial yield stress 0  

4.1.1 Material state and mechanical threshold 

For a certain alloy composition, the material state, e.g., distribution of precipitates, atoms in 

solid solution, grain size, etc. follows from the thermo-mechanical history of the material. 

Fig. 11 shows a typical heat-treatment scheme with three steps of solidification, 

homogenization and precipitation. 
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Fig. 11 Schematic three-step heat treatment with 
solidus temperature sT , homogenisation 

temperature hT and pT  indicating the temperature 

for precipitation heat treatment.  

  

The state parameter evolution during thermo-mechanical treatment can be calculated, e.g, 

with the help of the thermo-kinetic software package MatCalc [http://matcalc.at]. An 

example of such a material state calculation is given in the results section where the 

precipitation state for an AA6061 Al alloy is predicted and its stability is investigated as a 

function of temperature. The mechanical threshold stress (MTS), as introduced in section 

3.4.2, is strongly related to this material state. It is, for example, independent of 

temperature and strain rate only as long as its defining material state is. Precipitates, for 

example, are stable only up to a certain temperature. If they are dissolved, also their 

contribution to the MTS must vanish. As the material state can be closely followed by 

thermo-kinetic simulation, MatCalc is also the means of choice when predicting the MTS. A 

number of models predicting the MTS contribution due to certain strengthening mechanism, 

e.g. precipitation strengthening (Ahmadi et al., 2014), (Ahmadi et al., 2017), are 

implemented in MatCalc which are summarized in Table 2.  
 Table 2  

Symbol Name  MatCalc variable names 

i  Basic yield stress of precipitation domain, lattice friction TYSB$ 

ss  Solid solution yield stress contribution in precipitation domain TSSS$ 

cls  Co-Cluster yield stress contribution in precipitation domain TCLS$ 

disl  Dislocation yield stress contribution in precipitation domain TDS$ 

gb  Fine grain yield stress contribution in precipitation domain TGS$ 

sgb  Subgrain yield stress contribution in precipitation domain TSGS$ 

prec  Total yield stress contribution from precipitates TSIGMA_PREC$ 
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In the next section, a thermal activation framework for yield stress calculation at 

temperatures 0T  is derived, where the MTS is treated as input parameter. It is important 

to note that the temperature and strain rate-dependence of the material state must not be 

confused with the temperature and strain rate-dependence of the model derived in the next 

section, which is due to an increase in dislocation mobility while the MTS is assumed to be 

constant. 

 

4.1.2 The thermal activation framework 

In this section, relations between applied stress, mechanical threshold stress, temperature 

and strain rate are derived on the basis of an idealized box-shaped, periodical obstacle 

profile. Although the assumption of such an obstacle profile is highly simplified, it will be 

shown that important phenomena observed in experiment can be explained and sufficiently 

well reproduced.  

 

4.1.2.1 Periodical box-shaped obstacle profile 

Fig. (12) shows a schematic view of a box-shaped obstacle profile where a dislocation in 

equilibrium position 1 (circle) is assumed.  
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Fig. 12 Schematic view of a periodical, box-shaped obstacle profile in a plot of stress vs. 
activation volume, with the mechanical threshold, ̂ , the critical resolved shear stress,  , 
and athermal stress, STOR . Points 1 and 2 indicate subsequent equilibrium positions. 

 

If a dislocation moves from one equilibrium position (1) to the next (2), a total energy of F

must be supplied either fully by external work, W , (at 0K) or with the help of random 

thermal fluctuations, G . In any case of successful activation 

WGF  . (27) 

For the reverse reaction (2->1), the required energy is 

WGG  2b  (28) 

and must be fully supplied by random thermal fluctuations. As a consequence, GG  b  and 

the probability for a thermal activation in direction of the applied stress is always higher 

than that for the reverse reaction. The applied stress ‘helps’ the dislocation to go from 

position 1 to 2 and consequently   

WFG  . (29) 

The reverse reaction (2-> 1 )  is hindered by the applied stress and, with Eqs. (27) and (28), it 

follows that  

WFG  b . (30) 
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These energies, G  and bG , are related to the dislocation velocity through an Arrhenius 

law (Eyring, 1936), (Schoeck, 1965), (Argon, 1996), (Frost and Ashby, 1982) and together 

with the Orowan equation (Eq. (5) they give 
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As a consequence of the box shaped obstacle profile and with  12 VVV   and STOR   

VW  , (32) 
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Together with Eqs. (27)-(30) and with     xxx  expexp21sinh  , Eq.(31) can be transformed 
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This is the general rate equation for a box shaped periodical obstacle profile (Kocks et al., 

1975). It can be decomposed into a low and a high temperature branch. 

 

4.1.2.2 Low temperature plasticity 

At high temperatures or low stresses 

fb GG  . (36) 

As a consequence, the second exponential term in Eq. (31) can be neglected leading to  
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Together with Eqs. (27)-(34), an expression for the temperature and strain rate-dependent 

yield stress at low and intermediate temperature is given by 
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. (38) 

where STORath    is the stress contribution that cannot be overcome with the help of 

thermal fluctuations (Kocks et al., 1975). It should be emphasized here that Eq. (38) is 

equivalent to Eq. (8) with 1p  and 1q  and that, with the assumption of an alternative 

obstacle profile, any other combination of p and q  can be derived, e.g., see (Schulze and 
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Vohringer, 2000), (Dahl and Krabiell, 1979) and (Kocks et al., 1975). As indicated earlier, the 

validity of Eq. (38) is limited at a certain temperature 0T   


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














0
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lnk

F
T  (39) 

To avoid this problem, an alternative rate equation (Kocks et al., 1975), (Leyson and Curtin, 

2016), is used in the present work for the low temperature branch reading 
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Fig. 13 shows a plot of normalized  ˆ
th  as a function of homologous temperature according 

to Eq. (40) in comparison to the same plot but according to Eq. (38).  

 

 
Fig. 13 Schematic comparison between normalized 

 ˆ
th  over homologous temperature according to 

Eq. (58) and Eq. (51) 

 

It is observed that, for low temperatures, both expressions (Eq. (38) and (40)) deliver the 

same slope dTd  and that, with an expression according to Eq. (40), 0lt   for all 

temperatures. 

 

4.1.2.3 High temperature plasticity 

At high temperatures or low stresses 1 kTW  and consequently with xx sinh  for 1x

Eq. (31) can be written as 
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Application of the Taylor equation, Eq. (11), on the mobile dislocation density and by 

rearrangement, an expression for the yield stress at elevated temperatures is derived 

reading 

 
 

31
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kTFFbc

bGkT 
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
. (42) 

Comparison of coefficients between Eq. (42) and Eq. (10), with 3n  and vQF  , delivers an 

expression for the Dorn coefficient as function of the mechanical threshold reading 

 ˆ

2

0v
22

vc
1

Db

Qv
A  , (43) 

where 0vD  is the pre-exponential factor in the standard Arrhenius-type diffusion coefficient 

expression. 

 

4.1.2.4 Summation of low and high temperature branch 

The present model is based on Eqs. (40), (42) and a summation rule according to  

htlt

111


 . (44) 

It should be stated here that the summation of Eqs. (40) and (42) according to Eq. (44) is an 

approximation for the general rate equation for a box-shaped periodical obstacle profile 

according to Eq. (35). A comparison of lt , ht  and  as calculated with Eqs. (40), (42), (44) 

and (35), is shown in Fig. 14. 

 

 
Fig. 14 Comparison of lt , ht  and  as calculated with 

Eqs. (40), (42), (44) and (35). F is assumed to be 
33.0 Gb . 
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Fig. 14 shows that the results from the summation of lt  and ht  according to Eq. (44) (thick 

solid line) generally appear to be in good accordance with   as calculated from Eq. (35) 

(dashed thick line) with some discrepancy occurring at intermediate temperatures. However, 

this discrepancy is mainly due to the generally accepted assumption (Frost and Ashby, 1982) 

that the mobile dislocation density in Eq. 41 varies with the applied stress according to the 

Taylor equation and is not due to the summation rule Eq. (44). Fig. 15 shows the same 

results like Fig. 14 but for varying values of (a) F  and (b) strain rate from 0.01-1000 s-1. It is 

observed that the discrepancy is only slightly varying with the activation energy and the 

strain rate.  

 

(a) (b) 

  
Fig. 15 (a) Variation of a (0.2, 0.3, 0.5, 0.7 and 0.9) and (b) variation of strain rate (0.01, 0.1, 
1, 10, 100 and 1000). 

 

4.2 Plastic stress p  

The model for the plastic stress is based on an equivalent form of the KM-model, Eq. (22), 

reading  

 

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, (45) 

where the first term on the rhs of this equation is further denoted as “A-term”, due to the 

calibration coefficient A, the second term likewise as “B-term”. For a detailed derivation and 

explanation of A and B-terms see Appendix A. The subscript “d” emphasizes that the 



31 
 

dislocation annihilation term refers to dynamic recovery.  is the critical annihilation 

distance between two dislocations (Brinckmann et al., 2011) given as 

  vac

4

crit
12 Q

Gb
d

 
 , (46) 

where  is the vacancy formation energy and  is Poisson’s ratio. The coefficient A is 

closely related to the number of immobile dislocations that a moving dislocation can surpass 

before it becomes arrested. The coefficient B represents the inverse of the probability of a 

dislocation to become annihilated under the condition of having a second dislocation within 

the critical distance. At elevated temperature, the evolution of dislocation density becomes 

additionally impacted by vacancy-assisted dislocation climb. To incorporate this mechanism 

in a general model of strain hardening based on dislocation generation and annihilation, an 

additional annihilation term for static recovery might be introduced into Eq. (45) with 
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, (47) 

where the rhs of this equation will be further denoted as “C-term”, due to the calibration 

coefficient C, and the subscript “s” emphasizing that this dislocation annihilation term refers 

to static recovery.  is the equilibrium dislocation density and RT)exp( dd0d QDD   is the 

diffusion coefficient along dislocation pipes. This recovery term has been introduced by 

(Lagneborg, 1972) for creep and it is used in a similar form, for instance, by (Sommitsch, 

1999), (Krumphals et al., 2009) and (Lindgren et al., 2008). With dtd  , the static recovery 

term delivers non-zero dislocation annihilation for 0 , capturing the process of annealing 

(Nix et al., 1985), (Nes, 1994), (Falkinger and Simon, 2017), (Rong et al., 2017), (Hamasaki et 

al., 2017), (Zheng et al., 2017), (Furu et al., 1995). The combined equation for dislocation 

density evolution finally reads 
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. (48) 

Due to the parameters A , B and C , this extended version of the KM-model is referred to as 

ABC-model. The following analysis of the ABC-model is based on the assumption that the C-

term,  dd 
s , can be neglected at low temperatures and the B-term,  dd 

d , can be 

neglected at elevated temperatures. The validity of this assumption is tested in the following 

by analysis of the saturation stress.  

 

critd

vacQ 

eq
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4.2.1 Saturation stress 

 

The saturation stress is related to dislocation density at saturation through the Taylor 

equation    1g . The relation between   and A , B and C  can be derived by setting 

0  dd . This is done first for low temperatures, where the C-term is neglected, delivering 

ltcritlt 2
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b
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M
. (49) 

Rearrangement of Eq. (49) leads to  
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and with Eqs.(11) and (46), the low temperature saturation stress, lt
 , is written as 
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According to Eq. (51), the low temperature saturation stress, lt
 , does not contain any 

explicit temperature dependence not even through the shear modulus. Consequently, any 

temperature or strain rate dependence of lt
  either stems from the calibration of 

parameter A  or B . At elevated temperatures, the B-term is assumed to be negligible and, 

with eq
ht   , this leads to 
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Rearrangement of Eq. (52) delivers  
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and, with Eq.(11), the saturation stress at elevated temperatures, ht
  , is written as 
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Eq. (54) shows that the saturation stress at high temperature is strain rate-dependent by 

definition even when A and C  are assumed temperature and strain rate-independent. With 

constants A and C , Eq. (54) describes a power-law according to Eq. (10). Assuming that the 

saturation stress is properly described by a power-law, it follows that the product of A and 

C  must be independent of temperature and strain rate and, consequently, AkC 3  , where 

3k  is a constant. Fig. 16 shows a comparison of lt
  as calculated with Eq. (51), ht

  as 
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calculated with Eq. (54) and   as calculated by numerically solving Eq. (48) as function of 

homologous temperature.  

 
Fig. 16 Comparison of lt

  as calculated with Eq. (51), 
ht
  as calculated with Eq. (54) and  as calculated by 

numerical integration of Eq. (48) with constant 
parameters 35A , 5B  and 01.0C . 

 

Fig. 16 confirms the assumption that, at low temperatures, the C-term can be neglected and, 

at high temperatures, the B-term can be neglected. In addition, the observation is confirmed 

that the low temperature saturation stress does not exhibit any temperature-dependence 

for .constA  and .constB  . Following a suggestion of (Kocks and Mecking, 2003), the 

temperature-dependence of the B parameter can be taken into account by assuming 
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where 0B and a  are calibration parameters. Fig. 17 shows the same comparison as in Fig. 16 

but with Eq. (55) for B instead of .constB  . 
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Fig. 17 comparison of lt

  as calculated with Eq. 

(51), ht
 as calculated with Eq. (54) and  as 

calculated by numerical solving of Eq. (48) with 
constant 35A , 01.0C . B  is calculated 

according to Eq. (55) with 50 B  and 2.1a . 

 

4.2.2 Initial strain hardening rate 

In this section, the relations between the initial strain hardening rate and the parameters A , 

B and C  are derived. Together with eq. (11), the strain hardening rate can be written as 
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Setting 0   it follows that 0  . Rearrangement of Eq. (56) leads to  
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Assuming that the C-term is negligible at low temperatures, it follows from Eq. (45) that  
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with Eq. (51) B can be replaced by 
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in Eq. (58) and rearrangment leads to  

















lt

011lt
0 1

2 




g

bA

Mg
, (60) 

where 01 g is the stress contribution from forest hardening with a dislocation density of 0

. Since lt
01 g  it follows that  
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At elevated temperatures and with neglecting the B-term, the equivalent high temperature 

form of Eq. (58) reads 

 2
eq

2
0

3

d0
1

0
ht
0

2
2








kT

Gb
CD

bA

M

g 
.  (62) 

With 2
eq

2
0   , the second term in Eq. (62) can be neglected and it follows that also at high 

temperatures  
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ht
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4.2.3 Thermal activation of the ABC model 

By inversion of Eqs. (51), (54) and (63) A , B and C  can be expressed in terms of 0 , lt
  and 

ht
  reading 
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and can thus be directly calculated from experimentally derived values for 0 , lt
  and ht

  

or, alternatively, from the models describing  ,...,,, 2100 ssT   ,  ,...,,, 2100 ssT    and

 ,...,,, 21 ssT  
  , where ,..., 21 ss  stands for any combination of state parameters such as 

solute content or precipitation state. In principle, any model can be applied for the 

expression of 0 , 0  and   as a function of temperature, strain rate and material state. In 

literature, it is rather common to assume one quantity as being constant, e.g. 0  in (Roters 

et al., 2000), (Galindo-Nava et al., 2012), (Nes, 1997), (Kocks, 1976), which is not applied in 

the present work. In the present work, a suggestion for functional relations between 0 , 0  

and  , temperature, strain rate and material state is given in the simulation section, which 

is based on the analysis of experimentally derived values and the thermal activation 

framework as introduced in section 4.1.2. 
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4.2.4 Stage IV extension for the ABC model 

 

The strain hardening rate in stage IV  dd IVIV   is – according to (Kocks and Mecking, 

2003) – related to the stress at the onset of stage IV through a simple linear relation 

IVIVIV  c , (67) 

where IVc is a constant. Fig. 18 shows schematic stress strain curves with stages III and IV 

hardening for different temperatures together with a corresponding Kocks-plot illustrating 

Eq. (67). 

