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Abstract

In this thesis, we consider information-optimal quantization of Gaussian random variables
and derive discrete information-optimal decoders for low-density parity-check (LDPC) codes.
Moreover, a novel joint decoding and demodulation approach for transmission over continu-
ous input additive white noise channels is proposed.

After a brief revision of related concepts, we begin by discussing information-optimal quan-
tization of Gaussian random vectors. Here, information-optimal means that the quantization
preserves information on a second variable that is correlated with the quantizer input. We
study the rate information tradeoff for this setting which characterizes the highest amount of
information that can be retained for any given quantization rate. Furthermore, we establish a
fundamental connection between information-optimal quantization and linearly preprocessed
mean-square error (MSE)-optimal rate distortion quantization based on concepts related to
Wiener filtering. We then use this connection to obtain information-optimal quantizer designs
from well-known MSE-optimal designs.

Next, we use the principle of information-optimality to design low-resolution discrete mes-
sage passing LDPC decoders based on look-up tables (LUTs). We show that there is a con-
nection between LUT decoding and belief propagation and use this to derive low-complexity
hybrid decoding approaches. Special attention is paid to LUT decoding for irregular LDPC
codes, for which we derive jointly optimal LUT designs and propose a strategy to optimize the
degree distributions of irregular codes for LUT decoding. The so obtained decoders outper-
form conventional min-sum decoders at floating point precision at LUT resolutions as low as
3 bit for regular and 4 bit for irregular codes.

Subsequently, we introduce superposition modulated low-density parity-check (SMLDPC)
codes — a new class of codes for high-rate transmission over continuous input channels. SM-
LDPC codes are obtained by a concatenation of LDPC coding and superposition modulation
(SM) and allow for parallel decoding and demodulation on a joint sparse graph without the
need of deinterleaving or an explicit demodulation step. By using different edge coefficients
for SM, a wide variety of modulation schemes can be adopted by SMLDPC codes, including
the well-known regular QAM constellations. We show that SMLDPC codes exhibit the same
concentration and thresholding phenomenon as LDPC codes, where the thresholds can be
computed exactly for belief propagation decoding. This gives rise to a code optimization ap-
proach based on ensembles, i.e., we propose to optimize the distributions that characterize
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the codes rather than the codes themselves. A particular code is then obtained by drawing a
random sample from the ensemble and the concentration theorem states that for long block
lengths, any code obtained that way will perform as predicted by the ensemble threshold.
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Kurzfassung

In der vorliegenden Dissertation beschäftigen wir uns mit informations-optimaler Kodierung,
angewandt zur Quantisierung gaußscher Zufallsvariablen sowie zur Konzeptionierung dis-
kreter, informations-optimaler Dekodierverfahren. Darüber hinaus schlagen wir ein neuarti-
ges Verfahren für die vorwärtsfehlerkorrigierte Datenübertragung über additive Rauschkanäle
vor, welches zeitgleiche Demodulierung und Dekodierung mit linearer Komplexität ermög-
licht.

Nach einem kurzen Überblick über die relevante Literatur beginnen wir mit einer Diskus-
sion über die informations-optimale Quantisierung gaußscher Zufallsvektoren. “Informations-
optimal” bedeutet in diesem Zusammenhang, das Quantisierungsverfahren so zu gestalten, dass
die Transinformation zwischen der quantisierten, sowie einer zweiten, mit dem Quantisie-
rereingang korrelierten Zufallsvariable, maximal wird. Für diesen Fall betrachten wir den so-
genannten Informations-Raten-Abgleich, d.h. die maximal mögliche Transinformation unter
der Vorgabe einer höchstzulässigen Kompressionsrate. Wir leiten eine fundamentale Verbin-
dung zwischen informations-optimaler und linear gefilterter, MSE1 -optimaler Quantisierung
her, die eng mit den Konzepten der Wiener-Filterung im Zusammenhang steht. Anschließend
nutzen wir diese Verbindung, um aus bewährten, MSE-optimalen Quantisierungsverfahren
informations-optimale Verfahren abzuleiten.

Im Weiteren benutzen wir das Prinzip der Informations-Optimalität zur Konstruktion dis-
kreter, LUT2-basierter LDPC3-Dekoder mit geringer Bitbreite. Wir leiten einen Zusammen-
hang zwischen LUT-Dekodierung und dem belief propagation- Dekodierverfahren her, welchen
wir für das Design hybrider Dekodierverfahren mit geringer Komplexität und hoher Fehler-
toleranz heranziehen. Besondere Aufmerksamkeit schenken wir dabei der LUT-Dekodierung
irregulärer LDPC-Codes, für die wir gemeinsam optimierte LUT-Designs ableiten und ein Ver-
fahren zur Optimierung der irregulären Codegraphenstruktur unter der Berücksichtigung von
LUTs vorschlagen. Die so erzeugten Decoder liefern niedrigere Fehlerraten als konventionelle
min-sum-Decoder mit Gleitkommapräzision bei einer LUT-Auflösung von nur 3 Bit bei regu-
lären und 4 Bit bei irregulären Codes.

Letztlich führen wir SMLDPC4-Codes neu ein. Dabei handelt es sich um eine neuarti-

1engl.: mean square error, mittlerer, quadratischer Fehler
2engl.: look-up table, Umsetzungstabelle
3engl.: low-density parity-check code, siehe [32, 79].
4engl.: superposition modulated low-density parity-check
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ge Klasse von Vorwärtsfehlerkorrektur-Codes mit hoher Rate für Rauschkanalübertragungen.
SMLDPC-Codes ergeben sich durch eine Kombination aus LDPC-Codes und Superpositions
Modulation (SM) und erlauben zeitgleiche Datendemodulierung und –dekodierung mithilfe
spärlich besetzter Graphen. Indem verschiedene Gewichte für die SM herangezogen werden,
decken SMLDPC-Codes ein weites Spektrum unterschiedlichster Modulationsarten ab – dar-
unter die weitverbreitete Quadraturamplitudenmodulation (QAM). Wir liefern einen mathe-
matisch exakten Beweis, dass SMLDPC-Codes das gleiche Konzentrations– und Grenzwert-
verhalten wie konventionelle LPDC-Codes aufweisen, d.h. dass für den Grenzfall unendlich
langer Codes alle zufällig erzeugten Codes aus dem gleichen Ensemble dasselbe Fehlerkor-
rekturverhalten aufweisen, und sich dieses durch den Mittelwert zyklenfreier Codegraphen
beschreiben lässt. Darüber hinaus zeigen wir, wie sich dieser Mittelwert für belief propagation-
Decodierung exakt berechnen lässt. Daraus ergibt sich ein Verfahren zur Codeoptimierung,
bei dem wir nicht einzelne Codes, sondern die Verteilung des gesamten Code-Ensembles op-
timieren. Das Konzentrationstheorem besagt dann, dass sich ein zufällig aus einem Ensemble
ausgewählter Code ebenso verhält wie der Ensemble-Mittelwert.
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Chapter 1

Introduction

1.1 Motivation and Scope of Work

It has now been almost exactly 70 years since Claude E. Shannon established the information-
theoretic concept of channel capacity, i.e., the highest possible rate for which data can be trans-
mitted reliably over a given communication channel [87]. While Shannon proved the existence
of codes capable of achieving capacity, the search for practical coding schemes that come close
to that theoretical limit has been an ongoing engineering problem ever since. A major break-
through was made in the early 1990s when the invention of turbo codes [8] demonstrated that
approaching channel capacity was possible using linear time, iterative decoding techniques.
This ignited major interest in iterative decoding, eventually culminating into the discovery of
irregular low-density parity-check (LDPC) codes [63, 77]— a class of codes that has been shown
to come extremely close to capacity [18] and that we will therefore pay special attention to in
this thesis. It was soon recognized that most iterative decoding and demodulation algorithms
can be formulated in a general framework based on sparse, bipartite factor graphs [56, 117],
where the sparsity of the underlying graphs is the reason why decoding with complexity linear
in codeword length is possible. At the same time, the optimal decoding procedure in the sense
of minimum bit error rate was identified as the sum-product (also known as belief propagation
(BP)) algorithm1. For binary codes, BP decoding amounts to an iterative exchange of continu-
ous messages through the code’s factor graph, where the soft messages represent log-likelihood
ratios (LLRs) that capture the probabilities that a certain code bit was either 0 or 1.

Clearly, if such a decoding scheme is to be implemented in a real world system, continuous
LLR values must be approximated by numbers of finite resolution. This issue has become all
the more pressing due to the success and resulting wide adoption of iterative soft information
based decoding into practical systems. Since the soft messages carry information on the trans-
mit data, it appears natural to search for an information-optimal representation. That is, the
quantization should be conducted in a way that preserves as much information on the transmit
data as possible.

1Strictly speaking, BP is optimal only on factor graphs without cycles
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Going one step further, we can consider algorithms that are specifically designed to work
with discrete messages. The reasoning here is that rather than using a decoding algorithm that
is originally based on continuous LLRs and use it on quantized soft messages, one could select
an algorithm that works with discrete messages in the first place. The principle of information-
optimality can be applied to design such algorithms by requiring that relevant information is
preserved throughout the entire iterative decoding process.

Furthermore, from an implementation perspective, there is an incentive to transition to
a discrete, low resolution representation of the receive signal even before decoding, ideally al-
ready at the demodulation step — arriving at at an entirely discrete iterative receiver that takes
quantized receive values as input and produces an estimate of the transmit data sequence by
iterative processing of discrete messages. However, such a comprehensive approach is com-
plicated by the prevalence of the bit-interleaved coded modulation (BICM) paradigm [12, 30]
which clearly separates decoding and demodulation.

In light of the above, this thesis focuses on following aspects in particular.

Fundamentals of Information-Optimal Quantization

Historically, the fundamental theory of quantization is Shannon’s rate distortion theory [86],
which characterizes the ultimate tradeoff between compression and resulting signal quality
loss. Information-optimal quantization takes a different approach in that it replaces signal dis-
tortion as fidelity measure with the mutual information between the compressed source and
a relevance variable, an approach that has first been formulated in [99] in the context of the
information bottleneck method (IBM). The IBM has been successfully applied to various prob-
lems in machine learning [92], computer vision [36], biomedical signal processing [84], and
communications [110, 119]. It is also inherently better suited than rate distortion quantization
for channel output compression in a communication system [110, 119].

In this thesis, we are interested in the optimal rate information tradeoff for continuous
sources, i.e., the highest amount of information that can be preserved at a given compression
rate when transitioning from a continuous to a discrete signal representation. We mainly fo-
cus on Gaussian random variables, because for that case, analytic expressions can be obtained.
Furthermore, the Gaussian case is relevant in the context of receive signal quantization, since it
has been shown that in order to achieve capacity over a Gaussian channel, the channel outputs
must follow a Gaussian distribution. While the tradeoff between quantization accuracy and
rate for that case is well described by the Gaussian information bottleneck (GIB) [16], the de-
sign of information-optimal quantizers is still an open problem. Due to the existence of a wide
variety of MSE-optimal quantization schemes, we are particularly interested in the connection
between information-optimal and conventional MSE-optimal quantization approaches, since
existing MSE-optimal approaches can potentially be adapted to obtain information-optimal
quantizers.
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Discrete Iterative Decoding of LDPC Codes

Irregular LDPC codes [63, 77] outperform the best known turbo codes and approach channel
capacity using iterative, linear-time message passing decoding algorithms. In view of ever in-
creasing data rates of modern communication systems, LDPC codes are becoming increasingly
attractive due to their superior error floor performance and the possibility for fully parallel,
ultra high speed decoding. Consequently, many practical systems, ranging from flash stor-
age [106, 127], to communication standards such as DVB-S2 [29], WiMAX [50], 802.11n and
802.11ac WiFi [51, 52], as well as 10GBASE-T Ethernet [53] rely on LDPC codes for error
correction.

In the light of the vast spectrum of applications, efforts have been made to devise opti-
mized decoding algorithms that are well suited for practical hardware implementations [17,
126], most of which are variants or approximations of the well known BP algorithm. These
algorithms rely on processing of continuous LLRs which are encoded as fixed point numbers
with 5 to 7 bit resolution in most hardware implementations. Low resolutions are desirable to
reduce decoder complexity but can deteriorate error rate performance [122, 123, 125, 126].

Recently, there has been significant interest in finite alphabet LDPC decoding [25, 59–61,
80], often also referred to as look-up table (LUT) decoding. Rather than performing the conven-
tional BP arithmetics on quantized message representations, discrete LUT mappings directly
map incoming to outgoing integer messages. In LUT decoding, algebraic structure and the
probabilistic LLR interpretation of messages is sacrificed in exchange for very low message
resolutions. The main advantage of this approach is a drastic reduction in message bit-width,
while at the same time maintaining and in some instances even improving error rate perfor-
mance of traditional message passing schemes.

In this thesis, we consider mainly information-optimal LUT updates [59, 80, 81]. Fur-
thermore, we are interested in how LUT based decoding algorithms relate to the optimal BP
algorithm. While conventional BP is theoretically well understood, LUT decoding has been
mainly studied from an application point of view and lacks important theoretical concepts
such as symmetry, message consistency and asymptotic stability considerations. Moreover, a
coherent theory of LUT and BP decoding allows for a combination of techniques from both
approaches, i.e., algorithms that combine the algebraic updates from BP-type algorithms with
LUT mappings. In order to seize the full potential of LDPC codes, we pay special attention to
the study of LUT decoders for irregular codes.

Challenging the BICM Paradigm — Joint Decoding and Demodulation on Sparse
Graphs

Breaking up large problems into several smaller, more tractable ones is generally one of the key
approaches in technical science and engineering. The BICM paradigm follows that approach
by promoting the separation of decoding and demodulation as two tasks to be considered indi-
vidually. However, there may be aspects of the overall problem that we miss when taking such
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an approach. In particular, with the separation between coding and demodulation in place, we
found it difficult to extend the concept of information-optimal LUT based message updates to
also include iterative demodulation using discrete signal representations.

Furthermore, in view of Shannon’s coding theorem for Gaussian channels, it appears that
classical, widely used higher order modulation schemes such as QAM are a somewhat arbitrary
component to the overall channel code. Clearly, there are practical reasons why these schemes
are popular; however, from a theoretical perspective where we enjoy the freedom to select any
arbitrary scheme in order to approach capacity, the restriction to those classical schemes does
not appear to be justified.

Both of the two above points are addressed by low-density hybrid-check (LDHC) codes
[114, 115]: First, SM [46] is used as a modulation scheme, offering a wider range of constella-
tion shapes including constellations that approach a Gaussian distribution and therefore, are
potentially capacity achieving. Second, LDHC formulate decoding and demodulation as a
joint problem on a single sparse graph. However, LDHC still adhere to the BICM paradigm,
since the joint graph structure is merely a way of interleaver design to properly match the de-
modulation and decoding subgraphs [46, 113]. Thus, while [114, 115] optimize the decoding
subgraph given the demodulation subgraph and vice versa, the full potential of this approach
seems to be obscured by the lack of a joint design for both components.

We therefore propose SMLDPC codes in this thesis — a novel class of channel codes with
a unified approach to iterative decoding and demodulation. SMLDPC codes are an extension
to both LDPC and LDHC codes, and much like LDHC, are obtained by a concatenation of
binary LDPC coding and SM. In that sense, SMLDPC codes directly map discrete messages
to real or complex channel input sequences, with a corresponding inverse operation at the re-
ceiver, i.e., there is no separate demodulation step. In terms of decoding, the underlying sparse
graph structure of SMLDPC codes allows for parallel decoding and demodulation based on
message passing with complexity linear in codeword length. The symmetrization between de-
modulation and decoding that is guaranteed by interleaving in case of BICM is achieved by
using a random construction of SM coefficients for the modulation part of SMLDPC codes.
Thus, in many ways, the random construction of SMLDPC codes resembles the construction
of Shannon’s random codebooks [87]. Due to the freedom of choice for the modulation co-
efficients, SMLDPC codes bear the potential to approach the capacity of the additive white
Gaussian noise (AWGN) channel in the high-rate regime, while at the same time, the underly-
ing sparse structure allows for low complexity iterative decoding.

1.2 Outline and Contributions

Chapter 2: Preliminaries

In Chapter 2, we provide a brief overview of the related literature. The goal here is to famil-
iarize the reader with the most important concepts used throughout the thesis and provide a
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common point of reference for those concepts.

Chapter 3: Rate Information Coding for Gaussian Signals

In Chapter 3, we study the rate information tradeoff for the case of jointly Gaussian vec-
tors. More specifically, we show that the Gaussian information bottleneck (GIB) [16], which
achieves the optimal tradeoff, is closely related to minimum mean square error (MMSE) esti-
mation. By formulating the GIB in a communication context with relevance and observation
related via a linear channel plus additive noise model, we demonstrate that the GIB solution
is a function of the eigenvalues of the associated Wiener filter [108] for estimating the trans-
formed channel input from the channel output. Furthermore, we show that the optimal GIB
trade-off can also be accomplished by linear filtering followed by MSE-optimal source cod-
ing. Somewhat surprisingly, the optimal linear filter here is given by the square root of the
Wiener filter. This is in contrast to the result of Sakrison [82], who showed that for noisy
Gaussian source coding problems with MSE distortion the optimal filter is a Wiener filter.
Our results also explain why direct MSE-optimal source coding (i.e., without filtering) in gen-
eral does not achieve the optimal rate information tradeoff. We then give operational meaning
to the information-theoretic tradeoff problems by stating a coding theorem for a sequence of
Gaussian vectors. In conjunction with the previous results regarding the relation of MSE- and
information-optimal quantization, this proves that information-optimal quantizers obtained
from MSE-optimal quantizers do indeed exist. However, unlike the result of [82], this does
not imply that square-root-Wiener-filtering followed by MSE-optimal quantization is always
information-optimal. Thus, we conduct numerical simulations investigating the rate infor-
mation performance for various comparable filters prior to MSE-optimal quantization and
confirm that the square root Wiener filter indeed yields the pest performance. Subsequently,
we also consider extensions from the vector case to stationary ergodic processes. Finally, we
also investigate whether the information rate tradeoff characterizes the capacity under channel
output quantization but find that this is not the case.

Parts of this chapter have been originally published in [70].

Chapter 4: Quantized Message Passing LDPC Decoding

In this chapter, we develop look-up table (LUT) decoders for irregular LDPC codes and show
that the capacity approaching performance of irregular LDPC codes can be achieved with very
low resolution LUT decoders. Furthermore, we establish a fundamental relation between LUT
decoding and BP decoding that gives insight into the way LUT decoding works on a general
level, irrespective of the particular LUT design.

We begin our derivations by establishing a symmetry concept for discrete messages. Ex-
ploiting this symmetry, we derive a density evolution based duality between discrete messages
as processed by LUT decoders and real LLR values used in BP. We then use this duality to
develop a simple algebraic structure on the discrete messages and show how LUT decoding is
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essentially a variant of BP, where outgoing messages are projected onto a finite set after each
message update.

Next, we use the symmetry and algebraic structure to derive low-complexity LUT de-
coders based on the quantizer design algorithm from [58]. Due to the symmetry requirements,
we manage to drastically reduce the implementation and design complexity for the resulting
LUTs. Furthermore, we propose the hybrid min-LUT decoding algorithm, that partly relies
on generic LUT updates but also takes advantage of the algebraic structure on the discrete mes-
sages. Furthermore, we introduce LUT trees, i.e., a hierarchical structure of LUTs that serves
to reduce implementation complexity. We find that maximum-width binary trees are optimal
both in terms of performance and from an implementation point of view.

Building on those concepts, we develop a novel extension of LUT decoding to irregular
LDPC codes. Exploiting the analogy to BP, we derive an asymptotic stability condition for
LUT decoding in the spirit of [77]. The stability condition explains why most LDPC de-
gree distributions (DDs) in the literature are not suited for LUT decoding: they are optimized
for the BP algorithm and violate the LUT stability criterion. Thus, we propose to optimize
DDs for LUT decoding and demonstrate that irregular LDPC codes generated from those DDs
perform better than regular LDPC codes under LUT decoding. We also consider further mea-
sures to reduce decoder complexity such as LUT reuse and LUT down-sizing and investigate
the impact on decoder performance. Lastly, we present an extensive numerical analysis and
provide the first comparison between different LUT-based decoders in terms of error rate and
density evolution threshold simulations. As a consequence, a performance-complexity trade-
off is established, which can be used to tailor a specific decoder to error rate requirements and
implementation constraints.

The content of this chapter has been previously published in [67–69]. Furthermore, de-
coder implementations following our LUT design have been published in [6, 33].

Chapter 5: SMLDPC Codes

In Chapter 5, we propose superposition modulated low-density parity-check (SMLDPC) codes,
which constitute an entirely new approach to joint decoding and demodulation. First, we
introduce the general construction of SMLDPC codes which is based on a concatenation of
binary LDPC coding followed by superposition modulation (SM). This gives rise to a joint
sparse graph structure that can be exploited for fully parallel decoding and demodulation with
complexity linear in codeword length.

Unlike previous work on SM [46, 64], we proceed to take a more general approach towards
SM by allowing for a wider range of modulation coefficients, even covering the case of multiple-
input and multiple-output (MIMO) transmission. This results in very granular control over the
extrinsic information transfer (EXIT) function of the demodulation component which serves
to prevent rate loss and enables an accurate matching between the decoding and demodulation
component codes.
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Subsequently, we illustrate how decoding of SMLDPC codes can be performed using mes-
sage passing on the joint sparse graph. In particular, we derive the BP decoding algorithm for
SMLDPC codes, where we pay special attention to the demodulation part of the algorithm —
the so called symbol node (SN) updates. For joint modulation of multiple channel input sym-
bols, we derive novel low complexity SN updates which resemble linear MMSE estimators
with a priori information [103].

Next, we derive the fundamental asymptotic theory of SMLDPC codes. Our main result
states that for any particular random realization of SMLDPC code graph, modulation coef-
ficients, transmit codeword and channel realization, the number of bit errors under message
passing decoding converges to the average of the cycle-free case exponentially fast in the length
of the codeword. Furthermore, we prove that under BP decoding, monotonicity regarding the
channel quality and the average fraction of bit errors holds. Combining these two results, we
can conclude that long SMLDPC codes exhibit the same thresholding phenomenon as LDPC
codes [78], where the channels for which reliable transmission is possible can be clearly sepa-
rated from those where it is not.

We continue our analysis by investigating the cycle-free case. We show that under fairly
general symmetry assumptions that hold for the case of BP decoding, the densities of the mes-
sages are symmetric and independent and identically distributed (iid). Unfortunately, unlike
for LDPC codes, we cannot explicitly obtain those densities due to the complicated struc-
ture of the SN updates. For BP however, we show that message densities are LLR-consistent
[102] throughout decoding. It follows then that we can determine the associated threshold
even without explicit calculation of densities based on EXIT analysis. Furthermore, using
LLR-consistency and message symmetry, we obtain very good approximations of the EXIT
function of the SN updates.

Subsequently, we introduce irregular SMLDPC codes and discuss their potential. In con-
trast to LDHC codes [114, 115], we consider overall joint degree distributions of the global
graph structure rather than focusing on the marginal distributions of decoding and demodu-
lation subgraphs individually. Furthermore, our notion of irregularity includes irregular SN
degrees and channel dimensions. On top of the irregularity of the SMLDPC graph structure,
we also define irregularity regarding the SN type. This concept can be used to mix different
modulation coefficients or model the performance of codes where different SN updates are
used, enabling extremely fine control over the EXIT characteristic of the SNs.

Lastly, we demonstrate how the decoding performance of SMLDPC codes can be analyzed
by means of EXIT evolution. Based on this concept, we formulate optimization problems
for optimizing the degree distribution of SMLDPC codes in a joint fashion, and present an
example of an irregular code design with corresponding threshold and error rate performance
simulations.
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1.3 Notation

N natural numbers
R real numbers
R+ non-negative real numbers
C complex numbers
GF(2) Galois field of size 2
|A| cardinality of the set A
x deterministic scalar
x scalar random variable
x deterministic column vector
x random vector
X deterministic matrix
X random matrix
j

p−1
Re{z} real part of z ∈C
z∗ complex conjugate of z ∈C
P{·} probability

E [·] expectation
cov[·] covariance (matrix)
px(x) probability density/mass function of x. Short hand: p(x)
px|y(x|y) conditional probability density/mass function given y. Short hand: p(x|y)
D(·‖ ·) Kullback–Leibler divergence
I (·; ·) mutual information
N (µ,C) real Gaussian distribution with mean µ and covariance matrix C
CN (µ,C) complex Gaussian distribution with mean µ and covariance matrix C
A∼k matrix A with the kth column removed
A¬k matrix A with the sign of the kth column inverted
AT transpose of matrix A
AH conjugate transpose of matrix A
A[m1 : m2, :] submatrix of A containing only the rows from m1 to m2

tr{A} trace of matrix A
I identity matrix
1 all-one column vector
0 all-zero column vector
diag{an}Nn=1 N ×N diagonal matrix with diagonal elements an

‖x‖ Euclidean norm
A⊗B kronecker product of matrices
px⊗ py convolution of probability densities
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p⊗i
x i fold self convolution
� element-wise multiplication
¼ element-wise inequality
δ(x) Dirac delta
∆y δ(x − y)
δx Kronecker delta
1(x) logical indicator function. 1(x) = 1 if x is true and 0 otherwise
[x]+ max(x, 0)
log natural logarithm
logb logarithm to base b
log+2 (x) log2 max(x, 1)
par x parity

∏
i xi of a vector x

1.4 Acronyms

APP a posteriori probability

AWGN additive white Gaussian noise

BER bit error rate

BI-AWGN binary input additive white Gaussian noise

BICM bit-interleaved coded modulation

BP belief propagation

CN check node

DD degree distribution

EXIT extrinsic information transfer

FER frame error rate

GIB Gaussian information bottleneck

IB information bottleneck

IBM information bottleneck method

iid independent and identically distributed

KLD Kullback-Leibler divergence

LDHC low-density hybrid-check

LDPC low-density parity-check
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LLR log-likelihood ratio

LUT look-up table

MAP maximum a posteriori probability

MIMO multiple-input and multiple-output

MS min-sum

MSE mean-square error

PAM pulse amplitude modulation

pmf probability mass function

PSM phase shifted superposition modulation

QAM quadrature amplitude modulation

SM superposition modulation

SM-EPA superposition modulation using equal power allocation

SM-GPA superposition modulation using group power allocation

SM-UPA superposition modulation using unequal power allocation

SMLDPC superposition modulated low-density parity-check

SN symbol node

SNR signal to noise ratio

VN variable node



Chapter 2

Preliminaries

This thesis covers a wide variety of topics, ranging from source- to channel coding and modula-
tion, as well as techniques to design and analyze iteratively decoded and demodulated systems.
For that purpose, this chapter introduces the reader to the basic concepts and relevant literature
for each of those areas and lays the groundwork for the derivations in later chapters.

In Section 2.1, we introduce the basic theory of lossy source coding as well various opti-
mization problems centering around information-optimal quantization. Material presented in
this section is referred to from Chapter 3, where we examine information-optimal source cod-
ing for Gaussian signals, as well as from Chapter 4, where the concept of information-optimal
quantization is used to design efficient, low resolution LDPC decoders.

Section 2.2 summarizes definitions and major results on LDPC codes. We revisit the ma-
terial presented here both in Chapter 4 and Chapter 5.

Finally, Section 2.3 introduces EXIT charts as a method of analyzing and designing iterative
receivers. The tools presented here are used in Chapter 5 to analyse the convergence behaviour
of iterative decoders and find good degree distributions for irregular SMLDPC codes.

2.1 Information-Optimal Quantization

Quantization is the division of a quantity into a discrete number of small parts, often assumed
to be integral multiples of a common quantity [40]. In communications, quantization is usu-
ally understood as the process of mapping continuous wave form signals into a sequence of bits.
In this context, the process of quantization is also referred to as lossy source coding, because
the transition from continuous source signals to the discrete domain naturally entails a loss of
signal quality/accuracy.

To quantify this loss, rate distortion theory [7, 86] defines a distortion measure to assess
the fidelity of the quantized signal as compared to the source. Based on this concept, rate
distortion theory characterizes the asymptotic tradeoff between the lowest possible rate that
a signal can be quantized with while still maintaining a prescribed accuracy in terms of the
distortion measure. For classic applications, the choice of the distortion measure often follows

11
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from the application in a straightforward manner: E.g., in audio coding, we wish that the signal
amplitude of the quantized signal matches the source amplitude as closely as possible, giving
rise to the MSE distortion measure.

The general formulation and strong theoretic foundation of rate distortion theory over the
years led to it being applied to problems it was not originally developed for. That is, concepts
of rate distortion theory have been applied to more abstract quantization problems occurring
in machine learning applications such as speech compression, language processing, bio infor-
matics, neural coding etc., cf. [99]. For those application, we face the problem that while rate
distortion theory requires the definition of a distortion measure, the “correct” choice of dis-
tortion measure is virtually impossible to make, i.e., coming up with an adequate distortion
measure that characterizes the relevant features of the source signals for those problems is a
difficult task by itself.

In communications, a set of scenarios where the applicability of classic distortion measures
such as MSE is limited are those concerned with received signal quantization. To illustrate the
problem, consider a communication system transmitting iid data symbols xi over a memory-
less channel p(y|x), producing outputs yi . We now wish to quantize the outputs yi to finite
or lower resolution samples zi =Q(yi ) for further processing. The question arises on how we
should assess the fidelity of the quantization, i.e., what distortion measure to chose. Clearly, we
are interested in recovering the data xi and not so much in accurately reproducing the received
symbols yi . Hence, choosing the quantization scheme in a way that the MSE E

�‖ yi − zi‖2
�

is minimized does not necessarily bring us closer to the goal of recovering xi . Towards this
end, a better fidelity criterion is the overall capacity of the channel including the quantizer,
that is, we want to maximize the mutual information I (x;z). We refer to this approach as
information-optimal quantization of a random variable yi with respect to some relevance vari-
able xi , where zi is the quantizer output. There are various instances of such quantization
problems, e.g., channel output quantization [110, 120], quantization of decoder input LLRs
[23, 109] or quantizing LLR messages within iterative message passing decoders [60, 67, 68,
81], to name some of them.

In what follows, we will first present a brief introduction to lossy source coding, followed
by an examination of several variants of information-optimal quantization problems.

2.1.1 Fundamentals of Lossy Source Coding

In this section, we give a brief review of some aspects of rate distortion theory, as many con-
cepts of information-optimal quantization are extensions and variations of thereof. The mate-
rial presented here largely follows [21, Section 10.2].

We consider quantization of a discrete, iid source with distribution p(y), emitting a se-
quence y1,y2, . . . ,yn , compactly denoted as yn ∈ Yn . Realizations yn of this sequence are en-
coded to discrete integer messages m by means of an encoding function

fn : Yn→{1,2, . . . , 2nR}, (2.1)
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and reconstructed from those integers to sequences zn ∈Zn by a decoding function

gn : {1,2, . . . , 2nR}→Zn , (2.2)

where R is the code rate in bits per source symbol. The set of n-tupels g (1), g (2), . . . , g (2nR)
constitutes the codebook, and f −1(1), f −1(2), . . . , f −1(2nR) are the associated assignment re-
gions. The distortion associated with a source sequence and the corresponding codeword is
defined as

ρn(y
n , xn)¬

1
n

n∑
i=1

ρ(yi , zi ), (2.3)

where ρ is the bounded single letter distortion measure

ρ : Y ×Z→R+ \∞. (2.4)

The average distortion of the code is then given by

D =E
�
ρn

�
yn , gn

�
fn(y

n)
���

, (2.5)

with the expectation being taken over yn ∼ p(yn) =
∏n

i=1 p(yi ).
Based on this setting, a pair (R, D) is said to be achievable if there exists a sequence of rate

R codes ( fn , gn) such that

lim
n→∞E

�
ρn

�
yn , gn

�
fn(y

n)
���≤D . (2.6)

The operational rate distortion function then assigns to any distortion value D the lowest pos-
sible rate R such that (R, D) is still achievable1. In [86], Shannon derived a coding theorem
stating that for this setup, the tremendously complex problem of finding the operational rate
distortion function can be reduced to finding the information rate distortion function:

Definition 1. For a given single letter distortion measure ρ and source distribution p(y), the
information rate distortion function R :R+→R+ is defined as

R(D)¬ min
p(z |y)

I (y;z) such that E [ρ(y,z)]≤D . (2.7)

Theorem 1. The operational rate distortion function for an iid source y with distribution p(y) and
bounded distortion measure ρ(y, z) is equal to the associated information rate distortion function.

Due to Theorem 1, both operational and information rate distortion function are equiva-
lent and are simply referred to by the same term in what follows. The rate distortion function
characterizes the ultimate tradeoff between compression rate of the code and the accuracy of

1In this section, we mainly focus on the rate distortion function R(D). All statements can be equivalently
formulated using its inverse, the distortion rate function D(R).
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yn Encoder
fn(·)

Decoder
gn(·)

m ∈ {1, . . . , 2nR}
zn

(a) Operational Model

y p(z |y) z

(b) Information theoretic Model

Figure 2.1: Rate distortion coding setup (a) and information-theoretic simplification (b)

the reconstructed sequences zn , if infinitely long and complex codes were to be used. Both the
operational setup and the simplified, information-theoretic setup are depicted in Figure 2.1.

2.1.2 Information Bottleneck Method

The IBM has first been introduced in [99] as a way to eliminate the distortion measure of
rate distortion theory in favour of an information-theoretic relevance criterion. In its original
formulation, the method assumes a given joint distribution p(x, y) over the discrete probability
space X × Y , where x is the hidden relevance variable and y is the observation variable (also
referred to as quantizer input in what follows). The IBM then seeks to find a probabilistic
quantizer p(z |y) that preserves as much information on the relevance variable as possible while
at the same time striving for a maximally compact representation z ∈Z . Due to the restriction
that the quantizer is independent of the relevance itself, the triple x− y− z forms a Markov
chain.

Figuratively speaking, the information that y provides on x is squeezed through a bottle-
neck formed by the compact representation z. Formally, this tradeoff is characterized by the
variational problem

min
p(z |y)

I (y;z)−βI (x;z). (2.8)

In this context, the quantity I (x;z) is referred to as relevant information, while I (y;z) is referred
to as the (compression) rate. The Lagrange parameter β > 0 trades off rate against relevant
information. For β →∞, the focus lies entirely on preserving relevant information, while
for small β, minimizing the rate becomes increasingly important. Due to the data processing
inequality, we have

I (y;z)≥ I (x;z) =⇒ I (y;z)−βI (x;z)≥ (1−β)I (x;z), (2.9)

an thus,
β≤ 1 =⇒ (2.8) is minimized by setting I (x;z) = I (y;z) = 0, (2.10)

i.e., the solution to (2.8) degenerates.

Unfortunately, an explicit solution to (2.8) can not be given; however, it is shown in [99,
Theorem 4], that the optimal p(z |y)minimizing (2.8) satisfies

p(z |y) = p(z)exp
�−βd (y, z)

�
∑

z ′∈Z p(z ′)exp
�−βd (y, z ′)

� , (2.11)
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where
d (y, z)¬

∑
x∈X

p(x|y) log
p(x|y)
p(x|z) =D

�
p(x|y)

p(x|z)� (2.12)

is the Kullback-Leibler divergence (KLD) [21, Section 2.3] between the two probability mass
functions (pmfs) p(x|y) and p(x|z). The pmfs p(z) and p(x|z) occurring in (2.11) can be
obtained from the known joint pmf p(x, y) and the quantizer mapping p(z |y) via

p(z) =
∑
y∈Y

p(z |y)p(y), (2.13)

p(x|z) = 1
p(z)

∑
y∈Y

p(x, y)p(z |y). (2.14)

The stationarity condition (2.11) gives rise to an iterative algorithm based on alternat-
ing projections [21, Section 10.8]: Starting with some initial quantizer p (0)(z |y), we compute
p (0)(z) and p (0)(x|z) according to (2.13) and (2.14). The quantizers for subsequent iterations
then follow by plugging p (0)(z) and p (0)(x|z) into (2.11) and proceeding recursively. This algo-
rithm is known as the iterative information bottleneck (IB) algorithm [99] and is summarized
in Algorithm 1. It is similar to the famous Blahut-Arimoto algorithm [2, 9] that is used to solve
the optimization problem (2.7) for finding the rate distortion function of a discrete iid source.
However, contrary to (2.7), (2.8) is not convex, so Algorithm 1 can not be expected to con-
verge to the global minimum. Therefore, it must be run with several different initializations
to obtain a good solution.

Algorithm 1 Iterative IB algorithm

Input: X , Y , Z , p(x, y), β> 0, p (0)(z |y), I ,ε
1: i ← 1
2: ε(0)←∞
3: while i ≤ I and ε(i−1) ≥ ε do
4: p (i)(z)←∑

y∈Y
p (i−1)(z |y)p(y)

5: p (i)(x|z)← 1
p (i)(z)

∑
y∈Y

p(x, y)p (i−1)(z |y)

6: d (i)(y, z)←D
�

p(x|y)

p (i)(x|z)�

7: p (i+1)(z |y)← p (i)(z)exp
�−βd (i)(y, z)

�
∑

z ′∈Z p (i)(z)exp
�−βd (i)(y, z ′)

�
8: ε(i)←∑

y∈Y
p(y)D

�
p (i+1)(z |y)

p (i)(z |y)�

9: end while
Output: Locally optimal mapping p(z |y)
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2.1.3 Rate Information Coding and Relation to Rate Distortion Theory

In this section, we will study the relation between rate distortion optimal compression and
rate information compression as characterized by the IBM. In contrast to the IBM, the notion
of relevance is determined by the choice of the distortion measure in rate distortion theory.

In what follows, we will show that the IB variational problem (2.8) takes the form of a rate
distortion tradeoff with an information-theoretic distortion measure. To this end, we note
that due to the Markovity of the IB variables x− y− z, we have

I (x;z) = I (x;y)− I (x;y|z) = I (x;y)−E [d (y,z)] , (2.15)

with I (x;y) being independent of p(z |y) and d as defined in (2.12). Consequently, the opti-
mization problem (2.8) can be equivalently reformulated as

min
p(z |y)

I (y;z)+βE [d (y,z)] . (2.16)

The constrained minimization problem in (2.7) takes the same form as (2.16), if the constraint

E [ρ(y,z)]≤D is taken into account by introducing a Lagrange parameter β> 0,

min
p(z |y)

I (y;z)+βE [ρ(y,z)] . (2.17)

Thus, the IB approach can be viewed as a rate distortion tradeoff with the information-theoretic
distortion measure (2.12). There is however a significant difference between conventional dis-
tortion measures (2.4) and the IB distortion measure (2.12) in that d depends on the conditional
p(z |y), thereby rendering the equivalent problems (2.8) and (2.16) non convex. Furthermore,
d is also dependent on the joint distribution p(x, y). In this way, the joint distribution p(x, y)
determines the distortion measure and in turn what features of y are deemed relevant about
the hidden variable x.

