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Abstract 

Laser scanning (also LiDAR – light detection and ranging) provides accurate and high-resolution 
geometric and radiometric measurements of  natural surfaces at different spatial scales, which is 
relevant for many environmental and physical models. However, high-resolution laser scanning 
data are often not fully explored or are not used at all for surface description in such models. 
The aim of  this research is to revisit current methods and to introduce new methods for the 
description of  natural surfaces by exploring the full potential of  novel high-resolution laser 
scanning data. The work comprises (a) natural surfaces such as soil, gravel, and vegetation; (b) a 
range of  different laser scanning techniques, such as TLS (terrestrial laser scanning), ULS 
(unmanned aerial vehicle laser scanning), ALS (airborne laser scanning); and (c) ranging methods 
such as time-of-flight ranging, phase-shift ranging, and active and passive triangulation. The work 
is focused on three land-surface parametrisations such as surface roughness, a 3D model of  a 
conifer shoot, and canopy transmittance, which are selected as representatives of  geometric-
stochastic, geometric-deterministic, and geometric-radiometric surface descriptions, respectively. 
As those parametrisations have also been the subject of  several research projects, particular 
objectives are set and analysed in six separate studies. The research contributed by introducing 
new methods and by improving current methods for those parametrisations from contemporary 
high-resolution laser scanning data. Surface roughness is mainly analysed in the frequency 
domain by means of  the roughness spectrum. A new method is introduced that optimizes the 
interpolation parameters so that a DTM (digital terrain model), derived from a laser scanning 
point cloud, has a unique stochastic property (the fractal dimension is maximized at high 
frequencies), which is important for an unbiased surface roughness assessment. Furthermore, 
multi-scale laser scanning point clouds are analysed to determine spatial scales over which 
corresponding roughness spectra can be used interchangeably. The 3D modelling of  a conifer 
shoot is (to the author’s best knowledge) modelled on the basis of  point clouds up to individual 
needles for the first time. The modelling is based on a semiautomatic method developed here 
for micro-scale triangulating laser scanning data. Then, a new method is introduced to estimate 
canopy transmittance from small-footprint ALS waveform data, where assumptions on 
vegetation-ground scattering properties are not required. To enable upscaling of  the canopy 
transmittance information to the space-borne LiDAR footprint scale, a waveform stacking 
method is developed in an additional study. The stacking method and the simulated space-borne 
LiDAR waveforms are then used, along with field measurements of  forest inventory, to estimate 
aboveground biomass. The information and methods about surface roughness, 3D shoot 
geometry, and canopy transmittance that are derived here provide a basis for a better 
understanding and description of  natural surfaces in environmental and physical models. 
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Kurzfassung 

Laserscanning stellt genaue, hoch aufgelöste geometrische und radiometrische Messungen von 
Oberflächen der natürlichen Umgebung auf  verschiedenen räumlichen Skalen zur Verfügung. 
Diese werden für viele physikalische und andere Modelle, die die Umwelt beschreiben, benötigt. 
Ungeachtet dessen werden hoch-auflösende Laserscanning-Daten oft nur teilweise oder gar 
nicht für die Beschreibung der Oberflächen in diesen Modellen genutzt. Ziel der vorliegenden 
Forschung ist es, aktuelle Methoden zur Beschreibung natürlicher Oberflächen aufzugreifen und 
neue Methoden vorzuschlagen, sodass das volle Potential neuer hoch-auflösender 
Laserscanning-Daten ausgenutzt wird. Die Arbeit umfasst (a) beispielhaft die natürlichen 
Oberflächen(-Bedeckungen) Erde, Schotter und Vegetation, (b) eine Auswahl verschiedener 
Laserscanning-Techniken, nämlich TLS, ULS, und ALS, also terrestrisches, UAV-getragenes und 
luftgestütztes Laserscanning (wobei UAV für engl. unmanned airborne vehicle, zu dt. 
unbemanntes Luftfahrzeug, steht) und (c) die Entfernungsmessmethoden Pulslaufzeit, 
Phasenvergleichsverfahren, und aktive und passive Triangulation. Die Arbeit fokussiert auf  drei 
Parametrisierungen der Landfläche, nämlich (Oberflächen-)Rauigkeit, das 3D-Modell eines 
Nadelbaum-Triebes und die Kronendurchdringung. Diese Parametrisierungen wurden als 
Repräsentanten von geometrisch-stochastischen, geometrisch-deterministischen und 
geometrisch-radiometrischen Oberflächenbeschreibungen ausgewählt. Da diese Parametri-
sierungen auch Untersuchungsgegenstand in unterschiedlichen Forschungsprojekten waren, 
werden in sechs verschiedenen Studien spezifische Ziele gesetzt und entsprechende Analysen 
durchgeführt. Der wissenschaftliche Beitrag dieser Arbeit umfasst neue Methoden zur Ableitung 
dieser Parametrisierung aus aktuellen hoch-auflösenden Laserscanning-Daten beziehungsweise 
die Verbesserung bestehender Methoden. Die Rauigkeit der Oberfläche wird hauptsächlich im 
Frequenzbereich des Spektrums der Rauheit analysiert. Es wird eine neue Methode zur 
Interpolation von Geländemodellen aus Laserscanning-Punktwolken vorgestellt, die eine 
besondere stochastische Eigenschaft hat, nämlich dass die fraktale Dimension für die hohen 
Frequenzen maximiert wird. Dies ist für eine unverzerrte Bestimmung der Oberflächenrauigkeit 
wichtig. Zusätzlich werden Laserscanning-Punktwolken, die auf  unterschiedlichen räumlichen 
Skalen gewonnen wurden, verglichen, um zu bestimmen, auf  welchen räumlichen Skalen die 
entsprechenden Rauigkeitsspektren untereinander auswechselbar sind. Das 3D-Modell eines 
Nadelbaum-Triebes wird, nach bestem Wissen und Gewissen des Autors, zum ersten Mal auf  
Basis von Punktwolken bis zu den einzelnen Nadeln hin modelliert. Die Modellierung basiert 
auf  einer semi-automatischen Methode, die hier für die Daten eines triangulierenden 
Laserscanners entwickelt wurde. Schließlich wird eine neue Methode zur Schätzung der 
Kronendurchdringung vorgeschlagen, die auf  ALS-Daten mit kleinem Abtastfleck und 
Aufzeichnung der vollen Wellenform beruht. Es müssen keine Annahmen über das Verhältnis 
der Streuung durch Boden und Vegetation getroffen werden. Um die Information über 
Kronendurchdringung auf  den Maßstab der Abtastflecken von Weltraum-gestütztem LiDAR 
(Light Detection And Raning) zu übertragen, wurde in einer weiteren Studie eine Methode für 
die Aufstapelung von Wellenformen entwickelt. Die Methode des Stapelns und simulierte, 
Weltraum-gestützte LiDAR-Wellenformen wurden dann gemeinsam mit Feldmessungen einer 
Forstinventur genutzt, um oberirdische Biomasse abzuschätzen. Die Information und die 
Methoden zur Oberflächenrauigkeit, zur Geometrie des Nadelbaum-Triebes und zur 
Kronendurchdringung, die hier abgeleitet wurden, führen zu einem besseren Verständnis der 
Beschreibung natürlicher Oberflächen, in physikalischen und empirischen Modellen, die unsere 
Umwelt beschreiben.  
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Резиме 

Ласерско скенирање обезбеђује прецизна геометријска и радиометријска опажања 
природних површи у високој резолуцији и на различитим мерним размерама. Ова мерења 
се могу користити за опис (параметризацију) природних површина у различитим 
физичким моделима и моделима животне средине. Међутим, врло често ласерски подаци 
нису у потпуности искоришћени или се уопште не користе у тим моделима. Циљ овог 
истраживања је да се размотре постојеће и представе нове методе за опис природних 
површи а да се при томе искористи потпуни потенцијал најсавременијих ласерских 
података. У оквиру овог рада анализиране су (а) природне површи као што су земљиште, 
шљунак и вегетација, (б) различите технике ласерског скенирања као што су ТЛС, БЛС и 
АЛС (терестичко, БЛ-базирано и авионско ласерско скенирање, где је БЛ скраћеница за 
термин беспилотна летелица) и (ц) различити принципи мерења дужина као што су 
импулсно мерење, фазно мерење, активна и пасивна триангулација. Рад је усредсређен на 
три параметризације: површинску храпавост, 3Д модел четинарског изданка и 
трансмисију склопа шумских крошњи. Ове параметризације су изабране као 
представници геометријско-стохастичког, геометријско-детерминистичког и геоме-
тријско-радиометријског начина описивања природних површи. Оне су такође биле и 
предмет истраживања у неколико научних пројеката у оквиру којих су постављени 
појединачни циљеви за сваки од њих и анализирани у оквиру шест одвојених студија. 
Резултат овог истраживања су потпуно нове као и побољшане постојеће методе које су 
предложене за оцену сваког од три параметра на основу савремених ласерских података 
високе резолуције, што уједно представља и главни научни допринос овог истраживања. 
Површинска храпавост је већим делом анализирана у фреквентном домену и то 
користећи такозвани спектар храпавости (густина спектра снаге сигнала). Предложен је 
нови метод за интерполацију дигиталног модела терена (ДМТ) који је стохастички 
недвосмислено дефинисан (има највећу могућу фракталну димензију оцењену на основу 
високих фреквенција), што онда обезбеђује непомерену оцену површинске храпавости. 
Такође, упоређени су спектари храпавости оцењени из ласерских података прикупљених 
на различитим мерним размерама да би се одредиле просторне компоненте 
(фреквенције) на којима су ови спектри подједнако тачни. 3Д модел четинарског изданка 
је по први пут моделован из неког облака тачака и до детаља као што су појединачне 
иглице. Ово моделирање је засновано на једној полуаутоматској процедури која је 
предложена првенствено за ласерске податке прикупљене микро триангулацијом. Такође, 
предложена је нова метода за оцену трансмисије шумског склопа на основу анализе 
потпуних АЛС сигнала прикупљених ласером мале дивергенције снопа. У поређењу са 
постојећим методама, ова нова метода не захтева претпоставке о оптичким својствима 
вегетације и земљишта испод ње. На крају је предложен још један метод где су на основу 
потпуних АЛС сигнала симулирани сателитски ласерски сигнали који су потом 
калибрисани са теренским мерењима инвентара дрвећа да бе се извршила оцена надземне 
биомасе шуме. Информације и методе о површинској храпавости, 3Д моделирању 
вегетације и трансмисији шумског склопа које су резултат овог истраживања дају основ за 
боље разумевање проблема параметризације природних површина у физичким моделима 
и моделима животне средине.  
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2D 

3D 

2.5D 

Two-Dimensional 

Three-Dimensional 

Two-and-Half Dimensional (planar coordinates that can contain only a single height 
information) 

LiDAR 

DIM 

UAV 

TLS 

ULS 

ALS 

Light Detection And Ranging 

Dense Image Matching 

Unmanned Aerial Vehicle (also Drone) 

Terrestrial Laser Scanning (laser scanning performed from geodetic 

tripods) Laser Scanning from an UAV 

Airborne Laser Scanning 

GNSS 

GPS 

INS 
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LAI 

AGB 

DTM 

DSM 
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Global Navigation Satellite 

System Global Positioning System 
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Leaf Area Index 

Above Ground Biomass 

Digital Terrain Model 

Digital Surface Model 

Digital Elevation Model 

nDSM 
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DEM of Difference (height difference of two DEMs of the same area) 
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IFOV 

BBA 

Root Mean Square Height 

Ground Sampling Distance (the pixel size in the object 

space) Instantaneous Field of View (e.g. a cone of the laser 
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1 Introduction 

A description of  natural surfaces is required in environmental and physical models. In this 
research, geometric and radiometric observations collected by laser scanning for different natural 
surfaces are analysed and used for surface description. Laser scanning is the main focus of  this 
work, although photogrammetry is also used for comparison. 

1.1 Laser Scanning 

Laser scanning is an active measurement technique that utilizes laser radiation and the LiDAR 
(light detection and ranging) principle to collect non-selectively 3D points ),,( iiii zyxP . A set of  
such 3D points, which are (typically) irregularly distributed in Euclidian space, is also referred to 
as a point cloud. Additionally to the geometry, laser scanning can provide radiometric information 
that is a function of  the laser radiation scattered back from the illuminated area of  the object. 
This subsection presents briefly the background of  laser scanning by following its basic 
processing steps shown in Figure 1. The presentation starts with raw LiDAR observations, such 
as ranges, angles and waveforms, and then continues with presenting different scanning 
approaches, and discussing point cloud georeferencing (orientation), and ends with presenting 
typical applications of  laser scanning and point cloud modelling. 

Figure 1: Basic steps in processing of  laser scanning data from raw data until its products and particular 
applications.  

1.1.1 Sensor Systems and Raw Data 

In laser scanning, a range is observed by transmitting the laser radiation (a laser pulse) towards 
an object of  interest and recording the laser radiation scattered back from the object. Most of  
the laser radiation is transmitted within the laser beam that is commonly considered to be a cone 
which opening angle (diffraction angle) depends on the laser wavelength and the aperture size 
of  the laser sensor. In contrast to classical tachymeters or rangefinders, laser scanning provides 
a non-selective, systematic sampling, i.e. scanning. The ranges are collected systematically, by 
firing lasers pulses repeatedly and introducing a deflection unit (e.g. an oscillating mirror) to steer 
laser beams at predefined angular increments (laser-beam directions) and within a scanning 
plane. It is noted that an oscillating mirror is just one of  many possible laser beam defection 
approaches. The deflection is also done by using a rotating polygon, a fiber-optic array or a 



nutation mirror in case of  the Palmer scanner (Beraldin et al. 2010; Pfeifer et al. 2017; Wehr 
2008). Nerveless, in this introduction, a scanner with the oscillating mirror is assumed. 

The output of  scanning (with a oscillating mirror) includes the following observations: (a) range 

ir , (b) deflection angle iϕ  and (c) intensity. This means that laser scanning provides regularly-

sampled points ( ir  and iϕ ) in a polar coordinate system of  the scanning plane, that is also called 
sensor coordinate system (SCS). In object space, these points are located along the intersection 
of  the scanning plane and the object scanned, which will be referred here to as a profile. More 
information on laser scanning fundamentals can be found in, e.g. Baltsavias (1999), Petrie and 
Toth (2008), Beraldin et al. (2010), Jutzi et al. (2017), Heipke (2017) and Pfeifer et al. (2017).  

To cover the whole object, or a wider area, it is however necessary to acquire points from many 
scanning planes. This problem is addressed by particular scanner architectures that consider 
additionally a platform on which the scanner is going to be mounted during the scanning. Here, 
the following scanning approaches are distinguished. The first approach is scanning from a static 
platform with a scanner that has a moving (typically rotating) scanning plane. An example is 
terrestrial laser scanning (TLS) performed from geodetic tripods. TLS collects a series of  profiles 
by rotating the scanning plane for regular angular increments iα , while keeping the origin of  the 
SCS fixed. Points corresponding to the profiles collected under the same position and orientation 
of  the platform during TLS are commonly referred to as a scan. The second approach is scanning 
with a scanner which scanning plane is fixed relative to the body of  a moving platform. An 
example here is airborne laser scanning (ALS) performed from an aeroplane. In ALS, aeroplanes 
typically try to follow a straight line during data acquisition, whereas the scanner is mounted so 
that a series of  across-track profiles is collects. Points that correspond to the profiles collected 
along a single flight line are commonly referred to as a strip.  

It should be noted that there are also laser profiles and laser altimeters, which collects a single 
profile. Laser profilers are mounted on a fixed platform (or permanently at a certain location) 
and acquire points repeatedly from one (or few) fixed scanning plane(s). They are used mostly 
for industrial applications (e.g. traffic control, process monitoring, etc.). There are also laser 
profiles with one (of  few) fixed scanning planes mounted on vehicles (mobile platforms), which 
are mainly used for street mapping. Finally, laser altimeters typically do not have a defection unit 
and measure the range at single (or a few) direction(s), but use a moving platform to acquire a 
profile of  points. This scanning method is applied on space-borne LiDAR systems, where the 
global coverage and regular revisit times makes this data relevant for Earth observation (EO). 

Raw radiometric data can be either intensity or waveforms, which introduce a further 
classification on discrete- and waveform-LiDAR, respectively. The waveform LiDAR scanners 
record the complete backscattered signal over a short time, i.e. a waveform, caused by the 
interaction of  the transmitted laser pulse with objects placed within its laser beam. There are 
several method how such waveforms can be further processed to extract individual echoes or (bio-
)physical quantities such as the differential cross-section of  an object (e.g., Jutzi and Stilla 2006; 
Roncat et al. 2011; Wagner et al. 2006). The extracted echoes are associated with their ranges 
(geometry) and radiometric features such as echo amplitude and echo width. Furthermore, the echoes 
are typically classified, according to their range, to first, second, etc. and last, In contrast, the discrete 
LiDAR scanners provide directly the ranges and a single intensity values for so-called returns, 
which also can be first, last, etc. The returns are recorded when the backscattered signal (typically 
additionally amplified by the scanner) exceeds a certain threshold imposed by the scanner 
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manufacturer. As the discrete scanners are primarily designed for range measurements, the 
physical meaning of  the assigned intensity values is often unclear. More information on 
waveform and discrete LiDAR can be found in, e.g. Roncat et al. (2014), Mallet and Bretar (2009), 
Stilla and Jutzi (2008) and Harding (2008).  

1.1.2 Orientation and Calibration 

The SCS observations (ranges and beam directions) are transformed in the object space (typically 
a Cartesian coordinate system) for further analysis, providing a collection of  3D points, i.e. a 
point cloud. To this end, it is necessary to know the position and orientation (the exterior 
orientation) of  each scanning plane in object space (Kraus 2007). The exterior orientation can 
be directly observed (measured) or indirectly derived from ground control points (GCPs) with 
known (measured) coordinates in the object space, which is known as direct and indirect 
georeferencing (El-Sheimy 2008; Kraus 2007, p.181). The direct georeferencing is typical for scanning 
from moving platforms where the position and orientation of  the platform is observed with a 
global navigation system (GNSS) and an inertial measurement unit (IMU), respectively. This 
information is then synchronized (according to the recording times) with the SCS observations 
and directly transformed into the object coordinate system, providing a point cloud in a global 
coordinate system (e.g. WGS84), or a national projection system (e.g. the Gauß-Krüger 
projection based on the Bessel ellipsoid). The transformations for direct georeferencing of  ALS 
and TLS is, e.g., given in Kraus (2007),equations 8.1-1 and 8.2-1, respectively. The indirect 
georeferencing is typically used in TLS, where specially designed targets are introduced inside the 
scanning area and used as GCPs. These targets can be automatically measured with a scanner 
and are additionally surveyed with a total station from a local geodetic network, or measured 
with static GNSS. The georeferencing is then performed in two steps: (a) transformation of  SCS 
observations into Cartesian coordinates (e.g. Kraus 2007, equation 8.2-2) and (b) a similarity 
transformation from the Cartesian coordinates into final, global or national, coordinates. The 
latter requires at least three 3D GCPs. In case of  several overlapping strips (or scans), 
georeferencing often leads to planar and height discrepancies in the overlapping areas (Huising 
and Gomes Pereira 1998). These discrepancies may occur, e.g., due to errors in the GNSS and 
IMU measurements. As a solution, different strip adjustment techniques are introduced to 
minimize these discrepancies (Maas 2000; Skaloud and Lichti 2006). The minimisation of  the 
discrepancies is also done by using the Iterative Closest Point (ICP) algorithm (Besl and McKay 
1992; Glira et al. 2016). The georeferencing that uses GNSS and IMU information together with 
strip adjustment (with GCPs and tie features) is also referred to as integrated georeferencing (Kraus, 
p.276). Finally, it is noted that the exterior orientation of  the scanning plane can also be given in
a local, or an arbitrarily defined coordinate system, providing the point clouds in the local or the
model coordinate system, respectively. For example, an arbitrary definition of  the TLS’s exterior
orientation would typically assume that the scanning plane is vertical, and that the SCS’s origin
is set to the point )0,0,0(iO . 

There are two types of  calibration of  laser scanning systems: geometric and radiometric. The 
geometric calibration has the aim of  eliminating systematic errors from the resulting georeferenced 
points, i.e. leaving only random measurement errors. This requires, first, to introduce an error 
model of  the raw LiDAR observations, and then, to estimate them within an adjustment 
procedure based on the observed points (Schenk 2001). Typical systematic errors of  a LiDAR 
system includes range and scan angle errors, scan plane errors, mounting and synchronization 



errors, etc. An example of  observed errors is the mentioned discrepancies between the 
overlapping ALS strips. Therefore, in ALS, calibration is often a part of  an integrated 
georeferencing, i.e. strip adjustment (e.g., Glira et al. 2016). Other examples of  the observed 
errors are the discrepancies at control points, point cloud features (such as break lines) and/or 
regular 3D shapes (such as planes, spheres, cylinders, etc.). Such 3D shapes are typically used in 
the geometric calibration of  TLS data (Chan et al. 2015; Dorninger et al. 2008; Lichti 2010). The 
radiometric calibration has the aim to derive well-defined physical quantities, such as reflectance, 
from the reordered waveforms or the intensity value of  the object illuminated by laser radiation. 
Generally, waveforms and intensity values of  an object are not necessarily identical when 
observed from different sensors or flight heights, whereas a physical quantity is inherent to the 
object. The radiometric calibration involves the lidar equation and a reference information such 
as artificial or natural targets with known reflectivity (Kaasalainen et al. 2005; Wagner 2010). 
However, the radiometric calibration can also be based purely on data, which is referred to as 
intensity correction methods (Höfle and Pfeifer 2007). More detail on the geometric and 
radiometric calibration can be found in, e.g., Lichti and Skaloud (2010) and Roncat et al. (2014). 

1.1.3 Modelling and Mapping 

Further processing of  georeferenced point clouds involves modelling and/or mapping of  
information that is of  interest for a particular application. This involves certain methods such as 
filtering, segmentation, feature extraction, pattern recognition, model fitting, parameter 
estimation, etc. The methods usually assume that the orientation and calibration of  raw laser 
scanning data is resolved. Thus, typical input for this step is a georeferenced point cloud that is 
accurate up to random measurement errors. Ideally, the introduced methods should be robust 
(e.g. to handle datasets with different quality) and automatic (e.g. to allow for a rapid production). 
Here, only some of  classical applications of  lasers scanning will be mentioned to illustrate 
manifold methods and products available. 

One of  the first applications of  laser scanning was in topography, aiming at the description of  
terrain, i.e. a bare-ground surface (Krabill 1984). This involves methods for point cloud filtering (a 
calcification to ground and non-ground points), and derivation of  product such as digital terrain 
models, DTMs (Axelsson 1999; Kilian et al. 1996; Kraus and Pfeifer 1998). More information 
about point cloud filtering and DTM interpolation can be found in, e.g., Kraus (2000), Pfeifer 
and Mandlburger (2008) and Briese (2010). Another classical application of  laser scanning is 
forestry and ecology. There, different methods are introduced to derive biophysical parameters, such 
as vegetation height, vegetation cover, gap fraction and (horizontal and vertical) structure, which 
are then used to model forest site parameters, estimate biomass and derive leaf  area index (Lefsky 
et al. 1999; Nelson et al. 1984; Nilsson 1996). More information about laser scanning application 
in forestry and ecology can be found in, e.g., Maltamo et al. (2014), Maas (2010) and Hyyppä et 
al. (2008). Then, laser scanning is also used in urban mapping, where different methods for 
extracting building footprint and roof  facets from point clouds are introduced to derive 
automatically 3D building models (Bretar 2008; Maas and Vosselman 1999; Shan and Sampath 
2008; Sohn et al. 2008; Zhang et al. 2008). Laser scanning is also used in archaeology, where e.g. 
filtering algorithms supported by waveform information are used to map different archaeological 
features under the vegetation (Doneus et al. 2008). A more detailed overview of  the mapping 
and modelling methods in environmental and engineering applications is given in, e.g., (Heritage 
and Large 2009) and Lindenbergh (2010), respectively. 
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1.2 Motivation and Problem Statement 

The aim of  this thesis is to describe different natural surfaces with laser scanning observations. 
Natural surfaces are considered here as a boundary between land and atmosphere that is 
composed of  a collection of  natural elements aggregated purely naturally or with the least 
possible human activities. The aggregation of  individual elements forms a boundary associated 
with certain thickness and spatial structure, which is here referred to as a layer. A gravel surface, 
for example, composed mainly of  elements such as individual pebbles and sand particles. Soil 
surface is an aggregation of  the elements such as individual clods. In addition, vegetation is a 
boundary layer formed of  elements such as trees stems, branches, shoots, needles and leaves. 
Due to their high complexity, these natural surfaces can be described at different scales, e.g. 
describing the layer on the whole, or describing particular elements of  the layer. Furthermore, 
there can be several possible surfaces that describe a complex layer structure. For example, the 
outer most surface, the bottom surface (e.g. digital surface and terrain models of  a vegetation 
layer, respectively), or a surface understood as the outcome of  a probabilistic process. The 
selection of  these approaches depends on the data type and resolution, but also on the 
application.  

A description of  natural surfaces is required for environmental modelling. The surface, as a 
boundary between land and atmosphere, is an agent in climate simulation models. A natural 
surface is the memory of  geomorphic processes that shaped their structure and features over 
long periods in the past. Natural surfaces are also one of  the primary subjects in Earth 
observation. Land-surface parameters (also geophysical-, biogeophysical-, biophysical-parameters) derived 
from surface geometry and radiometry (such as slope, roughness, vegetation cover, surface 
albedo, soil moisture, vegetation optical depth, leaf  area index – LAI, etc.) are variables in 
environmental modelling and monitoring of, e.g., water and carbon cycles, terrestrial ecosystems, 
etc. Land-surface parameters are also important for understanding and modelling signals 
observed by space-borne remote sensing sensors. Therefore, geometric and radiometric 
descriptions of  natural surfaces are a relevant topic in the fields such as Earth observation, 
geomorphology and hydrology. 

Laser scanning, on the other hand, is a measurement technique that provides highly accurate 
samples of  surface geometry and radiometry at very high point density. The techniques such as 
ALS or TLS can readily collect tens to hundreds of  points per m2 or cm2, providing high-resolution 
topographic data at the patch- or landscape-scale, respectively. Furthermore, in the last decades, 
laser scanning software and algorithms matured, offering a high degree of  automation in data 
processing. However, many of  current methods for derivation of  the mentioned land-surface 
parameters still do not take full advantage of  the advancements in laser scanning. This 
discrepancy opens a possibility to develop new (and reconsider current) ways of  describing 
natural surfaces with high-resolution laser scanning data. 

In this dissertation, natural surfaces, such as soil, gravel and vegetation, are described using 
different approaches applied at different scales and on contemporary high-resolution laser 
scanning data. The natural surfaces are described using geometric and radiometric LiDAR 
observations. Furthermore, the geometric LiDAR observations are treated stochastically and 
deterministically in the description of  natural surfaces. These descriptions are categorised here 
in the following three categories: (a) geometric-stochastic, (b) geometric-deterministic and (c) 



geometric-radiometric. The results of  the three descriptions are: (a) estimated parameters of  a 
stochastic model applied, (b) a 3D model of  a surface element and (c) estimated values of  a (bio-
)physical quantity. Each surface description is performed at a different scale: (a) at field plot scale, 
(b) at the needle-shoot-branch scale, and (c) at the landscape scale. The purpose of  exercising 
such diverse surface descriptions and scales is to understand better advantages and drawbacks 
of  each particular approach in the light of  contemporary, high-resolution laser scanning data. 

One additional variable in the experimentation is the natural surface itself. Soil, gravel and 
vegetation were selected because they are important for many environmental applications. 
Furthermore, these surfaces are differently “seen” by a laser scanning system. Laser radiation 
transmitted within a laser beam can “penetrate”, e.g., vegetation. This penetration is not due to 
a laser ability to penetrate into canopy materials (leaves, twigs, branches, etc.), but rather due to 
canopy gaps that allow a portion of  the laser radiation to travel deeper into the canopy. The 
natural surfaces such as soil and gravel are non-penetrable for laser radiation, but they may cause 
certain artefacts in range determination. These and other sensing characteristics, such as 
measurement noise, may lead to an incorrect surface description if  they are not appropriately 
considered during the data processing.  

It should be noted that the coverage of  laser scanning data is rather local or regional. For 
example, the accuracy of  terrestrial laser scanning allows going to very small surface details such 
as soil clods and gravel pebbles, but the coverage of  such a high-resolution data is typically at 
the patch scale (a field plot). For airborne laser scanning, the coverage is typically at the landscape 
scale. From, e.g., a geomorphological perspective, this means that surface descriptions by such 
data do not refer to global landform structures, but rather to elementary landform units such as 
patches of  soil, gravel and forest. The derived land-surface parameters are valid for these 
landform scales. Therefore, the experiments presented here are primarily relevant to 
environmental processes that take place at these scales. Nerveless, such patch-scale information 
is also required for the validation of  many global-scale, land-surface parameters derived from 
Earth observation. 

In the field of  laser scanning, this work contributes to the modelling task as introduced in Figure 
1 and Section 1.1. The aim was to reconsider current surface descriptions while addressing 
appropriately the LiDAR sensing properties and application needs. The term description that is 
used in this dissertation includes input data, modelling and a result. This term is used to 
emphasize that a description result (e.g. a biophysical parameter, a function or a digital map) is 
further used as input (that describes a natural surface) in environmental and physical models. 
The term description is also used to emphasize that this work considers surface descriptions (e.g. 
radiometric and stochastic) that are beyond the classical surface modelling that provides 3D 
object models and 2.5D digital terrain models. The experimentation involved (a) different laser 
scanning techniques (TLS, ULS and ALS), (b) the processing of  both geometric and radiometric 
information (discrete returns and waveform LiDAR), (c) different ranging methods (time-of-
flight, phase-shift, active and passive triangulation) and (d) the processing of  data acquired at 
different spatial scales. 
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1.3 Objectives 

The aim of  this dissertation is to develop appropriate methods for surface descriptions required 
in environmental applications that are based on high-resolution laser scanning data. To this end, 
general and specific objectives are set. 

This dissertation has the following general objectives: 

• to consider different surface description approaches, such as (a) geometric-stochastic, (b)
geometric-deterministic and (c) geometric-radiometric,

• to identify a particular land-surface parametrisation for each of  the three description
approaches and focus the research on them,

• to introduce new or improve current methods for the selected land-surface
parametrisations,

• to consider both geometric and radiometric information for the description of  natural
surfaces,

• to analyse and compare different: measurement setups, laser scanning sensors and multi-
scale data.

The specific objectives refer to the selected land-surface parametrisation, and these objectives 
are presented later, in Section 2.3. 

1.4 List of  Publications and the Author’s Contribution 

This thesis is based on the work contained in six papers: four journal papers and two conference 
papers. All papers are peer reviewed, including the two conference papers, as well. The papers 
are listed below according to their publication date: 

Paper I Milenković, M., Eysn, L., Hollaus, M., Karel, W. and N. Pfeifer (2012). "Modeling 
the tree branch structure at very high resolution." in: SilviLaser 2012 - Conference 
Proceedings, Paper ID SL2012-099, 8 pages. (peer reviewed conference paper) 
Online available at: https://publik.tuwien.ac.at/files/PubDat_211339.pdf 

Paper II Milenković, M., Pfeifer, N. and Glira, P. (2015). "Applying Terrestrial Laser Scanning 
for Soil Surface Roughness Assessment." Remote Sensing 7(2): 2007-2045. (peer 
reviewed journal paper) 

Online available at: http://www.mdpi.com/2072-4292/7/2/2007 

Paper III Milenković, M., Karel, W., Ressl, C. and Pfeifer, N. (2016). "A comparison of  UAV 
and TLS data for soil roughness assessment." ISPRS Ann. Photogramm. Remote 
Sens. Spatial Inf. Sci. III-5: 145-152. (peer reviewed conference paper)  

Online available at: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-
sci.net/III-5/145/2016/ 

Paper IV Milenković, M., Wagner, W., Quast, R., Hollaus, M., Ressl, C., Pfeifer, N. (2017). 
"Total canopy transmittance estimated from small-footprint, full-waveform airborne 

https://publik.tuwien.ac.at/files/PubDat_211339.pdf
http://www.mdpi.com/2072-4292/7/2/2007
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-5/145/2016/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-5/145/2016/


LiDAR." ISPRS Journal of  Photogrammetry and Remote Sensing 128: 61-72. (peer 
reviewed journal paper)  

Online available at: https://doi.org/10.1016/j.isprsjprs.2017.03.008 

Paper V Milenković, M., Schnell, S., Holmgren, J. Ressl, C., Lindberg, E., Hollaus, M., Pfeifer, 
N. and Olsson, H (2017). "Influence of  Footprint Size and Geolocation Error on
the Precision of  Forest Biomass Estimates from Space-Borne Waveform LiDAR."
Remote Sensing of  Environment, (peer reviewed journal paper)

Online available at: https://doi.org/10.1016/j.rse.2017.08.014 

Paper VI Milenković, M., Ressl, C., Karel, W., Mandlburger, G. and Pfeifer, N. (2017). 
"Roughness Spectra Derived from Multi-Scale LiDAR Point Clouds: A Comparison 
and Sensitivity Analysis", ISPRS International Journal of  Geo-Information 
(manuscript under review) 

The contribution of  Milutin Milenković to the above papers was as follows: 

Paper I Planned the study and interpreted the results with the co-authors, planned and 
carried out the measurements, performed the data processing and analysis, wrote 
the major part of  the manuscript and coordinated the review process. 

Paper II Planned the study and carried out the measurements, performed most of  the data 
pre-processing, carried out the data analysis, interpreted the results with the co-
authors, wrote the manuscript and coordinated the review process. 

Paper III Planned the study and interpreted the results with the co-authors, planned and 
carried out the measurements, performed most of  the data pre-processing, carried 
out the data analysis, wrote the major part of  the manuscript and coordinated the 
review process. 

Paper IV Planned the study and interpreted the results with the co-authors, developed the 
method, performed the data processing and analysis, wrote the manuscript and 
coordinated the review process. 

Paper V Planned the study and interpreted the results with the co-authors, developed the 
waveform stacking method, performed LiDAR-related processing, wrote the major 
part of  the manuscript and coordinated the review process. 

Paper VI Planned the study interpreted the results with the co-authors, planned and carried 
out the terrestrial measurements (TLS and close-range image acquisition), 
performed the data pre-processing, carried out analysis, wrote the manuscript and 
coordinated the review process. 

The above papers will be referred to by Roman numerals in the following text (e.g. Paper I, Paper 
II, etc.).  

The research presented in the above papers was carried out under funding from several scientific 
projects: 

• the 3DVegLab project funded by ESA (European Space Agency), ID: ESA STSE AO/1-
6529/10/I-NB,

• the NEWFOR project funded by the European Regional Development Fund in the
framework of the Alpine Space Program, ID: 2-3-2-FR,
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• the Advanced_SAR project funded by the European Community’s Seventh Framework
Programme ([FP7 / 2007 - 2013 ]) under grant agreement no. 606971,

• the Innovative Ideas project “MMRough” funded by TU Wien.



2 Mapping and Modelling Natural Surfaces 

2.1 Ranging Techniques and Natural Surfaces 

Determination of  the range (sensor-to-object distance) is one of  the fundamental tasks in 
deriving photogrammetric point clouds. There are many ranging techniques in use and the quality 
of  the derived range may be considerably different when ranging over different natural surfaces. 
This subsection presents ranging techniques that are used in this dissertation, auxiliary 
information retrieved by such ranging, and then discusses briefly ranging properties for scanning 
over soil, gravel or vegetation. 

Figure 2 shows an overview of  the ranging techniques, where those used in the dissertation are 
coloured in red. The figure shows that laser scanning data were acquired with the three different 
ranging techniques: (a) time-of-flight, (b) phase-shift and (c) active triangulation. The passive 
triangulation is also used within this dissertation (the most upper branch in Figure 2), mostly as 
an independent (non-LiDAR) measurement technique for the comparison with laser scanning 
results. At the end of  this subsection, there is Table 1 that summarizes ranging techniques, 
platforms, sensors and the data properties used in this dissertation. 

Figure 2: Taxonomy of  optical ranging techniques in photogrammetry and computer vison. This figure 
is an adaptation of  Figure 1.1 from Beraldin et al. (2010). 

The time-of-flight (ToF) ranging sensors transmits laser pulses (that travel at the speed of  light) 
towards an object and measures their round trip times to derive the corresponding ranges. In 
case of  the discrete LiDAR, the time counting stops when the returned pulse energy (the 
waveform) exceeds a certain amplitude threshold. The output of  the discrete LiDAR is a 
georeferenced point cloud (consisting of  individual returns) with additional point attributes such 
as intensity and return number (e.g. first, second, … , last). In case of  the waveform LiDAR the 
whole waveform is recorded together with the recording time for each instantaneous amplitude 
of  the waveform. The ranges of  individual returns are then extracted using the signal processing 
techniques, such as Gaussian decomposition. The output of  the waveform LiDAR is a 
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georeferenced point cloud (consisting of  individual returns) with additional point attributes such 
as echo amplitude, echo width (EW) and echo number. 

The ToF ranging has different properties when applied over a smooth (e.g. asphalt), rough 
surface (e.g. soil, gravel, etc.), or a porous surface (e.g. vegetation). For a perfectly smooth surface 
perpendicular to the laser beam direction, the waveform is a scaled replica of  the transmitted 
pulse, i.e. a unimodal waveform. In case of  soil, gravel, or an inclined but smooth terrain, the return 
waveform is also unimodal but broadened due to the rough surface or the slope. In case of  
vegetation, the returned waveform can be multimodal as a fraction of  the pulse energy reflects 
from the canopy top, but also from canopy elements placed at longer ranges, inside the canopy. 
This penetration is due to the canopy gaps within the laser beam. For multimodal waveforms, 
the discrete- and waveform-LiDARs will detect several ranges, providing points at the top of  the 
canopy (typically first return), within the canopy (intermediate or last returns) and from the 
terrain (last returns). The number of  returns depends on the pulse length and the amplitude 
threshold value. One half  of  the pulse length is the range resolution and represent the smallest 
distance between two canopy elements that can be resolved by scanning. However, in case of  
very oblique laser beams, TLS of  soil or gravel surfaces can lead to multiple returns and even to 
erroneous ranges. For example, an oblique laser beam can illuminate both the top of  a soil clod 
(or a pebble) and terrain in the background. If  the distance between these two object is larger 
than the half  of  the laser pulse, then they will lead to two separate returns. However, in the 
opposite case, scanning will provide an erroneous range measurement, which is knows as mixed 
pixel. Such and other ranging artefacts should be excluded from data before the surface 
description.  

The phase-shift ranging sensors do not transmits pulses, but several amplitude-modulated 
continuous waves (AM-CW) with different wavelengths. The fraction of  the range is derived by 
comparing the phase of  the transmitted and recorded wave at the smallest wavelength. The range 
ambiguity is then derived from the phase differences from the other wavelengths. Therefore, the 
longest wavelength used defines the maximum measurement range of  the scanner (typically, < 
200 m). The phase-shift scanner provides only a single range (no multiple returns). This is 
because a range of  a phase-shift scanner corresponds to a single complex phasor, i.e. a vector 
associated with the phase angle and the intensity as the vector magnitude. This phasor is the 
superimposition of  individual phasors corresponding to individual object elements that are 
illuminated by laser radiation and located at different ranges within the laser beam. TLS over 
soil, gravel and vegetation with this sensor causes erroneous ranges when the laser beam 
illuminates the edges of  a pebble, soil clod, branch or leaf, etc. Therefore these scanners are 
designed to have a small beam divergence (leading to a small footprint size, i.e. high resolution 
scanning) to minimize the mentioned edge effects. The output of  these scanners is a 
georeferenced point cloud with the intensity given as additional attribute per each point. 

Active triangulation ranging sensors project a laser stripe on objects and capture its image with an 
additional imaging sensor (e.g. a CCD sensor). The range is derived by triangulation where the 
laser-stripe plane is intersected with the perspective projection rays of  the line pixels. The relative 
orientation between the laser-strip plane and the imaging sensor centre of  the imaging sensor is 
known in advance. As the imaging sensor comes typically with a fixed focus, commercial sensors 
based on the active triangulation ranging are limited to very short ranges (< 2 m). Another reason 
for having short range design is that the base and the principal distance of  the system are fixed, 
and thus, the accuracy in the range direction is the square function of  the range itself. In this 



dissertation, two active triangulation scanners are used: (a) measurement arm and (b) a close-
range triangulating scanner. The measurement arm is a fixed system that has a handheld head 
mounted on a mechanical arm with a fixed base. The head is actually an active triangulation 
ranging sensor, whereas the mechanical arm provides the exterior orientation. The scanning is 
performed by moving manually the head around the object. The measurement arm is a very 
precise instrument with a sub-mm accuracy and a sub-mm point sampling. The output of  this 
scanner is a locally referenced point cloud with additional information about the pointing vector 
(the direction at which the head was pointing during the scanning). The close-range triangulating 
scanner sweeps with a laser stripe over an object and continuously captures images with a new 
stripe position. The sweeping is typically performed by rotating the stripe-plane by a defection 
unit. This ensures that the relative orientation between each instantaneous laser-stripe plane and 
the imaging sensor is known in advance. The exterior orientation is then resolved as in TLS, 
using direct, indirect or integrated approaches. The accuracy and point sampling of  the close-
range triangulating scanner is typically at mm to sub-mm level. The output of  this scanner is a 
georeferenced point cloud with intensity values in the red, green and blue channels. 

Table 1: An overview of  the ranging techniques, sensors and their information used in this dissertation. 
The table also shows papers, scales and natural surfaces on which a particular technique was applied. 