 

(a) (b) 

  

Fig. 18 (a) Schematic view of stress-strain curves for three different temperatures (b) Strain 
hardening rate over stress (Kocks-Plot) for data in (a) 

 

At the point of intersection, the general KM law in the form of Eq. (22) reads 
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Solving Eqs. (67) and (68) for IV  results in  
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This equation connects a given temperature or strain rate-dependence of 0  and  in stage 

III with that of IV . Finally, the expression for IV  is integrated in the evolution model for the 

dislocation density according to  
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5 Experimental 

In section 4, the modelling framework has been derived and explained. The experimental 

part of the present work constitutes a collection of data for the validation and calibration of 

this model. The experimental set up comprises stress strain curves from compression testing 

in an AA 6061 aluminium alloy tested at eleven different temperatures and three different 

artificial ageing states. Additionally, EBSD analysis is conducted on a sub-set of deformed 

samples. According to the nature of the present model, the data analysis of stress strain 

curves is conducted with special emphasis on the initial yield stress, 0 , the initial strain 

hardening rate, 0 , and the saturation stress,  , as a function of material state, 

temperature and strain rate. Section 5 additionally illustrates the data preparation 

procedure that was applied both to data from literature and experiments conducted by the 

present author.  

5.1 Material and sample preparation 

Cylindrical specimens with a length of 15 mm and a diameter of 10 mm are extracted by 

spark erosion from commercial A6061 plate material. The chemical composition of the 

material is listed in Table (3). 

Table 3 Chemical Composition 
Element [wt.%] Al Si  Fe Cu Mn Mg Cr Ni  Zn Ti 

AA 6061 97.35 0.69 0.45 0.23 0.11 0.85 0.18 <0.05 0.05 0.05 

 

The industrially cast and homogenized material has been hot rolled into 30 mm thick sheets. 

Specimens are cut out along the Normal Direction (ND), perpendicular to the Rolling 

Direction (RD). Fig. 19 shows the hot rolled 300x300x30 mm AA6061 plate and the rolling as 

well as the sample extraction direction (ND).  
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Fig. 19 Schematic view of AA6061 plate and sample dimensions. 

 

5.2 Thermo-mechanical treatment 

The material is solution heat treated for 1h at 540°C in a furnace, water quenched and, after 

storage at room temperature for one week, artificially aged for 1, 4 and 8h at 170°C. All 

specimens are subsequently tested on a Gleeble 1500 thermo-mechanical simulator at a 

strain rate of 0.01 s-1 and at temperatures of 25, 50 100, 150, 200, 250, 300, 350, 400, 450 

and 500°C. The tests are repeated three times, the experimental values represent the 

average of three experiments. The experimental data has been published in (Kreyca and 

Kozeschnik, 2017a). A subset of samples, heat treated for 4h at 170°C after solution heat 

treatment and deformed at 25, 150, 200, 350, 400 and 450°C up to a strain level of 0.2 is 

investigated by EBSD. Fig. 20 shows a schematic view of the EBSD sample preparation and 

mounting.  

 

 
Fig. 20 Schematic view of EBSD sample cutting and mounting 

 

Prior to mounting, the specimens are degreased with alcohol and dried with a blow dryer. 

The specimens are cold mounted in a conductive mounting material (CEM 3070) and water 

cooled during the curing process in order to avoid annealing due to sample preparation. The 

steps for grinding and polishing are summarized in Table 4. 
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Table 4 Grinding and polishing 

Step Polishing Disc Grit (µm) Time (min) 

Grinding Abrasive Paper 500 2 
Polishing Struers MD Largo 9 15 
Polishing Struers MD Dur 6 25 
Polishing Struers MD Mol 3 30 
OPS Struers MD-Chem 1 15 
Cleaning Struers MD-Chem 1 3 

 

The EBSD investigations are performed on an FEI Quanta 200 FEG. The data analysis is 

conducted with the EDAX Orientation Imaging Microscopy (OIM) Data Analysis software. 

5.3 Data preparation 

Stress-strain curves are calculated from Gleeble output files as true stress and true strain 

according to Eqs. (1) and (2). The actual cross-section is calculated from the measured length 

and with the assumption of constant volume and no barrelling. Values for  are taken at a 

strain of . Accordingly, the plastic strain is assumed to be . The 

experimental values for  and  are evaluated from the KM-plots ( ) of the 

experimental data, where  is determined from numerical differentiation. Values of 

 are used for calculation of the KM-plots. For the purpose of numerical 

differentiation, the experimental data is smoothed.  

Fig. 21 (a) shows an exemplary plot of p  vs.   together with smoothed values (signs) (b) 

shows the strain hardening rate as calculated by numerical differentiation of the original 

stress-strain curve (solid line) in comparison to the strain hardening rate as calculated from 

numerical differentiation of the smoothed data (signs). Initial strain hardening rate, 0 , and 

saturation stress,  , are derived by minimization of the sum of least squares of the   vs. 

p  plot. Fig. 21 (c) shows a corresponding linear fit of the experimental data. The initial 

strain hardening rate, 0 , and saturation stress,  , are calculated from the slope, 2h , and 

y-intercept, 1h , of the resulting straight line equation according to  
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Fig. 21 (d) shows the stress-strain curve resulting from integration of  
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 (73) 

in comparison to experimental results. 

 

(a) (b) 

  
(c) (d) 

  
Fig. 21 (a) Exemplary stress strain curve together with smoothed values (b) corresponding 
Kocks-plot, (c) linear fits of Kocks-plot (solid line) (d) resulting stress strain curves calculated 
according to linear fit in (c). 
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6 Simulation 

This section comprises three separate simulations: (i) an investigation of the thermal stability 

of hardening phases, i.e. the material state, in AA6061 and (ii) application of the stage IV 

model as introduced in section 4.2.4 and (iii) an application of the present model to Al-Mg 

binary solid solutions, 

6.1 AA 6061 

In this section, the thermal stability of hardening phases in an AA6061 aluminium alloy is 

investigated. For this purpose, the initial precipitation state prior to deformation is 

calculated with MatCalc. This work was published in (Kreyca and Kozeschnik, 2017a). 

Additionally, a calibration on AA6061 of the stage IV model as introduced in section 4.2.4 is 

presented. These results have also been published in (Kreyca and Kozeschnik, 2017b). 

 

6.1.1 Precipitation sequence  

Fig. 22 shows the typical precipitation sequence observed during heat treatment of Al-Mg-Si 

alloys (Matsuda et al., 1998) and (Vissers et al., 2007). 

 

 
Fig. 22 Typical precipitation sequence in Al-Mg-Si alloys 

 

In the Al-Mg-Si system, the mechanical properties mainly result from precipitation 

strengthening of Mg and Si-containing particles. In AA6061 alloys, Mg5Si6 ( '' ) is the major 

hardening phase (Ninive et al., 2014), (Marioara et al., 2005), (Ravi and Wolverton, 2004), 

(Zandbergen et al., 2015). In the present simulation, the precipitation sequence occurring 

during heat treatment of a model Al-Mg-Si ternary alloy is simulated. The chemical 

composition (0.85 wt.% Mg, 0.69 wt.% Si, Al bal.) lies well within the range defined for 
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AA6061 aluminium. The phases GP-zones, '  and '' , are incorporated in the simulation. All 

calculations presented here are performed with the thermo-kinetic software package 

MatCalc (version 6.00 rel. 0.104) (Kozeschnik, 2017) using the databases mc_al.tdb 

(Povoden-Karadeniz, 2017a) and mc_al.ddb (Povoden-Karadeniz, 2017b). These databases 

are available under the Open Database License (“Open database license,” n.d.) and can be 

downloaded for free from http://matcalc.at. They contain all thermodynamic and diffusion 

related parameters necessary for the reproduction of the present results. The interface 

energies are calculated according to the generalized nearest neighbour broken bond model 

(Sonderegger and Kozeschnik, 2009a), (Sonderegger and Kozeschnik, 2009b). This approach 

is coupled with a model describing the evolution of quenched-in excess vacancies (Fischer et 

al., 2011) and their impact on solute diffusion. The influence of coherent misfit stress on 

nucleation is taken into account by assuming an effective volumetric misfit between 

precipitates and matrix of 4, 4, and 2 % for GP-zones, ' and '' , respectively. The phases '  

and ''  are assumed to be rod-shaped with an aspect ratio of H/D=10 (Kozeschnik et al., 

2006) where H is the length of the precipitate, and D the thickness of a cylinder with 

equivalent volume. The heat treatment comprises a quenching step from annealing 

temperature to room temperature with 900 Ks-1, subsequent heating with 3Ks-1 and 

isothermal holding at 170°C for 4h.  

 

6.1.2 Thermal stability of ''  

The phase fraction and precipitate distribution of ''  particles corresponding to the 

precipitation state according to the prior heat-treatment is subsequently used as starting 

condition for the simulation of the dissolution/growth kinetics of the ''  phase during 

isothermal mechanical testing. Fig. 23 shows a schematic representation of the evolution of 

phase fraction during isothermal heat treatment at different temperatures. The isothermal 

heat-treatment simulations are conducted twice: (i) for 70s at incremental temperature 

steps of 10°C from room temperature up to 500°C and (ii) for 1000h at incremental 

temperature steps of 10°C from room temperature up to 300°C.  

 

http://matcalc.at/
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Fig. 23 Schematic representation of phase fraction 
evolution as function of different heat-treatment 
temperatures. 

  

The resulting phase fraction evolutions are depicted in a plot of temperature vs. time, where 

the phase fraction evolution is represented by color-coding.   

 

6.1.3 Stage IV 

In section 4.2.4, an extension of the KM-model to stage IV hardening is introduced and 

explained. This approach is utilized for the reproduction of the experimentally derived stress-

strain curves on an artificially aged AA6061 alloy (4h at 170°C) deformed at 25, 50, 100, 150 

and 200°C, see section 5. For this purpose, A and B  values are calculated with Eqs. (64) and 

(65) with the experimental values of 0  and   derived according to the procedure 

described in section 5.3. Subsequently, stress-strain curves are calculated with Eqs. (67)-(70) 

and Eq. (5). All parameters used in the simulation are listed in Table 5.  

 
Table 5 Parameters used in modeling (at 25, 50, 100, 150 and 200°C) 

Abbreviation Name Value Unit 

b Burgers vector  2.85 10-10 (m) 
M Taylor factor  3.06 (-) 
G Shear modulus 29438.4-15.052·T (MPa) 
  Strain rate 0.01 (-) 
  Poisson’s ratio 0.3 (-) 
Qfv Vacancy formation energy  0.67 (eV) 
α Coefficient for inner dislocation density 

strengthening 
0.5 (-) 

A Dislocation production parameter 26, 26, 27.6, 33.38, 
35.07 

(-) 

B Dislocation annihilation parameter 3.98, 4.3, 4.76, 4.95, 
6.74 

(-) 

cIV Stage IV coupling coefficient 1.5 (-) 
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6.2 Solid solutions 

The model described in section 4 is tested on experimental data on Al-Mg binary alloys 

reported by (Sherby et al., 1951). This reference has been given preference over other 

sources from literature on Al-Mg (Podkuiko et al., 1972), (Kocks and Chen, 1993), (Verdier et 

al., 1998), (Ryen et al., 2006a), (Ryen et al., 2006b), (Niewczas et al., 2015), (Jobba et al., 

2015) because it offers a consistent experimental set of stress strain curves for five different 

Al-Mg alloys at seven different temperatures from 78K to 650K. In the selected Al-Mg 

system, precipitation processes can be neglected. The preparation of the experimental data 

is reported in section 5.3. The values of 0 , 0  and   derived from the experimental data 

are fitted with the expressions listed in Table 6. The expressions for 0  and 0  are chosen 

according to the thermal activation framework derived in section 4.1.2. 

 
 Table 6 Expressions for 0 , 0  and    

 low temperature  high temperature  summation 
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The framework presented in Table 6 comprises 9 parameters, which are: the mechanical 

threshold, 0̂ , the initial strain hardening rate at 0K, 0̂ , a calibration parameter for the 

saturation stress, ̂ , and two activation energies for each of the three quantities lt
xF  and 

ht
xF , where x stands for the individual parameter. These parameters are discussed in the 

following. For the calculation of the mechanical threshold stress, 0̂ , two contributions are 

considered, 

ssb0
ˆˆˆ    , (74) 

where ss̂  comprises all strengthening contributions from Mg solute atoms including 

dynamic strain ageing and b̂  includes all contributions, which are not directly related to Mg 

solute atoms, e.g., the basic yield stress from pure Al, grain boundary strengthening and 

solid solution hardening from other impurity elements.  is treated as a temperature and b̂



45 
 

strain rate-independent calibration parameter in the present simulation. The MTS 

contribution of solute atoms, ss̂ , is based on a Labusch type approach (Labusch, 1970) in 

combination with a model on dynamic strain ageing by (Curtin et al., 2006). The explicit 

relations read 

31
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and  
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where bw 5 (Kato, 1999) is the range of interaction between a solute and a dislocation, maxf  

is the maximum interaction force, 2/2GbEL   (Haasen, 1996) is the dislocation line tension, 

m  the misfit strain between solute and matrix atoms, 0c  the nominal solute content, 

2/1b  is the incremental strain,  kTHc0c exp    is a reference core transition rate, 

W is the average binding energy difference between tension and compression site, cH  is 

the average activation enthalpy for transitions between these sites, 0  is an attempt 

frequency and n  is an exponent. According to Eq. (77), the material state represented by the 

effective solute content, effc , is a function of temperature and strain rate. Consequently, the 

mechanical threshold is also. The initial strain hardening rate at 0K, 0̂ , is assumed to be 

constant with a value of 1/20 of the shear modulus (Estrin, 1996).  is a parameter with 

the unit of stress. The activation energies for the initial yield stress and initial strain 

hardening rate are fitted in dependence on effc . The activation energy for the low 

temperature saturation stress linearly depends on 0
effff0 cccc e  

 , where  0eff
0
eff cc   and 

 
  effeff cc . All parameters used in the simulations are summarized in Table 7. 