There is another fundamental difference between rate distortion theory and the IBM when
it comes to the motivation for solving the information-theoretic tradeoff problems (2.17) and
(2.8). As explained in Section 2.1.1, rate distortion theory is interested in solving (2.17) due to
its relevance for the operational coding problem, cf. Figure 2.1a. Because of this, rate distortion
theory focuses on the optimal tradeoff and not so much on the argument p(z |y) achieving this
tradeoff. This is in stark contrast to the IBM, which was originally introduced in [99]without
any operational meaning and seeks to utilize the optimal p(z |y) as a (soft) quantizer. A coding
theorem for the IB approach similar to Theorem 1 was only introduced later in [34]. Equivalent
theorems have been proven in other contexts in [1, 20, 43, 107]. In [34], the fidelity criterion
(2.5) of a code ( fn , gn) is replaced by the average relevant information of the code,

I RI ¬
1
n

n∑
i=1

I
�
(xn)i ; gn

�
fn(y

n)
�

i

�
. (2.18)
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Note that the component-wise definition of (2.18) can be replaced by the mutual information
rate between the involved sequences,

I RI ¬
1
n

I
�
xn ; gn

�
fn(y

n)
��

, (2.19)

and the resulting achievable regions can be shown to be identical, cf. [20, 73].
The operational setting for rate information coding is as follows: We consider an iid se-

quence of pairs (xi ,yi ) ∼ p(x, y), i = 1, . . . , n. Out of the resulting two sequences xn and yn ,
only yn is observed and subject to encoding and decoding. A rate information code ( fn , gn) then
produces a compressed version zn = gn

�
fn(y

n)
�

such that zn is maximally informative about
the hidden sequence xn , corresponding to a large average relevant information (2.18). In (2.18),
the mutual information of the i th element is calculated with respect to the distribution defined
by the code for this coordinate,

pi (y, z) =
∑

yn∈Yn : (yn)i=y ∧ gn( fn(yn))i=z

p(yn), (2.20)

pi (x, z) =
∑
y∈Y

p(x, y)pi (y, z). (2.21)

In this context, a rate information pair (R, I ) is said to be achievable, if there exists a sequence
of rate R codes ( fn , gn) such that for some n, I RI ≥ I . The rate information function R(I )
then assigns to any I the minimal possible R such that (R, I ) is still achievable. Similarly,
the information rate function I (R) assigns to any code rate R the maximum average relevant
information I such that (R, I ) is still achievable. In [20, 34] it is shown that those complex
operational tradeoffs are given by the following information-theoretic functions:

Definition 2. Let x−y−z be a Markov chain. The rate information function R :
�
0, I (x;y)

�→R+
is defined as

R(I )¬ min
p(z|y)

I (y;z) subject to I (x;z)≥ I ; (2.22)

the information rate function I :R+→
�
0, I (x;y)

�
is defined as

I (R)¬max
p(z|y)

I (x;z) subject to I (y;z)≤ R. (2.23)

Theorem 2. Let R(I ) be convex and continuous. The operational rate information function for
an iid sequence of pairs (xi ,yi ) with distribution p(x, y) over the finite set X ×Y is equal to the
rate information function (2.22). Similarly, the operational information rate function is equal to
the information rate function (2.23)

The Markovity in Definition 2 is due to the fact that x is not observed by the decoder
and matches the presumption of the IBM. Lastly, we want to remark that information-optimal
source coding is related to cost capacity [22, 105] and coding with side information [13, 118],
cf. [34].
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2.1.4 Deterministic Information-Optimal Quantizers

The solution to the IBM variational problem (2.8) by means of the Algorithm 1 generally pro-
duces a soft partition of Y , i.e., any y ∈ Y is assigned to an output z with probability p(z |y).
Soft partitions can be useful for some applications, e.g., when clustering documents into cate-
gories, the same document might fall into multiple categories. For this problem Y is the set of
documents, Z are the categories and p(z |y) can be regarded as a weighted assignment of docu-
ments to categories. Thus, while probabilistic p(z |y) certainly make sense as soft partitions in
some cases, their applicability as quantizers is limited. Furthermore, if p(z |y) is used directly
as a quantizer, the rate minimization characterized by the minimization of I (y;z) is not mean-
ingful in an operational context, because the rate of a quantizer is determined by the size of
the discrete output alphabet Z . Due to these considerations, one is often more interested in
solving

max
p(z |y)

I (x;z), (2.24)

rather than (2.8). Assuming again that x−y−z is a Markov chain, (2.24) is a convex maximiza-
tion problem over a convex domain, which by sign inversion can be equivalently formulated
as concave minimization problem over a convex domain. It is shown in [47, Theorem 1.1]
that for this type of problems, the optimum is attained at an extreme point of the convex do-
main. For the convex set of probability distributions, this means that the optimum of (2.24) is
achieved by a deterministic assignment p(z |y). Unfortunately, (2.24) is generally NP-hard and
therefore no efficient algorithm exists for finding the global optimum. In what follows, we
will discuss several instances of and solution strategies to (2.24).

IBM Hard Clustering Limit

First, note that (2.24) is equivalent to the IBM variational problem (2.8) for β→∞. We can
thus employ the stationarity condition (2.11) for the limit

p(z |y) = lim
β→∞

p(z)exp
�−βd (y, z)

�
∑

z ′∈Z p(z ′)exp
�−βd (y, z ′)

� (2.25)

= lim
β→∞

 
1+

∑
z ′∈Z\z

p(z ′)
p(z)

exp
�
−β�d (y, z ′)− d (y, z)

��!−1

(2.26)

=




1, z = argminz ′ d (y, z ′),

0, otherwise
. (2.27)

Interestingly, Algorithm 1 then becomes an instance of the famous LLoyd-Max algorithm with
the distributions p(x|y) taking the role of the vectors to be quantized,

p(x|z) =∑
y∈Y

p(x|y)p(y|z) =
∑

Yz
p(y)p(x|y)∑
Yz

p(y)
(2.28)
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representing the mass centroids (cf., e.g., [26]) of the quantization regionsYz = {y | p(z |y) = 1},
and (2.12) being used to measure the distance between elements and centroids. Starting from
an initial partition Y (0)z , any iteration of the algorithm updates the centroids, followed by as-
signing the elements p(x|y) to the output z with minimum centroid distance according to
(2.12) and (2.27), thereby defining the partition for the next iteration, cf. Algorithm 2. This

Algorithm 2 LLoyd-Max infotmation theoretic clustering based on the IBM

Input: X , Y , Z , p(x, y), Y (0)z , I ,ε
1: i ← 1
2: ε(0)←∞
3: while i ≤ I and ε(i−1) ≥ ε do

4: p (i)(x|z)←
∑

Y (i)z
p(y)p(x|y)

∑
Y (i)z

p(y)

5: d (i)(y, z)←D
�

p(x|y)

p (i)(x|z)�
6: Y (i+1)

z ← �
y | d (i)(y, z)≤ d (i)(y, z ′) ∀z ′ ∈Z \ z

	
7: ε(i)←∑

z∈Z
p(z)D

�
p (i+1)(x|z)

p (i)(x|z)�

8: end while
Output: Locally optimal hard partition Yz

algorithm was originally published in [91] as hard clustering limit of the IBM; slight variations
or reformulations thereof later appeared in [14, 57, 60]. Once again, as it was the case for Al-
gorithm 1, Algorithm 2 converges to a locally, though not generally globally optimal solution
and hence, running the algorithm for different initializations leads to the best results.

Binary Relevance X

The optimization problem (2.24) can be simplified for the case of binary relevanceX = {−1,+1}.
For this case, based on [11, Theorem 1], it can be shown that there exists an optimum, convex
partition L?z on the set of LLRs

L¬
�
L(x|y) �� y ∈Y	 . (2.29)

By Bayes law, the a posteriori LLR

L(x|y)¬ log
p(x =+1|y)
p(x =−1|y) = log

p(x =+1)
p(x =−1)︸ ︷︷ ︸

L(x)

+ log
p(y|x =+1)
p(y|x =−1)︸ ︷︷ ︸

L(y|x)

. (2.30)

is the sum of the a priori LLR L(x) that depends only on p(x) and the channel LLR L(y|x) that
only depends on p(y|x). If not mentioned otherwise, the elements of X are assumed to be
equally likely, i.e., L(x) = 0 and L(x|y) = L(x|y) = L(y), where we drop the explicit notation of
the binary random variable x if it is clear from the context.
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Thus, if the elements of Y are ordered in terms of their LLR2,

L(y1)< L(y2)< · · ·< L(y|Y |), (2.31)

this guarantees the existence of a quantizer with contiguous quantization regions on Y , i.e.,
p(z |y) takes the form3

p(z |y) =



1, az−1 < y ≤ az ,

0, otherwise,
(2.32)

cf. [58]. The strict ordering applies in (2.31) because elements that share the same LLR value
can be merged into a single element without changing the mutual information between the
observation and relevance I (x;y). More precisely, if y1,. . . , yl are such that L(y1) = · · ·= L(yl ),
then we merge these events into a new element y; thus

L(y1) = · · ·= L(yl ) ⇒ y ¬
l⋃

i=1

yi ⇒ p(y|x) =
l∑

i=1

p(yi |x). (2.33)

One can easily verify that the LLR of the merged elements is preserved: L(y) = L(y1) = · · ·=
L(yl ).

For discrete Y , the fact that there is an optimal quantizer with contiguous regions greatly
reduces the search space for an optimal mapping and gives rise to the dynamic programming
algorithm presented in [58]. The algorithm efficiently evaluates the objective function I (x;z)
for all contiguous mappings by noting that it can be written as

I (x;z) =
∑
z∈Z

I (az−1→ az ), (2.34)

where

I (az−1→ az ) =
∑
x∈X

p(x)


 ∑

y∈{az−1+1,...,az}
p(y|x)


 log

∑
y∈{az−1+1,...,az}

p(y|x)
∑
x ′∈X

p(x ′)
∑

y∈{az−1+1,...,az}
p(y|x ′) (2.35)

denotes the partial mutual information of an output z with contiguous assignment region
{az−1 + 1, . . . ,az}. Taking advantage of the fact that there are less than |Y |2 possible combi-
nations of pairs (az−1,az ), the algorithm precomputes all possible values I (az−1 → az ) and
then finds the optimal set of boundaries

0= a?1 < a?2 < · · ·< a?|Z | = |Z | (2.36)

2 Note that L(x) is independent of y and thus, even for L(x) 6= 0, the ordering (2.31) does not depend on whether
we base it on L(x|y) or L(x|y)

3for the formulation of the algorithm, we assume that the sets Y and Z are integers, i.e., Y = {1, . . . , |Y |}, Z =
{1, . . . , |Y |} and without loss of generality, that the quantizer Φ : y→ z is monotonic in that y ′ > y⇒ Φ(y ′)≥ Φ(y).
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by a state evolution type algorithm with traceback, cf. Algorithm 3. Contrary to Algorithm 2,

Algorithm 3 Optimal quantizer design for binary relevance [58]

Input: |Y |, |Z |, p(x, y)
1:
2: # preparation
3: Order and merge inputs according to (2.31) and (2.33)
4: Compute I (a′→ a) for all a′ < a
5:
6: # state recursion
7: S0(0)← 0
8: for z ∈ �1, . . . , |Z |	 do
9: for a ∈ �z, . . . , z + |Y | − |Z |	 do

10: Sz (a)← max
a′∈{z−1,...,a−1}

�
Sz−1(a

′)+ I (a′→ a)
�

11: hz (a)← argmax
a′∈{z−1,...,a−1}

�
Sz−1(a

′)+ I (a′→ a)
�

12: end for
13: end for
14:
15: # state traceback
16: a?|Z |← |Z |
17: for z ∈ �|Z | − 1, . . . , 1

	
do

18: a?z ← hz+1(a
?
z+1)

19: end for
20: a?0 ← 0
Output: Optimal quantizer boundaries a?, maximum mutual information I ?(x,z) = S|Z |

�|Y |�

Algorithm 3 always finds a global optimum to (2.24). The complexity of Algorithm 3 is dom-
inated by the calculation of the partial mutual information (2.35) and is of the order O

�|Y |3�.
We also want to note that the existence of an optimal convex partition L?z can be exploited

to simplify Algorithm 2 for the case of binary relevance, cf. [60]. Furthermore, this also
implies that there exists a contiguous quantizers for continuous Y , giving rise to algorithms
that try to optimize the quantizer boundaries a over a subset of R|Z |−1, cf. [109].

2.1.5 Gaussian Information Bottleneck

In this section, we shift our focus back to the problem of solving (2.8), but this time we consider
the case where observation and relevance are jointly Gaussian random vectors x ∈ Rmx and
y ∈ Rmy with zero mean and covariance matrix Cx,y. This setup is referred to as Gaussian
information bottleneck (GIB) [16] and is formally characterized by the variational problem

min
p(z |y)

I (y;z)−βI (x;z). (2.37)
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It is shown in [35] that the optimum is attained by a random vector z that is jointly Gaussian
with y. Consequently, the optimal z can be expressed as a linear transformation

z=Ay+ξ, (2.38)

with ξ ∼ N (0,Cξ) and independent of y. Hence, the optimization over p(z |y) in (2.37) can
be equivalently formulated as an optimization over the projection matrix A and covariance
matrix Cξ,

min
A,Cξ

I (y;Ay+ξ)−βI (x;Ay+ξ). (2.39)

A solution to (2.39) is presented in [16, Theorem 3.1]. There, the authors show that for a
prescribed β, the optimum is attained by

Cξ = I , A= diag{αi}ni=1 V T, αi =

√√√√[β(1−λi )− 1]+

λi v
T
i Cyv i

, (2.40)

where the eigendecomposition

Cy|xC
−1
y =Vdiag{λi}

my

i=1 V T with V = [v1, . . . , v my
], (2.41)

is used. Here, vT
i and 0≤ λi ≤ 1 are the left eigenvectors and corresponding eigenvalues of the

matrix Cy|xC−1
y , where we assume that the eigenvalues are in ascending order λ1 ≤ · · · ≤ λmy

,
i.e., the smallest eigenvalues are the first ones to contribute to (2.40). The number of non-
zero rows of the projection matrix A is determined by the value of the Lagrange parameter
β. For β < 1

1−λ1
the solution degenerates to A = 0. As β increases, it transitions through

several critical points, at each of which another non-zero row is added to A. In this sense, β
can be interpreted as “continuous rank” of the projection, because A changes continuously in
β. Once β>βc ,k with

βc ,k ¬
1

1−λk
, (2.42)

the kth mode with eigenvalue λk becomes active and starts contributing to the relevant in-
formation I (x;z). Denoting the number of active modes as j (β) = max{k : βc ,k ≤ β} and
using Definition 2 for the Markov chain x− y− z, an explicit relation between R= I (y;z) and
I (R) = I (x;z) is given by

I (R) = R− j
2

log2

 
j∏

i=1

(1−λi )
1
j + e

2R
j

j∏
i=1

λ
1
j

i

!
. (2.43)
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v1

v2

v3

v4

v5

v6

v7

v8

c1

c2

c3

c4

H =




1 1 0 1 0 1 1 1
0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0
1 1 1 0 1 0 1 1




Figure 2.2: Example of a lenght 8, rate 1/2, regular (3,6) LDPC code with N = 8 and M = 4

2.2 LDPC Codes

2.2.1 General Definitions and Message Passing Decoding

Low-density parity-check (LDPC) codes are a class of linear block codes4 with sparse parity
check matrix H ∈GF(2)M×N , i.e., H c = 0 for all codewords c of the LDPC code.

Regular LDPC codes have originally been introduced by Gallager in [32] and were largely
forgotten until their rediscovery in [66]. For a regular (dv , dc ) LDPC code, each row of the
parity check matrix contains exactly dc non-zero entries and each column contains exactly dv

non-zero entries. Thus, “sparse” refers to the fact that dc and dv are fixed and independent
of the codeword length, and hence, the number of non-zero elements in H is linear in block
length N , while for fixed rate, the total number of elements is proportional to N 2. The M ×N
parity check matrix of a LDPC code can be represented by a sparse, bipartite factor graph
consisting of M check nodes (CNs) and N variable nodes (VNs), where each non-zero entry
corresponds to an edge in the graph, cf. Figure 2.2 for an example. Consequently, dv and dc are
referred to as VN and CN degree, respectively. We denote the ensemble of all regular, length N
(dv , dc ) LDPC code graphs as CN (dv , dc ).

Later on [62, 63, 77], it was discovered that the performance of LDPC codes can be im-
proved by allowing for an irregular degree structure, where the gains come mostly from an
irregularity in the VN degrees. Intuitively, irregular codes improve upon regular codes of the
same rate due to on a mixture of low degree VNs, whose purpose it is to keep the rate small
and high degree VNs which provide redundancy and good error correction performance. To

4In this thesis, we restrict our attention to binary codes, although LDPC codes can be defined over arbitrary
finite fields [24]. We represent codewords in GF(2)N as either c ∈ {0,1}N or x = 1−2c ∈ {+1,−1}N , with identity
elements of addition ⊕ 0 and +1, respectively, and identity elements of multiplication � 1 and −1, respectively.
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characterize irregular LDPC codes, we use edge perspective degree distributions in polynomial
form [63],

λ(z) =
∑
i∈Dv

λi z i−1, ρ(z) =
∑
j∈Dc

ρ j z j−1. (2.44)

Here λi , i ∈ Dv, is the fraction of edges incident to a degree i VN, and ρ j , j ∈ Dc, is the
fraction of edges incident to a degree j CN, with Dv and Dc denoting the VN and CN degree
sets, respectively. For a regular (dv , dc ) LDPC code, all VNs have degree dv and all CNs have
degree dc , i.e., Dv = {dv} and Dc = {dc}. The edge perspective degree distributions λ and ρ
are related to their node perspective counterparts Λ and P via

Λi =
λi/i∑

i∈Dv
λi/i

, P j =
ρ j/ j∑

j∈Dc
ρ j/ j

, (2.45)

λi =
iΛi∑

i∈Dv
iΛi

, ρ j =
j P j∑

j∈Dc
j P j

. (2.46)

The number of edges incident to VNs and CNs must be the same,

N
∑
i∈Dv

iΛi =M
∑
j∈Dc

j P j ⇐⇒ (2.47)

N∑
i∈Dv

λi/i
=

M∑
j∈Dc

ρ j/ j
, (2.48)

and therefore, the code rate can be expressed solely in terms of the degree distributions,

R= 1− M
N
= 1−

∑
i∈Dv

iΛi∑
j∈Dc

j P j
= 1−

∑
j∈Dv

ρ j/ j∑
i∈Dc

λi/i
. (2.49)

Similar to the regular ensemble CN (dv , dc ), we denote the irregular ensemble with degree dis-
tributions λ and ρ as CN (λ,ρ). Lastly, note that the concept of irregular LDPC codes can be
even further generalized to so called multi-edge type LDPC codes [75, 76, 79].

Message Passing Decoding

LDPC codes are traditionally decoded using message passing algorithms, where messages are
exchanged across the edges between VNs and CNs over the course of several decoding iter-
ations. The sparsity of H is paramount for the efficient decoding of LDPC codes, since it
ensures that the number of edges is proportional to N . Consequently, for a total of L message
passing iterations, decoding complexity is proportional to O(NL ) which means that LDPC
codes can be efficiently decoded in linear time.

In what follows, we describe a generic message passing decoding scheme. In iteration `,
the message from VN n (with degree i ) to an adjacent CN m are computed via a mapping
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m1 . . . mi−1 m

n
Φi

µm1→n µmi−1→n

µn→m

Ln

(a)

n1 . . . n j−1 n

m

Φ j

µn1→m
µn j−1→m

µm→n

(b)

Figure 2.3: VN update (a) and CN update (b) for N (n) = {m, m1, . . . , mi−1} and N (m) =
{n, n1, . . . , n j−1}

Φ(`)i : L×Mi−1
` →M` according to

µn→m = Φ
(`)
i

�
Ln ,µn\m

�
. (2.50)

Here, Ln ∈ L denotes the channel LLR at VN n and µn\m ∈Mi−1
` is the vector of incoming

messages from all adjacent CNs except m (M`, M`, andL are the message and LLR alphabets).
For ` = 0, the VN update only depends on the channel message, Φ(0)v : L→M0, as there is
no extrinsic information from CNs available yet. Similarly, the message in iteration ` from
CN m (with degree j ) to an adjacent VN n is obtained via the mapping Φ

(`)
j : M j−1

`
→M`+1

defined by
µm→n = Φ

(`)
j (µm\n), (2.51)

whereµm\n ∈M j−1
`

is the vector of messages incoming from the adjacent VNs except for VN
n. Figure 2.3 illustrates the message updates in the factor graph.

After a total of L iterations, the final estimate for a code bit xn at a VN of degree i is
computed based on the incoming CN messages and the channel LLR with a mapping Ψi :
L×Mi

L →GF(2) defined by
x̂n = Ψi (Ln ,µn). (2.52)

Belief Propagation

The belief propagation (BP) algorithm is a special instance of a message passing decoding algo-
rithm where the messages exchanged across the edges of the graph represent probabilities for
the value of the involved code bit, conditioned on the channel output and information received
from neighbouring nodes. Assuming the factor graph of the code does not contain any cycles,
BP produces the maximum a posteriori probability (MAP) estimate,

x̂i = argmax
xi∈GF(2)

p(xi |y) = argmax
xi∈GF(2)

∑
x∈C:(x)i=xi

p(x |y), (2.53)

where the a posteriori probabilitys (APPs) p(xi |y) in (2.53) are obtained iteratively. For binary
codes, it is convenient to express probabilities as LLRs, cf. (2.30). This way, the MAP detector
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(2.53) can be based on the sign of the APP LLR

x̂i = sign
�
L(xi | y)

�
= sign

�
log

p(xi =+1|y)
p(xi =−1|y)

�
, (2.54)

and the messages exchanged between nodes are real numbers. The posterior probabilities can
be recovered from the LLRs as

p(x|y) = e x L(x|y)/2

eL(x|y)/2+ e−L(x|y)/2 . (2.55)

Assuming that the code bits xi are a priori equally likely, L(xi | y) can be expressed as

L(xi | y) = L(yi |xi )+L(y∼i |xi ), (2.56)

where L(yi |xi ) is the channel LLR, cf. (2.30), and L(y∼i |xi ) is referred to as the extrinsic LLR.
Thus, for BP, the channel LLRs Ln ∈L are obtained from the channel output yn via

Ln = log
p(yn |xn =+1)
p(yn |xn =−1)

. (2.57)

The extrinsic LLR L(y∼i |xi ) on the other hand incorporates all the information on xi that is
obtained from other observations y∼i and code constraints on x . BP message updates represent
extrinsic LLRs, meaning that they do not include the incoming message of the recipient node
for the calculation of the update. For a length-i repetition code, we have

L(y∼m |xm) =
i∑

m′=1
m′ 6=m

L(ym′ |xm′), (2.58)

and thus for the VN updates,

ΦBP
i (L,µ

�
= L+

i−1∑
m=1

µm , (2.59)

For a length- j single parity check code on the other hand,

L(y∼n |xn) = 2atanh
� j∏

n′=1
n′ 6=n

tanh
�

L(yn′ |xn′ )
2

��
, (2.60)

hence,

Φ
BP
j (µ

�
= 2atanh

� j−1∏
n=1

tanh
�
µn
2

��
. (2.61)

Consequently, for the BP algorithm M` =M` = R and the update rules are identical for all
`, i.e., Φ(`)i = Φ

BP
i and Φ

(`)
j = Φ

BP
j .
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The bit decision Ψi is based on the sign of the APP LLRs, cf. (2.54),

ΨMS/BP
i (L,µ) = sign

�
L+

i∑
m=1

µm

�
. (2.62)

Since (2.61) is costly to evaluate, it is sometimes replaced by

Φ
MS
j (µ

�
=

j−1∏
n=1

sign(µn) · min
n
|µn |, (2.63)

yielding the min-sum (MS) algorithm.

2.2.2 Asymptotic Behaviour

One of the major theoretical results on LDPC codes is that almost all long codes from the
ensemble CN behave alike and their performance can be analyzed by considering the cycle-free
case.

Theorem 3 (Concentration around cycle-free case, [62, 78]). Over the probability space of all
graphs CN (dv , dc ) and channel realizations let z be the number of incorrect messages among all
N dv VN-to-CN messages passed at BP iteration `. Let P (`)e

5 be the expected fraction of incorrect
messages passed along an edge with a tree-like directed neighborhood of depth at least 2` at the `th
iteration. Then, there exist positive constants β = β(dv , dc ,`) and γ = γ (dv , dc ,`) such that the
following holds:

Concentration around expected value: For any ε > 0 we have

P
�|z−E [z] |>N dvε/2

	≤ 2e−βε
2N . (2.64)

Convergence to cycle-free case: For any ε > 0 and N > 2γ
ε we have

|E [z]−N dv P (`)e |<N dvε/2. (2.65)

Concentration around cycle-free case: For any ε > 0 we have

P
¦
|z−N dv P (`)e |>N dvε/2

©
≤ 2e−βε

2N . (2.66)

Theorem 3 implies that for increasingly larger codeword length N , the number of message
errors of any codeword from any code in the ensemble CN (dv , dc ) transmitted over any particular
channel realization is close to N dv P (`)e with increasingly higher probability. Consequently, by
calculating P (`)e for various channel families, we can characterize the performance of almost all
codes from CN (dv , dc ) for those channels.

5We will see shortly that P (`)e is independent of the transmit codeword x .
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Moreover, it is shown in [78, Theorem 1], that for BP decoding, we have P (`)e
′
> P (`)e

for a channel p(y ′|x) = p(y ′|y)p(y|x) that is physically degraded with respect to p(y|x). For
channels that can be characterized by a single parameter, this concept implies a monotonicity
between the channel parameter α and the fraction of incorrect messages P (`)e . E.g., for the
binary input additive white Gaussian noise (BI-AWGN) channel

p(y|x) = 1p
2πσ2

e
− (y−x)2

2σ2 , (2.67)

we identify α= σ , where as for the binary symmetric channel,

p(y|x) = (1− ε)∆x + ε∆−x , (2.68)

or the erasure channel,
p(y|x) = ε∆0+(1− ε)∆∞, (2.69)

α = ε. One can show that any channel with parameter α′ > α is physically degraded with re-
spect to the original channel with parameterα. Consequently, for all those channels, ifα′ >α it
follows that P (`)e

′
> P (`)e for all `. This monotonicity gives rise to a thresholding phenomenon:

For a given family of channels, we set out to find the highest parameter α such that for `→∞,
P (`)e → 0, i.e.,

α∗ = sup
α
{α : lim

`→∞
P (`)e (α) = 0}, (2.70)

is the threshold of the respective channel. Conversely, for α > α∗, there is a positive constant
γ (α) such that P (`)e > γ (α) for all `. Hence, for long codes, we can clearly separate the region
where reliable transmission is possible from where it is not. Note that all of the above also
holds for irregular ensembles CN (λ,ρ), with appropriately adjusted constants in Theorem 3.

2.2.3 Density Evolution and Symmetry Conditions

In this section, we discuss how to obtain P (`)e , the error probability of the cycle-free case intro-
duced in Theorem 3. The key observation here is that at iteration `, if the code has no cycles
of length shorter than 2`, then under the assumption of iid channels, all messages incident
to VNs and CNs are independent and thus, can be characterized by a single message density.
Furthermore, under the following, fairly general symmetry constraints, the message densities
are symmetric and the probability that a message is in error is independent of the transmitted
codeword x , i.e., P (`)e (x) = P (`)e .

Assumption 1 (Symmetric message passing, [78]).

1. Channel symmetry: Let pL|x(L|x) denote the conditional distribution of the iid channel,
mapping input bits x ∈GF(2) to channel output LLRs L ∈ L. We require channel output
symmetry

pL|x(L|x) = pL|x(−L| − x). (2.71)
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2. Check node symmetry: Signs factor out of CN maps, i.e., for each iteration `, CN degree j
and any ±1 sequence (b1, . . . , b j−1),

Φ
(`)
j (b1µ1, . . . , b j−1µ j−1) =

 
j−1∏
n=1

bn

!
Φ
(`)
j (µ1, . . . ,µ j−1). (2.72)

3. Variable node symmetry: The VN updates must respect the sign inversion property

Φ(`)i (−L,−µ1, . . . ,−µi−1) = −Φ(`)i (L,µ1, . . . ,µi−1) (2.73)

for all ` > 0 and degrees i . For the initial VN update, we assume

Φ(0)i (−L) =−Φ(0)i (L). (2.74)

Lemma 1 (Independent, symmetric messages [78]). Let G be a cycle-free factor graph of a parity
check code and assume the codeword x has been transmitted. If the symmetry conditions of Assump-
tion 1 are fulfilled, then for any decoding iteration `, both VN-to-CN and CN-to-VN messages are
conditionally iid and their densities factor according to

p (`)
µ|x (µ|x) =

∏
e∈E

p (`)
µ|x(µe|xn(e)), (2.75)

where E is the set of edges of G and n(e) denotes the index of the VN attached to edge e. Furthermore,
both conditional VN-to-CN and CN-to-VN message distributions are symmetric according to

p (`)
µ|x(µe| − xn(e)) = p (`)

µ|x(−µe|xn(e)) (2.76)

for all e ∈ E and iterations `.

Since by Lemma 1, the probability of a message error is independent of the transmitted
codeword, it is commonly assumed that the all-one codeword x = +1 is transmitted. Hence-
forth, we write p (`)

µ|x(µ) = p (`)
µ|x(µ| + 1) = for VN-to-CN message densities and p (`)

µ|x(µ) =

p (`)
µ|x(µ|+ 1) for CN-to-VN message densities at iteration `, implicitly assuming x = +1. The

error probability can then be expressed as

P (`)e =
∫ 0−

−∞
p (`)
µ|x(µ)dµ+

1
2

∫ 0+

0−
p (`)
µ|x(µ)dµ. (2.77)

For most decoding algorithms, the densities p (`)
µ|x(µ) and p (`)

µ|x(µ) can be computed recur-
sively. In what follows, we derive the recursion for the BP decoding algorithm. Since the
output of a VN update (2.59) is the sum of independent random variables, we have

p (`)
µ|x = pL|x⊗ p (`)

µ|x
⊗i−1

, (2.78)
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where for a density p,

p⊗i =
i − 1 convolutions︷ ︸︸ ︷

p ⊗ p ⊗ · · ·⊗ p (2.79)

denotes the i fold self convolution. For the CN update, note that (2.61) can be rewritten as a
sum over GF(2)× [0,∞),

γ−1

 
j−1∑
n=1

γ (µn)

!
, (2.80)

with transformation γ :R→GF(2)× [0,∞),

γ (x)¬
�

sign x,− log tanh
|x|
2

�
, (2.81)

and corresponding inverse γ−1 : GF(2) × [0,∞) → R. Thus, due to the independence of
incoming messages,

p (`+1)
µ|x = Γ−1

�
Γ
�

p (`)
µ|x
�⊗ j−1�

, (2.82)

where Γ denotes the transformation of densities corresponding to (2.81), cf. [77].

Taking into account irregular codes, we can combine (2.78) and (2.82) and obtain a recur-
sion on VN-to-CN densities,

p (`)
µ|x = pL|x⊗λ

�
Γ−1

�
ρ
�
Γ (p (`−1)

µ|x )
���

, (2.83)

with degree polynomials λ and ρ according to (2.44) and6

a(p) =
n∑

i=0

ai p⊗i (2.84)

for a polynomial a(x) =
∑n

i=0 ai x i applied to a density p. The recursion (2.83) can be shown
to always converge to a fixed point and allows for an efficient evaluation based on Fourier
transforms of densities. Suitable discretization of densities and various techniques to imple-
ment (2.83) efficiently have been proposed in [18] and [79, Appendix B]. Using (2.70), (2.77)
and (2.83), we can determine the thresholds for various channels. Besides exact density evo-
lution, approximative methods such as Gaussian message passing [19] and EXIT charts (cf.
Section 2.3) can be used to determine thresholds with low computational complexity.

Finally, another symmetry condition is defined in [77, Definition 1] regarding the message
densities. A density p(µ) is LLR-consistent iff

p(µ) = eµ p(−µ), ∀µ ∈R. (2.85)

When applied to symmetric conditional densities, i.e., pµ|x(µ) = pµ|x(µ|+ 1) = pµ|x(−µ| − 1)

6We define p⊗0 =∆0.
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with equal a priori probability, this property links the argument of the density to the corre-
sponding LLR,

µ= L(x|µ) = log
pµ|x(µ|+ 1)

pµ|x(µ| − 1)
. (2.86)

It can be shown that the recursion (2.83) preserves LLR-consistency. Hence, for BP decoding,
the message densities are consistent according to (2.86) for all iterations.

2.3 EXIT Analysis

Extrinsic information transfer (EXIT) charts have originally been introduced in [97] as a tool
to analyze the convergence behaviour of iteratively decoded BICM systems. Consider a com-
ponent of an iterative decoder receiving iid input messagesµwith conditional density pµ|x and
producing iid output messagesµwith conditional density pµ|x. We then refer to IA= I (µ,x) as
the a priori information of the component and to IE = I (µ,x) as the extrinsic information of
the component. The functional relationship IE (IA) is referred to as the EXIT function of the
component.

2.3.1 Gaussian a priori Information

A common assumption is to model the a priori messages as Gaussian random variables. It can
be shown that for Gaussian LLRs, i.e., µ|x∼N (µA,σ2

A), it follows from (2.86) that µA= σ
2
A/2

and thus,

IA(σA) = I (µ,x) = 1− 1Æ
2πσ2

A

∫ ∞
−∞

log2(1+ e−ζ )exp

�
− (ζ −σ

2
A/2)

2

2σ2
A

�
dζ ¬ J (σA). (2.87)

For efficient implementations, the function J (σA) as well as its inverse J−1(IA) can be approx-
imated as described in the appendix of [98] or can be based on a table of precomputed values
and suitable interpolation. The corresponding extrinsic information IE (IA) for a component
under Gaussian input messages can be determined by Monte Carlo simulations, i.e., we gen-
erate Gaussian samples µi |x ∼ N (σ2

A/2,σ2
A) where σA = J−1(IA), feed them to the component

and obtain iid output samples µi |x from which we estimate pµ|x and compute IE . This tech-
nique can be applied to obtain EXIT functions even for systems where the output density can
not be determined analytically from the input density. E.g., in Figure 2.4, we plot the EXIT
functions of an 8-PAM soft demapper and a recursive systematic convolutional code of rate 1/2
[97]. As illustrated in Figure 2.5, the demapper produces extrinsic soft information µi based
on the channel LLRs Li and the a priori information µi . The messages µi are in turn incident
to the decoder, i.e.,

IE1 = IA2. (2.88)



32 Chapter 2. Preliminaries

Eb/N0 = 5 dB

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA1 / IE2

I E
1
/

I A
2

(a)

Eb/N0 = 6 dB

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA1 / IE2

I E
1
/

I A
2

(b)

smallDemapper (1) smallDecoder (2) smallTrajectory

Figure 2.4: Example of an EXIT chart with corresponding decoding trajectory [97]

Demapper (1)
IC (Eb/N0)

Li
Decoder (2)

IE1 = IA2

µi

IE2 = IA1

µi

Figure 2.5: Iterative decoding and demodulation block diagram

The decoder then produces the extrinsic messagesµi which are fed back to the demapper, thus

IE2 = IA1. (2.89)

The relations (2.88) and (2.89) are represented in Figure 2.4 by switching the axis when plotting
one of the two component EXIT functions. Starting from IA1 = 0, the demapper produces
output messages with IE1 = IC (N0/Eb ) = I (L;x) which is then fed to the decoder, following
the staircase trajectory between the two EXIT functions. Note that the EXIT function of the
demapper is parametrized by the channel quality as it depends on the channel output LLRs Li .
In Figure 2.4a, we can see that the decoding procedure gets stuck after several iterations due
to the intersection of the two EXIT curves for Eb/N0 = 5 dB. For higher signal to noise ratio
(SNR), Eb/N0 = 6 dB, a gap opens between the two EXIT functions and the iterative decoding
procedure can converge towards IE2→ 1, cf. Figure 2.4b.

2.3.2 EXIT Charts of LDPC Node Updates

For simple systems such as the repetition and single parity check component codes of an LDPC
code, the EXIT functions can be determined analytically if we resort to approximations. Specif-
ically, simulation results show that the messages emitted from VNs follow a Gaussian distribu-
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VNs (1)
IC (Eb/N0)
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Figure 2.6: LDPC decoding block diagram

tion very closely [19]. Therefore, we can employ (2.87) to determine σ2
µ|x = J−1(IA1) and due

to (2.59), the output variance is given by σ2
µ|x = σ

2
L|x+ (i − 1)σ2

µ|x, where σ2
L|x = J−1

�
IC
�

with
channel capacity IC = I (x;L). Thus, for the EXIT function of a degree i VN

IE1(IA1, i , IC ) = J
�Ç
(i − 1)

�
J−1(IA1)

�2+ �J−1(IC )
�2�. (2.90)

For CNs, it is shown in [3] that for the erasure channel, the EXIT function IE ,SPC(IA, d )
of a single parity check code of degree d and the EXIT function IE ,REP(IA, d ) of a degree d
repetition code are related as

IE ,SPC(IA, d ) = 1− IE ,REP(1− IA, d ). (2.91)

While (2.91) is not exact for other channels such as the BI-AWGN channel and the binary
symmetric channel, (2.91) is still very accurate for those cases [88, 98]. Hence, we can obtain
the EXIT function of a degree j CN from (2.90) and (2.91),

IE2(IA2, j ) = 1− J
�p

j − 1 J−1(1− IA2)
�
. (2.92)

For irregular codes, the EXIT function of code mixtures can be obtained by averaging the
EXIT functions for a fixed degree using edge perspective degree distributions [102],

IE1(IA1,λ, IC ) =
∑
i∈Dv

λi IE1(IA1, i , IC ), (2.93)

IE2(IA2,ρ) =
∑
j∈Dc

ρ j IE2(IA2, j ). (2.94)

In Figure 2.7, we show an EXIT chart of an LDPC Ensemble with λ(z) = .251z+ .309z2+
.001z3 + .439z9 and ρ(z) = .636z6 + .364z7 over an BI-AWGN channel with σ = .93. Con-
ducting a bisection threshold search (cf. (2.70)) using (2.77) and (2.83) yields σ? = .9558 [77].
A similar threshold can be obtained using EXIT charts. First, note that using (2.88) to (2.90)
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Figure 2.7: EXIT chart of an LDPC ensemble

and (2.92) to (2.94), we can derive a recursion on the extrinsic VN information

I (`)E1 (IC ) =
∑
i∈Dv

λi J



√√√√√(i − 1)

�
J−1

�
1−∑

j∈Dc

ρ j J
�p

j − 1 J−1(1− I (`−1)
E1 )

���2

+
�
J−1(IC )

�2

 .