Passive triangulation is classical, close-range photogrammetry, also referred t as, structure-from-
motion (SfM). This ranging technique was used in the dissertation for the comparison with the 
laser scanning results. The close-range photogrammetry uses multi-view stereo images of  a 
natural surface as the input and provides a georeferenced point cloud and an orthophoto as the 
output. To this end, the images have to be oriented and homologous points have to be matched 
and triangulated. In this dissertation, the image orientation was done based on an automatic 
feature detection and the bundle block adjustment (BBA) implemented in a commercial software 
solution and in an in-house software solution. Furthermore, manual image measurements of  
GCPs and their object coordinates observed with the total station were included into BBA to fix 
the datum. The orientation is then imported into a commercial software package for image 
matching where a version of  the semi-global matching algorithm was used to derive an 
automatically generated DSM. It is noted that the matching software does a pair-wise matching 
and triangulation, providing additionally a densely-matched point clouds. However, this point 

Technique Platform Sensor Radiometry Aux. Info Scales Surfaces Study 

ToF, 
Waveform 

Aeroplane 
(ALS) 

Riegl   
LMS-Q680i 
LMS-Q1560 

Waveform 
Amp., EW 

Return 
Number 

Landscape 
Vegetation, 

Gravel 

Paper IV 
Paper V 
Paper VI 

ToF, 
Discrete 

Drone/UAV 
(ULS) 

Riegl VUX-1 Reflectance1 

Pulse 
Deviation, 

Return 
Number 

Patch Gravel Paper VI 

Phase-Shift, 
Discrete 

Geod.Tripod 
(TLS) 

Zoller+Fröhlich 
IMAGER 5006i 
IMAGER 5010c 

Intensity - Patch 
Soil, 

Gravel 

Paper II 
Paper III 
Paper VI 

Active 
Triangulation 

Measuring 
Arm/ 

Handheld 

METRIS 
Model Maker D 

- 
Pointing 
Vector 

Branch Vegetation Paper I 

Active 
Triangulation 

Triangulating 
scanner 
(OTS) 

Minolta  
VIVID 9i 

R, G, B - Sub-Patch Soil Paper II 

Passive 
Triangulation 

Handheld 
Images 

Nikon D800 R, G, B - Patch Gravel Paper VI 

Passive 
Triangulation 

Drone/UAV 
Images Sony α R, G, B - Patch Soil Paper III 

1range corrected intensity 
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cloud is usually very noisy and requires additional median based filtering. Therefore, the DSM 
filtered automatically by the software was used for the comparison.  



2.2 Surface Description Approaches 

Surface description is a broader term compared to a surface (biophysical) parameter and includes 
input data, modelling and a result. The latter can be, for example, a parameter, a function or a 
digital map (e.g. a grid structure) that is further used as input in environmental and physical 
models. Therefore, a surface (biophysical) parameter is just one possible result of  a surface 
description. 

As laser scanning provides geometric and radiometric data, surface descriptions are categorized 
here accordingly, i.e. in geometric and radiometric description approaches. The geometric 
descriptions consider only geometric information that can be treated in two ways during the 
modelling – stochastically and deterministically. Therefore, surface descriptions are categorised 
here in the following three categories: (a) geometric-stochastic descriptions, (b) geometric-
deterministic descriptions and (c) geometric-radiometric descriptions. It is noted that the latter 
category also has the term “geometric” in its name. This is because radiometric observations are 
the function of  the scanning (sensor-object) geometry and geolocation. Therefore, radiometric 
observations should be combined with geometric observations to provide an appropriate 
radiometric description of  the surface. It is also noted that stochastic and deterministic 
approaches for the radiometric data are not separately analysed in this dissertation.  

2.2.1 Geometric-Stochastic: Surface Roughness 

The geometric-stochastic surface description considers only geometric information of  the laser 
scanning data (3D points) and treats it stochastically. This means that each height, profile or an 
entire surface are considered as a realisation of  a random experiment driven by an assumed 
stochastic model. The results of  a geometric-stochastic description are the parameters of  a 
stochastic process applied. In this dissertation, a geometric-stochastic description based on laser 
scanning data is applied for Surface roughness assessment. It is noted that geometric-stochastic 
descriptions are particularly studied in disciplines such as geostatistics and stochastic signal 
processing.  

Surface roughness is a dynamic physical property that describes the complexity of  the surface 
geometry. The indices that describe this surface complexity are referred to as surface roughness 
indices. In many physical processes, surface roughness figures as a variable that is typically 
understood as a complement to a general description of  the surface topography. For example, 
directional backscattering pattern of  a radar signal depends on both local slope and surface 
roughness (Ulaby et al. 1982). Then, the volume rate of  a water flow in a river depends on the 
slope, lateral height profile and from surface (hydraulic) roughness (Manning 1891). In a 
roughness analysis, these general descriptions of  topography, such as slope and other low-
frequency terrain components are referred to as trend. The task of  roughness analysis is then to 
describe the geometry of  the residual heights, i.e. the heights calculated by subtracting the heights 
of  a local trend surface from the original surface heights. Thus, the surface equation in roughness 
analysis is: 

Surface = Trend + Roughness (1) 

Surface roughness is selected because of  several reasons. First, it is hypnotized that novel high-
resolution TLS data will allow describing fine surface details such as soil clods and gravel pebbles, 
which will then improve the surface roughness assessment. Then, in several environmental and 
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physical models, surface roughness is already described stochastically. For example, in the radar 
scattering problem, it is known that high-frequency (random) surface components (with a spatial 
wavelength smaller than the radar wavelength) cause incoherent scattering, (Woodhouse 2005, 
p.124-128). This random rough surface is usually treated as a single-scale, zero-mean stationary
process with a Gaussian probability density function assigned to the surface heights (Tsang et al.
2000; Ulaby et al. 1982). Such a stochastic process is also known as a zero-mean Gaussian process
and is completely described once the surface autocorrelation function is known (Ogilvy 1987;
Ulaby et al. 1982). Another reason to consider surface roughness is the way that it has been
measured. Roughness measurements were mainly acquired with destructive mechanical profiles
(pin meters, wooden mesh boards or metal chains) or a non-destructive measurements, such as
laser profiles or close-range photogrammetry (Álvarez-Mozos et al. 2009; Jester and Klik 2005;
Mattia et al. 2003; Vidal Vázquez et al. 2010). In contrast, there are just a few studies, at the time,
on the application of  laser scanning for roughness measurement (Hollaus et al. 2011; Perez-
Gutierrez et al. 2007).

The roughness parameters that are typically reported for the zero-mean Gaussian process are: 
(a) the standard deviation of  surface heights, and the correlation length. The latter is given when a
exponential or Gaussian function is used to parametrize an autocorrelation function empirically
derived from the surface measurements, i.e. surface heights. The parametrisation can also be
done, in the frequency domain, by analysing the power spectrum density, i.e. roughness
spectrum, of  the acquired surface heights. The roughness spectrum shows the variances
distribution over a range of  spatial frequencies, i.e. sinusoidal surface components. These
variances can be linearly approximated when plotted in the logarithmic scale, whereas the slope
of  this linear trend is known as spectral slope. The latter roughness parameter is directly related to
the fractal dimension of  the surface. In this dissertation, surface roughness is analysed primarily
using roughness spectra and spectral slope derived from the laser scanning height measurements.

The above roughness parameters are derived in this work for a predefined roughness plot. Such 
a plot is typically delineated beforehand in the field, taking care that it represents a patch of  a 
natural surface with homogenous and distinctive characteristics, i.e. an elementary landform. 
Therefore, the roughness analysis in this work is focused on the description and NOT on the 
classification of  elementary landforms. The classification of  landforms is beyond the scope of  
this study.  

2.2.2 Geometric-Deterministic: 3D Shoot Model 

The geometric-deterministic surface description considers only geometric information of  the 
laser scanning data (3D points) and treats it deterministically. A geometric-deterministic 
description models (exactly or approximately) a point cloud using geometrical primitives and 
higher order surfaces (lines, planes, cylinders, splines etc.) to reconstruct the object. The result is 
a CAD (computer-aided design) model, or an ensemble of  geometric primitives with resolved 
(or unresolved) topology. In this dissertation, a geometric-deterministic description is applied to 
derive a 3D CAD geometry of  branches and foliage of  a coniferous shoot. It is noted that 3D 
modelling is a task that is also studded within the visual computing discipline. 

3D geometry models, as an ensemble of  geometrical primitives, is a representation of  real 
objects that, ideally, should be as close as possible to reality. A simplification of  the reality with 
geometrical objects is used, for example, to parametrize 3D radiative transfer models such as 



Librat and DART (Disney et al. 2010; Jean-Philippe Gastellu-Etchegorry et al. 2012). These 
models performs forward simulation of  Earth observation data (i.e. predicts radiance, or even a 
complete LiDAR waveform) and different 3D models allows then to understand better the 
impact of  particular object elements on the simulated and observed signal. For example, 
simulations with and without tree foliage in 3D models should explain leaf  area index and its 
impact on the EO signal. Such analysis is also useful in resolving between the vegetation and 
background portions of  a vegetation pixel value observed by an EO sensor. 

3D geometrical modelling of  vegetation with geometrical primitives and with laser scanning data 
has been in focus for many years. Thies et al. (2004) derived 3D stem models by fitting cylinders 
to TLS point cloud. The stems and branches are also approximated by fitting closed free-form 
curves to TLS points at different vertical slices (Pfeifer and Winterhalder 2004). Also, Bucksch 
and Lindenbergh (2008) introduced an skeletonization algorithm for a TLS point cloud of  a tree 
to derive a graph that represents the stem-branch structure of  the tree. Recent studies also 
focused on extraction of  more comprehensive 3D stem-branch models from TLS data 
(Raumonen et al. 2013). However, there is still a lack of  3D information about shoot-needle 
structure, even though it is known that needle geometry affects the signal predictions based on 
radiative transfer models (Disney et al. 2006; Smolander and Stenberg 2003). Furthermore, some 
studies already used a generic conifer shoot model to account for the foliage in radiative transfer 
modelling (Côté et al. 2009; Disney et al. 2010). Therefore, the focus in this dissertation was to 
derive a 3D geometrical model of  a coniferous shoot. To accomplish this task, in-door, micro-
scale laser scanning is performed with the measurement arm instrument (Section 2.1). This 
scanner uses the active triangulation, and thus, is able to sample 3D points of  sub-mm spacing 
and accuracy, which is necessary to model individual needles. Finally, it is noted that the focus 
here is only on geometr information, whereas the radiometric properties of  the 3D shoot model 
are beyond the scope of  this work. 

2.2.3 Geometric-Radiometric: Canopy Transmittance 

The geometric-radiometric surface description considers both geometric and radiometric 
information of  the laser scanning data. This means, 3D points with radiometric attributes such 
as echo width and amplitude, or observation directions and the associated full waveforms. The 
latter is a time-resolved signal proportional to the laser radiation incident to the aperture. A 
geometric-radiometric description models the recorded radiometric information to derive (bio-
)physical parameters that are inherent to objects illuminated by the laser radiation, and thus, 
independent of  sensor and scanning campaign parameters. Therefore, the result of  a geometric-
radiometric description is a well-defined (bio-)physical parameter such as reflectance and 
backscattering cross-section. It should be noted that these physical parameters have their 
directional properties, which means that both radiometric and geometric observations have to 
be considered to model them appropriately. In this dissertation, a geometric-radiometric 
description is applied on airborne waveform laser scanning data to derive a directional physical 
parameter referred to as canopy transmittance. It is noted that geometric-radiometric 
descriptions that provide biophysical parameters are particularly studded within the Earth 
observation discipline. 

Canopy transmittance is a directional and spectral-specific physical parameter that shows how 
much of  radiation is attenuated by passing through a vegetation canopy. For ALS data, this 
means that it refers to the used laser wavelength and the scanning direction of  the laser beams. 
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The canopy transmittance is related to biophysical parameters such as leaf  area index and the 
gap fraction (Armston et al. 2013; Bréda 2003). Therefore, the canopy transmittance is important 
canopy structural parameter for forestry and forest ecosystems (e.g., Maltamo et al. 2014; 
Musselman et al. 2013). Furthermore, canopy transmittance can help in resolving the vegetation 
and ground portions in space-borne waveform LiDAR signals recorded e.g. within IceSAT or 
the incoming GEDI missions. 

Derivation of  the gap fraction and leaf  area index from ALS has been in focus for many years. 
The first methods are based on the discrete returns (echoes) where the ration of  the vegetation 
and ground return was explored (Morsdorf  et al. 2006; Solberg et al. 2009). Other methods 
focused more on the radiometric information such as raw intensity values and their corrections 
using the Beer-Lambert law (Hopkinson and Chasmer 2009; Lindberg et al. 2012). The newest 
methods explored more waveform information from small-footprint ALS data (Armston et al. 
2013; Fieber et al. 2015). However, the above methods are either not physically rigorous (e.g. 
return-based), or require assumptions on vegetation physical properties (e.g. vegetation-ground 
reflectance and extinction coefficient). Therefore, the focus in this dissertation is on introducing 
a geometric-radiometric description of  canopy gaps with a clearly defined physical parameter 
and a method that does not require knowledge about vegetation physical properties. To 
accomplish this task, a method for estimating canopy transmittance from the waveform ALS 
data is introduced. 



2.3 Problem Statement and Specific Objectives 

2.3.1 Surface Roughness 

The roughness analysis is currently shifting from manual profile measurements to digital 
measurements such as digital elevation models (DEMs) interpolated from georeferenced point 
clouds. This means that basic processing steps are still missing or not standardized for roughness 
assessment with laser scanning data. For example, DEMs may contain measurement noise that 
can introduce bias in geometric-stochastic roughness parameters. In contrast, if  the data are 
oversmoothed during interpolation of  the DEM, some of  the local surface features may be lost, 
which will again lead to biased parameters. Thus, there is a need to optimize the interpolation of  
DEMs for roughness assessment. Furthermore, there is a practical question on how to optimally 
measure a roughness plot (number of  scans, scanning angle, etc.).  

The following specific objectives for surface roughness study are set: 

• to analyse a geometric-stochastic description of  surface roughness at the patch scale with
high-resolution laser scanning

• to develop a new method for interpolating stochastically appropriate DEM

• to compare different laser scanning techniques for roughness assessment

2.3.2 3D Shoot Model 

The modelling of  trees with geometric primitives fitted to laser scanning data is currently more 
focused on tree elements such as stems, branches and crown shape. Modelling individual needles 
on the basis of  TLS data is, however, not possible because the contemporary TLS instruments 
have a footprint (>3 mm) larger than the needle itself. In contrast, high-resolution active-
triangulation laser scanning offers sub-mm point sampling and accuracy, which was not 
previously used for vegetation measurement. Therefore, more research on modelling of  
individual shoots at the single leaf- or needle-level is required.  

The overall objective for the geometric-deterministic description is to develop a transferable, 
robust and objective method for 3D shoot model reconstructions from micro-scale (high-
resolution) laser scanning data. The reconstructed 3D model should represent reality (a conifer 
shoot) as closely as possible. Furthermore, the conifer shoot should be modelled up to the 
position, orientation and length of  its individual needles. 

2.3.3 Canopy Transmittance 

In contrast to surface roughness, canopy transmittance is a well-studied problem as it is closely 
related to key vegetation biophysical parameters such as the leaf  area index and canopy gaps. 
Therefore, the overall objective here is to introduce a physically strict method for deriving the 
canopy transmittance from ALS waveform data. Furthermore, this method should not require 
knowledge about vegetation physical properties, which is the case in the current canopy gap 
models. Finally, the transmittance method should work on the laser beam level, but different 
aggregation strategies should be suggested, as well.  
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3 Overview of  the Papers and their Contributions 

Figure 3 groups the papers published within this dissertation within the three description 
approaches. The geometric-stochastic description of  surface roughness is analysed in Paper II, Paper III 
and Paper VI. In Paper II, soil surface roughness is analysed with TLS and triangulating laser 
scanning data. This paper presents a method where the interpolation parameters are optimized 
to derive a DEM with stochastically unique properties. In Paper III, soil roughness is analysed 
with TLS and point clouds derived from UAV images. This paper focuses on the comparison of  
TLS- and UAV-derived roughness spectra. In Paper VI, gravel roughness is analysed with TLS, 
ALS, ULS data and a point cloud derived from handheld images. This study mainly concentrates 
on roughness spectra comparison and the optimisation of  the TLS setup. The geometric-
deterministic description of  a coniferous shoot using micro-scale triangulating laser scanning data is 
presented in Paper I. The geometric-radiometric description of  canopy transmittance from airborne 
waveform data is analysed in Paper IV and Paper V. Paper IV introduces a new physically-rigors 
model for deriving total canopy transmittance per single LiDAR beam or an aggregation cell. 
Paper V presents a method for simulating large-footprint space-borne waveforms, which is 
relevant for upscaling the canopy transmittance for space borne LiDAR observing geometry. 
Furthermore, Paper V presents an approach where the simulated space-borne waveforms are 
used together with the field measurements of  the forest inventory to estimate the above ground 
biomass. 

Figure 3: Graphical abstract of  the published papers and the three description approaches. 

Paper I has the flowing main contributions: 

• a micro-resolution laser scanner is applied for the first time for 3D vegetation modelling,

• a new method for 3D model of  a conifer shoot up to the single needle level is introduced



• a 3D shoot model on the basis of  a real data is for the first time (to the author’s best
knowledge) derived.

Paper II has the flowing main contributions: 

• a new method is suggested to interpolate gridded DEMs (from TLS point clouds) while
preserving the surface’s stochastic properties at high frequencies and additionally
providing an estimate of  the spatial resolution,

• scanning conditions on the TLS’s incidence angle and number of  scans are introduced
for applying TLS in soil roughness assessment,

• the study compares TLS- and triangulating laser scanning- based roughness spectra and
other roughness index values

• the cm-mm scale directional blurring of  TLS DEMs along the laser beam direction is
discussed for the first time (to the author’s best knowledge) in this study.

Paper III has the flowing main contributions: 

• the study analyses whether the roughness spectra derived from UAV images can replace
the TLS-based roughness spectra for soil roughness assessment task,

• systematic residuals in the image-based DEM are observed, which was explained by
weakly tied sub-blocks in the bundle block adjustment of  this particular image set,

• the systematic errors caused deformation of  the UAV roughness spectrum at low
frequencies (wavelengths larger than about 3 m), which suggest that image orientation
is important for roughness assessment,

• further experiments are suggested to specify the UAV image acquisition requirements
for soil roughness,

Paper IV has the flowing main contributions: 

• a new physically rigours method is suggested to estimate the total canopy transmittance
from small-footprint airborne waveform LiDAR data,

• the methodology for calculating the transmittance within a single laser beam and cell-
wise calculation is suggested,

• the canopy transmittance method is compared with the traditional gap fraction method.

Paper V has the flowing main contributions: 

• a waveform stacking method is suggested to up-scale the small-footprint airborne
LiDAR waveforms to simulate large-footprint (space-borne) LiDAR waveforms,

• the waveform stacking method gives a basis for deriving the canopy transmittance for
space-borne LiDAR data.

Paper VI has the flowing main contributions: 

• the analysis compares for the first time TLS-, ULS- and ALS-based roughness spectra as
well as a roughness spectra derived from handheld images

• requirements on TLS scanning setup are imposed to derive accurate roughness spectra,
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• frequency bands are derived over which the above roughness spectra: (a) can be used
interchangeably and (b) are affected by the interpolation method

• effects of  interpolation methods on the roughness spectrum are analysed.



3.1 Paper I 

Title: Modeling the tree branch structure at very high resolution 

Authors: Milenković, M., Eysn, L., Hollaus, M., Karel, W. and Pfeifer, N. 

Published in: SilviLaser 2012 - Conference Proceedings, Paper ID SL2012-099 

Licence: This manuscript version is made available under the Creative 
Commons Attribution 4.0 (CC BY 4.0) license 
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Modeling the tree branch structure at very high resolution 

Milutin Milenković, Lothar Eysn, Markus Hollaus, Wilfried Karel & Norbert Pfeifer

Vienna University of Technology, Institute of Photogrammetry and Remote Sensing, 
Gusshausstraße 27-29, 1040 Vienna, Austria; mm@ipf.tuwien.ac.at 

Paper Number:  SL2012-099 

1. Introduction

Knowledge on the structure of vegetation is required in a number of applications. Depending on 
the scale at which the modeled processes occur or at which the parameters of interest are 
required, this can either be dominated by larger structures, e.g. a stand or plot, by single tree 
positions, or at finer details like the individual branching structure. At even finer spatial 
resolution individual leaves or needles can be described. Modeling as such can occur spatially 
explicit or as a distribution. In the first case of 3D modeling the available modeling methods use 
polygons or polyhedral surfaces, freeform curves and surfaces (Farin, 2002), or parametric 
primitives (Mäntylä, 1998) like, e.g., cylinders or, in the case of planar shapes, ellipses. These 
geometric elements are assembled in order to represent the geometric structure. Additional 
information, e.g. optical properties, can be attached to the individual elements. In the case of 
modeling by distributions, parameters of interest, e.g., the orientation of leaves, are modeled by 
describing their distribution, e.g. percentiles or average value and variance. Both types of 
models can – in principle – either be derived from measurements or constructed by assumptions 
on the structure of the modeled elements. 
Radiative transfer modeling using ray tracing allows generating (simulating) synthetic images 
from a modeled 3D scene by forward modeling (Morsdorf et al, 2012). The scattering behavior 
within the canopy requires a model of the individual needles or leaves for producing faithful 
simulation results (e.g. Disney et al., 2010, Disney et al., 2006. Models for extracting the branch 
structure only from measurements were described, e.g., by Thies et al. (2004) and Bucksch and 
Lindenbergh (2008). Using only the available measurements of a terrestrial laser scanner (TLS) 
placed inside the forest and an orchard, respectively, these approaches are not able to model 
individual needles or leafs. One way to describe for example a forest stand including individual 
needles or leaves is to use software packages of computer graphics to generate artificially the 
foliage orientation and variability within the individual tree crowns. For this generation of 
virtual forest stands several assumptions and generalizations are required. Rutzinger et al. 
(2010), e.g., extract tree location, height, stem diameter and crown diameter from mobile laser 
scanning data and “grow” tree models (Weber and Penn, 1995) reaching the measured 
parameters. Côté et al. (2009) used for the reconstruction of 3D tree architecture from terrestrial 
LiDAR scans a generic conifer shoot model based on the model description of Smolander and 
Stenberg (2003). However, there is still a lack of detailed information concerning actual shoot 
structure as stated in Côté et al. (2009). 
To overcome the limitation of actual shoot structure information, we present an approach for 
reconstructing exact geometric information on individual twigs, needles, and leaves from 
measurements. This reconstruction can be performed with sub-millimeter accuracy using a 
measuring arm in an indoor setting. At the current stage, the approach requires, next to the 
measurement itself, manual interaction. Individual needles and leaves as well as twig fragments 
are modeled in terms of their position, length and direction. Basics of the applied 3D modeling 
approaches were developed within the NEWFOR (Hollaus, 2012) project for a coarser scale (i.e. 
tree structure) and are adapted and improved for branch modeling within the 3D-VegetationLab 
project. 
In Sec. 2 the measurement device and the sample branches, one coniferous and one deciduous, 
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are described. In Sec. 3 the methods are explained and the results are discussed in Sec. 4. 

2. Study objects and data

2.1 Study objects 

One coniferous and one deciduous branch are selected as objects for the modeling. Both 
branches belong to the end part of the corresponding tree limbs, and carry a typical structure of 
their species, which makes them – in principle – also suitable for cloning all over the tree. The 
objects also have similar structures in the sense that both branches are composed of one 
“primary” and several “secondary” branches. 
The coniferous branch (Fig. 1) is taken from a fir tree (Abies alba) and is approximately 80 cm 
long and completely covered with needles. The “secondary” branches spread about 40 cm 
sideways from the “primary” one, mainly in one plane. They contain many shoots that are 
attached to them. While not of importance for the reconstruction method, the oldest part of the 
branch was estimated to an age of 5 years. The shoot location within a secondary branch was 
used to determine the age of the shoot, with the end shoots considered as first year shoots, 
whereas others decrease in the age while moving from the branch end towards the branch joint.  
The deciduous branch (Fig. 2) comes from a European beech tree (Fagus sylvatica). Compering 
to the coniferous branch, it is slightly bigger in size (c.a. 1 m in length), but has a similar planar 
spreading of the secondary branches. Twigs with attached leaves are sparsely distributed over 
the secondary branches making the object structure more “open” and less complex. Scanning of 
the branch indoors required a fast transportation of the cut branch to the measurement device 
because of the fast drying out process.  

2.2 Measuring device 

A measuring arm (METRIS MCA, 3600 M7) is used to acquire exact geometric information. 
The instrument used has a triangulation laser scanner mounted on its head, and therefore allows 
contactless object scanning. A laser stripe is constantly emitted and intersects with an object’s 
surface if pointed at it. This illuminated cross section is mapped by a camera and furthermore 
3D coordinates of the illuminated area are derived. If the laser stripe is moved over the object, a 
so called “scanning strip” is recorded. Larger areas are covered by scanning several strips. The 
METRIS measuring arm provides automatically oriented scans of the object. The mounted 
scanner provides a point cloud that has different along- and across-strip resolution. The 
across-strip resolution depends upon both the laser strip width and the resolution of the camera, 
and goes up to 0.05 mm. The along-strip resolution, on the other hand, is usually about 0.5 mm, 
which is mainly driven by the moving speed of the arm’s scanning head. A slow movement of 
the head can significantly increase this value and provide a large number of acquired points. 
Due to its construction, the instrument has a limited operational range that allows scanning of 
objects up to 1.5 m in size. Besides, there is an operational limit which dictates the size of the 
acquired scan, i.e. the number of points that can be processed by the system.  

2.3 Acquisition method 

The arm’s resolution and operational range, on the one hand, and the objects’ structure and size, 
on the other hand, appear as the most prominent factors during the scanning. Those specific 
characteristics of the instrument and objects are the reason for introducing separate acquisition 
strategies for coniferous and deciduous branches. 

2.3.1 Coniferous branch 

The complex structure of the conifer branch and its large extend (compering to the operational 
range) affect both object stability and accessibility during the scanning procedure. Therefore, a 
two-stepped strategy is introduced to acquire a representative point cloud of the model. First, 
the overall structure is in the focus, then, each “secondary” branch is measured. In the first step, 
the main branch and large secondary branches are scanned using a number of scan strips and 
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ensuring overlaps between the scans. Then, the secondary branches are separated physically (i.e. 
cut) from the object and measured separately. Therefore, co-registration of all the scanned parts 
is required in the second step (Fig. 1).  
The co-registration is done for each secondary branch independently, transforming its 
coordinate systems to the main branch’s coordinate system. This procedure is done using the 
spherical heads of pins as targets that are present in both scans. Tree pins per each secondary 
branch are introduced in zones close to branch joints i.e. in the overlapping scan areas (Fig. 1). 
Based on the points that represent those targets, different spheres are fitted and then their centers 
are used for the co-registration. This acquisition approach also allows to model each secondary 
branch independently and latter to build the final model by merging all the models into one 
structure.  

Figure 1: Left: conifer branch prepared for the measurement; Bottom right: detail showing the point cloud 
of a scanned (“secondary”) part; Top right: detail showing the spheres for co-registration.  

The point cloud of the coniferous branch (Fig. 2, right) has over 40 million points. The branches 
are covered from both sides. As visible in Fig. 1 (bottom right), the first and second year shoot 
at the end of the tree are not perfectly symmetrical. This holds for the directions and lengths as 
well as for the branching structure.  

2.3.2 Deciduous branch 

The deciduous branch is scanned in one step because its sparse structure allows an easy access 
to the entire object. However, the area of the leaves and the high resolution of the scanner 
produce a large amount of data that exceeds the operational limit of the arm. Therefore, several 
smaller scans (i.e. files) are collected to cover the whole object. Since the object and scanner 
coordinate system where fixed during the scanning, there was no need for the final 
co-registration of these scans. The final point cloud of the deciduous branch is shown in Fig. 2 
(left). It contains almost 50 Million points. The scans were only acquired from the leaf top and 
bottom side. 

Figure 2: Left: Point cloud of the deciduous branch; Right: Point cloud of the coniferous branch 
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3. Methods

Needles and leaves are the elementary unit in modeling the coniferous and deciduous branch, 
respectively. Since it is not possible to represent them in a geometrically similar way, two 
separate methods are proposed to model those objects. Both methods start with a common task 
where the corresponding branch structures are modeled, and then, during the modeling of their 
elementary unit, they split into two independent procedures. Following this logic, the Sec. 3.1 
will first discuses the extraction of the branch skeleton, and in Sec. 3.2 and Sec. 3.3 the 
proposed modeling methods are described. 

3.1 Modeling branch structure 

The branch structures of the two objects are very similar, i.e. both have branch joints and 
cylindrical wooden parts that connect them. Thus, topologically correct 3D polylines are used as 
a model for both the coniferous and deciduous branch structure. Those polylines are digitized 
(manually) from the corresponding point clouds. 
The open structure of the deciduous branch allows a fast digitization without interruptions of the 
entire object structure in one coordinate system, i.e. the object coordinate system (OCS). This 
included digitization of the leaf stalks. 
The digitization of the coniferous branch structure is not so straightforward. The presence of 
needles disturbs the digitization process making the selection of stem points much more time 
consuming compering to the deciduous branch. Therefore, an automatic procedure for point 
reduction is implemented before the digitization. The point cloud reduction is based on the 
voxel model derived from the scanned part and an estimation of a local voxel density. A 
property of the original point density is, that it is strongly influenced by the instrument’s 
scanning pattern.  
Voxelizing the data with an appropriate voxel size, the native structure of the object is 
emphasized rather than the scanning properties of the instrument. A voxel is considered as 
foreground (i.e. filled), if it contains at least one point from the original point cloud. The voxel 
density is the percentage of filled voxels in the 33-neighborhood of the center voxel (sphere of 
radius 2 in voxel space). An empirically driven thresholding on the local voxel density is done 
to reduce the starting point cloud. The used voxel size is 1 mm, which is close to the width of an 
average needle of the conifer branch. After the reduction procedure most of the needle points are 
removed from the starting data set, and the remaining points (mainly points from the stem) are 
used for digitizing the skeleton of the scanned part (Fig. 3). Since the co-registration of all the 
scanned parts is already done, the resulting 3D polyline structure is in a coordinate system of the 
conifer branch, i.e. in the OCS. 

Figure 3: a) The classified original point cloud, based the thresholding the local voxel density; b) the 
reduced point cloud; c) the skeleton of the scanned part (right) 

3.2 Modeling the deciduous branch 

For modeling the deciduous branch it is assumed, that the wooden structure is available as 3D 
polyline. Thus, only the leaves need to be modeled. For each leaf, a local point cloud is 
extracted. This is based on a bounding box which is extracted per leaf. Based on those local 
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point clouds, for each leaf an ellipse is estimated and used as a model for that leaf. Before 
estimating the ellipse, the regression plane is fitted trough the leaf point cloud (Fig. 4, left). This 
provides the orientation of the leaf plane.  
Next, the leaf point cloud is orthogonally projected to the regression plane and boundary leaf 
points are extracted from this data set. The ellipse parameters (center point, major and minor 
radius, and axis orientation) are estimated by fitting the ellipse trough the leaf boundary points 
(see Figure 4, right). These parameters are transformed into a description suitable for including 
it in the model coordinate system (MCS): the normal vector of the regression plane, the ellipse 
center point, the end point of the longer radius of the ellipse, and the minor radius. 
To establish a correct topology in the final model, the estimated ellipse is translated to the 
closest end point of the branch skeleton. In this way the native orientation of the leaf (the 
regression plane) is preserved. The translation parameters are resolved from the equality 
condition of the end point of the longer radius of the ellipse (tip of the leaf) in MCS and the 
closest end point of the branch skeleton in OCS. 

Figure 4: Left: The leaf point cloud with the regression plane; Right: the fitted ellipse displayed over the 
leaf boundary points 

3.3 Modeling the coniferous branch 

To handle the large data set, the modeling of all the scanned parts (the primary and the 
secondary branches) is performed independently and then, in the subsequent step, their models 
are combined into the final branch model. In the following a method for modeling of a shoot is 
presented. This method can either be applied to the entire branch, or the shoot can be cloned to 
populate the entire skeleton with the needles of the shoot model.  
Using cloning is therefore a two step approach: (1) creating the shoot model, and (2) cloning the 
shoot model over the branch structure. A detailed workflow that includes also the skeleton 
modeling and all intermediate layers is illustrated in Figure 5. Since the proposed strategy 
allows an independent modeling of the scanned parts, only one is selected here to demonstrate 
the potential of the proposed method. The end part of the branch (see Figure 1) is taken because 
it has the most complex structure among other parts. Using a shoot model multiple times, 
enhances the efficiency of the modeling procedure. However, a typical data set needs to be 
selected when creating only one shoot model. This 3D model is assumed to be representative for 
all the shoots within the branch and used later, in the cloning step. 

Figure 5: The workflow for modeling the branch 
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3.3.1 Modeling the shoot 

A point cloud of a first year shoot (Fig. 6a) is selected as a representative data set for the shoot 
modeling by manually digitizing. Each needle is represented by a 3D line, with a starting and 
ending point, while the shoot’s stem is represented by 3D polyline. Since the starting points of 
the needle lines are also the nodes of the stem poly line, the model is also topologically correct 
(Fig. 6b). The local coordinate system of the shoot model - the model coordinate system (MCS) 
- is defined with two reference points and one plane. The starting and ending point of the
wooden part are selected as the reference points, whereas the regression plane fitted trough the
needle end points (Fig. 6c) is taken as the reference plane.

Figure 6: a) Point cloud of the representative shoot; b) the shoot model; c) the shoot model from the top 
view with the reference plane. 

3.3.2 Cloning the shoot model 

To build the conifer branch model by cloning, the shoot model is cloned over the branch 
skeleton. For each segment of the skeleton’s polylines an appropriate part of the shoot model is 
firstly extracted and then cloned on this location. For example, segments that represent an end 
part of the skeleton are cloned with the whole shoot model, whereas middle segments are cloned 
only with a lower part of the shoot model. In case where the length of the skeleton segment 
exceeds the length of the shoot model, the lover part of the shoot model is used to bridge the 
remaining part of the segment.  
The cloning procedure is performed by transforming the shoot model from MCS to OCS. Since 
the MCS is defined by the two points and one plane, the starting and ending point of the 
skeleton segment are used as the reference points, while a local plane is taken to resolve the 
orientation of the shoot model. The local plane is estimated for each skeleton segment 
independently, based on the local needle points filtered out during the point reduction procedure 
(see Sec. 3.1).  

4. Results and discussion

In this Section the results of the cloning process are presented and discussed. The results are 
based on the shoot model shown in Fig. 6b, and the branch skeleton shown in Fig. 3c. The 
application of the above described modeling and cloning methods lead to the branch model 
shown in Fig. 7. The point cloud and the final branch model show a perfect correspondence for 
the location of the manually modeled shoot model (marked red in Fig. 7), exhibiting the same 
(ir)regularity of the needles especially at the end and with respect to their orientation out of the 
plane. The lower part of the shoot model shows a homogeneous density of needles. Therefore, 
this 1st year shoot could be cloned all over the manually extracted branch skeleton. At joints, 
where multiple sub branches connect, the 3D model, in some cases, exhibits more needles than 
the point cloud data suggests (Fig. 7). 
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Figure 7: Point cloud of a coniferous twig versus it’s extracted 3D model. The red boxes show the shoot 
which was manually modeled and used for cloning; Left: Pointcloud; Middle: 3D model with 

classification into needles and branch structure; Right: Erroneous clumping of needles at joints 

Considering the entire method of modeling, a number of steps include simplifications and cause 
differences between the geometric model and the acquired data. However, the entire method is 
data driven and allows modeling of the branch structure for each individual needle and leaf as 
well as the branches in between. A slight curvature of the needles was visually found in the data 
set but was neglected during modeling. The chosen model for a needle is the straight connection 
between the start and the end point of the needle. This rather simple model could be enhanced 
by using the average thickness of the needle for fitting an ellipsoid of revolution, which is 
favorable if the models are used i.e. for ray tracing analyzes where volumetric objects are 
preferred. However, also the orientation of the branch is available, which allows even more 
complex needle models to be applied, too. 
Because the branch skeleton and the needle axis are digitized manually based on the point cloud, 
the location of the digitized elements is on the outer surface of the corresponding objects. If 
necessary, this error could be simply corrected by estimating or measuring the diameter of the 
corresponding object and translating the axis by half of the diameter. While a fitting approach 
would estimate the axis directly, the irregular point distribution, especially, in the case of a 
coniferous branch, poses an additional challenge to obtain a better geometric position in this 
way. 
Concerning cloning, no 2nd year, 3rd year or even older shoots were used for this model. In 
general, the 1st year shoots have more needles than the older shoots and therefore an 
overestimation of the number of needles in the current cloned model is assumed. 2nd or 3rd year 
shoots could be simulated by reducing the number of needles before inserting the clone into the 
branch structure. Further investigations in this direction need to be performed. 
Concerning the leaf model, the approximation of the leave as an ellipse applies well to the beech 
leaves used in this study. However, the main consideration is a model with a small number of 
parameters, e.g. 5 in the case of an ellipse or 6 for a triangle. Fitting elements like an ellipse 
overcomes problems with gaps or inhomogeneous point densities in the acquired datasets. 
Alternative approaches include using the alpha-shape for the outline detection and the 
Douglas-Peucker algorithm for simplification in order to get a polygonal outline with a small 
number of points. Generally, the leaves are assumed to be flat which does not account for 
seasonality, although leave curvature is visible in Fig. 4 (left). Again, ray tracing advocated for 
simple models. 

5. Conclusion

Methods to model individual twigs, needles, and leaves, based on point clouds acquired with a 
measuring arm, at a high level of detail are presented. The model for coniferous branches 
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consists of 3D polylines with an additional classification, whether a line element represents a 
needle or belongs to the branch. Each line element can be transformed to a volumetric 
description by using their respective thickness value. The chosen model for representing a single 
leaf is an ellipse which acts as a good approximation for the complex leave structure. This study 
showed that the presented approach leads to promising results, which represent the real 3D 
branch structure based on measurements of the object. These detailed coniferous and deciduous 
3D branch models can be used to build up larger twigs and branches by using cloning 
approaches. In this way virtual tree models can be enhanced or created that are used i.e. as input 
for radiative transfer and process modeling. While a faithful reconstruction is possible with the 
presented approach, measures of quality need to be derived before these results can be used in 
further applications. Likewise, for larger scenes to be modeled, the degree of automation needs 
to be increased.  
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Abstract: Terrestrial laser scanning can provide high-resolution, two-dimensional sampling

of soil surface roughness. While previous studies demonstrated the usefulness of these

roughness measurements in geophysical applications, questions about the number of

required scans and their resolution were not investigated thoroughly. Here, we suggest

a method to generate digital elevation models, while preserving the surface’s stochastic

properties at high frequencies and additionally providing an estimate of their spatial

resolution. We also study the impact of the number and positions of scans on roughness

indices’ estimates. An experiment over a smooth and isotropic soil plot accompanies

the analysis, where scanning results are compared to results from active triangulation.

The roughness measurement conditions for ideal sampling are revisited and updated for

diffraction-limited sampling valid for close-range laser scanning over smooth and isotropic

soil roughness. Our results show that terrestrial laser scanning can be readily used for

roughness assessment on scales larger than 5 cm, while for smaller scales, special processing

is required to mitigate the effect of the laser beam footprint. Interestingly, classical roughness

parametrization (correlation length, root mean square height (RMSh)) was not sensitive

to these effects. Furthermore, comparing the classical roughness parametrization between

one- and four-scan setups shows that the one-scan data can replace the four-scan setup with

a relative loss of accuracy below 1% for ranges up to 3 m and incidence angles no larger than

50◦, while two opposite scans can replace it over the whole plot. The incidence angle limit

32



Remote Sens. 2015, 7

for the spectral slope is even stronger and is 40◦. These findings are valid for scanning over

smooth and isotropic soil roughness.

Keywords: terrestrial laser scanning; triangulating scanner; surface roughness; spatial

resolution; autocorrelation; roughness spectrum; correlation length; root mean square height;

spectral slope

1. Introduction

Terrestrial laser scanners (TLSs) are designed to capture precise and detailed geometric information

about natural and artificial objects. These instruments utilize the light detection and ranging (LiDAR)

technique to collect point clouds with spatial resolution ranging from several millimeters up to several

centimeters, depending on the object distance from the scanner [1]. Besides the geometry information

(range, horizontal and vertical angles), some TLSs are able to register backscattered laser intensity, which

then can be used to deduce the radiometric properties of the scanned objects [2].

Thanks to the above characteristics, terrestrial laser scanning has been successfully applied to

many environmental applications, like forestry, hydrology and geomorphology. For example, tree

stems and heights, canopy openness, 3D tree structure, as well as its change detection are just some

of the forest-mapping aspects that have been addressed by the TLS data [3–6]. In hydrology and

geomorphology, the TLS data have been used, e.g., to characterize the surface of gravel-bed river

banks [7–9] or even submerged gravel beds [10], then to quantify depositional and erosional processes in

dynamic and complex fluvial systems [11,12] or to classify complex morphological settings, as well as to

monitor the landslide displacement [13,14]. Compared to these studies, the application of the TLS data

for surface roughness assessment is, however, more challenging, since the surface features that should be

described appear already at the millimeter scale, which is about the resolution limit of the contemporary

TLSs [1]. Thus, special care should be taken during TLS data acquisition and processing to successfully

describe these fine-scale roughness elements.

Surface roughness is a physical property of natural surfaces and also a parameter in many geophysical

models. Since each physical process interacts with the specific group of surface features and under the

specific range of scales, there is a high diversity in understanding, characterizing and even in naming

the surface roughness among the corresponding disciplines. Some of the commonly-used terms are:

hydraulic roughness, soil roughness, surface microtopography, snow surface roughness, aerodynamic

roughness, etc. [15–20]. Soil roughness, for example, affects infiltration and runoff during a rain event,

controls wind erosion and fluid flow and also influences the backscattered energy of radar signals [21,22].