 
 Table 7. Symbols and Values 

Symbol  Name Unit  Value Source 

ν Poisson‘s ratio (-) 0.347 (Hirth and Lothe, 1991) 
G Shear modulus (MPa) 29438.4-15.052T (Galindo-Nava et al., 

2012)(Mecking et al., 1986) 
b  Burgers vector (m) 101086.2   (Frost and Ashby, 1982) 

M Taylor factor (-) 3.06 (Bergström, 1983)(Kato, 1999) 
α Strengthening coefficient (-) 0.34 (Sauzay and Kubin, 

2011)(Madec et al., 

̂
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2002)(Schoeck and Frydman, 
1972) 

c Speed of sound  (m/s) 5100 (Lide, 2008) 
Qvac Activation energy for 

vacancy formation 
(eV) 0.67 (Tzanetakis et al., 1976) 

Qv Activation energy for lattice 
diffusion 

(J/mol) 3102.127   (Campbell and Rukhin, 2011) 

Dv0 Pre-exponential factor for 
lattice diffusion 

(m2/s) 5104.1   (Campbell and Rukhin, 2011) 

Qd Activation energy for pipe 
diffusion  

(J/mol) 3102.83   (Stechauner and Kozeschnik, 
2014) 

Dd0 Pre-exponential factor for 
pipe diffusion 

(m2/s) 6105.1   (Stechauner and Kozeschnik, 
2014) 

W  binding energy difference 
between tension and 
compression site Al-Mg 

(eV) 0.13 (Curtin et al., 2006) 

cH  activation enthalpy for 
transitions from tension to 
compression site Al-Mg 

(eV) 0.87 (Curtin et al., 2006) 

n exponent in Eq.(77) (-) 1/3 (Soare and Curtin, 2008) 
ν0 attempt frequency (s-1) 13108.3   (Fujikawa and Hirano, 1977) 

εm misfit-strain for Mg (-) 0.0123 (Uesugi and Higashi, 2013) 

b̂  basic yield strength  (MPa) 40 (Sherby et al., 1951) 

eq  equilibrium dislocation 
density 

(m/m3) 11101  this work 

 strain-hardening rate at 0K (MPa) G/20 (Estrin, 1996) 

 high temperature saturation 
stress 

(MPa) 30 this work 

lt

0F  low temperature activation 
energy for yield stress  

(J)   331
eff4.025.0 Gbc   

(Frost and Ashby, 1982) 

ht

0F  high temperature activation 
energy for yield stress 

(J/mol) 
eff

5
v 105.3 cQ   this work 

lt

0
F  low temperature activation 

energy for strain hardening 
rate 

(eV) eff4.2929.0 c  this work 

ht

0
F  high temperature activation 

energy for strain hardening 
rate 

(J/mol) 
eff

5
v 1027.1 cQ   this work 

lt
σ

F  low temperature activation 
energy for saturation stress 

(J)   3
eff525.817.0 Gbc 

 

this work  

ht
σ

F  high temperature activation 
energy for saturation stress 

(J/mol) Qd (Stechauner and Kozeschnik, 
2014) 

 

From the expressions given in Table 6, stress-strain curves are calculated based on the 

modelling framework as introduced in section 4. For the sake of better understanding, the 

modelling steps are summarized here. The values of A , B and C  are calculated according to  
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Mg

b
C

1

02 
 , (80) 

where Eqs. (78) and (79) are identical to Eqs. (64) and (66). Eq. (80) follows from the 

assumption on ht
  as given in Table 5 and Eq. (67). The dislocation density evolution as 

function of temperature, strain rate and material state is calculated with the A , B and C as 

calculated with Eqs. (78)-(80) and according to  
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The resulting plastic stress is calculated according to the Taylor equation Eq. (11) as 

 MGbp . (82) 

Finally, the stress,  , is calculated according to Eq. (26) 

p0   , (83) 

where 0  is modelled according to the expressions given in Table 5 and the calibration given 

in Table 6. 
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7 Results 

In this section, the experimental data and simulation results are presented, where, first, the 

experimental data on AA6061, simulations on precipitates and stage IV reported and, 

subsequently, the modelling results on solid solutions are described.  

7.1 AA6061 

7.1.1 Experimental data 

Fig. 24 summarizes the experimental stress strain curves as observed after the thermo-

mechanical treatment described in section 5.2.  
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 (a) (b) 

  

(c)  

  

Fig. 24 Stress strain curves for 25, 50 100, 150, 200, 250, 300, 350, 400, 450 and 500°C, after 
(a) 1h, (b) 4h, and (c) 8h artificial ageing at 170°C. (d) shows selected true stress over true 
strain curves for 1, 4 and 8h and 25, 200, 300, 400°C. 

 

Fig. 24 shows plots of true stress vs. true strain for all artificial ageing times and 

temperatures. From room temperature up to roughly 200°C, stage III hardening is observed 

in the beginning, followed by stage IV hardening with a constant strain hardening rate. With 

increasing temperature, the degree of strain hardening decreases in both stages. Up to 

250°C, the stress is continuously increasing during deformation, i.e. the strain hardening rate 

is positive throughout the whole deformation process. At 250°C the strain hardening rate in 

stage IV becomes zero, i.e. 0dIVIV   d . In the temperature range between 250°C and 

400°C, an initial region of strain hardening is followed by a region of softening during 

deformation. At temperatures above 400°C, no conceivable strain hardening occurs and 

stress saturation is reached almost immediately after deformation start. 
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Fig 24 (d) displays selected stress-strain curves for the same test temperatures but different 

precipitation states, i.e., aging times. At temperatures below 300°C, the initial yield stress as 

well as the strain hardening behaviour are significantly different for different ageing times. 

At 300°C, only a weak difference in yield stress and strain hardening rate between different 

precipitations states is observed at deformation start and deformation at 400°C renders 

identical stress strain curves. Fig. 25 shows the values of initial yield stress, 0 , initial strain 

hardening rate, 0 , stage III saturation stress,  , and strain hardening rate in stage IV, IV .  

 

(a) (b) 

 

 

(c) (d) 

 

 

Fig. 25 (a) yield stress, (b) initial strain hardening rate, (c) saturation stress and (d) strain 
hardening rate in stage IV for 1, 4 and 8h of artificial ageing ate 170°C over temperature.  

 

As expected, the initial yield stress, 0 , is increasing with increasing ageing time due to the 

increasing contribution of precipitation strengthening. At the same time, 0  and   are 

decreasing with increasing ageing time. Consequently, the presence of precipitates leads to 

higher initial yield stress values but reduces the materials capacity for strain hardening. Fig. 
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25 (d) shows the evolution of IV  over temperature. Up to temperatures of roughly 250°C, 

clear evidence of stage IV hardening is observed (compare Fig. 24), the magnitude of the 

hardening coefficient, however, is quickly decreasing with increasing temperatures. Just as 

for stage III hardening, the stage IV strain hardening potential decreases with increasing 

precipitation strengthening. At roughly 250°C, IV  becomes zero and the stress-strain curve 

saturates after the end of stage III. At even higher temperatures, IV  is negative and must be 

interpreted as measure of softening due to precipitate dissolution rather than conventional 

strain hardening.  

Fig. 26 shows values for 0 , 0  and   normalized with the corresponding values at room 

temperature. Most interestingly, the evolution over temperature shows a similar ‘s’ shape 

for all three quantities with almost identical slope, where only the point of inflection is 

shifted to lower temperature from 0  over 0  to  .  

 

 

Fig. 26 Yield stress, initial strain hardening rate 
and saturation stress normalized by room 
temperature values. 

 

Fig. 27 shows EBSD micrographs as derived according to the preparation procedure 

described in section 5.2. Fig. 27 (a)-(c) shows a geometrically ordered microstructure, which 

is typically observed after deformation at lower temperatures (Sparber, 2016), (Hurley and 

Humphreys, 2003), (Hansen and Jensen, 1999), (Hansen and Huang, 1998), (Liu et al., 1998). 

At elevated temperatures, non-conservative motion of dislocations, e.g., vacancy-assisted 

dislocation climb, becomes the predominant mechanism determining the stress-strain 

behaviour. The enhanced mobility of dislocations at elevated temperature results in a 

characteristic microstructure, dominated by randomly oriented subgrains, Fig. 27 (d) and (e), 
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which is commonly associated with lower levels of yield stress and strain hardening. At even 

higher temperatures, a mixture of grains structured with subgrains and recrystallized grains 

is observed, Fig. 27 (f). Two regions of different deformation microstructures are 

consequently found in experimentally determined stress strain curves: One with high yield 

stress and high strain hardening rate due to thermally activated cross-slip and another one 

dominated by vacancy assisted climb with lower yield stress and reduced strain hardening 

rate. The shift between the two mechanisms is expected to occur between 200 and 350°C. 
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

  

Fig. 27 EBSD Micrographs of A6061 artificially aged for 
4h hours and tested at (a) 25, (b) 150, (c) 200, (d) 350, 
(e) 400 and (f) 450°C at a strain of 0.2  

 

 

7.1.2 Simulation 

Fig. 28 shows simulation results for the precipitation sequence, as modelled for the artificial 

ageing at 170°C, and a pre-treatment as described in section 6.1.  
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Fig. 28 Precipitation sequence of Mg-Si 
precipitates after quenching from solution 
annealing temperature to room temperature 
with 900 Ks-1, heating with 3 Ks-1 and 
isothermal holding at 170°C for the phases GP-
Mat, β” and β’. Also shown is the T6 region 
according to DIN EN 2700. 

 

Fig. 28 also shows the T6 material state, which represents the standard heat treatment for 

peak strengthening of Al alloys, corresponds to a condition with close-to-maximum phase 

fraction of '' . It is important to note, that Fig. 28 is only valid for an isothermal heat 

treatment carried out at 170°C after solution annealing, quenching and reheating with the 

rates given in the caption of Fig. 40.  

Fig. 29 shows the phase fraction evolution of β” during isothermal heat-treatment at 

different temperatures and over (a) 70 seconds, where 70 seconds corresponds to 

deformation test conditions up to a strain of 0.7 with a strain rate of 0.01 and (b) 1000h. The 

precipitate evolution in Fig. 29 (b) is shown to demonstrate the long-term evolution of 

precipitates when approaching equilibrium conditions and even longer testing duration. The 

initial precipitation state / phase fraction of β” is taken from Fig. 28 after isothermal heat-

treatment at 170°C for four hours. 
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 (a) (b) 

 

 

Fig. 29 Dissolution of β” precipitates during iso-thermal heat treatment for (a) 70 s and (b) 
1000h, with the phase-fractions given by the color coding. 

 

Fig. 29 (a) shows three distinct regions: (i) from room temperature up to approximately 

250°C, the phase fraction of β” is stable or even slightly increasing, (ii) between 250°C-300°C, 

β” dissolves within the first 70 seconds and (iii) above 300°C precipitates are dissolved within 

the first instances of heat treatment. Especially interesting is the region between 250 and 

300°C where, in the beginning of mechanical testing, precipitates act as obstacles, but they 

are dissolved during deformation. An initial strain hardening with a subsequent softening is, 

consequently, expected for stress strain curves in this region, which is in good accordance 

with Fig. 24. Fig. 29 (b) shows that, for temperatures higher than 170°C, and for testing with 

rather slow strain rates and long testing duration, β” is dissolved within approximately the 

first 100h. The simulations also show that any β” precipitation is rapidly dissolved at 

temperatures higher than 300°C, continuously dissolved between 250 and 300°C, growing at 

temperatures lower than 250°C and unchanged for temperatures lower than 100°C.  

The main strength contribution in age hardenable alloys comes from precipitation. These 

hardening phases are stable at room temperature but lose their stability with increasing 

temperature and dissolve completely above a certain threshold (precipitate solvus). In our 

experiments, no difference in yield stress between different artificial ageing times is 

observed for high temperature tests since the precipitates formed in the artificial aging 

treatment dissolve rapidly in the beginning of the test. At intermediate temperatures, the 

dissolution process takes place simultaneously to deformation. In this region, we observe a 

clear softening in the stress-strain curve (Fig. 24 (a), (b), (c) curves for 300°C), which is 
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attributable to the precipitate dissolution mechanism. Interestingly, dynamic 

recrystallization can be excluded as mechanism responsible for this softening, since 

recrystallization does not occur until temperatures above 400°C (Fig. 39). A comparison with 

the simulated precipitation state shown in Fig. 29 indicates that the reduction in strength 

coincides with the region of ''  dissolution, which apparently commences in the course of 

compression testing and continues to a higher degree with increasing test temperature. This 

dissolution is accompanied by a loss in precipitation strengthening and, thus, an integral 

softening in the stress-strain curve. 

Fig. 30 (a) shows the simulation results for the KM model extended for stage IV hardening 

according to the parameters given in section 6.1.3. (b) shows the corresponding dislocation 

density evolution. It is observed that the experimental data is very well reproduced. 

 

(a) (b) 

  
Fig. 30 (a) Experimental (symbols) and simulated (lines) p  vs.   curves for five different 

temperatures (b) corresponding simulated dislocation density evolution.  
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7.2 Solid solutions  

Fig. 31 shows a plot of the (a) initial yield stress, (b) initial strain hardening rate and (c) 

saturation stress normalized with the temperature-dependent shear modulus as a function 

of temperature and solute content as derived according to the data preparation described in 

section 5.3 and stress strain curve data from (Sherby et al., 1951). Fig. 31 (d) shows the 

values for 0 , 0  and   in Al-Mg solid solution for different solute contents and normalized 

with the corresponding values at 3.2 at.% Mg. 

 

(a) (b) 

  
(c) (d) 

  
Fig. 31 (a) Initial yield stress (b) Initial strain hardening rate and (c) saturation stress as a 
function of temperature and solute content. Δ 3.2 at.% Mg, x 1.6 at.% Mg, * 1.1 at.% Mg, + 
0.6 at.% Mg and pure Al. (d) normalized values for initial yield stress, initial strain hardening 
rate and saturation stress as a function of Mg content at room temperature, a strain rate of 
2x10-3 s-1 and normalized with the value at 3.2 at.% Mg. Data from (Sherby et al., 1951). 
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A general tendency for lower stress values with increasing temperature is observed. This 

tendency is interrupted at medium temperature in the region, where dynamic strain ageing 

(DSA) occurs. The impact of DSA is most pronounced for 0  and 0 . In general, solid solution 

hardening leads to an increase of the initial yield stress and at the same time leads to an 

increase in strain hardening potential. Most interestingly, the dependence of 0 , 0  and 

on the solute content is very similar when normalized, Fig. 31 (d).  

Fig 32 (a) compares the results of the present model on 0  with the data depicted in Fig. 32 

(a). All curves are calculated with the parameters listed in Table 7 and no additional 

modification or fitting is applied. For the sake of better interpretation, Fig. 32 (a) also shows 

simulation results where 0c  instead of effc  is used for the calculations (dashed lines) not 

taking into account dynamic strain ageing. Fig. 32 (b) displays the strain rate sensitivity (SRS) 

given by  lnlnSRS ddm   as a function of temperature. 