(2.95)
From (2.57) and (2.67), it follows that for a BI-AWGN channel, Li =

2yi
σ2 and thus

�
J−1(IC )

�2 =
σ2
L|x =

4
σ2 , which allows us to express (2.95) as function of the channel noise standard deviation

I (`)E1 (σ). Similar to (2.70), we can then exploit (2.95) to define

σ∗EXIT = sup{ σ : lim
`→∞

I (`)E1 (σ) = 1} (2.96)

as the threshold obtained using the EXIT method. Indeed, we obtain σ∗EXIT = .9560, which is
fairly close to the true threshold.



Chapter 3

Rate Information Coding for
Gaussian Signals

In Section 2.1.5, the Gaussian information bottleneck (GIB) was introduced as the analytic
solution to the IB rate information tradeoff problems (2.22) and (2.23) for jointly Gaussian rel-
evance and observation. The major result there was that the optimal mapping for this setup is
given by the linear projection (2.38), where the dimensionality of the projection increases con-
tinuously for increasing Lagrange parameterβ. From a source coding perspective, the optimal
projection characterizes the ultimate tradeoff between compression and accuracy, however, the
projection itself can not be used as a quantizer. Unlike for the discrete case (cf. Section 2.1.4),
this even holds true as we let β→∞.1

Thus, the question remains how information-optimal quantizers can be designed for con-
tinuous observations and relevance. In this chapter, we provide a possible answer to this ques-
tion. For that, we establish a relationship between the GIB and rate distortion theory that
gives rise to an information-optimal quantizer design based on linear filtering and MSE-optimal
quantization, i.e., we show that existing MSE-optimal quantizer designs can be used for good
information rate performance given that the input to the MSE-optimal quantizer undergoes
suitable linear preprocessing. The remainder of this chapter is structured as follows.

In Section 3.1, we analyze the GIB in a communications setting, i.e., we frame relevance
and observation into a setting similar to a linear, additive noise communications channel. This
reformulation is possible without loss of generality and helps to establish a link between the
GIB and Wiener filtering [108].

In Section 3.2, we proceed by showing that the optimal information rate tradeoff can be
achieved via the rate distortion optimal tradeoff of a linearly filtered version of the observa-
tion. We identify the square root of the Wiener filter as the information-optimal filter and
investigate the effects on information rate as well rate distortion performance of different fil-
tering approaches. Furthermore, we provide an extension of our results to stationary random

1To see this, divide (2.40) by
p
β and letβ→∞. The transformed projection has the same mutual information

and becomes a noiseless bijection, so that I (y;z) =∞ and I (x;z) = I (x;y).

35
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processes.

Section 3.3 then focuses on the operational relevance of the tradeoff problems we discussed
in previous sections. We present a source coding theorem for jointly Gaussian relevance and
discuss a potential extension to stationary ergodic processes. Furthermore, we investigate the
applicability of the information rate tradeoff for finding the capacity of a channel with a quan-
tizer at its output. Lastly, we discuss consequences of the relations we derived in Section 3.2
for the design of information-optimal source codes. We show that the results of Section 3.2
imply the existence information-optimal codes derived from MSE-optimal codes. Simulation
results illustrate that codes with good information rate performance can indeed be constructed
by designing MSE-optimal codes for linearly filtered observations.

3.1 On the Relation between the GIB and Wiener Filtering

3.1.1 Linear Relation between Relevance and Observation

In this section, we provide a novel reformulation and interpretation of the GIB in terms of
Wiener filtering [108]. For that, we assume that observation x and relevance y are related via
the linear model

y=Hx+ n. (3.1)

Here, H ∈ Rmy×mx is a deterministic matrix and n is a Gaussian random vector distributed
according to N (0,Cn) and independent of both x and y. Our interest in (3.1) is rooted in com-
munications, where H and n represent channel and additive Gaussian noise. In this context,
the relevance vector x represents the transmitted data and the observation y is the channel out-
put that is subject to compression. Due to [7, Theorem 4.5.5], any two zero-mean, jointly
Gaussian random vectors x and y can be represented by the model (3.1) and hence, all results
that are derived under the assumption of (3.1) also hold for the general case.

Recall that the GIB solution (2.40) is based on the eigendecomposition (2.41) of the matrix

W ¬Cy|xC
−1
y = I −CT

x,yC
−1
x Cx,yC

−1
y . (3.2)

Under the model (3.1), the involved covariance matrices are given by

Cy =HCxHT+Cn, (3.3)

Cy|x =Cn, (3.4)

and thus,
W =Cn

�
HCxHT+Cn

�−1. (3.5)

Interestingly, W is seen to be the Wiener filter for estimating n from y. Furthermore, W =
I −W , where

W =HCxHT�HCxHT+Cn

�−1 (3.6)
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V T

x H ⊕
n

C−1/2
n

y
UT

ỹ
diag{αi}

my

i=1

y′ ⊕
ξ

z

A

Figure 3.1: Linear model (3.1) and decomposition of the optimal projection A= diag{αi}my

i=1 UTC−1/2
n

is the Wiener filter for estimating Hx from y, i.e., it minimizes the MSE E
�‖Wy−Hx‖2�.

Note that both W and W share the same eigenbasis, i.e., they have the same left eigenvectors
vT

i and their eigenvalues are related by

µi = 1−λi , 0≤µi ≤ 1, i = 1, . . . , my . (3.7)

Thus, the GIB solution (2.40) can be equivalently formulated in terms of the eigendecompo-
sition of W . This formulation appears to be more natural given the Wiener filtering inter-
pretation as well as the fact that the denominator for the expression of αi in (2.40) can be
reformulated according to

λi v
T
i Cyv i = vT

i Cy|xC
−1
y Cyv i = vT

i Cy|xv i , (3.8)

i.e., λi can be eliminated from the denominator and only enters complementary viaµi = 1−λi

in the numerator.

3.1.2 GIB Solution and Rate Information Tradeoff under the Linear Model

In what follows, we derive the optimal GIB projection for the Markov chain x − y − z as-
suming that x and y are related via (3.1). For that, we decompose the optimal projection
A=V Tdiag{αi}

my

i=1 into three parts, as illustrated in Figure 3.1.
First, we will apply a noise whitening filter to the observation y. This transformation al-

lows parametrization of the mutual information in terms of the SNR and later gives rise to
expressions that are structurally similar to the capacity of a Gaussian vector channel. More-
over, the transformation allows for joint decorrelation of both noise and relevance terms. The
whitened vector ỹ=C−1/2

n y has covariance C ỹ = S + I with the SNR matrix

S ¬C−1/2
n HCxHTC−1/2

n . (3.9)

Since S is positive semi-definite and symmetric, it can be decomposed according to

S =UΓUT, (3.10)

where U consists of orthonormal eigenvectors and

Γ = diag{γi}
my

i=1 , (3.11)
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with non-negative mode SNRs γi ≥ 0. The Wiener filters (3.5) and (3.6) transform to the
whitened domain according to

fW =C−1/2
n W C1/2

n = (S + I )−1 =U
�
Γ + I

�−1UT =Udiag{λi}
my

i=1 UT, (3.12)

fW =C−1/2
n W C1/2

n = S(S + I )−1 =UΓ (Γ + I )−1UT =Udiag{µi}
my

i=1 UT, (3.13)

where
λi =

1
1+ γi

, µi =
γi

1+ γi
. (3.14)

Next, we apply a decorrelation transformation to the whitened observation. Using the
eigendecomposition of the SNR matrix (3.10), the elements of

y′ =UTỹ=UTC−1/2
n y (3.15)

can be seen to be uncorrelated with covariance matrices

Cy′ = Γ + I , (3.16)

Cy′|x = I . (3.17)

Lastly, we compute the optimal GIB solution for the information-optimal linear projection
A′ = V ′Tdiag

�
α′i
	my

i=1 from y′ to z, i.e., we solve (2.39) for the Markov chain x− y′ − z. It
follows from (2.41) and the covariance matrices (3.16) and (3.17) that V ′ = I . Hence, for the
denominator in (2.40),

diag{λi}
my

i=1 V ′TCy′V
′ =V ′TCy|x′V

′ = I (3.18)

and thus,
A′ = diag

�
α′i
	my

i=1 , α′i =
Æ
[βµi − 1]+. (3.19)

Note that since both whitening and decorrelation are invertible, they do not affect the
mutual information. That is, we have I (y;z) = I (y′;z), which means that I (y′;z) can be used to
calculate the optimal rate information tradeoff for the original problem. Furthermore, it can
be seen that the whitening and decorrelation operations constitute the matrix V T =UTC−1/2

n

for the information-optimal transformation of the original observation y to z. Similar to (3.18)
for the whitened and decorrelated case, the denominator in the original domain reads

diag{λi}
my

i=1 V TCyV =V TCy|xV =UTC−1/2
n CnC−1/2

n U = I . (3.20)

Thus, the information-optimal projection of y is given by

A= diag{αi}
my

i=1 UTC−1/2
n , αi = α

′
i =

Æ
[βµi − 1]+, (3.21)
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which proves the correctness of the decomposition introduced in Figure 3.1. We are now ready
to formulate the following result.

Theorem 4. Consider the Markov chain x−y−z under the model (3.1). For this case, the optimum
rate information tradeoff as introduced in Definition 2 is characterized by the parametric equations

I (β) =
1
2

my∑
i=1

log+2

�
β− 1
β

�
1+ γi

��
, (3.22)

R(β) =
1
2

my∑
i=1

log+2
�
(β− 1)γi

�
, (3.23)

where each choice of the parameter β ∈ (1,∞) corresponds to a point on the rate information and
information rate function.

Proof : Due to the joint Gaussianity of all vectors and the invertibility of UTC−1/2
n we have

I (y;z) = I (y′;z) = h(z)− h(z|y′) = 1
2

log2 detCzC
−1
z|y′ , (3.24)

I (x;z) = h(z)− h(z|x) = 1
2

log2 detCzC
−1
z|x , (3.25)

where we used h(x) = 1
2 log2 det(2πeCx) to denote the differential entropy of a multivariate

Gaussian with covariance matrix Cx [21]. The result follows by inserting into these expressions
the covariance matrices

Cz =ACyA
T+Cξ = diag{αi}

my

i=1 V TCyVdiag{αi}
my

i=1+ I (3.26)
(3.20)
= diag{αi}

my

i=1 (Γ + I )diag{αi}
my

i=1+ I = diag
�
α2

i (γi + 1)+ 1
	my

i=1 , (3.27)

Cz|y′ =Cξ = I , (3.28)

Cz|x =ACnA
T+Cξ = diag

�
α2

i + 1
	my

i=1 . (3.29)

Note that the requirement β> 1 eliminates the trivial solution (2.10). �

3.1.3 Critical Rates and Optimal Rate Allocation

The parameter β originally introduced in the variational problem (2.37) restricts the active
modes contributing to the information rate function I (R). As it was the case for the original
formulation of the GIB, β transitions trough a series of critical values

βc ,k = 1+
1
γk

, (3.30)

at each of which another mode with SNR γk becomes active. Here, (3.30) follows by setting
the terms in (3.22) equal to zero, or equivalently, from (2.42) and (3.14).
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We now set out to obtain an explicit relation I (R) in the form of (2.43) in terms of mode
SNRs and allocated rates. For that, we define the critical rate Rc ,k for mode k as the value R
for which the mode becomes active, i.e., starts contributing to I (R). Plugging (3.30) into the
rate expression (3.23), we obtain the critical rates as

Rc ,k ¬ R(βc ,k ) =
1
2

my∑
i=1

log+2
γk

γi
=

1
2

k∑
i=1

log2
γk

γi
, (3.31)

where we assume that the mode SNRs are in descending order. Furthermore, denoting the
number of active modes as j (R) =max{k : Rc ,k ≤ R} we can use (3.23) to obtain

β=
22R/ j

γ̄ j
+ 1, (3.32)

with

γ̄ j ¬
j∏

i=1

γ 1/ j
i (3.33)

denoting the geometric mean of the active modes. Using (3.32), we can express the rate allo-
cated to mode i as

Ri (R)¬
1
2

log+2
�
(β− 1)γi

�
=
�

R
j
+

1
2

log2
γi

γ̄ j

�+
. (3.34)

Both (3.32) and (3.34) can then be used to eliminate the variational parameter from (3.22),

I (R) =
1
2

j∑
i=1

log2

�
22R/ j

22R/ j + γ̄ j

�
1+ γi

��

=
1
2

j∑
i=1

log2

�
1+ γi

1+ 2−2Ri (R)γi

�
=

j∑
i=1

�
C (γi )−C

�
2−2Ri (R)γi

��
. (3.35)

Here,

C (γ )¬
1
2

log2(1+ γ ) and C (γ )¬
my∑
i=1

C (γi ) (3.36)

denote the capacity for a scalar and vector AWGN channel with SNR(s) γ and γ , respectively.
As β increases, more modes begin to contribute; the rate R increases, allowing for a higher
accuracy of the compression and in turn higher relevant information I . From (3.34), we see
that the rate is allocated linearly to the modes depending on their SNR. Modes with SNR higher
than the geometric mean γ̄ j receive additional rate on top of the uniform default allocation R

j ,
whereas the rate allocated to modes with SNR smaller that γ̄ j is reduced below the uniform
allocation.

Note that due to due to the Markov chain x− y− z, we have I (x;z)≤ I (y;z) and I (x;z)≤
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Figure 3.2: Information rate function for γ = (2.5,2,1.5,1, .5). We also added the critical points I (Rc ,k )
at which an additional mode becomes active and illustrate the decomposition of I (R) into individual
modes. The upper bound (3.37) is plotted as well.

I (x,y) and therefore,
I (R)≤min{R,C (γ )}, (3.37)

which is also evident from (2.43) and (3.35). For R,β→∞, I is bounded from above by the
capacity of the vector channel (3.1) for fixed input distribution px ∼N (0,Cx),

lim
R→∞ I (R) =C (γ ). (3.38)

3.2 Relation between the GIB and MSE-Optimal Quantization

3.2.1 Linear Filtering and MSE-Optimal Quantization

In this section, we are going to explore the relation between the information rate tradeoff as
characterized by the GIB and the rate distortion tradeoff for Gaussian random vectors and MSE
distortion measure. Specifically, we will show that the optimization problem (2.7) that defines
the rate distortion function also yields the optimal rate information tradeoff given suitable
linear preprocessing. To this end, we investigate MSE-optimal rate distortion quantization
preceded by a filter in the whitened and decorrelated domain, i.e., we consider (cf. (3.15))

w¬ Fy′ ∼N
�
0, diag

�
f 2
i (1+ γi )

	my

i=1

�
, (3.39)

where F = diag{ fi}
my

i=1, and we set out to obtain the rate distortion function

R(D ,F )¬ min
p(z |w)

I (w;z) subject to E

�‖z−w‖2�≤D . (3.40)
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Lemma 2. The solution to (3.40) is characterized by the parametric equations

R(ϑ,F ) =
1
2

my∑
i=1

log+2
f 2
i (1+ γi )

ϑ
, (3.41)

D(ϑ,F ) =
my∑
i=1

min
�
ϑ, f 2

i (1+ γi )
�
, (3.42)

with waterlevel parameter ϑ ∈ [0,∞).

Proof: Noting that w is Gaussian with covariance matrix Cw = diag{ωi}
my

i=1 and eigenvalues
ωi = f 2

i (1+ γi ), the claim follows from [21, Theorem 10.3.3]. �

While the rate distortion tradeoff in Lemma 2 is well understood, we next assess the asso-
ciated rate information tradeoff (recall that the relevant information equals I (x;z)).

Theorem 5. The rate information tradeoff for MSE-optimal quantization of the filtered vector w
is characterized by the parametric equations

I (ϑ,F ) =
1
2

my∑
i=1

log+2


 1+ γi

1+ϑ γi
f 2
i (1+γi )


, (3.43)

R(ϑ,F ) =
1
2

my∑
i=1

log+2

�
f 2
i (1+ γi )

ϑ

�
. (3.44)

Here, the waterlevel parameter ϑ ∈ [0,∞) is determined by the distortion D.

Proof: The expression (3.44) for the rate R(ϑ,F ) = I (w;z) directly follows from Lemma 2. The
relevant information I (ϑ,F ) = I (x;z) in (3.43) is calculated similarly as in the proof of Theo-
rem 4, except that the mapping (2.38), which is required to compute the covariance matrices is
replaced by the forward quantization channel [7, p.101]. That is,

z= Bw+ u (3.45)

where

B = diag{bi}
my

i=1 with bi = 1− Di

ωi
, Di =min(ϑ,ωi ), (3.46)

and

u∼N (0,Cu), with Cu = diag{bi Di}
my

i=1 , (3.47)

is the mapping p(z |w) solving (3.40), cf. Figure 3.3. Based on (3.45) to (3.47), the covariances
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Figure 3.3: Optimal forward channel (3.45) to (3.47), linear preprocessing (3.15) and (3.39) and source
model (3.1)

can be computed similarly to (3.26) and (3.29),

Cz = BCwBT+Cu = diag
�

b 2
i ωi + bi Di

	my

i=1 , (3.48)

Cz|x = BCw|xBT+Cu = diag
�

b 2
i f 2

i + bi Di
	my

i=1 . (3.49)

Inserting (3.48) and (3.49) into (3.25) yields

I (x;z) =
1
2

my∑
i=1

log2
biωi +Di

bi f 2
i +Di

=
1
2

my∑
i=1

log2
ωi (1+ γi )
ωi + γi Di

=
1
2

my∑
i=1

log2
1+ γi

1+ γi
Di
ωi

, (3.50)

which coincides with (3.43). �

Eliminating the waterlevel ϑ from (3.43) and (3.44) yields an explicit relation between rel-
evant information I (ϑ,F ) and compression rate R(ϑ,F ) similar to (3.35). Assuming that the
variancesωi are sorted in descending order, we obtain

I (F , R) =
1
2

my∑
i=1

log2
1+ γi

1+ 2−2Ri (R,F )γi
, (3.51)

where the rate allocated to mode i is given by

Ri (F , R) =
�

R
j (R,F )

+
1
2

log2
ωi

ω j

�+
. (3.52)

Here, j (R,F ) =max
�

i : Rc,i (F )≤ R
	

denotes the number of active modes, which increases at
the critical rates

Rc,i (F ) =
1
2

i∑
k=1

log2
ωk

ωi
, (3.53)

cf. (3.31), (3.33) and (3.34).

Direct MSE-optimal quantization of y′ corresponds to F = I (i.e., no filtering) and noisy
source coding [82] corresponds to F = FW = Γ (I +Γ )

−1 (i.e., Wiener filtering). Surprisingly,
these two approaches are in general suboptimal in terms of the rate information tradeoff. We
next identify the uniformly rate information optimum filter F? that satisfies I (F?, R)≥ I (F , R)
for all F and any R.
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Theorem 6. The optimum filter F? is given by the square root of the Wiener filter (cf. (3.13)),

F? = F 1/2
W = Γ 1/2(I +Γ )−1/2 = diag

�p
µi
	my

i=1 (3.54)

and achieves the same rate information tradeoff as the GIB information-optimal projection.

Proof : The claim follows from observing that with F = F? and ϑ = 1/(β−1), (3.43) and (3.44)
coincide with the optimal GIB tradeoff (3.22) and (3.23), respectively. (Recall the relations of
eigenvalues (3.14).) �

Lemma 3. The number of active modes satisfies

j (R, I ) ≥ j (R,F?) ≥ j (R,FW), (3.55)

which in turn is equivalent to

Rc,i (I ) ≤ Rc,i (F?) ≤ Rc,i (FW). (3.56)

The critical rates are furthermore related as

Rc,i (F?) =
Rc,i (I )+Rc,i (FW)

2
. (3.57)

Proof: The expression (3.56) and (3.57) can be verified directly from (3.53). The double inequal-
ity (3.55) follows from the definition of j (R,F ) in terms of the critical rates. �

3.2.2 Information Rate Tradeoff for Different Filtering Approaches

We note that any scaled version of F? is also rate information optimal. If the nonzero mode
SNRs are identical, i.e., if γi ∈ {γ , 0}, then we have FW =

p
γ/(γ + 1)F? and hence in this case

MSE-optimal noisy source coding is rate information optimal. However, for widely different
mode SNRs γi , FW and other suboptimal filters perform substantially worse.

We next consider the filters F (n) ¬ F n
W = diag

�
µn

i

	my

i=1 to illustrate the transition from
the unfiltered case (n = 0) to rate information optimal filtering (n = 1/2) and Wiener filtering
(n = 1). We assume my = 10 and mode SNRs γi = 2−c i , i = 1, . . . , my , with c chosen such
that C (γ ) = 1. Figure 3.4a shows the information rate curve I

�
F (n), R

�
for various n. Direct

quantization without filtering (n = 0) is seen to perform worst among the curves shown be-
cause it uses too many modes and allocates too little rate to the strongest modes (cf. Lemma 3).
As n increases, the information rate tradeoff improves and is identical to the GIB optimum
for n = 1/2. Increasing n beyond 1/2 deteriorates the rate information performance. Noisy
source coding with Wiener filtering (n = 1) performs slightly poorer than the optimal solu-
tion since according to Lemma 3 too few modes are used, i.e., too much rate is allocated to the
strongest modes. Interestingly, the information rate curve is no longer concave for n > 1/2.
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Figure 3.4: (a) Information rate function I
�
F (n), R

�
, (b) distortion rate function, (c) MSE (3.60) when

using a noise whitening filter, (d) MSE (3.62) for white noise without whitening filter, for various filter
exponents n

Finally, we note that in general, the relative order in terms of information rate performance
for various n depends on the distribution of the mode SNRs γi .

Next, we analyze the impact of F (n) on the rate distortion tradeoff (3.41) and (3.42) as well
as on the MSE between quantizer output z and channel input x. Recall that W is the Wiener
filter for estimating Hx from y. Thus, in the whitened and decorrelated domain, F = FW

minimizes E
�‖Fy′− x′‖2� where we define x′ ¬UTC−1/2

n Hx. According to [82], the Wiener
filter is also optimal for noisy source coding, i.e., using a source code designed for x on the
Wiener filtered observation y is optimal in terms of minimizing the MSE distortion between
the source and the decoder output. In the whitened and decorrelated domain, this MSE is given
by

ε(F ) =E
�‖z− x′‖2� . (3.58)
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According to (3.15), (3.39) and (3.45),

z= BF UTC−1/2
n Hx+BF UTC−1/2

n n+ u (3.59)

and x are jointly Gaussian, so we can express (3.58) in terms of the eigenvalues εi of the covari-
ance matrix Cz−x′ ,

ε(F ) =
my∑
i=1

εi ( fi ) =
my∑
i=1

(bi fi − 1)2γi + b 2
i f 2

i + bi Di . (3.60)

Note that due to the effect of the noise whitening filter,

lim
γi→∞

lim
Di→0

εi ( fW ,i ) = lim
γi→∞

γi

1+ γi
= 1, (3.61)

i.e., the error does not vanish for infinite SNR and resolution. For white noise, Cn = σ
2I , we

can omit the noise whitening filter in our derivations and obtain

ε′(F ) =
my∑
i=1

ε′i ( fi ) =
my∑
i=1

(b ′i fi − 1)2ρi + b
′2
i f 2

i σ
2+ b ′i D ′i , (3.62)

with mode powers ρi given by the eigendecomposition HCxHT =Udiag{ρi}
my

i=1 UT. Hence,
for the noiseless case and perfect quantization,

lim
σ2→0

lim
D ′i→0

ε′i ( f
′

W ,i ) = lim
σ2→0

σ2 γ ′i
1+ γ ′i

= 0, (3.63)

where the components of the Wiener filter are again given by f ′W ,i =
γ ′i

1+γ ′i
with γ ′i =

ρi
σ2 . Note

that both (3.60) and (3.62) depend on the rate R via the waterlevel parameter, cf. (3.46). In
Figure 3.4b, we plot D(F (n), R) as a function of the rate for various filters F (n). As we can
see, D becomes increasingly smaller for larger n. This is because the optimal forward channel
is the solution minimizing D = E

�‖w− z‖2�, i.e., it takes into account F and minimized D
for any F . Since increasing n reduces the overall variance of w due to µi < 1, increasing n also
reduces the absolute value of E

�‖w− z‖2�.

This is different for the MSEs (3.60) and (3.62). Here, we face a mismatch between the
objective of the forward channel and minimizing (3.60) and (3.62), where the mismatch can be
corrected by using the appropriate filter. In fact, Figure 3.4c and Figure 3.4d confirm the result
of [82] that the Wiener filter is optimal for noisy source coding. Interestingly, the MSEs are
increasing in R for some choice of coefficients n, reflecting that the mismatch is not adequately
corrected by those filters. At this point, we want to emphasize that except for FW, neither
(3.60) nor (3.62) are distortion rate functions, i.e., they are not necessarily non-increasing or
convex. Finally, note that Figure 3.4c and Figure 3.4d appear to be very similar up to a differ-
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ence in scaling which is due to the effect of the noise whitening. For this particular example,
we chose a noise variance σ2 = 0.1 for the non-whitened error (3.62). We can confirm that
both ε(F , R) and ε′(F , R) converge to their respective limits limR→∞ ε(FW, R) ≈ 1.202 and
limR→∞ ε′(F ′W, R)≈ 0.1202 as given by (3.61) and (3.63).

3.2.3 Extension to Stationary Random Processes

We next derive an extension of our results to the case where x[k] and n[k] are independent
stationary Gaussian processes with power spectral densities Sx(θ) and Sn(θ) and

y[k] =
∞∑

k ′=−∞
h[k ′]x[k−k ′]+ n[k], (3.64)

with h[k] the impulse response of a linear time-invariant filter. For a finite time interval of
duration n, this model reduces to (3.1) with H a Toeplitz matrix induced by h[k] and all
covariance matrices being Toeplitz as well.

We can then obtain asymptotic frequency-domain versions of all results derived above by
defining R(I ) and I (R) in terms of the mutual information rate

I (x;y)¬ lim
n→∞

1
n

I (xn ;yn) (3.65)

and by invoking the fundamental eigenvalue theorem of Grenander and Szegö (cf. [41, Chap-
ter 7] and [39, Theorem 4.2]) for the continuous positive function log+2 . In particular, MSE-
optimal source coding of the filtered observation w[k] =

∑∞
k ′=−∞ f [k ′]y[k−k ′] with power

spectral density
Sw(θ) =

��F (θ)��2 ���H (θ)��2Sx(θ)+ Sn(θ)
�

(3.66)

leads to the rate information tradeoff (cf. (3.43), (3.44))

I (ϑ, F ) =
1

4π

∫ π

−π
log+2


 1+Γ (θ)

1+ϑ Γ (θ)
|F (θ)|2(1+Γ (θ))


dθ, (3.67)

R(ϑ, F ) =
1

4π

∫ π

−π
log+2

 ��F (θ)��2�1+Γ (θ)�
ϑ

!
dθ. (3.68)

Here, F (θ) and H (θ) denote the frequency responses of the filter f [k] and the channel h[k]
and we used the SNR spectrum

Γ (θ) =
��H (θ)��2Sx(θ)/Sn(θ). (3.69)
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The optimal filter is given by

F?(θ) =

√√√ Γ (θ)
1+Γ (θ)

, exp
�
jφ(θ)

�
(3.70)

with arbitrary real valued phase function φ(θ). Plugging (3.70) into (3.67) and (3.68) and sub-
stituting ϑ = 1/(β−1), the optimal rate information tradeoff for stationary sources is charac-
terized by the parametric equations

I (β) =
1

4π

∫ π

−π
log+2

�
β− 1
β

�
1+Γ (θ)

��
dθ, (3.71)

R(β) =
1

4π

∫ π

−π
log+2

�
(β− 1)Γ (θ)

�
dθ. (3.72)

Hence, Theorems 4 to 6 remain valid and the parametric expressions (3.22), (3.23), (3.43)
and (3.44) are replaced by (3.67), (3.68), (3.71) and (3.72).

3.3 Operational Setting and Coding Theorems

In the preceding sections, we mainly focused on analyzing information theoretic tradeoff prob-
lems. In this section, we will give operational meaning to some of those tradeoffs. Further-
more, based on the results from Section 3.2, we argue that for Gaussian sources, information-
optimal source codes can be designed based on codes that are optimized towards a small MSE.

3.3.1 A Coding Theorem for Jointly Gaussian Relevance and Observation

In Section 2.1.3, rate information coding was introduced for sequences of discrete, iid random
variables. In this section, we show that similar results can be obtained for Gaussian vectors,
i.e., the achievable region of rate information codes is again determined by the information
rate or rate information function, cf. Definition 2. Recall that we define the achievable region
R as the set of pairs (R, I ) for which a (2nR, n) rate information code exists such that for some
(large) n, I RI ≥ I , where I RI can be defined as either (2.18) or (2.19). We can then formulate a
coding theorem for a sequence of Gaussian vectors with jointly Gaussian relevance similar to
Theorem 2.

Theorem 7. Consider a sequence of vectors (xn ,yn) drawn iid from a Gaussian joint distribution,
i.e. (xi ,yi ) ∼ N (0,Cx,y) for i = 1, . . . , n, with full rank Cx,y ∈ Rmx×my . We then have R(I ) =
inf(R,I )∈R R and I (R) = sup(R,I )∈R I with R(I ) and I (R) as in Definition 2 for the above setting
of relevance and information.

Proof sketch: The proof is rather technical, so we will only outline it and refer to the literature
whenever possible. First, note that it suffices to show the proposition for R(I ), since I (R) is
the inverse to R(I ), cf. [34, 111].
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To show the converse, we need to show that for any code satisfying I RI ≥ I , the code rate
R code is lower-bounded by R(I ). This can be done analogously to the discrete case (cf. [34]
or [21, Section 10.4]) by replacing entropies with differential entropies and noting that for
Gaussians, R(I ) is convex and non increasing [112].

In order to prove achievability, we need to show that for any I and ε > 0, a code of rate
R= R(I ) can be constructed with I RI ≥ I − ε. For rate distortion coding and discrete sources,
achievability is usually shown using random codebook generation and typicality de- and en-
coding, cf. [21]. The extension to continuous sources is then reduced to the achievability for
the discrete case via quantization. Here, one exploits the fact that the mutual information of
two continuous variables can be approximated arbitrarily well by the mutual information of
increasingly finer quantizations of those variables cf. [28, Section 2.3 and Section 3.8] and [38,
Chapter 5]. Specifically, we have

I (x,y) = sup
a,b

I
�
a(x); b (y)

�
, (3.73)

where the supremum is taken over all finite-valued functions a and b .

For rate information coding the argument is similar, however, the extension is less straight-
forward since in addition to the mutual information between encoder input and decoder out-
put, we also have to consider the mutual information between source and relevance. Let
[x] = a(x) and [y] = b (y) denote the quantization with finite valued functions a and b . Based
on (3.73), we argue that the achievability for any sequence of discrete pairs

�
[xi ], [yi ]

�
implies

the achievability for the continuous case. For the details on this transition cf. [72]. �

Next, we discuss a potential extension of Theorem 7 to the case of stationary ergodic Gaus-
sian processes. Note that for rate distortion codes, one can define

Rn(D) = inf
p(zn |yn)

1
n

I (yn ,zn) subject to E [ρn(y
n ,zn)]≤D , (3.74)

with ρn as in (2.3) and (2.4). It is then shown in [7, Section 7] that

lim
n→∞Rn(D) =R(D) (3.75)

exists and that R(D) is in fact the rate distortion function of a stationary ergodic source y[k].
Similarly, we define

Rn(I ) = inf
p(zn |yn)

1
n

I (yn ,zn) subject to
1
n

I (xn ,zn)≥ I , (3.76)

and note that for n→∞, the tradeoff (3.76) is given by (3.71) and (3.72). We thus conjecture
that (3.71) and (3.72) characterize the rate information function for jointly stationary- and
Gaussian, ergodic relevance and observation (note that the joint stationarity of x[k] and y[k]
is implied by (3.64)). We do however not have a formal proof for this, as the measure-theoretic
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Figure 3.5: Operational model for channel output quantization

concepts that are required to conduct a proof along the lines of [7, Theorems 7.2.4 and 7.2.5]
are beyond the scope of this work.

3.3.2 Capacity under Channel Output Quantization

Due to (3.35) and (3.38), one might be tempted to think of I (R) as the capacity of the chan-
nel (3.1) under output compression, i.e., the maximum attainable rate of communication I
over the channel under some compression rate constraint R on the output. In Figure 3.5, we
illustrate such a setting for a general iid channel. Here, a discrete message m is encoded by
f : {1, . . . , 2nRt }→ Ct ⊂X n and transmitted over an iid channel

p(x |y) =
n∏

i=1

p(xi |yi ). (3.77)

The channel output y is then subject to quantization

Qn : Yn→ Cq ⊂Zn with rate Rq =
log2 |Cq |

n
(3.78)

followed by a decoder g : Zn→{1, . . . , 2nRt }. Define the achievable region R for this setting as
the pairs (Rr , Rq ) for which a code and quantizer exist such that for any ε > 0, P{m 6= m̂}< ε
for some n. Unfortunately, we could not find a simple single letter characterization for the
general problem of a vector quantizer (3.78). However, once we restrict ourselves to a single,
scalar (potentially probabilistic) quantizer, we can obtain the following result.

Theorem 8. Consider the system depicted in Figure 3.5 with discrete memoryless channel (DMC)
p(y|x) where a single scalar quantizer is used on all channel outputs, i.e. zi =

�
Qn(z

n)
�

i =Q(yi )
with Q : Y→Z for all i = 1, . . . , n. Then

sup
(Rt ,Rq )∈R

Rt = max
p(x),Q

I (x,z) subject to log2 |Z | ≤ Rq , (3.79)
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with deterministic quantizer Q.

Proof: The statement follows straightforwardly from the channel coding theorem [87] for
DMCs by noting that any quantizer Q can be represented by a conditional pmf p(z |y), es-
sentially transforming the DMC p(y|x) into a DMC

p(z |x) =∑
y∈Y

p(z |y)p(y|x). (3.80)

The quantizer introduces an additional degree of freedom into the maximization of the mu-
tual information between channel input and transformed channel output, giving rise to the
optimization over both p(x) and Q in (3.79). The constraint log2 |Z | ≤ Rq is due to Cq = Zn

for scalar quantizers, cf. (3.78). To show that Q is deterministic, note that we argued in Sec-
tion 2.1.4 that (2.24) is maximized by a deterministic mapping p(z |y) for any p(x, y). �

An extension of Theorem 8 to continuous output channels under an input power con-
straint is possible by first adding a cost constraint to the discrete case followed by a transition
to the continuous domain via the limit of increasingly finer quantization, cf. [28, Section 3.3
and 3.4]. For an average power constraint 1

n
∑n

i=1 xi ≤ P for all xn ∈ Ct , the capacity is then
given by

max
p(x),Q

I (x,z) subject to log2 |Z | ≤ Rq , E

�
x2�≤ P. (3.81)

Unfortunately, unlike the unquantized case, (3.81) is notoriously difficult to solve due to the
double optimization. The authors of [90] analyze (3.81) for AWGN channels and symmetric
quantizers with convex assignment regions, i.e., p(y|x)∼N (x,σ2), Q(y) = z⇒Q(−y) =−z
and Q(y1) =Q(y2) = z ⇒Q

�
θy1+ (1−θ)y2

�
= z, ∀θ ∈ [0,1]. Under symmetry and binary

quantization (|Z |= 2), there is no need for an optimization over Q and (3.81) is maximized by
p(x =±pP ) = 1/2, yielding

I (x,z) = 1− h

�
Q
�√√√ P

σ2

��
, (3.82)

where h(p) ¬ −p log2 p − (1− p) log2(1− p), 0 ≤ p ≤ 1 is the binary entropy function and
Q(x) ¬ 1p

2π

∫∞
x exp

�−ζ 2/2
�
dζ . For |Z | > 2, (3.81) can only be optimized numerically. In

Figure 3.6, we compare (3.82) to the Gaussian tradeoff (3.35) for mx = my = 1. While a Gaus-
sian input distribution p(x) maximizes I (x;z) for a Gaussian p(z |x) and a Gaussian p(z |y)
maximizes I (x;z) for jointly Gaussian p(x, y), Figure 3.6 shows that Gaussian p(x) and p(z |y)
are generally not jointly optimal. Lastly, note that —similar to the design of deterministic
quantizers in Section 2.1.4— the rate constraint I (y;z)≤ R is dropped in favour of a limitation
on the size of the output alphabet |Z |.
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Figure 3.6: I (x,z) as a function of SNR γ for a fixed quantization rate of R= I (y,z) = 1 bit.

3.3.3 Deriving Rate Information Codes from Rate Distortion Codes

In this section, we discuss how the relationships we derived in Section 3.2 can be used to obtain
codes with high average relevant information from codes that are optimized towards low MSE.
Throughout this subsection, we denote length-n operational sequences of elements as vectors,
i.e., xn = x , where x could be a vector itself. Assuming xi = (xi ,1, . . . , xi ,m) is a length-m
vector, then x = (x1, . . . , x n) = (x1,1, . . . , x1,m , . . . , xn,m).

We begin by briefly revisiting the case of MSE-optimal source coding of a disturbed source.
Sakrison showed in [82] that

Yn
k ¬

¦
y
��
E

�‖ x− x k‖2 | y= y
�≤E

�
‖ x− x j‖2 | y= y

�
, ∀k 6= j

©

=
¦

y
�� ‖x̂(y)− x k‖2 ≤ ‖x̂(y)− x j‖2, ∀k 6= j

©
,

(3.83)

where y is a randomly perturbed version of x and x̂(y) is the (generally non-linear) MMSE
estimate of x from some particular y. For jointly Gaussian x and y the MMSE estimation is
equivalent to Wiener filtering. This means that any MSE-optimal code designed for a source
x can by employed on x̂(y) and minimizes the MSE between decoder output and source given
the observation y.

In Section 3.2, we derived the equivalence between the GIB and the linearly prefiltered rate
distortion forward channel, i.e., we showed that through linear preprocessing, p(z |y) can be
made identical for both cases. Unfortunately, this does not imply a direct operational relation
such as (3.83), i.e., in general, irrespective of the filter F ,

¦
y
�� d (y, z k )≤ d (y, z j ) ∀k 6= j

©
6=
¦

y
�� ‖F y − z j‖2 ≤ ‖F y − z k‖2 ∀k 6= j

©
, (3.84)
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for z k taken from an MSE optimized codebook Zn =
�

z
�� z = fn(gn(y)), y ∈Yn	 and2

d (y, z ) =D
�

p(x |y)‖p(x |z ) � (3.85)

with

p(z |y) =



1, fn(gn(y)) = z ,

0, otherwise,
(3.86)

implied by the code.
Nonetheless, the equivalence in p(z |y) for appropriately chosen F implies the existence of

codes that minimize E
�

Fy− gn

�
fn(Fy)

�

2� and maximize the average relevant information
(2.19) under a given code rate constraint, i.e., there exist codes that reach both the rate dis-
tortion tradeoff (Lemma 2) as well as the rate information tradeoff (Theorem 4). To see this,
we turn to the achievability proof of the rate distortion theorem using typicality coding. For
typicality coding, the codebook Zn is randomly generated from p(z |y), i.e., z k are generated
by drawing iid samples from p(z) =

∑
y∈Y p(z |y)p(y) and y is mapped to z k if (y, z k ) are

jointly typical. Since p(z |y) is identical when using the square root Wiener filter, this implies
the existence of said code.