Local surface features, like tillage structure, soil aggregates and particles, are considered to be directly

related to the soil roughness, and in the corresponding roughness studies, they are typically described

through their regional stochastic properties [23]. Hollaus et al. [24] distinguished between two different

types of roughness, the surface and the terrain roughness, where the latter one describes objects that are

20 cm or more above the surface. Most of the soil roughness studies are concentrated exclusively on

surface roughness, where it is additionally distinguished between a so-called “oriented” and a random
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roughness geometry [16,18,23]. In this paper, assessment of the surface roughness associated with a bare

soil plot with a random (isotropic) geometry will be analyzed.

There are several methods for soil roughness assessments that involve: (1) different soil height

sampling techniques; and (2) different data analysis strategies. Traditional roughness sampling

techniques are pin and mesh-board profilers, which collect individual soil roughness profiles with

a length ranging from 0.5 m to 4 m and a regular sampling distance ranging from 5 mm to 10 mm

along the profile direction [25,26]. A non-destructive alternative for the above roughness measurements

are laser profilers. An example of this category is a laser profiler constructed by CESBIO (The Center

for the Study of the Biosphere from Space) and ESA (European Space Agency), which is able to sample

heights regularly at every 5 mm and collect up to 25 m-long profiles [27]. On the other hand, there

is a number of studies where digital images and the stereo-photogrammetric techniques are applied to

provide a two-dimensional sampling of soil heights (e.g., [18,28,29]). These data are used to generate

regularly-structured digital elevation models (DEMs), which then serve as a base for the roughness

analysis. The recent studies of Marzan et al. [16] and Bretar et al. [30] showed, for example, that DEMs

with a millimeter grid size can be readily reconstructed with stereo-photogrammetry for plots of 6 m2

to 12 m2. Terrestrial laser scanning is another technique capable of providing precise two-dimensional

sampling of soil heights at a similar scale [20,31,32]. In the TLS studies of Barneveld et al. [33], as well

as Nield et al. [34], the soil surface was analyzed even over a larger area (up to 120 m2 and 144 m2,

respectively), but this was at the cost of the DEM’s resolution, i.e. the DEM’s grid size was much coarser

there (1 cm). On the other hand, in the study of Haubrock et al. [35], a 1 mm DEM of micro-erosion

plots over ∼1 m2 was generated from data collected by an optical triangulating laser scanner. While all

of the mentioned TLS studies apply multiple scanning to mitigate occlusions and improve the spatial

resolution of the TLS data, the number of required scans and the resolution that will ensure a certain

accuracy level of a roughness index were not investigated.

The sampled soil heights are used to analyze the stochastic properties of soil roughness. This can

be done either: (1) in the spatial domain, e.g., by calculating the autocorrelation function [18,36] or

variogram [16,17]; or (2) in the frequency domain, i.e., using the roughness spectrum, which is the power

spectrum of the sampled soil heights [22,37]. The latter is especially favorable for large datasets, but this

approach also involves the discrete Fourier transform (DFT) for which an additional data aggregation

into a regularly-structured DEM should be performed. Since the TLS sampling is irregular in the

Euclidean space, the original TLS data should be first interpolated into a DEM and then analyzed by the

DFT. This interpolation is usually accompanied with smoothing, which is most severe at high surface

frequencies, where the most important roughness content is placed. Thus, optimally, the resulting DEM

should preserve the stochastic properties of the original surface, as well as the spatial resolution of the

original data. However, in roughness studies, the resolution of the used DEMs is usually determined

only based on the point density or sometimes even arbitrarily and then reported by the DEM’s grid size.

This, however, cannot be applied on close-range TLS data, where the sampling is diffraction limited,

and as shown by Lichti and Jamtsho [1], the resolution is a function of both the sampling interval

and the laser beam footprint. Thus, such inappropriately-generated DEMs can lead to an inaccurate

assessment of soil roughness. Besides, there are several theoretical studies that already showed that
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some roughness indices, like the correlation length and the root mean square height, are sensitive to data

resolution [38–40].

This paper presents the findings of an experiment where a TLS was applied to measure soil surface

roughness on a plot with an isotropic, random geometry. Since the stochastic properties of bare isotropic

soil surfaces were intensively studied in the past ([23,25,27,36,41], etc.), the focus of this paper is

rather on the application of the terrestrial laser scanning for the assessment of soil surface roughness.

Particularly, the paper suggests a method for generating a DEM that ensures that the surface’s stochastic

properties are preserved at high frequencies and provides additionally an estimate of the DEM’s spatial

resolution. Then, it is studied how the number and positions of scans, as well as the DEM resolution

affects spatial correlation, the roughness spectrum and four selected roughness indices (correlation

length, root mean square height (RMSh), power coefficient and spectral slope). Additionally, a small

sub-plot is surveyed with an optical triangulating scanner (OTS), and then, the corresponding TLS and

OTS roughness estimates are compared over this area.

The paper is organized as follows: Section 2 explains how the roughness plot was prepared and

surveyed and how the laser scanning data were processed. Section 3 starts with presenting the main

characteristics of the collected data and continues with reporting the results of this study. Then, in

Section 4, the major findings from the Results section are discussed and compared with other studies.

Furthermore, this section comments on the suitability of TLS for soil roughness assessment. Finally,

conclusions are drawn in Section 5.

2. Materials and Methods

An out-door experiment was conducted to test the potential of terrestrial laser scanning for the soil

roughness description. The experiment involved the preparation, measurement and analysis of a bare

soil roughness plot.

2.1. Roughness Preparation

An isotropic roughness pattern was prepared on a 2.6 m × 3 m rectangular plot placed in the Botanical

Garden of the University of Vienna, in late October, 2013. The plot was generally used as a seed bed for

plant reserve growth and was composed of a bare loamy-sand soil, which was rich in organic materials

and rather dark in color. The soil is part of the Danube river basin and, generally speaking, contains

a notably large portion of sand compared to clay, which is present just in a small amount. The high

presence of the organic matter is a consequence of more than 30 years of cultivation. Such an organic-rich

soil generally has low reflectance at laser wavelengths compared to other soil types. This negatively

affects the strength of the backscattered laser signal, as well as the signal-to-noise ratio, decreasing the

quality of the resulting TLS measurements. Thus, the selected soil imposes rather unfavorable conditions

for TLS scanning compared to other soil types.

To ensure an isotropic geometry within the plot, the soil was first prepared by a rotary cultivator

and then flattened out with a rake. The resulting roughness was mainly driven by randomly-oriented

and spatially-distributed soil particles and aggregates, most of them with a size of ∼0.5 cm to 7 cm in

diameter (Figure 1b,c). Additionally, some traces of the rake pulling process were present in some parts
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of the plot. However, their magnitude and amount were too small to disturb the general isotropic and

random nature of the plot. Finally, other roughness elements, like small gravel (up to 2 cm in diameter),

as well as needles and leaves from the surrounding trees were also present in the plot, though all of them

in a very small quantity (Figure 1c).

Figure 1. (a) Measurement setting of the TLS instrument over the analyzed plot; (b,c) soil

aggregates and other roughness elements present within the plot; (d) measurement setting of

the optical triangulating scanner (OTS) instrument (since a photo of the OTS setting over the

analyzed plot was not available, this photo shows an identical OTS setting that was applied

on another roughness plot, which is not considered in this paper).

2.2. Measurement Setup and Acquired Data

The roughness plot was measured immediately upon its formation. The measurements were

performed with the Z + F IMAGER® 5006i, an amplitude-modulated continuous-wave (AM-CW)

terrestrial laser scanner (TLS) that uses the phase comparison ranging technique. The instrument has

a specified precision of 0.4 mm (relevant for targets with a reflectivity of 100%) and a small beam

divergence (0.22 mrad), with a beam diameter at the exit of 3 mm [42]. The scanner also has a large

vertical field of view (FoV) that starts at 75◦ below the horizon and which allows its positioning closer

to the object. In addition to the TLS measurements, a subplot of ∼0.3 m × 1.2 m was scanned by an

optical triangulating laser scanner (OTS), Konica Minolta VIVID® 910i. This scanner provides data

with a specified precision of 32 µm for the wide-lens scanning setup, which is one order of magnitude

better than the specified precision of the TLS. On the other hand, the typical ground sampling distance
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(GSD) of this instrument is less than 1 mm, which is far below the TLS’s footprint in a close-range setup

(up to 4 mm). Therefore, these data were considered as a reference and used for the validation of the

roughness parameters derived from the TLS.

The measurement setup of the TLS is shown in Figure 1a. The measurements started on 23 October

2013 at 13:00 CET and finished approximately one hour later. The weather was mainly cloudy, but also

with some short sunny intervals and without wind and rain. The plot was surveyed with 4 scan positions,

each placed approximately halfway on the plot’s edges and as close to the plot as the TLS’s vertical

FoV allows. The scanner was mounted on a standard wooden tripod adjusted at the maximum possible

height (∼1.8 m), which ensures the stability during the scanning. The scanning itself was performed

in the “low noise” and “high power” mode, while the sampling resolution was set to “super high”, i.e.,

20,000 measurements within the full vertical and horizontal circle [42]. Such a scanning mode requires

17 min per scan position to scan the complete FoV. In addition to this setting, 4 spherical targets (made of

Styropor® and each with a radius of 10 cm) were installed at the 4 plot’s edges. These targets were later

used as tie points for the relative orientation of the 4 measured TLS scans. A similar setting was already

applied successfully for a vegetation survey with the same TLS instrument [5]. During the complete

surveying time, it was ensured that these targets were static and visible from each scan position.

The measurement setup of the OTS was slightly atypical. Since this is primarily an indoor instrument

that has a relatively small FoV compared to the TLS, a special construction was installed over the subarea

to survey a strip with several overlapping OTS scans. Unfortunately, a picture of this particular setup

was not available, and thus, Figure 1d shows the identical setup over another roughness plot, which is

not considered in this paper. As can be seen there, the construction acted as a platform made of two

adjustable metal trestles, which were used to support a horizontally-positioned aluminum ladder. The

OTS scanner was mounted on the ladder and faced down toward the soil at a relative height of ∼0.7 m.

Additionally, the construction was covered by special ultra-light, first-aid blankets to introduce the indoor

lightning conditions, which is required for successful scanning with the OTS. The surveying was then

done by a successive ladder sliding and capturing individual OTS scans. The scans were acquired using

the wide lens with a focal distance of 8 mm, which, for our setup, provided a rectangular object coverage

of ∼0.4 m × 0.3 m and a ground pixel size of ∼0.7 mm. Alternatively, “tele” and “middle” lenses could

have been used, as well. However, the increase in precision and resolution that they bring is minor and

at the cost of the FoV, which would only increase the number of individual scans.

In total, 10 individual OTS scans were collected in the form of a strip and in the direction

approximately parallel and close to one of the plot’s edges. It was ensured that the successive scans

had at least a 70% overlap along the larger edge of the OTS’s FoV, which also determined the final strip

length (∼1.2 m). The strip width, on the other hand, was driven by the smaller edge of the OTS’s FoV

(∼0.3 m at the ground). To resolve an initial co-registration between the OTS and TLS data, two small

wooden spherical targets (3 cm in radius) were placed at the beginning and end of the OTS strip. They

were firmly fixed to the ground by 20 centimeter-long screws and were visible in both OTS and TLS

data. Later, in the preprocessing phase, these parts were excluded from the OTS data, which, together

with slightly inclined strip directions to the plot’s sides, restricted the effective area to 0.18 m × 1 m for

the OTS strips.
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2.3. Data Processing

TLS data were processed through two main steps. The first step aimed at extracting valid

measurements (points) from the raw TLS data, while in the second step, these valid points for each

of the 4 TLS scans were transformed into a common coordinate system. During the transformation, the

soil heights were also detrended, which is the prerequisite for almost any roughness analysis [22,23].

This section explains each of these two main tasks in more detail.

2.3.1. Pre-Processing

The pre-processing of the raw point clouds was done in the “Z + F Laser Control” software, similarly

to the pre-processing done in [4]. Several predefined filters were applied to remove (1) irrelevant

measurements, (2) low-quality measurements and (3) erroneous measurements, which are associated

with the AM-CW ranging technique. First, points outside the plot area, i.e., irrelevant points, were

discarded by applying a simple polygon filter. Then, points with a small intensity value were removed

from the data by an intensity filter with the default settings. These points have a low signal-to-noise

ratio, and thus, they are generally considered as low-quality measurements [43]. Finally, points that are

so-called mixed pixels were removed automatically by applying the mixed-pixel filter and single-pixel

filter implemented in the software. These points are associated with an erroneous range value that

appears when an AM-CW ranging system samples a target that has individual scatterers distributed

along different ranges within the laser beam [43]. In soil roughness scanning, such cases appear, e.g.,

when the laser beam illuminates simultaneously both the top of a large soil aggregate (first individual

scatterer) and the underling soil surface (second individual scatterer).

Depending on the reflectance, illuminated area and relative distance between the individual scatterers,

the resulting range may appear anywhere along the laser’s line of sight, i.e., in front, behind or between

the soil aggregate’s top and the soil in the background. In all three cases, mixed-pixel points provide the

false geometry of soil aggregates, while in the latter case, they cover the occluded area, providing also

a false impression about the coverage and point density of the TLS data. Thus, the mixed pixels have

to be removed before any data quality and roughness analysis. Figure 2 shows automatically detected

mixed pixels (yellow points) in one of our TLS scans, applying the default settings suggested by the

software. Although this filter setting performed the best in our case, i.e., up to a 5-m range, it was also

observed that the filters’ performance became questionable for larger ranges. Thus, automatic filtering

of the mixed pixels may be an issue in the case of larger roughens plots.

2.3.2. Data Transformation and Detrending

Each TLS or OTS scan is acquired in its own local coordinate system, which will be named here

the sensor’s own coordinate system (SOCS). To analyze the two datasets jointly, all of the individual

scans were transformed from their SOCSs into one common coordinate system, named here the object

coordinate system (OCS). The transformation was done through three consecutive steps. First, the

relative orientation was resolved independently among the TLS scans and among the OTS scans. This

resulted in two point-cloud blocks, one from the TLS scans and another from the OTS scans, where each

of them was built in its own block coordinate system (BCS). Then, in the second step, the OTS block was
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co-registered globally to the TLS block. Finally, the co-registered scans were all transformed together

from the TLS’s BCS to the OCS.

Figure 2. An example of automatically-detected mixed pixels (yellow points) in a single

scan station. The top diagram shows a cross-section of mixed pixels taken approximately

along the TLS’s line of sight.

A coarse, relative orientation of the TLS scans was done using the 4 spherical targets installed at the

plot’s corners. These targets were measured semi-automatically in each TLS scan, and then, their centers

were used as tie points to derive the transformation parameters (three rotation angles and three translation

increments) for each TLS scan. This was done within an adjustment procedure implemented in the

Z + F Laser Control software, where the scan taken from Position 1 (Scan 1) was fixed. This ensured

that the resulting TLS block had a coordinate system identical to the SOCS of Scan 1. The average

deviation between the corresponding tie points after the adjustment was 4.8 mm. Then, an additional

fine relative orientation of the TLS scans was done using an in-house implementation of the iterative

closest point (ICP) algorithm. As a result, the average 3ddistance between the corresponding points

among each TLS scan pair ranged from 0.9 mm to 1.1 mm. The relative orientation of the OTS scans

was also done by the same ICP algorithm, where one of the OTS scans was kept fixed. The average

distance between the corresponding OTS points after the relative orientation was 0.1 mm.

The co-registration of the OTS to the TLS block was done through an initial co-registration followed

by a fine co-registration. The initial co-registration was done using the 4 small spherical targets installed
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at the OTS strip’s corners. The spheres’ centers, derived independently from the OTS and TLS block,

were used as tie points in an adjustment that provided the 6 global parameters for the rigid body

transformation between the two blocks. These parameters were then applied to transform each OTS

scan into the TLS’s BCS. Finally, a fine registration was performed with the mentioned ICP algorithm in

which all of the TLS and OTS scans were co-registered autonomously to one another. The average 3D

distance between all of the corresponding TLS and OTS points was 1.2 mm after applying the ICP.

Since roughness analysis should be performed on detrended heights, the co-registered scans were

once more transformed into final OCS, where soil roughness heights were free from a global planar

trend. This transformation was done by defining the z-axis of the OCS as parallel to the normal of an

orthogonal-distance regression plane that was fit through all of the TLS points within the plot. The center

of gravity of these points was taken to be the origin of the OCS, while the direction of one plot’s side

(defined with two large spheres) was taken as the x-axis of the OCS. This means that the z-coordinate of

the measured points in the OCS represents the linearly detrended component of soil roughness heights.

In practice, when large plots are considered (e.g., plot sides of 25 m or larger), the global trend may also

appear to be different from planar, e.g., a higher order polynomial surface [36], and in this case, data

should be accordingly detrended to arrive at roughness heights. The second and third order polynomial

surfaces were also estimated for our plot, and their root mean square (RMS) of the fit errors were 11 mm

and 10 mm, respectively, whereas for the linear fit, the RMS error was also 11 mm. Since the RMS

errors are practically identical, the linear model was selected, because it is the simplest one and also in

accordance with most of the roughness studies ([23,40,41], etc.).

2.4. Roughness Analysis

Soil roughness was analyzed in both the spatial and frequency domain. To enable the conversion

between the domains, gap-free digital elevation models (DEMs) were built, and discrete Fourier

transform (DFT) was used. The roughness analysis itself was then performed on profiles, which were

actually rows or columns of the generated DEMs. The focus of the analysis was on understanding the

nature of spatial correlation associated with the profile heights, as well as on deriving the conventional

roughness parametrization, i.e., root mean square height (s) and correlation length (l).

2.4.1. DEM Generation

Gap-free DEMs offer the regular structure of soil heights, which is the required data format for

an application of the DFT. Thus, two different interpolation methods were consecutively applied to

compute the interpolation at every grid node. First, the moving plane method was performed, providing

an interpolation that is derived from the local regression plane estimated on all of the points within

a circular neighborhood. The moving plane interpolation was selected, because the locally-inclined

plane is a much more appropriate model for the soil surface compared to, e.g., the local horizontal plane,

which is the case for the mean and median interpolators. Besides, the later interpolators also tend to

provide step-like DEMs, which might additionally hamper the roughness assessment. The neighboring

points used for the interpolation were the linearly-detrended measurements of soil heights given in the

OCS, while the radius of the circular neighborhood is the data aggregation parameter, which controls the
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amount of smoothing, i.e., the resolution, of the interpolated DEM. Multiple radius sizes were applied

to understand their influence on the soil roughness assessment and to select accordingly the optimal

one for the DEM generation. The local regression plane was not possible to estimate for some grid

nodes, because either there were not enough neighboring points (more than 3) or the neighboring points

were too inclined (nearly vertical), providing a singular covariance matrix. For these grid nodes, the

interpolation was computed from the corresponding triangular facets of a triangular irregular network

(TIN) built on the grid nodes, which were interpolated by the moving plane interpolation in the previous

step. Such an interpolation strategy was applied on different subsets of measurements, e.g., on single

TLS’s scan, or two or four merged TLS’s scans, providing the corresponding 1-mm gap-free DEMs,

used in the subsequent analysis.

2.4.2. Roughness Description

The interpolated profile heights (the DEM’s rows or columns) are treated here as realizations of

an isotropic, zero-mean process with a Gaussian probability distribution function. This is a conventional

and widely-used roughness model [25,36,41], which, considering the plot size and that the roughness

geometry was prepared, also appeared to be a reasonable assumption for our analysis. This model is

completely described once the autocorrelation function (ACF) of the profile heights is known. This

means that an empirical ACF should be first estimated, and then, the root mean square (RMS) height and

the correlation length parameters should be determined from the applied ACF model.

In this paper, the empirical ACF was estimated in the same way as in [25,41], i.e., as the Fourier

transform of the power spectral density (the roughness spectrum) obtained as the periodogram. This is

equivalent to:

r̂(τk) =
1

N

N−k
∑

i=0

zizi+k (1)

where r̂(τk) is the estimated ACF value for a lag τk = k · ∆x, while ∆x is the DEM’s grid size, and

N and k are the number of heights in the profile and the lag increment (k ∈ Z+, and usually less than

N/2), respectively; zi is the profile height at position i in a DEM’s row (or column). The RMS height (s)

was estimated as
√

r̂(0), the square root of the empirical ACF value at a lag of zero (k = 0). This

value was then used to calculate the normalized ACF: ρ̂(τk) = r̂(τk)/r̂(0). The shape of the ρ̂ is usually

approximated either by a Gaussian or exponential function, and the correlation length l is then estimated

as the lag for which ρ̂(τl) = e−1, where τl = l. In this study, both models, Gaussian and exponential,

were always estimated per each profile, and the correlation length was derived from the one that had

the smallest RMS error of the fit. This correlation length is here named the model correlation length

lm. Additionally, another correlation length value was estimated by interpolating the normalized ACF

linearly between two consecutive lags (τm and τm+1 = τm +∆x) [41]:

ld = τm + (e−1 − ρ(τm))
τm+1 − τm

ρ(τm+1)− ρ(τm)
,where, τm ≤ ld ≤ τm+1 (2)

while ld fulfills ρ̂(ld) = e−1 and is here named the direct correlation length. This value was used to

determine spatial lags over which the model correlation length was estimated, i.e., in the interval [0, 2ld].

This interval was selected to avoid the impact of the oscillatory effects present in the empirical ACF

when estimated from shorter profiles [39], while the interval itself was set according to [27,38].
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2.4.3. Soil Spatial Correlation and Measurement Noise

The soil heights that are used in this study contain also random measurement errors. These errors

are treated here as a stochastically-independent and spatially-uncorrelated additive component, i.e.,

white noise. As such, the measurement noise may negatively affect the signal-to-noise ratio at high

frequencies, and many soil roughness elements that should be described are actually present in this

frequency region. Then, the assumed measurement noise has an ACF that approaches the delta function

in the ideal case. Thus, the empirical ACF estimated from a noisy soil profile will be only biased at

the zero lag r̂(0), while the ACF estimates at other lags will just become more uncertain than without

the measurement noise. This means that the measurement noise just introduces more power into the

roughness spectrum, resulting in an overestimation of the s parameter. For the correlation length, this

means that the decorrelation by e−1 (∼37%) in the empirical ACF happens at a smaller lag compared

to the profile without the noise, resulting in an underestimation of the l parameter. Following simple

geometry, the amount of this underestimation will depend on the magnitude of the measurement noise, as

well as on the local slope of the empirical ACF function around the r̂(τl). Thus, the measurement noise

simply biases the classical roughness parametrizations s and l, which was the reason for considering

additional roughness parametrization in the analysis.

Two extra parameters were additionally included: one to observe the nature of the soil spatial

correlation at small lags and another parameter to observe the nature of the soil roughness spectrum

at high frequencies. The former parameter is the power coefficient p of the power-model ACF function

that allows a better description of spatial correlations, which are neither exponential nor Gaussian [44].

The power model of the normalized ACF is given by:

ρ(τ) = exp [−(τ/lp)
p] (3)

where lp is the correlation length that can be estimated from this model. The parameter p describes

the shape of the normalized ACF and usually takes values approximately from 1 (the exponential

correlation) to 2 (the Gaussian correlation). In this study, the power coefficient p was used to analyze the

change in the shape of the ACF in the interval [0, 2ld] , i.e., over the same spatial lags as for the model

correlation length.

The second parameter is the so-called spectral slope α, which is the slope of a regression line used to

model the roughness spectrum given in the logarithmic scale [37]. This means that the power spectral

density S(f), i.e., the roughness spectrum, of a surface should behave in the linear-scale frequency

domain as:

S(f) = c · f−α (4)

where f is the spatial frequency and log10(c) is the intercept of the regression line in the logarithmic

scale. Such a model of the roughness spectrum and its parametrization (α and c) are also often used

as a description of soil roughness (e.g., [27,45] among others). In this study, the spectral slope was

estimated only within a narrow frequency band close to the Nyquist frequency. Thus, it was not assumed

that the model given by Equation (4) is valid over the whole frequency domain, but rather within this

small frequency band. Besides, common soil roughness spectra (e.g., with exponential correlation)

generally tend to perform a linear decay at the Nyquist’s neighboring frequencies in the logarithmic
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scale [37]. The lower limit of this band was set to correspond to the physical resolution limit of the

scanning system, i.e., the laser footprint diameter in the case of the TLS data, and two-times the GSD in

the case of the OTS data. The upper limit was set to be one order of magnitude larger than the lower limit,

which is approximately around the 20-mm wavelength. The upper and lower limits are here specified in

the spatial domain, while in the frequency domain, they correspond to the lower frequency and higher

frequency limits, respectively. This region is expected to be the most sensitive to the presence of the

measurement noise, as well as to the smoothing operations accompanying the DEM interpolation, which

will be shown and discussed later in Sections 3.4 and 4.2.

3. Results and Analysis

3.1. Characteristics of the TLS Data

Table 1 reports the most important statistics of the acquired TLS point clouds within the plot. Values

given in the range column represent the distance from the origin of the TLS’s coordinate system to the

scanned objects within the plot. Point density, sampling interval and laser footprint diameter are reported

for the furthest and the nearest 20-cm bands of the plot with respect to the corresponding scan position.

Table 1. The characteristics of the acquired TLS scans.

Name

Range Point Density Sampling Interval Footprint Diameter
Sampling Mode *

(m) (pts/cm2) (mm) (mm)

min mean max near far near far near far far

Scan 1 1.840 2.915 4.303 251 22 0.6 2.1 3.0 3.1 1.5

Scan 2 1.871 2.880 4.116 233 21 0.7 2.2 3.0 3.1 1.4

Scan 3 2.127 3.276 4.664 194 18 0.7 2.4 3.0 3.2 1.3

Scan 4 2.135 3.196 4.530 159 14 0.8 2.7 3.0 3.2 1.2

* The sampling mode is the ratio of the laser footprint diameter to the sampling interval.

These values are given within the columns named “near” and “far”, respectively. The reported

point density (Dband) is the median value of the number of TLS points per cm2 (pts/cm2) within the

corresponding zone. The sampling interval (∆band) was then estimated from this point density by

assuming a uniform point distribution within 1 cm2, i.e., ∆band[mm] = 10/
√
Dband, where band stands

either for the near or the far plot zone. The laser footprint diameter was calculated based on the non-linear

expansion equation for the short ranges [46] and using minimum and maximum ranges for the near and

far plot zones, respectively. Finally, the last column reports the ratio of the laser footprint diameter to

the sampling interval. This value indicates the TLS sampling mode, and for values larger than one, the

laser footprints of the adjacent rays were overlapping one another during the scanning, introducing the

so-called correlated sampling [1]. As can be seen from Table 1, all of the TLS scans were acquired in

the correlated sampling mode.

For merged scan data, the range and footprint statistics from Table 1 remain similar, while the median

point density in the near and far plot zones changed to 220 pts/cm2 and 329 pts/cm2 for the merged

opposite scan data and all four scans, respectively. The median point density within the whole plot
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changed from 60 pts/cm2 to 152 pts/cm2 and 322 pts/cm2 for the two opposite scans and all four scans,

respectively. Thus, the spatial distribution of the points improved by including the opposite scans, while

for all four scans, the densities at the plot edges become almost identical to the global plot density. All

of the merged scan data also have the correlated sampling mode.

Figure 3a shows a scatter plot of the point density and mean range over the plot, both taken from

corresponding 1-cm rasters, which were generated using the data of Scan 3. The high variability of the

point density at short ranges (the near plot zone) is driven by the local incidence angle and a notably

higher median point density compared to the far plot zone (Table 1). It can be also seen that the

TLS’s point density drops exponentially from the near to far plot zone. This was also confirmed by the

remaining three TLS’s scans, which are shown in Figure 3b. Figure 3c shows a cumulative void area over

the range. The void area represents the proportion of cells that does not contain any TLS measurement

in a 2-mm raster built over the whole plot. The cell size of 2 mm was selected to match approximately

the sampling interval in the far plot zone (∆far). In this way, the void area values actually indicate the

portion of the plot that was bridged by the TIN interpolation in the respective gap-free DEMs. As can

be seen from Figure 3c, this happens between 20% to 35% of the plot area for the DEMs built from the

individual TLS scans. It should be mentioned here that the void areas do not contain the footprint centers

of the laser beams, but some of the void areas may still be covered by the footprints from the laser rays,

the centers of which fall within the adjacent cells.

On the other hand, Soudarissanane et al. [47] showed in their experiment that incidence angles also

affect the point density, as well as the signal-to-noise ratio of the measured points. Thus, the above

results can be seen from this point of view instead of considering only the range. Figure 3d shows the

scatter plot of the range and the incidence angle values for our four single scans. These functions can be

used to deduce the incidence angle at which the void area or the point density changes due to a change in

range. For example, void areas larger than 5% appear in Scan 3 at ranges larger than 3.2 m and incidence

angles larger than 50◦ (Figure 3c,d). The deduction based on Figure 3d will be used later in the text

whenever it is necessary to introduce certain restrictions on both the range and incidence angle. It should

be noted that the incidence angle is here defined as the shortest angle measured in the vertical plane from

the local normal to the laser beam vector in the OCS. The local normal was derived from the planar

trend of the plot (Section 2.3.2) and was pointing upwards, i.e., in the direction of the z-axis of the OCS.

The direction of laser beam vector was set from the measurement point towards the origin of the TLS’s

coordinate system.

The range and incidence angle values describe also the relative position of the scanner to the measured

object, i.e., the measurement setup [47]. Thus, the clustering of range-incidence-angle functions for Scan

1, Scan 2 and Scan 4 in Figure 3d means that these scans have a similar measurement setup, whereas

the range-incidence-angle function of Scan 3 is slightly biased to the right. This then means that Scan

3 performs the same incidence angles as other scans, but at slightly larger ranges, i.e., it has the best

measurement setup among the acquired TLS scans. This scan position was actually taken from the edge

of the neighboring plot, which is slightly uplifted compared to our plot (the right side in Figure 1a and

also the background area in Figure 1c). This gain in the instrument height with respect to the observed

plot resulted in the better acquisition geometry of Scan 3, which is clearly reflected in Figure 3d. In

the case that the instrument height improves even more (e.g., by increasing the height of the tripod),
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the range-incidence-angle function would just be biased more to the right and cover smaller incidence

angles. An ideal TLS measurement setup would result in a horizontal range-incidence-angle function

at, e.g., 20◦ or a lower incidence angle. However, this is not possible due to the oblique acquisition

architecture of the contemporary TLSs. On the other hand, the OTS data used in our experiment would

appear as a vertical range-incidence-angle function at approximately a 0.7 m-range and with a length of

several degrees starting from the 0◦ incidence angle.

Figure 3. (a) Change in point density over the range for the TLS Scan 3. The green line

shows the fitted exponential model with its 95% confidence bounds; (b) The exponential

models of the density drop over the range for the four single TLS scans; (c) The percentage

of the void area over the range for the single TLS scans; (d) The relation between the range

and the incidence angle within the plot for the single TLS scans. The incidence angles were

calculated with respect to the planar trend of the plot.

Figure 4b,c shows how the void area was spatially distributed within the plot for Scan 1 and for the

two opposite scans (Scan 1 and Scan 3) merged into one common point cloud (Scans 1&3), respectively.

Figure 4b shows that 24.1% of the plot area was interpolated by the TIN method in the gap-free DEM

generated from Scan 1. As can be seen there, most of the void area is concentrated in the far plot zone,

i.e., at ranges larger than 4 m. Figure 4c shows that when the data from the opposite scan are additionally

used, the occlusions are significantly reduced within the plot. The red regions marked by yellow
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rectangles in Figure 4b,c are places where the small wooden sphere (used in the block co-registration)

were installed.

Figure 4. (a) The scheme of the scan positions with respect to the plot coordinate system.

The spatial distribution of the 2-mm cells where there were no TLS measurements in the

data from Scan 1 (b) and from the two merged scans: Scan 1 and Scan 3 (c).

3.2. Overview of DEM Sets

The analysis presented in the paper is based on a series of differently-generated DEMs. These DEM

sets differ in the data source used for their generation, e.g., OTS or TLS point clouds, or, further, in the

case of the TLS data, in the number of scans used. Then, there are DEM sets generated over different

subparts of the plot or even over the whole plot area (see Figure 4a). Furthermore, some DEM sets were

generated using different neighborhood sizes for the DEM interpolation. To overcome this complexity,

Table 2 gives an overview of all of the DEM sets, organized according to the particular objectives of the

performed analysis.

Table 2. The overview of the DEM sets used for the analysis.

Name Objective Section Data Source Used Scans Analyzed Area Profiling Neighb. 1 DEMs 2

Set 1
Effects of Neighborhood Size on

Soil Roughness
3.3 TLS 4 Scans

subplot

(0.18 m × 1 m)
x-axis 16 16

Set 2.1

Optimization of Neighborhood

Size Using Spectral Slope
3.4

TLS

Scan 1

subplot

(0.18 m × 1 m)
x-axis

41 41

Set 2.2 Scan 3 41 41

Set 2.3 Scans 1&3 3 41 41

Set 2.4 Scans 2&4 3 41 41

Set 2.5 4 Scans 41 41

Set 2.6 OTS - 21 21

Set 3 Comparison of Soil Roughness

Derived from OTS and TLS
3.5 OTS and TLS

Scan 1; Scan 3; 4 Scans

Scans 1&3; Scans 2&4
subplot

(0.18 m × 1 m)
x-axis 1 6

Set 4
TLS Directional Pattern and

Profile Sampling
3.6 TLS

Scans 1&3;

Scans 2&4; 4 Scans

subarea

(1 m × 1 m)

x-axis

y-axis
1 3

Set 5
Single vs. Multiple TLS Scanning

and Soil Roughness
3.7 TLS

Scan 1; Scan 3

Scans 1&3; 4 Scans

plot

(2.6 m × 3 m)

x-axis

y-axis
1 4

1 The Neighb. column shows the number of neighborhood sizes used for DEM interpolation; 2 The DEMs column shows the number of

DEMs that the corresponding DEM set contains. 3 The ampersand indicates that two opposite scans are merged into a single point cloud.
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As can be seen from Table 2, the coming sections will follow the mentioned objectives and will

use the introduced nomenclature in Table 2. Nevertheless, the DEM sets will be explained in detail

within each section; thus, Table 2 should just give a general overview of the performed analysis and the

respective datasets.

3.3. Effects of Neighborhood Size on Soil Roughness

DEM Set 1 was used to analyze the effects of the neighborhood size parameter used during the moving

plane interpolation step. As can be seen from Table 2, this set contains DEMs generated from all four

merged TLS scans and over the rectangular subplot area (0.18 m × 1 m) surveyed with the OTS scanner.

The DEMs were interpolated as explained in Section 2.4.1 setting the neighborhood diameter size for

each DEM within the set differently. In total, the neighborhood size was set 16 times, taking values from

1 mm up to the 100 mm, while the grid sizes of the 16 resulting DEMs were always set to 1 mm. For the

analyzed subplot, this means that each DEM contained 180 rows with 1000 soil heights regularly spaced

at 1 mm from one another over the 1-m row length.

3.3.1. Roughness Spectrum

Figure 5a–c shows the shaded heights of three DEMs selected from DEM Set 1. These DEMs were

interpolated using the neighborhood diameters of 1 mm, 3 mm and 6 mm, and will be called here 1-mm

DEM, 3-mm DEM and 6-mm DEM, respectively. Based on the given shadings, it looks like the 1-mm

DEM contains all of the relevant elements of the soil roughness, which are, however, buried in noise.

In the 3-mm DEM, this noise is significantly reduced, while the relevant soil roughness elements are

still preserved. The latter is, however, not the case for the 6-mm DEM, where small soil aggregates,

as well as the noise are not visible any more. The noise dominating in the 1-mm DEM is actually the

measurement noise, which is, due to the extremely small neighborhood size, reflected in the DEM’s

heights. Generally, the applied moving plane interpolation behaves similarly to the moving average, i.e.,

as a low-pass filter, and thus, the size of the neighborhood area regulates how much of both measurement

noise and roughness features will be smoothed out in the resulting surface.

The smoothing effect driven by the neighborhood size can be better seen in the frequency domain.

Figure 5d shows the mean roughness spectra of the three DEMs, which were estimated with the Fourier

transform applied on the DEMs’ rows. As was expected, the spectrum of 1-mm DEM (the red curve)

has the highest power, thanks to the portion of the measurement noise that is reflected due to the

small neighborhood size. The spectrum of the 3-mm DEM (the green curve) performs along all of

the frequencies between the spectra from 1-mm and 6-mm DEMs. Since the RMS height is equal to the

area below the roughness spectrum [22], the resulting estimates of roughness parameter s will be biased

from one another proportionally to the area between their corresponding roughness spectra. Another

interesting point is that the roughness spectrum of the 3-mm DEM performs a white noise roll-off at

wavelengths smaller than 3 mm (the right dashed vertical line in Figure 5d). This behavior of the

roughness spectrum indicates that the applied grid size is probably smaller than the resolution of our

data, which then caused such informationless behavior below 3 mm. The same roll-off can also be seen

in the spectrum of the 1-mm DEM. There, the spectrum continues to perform an inclination towards the
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white noise, even over a broader frequency band, which is due to a weak signal-to-noise ratio coming

from the small neighborhood size.

The roll-off of the spectrum from the 6-mm DEM has a completely different shape. It starts around

6 mm (which is actually equal to its neighborhood size) and declines slower than the 3-mm DEM’s

spectrum in the same frequency band. Furthermore, the variability of the 6-mm DEM’s spectrum is

significantly reduced along the roll-off frequencies compared to lower frequencies. The low variability in

this frequency band is perfectly in accordance with the use of the interpolation step, since the associated

interpolation (a low-pass filter) affects such frequencies more than those far before its cut-off frequency.

This suggests that the shape of the 6-mm roughness spectrum may not reflect the inherent soil spatial

correlation well at these frequencies. Finally, the deformation of the 6-mm spectrum exists also in the

opposite direction, towards low frequencies. However, the shapes of the 3-mm and 6-mm spectra are

very similar there, though the latter appears to be more inclined. This will generally introduce bias in

the spectral slope when it is estimated within this frequency band. It should be also mentioned that

the starting frequency in Figure 5d (log10(f) = −1.6 mm−1) is the place where the relative difference

between the 3-mm and 6-mm roughness spectra becomes less than 10%, while the left vertical dashed

line marks the frequency where this difference is at the maximum.

Figure 5. DEMs interpolated from all four scans and using three different neighborhood

settings (a–c) and the mean roughness spectra estimated from these three DEMs (d).

The above example showed the importance of the neighborhood size setting when laser scanning data

and DEMs are used in soil roughness analysis. Although all of the considered DEMs should represent

the same soil roughness, it is apparent from Figure 5 that they will lead to different roughness estimates,

as well as different natures of soil spatial correlation at high frequencies. Thus, an optimization is

required to arrive at a suitable neighborhood size, which will minimize the impact of the measurement

noise and oversmoothing on the roughness spectrum at high frequencies. The determination of such

a neighborhood size is discussed in Section 3.4.
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3.3.2. Roughness Indices

The impact of the neighborhood diameter size on the roughness indices was analyzed from DEM

Set 1. Figure 6a–e shows box plots of the roughness indices ld, lm, s, p and α (Sections 2.4.2 and 2.4.3)

estimated from the 16 DEMs of DEM Set 1. Thus, each box-plot compares 16 sets of 180 index’s values

estimated from the 180 rows of the corresponding DEMs. In Figure 6a–e, these sets are denoted by the

neighborhood size of the corresponding DEM and plotted over the x-axes of the box plots. It should

be noted that the selected neighborhood sizes within the TLS series do not have a constant increment,

which can be also seen on the x-axes of the box-plots.

Figure 6. (a–e) Roughness indices ld, lm, s, p and α as a function of the neighborhood

diameter; (f) The percentage of the exponentially correlated profiles as a function of the

neighborhood diameter; The parameters were estimated from the DEM Set 1, where only

Scan 1 was used.

Figure 6b shows that the median of the model correlation length lm enlarged from 83.4 mm to 87.9 mm

for the 4 mm and 20 mm neighborhoods, respectively, which is an increase larger than 5%. On the

other hand, the dispersion in the correlation length decreased by 25% for the same neighborhoods.

The mentioned dispersion actually reflects the spatial variability of the correlation length within the

subplot, which then means that a DEM with neighborhood sizes of 20 mm or larger does not depict

this soil property well any more. The observed changes in the correlation length and its variability

happened because small soil aggregates were smoothed out by increasing the neighborhood size, i.e.,

soil variability is reduced, resulting in the observed: (1) underestimation of the inherent variability of the
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correlation length; and (2) overestimation of the inherent correlation length. It should be also mentioned

that the model correlation length constantly underestimate the direct correlation length, which for the

4-mm DEM was about 8%. This may indicate that the applied ACF model does not perfectly describe

soil correlations locally, i.e., at lags similar to the correlation length value.

The RMS height parameter reacted opposite of the correlation length, i.e., constantly decreasing while

increasing the neighborhood size. The smoothing of the small soil aggregates caused the 5% relative

decrease in both the s value and its dispersion between the 4-mm and 20-mm neighborhoods. This is

slightly surprising, since it is generally considered that the correlation length is more difficult to estimate

than the RMS height [23,36,39,41]. This, however, does not seem to be the case here, i.e., for the

over-smoothing effect caused by non-optimal data aggregation.

Figure 6d shows how the power coefficient p changes when small soil elements are smoothed out.