 

(a) (b) 

  
Fig. 32 (a) Comparison of experimental (symbols) and simulated stresses at a strain rate of 

210-3 s-1 and using either effc  (solid lines) or 0c  (dashed lines) in Eq. (3), the latter replacing 

effc . (b) Strain rate sensitivity as a function of solute content and temperature. 

 

According to the mechanical threshold concept, the SRS is zero at zero Kelvin. The SRS 

increases monotonically up to a certain point where considerable dynamic strain aging sets 

in. All Mg-containing alloys considered in this work exhibit a local maximum at around room 

temperature and a subsequent local minimum at roughly 400 K. Interestingly, the minimum 

is observed for all Mg containing alloys, but negative strain rate sensitivity (nSRS) is observed 

only above a characteristic Mg level. In the alloys showing nSRS at a given strain rate, the 

regions of nSRS are delimited by two characteristic points of zero SRS.  
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An overview of SRS over a larger temperature and strain rate range is shown in Fig. 33, 

where the strain rate sensitivity is displayed in a gray scale contour plot over strain rate and 

temperature. The bold lines indicate the loci of zero strain rate sensitivity with a field of 

negative strain rate sensitivity enclosed. The plots emphasize that the region with nSRS 

extends farther with increasing Mg content. Interestingly, at any given deformation 

temperature, it is possible to find strain rates where the region of nSRS can be avoided. The 

same applies to any given strain rate, where deformation temperatures exist outside the 

region of nSRS.  

 

(a) (b) 

  
(c)  (d) 

  
Fig. 33 Strain rate sensitivity as function of temperature and strain rate for (a) 0.5 (b) 1.1 (c) 
1.6 and (d) 3.2 at. % Mg. The bold line designates the contour of zero strain rate sensitivity. 

 

Fig. 34 (a) and (b) shows the assessed experimental values (symbols) and the corresponding 

modelling results (lines) for  and . In addition, Fig. 34 (c) and (d) display the values of A 

and B calculated with Eqs. (78)-(80) and the parameterization given in Table 7.  

0 
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(a) (b) 

 

 

(c) (d) 

  

Fig. 34 Comparison between experimental (symbols) and modelled (lines) values for (a) the 
initial strain hardening rate, , and (b) the saturation stress, . (c) A parameter 

and (d) B parameter of the extended KM-model over temperature. 

 

The experimentally determined initial strain hardening rate and saturation stress show a 

tendency for higher values with decreasing temperature and increasing solute content. This 

applies over the entire temperature range. For both, 0  and  , a low and a high 

temperature regime is observed. The widest spread of values at a particular temperature 

and varying solute content is observed at intermediate temperatures, where dynamic strain 

ageing is of major importance. At low temperature, values for the initial strain hardening 

rate seem to converge at a constant value of 20/ˆ
0 G , in accordance with previous findings 

of (Estrin, 1996). For the saturation stress, no such convergence to a limiting value is 

observed: in the limit of 0T ,   and 0B . In other words, the relevance of dynamic 

0 0 
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recovery is decreasing with decreasing temperature. In this context, it must be emphasized 

again that stages IV and V hardening are not considered in the present simulation, which 

would set a natural limit to this extrapolation.  

In the absence of solute atoms, i.e., for pure aluminium, the A-term is continuously 

increasing with temperature. For intermediate Mg contents and temperatures, 

corresponding to the cross-core diffusion region, a nearly constant value of the parameter A 

is observed. This is due to the antagonistic effects of thermal activation and dynamic strain 

ageing. The evolution of the B-parameter over temperature, Fig. 34 (d), in pure Al is also 

essentially different to the one in Al-Mg solid solutions. In pure Al, the recovery term B 

shows a maximum at around 200K and a subsequent monotonic decrease. The curves for 

solid solutions show a weak point of inflection around 200K and a pronounced maximum in 

the region of cross-core diffusion. It should be mentioned, here, that dynamic recovery is 

often related to thermally activated cross-slip (Püschl, 2002) and that the direct correlation 

of the B-term to 0  and   offers an elegant means for investigation of the latter. 

Fig. 35 (a)-(e) compiles the experimental stress-strain values together with the simulation 

results based on the present analysis. The accurate reproduction of the complex stress-strain 

relations including the impact of dynamic strain aging is one of the main achievements of the 

present work. Fig. 35 (f) shows a close up of Fig. 35 (e) focusing on low strains, where the 

simulated stress-strain curves for 194K, 293K and 422K clearly intersect in the beginning, in 

accordance with experiments.  
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 (a) (b) 

  

(c) (d) 

  

(e) (f) 

 

 

Fig. 35 Comparison between experimental (symbols) and simulated (lines) stress-strain 
curves for (a) 0.0 at.% Mg, (b) 0.55 at.% Mg, (c) 1.1 at% Mg, (d) 1.6 at% Mg, (e) 3.2 at.% Mg 
at a strain rate of 0.002 s-1. (f) is a close-up of (e). 
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8 Discussion 

Experimental findings clearly indicate that the initial yield strength, 0 , the initial strain 

hardening rate, 0 , and the saturation stress,  , depend on temperature, strain rate and 

material state. The general tendency for the temperature and strain rate-dependence for all 

three quantities is decreasing values for increasing temperature and decreasing strain rate. 

However, in some temperature or strain rate ranges, one of the three quantities can be 

assumed constant, as assumed in some alternative state parameter-based models (Roters et 

al., 2000), (Galindo-Nava et al., 2012), (Nes, 1997), (Kocks, 1976). Fig. 36 shows two sets of 

(a) schematic stress-strain curves and (b) corresponding Kocks-plots, where in both cases 

one characteristic quantity is assumed to be independent of temperature and strain rate.  

 

  
Fig. 36 (a) schematic stress-strain curves with stage III hardening, and (b) corresponding 
Kocks-plots, generated with the Kocks-Mecking model, according to Case 1 (solid lines) and 
Case 2 (dashed lines). 

 

In the first case, Case 1 (solid lines), it is the initial strain hardening rate, 0 , in the second 

case, Case 2 (dashed lines), it is the critical strain, c , which is an athermal quantity. 

Comparison with experimental data on 0  and   in section 7 shows that both cases are 

observed in real materials, e.g., Case 1 is observed in an intermediate temperature range for 

Al-Mg solid solutions where 0  appears to be rather insensitive to changes in temperature. 

This latter independence of 0  appears to be due to dynamic strain ageing effects – in the 
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same temperature range 0  and   are rather insensitive to temperature and strain rate – 

and does not seem to be a general material property, especially not of pure materials. The 

experimental results on pure Al, Fig. 31, rather show some similarities with Case 2 

behaviour. In general, it must be said that both assumptions represent simplifications and, in 

experiment, all three quantities,  , 0  and 0 , exhibit some individual dependencies on 

temperature and strain rate, which are not fully explained on the basis of any first-principles 

theory. Consequently, the expressions for the temperature and strain rate-dependence of 

 ,...,,, 2100 ssT   ,  ,...,,, 2100 ssT    and  ,...,,, 21 ssT  
   must have individual 

character or at least calibration. In Al-Mg, the evolution of 0  and 0  is very well reproduced 

by the thermal activation framework outlined in section 4.1. The experimental data on the 

saturation stress,  , was not found to be in accordance with a finite value at 0K (MTS) and 

could consequently not be reproduced by the same thermal activation framework. However, 

at low temperatures, a dependence on   
0

3 lnGbkT  is observed in all cases and at high 

temperatures some kind of power-law appears to be suitable for all three quantities. It is 

also observed that two deformation regimes, one for low and one for high temperature 

deformation appear to be sufficient for an accurate reproduction of the initial yield stress 

and the dislocation density evolution. This is in good accordance with some constitutive 

models, e.g., the Freiberger Ansatz Eqs. (15) and (16), where also two expressions are 

utilized. Fig. 37 shows the absolute values of the production term  dd   in comparison to 

the absolute values of the dynamic recovery  dd 
d , and static recovery term  dd 

s  at 

saturation over temperature. 
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Fig. 37 Comparison between production term 
(A-term) and dynamic (B-term) static (C-term) 
recovery term for different temperatures at 
saturation for 1.1 at.% Mg.  

 

At room temperature, static recovery is of practically no relevance in Al-Mg alloys. Static 

recovery reaches its peak value around 500K, where dynamic recovery is still the dominant 

recovery mode. After a short period of similar relevance, static recovery becomes prevalent 

at roughly 600K up to melting temperature. Consequently, contributions from both, static 

and dynamic recovery, are essential for a dislocation density evolution model covering the 

entire temperature range. The EBSD micrographs in section 7.4.1 support this observation by 

showing a transition in the deformation microstructure from geometrically ordered to 

vacancy-assisted climb dominated randomly oriented subgrains, which is in good accordance 

with the results depicted in Fig. 37. 

0 , 0  and  also heavily depend on the material state, e.g., solute atoms lead to an 

increase of the initial yield strength, 0 , the initial strain hardening rate, 0 , and the 

saturation stress,  . In the present work, the influence of solute atoms on strain hardening 

potential is represented by a dependence of the activation energies and the mechanical 

threshold on an effective solute concentration. Consequently, also the dislocation density 

evolution is affected by the effect of solute atoms including that of dynamic strain ageing. 

The dependence of the dislocation density evolution on DSA or even solute atoms is not 

taken into account in the models on stress strain curve prediction in Al-Mg by (Soare and 

Curtin, 2008) and (Keralavarma et al., 2014).  

It should be mentioned that, generally, the observed increase in strain hardening potential is 

said to be related to a variation in stacking fault energy with solute content, which is not 
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taken into account on a strictly physical basis in the present model. According to (Thornton 

et al., 1962), the stacking fault energy is closely related to the mechanism of cross-slip. 

(Kocks and Mecking, 2003) pointed out that the strain hardening potential in pure materials 

scales with the stacking fault energy. (Weertman, 1965) and (Guo et al., 2006) investigated 

the influence of stacking fault energy on high-temperature creep. The influence of alloying 

elements and temperature on the stacking fault energy was investigated by (Gallagher, 

1970). (Parvin and Kazeminezhad, 2014) presented a model relating the stacking fault energy 

to the dislocation density. Also, (Estrin, 1996) and (Galindo-Nava et al., 2014), relate strain 

hardening and atoms in solid solution through the stacking fault energy. These observations 

could be comprised in a future development of the present model. However, it should be 

emphasized that the resulting values of  , 0  and 0  and, consequently, of A , B  and C  

would have to be the same as in the present work if the calibration is based on the same 

experimental results.  

In the present formulation of the model, the MTS contribution from solute atoms and thus 

the material state is rendered temperature and strain rate-dependent. Fig. 38 summarizes 

the MTS contribution from Mg solute atoms as function of temperature and strain rate. 

 

 
Fig. 38 Solute element contribution to the mechanical 
threshold from 0.554 at.pct Mg as a function of 
temperature and strain rate, according to the present 
model and calibration 

 

A dependence of material state on temperature is also observed in artificially aged AA6061 

alloys. Comparison of experiments and simulations clearly indicates that, at intermediate 

temperatures, hardening phases are metastable and dissolve during plastic deformation. 
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This leads to initial strain-hardening with subsequent softening, which was observed for all 

precipitation states. The location and appearance of this maximum in yield stress is 

additionally dependent on strain-rate. This is a consequence of the diffusive character of the 

dissolution process. Most interestingly, artificial ageing leads to an increase in initial yield 

strength, 0 , but a decrease in hardening potential. Consequantly, 0  and the saturation 

stress   are decreasing with increasing initial yield strength. A similar behaviour was 

observed by (Fribourg et al., 2011) for a 7000 series aluminium alloy. Any model, being 

either constitutive or physical, would have to reproduce this inverse relation between initial 

yield strength and hardening potential. It should be mentioned here, that, to the present 

author’s opinion, the combined effects of temperature dependence of material state and 

temperature and strain-rate dependence due to thermal activation and increased 

dislocation mobility are often confused in literature, although they are essential for a 

successful simulation of stress strain curves over a large range of temperatures.  
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9 Summary 

A comprehensive model for the simulation of temperature, strain rate and material state 

dependent stress-strain curves is developed. The total yield stress is calculated as 

superposition of a strain-independent initial yield stress and a strain-dependent plastic 

stress. The strain-independent stress contribution is calculated on the basis of the 

mechanical threshold concept and a thermal activation framework. Strain hardening is 

calculated on the basis of an extended Kocks-Mecking type model utilizing an average 

dislocation density as state parameter. As an important feature for practical application, the 

present model seamlessly extends existing approaches for yield stress modeling based on 

dislocation glide into the high-temperature deformation region dominated by vacancy-

assisted dislocation climb. Experimental data on Al-Mg binary solid solutions and an 

artificially aged AA6061 aluminum alloy are analyzed in the light of the present model, 

where precipitation kinetics during artificial aging and the thermal stability of the 

corresponding material state are simulated with the thermo-kinetic software package 

MatCalc. It is shown that the present approach consistently represents the yielding 

behaviour of alloys in a variety of microstructural conditions with respect to the production 

history of the alloy and the testing conditions, i.e. temperature and strain rate.  
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1johannes.kreyca@tuwien.ac.at, 2ernst.kozeschnik@tuwien.ac.at 
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Abstract 

The effect of  ” precipitation on strain hardening and yield stress evolution in an A6061 

aluminium alloy is studied experimentally and through thermokinetic computer simulation. 

Samples were deformed by compression at temperatures from 25 to 500°C to strains of 

about 0.4 and three different precipitation states. Simulations on the thermal stability of  ” 

are conducted on an equivalent model Al-Mg-Si alloy resulting in an explanation for the 

experimentally observed softening at intermediate temperatures. EBSD micrographs confirm 

that different dislocation storage and annihilation mechanisms are operative at low and high 

temperatures. The low temperature microstructure correlates very well with the subgrain 

structures typically observed during stage IV strain hardening.  

 

Keywords stress/strain measurements; modelling/simulations; aluminium alloys  

Introduction 

AA6061 is a heat treatable aluminium alloy belonging to the 6xxx Al-Mg-Si system. It is 

appreciated for its good combination of specific strength, corrosion resistance and good 

weldability. The mechanical properties of A6061 alloy have been investigated intensively. 

Ozturk et al. [1] published tensile tests for artificial ageing at 200°C and different aging times. 

Evangelista et al. [2] investigated the hot formability of AA6061 PM in the temperature 

range of 250-500°C and strain rates from 0.005 to 0.5 s-1. Maisonette et al. [3] reports the 

effect of previous thermal history representative for electron beam welding. Lee and Tang 

[4] investigated the stress-strain response with a compressive split-Hopkinson pressure bar 
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system in the temperature range of 100 to 350 °C and strain rates between 103 and 5.103. 

Mechanical properties of 6061 aluminum alloy processed by accumulative roll bonding were 

studied by Lee et al. [5]. Severe plastic deformation of AA6061 was investigated by Khamei 

and Deghani [6] and Farshidi et al. [7]. For further experimental data see [8][9][10]. 