Furthermore, even though the theory does not allow for an exact equivalence between
information- and MSE-optimal codes, numeric results suggest that there is practical merit to
the equivalence of p(z |y). For mx = my = m = 5 we generated 105 length-m vectors x =
(x1, . . . , xm) and applied (3.1), (3.15) and different filters F (n) = diag

�
µn

i

	5
i=1, cf. Section 3.2.

We then designed MSE optimized codebooks of different rates using the LLoyd-Max algorithm
on the filtered samples and estimated the average mutual information3

1
m

m∑
k=1

Î (xk ,z). (3.87)

Here, xk , k = 1, . . . , m is the kth input component, z(x) ∈ {1, . . . , 2R} is the index of the code-
word corresponding to x and Î (xk ,z) has been estimated independently for each dimension
based on [55]. In Figure 3.7, we plot the estimated average relevant information as a function
of the code rate. As we can see, the best information rate performance is achieved by the square
root Wiener filter F (0.5), followed by the Wiener Filter F (1).

2Assuming we employ the definition (2.19). When using (2.18), then d (y, z ) =
∑n

i=1 d (yi , zi )with d as in (2.12)
and marginals of (3.86) .

3We chose (3.87) as a figure of merit because computing the mutual information analytically is not possible and
the mutual information of random vectors (e.g. I (x,z) ) can not be estimated reliably.
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Figure 3.7: Estimated average relevant information (2.18)



Chapter 4

Quantized Message Passing LDPC
Decoding

In this chapter, we derive quantized message passing decoders where the LDPC VN and CN
node updates are realized as generic look-up tables (LUTs). cf. Section 2.2. Furthermore, we
provide a general analysis of LDPC decoding with LUTs that is independent of the specific
LUT design and we identify LUT decoding as a form of quantized BP.

Specifically, in Section 4.1, we derive fundamental symmetry constraints for LUT decoding
and obtain the general result that LUT decoding can be viewed as a form of BP, where after
every iteration, the outputs of the BP node updates are projected onto a finite message set by the
use of LUTs. Section 4.2 then discusses the design of information-optimal LUTs that respect
the required symmetries, as well as hybrid min-LUT decoding and hierarchical LUT structures
for complexity reduction. Next, Section 4.3 introduces LUT decoders for irregular LDPC
codes. Eventually, Section 4.4 discusses performance and design aspects of LUT decoders and
presents numerical results that illustrate how design parameters affect decoding performance.

4.1 Symmetric Discrete Message Passing and Density Evolution

Recall that for BP-based decoding, the update rules (2.59) and (2.61) combine real-valued LLR
messages by algebraic operations and well-known real functions. By design, the BP decoding
algorithm seeks to find the probability that a certain code bit was either zero or one, condi-
tioned on the received channel output, while taking into account the parity check constraints
of the code. For practical implementations of BP, messages are quantized and approximated
by fixed point numbers but the LLR interpretation of messages is still upheld.

There is also a large class of heuristic discrete message passing schemes that are designed
to mimic BP, (e.g., [78, Example 7]). These algorithms operate on finite message sets that are
subsets of the realsR or integersZ and therefore also use operations such as multiplication and
addition to combine messages.

In the case of LUT decoding, we deal with discrete message sets and update rules (2.50)

55
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and (2.51) that are a priori devoid of any algebraic structure or probabilistic interpretation.

Previous work mainly focused on design methodologies for the LUT updates, e.g., maxi-
mizing the local information flow through the code’s factor graph [59, 60, 80, 81], or reducing
error floors that are a common problem for quantized decoding [74]. To the best of our knowl-
edge, no general, systematic analysis of LUT decoding exists in the literature.

In what follows, we derive a generalized framework based on discrete density evolution
that links LUT decoding to BP — irrespective of the particular LUT design methodology. For
that, we first extend the sign-based symmetry concepts from Section 2.2.3 to discrete messages
using involutions, cf. Section 4.1.1. Furthermore, we introduce a duality between discrete mes-
sages and their LLR values that we define using the message pmfs of density evolution. This
duality will turn out to be useful in several aspects: First of all, we use it to establish algebraic
structure on the discrete message sets. We later exploit this structure in Section 4.2 for reduced
complexity LUT designs as well as for the derivation of the hybrid min-LUT algorithm. Sec-
ondly, we use the duality to show that discrete symmetric message passing can be interpreted
as quantized BP, where after every message update, LLRs are projected back onto a finite set.
This is a fundamental result, as it implies that many concepts originally developed for BP de-
coding carry over to LUT decoding. In fact, we use this result to analyze the stability of LUT
decoding in Section 4.3.

4.1.1 Message Labels, Values and Symmetry

Let x ∈GF(2) and k denote a label from a finite set K= {0,1, . . . ,K−1}with conditional label
pmf pk|x(k|x). At this point of the discussion, we use the generic label set K as a placeholder;
after establishing some basic concepts, we will substitute the LLR and message sets L, M`,
M` and product sets thereof for K, cf. Section 2.2.1. We define the (LLR) value corresponding
to label k in terms of the conditional label pmf,

k ′ ¬ L(k) = log
pk|x(k|+ 1)

pk|x(k| − 1)
∈K′, (4.1)

cf. (2.30). Without loss of generality, we only consider the case where (4.1) is bijective, i.e.,
there are no labels k1, k2 that share the same LLR, k ′1 = k ′2. The more general case can always
be reduced to a bijective relation by means of label merging. That is, if k ′1 = k ′2, we merge k1

and k2 into a new label k3 with conditional probability pk|x(k3|x) = pk|x(k1|x) + pk|x(k2|x),
corresponding to k ′3 = k ′2 = k ′1. As pointed out in Section 2.1.4 , merging labels with the
same LLR leaves the mutual information I (k,x) unchanged and hence, both the merged and
unmerged case are identical from an information-theoretic point of view.

Due to the bijection between K and K′,

pk|x(k|x) = pk′|x(k
′|x). (4.2)
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Combining (4.1) and (4.2), we see that LLR-consistency (2.86) holds for all LLRs k ′ ∈K′.
Instead of using the sign-based symmetry concepts from Section 2.2.3, we define symmetry

for discrete conditional pmfs as follows:

Definition 3 (Discrete, symmetric, conditional pmf). A pmf pk|x(k|x), k ∈ K, x ∈ GF(2) is
symmetric if there exists an involution π : K→K such that for any k ∈K and ¬k ¬π(k)

pk|x(k|+ 1) = pk|x(¬k| − 1). (4.3)

In this context an involution π on K is a permutation on K that is self inverse:

π(k1) = k2 =⇒π(k2) = k1 ∀k1. (4.4)

We use the unary ¬ operator on K to denote the inverse to an element according to the
involution π. By (4.4), we have ¬(¬k) = π

�
π(k)

�
= k. In terms of LLR values, we can see

from (4.1) and (4.3) that label inversion corresponds to a sign inversion of the corresponding
LLR value:

L(¬k) =−L(k) =−k ′. (4.5)

Without loss of generality, we order labels according to their LLRs1, i.e.,

k ′0 < k ′1 < · · ·< k ′K−1. (4.6)

Using this ordering, we have

π : k 7→modK−1(K − 1− k). (4.7)

All the sign-based definitions and results of Section 2.2.3 carry over to the labels in a one-to-one
fashion, except that the message inversions based on the − sign are replaced by the involution
inversion ¬. Let ¬bµ denote the involution inversion according to the signs of the GF(2)
vector b of a second vector of the same length, i.e. (¬bµ)i = ¬µi if bi =−1 and (¬bµ)i =µi

if bi = +1. Now, assuming symmetry as per Assumption 1 holds for LUT-based message
passing, i.e.,

pL|x(L|x) = pL|x(¬L| − x), (4.8)

Φ
(`)
j (¬bµ) = ¬par bΦ

(`)
j (µ), (4.9)

Φ(`)i (¬L,¬µ) = ¬Φ(`)i (L,µ), (4.10)

the well-known proofs apply in an analogous way and it follows that the messages are iid and

1We once again use the argument that changing the order of labels (which is a bijective permutation) does not
affect the mutual information I (x,k).
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symmetric, where (2.76) is replaced by

p (`)
µ|x(µe | − xn(e)) = p (`)

µ|x(¬µe |xn(e)). (4.11)

Consequently, the VN-to-CN and CN-to-VN message pmfs p (`)
µ|x(µ|x) and p (`)

µ|x(µ|x) are iid and
symmetric throughout the decoding process and thus, the use of density evolution assuming
x =+1 is justified. The elements of the value sets M′

`
, M′

` and L′ are defined in coherence to
(4.1),

L′ = log
pL|x(L|+ 1)

pL|x(L| − 1)
, µ′ = log

p (`)
µ|x(µ|+ 1)

p (`)
µ|x(µ| − 1)

, µ′ = log
p (`)
µ|x(µ|+ 1)

p (`)
µ|x(µ| − 1)

, (4.12)

for all iterations `. Note that even if the label sets M` and M` are constant over `, the mes-
sage value sets change over the course of iterations, reflecting the evolution of message densities.
Implementations of LUT decoders only deal with labels, however, the fact that the value sets
evolve during the decoding process is accounted for by using different LUTs for each iteration
in general. Realizing that LUTs act as quantizers on LLR values (cf. Section 4.1.4), this also ex-
plains the good performance that LUT decoders can achieve with very low resolutions: Rather
than covering the entire dynamic range of message values over all iterations, separate LUT up-
dates can be designed for different iterations, only covering the dynamic range of values for
their corresponding iteration.

4.1.2 Sign-Magnitude Interpretation of Labels

In Definition 3, we introduced inverse elements to all labels based on a self inverse permutation.
As pointed out in (4.5), label inversion corresponds to a sign inversion of the respective LLR.
Furthermore, we established an ordering on the set of labels in terms of their LLR values, cf.
(4.6) and (4.7). Combining all of the above allows us to infer information on the LLR value
from the message label:

• For K even and a given label k ∈ K = {0, . . . ,K − 1}, we can obtain the sign of the
associated LLR k ′ from the sign of the label, which we define as follows:

sign(k ′) = sign(k)¬



−1, k <K/2

+1, k ≥K/2
(4.13)

• For k1, k2 ∈K, we can compare two messages in terms of their LLR

k1 ≶ k2 ⇐⇒ k ′1 ≶ k ′2 (4.14)

• Finally, we can move back and forth between the conventional label representation and a
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sign-magnitude based representation with magnitude | · | : {0, . . . ,K−1}→ {0, . . . ,K/2−
1}

|k|¬



k , k <K/2,

K − 1− k , k ≥K/2,
(4.15)

and sign defined (4.13).

4.1.3 Product Distributions

At the VNs, tuples (L,µ) of incoming messages are combined into outgoing messages by the
update rules (2.50); similarly, at the CNs a tuple µ is processed by the update rule (2.51). For
discrete density evolution, the conditional pmf of the outgoing messages simply follows by
collecting the probability mass of the preimage of the outgoing messages, i.e.,

p (`)
µ|x(µ|x) =

∑
(L,µ): Φ(`)(L,µ)=µ

p (`)
L,µ|x(L,µ|x), (4.16)

p (`+1)
µ|x (µ|x) =

∑
µ: Φ

(`)
(µ)=µ

p (`)
µ|x(µ|x). (4.17)

Consequently, the product pmfs p (`)
L,µ|x(L,µ| x) and p (`)

µ|x(µ|x) of incoming messages are essen-
tial to discrete density evolution. For iid input messages distributed according to pµ|x(µ|x) and
pµ|x(µ|x), the product distributions have first been derived in [59]:

pL,µ|x(L,µ|x) = pL|x(L| x)
i−1∏
m=1

pµ|x(µm |x), (4.18)

pµ|x(µ|x) = 22− j
∑

x : par x=x

j−1∏
n=1

pµ|x(µn |xn). (4.19)

The product distributions can be shown to exhibit the following symmetry properties,
which will turn out to be useful for LUT design in Section 4.2.

Lemma 4 (Symmetry of product pmfs). For any b ∈ GF(2) j−1 and iid input messages with
symmetric pmfs (4.11), the product distributions (4.18) and (4.19) are symmetric according to

pL,µ|x(¬L,¬µ|x) = pL,µ|x(L,µ| − x), (4.20)

pµ|x(¬bµ|x) = pµ|x(µ|x par b). (4.21)

Proof: (4.20) follows trivially from (4.18) using the symmetry (4.11) of the individual pmfs. To
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show (4.21), note that

pµ|x(¬bµ|x) = 22− j
∑

x : par x=x

j−1∏
n=1

pµ|x(µn |bn xn) = 22− j
∑

x ′: par(x ′�b)=x

j−1∏
n=1

pµ|x(µn | x ′n)

= 22− j
∑

x ′: par x ′ par b=x

j−1∏
n=1

pµ|x(µn | x ′n) = pµ| x(µ|x par b) �

By combining (4.8) to (4.10), (4.16) and (4.17) and Lemma 4, an induction proof for Lemma 1
(with (2.76) replaced by (4.11)) can also be given in terms of the product distributions.

4.1.4 LLRs of Product pmfs - Relating LUT decoding and BP

A relationship between LUT decoding and BP can be established by calculating the LLR values
of tuples that are incident to the node updates. By combining (4.12), (4.12), (4.18) and (4.19),
the LLR values of the tuples can be expressed in terms of the individual message LLRs.

Theorem 9. For a tuple of CN-to-VN message labels µ = (µ1, . . . ,µi−1) and channel output L,
the LLR value of the combination is given by

L(L,µ) = log
pL,µ|x(L,µ|+ 1)

pL,µ|x(L,µ| − 1)
= L′+

i−1∑
m=1

µ′m . (4.22)

For a tuple of VN-to-CN message labels µ = (µ1, . . . ,µ j−1), the LLR of the combination is
given by

L(µ) = log
pµ|x(µ|+ 1)

pµ|x(µ| − 1)
= 2atanh

 
j−1∏
n=1

tanh
�µ′n

2

�!
. (4.23)

Proof: Eqn. (4.22) follows trivially from (4.18) and (4.12).
To prove (4.23), let x = (x1, . . . , x j−1) ∈GF(2) j−1 and let the index setJ (x ,µ) = {n1, . . . , nk}

be defined such that signµn = xn for n ∈J (x ,µ) and signµn 6= xn for j 6∈J . Without loss of
generality, assume pµ|x(µ| signµ)≥ pµ|x(µ| − signµ), then by (4.12),

|µ′|= log
pµ|x(µ| signµ)

pµ|x(µ| − signµ)
(4.24)

and hence

j−1∏
n=1

pµ′| x(µ
′
n |xn) = exp

 ∑
n∈J (x ,µ)

|µ′n |
!

j−1∏
n=1

pµ′| x(µ
′
n | − signµ′n). (4.25)

Consequently, due to (4.2), we can rewrite (4.19) as

pµ|x(µ|x) =C
∑
x∈Px

exp

 ∑
n∈J (x ,µ)

|µ′n |
!

, (4.26)
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where the constant C depends on µ but not on x, and Px ¬ {x | par x = x}. Thus, the LLR
of µ can be computed as

L(µ) = log

∑
x∈P+1

exp
�∑

n∈J (x ,µ) |µ′n |
�

∑
x∈P−1

exp
�∑

n∈J (x ,µ) |µ′n |
� . (4.27)

From (4.27), we can already see that the magnitude of L(µ) only depends on the magnitude
of the elements of µ′ and the sign is determined by the parity of µ′. Thus, it is sufficient to
consider the case where µ′ has positive parity. For k ∈ {1, . . . , j − 1}, let us define

Σk =
∑
C∈CJ

k

exp

 ∑
j∈C
|µ′j |

!
, (4.28)

where C j−1
k

denotes the set of all
� j−1

k

�
message index combinations of length k. Then (4.27)

becomes

log
Σ j−1+Σ j−3+ · · ·+Σ2+ 1

Σ j−2+Σ j−4+ · · ·+Σ1
(4.29)

for j odd and

log
Σ j−1+Σ j−3+ · · ·+Σ2

Σ j−2+Σ j−4+ · · ·+Σ1+ 1
(4.30)

for j even, which we can combine to

L(µ) = log

j−1∏
n=1

�
e |µ

′
n |+ 1

�
+

j−1∏
n=1

�
e |µ

′
n |− 1

�

j−1∏
n=1

�
e |µ

′
n |+ 1

�
−

j−1∏
n=1

�
e |µ

′
n |− 1

� = 2atanh

 
j−1∏
n=1

tanh
� |µ′n |

2

�!
. (4.31)

Together with the aforementioned sign inversion property of (4.27), this proves the claim. �

By comparing (2.59) and (4.22) as well as (2.61) and (4.23), we can see that Theorem 9
establishes a link between discrete message passing and BP decoding. Tuples of input labels are
combined by LUT updates, corresponding to a quantization in the LLR value domain. E.g., let
Φ−1(µ)⊂L×Mi−1

be the preimage of some updated message µ under the VN update Φ and
let Φ′−1(µ) be the set of LLRs corresponding to the preimage based on (4.22). Then applying
the LUT Φ on the labels, all LLRs in Φ′−1(µ) are quantized to

L(µ) = L
�
Φ(L,µ)

�
= log

∑
(L,µ)∈Φ−1(µ) pL,µ|x(L,µ| + 1)∑
(L,µ)∈Φ−1(µ) pL,µ|x(L,µ| − 1)

. (4.32)

Thus, LUT decoding is essentially a form of quantized BP. The discrete structure of labels
and LUTs allows for very simple, low resolution implementations, while essentially acting
as iteration-dependent LLR quantizers, given that we use different update mappings for each
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Figure 4.1: VN LUTs acting as LLR quantizers at the beginning (`= 1) and towards the end (`= 20)
of the decoding of a (3,6) LDPC code over a BI-AWGN channel with σ = .84 and information-optimal
LUTs (cf. Section 4.2) with |M`| = |M`| = 12 ∀`. Notice that both quantizer input and output LLR
values are larger towards the end of decoding.

iteration, cf. Figure 4.1.

Without using LUTs to constraint the size of message sets, discrete message passing is equiv-
alent to BP decoding starting with a discrete set of channel outputs:

Example 1. Consider a concatenation of a BI-AWGN channel with σ = .84 and a 2 bit quantizer,
followed by a discrete decoder for a (3,6) LDPC code. The channel output quantizer is designed to
maximize the mutual information between channel input and quantizer output [109], producing
the conditional pmf pL|x(L|+1) =

�
0.0216 0.0953 0.2429 0.6402

�
for L=

�
0 1 2 3

�
and

pL|x(L|− 1) = pL|x(3−L|+ 1), cf. (4.7). According to (4.12), L′ =
�
−3.39 −0.94 0.94 3.39

�
.

Initially, there are no CN-to-VN messages and thus M0 =L. For the first CN update, (4.23) yields
|M1| = 12 distinct output message values. Plugging combinations of those into (4.23), we obtain
|M1|= 292 different VN-to-CN message values. Figure 4.2 illustrates the evolution of message pmfs
and the rapid growth in the number of labels.
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Figure 4.2: Evolution of message pmfs without using a LUT to constrain the size of the message sets.
Starting from 4 messages, we already have 292 messages after one CN and one VN update.



64 Chapter 4. Quantized Message Passing LDPC Decoding

4.2 LUT based Node Updates

In the previous section, we established some basic algebraic structure for the discrete messages
of LUT decoding and derived a fundamental relationship between discrete message passing and
BP. In this context, LUT decoding can be regarded as BP, where after each node update, the
set of output LLRs is quantized to a smaller set by using a LUT.

In this section, we focus on the design of such LUTs, following the approach of [58, 59] (cf.
Section 2.1.4 and Algorithm 3) to construct LUTs that maximize the local information flow
through the code’s factor graph. However, instead of just applying Algorithm 3, we simplify
the LUT design by exploiting the algebraic relations we established in Section 4.1.2, while also
ensuring that the symmetries of Assumption 1 are guaranteed by the LUTs. Consequently,
we are able to reduce LUT complexity and show that it is even possible to replace CN LUTs
by an algebraic update rule applied to the labels. We conclude this section by introducing the
concept of LUT trees to further reduce LUT size and make LUTs applicable to high-degree
nodes.

4.2.1 Mutual Information based LUT Design

We are interested in finding LUT node updates that maximize the flow of relevant information,
i.e., the mutual information between messages and code bits. More precisely, an information-
optimal LUT maximizes

Φ? = argmax
Φ∈Q

I
�
Φ(y);x

�
, (4.33)

where the LUT inputs y ∈Y depend on the type of the node update. E.g., when designing Φ(`)i ,

i.e. the VN update of degree i for iteration `, we associate Y =L×Mi−1
` . We considered this

problem in Section 2.1.4, where it was shown that for binary relevance, an optimum solution
can be obtained by Algorithm 3 with complexity O

�|Y |3).
In what follows, we will further restrict the search space of mappings to symmetric quan-

tizers,
Φ(¬y) = ¬Φ(y), ∀y ∈Y , (4.34)

and show that this is sufficient to arrive at a symmetric message passing scheme according to
Assumption 1. Too see this, we need to associate Y with the set of message tuples and identify
the inverse elements of tuples in terms of Definition 3 and the product pmfs (4.18) and (4.19).
This can be done by utilizing the symmetries of Lemma 4. For the VN updates, Y =L×Mi−1

and according to (4.20), the inverse element to y = (L,µ) is ¬y = (¬L,¬µ), and thus, (4.10)
follows from (4.34). For the CN LUTs, we first partition

Y =M j−1 =
⋃
|µ|

�
M|µ| ∪ ¬M|µ|

�
, (4.35)

where M|µ| ⊂M j−1 denotes the set of all tuples with magnitudes |µ| and even parity and
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¬M|µ| is the equivalent set of odd parity vectors. Now note that due to (4.23), all tuples within
M|µ| share the same LLR and can thus be merged into a single LUT input y. Conversely, the
elements of ¬M|µ| can be merged into the corresponding inverse LUT input ¬y. Indeed, it
follows from (4.21) that p(M|µ||+ 1) = p(¬M|µ|| − 1) so that (4.9) is guaranteed by applying
symmetric quantizers (4.34) to the merged events M|µ| and ¬M|µ|. Implementation wise, this
corresponds to a preprocessing of input messages according to (4.13) and (4.15), i.e., separating
sign and magnitude of the tuple prior to the CN LUT updates. For both VN and CN prod-
uct pmfs, label inversion corresponds to LLR value sign inversion, cf. (4.5), (4.22) and (4.23).
Moreover, the (merged) product pmfs (4.18) and (4.23) are symmetric, and thus we can assume
p(¬y|x) = p(y| − x) for designing a symmetric quantizer (4.34).

Considering the above and denoting the preimage of some z ∈Z asYz ⊂Y , we can develop
the mutual information as follows:

I (x;z) =
∑

x
px(x)

∑
z

pz|x(z |x) log2

pz|x(z |x)
pz(z)

=
∑

sign z>0

iz , (4.36)

where the partial mutual information (2.35) is given by

iz ¬
∑
Yz

py|x(y|1) log2

∑
y∈Yz

py|x(y|1)∑
y∈Yz

py(y)
+
∑
Yz

py|x(¬y|1) log2

∑
y∈Yz

py|x(¬y|1)∑
y∈Yz

py(y)
. (4.37)

Due to the symmetry constraints, the quantizer design is reduced to the positive domain
sign z > 0, effectively halving the number of quantizer input and output labels. Consequently,
we can use a reduced complexity variant of Algorithm 3 with a complexity reduction from
O
�|Y |3� to O

�|Y |3/8� due to |Y | → |Y |/2 for the symmetric case. Furthermore, the imple-
mentation complexity of a symmetric LUT is only half of the unsymmetric case, because for
any Φ and y ∈ Y , we can use a mapping Φ+ which is restricted to the positive domain of Φ to
arrive at the corresponding output by separating the input into sign and magnitude,

z = sign y Φ+(|y|). (4.38)

Lastly, note that due to the merges of the VN-to-CN message tuples µ into events M|µ| and
¬M|µ|, the size of the CN LUTs is reduced even further by preprocessing input tuples.

4.2.2 The min-LUT Algorithm

In the previous section, we discribed how the complexity of CN LUTs can be reduced by the al-
gebraic structure and symmetry we introduced in Section 4.1. Based on this structure, it is even
possible to completely eliminate CN LUTs. Specifically, (4.13) to (4.15) are sufficient to use the
MS update rule (2.63) based on only the labels, completely eliminating the need for a CN LUT.
This hybrid min-LUT decoding algorithm has first been introduced in [6, 67] for regular codes.
Especially for high-rate regular codes, the CN degree dc is substantially larger than the VN de-
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gree, resulting in higher implementation complexity; E.g., for the 10GBaseT LDPC code [53],
dv = 6 and dc = 32. In Section 4.4, we present a comparison between purely LUT based de-
coders and min-LUT decoders, highlighting the excellent performance-complexity tradeoff of
the min-LUT approach.

4.2.3 LUT Trees

So far, we discussed LUTs that combine all input messages at once, i.e., for VNs, we identified
Y = L×Mi−1

` and for CNs Y =M j−1
`

as the LUT input sets. However, with increasing
node degrees, the size of the input sets grows exponentially. E.g., for |M| = 8, i.e., a message
resolution of 3 bit, and 8 incoming messages, there are already more than 16 million input
message combinations, which is prohibitively complex for practical purposes.

To overcome this problem, we restrict ourselves to nested update rules, e.g., for a VN of
degree i = 6, a possible nesting could take the form

Φ6(L,µ1, . . . ,µ5) = Φ6,0
�
Φ6,1(µ1,µ2,µ3),Φ6,2(µ4,µ5), L

�
. (4.39)

Any such nesting can be represented graphically by a directed tree, where the leaf nodes cor-
respond to the LUT inputs and the inner nodes represent intermediate LUTs. The particular
nesting (4.39) corresponds to tree T2 in Figure 4.3. Since we assume iid messages, the order-
ing of the arguments in the nesting is immaterial and we consider nestings that differ only in
the ordering as equivalent. Recalling the LLR value quantization effect of LUTs, cf. (4.32)
and Figure 4.1, intermediate VN LUT updates can be thought of as a sum-and-quantize oper-
ation. Likewise, intermediate CN LUT updates correspond to a boxplus-and-quantize oper-
ation, cf. [42]. Furthermore, note that the symmetry of intermediate mappings implies the
symmetry of the overall mappings.

Lemma 5. Let Φ be a nested mapping represented by a LUT tree T with J non-leaf nodes and let
Q = {Φ1, . . . ,ΦJ } denote the set of all constituent mappings. Then the following propositions are
true:

1. If all Φ j ∈Q fulfil the symmetry condition (4.10), then so does the overall mapping Φ.

2. If all Φ j ∈Q fulfil the symmetry condition (4.9), then so does the overall mapping Φ.

Proof: We prove the proposition for the simple case of a binary nesting, i.e., Φ(µ1,µ2) =
Φ0
�
Φ1(µ1),Φ2(µ2)

�
, and note that the proof extends straightforwardly to any nesting. If Φ0, Φ1

and Φ2 fulfill (4.10), then with µT =
�
µT

1 µT
2

�
,

Φ(¬µ) = Φ(¬µ1,¬µ2) = Φ0
�
Φ1(¬µ1),Φ2(¬µ2)

�

= Φ0
�¬Φ1(µ1),¬Φ2(µ2)

�
= ¬Φ0

�
Φ1(µ1),Φ2(µ2)

�

= ¬Φ(µ).
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Figure 4.3: Six different LUT tree structures. Note that T1 ≥T T4 ≥T T6, T2 ≥T T5, T3 ≥T T5, and
T3 ≥T T6. However, we cannot compare T2 with T3 or T5 with T6 using the relation ≥T .

Similarly, if Φ0, Φ1 and Φ2 fulfill (4.9), then with µT =
�
µT

1 µT
2 )
�

and bT =
�
bT

1 bT
2

�
,

Φ(¬bµ) = Φ(¬b1
µ1,¬b2

µ2)

= Φ0
�
Φ1(¬b1

µ1),Φ2(¬b2
µ2)

�

= Φ0
�¬par b1

Φ1(µ1),¬par b2
Φ2(µ2)

�

= ¬par b1
¬par b2

Φ0
�
Φ1(µ1),Φ2(µ2)

�

= ¬par b Φ(µ) �

While the nested structure clearly reduces complexity, it is not clear a priori which tree
structures are preferable. In what follows, we provide guidelines on how to choose the tree
structure based on information-theoretic arguments and a heuristic metric as well as practical
considerations. For the moment, we do not distinguish between messagesµ and channel input
L; the discussion of the location of L within the tree is deferred to the end of this subsection.

Partial ordering

Let Q1 and Q2 denote the set of all LUTs that respect the nesting induced by some trees T1 and
T2. We call the tree T2 a refinement of T1 iff Q1 ⊇ Q2. Graphically, a refined tree is derived
from the original by the placement of new inner nodes between parent and child nodes. Thus,

max
Φ∈Q1

I
�
Φ(L,µ);x

�≥ max
Φ∈Q2

I
�
Φ(L,µ);x

�
.

Consequently, tree refinement defines a partial ordering ≥T , effectively inducing a hierarchy
in terms of maximum information flow. However, since the totality axiom is not fulfilled, not
all tree structures can be compared in terms of the relation ≥T , cf. Figure 4.3.
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T T1 T2 T3 T4 T5 T6

δ 10 11 11 14 16 19
σ∗ 0.5330 0.5328 0.5327 0.5313 0.5309 0.5305

Table 4.1: Comparison of cumulative depth and density evolution threshold for various tree structures
(cf. Figure 4.3) for the regular (6,32) ensemble. Here, all LUTs had a resolution of 3 bit.

A heuristic metric

The data processing inequality states that processing can only reduce mutual information.
Therefore, for maximum information flow, the paths from the input leaves to the root out-
put should be as short as possible. We thus define the cumulative depth δ(T ) of a tree T as
the sum of distances of all leaf nodes to the root node. Density evolution simulations con-
firm that cumulative depth is useful in ranking tree structures. Table 4.1 shows how a larger
δ corresponds with a lower threshold. However, the threshold differences are small and our
simulations have shown that all the trees presented here perform similar in terms of error rate.

Implementation Perspective

From an implementation point of view, binary trees are most attractive because they allow for
the smallest LUTs. Previous work [59, 60, 80] considered only what we refer to as maximum-
height binary trees, cf. Figure 4.4a. This type of trees are attractive for software implementa-
tions of LUT decoding, as the tree structure can be handled by a simple loop. However, in
terms of the metric δ, maximum-width trees are to be preferred, cf. Figure 4.4b. Indeed, we
found in density evolution threshold simulations as well as in BER simulations that maximum-
width trees perform slightly better. Moreover, maximum-width trees are more parallelizable
because of their smaller height, which is especially true for larger node degrees. The tree height
scales logarithmic in the number of inputs, whereas the height of maximum-height trees grows
linearly with the number of inputs. Consequently, these trees allow for shorter path delays and
faster decoders [33] and thus are generally preferable to maximum-height trees. Due to these
reasons, all density evolution and error rate simulation results presented in this chapter are
carried out for binary, maximum-width LUT trees. Finally, note that no matter which binary
tree is chosen, the number of LUTs is always equal to the number of tree inputs minus one.
This is because any binary tree representing a nesting is a full binary tree.

Position of the Channel LLR

The mutual information between the CN-to-VN messages and the coded bits is initially zero
and increases over the course of iterations until at some iteration I (µ(`

′);x) ≥ I (L;x). Using
a similar argument as before, we can conclude that until iteration `′ the channel LLR should
be placed close to the root node to ensure a large information flow. After iteration `′, the
CN-to-VN messages tend to carry more information than the channel LLR and thus should
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Figure 4.4: A maximum-height tree with δ = 9 (a) vs. a maximum width tree with δ = 8 (b) with 4
inputs

be placed closer to the root node. Our simulations show that this strategy indeed provides the
best frame error rate (FER) performance; however, the loss as compared to the case where the
channel LLR stays at the root node is only relevant for a large number of iterations (L > 20).

4.3 LUTs for Irregular LDPC Codes

In this section, we focus on the analysis and design of information-optimal LUT decoders for
irregular LDPC codes. For this scenario, multiple distinct LUTs Φ(`)i : L ×Mi−1

` → M`

and Φ
(`)
j : M j−1

`
→M`+1 must be designed for all degrees i ∈ Dv, j ∈ Dc at any iteration `.

Due to the non trivial degree distributions (DDs) of irregular codes, an additional probabilistic
dimension is introduced to the maximum mutual information LUT design. We take this into
account by deriving a joint LUT design for irregular codes, which can be formulated as an
instance of the symmetric quantizer optimization problem discussed in Section 4.2.1. In a
second step, based on asymptotic stability analysis and numeric density evolution results, we
argue that DDs optimized for conventional BP based algorithms [18, 77] are not well suited
for LUT decoding and proceed to derive optimized DDs for LUT decoding.

4.3.1 Joint LUT Design

To shorten the discussion, we do not distinguish between VN and CN updates in what follows
and use a generic notation with node updates Φ, degree indices d ∈ D and DDs pd(d ). A
straightforward approach would be to optimize the mappings separately, i.e., we solve

argmax
Φd :Yd→Z

I
�
x,Φd (yd )

�
(4.40)

over the probability space X ×Yd for any degree d ∈D individually. However, this approach
does not take into account the DD and hence, cannot be expected to maximize the quantity of
interest,

argmax
Φ:Y→Z

I
�
x,Φ(y)

�
(4.41)
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with joint distribution

px,yd ,d(x, yd , d ) = px(x)pd(d )pyd | x,d(yd |x, d ). (4.42)

In this setting, we identify pairs (yd , d ), i.e., the joint event that some degree d and a particular
yd ∈Yd occur as the quantizer inputs Y . Thus, we can view Φ : Y→Z as a |D|-tuple of jointly
optimized mappings (Φd )d∈D, where each Φd : Yd → Z is itself an update rule for a certain
node degree.

Due to the independence of the code degree and channel input (4.42), we have

L(yd , d ) = log
pyd ,d|x(yd , d |+ 1)

pyd ,d|x(yd , d | − 1)
= log

pyd |x,d(yd |+ 1, d )

pyd |x,d(yd | − 1, d )
= L(yd ). (4.43)

Hence, any optimal symmetric quantizer Φ? for the optimization problem (4.41) with con-
tiguous regions on LLRs of (yd , d ) ∈ Y , can be broken down into a |D|-tuple of quantizers
(Φ?d )d∈D, each of which has contiguous quantization regions and is symmetric. Consequently,
the symmetric quantizer design algorithm of Section 4.2 can be used to obtain a jointly optimal
tuple of LUT updates. Note that the quantizer input LLRs (4.43) only depend on the condi-
tional message distribution for a given degree pyd |x,d(yd |x, d ) but are independent of the DD
pd(d ). However, according to (4.42), the probability of the joint event (yd , d ) depends on the
DD and thus, for different DDs, different LUTs are optimal in general. Care must be taken in
the case of LUT trees, where the joint design procedure applies only to the design of the root
node LUTs, as illustrated in the following example.

Example 2 (Joint LUT design according to (4.41)). Consider a code with VN DD λd , d ∈
{2,3,4} and tree structures as depicted in Figure 4.5. At iteration `, the CN-to-VN message pmf
p (`)
µ|x is incident to the VNs, i.e., incident to the leafs of the trees. Now starting at the leaf nodes, for

every VN degree d ∈D, the intermediate LUTs Φd ,k are designed recursively, until arriving at the
intermediate conditional pmfs pµ|d,x that are incident to the root nodes Φd ,0.

At this point the DD comes into play. Rather than solving (4.40) and designing Φd separately,
we are going to take into account the DD and perform a joint design according to (4.41). To this end,
we identify the inputs to the joint quantizers as a triple consisting of channel input L, intermediate
message µ and degree d with conditional pmf

p (`)
L,µ,d|x(L,µ, d |x) = p (`)

µ|d,x(µ|x)pL|x(L|x)pd(d ). (4.44)

The performance difference between the individual design (4.40) and the joint design (4.41)
can be significant. Figure 4.6 shows the density evolution thresholds for irregular LDPC codes
with DDs from Table 4.2 obtained with the two LUT design strategies over a BI-AWGN chan-
nel. It is seen that the density evolution thresholds for the individual LUT design (4.40) are
worse than those of the joint design (4.41) and even decrease for larger message alphabets
(higher quantizer resolutions), thereby confirming the superiority of the joint LUT design.



4.3. LUTs for Irregular LDPC Codes 71

Φ2,0

p (`)
µ|x

pµ|d=2,x

pL|x

λ2

Φ3,0

Φ3,1

p (`)
µ|x p (`)

µ|x

pµ|d=3,x

pL|x

λ3

Φ4,0

Φ4,1

Φ4,2

p (`)
µ|x p (`)

µ|x

p (`)
µ|x

pµ|d=4,x

pL|x

λ4

Φ

p (`)
µ|x

Figure 4.5: VN density evolution update for an irregular LDPC code using LUT trees

l λl (x) ρl (x) σ?LUT σ?BP

1 0.16385x + 0.40637x2+ 0.42978x7 0.59105x6+ 0.40876x7+ 0.00019x8 0.89657 0.91775
2 0.13805x + 0.40104x2+ 0.02659x8+ 0.43433x16 0.32338x7+ 0.67662x8 0.92919 0.95075

3 0.30013x + 0.28395x2+ 0.41592x7 0.22919x5+ 0.77081x6 0.583182 0.9497

4 0.23802x + 0.20997x2+ 0.03492x3+ 0.12015x4+
0.01587x6+ 0.00480x13+ 0.37627x14 0.98013x7+ 0.01987x8 0.603642 0.9622

Table 4.2: DD pairs (λ,ρ) for rate 1
2 codes and density evolution thresholds for a BI-AWGN under LUT

and BP decoding. The pairs 1 and 2 have been optimized for LUT decoding of quantized BI-AWGN
channels using the method described in Section 4.3.3, pairs 3 and 4 are taken from [77] and have been
optimized for BP decoding. For the LUT thresholds, a resolution of 4 bits and the min-LUT algorithm
have been used.

Another take away point from Figure 4.6 is the performance of the BP-optimized ensemble
(λ4,ρ4), cf. Table 4.2. Even with the joint design, the irregular ensemble performs worse than
a regular (3,6) code.

4.3.2 Degree Distributions for LUT Decoding

Another insight offered by Figure 4.6 is as follows. For the (λ4,ρ4) ensemble (taken from [77]),
the threshold with jointly designed LUTs falls substantially short of the BP threshold even at
high resolutions. This indicates that these ensembles are ill-suited for LUT decoding. Similar
observations have been made in [93]. The authors of that paper also showed how irregular DDs
can be designed to take into account and mitigate the effects of quantization in MS decoding.