When all of the relevant soil elements are present in the DEM, the soil heights within the subplot

shows a tendency towards an exponential spatial correlation. This is generally the case for isotropic

soil roughness analyzed at similar scales [25,27,36]. However, as soon as the neighborhood size

increases, p starts to converge to a Gaussian spatial correlation. This means that the over-smoothing

effect may also lead to misinterpretation of the soil spatial correlation when a large neighborhood size

is selected. This can also be seen in Figure 6f, where the number of exponentially-correlated rows per

each DEM is reported. This number was calculated by comparing the RMS errors of the Gaussian and

exponential autocorrelation fits per each row and counting the number of rows where the RMS error of

the exponential fit was smaller. Figure 6f shows that the 4-mm DEM has almost an equal number of

exponentially- and Gaussianly-correlated rows. This is also consistent with the p values, the median of

which is 1.4, while their dispersion is large enough to allow both correlation models. In other words,

there are many profiles with a p value larger than 1.5, which most likely caused the RMS error of the

Gaussian fit to be smaller compared to the exponential fit. The DEMs with a smaller neighborhood size

have slightly more exponentially correlated rows, which may be due to the measurement noise that is

still present in these DEMs. On the other hand, the DEMs with 40-mm or larger neighborhoods do not

have any more exponentially-correlated rows, and their p values are 1.8 or larger. Finally, the 5% relative

error of parameter p happened already between the 4-mm and 10-mm neighborhoods, which is slightly

earlier compared to the previous indices.

The most interesting results, however, come from the spectral slope α (Figure 6e). This roughness

index shows a global minimum for the 4-mm DEM and then features almost a constant median for

the neighborhoods larger than 20 mm. As was discussed in Section 3.3.1, the measurement noise, as

well as the roll-off effects cause the roughness spectrum to be more inclined towards a white spectrum

than towards its inherent inclination at high frequencies. Therefore, the DEM where the measurement

noise and the roll-off effects are minimized is the one that has the highest inclination of the roughness

spectrum. This corresponds to the minimum of the spectral slope (Figure 6e). This offers the possibility

for an optimization of the spectral slope with respect to the neighborhood size, which is explored in the

next section.
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3.4. Neighborhood Size and Spectral Slope

The behavior of the spectral slope around its global minimum is analyzed here in more detail.

This was done using DEM Sets 2.1, 2.2, . . . and 2.6 (Table 2). The first five DEM sets are

based on the TLS data, while Set 2.6 is based on the OTS data. Further, the first two TLS

sets were built from single TLS scans, i.e., DEM Set 2.1 from Scan 1 and DEM Set 2.2 from

Scan 3. Then, DEM Sets 2.3 and 2.4 were built from the point clouds where two opposite

TLS scans were merged, i.e., combing Scan 1 and Scan 3 into Scans 1&3, as well as Scan 2

and Scan 4 into Scans 2&4. DEM Set 2.5 was built using all of the TLS points, i.e., the points collected

from the four scans.

Figure 7 shows the spectral slope values estimated from the six DEM sets. These sets contain a much

larger number of DEMs due to a finer setting of the neighborhood diameter size. For the five TLS sets,

this parameter cover values from 1.5 mm to 5.5 mm, and for the OTS set, from 1 mm to 3 mm, but

always with the same increment of 0.1 mm. This resulted in 41 and 21 DEMs per each TLS and the

OTS series, respectively. The different span in the neighborhood size caused the x-axis of the OTS set

(Figure 7f) to have slightly different limits from the x-axes in the TLS sets (Figure 7a–e). The y-axes,

however, are identical in all of the figures.

Figure 7. The local minima in the spectral slope calculated for: (a) DEM Set 2.1, (b) DEM

Set 2.2 , (c) DEM Set 2.4, (d) DEM Set 2.3, (e) DEM Set 2.5 and (f) DEM Set 2.6.

As can be seen from Figure 7, the spectral slope confirmed the global minima (the red circles) for all

six sets and under the much more intense neighborhood sizes. It is only the OTS set that seems to be

not large enough to materialize the rising side of the minimum well. However, this will not affect the
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analysis, since the focus is on the global minimum here. The spectral slope values at the global minimum

for the DEM sets based on Scan 1, Scans 1&3 and the four scans are consistent with one another, as

well as with the OTS set (Figure 7a,d–f). Scans 1&3 and the four scans caused an underestimation

in the spectral slope with a relative error of about 5% comparing to the OTS data. Scan 1, on the

other hand, caused a slight overestimation (around 1%) of the spectral slope. One of the reasons for

the slightingly larger relative error of the estimates based on the merged scans could be the errors that

follow the relative orientation of the TLS scans. Another factor could be the unfavorable measurement

setup of Scan 3. As can be seen in Table 3, Scan 3 has incidence angles that are not smaller than 60◦,

while Scan 1 (with the relative error of the spectral slope within 1%) has incidence angles not lager

than 40◦. Two TLS sets, one based on Scan 3 and another on Scans 2&4, appeared to be inconsistent

with the remaining three TLS sets, providing a large bias (15% relative error) in the spectral slope

compared to the OTS data. The reasons for such surprising results will be discussed in the next section.

Table 3. The statistics of the range and incidence angle within the subplot.

Name
Range (m) Inc. Angle (◦)

min mean max min mean max

Scan 1 2.097 2.177 2.273 33.9 36.7 40.0

Scan 2 2.576 2.935 3.378 49.0 54.5 60.2

Scan 3 3.844 3.932 4.026 60.5 61.4 62.4

Scan 4 2.667 3.494 3.038 49.3 54.5 60.1

For the five TLS sets, the global minimum happens at the neighborhood sizes between 4 mm and

4.5 mm, while for the OTS set, it happens even earlier, at 2.8 mm. Following the analysis from the two

previous sections, these values identify the DEMs where almost all of the relevant soil elements should

be present, while most of the measurement noise should already be filtered out. This means that these

DEMs contain the most complete and accurate level of detail on the soil roughness among all of the

generated DEMs in this study. Additionally, these DEMs minimize the spectral slope, i.e., maximize the

fractal dimension, at high frequencies, and therefore, they were selected as the most appropriate for the

subsequent analysis.

3.5. Comparison of Soil Roughness Derived from OTS and TLS Data

The comparison of the two datasets was done over the subplot area and based on six DEMs (DEM

Set 3 in Table 2), each of them selected from the corresponding DEM Sets 2.1, 2.2, . . . and 2.6. The

selection was done according to the optimal neighborhood sizes determined in Section 3.4. Shaded

models of these DEMs are shown in Figure 8. The shading in Figure 8a is based on the OTS data

and visually looks like the one that contains the highest level of detail on the soil roughness among

the selected DEMs. This was generally expected, since (according to the specifications) this instrument

should provide higher resolution data with a smaller measurement noise compared to the TLS scanner.

Furthermore, the OTS point cloud covers the subplot continuously, which means that there was no need
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to bridge the no data regions with the TIN interpolation. This is not the case with the two DEMs based

on the single TLS scans (Figure 8e,f).

The unfavorable acquisition geometry (high incidence angles and low point density) of Scan 3 caused

the corresponding DEM to have a completely deformed geometry at scales up to the largest soil aggregate

(Figure 8f). These two factors are much more favorable in the case of Scan 1, and therefore, the

corresponding DEM (Figure 8e) does not contain extremely large occlusions, while the point density

is almost enough to ensure the same level of detail as in the OTS DEM.

The DEMs from two opposite scans do not have problems with occlusion any more (Figure 8c,d).

However, they perform certain pattern, which seems to “elongate” the soil aggregates’ edges in a

particular direction. For the DEM based on Scans 2&4, the elongation of the soil aggregates is along the

larger subplot side, which also corresponds to the direction of the laser line of sight within the subplot.

For the DEM based on Scans 1&3, this elongation is along the smaller subplot side, which is again the

direction of the laser line of sight. The same effect can be also seen in the individual scans. The first

explanation for this effect is the interpolation over the shadow area of a scan. A shadow appears along the

line of sight. A second possible explanation for this directional pattern may be the nature of the AM-CW

ranging technique, i.e., mixed pixels. In the preprocessing step, the mixed pixels were removed, but

only for the case when the laser beam illuminates the top of a soil aggregate and the background soil.

However, when the laser beam illuminates the bottom of a soil aggregate, as well as the foreground

soil, the resulting range is derived from a sum of the two phasors corresponding to each of the two

scatterers. This then leads to a range that is slightly shorter than it should be and, eventually, makes the

soil aggregates more elongated in the direction of the line of sight. As can be seen in Figure 8b, when

a DEM is based on all four scans, this directional pattern is not visible any more. The shadow areas of

one scan are typically filled up by points from another scan. This improvement, however, is at the cost

of the soil roughness details, which becomes slightly less than in the case of, e.g., the DEM based on

Scan 1 (Figure 8e). Especially at edges, points from the poorer acquisition geometry cause this (small)

degradation. Two yellow rectangles in Figure 8b,e delineate the area where this loss in roughness is

visible in the respective shadings.

Figure 8. The six optimal DEMs for which the spectral slope was minimized and which

were selected from: (a) Set 2.6, (b) Set 2.5, (c) Set 2.3, (d) Set 2.4, (e) Set 2.1 and (f) Set

2.2; The DEMs cover the area of the subplot, i.e., 0.18 m × 1 m.
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The difference observed in the DEMs’ shadings are also analyzed in the frequency domain by

comparing the DEMs’ roughness spectra. Figure 9 shows the mean spectra of each TLS DEM after

subtracting the mean spectra of the OTS DEM. It was assumed that the OTS DEM depicts the soil

roughness in the greatest detail among the six selected DEM, and thus, it was taken as a reference

for the comparison. As can be seen from the figure, the relative difference between the OTS power

spectrum and almost all TLS spectra does not exceeds 1 dB at wavelengths larger than 50 mm. The 1-dB

difference appears slightly earlier and later only for Scan 3 and Scan 1, respectively. The spectrum of

Scan 1 has generally the smallest difference for the OTS spectra over the whole frequency domain, which

reach their maximum of 4 dB at approximately the 6.5-mm wavelength. This confirms the convincing

visual impression of the corresponding shaded model, where the level of soil roughness detail appeared

to be almost as rich as in the OTS shading. The spectra based on (1) Scans 1&3 and (2) on the four

scans behave similarly to Scan 3, only with a larger maximum difference of 4.8 dB, as well as 6 dB,

respectively. On the contrary, the spectra differences of (1) Scan 3 and (2) Scans 2&4 appeared slightly

different, indicating that their corresponding DEMs also perform a different spatial geometry. This was

already noted in the visual comparison of their shadings in Figure 8.

Figure 9. Relative difference of the five TLS roughness spectra with respect to the OTS

roughness spectra.

The question is now how these differences in geometry of the DEMs affect the roughness indices. Part

of the answer is already given by Figure 7, where the spectral slope was analyzed. The consistency in the

spectral slope among the OTS and the three TLS datasets is most probably the consequence of sampling

the profiles perpendicularly to the laser line of sight. This means that even a difference of 4 dB at the

6.5-mm wavelength in the roughness spectrum cannot introduce a change in the spectral slope larger than

1%, as long as the profiles are sampled perpendicularly to the TLS’s directional pattern. However, when

the profiles are sampled along the line of sight (the DEM based on Scans 2&4), the spectral slope can

be underestimated by 15%. The same amount of underestimation also happens when the scan position
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is set more apart from the subplot (Scan 3). Such data are accompanied by large occlusions and large

incidence angles, which are the main reasons for the observed underestimation.

The response of the remaining three indices on the directional pattern is shown in Figure 10.

Again, index values estimated from the individual rows of the six DEMs are presented there with the

corresponding box-plots. Additionally, the 5% bounds around the median of the OTS estimates are

marked by the dashed horizontal red lines. The medians of s and l turned out not to be so sensitive

for the mentioned deformation in DEM geometry, while in the medians of p, the deformations were

reflected slightly, but not so clearly as for the spectral slope. This means that as long as the errors in

the roughness spectrum are below 1 dB at wavelengths larger than 50 mm, the RMS height and the

correlation length cannot change by more than 5%, when they are estimated from 1-m profiles. It should

be also mentioned that the observed sensitivity of the parameters α and p may come from the fact that

they are estimated from a relatively narrow high-frequency band, which is generally more affected by

the DEM deformation, while s and l are estimated from a broader band, where the magnitudes at low

frequencies are much larger and, thus, predominantly influence the resulting values.

Figure 10. The values of (a) root mean square height, (b) model correlation length and

(c) power coefficient, estimated from the rows of the six optimal DEMs and presented as

box-plots.

3.6. TLS Directional Pattern and Profile Sampling

As is shown in the previous section, the directional pattern has only a significant impact at high

frequencies and, consequently, on the indices that are estimated from this domain (α and p). Additionally,

the results suggested that the sampling across the directional pattern can compensate for the consequent

uncertainties in the index’s values. To offer more comprehensive support for the above statements,

additional analysis was carried out on three 1-m2 subareas within the plot. Since the roughness estimates

are a function of the profile length [25,27,36,39,40], squared areas were selected to allow an easier

comparison of the estimates. Figure 11a shows the locations of these subareas, which were selected

to be close either to one plot side or to the center of the plot. Per each subarea, three different DEMs

were generated always using the 4-mm neighborhood: first, based on all four scans, second based on

Scans 1&3 and third based on Scans 2&4 (DEM Set 4 in Table 2). Since the subareas were squares,

the roughness spectra, as well as the roughness indices were estimated independently from both DEMs’
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rows and columns. This means that the consistency of the index parameters was tested in both directions,

along the x-axis (using the DEM’s rows) and along the y-axis (using the DEM’s columns).

Figure 11b shows three mean roughness spectra estimated from the rows of the three corresponding

DEMs generated for Subarea 3. Considering the relative scan positions to the plot, this means that

the spectrum based on Scans 1&3 (Spectrum 1&3) was estimated from the profiles sampled across the

directional pattern, while the spectrum based on Scans 2&4 (Spectrum 2&4) was estimated from the

profiles sampled along the directional pattern. The spectrum based on four merged TLS scans (four-scan

spectrum) was considered here as the reference, since, according to Section 3.5, the directional pattern is

not visible any more in its DEM, while its estimates are still consistent with the OTS estimates. To allow

a better interpretation, an additional figure was prepared (Figure 11c), where the four-scan spectrum was

subtracted independently from Spectrum 1&3 and Spectrum 2&4. The dotted and full lines are used

there to indicate the differences of the spectra estimated along the x- and y-axis, respectively.

Figure 11. (a) Three subareas of the plot where the directional pattern was analyzed; (b) The

roughness spectra of Subarea 3 estimated from the rows, i.e., along the x-axis, of the three

DEMs; (c) The differences of the roughness spectra with respect to the four-scan roughness

spectrum, estimated along the x-axis (the full lines), as well as along the y-axis (dashed

lines); The legend of the (b) is also valid for the (c).

As can be seen from Figure 11b,c, all of the spectra are almost identical at wavelengths larger than

50 mm, demonstrating that the directional effects are negligible within this frequency band. However,

this is not the case for the frequency band that corresponds to the wavelengths between 50 mm and

10 mm, where Spectrum 1&3 and Spectrum 2&4 departed in opposite directions from the four-scan

spectrum. This means that independently of the profile sampling strategy, the spectral slope, as well as

the spatial correlation will be highly inconsistent within this frequency band due to the TLS’s directional
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pattern. The RMS height, on the other hand, will be in the same frequency band, either overestimated or

underestimated, depending on weather the profiles are sampled across or along the directional pattern,

respectively. The spectrum based on the across profiling, i.e., Spectrum 1&3, continues to overestimate

the four-scan spectrum almost constantly along all of the wavelengths smaller than 10 mm, which

demonstrates that the two datasets perform the same nature of spatial correlation within this frequency

band, while having biased RMS height values from one another. This is not the case for the along

profiling, i.e., Spectrum 2&4, which intersects the four-scan spectrum in the same frequency band. The

same behavior of the roughness spectra was also observed for the other two subareas (the results are not

presented here).

The roughness index values were also estimated for all three subareas and from the same DEMs.

Figure 12 reports only the values estimated over Subarea 3, since the other two subareas confirm the

same findings. The index values are displayed as box-plots grouped into two sections: the first is named

the x-axis section, indicating that the values were estimated from the DEMs’ rows, while the second

is named the y-axis section, indicating that the values were estimated from the DEMs’ columns. The

box-plots’s names reflect the TLS scans, which were used to generate the DEMs. It should be noted that

each box-plot summarizes 1000 index values estimated from 1 m-long profiles.

Figure 12. The values of (a) RMS height, (b) model correlation length, (c) power coefficient

and (d) spectral slope, estimated independently, once from the rows (x-axis section) and

another time from the columns (y-axis section), over Subarea 3. The names of each box-plot

show the scans used to generate the DEMs: all four scans (4), the merged Scan 1 and Scan 3

(1&3) and the merged Scan 2 and Scan 4 (2&4).

As can be seen from Figure 12a,b, the box-plots within each section are consistent with one another,

regardless of whether the profiles are sampled across or along the directional pattern (Box-plots 1 and

3 and 2 and 4). On the other hand, the index values estimated from the rows (the x-axis section) and
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then from the columns (the y-axis section) are biased against one another, which reflects the degree of

spatial anisotropy within Subarea 3. The consistency of the box-plots within each section for the RMS

height and the correlation length confirm the observation from Section 3.5 that these two parameters

are not sensitive to the TLS’s directional deformations. The same conclusion can also be drawn for

the parameter p based on Figure 12c, where the box-plots are also consistent. Interestingly, for the p

parameter, the box-plots for the profiles sampled along the x-axis, as well as along the y-axis are also

consistent, which indicates that this parameter does not reflect the spatial anisotropy observed by s and

lm. Finally, Figure 12d demonstrates that only the spectral slope parameter is again found to be sensitive

to the directional pattern. There, the box-plots related to the along profiling (Box-plots 2 and 4 in the the

x-axis section and Box-plots 1 and 3 in the y-axis section) are inconsistent with the other two box-plots

by more than 15%. Interestingly, the parameters α and p also showed that the soil is isotropic at high

frequencies, which is probably due to a rather round form of soil aggregate, as well as its random spatial

distribution within the subarea.

The above analysis demonstrated that the directional pattern has little impact on wavelengths larger

than 50 mm. For smaller wavelengths, i.e., with values comparable to the size of the soil roughness

elements, this pattern causes an overestimation in the roughness spectrum. This happens at high

frequencies, where the roughness magnitudes are generally small. Therefore, this overestimation

corresponds to a relative error in the correlation length and in the RMS height under 5%. If, however,

the nature of soil spatial correlation up to the 50-mm lag is important to characterize, then either all four

TLS’s scans or two opposite scans and profiles sampled across the laser line of sight should be used to

estimate the spatial correlation at this scale.

3.7. Comparison of Soil Roughness Derived from Single and Multiple TLS Scans

This section analyzes whether two opposite scans or even a single scan can replace the data

from the four merged TLS scans, while preserving a similar accuracy for the s and l parameters.

To answerer this, four DEMs were generated over the whole plot (2.6 m × 3 m) using four

different scan configurations: (1) single Scan 1; (2) single Scan 3; (3) merged Scan 1 and Scan

3; and (4) all four scans. These DEMs that belong to Set 4 in Table 2, were interpolated using

and were interpolated using the 4-mm neighborhood setting, which corresponds to the optimal

neighborhood size derived for the four-scan configuration in Section 3.4. This neighborhood was

selected because the DEM based on the four-scan configuration was taken here as the reference.

The four-scan DEM actually offers the best representation over the whole plot among the alternative

DEMs. This is because the OTS data were not available for the whole plot, while the single-scan

DEMs are not accurate in the far plot zone (Section 3.5). The two-scan DEMs (Scans 1&3

and Scans 2&4), on the other hand, have a directional pattern (Section 3.6), which was not the case

for the selected four-scan DEM.

Figure 13a shows how the profile’s heights taken from a single or two opposite scans are correlated

with the heights of the same profile derived from all four scans. The profile’s number is counted in the

direction of the plot’s y-axis, which means that profile Number 1 is closer to Scan Position 1, while

profile Number 3000 is closer to Scan Position 3 (Figure 4). Since the whole plot was analyzed, this
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means that the profile length was 2.6 m. Figure 13b,c reports the relative accuracy of the indices s and

lm (estimated from single or two opposite scans) with respect to their values estimated from the four

scans. The negative relative errors mean underestimation, while the positive values mean overestimation

of the index values with respect to the four scans.

Figure 13. Comparison of (a) profile heights, (b) RMS height and (c) model correlation

length, estimates based on single scans (green and blue lines) or two opposite scans (black

lines) with respect to the corresponding estimates based on the four scans. The analyzed

profiles have a direction parallel to the plot’s x-axis.

Figure 13 shows that the combination of two opposite scans can fully replace the four-scan setting

with a relative error in both roughness parameters of less than 1%. Furthermore, the DEM’s heights

interpolated from the two opposite scans are almost identical to the DEM’s heights interpolated from the

four scans (their correlation is better than 99% for all of the profiles within the plot). The relative errors

of the indices estimated from the individual scans have a different behavior when the location of the

profile departs from the scan position. Figure 13b,c shows that profiles closer to the scan position (the

near field) slightly overestimate the index values derived from the four scans, as well as from the two

opposite scans. Then, approximately after half of the plot, they start with the underestimation, which

systematically increases till the end of the plot, which is opposite of the scan position. For example,

the relative error of the RMSh for Scan 3 and Scan 1 exceeds the 1% limit at profile Numbers 358 and

2705, which happens approximately at scanning ranges larger than 4.2 m and 3.9 m, respectively. For

the single scans, the point density gets lower and the incidence angles, as well as the ranges become

larger in the far field. As shown in Section 3.5, this even smooths out larger soil aggregates, resulting

in the observed underestimation of s. On the other hand, in the near field, the single scans have an

optimal acquisition geometry, which allows one to depict slightingly greater level of detail compared

to the merged scans, where the points from the poorer acquisition geometry are added. These factors

caused the observed overestimation of s in the near field. As expected, completely the opposite happened

with the model correlation length. The individual scans first underestimate lm based on the four scans,

and then, in the further plot zone, they continue with systematical overestimation. For Scan 1, the 1%

overestimation limit of this index happens at profile Number 1703, which corresponds approximately to

the range of 3.0 m and an incidence angle of 55◦ (Figure 13c,d). Interestingly, the relative error of the

model correlation length estimated from Scan 3 fluctuates around a 1% limit almost in the whole second

part of the plot. A similar behavior of the relative errors and height correlations, which are reported in

59



Remote Sens. 2015, 7

Figure 13, was also observed when Scan 2, Scan 4, Scans 2&4 and the four scans were analyzed together

(these results are, however, not shown here).

4. Discussion

4.1. Optimal Neighborhood Size and the EIFOV

The spatial resolution of the DEMs used in this study should be limited by the the resolution of

TLS data used for their interpolation. On the other hand, Section 3.4 showed that although the DEMs’

grid size was set to 1 mm, their spatial resolution was rather driven by the neighborhood size defined

during the interpolation. Thus, the question is whether the optimal neighborhood size is consistent with

a theoretical resolution measure for TLS point clouds, e.g., with the effective instantaneous field of view

(EIFOV) suggested by Lichti and Jamtsho [1].

Figure 14 shows the EIFOV values calculated over the TLS ranges observed within our plot. The

values were calculated by imposing the same assumptions on the system modulation transfer function

(MTF) as in [1]. The blue curve comes from the theoretical sampling calculated from the horizontal

angular increment specified for the “super-high” sampling mode of the Z + F IMAGER® 5006i

instrument and assuming a perpendicular laser beam on the object. The latter is, of course, not the case

for our measurement setup, and therefore, a corrected EIFOV (green line) was also calculated based on

the point density that was directly estimated from individual TLS scans and which was already reported

in Figure 3. Additionally, the optimal neighborhood sizes deduced for Scan 1 and Scan 3 (Section 3.4)

are plotted at the ranges that correspond to the respective distances of these two scan positions with

respect to the subplot. The optimal neighborhood sizes of the merged TLS data are not plotted here,

because their neighboring points may have completely different ranges.

Figure 14. The effective instantaneous field of view (EIFOV) of an individual scan collect

by Z + F IMAGER® 5006i over the ranges observed within the analyzed plot.
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As can be seen from Figure 14, the optimal neighborhood sizes overestimate the spatial resolution

of the individual TLS point clouds within the plot. This was expected, because the modulation transfer

function associated with the applied interpolation method additionally lowers the spatial resolution of the

DEMs compared to the point clouds. Another interesting result is that the uncertainty of the corrected

EIFOV due to the range is about 2 mm within the plot. Compared to Figure 7 (Section 3.4), this value

also corresponds to the uncertainty of the neighborhood size that is associated with the 1% relative error

in the optimal spectral slope value. Such a variation in the neighborhood size does not change the relative

errors of the s and l by more than 2%, as is shown by Figure 6 in Section 3.3.2. This means that the

EIFOV and the optimal neighborhood size are consistent with one another for the applied measurement

setting. Thus, the EIFOV value can also be used to determine the optimal neighborhood size under the

5-m TLS ranges. On the other hand, the optimization of the neighborhood size presented in Section 3.4

can then be seen as a practical approach to optimize the spatial resolution of a DEM interpolated from

point clouds collected up to the 5-m TLS range.

4.2. Optimal DEM and the Fractal Dimension

The optimization done in Section 3.4 ensures that the resulting DEM minimizes the spectral slope

at high frequencies. This roughness index is directly related to the fractal dimension D, which (when

estimated from the profiles) is given by [48]: D = (5 − α)/2. Thus, it can be also formulated that the

optimization in Section 3.4 maximizes the fractal dimension of the high-frequency roughness elements,

while the measurement noise, as well as the loss in roughness detail are minimized. The optimization

then leads to DEMs that will have an optimal resolution, as well as a distinctive stochastic property

associated with the spatial correlation of the high-frequency roughness elements. The only assumption

made to arrive at these optimal DEMs was that the roughness magnitudes should behave similarly to

fractals in this frequency band. Thus, it was not assumed that the model given by Equation (4) is valid

over the whole frequency domain, but rather within a small band. This is a fair assumption, especially

for the soil surfaces, where the roughness is found to be predominantly exponentially correlated [25,36].

For such a spatial correlation, it is already known that its roughness spectrum approaches the fractal

model at high frequencies [37]. Nevertheless, the experiment performed in this study certainly cannot

answer whether the fractal dimension at high frequencies can be optimized for surfaces that have spatial

correlations different from the exponential. A special study that will consider a wide range of surface

roughness patterns should be carried out in order to answer this question.

It should be also mentioned that the interpolation strategy applied to ensure the gap-free conditions

in the optimal DEM might not be appropriate for all applications. Large soil aggregates imposed

occlusions on the TLS line of sight, and the occluded areas were later interpolated using the TIN

method, which certainly does not describe the shape of the soil aggregates correctly. However, the

results from Section 3.5 showed that these effects do not affect the s and l parameters significantly. Only

in the case when the roughness at high frequencies should be described may the interpolation method

have a significant impact. As was shown in Section 3.4 for large occlusions (e.g., Scan 3), the spectral

slope value can be completely misinterpreted when estimated from the high frequencies. Another case

where the interpolation may have a significant impact is the non-correlated sampling, i.e., when the
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average distance between neighboring points is larger than the laser beam footprint. In such cases, the

choice of the interpolator will control the modulation of the roughness spectra much more strongly, and

thus, stochastic interpolators, like Kriging, might be more appropriate. Nevertheless, the moving plane

interpolation still remains a reasonable choice to model soil roughness within the 4-mm neighborhood

from TLS data acquired in the correlated sampling mode.

4.3. Conditions on the Laser Beam Footprint

The results in Section 3.3.2 show how the roughness values react when the spatial resolution of

DEMs is reduced by enlarging the neighborhood size. Generally speaking, the same effect may also

appear when a series of point clouds with a decreasing spatial resolution are used instead of the series of

DEMs interpolated using different neighborhood values. Therefore, the result in Section 3.3.2 can also

be seen as a way of simulating how the loss in point cloud resolution influences the index values. This

then offers a possibility to introduce the conditions on TLS sampling under certain index’s accuracy, as

was done for the case of an ideal sampling in [38,39].

As is shown in Section 3.3.2, both s and l change by more than 5% when the neighborhood size

increases from 4 mm to 20 mm. As the neighborhood size is an estimate of the spatial resolution

(Figure 14), the above statement can be extrapolated on TLS point clouds. In this case, this would mean

that the point cloud of 20-mm or a lower spatial resolution may introduce a relative error in both s and l

that is larger than 5%. For the contemporary TLSs, which are rather diffraction- than sampling-limited,

this would mean that the laser footprint should be under 20 mm to fulfill the 5% standard in the relative

error. Particularly, for the TLS used in this study, such a condition on the laser footprint is fulfilled under

a 45-m range. However, such a surprisingly weak condition on the TLS range is only valid in the case

of an ideal acquisition geometry, i.e., when the sampling line of sight is perpendicular to the object.

Thus, this condition cannot be applied when the standard TLS tripods are used. The reason for allowing

such a large laser footprint diameter can be due to the insensitivity of the s and l parameters on the

very small roughness components, which was reported within Section 3.3.2. Thus, for roughness studies

where the spatial correlation at high frequencies is important, this condition has to be revised according

to the parameters that are more sensitive to the changes in this frequency band, e.g., α or p. For such

applications, the optimal DEM from Section 3.4 offers the best trade-off between the measurement noise

and the roll-off effects. Thus, the applied 5% standard on the relative error actually limits the departure

of the considered point cloud from the point cloud that reflects the high frequency roughness the best.

The sampling conditions are usually not instrument oriented, but rather, expressed in terms of the

correlation length. For example, Oh and Kay [39] found that the sampling interval should be at least 0.2

of the correlation length to obtain the index values with ±5% precision. For the median correlation length

(ld = 118 mm) estimated from all of the rows within the plot, this would mean that the spatial resolution

should be ∼50 mm or better. Comparing this to the 5% condition on the laser footprint diameter (20 mm),

it appears that the latter is more than two-times stronger, which was generally expected, because of the

additional modulation due to the laser beam. In another theoretical study, Ogilvy and Foster [38] found

that the sampling interval must be less than one tenth of the correlation length to detect the exponential

nature of the spatial correlation around the origin, i.e., at small lags. For our plot, this would mean that
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the spatial resolution should be ∼12 mm or better to depict the exponential nature of the high-frequency

roughness. In our study, the inherent nature of the spatial correlation at high frequents was ensured by

the optimization of the fractal dimension in this band, providing the optimal DEMs with a resolution

between 4 mm and 4.5 mm, which is almost three-times better than the condition suggested by [38].

Ogilvy and Foster [38] also stated that when the sampling interval is larger than two thirds of the

correlation length, the exponentially-correlated roughness may be misinterpreted as a Gaussian. For

our experiment, this means that the spatial resolution should be larger than 150 mm to misinterpret the

exponentially-correlated rows with a Gaussian. This condition can be best compared with the change in

the p parameter and in the number of exponentially-correlated rows, reported in Figure 6d,f, respectively.

The latter figure showed that at a spatial resolution around 40 mm or lower, all of the profiles performs

the Gaussian spatial correlation, while the 5% relative error in p happens already at the spatial resolution

around 10 mm. This is again more than three-times stronger than the condition suggested by [38].

It should be noted that the above condition on the TLS spatial resolution was derived from the

correlation length estimated from the 2.6-m profiles of a smooth isotropic soil roughness plot. Such

short profiles generally lead to the underestimation of the inherent correlation length of an isotropic

soil roughness [25,27,36,39,40]. Thus, the imposed restriction on the TLS resolution is rather valid

for roughness studies performed over similar isotropic roughness and at similar scales. To introduce

more general conditions, which are independent of, e.g., the plot scale or roughness magnitude, a more

extensive analysis should be done.

4.4. Suitability and Limitations of TLS in Soil Roughness

Terrestrial laser scanning was shown to be appropriate for soil roughness analysis according to several

aspects. First, TLS offers high-resolution point clouds with low measurement noise at the plot scale.

Section 3.4 showed that the spatial resolution of our optimal DEMs is between 4 mm and 4.5 mm, which

is, e.g., more than ten times better than the ideal sampling condition imposed by Oh and Kay [39].

The TLS’s resolution is also more than ten-times smaller than the wavelength of the C-band (∼5.7 cm),

which is, according to Ulaby et al. [22], sufficient for the application of modeling the backscatter of

C- and L-band radar satellites. Then, the average 3D distance between the corresponding points

among each TLS scan pair ranged from 0.9 mm to 1.1 mm, which is a good indicator for the TLS’s

relative accuracy within the plot. As shown by Lievens et al. [40], these relative accuracies do

not have a significant impact on the soil moisture retrieval from the radar backscatter. Another of

the TLS’s advantages is that many standard processing tools are already available for processing raw

TLS data [49,50]. As was demonstrated in this study, all of the important preprocessing tasks were

successfully carried out by applying the standard software settings. Then, TLS is an active remote

sensing technique, which allows measurements at any time of the day. Finally, the TLS is portable and

needs a maximum of 20 min per station for scanning.

There are also certain limitations that are associated with TLS. The most striking one is certainly the

directional pattern, which is a consequence of the AM-CW ranging technique. However, this feature is

not only a problem for the AM-CW TLS, but also for other ranging techniques. For example, in the case

of pulsed TLS, the measured range results from the decomposition of the transmitted pulse convolved
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with the surface [51], which again affects the accuracy of the estimated range for the mixed pixels.

Then, stereo imaging is also associated with an averaging within the pixel (the aperture diffraction limit)

or even over several pixels when the circle of confusion is not optimally set [52]. On the other hand,

Sections 3.5 and 3.6 demonstrated that the directional pattern does not affect the roughness spectrum at

wavelengths larger than 50 mm, introducing a relative error in the s and l parametrization smaller than

5%. Therefore, two different applications of TLS in soil roughness have to be distinguished when this

instrument is used: large-scale roughness analysis (scales larger than 50 mm) and small-scale roughness

analysis (scales up to 50 mm). In the former application, the TLS data can be freely used, while in

the latter application, a special profiling strategy should be applied to deal with the effects due to the

directional pattern. As was shown in Section 3.6, either all the four TLS scans or two opposite scans

and profiles sampled across the laser line of sight should be used to estimate the spatial correlation of

the small-scale roughness. Such a strategy will also reduce the occluded area within a plot, which is also

a drawback when only one TLS scan is used. Finally, the line of sight should be, as much as possible,

perpendicular to the object, because this will minimize the occlusions, as well as the smoothing due to the

laser footprint. In such cases, the laser footprint will have a circular shape rather than the elliptical one,

which should then introduce a more isotropic smoothing in the object space. This can be easily achieved

by increasing the height of the scanner, e.g., by using large tripods or by scanning from platforms when

possible. Such a measurement setup would dramatically improve the incidence angles within the plot,

shifting the range-incidence-angle functions notably to the right compared to the functions given in

Figure 3d. This may also positively affect the quality of the resulting scans, increasing the point density

and reducing mixed-pixel effects and the signal-to-noise ratio [47].

TLS is also suitable for scanning plots lager than 2.6 m × 3 m. However, this requires better planning

of the measurement setup, where factors, like the roughness index accuracy, resolution (point density,

as well as the laser beam footprint) and void area, have to be considered. We analyzed these factors in

terms of the range and the incidence angle for our 2.6 m × 3 m plot and for the case of smooth, isotropic

soil roughness. Thus, certain rules of thumb for both the range and incidence angle can be drawn from

the presented results. Section 3.7 showed that for the ranges up to 3 m and the incidence angles smaller

than 55◦, the four-scan estimates of the model correlation length can be replaced with the single-scan

estimates with a loss of 1% in the relative accuracy. Then, Section 3.5 showed that the spectral slope

values estimated from the scan with high incidence angles (Scan 3, Figure 7b and Table 3) are notably

biased against the OTS estimates of the spectral slope. This, however, was not the case for the scan

where the incidence angles were no larger than 40◦ (Scan 1, Figure 7a and Table 3). It was also shown

that a void area larger than 5% happens for some scans, even at the 2.5-m range and incidence angles

below 50◦ (Figure 3c). On the other hand, Sections 3.4 and 4.1 showed that DEMs with 4-mm resolution

can be reconstructed over the whole plot. This means that there are no further constraints on the range

and the incidence angle, which come from the data resolution, i.e., when the TLS data are acquired under

the correlated sampling mode.

Based on the given findings, it can be concluded that the maximum recommended range is 3 m,

which comes from the accuracy of the roughness index. The maximum recommended incidence angle

is 50◦, when the classical roughness parametrization (s and lm) is estimated. This limit comes from

the maximum allowed void area of 5%. However, when the spectral slope is estimated, the maximum
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recommended incidence angle is 40◦. These recommendations, for example, can be considered when

defining an effective area of a single scan and a number of scans required to survey large plots. The

results also showed that two opposite scans (separated slightly more than 3 m from one another) can be

used to survey large plots. This would mean that plots of 3 m in width and practically any length can be

easily scanned with TLS. The distance between consecutive scan positions is, however, recommended

to be no larger than 2.5 m, since this ensures an overlapping of the neighboring effective areas larger

than 50%. Nevertheless, this parameter should be optimized with respect to the accumulation of the

systematic errors of the relative orientation between the models [52].

The above findings are valid for smooth isotropic soil roughness. In case of larger isotropic or oriented

soil roughness, some of the above conditions might become even stronger. This can be especially the case

for the void area and, consequently, the point density, because large roughness elements introduce more

occlusions. This might also increase the mixed-pixel effects, as well as the directional patterns discussed

in Section 3.5. On the other hand, for other rough surfaces, like gravel, many roughness elements may be

expected to be larger than the laser beam footprint at the 3-m range, and thus, the measurements might

be more reliable. Nevertheless, these cases require additional experimentation to be answered.

5. Conclusions

In this study, a four-scan TLS setup was applied to study a smooth and isotropic soil roughness

pattern over a 2.6 m × 3 m plot. A new method was introduced to generate DEMs that preserves the

surface’s stochastic property at high frequencies. The method optimizes the neighborhood size during

the DEM interpolation, while minimizing the spectral slope, i.e., maximizing the fractal dimension, of

the roughness’s high frequencies. The derived neighborhood sizes turned out to be also a good indicator

of the DEM’s spatial resolution. The acquired data allowed generating such DEMs at a 4-mm spatial

resolution over the whole plot, which was then used as a base for roughness analysis. Soil roughness

was analyzed in both the spatial and frequency domain and using four different roughness indices: root

mean square height s, correlation length l, power coefficient p and spectral slope s. Additionally,

a 0.18 m × 1 m subplot was surveyed with an optical triangulating scanner, and these data were used

to evaluate the TLS-derived roughness.

The analysis showed that the roughness spectra estimated from the TLS and OTS data correspond

to one another up to a spatial wavelength of 5 cm. Thus, TLS can be readily used for roughness

assessment on this or larger scales, while for a smaller scale roughness assessment, special processing

is required to mitigate the effect of the laser beam footprint. The latter involves two strategies:

(1) using four scans collected from each side of the plot to generate the DEMs; or (2) using two

opposite scans and then profiles that are perpendicular to the laser line of sight. Interestingly, the classical

roughness parametrization (correlation length and root mean square height) turned out not to be sensitive

to these distortions in the roughness spectrum, probably because they are more driven by low-frequency

roughness. Thus, to detect such a small-scale roughness, the indices should be estimated from the high

frequencies, where this roughness is well reflected.

The results also showed that the correlation length and the root mean square height values estimated

from the four TLS scans can be replaced with the estimates from a single TLS scan acquired under
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the maximum 3-m range and an incidence angle no larger than 55◦ without losing more than 1% in

the relative accuracy of s and lm. The estimates of two opposite scans can even replace the four-scan

estimates over the whole plot area and under the same 1% relative accuracy loss. On the other hand, the

spectral slope estimated from the single scan with incidence angles no larger than 40◦ was consistent

with the estimates based on the OTS data. Additionally, the results showed that a decrease in the

DEM’s resolution from 4 mm to 20 mm may introduce a relative error in both the s and l indexes

larger than 5%. Furthermore, the DEM’s with a spatial resolution that is 12 mm or better can depict the

exponential nature of the spatial correlation, while the DEMs with a resolution of 40 mm or lower cause

the exponentially-correlated surface to appear as Gaussian. These values are more strict than the ones

reported in previous theoretical studies.

The above results are derived for an oblique TLS scan acquired from classical geodetic tripods and for

smooth and isotropic soil roughness conditions. Based on the presented analysis on the index accuracy,

resolution and void area, a range up to 3 m and an incidence angle below 50◦ can be recommend when

s and l should be estimated. For the spectral slope, the incidence angle limit is even stronger and should

be no larger than 40◦.
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ABSTRACT:

Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric tech-

niques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still

need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned

aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot

study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference

method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented

within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and

TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the

frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM dif-

ferences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by

weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment

up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12

cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the

correlation length.

1. INTRODUCTION

Roughness is a property of surfaces, required to understand and

model interaction at these surfaces, e.g. in hydraulics, radar re-

mote sensing, or soil erosion. The assessment of roughness has

been traditionally performed by mechanical profiling (Mattia et

al., 2003), but this is naturally restricted by the length of the

ruler and the effort to place it at different locations. With effi-

cient methods for acquiring point clouds at high resolution like

terrestrial laser scanning (TLS) and high density image match-

ing (Lichti and Jamtsho, 2006) (Rothermel et al., 2012) (Rieke-

Zapp and Nearing, 2005), new possibilities for assessing rough-

ness arise. The range envelope for which roughness should be

quantified depends on the application. In radar remote sensing,

but likewise in the optical domain, the backscattering behavior

depends on the roughness in relation to the wavelength (Ulaby

et al., 1986). As an example, Sentinel-1 has a wavelength of 5.5

cm. Thus, the roughness between a few mm and up to several

decimeters should be modeled.

The shape of a rough surface can be modeled as a random pro-

cess, as a scalar function of the X- and Y-coordinate (Verhoest et

al., 2008). Assessing the roughness therefore requires the study

of a larger area. Using again the example of Sentinel-1, which

has a resolution of 5 m x 20 m, a highly detailed surface model

should be derived for an extent of several multiples of 20 m.