In the present work, the focus lies on the investigation and characterization of thermally 

activated processes occurring during deformation. In this respect, two aspects need to be 

accounted for, which are (i) the thermal stability of precipitates and (ii) the characterization 

of dominant deformation mechanism at different temperatures. For this purpose, a 

CALPHAD-based thermokinetic simulation of the precipitation and dissolution behaviour of 

the major hardening phase β” is conducted, first. Subsequently, EBSD micrographs are 

acquired for artificially aged material that is deformed at different temperatures. Finally, 

experimentally determined stress-strain curves derived from compression tests at several 

different temperatures and three different initial precipitation states are interpreted based 

on the information from the computer simulations and the EBSD micrographs.  

 

Initial strain hardening rate, stage III saturation stress and stage IV strain hardening rate 

As first introduced by Diehl [11][12], stress strain curves are commonly divided into five 

stages of strain hardening. In polycrystalline materials – such as the material, which is 

subject to the present work – only stages III and IV are typically observed. Stage III is 

characterized by a decreasing strain hardening rate with increasing degree of deformation 

and a strong dependence on temperature and strain rate, where the strain hardening rate, 

 , is defined as  dd .  represents strain and   is stress. In the sense of the Kocks-

Mecking (KM) model [13], [14] for the strain hardening stage III, the strain hardening rate, 

, and stress,  , follow a simple linear relation (see also [15]) in the form of 










 





 0

0 1 , 

where 0  and 0  are the yield stress and the strain hardening rate at deformation start, 

respectively, and   is the saturation stress. The quotient   0c is sometimes referred 

to as critical strain. Fig. 1 shows a schematic representation of a stress strain curve 

generated by application of the KM model for stage III hardening. 
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Fig. 1 Schematic stress-strain curve in stage III with ,

,
 c and .  

 

According to the KM model, the dislocation density evolution is described by

 21 kkdd  , where 1k  is the dislocation storage parameter and 2k is the dynamic 

recovery coefficient. Together with the Taylor equation,  GbM 0 , where   is a 

strengthening coefficient [16], G  is the shear modulus and b  is the Burgers vector, it can be 

shown that the initial strain hardening rate and the critical strain are related to the 

dislocation storage parameter, k1, and dynamic recovery coefficient, k2, through 

21
2

0 kGbM   and 22c Mk  [17]. The KM model has been successfully applied to 

simulate strain hardening in Al alloys [18],[19],[20],[21] and [22]. 

Stage III is followed by Stage IV, which is characterized by a constant strain hardening rate 

resulting in a straight line in the stress strain diagram. Stage IV is fully determined by only a 

single parameter, IV .  

 

Precipitation sequence in AA6061 

In the Al-Mg-Si system, the mechanical properties mainly result from precipitation 

strengthening of Mg and Si-containing particles. In 6061 alloys, Mg5Si6 ( '' ) is the major 

hardening phase [23], [24], [25], [26]. Fig. 2 shows the typical precipitation sequence 

observed during heat treatment of Al-Mg-Si alloys [27] and [28]. 

 

 

Fig. 2 Typical precipitation sequence in Al-Mg-Si alloys 

o

0 
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The precipitation sequence is subject to numerous models predicting the yield stress 

evolution during artificial ageing as a function of composition, ageing time, temperature and, 

sometimes, also the thermal history of the material. In the present context, Shercliff and 

Ashby developed a corresponding model dealing with precipitation strengthening in age 

hardening alloys [29], [30]. Later on, Myhr and co-workers published a series of papers [31], 

[32], [33], [34] on this topic with special focus on Al alloys. The strengthening impact of 

needle-shaped precipitates, such as the ''  phase, was investigated in [35]. The impact of 

precipitates on the dislocation density evolution (strain hardening) is incorporated in the 

model of Friis et al. [36] and, in a more complex form, of Simar et al. [37]. An exhaustive 

review on different models with special emphasis on modelling the heat affected zone 

during welding in heat treatable aluminium alloys is given in [38].  

Independent of the particular type of Al-alloy, the precipitation processes occurring during 

heat treatment of technical alloys are reasonably well understood and they are nowadays 

often modelled in a combination of CALPHAD-type multi-component equilibrium 

thermodynamics and suitable approaches dealing with the kinetics of precipitation, e.g. [39], 

[40]. 

 

Simulation of the precipitation state of hardening phases  

In the present work, the precipitation sequence occurring during heat treatment of a model 

Al-Mg-Si ternary alloy is simulated. The chemical composition (0.85 wt.% Mg, 0.69 wt.% Si, Al 

bal.) lies well within the range defined for A6061 aluminium. The resulting phase fraction 

and precipitate distribution of ''  particles corresponding to a specific precipitation state is 

subsequently used as starting condition for the simulation of the dissolution/growth kinetics 

of the ''  phase during isothermal mechanical testing. This latter simulation of precipitation 

state is especially interesting, since, during deformation at elevated temperature, the 

precipitation state might change due to further precipitation, coarsening or, eventually, 

dissolution, which directly impacts the mechanical properties (stress-strain curves) of the 

material. 

All calculations presented here are performed with the thermokinetic software package 

MatCalc (version 6.00 rel. 0.104) [41] using the databases mc_al.tdb [42] and mc_al.ddb 

[43]. These databases are available under the Open Database License [44] and can be 
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downloaded for free from http://matcalc.at. They contain all thermodynamic and diffusion 

related parameters necessary for the reproduction of the present results. MatCalc 

simulations utilize a mean-field approach for nucleation, growth and coarsening in multi-

component, multi-phase and multi particle systems [45], [46], [47]. The interface energies 

are calculated according to the generalized nearest neighbour broken bond model [48], [49]. 

For simulations in Al-based alloys, this approach is coupled with a model describing the 

evolution of quenched-in excess vacancies [50] and their impact on solute diffusion. The 

influence of coherent misfit stress on nucleation is taken into account by assuming an 

effective volumetric misfit between precipitates and matrix of 4, 4, and 2 % for GP-zones, '

and '' , respectively. The phases '  and ''  are assumed to be rod shaped with an aspect 

ratio of H/D=10 [51] where H is the length of the precipitate, and D the thickness of a 

cylinder with equivalent volume. Fig. 3 shows simulation results for the intermediate region 

of the precipitation sequence, as modelled for the artificial ageing stage at 170°C, only, and a 

pre-treatment as described in the figure caption.  

 

 

Fig. 3 Precipitation sequence of Mg-Si precipitates after 
quenching from solution annealing temperature to 
room temperature with 900 Ks-1, heating with 3 Ks-1 and 
isothermal holding at 170°C for the phases GP-Mat, β” 
and β’. Also shown is the T6 region according to DIN EN 
2700. 

 

Fig. 3 shows that the T6 material state, which represents the standard heat treatment for 

peak strengthening of Al alloys, corresponds to a condition with close-to-maximum phase 

fraction of '' . It is important to note, that Fig. 3 is only valid for an isothermal heat 

treatment carried out at 170°C after solution annealing, quenching and reheating with the 

http://matcalc.at/
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rates given in the caption of Fig. 3. Above a certain temperature, the β” precipitates become 

thermodynamically unstable and start dissolving.  

Fig. 4 shows the phase fraction evolution of β” during isothermal heat-treatment at different 

temperatures and over (a) 70 seconds and (b) 1000h, where 70 seconds corresponds to 

deformation test conditions up to a strain of 0.7 with a strain rate of 0.01. The precipitate 

evolution in Fig. 4 (b) is shown to demonstrate the long-term evolution of precipitates when 

approaching equilibrium conditions and even longer testing duration. The initial 

precipitation state / phase fraction of β” is taken from Fig. 3 after isothermal heat-treatment 

at 170°C for four hours. 

 (a) (b) 

 

 

Fig. 4 Dissolution of β” precipitates during iso-thermal heat treatment for (a) 70 s and (b) 
1000h, with the phase-fractions given by the color coding. 

 

Fig. 4 (a) shows three regions: (i) from room temperature up to approximately 250°C, the 

phase fraction of β” is stable or even slightly increasing, (ii) between 250°C-300°C, β” is 

dissolved within the first 70 seconds and (iii) above 300°C precipitates are dissolved within 

the first instances of heat treatment, as carried out in the present investigation. Especially 

interesting is the region between 250 and 300°C where, in the beginning of mechanical 

testing, precipitates act as obstacles, but they are dissolved during deformation. An initial 

strain hardening with a subsequent softening is, consequently, expected for stress strain 

curves in this region.  

Fig. 4 (b) shows that, for temperatures higher than 170°C, and for testing with rather slow 

strain rates and long testing duration, β” is dissolved within approximately the first 100h. 

The simulations thus show that any β” precipitation is rapidly dissolved at temperatures 
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higher than 300°C, continuously dissolved between 250 and 300°C, growing at temperatures 

lower than 250°C and unchanged for temperatures lower than 100°C. Apart from the 

temperature-dependent evolution of precipitates, the dominant deformation mechanism 

and, thus, the deformation-induced microstructure is gradually changing with increasing 

temperature [52]. In the present work, the temperature dependent deformation 

microstructure is characterized by EBSD micrographs and, finally, compared to stress-strain 

curves obtained from compression testing. 

Experimental Procedure 

Cylindrical specimens of a commercial A6061 alloy with a length of 15mm and a diameter of 

10mm are compression-tested on a Gleeble 1500 thermo-mechanical simulator. Colloidal 

graphite is used for lubrication. The chemical composition is summarized in Table 1.  

Table 1 Chemical Composition 
Element Al Si  Fe Cu Mn Mg Cr Ni  Zn Ti 

Concentration 
[wt.%] 

97.35 0.69 0.45 0.23 0.11 0.85 0.18 <0.05 0.05 0.05 

 

The material is solution heat treated for 1h at 540°C in a furnace, water quenched and, after 

storage at room temperature for one week, artificially aged for 1, 4 and 8h at 170°C. All 

specimens are tested at a strain rate of 0.01 s-1 and at temperatures of 25, 50 100, 150, 200, 

250, 300, 350, 400, 450 and 500°C. The tests are repeated three times, the experimental 

values represent the average of three experiments. All stress-strain curves are calculated 

under the assumption of constant volume. Values for 0 are taken at a strain of 02.0 . The 

experimental values for 0  and   are evaluated from the KM-plots ( p. vs ) of the data in 

Fig. 5, where   is determined from numerical differentiation and 0p   . Minimization 

of the sum of least squares is then used to best-fit the linear relation between strain 

hardening rate and stress postulated by the KM model. The intercept of the resulting line 

with ordinate and abscissa determines the experimental values for 0  and  . The strain 

hardening rate in stage IV, IV , is derived by fitting stress strain curves in the strain range of 

0.15-0.4 with a straight line. 

EBSD micrographs are taken from a subset of deformed samples  2.0  after solution heat 

treatment for 1h at 540°C, heat treatment for 4h hours at 170°C and deformation at 25, 150, 

200, 350, 400 and 450°C. The steps for grinding and polishing [11] are summarized in Table 
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2. 

 
Table 2 Grinding and polishing 

Step Polishing Disc Grit (µm) Time (min) 

Grinding Abrasive Paper 500 2 
Polishing Struers MD Largo 9 15 
Polishing Struers MD Dur 6 25 
Polishing Struers MD Mol 3 30 
OPS Struers MD-Chem 1 15 
Cleaning Struers MD-Chem 1 3 

 

The EBSD investigations are performed on an FEI Quanta 200 FEG. The data analysis is 

conducted with the EDAX Orientation Imaging Microscopy (OIM) Data Analysis software. 

 

Deformation-induced microstructures 

Fig. 5 shows EBSD micrographs for the present A6061 alloy, heat treated for 4h at 170°C 

after solution heat treatment and deformed at 25, 150, 200, 350, 400 and 450°C up to a 

strain level of 0.2. For 25, 150 and 200°C, the appearance of microstructure can be clearly 

attributed to classical cold working. According to [53], [54] and [55], thermally activated 

cross-slip represents the main physical mechanism determining the temperature-

dependence of stress-strain curves at low and intermediate temperatures. The geometrically 

ordered microstructure, which is typically observed after deformation at these temperatures 

[56], [57], [58], [59] is reflected in the images (a)-(c) of Fig. 5. At elevated temperatures, non-

conservative motion of dislocations, e.g., vacancy-assisted dislocation climb, becomes the 

predominant mechanism determining the stress-strain behaviour. The enhanced mobility of 

dislocations at elevated temperature results in a characteristic microstructure, dominated by 

randomly oriented subgrains, Fig. 5 (d,e), which is commonly associated with lower levels of 

yield stress and strain hardening. At even higher temperatures, a mixture of grains 

structured with subgrains and recrystallized grains is observed, Fig. 5 (f). Two regions of 

different deformation microstructures are consequently found in experimentally determined 

stress strain curves: One with high yield stress and high strain hardening rate due to 

thermally activated cross-slip and another one dominated by vacancy assisted climb with 

lower yield stress and reduced strain hardening rate. The shift between the two mechanisms 

is expected to occur between 200 and 350°C, Fig. 5 (c,d). 
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

  

Fig. 5 EBSD Micrographs of A6061 artificially aged for 
4h hours and tested at (a) 25, (b) 150, (c) 200, (d) 350, 
(e) 400 and (f) 450°C at a strain of 0.2  

 

 

Stress strain curves 
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Fig. 6 shows plots of true stress vs. true strain for all artificial ageing times and temperatures. 

From room temperature up to roughly 200°C, stage III hardening is observed in the 

beginning, followed by stage IV hardening with a constant strain hardening rate. With 

increasing temperature, the degree of strain hardening decreases in both stages. Up to 

250°C, the stress is continuously increasing during deformation, i.e. the strain hardening rate 

is positive throughout the whole deformation process. At 250°C the strain hardening rate in 

stage IV becomes zero, i.e. 0dIVIV   d .  

In the temperature range between 250°C and 400°C, an initial region of strain hardening is 

followed by a region of softening during deformation. Interestingly, dynamic recrystallization 

can be excluded as mechanism responsible for this softening, since recrystallization does not 

occur until temperatures above 400°C (Fig. 5). A comparison with the simulated precipitation 

state shown in Fig. 3 indicates that this reduction in strength coincides with the region of ''  

dissolution, which apparently commences in the course of compression testing and 

continues to a higher degree with increasing test temperature. This dissolution is 

accompanied by a loss in precipitation strengthening and, thus, an integral softening in the 

stress-strain curve. At temperatures above 400°C, no conceivable strain hardening occurs 

and stress saturation is reached almost immediately after deformation start. 
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(a) (b) 

  

(c)  

  

Fig 6. Stress strain curves for (from highest to lowest) 25, 50 100, 150, 200, 250, 300, 350, 
400, 450 and 500°C, (a) 1h, (b) 4h, and (c) 8h artificial ageing at 170°C. (d) shows selected 
true stress over true strain curves for 1, 4 and 8h and 25, 200, 300, 400°C. 