In what follows, we set out to find DDs that are optimized for LUT decoding. To this end,
special attention is paid to the degree 2 VNs. Due to the minimal extrinsic information they
receive, they are the most difficult to decode, especially for quantized extrinsic information.
For the case of BP decoding, the decisive role of degree 2 nodes has been quantified in [77] by
means of an asymptotic stability analysis, providing upper bounds on the fraction of degree 2
edges (the probability of degree 2 edges in the (λ4,ρ4) ensemble from [77] is indeed fairly close
to that bound). Since LUT decoding can be viewed as a degraded form of BP, it seems intuitive
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Figure 4.6: Density evolution thresholds versus message resolution for different LDPC ensembles (cf.
Table 4.2) in a BI-AWGN channel with individual and joint LUT design. Arrows on the right margin
indicate the corresponding BP thresholds.

that the fraction of degree 2 edges should be lower for LUT decoding. To quantify this line of
reasoning, we consider a linearization of message pmfs around the fixed point ∆∞ [77]. For
erasure-type VN-to-CN messages with pmf p (`)

µ|x = 2ε∆0+(1−2ε)∆∞, we can then show that
for too large of a fraction of degree 2 edges, the error probability is necessarily bounded away
from 0, i.e., there exists ξ > 0 such that Pe(p

(`)
µ|x) = ε≥ ξ .

Lemma 6. Consider a DD (λ,ρ) and a symmetric channel pmf p0. Furthermore, define

r ¬− lim
n→∞

1
n

logPe(p
(n)
0 ), (4.45)

where p (n)0 =Q`(p
(n−1)
0 ⊗ p0) for some sequence of quantizers {Q`}n`=1. Then if λ′(0)ρ′(1)> e r ,

there exists ξ > 0 such that Pe(p
(`)
µ|x)≥ ξ for any erasure-type message pmf p (`)

µ|x.

Proof: We prove the proposition by contradiction, i.e., we show that if p (`)
µ|x is a VN-to-CN

erasure-type message pmf with arbitrarily small error probability ε, then under the conditions
of the lemma, the error probability would increase over iterations, which is a contradiction. To
see this, we assume that the mass at∞ is not affected by quantization, and neglect the effects
of CN quantization. Due to Theorem 9, without CN LUTs, one round of LUT decoding is
identical to one round of BP decoding up to VN quantization. Since a symmetric VN quan-
tizer (4.34) does not affect the error probability and for BP decoding, the error probability is
non increasing and thus the claim follows. We first examine how p (`)

µ|x evolves during a single

iteration. Let p (`)
µ|x be incident to a CN of degree j . We want to determine the output density

and are only interested in terms that are at most linear in ε. Given the inputs 0 and∞, the
output of the BP CN update (2.61) is either∞, if all j − 1 inputs are∞ or 0, if at least one
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or more inputs are 0. The event that more than one 0 occurs has probability proportional to
O(ε2) and can be neglected, so that for the pmf after the CN update

(1− 2ε) j−1∆∞+
�

j − 1
j − 2

�
2ε∆0+O(ε2) = ( j − 1)2ε∆0+

�
1− ( j − 1)2ε

�
∆∞+O(ε2), (4.46)

and averaged over CN degrees,

2ερ′(1)∆0+
�
1− 2ερ′(1)

�
∆∞+O(ε2). (4.47)

Now suppose this density is in turn incident to a VN of degree k and let p0 denote the channel
LLR density. At the output of the VN, we have




2ερ′(1)p0+
�
1−ρ′(1)2ε�∆∞+O(ε2), k = 2,

∆∞+O(ε2), k > 2,

and after averaging over all degrees, and quantizing we obtain (note that λ′(0) = λ2)

2ελ′(0)ρ′(1)Q1(p0)+
�
1− 2ελ′(0)ρ′(1)

�
∆∞+O(ε2). (4.48)

Consequently, after n iterations, p (`)
µ|x evolves to

p (`+n)
µ|x = 2ε(λ′(0)ρ′(1))n p (n)0 +

�
1− 2ελ′(0)ρ′(1)

�n∆∞+O(ε2).

Since, we assume that λ′(0)ρ′(1)> e r and the limit (4.45) exists, there exists ` such that

Pe(p
(`+n)
µ|x ) = 2(λ′(0)ρ′(1))nεPe(p

(n)
0 )

> 2ε+O(ε2)> ε,

for small enough ε. Thus Pe(p
(`+n)
µ|x )> Pe(p

(`)
µ|x), a contradiction, because the error probability

is non increasing. �

Note that for BP decoding, Lemma 6 can be extended from erasure-type message pmfs to
arbitrary pmfs by using the optimality of the BP algorithm [77]. Unfortunately, the extension
for the LUT decoding algorithm is not possible due to the lack of optimality. However, as
we will see in what follows, the upper bound λ′(0) = λ2 ≤ λ∗2 ¬ e r/ρ′(1) is still a valuable
criterion when searching for LUT-optimized DDs. For BP decoding (i.e., without quantizers),
the decoding bound can be explicitly expressed as

r =− lim
n→∞

1
n

logPe(p
⊗n
0 ) =

∫
R

p0(x)e
−x/2 dx

[77], whereas for LUT decoding, we have to resort to a numeric approximation. Figure 4.7
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Figure 4.7: λ∗2 for different decoding algorithms and CN DDs (cf. Table 4.2) using resolution of 4 bits
and a BI-AWGN channel with σ = 0.929.

shows the convergence behavior of the decoding bound for both decoder types. As expected,
LUT decoding tolerates fewer degree 2 nodes. Furthermore, the limit can be determined nu-
merically with about 104 iterations. In accordance to our initial reasoning, the bounds for LUT
decoding turn out to be significantly lower than for BP decoding.

4.3.3 Numerical Optimization of Degree Distributions

For a target rate R, we are interested in a DD pair (λ,ρ), of maximum density evolution thresh-
old under LUT decoding. We follow the hill climbing approach of [18], taking into account
the bound λ?2 derived in the previous section.

More specifically, we start with an initial DD with rate R< Rt and iteratively solve linear
programs maximizing the code rate (2.49) by alternating minimization of

∑
j
ρ j
j and maximiza-

tion if
∑

i
λi
i . Additional linear constraints are necessary to limit the search space to the space

of pmfs, to limit the step size, to ensure linearity and to guarantee that updated DDs improve in
terms of error probability [18]. More over, for the VN DD we also impose λ2 ≤ λ∗2. Without
that constraint, the optimization procedure converges to low threshold DDs.
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Summing up, the linear programs are given by

max
λ

∑
i∈Dv

λi

i

subject to∑
i∈Dv

λi = 1,

λi ≥ 0, i ∈Dv,

λ2 ≤ λ∗2,������P`−
∑
i∈Dv

P`|iλi

������≤ δ
�
P`−1− P`

�+ ∀`,

∑
i∈Dv

P`|iλi ≤ P`−1 ∀`,

(4.49)

and
min
ρ

∑
j∈Dc

ρ j

j

subject to∑
j∈Dc

ρ j = 1,

ρ j ≥ 0, j ∈Dc,������Q`−
∑
j∈Dc

Q`| jρ j

������≤ δ
�
Q`−1−Q`

�+ ∀`,

∑
j∈Dc

Q`| jρ j ≤Q`−1 ∀`.

(4.50)

Here, the error probability traces P`|i , Q`| j correspond to the VN-to-CN and CN-to-VN mes-
sage error probabilities for iteration ` and node degrees i and j , respectively (assuming density
evolution with the current DD to be improved by solving the linear program).

Algorithm 4 summarizes the procedure for DD optimization. Note that for the density
evolution runs at lines 4 and 6, there is the possibility that the evolution does not converge
withing sufficient precision for the updated DDs. If this is the case, we scale down the channel
noise and rerun density evolution until convergence. Alternative update schedules are possible
as well.

4.4 Performance and Design Aspects of LUT Decoders

In this section, we focus on the practical aspects of LUT decoder design. This includes choosing
decoder parameters based on system requirements as well as examining decoder simplifications
such as LUT reuse and alphabet downsizing and their impact on performance. Furthermore,
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Algorithm 4 DD optimization for LUT decoding

Input: Initial DD (λ,ρ) with rate R, target rate Rt > R, step size δ, LUT resolution Nq
1: Calculate threshold σ(λ,ρ,Nq )
2: while R< Rt do
3: compute λ∗2(σ ,ρ,Nq )
4: run density evolution and save probabilities P`, P`|i
5: update λ by solving the VN linear program (4.49)
6: run density evolution and save probabilities Q`, Q`| j
7: update ρ by solving the CN linear program (4.50)
8: compute updated rate R(λ,ρ)
9: end while

Output: Optimized DD pair (λ,ρ) for rate Rt

we compare different LUT decoder variants with conventional BP and MS decoders.

4.4.1 Choosing an Operating Point

Due to the iterative, density evolution based design, any information-optimal LUT sequence
depends on the initial density of the channel pL|x. We observed in our simulations that for the
case of quantized BI-AWGN channels, if a decoder was designed for some noise level σ , it also
works well with lower levels σ ′ <σ . This behavior is consistent with density evolution results
and can be understood in the context of LUTs acting as quantizers subsequent to BP updates,
cf. (4.32) and Figure 4.1. Specifically, when decoding an output from a channel with standard
deviation σ ′ with a decoder designed for σ > σ ′, the quantizer sequence Φ(`)(σ) acts more
conservatively than Φ(`)(σ ′)would, however, convergence is still achieved but takes longer due
to the pessimistic quantizers.

We define the BI-AWGN threshold in accordance to (2.70),

σ∗(L , Pe ,λ,ρ) = sup{σ : P (L )e ≤ Pe}, (4.51)

i.e., the highest noise level at which a message error probability Pe can be reached within L

iterations. For calculating limiting thresholds such as those listed in Table 4.2, we let L →∞
and Pe → 0 within machine precision and computational complexity constraints. For a practi-
cal LUT decoder design flow, we specify Pe and L according to the system requirements and
run a density evolution bisection search to find the corresponding threshold which is chosen
as the operating point for the decoder. In this context, we also refer to the operating point
as design SNR, defined as the Eb/N0 value of the threshold noise level, γ ¬−10 log10(2Rσ∗2).
Algorithm 5 summarizes the iterative LUT decoder design process.

Figure 4.8 illustrates the tradeoff between error floor and waterfall performance corre-
sponding to a tradeoff between error probability requirement and resulting threshold in (4.51):
If we increase the tolerated message error probability Pe , higher thresholds are obtained with
a corresponding LUT sequence. Consequently, those LUTs perform better for lower SNRs,
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Algorithm 5 Density Evolution based LUT design

Input: DD (λ,ρ), precision∆σ > 0, maximum error probability Pe , number of iterations L ,
min-LUT flag ML

1: Calculate Rate R(λ,ρ)
2: σmin← 0
3: σmax← 1

22R−1
4: while σmax−σmin >∆σ do
5: σ← (σmax−σmin)/2
6: Get pL|x(L|x) corresponding to BI-AWGN(σ2)
7: achievable← false
8: for `= 0, . . . ,L do
9: Build the product distribution (4.18)

10: Design VN LUT update(s) Φ(`)

11: p (`)
µ|x(µ|x) =

∑
Φ(`)(L,µ)=µ

p (`)
µ|x(µ| x)

12: Build the product distribution (4.19)
13: if ML then
14: p (`+1)

µ|x (µ|x) =
∑

µ: sign(µ)min |µ|=µ
p (`)
µ|x(µ| x)

15: else
16: Design CN LUT update(s) Φ

(`)

17: p (`+1)
µ|x (µ|x) =

∑
Φ
(`)
(µ)=µ

p (`)
µ|x(µ| x)

18: end if
19: if Pe(p

(`)
µ|x)< Pe then

20: achievable← true
21: break
22: end if
23: end for
24: if achievable then
25: σmin← σ
26: else
27: σmax← σ
28: end if
29: end while
30: σ∗← σ

Output: Threshold σ∗, VN LUT sequence Φ(`) (and Φ
(`)

for ML= false)
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Figure 4.8: FER simulations revealing the relation between design SNR γ and error floor. For all
simulations, min-LUT decoders for the length N = 2048, rate R= 0.84 10G Ethernet LDPC code [53]
have been used. All decoders feature 3 bit channel LLRs and messages downsized from 3 to 1 bit over
the course of L = 8 decoding iterations. Out of 8 iterations, only 4 have their own update rules and
the rest is based on LUT reuse.

(i.e., in the waterfall region) at the cost of increased error floors (higher residual Pe ).

4.4.2 LUT Reuse and Alphabet Downsizing

One drawback of LUT decoding as compared to conventional BP and MS decoding is the fact
that LUTs may be distinct for different iterations, i.e., Φ(`) 6= Φ(`′) for ` 6= `′ in general. This
increases complexity when implementing certain decoder architectures, whereas other archi-
tectures such as unrolled decoders [6, 33] or serial decoders are not or only marginally affected.

In Figure 4.9 we show the dependency of the BI-AWGN threshold (4.51) on the maximum
number of decoding iterations for different DDs for both BP and LUT decoding. As we can
see, irrespective of the decoder, regular codes are reaching their threshold faster than irregular
codes but also saturate at lower threshold values. Once again, we can see from the large gap
between BP and LUT threshold performance that the BP optimized DD (λ4,ρ4) is ill suited
for LUT decoding. Furthermore, the BP optimized DD only surpasses the threshold of the
LUT optimized DD for 1000 or more iterations.

Interestingly, the LUT optimized DD (λ2,ρ2) converges towards the limit threshold sub-
stantially faster than the BP optimized ensemble (λ4,ρ4), reaching the limiting value already
for roughly 100 iterations, whereas for (λ4,ρ4), it takes 104 iterations to converge. This in-
dicates that the properties of LUT optimized DDs are not only suited to increase the limit
thresholds but also tend to increase the speed of convergence towards the thresholds. Conse-
quently, the complexity of implementing different LUTs for all iterations is mitigated by the
LUT code design. To even further reduce the number of distinct LUT stages, we propose to
reuse LUTs designed for some iteration ` for some number of subsequent iterations `′ > `.
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Figure 4.9: Density evolution threshold over number of iterations for different DDs (cf. Table 4.2)

While this is not optimal, if designed properly, it serves to reduce decoder complexity at the
cost of a relatively small performance penalty. Let r ∈ {0,1}L denote the reuse pattern, i.e., r`
is 1 if Φ(`) is reused for iteration `+1 and 0 otherwise. In order to keep the impact on decoder
performance as low as possible, we found that the reuse pattern must be carefully designed
for each decoder. Simple, heuristic approaches such as reusing LUTs for a constant number
of iterations throughout the decoding process do not yield satisfactory results. We can once
again explain this by the fact that LUTs act as quantizers on BP message updates: It has been
observed in [77] that the convergence behaviour of density evolution tends to be very inho-
mogeneous, i.e., during some iterations densities evolve fast and Pe decreases a lot, while for
other iterations, decoding almost gets stuck at a fixed point and densities hardly change over
many iterations. Thus, it makes sense to reuse LUTs for the latter case, since due to similar
densities, the optimal LUTs for those iterations should be similar as well. To this end, we sug-
gest a greedy reuse pattern optimization, cf. Algorithm 6. Starting with no reuse at all, i.e.,
r = 0 the greedy algorithm iteratively reuses LUTs that lead to the least worsening in decoder
convergence. That is, each iteration of the algorithm (i.e., lines 4 to 15) probes for the itera-
tion number at which reusing a LUT leads to the fastest convergence of density evolution and
adds a one to the reuse pattern at this iteration. The complexity of this algorithm is O(L 3),
assuming that the number of distinct stages Lu is a fraction of the total number of iterations,
Lu =L (1−α), where 0<α < 1 is the reuse factor.

Yet another way to reduce implementation complexity is message resolution downsizing,
i.e., reducing the size of the message set

|M`′ | ≤ |M`| for `′ > `. (4.52)

The idea here is that during the decoding process, the distribution of labels becomes increas-
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Algorithm 6 Greedy reuse pattern optimization
Input: Number of distinct LUT stages Lu , total number of iterations L , degree distribution
(λ,ρ), channel parameter σ , maximum message error probability Pe

1: i ← 0
2: r ← 0L

3: while i <L −Lu do
4: j←L 1L

5: for `= 1 . . .L do
6: if ¬r` then
7: r ′← r
8: r ′

`
← 1

9: Run density evolution with r ′ and save error trace Pk
10: j`←min{k : Pk ≤ Pe}
11: end if
12: end for
13: `∗← argmin j
14: r`∗← 1
15: i ← i + 1
16: end while
Output: Optimized reuse pattern r

ingly deterministic over iterations, corresponding to the message value pmfs converging to
∆∞, cf. (4.2) and (4.12). Consequently, message values (4.12) are highly concentrated for high
` and thus, a low resolution LUT quantizer can be used without sacrificing much of decoder
performance, cf. Figure 4.1.

Figure 4.10a shows the effects of LUT reuse and alphabet downsizing for the case of a rate
1/2, regular (3,6) LDPC code. The reuse-based decoder with reuse factor α = 0.8 performs
about the same as the decoder featuring a downsize from 3 to 2 bits message resolution for the
last 10 decoding iterations. Both of these two reduced-complexity decoders lose only about
0.1 dB compared to the baseline decoder. Note that LUT reuse and downsizing can be com-
bined but downsizing is only possible at iterations that are not being reused already. Figure 4.8
shows that even with both reuse and downsizing, error floors can be avoided even for short
codes and 3 bits resolution.

4.4.3 Analyzing Decoder Performance

Relative performance of LUT decoder variants

Figure 4.10a shows the FER performance of various LUT decoders. In coherence to the density
evolution threshold results, min-LUT decoders lose very little as compared to purely LUT
based decoders with the same resolution, however, the gap between the two variants increases
for increasing resolutions. Once again, this behaviour can be explained by the analogy between
LUT and BP decoding, cf. Theorem 9: For decreasing message resolution, |M`| → 2, the BP
update rule (2.61) tends towards the MS update rule (2.63).
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Figure 4.10: FER results for a length N = 5000 regular (3,6) LDPC code decoded using L = 20
iterations. (a) Relative performance of various LUT and min-LUT decoders. For the LUT decoders, the
triple (QL,Qµ,σ∗) denotes number of quantization bits for channel LLRs, messages and the design noise
level. (b) Comparison of some of the LUT decoders from (a) with conventional BP and MS decoders.
For fixed point BP and MS decoders, the number in paranthesis denotes the bit width, whereas ∞
indicates floating point precision.
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Note that FER results are consistent with density evolution threshold results in the sense
that higher thresholds correspond to lower FERs. Furthermore, the FER performance gap
between two LUT decoders with thresholds σ∗1 and σ∗2 can be reasonably well approximated
by their thresholds, ∆γ = |20 log10(σ

∗
1/σ

∗
2 )|dB. E.g., for the case of the LUT (4,4,0.8180) and

the min-LUT (3,3,0.7888) decoder, ∆γ ≈ 0.32dB, which matches the gap between the two
respective FER curves fairly well.

Lastly, we also ran simulations using LUT tree structures other than binary maximum-
breadth trees (cf. Section 4.2.3) and found that the FER results matched the density evolution
predictions, thus confirming the superiority of maximum-breadth over maximum-height trees.

LUT decoders vs. conventional MS and BP decoders

Figure 4.10b compares LUT decoders to conventional BP and MS decoders. The min-LUT
(4,4,0.8149) decoder loses only 0.2dB as compared to the floating point BP decoder and it
easily beats the 4 bit fixed point version of the BP decoder that exhibits error floors due to
quantization effects. The min-LUT (4,3,0.7946) decoder performs about the same as a con-
ventional MS decoder at floating point precision using only 3 bits for message representation.
After reducing the resolution of channel LLRs to 3 bits and reusing a fraction of α= 0.8 of the
decoder LUTs, the min-LUT (3,3, .7755) performs still better than a fixed point MS decoder
using 4 bits, especially in the error floor region.

We obtain similar results for irregular codes but we observed that higher LUT resolutions
are necessary to seize their full potential. This also holds true for fixed point versions of MS
decoders, as can be seen by comparing the relative performance of MS(4) decoders for regular
codes (Figure 4.10b) to irregular codes (Figure 4.12). Similar observations have been made
in [93]. Figure 4.11 compares different decoders for regular and irregular, LUT optimized
codes in terms of FER. As expected, (unquantized) BP has the best performance, followed
by the purely LUT based decoder with 4 bits resolution, losing less than 0.2 dB as compared
to the optimal decoder. Consistent with threshold results, the min-LUT decoder performs
slightly worse. With 4-bit messages, min-LUT decoding is within about 0.2 dB of BP decoding.
The min-LUT decoder with reuse factor α = 0.8 is only slightly worse than without reuse,
while reducing the complexity by 80%. A substantial performance loss (0.55 dB from BP)
occurs only after the LUT message resolution is reduced to 3 bit. We also included BP results
for a regular (3,6) code decoded at floating point precision for comparison. Even with 4-bit
LUT decoding, the irregular code outperforms the BP-decoded regular (3,6) code. This is in
agreement with the density evolution results in Figure 4.6: the LUT threshold of (λ2,ρ2) is
below the BP threshold of the (3,6) code for 3 bits of resolution but outperforms the regular
code for 4 or more bits.
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Figure 4.11: FER Simulations for different codes of rate 1/2, length N = 10000 and L = 100 decoding
iterations. Both the regular code Cr and the irregular code Ci have been created using PEG [49] from
the regular (3,6) ensemble and the DD (λ2,ρ2) from Table 4.2, respectively.

LUT decoders for irregular codes

Next, we assess the performance of LUT decoders with LUT optimized codes in a practical
scenario. By using the LUT optimized DD (λ1,ρ1) in (5.120), we created a code with similar
degree structure as the rate 1/2 DVB-S2 LDPC code [29]. Note that the degree structure of
the DVB-S2 code approximately matches the BP optimized DD (λ3,ρ3), and thus, due to the
low threshold, cannot be expected to perform well with LUT decoding. We compare the two
codes for different decoding algorithms in Figure 4.12. As we can see, the DVB-S2 code using
BP performs best. However, quantized MS decoding with 4 and 5 bits entails a huge perfor-
mance degradation and high error floors. For higher resolutions up to floating point precision
(not shown), the water fall region remained unchanged (only the error floors vanished). In
contrast, the LUT-optimized code with 4-bit min-LUT decoding performs much closer to the
BP-decoded DVB-S2 code (BP decoding of the LUT-optimized code is only marginally better
than LUT decoding). We conclude that a LUT-optimized code with 4-bit min-LUT decoding
is capable of outperforming a MS decoder using a standard compliant code at floating point
precision by roughly 0.5 dB.
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Figure 4.12: FER Simulations for the LUT optimized code CLUT and the BP optimized DVB-S2 [29]
code CBP. For for both codes N = 64800 and for all decoders L = 100.



Chapter 5

SMLDPC Codes

In this chapter, we introduce superposition modulated low-density parity-check (SMLDPC)
codes — a new class of codes for continuous input, additive white noise channels. SMLDPC
codes are obtained by combining superposition modulation (SM) [46, 64] with LDPC coding
(cf. Section 2.2). In that sense, they constitute a direct mapping from discrete messages to
length-L codewords in RL or CL — much like in the setting of Shannon’s famous channel
coding theorem for the AWGN channel [87]. Although SMLDPC codes can be viewed as
a concatenation of well known coding and modulation techniques, the resulting code can be
decoded without explicit demodulation. Specifically, we can use message passing decoders with
linear complexity that operate directly on the channel output and produce estimates of the
transmitted data bits.

SMLDPC codes can be viewed as a generalization of conventional LDPC codes [32, 65,
77] and LDHC codes introduced in [114, 115]. Our analysis of SMLDPC codes differs from
the analysis in [114, 115] in that we consider both components of the code —namely the mod-
ulation and the parity check constraints— in a joint and unified fashion rather than designing
and optimizing them separately and matching them based on EXIT analysis (cf. Section 2.3).
In terms of the factor graph of an SMLDPC code, this means that aside from the well-known
check nodes (CNs), we consider variable nodes (VNs) with a 2 dimensional degree structure as
well as symbol nodes (SNs) representing the constraints on the receive symbols. This is in con-
trast to the analysis of LDHC codes in [114, 115], which considers VN-to-SN and VN-to-CN
degrees separately.

Due to our joint, comprehensive approach, and due to the introduction of random SM
coefficients, we are able to extend the asymptotic theory of LDPC codes to SMLDPC codes,
including the famous concentration result (Theorem 3) as well as monotonicity concepts that
give rise to the very same thresholding phenomenon that is exhibited for long LDPC codes.
Furthermore, we show that for BP decoding of SMLDPC codes, the message densities are
symmetric and LLR-consistent, which tremendously simplifies EXIT analysis and guarantees
that the threshold obtained from EXIT analysis is identical to the density evolution threshold
under the assumption of exact EXIT functions. Furthermore, the unified approach allows for

85
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the consistent definition of irregular SMLDPC codes which gives rise to a joint optimization
of degree distributions for both the modulation and parity check degree structure.

The remainder of this chapter is structured as follows. In Section 5.1, we introduce the
system model of SMLDPC codes and the underlying sparse graph that allows for low complex-
ity message passing decoding. Subsequently, Section 5.2 discusses the role of the modulation
coefficients and gives an overview on the vast range of transmission scenarios possible with
different choices of coefficients — among them being Gray coded PAM and QAM, different
variations of LDPC coded SM as well as MIMO transmission over a fading channel. In Sec-
tion 5.3, we then proceed to define a general message passing decoding algorithm and show
how BP decoding is a special instance of such an algorithm. Furthermore, we discuss methods
on how to evaluate the BP SN update and derive novel approximative update rules for the case
of high dimensional SNs. In Section 5.4, we derive the concentration theorem for SMLDPC
codes which ensures that the performance of long codes is adequately characterized by the en-
semble average of the cycle-free case. In Section 5.5, we obtain results on message symmetry
and LLR-consistency and show that the threshold of an SMLDPC code can be obtained via
EXIT analysis. Section 5.6 then introduces irregular SMLDPC codes and Section 5.7 develops
strategies to optimize the irregular degree structure of code ensembles.

Lastly, we want to remark that our original motivation to study SMLDPC codes came
from the desire to extend the quantized message passing decoding scheme we developed in
Chapter 4 to include a LUT mapping that produces discrete messages from quantized, discrete
receive symbols — in other words, a discrete SN update. Searching the literature, we came
across LDHC codes, but quickly realized that without a broader theoretical foundation and
message symmetry, an extension was not possible, which eventually led us to develop those
concepts ourselves.

5.1 Coded Modulation Input-Output Model

We consider superposition modulation of LDPC encoded data transmitted over a complex,
additive white noise channel,

y =Ax +w. (5.1)

Here, w is an iid, zero mean random vector and x = (1− 2c) ∈ {−1,+1}N is the polar version
of an LDPC codeword c ∈ C = {c | H c = 0} with sparse parity check matrix H ∈ {0,1}M×N ,
cf. Section 2.2. The global modulation matrix A∈CLdy×N is sparse as well, so that for

y =




y1
...

yL


 , (5.2)
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the length-dy subvectors y l , l = 1, . . . , L only depend on a small subset xNsl
of coded bits,

y l =
∑

n∈Nsl

a l ,n xn +w l =Al xNsl
+w l , (5.3)

where n ∈ Nsl
= {n1 . . . , n|Nsl

|} are the indices of the non-zero columns a l ,n ∈ Cdy in A[l :

l + dy − 1, :], which constitute the edge coefficient matrix

Al = (a l ,n1
, . . . ,a l ,n|Nsl

|) ∈C
dy×|Nsl

| (5.4)

for receive subvector y l .

Define A1 ∈ {0,1}Ldy×N as (A1)i j = 1{ai j 6= 0}, then due to (5.3), we can decompose

A1 = ΓA⊗ 1dy
, (5.5)

with ΓA ∈ {0,1}L×N characterizing the connectivity between symbol vectors y l , l = 1, . . . , L
and code bits xn , n = 1, . . . ,N . Let the sparse connectivity matrix Γ ∈ {0,1}L+M×N be defined
as

Γ ¬
�
ΓA

H

�
, (5.6)

and let G(Γ ) denote the corresponding, sparse tripartite factor graph, consisting of

Variable nodes: Each column n ∈ {1, . . .N} in Γ corresponds to a coded bit xn which is rep-
resented by a VN vn in the factor graph.

Check nodes: Each row m ∈ {1, . . . M} in H corresponds to a parity check on the codeword
which is represented as a CN cm , i.e., a factor node accounting for the parity check
constraint. A CN side edge e= {vn , cm} connects vn and cm iff (H )mn = 1.

Symbol nodes: Each row l ∈ {1, . . . L} in ΓA corresponds to a received symbol vector y l ,
l = 1, . . . , L, cf. (5.2) and (5.3), which is represented as a symbol node (SN) sl . A SN
is a factor node accounting for the constraints of the linear model (5.3). A SN side edge
e= {vn , sl } connects vn and sl iff (ΓA)l n = 1.

For the moment, assume that this graph is regular in the sense that each row of H contains
dc ones and each column contains dvc nonzero elements, whereas each row of ΓA contains ds

nonzero elements1and each column contains dv s ones. We call dc , ds and dv = (dv s , dvc ) the
CN degree, the SN degree and the VN degree, respectively, where the VN degree is determined
by the VN-to-SN degree dv s and the VN-to-CN degree dvc . Figure 5.1 depicts an example of
a regular graph with corresponding edge coefficient matrices Al , l = 1, . . . , L. The CN side of
the graph characterized by H represents a sparse parity check code (cf. Section 2.2). The SN

1i.e., |Nsl
|= ds irrespective of l .
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v1

v2

v3

v4

v5

v6

v7

v8

v9

A1; s1

A2; s2

A3; s3

A4; s4

A5; s5

A6; s6

c1

c2

c3

A=




a1,1 0 0 0 a1,5 0 0 a1,8 0
0 a2,2 a2,3 0 0 a2,6 0 0 0
0 a3,2 0 a3,4 a3,5 0 0 0 0
0 0 0 a4,4 0 a4,6 0 0 a4,9

a5,1 0 0 0 0 0 a5,7 a5,8 0
0 0 a6,3 0 0 0 a6,7 0 a6,9




H =




1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 1
0 0 1 0 1 1 0 0 0




Figure 5.1: A regular 3-partite graph G with ds = 3, dv = (dv s , dvc ) = (2,1) and dc = 3. Furthermore,
K = 6, N = 9, M =N −K = 3 and L= 6. The dimension dy of the SNs is not visible in the graph. The

rate is given by R= 1
dy
(1− dvc

dc
) ds

dv s
= 1

dy
(1− 1

3 )
3
2 =

1
dy

bit/dimension, or equivalently, R= K
Ldy
= 6

6dy
= 1

dy

bit/dimension. In this example, e.g., A1 = (a1,1,a1,5,a1,8).

side corresponding to ΓA on the other hand represents the mapping from code bits to symbol
subvectors (rows) as well as a sparse repetition code (columns) in case dv s > 1, since the same
code bit then contributes to multiple symbol vectors.

The sparse structure of Γ implies that the number of both VN-to-SN as well as VN-to-CN
edges is linear in the code word length N . Furthermore, for regular graphs, the number of
VN-to-SN edges and VN-to-CN fulfill

Lds =N dv s (5.7)

M dc =N dvc , (5.8)

and thus, the code rate (in bits per/dimension) can be expressed as a function of the node
degrees only,

R=
K

Ldy
=

N −M
dy L

=
1
dy

�
1− M

N

� N
L
=

1
dy

�
1− dvc

dc

�
ds

dv s
. (5.9)
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5.2 Modulation Coefficient Model

So far, we have only considered the connectivity of the sparse modulation matrix. In this sec-
tion, we establish a probabilistic model for the non-zero entries in A and show how the input-
output relation introduced in Section 5.1 can be used to model a wide variety of communica-
tion channels and modulation approaches. We assume that A is known both at the transmitter
and the receiver.

Recall that according to (5.1) and (5.3), the code bit xn contributes to the channel output
y l by adding or subtracting a l ,n , assuming that n ∈ N (l ), or in other words, if there is a
connection between SN sl and VN vn . Hence, we call a l ,n the edge coefficient vector of SN edge
{sl , vn}, where all edge coefficient vectors contributing to a symbol vector y l are assembled in
the edge coefficient matrix Al , cf. (5.3).

5.2.1 Independence and Symmetry

Assumption 2 (Edge coefficient independence and symmetry). The discrete and/or continu-
ously distributed edge coefficient matrices Al ∈Cdy×ds shall fulfill the following symmetry proper-
ties:

1. Coefficients of edges attached to different symbol nodes are independent:

pA1,...,Al
(A1, . . . ,AL) =

L∏
l=1

pAl
(Al ) (5.10)

2. All coefficient vectors are distributed equally according to a single distribution pA(A) over
Cdy×ds :

pAl
(A)≡ pA(A) l = 1, . . . , L (5.11)

3. Column inversion invariance:
pA(A

¬k ) = pA(A), (5.12)

where A¬k is the matrix A with the signs of the kth column inverted.

4. Column permutation invariance: For any permutation matrix P ∈ {0,1}ds×ds we have2

pA(AP) = pA(A). (5.13)

We denote the density of the iid local edge coefficient matrices as pA(A), where as the
density of the global matrix is denoted as pA1,...,Al

(A1, . . . ,AL). Furthermore, note that any

2Note that in contrast to the symmetry properties (5.10) to (5.12), (5.13) is not required for most results pre-
sented in this thesis. This is because the edges that connect SNs and VNs are randomly placed anyways, i.e., per-
mutation occurs in any case from a global perspective. Thus, we can including permutation invariance into the
coefficient model without loss of generality and it will be seen to be useful later on in terms of notation.
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pA′(A
′) can be made to fulfill (5.12) if the data is scrambled with an iid ±1 sequence, i.e., for

any A′ ∼ pA′(A
′),

A=A′diag{si}ds
i=1 (5.14)

with si ∈ {+1,−1} iid and uniform fulfills (5.12). Similarly, permutation invariance (5.13) can
be achieved for any A′ ∼ pA′(A

′) by randomly permuting the data,

A=A′P, (5.15)

withP distributed uniformly over the setPds
of all permutation matrices. From (5.14) and (5.15),

we conclude that for any deterministic A′,

A=A′SP, (5.16)

fulfills both (5.12) and (5.13) for uniform S ∈ Sds
=
�
diag{si}ds

i=1

�� si =±1
	

and P ∈Pds
.

5.2.2 Capacity and Input Power

It follows from (5.3) and Assumption 2 that the probabilistic input-output relationship can be
modeled as a fast-fading MIMO channel [101, Chapter 7], with perfect information at both
transmitter and receiver. Let X = { −1,+1} and assume that the additive iid noise in (5.1) is
complex Gaussian, i.e.

w ∈CLdy , w∼ CN (0, I N0). (5.17)

For any given coefficient distribution, the channel capacity C (in bits per dimension) is then
given by [44]

dyC =−EA


Ey|A


log2

 
1

2ds

1

(πN0)
dy

∑
x∈X ds

exp
�
−‖y−Ax‖2

N0

�!


− dy log2(N0πe)

= ds −
1

2ds

∑
x ′∈X ds

EA


Ew


log2

 ∑
x∈X ds

exp

�
−‖Ax ′−Ax +w‖2+ dyN0

N0

�!


 . (5.18)

To compare different modulation schemes, we need to ensure that the average input power
is the same. Assuming iid code bits, we have Cx = I , and thus, the average power (per dimen-
sion) of the channel input Ax, denoted by P , can be obtained as

dy P =E
� ‖Ax‖2�=Ex

h
xT

¬PA︷ ︸︸ ︷
EA

�
AHA

�
x
i
=Ex

�
xTPAx

�

= tr{PACx}= tr{ PA}=
ds∑

k=1
E

�
aH

k ak
�

, (5.19)



5.2. Modulation Coefficient Model 91

−1 1

−1

1 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Re{aTx}

Im{aTx}

Figure 5.2: 16-QAM constellation and corresponding codebits c = 1
2 (1 − x) generated by aT =

1p
10
(1,2, j, 2j)

where ak are the columns of A =
�
a1, . . . ,ads

�
, i.e., the edge coefficient vectors. Henceforth,

we consider normalized edge coefficients, i.e., E
� ‖Ax‖2�= dy or equivalently, P = 1.

In what follows, we examine different modulation and coding approaches that can be
shown to be a special case of the above framework.

5.2.3 Gray-coded PAM and QAM-modulated LDPC codes

Let dy = 1, i.e., the edge coefficient matrices reduce to length-ds row vectors aT
l . Let M = 2ds

and

aT ∈AM
PAM ¬

(
aTSP

���� S ∈ Sds
,P ∈Pds

,aT =

√√√ 3
M 2− 1

�
20 21 . . . 2log2 M−1

�)
(5.20)

with uniform probability. Then for x ∈ {−1,1}ds with uniform probability, aTx ∈
Ç

3
M 2−1{−(M−

1),−(M − 3), . . . , (M − 1),} with uniform probability. Thus, we can create a M -PAM modula-
tion, where the mapping from the bits to the symbols depends on the coefficient vector aT

l and
in general, is different for any symbol l = 1, . . . , L. Moreover, due to the summation mapping,
it follows that the mapping from bits to symbols follows a Gray code [37].

Similarly, M -QAM constellations can be generated by letting

aT ∈AM
QAM =

�
1p
2

�
aT

R jaT
I

� ��� aT
R,aT

I ∈A
p

M
PAM

�
with uniform probability. (5.21)

Figure 5.2 shows an example.
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Note that for equiprobable constellations generated by (5.20) and (5.21), the capacity (5.18)
becomes the coded modulation capacity [104],

C = log2 M − 1
M

M∑
i=1
E


log2

� M∑
j=1

exp
� |αi +w−α j | −N0

N0

�� . (5.22)

By restricting ourselves to dv s = 1 (i.e., there is no repetition code), we can use our frame-
work to design LDPC codes for bandwidth efficient, high order PAM and QAM constellations
[48, 98, 121]. In this case, the modulation via the coefficient vectors effectively amounts to a
random scrambling, interleaving and Gray mapping from bit vectors to symbols. For a prac-
tical system, both the transmitter and the receiver have to agree on the same scrambling and
permutation sequence (i.e. signs and order of the edge coefficients for different symbols). In-
terestingly, scrambling has already been considered in [48] as a method to symmetrize the
channel and simplify analysis. Later in the text, we will show that the symmetry requirements
in Assumption 2 fulfill a similar purpose. The fact that regular PAM and QAM constellations
can be generated by superposition is also recognized in [64], where it is referred to as “natural
mapping”, as well as in [46, 114], where it is referred to as a special case of “superposition mod-
ulation using unequal power allocation (SM-UPA)”. However, in contrast to those works, we
present a unifying framework for code design so that we can also capitalize on this observation.