Terrestrial laser scanning has proven to be a suitable tool for mod-

eling the roughness at the required scales. Positioning the TLS

at large height above the ground, and restricting the ranges used,

guarantees that roughness content placed close to the Nyquist fre-

quency is assessed with 5% accuracy or better (Milenković et al.,

∗Corresponding author

2015). However, for larger areas this procedure is less practica-

ble due to the number of required stand points. Airborne acqui-

sition, in contrast, allows large area coverage. However, standard

photogrammetric flights cannot provide the resolution required.

Lower flying heights would be necessary to reach it.

Using a UAV these low flying heights become possible: the air-

borne close range approach. Above that, low cost components

(small UAVs, consumer cameras), make this approach interest-

ing. However, little work has been performed on very high res-

olution mapping of irregular surfaces by UAVs. In (Eltner et

al., 2013), UAV images with 2-4 mm ground sampling distance

(GSD) were used to provide cm to sub-cm accurate DSMs for

multi-temporal soil erosion monitoring. Also (Mancini et al.,

2013) reported that UAV data with 6 mm resolution was acquired

to monitor beach dune geometry. The heights reconstructed from

this UAV data were within a few centimeters compared to the

heights of a TLS data set used as the reference.

The aim of this article is to investigate if the quality obtained

by TLS can be achieved also by light weight UAV image based

acquisition. Specifically, in this paper data is acquired over a plot

of bare soil, by TLS and with images from a UAV. The surface

model from TLS serves as a reference and the model from the

images is compared against it. This comparison is performed on

the basis of roughness measures.

2. EXPERIMENT SETUP AND DATA

2.1 Experiment Setup

TLS and UAV data were collected over an agricultural field, lo-

cated just beyond the city border of Vienna, Austria. The mea-

surements were performed one after another in a single day in
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Figure 1: (a) The agricultural plot with the UAV and TLS mea-

surement setup; (b) An image of the fine-scale roughness ele-

ments present in the plot.

June 2015. The weather was mostly sunny with some short cloud

interruptions and without rain, but with wind that was strong

enough to prevent the UAV from flying in autopilot mode.

The experimental setup is shown in Figure 1a, where the or-

thophoto derived from the UAV images was used as background.

The large rectangular plot delineated by the ground control points

(GCPs, the white circles in Figure 1a) was surveyed with the UAV

images, while a subplot of ca. 10 m x 1.5 m (the red rectangle)

was surveyed with the TLS. Additionally, total station measure-

ments were performed to define a local datum, i.e. to derive co-

ordinates of the GCPs in the local object coordinate system. The

GCPs were symmetrically distributed around the plot and sepa-

rated at maximum 3 m from one another. This, rather small, GCP

spacing was selected to minimize systematic deformations in the

object space due to residual errors in the images.

The agricultural soil plot contained roughness elements over sev-

eral scales. The most prominent ones were low-frequency peri-

odic surface components (2 to 3 cm in the amplitude) which were

introduced with a mechanical, seed-bed preparation tool. On top

of these components, there were randomly distributed soil clods

(soil aggregates up to a few centimeters), very fine soil grains

(Figure 1b), and a number of small, individual vegetation patches

(up to a few decimeters). Since the purpose of this study was to

characterize the bare soil roughness, this vegetation was removed

from the plot before data acquisition.

2.2 UAV Images

The images were collected with a Sony α ILCE-6000, an inter-

changeable lens camera mounted on an octocopter (Figure 4).

The camera’s sensor size is 23.5 mm x 15.6 mm, which corre-

sponds to pixel size of 3.9 µm. The camera was combined with a

Figure 2: (a) Image density map (the GCPs are plotted as red

dots); (b) Image footprints within the subplot.

zoom lens Sony AF E 16-70mm 4.0 ZA OSS, the focal length of

which was 52 mm during image acquisition.

Due to strong wind, the flight was performed manually and as

much as possible parallel to the two longer sides of the plot. The

flight took 13 minutes to acquire 254 images, which were pre-

dominately distributed along the two longer sides of the plot, but

with some of them also distributed along the plot’s central axis

(Figure 1). Thus, the acquired images were not distributed in the

well-know regular strip pattern. Nevertheless, as shown in Fig-

ure 2a, the plot was covered everywhere with at least 9 images.

The average flying height was 22 m, which resulted in a ground

sampling distance (GSD) below 2 mm. The images were self-

calibrated in a bundle block adjustment procedure.

The image resolution was then examined based on the edge spread

function, also known as edge response (Perko et al., 2004)(Ja-

cobsen, 2009). The edge spread function was calculated by the

QuickMTF software (www.quickmtf.com) using the special test

charts (provided by the software company) which were printed

and fixed to flat plates on the ground during image acquisition

(Figure 3a-b). The estimated modulation transfer functions for

each color are shown in Figure 3. According to the 50 % modu-

lation threshold, the reported resolution is 6 pixels, which is ap-

proximately 12 mm in the object space. This resolution is notably

lower compared to the images’ GSD (ca. 2 mm). One of the rea-

sons for this degradation of image resolution is motion blur which

is most probably caused by an inappropriate shutter time setting

and vibration of the UAV.

2.3 TLS Data

In this experiment, the data collected with a Z + F Imager 5010c

served as reference. Generally, UAV images observe soil from

above, providing better viewing geometry compared to TLS data
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Figure 3: The modulation transfer function (MTF) corresponding

to the edge spread function (measured in the in-flight direction)

of an acquired image.

taken from classical geodetic tripods. However, UAV images are

collected in a kinetic mode,which degrades the resolution by sev-

eral pixels due to motion blur. On the other hand, the scanner

itself is static and a single measurement takes less than one micro-

second. Moreover, the TLS was applied here from a high tripod

(instrument height >2.5m) and with small ranges (<6 m), which

provided more favorable viewing geometry and higher resolution

compared to classical TLS setups and our UAV data.

2.3.1 Measurement Setup The subplot was scanned with 6

scan positions in total, where 3 of them were taken along each

of the two longer sides of the subplot. To minimize occlusions

and incidence angles, the scan positions were set approximately

opposite to one another and the scanner was placed on a high

tripod (Figure 4). The instrument height ranged from 2.55 m to

2.72 m. Scanning was performed in the high-quality and high-

sampling mode, providing 10000 range measurements per full

circle. The scanning started at 19:10 CET and completed in 50

minutes, taking on average 9 minutes per station.

The TLS points collected within the subplot have the following

characteristics. 95 % of the points have a range smaller than 4.5

m. Since the scanner has a precise laser beam (3 mm beam diam-

eter at the exit and a divergence of 0.3 mrad), the diameter of the

laser-beam footprint was below 5 mm all over the subplot. 90%

of the points have an incidence angle below 52◦, which fulfills

the requirements suggested by (Milenković et al., 2015) for TLS

in roughness applications. The average point density within the

subplot is 85 points/m2, while 90% of the subplot has at least 40

points/m2, i.e. the point spacing within the subplot is 1.5 mm or

smaller. This means that the laser-beam footprints of neighboring

points were overlapping one another, which is also known as the

correlated sampling mode where the resolution of the TLS data

is rather limited by the laser beam footprint (Lichti and Jamtsho,

2006) and (Milenković et al., 2015). This means that the resolu-

tion of this TLS data is approximately 5 mm.

2.3.2 TLS Data Pre-Processing The six raw TLS scans were

first preprocessed in “Z + F Laser Control”software where the

mixed-pixel and single-pixel filters were applied. These filters

remove points with erroneous range values happened when the

laser beam of a phase-comparison laser scanner illuminates sev-

eral objects distributed along the laser line of sight (Langer et

al., 2000). For our surface, this mostly happened when the laser

beam simultaneously illuminated the top of a soil clod and the soil

surface in the background. In addition to these filters, the inten-

sity filter was applied to remove points with an intensity smaller

than 1 %. These points are generally less accurate because their

range determination is associated with a small signal to noise ra-

tio (Langer et al., 2000).

The parameter values used in the above filters (mixed-pixel, single-

pixel and intensity) are the default values recommended by the “Z

+ F Laser Control” software. This default parameter setting was

already found to be appropriate for soil-roughness preprocessing

(Milenković et al., 2015).

3. METHODS

3.1 UAV Data Processing

The UAV imagery was oriented and the camera was calibrated

using OrientAL (Karel et al., 2013). Missing any direct sensor

orientation data, processing started with a variation of Structure-

from-Motion (SfM) (Torr and Zisserman, 2000): image feature

points are detected in each image and their neighborhoods are

described, after which point pairs with similar descriptors are

matched between image pairs. Relative image pair orientations

are computed and outlier matches discarded. For an initial im-

age pair, object points are forward intersected and both camera

orientations and object points are optimized in a bundle block ad-

justment. Subsequently, additional images are added to the block

one after another by spatial resection and further object points are

triangulated, until all images have been oriented. Aiming at the

error-free and precise orientation of all images, robust methods

are employed at all stages, and intermediate bundle block adjust-

ments are executed after the addition of further images. Already

the pairwise image matching takes place in Euclidean space, us-

ing an approximate interior orientation derived from Exif data. In

contrast to other software packages, OrientAL estimates a vari-

able set of lens distortion parameters, depending on their signif-

Figure 4: The TLS and UAV instruments used in this experiment.
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icance and stability, and to better handle perspective image dis-

tortion, we use Affine SIFT features (Morel and G.Yu, 2009),

which are not only scale and rotation invariant, but also invari-

ant to affine distortion. Finally, the maximum admissible image

point residual norm is not a fixed parameter, but is derived from

the data itself.

Using these relative image orientations, we forward intersect the

GCPs into model space using their manual image observations,

apply the resulting similarity transform to the bundle block, and

introduce additional observations for the GCPs in image and ob-

ject space, taking into account their stochastic nature. While we

assumed the standard deviations of feature point image observa-

tions a priori to be 1 pix, image observations of control points

were given the higher precision of 0.1 pix due to their higher

definition accuracy. Observations of control point coordinates in

object space were assigned a standard deviation of 1 mm a priori.

This resulted in median residual norms for feature image points

of 0.46 pix, for GCP image points of 0.97 pix, and for GCP object

points of 14 mm. The rather large residuals of GCP image points

may be a result of the weak block geometry with 2 flight strips of

extremely high overlap along-track, but low overlap across-track.

3.2 Data Co-Registration

Before interpolation and data comparison, it was necessary to

bring the UAV and TLS data into the same local object coordi-

nate system (LOCS). This was done trough several co-registration

steps. First, the individual TLS scans were georeferenced to the

LOCS with the help of the control points measured with the total

station. This procedure was performed using an adjustment pro-

cedure implemented in “Z + F Laser Control” software. Then, in

an additional step, the individual TLS scans were co-registered to

one another using a variant of the iterative closest point (ICP) al-

gorithm implemented in the software OPALS (Glira et al., 2015).

This step minimizes the point-to-surface distance among all the

scans, and for our 6 scans data, the standard deviation of this dis-

tance after the ICP procedure was 0.8 mm. This value is just two

times the specified measurement noise of the Z + F IMAGER

5010c scanner, which suggests at very good co-registration of the

TLS scans. The six TLS scans were then merged into one TLS

point-cloud block.

The UAV images were oriented trough a bundle adjustment pro-

cedure where the GCP coordinates measured with the total station

were also used as observations. Thus, the resulting exterior cam-

era parameters were already in the LOCS. This means that the

densely matched points as well as the automatically derived UAV

DSM are both in the LOCS. Still, in order to remove any remain-

ing residual errors in the absolute orientation and to optimize the

relative orientation between UAV DSM and TLS DSM, another

ICP run was applied to both DSMs. The standard deviation of the

final point-to-surface distances between UAV DSM and the TLS

block was 4 mm.

3.3 Detrending and DSM Interpolation

Roughness analysis is generally performed on detrended heights.

Thus, the UAV and TLS data were additionally detrended here

using the regression plane fitted trough the TLS points within the

subplot. This means that the detrended UAV and TLS heights

were calculated as the normal residuals to the regression plane,

while the planar coordinates were additionally reduced to the cen-

ter of gravity of the TLS points.

The TLS DSM was interpolated from the detrended TLS point-

cloud block. The interpolation was done for a 1 mm grid spacing

and with the moving plane interpolation applied to points within

a 2.5 mm neighborhood radius. This neighborhood size was se-

lected to match the size of the laser beam footprint within the

plot. The UAV DSM was automatically produced by the SURE

software (Rothermel et al., 2012), where the bundle results were

supplied as input.

3.4 Roughness Assessment

Surface roughness is treated here in two ways: (a) through the

so-called classical parametrization, i.e. as a zero-mean Gaussian

process characterized by the root mean square (RMS) height,

autocorrelation function (ACF) and correlation length (l) (Ver-

hoest et al., 2008), and (b) as a band-limited random fractal sur-

face characterized by the spectral slope (α), i.e. fractal dimen-

sion D = 5−α

2
(Davidson et al., 2003). Both parametrizations

were estimated as in (Milenković et al., 2015), i.e. from linearly-

detrended soil-roughness profiles sampled as rows of the TLS and

UAV DSMs.

For the classical parametrization, first the empirical autocorrela-

tion function was derived, with its value for a lag τk calculated

as:

r̂(τk) =
1

N − k

N−k
∑

i=1

zizi+k (1)

where τk = k ·∆x with k being the lag increment, and ∆x being

the DSM’s grid size. N is the number of height samples in a DSM

row, while zi and zi+k are the DSM row heights at positions i
and i + k, respectively. The RMS height s was estimated as

s2 = r̂(0), while the correlation length l was calculated as in

(Davidson et al., 2003), i.e. directly interpolating the normalized

autocorrelation function ρ(τk) = r̂(τk)/r̂(0):

l = τm + (e−1
− ρ(τm))

τm+1 − τm
ρ(τm+1)− ρ(τm)

, (2)

where τm ≤ l ≤ τm+1 and ρ(τm) ≤ e−1
≤ ρ(τm+1).

For the fractal parametrization, it was necessary first to estimate

the power spectral density (the roughness spectra). This was done

by calculating the assembly-average of the hamming-windowed

periodograms derived from the sampled DSM rows (Milenković

et al., 2015). Based on the derived roughness spectra, the spec-

tral slope α is calculated as the slope of a regression line used

to approximate the roughness spectrum on the logarithmic scale

and within a particular frequency band (Dierking, 1999). In the

linear-scale frequency domain, the latter is equivalent to:

S(f) = c · f−α
(3)

where f is the spatial frequency, log10(c) is the intercept of the

regression line, and S(f) is the roughness spectrum.

3.4.1 Roughness Levels of Detail The roughness level of de-

tail present in the TLS- and UAV-DSM is judged in two ways: (a)

qualitatively, by visual comparison of the DSMs’ shaded models,

and (b) quantitatively, by calculating the difference of the esti-

mated UAV and TLS roughness spectra. The roughness spectra

difference can reveal the spatial wavelengths (scales) over which

two corresponding DSMs share the same roughness information.

According to the study of (Oh and Kay, 1998), which is based

on synthetic data, the roughness spectra difference should be be-

low 1 dB for accurate prediction of the microwave backscatter

strength.

3.5 Autocorrelation Function and Error Propagation

The TLS DSM and UAV DSM which are used to derive the au-

tocorrelation functions are not free from measurement and inter-
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Figure 5: (a) Difference map between the TLS- and the UAV-DSM; (b) Min-max distance map derived from the DSMs of six overlap-

ping single-TLS scans; (c) and (d) are shaded TLS- and UAV-DSM, respectively, from the region marked by the red rectangle in (b);

(e) is the zoom-in to the blue rectangle in (b).

polation errors. Thus, this section considers how these errors can

be quantified and propagated further to to the autocorrelation es-

timates.

For the TLS DSM, the height errors are quantified with the moving-

plane interpolation error σz . This error is derived for each grid

position by propagating the RMS error of the plane adjustment

procedure of the neighboring points during the interpolation pro-

cess. Since the neighborhood used in our case is small (2.5 mm

radius), the interpolation error can be seen as a mixture of the

measurement noise as well as the modeling error caused by a pla-

nar approximation of roughness elements like soil clods.

For the UAV DSM, the height error is quantified as the standard

deviation (σMAD) derived from the median of absolute differ-

ences of the dense-matched point’s heights within 6 mm neigh-

borhood radius. The dense-matched points are one of the outputs

provided by SURE, and they are calculated while matching a base

image with several neighboring images (Rothermel et al., 2012).

This means that for each pixel of a base image there are sev-

eral reconstructed heights corresponding to the neighboring im-

age pairs. Therefore, the DSM heights (also provided by SURE)

can be seen as a median-like filter of the matched points. The

σMAD estimation radius (6 mm) was set according to the image

resolution in the object space (ca. 12 mm).

σz and σMAD are available for each height of the TLS DSM

and UAV DSM, respectively. Based on Eq.(1), it is possible to

propagate σz and σMAD further to the autocorrelation values for

each particular lag. This can be easily done when Eq.(1) is seen

as linear combination, i.e. as a product of a row vector h⊤

k and a

column vector z:

r̂(τk) =
1

N − k

N−k
∑

i=1

zizi+k = h
⊤

k · z , (4)

where:

hk =
1

N − k











0

z1
...

zN−k











, and z =











z1
z2
...

zN











,

while the first k elements of hk are zeros. For the zero-lag auto-

correlation r̂(0), it holds: h0 = 1

N
z. Following the error prop-

agation law for hk and z (both contain individual random vari-

ables), the expression for the variance of a single-lag autocorre-

lation value r̂(τk) is:

σ̂2
rk

= h
⊤

k ·Σzz · hk + z
⊤

k ·Σhkhk
· zk (5)

Σzz is a full diagonal matrix containing variances σ2
zi

, while

Σhkhk
is the same as Σzz, but with the first k diagonal elements

equal to zero. Finally, to compute the variance of r̂(τk) for the

TLS DSM, the σ2
zi

values are replaced with σ2
z , while in case of

the UAV DSM, the σ2
MAD is used instead.

4. RESULTS AND ANALYSIS

4.1 Accuracy of Data Co-Registration

Improper data co-registration may lead to false roughness analy-

sis. Thus, two elevation-difference rasters were prepared to report

on the co-registration accuracy: one to check the co-registration

of the individual TLS scans, and another to check the co-registration

of the TLS DSM and UAV DSM.

The co-registration of the individual TLS scans was checked with

the minimum-maximum elevation difference (range) for each pixel

of a set of six overlapping DSMs interpolated from the individual

TLS scans. Figure 5b shows the color-coded range map for our

6 TLS scans over the subplot with a pixel size of 1 mm. Since

the range values are non-negative, the colors correspond only to

the right half of the given color palette. The gray values show the
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areas which contain just one individual TLS DSM, and they oc-

cupy about 30% of the plot. The 95% of the remaining area con-

tains range values below 2 mm, which indicates a very good co-

registration of the TLS scans. The remaining 5% of large range

values occurs mostly around the soil clod edges, which can be

seen in Figure 5e. This is because the moving-plane interpolation

with a neighborhood radius of 2.5 mm (the interpolation method

used for the DSM interpolation) does not perform well on soil

clod borders. However, these are generally known interpolation

artifacts that can not be easily overcome with our TLS data.

Figure 5a shows the color-coded elevation differences between

the UAV DSM and the TLS DSM. Due to the ICP minimization

between the two DSMs performed in the preprocessing step, the

differences are on average zero, and 90% of the differences are

within ±9 mm. However, within this accuracy range, there are

also large systematic patterns in the difference map. After careful

examination, it was found that borders between regions of posi-

tive and negative differences correspond to image borders (see

Figure 2b). Residual image orientation errors may be responsible

for that. These orientation errors could be caused by insufficient

overlap between individual image sub-blocks. Additionally, dur-

ing the image acquisition, the image stabilization was switched

on to reduce motion blur, which caused unstable inner geometry

of the camera, and consequently, difficulties to determine a sin-

gle distortion model valid for all images. With an accuracy of

±9 mm this UAV DSM is only sub-optimal. Still, within this

accuracy bound, the UAV DSM can be used for the comparison

with the TLS DSM. However, this experience raises the aware-

ness that the acquisition of the UAV images should be conducted

with much more care - especially regarding the stability of the in-

ner image geometry. For an identical image set with a stable inner

geometry, the accuracy of the UAV DSM should be expected to

be notably higher, and without the systematic effects shown in

Figure 5a.

4.2 Roughness Assessment in Frequency Domain

The TLS and UAV DSMs of the whole plot are analyzed here in

the frequency domain. Figure 6 shows two roughness spectrum

lines derived from the TLS DSM (red) and UAV DSM (blue), re-

spectively. They are the ensemble-average, hamming-windowed

periodograms derived from 100 rows of the corresponding DSMs.

To make interpretation easier, the periodograms were further smo-

othed with the moving average with the span of 100 elements.

This procedure preserves the general trend of the periodogram

while removing the undesirable variability associated with this

estimator. The black line in Figure 6 shows the difference be-

tween the TLS- and UAV-based periodograms.

There are 4 frequency bands where the roughness spectra per-

form differently. These bands are separated with the three vertical

dashed lines in Figure 6. The very right band (from the Nyquist

up to the 5 mm wavelength) of the TLS spectrum shows a white-

noise (horizontal) roll-off, indicating that there is no further infor-

mation contained. This is fully consistent with the resolution of

the TLS DSM, i.e. with the diameter of the laser footprint which

was up to 5 mm within the subplot. These frequencies are present

in the periodogram because the TLS DSM was unnecessarily in-

terpolated to 1 mm grid even though the resolution of the data

itself was lower (5 mm). However, this was performed just to

have an additional estimate of the resolution of our control data

set, and to illustrate that the Nyquist frequency does not neces-

sarily indicate the resolution of a DSM. Additionally, it can be

seen that the roughness spectrum at these frequencies is below -

20 dB, which is several orders of magnitude smaller than the TLS

measurement noise. This indicates that the measurement noise is

Figure 6: The PSD functions

filtered out from the TLS point cloud during the DSM interpola-

tion. Thus, it shows that the TLS data are appropriately modeled.

From the spectra difference, it can be shown that the roughness

spectra are similar in the first two frequency bands up to the 1 dB

limit (the blue horizontal line in Figure 6). The 1 dB limit was

selected according to a study of (Oh and Kay, 1998). This prac-

tically means that the TLS DSM can be readily replaced with

the UAV DSM when the relevant roughness content is placed

along wavelengths up to 20 cm. For shorter wavelengths (from

20 cm till 5 mm), the TLS roughness spectrum contains much

more roughness information than the UAV spectrum. This can

be also seen in the two shaded DSMs (Figure 5c and 5d), which

clearly show that the TLS DSM contains much more roughness

elements at these scales compared with the UAV DSM, where

they are smoothed out. The latter effect is most probably a conse-

quence of image resolution and orientation errors which directly

influence the DSM.

In the second frequency band (from 1 m to 12 cm wavelengths),

both spectra exhibit a linear (fractal) nature, while the power of

the UAV DSM drops faster (17.5 dB per 0.5 of decade) compared

with the TLS power drop (17.5 dB per 0.6 of decade). The latter

is equivalent to the spectral slope values of 3.5 and 2.6 for the

UAV- and TLS-DSM, respectively. Thus, in this frequency band,

the UAV DSM has a slightly higher spectral slope (smaller fractal

dimension) compared with the TLS DSM. This shows that even

though the underlying surface is identical for both data sets, the

UAV and TLS data suggest two families of surfaces with different

stochastic properties. This, in turn, may cause an inconsistent

prediction of the microwave backscatter energy from the same

surface.

Finally, in the very left frequency band (from DC till 1 m wave-

length), the UAV spectrum is on top of the TLS spectrum, which

is opposite to its behavior along the remaining frequencies. This

shows that UAV spectra has more power at these frequencies

compared with the TLS DSM, which is a consequence of the sys-

tematics present in the UAV DSM (Figure 5a).

4.3 Roughness Assessment in Spatial Domain

The TLS and UAV DSMs of the whole plot are also analyzed

in the spatial domain by comparing individual profiles and their

autocorrelation functions. Figure 7a shows single height profiles

sampled at the identical location in the TLS DSM (red line) and

UAV DSM (blue line). From the zoomed-in area (Figure 7b), it

can be clearly seen that TLS profiles reconstructed much more

roughness level of detail compared with the UAV profile. This is

particularly true for the soil aggregates up to 3 mm in size, which
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Figure 7: (a) Single TLS and UAV height profiles sampled at

identical location from the corresponding DSMs; (b) Zoom-in to

portions of the profiles in (a).

are completely smoothed out in the UAV profile (e.g. section from

2.6 m to 2.7 m, Figure 7b). However, due to the systematic errors

in the UAV DSM, this did not have an effect on the profiles’ RMS

height values, where the RMS height of the UAV profile (suav =
22 mm) was found even larger than the RMS height (stls = 20
mm) of the TLS profile.

The correlation length, as a measure of roughness, was deter-

mined for both data sets. As can be seen in Figure 8 the shapes of

the autocorrelation functions are similar, and the faster drop was

explained as result of the finer details visible in the TLS data.

The correlation length determined from the UAV images is thus

approximately 15% larger than for the TLS data. In this article

error propagation was used to forward the uncertainty of eleva-

tion to uncertainty of the autocorrelation function and further to

the precision of the estimated correlation length. Given the lower

accuracy of the image based surface model, the precision of the

corresponding correlation length is poorer, too, but still only a

few percent of the correlation length. This uncertainty is much

lower than the offset in correlation length between the two meth-

ods. This suggests, that this error estimate is too optimistic, and a

likely cause is that correlations between the individual elevation

measures remained unconsidered (diagonal matrix in Eq (5)).

5. DISCUSSION AND CONCLUSIONS

In this experiment, a UAV data set was analyzed for soil rough-

ness assessment. The images used in the experiment had a resolu-

tion of 12 mm, which is low compared to the GSD of 2 mm. The

reason was the motion blur and poor lighting conditions, which

led to a loss of sharpness at the individual pixel level. Terrestrial

laser scanning was used as a reference method here, which does

not suffer from these two effects.

Although in this experiment the TLS was selected as the refer-

ence, point clouds based on overlapping images taken very close

to the object and using static acquisition can be more accurate.

For example, the vertical accuracy and GSD of an image block

taken 1 m apart from the object and with a contemporary cam-

era and a normal-angle lens, can be a few tenths of mm (Kraus,

2007). This is notably better than the TLS co-registration accu-

racy and the laser footprint, both found here to be of a few mm.

Thus, in further experiments, static and very close-range overlap-

ping imaging can be considered as the reference as well.

In Figure 5a systematic errors in the surface model derived from

dense image matching became apparent, under the assumption

that the TLS data serves as reference. That these systematic errors

Figure 8: Normalized autocorrelation functions based on the TLS

DSM and UAV DSM. The red dashed lines shows the 3σ bounds

of the propagated errors.

are related to the bundle block adjustment or the dense matching

is further supported by the comparison of the pattern of Figure 5a

to Figure 2b, which shows the overlap as grey tone and the image

borders. Changes from negative to positive errors occur at regions

where the overlap strongly drops. Thus, we conclude that images

within the bundle formed a sub-block which has strong ties within

itself, but poorer ties to neighboring sub-blocks. In this context

it is noted that clods and soil grains may look differently from

different perspectives, e.g. due to cast shadow, near vertical ele-

ments, etc. This would introduce high correlation between some

images, which is not considered in the stochastic model of the

bundle block adjustment used here.

Based on the performed analysis, one conclusion is that obtain-

ing very high resolution images of natural bare soil surfaces with

UAV remains challenging with low-cost components. The stabil-

ity of the camera is of concern, which can be enhanced (turning

off auto-focus, stabilizer, etc.) with suitable cameras. However,

the limited stability of consumer cameras is generally known.

Secondly, flying has to support image acquisition, thus avoiding

motion blur due to forward motion or vibrations. Additionally,

the experiment suggests that a regular block layout of the images

within the block could prevent systematic errors due to forming

of sub-blocks within the bundle block adjustment.

The experiment uses the methods suggested in (Milenković et al.,

2015) for processing TLS data to assess surface roughness. The

results are consistent with the previous study, and thus, confirm

the suggested method and show that it is extendable for TLS data

taken from high tripods and over a larger area. We could not

prove that the low-cost UAV images considered in this experi-

ment can deliver the same level of detail and accuracy as current

TLS systems (resolution of 5mm), although improvement can be

expected. However, for spatial scales of 12cm and larger (Figure

6), both methods appear to be usable.

The experiment is also complementing the study of (Eltner et

al., 2013). Both studies contribute to the same aim, i.e. devel-

oping methods for very high resolution modeling of terrain sur-

faces. The results of both studies are generally similar, though

the GCP accuracy achieved in (Eltner et al., 2013) is apparently

better compared to our results, and no systematic errors were re-

ported there. The systematic errors in our experiments originate

in (relatively) weakly tied sub-blocks of the bundle block. On the

other hand, the TLS reference of this article has a co-registration

error below 2 mm, and together with the data resolution of 5 mm,

this makes it well usable as reference data. Further experimenta-

tion is necessary to build a more comprehensive understanding of

the strengths and weaknesses of different approaches, and how to
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use them in synergy.
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a b s t r a c t

Canopy transmittance is a directional and wavelength-specific physical parameter that quantifies the

amount of radiation attenuated when passing through a vegetation layer. The parameter has been esti-

mated from LiDAR data in many different ways over the years. While early LiDAR methods treated each

returned echo equally or weighted the echoes according to their return order, recent methods have

focused more on the echo energy. In this study, we suggest a new method of estimating the total canopy

transmittance considering only the energy of ground echoes. Therefore, this method does not require

assumptions for the reflectance or absorption behavior of vegetation. As the oblique looking geometry

of LiDAR is explicitly considered, canopy transmittance can be derived for individual laser beams and

can be mapped spatially. The method was applied on a contemporary full-waveform LiDAR data set col-

lected under leaf-off conditions and over a study site that contains two sub regions: one with a mixed

(coniferous and deciduous) forest and another that is predominantly a deciduous forest in an alluvial

plain. The resulting canopy transmittance map was analyzed for both sub regions and compared to aerial

photos and the well-known fractional cover method. A visual comparison with aerial photos showed that

even single trees and small canopy openings are visible in the canopy transmittance map. In comparison

with the fractional cover method, the canopy transmittance map showed no saturation, i.e., there was

better separability between patches with different vegetation structure.

! 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Light detection and ranging (LiDAR) has been proven to be an

excellent technique for vegetation structure mapping. This is a

result of the direct ranging and multiple-echo detection capabili-

ties of airborne LiDAR, which allows the observation of the signal

contribution from different vegetation layers. Such information

has been well explored over recent decades for mapping vegeta-

tion structural properties and forestry applications in general

(Maltamo et al., 2014).

One method of characterizing vegetation structure is using

canopy transmittance Tc . This is a spectral and directional physical

parameter that quantifies how much radiation is attenuated when

passing through a vegetation layer. The strength of this attenuation

depends on the interaction of radiation with vegetative elements

(e.g., leaves, needles, branches, etc.). Therefore, canopy transmit-

tance is closely related to other vegetation structural parameters

such as the leaf area index (LAI) and directional gap fraction PðhÞ
(Bréda, 2003). Tc can be used as an indirect method to estimate

LAI (Bréda, 2003). The relationship between Tc and LAI is normally

modeled by the Beer-Lamber law, where an exponential attenua-

tion of the radiation is assumed (Monsi and Saeki, 2005). Tc can

be derived for a certain canopy depth d or for the total canopy

layer. The former is useful for analyzing the vertical distribution

of vegetation structure, while the latter is addressed as the total

canopy transmittance. Tc also has its own angular and spectral pat-

tern because physical and structural properties of vegetation

(reflectance, absorbance, etc.) are different for different propaga-

tion directions (incident angle h and azimuth x) and radiation

wavelengths k, i.e. Tc;kðh;xÞ.
When estimated with airborne LiDAR, Tc refers to a particular

direction and wavelength. This is because an airborne LiDAR sensor

transmits and observes laser radiation (e.g., 1064 nm) at specific

transmitted/observed directions, i.e., scan angles. Contemporary

sensors observe with narrow beams (0.25 mrad) and at high pulse

repetition rate (up to 800 kHz), which for lower flying heights can

http://dx.doi.org/10.1016/j.isprsjprs.2017.03.008
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give more than 20 samples per m2 with the footprint size below

0.5 m, depending on flying altitude. Such high-resolution estimates

of Tc are useful in many environmental applications. For example,

Tc is an input parameter for snow melt models (Musselman et al.,

2013; Moeser et al., 2014). The relationship between Tc and LAI is

used to map tree defoliation (Solberg et al., 2006) or to characterize

the habitat for certain species (Clawges et al., 2008; Sasaki et al.,

2016). In addition, Tc can be used for biomass estimation (Lefsky

et al., 1999).

The LiDAR-based Tc and directional gap fraction PðhÞ are com-

monly assumed to be equivalent (Ni-Meister et al., 2001;

Hopkinson and Chasmer, 2009; Armston et al., 2013). The LiDAR-

based PðhÞ is understood as the probability of an infinitesimally

small laser beam to be directly transmitted through the canopy

along the direction h (Armston et al., 2013; Ni-Meister et al.,

2001). This parameter can be calculated as, e.g., the portion of

ground to total number of echoes and is also referred to as the laser

penetration rate (Solberg et al., 2006). A complement to this mea-

sure is calculated as the portion of vegetation to total number of

echoes and is referred to as the canopy fractional cover (f Cover)

(Morsdorf et al., 2006; Riano et al., 2004). In some studies, the term

f Cover is also referred as canopy closure (Harding et al., 2001).

There are many methods to estimate canopy transmittance (or

gap fraction) from LiDAR data. They can be grouped according to

whether LiDAR waveforms or LiDAR returns are analyzed. Some

of the first waveform-based methods were suggested by Lefsky

et al. (1999), Harding et al. (2001) and Parker et al. (2001) for a

large footprint full-waveform LiDAR sensor known as SLICER

(Scanning LiDAR Imager of Canopies by Echo Recovery). This

methodology involves raw-waveform normalization by its total

energy and a fixed adjusting factor to correct for the difference in

canopy and ground reflectance at 1064 nm. Canopy transmittance

at certain canopy depth d is then estimated by accumulating the

normalized and reflectance-corrected waveforms (also known as

Canopy Height Profiles - CHP) from the canopy top till depth d

and subtracting it from 1 (Parker et al., 2001). Ni-Meister et al.

(2001) suggested a physical framework for using such uncalibrated

(raw) waveforms to directly derive the gap probability (the gap

fraction). This method also requires knowledge of the ground and

canopy reflectance ratio. Armston et al. (2013) extended this

method to small-footprint LiDAR waveforms. They suggested a

data-driven method to estimate the ground and canopy reflectance

ratio by modeling a linear relationship between the integrated

energy from the LiDAR pulses with only ground or only vegetation

returns. The robustness of this approach was confirmed by Chen

et al. (2014) where different forest conditions are considered.

Armston et al. (2013) also identified that the total gap-fraction

can be derived using only ground returns, but this framework

has not been analyzed in detail yet. Lindberg et al. (2012) extended

the CHP method of Lefsky et al. (1999) for small-footprint LiDAR

waveforms by applying an intensity correction based on the

Beer-Lambert law before the normalization and aggregation step.

The correction was applied to compensate for the shielding effect

of higher vegetation layers, and the results showed that the correc-

tion improved the vegetation volume estimate. Recently, Fieber

et al. (2015) adopted the CHP method of Harding et al. (2001)

and applied the data-driven reflectance ratio from Armston et al.

(2013) to aggregated, small-footprint LiDAR waveforms. This study

confirmed better performance of the data-driven reflectance ratio

to the fixed reflectance ratio for LAI derivation.

The return-based methods for canopy transmittance have two

main steps: (a) classification to ground and canopy returns and

(b) calculation of the fraction of ground or canopy returns to the

total number of returns for a spatial cell. The abovementioned

methods of Solberg et al. (2006) and Morsdorf et al. (2006) have

been mostly used in the last decade. In Morsdorf et al. (2006), it

is also suggested to consider first and last returns independently

and to derive two f Cover maps. Solberg et al. (2009) suggested com-

bining the first and last returns and using fixed weights to account

for single- and multiple-return observations. Hopkinson and

Chasmer (2009) used the intensity from the returns as weights

and calculated a so-called intensity ratio, i.e., the sum of all the

canopy returns intensity to total returns intensity. This measure

is similar to the CHP methods, but it is performed return-wise.

They also suggested an alternative method where square-root cor-

rections are applied for ‘‘two-way energy transmission” and for the

multiple returns. Finally, Muss et al. (2011) aggregated the LiDAR

returns and intensity into larger footprints to create so-called

pseudo-waves and analyzed them with the waveform-based

methods.

This study suggests a new method for canopy transmittance

that considers only the energy from ground returns. Such an

approach allows the use of uncalibrated LiDAR waveforms. Com-

pared with the previous methods, it does not require the

vegetation-ground reflectance correction or an assumption for

the vegetation extinction coefficient. This is because the energy

of the ground returns is normalized by an energy approximated

from the single ground returns found in the vicinity of the ground

returns. The method estimates total canopy transmittance per

laser beam and per spatial cell based on single-strip, full-

waveform airborne LiDAR data.

The study is organized as follows. Section 2.1 reviews briefly the

basics of full-waveform LiDAR theory, and Sections 2.2 and 2.3

present the theoretical framework of our method. Section 3

presents the full-waveform airborne LiDAR data as well as data

used for the comparison (aerial and ground photos). Section 4

explains how the method was practically implemented on the

full-waveform LiDAR data. Section 5 presents the results of the

comparison with an existing gap-fraction LiDAR method. Section 6

discusses the limitations of the method and this study. Finally,

Section 7 presents the main conclusions drawn from the

comparison.

2. Theory

2.1. Full-waveform theory

A full-waveform LiDAR sensor detects the backscattered radiant

flux [W] at regular time intervals (e.g., 1 ns) and converts it into a

digitized signal, i.e., the full-waveform. Following the radar equa-

tion, the recoded waveform represents the convolution of the

transmitted-pulse waveform and the response function of a cluster

of scatterers illuminated by the laser beam (Wagner et al., 2006;

Jutzi and Stilla, 2006). When scanning over vegetation, however,

the transmitted pulse interacts with several clusters of scatterers

placed at different ranges along the scanning direction. In this case,

the resulting waveform is the convolution of the transmitted pulse

with a series of response functions centered at the clusters’ ranges.

To arrive at an analytical solution for such waveforms, Wagner

et al. (2006) approximated both the transmitted pulse and the

response functions with Gaussian functions. Following this

approximation, the received radiant energy Q r of a transmitted

laser pulse is then given as:

Q r ¼
Z þ1

&1
PrðtÞ dt ¼

Z þ1

&1

XN

i¼1

P̂i ' e
&ðt&tiÞ

2

s2
p;i

2
4

3
5 dt ð1Þ

where PrðtÞ is the recorded waveform given by its instantaneous

amplitudes. It is assumed that the amplitude is linearly propor-

tional to the radiant flux incident on the receiver. The assumption
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on Gaussian shape of the pulse returns is in most cases appropriate

for the infrared LiDAR sensors and natural objects. However, it is

also observed that the fitting accuracy of the Gaussian model gets

worse for weak returns, i.e., returns with a small amplitude

(Wagner et al., 2006).

The sum within the rectangular brackets in Eq. (1) emphasizes

that the received energy is approximated by a finite number N of

Gaussian clusters. Each detected cluster i is associated with its

amplitude P̂i, standard deviation sP;i, and the time ti. The latter is

the round-trip time that corresponds to the range Ri. The detected

clusters are also called echoes (or returns), and their parameteriza-

tion (amplitude P̂i, echo width sP;i, and the range Ri) is estimated

from the recorded full-waveform signal (Wagner et al., 2006;

Roncat et al., 2011; Jutzi and Stilla, 2006). Eq. (1) can be further

expressed as:

Q r ¼
XN

i¼1

P̂i

Z þ1

&1
e
&ðt&ti Þ

2

s2
p;i dt ¼

XN

i¼1

P̂i ' sp;i '
ffiffiffiffiffiffiffi
2p

p
ð2Þ

where sp;i
ffiffiffiffiffiffiffi
2p

p
is the area below the unit-amplitude Gaussian echo

with the standard deviation sp;i and centered at the range Ri. Conse-

quently, the energy of an individual echo i is then given as:

Q i ¼ P̂i ' sp;i '
ffiffiffiffiffiffiffi
2p

p
ð3Þ

Each of the N detected echoes has its own spatial location

(xi; yi; zi, where i ¼ 1; . . . ;N) in a world coordinate system. This is

readily derived by a direct georeferencing procedure where flight

trajectory information is considered (Skaloud and Lichti, 2006).

The spatial location allows one to distinguish whether the echo

comes from a ground or vegetation cluster, provided that a digital

terrain model exists (Fig. 1a). In general, a LiDAR waveform can

contain both ground and vegetation echoes. Such waveforms will

be referred to here as vegetation-ground waveforms. However,

there are also waveforms which contain only vegetation echoes

or only ground echoes, and they will be referred here as vegetation

waveforms and ground waveforms, respectively. The waveform’s

energy received from the vegetation or ground layer can then be

calculated by summing up the individual energies (Eq. (3)) of the

vegetation or ground echoes detected in the waveform.

Generally, the echo energy Q i (and the waveform) is not neces-

sarily identical when a cluster is observed from different heights or

by different sensors and flight campaigns. Therefore, Wagner

(2010) suggested to use the backscattering coefficient c

[m2 'm&2], i.e. the scattering cross-section normalized by the beam

area perpendicular to the propagation direction. This physical

quantity is inherent to the object and is closely related to the bidi-

rectional reflectance distribution function f (BRDF):

c ¼ 4p hf i cosðhÞ ¼ 4p
hLsi
Ei

cosðhÞ; ð4Þ

where hf i is the bidirectional reflectance function (BDRF) averaged

for the incident and scattered solid angles (Wagner, 2010). h is

the scattering angle, which is also identical to the incident angle

of the laser beam due to the quasi collinear backscatter geometry

of airborne LiDAR. According to Nicodemus et al. (1977), hf i can

be further expressed through the ratio of the average radiance hLsi
of the scattered solid angle and the irradiance Ei.