 

Fig 6 (d) displays selected stress-strain curves for the same test temperature but different 

precipitation states, i.e., aging times. Apparently, at temperatures below 300°C, the initial 

yield stress as well as the strain hardening behaviour are significantly different for different 

ageing times. At 300°C, only a weak difference in yield stress and strain hardening rate 

between different precipitations states is observed at deformation start. This difference, 

however, disappears as soon as the precipitates fully dissolve during the deformation 

process. Deformation at 400°C renders identical stress strain curves, indicating that 

precipitates are dissolved already quickly at deformation start and deformation occurs for 

almost identical microstructures, in the absence of the influence of precipitates, in all cases. 

The vast differences in stress-strain behaviour at lower temperatures are further analysed 

subsequently. 
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Fig. 7. shows the values of yield stress, 0 , initial strain hardening rate, 0 , stage III 

saturation stress,  , and strain hardening rate in stage IV, IV . All four quantities show 

decreasing tendency with increasing temperature. This is especially interesting for the initial 

strain hardening rate, 0 , as it is sometimes assumed to be athermal [13].  

(a) (b) 

 

 

(c) (d) 

 

 

Fig. 7 (a) yield stress, (b) initial strain hardening rate, (c) saturation stress and (d) strain 
hardening rate in stage IV for 1, 4 and 8h of artificial ageing ate 170°C over temperature.  
 

As expected, the initial yield stress, 0 , is increasing with increasing ageing time due to the 

increasing contribution of precipitation strengthening. At the same time, 0  and   are 

decreasing with increasing ageing time. Consequently, the presence of precipitates leads to 

higher initial yield stress values but reduces the materials capacity for strain hardening. A 

similar behaviour was observed by Fribourg et al. [20] for a 7000 series aluminium alloy. At 

temperatures higher than 300°C, no significant strain hardening is observed any more. This is 

in good accordance with the shift in deformation mechanism from thermally activated cross 

slip to vacancy assisted climb, as observed from the analysis of EBSD micrographs.  
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Fig. 7 (d) shows the evolution of IV  over temperature. Up to temperatures of roughly 

250°C, clear evidence of stage IV hardening is observed (compare Fig. 6), the magnitude of 

the hardening coefficient, however, is quickly decreasing with increasing temperatures. Just 

as for stage III hardening, the stage IV strain hardening potential decreases with increasing 

precipitation strengthening. At roughly 250°C, IV  becomes zero and the stress-strain curve 

saturates after the end of stage III. At even higher temperatures, IV  is negative and must be 

interpreted as measure of softening due to precipitate dissolution rather than conventional 

strain hardening.  

Fig. 8 shows values for 0 , 0  and   normalized with the corresponding values at room 

temperature. Most interestingly, the evolution over temperature shows a similar ‘s’ shape 

for all three quantities with almost identical slope, where only the point of inflection is 

shifted to lower temperature from 0  over 0  to  . Fig. 8 leads to the speculation that a 

model for the thermal activation of the yield stress [52], [60] could – in principle and with 

individual parametrization – be also applied to the initial yield stress and the saturation 

stress and, with the relations between 0 ,   and 1k , 2k , deliver expressions for the thermal 

activation of dislocation storage and dynamic recovery. If, in addition to that, the empirical 

relation [14],[61] between the temperature and strain rate dependence of stage IV and that 

of stage III hardening is applied, a model for the temperature-dependence of yield stress, 

stage III and IV hardening and, thus, for the whole stress strain curve at lower temperatures 

could be derived. For higher temperatures, the observed precipitate dissolution and high 

temperature deformation mechanisms must additionally be taken into account. 

 

  
Fig. 8 Yield stress, initial strain hardening rate 
and saturation stress normalized by room 
temperature values. 
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Conclusion 

The plastic deformation of an A6061 heat treatable aluminium alloy is investigated over a 

large range of temperatures and three different precipitation states. At low temperature up 

to 200°C, stage III and IV hardening, which are characteristic for conditions of cold working, 

are observed in stress-strain curves. In this region, the evolution of yield stress during 

artificial ageing is observed to be indirectly proportional to the materials potential for strain 

hardening. The yield stress, initial strain hardening rate and saturation stress are 

monotonically decreasing with increasing temperatures. Corresponding EBSD micrographs 

show a highly organized banded structure with a geometrical relation to the rolling direction. 

At higher temperatures, the deformation microstructure is dominated by randomly oriented 

subgrains. 

Thermokinetic simulation of the precipitation kinetics of the major hardening phase 

indicates that, between 250°C and 300°C, the main hardening phase ” dissolves within the 

first seconds of deformation resulting in softening that is clearly visible in the experimentally 

determined stress-strain curves. EBSD analysis confirms that, in the present case, the 

observed softening is not related to dynamic recrystallization. 
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Abstract 

A classical constitutive modeling-based Ansatz for the impact of thermal activation on the 

stress-strain response of metallic materials is compared with the state parameter-based 

Kocks-Mecking model. The predicted functional dependencies suggest that, in the first 

approach, only the dislocation storage mechanism is a thermally activated process, whereas, 

in the second approach, only the mechanism of dynamic recovery is. In contradiction to each 

of these individual approaches, our analysis and comparison with experimental evidence 

shows that thermal activation contributes both to dislocation generation and annihilation. 

 

Physical models describing the stress-strain evolution of a material during plastic 

deformation [1], [2], [3], [4], [5], [6] are commonly founded on (i) the Taylor equation [7], [8], which 

relates the stress contribution due to forest hardening, i.e. the true stress,  , to the average 

dislocation density,  , as  

 1gMGb 
, (1) 

where M  is the Taylor factor,   is the strengthening coefficient, G  is the shear modulus, b  

is the Burgers vector, MGbg 1 , and (ii) a differential equation for the average dislocation 

density evolution in the form  













d

d

d

d

d

d 

 .  (2) 

In Eq. (2), the generation of dislocations due to plastic deformation is accounted for in the 

dislocation storage term,  dd  , whereas the annihilation of dislocations due to dynamic 

recovery is accounted for in the term  2kdd  . The flow stress,  , measured in a 
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polycrystal is related to the critical resolved shear stress,  , through  M . The 

macroscopic plastic strain,  , is related to the algebraic sum of crystallographic shears,  , 

according to M  [9]. The storage term is commonly related to the mean free path, L , of 

mobile dislocations through [10] 

bL

M

d

d







 . (3) 

With the assumption that the mean free path is indirectly proportional to the square root of 

the dislocation density, 



A
L 

,
 (4) 

Eq (2) delivers the well-known Kocks-Mecking equation [11] reading 





21 kk

d

d
 . (5) 

Here, bAMk 1  and A  is a proportionality constant. Dynamic recovery was first associated 

with thermally activated cross slip by Mott [12]. A detailed theory was then developed in refs. 

[13], [14] concluding that the decreasing strain hardening rate during stage III hardening and its 

temperature and strain rate-dependence are a result of dynamic recovery due to thermally 

activated cross-slip. For a detailed review, see [15] and [16].  

In most dislocation density-based models [1], [2], [3], [4], [5], [6], 1k  is assumed to be 

temperature-independent (except for the temperature-dependence of the shear modulus), 

whereas 2k  is treated as a temperature and strain rate-dependent parameter. The 

assumption of an athermal 1k  is equivalent to stating that dislocation storage is not a 

thermally activated process. 

Importantly, these two assumptions have severe implications on the shape of the modelled 

stress-strain curves. Within the Kocks-Mecking framework, this shape is characterized by the 

initial strain hardening rate, 0 , the saturation stress,  , and the critical strain, c . These 

quantities are fundamentally related to 1k  and 2k  [17] through  

2
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The hardening coefficient,  , is sometimes assumed to be a function of temperature and 

strain rate, e.g. in  [11], however, most commonly   is assumed to be a constant, rendering 

the initial strain hardening rate, 0 , athermal. As a consequence, many state parameter-

based models, e.g. [6], [4], [5], [1] predict an athermal initial strain hardening rate and only the 

saturation stress and the critical strain, Eqs. (7) and (8), are functions of temperature and 

strain rate. This specific case is further denoted as Case 1.  

Comparison with experiment, Fig. 1 (a) and (b), shows, however, that the initial strain 

hardening rate shows considerable strain rate and temperature-dependence in several 

different materials. This dependency appears quite prominently even when normalized by 

the temperature-dependent shear modulus, showing that the well-known temperature-

dependence of G cannot explain this observation alone.  

 

  

Fig. 1 Initial strain hardening rate normalized by the shear modulus, G, over (a) temperature for Al and Ti and  
(b) over strain rate for copper. Values for Cu [18], [19] and Al [20] are taken directly taken from literature. The 
values for Al [21] and Ti [22] are derived from a Kocks-plot of the published stress-strain curves.  

 

In constitutive models, it is common to express the temperature and strain rate dependence 

of the stress as 

, (9) 

which comprises the product of a strain-dependent master-curve,   ref , and a temperature 

and strain rate-dependent function,  ,Tf . Table 1 summarizes the functional dependence 

of a selection of constitutive models and indicates whether they are following the “product 

form” Eq. (9) or not.  
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Table 1. Overview of constitutive models for flow curves with different degree 
of complexity 

Source Eqs. product form 
[24],  [25] nk  0  no  
[26] 3421 mmmTm
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When accepting that the stress follows the multiplicative dependency described by Eq. (9), 

the corresponding derivative quantity, 0 , as well as the saturation stress,  , must also 

follow the same functional dependence  ,Tf , i.e.,   ,ˆ
00 Tf  and   ,ˆ Tf  , 

where 0̂  and ̂  are independent of temperature and strain rate. The initial strain 

hardening rate as well as the saturation stress are consequently functions of temperature 

and strain rate. The critical strain,   ˆˆ
0c , as a function of the athermal quantities 0̂  and 

̂ , is athermal (Case 2). 

Fig. 2 shows schematic stress-strain curves and Kocks-plots obtained from the Kocks-

Mecking model, according to Case 1 (solid lines) and Case 2 (dashed lines). Both concepts are 

assuming one characteristic quantity to be independent of temperature and strain rate. In 

the first case, it is the initial strain hardening rate, 0 , which is an athermal quantity 

according to the arguments presented earlier in discussion of Eq. (6). In the second case, it is 

the critical strain, c , which is an inherently athermal quantity as derived before. We 

emphasize, however, that both assumptions represent simplifications and, in experiment, all 

three quantities,  , 0  and c , might exhibit some specific dependency on temperature 

and strain rate.  
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Fig. 2 (a) schematic stress-strain curves with stage III hardening, and (b) corresponding Kocks-plots, generated 
with the Kocks-Mecking model, according to Case 1 (solid lines) and Case 2 (dashed lines). 

 

When finally integrating the simplification commonly utilized in constitutive models to a 

Kocks-Mecking dislocation density evolution-based approach, either 1g  or 1k  must depend 

on temperature and strain rate and 2k  must be constant. If 1g  is assumed to be a function of 

temperature and strain rate, as is the case in Refs. [23] and [3], the dislocation density 

evolution becomes independent of temperature and strain rate, which is in contradiction to 

experimental evidence. If, however, 1k  is assumed to be a thermally activated quantity, the 

dislocation density evolution depends on temperature and strain rate in all cases. 

Dislocation storage should thus also be treated as a thermally activated process, at least to 

some extent. 

These observations have two implications, one for constitutive modelling and one for the 

understanding of physical mechanisms. For constitutive modelling, these results suggest that 

the temperature and strain rate-dependence of 0  observed in experiment should be taken 

into account by a temperature-dependence of 1k . In terms of physical understanding, these 

results mean that the temperature and strain rate-dependence of plastic deformation is not 

sufficiently explained solely by dynamic recovery due to thermally activated cross-slip; and 

that the dislocation storage termmay well be thermally activated and need further and 

appropriate consideration in this type of modelling. 
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Abstract 

A novel and comprehensive approach addressing the stress strain response of binary Al-Mg 

alloys under uniaxial loading over a wide range of temperatures (78K-500K), strain rates (10-

4-10 s-1) and solute contents (0 wt.%-5 wt.%) is developed and introduced. The model is 

based on the mechanical threshold Ansatz in combination with a Labusch type solid solution 

hardening approach and a model for dynamic strain ageing to describe the temperature and 

strain rate dependence of the yield stress in a thermal activation framework. Strain 

hardening is modelled on basis of the Kocks-Mecking evolution equations for the average 

dislocation density and discussed in terms of the temperature-dependence of the initial 

strain hardening rate and the saturation stress for stage-III hardening. Both, static and 

dynamic recovery, are fully taken into account. The model predictions are validated on 

experimental stress-strain curves reported in literature. The results demonstrate that the 

model successfully reproduces the complex temperature and strain rate dependent plastic 

deformation characteristics of Al-Mg alloys with a minimum of calibration input parameters.  

 

Keywords: dislocations A, strengthening mechanisms A, constitutive behavior B, 

polycrystalline material B, analytical functions C 

 

1. Introduction 

Magnesium ranks among the most important alloying elements in Al-alloys. Its outstanding 

potential to improve the mechanical properties of Al-alloys stem from a combination of high 

solubility and misfit strain leading to considerable solid solution hardening in 5xxx alloys and 



105 
 

its capability of forming precipitates with other alloying elements such as, e.g., Si in 6xxx 

alloys. Unfortunately, forming processes of Al-Mg-X alloys are complicated by the effect of 

dynamic strain ageing (DSA) in certain temperature and strain rate regions, which can lead to 

negative strain rate sensitivity, serrated flow and decreased ductility. This combination of 

high industrial relevance and complex underlying physical processes has fostered great 

scientific interest and has led to numerous publications on plastic deformation of aluminium 

alloys. Creep of aluminium alloys, e.g., was investigated by (Li et al., 1997).  (Hu et al., 2016) 

presented a crystal plasticity extended models for the tensile behaviour of aluminium alloys. 

The variation of strain rate sensitivity of an aluminium alloy in a wide strain rate range was 

studied by (Yan et al., 2016).  Cyclic plasticity and the Bauschinger effect were subject to 

investigations by (Yoshida and Uemori, 2002). Dislocation density based models on strain 

hardening were recently introduced by (Csanadi et al., 2014), (Silbermann et al., 2014) and  

(Bertin et al., 2013). The formability of AA5083 and AA6061 was investigated through 

experimentation by (Liu et al., 2010). High-velocity impact failure of 6061-T6 aluminum was 

investigated by (Ahad et al., 2014) and shock wave propagation in Al single and polycrystals 

by (Lloyd et al., 2014). Damage models were subject to the work of (Mengoni and Ponthot, 

2015) and (Tutyshkin et al., 2014). Yield surface evolution in AA6061 and annealed 1100 Al 

was presented by (Khan et al., 2009),(Khan et al., 2010a), (Khan et al., 2010b) and (Pandey et 

al., 2013). The anisotropic behaviour in AA 2090-T3 aluminium alloy was studied by (Safaei et 

al., 2014).  