5.2.4 Classic Superposition Modulation

Broadly speaking, we refer to classic SM as a set of techniques that allows the modulation sym-
bol to be expressed as a weighted, linear combination of antipodal bits. The motivation for this
approach can be traced back to [27], where it is shown that this technique bears the potential
to achieve capacity on the Gaussian channel without active shaping. Depending on the choice
of weighting coefficients, a wide variety of different modulation schemes is possible. For an
introduction to superposition modulation and an overview on related schemes, the reader is
referred to [46]. The concept of joint sparse graph for both SM demodulation and LDPC de-
coding has been previously established in [46, 114, 115]. More material on SM can be found
in [83, 100, 114–116, 128]. In what follows, we will present several SM approaches. Note that
all of them are special cases and can be described using our unifying framework introduced
in Section 5.1. To meet the symmetry requirements of Assumption 2, we have to introduce
random scrambling, cf. (5.14). Note that it has been observed in [114] that scrambling is nec-
essary to avoid oscillations and error floors in iterative decoders. Furthermore, we generalize
the concept to continuous modulations.
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Figure 5.3: Real SM-EPA constellations for ds = 4 and ds = 16

SM-EPA

We again consider scalar channels, i.e., dy = 1. For

aT ∈Ads
EPA,R ¬

¨
aTS

��� S ∈ Sds
, aT =

1T

p
ds

«
with pa(a) =

1
2ds

, (5.23)

we obtain real valued, scalar superposition modulation using equal power allocation (SM-EPA)
[46, 114, 115]. The resulting channel input t= aTx has binomial distribution, cf. Figure 5.3,

pt(t ) = 2−ds

�
ds

(t
p

ds + ds )/2

�
, t ∈

¨
− dsp

ds

,−ds − 2p
ds

, . . . ,
ds − 2p

ds

,
dsp

ds

«
. (5.24)

For increasing ds , the binomial distribution converges to a Gaussian distribution and there-
fore is potentially capable of achieving the Shannon capacity on the AWGN channel. Contrary
to the schemes in Section 5.2.3, the mapping from bit vectors to symbols is not unique for SM-
EPA, cf. Figure 5.3. According to [115], for non bijective modulations, it makes sense to also
introduce a repetition code by choosing dv s > 1.

We can extend ordinary, real SM-EPA as presented above and in [46, 114, 115] in two ways:
First, similarly to the expansion from PAM to QAM, we can define it over the complex domain
by

aT ∈Ads
EPA,C ¬

�
1p
2

�
aT

R jaT
I

� ���� aT
R,aT

I ∈Ads/2
EPA,R

�
wih pa(a) =

1
2ds

. (5.25)

For tR+ jtI = aTx, we then have

ptR,tI
(tR, tI) = pt(tR)pt(tI) (5.26)

with pt as in (5.24) with ds/2, cf. (5.25). Figure 5.4 shows examples of complex SM-EPA
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Figure 5.4: Complex SM-EPA constellations for ds = 8 and ds = 32

constellations.

Furthermore, it might be beneficial for demodulation if we group dy > 1 symbols together
and perform joint detection, i.e.,

A ∈Ady×ds

EPA,R ¬




1p
ds



±1 · · · ±1
...

. . .
...

±1 · · · ±1







wih pA(A) =
1

2ds dy
, (5.27)

and

A ∈Ady×ds

EPA,C ¬
�

1p
2

�
AR jAI

� ����AR,AI ∈A
dy×ds/2
EPA,R

�
wih pA(A) =

1

2ds dy
. (5.28)

SM-UPA and SM-GPA

SM-UPA and superposition modulation using group power allocation (SM-GPA) have been
introduced in [46]. Unlike SM-EPA, SM-UPA uses coefficients of different power, i.e.,

aT ∈Ads
UPA,R,ρ ¬

(
aTSP

���� S ∈ Sds
,P ∈Pds

,aT =

√√√ 1−ρ2

1−ρ2ds

�
1 ρ . . . ρds−1

�)
(5.29)

with uniform probability. Note that for ρ = 1/2, we obtain PAM modulation according to
(5.20).

A hybrid variant of SM-UPA and SM-EPA is SM-GPA, where groups of G bits share the
same SM-UPA coefficient, i.e.,

aT ∈Ads ,G
GPA,R,ρ ¬

¨
aT⊗ 1T

Gp
G

SP
���� S ∈ Sds

,P ∈Pds
,a ∈Ads/G

UPA,R,ρ

«
(5.30)
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with uniform probability. Note that for G = 1,Ads ,1
GPA,R,ρ =Ads

UPA,R,ρ and for G = ds ,A
ds ,ds
GPA,R,ρ =

Ads
EPA,R. In particular, forρ= 0.5 and G ≥ 3, the resulting constellation is approximately Gaus-

sian and therefore, capable of achieving capacity.

PSM

For phase shifted superposition modulation (PSM) [116], the complex edge coefficients are
given by

aT ∈Ads ,G
PSM ¬

¨
aTSP

���� S ∈ Sds
,P ∈Pds

,aT =
1p
ds

�
1 e jπ/ds . . . e jπ(ds−1)/ds

�«
(5.31)

with uniform probability.

Abstract Modulations

In the previous subsections, we put coefficient models that were previously considered in the
literature into the context of our random coefficient model. Note however, that there is no
apparent reason as to why we should restrict ourselves to those models. We can thus consider
coefficients that are continuously distributed which would result in unique coefficients for each
SN. It is an interesting open problem to find coefficient distributions that are both capable of
achieving the Shannon capacity3 and perform well under iterative decoding.

5.2.5 Modulated MIMO Transmission over a Fading Channel

We consider transmission of modulated symbols Ax over a linear MIMO channel [96] with
channel matrix H ∈Cd ′y×dy , i.e.,

y ′ =A′x +w =HAx +w. (5.32)

Hence, HA=A′ ∈Cd ′y×ds can be seen to be the transformed edge coefficient matrix.

Let ak ∈Cdy , k = 1, . . . , ds denote the columns of A and a′k ∈Cd ′y , k = 1, . . . , ds , denote the
columns of A′. We then have

a′k =Hak , (5.33)

i.e., A′¬k = HA¬k , and hence, for any H, (5.12) holds for pA′ given that it holds for pA. The
same is true for the permutation invariance (5.13). Thus, we can use our model to represent
MIMO transmission with multiple bits per dimension. E.g., assume we use 4-QAM modula-

3i.e., the distributions are such that (5.18) tends towards the AWGN capacity for increasing ds .
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tion independently on each dimension, then

A∈




1p
2




±1 ±j 0 0 · · · 0
0 0 ±1 ±j · · · 0
...

...
. . . . . . . . .

...
0 0 · · · · · · ±1 ±j







(5.34)

is block diagonal and of size dy × 2dy . Multiplication with some general H then introduces
dependencies in between different dimension, i.e., where as y1 =±x1± jx2+w1 only depends
on x1 and x2, y ′1 generally depends on all input bits x1, . . . , xds

.

5.3 Decoding

5.3.1 Message Passing Decoding Algorithm

In what follows, we describe generic message passing decoding of an SMLDPC code. Taking
into account irregular codes (cf. Section 5.6), let ̄ ∈ Ds, (i , k) ∈ Dv and j ∈ Dc denote the
SN, VN and CN degrees, respectively. For the regular codes we considered so far, Ds = {ds},
Dv =

�
(dv s , dvc )

	
and Dc = {dc}.

Input: All receive symbol subvectors y l ∈ Ydy as well as the corresponding modulation co-
efficient matrices Al ∈ Ady× ̄ for l = 1, . . . , L. Furthermore, let L > 0 denote the maximum
number of decoding iterations.

Initialization: Set ` = 0. Initialize all edges in the graph with zero messages, i.e., µ(0)
n→l
=

µ(0)n→m , n = 1, . . . ,N , l ∈Nvn |s and m ∈Nvn |c, where Nvn |s and Nvn |c denote the indices of the
non zero elements in column n of ΓA and H , respectively.

Iteration:

1. CN and SN update. Note that these steps can be done in parallel at the same time.

(a) SN update: For all SNs l = 1, . . . , L, calculate the SN update for all adjacent VNs
n ∈Nsl

Φ(`)̄ : Ydy ×M ̄−1
`
×Ady× ̄−1×Ady →M`, Φ(`)̄ (y l ,µ

(`)
l\n ,Al\n ,a l ,n) =µ

(`)
l→n

(5.35)
where µ(`)

l\n ∈M ̄−1
`

comprises all messages from adjacent VNs except n, cf. Fig-

ure 5.5. In (5.35), we can split Al into Al\n ∈ Ady× ̄−1 which contains all the
columns Nsl

\ n and the column a l ,n ∈ Ady corresponding to VN n, cf. (5.4). In
other words, in contrast to the VN and CN update, the SN update is not invariant
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n1 . . . n ̄−1 n

Al , y l Φ ̄l

µn1→l µn ̄−1→l

µ̄l→n

Figure 5.5: SN update for SN sl with neighborhood Nsl
= {n1, . . . , n ̄−1, n}

with respect to the index of the output message, as there are different edge coefficients
involved with each of them and the SN update needs to take that into account.

(b) CN update. For `= 0, set µ(0)m→n = 0 . In case that ` > 0, for all CNs m = 1, . . . , M
and for all adjacent VNs n ∈Ncm

calculate the CN update

Φ
(`)
j : M j−1

`
→M`, Φ

(`)
j (µ

(`)
m\n) =µ

(`)
m→n (5.36)

where µ(`)m\n ∈M j−1
`

comprises all messages from adjacent VNs except n, cf. Fig-
ure 2.3b.

2. VN update: For all VNs n = 1, . . . ,N , calculate the APP LLRs L(`)n ∈L` via

Ψ(`)
k ,i

: Mk
` ×Mi

`→L` Ψ(`)
k ,i
(µ(`)

n
,µ(`)n ) = L(`)n , (5.37)

whereµ(`)
n
∈Mk

`
comprises all messages incident to VN n from adjacent SNs andµ(`)n ∈

Mi
` comprises all messages incident to VN n from adjacent CNs.

Furthermore, for all VNs n = 1, . . . ,N and all adjacent SNs l ∈Nvn |s and CNs m ∈Nvn |c,
calculate the VN-to-SN update

Φ(`)
k−1,i

: Mk−1
`
×Mi

`→M`+1 Φ(`)
k−1,i
(µ(`)

n\l ,µ
(`)
n ) =µ

(`+1)
n→l

, (5.38)

as well as the VN-to-CN update

Φ(`)
k ,i−1

: Mk
` ×Mi−1

` →M`+1 Φ(`)
k ,i−1
(µ(`)

n
,µ(`)n\m) =µ

(`+1)
n→m , (5.39)

where µ(`)
n\l ∈Mk−1

`
comprises all messages incident to VN n from adjacent SNs except

l and µ(`)n\m ∈M
j−1
` comprises all messages incident to VN n from adjacent CNs except

m.

3. Set ` 7→ `+ 1

4. If x̂n = sign(Ln) fulfill the parity check equation or if `=L , break and output the APP
LLR and/or decoded bits x̂n . If not, continue with step 1.



98 Chapter 5. SMLDPC Codes

m1 . . . mi−1 mi

n Φk−1,i

l1 . . . lk−1 lk

µm1→n
µmi−1→n

µmi→n

µ
l1→n

µ
lk−1→n

µn→lk

(a)

m1 . . . mi−1 mi

n Φk ,i−1

l1 . . . lk−1 lk

µm1→n
µmi−1→n

µn→mi

µ
l1→n

µ
lk−1→n

µ
lk→n

(b)

Figure 5.6: VN-to-SN update (a) and VN-to-CN update (b) for VN vn of degree (k , i) with SN side
neighborhood Nvn |s = {l1, . . . , lk} and CN side neighborhood Nvn |c = {m1, . . . , mi}.

· · · · · · · · · · · ·

vn

Figure 5.7: A tree-like neighborhood of a VN of depth 2`− 1= 3, i.e., N 2`−1
vn

is a tree. Here, dv s = 3,
dvc = 2, ds = 4 and dc = 3. Note that the greyed-out leaf CNs do not affect the decoding process.

Note that this decoding schedule allows parallel demodulation and decoding. This can be
seen by considering the corresponding decoding neighborhood of a VN. Figure 5.7 depicts a
tree-like neighborhood of depth 2`− 1 = 3, covering ` = 2 decoder iterations. At any odd
level, both SN and CN constraints are used for decoding.

In the most general case, the coefficient setA, the set of channel outputsY , the SN, VN and
CN message sets M`, M` and M` as well as the APP LLR set L` are rings of arbitrary size. In
what follows, we will focus on BP, where all the involved sets are equal to the real numbers R.
Since for a practical implementation, the involved quantities must be represented with finite
precision, the generic definition is useful for working with finite sets and approximate BP-type
algorithms, cf. Chapter 4.

5.3.2 MAP Detection and BP Decoding

Note that the global model (5.1) admits the factorization

p(x , y|A) = p(y|x ,A)p(x) =
1
|C|

L∏
l=1

p(y l |Al , xNsl
)

M∏
m=1
1(par xNcm

=+1), (5.40)

i.e., a priori, we know that x must satisfy the parity check equations and we consider all
codewords that do so equally likely. Hence, similarly to LDPC codes, the computation of
p(xn | y,A) for MAP detection can be performed iteratively by the BP algorithm, assuming
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that there are no cycles. This means that when considering ` decoding iterations, the neigh-
borhood of depth 2`− 1 of vn , denoted by N 2`−1

vn
is a tree, cf. Figure 5.7.

In particular, the VN updates4 (5.38) and (5.39) and APP LLRs follow from the extrinsic
information of a repetition code (2.58),

ΦBP
k ,i (µ,µ) = ΨBP

k ,i (µ,µ) =
k∑

l=1

µ
l
+

i∑
m=1

µm . (5.41)

The CN update (5.36) is identical to the one for LDPC codes (2.61).
The SN update (5.35) is characterized by the factors p(y l |Al , xNsl

) in (5.40) and corre-

sponds to the extrinsic LLR of a SN. The a priori probabilities of the involved code bits xNsl

are provided via the incoming messages using (2.55),

pxNsl

(x) =
∏

n∈Nsl

pxn
(xn), pxn

(x) =
e xµn→l /2

eµn→l /2+ e−µn→l /2
. (5.42)

Thus, the SN update can be calculated as

ΦBP
̄ (y,µ,A∼k ,ak )

(5.40)
= log

p(y|xk =+1,A)
p(y|xk =−1,A)

(5.43)

(5.42)
= log

∑
x ′∈X ̄ :xi=+1

p(y|x ′,A)exp(µTx ′∼k/2)

∑
x ′∈X ̄ :xi=−1

p(y|x ′,A)exp(µTx ′∼k/2)
(5.44)

(5.3)
= log

∑
x ′∈X ̄−1

pw(y −A∼k x ′− ak )exp(µTx ′/2)
∑

x ′∈X ̄−1

pw(y −A∼k x ′+ ak )exp(µTx ′/2)
(5.45)

(5.17)
= log

∑
x ′∈X ̄−1

exp
�
− 1

N0
‖y −A∼k x ′− ak‖2+

µTx ′

2

�

∑
x ′∈X ̄−1

exp
�
− 1

N0
‖y −A∼k x ′+ ak‖2+

µTx ′

2

� . (5.46)

In what follows, we will discuss possible strategies to evaluate (5.46).

5.3.3 Calculation of the BP SN Message Updates

For AWGN channels, we face the problem of finding a method to efficiently evaluate (5.46).
Since the number of terms in (5.46) grows exponentially in the SN degree ̄, a direct appli-
cation of (5.46) is limited to very small SN degrees. For higher degrees, we have to resort to

4Note that our choice of notation in (5.38) and (5.39) implies that the VN-to-SN update for a VN of degree (k , i)
is identical to the VN-to-CN update of a VN of degree (k − 1, i + 1). Given the repetition code interpretation of
VNs, this assumption appears to be justified.
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approximations or impose a special structure on the modulation edge coefficient matrix A in
order to arrive at practically feasible update rules.

Jacobian Logarithm, Max-log Approximation and Soft Sphere Decoding

First, note that (5.46) is numerically challenging to evaluate since the terms in both numerator
and denominator tend to be very small. For that reason, we can use the Jacobian logarithm [44]

jaclog(a, b )¬ log(ea + e b ) =max(a, b )+ log(1+ e−|a−b |)︸ ︷︷ ︸
¬r (|a−b |)

, (5.47)

where the refinement r (·) can be stored in a LUT. We can then evaluate numerator and denom-
inator in (5.46) separately by recursive application of the Jacobian logarithm because log(ea +
e b + e c ) = jaclog(a, jaclog(b , c)).

For a course approximation, we can neglect the refinement alltogether and arrive at the
max-log approximation

Φmax-log
̄ (y,µ,A∼k ,ak ) =− min

x∈{−1,+1} ̄

�
1

N0
‖ y −A∼k x − ak‖2−

µTx
2

�

+ min
x∈{−1,+1} ̄

�
1

N0
‖ y −A∼k x + ak‖2−

µTx
2

�
. (5.48)

The resulting integer-least squares problem can be solved using sphere decoding [31, 85, 95].

Trellis Demodulation

Depending on the coefficient distribution, the demodulation complexity can be reduced by
employing the BCJR algorithm [5] for demodulation on an irregular trellis. This has first
been observed in [64] for SM-EPA coefficients. The demodulation procedure exploits that for
SM-EPA, only ds + 1 different channel inputs are possible. For that case, the demodulation
complexity of trellis demodulation is O(ds ) per code bit. Interestingly, even for bijective mod-
ulation schemes where ds bits are mapped to 2ds different symbols, this approach is capable of
reducing the demodulation complexity from O(2dy ) to O(2dy/dy ) [46].

Since SM-GPA (cf. (5.30)) for ρ = .5 is a hybrid between bijective PAM and SM-EPA
modulations, the demodulation complexity can be reduced to O(G22dy/G/dy ) for that case.

Gaussian Approximation

We focus on the local channel (5.3) and assume that the receive subvectors

y= ak xk +A∼kx∼k +w= ak xk +
̄∑

i 6=k

a ixi +w (5.49)
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are conditionally Gaussian given xk and A. We calculate the mean

E

�
y
��xk ,A

�
= ak xk +A∼kE [x∼k] (5.50)

and covariance matrix

cov
�
y
��xk ,A

�
=A∼kdiag

�
1−E [xi ]

2	 ̄
i=1
i 6=k

AH
∼k + I N0. (5.51)

using the expectation of the a priori bits

E [xi ] = pxi
(1)− pxi

(−1)
(2.55)
= tanh

µi

2
. (5.52)

Note that for yi ∼ CN (µi ,Σ), i = 1,2, with µ1 = ζ +η and µ2 = ζ −η we have

log
py1
(y)

py2
(y)
= (y −µ2)

HΣ−1(y −µ2)− (y −µ1)
HΣ−1(y −µ1) (5.53)

=µH
2 Σ
−1µ2−µH

1 Σ
−1µ1+ 2Re

�
(µ1−µ2)

HΣ−1y
	

(5.54)

= 4Re
�
ηHΣ−1(y − ζ )	 . (5.55)

In our case, Σ is given by (5.51), where as for the mean, it follows from (5.50) and (5.52) that
ζ =

∑ ̄
i 6=k

tanh µi
2 a i and η= ak . Consequently, (5.53) becomes

ΦGAP−C
̄ (y,µ,A∼k ,ak ) =

4Re

(
aH

k

�
A∼kdiag

n
1− tanh2 µi

2

o ̄
i 6=k

AH
∼k + I N0

�−1�
y −

̄∑
i 6=k

tanh
µi

2
a i

�)
. (5.56)

For real modulation and noise w∼N (0, I N0/2), (5.56) becomes

ΦGAP−R
̄ (y,µ,A∼k ,ak ) =

2aT
k

�
A∼kdiag

n
1− tanh2 µi

2

o ̄
i 6=k

AT
∼k + I N0/2

�−1�
y −

̄∑
i 6=k

tanh
µi

2
a i

�
. (5.57)

The expressions (5.56) and (5.57) are similar to MMSE estimators using a priori information,
cf. [103].

For dy = 1, (5.56) and (5.57) simplify to

ΦGAP−C
̄ (y,µ,aT

∼k ,ak ) =
4Re

n
a∗k
�

y −∑ ̄
i 6=k

ai tanh
�
µi
2

��o

N0+
∑ ̄

i 6=k
|ai |2

�
1− tanh2

�
µi
2

�� (5.58)
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and

ΦGAP−R
̄ (y,µ,aT

∼k ,ak ) =
2ak

�
y −∑ ̄

i 6=k
ai tanh

�
µi
2

��

N0/2+
∑ ̄

i 6=k
a2

i

�
1− tanh2

�
µi
2

�� , (5.59)

which have also been derived in [64, 116].

5.4 Random Code Ensembles and Concentration

In this section, we introduce a random code construction method which induces a uniform dis-
tribution on the set of of all tripartite graphs for any prescribed degree structure. We then show
that for any random realization of code graph G, transmit sequence x, modulation coefficient
sequence (Al )

L
l=1 and channel noise w, the number of incorrect APP LLRs after ` decoding it-

erations, denoted by z= z
�
G, (Al ),w,x,`

�
converges towards N P (`)e in probability for N →∞,

where P (`)e denotes the expected fraction of incorrect APP LLRs after ` decoding iterations for
a VN with tree-like decoding neighborhood of depth 2`−1. Similar to the asymptotic theory
of LDPC codes (cf. Section 2.2.2), this implies that by calculating P (`)e , we can characterize the
performance of almost any code. Furthermore, note that the monotonicity for BP decoded
LDPC codes extends to SMLDPC codes in a straight forward manner:

Theorem 10 (Monotonicity). Let p(y,A| x) = p(y| x ,A)p(A) be the memoryless channel result-
ing from the local input-output relation (5.3) and the iid symmetric edge coefficient distribution
p(A) in Assumption 2. Note that since the receiver has perfect information of A, we can assume
that the channel outputs pairs (y,A), i.e., A is part of the channel realization. Assume p(y ′,A| x) is
physically degraded with respect to p(y,A| x), cf. Section 2.2.2. For a given code and BP decoding,
let P (`)e be the expected fraction of incorrect APP LLRs after the `th decoding iteration assuming
tree-like neighborhoods and transmission over p(y,A| x), and let P (`)′e be the equivalent quantity
for transmission over p(y ′,A′| x). It then follows that P (`)e ≤ P (`)′e .

Proof: The proof follows from [78, Theorem 1] in a straightforward manner by noting that
the argument of the original proof relies on the optimality of BP decoding, which is also true
for our case. �

Consequently, the threshold

σ∗ = sup{σ : lim
`→∞

P (`)e (σ) = 0 } (5.60)

characterizes the highest noise variance N ∗0 = σ
∗2 of w for which reliable transmission is pos-

sible for almost all SMLDPC codes (adhering to the degree structure that is assumed when cal-
culating P (`)e ). We will discuss methods to find (5.60) in Section 5.7.1; code designs based on
maximizing (5.60) are discussed in Sections 5.7.2 and 5.7.3.

For the most part, the remainder of this section is rather technical and builds the concepts
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required for the proof of the concentration theorem. We take a similar approach to the proof
of the LDPC concentration theorem, cf. Theorem 3, [62, 78]. For readers familiar with that
proof, we point out the key differences:

• Whereas [78] consider the number of incorrect VN-to-CN messages, for SMLDPC codes
the choice of either VN-to-SN or VN-to-CN messages to define concentration and con-
vergence appears arbitrary. Thus, we favoured considering the number of incorrect APP
LLRs over arbitrarily choosing either the SN or CN side messages.

• Since we have 3 types of nodes in the decoding trees (cf. Figure 5.7) the trees are less
homogeneous as compared to the decoding trees of LDPC codes that only contain 2
types of nodes. Hence, calculating exactly the number of a certain type of nodes in a tree
becomes a tedious task. For that matter, we will use weak upper bounds by eliminating
the node type with lower connectivity, cf. Figure 5.8 and Lemma 8. Consequently, the
constants in the resulting concentration theorem can be improved upon by more careful
examination of the decoding trees. However, in the limit N → ∞, the value of the
constants does not matter.

• In addition to code realizations G and channel realization w, we need to extend the
probability space by the edge coefficient realizations (Al )

L
l=1. Furthermore, in contrast

to LDPC codes, for SMLDPC codes, given any fixed series of modulation coefficients
(Al )

L
l=1, z is not independent of the transmitted codeword x. Hence, we further need to

extend the probability space under consideration to include all transmit codewords.

Definition 4 (Regular Code Ensemble). We define the regular ensemble CN (ds ,dv , dc ) by the
following construction: Assign to each SN ds sockets and to each CN dc sockets. The VNs are
assigned dv s sockets that connect to SNs and dvc sockets that connect to CNs. Label the SN sockets
and the VN-to-SN sockets separately with 1, . . . ,N dv s . Similarly, label the CN sockets and the
VN-to-CN sockets separately with 1, . . . ,N dvc . Pick two permutations πv s on {1, . . . ,N dv s} and
πvc on {1, . . . ,N dvc}with uniform probability from the product set of all (N dv s )!(N dvc )! possible
combinations of such permutations. The corresponding labeled tripartite graph is then defined by
identifying VN-to-SN edges with pairs of sockets {(i ,πv s (i)), i = 1, . . . ,N dv s} and VN-to-CN edges
with pairs of sockets {(i ,πvc (i)), i = 1, . . . ,N dvc}. This induces a uniform distribution on the set
of all of tripartite graphs CN (ds ,dv , dc ).

Definition 5 (Neighborhood of a node). We define the neighborhood N d
u of depth d of a node

u as the induced subgraph consisting of all nodes reached and edges traversed by paths of length at
most d starting from u (including u).

Definition 6 (Neighborhood of an edge). We define the neighborhood N d
e of depth d of an edge

e= {u1, u2} as
N d

e ¬N d
u1
∪N d

u2
(5.61)
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Figure 5.8: Left: Neighborhood of depth 2 of a VN for a graph with dv s = 3, dvc = 2, ds = 4 and
dc = 3. Right: The same neighborhood, where the CNs and VNs have been replaced by nodes of
degree dm =max{dc , ds}. Clearly, the number of nodes and edges of the right tree is greater or equal to
the number of nodes and edges in the left tree.

Lemma 7 (Neighborhood Symmetry). We have

u1 ∈N d
u2
⇔ u2 ∈N d

u1
. (5.62)

Furthermore, for any e ∈ {u1, u2}

e ∈N d
u ⇔ u ∈N d−1

e . (5.63)

Proof: (5.62) follows directly from the symmetry of the distance function.

To prove (5.63), assume e ∈N d
u , which implies that either u1 or u2 can be reached by a path

of length d − 1 from u. It follows from the symmetry relation (5.62) that either u ∈N d−1
u1

or
u ∈N d−1

u2
and hence, by (5.61) u ∈N d−1

e .

Now assume u ∈N d−1
e . It follows that there exists a path starting from either u1 or u2 and

ending at u of length at most d − 1. Reversing the orientation of the directed edges we obtain
a path of length at most d−1 from u to either u1 or u2 to u. Thus, there exists a path of length
at most d starting from u containing e, and hence it follows that e ∈N d

u . �

Lemma 8 (Bounds on the size of neighborhoods). The number of (distinct) nodes as well as the
number of (distinct) edges in a neighborhood of a node or an edge of depth 2` is upper-bounded by
2(dm dv )

`, where dm =max{dc , ds} and dv = dv s + dvc .

Proof: Note that the number of nodes and edges for any tree consisting of variable-, symbol-
and check nodes with degrees dv = dv s + dvc , ds and dc is less or equal to a tree containing
only two types of nodes with degree dv and dm = max{dc , ds}, cf. Figure 5.8. As stated in
[78], Section II.B, for a graph consisting only of two types of nodes with degrees d1 and d2,
the number of (distinct) nodes and edges in a neighborhood of a node or an edge of depth 2`
is upper-bounded by 2(d1d2)

`. The claim then follows by associating d1 7→ dv , d1 7→ dm . �

Theorem 11 (Concentration Theorem). Over the probability space of all graphsG ∈ CN (ds ,dv , dc ),
iid edge coefficient matrices (Al )

L
l=1 ∈ Cdy×ds×L, iid channel noise w ∈Cdy L and transmitted code-

words x ∈ {1− 2c | Hc = 0} with H induced by G, let z = z
�
G, (Al ),w,x,`

�
be the number of

incorrect APP LLRs after iteration `. Let P (`)e be the expected fraction of incorrect APP LLRs of
a VN with a tree-like neighborhood of depth at least 2`− 1. Then there exist positive constants
β=β(ds , dv s , dvc , dc ,`) and γ = γ (ds , dv s , dvc , dc ,`) such that the following holds:
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Concentration around expected value: For any ε > 0, we have

P{|z−E [z] |>Nε/2} ≤ 2e−βε
2N . (5.64)

Convergence to cycle-free case: For any ε > 0 and N > 2γ
ε , we have

|E [z]−N P (`)e |<Nε/2. (5.65)

Concentration around cycle-free case: For any ε > 0 and N > 2γ
ε , we have

P
¦
|z−N P (`)e |>Nε

©
≤ 2e−βε

2N . (5.66)

In order to prove Theorem 11, we first need to show the following

Lemma 9 (Probability of tree-like neighborhood). Over the probability space of all graphs G ∈
CN (ds ,dv , dc ), we can bound the probability that the neighborhood of depth 2`− 1 of some VN
v ∈ G is not tree-like as

P
¦
N 2`−1

v is not tree-like
©
≤ γ

N
, (5.67)

where γ depends on dv , dv s , dvc , ds and ` but not on N.

Proof of Lemma 9: First, note that the leaf CNs in a tree-like N 2`−1
v do not affect the APP LLR

at VN v at iteration `, cf. Figure 5.7. However, it follows that if N 2`−1
v is tree-like, then so is

a version without leaf CNs. To have a higher degree of homogeneity throughout the tree, we
include the leaf CNs in what follows.

Note that according to Lemma 8, we can bound the number of SNs S`, the number of VNs
V` and the number of CNs C` in N 2`−1

v as

V` ≤ 2(dm dv )
`, S` ≤ 2(dm dv )

`, C` ≤ 2(dm dv )
` (5.68)

assuming it is tree-like.

Recall that M denotes the number of CNs and L denotes the number of SNs in the full
graph. Fix ` and let `′ < `. Assuming that N 2`′−1

v is tree-like, we ask what is the probability
that N 2`′

v is tree-like? We obtain a bound by revealing the outgoing edges of the SN leaves
of the tree given by N 2`′

v one at a time and bounding the probability that this creates a loop.
Assume that k additional VN-to-SN edges have been revealed at this stage without creating a
loop; then the probability that the next revealed edge does not create a loop is

(N −V`′ − k)dv s

N dv s −V`′dv s − k
= 1−

k(1− 1
dv s
)

N − (V`′ +
k

dv s
)
, (5.69)

which is computed as the fraction of the number of unoccupied VN-to-SN sockets that are not
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yet part of the tree5 over the total number of unoccupied VN-to-SN sockets. Note that

a
N − b

≤ c
N

a, b , c > 0, a < c for N ≥ b c
c − a

. (5.70)

Furthermore, note that the number of edges revealed when going from N 2`′−1
v to N 2`′

v can be
bounded by

k ≤ dv (dm − 1)`
′+1(dv − 1)`

′ ≤ dv (dm − 1)`+1(dv − 1)` (5.71)

and thus,
(N −V`′ − k)dv s

N dv s −V`′dv s − k
≥ 1− dv (dm − 1)`+1(dv − 1)`

N
(5.72)

for sufficiently large N . Similarly, the probability that the revelation of a VN-to-CN edge
creates a loop given that N 2`′−1

v is tree-like can be bounded by (5.72). Thus, the probability
that N 2`′

v is tree-like, given that N 2`′−1
v is tree-like, is lower-bounded by

�
1− dv (dm − 1)`+1(dv − 1)`

N

�2(V`′+1−V`′ )

. (5.73)

Assume now that N 2`′
v is tree-like. As above, we reveal the outgoing SN side edges of the

VN leafs of N 2`′
v one at a time. Assuming that k SNs have been revealed without creating a

loop, then the probability that the next revealed VN-to-SN edge does not create a loop can be
bounded as

(L− S`′ − k)ds

Lds − S`′ds − k
= 1−

k(1− 1
ds
)

L− (S`′ + k
ds
)
≥ 1− dv (dm − 1)`+1(dv − 1)`+1

L
. (5.74)

Similarly, for the revelation of the CN side edges, the probability that the next revealed VN-
to-CN edge does not create a loop is lower-bounded by

(M −C`′ − k)dc

M dc −C`′dc − k
= 1−

k(1− 1
dc
)

M − (C`′ + k
dc
)
≥ 1− dv (dm − 1)`+1(dv − 1)`+1

M
. (5.75)

Thus, the probability that N 2`′+1
v is tree-like, given that N 2`′

v is tree-like, is lower-bounded by

�
1− dv (dm − 1)`+1(dv − 1)`+1

L

�S`′+1−S`′ �
1− dv (dm − 1)`+1(dv − 1)`+1

M

�C`′+1−C`′
. (5.76)

By iteratively applying (5.73) and (5.76), the probability thatN 2`−1
v is tree-like is lower-bounded

5 A socket is part of the tree when its corresponding node is part of the tree. Because all the sockets of non-leaf
nodes are occupied, a cycle can only be created by connecting two leaf nodes.
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by


1−

A︷ ︸︸ ︷
dv (dm − 1)`+1(dv − 1)`

N




2V`
1−

B︷ ︸︸ ︷
dv (dm − 1)`+1(dv − 1)`+1

L




S`

�
1− B

M

�C`
. (5.77)

Applying the binomial formula we calculate

P
¦
N 2`−1

v is not tree-like
©
≤ 1−

��
1− A

N

�2V` �
1− B

L

�S` �
1− B

M

�C`
�

(5.78)

= 1−



2V∑̀
i=1

S∑̀
j=1

C∑̀
k=1

�
2V`

i

��
S`
j

��
C`
k

�� A
N

�i �B
L

� j � B
M

�k
(−1)i+ j+k




≤ 2AV`

N
+

BS`
L
+

BC`
M

(5.79)

=
2AV`+

ds
dv s

BS`+
dc
dvc

BC`
N

(5.80)

where (5.79) holds for sufficiently large N and the claim follows from (5.80) due to (5.68)
and (5.77). �
We are now ready to prove the concentration theorem for SMLDPC codes.

Proof of Theorem 11: First note that it is sufficient to show (5.64) and (5.65), as (5.66) follows
immediately from (5.64) and (5.65).

We start by proving (5.65). Let E [zn] , i ∈ {1, . . . ,N}, be the expected fraction of incorrect
APP LLRs at VN vn , where the average is over all graphs, channel noise, edge coefficient ma-
trices and codewords. Then, by linearity of expectation, by symmetry and by the iid property
of the channel and the edge coefficients,

E [z] =
N∑

n=1
E [zn] =NE [z1] . (5.81)

Furthermore

E [z1] =E
�
z1|N 2`−1

v1
is tree-like

�
P
¦
N 2`−1

v1
is tree-like

©

+E
�
z1|N 2`−1

v1
is not tree-like

�
P
¦
N 2`−1

v1
is not tree-like

©
(5.82)

From Lemma 9,
P
¦
N 2`

v1
is not tree-like

©
≤ γ

N
(5.83)

for some γ > 0. Furthermore, we have

E

�
z1|N 2`−1

v1
is tree-like

�
= P (`)e (5.84)
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by definition and ���E
�
z1|N 2`−1

v1
is not tree-like

����≤ 1 (5.85)

trivially, hence
N P (`)e

�
1− γ

N

�
≤E [z]≤N

�
P (`)e +

γ

N

�
(5.86)

and
|E [z]−N P (`)e |< γ . (5.87)

It follows that for N > 2γ
ε ,

|E [z]−N P (`)e |<Nε/2. (5.88)

It remains to prove (5.64). Recall that z denotes the number of incorrect APP LLRs among
all N VNs at the end of iteration ` for a particular

�
G, (Al ),w,x

� ∈ Ω, where Ω denotes the
probability space. We show (5.64) by the method of bounded differences [71] invoking the
Azuma-Hoeffding inequality:

Theorem 12 (Azuma-Hoeffding Inequality [4, 45]). Let z0,z1 . . . ,zq be a martingale sequence
such that for 0≤ i < q

|zi+1− zi | ≤ ζi

where the constant ζi may depend on i . Then, for all q ≥ 1 and any ε > 0

P
¦
|zq − z0| ≥ ε

©
≤ 2exp

�
− ε2

2
∑q

i=1 ζ
2

i

�
. (5.89)

Hence, we proceed to define a martingale such that z0 = E [z] and zq = z and show that
the difference between any two successive sequence elements is bounded by constants that are
independent of N . For the definition of the martingale, consider a sequence =i , 0 ≤ i ≤ q ¬
(dv s + dvc )N + L+N of equivalence relations on Ω by refinement, i.e.,

�
G′, (A′l ),w

′,x′
�
=i�

G′′, (A′′l ),w
′′,x′′

�
implies

�
G′, (A′l ),w

′,x′
�
=i−1

�
G′′, (A′′l ),w

′′,x′′
�
. These equivalence classes are

defined by partial equalities. In particular, suppose we expose the dv s N SN edges one at a
time, i.e., at step i ≤ dv s N we expose the particular SN socket πv s (i) which is connected to
the i th VN socket. Similarly, for dv s N < i ≤ (dv s + dvc )N , we expose the CN sockets one
at a time. For (dv s + dvc )N < i ≤ (dv s + dvc )N + L, we expose the L coefficient matrices
Al along with the corresponding noise component wl . Eventually, for (dv s + dvc )N + L <
i ≤ (dv s + dvc )N + L+N , we expose bits of the codeword xn one at a time. Then we have�
G′, (A′l ),w

′,x′
�
=i

�
G′′, (A′′l ),w

′′,x′′
�

iff the information revealed in the first i steps for both
tuples is the same.

Now, define z0,z1, . . . ,zp by

zi
�
G, (Al ),w,x

�
¬E

h
z
�
G′, (A′l ),w

′,x′
� ��� �G′, (A′l ),w′,x′

�
=i
�
G, (Al ),w,x

�i
. (5.90)

By construction, z0,z1, . . . ,zq is a Doob’s Martingale Process, where, as required, z0 =E [z] and
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zq = z. Thus, we need to bound

���zi+1
�
G, (Al ),w,x

�− zi
�
G, (Al ),w,x

����≤ ζi , i = 0, . . . , q − 1 (5.91)

with some suitable constants ζi which may depend on dv s , dvc , ds , dc and `, but not on N .