The backscattering coefficient ci of a cluster i is also related to

the energy Q i of the corresponding echo observed from the LiDAR

waveform. This relationship is given by the calibration equation

(Wagner, 2010):

ci ¼ Ccal '
R2
iffiffiffiffiffiffiffi
2p

p ' Q i; ð5Þ

where Ccal is the calibration constant. It is noted that Eq. (5) is

expressed slightly different than in Wagner (2010), but both

Fig. 1. Three waveform types (ground waveforms, vegetation waveforms, and vegetation-ground waveforms) shown for: (a) the real and (b) the hypothetical scanning

scenarios. The bottom figure is the top view of the ground layer. The three laser footprints, corresponding to the three waveform types, are colored according to their average

radiance incident on the ground layer L# . The footprints with the red frame in (b) indicate waveform types for which the ground echo energy was approximated. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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expressions are in principle equivalent. Here, the calibration con-

stant includes all the sensor parameters and the transmission fac-

tors, while the term
ffiffiffiffiffiffiffi
2p

p
is added to express the calibration

equation in terms of the energy of Gaussian echoes.

2.2. Beam-wise canopy transmittance

The LiDAR sensor transmits concentrated laser photons inside a

conical beam of a transmitted solid angle Xt . These photons have

an average transmitted radiance L#t :

L#t ¼
1

Xt

Z

Xt

LdX; ð6Þ

where L is the radiance [W 'm&2 ' sr&1], which is invariant along a

differential solid angle dX unless there is extinction. During the

propagation through a vegetation layer (Fig. 1a), some of the pho-

tons are scattered by vegetative elements like leaves, needles, twigs,

branches, etc. This causes the average radiance incident upon the

ground layer L# to be smaller than the average radiance incident

on the vegetation layer L#0. The ratio of these two variables is com-

monly called the canopy transmittance Tc:

Tc ¼
L#

L#0
ð7Þ

LiDAR pulses typically produce both vegetation and ground echoes,

and they correspond to vegetation-ground waveforms (Section 2.1).

However, there are laser beams for which L#0 ¼ L#, i.e., the average

radiance is not attenuated after passing the vegetation layer. This

can occur, e.g., when canopy gaps are larger than the laser beam

footprint, producing only ground echoes. Such beams correspond

to the ground waveforms, and their canopy transmittance is 1. In

contrast, there are laser beams for which L# ¼ 0, i.e., all transmitted

photons are scattered by the vegetation producing only vegetation

echoes. These beams correspond to the vegetation waveforms,

and their canopy transmittance is 0.

For vegetation-ground waveforms, Eq. (7) cannot be directly

applied because the average radiances L# and L#0 are neither known

nor directly observed. To overcome this problem, we introduce a

hypothetical scenario where the identical scanning is performed,

but now assume that all the vegetation has been removed

(Fig. 1b). This will be referred as the bare-ground scenario, while

the scenario in Fig. 1a will be referred as the real-case scenario.

Under the real-case scenario, the canopy transmittance for the

vegetation-ground waveforms can be expressed as the average

radiance L"r scattered from the ground and incident on the receiver

for the real-case scenario normalized by the average radiance L"b
scattered from the ground and incident on the receiver for the

bare-ground scenario:

Tc ¼
L"r
L"b

¼
L#t ' g2

atm ' Tc ' qg

L#t ' g2
atm ' qg

; ð8Þ

where g2
atm is the two-way atmospheric attenuation factor and qg is

the ground reflectance. The canopy transmittance Tc refers to the

one-way attenuation factor, which is in accordance with the

assumptions made in Ni-Meister et al. (2001). Note that the vegeta-

tive elements are treated as opaque.

The average radiances L"r and L"b in Eq. (8) can be further normal-

ized by the irradiance Ei. These ratios are actually equivalent to the

BDRF averaged in Eq. (4), which then gives:

Tc ¼
L"r=Ei

L"b=Ei

¼ cr
cb

; ð9Þ

where cb is the bare-ground backscattering coefficient, and cr is the
backscattering coefficient of the same ground but under the vegeta-

tion layer. The average radiance hLsi scattered from the ground layer

from Eq. (4) is replaced by L"r and L"b for the real-case and bare-

ground scenario, respectively. Finally, cr and cb are further

expressed by the calibration Eq. (5) in terms of the ground-echo

energy, which gives:

Tc;i ¼
L"r
L"b

¼ cr
cb

¼ Q r;i

eQ b;i

ð10Þ

This expression shows that the canopy transmittance for a laser

beam i can be calculated by normalizing the energy Q r;i of the

ground echo i in the beam’s waveform observed in the real-case

scenario by the energy eQ b;i of the same echo that would be observed

in the bare-ground scenario. The tilde sign indicates that the latter

echo energy is not observed but approximated. Here, the energy eQ b;i

is approximated from the observed, single ground echoes, i.e., it is

estimated by interpolating from the energies of the neighboring

ground waveforms. In contrast, the energy Q r;i is known and given

by Eq. (3) because all echoes are observed by full-waveform LiDAR

under the real-case scenario.

It is noted that the normalization step in Eq. (10) cancels out the

calibration constant Ccal, which allows one to use the ground-echo

energies estimated directly from the uncalibrated LiDAR

waveforms.

2.3. Canopy transmittance mapping

Canopy transmittance can be also calculated per spatial cell and

mapped spatially. Similar to laser beams, this can be done strip-

wise and considering only ground echoes. Following Eq. (10), the

canopy transmittance Tk for a cell k is given as:

Tc;k ¼
Q r;k

eQ b;k

; ð11Þ

where k is the linear index of the cell and Q r;k is the total ground

energy observed within the cell in the real-case scenario. Similar

to the beam-wise case, eQ b;k is not observed and is an approximation

of the total ground energy within the cell for the bare-ground

scenario.

The total energy Q r;k is the sum of the energies of all ground

echoes observed within the cell. As ground echoes can only come

from the ground waveforms and the vegetation-ground wave-

forms, Q r;k is given by:

Q r;k ¼
Xn1

1

Q g
r;i þ

Xn2

1

Qvg
r;i ð12Þ

where Q g
r;i (Q

vg
r;i ) is the energy of a ground echo i in the cell detected

from a ground (vegetation-ground) waveform, while n1 (n2) is the

number of the ground echoes within the cell detected from the

ground (vegetation-ground) waveforms.

The approximated total energy eQ b;k is the sum of the energies of

all ground echoes that would be observed within the cell under the

bare-ground scenario. In this scenario, all three waveform types

provide only ground echoes. Therefore, eQ b;k is given by:

eQ b;k ¼
Xn1

1

eQ g
b;i þ

Xn2

1

eQ vg
b;i þ

Xn3

1

eQ v

b;i ð13Þ

where, the number of ground echoes detected in the ground,

vegetation-ground, and vegetation waveforms within the cell k

are given by n1;n2, and n3, respectively. The energy eQ g
b;i is equal
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to the energy Q g
r;i, while eQ v

b;i (
eQ vg

b;i ) is the energy of a ground echo i

that would be detected by a vegetation (vegetation-ground) wave-

form under the bare-ground scenario. The tilde symbol indicates

that these energies are approximated. The approximation is done

as in the beam-wise case (Section 2.2), i.e., interpolating from the

energies of the neighboring single ground echoes (Q g
r;i).

It is important to note that the laser beams of the vegetation

waveforms never reached the ground layer. These beams have to

be projected to the ground layer to calculate the locations of their

ground echoes realized under the bare-ground scenario. For the

beams corresponding to ground and vegetation-ground wave-

forms, this is not necessary because they already provide at least

one ground echo. Moreover, laser beams generally have different

looking geometry within an airborne LiDAR strip. Their looking

geometry changes from the nadir to low-oblique depending on

the laser beam position within a scan line. This means that laser

beams enter each cell at a different incident angle, while its vari-

ability within the cell is rather low. Moreover, the laser beams

enter each cell at different azimuth angles. Therefore, the canopy

transmittance should be assigned with an average incident hk
and an average azimuthxk angle of the laser beams within the cell

k. The final equation for the canopy transmittance Tc;kðhk;xkÞ for

the cell k is then given as:

Tc;kðhk;xkÞ ¼
Pn1

1 Q g
r;i þ

Pn2
1 Qvg

r;iPn1
1 Q g

r;i þ
Pn2

1
eQ vg

b;i þ
Pn3

1
eQ v

b;i

ð14Þ

3. Study site and data

The study site covers an area around the lower course of the

river Pielach in Lower Austria (N48-1204800, E15-220200; WGS84).

The area contains two sub regions with different vegetation char-

acteristics: (a) a region with mixed forest and (b) a region with

deciduous forest in an alluvial plain. These regions are shown in

Fig. 4a, while their aerial photos are shown in Fig. 4b and c. The

region with mixed forest contains patches with rather homoge-

nous coniferous or deciduous forest as well as some open areas,

such as meadows and forest- and regional-roads. Some of the

deciduous forest patches contain individual (detached) coniferous

trees. The alluvial region contains predominately deciduous forest

and shrubs as well as some open areas, such as meadows, bare

ground, and water bodies.

The study data includes: (a) airborne LiDAR full-waveform data,

(b) aerial photos, and (c) ground photos with their coordinates. The

area was flown on January 14, 2016, under leaf-off conditions, and

with a Riegl LMS-Q1560 full-waveform sensor mounted together

with an aerial digital camera on the airplane. Aerial photos were

collected simultaneously with the full-waveform data. The Riegl

LMS-Q1560 full-waveform sensor operates at the 1064 nm laser

wavelength and is a so-called dual channel scanner, collecting

two scans simultaneously per single flight strip. In addition, the

scanner supports multiple-time-around processing. Each scan pro-

vides parallel scan lines with a /30- field of view, which reduces to

/29- in the lateral flight direction because the two scanning planes

are tilted against one another by 28-. Our LiDAR data were col-

lected from an average flight height of 600 m above the ground

and with a pulse repetition rate of 400 kHz. The data include one

lateral strip and several strips acquired parallel to the river axis

with a 80% strip overlap. The resulting point density of the last

echoes in a single scan was at least four points per m2 over 90%

of the strip’s area. The sensor also collected up to seven echoes

per laser beam, while the laser footprint size was smaller than

18 cm over the whole area. The airborne photos were collected

with the Phase One IXA-R 180 camera and a 50 mm lens, which

resulted in a ground sampling distance of approximately 7 cm.

The airborne photos are used to inspect the plausibility and the

level of detail in the canopy transmittance map.

On the day of the airborne data acquisition, seven spots were

visited in the field. These spots were selected to document the

diverse vegetation structure found in the area. For each spot, its

coordinates were recorded by differential GPS measurements,

and an upwards-looking ground photo was taken. Four ground

photos were taken in the alluvial region at spots with the decidu-

ous, leaf-off vegetation. The remaining three photos were taken

inside a coniferous patch in the mixed-forest region. Fig. 4 shows

the locations of the spots within the study site. Table 1 summarizes

basic LiDAR statistics of the echoes located within a 50 m radius

from the spots. The ground photos were collected to document

the vegetation structure at the particular locations, which should

help later in interpreting the results. However, the photos were

acquired at an arbitrary azimuth and at a coarse approximation

of zenith direction, which made them useful only for a qualitative

interpretation of the results.

4. Methodology

Several processing steps are required to progress from raw

LiDAR waveforms to a transmittance map. These steps involve pre-

processing of the full-waveform LiDAR data (beam georeferencing

and echo detection), classification of both echoes and waveforms,

projection of the beams corresponding to the vegetation wave-

forms, interpolation of the echo energies for the bare-ground sce-

nario, and finally, calculation of the canopy transmittance by Eq.

(14). The subsequent subsections discuss these steps. Additionally,

the last subsection presents an existing LiDAR gap-fraction method

used for comparison with the transmittance map.

Table 1

Basic statistics for a single scan and merged LiDAR scans. The values are derived from echoes selected within a 50 m radius around the validation spots.

Spot Merged scans Single scan

Num. – f Cover
a [%] h [m]b max hDTM [m] Num. – f Cover

a [%] h [m]b [m] h [deg]c x [deg]d

Min Median Max Min Median Max

1 649520 23.0 15.808 215.045 43621 27.6 15.721 17.5 21.4 26.0 &53.3 &50.5 &47.4

2 893250 44.0 38.693 215.720 62674 46.5 38.387 2.0 5.7 11.6 133.7 145.5 183.0

3 921070 40.4 37.642 214.219 69565 43.3 37.384 4.3 8.7 13.6 &71.9 &60.1 &52.8

4 1008500 43.7 36.941 215.773 87432 45.5 36.645 2.1 4.4 9.1 &168.1 &78.7 &63.5

5 1189100 71.6 25.881 243.138 90977 74.3 25.756 14.2 19.1 24.1 &56.8 &55.0 &53.6

6 1158900 72.4 25.545 242.054 90262 74.5 25.122 12.5 17.3 22.3 &57.6 &55.3 &53.6

7 1158100 74.2 31.289 240.598 101440 74.5 31.041 5.9 10.9 16.2 &65.0 &57.8 &54.7

a Percentage of vegetation echoes.
b Echo height above the terrain.
c Incident angle of the beam vector.
d Azimuth of the beam vector.
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4.1. LiDAR preprocessing

Preprocessing of the LiDAR data was performed strip-wise. Raw

full-waveform LiDAR data were given per strip, in form of wave-

forms and in the scanner coordinate system. This means that each

laser beam was represented by its waveform, scan angle, and GPS

time. The waveform itself was given by its instantiations amplitude

values, each of them associated with the time elapsed between

pulse transmission and amplitude recording. The preprocessing

started with the extraction of individual echoes from the raw

waveforms by applying the Gaussian decomposition method

(Wagner et al., 2006). Additionally, waveform information like

echo number within the waveform, total number of echoes within

the waveform, echo amplitude bP i, echo width sP;i, and range Ri were

assigned to each detected echo. Moreover, multiple echoes

detected within a single waveform were assigned to the GPS time

of the corresponding transmitted pulse (laser shot). Direct georef-

erencing (Skaloud and Lichti, 2006) was performed to transform

the detected echoes from the scanner to a world coordinate sys-

tem. This was performed considering the flight trajectory

(described by Global Navigation Satellite System and Inertial Mea-

surement Unit data) and the mounting information of the LiDAR

system. The direct georeferencing provided the detected echoes

as separate point clouds corresponding to individual LiDAR strips

in the ETRS89/UTM 33N coordinate system. The overall geometry

of the LiDAR block was then improved by strip adjustment using

the least squares method (Ressl et al., 2011). The complete prepro-

cessing was done in the software OPALS (Orientation and Process-

ing of Airborne Laser Scanning data) (Pfeifer et al., 2014).

4.2. Echo classification

To apply Eq. (14), it is necessary to perform the following two

steps: (a) echo classification to ground and vegetation and (b) iden-

tification of the three waveform types (ground waveforms,

vegetation-ground waveforms, and vegetation waveforms). The

classification of the echoes into ground and vegetation was done

according to the relative height of the echoes with respect to a dig-

ital terrain model (DTM). The DTM was derived from the georefer-

enced point cloud using the robust filtering method implemented

in the software SCOP++ (Kraus and Pfeifer, 1998). All echoes that

were placed more than 0.5 m away from the DTM were classified

as vegetation, while the remaining echoes were classified as

ground.

The three waveform types were identified by querying the point

cloud of all the detected echoes and their attributes. The querying

was performed according to the echo geolocation with respect to

the DTM and the echo position within the waveform, which is

illustrated in Fig. 2. The ground waveforms were identified with

the single ground echoes (Fig. 2a), i.e., the ground echoes whose

number-of-echoes value was 1. The vegetation-ground waveforms

were identified by selecting the last ground echoes that share iden-

tical laser shot with at least one vegetation echo. These ground

echoes will be referred as the last-of-multiple ground echoes (the

gray asterisks in Fig. 2). The vegetation waveforms were identified

by the last echoes that were located in vegetation (the dark blue

asterisks in Fig. 2). These particular vegetation echoes will be

referred as the last-in-vegetation echoes. It is noted that the

detected echoes and their attributes were available as an OPALS

data manager instance that was built and updated by new attri-

butes during the preprocessing. The OPALS data manager allows

efficient access to large point clouds and handles arbitrary attri-

butes associated with the point geometry (Otepka et al., 2013).

As discussed in Section 2.3, for the beams corresponding to the

vegetation waveforms, it is necessary to calculate its intersection

with the ground layer. Therefore, the last-in-vegetation echoes

were projected to the ground layer, i.e., the DTM. These projected

points represent ground echoes that would be detected from the

vegetation waveforms in the bare-ground scenario. These pro-

jected points will be referred to as the synthetic ground echoes.

4.3. Echo monoplotting

One way to determine the synthetic ground echoes is to project

the last-in-vegetation echoes to the ground by simply using the

vertical as a projection ray and to intersect it with the DTM. This

means that the projected echoes will preserve the same planar

position and get a new height according to the value from the

intersected DTM cell. Such a projection model is straightforward,

but also neglects the geometry of the laser beams. To overcome

this, the last-in-vegetation echoes were projected to the DTM using

monoplotting.

Monoplotting is a well-known photogrammetric method that

intersects the projection ray of an image point with a DTM

(Kraus, 2007). The main inputs for this procedure are the image

coordinates of the point, the image’s exterior and interior parame-

ters, and a DTM. To apply this technique here, it is necessary to

know the last-in-vegetation echo, the laser-beam vector, and the

DTM, all given in the same world coordinate system, i.e., in our

case, the ETRS89/UTM 33N. The laser-beam vector is assigned to

the raw waveform data in the scanner coordinate system (the

GPS time and the scan angle), which is then transformed into the

world coordinate system during the direct georeferencing and

the strip adjustment. All inputs are available then for the mono-

plotting of the last-in-vegetation echoes. Fig. 3 shows the mono-

plotting and vertical projection of the last-in-vegetation echoes

(the dark blue points) for the full-waveform LiDAR data of a single

tree. The red points in Fig. 3a-c are projected with monoplotting,

while the red points in Fig. 3d-f are vertically projected. For the

vertical projection case (Fig. 3f), Tc;k is calculated for the vertical

rectangular prism (the dashed black lines). For the monoplotting

case (Fig. 3c), Tc;k is calculated for the oblique rectangular prism,

which follows the laser-beam geometry.

4.4. Echo energy in the bare-ground scenario

As discussed in Sections 2.2 and 2.3, the echo energy eQ b;i that

would be observed under the bare-ground scenario is interpolated

Fig. 2. Echo categories given for: (a) the ground waveforms, (b) the vegetation-ground waveforms, and (c) the vegetation waveforms. Horizontal brown lines represent the

terrain, while horizontal dash-dotted lines show the border between the vegetation and ground. The full black lines represent laser beams. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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from the energy Q g
r;i of the neighboring single ground echoes. As

eQ g
b;i ¼ Q g

r;i, it is necessary to interpolate only the energies eQ vg
b;i and

eQ v

b;i of the ground echoes coming from the vegetation-ground

waveforms and the vegetation waveforms, respectively. This prac-

tically means that eQ vg
b;i should be interpolated at the locations of

the last-of-multiple ground echoes, while eQ v

b;i should be interpo-

lated at the locations of the synthetic ground echoes. In both cases,

the interpolation was done locally by averaging the energies Q g
r;i of

the single ground echoes within a circular neighborhood centered

at the interpolation point.

To properly set the neighborhood radius, the distance from a

last-of-multiple ground echo to its nearest-neighbor single ground

echo was analyzed for our data set. It was found that 99% of the

last-of-multiple ground echoes in a single LiDAR scan have at least

one single ground echo within a 2.1 m neighborhood radius. To

consider more than one single-ground echo, the neighborhood

radius was eventually set to 5 m. A neighborhood size that is too

small may lead to an empty neighborhood, while in the opposite

case, local ground properties might be lost.

It is noted that the neighborhood radius is only used when the

energy of ground echoes is estimated for the bare-ground scenario.

If the density of LiDAR data is high, the canopy transmittance still

can be aggregated by Eq. (14) at cells with sizes smaller than the

neighborhood radius.

4.5. Comparison

Tc is estimated at particular incident and azimuth angles, with a

laser wavelength of 1064 nm and by sensing downwards, i.e.,

towards the ground. Such measurement conditions are difficult

to mimic with a field-based sensor. Therefore, Tc was (a) compared

visually with the aerial photos, and (b) compared against the exist-

ing LiDAR gap-fraction method.

4.5.1. Comparison with the existing method

The Tc map is compared with the fractional cover (f Cover) map

suggested by Morsdorf et al. (2006). The f Cover map is derived by

normalizing the number of vegetation echoes Nveg by the total

number of echoes Ntotal observed within a spatial cell:

f Cover ¼
Nveg

Ntotal

ð15Þ

As recommended in Morsdorf et al. (2006), two f Cover maps were

calculated: one only from the first echoes (f
First
Cover) and another only

from the last echoes (f
Last
Cover). The vegetation and ground echoes were

separated as in our method (Section 4.2). It is noted that single

echoes are at the same time the first and the last echoes. Therefore,

both the f
First
Cover map and the f

Last
Cover map consider the single echoes.

The correlation (and differences) between the Tc map and the two

f Cover maps were analyzed with scatter plots.

5. Results

5.1. Canopy transmittance and aerial photos

A canopy transmittance map with a cell size of 2 m was calcu-

lated based on the methodology described in Section 4 and from a

single LiDAR scan of the test site. Fig. 4a, b, and c show this trans-

mittance map and two aerial photos of the alluvial- and mixed-

forest regions, respectively. The aerial photos were slightly modi-

fied (with histogram stretching and saturation adjustment) to

improve the separability between the coniferous and deciduous

forest patches. Visual comparison suggests that the Tc values close

to 0 correspond to vegetation, while the values close to 1 corre-

spond to open areas, i.e., bare ground, meadows, roads, and water.

Moreover, within the vegetation, the Tc map separates clearly the

patches with deciduous or coniferous forest. This can be seen in

the mixed-forest region (the red rectangle in Fig. 4). There, the

Fig. 3. Echo categories and monoplotting (a, b, and c) vs. vertical projection (d, e, and f) shown on LiDAR data of a single tree (outside the study area). Figures (c) and (f) show

the aggregation geometry in the scanner coordinate system (the consequence of monoplotting) and in the Euclidean coordinate system (the consequence of the vertical

projection), respectively. The x and y coordinates are reduced by 598945 and 5285980, respectively.
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deciduous-forest patches have on average a higher transmittance

(Tc > 0:4) compared with the coniferous-forest patches

(Tc < 0:3). The Tc map can also distinguish individual deciduous

or coniferous trees. Fig. 4e shows three isolated conifers inside a

deciduous-forest patch (C1, C2, and C3). These trees are also visible

in the Tc map shown in Fig. 4d. Moreover, the two figures show

that local canopy gaps/openings (G1 and G2) are also present in

the Tc map.

5.2. Canopy transmittance and the f Cover method

Two fractional cover maps were calculated: one only based on

the first echoes f
First
Cover and another only based on the last echoes

f
Last
Cover . Both maps were generated for a cell size of 2 m, which was

also the case for the Tc map. The cell values of f
First
Cover (f

Last
Cover) show

the fraction of the first (last) echoes in the vegetation within a ver-

tical prism with a 2 m square base. Each f Cover map was then com-

pared with the Tc map. This was done with scatter plots of the cell

values over the two regions: (a) the mixed-forest region (conifer-

ous and deciduous) and (b) the alluvial-forest region (predomi-

nately deciduous). For each region, two scatter plots were

derived: one based on Tc and f
First
Cover values and another based on

Tc and f
Last
Cover values. The regions were manually delineated on the

map.

Fig. 5 shows results of the comparison over the mixed-forest

region. The f
First
Cover map (Fig. 5b) appeared to be more saturated com-

pared with the Tc map (Fig. 5a). This saturation can be also seen in

the corresponding scatter plot (Fig. 5d) where 58% of the data have

f
First
Cover values range from 0.8 to 1, i.e., only 20% of its dynamic range.

The same data, however, cover over 85% of the Tc values (from 0 to

0.85). Therefore, the Tc map does not show the saturation for high

fractional cover as the f
First
Cover map shows. The f

Last
Cover map (Fig. 5c), in

contrast, does not show the saturation at high fractional cover

values (f
Last
Cover > 0:6). This map is also more similar to the Tc map,

which is manifested by a linear trend within this domain

(f
Last
Cover > 0:6 ^ Tc < 0:3) in the corresponding scatter plot (Fig. 5e).

However, the f
Last
Cover map shows a slight saturation for low fractional

cover: almost 50% of the data have f
Last
Cover < 0:2, and 90%of this data is

stretched from0.53 to 1 in the Tc map. Therefore, the f
Last
Cover map does

not show saturation in the high fractional cover domain but has a

slight saturation in the low fractional cover domain compared to

the Tc map.

The difference between the Tc and f Cover maps are emphasized

by their values at spots 5, 6, and 7 shown in Fig. 5d-e. The

upward-looking ground photos of those spots (the figures in the

bottom panel of Fig. 5) document totally different canopy gap con-

ditions. The photo at spot 7 was taken to document the canopy

gaps for an extremely dense, coniferous stand. The photo at spot

5 was taken to document a local canopy gap, while the spot 6

photo was taken just a few meters from spot 5, deeper in the same

coniferous forest stand. However, spots 5 and 6 have distinct f Cover
values, but very similar Tc values. As the f Cover values refer to the

Fig. 4. (a) The total canopy transmittance map over the area of interest and with the locations where the ground images were taken. (b) Aerial image of the alluvial-forest

region. (c) Aerial image of the mixed-forest region. The tree shadows on the aerial images point to the north. (d) The Tc map of the area marked by the black rectangle in (a),

and corresponding zoom-in of the aerial photo (e). C1, C2, and C3 point to the individual coniferous trees, while G1 and G2 point to the two largest gaps in the area.
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vertical-prism neighborhood, their f Cover values reflect what is

observed in the central part of the photos (the zenith direction).

In contrast, the Tc values refer to a highly oblique-prism neighbor-

hood (x ¼ 23-; h ¼ 55-, Table 1), and their Tc values describe the

non-central part of the photos along the laser-beam azimuth direc-

tion. Thus, the Tc values are correctly similar to one another as they

refer to the similar stand part placed at the particular direction

(x ¼ 23-; h ¼ 55-) from the spot location.

Fig. 6 shows results of the comparison over the alluvial-forest

region. Here, the f
First
Cover map (Fig. 6b) does not show any saturation,

i.e., it offers more separability than the Tc map (Fig. 6a). About 50%

of the data range from 0.8 and 1 in the Tc map, while 95% of this

data range from 0 to 0.65 in the f
First
Cover map. However, the f

Last
Cover

map (Fig. 6c) has a saturation at low fractional cover values

(f
Last
Cover < 0:1, Fig. 6e). There are 72% of f

Last
Cover values in this domain,

and 95% of this data is stretched from 0.61 to 1 Tc values. This sat-

uration shows that almost every laser shot left its last echo at or

close to the ground in the alluvial, leaf-off forest. Therefore, the

f
Last
Cover map erroneously suggests that the canopy structure is low

in the alluvial-forest region, which is in contrast to the Tc and

f
First
Cover maps. This saturation might be sensitive to laser beam diver-

gence or laser wavelength.

Different directional characteristics of Tc and f Cover are also

shown by the photos taken in the alluvial-forest region (the bot-

tom panel of Fig. 6). The photo at spot 2 was taken in the middle

of a local canopy gap, and as the central part of the photo suggests,

the f Cover values are zero. However, the Tc of spot 2 is slightly less

than 1. This is because the oblique scanning (h ¼ 6-;x ¼ 146-,

Table 1) intercepts a portion of the canopy top present in the

non-central part of the photo (the canopy height is ca. 38 m,

Table 1). The photo at spot 3 also documents a local canopy gap,

but the non-central and right part of the photo is vegetation-free.

However, the corresponding f Cover values are the largest among

all the spots. This is because the cluster of tall trees in the left part

of the photo is placed along the laser-beam direction around spot 2

(h ¼ 9-;x ¼ 60-). The photo for spot 3 is the only one among all

photos in which the middle-top part is oriented approximately to

the north, i.e., x ¼ 60- corresponds to the direction of the tree

cluster.

6. Discussion

6.1. Relation of Tc to existing concepts

The Tc method suggested here provides wavelength-specific,

directional, and physically well-defined values. They are derived

from radiometric and geometric LiDAR observations, while the

f Cover values are purely geometrical. Such Tc values are relevant

Fig. 5. Comparison of fractional cover and Tc over the mixed-forest region: (a) total canopy transmittance map, (b) first-echo f Cover map, (c) last-echo f Cover map, (d,e) scatter

plots of Tc and f Cover values, respectively. It is noted that f Cover values are negatively correlated to the Tc values. Figures in the bottom row show the upward-looking ground

photos for spots 5, 6, and 7.
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for canopy radiation studies, as in the concept of spectral invariants

(Huang et al., 2007; Stenberg et al., 2016). This concept suggests

modeling photon-canopy interaction by the canopy interceptance,

the recollision, and the escape probabilities and derives variables

that are wavelength-independent (in the solar domain) and more

specific to the canopy structure. Our Tc values are wavelength-

specific, but the airborne LiDAR sensors can operate at different

laserwavelengths (e.g., 531 nm, 1064 nm, and 1550 nm). The corre-

sponding, wavelength-specific, Tc values could then be used for

modeling transmittance in the spectral invariant methods.

Section 5.2 showed that the f cover map for the first echoes is sat-

urated in dense coniferous stands. This is also observed in earlier

studies and explained by the insensitivity of the first echoes to

canopy gaps smaller than the footprint (Solberg et al., 2009;

Morsdorf et al., 2006). In addition, the study of Korhonen et al.

(2011) showed that f
First
Cover represents the between-crown gaps.

The f
Last
Cover and Tc maps derived here appear to be promising for

quantification of the within-crown gaps and, indirectly, the leaf

area index. However, this should be validated against the angular

gap fraction measures from, e.g., hemispherical photos or canopy

gap analyzers.

6.2. Tc method

The suggested Tc method uses the energy of single ground

echoes to normalize the observed, ground-echo energy. Therefore,

the method requires single ground echoes. The method also

involves two further parameters: (a) the height threshold used to

select ground echoes (Section 4.2) and (b) the cell size used to

aggregate the echo energies (Section 2.3). In contrast, LiDAR acqui-

sition planning involves decisions (selection of sensor type and fly-

ing height) that, in turn, define properties of the resulting Tc map.

These aspects are discussed here.

The method was tested using a full-waveform LiDAR data set

collected by a specific sensor and under leaf-off conditions. How-

ever, there are also cases where the availability of ground echoes

is reduced. For example, scanning over leaf-on and dense vegeta-

tion may largely reduce the number of ground echoes. The number

and type (single or last-of-multiple) of ground echoes will primar-

ily depend on the canopy gaps as well as the laser footprint size.

Generally, there can be three possible cases: (a) there are no

ground echoes, (b) there are the last-of-multiple ground echoes

as well as the single-ground echoes in their vicinity, and (c) there

are only the last-of-multiple ground echoes, but no single-ground

echoes in their vicinity. In the first case, Tc is zero, which is handled

well in our method, because the monoplotting is used to project

the last-in-vegetation echoes to the ground, and the zero energy

is assigned to them. The second case is also handled by our

method, because there are some single-ground echoes in the vicin-

ity that can be used to normalize the energy of the last-of-multiple

ground echoes. Therefore, the only challenging case is the third

case, i.e., when there are no single-ground echoes in the vicinity

of the last-of-multiple ground echoes. This can be overcome, e.g.,

Fig. 6. Comparison of fractional cover and Tc over the alluvial-forest region: (a) total canopy transmittance map, (b) first-echo f Cover map, (c) last-echo f Cover map, (d,e) scatter

plots of Tc and f Cover values, respectively. The open area was masked out before the preparation of scatter plots. Figures in the bottom row show the upward-looking ground

photos for spots 1, 2, 3, and 4.
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by increasing the neighborhood size used to search for the single

ground echoes (Section 4.4). However, local ground properties

(e.g., reflectance) might be lost with a large neighborhood size.

As reported in Armston et al. (2013), Chen et al. (2014), and

Fieber et al. (2015), this may happen when the spatial variation

of ground reflectance happens at scales smaller than the neighbor-

hood size used to select the single ground echoes. Nevertheless,

this limitation is generally valid for all the methods that consider

the echo energies.

The height threshold used to select ground echoes was set here

to 0.5 m, and the same value is used in Armston et al. (2013) and

Chen et al. (2014). The threshold values of 0.3 m, 0.4 m, 0.6 m,

and 0.7 m were also tested. It was observed that the Tc values

increased for the height thresholds smaller than 0.5 m, while the

opposite happen for the height thresholds larger than 0.5 m. Nev-

ertheless, the mean Tc values changed less than 2%, for each

threshold setting. It is noted that this parameter also depends on

the accuracy and the level of detail of the DTM. The DTM accuracy,

in contrast, depends on the LiDAR filtering strategy, while for leaf-

on conditions and dense vegetation, the accuracy may be lower

compared to the leaf-off conditions. These aspects should be con-

sidered when setting the height threshold. The cell size used to

aggregate the echo energies was set to 2 m. Larger cell sizes of

5 m and 10 m were also tested, but the main trend of the scatter

plots in Fig. 5 and in Fig. 6 was preserved. It is only the dispersions

of the Tc and FCover values that were reduced by increasing the cell

size. No systematic change of the values was noted. Theoretically,

Tc can be also derived on the laser-beam level. Nevertheless, an

appropriate cell size is to be defined by the application

requirements.

The sensor properties affect the number of ground points. For

example, scanning over the same vegetation conditions, season,

and flying height with sensors having different laser-beam diver-

gence results in a different number of ground points. The selection

of flying height, therefore, defines the directional properties of the

resulting Tc values. Furthermore, airborne LiDAR sensors operate at

different laser wavelengths (e.g., 531 nm, 1064 nm, and 1550 nm),

and thus, the observed echo energies depend on the ground spec-

tral proprietress. In line with that, Morsdorf et al. (2008) reported

that f cover values may be affected by the scanning angle and the

footprint size.

Finally, the method could be improved by considering more

advanced strategies for the selection of single ground echoes. For

example, before the selection, single ground echoes can be classi-

fied according to their backscattering coefficient or the ground

reflectance derived from it. These properties would, however,

require the radiometric calibration of the single ground echoes

(Wagner, 2010). Diverse selection strategies of the single ground

echoes would also allow for an uncertainty analysis of the Tc

values.

7. Conclusions

In this study, a new method is presented for calculating direc-

tional, total canopy transmittance from small-footprint, full-

waveform LiDAR data. The transmittance values derived by the

method have a clear physical and geometrical meaning, which is

relevant for canopy radiation studies. The suggested method con-

siders only the energy of ground echoes. The canopy transmittance

is then estimated by normalizing this energy by an energy approx-

imated from the single ground echoes. Such normalization is ben-

eficial for two reasons. First, there is no need to calibrate

waveforms, because the calibration constant cancels out in the

energy ratio. Second, assumptions on the vegetation scattering

characteristics (reflectance and extinction) are not required,

because only the energy backscattered from the ground layer is

considered. In contrast, the Tc method requires single ground

echoes, and their number may be reduced when scanning under

leaf-on conditions or over dense forest. This can be overcome,

e.g., by a large neighborhood size used to search for the single

ground echoes.

The method was applied to a contemporary full-waveform

LiDAR data set and under leaf-off conditions. The study site con-

tains two sub regions: (a) a region with mixed (coniferous and

deciduous) forest and (b) a region with alluvial (predominately

deciduous) forest. The resulting canopy transmittance map was

compared with aerial photos and the well-known, fractional cover

method. The comparison of the canopy transmittance map with

the fractional cover map was done independently for each region

and for two versions of the fractional cover: one where only first

echoes were considered and another where only last echoes were

considered. For the mixed region, the fractional cover maps

showed some saturation compared with the canopy transmittance

map. The first-echo fractional cover map was saturated at high

fractional cover values (>0.8), while the last-echo fractional cover

map was slightly saturated at low fractional cover values (<0.2).

For the alluvial region (deciduous forest with leaf-off conditions),

the first-echo fractional cover map showed less saturation than

the canopy transmittance map, while the last-echo fractional cover

map was again slightly saturated.

The results show that the method provides canopy transmit-

tance values that are not saturated over mixed forests compared

to the existing fractional cover method. The focus for future work

should be on a quantitative validation of the transmittance values

derived by the method. The Tc values have a clear physical and

geometrical meaning, which is relevant for further canopy radia-

tion studies or derivation of biophysical parameters, such as leaf

area index.
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A B S T R A C T

Space-borne LiDAR systems can potentially assist large-area assessments of forest resources, in particular when a

subset of the acquired LiDAR footprints is combined with field surveys of forest stand characteristics at footprint

location. When combined, space-borne LiDAR geolocation error and the footprint size may however have

considerable effects on the estimation accuracy of forest stand variables, such as aboveground biomass (AGB).

The aim of this study was to draw recommendations for future space-borne LiDAR systems, which should deliver

data for unbiased AGB assessments. The recommendations were drawn from AGB estimations based on space-

borne LiDAR waveforms simulated over a 1300 ha large study site in southern Sweden. Large-footprint, nadir-

looking satellite waveforms were simulated by stacking individual small-footprint, airborne LiDAR waveforms

observed near a predefined sampling pattern. The stacked waveforms, represented by their metrics, were used as

input for a two-phase systematic sampling in combination with model-assisted estimation or hybrid inference for

estimating AGB and its variance. The second-phase sample included 264 inventory plots, whereas the first-phase

sample included 1010 sample locations, where satellite waveforms were simulated. After simulating satellite

waveforms with different footprint sizes and analyzing the AGB variance, the recommendation is to have a

footprint size that is similar to the size of the field plots used for collecting reference data, i.e. 20 m diameter in

our case. For the optimal footprint size, AGB was estimated with a precision of 2.9 Mg per hectare (2.9% of the

average). The results also showed that variance estimates increased constantly with increasing geolocation error.

For a geolocation error of 14 m, variance estimates increased by 17%, which justifies investing additional efforts

in minimizing it.

1. Introduction

Space-borne LiDAR (Light Detection and Ranging) systems dedi-

cated for estimation of vegetation are expected and needed in the fu-

ture. Such systems will regularly provide samples of vegetation height

information for all parts of the globe, and offer opportunities for esti-

mation of aboveground biomass (AGB) and related variables over large

areas.

The Geoscience Laser Altimeter System (GLAS) on board of the Ice,

Cloud, and Land Elevation Satellite (ICESat) collected unprecedented

global data on three-dimensional (3D) forest canopy structure during its

mission from 2003 to 2007. It exploited the LiDAR principle, i.e.

transmitting a laser pulse and recording of its time-delay, to receive 3D

data from the Earth's surface. Although not specifically designed for

vegetation mapping, ICESat/GLAS measurements have successfully

been used for national to global assessments of basic forest stand

characteristics, such as canopy height (Lefsky, 2010), growing stock

volume (Maselli et al., 2014; Nelson et al., 2009), aboveground biomass

(Boudreau et al., 2008; Margolis et al., 2015; Nelson et al., 2017), and

aboveground carbon (Neigh et al., 2013).

The upcoming missions, ICESat-II and GEDI (the Global Ecosystem

Dynamics Investigation), will provide a very dense, near global sam-

pling of canopy heights. The ATLAS instrument on board of the ICESat-

II satellite will record a certain number of elevation measurements for

each footprint using a single photon counting technique. Single pulses

of the ATLAS instrument will be split up into six parallel tracks ar-

ranged in three pairs with a distance between pairs of 3.3 km. Within

beams, the single footprints will be separated by a distance of 0.7 m and

will have a diameter of 14 m (Abdalati et al., 2010; Gwenzi et al.,

2016). The GEDI mission will collect large-footprint waveforms along
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10 parallel tracks with a spacing of about 600 m. Within tracks, the

waveforms will be recorded every 25 m over 25 m large footprints

(NASA, 2016). ICEsat data has already been used for large-area forest

resource assessments (Nelson et al., 2017), and more applications are

expected to come with ICEsat-II and GEDI, and there is a large potential

to further develop this technology in order to create fully operational

and redundant systems that are tailor-made for national and interna-

tional forest biomass assessments.

The application of space-borne LIDAR (SL) data for forest mon-

itoring typically requires field collected reference data and suitable

modeling strategies for predicting field-observed stand characteristics

from SL measurements (Nelson et al., 2017). For developing prediction

models, a link between field and SL data is required, which can either

be done by measuring ground data directly under SL observations

(Montesano et al., 2015; Nelson et al., 2009) or by using an additional

data source, such as airborne laser scanning (ALS) for an indirect

linkage between field and SL data (Margolis et al., 2015; Nelson et al.,

2017). From a survey sampling perspective, the SL measurements form

a first sample phase, as they do not fully cover the Earth's surface,

which introduces a sampling error attached to estimates derived from

such data. For the case of directly linking field and SL data, field ob-

servations are sub-sampled within the first sample phase and estimation

of target variables and their uncertainties can be done using design-

based inference with model-assisted estimation (Gregoire et al., 2011)

or by using a so called hybrid approach (Ståhl et al., 2016). If field data

is not covered by SL data (the indirect case), the uncertainties from two

models (e.g. field to ALS and ALS to SL) need to be considered during

estimation. In this case the hybrid three-phase estimators developed by

Holm et al. (2017) may be applied. More detail on LiDAR sampling for

forest applications can be also found in Wulder et al. (2012).

The spatial mismatch between SL data and field plots as well as the

plot size itself are expected to have considerable effects on model fit

and the accuracy of AGB estimates. These effects were, for example,

studied for ALS data by Gobakken and Næsset (2009) and Frazer et al.