Some of these applications, e.g., finite element simulations, require material properties in 

the form of flow curves as input data, where even small variations of the input data can 

cause big deviations in the resulting simulation (Umbrello et al., 2007). Traditionally such 

data is obtained through experimentation, which is expensive and time-consuming. A 

reduction of experimental cost by combining experiment with the simulation of flow-curve 

data is thus highly desirable. Subject of the present contribution is the simulation of the flow 

curve of Al-Mg binary alloys as a function of temperature, strain rate and solute content. For 

this purpose existing constitutive models are reviewed briefly, followed by an introduction of 

the physical concepts necessary for the construction of the present model. Finally, the model 

is calibrated for Al-Mg alloys and utilized to simulated experimental data on flow curves in 

Al-(0-5wt%)Mg. 
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2. State of the art 

Early constitutive stress-strain models date back to (Ludwik, 1909) and (Hollomon, 1945) and 

are commonly written in the form of a power law, L
0

n
K  , where 0  is the initial yield 

stress, K  is a constant and Ln  is the hardening exponent. All three parameters are 

straightforwardly derived from a double logarithmic plot of stress over strain. A dependence 

on temperature and strain rate can be introduced by multiplying the power law expression 

with a function ),( Tf  of temperature, T, and strain rate, . Constitutive power-law models 

for stress-strain curves are numerous and broadly applied in the field of finite element 

simulation, e.g. (Schmidtchen and Spittel, 2011), (Johnson and Cook, 1983), (Zerilli and 

Armstrong, 1987), (Khan and Huang, 1992), (Khan and Liang, 1999), (Chinh et al., 2004), 

(Farrokh and Khan, 2009), (Csanadi et al., 2011). Although constitutive models have been 

successfully applied to describe experimentally observed stress strain curves, the number of 

fitting parameters in these approaches is often fairly high in comparison to the physical 

insight that these models provide.  

State parameter-based models, such as the ones from (Kocks, 1976), (Estrin and Mecking, 

1984), (Kubin and Estrin, 1990), (Estrin, 1996), (Nes, 1997), (Roters et al., 2000), (Marthinsen 

and Nes, 2001), (Barlat et al., 2002), (Tóth et al., 2002), (Beyerlein and Tome, 2007), (Austin 

and McDowell, 2011), (Fan and Yang, 2011), (Gao and Zhang, 2012), (Galindo-Nava et al., 

2012), (Hansen et al., 2013), (Bertin et al., 2013), (Li et al., 2014), offer more physical insight 

and give access to observable parameters, such as, the dislocation density or the subgrain 

evolution.  

Power-law and state parameter-based models do have in common that the total yield stress, 

s ,  is commonly represented by the sum of a strain-independent initial yield stress, 0 , and 

a strain-dependent stress, p , also referred to as the plastic stress, as 

p0  
.
 (1) 

This latter approach is pursued in the present work. For this purpose, the model for the 

initial yield stress, 0 , is introduced in the next section, based on the concepts of a 

mechanical threshold stress and a thermal activation framework. In the subsequent section, 

a dislocation density-based model for the calculation of the plastic stress, p , is presented 

based on an analysis of the strain hardening rate  dd  and the saturation stress,  , 

see also (Kreyca and Kozeschnik, 2017). In a final section, the calibration procedure of the 

present model for Al-Mg binary alloys is outlined and the results are discussed. It should be 
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emphasized that the present model only refers to stage-III hardening. Fig. 1 shows a 

schematic view of a generic stress-strain curve depicting 0  and p , where also the initial 

strain hardening rate, 0 , the saturation stress,  , and the critical strain,   0c , are 

displayed. 

 

 

Fig. 1 Schematic representation of a stress strain curve with 
stage III hardening. 

 
3. Initial yield stress 0  

The calculation of the initial yield stress is based on the concept of the mechanical threshold 

stress (MTS) and a thermal activation framework. The mechanical threshold stress, ̂ , 

represents the yield stress at 0K (for a detailed review see (Kocks et al., 1975)). It has been 

successfully applied to aluminium alloys (Leyson and Curtin, 2016), (Soare and Curtin, 

2008a), (Kocks and Mecking, 2003). The MTS is independent of temperature and strain rate 

as long as the basic quantities describing the constitution of the microstructure, e.g. solute 

content, precipitation state and grain size etc., are independent of temperature and strain. 

Two contributions are considered in the present MTS formulation, 

ssb
ˆˆˆ    , (2) 

where ss̂ comprises all strengthening contributions from Mg solute atoms including 

dynamic strain ageing and b̂  includes all contributions, which are not directly related to Mg 

solute atoms, e.g., the basic yield stress from pure Al, grain boundary strengthening and 

solid solution hardening from other impurity elements.  is treated as a temperature and 

strain rate-independent calibration parameter in the present work. 

 

3.1. MTS contribution from solute atoms ss̂  

At temperatures, where solute atoms are essentially immobile, the calculation of the MTS 

b̂
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contribution, ss̂ , depends on mostly geometrical parameters, which are, in the present 

analysis, the solute spacing 
2/1

0/ cb , the interaction distance between a solute and a 

dislocation, w , the maximum elementary interaction force, maxf , the dislocation line tension,

2/2GbEL   (Haasen, 1996), and the linear misfit strain, m . Here, G  is the temperature-

dependent shear modulus, b  is the Burgers vector and 0c  the nominal composition. For fcc 

solid solutions, an approach based on Labusch’s work (Labusch, 1970) is adopted here with 
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A value of bw 5 (Kato, 1999) is used as derived from comparison with experimental results 

(Uesugi and Higashi, 2013). The misfit strain, m , can be obtained experimentally (King, 

1966) or from first principles (Uesugi and Higashi, 2013). 

 

3.2. Dynamic strain ageing and negative strain rate sensitivity 

At higher temperatures, where solute atoms become increasingly mobile, the strength 

contribution from solute atoms can become highly sensitive to temperature and strain rate, 

occasionally leading to negative strain rate sensitivity. In the case of negative strain rate 

sensitivity, plastic deformation becomes unstable and results in jerky flow that is unwelcome 

during industrial forming processes and is commonly referred to as Protevin Le-Chatelier 

(PLC) effect. This effect is known to heavily affect the mechanical properties of solid solution 

hardening alloys, such as 5xxx-series Al alloys (Kabirian et al., 2014), (Manach et al., 2014), 

(Picu et al., 2005) and (Picu et al., 2006). For a review on experimental findings, see (Sherby 

et al., 1952), (Yilmaz, 2011) and (Jobba et al., 2015). (Tensi et al., 1972) investigated the PLC 

effect in Al-Mg single crystals. Theoretical work on the effect was published by (Mulford and 

Kocks, 1979), (Louat, 1981), (Kubin and Estrin, 1990), (Penning, 1972), (Zaiser et al., 1999),  

(Glazov et al., 1999), (Hähner, 1996a), (Hähner, 1996b). Models on dynamic strain ageing 

where published by (Fressengeas et al., 2005), (Soare and Curtin, 2008a), (Soare and Curtin, 

2008b), (Leyson et al., 2010), (Leyson et al., 2012) and (Keralavarma et al., 2014).  

For the sake of simplicity, dynamic strain ageing and low temperature solid solution 

hardening is represented by a single state parameter in the present work. This state 
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parameter is referred to as effective solute concentration, ffec , and it is calculated according 

to the model of (Curtin et al., 2006) as 

,

 (5) 

where 2/1b  is the incremental strain,   is the dislocation density,  kTHc0c exp    is 

a reference core transition rate, W is the average binding energy difference between 

tension and compression sites, cH  is the average activation enthalpy for transitions 

between these sites, 0  is an attempt frequency, k  is the Boltzmann constant and n  is an 

exponent. It must be emphasized that transient effects occurring as a consequence of 

instantaneous strain rate or temperature jumps (McCormick, 1988) are not captured by Eq. 

(5) and are out of the scope of the present work. The combined effect of solid solution 

hardening and DSA are finally calculated by using ffec  instead of 0c  for the calculation of ss̂   

in Eq. (3). 

 
3.3. Thermal activation framework 

Purpose of the thermal activation framework is to relate the applied external stress, 0 , to 

the mechanical threshold stress, ̂ , temperature T , strain rate   and the effective solute 

concentration, effc . The applied stress is related to the strain rate through the combination 

of the Orowan equation (Orowan, 1940) and an Arrhenius Ansatz (Argon, 1996), (Kocks et 

al., 1975) with  
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G
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G 
 bf

0 expexp

,
 (6) 

where fG is the Gibbs energy for a thermal activation event in direction of the applied 

stress and bG is the Gibbs energy for thermal activation against the direction of the applied 

stress. 0  is a pre-exponential factor, which is assumed to be constant (Follansbee and 

Kocks, 1988). According to (Galindo-Nava and Rivera-Díaz-del-Castillo, 2012) it can be 

approximated by bc00   , where 0  is the initial dislocation density and c  is the velocity of 

sound.  

 

3.3.1. Low temperature deformation 

At low temperature or high stresses, fb GG   and, therefore, the second exponential term 

in Eq. (6) can be neglected. Eq. (6) can then be simplified as  
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 
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G 
 f
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 (7) 

In practice, it is common to assume a certain obstacle profile from which a functional 

relationship between DGf
 and s  can be derived (Kocks et al., 1975), (Dahl and Krabiell, 

1979), (Burgahn et al., 1996), (Schulze and Vohringer, 2000), (Leyson and Curtin, 2016), 

(Soare and Curtin, 2008b), (Leyson et al., 2010). In the present work, we assume a hyperbolic 

obstacle profile according to (Kocks and Mecking, 2003). The relation between fG , the 

mechanical threshold, ̂ , and the applied stress,  , then follows from the obstacle profile 

as  ̂lnlt
0f  FG , where lt

0F  is the energy for a dislocation to overcome an obstacle in 

the absence of thermal activation. Together with Eq. (7), this delivers the applied stress as a 

function of temperature, strain rate and mechanical threshold with 
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3.3.2. High temperature deformation 

At high temperatures or low stresses, both exponential terms in Eq. (6) must be considered 

in the analysis. With the assumption of a box-shaped obstacle profile, the Gibbs energy 

contributions can be linearized as 

0
ht

0f WFG    (9) 

and 

 0
ht

0b WFG  , (10) 

where ht
0F  is the Helmholtz energy, i.e. the energy that must be supplied in the absence of 

any thermal activation, and 0W  is the applied external work. As a consequence of the box-

shaped obstacle profile, the applied work is related to the Helmholtz energy through

 ˆht
00  FW . The linearization of fG  and bG , according to Eqs. (9) and (10), allows for 

a rearrangement of Eq. (6) leading to 
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At high temperatures or low stresses, 10  kTW  and, consequently, Eq.(11) can be written 

as 


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This results in a rate equation for the strain rate at high temperatures reading 
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Applying the Taylor equation,  bGM , on the mobile dislocation density delivers an 

expression for the yield stress at elevated temperatures as 
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 (14) 

where M  is the Taylor factor and   is the so-called strengthening coefficient (Sauzay and 

Kubin, 2011). It should be emphasized that Eq. (14) is equivalent to a power law creep model 

with a creep exponent of 3, however, in dependence of the mechanical threshold. In Al-Mg, 

a creep exponent of 3 is in accordance with experimental creep data (Kocks, 1998), (Brown 

and Ashby, 1980). Power-law creep models have been successfully applied to aluminium 

alloys previously, e.g. (McQueen and Ryan, 2002), (McQueen et al., 2001), (Spigarelli et al., 

2003), (El-Danaf et al., 2008a), (El-Danaf et al., 2008b).  

The low  and high temperature regions are treated separately in the present work with a low 

lt
0  and high ht

0  temperature asymptote. The entire temperature range is finally described 

by 

1

s 0

=
1

s 0

lt
+

1

s 0

ht
. (15) 

In the following chapter, the strain-dependent plastic stress is addressed in more detail. 

 

4. Plastic stress p  

In this chapter, the model for the plastic stress, p , and its calibration on basis of 

experimental data is introduced. 

4.1. Strain hardening model 

For the calculation of the strain-dependent stress contribution, we apply a Kocks Mecking 

type model. The Kocks-Mecking (KM) model ((Kocks, 1976), (Mecking and Kocks, 1981), see 

also (Gil Sevillano et al., 1981)), is a dislocation density-based state parameter model 

describing the evolution of stress as a function of the strain hardening rate,  . It has 

previously been successfully applied to simulate strain hardening in Al alloys by (Cheng et al., 

2003),(Esmaeili et al., 2001),(Fribourg et al., 2011), (Deschamps et al., 1996) and (Deschamps 

et al., 2000). The outstanding success of the KM-model is certainly due to its conceptual 

simplicity and the careful selection of two semi-empirical expressions that have fundamental 
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relevance in the theory of plastic deformation.  

The first expressions in this context is the Taylor relation (Taylor, 1934), which correlates the 

plastic stress, , with an average dislocation density, , as  

 1p gMGb  .  (16) 

The second basic relation is the differential form of the constitutive Voce work-hardening 

law (Voce, 1955) reading 
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This relation emphasizes a linear relation between the strain hardening rate,  , and the 

plastic stress contribution, p . Eqs. (16) and (17) together deliver the well-known Kocks-

Mecking law, which represents an evolution equation for the dislocation density with 

.  (18) 

Alternatively, Eq. (18) can be derived from consideration of the mechanisms of dislocation 

generation, immobilization and dynamic recovery (Kocks, 1976) yielding  
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where the first term on the rhs of this equation is further denoted as “A-term”, due to the 

calibration coefficient A, the second term likewise as “B-term”. The subscript “d” emphasizes 

that the dislocation annihilation term refers to dynamic recovery.  is the critical 

annihilation distance between two dislocations (Brinckmann et al., 2011) given as 
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where  is the vacancy formation energy and  is Poisson’s ratio. The coefficient A is 

closely related to the number of immobile dislocations that a moving dislocation can surpass 

before it becomes arrested. The coefficient B represents the inverse of the probability of a 

dislocation to become annihilated under the condition of having a second dislocation within 

the critical distance.  

At elevated temperature, the evolution of dislocation density becomes additionally impacted 

by vacancy-assisted dislocation climb. To incorporate this mechanism in a general model of 

strain hardening based on dislocation generation and annihilation, an additional annihilation 
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term for static recovery might be introduced into Eq.(19) with 
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where the rhs of this equation will be further denoted as “C-term”, due to the calibration 

coefficient C, and the subscript “s” emphasizing that this dislocation annihilation term refers 

to static recovery.  is the equilibrium dislocation density and RT)exp( dd0d QDD   is the 

diffusion coefficient along dislocation pipes. This recovery term has been introduced by 

(Lagneborg, 1972) for creep and it is used in a similar form, for instance, by (Sommitsch, 

1999), (Krumphals et al., 2009) and (Lindgren et al., 2008). Eq. (21) extends the yield stress 

model for glide and thermally activated cross-slip Eq. (19) into the high-temperature 

deformation region dominated by vacancy-assisted dislocation climb. 