We start out to prove (5.91) for i = 0,1, . . . , dv s N , i.e., for the steps where we expose the
SN edges. Recall that πv s (i) = j means that the i th VN socket is connected to the j th SN
socket. Let G(G, i)⊂ CN (ds , dv s , dvc , dc ) be such that the first i edges are equal to the edges in
G, i.e.,

G(G, i)¬
n
G′
��� �G′, (A′l ),w′,x′

�
=i
�
G′, (A′l ),w

′,x′
�o

. (5.92)

Let G j (G, i) be the subset of G(G, i) consisting of those graphs for which πv s (i +1) = j . Thus,
G(G, i) =

⋃
j G j (G, i). Consequently, we can decompose

zi =E
�
z
�
G′, (A′l ),w

′,x′
� �� G′ ∈ G(G, i)

�

=
dv s N∑
j=1

E

�
z
�
G′, (A′l ),w

′,x′
� �� G′ ∈ G j (G, i)

�
P
�
G′ ∈ G j (G, i)|G′ ∈ G(G, i)

	
. (5.93)

Now note that zi+1
�
G, (Al ),w,x

�
is equal toE

�
z
�
G′, (A′l ),w

′,x′
� �� G′ ∈ G j (G, i)

�
for some j ∈Πi

where Πi ⊂ {1, . . . ,N dv s} denotes the set of unoccupied SN sockets after revealing i edges of
G, i.e., Πi = {1, . . . ,N dv s} \ {πv s (k) : k ≤ i}. Hence

��zi+1
�
G, (Al ),w,x

�− zi
�
G, (Al ),w,x

���
≤max

j∈Πi

���E
�
z
�
G′, (A′l ),w

′,x′
� �� G′ ∈ G j (G, i)

�
− zi

�
G, (Al ),w,x

���� (5.94)

≤ max
j ,k∈Πi

����E
h
z
�
G′, (A′l ),w

′,x′
� ��� G′ ∈ G j (G, i)

i
−E

h
z
�
G′, (A′l ),w

′,x′
� ��� G′ ∈ Gk (G, i)

i���� (5.95)

= max
j ,k∈Πi

����E
h
z
�
G′, (A′l ),w

′,x′
�− z

�
φ j ,k (G

′), (A′l ),w
′,x′

� ��� G′ ∈ G j (G, i)
i���� (5.96)

≤ max
j ,k∈Πi

E

h��z�G′, (A′l ),w′,x′
�− z

�
φ j ,k (G

′), (A′l ),w
′,x′

��� ��� G′ ∈ G j (G, i)
i

(5.97)

≤ max
j ,k∈Πi ,G′,(A′l ),w

′,x′

���z�G′, (A′l ),w′,x′
�− z

�
φ j ,k (G

′), (A′l ),w
′,x′

���� (5.98)

≤ 8(dm dv )
`−1. (5.99)

Here, (5.95) follows from the decomposition (5.93) and the fact that the expectation of a ran-
dom variable is always larger or equal to its minimum value. To show (5.96), define a map
φ j ,k : G j (G, i)→ Gk (G, i) as follows. Let π be the permutation defining the symbol edge as-
signment for a given graph H ∈ G j (G, i) and let i ′ = π−1(k). Define a permutation π′ = π
except that π′(i +1) = k and π′(i ′) = j . Let H′ denote the resulting graph, i.e., H′ =φ j ,k (H) is
the same graph as H, except that the edge connected to VN socket i + 1 now is attached to SN
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socket k instead of j and the edge incident to SN socket k is attached to SN socket j . Clearly,
φ j ,k is a bijection and, since graphs in the ensemble have uniform probability, such a bijection
preserves probabilities and thus

E

h
z
�
G′, (A′l ),w

′,x′
� ��� G′ ∈ Gk (G, i)

i
=E

h
z
�
φ j ,k (G

′), (A′l ),w
′,x′

� ��� G′ ∈ G j (G, i)
i

. (5.100)

The steps (5.97) and (5.98) follow because |E [x] | ≤E [|x|] and the fact that the expectation of
a random variable is less or equal to its maximum value. Finally, to see that (5.99) holds, note
that for any VN v, the APP LLR at the end of iteration ` is only a function of the decoding
neighborhood N 2`−1

v . Therefore, the LLR is only affected by an exchange of the endpoints of
two edges if one or both of the edges are in N 2`−1

v , i.e., if ei ∈ N 2`−1
v , where ei , i = 1, . . . , 4

denotes the two edges attached to the sockets j and k before and after the change of sockets by
φ j ,k . By the symmetry relation (5.63), this is equivalent to v ∈N 2`−2

ei
and hence, the difference

in APP LLR errors in (5.98) can be bounded by 4 times the number of nodes in N 2`−2
ei

, which,
according to Lemma 8 is equal to 8(dm dv )

`−1. This proves (5.91) with ζi = 8(dm dv )
`−1 for

0= 1, . . . ,N dv,s .

The proof of (5.91) for N dv s < i ≤N (dv s +dvc ), i.e., for the steps where the CN edges are
revealed follows the very same argument as for the SN edges where again ζi = 8(dm dv )

`−1 in
(5.91).

For N (dv s+dvc )< i ≤N (dv s+dvc )+L, corresponding to l = i−N (dv s+dvc ) ∈ {1, . . . , L},
we reveal the edge coefficient matrices Al and noise wl one at a time. Let Al ⊂Ω be defined as

Al ¬ {(G′, (A′k ),w′,x′)
�� (G′, (A′k ),w′,x′) =i (G, (Ak ),w,x)}, (5.101)

and let z′ be shorthand for z′ = z
�
G′, (A′l ),w

′,x′
�

then for N (dv s +dvc )< i ≤N (dv s +dvc )+L,
we can decompose

zi =E
�
z′
��Al

�
=EA′

l+1
,w′

l+1

h
E

�
z′
��Al ,A

′
l+1,w′l+1

� ���Al

i
. (5.102)

Thus, similar to (5.95) to (5.99), we can bound

��zi+1
�
G, (Al ),w,x

�− zi
�
G, (Al ),w,x

���
≤ max
(w1,A1)
(w2,A2)

���E�z′ ��Al ,A
′
l+1 =A1,w′l+1 =w1

�−E�z′ ��Al ,A
′
l+1 =A2,w′l+1 =w2

� ��� (5.103)

= max
(w1,A1),(w2,A2)

���E(Ak )Lk=l+2
,(wk )Lk=l+2

,x′
�
z(A1, w1, l + 1)− z(A2, w2, l + 1)

���� (5.104)

≤ max
(w1,A1),(w2,A2),(G′,(A′k ),w

′,x′)∈Al

��z(A1, w1, l + 1)− z(A2, w2, l + 1)
�� (5.105)

≤ 2(dv dm)
`. (5.106)

Here, (5.103) follows from the decomposition (5.102) and the fact that zi+1 =E
�
z′
��Al ,A

′
l+1,w′l+1

�
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for some (A′l+1,w′l+1). To show (5.104) let

z(A, w, l )¬ z
�
G, (Ak )

l−1
k=1,A, (A′k )

L
k=l+1), (wk )

l−1
k=1, w, (w′k )

L
k=l+1),x

′�, (5.107)

i.e., the number of APP LLR errors assuming that for the l th SN, the edge coefficient and noise
realization are equal to A and w, respectively. (5.104) follows by noting that both the edge
coefficient matrices and noise components are iid which allows for both terms to be collected
under the same expectation operator. To see why (5.106) holds, note that max

��z(A1, w1, l +
1)−z(A2, w2, l+1)

�� is the maximum difference in APP LLR errors if for the single SN sl+1, the
edge coefficient and noise realizations are changed from (A1, w1) to (A2, w2) or vice versa. To
find an upper bound for that difference, note that the APP LLR of a particular VN v is only
affected by the change if sl+1 ∈ N 2`−1

v , which by Lemma 7, is equivalent to v ∈ N 2`−1
sl+1

. By
Lemma 8, the number of affected VN can thus be bounded by 2(dv dm)

`, which proves (5.91)
with ζi = 2(dv dm)

` for N (dv s + dvc )< i ≤N (dv s + dvc )+ L.

For the last N steps, N (dv s+dvc )+L< i ≤N (dv s+dvc )+L+N correponding to n = i−
N (dv s+dvc )−L ∈ {1, . . . ,N}, the code bits xn are revealed one at a time. Let z′ = z

�
G, (al ),w,x′

�
and Xn = {x′ = (x′1, . . .x′N ) | (x′k )nk=1 = (xk )

n
k=1}. Then

��zi+1
�
G, (Al ),w,x

�− zi
�
G, (Al ),w,x

���
≤max

x1,x2

���Ex′
�
z′
�� x ′ ∈Xn ,x′n+1 = x1

�−Ex′
�
z′
�� x′ ∈Xn ,x′n+1 = x2

� ��� (5.108)

=
���Ex′

�
z′
�� x′ ∈Xn ,x′n+1 =+1

�−Ex′
�
z′
�� x′ ∈Xn ,x′n+1 =−1

� ��� (5.109)

=
���Ex′

�
z
�
G, (Al ),w,x′

�− z
�
G, (Al ),w,x′¬n+1� �� x′ ∈Xn ,x′n+1 =+1

� ��� (5.110)

≤ max
x′∈Xn

���z�G, (Al ),w,x′
�− z

�
G, (Al ),w,x′¬n+1���� (5.111)

≤ 2(dv dm)
` (5.112)

Once again, we start out by conditioning on the information revealed in the next step i+1 and
bound the maximum difference to arrive at (5.108). (5.109) then follows since the code bits are
binary and the maximum difference is attained for different bits. Next, (5.110) follows because

Ex′
h
z
�
G, (Al ),w,x′

� ��� x′ ∈Xn ,xn+1 =−1
i

=Ex′
h
z
�
G, (Al ),w,x′¬n+1� ��� x′ ∈Xn ,xn+1 =+1

i
, (5.113)

thus allowing for both terms to be collected under the same expectation operator. Eventually,
(5.112) bounds the maximum change in APP LLR errors between two codewords that only dif-
fer at digit n+1. That is, the APP LLR of a particular VN v is only affected if vn+1 ∈N 2`−1

v ⇔
v ∈N 2`−1

vn+1
, where the numer of VNs in N 2`−1

vn+1
can be upper bounded due to Lemma 8. This

proves (5.91) with ζi = 2(dv dm)
` for N (dv s + dvc )+ L< i ≤N (dv s + dvc )+ L+N .

Thus, we have shown (5.64), where according to (5.89), (5.99), (5.106) and (5.112), for the
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constant β in (5.64),

1
β
= 8(dv dm)

2`−2
�

16dv +
d 2

v d 2
m dvc

ds
+ d 2

v d 2
m

�
, (5.114)

which concludes the proof of Theorem 11. �

5.5 Analysis of the Cycle-Free Case

In the following, we will establish fundamental results that help to determine the threshold as
defined in (5.60). First, we show that for tree-like decoding neighborhoods and fairly general
symmetry constraints, the messages passed along the edges of the graph are conditionally iid
and symmetric. Whereas for LDPC codes this is true in general, for SMLDPC codes such
a statement only holds when we consider the average over edge coefficient realizations. The
symmetry of the densities then implies that the fraction of APP LLR errors conditioned on
a specific codeword x , denoted by P (`)e (x), is independent of the codeword. Specifically, this
means that we can obtain P (`)e as defined in Theorem 11 without averaging over codewords by
simply conditioning on an arbitrary codeword, P (`)e = P (`)e (x). Consistent with the theory for
LDPC codes, we choose to condition on the all-one word x = +1. Under this assumption,
the messages at any iteration are characterized by scalar, real probability densities. We then
proceed to show that for BP decoding, on top of being symmetric, these message densities are
also LLR-consistent, cf. (2.85) and (2.86). This result allows for an equivalent reformulation
of the threshold (5.60) in terms of the mutual information between the code bits and the APP
LLRs. Thus, under the assumption that we can calculate this mutual information exactly using
EXIT analysis (cf. Section 2.3), we are guaranteed to obtain the same threshold as we would
get from density evolution and exact calculation of P (`)e . This is crucial since in contrast to
LDPC codes, an exact recursion of densities in the fashion of (2.83) is difficult to obtain due to
the complexity of the SN updates. Lastly, we outline an accurate, low complexity method to
obtain the EXIT function of an arbitrary LLR-consistent SN update.

5.5.1 Symmetric Message Passing

Assumption 3 (Symmetric message passing decoding for SMLDPC codes).

• Check node symmetry: for all `, the CN updates (5.36) fulfill the symmetry property (2.72).

• Variable node symmetry: Sign inversion invariance of VN message updates (5.38) and (5.39)

Φ(`)
k ,i

�−µ,−µ�=−Φ(`)
k ,i

�
µ,µ

�
, (5.115)

and APP LLR updates (5.37)

Ψ(`)
k ,i

�−µ,−µ�=−Ψ(`)
k ,i

�
µ,µ

�
. (5.116)
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• Symbol node symmetry: The SN updates (5.35) fulfill

Φ(`)̄
�
y,µ,A∼k ,−ak

�
=−Φ(`)̄

�
y,µ,A∼k ,ak ), (5.117)

Φ(`)̄
�
y,µ¬i ,A¬i

∼k ,ak ) = Φ
(`)
̄

�
y,µ,A∼k ,ak

�
. (5.118)

The VN and CN symmetry properties are well known from LDPC decoding, cf. Assump-
tion 1. The SN symmetries (5.117) and (5.118) are fulfilled by both BP message updates (5.45)
and Gaussian approximation updates (5.56) and (5.57). Note that in case of symmetric noise
densities, i.e., pw(−w) = pw(w), another symmetry property can be shown to hold for the BP
update (5.45),

Φ(`)̄
�− y,0,A∼k ,ak ) =−Φ(`)̄

�
y,0,A∼k ,ak

�
. (5.119)

Since we mainly consider AWGN channels, we could in principal assume that (5.119) holds.
However, (5.119) is not required for the following result and thus, symmetric noise is not a
prerequisite for symmetric message passing.

Lemma 10. Consider the output of a SN update fulfilling the symmetry conditions (5.117) and (5.118)
and let

µk = Φ ̄
�
y,µ,A∼k ,ak

�
, (5.120)

where the local SN constraint (5.3) holds according to

y=A∼k x∼k + ak xk +w, (5.121)

with x ∈ {−1,+1}ds and x∼k ∈ {−1,+1}ds−1 being the subvector of x not containing xk . Let
A be distributed such that the symmetry relations (5.12) and (5.13) hold. Furthermore, for the
conditional density of the input messages, we assume

pµ|x(µ
¬i |x) = pµ|x(µ|x¬i ). (5.122)

Then, the following statements hold.

1. The density of the output message µk given the kth bit is conditionally independent of all
other ds − 1 code bits involved in the SN constraint,

pµk |x(µ|x) = pµk |xk
(µ|x). (5.123)

2. The density of the output message µk conditioned on the corresponding code bit is symmetric
in the sense that

pµk |xk
(−µ|x) = pµk |xk

(µ| − x). (5.124)
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3. The density pµk |xk
is independent of k, i.e., for any i , k ∈ {1, . . . , ̄},

pµk |xk
(µ|x) = pµi |xi

(µ|x) = pµ|x(µ|x). (5.125)

Proof: We start out by proving (5.123). For all i 6= k and all M⊆R

P{µk ∈M|x= x ,A=A} = P
¦
(Ax+w,µ,A∼k ,ak ) ∈ Φ−1

̄ (M)|x= x
©

(5.118)
= P

¦
(A¬ix¬i +w,µ¬i ,A¬i

∼k ,ak ) ∈ Φ−1
̄ (M)|x= x

©
(5.122)
= P

¦
(A¬ix+w,µ,A¬i

∼k ,ak ) ∈ Φ−1
̄ (M)|x= x¬i

©

= P
�
µk ∈M|x= x¬i ,A=A¬i	 .

Consequently, by the law of total probability,

P{µk ∈M|x= x} =
∫
Cdy× ̄

P{µk ∈M|x= x ,A=A} pA(A)dA

(5.12)
=

∫
Cdy× ̄

P
�
µk ∈M|x= x¬i ,A=A¬i	 pA(A

¬i )dA

= P
�
µk ∈M|x= x¬i	 ∀M, i 6= k .

Since x is binary, (5.123) follows. To prove (5.124), note that for any M⊂R

P{−µk ∈M|xk = xk}
=

∫
Cdy× ̄

P{−µk ∈M|xk = xk ,A=A} pA(A)dA

(5.117)
=

∫
Cdy× ̄

P
¦
(y,µ,A∼k ,−ak ) ∈ Φ−1

̄ (M)|xk = xk ,A=A
©

pA(A)dA

(5.121)
=

∫
Cdy× ̄

P
¦
(A∼kx∼k + akxk +w,µ,A∼k ,−ak ) ∈ Φ−1

̄ (M)|xk = xk ,A=A
©

pA(A)dA

(5.12)
=

∫
Cdy× ̄

P
¦
(A∼kx∼k + akxk +w,µ,A∼k ,ak ) ∈ Φ−1

̄ (M)|xk =−xk ,A=A¬k
©

pA(A
¬k )dA

=
∫
Cdy× ̄

P
¦
µk ∈M|xk =−xk ,A=A¬k

©
pA(A

¬k )dA

= P{µk ∈M|xk =−xk} ,

which proves (5.124). Lastly, we show (5.125). Let Aiπk be the matrix A with columns i and k
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exchanged. Then

P{µk ∈M|xk = x}
(5.123)
= P

�
µk ∈M|xk = x,xi = x ′

	

=
∫
Cdy× ̄

P
¦
(A∼i kx∼i k + xiai + xkak +w,µ,A∼k ,ak ) ∈ Φ−1

̄ (M)|xk = x,xi = x ′,A=A
©

pA(A)dA

=
∫
Cdy× ̄

P
¦
(A∼i kx∼i k + xiak + xkai +w,µ,A∼i ,ai ) ∈ Φ−1

̄ (M)|xk = x,xi = x ′,A=Aiπk

©
pA(A)dA

(5.13)
=

∫
Cdy× ̄

P
¦
(y,µ,A∼i ,ai ) ∈ Φ−1

̄ (M)|xi = x,xk = x ′,A=Aiπk

©
pA(Aiπk )dA

= P
�
µi ∈M|xi = x,xk = x ′

	

= P{µi ∈M|xi = x} . �

Note that (5.125) is a consequence of the permutation invariance (5.13). If we did not assume
(5.13) we would need to average over the edge index to obtain the conditional distribution of
the SN output messages for a randomly chosen edge,

pµ|x(µ|x) =
1
̄

̄∑
k=1

pµ
k
|x(µ|x). (5.126)

Based on Lemma 10, we can now derive fundamental symmetry and independence prop-
erties for the densities of messages passed at iteration ` on a code where the decoding neigh-
borhood of depth 2`− 1 of any VN is tree-like.

Theorem 13 (Conditional independence and symmetry of message densities).
Let G ∈ CN (ds ,dv , dc ) be a tripartite graph representing a SMLDPC code where the decoding
neighborhood of depth 2`− 1 of any VN v ∈G is tree-like. For a given symmetric message passing
algorithm (cf. Assumption 3) and symmetric edge coefficient distribution (cf. Assumption 2) let

p (`)
µ|x : MN dv s

`
→R+,

p (`)
µ|x : MN (dv s+dvc )

`
→R+,

p (`)
µ|x : MN dvc

` →R+,

denote the joint VN- SN and CN message densities at iteration `, respectively, assuming a particular
codeword x has been transmitted. Then the following statements hold.
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• The messages are conditionally iid, i.e.,

p (`)
µ|x (µ|x) =

∏
es∈Es

p (`)
µ|x(µec

|xn(ec )
), (5.127)

p (`)
µ|x (µ|x) =

∏
es∈Es

p (`)
µs |x(µes

|xn(es )
)
∏
ec∈Ec

p (`)
µc |x(µec

|xn(ec )
), (5.128)

p (`)
µ|x (µ|x) =

∏
ec∈Ec

p (`)
µ|x(µec

|xn(ec )
), (5.129)

where Es and Ec denote the SN- and CN side edge sets of G and for an edge e, n(e) denotes
the index of the VN attached to e.

• The individual message densities in (5.127) to (5.129) are symmetric,

p (`)
µ|x(µ|x) = p (`)

µ|x(−µ| − x), (5.130)

p (`)
µs |x(µ|x) = p (`)

µs |x(−µ| − x), (5.131)

p (`)
µc |x(µ|x) = p (`)

µc |x(−µ| − x), (5.132)

p (`)
µ|x(µ|x) = p (`)

µ|x(−µ| − x), (5.133)

where pµs |x and pµc |x are the VN-to-SN and VN-to-CN message densities and pµ|x pµ|x are
the SN-to-VN and CN-to-VN message densities, respectively.

Proof: We show the statement by induction. First note that for iteration 0, all VN and CN
messages are zero, i.e., p (0)

µ|x(µ|x) = p (0)
µs |x(µ|x) = p (0)

µc |x(µ|x) =∆0 which is symmetric. For the

SN update, first note that (5.122) holds for the zero inputs p (0)
µs |x(µ|x) =∆0 and thus Lemma 10

applies, i.e. p (0)
µ|x(−µ|−x) = p (0)

µ|x(µ|x) is symmetric. The iid properties (5.127) to (5.129) follow

due to the tree-like decoding neighborhood.

Now assume that (5.128), (5.131) and (5.132) hold for iteration `′ < `. We show that this
implies (5.127), (5.129), (5.130) and (5.133) for the same iteration `′ as well as (5.128), (5.131)
and (5.132) for the next iteration `′ + 1; i.e., the symmetry and independence is preserved
throughout one decoding iteration, which proves the claim. We start with the SN update
for iteration `′. Once again, due to the symmetry of the VN-to-SN messages at iteration `′,
Lemma 10 applies and hence, (5.127) and (5.130) hold for iteration `′. For the CN updates,
note that since the incoming VN-to-CN messages are symmetric, we can write the message on
edge e ∈ Ec as µ(`

′)
e = xn(e)µ

(`′)
e|+1 with µ

(`′)
e|+1 ∼ p (`

′)
µ|x (µ|+ 1). Hence, due to the CN symmetry
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(2.72), we have for the message on the CN-to-VN message on edge e j

µ
(`′)
e j
= Φ

(`′)
j
�
µ
(`′)
e1

, . . . ,µ(`
′)

e j−1

�
=

 
j−1∏
i=1

xn(ei )

!
Φ
(`′)
j
�
µ
(`′)
e1|+1, . . . ,µ(`

′)
e j−1|+1

�
(5.134)

= xn(e j )
Φ(`

′)
j

�
µ
(`′)
e1|+1, . . . ,µ(`

′)
e j−1|+1

�
(5.135)

= xn(e j )
µ
(`′)
e j |+1, (5.136)

where (5.135) follows from
∏ j

i=1 xn(ei )
=+1 which holds since {ei} are the edges of a CN and

x is a codeword. This shows (5.129) and (5.133) for iteration `′.

Now for the VN updates, let {es ,1, . . . , es ,k} ⊂ Es and {ec ,1, . . . , ec ,i} ⊂ Ec be the SN and VN
side edges connected to some VN vn . Since all input messages are symmetric, we can perform
the same factorization as for the CN update, i.e., µ(`

′)
es ,k′
= xnµ

(`′)
es ,k′ |+1 with µ

(`′)
es ,k′ |+1 ∼ p (`

′)
µ|x (µ|+1)

for k ′ = 1, . . . , k and µ
(`′)
ec ,i ′ = xnµ

(`′)
ec ,i ′ |+1 with µ

(`′)
ec ,i ′ |+1 ∼ p (`

′)
µ|x (µ|+ 1) for i ′ = 1, . . . , i . Thus, due

to the VN symmetry (5.115),

µ
(`′+1)
es ,k

= Φ(`
′)

k−1,i

�
µ(`

′)
es ,1

, . . . ,µ(`
′)

es ,k−1
,µ(`

′)
ec ,1

, . . . ,µ(`
′)

ec ,i

�
(5.137)

= xnΦ
(`′)
k−1,i

�
µ(`

′)
es ,1|+1

, . . . ,µ(`
′)

es ,k−1|+1
,µ(`

′)
ec ,1|+1

, . . . ,µ(`
′)

ec ,i |+1

�
(5.138)

= xnµ
(`′+1)
es ,k|+1

, (5.139)

µ
(`′+1)
ec ,i

= Φ(`
′)

k ,i−1

�
µ(`

′)
es ,1

, . . . ,µ(`
′)

es ,k−1
,µ(`

′)
ec ,1

, . . . ,µ(`
′)

ec ,i

�
(5.140)

= xnΦ
(`′)
k ,i−1

�
µ(`

′)
es ,1|+1

, . . . ,µ(`
′)

es ,k|+1
,µ(`

′)
ec ,1|+1

, . . . ,µ(`
′)

ec ,i−1|+1

�
(5.141)

= xnµ
(`′+1)
ec ,i |+1

, (5.142)

which proves (5.128), (5.131) and (5.132) for iteration `′+ 1 and thus completes the induction
proof. �

Note that Theorem 13 implies the following:

Corollary 1 (Conditional independence of error probability under symmetry). Let P (`)e be
defined as in Theorem 11 and let P (`)e (x) be the corresponding conditional probability assuming
codeword x was transmitted, i.e. P (`)e =

∑
x∈C P (`)e (x)p(x). Under the assumptions of Theorem 13,

P (`)e (x) is independent of x and hence P (`)e = P (`)e (x) for any x ∈ C.

Thus, to simplify the calculation of P (`)e , we can assume that x = +1 was transmitted,
similarly to the case of LDPC codes (cf. Lemma 1). Hence, from now on we write e.g.,
p (`)
µs |x(µ) = p (`)

µs |x(µ|+ 1), implicitly assuming that x = +1 was transmitted. We follow the
same convention for the other densities (5.130), (5.132) and (5.133).
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5.5.2 LLR-Consistency of Message Densities

Lemma 11. Consider the BP SN update (5.43),

µ
k
= Φ(y,µ,A∼k ,ak ) = log

p(y|xk =+1,A,µ)
p(y|xk =−1,A,µ)

(5.143)

under the assumption of symmetric input messages (5.122) and symmetric edge coefficients (cf. As-
sumption 2) with SN constraint y = Ax +w. Then the output density pµ

k
|xk
(µ) = pµ

k
|xk
(µ|+ 1)

is LLR-consistent according to (2.85) and (2.86).

Proof: We show that

∫
R

h(µ)pµ
k
|xk
(µ)dµ=

∫
R

e−µh(−µ)pµ
k
|xk
(µ)dµ (5.144)

for any function h such that the above integral exists, which implies (2.85), cf. [77]. Note that
the BP SN update is symmetric according to (5.117) and (5.118) and hence, Lemma 10 applies.
Thus

Eµ
k

�
e−µk h(−µ

k
)
�� xk =+1

�
=Eµ

k

�
eµk h(µ

k
)
�� xk =−1

�

=Eµ,A

�
Ey

�
p(y|A,µ,xk =+1)
p(y|A,µ,xk =−1)

h
�
Φ ̄(y,µ,A)

� ����A,µ,xk =−1
��

=Eµ,A

�
Ey

�
h
�
Φ ̄(y,µ,A)

� ����A,µ,xk =+1
��

=Eµ
k

�
h(µ

k
)
�� xk =+1

�
�

Theorem 14 (LLR-consistency of message densities under BP decoding). For BP decoding and
a symmetric edge coefficient distribution (cf. Assumption 2), all message densities (5.130) to (5.133)
as well as the APP LLR density p (`)

L|x are LLR-consistent and symmetric.

Proof: The proposition follows by induction from Lemma 11 and Theorem 13 as well as the fact
that for BP, both the VN updates (5.41) and the CN updates (2.61) preserve LLR-consistency,
cf. [77]. �
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5.5.3 Threshold Calculation for SMLDPC Codes

In Section 2.2.3, we have seen that for BP, the VN and CN updates (2.59) and (2.61), the den-
sities transform according to (2.78) and (2.82). Generally, speaking, let

∗Φ(`)̄
�

pw|dy
, pA|dy , ̄ , p (`)

µs |x
�
= p (`)

µ|x,dy , ̄
, (5.145)

∗Φ(`)j
�

p (`)
µc |x
�
= p (`)

µ|x, j , (5.146)

∗Φ(`)
k−1,i

�
p (`)
µ|x, p (`)

µ|x
�
= p (`+1)

µs |x,k ,i
, (5.147)

∗Φ(`)
k ,i−1

�
p (`)
µ|x, p (`)

µ|x
�
= p (`+1)

µc |x,k ,i
, (5.148)

denote the transformation of densities corresponding to the generic, symmetric (cf. Assump-
tion 3) update rules (5.35), (5.36), (5.38) and (5.39), where we included the respective node
degrees and channel dimension in the conditioning of the densities. Due to the similarities
with the BP updates of LDPC codes, we have

∗ΦBP
j
�

p (`)
µc |x
�
= Γ−1

�
Γ
�

p (`)
µc |x
�⊗ j−1�

, (5.149)

∗ΦBP
k ,i

�
p (`)
µ|x, p (`)

µ|x
�
= p⊗k

µ|x ⊗ p⊗i
µ|x, (5.150)

cf. (2.78) and (2.82). Unfortunately, the SN update ΦBP
̄ (5.43) appears to be too complex to

obtain a corresponding ∗ΦBP
̄ . Thus, without ∗ΦBP

̄ , an explicit recursion of densities as has been
obtained for LDPC codes in (2.83) is not possible. However, by the following theorem, it is
not necessary to explicitly calculate P (`)e to obtain the threshold (5.60).

Theorem 15. For LLR-consistent densities, P (`)e converges to zero iff I (L(`),x) converges to one.

Proof: According to [77, Corollary 1], LLR-consistency implies P (`)e → 0 iff p (`)
L|x→∆∞. Fur-

thermore, it is shown in [102] that for a density with these properties, the mutual information
I (L;x) can be computed as

I (L;x) = 1−
∫
R

pL|x(L) log2

�
1+ e−L�dL, (5.151)

where I (L;x)≤ 1, with equality iff pL|x =∆∞, which proves the claim. �
Note that Theorem 15 covers the important special case of BP, which is the optimal decod-

ing algorithm in the MAP sense. Consequently we can rewrite (5.60) as

σ∗ = sup{σ : lim
`→∞

P (`)e (σ) = 0 }= sup{σ : lim
`→∞

I (`)(σ) = 1 }, (5.152)

with I (`) = I (L(`);x). Thus, under the assumption that we can calculate the mutual informa-
tion exactly, the threshold determination can be based on EXIT analysis rather than density
evolution.
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Next, we show that the results on symmetry and LLR-consistency we derived in Sec-
tions 5.5.1 and 5.5.2 can be exploited to establish a very accurate characterization of the SN
update in terms of its EXIT function, cf. Section 2.3. The idea behind that is as follows:

• The input messages to the SN updates are the outputs of the VNs, i.e., the sum of inde-
pendent random variables. Thus for increasing VN degrees, the input messages to the
SN updates become Gaussian by the central limit theorem. Furthermore, simulations
show that the densities of the VN messages match a Gaussian distribution fairly closely,
cf. [19]. Thus, it is reasonable to assume that the input messages to the SN update are
Gaussian and due to the LLR-consistency, are distributed according to

µ|x=+1∼ pµ|x =N (σ2
A/2,σ2

A), (5.153)

where σA is related to the a priori information according to IA = I (µ;x) = J (σA), cf.
(2.87).

• The SN output density pµ|x is symmetric and LLR-consistent. Hence, by (5.151), we can
calculate

I (µ;x) = 1−Eµ

�
log2

�
1+ e−µ

� �� x= 1
�

= 1−Ew,µ,A

h
log2

�
1+ e−Φ ̄ (Ax+w,µ,A)� �� x= 1

i
(5.154)

≈ 1− 1
Ls

Ls∑
l=1

log2

�
1+ e−Φ ̄ (Al 1+wl ,µl |1,Al )

�
, (5.155)

where (5.155) becomes exact for an infinite amount Ls →∞ of iid samples (wl ,µl |1,Al )
distributed according to

(wl ,µl |1,Al )∼ pw(w)pA(A)
̄−1∏
i=1

pµ|x(µi ). (5.156)

• Using (5.155) and (5.156), we can approximate the EXIT function of the SN update ar-
bitrary closely, and establish a functional relationship in the form of

IE = IE (IA,N0, pA,Φ). (5.157)

Here, the EXIT curve is parametrized by the channel noise variance N0, the edge coef-
ficient distribution pA as well as the update rule Φ, which is required to preserve LLR-
consistency for the estimation (5.155) to hold.
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5.6 Irregular Graphs

5.6.1 General Definition and Code Rate

In the following, let Si j k denote the number of SNs with degree j , channel dimension i , and
type k. In this context, the introduction of a SN type allows for mixtures of SNs that share
the same dimension and degree but use different modulation schemes and/or update rules.
Similarly, let Vi j denote the number of VNs with VN-to-SN degree i and VN-to-CN degree j
and C j the number of CNs of degree j . Hence,

L=
∑

i

∑
j

∑
k

Si j k N =
∑

i

∑
j

Vi j , M =
∑

j

C j . (5.158)

We define the node perspective degree distributions as

Σi j k ¬
Si j k

L
, Λi j ¬

Vi j

N
, P j ¬

C j

M
, (5.159)

cf. Table 5.1 for an overview of related quantities.

Due to the constraints on the number of SN side and CN side edges Es and Ec ,

Es =
∑

j

j
∑

i

∑
k

Si j k =
∑

i

i
∑

j

Vi j , Ec =
∑

j

j C j =
∑

j

j
∑

i

Vi j ⇐⇒ (5.160)

L
∑

j

j
∑

i

∑
k

Σi j k =N
∑

i

i
∑

j

Λi j , M
∑

j

i P j =N
∑

j

j
∑

i

Λi j (5.161)

we can express the code rate solely in terms of the degree distributions,

R=
N −M

d̄y L
=
�

1− M
N

� N

d̄y L
=
�

1−
∑

j j
∑

i Λi j∑
i i Pi

� ∑
j j
∑

i
∑

k Σi j k�∑
i i
∑

j Λi j
��∑

j
∑

i i
∑

k Σi j k
�

=

h
1− �∑ j

ρ j
j

��∑
j j
∑

i Λi j
�i�∑

i
∑

j j
∑

k Σi j k
�

�∑
i i
∑

j Λi j
��∑

i i
∑

j
∑

k Σi j k
� (5.162)

=

h
1− �∑ j

ρ j
j

��∑
j jΛs

j

�i�∑
j jΣs

j

�
�∑

i iΛc
i

��∑
i iΣd

i

� . (5.163)

It is interesting to note that R only depends on the marginal distributionsΣc
i ,Σs

j ,Λ
s
i andΛc

j (cf.
Table 5.1), whereas the actual convergence behaviour of the iterative message passing decoder
is determined by the joint distributions Σi j k and Λi j . That is, the mixture densities of an
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Quantity Symbol in terms of base quantity

number of SNs with channel dimension i ,
SN degree j and type k

Si j k LΣi j k

fraction of SNs with channel dimension i ,
SN degree j and type k

Σi j k Σi j k

fraction of SNs with channel dimension i Σc
i

∑
j

∑
k

Σi j k

fraction of SNs with degree j Σs
j

∑
i

∑
k

Σi j k

average channel dimension d̄y

∑
j

∑
i

i
∑

k

Σi j k =
∑

i

iΣc
i

fraction of SN side edges connected to a SN
of dimension i , degree j and type k

σi j k

jΣi j k∑
j j
∑

i
∑

k Σi j k

fraction of SN side edges connected to a SN
of degree j

σ j

j
∑

i
∑

k Σi j k∑
j j
∑

i
∑

k Σi j k
=
∑

i

∑
k

σi j k

number of VNs with VN-to-SN degree i and
VN-to-CN degree degree j

Vi j NΛi j

fraction of VNs with VN-to-SN degree i and
VN-to-CN degree degree j

Λi j Λi j

fraction of VNs with VN-to-SN degree i Λs
i

∑
j

Λi j

fraction of VNs with VN-to-CN degree j Λc
j

∑
i

Λi j

fraction of SN side edges connected to VN
with VN-to-SN degree i and VN-to-SN de-
gree j

λs
i j

iΛi j∑
i i
∑

j Λi j
=

iΛi j∑
i iΛs

i

fraction of CN side edges connected to VN
with VN-to-SN degree i and VN-to-CN de-
gree j

λc
i j

jΛi j∑
j j
∑

i Λi j
=

jΛi j∑
j jΛc

j

number of CNs with degree j C j M P j

fraction of CNs with degree j P j P j

fraction of CN side edges connected to CN
with degree j

ρ j

j P j∑
j j P j

Table 5.1: Quantities specifying the connectivity of an irregular SMLDPC code.
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irregular code read

p (`)
µ|x =

∑
i

∑
j

σi j k p (`)
µ|x,i , j ,k

, (5.164)

p (`)
µ|x =

∑
j

ρ j p (`)
µ|x, j , (5.165)

p (`+1)
µs |x =

∑
i

∑
j

λs
i j p (`+1)

µs |x,i , j , (5.166)

p (`+1)
µc |x =

∑
i

∑
j

λc
i j p (`+1)

µc |x,i , j , (5.167)

p (`)
L|x =

∑
i

∑
j

Λi j p (`)
L|x,i , j , (5.168)

where the densities for a particular combination of degrees and/or channel dimension are de-
termined by the transformations (5.145) to (5.148), e.g., for BP,

p (`+1)
µs |x,i , j =

∗ΦBP
i−1, j

�
p (`)
µ|x, p (`)

µ|x
�
= p⊗i−1

µ|x ⊗ p⊗ j
µ|x.

While the mixture densities (5.164) to (5.167) are characterized by the edge perspective degree
distributions, the code rate (5.163) can only be accurately expressed via the node perspective
distributions, assuming that there are VNs with either VN-to-SN or VN-to-SN degree zero.
Furthermore, note the rate is independent of the type distribution.

Thus, in general, the irregular structure of a graph is best described by the degree distri-
bution triple (Σ,Λ,ρ). We could theoretically introduce polynomials (over a two dimensional
domain) to express the SN and VN degree distributions as it is commonly done for LDPC
codes. For SMLDPC codes however, we lack an explicit recursion based on the polynomial
notation (cf. (2.83)), so the notational usefulness would be limited and we directly work with
degree distributions.

The above considerations illustrate very well the difference between our analysis of SMLDPC
codes which is based on joint distributionsΛ andΣ and the approach taken in [114, 115], which
merely has access to the marginals Λs and Λc .

5.6.2 Generalization of Results to Irregular Codes

In this section, we will briefly discuss how the results we obtained previously for regular codes
generalize to the irregular case.

Channel Model: In case of multiple different channel dimensions i , SN degrees j and node
types k, we have to specify one edge coefficient distribution per triple (i , j , k). That
is, we generalize the distribution of edge coefficient matrices to pA|i , j ,k , where for any
(i , j , k), pA|i , j ,k fulfills Assumption 2. Let Ci j k and Pi j k be the capacity and channel
input power for a particular tuple (i , j , k) according to (5.18) and (5.19) with i = dy and
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j = ds and corresponding coefficient type. Then the capacity and input power of the
irregular mixture are given by

C =
∑

i

∑
j

∑
k

Σi j kCi j k , (5.169)

P =
∑

i

∑
j

∑
k

Σi j k Pi j k . (5.170)

Note that Pi j k = 1 implies P = 1.

Decoding: The general message passing decoding procedure described in Section 5.3 applies
unchanged to the irregular case, where the update rules depend on the degree of the
nodes. For SNs of different dimension, alternative decoding schedules could be of inter-
est. The reasoning here is that the updates for high-dimensional SNs are more costly and
take longer to evaluate.

Concentration and Symmetry: All results derived in Section 5.4 for regular codes also ap-
ply to irregular codes. In particular, Theorem 11 holds with adjusted constants β and
γ . Furthermore, the symmetry relations obtained in Section 5.5 also apply to irregular
codes, assuming that for each degree, the nodes adhere to the symmetry constraints in
Assumption 3.