(2011). Gobakken and Næsset (2009) found that stem volume estimates

were already severely affected by geolocation errors of 5 m and that

errors were especially a problem when small field plots were used. Si-

milar conclusions were later drawn by Frazer et al. (2011), further

stating that plot size is a critical design parameter in LiDAR studies

affecting (1) the precision and accuracy of AGB estimates, (2) the

precision and accuracy of LiDAR metrics, and (3) the negative effect of

geolocation error. The recommendation from the study was towards the

usage of larger plot sizes in comparison to what is common in forest

inventories of temperate and boreal zones (see Tomppo et al., 2010 for

common plot sizes). The influence of mismatch between the plot size

and pixel size was studied in Rejou-Mechain et al. (2014) using 30,

globally distributed, large field plots (8-15 ha). The study, however,

assumed remote sensing data which have no measurement errors, i.e.

measurements retrieved the exact value of AGB density as measured in

the field plots. The analysis showed that a plot size smaller than a re-

mote sensing pixel causes considerable calibration errors, which was

explained by large spatial variability in mean AGB density for plot sizes

smaller than 0.25 ha.

For large-footprint, space-borne systems studies about the effects of

footprint size and positional accuracy are however still few. Pang et al.

(2011) studied the effects of footprint size and off-nadir pointing on the

precision of canopy height estimates by means of simulation. They

concluded that footprints with a diameter between 25 m and 30 m

would be ideal to level the effects of vegetation height and terrain slope

on waveform length. This footprint size corresponds well with what is

commonly used for field plot size in forest inventories of temperate and

boreal climate and also with the footprint size that will be used by the

future GEDI system. Furthermore, this footprint size was also re-

commended for the laser altimeter planned for DESDynI mission (Hall

et al., 2011). However, the study by Pang et al. (2011) does not handle

the influence of geolocation error on estimation of forest variables with

large-footprint LiDAR sensors. Goncalves et al. (2017) varied the lo-

cations of field plots and used Monte Carlo simulations and binomial

distribution to estimate the biomass difference due to the introduced

spatial mismatch between field plots and GLAS footprints in Amazon

forest. Their analysis showed that the plot-footprint overlap should be

larger than 75% (50%) for primary (secondary) forest to have a geo-

location error< 20%. However, the study by Goncalves et al. (2017)

does not handle the influence of the footprint size on estimation of

forest variables.

Several studies have used simulated SL data to prepare future space

missions. The simulations are usually based either on (1) a radiative

transfer model (Gastellu-Etchegorry et al., 2015; Montesano et al.,

2015; North et al., 2010), or (2) on data from airborne sensors (Gwenzi

et al., 2016). The radiative transfer model approach requires assump-

tions on physical geometrical properties of vegetation, whereas the data

approach requires corrections for the sensor characteristics affecting

the recorded signal. Blair and Hofton (1999) modeled large-footprint

LiDAR waveform data using a vertical distribution of intercepted sur-

faces approximated with data from a small-footprint LiDAR system. The

returned waveform from the large-footprint system was obtained using

a composition of elementary pulses reflected from each element within

the large footprint. They modeled the elementary reflections with the

spatial intensity properties of a large-footprint system using a normal

distribution over finite vertical and horizontal distances and convolved

the sum of elementary reflections with a Gaussian approximation of the

impulse response of a large-footprint system to obtain “pseudo-wave-

forms”. High correlations were observed when simulated large foot-

prints were compared with data from the airborne large-footprint

system “Laser Vegetation Imaging Sensor” (LVIS). They concluded that

the simulated waveforms could be useful for pre-launch simulations of

upcoming space-borne LiDAR systems. Duong et al. (2009) have shown

that ALS can very well explain ICESat waveforms of 70 m footprint.

However, as discrete points were used, the blurring effect of waveforms

(ca. 5 ns duration) was not found for clearly defined objects (e.g. hor-

izontal ground).

The overall objective of this paper is to study the effect of footprint

size and geolocation error on AGB estimates obtained from a first-phase

sample of simulated SL footprints and a smaller second-phase sample of

co-registered field plots. The method for SL waveform simulation is

based on a spatial integration of the interactions of individual laser

pulses and the object, i.e. small-footprint waveforms found within a

large-footprint, SL beam cone. This, so-called waveform stacking, in-

volves range corrections for the flight trajectory and oblique looking.

Thus, the primary difference between airborne and space-borne wave-

forms we consider lies in the footprint size, whereas the length and

shape of the airborne system response (emitted pulse recorded by the

detector) “define” the length of pulses from simulated space-borne

waveforms. To emphasize that the SL waveforms are simulated, they

will be referred here as simulated space-borne LiDAR (SSL) waveforms.

To study the effect of footprint size and geolocation errors on AGB es-

timates, nadir-looking SSL waveforms with different footprint sizes

were simulated for a predefined monitoring strategy. The advantage of

studying a real site is the large amount of ground reference data

available. From the SSL waveforms, various waveform metrics were

derived, which provided the input for the AGB estimation including

uncertainty analyses. Based on the outcome of these analyses re-

commendations were drawn for the design of future SL systems rather

than to simulate a particular sensor.

The paper is structured in the following way. First, we present the

study site and data used for the simulation of SL waveforms. Second, we

describe the methods for SL waveform simulation. Third, metrics for

predicting AGB are defined and derived from the SSL waveforms.

Fourth, the framework for estimating AGB and its uncertainty is in-

troduced and results are presented and discussed. Finally, conclusions

and recommendations with respect to forestry applications are drawn

for future SL systems.
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2. Study site and data

2.1. Study site and forestry inventory data

The test site Remningstorp is located in the south of Sweden (58°30′

N, 13°40′ E). The estate covers about 1300 ha of managed forest land.

Prevailing tree species are Norway spruce (Picea abies), Scots pine

(Pinus sylvestris) and birch (Betula spp.). The topography is flat with a

ground elevation between 120 and 145 m above sea level. During

summer 2014, 264 field plots with a radius of 10 m were distributed

evenly using a square grid with 200 m spacing (Fig. 1, the filled circles).

On these plots, stem diameter at breast height (dbh) and tree species

were registered for all trees with dbh ≥ 40 mm, while tree height was

measured for a sample of trees. The coordinates of the plot centers were

measured with differential GNSS (Global Navigation Satellite System).

In addition to the field data, a manual interpretation of the land use/

land cover of the Remningstorp area was available from an experienced

photo interpreter. The data was used to limit the analysis to productive

forest lands.

2.2. Airborne laser scanning data

Full-cover waveform ALS data were available for the entire study

area and used for simulating SL waveforms. The data were collected

with a RIEGL LMS-Q680i scanner on 14th of September 2014. In total,

there were 27 ALS strips covering the forest inventory plots. The ma-

jority (25) of the ALS strips were recorded in an east-west direction and

the remaining two in a north-south direction (Fig. 1). The east-west

strips were separated from one another by approximately 150 m, and

the average flight height above the terrain was 305 m. As this scanner

has a scan angle range of± 30°, the average swath width was 352 m,

while the strip overlap was about 55%.

Single ALS strips were collected with mean point densities of last

returns ranging between 25 and 28 points per m2. The footprint dia-

meter at the ground was< 21 cm over the whole area, while the

average footprint diameter was 15 cm. The scanner was further using a

wavelength of 1550 nm to transmit laser pulses of 5 ns (the full width at

the half maximum of the amplitude). This corresponds to a range

resolution of 0.75 m (Wagner et al., 2006). The RIEGL LSM-Q680i

sensor supports multiple time around (MTA) ranging, i.e. it operates

with multiple pulses in the air, which then causes range ambiguity for

the returns (Rieger and Ullrich, 2011). Practically, this means that the

scanner does not operate with a single pulse repetition rate (PRR), but

changes the PRR constantly among a preset mean PRR. For our data, the

mean PRR was set to 360 kHz, while the highest and lowest PRR were

set to 374 kHz and 348 kHz, respectively. These PRRs caused the range

ambiguities of 401 m and 431 m, respectively. The maximum range of

our ALS data was 433 m. This means that there were at maximum two

pulses at the same time in the air, i.e. two MTA zones for our data set.

The ALS data were further processed, return-wise, in the sensor's

manufacturer software to derive individual returns, and subsequently, a

digital terrain model (DTM). There were up to 10 discrete returns per

transmitted pulse after the processing. The returns were filtered using

the algorithm suggested by Axelsson (1999), resulting in a 1 m grid

DTM of the study area. The DTM as well as the georeferenced returns

were projected to the SWEREF99 TM coordinate system.

3. Methodology

The methodology includes three major steps: waveform simulation,

calculation of waveform metrics and AGB estimation.

We employed a two-phase sampling strategy for AGB estimation,

where the first phase includes a systematic sample of 1010 satellite

plots with simulated waveform data, while the second-phase sample

includes a systematic sub-sample of 264 field plots. The initial SSL

sampling grid contained also plots over arable land and other non-forest

land-use categories (e.g. lakes); such plots were consequently excluded

from the analysis. For the field plots, both inventory and simulated

waveform data were available. The systematic sampling was designed

in the following way: satellite orbits are assumed to run in a north-south

direction and have a spacing of 100 m. Within orbits, every 100 m an

observation was made, so that each field plot is covered with SSL data.

Additionally, there are SSL observations in-between field observations

(Fig. 1).

For the second-phase sample (the field plots), a direct link between

field data and waveform metrics was established. Such an inventory

Fig. 1. Simulated space-borne LiDAR (SSL) sampling design and inventory strategy employed in the case study for estimating average aboveground biomass in the study area. The open

circles together with the closed circles are the first-phase sample of SSL observations, whereas the filled circles only are the second-phase field measurements. The red lines show the strip

trajectories of the small-footprint, full-waveform, airborne LiDAR data, used to simulate large-footprint SL waveforms. The coordinate reference system is SWEREF99 TM. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Milenković et al.

96



strategy has been used in connection with ICESat-I data, where SL

waveforms were searched in the field for collecting ground reference

data (Montesano et al., 2015; Nelson et al., 2009). SL is considered a

large-area sampling tool in forest surveys, operating at continental to

global scale. In our study, we mimic the implementation of one possible

inventory strategy for a much smaller geographic region due to limited

availability of data for waveform simulations and restrictions con-

cerning computation time. The focus is on the influence of varying

footprint size and geolocation error of SSL waveforms on final AGB

estimates.

3.1. Waveform simulation

The simulation of SL waveforms was done by stacking individually

recorded airborne LiDAR waveforms that were located within a larger

footprint. The objective was to simulate nadir-looking waveforms

whose large footprints are centered at the middle points of the SSL

sample plots and the field plots, respectively. In total, 1010 SL large-

footprint waveforms were simulated at the corresponding sample lo-

cations.

Several processing steps are required to go from raw small-footprint

airborne LiDAR waveforms to large-footprint SSL waveforms. The

processing involves assigning the MTA zone to recording blocks, wa-

veform geo-referencing, selection of waveforms within the sample

plots, range corrections and stacking. This subsection starts by pre-

senting the structure and properties of the raw waveform data, and

then, follows the mentioned processing steps. The subsection ends by

presenting the metrics derived from the stacked waveforms, which will

be used for AGB estimation.

3.1.1. LiDAR waveforms and recording blocks

The RIEGL LMS-Q680i LiDAR sensor recorded the amplitude of the

backscattered energy from a transmitted laser pulse at every nanose-

cond. This waveform sampling frequency corresponds to a range of

15 cm, i.e. a double way distance of 30 cm. The amplitudes collected

over a short period (usually 80 ns, or 160 ns, corresponding to 24 m and

48 m, respectively) forms a signal, i.e. a waveform, which is then stored

by the system in recording blocks (Riegl, 2013). The recording blocks

are grouped by corresponding preceding laser pulses and are assigned

with auxiliary waveform information. This means that several re-

cording blocks can be stored under a single transmitted pulse.

The raw LiDAR waveform data were stored strip-wise, and in-

dividual recording blocks, as well as their auxiliary information, were

accessed by a waveform extraction library (the RiWaveLib) provided by

the manufacturer.

3.1.2. Assigning recording blocks to corresponding laser pulses

The used LiDAR sensor utilizes MTA ranging, which requires re-

solving the range ambiguities of the recording blocks. Methods for re-

solving the MTA range ambiguities are suggested for the return-wise

data processing by Rieger and Ullrich (2011) and Lu et al. (2015). We

borrowed the idea of using a DTM for this task, but had to extend the

method to raw LiDAR waveforms.

The range ambiguities occurred when new laser pulses were trans-

mitted before the sample block of the preceding pulse was recorded.

This practically means that a specific sample block did not necessarily

correspond to the preceding laser pulse. In such a case, the sample block

had to be assigned to another, earlier laser pulse. As our LiDAR data had

at maximum two pulses in the air at the same time (Section 2.2), there

were just two possibilities: a recording block had to be related either to

the preceding pulse, or to the one before the preceding pulse.

The range ambiguities of our recording blocks were resolved in the

following manner. First, the maximum amplitude return was extracted

from each sample block. Then they were assigned with the range re-

lative to their preceding laser pulses. Combing these ranges with the

unit beam vectors, a point cloud in the scanner coordinate system was

derived. This point cloud was then transformed by direct geo-referen-

cing to a world coordinate system, in our case SWEREF99 TM. Finally,

the georeferenced heights of the maximum-amplitude returns were

compared with the DTM (Section 2.2). As expected, the return heights

clustered into two groups: one close to the terrain, i.e. in MTA zone 2,

and another one erroneously (> 200 m) away from the terrain (closer

to the flight trajectory), i.e. in MTA zone 1.

The maximum amplitude returns close to the terrain have the cor-

rect range, and thus, their recording blocks are related to the preceding

pulse. On the other hand, the remaining returns apparently have an

erroneous range. The above procedure was repeated for the ranges

derived relative to the one before the preceding pulse. Finally, the

points close to the terrain (in MTA zone 2) from both version of ranges

were combined into a single, georeferenced point cloud with correctly

assigned ranges. This point cloud was also assigned with sample block

identifiers as well as the auxiliary data (e.g. amplification settings, re-

cording times of the recording blocks, and unit laser beam vectors in

both sensor and world coordinate system). Such a geo-referenced,

maximum-amplitude point cloud was derived for each strip.

3.1.3. Selection of recording blocks for waveform stacking

To select all recording blocks for a SSL sample location, the nearest

LiDAR strip was first identified using the strips' trajectories, i.e. finding

a strip trajectory, which is the closest (in the x-y plane) to the sample

location. The selection of the recording blocks near to the sample lo-

cation was based on the geo-referenced maximum-amplitude point

cloud (Section 3.1.2). All the recording blocks with maximum-ampli-

tude returns that were located inside a circular neighborhood centered

at the sample location were selected. The radius of this circular

neighborhood was treated as a variable in a later stage, when different

footprint sizes were simulated. The selected maximum-amplitude re-

turns contained also the recording indices of the corresponding re-

cording blocks and their laser pulses, which was then used to access the

waveforms. Two different channels were used for the recording blocks:

(a) the so-called high power (low amplification) channel, and (b) low

power (high amplification) channel. Here, only the recording blocks

recorded by the high-power channel were considered for stacking.

3.1.4. Range corrections

During the scanning, the absolute position and orientation of the

scanner constantly changed, which is described by the flight trajectory.

On the other hand, the ranges, i.e. the x-axes of the recording blocks

(waveforms), are always defined relative to the instantaneous scanner

location. This means that the recording blocks are misaligned when

compared according to their original ranges. Therefore, range correc-

tions for the scanner position and orientation are to be applied before

the stacking of the recording blocks. The range correction for the

scanner position, i.e. the range offset, was derived with respect to a

reference point T0, set to define the origin of the corrected ranges. The

range correction for the scanner orientation was derived with respect to

the vertical, as the objective was to simulate the nadir-looking wave-

forms.

For a sample block i selected for the stacking at the sample location

j, the corrected range Ri
′ was calculated as:

′ = +R R cos α R∆ ,i i i i (1)

where Ri is the original range, αi is the nadir angle of the laser beam

vector and ΔRi is the range offset. The first term Ricosαi is the range

correction term for the orientation of the scanner. Fig. 2 shows sche-

matically the corresponding geometry as well as the range corrections

for a particular location and a sample block. The point Ti represents an

instantaneous position of the scanner, while the vector
⎯ →⎯⎯⎯⎯
TPi i represents

the laser beam vector. The figure also shows a reference point T0, which

was defined as the mean (of the coordinates) of the trajectory points

corresponding to the GPS times of all the recording blocks selected for
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the stacking. The range offset ΔRi was calculated as the magnitude of

the vector
⎯ →⎯⎯⎯⎯⎯
T Ti0 projected to the unit nadir vector

→ = −→
( n k ):

= ⎯ →⎯⎯⎯ ⋅→R T T n∆ i i0 .

The nadir angle αi depends on the plot size (the simulation ra-

dius rsim) as well as the planar displacement between Sj and T0 (the

nadir angle of the vector
⎯ →⎯⎯⎯
T Sj0 ). For 98% of the SSL sample locations Sj,

the nadir angle of the vector
⎯ →⎯⎯⎯
T Sj0 was below 2°, whereas the maximum

nadir angle was 14° for all Sj. This corresponds to the range corrections

of 0.1% and 3%, respectively.

3.1.5. Recording blocks aggregation (stacking)

Instantaneous amplitudes of the selected recording blocks were

aggregated according to their corrected ranges. A 15 cm binning of the

nadir axis from the reference point T0 was introduced, and amplitudes

with ranges falling in particular bins were accumulated. Amplitudes

smaller than a noise threshold were not considered. Here, the noise

threshold of 15 DN was applied, which corresponds to the maximum

amplitude among the records at the end of unimodal recording blocks.

For each sample location, an aggregated waveform was derived. The

aggregated waveforms were normalized by the number of the selected

recording blocks at the particular sample location. This resulted into a

mean, nadir-looking, large-footprint waveform per sample location.

These simulated waveforms were used for the further analysis.

3.2. Waveform metrics and simulated waveform sets

3.2.1. Waveform metrics

The most common waveform metrics used in previous biomass

studies are those considering the vertical distribution of the waveform's

energy (e.g., Duong et al., 2009; Lefsky et al., 1999; Popescu et al.,

2011; Sun et al., 2008). Typical examples are canopy heights that

correspond to certain energy quantiles. Before deriving such waveform

metrics, the start and end of individual waveforms has to be defined.

These two waveform features refer to the canopy top and the ground,

respectively. For the simulated nadir waveforms the range difference

between the canopy top and the ground is the canopy height. The

waveform start was defined as the range bin where the mean waveform

amplitude exceeded zero for the first time, i.e. the raw amplitude ex-

ceeded the noise threshold. The waveform end was defined as the range

bin corresponding to 99% of the waveform area (energy), integrated

from the waveform start, i.e. the canopy top. The 99% quantile was

used instead of the hard noise threshold because it showed to be less

sensitive to trailing noise, which appears just after the last terrain

amplitudes. The energy metrics derived here included three canopy

heights. First, the total canopy height (h100) calculated as the distance

between the start and end of the waveform. Second, the height of

median energy (hHOME) calculated as the distance from the waveform

end to the bin where 50% of the waveform area occurs. Third, the

canopy height (h95) calculated similarly as the HOME, but at 95% of the

waveform energy (integrated from the waveform end).

In addition to the energy metrics, a peak analysis was performed to

derive peak metrics. The waveform peaks were identified using the

findpeaks function in the Signal Processing Tool Box of the Matlab

R2016b software (MATLAB, 2016). The peak metrics derived here in-

cluded three parameters. The first peak parameter is a peak-to-peak

distance (dp2p). For bimodal waveforms, i.e. waveforms with two

peaks, dp2p is uniquely defined. However, for multimodal waveforms

(more than two peaks), dp2p was calculated as the distance from the first

to the last peak. For unimodal peaks, i.e. (a single peak detected),

dp2pwas replaced with the full waveform width at half of the peak

magnitude (FWHM). The remaining two peak parameters are: (i) the

amplitude of the last peak (alast), and (ii) the full width at half of the

last-peak magnitude (dFWHM).

The values of the six waveform parameters were derived for all SSL

plots in the first sample phase, and were used for regression analyses for

assessing AGB.

3.2.2. Waveform sets

The impacts of footprint size and geolocation error were analyzed

independently and with different waveform sets. To analyze the impact

of footprint size on biomass estimates and their corresponding variance

estimates, eight waveform sets were generated using different search

radius values (Section 3.1.3). Each set contained 1010 SSL waveforms.

The radius values ranged from 2.5 m to 20 m, with increments of 2.5 m,

mimicing different footprint sizes. These eight waveform sets, re-

presented by their waveform metrics, were used as input for the bio-

mass model to derive the footprint size that minimizes the biomass

variance estimates.

To analyze the impact of geolocation error on variance estimates, a

single waveform set was generated using the footprint size that mini-

mized the biomass variance estimates. This set contained 1010 SSL

waveforms as before, and additionally 24 SSL waveforms around each

sample location to simulate geolocation errors. This resulted in 25,250

SSL waveforms in total. The locations of the 24 additional SSL wave-

forms were distributed systematically using a 5 × 5 nodes grid around

each sample location. The node spacing was set to 5 m, while the grid

sides were parallel to the x- and y-axis of the world coordinate system.

This provided geolocation errors of up to± 10 m along the x- and y-

axis, and up to± 14.1 m along the main diagonal. Fig. 3 shows several

SSL sample locations and the corresponding grids of 24 additional lo-

cations used for analyzing the impact of the geolocation error.

3.3. Case study: application of space-borne LiDAR data in forest surveys

The 33 waveform sets (8 for the footprint simulation and 25 for the

geolocation error simulation) were combined with the systematic

sample of nII=264 field plots to estimate the biomass of our study area.

We employed a two-phase design, where the first phase is a systematic

sample of nI=1010 single-waveform satellite plots. The second-phase

sample includes the 264 field plots, for which a direct link between field

data and waveform metrics was established.

Fig. 2. Scanning geometry and the range corrections shown schematically for a particular

sample location Sj, and the recording block i. The point T0 is the reference point in-

troduced for the range correction, whereas the point Ti is the position of the scanner at the

trajectory during the recording of the block i. The point Pi shows the geolocation of an

instantaneous amplitude sample within the recording block i, whereas Ri is its range. αi is

the nadir angle of the laser beam vector for the block i.
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For the second-phase sample (field plots), we have a full set of in-

formation; i.e. AGB was predicted from field measurements using the

models from Marklund (1988) and SSL metrics were available from the

waveform simulation. For the remaining first-phase sample plots we

have only SSL metrics available and AGB was predicted using a model

that was developed from the ground reference data. The model had the

following form: yi=β0+β1dp2p+β2hHOME+β3h95+ϵi, and parameter

values were estimated using the generalized least squares technique

(McCulloch et al., 2008) as implemented in the nlme R-package

(Pinheiro et al., 2016). To avoid back-transformation bias and to tackle

heteroscedasticity, residual variance was modeled as a function of the

hHOME predictor variable. The chosen model was selected from all

possible linear models, not considering interaction terms, that could be

built with our six waveform metrics (in total 63 possible combinations).

The models were fit to the waveform set that had no geolocation error

and a footprint size that corresponded to the size of the field plots (10 m

radius). As selection criteria, Bayes information criterion and residual

standard error were used.

The selected model was then fit to all 32 waveform sets individually,

and model fits were evaluated using model efficiency (ME) and root

mean square error (RMSE), where

= −ME
SS

SS
1 res

mean (2)

and

=
−

RMSE
SS

n n
res

II var (3)

with = ∑ −=SS y y( )res i

nII
i i1

2, −= ∑ −=SS y y( )mean i

nII
i i1

2, and nvar denoting
the number of model parameters. To further check if models were

correctly specified, graphs of observed AGB plotted against model

predictions were constructed in two ways: (1) original pairs of ob-

servations and predictions and (2) group means of observed and pre-

dicted values. For the latter pairs of observations and predictions (y y,i i )

were ordered with respect to yi and then grouped into categories of ten

observations. For each category, averages of observed and predicted

AGB were calculated and plotted against each other. For correctly

specified models, points should follow the 1:1 line with intercept 0 and

slope 1, e.g. McRoberts et al. (2013). Graphs for the footprint waveform

sets are provided in Appendix A, and for the geolocation waveform sets,

graphs are provided in Appendix B.

For estimating average biomass density−y of the study area and its

variance, two inferential frameworks were applied: (1) model-assisted

estimation under design-based inference and (2) hybrid inference

combining the inferential frameworks model-based and design-based

(Ståhl et al., 2016). The two-phase sampling model-assisted estimator

for −y is (Mandallaz, 2008, p. 80)
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where yk is AGB in Mg per hectare of population element k predicted
from the regression model, and ̂ek is the model residual ̂ = −e y yk k k. A
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Under hybrid inference, −y is estimated using the following esti-

mator (Ståhl et al., 2016):

− ∑=
∈

y
n

y
1

hy
I

i S k
I (6)

Under sampling designs that use equal inclusion probabilities, as in

our case, and for models for which ̂∑ ek is zero, the two estimators from

Eqs. (4) and (6) will yield identical results (e.g., Magnussen, 2015).
For the variance of−yhy we have a design-based component from the

sample nature of satellite observations and a model-based component,

since AGB for phase-one units without field data was predicted using a

model. Although, systematic sampling is the widely accepted standard

in surveys of natural resources, it has the drawback that no unbiased

variance estimator exist due the fact that many second-order inclusion

probabilities are zero. The most common strategy is to treat sampling

units as they were selected randomly and to apply the according var-

iance estimator for simple random sampling. This approach will yield

conservative estimates that overestimate the variance of the total esti-

mator (e.g., Ene et al., 2013); the degree of overestimation is unknown.

In our case this is not relevant, since the design-based variance com-

ponent is fixed (the sampling design does not change) and our focus is

Fig. 3. A zoomed-in view into the SSL sample locations and

the inventory plots. The smaller grey dots around the SSL

sample locations are the additional sample locations in-

troduced to assess the impact of geolocation error. The dots

form local grids with a grid spacing of 5 m. Note that the

SSL sample locations also includes the Inventory plot lo-

cations.
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on the model-based variance component, which is influenced by foot-

print size and geolocation error. A variance estimator is

− = +V y V V( )hy db mb (7)

where
−

= ∑ −
−Vdb n S

y y

n

1 ( )

1I I

k

I

2

is the simple random sampling without re-

placement estimator for the design-based component of total variance,

and ̂̂= + ′ ′ν X β X νV σ cov ( )mb n e
1 2

I
is the respective model-based compo-

nent (Magnussen et al., 2016, Eq. 6). Here, X is the design matrix of the

model with dimensions nI×p+1, where p is the number of predictors,
ν is a nI×1matrix of entries with the value 1/nI, and ̂σe

2 is the estimated

residual variance calculated as ̂ = ∑ −σ w e n n( )e S i i II var
2 2 2

II
. The weights

wi are used in the generalized least squares regression to account for

heteroscedasticity and are derived from the residual variance model.
Note that for large-area (national to global) surveys, ̂σe

2 is small com-

pared to the second term in Vmb and can be ignored (Ståhl et al., 2016).

For a more intuitive interpretation of results, variance estimates are

transformed to standard error estimates by taking the square root

( −=SE V y( ).

4. Results and discussion

4.1. Simulated waveforms and selection of waveform metrics

Fig. 4 shows nadir-looking waveforms stacked using the radius of

10 m centered at four different field plot locations. Additionally, the

figure shows corresponding georeferenced ALS returns, plotted in the x-

z plane. The coordinates are given relative to the field plot center. The

zSj coordinate of a field plot center Sj was derived from the LiDAR DTM.

The waveform's range is plotted vertically, while the mean amplitude of

the stacked waveform is plotted horizontally. As the waveforms have

nadir-looking geometry, the range is also expressed as the relative

height (shown on the left vertical axis) used to plot the returns. The

relative height for a nadir range Ri
′ was calculated as: zT0

−Ri
′
−zSj (see

Fig. 2). Note the different limits of the vertical axis for the four sub-

figures.

As shown by Fig. 4, the stacked waveforms reflect different vege-

tation structure well. Fig. 4a shows a typical two-layer plot with high

vegetation and the corresponding bi-modal waveform. This plot is also

slightly sloped, which resulted in a broader ground part of the wave-

form. It can also be seen that the peak detection algorithm is robust, as

the sub-dominant ground peak was omitted. Fig. 4b shows a plot with

Fig. 4. Examples of SSL waveforms stacked using the radius of 10 m for four different field plots. The start and end of the waveforms are shown by upper and lower, solid horizontal lines,

respectively. The dashed horizontal lines show hHOME and h95 levels. The detected peaks are marked by the black squares, whereas dFWHM of the last peak is shown by the vertical line.

Note that the limits of the waveform amplitude axis are different for each subfigure, but the axis is always split in the increments of 20 DN to make relative comparison easier.
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high vegetation and understory that resulted in a multimodal waveform

with three peaks identified. For this waveform, the ground part is much

narrower as the terrain is flat within the plot. Finally, Fig. 4c shows a

plot with dense low vegetation, which resulted in a unimodal waveform

where the ground and vegetation part are mixed.

Fig. 4 also shows that the waveform metrics are robust for each of

the three waveform types. The 99% energy quantile used to define the

waveform end successfully filtered out the trailing noise of the wave-

form in Fig. 4d. For the rest of the examples, the 99% quantile was

found just slightly inside the ground part, but is still enough robust to

define the end of the waveform well. The h100, h95 and hHOME metrics

reflect the canopy height well, and, as shown later in Fig. 5, have very

high correlation (> 0.7) with the field AGB. Only in Fig. 4d, hHOME is

very close to the ground, erroneously suggesting low AGB within the

plot. This plot was select as the one that is far away from the main trend

in the scatter plot of hHOME and AGB values (Fig. 5). For comparison,

the plot in Fig. 4a (also a bimodal waveform), is placed close to the

main trend and has similar field AGB. The reason for small hHOME in

Fig. 4d is a large amplitude of the ground peak, which makes the

median energy less sensitive to the vegetation height and more close to

the ground. Nevertheless, Fig. 5 shows that erroneous hHOME values

appeared just for a few plots, while the majority of the plots showed a

high correlation (0.84) with field-observed AGB.

Fig. 5 shows a scatter plot matrix for AGB and all waveform metrics.

The metrics were derived from the 10 m radius waveforms for all of the

264 field plots. In the scatter plot matrix, Pearson's correlation coeffi-

cient of variable pairs is reported below the main diagonal, while on the

main diagonal, the distributions of variable values are provided in the

form of histograms. Table 1 summarizes the statistics of the three

predictors used for AGB prediction by sample phase. There is a small

Fig. 5. Scatterplot matrix of waveform metrics and field-observed AGB.
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difference in the mean values between only-field and only-satellite

waveform metrics, where the metrics from the field-sample were

slightly smaller.

4.2. Case study

By fitting the AGB prediction model to each of the waveform sets

and consecutively applying the estimators, we obtained estimates of

AGB density and corresponding standard errors. Results are summar-

ized in Tables 2 and 3. As the difference of AGB estimates from Eqs. (4)

and (6) was close to zero (1.4×10−14 on average), results are sum-
marized under one column with generic notation−y . From Table 2 it is

obvious that the best model fits and lowest standard errors were

achieved for footprint sizes that are close to the actual field plot size

(i.e. from 7.5 m to 12.5 m). Regarding geolocation error (Table 3),

standard error estimates generally increase with increasing distance of

displacement, although substantial variation was observed among wa-

veform sets of common distance but different direction of displacement

(Fig. 6). The lowest standard error was consequently observed when

there was a perfect match between SSL and field data.

In both cases, geolocation error and footprint size, variation in

standard error estimates are largely explained by changes in model-fit
statistics (ME and RMSE) as expected from the estimators. Point (−y )

estimates from either model-assisted estimation or hybrid inference are

almost identical as the applied sampling design used equal inclusion

probabilities for selecting SL and field data (Magnussen, 2015). Interval

(SE) estimates, however, showed some differences between the two

inferential frameworks. It appears that, in particular, the hybrid ap-

proach for variance estimation is more affected by decreasing model

quality due to mismatches in either footprint size or geolocation (Fig. 6

for geolocation error). In case of varying footprint size, differences in

standard error estimates are only clearly visible for the smallest foot-

print size of 2.5 m (Table 2). The other footprint sizes used seemed to be

close enough to the actual field plot size, so that the decrease in model

quality was not strong enough to lead to a notable difference between

the two inferential frameworks.

The hybrid standard error estimates varied, further, also con-

sistently more among the different directions of displacement when the

distance was kept constant (Fig. 6). The cause for this behavior can be

found in the fundamentally different inferential frameworks. While

with design-based inference (here with model-assisted estimation), the

population is considered to be fixed and randomization enters through

the random selection of samples following a predefined probability

sampling design, model-based inference assumes that the population is

a realization of a random process and that the sample is fixed instead

(Magnussen, 2015; Ståhl et al., 2016). Uncertainty under the model-

based paradigm arises from estimating model parameters and from

lack-of-fit residuals, while with model-assisted estimation, uncertainty

comes from the variation between population parameter estimates from

different samples (Magnussen, 2015). For the latter case, the quality of

the model does typically not affect the approximately unbiasedness of

the estimators (Magnussen, 2015). In the model-based case, however,

inference relies on correctly specified models. Regarding the hybrid

estimator in our study, we observed that estimates of the design-based

component (Eq. (7)) were relatively stable across the different condi-

tions tested here, while the model-based component reacted heavily on

changes on the estimated uncertainty of model parameter estimates

caused by geolocation error and discrepancies in footprint size. Such a

difference between variance estimates from either design-based with

model-assisted estimation and model-based inference was also observed

by Saarela et al. (2016) when studying the effect of geolocation errors

in a Monte-Carlo simulation study. The differences vanished, however,

with increasing sample size. As a note of caution, we would like to

mention that our results and conclusions are based on one single sample

out of the many possible samples that could be drawn from our popu-

lation. More detailed conclusions about the behavior of the hybrid

variance estimator when model quality decreases due to mismatches

between datasets, would require a Monte-Carlo simulation study. Such

simulation studies typically require that target and auxiliary variables

are available for all population elements. With respect to simulating

satellite waveforms, the computational burden was, however, too heavy

for the current study.

For point estimates, we further observed some variation among

Table 1

Summary statistics of predictor variables used in the biomass estimation model, separated

by sampling phases: cv – coefficient of variation, skew – skewness, kurt – kurtosis. The

footprint radius for feature extraction was 10 m.

n Min Max Mean cv skew kurt

Field 264 dp2p 0.9 25.5 11.1 0.62 −0.11 −1.23

hHOME 1.2 23.7 8.1 0.71 0.44 −0.92

h95 2.1 29.1 16.1 0.47 −0.53 −0.85

Satellite 746 dp2p 0.9 30.0 11.5 0.62 −0.03 −1.13

hHOME 0.9 24.3 8.3 0.72 0.43 −1.06

h95 1.8 33.0 17.3 0.43 −0.54 −0.58

All 1010 dp2p 0.9 30.0 11.4 0.62 −0.05 −1.14

hHOME 0.9 24.3 8.3 0.71 0.43 −1.02

h95 1.8 33.0 17.0 0.44 −0.55 −0.63

Table 2

Model fit statistics, AGB density estimates and estimated standard errors in dependence of

footprint size: ME – model efficiency, RMSE – root mean square error, −y – estimated

biomass density, −SE y( )ma – model-assisted standard error estimate, −SE y( )hy – hybrid-in-

ference standard error estimate.

Footprint radius

[m]

ME RMSE

[Mg ha−1]

−y
[Mg ha−1]

−SE y( )ma

[Mg ha−1]

−SE y( )hy

[Mg ha−1]

2.5 0.62 45.9 101.1 3.4 4.1

5.0 0.71 39.6 101.4 3.2 3.3

7.5 0.78 35.1 101.9 3.0 2.9

10.0 0.80 33.4 101.3 2.9 2.8

12.5 0.78 34.6 100.8 2.9 2.9

15.0 0.76 36.7 100.6 3.0 2.9

17.5 0.73 38.3 100.7 3.1 3.1

20.0 0.71 39.8 100.6 3.2 3.1

Table 3

Model fit statistics, AGB density estimates and estimated standard errors in dependence of horizontal displacement distance (the footprint radius was fixed to 10 m). Results for different

directions of the same displacement are averaged. Abbreviations are as follows: ME – model efficiency, RMSE – root mean square error,−y – estimated biomass density, −SE y( )ma – model-

assisted standard error estimate, −SE y( )hy – hybrid-inference standard error estimate.

Displacement

[m]

Number of observations ME RMSE

[Mg ha−1]

−y
[Mg ha−1]

−SE y( )ma

[Mg ha−1]

−SE y( )hy

[Mg ha−1]

0.0 1 0.80 33.4 101.3 2.9 2.8

5.0 4 0.75 36.9 101.0 3.1 3.3

7.1 4 0.73 38.8 100.0 3.1 3.5

10.0 4 0.67 42.6 100.3 3.3 3.8

11.2 8 0.65 43.6 100.0 3.3 4.0

14.1 4 0.60 47.2 100.5 3.5 4.4
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values from the different waveform sets. For example, the lowest AGB

density observed in Table 2 is 100.6 Mg per hectare, while the largest

value observed is 101.9 Mg per hectare. This variation can be entirely

attributed to differences in the simulated waveforms from including

different ALS data in the simulations by changing footprint size. This

directly affects parameter estimates and thus point and interval esti-

mates of AGB density. In combination with zero model residual sums

and equal inclusion probabilities, the model-assisted correction factor

in Eq. (4), as already mentioned, has no effect. Note, however, that the

individual point estimates lie well within each other's confidence in-

tervals. The same applies to the results in Table 3.

For sake of comparison, the field-based estimate of AGB was

97.1 Mg per hectare with an estimated standard error of 4.6 Mg per

hectare. Thus, by including SSL data to facilitate AGB estimation in the

manner shown here, the relative standard error of estimation was re-

duced by approx. 37% in the best case. The rather small difference of

the field-based point estimate in comparison to the SSL supported es-

timates can be explained by the summary provided in Table 1. The

slightly larger model predictor variables on SSL-only plots resulted in,

on average, larger model predictions. Otherwise, the statistics in

Table 1 show that the forest conditions in the two sets are comparable.

5. Conclusions

In this study we analyzed the effect of simulated LiDAR footprint

size and geolocation error on AGB estimates. The AGB estimates were

obtained from a first phase sample of simulated SL footprints and a

smaller second phase sample of co-registered field plots. The large-

footprint, nadir-looking SL waveforms were simulated by spatial in-

tegration of the small-footprint ALS waveforms found within the SSL

beam cone. The shape of the simulated waveforms reflected well dif-

ferent forest structure, whereas the height metrics derived from the SSL

waveforms showed high correlation (> 0.7) with the AGB of the field

plots.

Simulating space-borne LiDAR waveforms with different footprint

size, we showed that the size of field plots should match the footprint

size of the satellite observations. The other way around, we could also

say that future space-borne LiDAR missions should be planned in a way

that footprint sizes match field plot sizes commonly used in forest in-

ventories. The larger the mismatch, the more the modeling efforts are

affected in both directions (under or oversized footprints or field plots,

respectively).

We saw a clear effect of geolocation error in the sense that standard

errors increased with increasing horizontal displacement. The largest

standard error estimate was 17% larger than the smallest standard error

estimate if model-assisted estimation was used. For model-based in-

ference, the estimated difference was 36%. It is, thus, important that

future LiDAR satellites designed for operational forest monitoring will

provide accurate coordinates, preferably sub meter, for the position of

the laser footprints. Since the field data generally will be obtained after

the LiDAR data, it is the coordinate for the actual footprint, and not the

possibility to beforehand hit a specific target that is of importance. The

results in this article is however dependent on the properties of the test

site (temperate forest in southern Sweden). In homogenous forest areas

such an effect can somewhat be dampened by autocorrelation, meaning

that nearby points tend to be similar in the stand characteristics. In

fragmented areas (forest, non-forest), however, or intensively managed

forest areas (clear cut systems, even-aged plantation forest), correlation

lengths can be short and areas in the immediate neighborhood of the

field sample location can have completely different properties.
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Fig. 6. Estimated standard errors of AGB estimates

in dependence of horizontal displacement distance

between field and satellite observations (the foot-

print radius was fixed to 10 m). The left panel gives

estimates following the model-assisted estimator

and the right panel following hybrid-inference.

Differences among observations of the same dis-

placement are due to different directions of dis-

placement.
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Appendix A

Fig. A.1. Model validation – footprint size. Graphs of predicted vs. observed AGB, here for the footprint size waveform sets. The radius of the footprint is given above the single scatter

plots in m. The radius of the field plots was 10 m.
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Fig. A.2. Model validation – footprint size. Group means of predicted vs. observed AGB, here for the footprint size waveform sets. The radius of the footprint is given above the single

scatter plots in m. The radius of the field plots was 10 m.
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Appendix B

Fig. B.1. Model validation – Geolocation error. Graphs of predicted vs. observed AGB, here for the geolocation error waveform sets. Above the single scatter plots the displacement

distance in m and the direction of displacement in degrees are given. The footprint radius was fixed to 10 m, and the field plot radius was 10 m.
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Fig. B.2. Model validation – Geolocation error. Group means of predicted vs. observed AGB, here for the geolocation error waveform sets. Above the single scatter plots the displacement

distance in m and the direction of displacement in degrees are given. The footprint radius was fixed to 10 m, and the field plot radius was 10 m.

References

Abdalati, W., Zwally, H.J., Bindschadler, R., Csatho, B., Farrell, S.L., Fricker, H.A.,
Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S.,
Schutz, B., Smith, B., Spinhirne, J., Webb, C., 2010. The ICESat-2 laser altimetry
mission. Proc. IEEE 98, 735–751.

Axelsson, P.E., 1999. Processing of laser scanner data - algorithms and applications. ISPRS
J. Photogramm. Remote Sens. 54, 138–147.

Blair, J.B., Hofton, M.A., 1999. Modeling laser altimeter return waveforms over complex
vegetation using high-resolution elevation data. Geophys. Res. Lett. 26, 2509–2512.

Boudreau, J., Nelson, R., Margolis, H., Beaudoin, A., Guindon, L., Kimes, D., 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Québec. Remote Sens. Environ. 112, 3876–3890.