 

4.2. Calibration of the strain hardening model 

The present strain hardening model is fully calibrated if the quantities A , B and C  are 

determined. On closer inspection of the relations presented in the previous sections, A , B  

and C  are related to the initial strain hardening rate and the saturation stress, which can be 

derived directly from experiment, through 
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In the following, 0  and   are derived from experiments as a function of temperature and 

solute concentration. Constitutive equations are used to model these experimental findings, 

resulting in expressions for  000 ,, cT    and  0,, cT  
  .  These expressions are then 

used to calculate expressions for A , B and C  according to Eqs. (22)-(24) and, finally, to 

derive p
 
on the basis of Eqs. (16-21). This approach is advantageous because 0  and   

are directly accessible from experiment, which is not the case for A , B  and C . In addition, 

rather simple expressions for 0  and  as functions of temperature, strain rate and 

effective solute content are obtained. Table 1 summarizes the expressions used for 

eq
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modelling 0  and   as a function of temperature, strain rate and effective solute conten. 

Expressions for 0 , as derived in section (3), are also shown in Table 1.  

 

 Table 1 Expressions for 0 , 0  and    

 low temperature  high temperature  summation 
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Integration of 
Eq. (19) and (21) 

 

The following parameters are used to calibrate the model.  is the initial strain hardening 

rate at 0K with a constant value of 1/20 of the shear modulus (Estrin, 1996).  and  

are activation energies with a linear dependence on the effective solute concentration, . 

 is a parameter with the unit of stress. ht


 F  is the high temperature activation energy for 

the saturation stress. The strain dependence of dynamic strain ageing is included in the 

activation energy, lt


 F , which is linearly dependent on 0

effff0 cccc e  
 . This relation finds 

its basis in the dependency of the incremental strain on dislocation density, Eq. (5). The 

initial dislocation density is assumed to be 11
0 10  and the dislocation density at stress 

saturation is assumed to be 1410 . Consequently,  0eff
0
eff cc   and  

  effeff cc .  The 

superposition of  and  needs no explicit summation rule because it is implicitly given 

through integration of the extended relation Eq. (19). 

 

5. Experimental data and calibration parameters 

The present model is validated on experimental data from (Sherby et al., 1951). This 

reference has been given preference over other sources from literature on Al-Mg (Podkuiko 

et al., 1972), (Kocks and Chen, 1993), (Verdier et al., 1998), (Ryen et al., 2006a), (Ryen et al., 

2006b), (Niewczas et al., 2015), (Jobba et al., 2015) because it offers a consistent 

experimental set of stress strain curves for five different Al-Mg alloys at seven different 

temperatures from 78K to 650K. In the selected Al-Mg system, precipitation processes can 

be neglected. The effect of fine grain hardening is assumed to be constant and incorporated 

0̂

lt
θ0

F ht
θ0

F

effc

̂

lt


ht

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in b̂ . 

The experimental information, which is investigated in the following analysis, has been 

extracted in the following way. Values for  are taken at a strain of . Accordingly, 

the plastic strain is assumed to be . The initial dislocation density is assumed to 

be 11
0 10 . The experimental values for  and  are evaluated from the KM-plots (

) of the published data, where  is determined from numerical differentiation. 

Values of  are used for calculation of the KM-plots. Minimization of the sum of 

least squares is used to best-fit the linear relation between strain hardening rate and stress 

as postulated by the KM model. The intercept of the resulting line with ordinate and abscissa 

determines the experimental values for  and .  

All parameters used in the simulations are summarized in Table 3, with the numerical values 

taken from literature where available.  

 
 Table 2. Symbols and Values 

Symbol  Name Unit  Value Source 

ν Poisson‘s ratio (-) 0.347 (Hirth and Lothe, 1991) 
G Shear modulus (MPa) 29438.4-15.052T (Galindo-Nava et al., 

2012)(Mecking et al., 1986) 
b  Burgers vector (m) 101086.2   (Frost and Ashby, 1982) 

M Taylor factor (-) 3.06 (Bergström, 1983)(Kato, 1999) 
α Strengthening coefficient (-) 0.34 (Sauzay and Kubin, 

2011)(Madec et al., 
2002)(Schoeck and Frydman, 
1972) 

c Speed of sound  (m/s) 5100 (Lide, 2008) 
Qvac Activation energy for 

vacancy formation 
(eV) 0.67 (Tzanetakis et al., 1976) 

Qv Activation energy for lattice 
diffusion 

(J/mol) 3102.127   (Campbell and Rukhin, 2011) 

Dv0 Pre-exponential factor for 
lattice diffusion 

(m2/s) 5104.1   (Campbell and Rukhin, 2011) 

Qd Activation energy for pipe 
diffusion  

(J/mol) 3102.83   (Stechauner and Kozeschnik, 
2014) 

Dd0 Pre-exponential factor for 
pipe diffusion 

(m2/s) 6105.1   (Stechauner and Kozeschnik, 
2014) 

W  binding energy difference 
between tension and 
compression site Al-Mg 

(eV) 0.13 (Curtin et al., 2006) 

cH  activation enthalpy for 
transitions from tension to 
compression site Al-Mg 

(eV) 0.87 (Curtin et al., 2006) 

n exponent in Eq.(10) (-) 1/3 (Soare and Curtin, 2008b) 
ν0 attempt frequency (s-1) 13108.3   (Fujikawa and Hirano, 1977) 

εm misfit-strain for Mg (-) 0.0123 (Uesugi and Higashi, 2013) 

b̂  basic yield strength  (MPa) 40 (Sherby et al., 1951) 

 

strain-hardening rate at 0K (MPa) G/20 (Estrin, 1996) 

0 02.0

02.0  p

0 

 .vs 

0 p

0 

0̂
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high temperature saturation 
stress 

(MPa) 30 this work 

lt

0F  low temperature activation 
energy for yield stress  

(J)   331
eff4.025.0 Gbc   

(Frost and Ashby, 1982) 

ht

0F  high temperature activation 
energy for yield stress 

(J/mol) 
eff

5
v 105.3 cQ   this work 

lt

0
F  low temperature activation 

energy for strain hardening 
rate 

(eV) 
eff4.2929.0 c  this work 

ht

0
F  high temperature activation 

energy for strain hardening 
rate 

(J/mol) 
eff

5
v 1027.1 cQ   this work 

lt
σ

F  low temperature activation 
energy for saturation stress 

(J)   3
eff525.817.0 Gbc 

 

this work  

ht
σ

F  high temperature activation 
energy for saturation stress 

(J/mol) Qd (Stechauner and Kozeschnik, 
2014) 

 

 

6. Results and discussion 

Fig. 2 (a) compares the results of the present model on 0  with experimental data of five 

different Al alloys with varying Mg contents (zero, 0.55, 1.1, 1.6 and 3.2 at-% Mg) and a 

single strain rate of 210-3 s-1. All curves are calculated with the parameters listed in Table 2 

and no additional modification or fitting is applied. For the sake of better interpretation, Fig. 

2 (a) also shows simulation results where 0c  instead of effc  is used for the calculations 

(dashed lines) not taking into account dynamic strain ageing. Fig. 2 (b) displays the strain 

rate sensitivity (SRS) given by  lnlnSRS ddm   as a function of temperature. 

 

(a) (b) 

 

 

Fig. 2 (a) Comparison of experimental (symbols) and simulated stresses at a strain rate of 210-3 s-1 and using 
either effc  (solid lines) or 0c  

(dashed lines) in Eq. (3), the latter replacing effc . (b) Strain rate sensitivity as a 

function of solute content and temperature. 

 

̂
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According to the mechanical threshold concept, the SRS is zero at zero Kelvin. The SRS 

increases monotonically up to a certain point where considerable dynamic strain aging sets 

in. All Mg-containing alloys considered in this work exhibit a local maximum at around room 

temperature and a subsequent local minimum at roughly 400 K. Interestingly, the minimum 

is observed for all Mg containing alloys, but negative strain rate sensitivity (nSRS) is observed 

only above a characteristic Mg level. In the alloys showing nSRS at a given strain rate, the 

regions of nSRS are delimited by two characteristic points of zero SRS.  

An overview of SRS over a larger temperature and strain rate range is shown in Fig. 3, where 

the strain rate sensitivity is displayed in a gray scale contour plot over strain rate and 

temperature. The bold lines indicate the loci of zero strain rate sensitivity with a field of 

negative strain rate sensitivity enclosed. The plots emphasize that the region with nSRS 

extends farther with increasing Mg content. Interestingly, at any given deformation 

temperature, it is possible to find strain rates where the region of nSRS can be avoided. The 

same applies to any given strain rate, where deformation temperatures exist outside the 

region of nSRS.  
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(a) (b) 

  

(c)  (d) 

  

Fig. 3 Strain rate sensitivity as function of temperature and strain rate for (a) 0.5 (b) 1.1 (c) 1.6 and (d) 3.2 at. % 
Mg. The bold line designates the contour of zero strain rate sensitivity. 

 

Fig. 4 (a) and (b) shows the assessed experimental values (symbols) and the corresponding 

modelling results (lines) for  and . In addition, Fig. 4 (c) and (d) display the values of A 

and B calculated with Eqs. (22)-(24) and the parameterization given in Table 2.  

 

0 
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(a) (b) 

 

 

(c) (d) 

  

Fig. 4. Comparison between experimental (symbols) and modelled (lines) values for (a) the initial strain 

hardening rate  and (b) the saturation stress . (c) A parameter and (d) B parameter over 

temperature as evaluated from Eqs. (22) and (23). 

 

The experimentally determined initial strain hardening rate and saturation stress show a 

tendency for higher values with decreasing temperature and increasing solute content. This 

applies over the entire temperature range. For both, 0  and  , a low and a high 

temperature regime is observed. The widest spread of values at a particular temperature 

and varying solute content is observed at intermediate temperatures, where dynamic strain 

ageing is of major importance. At low temperature, values for the initial strain hardening 

rate seem to converge at a constant value of 20/ˆ
0 G , in accordance with previous findings 

of (Estrin, 1996).  

For the saturation stress, no such convergence to a limiting value is observed: in the limit of 

0T ,   and 0B . In other words, the relevance of dynamic recovery is decreasing 

with decreasing temperature. In this context, it must be emphasized again that stages IV and 

V hardening are not considered in the present work, which would set a natural limit to this 

0 0 
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extrapolation.  

In the absence of solute atoms, i.e., for pure aluminium, the A-term is continuously 

increasing with temperature. For intermediate Mg contents and temperatures, 

corresponding to the cross-core-diffusion region, a nearly constant value of the parameter A 

is observed. This is due to the antagonistic effects of thermal activation and dynamic strain 

ageing.  

The evolution of the B-parameter over temperature, Fig. 4(d), in pure Al is also essentially 

different to the one in Al-Mg solid solutions. In pure Al, the recovery term B shows a 

maximum at around 200K and a subsequent monotonic decrease. The curves for solid 

solutions show a weak point of inflection around 200K and a pronounced maximum in the 

region of cross-core diffusion. It should be mentioned, here, that dynamic recovery is often 

related to thermally activated cross-slip (Püschl, 2002) and that the direct correlation of the 

B-term to 0  and   offers an elegant means of investigation of the latter. 

Fig. 5 (a)-(e) compiles the experimental stress-strain values together with the simulation 

results based on the present analysis. The accurate reproduction of the complex stress-strain 

relations including the impact of dynamic strain aging is one of the main achievements of the 

present work.  Fig. 5 (f) shows a close up of Fig. 5 (e) focusing on low strains, where the 

simulated stress-strain curves for 194K, 293K and 422K clearly intersect in the beginning, in 

accordance with experiments.  

 
(a) (b) 

  

(c) (d) 
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(e) (f) 

 

 

Fig. 5. Comparison between experimental (symbols) and simulated (lines) stress-strain curves for (a) 0.0 at.% 
Mg, (b) 0.55 at.% Mg, (c) 1.1 at% Mg, (d) 1.6 at% Mg, (e) 3.2 at.% Mg at a strain rate of 0.002 s-1. (f) is a close-up 
of (e). Experimental values are taken from (Sherby et al., 1951). 

 

7. Conclusions 

A comprehensive model for the simulation of temperature and strain rate-dependent stress-

strain curves in solid solutions is developed and applied to the Al-Mg alloy system. As an 

important feature for practical application, the present model seamlessly extends existing 

approaches for yield stress modeling based on dislocation glide into the high-temperature 

deformation region dominated by vacancy-assisted dislocation climb. Besides conventional 

solid solution hardening, the model takes into account thermally activated cross-slip at low 

temperatures, the Portevin LeChatelier-effect at intermediate temperatures (i.e. negative 

strain-rate sensitivity) and vacancy assisted climb at high temperatures. The approach is 

based on an extended Kocks-Mecking type model utilizing an average dislocation density. 

Activation energies for the yield stress, initial strain-hardening rate and saturation stress 

were calibrated or taken from literature if possible. The integral model successfully 
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reproduces the experimentally observed complex stress response of Al-Mg alloys as function 

of temperature, strain rate, strain and chemical composition. 
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Derivation of the dislocation storage and dynamic recovery terms 

Fig. A1 shows a schematic representation of a dislocation source producing dislocations with 

a rate of dtd   that travel with a velocity of dtdxv   through the bulk material and are 

being stopped at a random obstacle after a mean free distance/path L .  

 

 
Fig. A1 Schematic representation of dislocation 
production rate dρ+/dt, dislocation velocity 
dx/dt and mean free path L . 

 

The time, pt , required for travelling from the dislocation source to the immobilizing obstacle 

is  

pt
dx

Ldt

v

L
 . (A1) 

In the same time pt ,  dislocations are being created.  







dx

d
L

dx

Ldt

dt

d
t

dt

d
p . (A2) 

Substitution of dx  with a differential form of the Orowan equation bdxd   results in  

bLd

d 1







. (A3) 

The mean free path is related to the spacing of the dominant obstacles, thus L  can be 

associated with different length scales, e.g., the grain size or the precipitate distance in the 

glide (Estrin, 1996). If the mean free path is assumed to be proportional to the average 

dislocation spacing 1  



A
L  , (A4) 
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the dislocation storage rate can be expressed in terms of macroscopic strain as  






bA

M

d

d




. (A5) 

The dynamic recovery term is derived subsequently. When two dislocations of opposite 

Burgers vector pass each other within a critical distance critd , they can annihilate, even if 

they are not on the same glide plane. Fig. A2 shows the volume V being swept by a moving 

dislocation of length l  having swept a distance dx . 

 

 
Fig. A2 showing dislocation of length l with a 
critical distance dcrit having swept a distance dx. 

 

The volume V being swept by a dislocation of length l  per unit time is 

ldxdV crit2  (A6) 

The number of annihilated dislocations after sweeping volume V  is VB , where B  is the 

probability for a dislocation to be annihilated if screened. The length al  of annihilated 

dislocation line per unit length of moving dislocation is written as  

dxdBl crita 2  . (A7) 

Multiplying Eq.(A7) with the dislocation density of moving dislocations m , with am
-
d ld   , 

and substituting dx  with the differential form of the Orowan equation bdxd m   yields 

again, in terms of macroscopic strain, the dynamic recovery term 






b

BMd

d

d crit
-
d 2
 . (A8) 
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