5.6.3 Discussion and Potential of Irregular Codes

One might ask what the benefit is of introducing irregular SMLDPC codes. For the VNs, the
motivation for irregularity is similar as for LDPC codes: While low-degree VNs only receive
little extrinsic information and are therefore more difficult to decode, they do increase the over-
all code rate. Conversely, high-degree VNs provide reliability due to redundancy but reduce
the code rate. For irregular LDPC codes, it turned out that mixing VNs of different degrees
can greatly improve the performance of a code for a given rate. That is, while the addition of
low-degree VNs increases the rate, the high-degree VNs provide a lot of extrinsic information,
which through the iterative message passing decoding procedure, benefits also the low-degree
VN, thereby achieving good performance at high rates close to the channel capacity.

Another aspect that calls for VN irregularity is the two dimensional nature of the VN de-
gree for SMLDPC codes. A priori, it is unclear which combinations of VN-to-SN and VN-to-
CN degrees lead to good performance and it appears intuitive that a single degree pair (dv s , dvc )
does not fully exploit the potential for iteratively decoded SMLDPC codes.

For the SNs the motivation is similar. By taking into account irregular SN degrees, we can
model a mixture of different modulation types, e.g. different modulation orders. For example,
let i = 1 and j ∈ {2,4} for the coefficient model (5.21), which leads to a mix of 4-QAM and
16-QAM constellations. By introducing multiple types, we can even mix different coefficient
models of the same degree. We could e.g., mix real SM-EPA and PAM of the same symbol
node degree. A reason for doing this might be that both modulations have desirable properties
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Figure 5.9: EXIT function for PAM, SM-EPA and a 50− 50 mix thereof for a SN degree of 4 and
N0 = 0.6

and a mixture of those could potentially enhance the iterative decoding procedure. Whereas
(Gray coded) PAM provides high extrinsic information without any a priori information, it
does not benefit much from iterative demodulation due to its flat EXIT function. Conversely,
the EXIT function of SM-EPA is rather steep, meaning that this modulation is not optimal at
the beginning of iterative decoding due to lack of a priori information but produces messages
much more reliable than PAM later in the decoding process. Note that due to the symmetry
and consistency of SN messages (cf. Sections 5.5.1 and 5.5.2) the mutual information is linear
in the densities, cf. (5.151). Hence, it follows from (5.164), that the EXIT function of SN
mixtures is the linear combination of the individual EXIT functions,

IE (IA) =
∑

i

∑
j

∑
k

σi j k IE |i , j ,k (IA). (5.171)

Figure 5.9 illustrates the above. Using a mixture of 50% SM-EPA nodes and 50% PAM nodes,
we can see that this leads to a combination of the characteristics of both EXIT functions. Con-
sequently, for irregular SMLDPC codes, we have very granular control over the average EXIT
functions of the SN updates, which helps to prevent rate loss and therefore approaching capac-
ity [3].

By that logic, we can also define different SN types based on using different update rules6

(5.35). Generally speaking, the parameter space of irregular SMLDPC codes is vast and the fact
that special cases of this framework such as SN-regular codes [114] or conventional modulated

6We note that unlike edge coefficients and graph structure, the update rules are not part of the code itself.
However, from a system design perspective, it makes sense to include them in the SN type.
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LDPC codes without iterative demodulation [48, 98, 121] were shown to come close to the
channel capacity, lead us to believe that SMLDPC codes are capable of achieving the Shannon
capacity in the bandwidth limited regime. In particular, for a prescribed code rate R, we strive
to find combinations of degree distributions, coefficient distributions as well as SN update
rules that allow decoding close to the capacity in linear time, i.e.,

σ∗ = sup
�
σw
�� lim
`→∞

I (`)(σw, pA|i , j ,k ,Σ,Λ,ρ
�→ 1

	
, (5.172)

such that |σmax,R−σ∗| is small. Here, I (`) denotes the mutual information between APP LLRs
and code bits after iteration ` andσmax,R = 1/

p
2R− 1 is the maximum noise level of an AWGN

channel for which reliable transmission of rate R is possible according to the channel capacity,
assuming normalized transmit power P = 1. Having found such a tuple (pA|i , j ,k ,Σ,Λ,ρ

�
, the

concentration theorem (Theorem 11) then ensures that for large N , a code randomly gener-
ated according to (pA|i , j ,k ,Σ,Λ,ρ

�
will have performance close to the ensemble average and

therefore perform close to capacity.

5.7 EXIT Evolution and Degree Distribution Optimization

5.7.1 EXIT based Threshold Computation

In what follows, we will describe the decoding process (cf. Section 5.3.1) of an SMLDPC code
in terms of EXIT analysis (cf. Section 2.3). We will refer to this procedure as EXIT evolution.
Let {Φi , j ,k}(i , j ,k)∈Ds

be a set of SN update rules of the form (5.35), where the tuples (i , j , k) con-
sists of channel dimensions, SN degrees and SN types and Ds is the set of such combinations.
Furthermore, for the moment, we assume that any Φi , j ,k is independent of the iteration index,
however, the procedure described below also works for that case with some slight adjustments,
as we will explain later. Furthermore, for the tuple (i , j , k), pA|i , j ,k denotes the corresponding
edge coefficient distribution.

Input: Channel noise standard deviation σw, degree, dimension and type structure Ds, Dc,
Dv and corresponding distributions (Σ,Λ,ρ), coefficient distribution(s) {pA|i , j ,k}, tolerance
ε > 0, update rule(s) {Φi , j ,k} that preserve symmetry and LLR-consistency.

Initialization: For a given σw and all tuples (i , j , k) ∈Ds, calculate the EXIT function

IE |i , j ,k (IA,σ2
w, pA|i , j ,k ,Φi , j ,k ), (5.173)

using the procedure described in Section 5.5.3. Usually, it is sufficient to calculate IE for some-
thing like 100 supporting values of IA evenly spaced between 0 and 1 and interpolate in between
those values. Furthermore, set `= 0 and I (0)v→s = I (0)v→c = I (0)c→v = 0.
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Iteration:

1. SN and CN EXIT updates:

(a) SN update: Calculate the SN EXIT update according to the pre-generated EXIT
functions (5.173),

I (`)
s→v|i , j ,k

= IE (I
(`)
v→s,σ

2
w, pA|i , j ,k ,Φi , j ,k ). (5.174)

Then, due to (5.151) and (5.164) and Theorem 14 and, we obtain

I (`)s→v =
∑

(i , j ,k)∈Ds

σi j k I (`)
s→v|i , j ,k

. (5.175)

The same argument applies to the averaging of CN and VN updates in the follow-
ing.

(b) CN update: Calculate the CN EXIT update according to the EXIT function (2.92),

I (`)c→v| j = 1− J
�p

j − 1 J−1(1− I (`)v→c)
�
, (5.176)

followed by calculating the average

I (`)c→v =
∑
j∈Dc

ρ j I
(`)
c→v| j . (5.177)

2. VN and APP LLR update: Calculate the VN EXIT updates according to the EXIT func-
tion (2.90),

I (`+1)
v→s|i , j = J

�Ç
(i − 1)

�
J−1(I (`)s→v)

�2+ j
�
J−1(I (`)c→v)

�2�, (5.178)

I (`+1)
v→c|i , j = J

�Ç
i
�
J−1(I (`)s→v)

�2+( j − 1)
�
J−1(I (`)c→v)

�2�, (5.179)

I (`+1)
v→s =

∑
(i , j )∈Dv

λs
i j I
(`+1)
v→s|i , j , (5.180)

I (`+1)
v→c =

∑
(i , j )∈Dv

λc
i j I
(`+1)
v→c|i , j . (5.181)

Calculate the APP mutual information

I (`)i j = J
�Ç
(i)
�
J−1(I (`)s→v)

�2+ j
�
J−1(I (`)c→v)

�2�, (5.182)

I (`) =
∑
(i , j )∈Dv

Λi j I
(`)
i j . (5.183)
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3. Set ` 7→ `+ 1.

4. If 1− I (`) < ε break and declare success. If not and ` <L , continue with step 1. Other-
wise, declare failure.

Output: Success or failure of decoding. Furthermore, we output the EXIT trajectories I (`
′)

s→v|i , j ,k
,

I (`
′)

c→v| j , I (`
′)

v→s|i , j , I (`
′)

v→c|i , j and I (`
′) for all `′ < ` and all degrees.

Hence, using the above EXIT evolution procedure, we can determine whether for a par-
ticular ensemble, iterative decoding converges for a channel noise parameter σw. According to
the monotonicity theorem (Theorem 10), it follows that if the procedure is not successful for
a particular σw, then it won’t be successful for any σ ′w > σw. Consequently, we can perform a
bisection search to obtain σ∗w, where for a code of rate R, the initial search interval is given by
[0,σmax,R].

In case that the SN updates depend on the iteration index, we either have to precalculate
(5.173) for any of those update rules or run the Monte Carlo simulation at any iteration for the
current a priori information I (`)v→s. Furthermore, note that for the bisection search, it might pay
off in the long run to also precompute (5.173) for a range of supporting values of σw, thereby
obtaining EXIT surfaces over [0,1]× [0,σmax,R], where again we can use (2D) interpolation in
between the supporting values.

5.7.2 Local Optimization of Degree Distributions

We start this section by giving a brief overview of degree distribution optimization for conven-
tional LDPC codes, i.e., we consider Σi j k = δi−1δ j−1δk−1 and Λi j = δi−1Λ

c
j . For that case,

the code rate (5.162) becomes

R= 1−
∑

j
ρ j
j

∑
j
λc

j
j

, (5.184)

where λc
j =

jΛc
j∑

j jΛc
j

is the edge perspective VN degree distribution of the CN side edges, cf.

(2.49). A strategy that turned out to be very successful in producing good degree distributions
is to optimize the code rate (5.184) under suitable linear constraints, cf. [18, 77, 79] and Sec-
tion 4.3.3. Specifically, as discussed in Section 4.3.3, (5.184) can be maximized by minimizing∑

j ρ j/ j for constant λc or maximizing
∑

j λ
c
j/ j for a constant ρ, both of which are linear ob-

jective functions. Now consider the case where we want to optimize the VN distribution for
a given CN distribution. Suitable linear constraints can be derived from the recursion (2.95),
i.e., let I = [0,1] and define the functions

f j : I → I, I (`)v→c 7→ I (`+1)
v→c| j and f (I ) =

∑
j

λc
j f j (I ) (5.185)
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according to the recursion (2.95). We then require that f (I ) ≥ I for all I ∈ I, which is a
linear constraint in λc . Furthermore,

∑
j λ

c
j = 1 and λc

j ≥ 0. This yields a linear program
for optimizing the VN degree distribution. A similar linear program can be formulated for
the CN degree distribution. Now alternating between VN and CN optimization, we quickly
converge to very good degree distributions (λc ,ρ).

For general SMLDPC codes, we can derive a similar optimization procedure, however,
there are two aspects that complicate the extension:

1. The rate for a general code (5.162) is not linear in Σ or Λ, given all other degree distribu-
tions. However, (5.162) is a linear-fractional function of Σ given Λ and ρ, or in terms of
Λ, a linear-fractional function of Λ given Σ and ρ. Thus, given that we can find suitable
linear constraints, we can formulate linear-fractional programs that can be transformed
to linear programs and solved efficiently [10, Section 4.3.2].

2. For conventional LDPC codes, the EXIT trajectories are one-dimensional for both VNs
and CNs. Thus, the constraint f (I )≥ I for all I ∈ I does not entail any loss of generality.
For SMLDPC codes however, I (`+1)

v→c does not only depend on I (`)v→c but also on I (`)v→s, i.e.,

denoting i(`)v =
�
I (`)v→s I (`)v→c

�T
the recursion takes the form

f s
i j : I2→ I, i(`)v 7→ I (`+1)

v→s|i , j

f c
i j : I2→ I, i(`)v 7→ I (`+1)

v→c|i , j


 f : I2→ I2, i(`)v 7→

 ∑
i
∑

j λ
s
i j f s

i j

�
i(`)v
�

∑
i
∑

j λ
c
i j f c

i j

�
i(`)v
�
!

. (5.186)

Here, the two-dimensional EXIT vector field f and the component functions f s
i j and

f c
i j are obtained by combining (5.174) to (5.181). Consequently, f is parametrized by
σw, (Σ,Λ,ρ) as well as pA|i , j ,k and Φi , j ,k . We could thus formulate linear constraints by
requiring that f (i)¼ i for all i ∈ I2. This condition is however prohibitively restrictive
and prevents good solutions because in the two dimensional case, f (i(`)v ) ¼ i(`)v merely
along the one dimensional EXIT trajectory i(`)v . This problem has also been observed
in [121] for the optimization of degree distributions for multi-edge-type LDPC codes
where an approach based on the backward difference vector field

∇f : I2→ I2, i 7→ f (i)− i (5.187)

is suggested. Specifically, it is required that ∇f (i) 6= 0 for all i ∈ I2 \ 1, i.e., there are
no stationary points other than 1, which can be shown to imply convergence. In prac-
tice, this condition is modeled as ‖∇f (i)‖2 ≥ ε for small ε and a finite, sufficiently dense
grid of supporting values i ∈ Î2 ⊂ I2, which translates into

��Î2�� quadratic constraints.
Figure 5.10 depicts an example of a backward difference vector field and a decoding tra-
jectory i(`)v for an optimized, irregular SMLDPC code of rate 2 based on real SM-EPA
coefficients, cf. (5.23). Observe that f (i(`)v )¼ i(`)v along the decoding trajectory but not
in general.
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Figure 5.10: Backward difference vector field (scaled by a factor 0.1 for better visibility) and decoding
trajectory using a supporting set Î2 with 30 points per dimension. As we can see, along the decoding
trajectory, the vector field almost vanishes. In particular, around the area of the point (.65, .5), the
field is close to being stationary. This can also be seen by examining the point density of the decoding
trajectory, which indicates that it took many iteration to cross that region.

For multi-edge-type LDPC codes, the objective is linear and thus the resulting optimiza-
tion problem is linear, non convex and quadratically constrained and due to its well be-
haved objective, can be solved using general purpose interior point methods. In our case
however, the objective is not linear and a transformation to a linear problem as described
in item 1 is only possible for linear constraints. We tried general purpose solvers as sug-
gested in [121] but could not obtain satisfactory results for our objective using random
initializations for optimization. However, using “good” initializations obtained from the
optimization approach we present in the following, this method is capable of producing
good degree distributions.

In what follows, we will derive a strategy that works around those limitations. The idea
is that we assume that for small changes to the degree distribution, decoding still follows es-
sentially the same EXIT trajectory. This is an assumption commonly made for changes to the
degree distribution and resulting densities of conventional LDPC codes [18, 77].

We start with an initial degree distribution Λ′ and obtain the corresponding EXIT tra-
jectories for the highest possible σw for which EXIT evolution still converges. Denote those
trajectories as I (`)v→s|i , j , I (`)v→c|i , j and I (`)v→s =

∑
i , j λ

s ′
i j I
(`)
v→s|i , j , I (`)v→c =

∑
i , j λ

c′
i j I
(`)
v→c|i , j . Then for

any point along that trajectory, we consider one more iteration using a new, slightly different
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degree distribution Λ that maximizes the code rate under the constraint that

1. the new degree distribution is a proper pmf,

2. the new degree distribution is close to the original one,

3. the trajectory of the new degree distribution improves upon the old one.

This translates into the following optimization problem for the VN degree distribution Λ

max
Λ

C s
Σ

�
1−Cρ

∑
(i , j )∈Dv

jΛi j
�

C c
Σ

∑
(i , j )∈Dv

iΛi j
(5.188)

subject to∑
(i , j )∈Dv

Λi j = 1, (5.189)

Λi j ≥ 0, (i , j ) ∈Dv, (5.190)����I (`)v→s−
∑
(i , j )∈Dv

I (`)v→s|i , jλ
s
i j

����≤ δ
�
I (`)v→s− I (`−1)

v→s

�+
, (5.191)

����I (`)v→c−
∑
(i , j )∈Dv

I (`)v→c|i , jλ
c
i j

����≤ δ
�
I (`)v→c− I (`−1)

v→c

�+
, (5.192)

∑
(i , j )∈Dv

I (`)v→s|i , jλ
s
i j ≥ I (`−1)

v→s + ε, (5.193)

∑
(i , j )∈Dv

I (`)v→c|i , jλ
c
i j ≥ I (`−1)

v→c + ε, (5.194)

where item 1 corresponds to the constraints (5.189) and (5.190), item 2 corresponds to (5.191)
and (5.192), item 3 corresponds to (5.193) and (5.194), ε ≥ 0 and δ > 0 are positive con-
stants that control closeness and improvement and the constants C s

Σ =
∑
(i , j ,k)∈Ds

jΣi j k , C c
Σ =∑

(i , j ,k)∈Ds
iΣi j k and Cρ =

∑
j∈Dc

ρ j
j are independent of Λ.

Applying the Charnes-Cooper transformation [15], we introduce a new variable

t ¬
1

C c
Σ

∑
(i , j )∈Dv

iΛi j
> 0 (5.195)
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and transform xi j = tΛi j to arrive at

max
x,t

C s
Σ

�
t −Cρ

∑
(i , j )∈Dv

j xi j
�

subject to∑
(i , j )∈Dv

xi j = t ,

xi j ≥ 0,

t ≥ 0,

C c
Σ

∑
(i , j )∈Dv

i xi j = 1,

∑
(i , j )∈Dv

�
i I (`)v→s− i I (`)v→s|i , j − iδ

�
I (`)v→s− I (`−1)

v→s

�+�
xi j ≤ 0,

∑
(i , j )∈Dv

�
− i I (`)v→s+ i I (`)v→s|i , j − iδ

�
I (`)v→s− I (`−1)

v→s

�+�
xi j ≤ 0,

∑
(i , j )∈Dv

�
j I (`)v→c− j I (`)v→c|i , j − jδ

�
I (`)v→c− I (`−1)

v→c

�+�
xi j ≤ 0,

∑
(i , j )∈Dv

�
− j I (`)v→c+ j I (`)v→c|i , j − jδ

�
I (`)v→c− I (`−1)

v→c

�+�
xi j ≤ 0,

∑
(i , j )∈Dv

�
i I (`−1)

v→s + iε− i I (`)v→s|i , j

�
xi j ≤ 0,

∑
(i , j )∈Dv

�
j I (`−1)

v→c + jε− j I (`)v→cs |i , j

�
xi j ≤ 0.

Then the transformed problem is linear and the solution xi j and t yields the solution of the
original problem by inverting the transformation, Λi j = xi j/t . A similar program can be
formulated in terms of the SN degree distribution Σi j k . Specifically, if Σ has a fixed, regular
dimension dy , i.e., Σi j k = δi−dy

Σ j k the rate expression takes the form

R=
1− �∑ j∈Dc

ρ j
j

��∑
(i , j )∈Dv

jΛi j
�

�∑
(i , j )∈Dv

iΛi j
��

dy
∑

j∈D s
s

σ j
j

� , (5.196)

which allows for joint optimization of the SN and CN degree distribution since (5.196) is a
linear-fractional function in (σ ,ρ). If Σ does not have regular dimension, then we have to
optimize Σ assuming constant ρ and Λ. In that case, ρ has to be optimized separately using an
analogous linear program, assuming fixed Λ and Σ.

Thus, to sum up the degree distribution optimization procdedure, we start with an ini-
tial triple (Σ,Λ,ρ) and run an EXIT evolution based bisection search to obtain the highest σw
for which decoding still converges and save the corresponding EXIT traces. Subsequently, we
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consider linearization around the so obtained trajectories and iteratively solve linear programs
optimizing the code rate, where we alternate between optimizing VN, SN and CN degree dis-
tributions. If the SN degree distribution has regular channel dimension, we alternate between
optimizing the VN degree distribution and joint optimization of both SN and CN degree dis-
tribution. Since we allow only small changes to the degree distributions, the EXIT trajectories
of the new degree distributions still essentially follow the old trajectories. Thus, after solving
the optimization problems, the new trajectories are obtained from the old ones by running
one more iteration using the optimized degree distributions. We repeat the above procedure
until there is no more improvement in the objective.

5.7.3 Global Optimization of Degree Distributions

In the previous section, we presented an optimization method for degree distributions of ir-
regular SMLDPC ensembles. The procedure is a local gradient type optimization algorithm
and therefore requires an initial degree distribution to start with. Originally, the degree distri-
bution optimization of conventional LDPC codes faced the same problem [77]. However, it
was quickly realized that the global optimization step can be omitted since empirical results of
degree distribution optimization indicated that

• optimal CN degree distributions tend to concentrate around a single degree

• optimal VN degree distributions are sparse, feature high fractions of low degree nodes
with degrees 2,3, . . . , 10 as well as the maximum allowed VN degree and only a few de-
grees in between

Thus, in the face of the above results, it turned out to be sufficient to omit global optimization
altogether and start with random initializations that adhere to the above structure [18].

For SMLDPC codes, the situation is different in that we do not yet have an understanding
as to which degree distributions perform well for a given edge coefficient distribution. Fur-
thermore, since the VN degree is two dimensional, we need to identify which combinations
of VN-to-SN and VN-to-CN degrees yield good performance at high rates. For the SN degree
distribution, we face a similar problem.

For that matter, we use differential evolution [94], a method that has already been employed
successfully to find good LDPC codes [77, 89]. Our main objective here is to identify good
degree combinations. The exact probability of that combinations can be optimized later on
using the local optimization approach described in Section 5.7.2. Since differential evolution
works best over continuous domains of not too high dimension, we consider tuples

(Σi j k , i , j ) ∈ [0,1]× [1, dy,max]× [1, ds ,max]⊂R3 ∀k , (5.197)

(Λi j , i , j ) ∈ [0,1]× [0, dv s ,max]× [0, dvc ,max]⊂R3, (5.198)

(ρ j , j ) ∈ [0,1]× [1, dc ,max]⊂R2, (5.199)
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i.e. continuous node degrees. Note that we did not introduce a continuous node type as the
numeric index of the type is irrelevant to the rate and furthermore, we cannot assume conti-
nuity when going from type k to the next type k + 1 and therefore, a linear combination as
performed by the differential evolution algorithm would not be meaningful for the node type.
Consequently, the node types are not part of the differential evolution search space and must
be regarded as fixed parameters set in advance.

Let die ∈ N denote the integer closest to i ∈ R and bic 6= die denote the second closest
integer to i . Then from the continuous VN tuple we obtain

(Λi j , i , j )⇒




�
Λdied j e, die, d j e

�
�
Λbicd j e, bic, d j e

�
�
Λdieb j c, die, b j c

�
with




iΛi j

jΛi j

Λi j


=



die bic die
d j e d j e b j c
1 1 1





Λdied j e
Λbicd j e
Λdieb j c


 , (5.200)

i.e., a continuous triple splits into three different integer degree pairs with corresponding
weights that are uniquely determined by requiring that the code rate as well as the sum proba-
bility remain unaffected by the split. Similarly, for the SN and CN tuples,

(Σi j k , i , j )⇒




�
Σdied j ek , die, d j e��
Σbicd j ek , bic, d j e��
Σdieb j ck , die, b j c�

with




iΣi j k

jΣi j k

Σi j k


=



die bic die
d j e d j e b j c
1 1 1





Σdied j ek
Σbicd j ek
Σdieb j ck


 , (5.201)

(ρ j , j )⇒


�
ρd j e, d j e

�
�
ρb j c, b j c

� with

�
ρ j/ j
ρ j

�
=
�

1/d j e 1/b j c
1 1

��
ρd j e
ρb j c

�
. (5.202)

Prior to running differential evolution, we specify the number of active degrees per node type,
i.e., how many continuous tuples in the form of (5.197) to (5.199) to consider. Let ds ,act = |Ds|,
dv,act = |Dv| and dc ,act = |Dc| denote the number of active SN, VN and CN degrees (i.e. the
number of degrees with non zero probability). The dimension of the search space is then given
by

3ds ,act+ 3dv,act+ 2dc ,act, (5.203)

assuming that we search over SN, VN as well as CN degree distributions. For the objective
function, we once again use the code rate (5.162).

In Table 5.2 we show a degree distribution that we obtained using differential evolution fol-
lowed by local optimization for fixed dy = 1, ds = 8 and dc = 10 for SM-EPA coefficients. The
code rate of the ensemble is R= 1.9, corresponding to the maximum noise standard deviation
σmax,R = 0.2781. Observe how the optimization procedure yields a VN degree distribution
with correlated VN-to-SN and VN-to-CN degrees. Consequently, the joint design of VN-
to-SN and VN-to-CN degree structure is crucial for the design of good SMLDPC codes. In
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i 3 0 1 0 8 2 3
j 11 2 2 3 20 3 3
Λi j 0.014497 0.224958 0.039526 0.134598 0.125895 0.363348 0.097177

Table 5.2: VN degree distribution obtained by first running differential evolution over the search space
of VN degree distributions with dv,act = 3 continuous active degrees and maximum degrees dv s ,max =
dvc ,max = 20 for a regular fixed SN degree of ds = 8 and regular fixed CN degree of dc = 10. We used real
SM-EPA coefficients (cf. (5.23)) and the optimal MAP SN update (5.46). After the differential evolution
search, we employed the local optimization algorithm presented in Section 5.7.2 with the differential
evolution solution as starting point.

particular, it is interesting to note that the optimized distribution contains degree zero nodes,
i.e., punctured VNs that are only involved in parity checks but are not explicitly present in the
modulated symbols. Similarly to LDPC codes, there is a high amount of low degree VNs as
well as VNs with the highest allowed degrees.

Using bisection search, we obtained the ensemble threshold σ∗w = 0.2657, which is 0.908 dB
from capacity. Based on this ensemble, we also created an SMLDPC code of length N = 105

and rate R= 1.9 and simulated transmission over an AWGN channel, cf. Figure 5.11. The code
was obtained using the random code construction method proposed in [65] for LDPC codes.
That is, starting with the lowest degree VNs, edges are placed randomly by setting elements of
Γ to one on a per-column basis, cf. (5.6). Upon insertion of an edge, we check if a short cycle
was created and if so, we remove the edge and place it else where.

As we can see from Figure 5.11, this code already comes fairly close to capacity, even though
we did not perform any SN or CN degree distribution optimization. Specifically, we chose
ds = 8 and dc = 10 to compare the resulting optimized code to the performance of the heuris-
tically designed rate 2 code presented in [115]. Whereas we obtain similar performance in the
water fall region, in contrast to [115], we did not observe any flattening or error floor using
our design.
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Figure 5.11: Bit error rate and threshold for an optimzized code using SM-EPA coefficients.



Chapter 6

Conclusion and Outlook

In this concluding chapter, we first provide a chapter-by-chapter summary of our most relevant
findings. Subsequently, we discuss potential extensions and topics for future work.

6.1 Summary of Contributions

Chapter 3: Rate Information Coding for Gaussian Signals

• We analyzed the optimal rate information tradeoff for jointly Gaussian observation and
relevance in a communication context. This formulation highlights the effects of the
GIB information-optimal projection and yields closed-form expressions for the rate in-
formation tradeoff in terms of the mode SNRs.

• Based on the communication model, we showed that the GIB optimal projection is
closely related to the associated Wiener filter for estimating the transformed relevance
from the channel output.

• We derived and analyzed the rate information tradeoff for linearly prefiltered MSE-opti-
mal quantization and showed that the information-optimal tradeoff as characterized by
the GIB is obtained by choosing the square root of the Wiener filter, as opposed to direct
Wiener filtering, which results into the MSE-optimal tradeoff. This result establishes a
fundamental relation between MSE-optimal and information-optimal quantization for
the Gaussian case.

• We established a coding theorem for information-optimal quantization of a sequence
of Gaussian vectors and discussed the extension to stationary ergodic sources. Further-
more, we proved the existence of information-optimal quantizers derived from MSE-
optimal quantizers based on the equivalence of the optimal probabilistic mapping p(z |y)
for both cases.

• We presented simulation results indicating that MSE-optimal quantization of square-
root-Wiener-filtered signals indeed shows the best rate information performance amongst
comparable filters.

136
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Chapter 4: Quantized Message Passing LDPC Decoding

• We formulated a novel symmetry concept for LUT decoding based on involutions and
the pmfs of discrete messages in density evolution. It has been previously observed in
[60] that without symmetry of LUT updates, the resulting decoder performed poorly,
so symmetry was introduced there based on empirical observations of decoder perfor-
mance. Our results provide a theoretical backing to that observation.

• We showed that LUT decoding is essentially a form of quantized BP, where LUTs take
the role of iteration-dependent quantizers. This result establishes a connection between
LUT decoding and BP and allows concepts that have been originally developed for BP
to be applied to LUT decoding. Furthermore, we established a duality between the dis-
crete LUT labels and the associated LLR-values that are obtained from density evolution
pmfs. This serves to create a rudimentary algebraic structure on the message labels which
allows for a combination of LUT based and algebraic node updates.

• We derived an information-optimal symmetric LUT decoding algorithm for LDPC codes.
Due to the algebraic structure on the labels, LUT inputs can be preprocessed which leads
to a reduction in LUT size and complexity. Moreover, we proposed a hybrid min-LUT
algorithm that combines the algebraic min-sum (MS) CN update rule with a VN LUT
update.

• We proposed a variety of different measures to further reduce the complexity of LUT de-
coders and investigated their impact on decoder performance. In particular, we demon-
strated that LUTs can be arranged into binary trees of maximum width with negligible
impact on decoder performance. Furthermore, we showed that a structured reuse of
LUTs for multiple decoding iterations can reduce implementation complexity by up to
80% with minor performance penalties. We found that downsizing the LUT resolution
over the course of several decoding iterations decreases the LUT size and causes only an
insignificant performance degradation.

• We derived the first extension of LUT decoding to irregular LDPC codes. By taking into
account degree distributions, we proposed an information-optimal joint design for LUTs
of different node degrees and demonstrated the far superior performance of this approach
as compared to the individual design. Moreover, based on the relation we found between
LUT and BP decoding, we showed that LUT decoders fail for BP-optimized codes due
to a mismatch in the degree structure. In particular, we identified that this is due to
an excess in degree two VNs and we quantified the necessary corrections by means of
asymptotic stability analysis. Considering the bound on the fraction of degree two VNs
obtained that way, we optimized degree distributions for LUT decoding and showed that
LUT decoders can in fact take advantage of irregular codes.

• We presented extensive numeric simulation results comparing different LUT decoders
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and conventional BP and MS decoders. Specifically, our results show that for regular
codes, a LUT resolution of only 3 bit is sufficient for the low complexity min-LUT de-
coder to reach the performance of conventional MS decoders operating at floating point
precision, while outperforming MS decoders with 4 bit message resolution by 0.3 dB and
more in the error floor region. Using a 4 bit LUT decoder, we come within 0.1 dB of BP
performance. For irregular codes, the requirements for the LUT resolution are higher
than for regular codes. Nonetheless, we demonstrated using a standard compliant irreg-
ular code that a min-LUT decoder with 4 bit resolution can outperform a floating point
MS decoder by 0.5 dB.

Chapter 5: SMLDPC Codes

• We proposed SMLDPC codes — a novel type of potentially capacity approaching codes
for continuous input additive white noise channels that allow for joint parallel decoding
and demodulation with complexity linear in code word length. Formally, an SMLDPC
code is completely determined by a sparse tripartite graph G(Γ ) and a series of edge
coefficient matrices (Al )

L
l=1. Using different edge coefficients, a wide variety of well-

known modulation schemes can be adopted by SMLDPC codes, including the widely
used regular QAM constellations.

• We presented a generic message passing decoding approach for SMLDPC codes and de-
rived the BP decoding algorithm. Due to the structure of the underlying graph, SMLDPC
codes allow for joint parallel demodulation and decoding in linear time — even MIMO
detection can be incorporated into the decoding algorithm. The most complex operation
of the decoding algorithm was identified as the SN update, for which various approaches
were proposed. In particular, we derived a low complexity approximate SN update that
is similar to a linear MMSE estimator with a priori information.

• We considered a random construction of SMLDPC codes based on random sampling
of the edge coefficient matrices (Al )

L
l=1 and construction of a random graph G(Γ ). We

showed that for any particular realization of graph, edge coefficients, channel realiza-
tion and transmit message, the fraction of bit errors under message passing decoding
converges to the average of the cycle-free case as the length of the code approaches in-
finity. Then due to the monotonicity of the BP decoding algorithm, this concentration
result gives rise to a thresholding phenomenon, i.e., for the AWGN channel with noise
variance σ2, there exists σ∗ such that for any σ < σ∗ decoding of any codeword from
any code disturbed by any noise realization will be successful as L →∞, whereas for
σ > σ∗ the opposite is true. Furthermore, we demonstrated that for BP decoding, σ∗ is
computable exactly by means of EXIT analysis. More precisely, we showed that for BP,
the messages have iid symmetric and LLR-consistent densities which gives rise to a very
accurate method for obtaining the EXIT function of the SN updates.
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• Based on the concentration theorem and the resulting thresholding phenomenon, we
proposed to search for ensembles of irregular of SMLDPC codes that exhibit high thresh-
olds σ∗ close to σmax,R, which is the maximum noise parameter for a rate R code accord-
ing to the AWGN capacity. That is, we searched for degree- and coefficient distribution
tuples (Σ,Λ,ρ, pA|i , j ,k ) such that the corresponding threshold σ∗(Σ,Λ,ρ, pA|i , j ,k ) is close
to σmax,R. Towards this end, we derived an EXIT evolution procedure to accurately de-
termine σ∗ for prescribed (Σ,Λ,ρ, pA|i , j ,k ). Moreover, we suggested global and local
optimization techniques to find ensembles (Σ,Λ,ρ, pA|i , j ,k ) with high rate for any pre-
scribed noise parameter σ . Once we found a good ensemble, the concentration theorem
guarantees that any random long code sampled from the ensemble will have performance
close to the predicted threshold. We exemplified our optimization strategy by optimiz-
ing Λ for fixed Σ, ρ and pA|i , j ,k , obtaining an ensemble with threshold within 0.9 dB
from capacity and corresponding randomly generated code.

6.2 Open Problems for Future Research

Chapter 3: Rate Information Coding for Gaussian Signals

• In Section 3.2.3, we calculated the information rate tradeoff for the limit of infinitely
long vectors, cf. (3.67) and (3.68). While we were able to state a coding theorem for
a sequence of iid Gaussian vectors in Section 3.3.1, extending this result to the case of
stationary ergodic sequences is still an open problem.

• We discovered in Section 3.3.2 that the rate information tradeoff is not suited to charac-
terize the capacity under channel output quantization. For scalar quantizers, we found
that the capacity is characterized by the double optimization problem (3.81). Attempts
have been made to solve this problem for symmetric quantizers in [90]. However, it has
been shown in [54] that, somewhat surprisingly, symmetric quantizers are note neces-
sarily optimal for that setting. Thus, finding the solution to (3.81) is still an open issue.

• In Section 3.3.3, we found that the relation between the GIB and prefiltered MSE-optimal
quantization does imply the existence of an optimal rate information code derived from
an MSE-optimal code. However, a much stronger result would be possible if one were
able to find conditions such that equality holds in (3.84).

Chapter 4: Quantized Message Passing LDPC Decoding

• An interesting open question is whether a similar, LUT based decoding approach can
be obtained for turbo codes. Other than that, we originally delved into SMLDPC codes
searching for an extension of the LUT based decoding approach to iterative demodula-
tion. Since both turbo decoding and evaluating the SN MAP updates can be based on
the BCJR algorithm [46, 64], we believe that a viable approach to those problems would
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be to try to formulate a LUT based version of the BCJR algorithm. Considering that the
intermediate LUTs in the CN LUT trees of Section 4.2.3 could be interpreted as “box-
plus and quantize” operations, a possible approach to discretizing the BCJR algorithm
might involve a “Jacobian logarithm and quantize” operation. In fact, using constant
LUTs to evaluate the Jacobian logarithm on a digital signal processor is a fairly common
approach in practice. One would need to investigate the potential of using adaptive,
information-optimal LUTs as opposed to constant LUTs, or more generally, the differ-
ences in performance if LUTs were eliminated altogether in favor of a hybrid max-LUT
algorithm that neglects the residual of the Jacobian logarithm. For that, we would need
to have a similar algebraic structure on the LUT labels in place that enabled the hybrid
min-LUT algorithm. Furthermore, for the case of the SN MAP updates, LUTs for the
initialization of the backward messages β could be of interest.

• For degree distribution optimization of irregular codes for LUT decoding, we mainly
considered an approach based on error probability traces as originally proposed in [77],
cf. (4.49) and (4.50). An approach based on EXIT traces as illustrated in Section 5.7.2
might be interesting as well, since it appears more global and less dependent on good
initializations. This is because for the EXIT based approach, we do not require that
updated degree distributions are close to the previous ones.

• Quantized decoding has often been associated with an increase in error floors [74, 123,
124]. One of the features of our approach towards LUT decoding is that the LLR val-
ues are allowed to grow implicitly during decoding by using iteration dependent LUTs,
cf. Section 4.1.1, which helps to avoid error floors [124]. While we did not observe
any error floors for bit error rates up to 10−13 using the 10GBaseT LDPC code [33], a
thorough investigation would involve testing our decoders for an even higher number of
transmissions by implementing them onto FPGAs or comparably fast technologies.

Chapter 5: SMLDPC Codes

• The search for SMLDPC ensembles (Σ,Λ,ρ, pA|i , j ,k )with thresholds close to capacity is
a fascinating and complicated open problem that we are currently still working on. In
contrast to conventional LDPC codes, the parameter space is much larger due to multi
dimensional degree structure and the edge coefficient distributions. Unfortunately, the
rate is not linear in the degree distributions and the edge coefficient distribution pA|i , j ,k

does not enter into the rate at all. While it is clear that the capacity is maximized if pA|i , j ,k

is chosen such that the resulting constellation is Gaussian, this does not necessarily result
in matched EXIT charts and good iterative decoding performance.

• We did not yet have the opportunity to use the degree distribution optimization tech-
niques developed in this thesis to try and design SMLDPC codes using well known edge
coefficient distributions. E.g., we could select Λi j = δi−1Λ

c
j and design conventional
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irregular LDPC codes for QAM constellations and then compare our results to the ones
existing in the literature, e.g. [98].

• The theory of SMLDPC codes would benefit greatly from an explicit expression for the
transformation of densities due to the SN update, cf. (5.145). We obtained an explicit
transformation for the simple case of independent edge coefficients and scalar Gaussian
approximation updates (5.59) by means of two dimensional Fourier transforms and trans-
formation of random variables. However, we do not believe that for the general update
rule (5.46) we can obtain a transformation based on transforming the input densities ac-
cording to the manipulations of random variables in (5.46). If a general transformation
is to be found at all, it might come from using other arguments, e.g., the optimality of
the update (5.46).

• The theory of asymptotic stability for BP decoding of LDPC codes (cf. [77]) needs to be
extended to SMLDPC codes.

• Efficient graph construction algorithms such as the PEG algorithm [49] are required for
the generation of SMLDPC codes.

• For even finer granular control over the graph structure of SMLDPC codes, one could
consider using a multi-edge type approach similar to the one for LDPC codes in [76].

• Instead of binary LDPC codes, one could also consider higher order finite fields for the
construction of SMLDPC codes, cf. [24].
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