Duong, H., Lindenbergh, R., Pfeifer, N., Vosselman, G., 2009. ICESat full-waveform alti-
metry compared to airborne laser scanning altimetry over The Netherlands. IEEE
Trans. Geosci. Remote Sens. 47, 3365–3378.

Ene, L.T., Næsset, E., Gobakken, T., Gregoire, T.G., Ståhl, G., Holm, S., 2013. A simulation
approach for accuracy assessment of two-phase post-stratified estimation in large-
area LiDAR biomass surveys. Remote Sens. Environ. 133, 210–224.

Frazer, G.W., Magnussen, S., Wulder, M.A., Niemann, K.O., 2011. Simulated impact of

sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-
derived estimates of forest stand biomass. Remote Sens. Environ. 115, 636–649.

Gastellu-Etchegorry, J.P., Yin, T.G., Lauret, N., Cajgfinger, T., Gregoire, T., Grau, E.,
Feret, J.B., Lopes, M., Guilleux, J., Dedieu, G., Malenovsky, Z., Cook, B.D., Morton,
D., Rubio, J., Durrieu, S., Cazanave, G., Martin, E., Ristorcelli, T., 2015. Discrete
anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectro-
radiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens. 7,
1667–1701.

Gobakken, T., Næsset, E., 2009. Assessing effects of positioning errors and sample plot
size on biophysical stand properties derived from airborne laser scanner data. Can. J.
For. Res. 39, 1036–1052.

Goncalves, F., Treuhaft, R., Law, B., Almeida, A., Walker, W., Baccini, A., dos Santos, J.R.,
Graca, P., 2017. Estimating aboveground biomass in tropical forests: field methods
and error analysis for the calibration of remote sensing observations. Remote Sens. 9.

Gregoire, T.G., Stahl, G., Naesset, E., Gobakken, T., Nelson, R., Holm, S., 2011. Model-
assisted estimation of biomass in a LiDAR sample survey in Hedmark County,
Norway. Can. J. For. Res. 41, 83–95.

Gwenzi, D., Lefsky, M.A., Suchdeo, V.P., Harding, D.J., 2016. Prospects of the ICESat-2
laser altimetry mission for savanna ecosystem structural studies based on airborne
simulation data. ISPRS J. Photogramm. Remote Sens. 118, 68–82.

Hall, F.G., Bergen, K., Blair, J.B., Dubayah, R., Houghton, R., Hurtt, G., Kellndorfer, J.,

M. Milenković et al.

107



Lefsky, M., Ranson, J., Saatchi, S., Shugart, H.H., Wickland, D., 2011. Characterizing
3D vegetation structure from space: mission requirements. Remote Sens. Environ.
115, 2753–2775.

Holm, S., Nelson, R., Ståhl, G., 2017. Hybrid three-phase estimators for large-area forest
inventory using ground plots, airborne lidar, and space lidar. Remote Sens. Environ.
197, 85–97.

Lefsky, M.A., 2010. A global forest canopy height map from the moderate resolution
imaging spectroradiometer and the geoscience laser altimeter system: a global forest
canopy height map. Geophys. Res. Lett. 37 (n/a-n/a).

Lefsky, M.A., Harding, D., Cohen, W.B., Parker, G., Shugart, H.H., 1999. Surface lidar
remote sensing of basal area and biomass in deciduous forests of eastern Maryland,
USA. Remote Sens. Environ. 67, 83–98.

Lu, H., Pang, Y., Li, Z.Y., Chen, B.W., 2015. An Automatic Range Ambiguity Solution in
High-Repetition-Rate Airborne Laser Scanner Using Priori Terrain Prediction. IEEE
Geosci. Remote Sens. Lett. 12, 2232–2236.

Magnussen, S., 2015. Arguments for a model-dependent inference? Forestry 88, 317–325.
Magnussen, S., Frazer, G., Penner, M., 2016. Alternative mean-squared error estimators

for synthetic estimators of domain means. J. Appl. Stat. 43, 2550–2573.
Mandallaz, D., 2008. Sampling Techniques for Forest Inventories. Chapman &Hall/CRC,

Boca Raton, FL.
Margolis, H.A., Nelson, R.F., Montesano, P.M., Beaudoin, A., Sun, G., Andersen, H.-E.,

Wulder, M.A., 2015. Combining satellite lidar, airborne lidar, and ground plots to
estimate the amount and distribution of aboveground biomass in the boreal forest of
North America. Can. J. For. Res. 45, 838–855.

Marklund, L.G. (Ed.), 1988. Biomass Functions for Pine, Spruce and Birch in Sweden. Dep.
of For. Surv..

Maselli, F., Chiesi, M., Mura, M., Marchetti, M., Corona, P., Chirici, G., 2014.
Combination of optical and LiDAR satellite imagery with forest inventory data to
improve wall-to-wall assessment of growing stock in Italy. Int. J. Appl. Earth Obs.
Geoinf. 26, 377–386.

MATLAB, 2016. Signal Processing Toolbox: Release Notes (R2016b). The MathWorks.
McCulloch, C.E., Searle, S.R., Neuhaus, J.M., 2008. Generalized, Linear, and Mixed

Models, 2nd ed. Wiley, Hoboken, N.J.
McRoberts, R.E., Naesset, E., Gobakken, T., 2013. Accuracy and precision for remote

sensing applications of nonlinear model-based inference. IEEE J. Sel. Top. Appl. Earth
Observ. Remote. Sens. 6, 27–34.

Montesano, P.M., Rosette, J., Sun, G., North, P., Nelson, R.F., Dubayah, R.O., Ranson,
K.J., Kharuk, V., 2015. The uncertainty of biomass estimates from modeled ICESat-2
returns across a boreal forest gradient. Remote Sens. Environ. 158, 95–109.

NASA, 2016. GEDI - High Resolution Ranging of Earth's Forests and Topography On ISS.
NASA Science.

Neigh, C.S.R., Nelson, R.F., Ranson, K.J., Margolis, H.A., Montesano, P.M., Sun, G.,
Kharuk, V., Næsset, E., Wulder, M.A., Andersen, H.-E., 2013. Taking stock of cir-
cumboreal forest carbon with ground measurements, airborne and spaceborne
LiDAR. Remote Sens. Environ. 137, 274–287.

Nelson, R., Boudreau, J., Gregoire, T.G., Margolis, H., Næsset, E., Gobakken, T., Ståhl, G.,
2009. Estimating Quebec provincial forest resources using ICESat/GLAS. Can. J. For.
Res. 39, 862–881.

Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L., Andersen, H.-E.,

deJong, B., Pellat, F.P., Fickel, T., Kauffman, J., Prisley, S., 2017. Lidar-based esti-
mates of aboveground biomass in the continental US and Mexico using ground, air-
borne, and satellite observations. Remote Sens. Environ. 188, 127–140.

North, P.R.J., Rosette, J.A.B., Suarez, J.C., Los, S.O., 2010. A Monte Carlo radiative
transfer model of satellite waveform LiDAR. Int. J. Remote Sens. 31, 1343–1358.

Pang, Y., Lefsky, M., Sun, G., Ranson, J., 2011. Impact of footprint diameter and off-nadir
pointing on the precision of canopy height estimates from spaceborne lidar. Remote
Sens. Environ. 115, 2798–2809.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Team, R.C., 2016. nlme: Linear and
Nonlinear Mixed Effects Models.

Popescu, S.C., Zhao, K., Neuenschwander, A., Lin, C., 2011. Satellite lidar vs. small
footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates
and forest structure metrics at footprint level. Remote Sens. Environ. 115,
2786–2797.

Rejou-Mechain, M., Muller-Landau, H.C., Detto, M., Thomas, S.C., Le Toan, T., Saatchi,
S.S., Barreto-Silva, J.S., Bourg, N.A., Bunyavejchewin, S., Butt, N., Brockelman, W.Y.,
Cao, M., Cardenas, D., Chiang, J.M., Chuyong, G.B., Clay, K., Condit, R., Dattaraja,
H.S., Davies, S.J., Duque, A., Esufali, S., Ewango, C., Fernando, R.H.S., Fletcher, C.D.,
Gunatilleke, I.A.U.N., Hao, Z., Harms, K.E., Hart, T.B., Herault, B., Howe, R.W.,
Hubbell, S.P., Johnson, D.J., Kenfack, D., Larson, A.J., Lin, L., Lin, Y., Lutz, J.A.,
Makana, J.R., Malhi, Y., Marthews, T.R., McEwan, R.W., McMahon, S.M., McShea,
W.J., Muscarella, R., Nathalang, A., Noor, N.S.M., Nytch, C.J., Oliveira, A.A., Phillips,
R.P., Pongpattananurak, N., Punchi-Manage, R., Salim, R., Schurman, J., Sukumar,
R., Suresh, H.S., Suwanvecho, U., Thomas, D.W., Thompson, J., Uriarte, M., Valencia,
R., Vicentini, A., Wolf, A.T., Yap, S., Yuan, Z., Zartman, C.E., Zimmerman, J.K.,
Chave, J., 2014. Local spatial structure of forest biomass and its consequences for
remote sensing of carbon stocks. Biogeosciences 11, 6827–6840.

Rieger, P., Ullrich, A. (Eds.), 2011. Resolving Range Ambiguities in High-repetition Rate
Airborne Lidar Applications, (pp. 81860A-81860A-81868).

Riegl, 2013. Waveform Extraction Library. © RIEGL Laser Measurement Systems GmbH,
Horn, Austria Printed on: March, 18. 2013.

Saarela, S., Schnell, S., Tuominen, S., Balázs, A., Hyyppä, J., Grafström, A., Ståhl, G.,
2016. Effects of positional errors in model-assisted and model-based estimation of
growing stock volume. Remote Sens. Environ. 172, 101–108.

Ståhl, G., Saarela, S., Schnell, S., Holm, S., Breidenbach, J., Healey, S.P., Patterson, P.L.,
Magnussen, S., Næsset, E., McRoberts, R.E., Gregoire, T.G., 2016. Use of models in
large-area forest surveys: comparing model-assisted, model-based and hybrid esti-
mation. For. Ecosyst. 3, 1–11.

Sun, G., Ranson, K.J., Kimes, D.S., Blair, J.B., Kovacs, K., 2008. Forest vertical structure
from GLAS: an evaluation using LVIS and SRTM data. Remote Sens. Environ. 112,
107–117.

Tomppo, E., Gschwantner, T., Lawrence, M., 2010. National Forest Inventories. Springer
Netherlands.

Wagner, W., Ullrich, A., Ducic, V., Melzer, T., Studnicka, N., 2006. Gaussian decom-
position and calibration of a novel small-footprint full-waveform digitising airborne
laser scanner. ISPRS J. Photogramm. Remote Sens. 60, 100–112.

Wulder, M.A., White, J.C., Nelson, R.F., Næsset, E., Ørka, H.O., Coops, N.C., Hilker, T.,
Bater, C.W., Gobakken, T., 2012. Lidar sampling for large-area forest characteriza-
tion: a review. Remote Sens. Environ. 121, 196–209.

M. Milenković et al.

108



109 

3.6 Paper VI 

Title: Roughness Spectra Derived from Multi-Scale LiDAR Point Clouds: 
A Comparison and Sensitivity Analysis 

Authors: Milenković, M., Ressl, C., Karel, W., Mandlburger, G. and Pfeifer, N. 

Submitted to: ISPRS International Journal of Geo-Information 

Licence: ©2017 Authors. This manuscript version is made available under 
the Creative Commons Attribution 4.0 (CC BY 4.0) license 



ISPRS Int. J. Geo-Inf. 2017, 6, x; doi: FOR PEER REVIEW 

Type of the Paper: Article 

Roughness Spectra Derived from Multi-Scale LiDAR 
Point Clouds: A Comparison and Sensitivity Analysis 
Milutin Milenković 1,*, Camillo Ressl 1, Wilfried Karel 1, Gottfried Mandlburger 1 and Norbert 
Pfeifer 1 

1 Department of Geodesy and Geoinformation (GEO), Technische Universität Wien (TU Wien), 
Gußhausstraße 27-29, 1040 Vienna, Austria 

* Correspondence: milutin.milenkovic@geo.tuwien.ac.at; Tel.: +43-(1)-58801-12254

Academic Editor: name 
Received: date; Accepted: date; Published: date 

Abstract: The roughness spectrum (i.e. the power spectral density) is a derivate of digital terrain 
models (DTMs) that is used as a surface roughness descriptor in many geomorphological and 
physical models. Although light detection and ranging (LiDAR) has become one of the main data 
sources for DTM calculation, it is still unknown how roughness spectra are affected when calculated 
from different LiDAR point clouds, or when they are processed differently. In this paper, we used 
three different LiDAR point clouds of a 1 m x 10 m gravel plot to derive and analyse roughness 
spectra from the interpolated DTMs. The LiDAR point clouds were acquired using terrestrial laser 
scanning (TLS), and laser scanning from both an unmanned aerial vehicle (ULS) and an aeroplane 
(ALS). The corresponding roughness spectra are derived first as the ensemble-wise averaged 
periodograms, and then, the spectral differences are analysed with a dB threshold that is based on 
the 95 % confidence intervals of the periodograms. The aim is to determine scales (spatial 
wavelengths) over which the analysed spectra can be used interchangeably. The results show that 
one TLS scan can measure roughness spectra for wavelengths larger than 1 cm (i.e., two times its 
footprint size) and up to 10 m, with spectral differences less than 0.65 dB. For the same dB threshold, 
the ULS and TLS spectra can be used interchangeably for wavelengths larger than about 1.2 dm (i.e., 
five times the ULS footprint size). However, the interpolation parameters should be optimized to 
make the ULS spectrum more accurate at wavelengths smaller than 1 m. The plot size was, however, 
too small to draw particular conclusions about ALS spectra. These results show that novel ULS data 
has a high potential to replace TLS data for roughness spectrum calculation in many applications. 

Keywords: laser scanning; UAV; surface interpolation; power spectral density; spectral slope; gravel 
roughness 

1. Introduction

Light Detection and Ranging (LiDAR) is one of the primary measurement techniques used 
nowadays for derivation of digital terrain models (DTM) in environmental applications. LiDAR, also 
referred to as laser scanning, provides highly accurate and dense 3D point measurements (point 
clouds) that can be acquired at different measurement scales. For example, terrestrial laser scanning 
(TLS) can measure micro-scale surface features (< 1 m) such as pebbles or soil clods [1-3]. Such data 
typically have a coverage of a few tens of meters. A coverage of, e.g., a few km is possible when a 
TLS system is mounted on a moving vehicle or a river boat [4, 5]. These so-called mobile mapping 
systems also include a global navigation satellite system (GNSS) and/or an inertial measurement unit 
(IMU) for georeferencing the acquired points. Laser scanning performed from aeroplanes (ALS) 
constitutes another dynamic, mobile mapping system that provides even larger coverage, but also 
features lower resolution compared to TLS. However, such data are able to depict topographic 
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signatures at the landscape scale relevant for hydrology and geomorphology [5-9]. Therefore, LiDAR 
data are extremely useful for describing natural surfaces at several spatial scales. 

One way to describe natural surfaces over different spatial scales is by using the roughness 
spectrum [8, 10, 11]. This is a DTM derivative that shows the distribution of the terrain variance over 
a certain range of spatial frequencies (wavelengths), where each frequency represents a sinusoidal 
component of the DTM in the spatial domain. More precisely, the roughness spectrum is the surface’s 
power spectral density, i.e. the Fourier transform of the surface’s autocorrelation function. The 
calculation of roughness spectra is typically based on the Fast Fourier Transform (FFT) algorithm 
applied on a regularly-sampled elevation profile or a gridded DTM [8, 12, 13]. Hedge and Masselink 
[14] summarized the major steps of this methodology for time series data, but they are also valid in
case of gridded DTMs [8]. As the elevation profiles are discrete and finite, a roughness spectrum has
variances only in a certain span of discrete wavelengths (a particular frequency band). The longest
(DC) and the smallest (Nyquist) wavelengths of this frequency band correspond exactly to the profile
length and the double of the point spacing, respectively. Thus, for a LiDAR dataset, the DC and
Nyquist wavelengths are defined by its spatial coverage and sampling distance, respectively.

Roughness spectra are extensively used to characterize surface roughness in many physical and 
environmental models. The radar backscattering models, for example, use the roughness spectrum 
to better define the scattering characteristics of certain natural surfaces and to predict the amount of 
the backscatter energy from such surfaces [15]. Then, the roughness spectrum is used to describe the 
roughness length of the boundary surface and to analyse its wind velocity profile for different 
topographic scales [16]. Similarly, in hydraulic models, the roughness spectrum and its slope are used 
to characterize grain roughness and local microtopography as well as to analyse the flow velocity 
spectrum [17, 18]. Roughness spectra are also employed to quantify the influence of the Earth’s 
surface processes on landscape shapes [8], or to describe the seafloor topography [19]. 

For most of the above applications, roughness spectra are, or can be, derived from multi-scale 
LiDAR point clouds. These LiDAR point clouds have first to be interpolated into gridded DTMs to 
apply the Fourier-based methodology and to derive the roughness spectra. It is, however, not known 
which frequencies of the resulting spectra are affected by the selected DTM interpolation method. 
Furthermore, multi-scale LiDAR datasets have different resolutions and coverages, and thus, provide 
spectra in different frequency bands. To combine such complementary data, it is important to know 
over which spatial scales the corresponding roughness spectra can be used interchangeably. Such an 
analysis is important to understand better how to measure surfaces with LiDAR and how to better 
combine these complementary LiDAR data to get roughness spectra over a larger frequency band. 

In this study, we sampled a 1 m x 10 m gravel plot with three different LiDAR techniques and 
analysed and compared the corresponding roughness spectra. The LiDAR techniques used here 
comprise terrestrial laser scanning (TLS), laser scanning from both an unmanned aerial vehicle (ULS) 
and an aeroplane (ALS). It is noted that the ULS data were acquired with a novel RIEGL VUX-1 UAV 
system that was for the first time applied in a surface roughness application. Furthermore, the gravel 
plot was extensively sampled with TLS (2.5 hours of effective scanning with 14 high-resolution 
scans), whereas the ALS and ULS data were acquired in the course of a topographic survey with the 
aim to cover a larger river section. Therefore, the focus of the analysis was more on the TLS data. In 
addition, a set of high-resolution handheld images of the gravel plot was acquired and processed to 
have a non-LiDAR based roughness spectrum in the comparison. This data set also served as a 
reference for high-frequency surface components, as the ground sampling distance (GSD) of the 
images was ten times smaller than the TLS footprint size. 

1.1. Objectives 

In this study, roughness spectra and their confidence intervals are derived by applying the 
Fourier-based methodology standardized by Hedge and Masselink [14]. Previous studies were 
focused more on how particular Fourier-based steps such as profile windowing or detrending affect 
the shape of roughness spectra [10, 13]. Our analysis, in contrast, concentrates on how certain aspects 
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of LiDAR processing affect the shape of the resulting roughness spectrum, and then compares 
multiscale LiDAR spectra. More precisely, the objectives of this study are: 

• To analyse the influence of basic DTM interpolation methods on TLS, ULS and ALS
roughness spectra

• To analyse how the number of TLS scans affects the roughness spectrum
• To compare TLS, ULS and ALS roughness spectra

For the DTM interpolation analysis, TLS, ULS and ALS point clouds are interpolated using basic 
interpolation methods, and then the difference in the shape of the corresponding spectra is analysed. 
The aim is to determine spatial wavelengths that are not affected by the interpolation method. For 
the sake of simplicity, complex interpolation methods (e.g. Kriging) are not applied in this paper as 
they are functions of several parameters and impose stronger restrictions on the input data.  

For the analysis on the number of TLS scans, different combinations of TLS scans are selected 
and the corresponding roughness spectra are compared with the roughness spectrum derived using 
all 14 TLS scans. The aim is to determine if a 1 m x 10 m gravel plot can be measured with a smaller 
number of TLS scans, while still providing an equally accurate roughness spectrum as opposed to 
using all TLS scans. An additional aim is to determine which frequency band can be covered by a 
single TLS scan with its roughness spectrum. 

A comparison of the multiscale LiDAR spectra is done for the first time here. The aim of this 
analysis is to understand the differences in the TLS, ULS and ALS spectra and to determine the spatial 
wavelengths over which they can be used interchangeably. The spectra based on TLS and novel ULS 
data are separately analysed to assess to which degree the ULS spectrum can replace the TLS 
spectrum. 

2. Study Site and Data

Table 1 gives an overview of datasets (and their basic characteristics) used in this study. All the 
data were collected on February 26, 2015 and refer to the same area, i.e. a 1 m x 10 m gravel plot. The 
ALS and ULS data were already available as georeferenced point clouds for this study. Their 
georeferencing is performed with a rigorous strip adjustment procedure that is presented in [20] and 
[21], in detail. The TLS data are processed here from raw point clouds to georeferenced scans. 
Therefore, the input data for roughness spectra calculation, and all further analysis, includes 
individually georeferenced ALS, ULS and TLS point clouds. 

Table 1. Overview of the data used in this paper. The data characteristics refer to the gravel plot area 

Technique Sensor 
Slant 
Range 

Footprint 
diameter 

Mean 
Sampling 
Distance 

Overlapping 
Footprints 

Processing 
stage 

[m] [mm] [mm] 

ALS RIEGL 
LSM-Q1560 

640 – 720 ~ 160 167 No Georef. and 
block adj. strips 

ULS 
RIEGL 

VUX-1 UAV 502 ~ 25 29 No 
Georef. and 

block-adj. strips 

TLS Z+F 
Imager 5010c 

2.5 – 4.5 ~ 5 0.7 Yes Raw data 

DIM1 Nikon D800 1.5 – 2.7 0.53 0.53 No Raw data 
1. Dense Image Matching; 2. Flying height above ground; 3. Ground Sampling Distance (GSD);

Figure 1 shows basic properties of the study site. The 1 m x 10 m gravel plot is located at a point 
bar in the lower part of the pre-alpine Pielach river, a tributary of the Danube in Austria 
(N 48°12'50⋅70"N, E 15°22'27⋅50", WGS 84). The microtopography of the gravel plot (Figure 1d-e) 
mostly consists of unsorted fine (< 2 cm in diameter) and medium (2 to 6 cm) pebbles, while several 
clusters of coarse (> 6 cm) pebbles are also present. The plot also features microtopographic 
undulations at cm to dm scale on top of a global planar slope. 
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Figure 1. Study site properties: (a) Location of the study site and Pielach river; (b) A vertical photo of the gravel 
plot and the point bar; (c) A photo of the TLS setup and the gravel plot; (d) Microtopography of the plot 

visualized by the color-coded DTM of the plot ; (e) Typical pebble sizes within the plot. 

2.1. ALS Data 

The ALS data were acquired with a Riegl LMS-Q1560 dual-channel long-range laser scanning 
system, which acquires two scans for each strip (X-shaped scan lines on the ground, FoV: ±29°). The 
sensor additionally features GNSS/IMU to record the trajectory. The entire system was mounted on 
a Diamond DA42 aircraft.  

The scanning parameters were set to cover the whole river reach and provide at least 10 points 
per m2 for a single strip, i.e. two scans. The pulse repetition rate was 400 kHz, and the flying speed 
was approx. 56 m/s (110 knots). The plot was covered with four strips, resulting in an average point 
density of 36 points per m2. This corresponds to an average point sampling of approximately 17 cm. 
As the flying height was 640 m above the terrain, the footprint diameter was also approximately 
16 cm (the beam divergence being 0.25 mrad). This means that the footprints of individual ALS 
samples were (on average) touching, or just slightly overlapping, one another. 

The raw ALS data had already been preprocessed (see [20] and [21]), providing a georeferenced 
point cloud in the global coordinate system (ETRS89/UTM33N). The ALS preprocessing involved (a) 
extraction of Gaussian echoes, (b) resolving range ambiguities due to the multiple-time-around 
ranging of the used sensor, and (c) direct georeferencing of the extracted echoes. The preprocessing 
was done in the sensor manufacturer software (RiPROCESS) [21]. Additionally, a rigorous strip 
adjustment is done with the objective to minimize point-to-plane distances in overlapping strip areas 
[20]. The standard deviation of the residuals between individual ALS strips is reported to be 1 cm 
[21]. 

2.2. ULS Data 

The ULS data were acquired with the Riegl VUX-1 UAV laser scanner mounted on the Riegl 
RiCOPTER, a remotely piloted octocopter. The sensor is equipped with an IMU/GNSS system to 
record the trajectory. The scanner itself performs online waveform processing, which provides 
additional attributes such as pulse shape deviation and calibrated reflectance readings for each laser 
echo [22]. 

The scanning parameters were set to cover a larger area (~ 100 ha) and provide at least one point 
per dm2 for a single ULS strip. The pulse repetition rate was 350 kHz, and the flying speed was 
approx. 8 m/s (15.5 knots). The plot was covered with ten strips (FoV: 330°), resulting in an average 
point density of 11.8 points per dm2. This corresponds to an average point sampling of ~ 2.9 cm. As 
the flying height was 50 m above the terrain, the footprint diameter was ~2.5 cm (the beam divergence 
being 0.5 mrad). Thus, the footprints of individual ULS samples were (on average) not overlapping 
one another. As in the case of the ALS data, the raw ULS data had been preprocessed before (see [20] 
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and [21]), providing a georeferenced point cloud in the same global coordinate system. The standard 
deviation of the point-to-plane residuals is reported to be below 2 cm for both the ULS strips only 
and the ULS and ALS strips combined [20]. 

2.3. TLS Data 

The gravel plot was extensively scanned with a Z+F IMAGER® 5010c mounted on a high tripod. 
This scanner utilizes phase shift ranging and has a small beam divergence (0.3 mrad). The beam 
diameter at the exit (0.1 m range) is 3.5 mm, which allows for a high-resolution scanning of close 
objects (maximum range < 130 m). 

The scanning parameters were set to maximize the TLS sampling of the gravel plot and still have 
a reasonable scanning time to acquire as many scans as possible. The aim was that the footprints of 
the TLS samples overlap one another already in a single TLS scan. Therefore, the angular resolution 
was set to 0.036° (10000 samples per full circle) and the scanning quality modus “high” was selected. 
This TLS setting leads to a scanning time of 7 min. per scan. The plot was scanned with 14 scans, 
seven taken from each long side of the plot. This so-called opposite scanning minimizes occlusions 
due to object scan shadows. The average point density was 190.3 points per cm2, which corresponds 
to an average point sampling of 0.7 mm. As the scanner height above the terrain was between 2.4 m 
and 2.6 m, and the range not larger than 4.5 m, the TLS footprint diameter was smaller than 5 mm 
within the plot. This means that the TLS footprints are largely overlapping one another. For a single 
scan, the average sampling distance was ~ 2.4 mm (i.e. ~ 17 points per cm2), and thus, the TLS 
footprints are largely overlapping one another even for the single scan samples. Such a scanning 
maximizes the resolution of the TLS data and is also known as correlated scanning [23]. Furthermore, 
scanning from a high tripod ensured the incidence angle being smaller than 52° for 90 % of the data, 
which fulfils the recommendations for soil roughness scanning [3]. 

The raw TLS measurements were first preprocessed and then georeferenced. The pre-processing 
involved the following steps: (a) elimination of erroneous range measurements (so-called mixed 
pixels) caused by phase-based ranging [24], (b) georeferencing of the TLS scans, and (c) export of the 
georeferenced points inside the gravel plot. All steps were performed using the Z+F LaserControl® 
software [25, version 8.6]. The georeferencing of the TLS scans was done indirectly, using four ground 
control points (GCPs) and a “point block adjustment” method implemented in the above software. 
The GCPs were located outside the plot and scan positions, ensuring target visibility in all scans and 
a favourable network geometry for the co-registration. The coordinates of the GCPs were derived 
from the total station measurements and in the global coordinate system of the ALS and ULS data. 
After georeferencing the individual TLS scans, the standard deviation of the 3D distance residuals at 
the GCPs was 1.6 mm. The same statistic derived for individual TLS scans was 0.8 mm. The 
georeferenced TLS scans were then exported for an improved, global co-registration with a version 
of the Iterative Closest Point (ICP) algorithm [20]. The standard deviation of the point-to-plane 
distances between all scans after this global co-registration was 0.6 mm. This suggests a good co-
registration as the ranging noise of the TLS scanner alone is ~ 0.3 mm [26]. 

2.4. Handheld Images 

A set of handheld images of the plot is also acquired to calculate an additional, non LiDAR-based, 
roughness spectrum. In total, 117 images were collected with the full-frame Nikon D800 camera using 
a 28 mm lens. The images were taken from ~ 1.8 m height above the ground and with an overlap of 
70-80 %, which resulted in a GSD not larger than 0.5 mm within the plot.

The images were first oriented, and then dense image matching (DIM) was applied to derive a
DTM. The latter will be referred to as the DIM DTM. The image orientation and self-calibration was 
done using a bundle block adjustment method implemented in the Pix4D software [27]. The 
adjustment also included 18 3D GCPs uniformly distributed along the plot sides and whose 
coordinates were measured by a total station in the global coordinate system. The resulting 
reprojection error was 0.13 pixels, whereas the standard deviation of the height residuals at the GCPs 
was 0.8 mm. Based on this camera orientation, the DIM DTM was calculated using the DIM method 
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implemented in the SURE software [28]. We used the option for automatic interpolation of a DTM 
and specified its grid size to 0.5 mm, which corresponds to the GSD of our images. The latter is ten 
times smaller than the TLS footprint diameter, which enables DIM DTM to serve as the reference for 
high-frequency surface features. 

3. Methods

3.1. Derivation of Roughness Spectra 

The derivation of roughness spectra follows the steps for periodogram calculation 
recommended by Hegge and Masselink [14]. These steps involve: detrending of surface heights, 
sampling of surface profiles (profiling), windowing (tapering), calculating one-sided periodograms, 
reducing the periodogram variance and calculating confidence intervals. As our input is a set of 
independently georeferenced point clouds, our processing involved additionally: (a) data co-
registration and (b) interpolation of point clouds into a grid DTM. Then, DTM rows are randomly 
sampled to build an ensemble of gravel surface profiles to calculate corresponding roughness spectra. 
In the following, these processing steps are explained in detail. 

3.1.1. Co-registration and Detrending 

The georeferenced point clouds were given in the global coordinate system. However, a fine co-
registration with a version of the Iterative Closest Point (ICP) algorithm [20] was additionally applied 
to eliminate residual georeferencing errors before the roughness spectra comparison. The TLS dataset 
served as fixed reference for this fine co-registration, and ICP was used to optimize the 
transformation parameters of rigid body transformations (3 rotations and 3 shifts) that were 
subsequently applied on the remaining data sets (ULS and ALS point clouds). This processing was 
done using the ICP implementation in the OPALS software [29]. 

The point cloud detrending was done by subtracting a global planar trend from the data. Planar 
detrending is typically applied in practice to remove wavelengths longer than the plot length [8, 12]. 
The detrending is also required because of the periodicity assumption in the Fourier-based analysis, 
i.e. to mitigate a height jump between the start- and end-sample of a profile [14]. The planar trend
was estimated here by fitting a regression plane trough the TLS points within the gravel plot. More
precisely, the normal of the regression plane corresponds to the eigenvector of the smallest
eigenvalue of the TLS coordinates’ covariance matrix. The detrending is thus performed by
transforming each point cloud into a local object coordinate system (OCS) of the gravel plot. This
(rigid-body) transformation aligned this eigenvector with the z-axis of the OCS, whereas the
eigenvectors of the largest and the second largest eigenvalues were aligned with the x- and y-axis of
the OCS, respectively.

3.1.2. DTM Interpolation 

For each point cloud in the OCS a DTM grid was computed using the following interpolation 
methods: nearest neighbour (NN), triangular irregular network (TIN), and moving planes (MP). The 
MP interpolation has one additional parameter compared to other methods: the number of 
neighbouring points. For example, the minimum required number of points for MP that allows 
adjustment of the plane is four, but a larger number of points can also be considered. In this study, 
we analysed the sensitivity of roughness spectra with respect to different interpolation methods and 
the number of neighbours. More details about these interpolation methods can be found in [30]. 

It is noted that the DTM grid size was set to 0.5 mm for all the DTMs in the study. This grid size 
is ten times smaller than the footprint diameter of our highest resolution LiDAR data set (the TLS 
point cloud). Such a small grid size has certain advantages for our roughness spectra analysis. First, 
it enables to analyse the behaviour of roughness spectra at frequencies around and higher than the 
diffraction-limit (the wavelength equal to the footprint diameter). Second, it excludes the impact of 
the grid size on our analysis. Furthermore, the same grid size used for all DTMs results in the same 
frequency axis increments, which makes the comparison of roughness spectra easier. 

115



ISPRS Int. J. Geo-Inf. 2017, 6, x FOR PEER REVIEW 

 

It is also noted that our DTM heights are free from a global planar trend, as the latter was 
removed during the transformation into OCS (Section 3.1.1). Furthermore, the same transformation 
ensured that rows and columns of the DTMs are parallel with the major and semi-major axis of the 
gravel plot, respectively. This means that, e.g., each DTM row is 10 m long and contains 2000 samples 
separated by 0.5 mm from one another. These DTM rows are used subsequently to derive roughness 
spectra.  

3.1.3. Roughness Spectrum and Periodogram 

The roughness spectrum was estimated as the ensemble average of hamming-windowed 
periodograms calculated from uniformly sampled DTM rows. The periodogram is the Fourier-based 
estimator of a roughness spectrum [8, 10, 12, 13, 31]. It is also the most commonly used one because 
it can be easily applied using, e.g., the fast Fourier transform algorithm. Here, the periodograms are 
calculated using the MATLAB function periodogram [32]. 

Figure 1 shows periodogram-based estimates of a roughness spectrum (derived from a TLS 
DTM) that are visualized as one-sided power spectral densities given in decibels (dB). Each 
roughness spectrum sample 𝑛𝑛(𝑓𝑓𝑛𝑛,𝑆𝑆𝑛𝑛) is a pair consisting of a roughness spectrum value 𝑆𝑆𝑛𝑛  that 
refers to the spatial frequency 𝑓𝑓𝑛𝑛. There are, in total, 𝑁𝑁/2+1 (𝑛𝑛 = 0, … ,𝑁𝑁/2) samples of a one-sided 
spectrum, where 𝑁𝑁 is the number of DTM row samples (where 𝑁𝑁 is an even number). A spectrum 
sample 𝑛𝑛(𝑓𝑓𝑛𝑛,𝑆𝑆𝑛𝑛) corresponds to a surface harmonic 𝑛𝑛 that, in the spatial domain, is a sine wave with 
the amplitude 𝑐𝑐𝑛𝑛  and the spatial frequency  𝑓𝑓𝑛𝑛 . The relation between 𝑆𝑆𝑛𝑛  and 𝑐𝑐𝑛𝑛  is given as: 
𝑆𝑆𝑛𝑛[𝑑𝑑𝑑𝑑] = 2 ∙ (10 ∙ log10 𝑐𝑐𝑛𝑛2)/∆𝑓𝑓 , where ∆𝑓𝑓 is the frequency resolution. The factor 2 is used to scale 
for the negative frequencies, except for the DC and Nyquist frequencies (𝑓𝑓0 and 𝑓𝑓𝑁𝑁/2, respectively) 
as they do not have a negative counterpart. The frequency resolution is given as: ∆𝑓𝑓 = 𝑓𝑓𝑠𝑠/𝑁𝑁 = 1/(𝑁𝑁 ∙
∆𝑥𝑥), where 𝑓𝑓𝑠𝑠 = 1/∆𝑥𝑥 is the sampling frequency and ∆𝑥𝑥 is the sampling interval. In this paper, we 
analyse 10 m long DTM rows with a grid size of 0.5 mm, which means that ∆𝑥𝑥= 0.5 mm and 𝑁𝑁= 2000. 
Particular frequencies 𝑓𝑓𝑛𝑛  are a set of the following discrete frequencies: 𝑓𝑓𝑛𝑛 = 𝑛𝑛/(𝑁𝑁 ∙ ∆𝑥𝑥) for 𝑛𝑛 =
0, … ,𝑁𝑁/2 , where 𝑛𝑛  is the harmonic number. Each discrete frequency 𝑓𝑓𝑛𝑛  corresponds to the 
wavelength 𝜆𝜆𝑛𝑛 = 1/𝑓𝑓𝑛𝑛. The frequencies 𝑓𝑓𝑛𝑛 are typically plotted in a logarithmic scale, i.e. log10 𝑓𝑓𝑛𝑛, 
like the bottom axis in Figure 2. The top axis shows the corresponding wavelengths. Finally, it is 
noted that the root mean square height 𝑅𝑅𝑅𝑅𝑆𝑆ℎ𝑛𝑛 of the harmonic 𝑛𝑛 is: 𝑅𝑅𝑅𝑅𝑆𝑆ℎ𝑛𝑛 = √2 ∙ 𝑐𝑐𝑛𝑛. In Figure 2, 
the right axis shows 𝑅𝑅𝑅𝑅𝑆𝑆ℎ𝑛𝑛 values in mm that correspond to the roughness spectrum axis values in 
dB (the left axis). 

Figure 2. Bin-averaged Roughness Spectra from single, 25 and 500 profiles. 

3.1.4. Windowing, Variance Reduction and Confidence Intervals 

The periodogram has large variance and spectral leakage [33, p. 552]. One way to mitigate 
leakage is by using the hamming window [8, 14], which is also done here. This window has a very 
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steep roll-off at its side lobes [34], which is of advantage when analysing the slope of a spectrum at 
high frequencies. The periodogram variance is reduced here in the same way as in [35] by ensemble 
averaging. The following steps are required for computing the ensemble-wise averaged 
periodogram. First, a certain number ( 𝑅𝑅 ) of DTM rows is uniformly sampled to calculate 
corresponding periodograms  𝑛𝑛�𝑓𝑓𝑛𝑛,𝑆𝑆𝑛𝑛,𝑖𝑖� , where 𝑖𝑖 = 1, … ,𝑅𝑅 . Then, an ensemble-wise averaged 
periodogram 𝑛𝑛(𝑓𝑓𝑛𝑛,𝑆𝑆�̅�𝑛) is calculated by averaging individual periodogram values 𝑆𝑆𝑛𝑛,𝑖𝑖 that refer to the 
same frequency 𝑓𝑓𝑛𝑛,: 𝑆𝑆�̅�𝑛 = 1/𝑅𝑅∑ 𝑆𝑆𝑛𝑛,𝑖𝑖

𝑀𝑀
𝑖𝑖=1 . There are also other approaches for variance reduction, based 

on binning or smoothing of the periodogram, but they reduce its resolution and are more appropriate 
when just a few profiles are available [14]. 

Figure 2 shows how ensemble averaging reduces the variance of the estimated roughness 
spectrum. The black roughness spectrum that has the highest variance is estimated from a single-
profile periodogram. On top of this periodogram, there is its 95 % confidence interval (the black error 
bars) calculated as in [14, Eq.15]: 

𝑆𝑆𝑛𝑛,𝑖𝑖 ∙ 𝜈𝜈/𝜒𝜒𝜈𝜈,1−𝛼𝛼2

2 ≥ 𝑆𝑆𝑛𝑛,𝑖𝑖 ≥ 𝑆𝑆𝑛𝑛,𝑖𝑖 ∙ 𝜈𝜈/𝜒𝜒𝜈𝜈,𝛼𝛼2

2  , (1) 

where 𝛼𝛼 = 0,05 is the confidence level and 𝜈𝜈 is the degree of freedom. These confidence bounds are 
asymmetric, which is due to the chi-square distribution and the two degrees of freedom (𝜐𝜐 = 2): 
𝑆𝑆𝑛𝑛,𝑖𝑖~𝜒𝜒22(𝜐𝜐, 2𝜐𝜐). The red and blue roughness spectra are the ensemble averages based on 25 and 500 
periodograms, respectively. Their confidence intervals (the red and blue error bars) are more 
symmetrical and much smaller than for the single periodogram case. This is because an ensemble-
wise averaged spectrum has more degrees of freedom, 𝑆𝑆�̅�𝑛~𝜒𝜒2𝑀𝑀2 (2𝑅𝑅, 4𝑅𝑅) , compared to 𝑆𝑆𝑛𝑛,𝑖𝑖 , and 
consequently, converges to the Gaussian distribution. Furthermore, this shows that the variance of 
the ensemble-wise averaged spectrum is reduced compared to a single periodogram. In this paper, 
all the analyses are based on ensemble-wise averaged roughness spectra using 500 uniformly 
sampled periodograms. 

3.2. Comparison of Roughness Spectra 

To allow for a quantitative analysis, the comparison was based on absolute differences of 
spectra: ∆𝑆𝑆𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆�̅�𝑛,1 − 𝑆𝑆�̅�𝑛,2). This will be referred to as the spectral difference. In a few cases, when 
more than two spectra are compared at once, the range statistics is used instead: ∆𝑆𝑆𝑛𝑛 = max(𝑆𝑆�̅�𝑛,𝑗𝑗) −
min (𝑆𝑆�̅�𝑛,𝑗𝑗), ∀𝑗𝑗. This will be referred to as the spectral range. Based on this ∆𝑆𝑆𝑛𝑛 value (also in dB as 𝑆𝑆�̅�𝑛,𝑗𝑗), 
it is then decided whether the spectra can be used interchangeably at the frequency 𝑓𝑓𝑛𝑛  i.e. the 
wavelength 𝜆𝜆𝑛𝑛 . To put this decision on a more quantitative ground, ∆𝑆𝑆𝑛𝑛  is compared with a dB 
threshold that was here set to the 95 % confidence level of the spectra. In other words, when ∆𝑆𝑆𝑛𝑛 
exceeds this dB threshold, the 95 % confidence intervals of the two spectra do not overlap any more. 
Therefore, it is concluded that these spectra cannot be used interchangeably at the wavelength 𝜆𝜆𝑛𝑛. It 
is noted that the dB threshold is a function of only the number of profiles M (i.e., the degrees of 
freedom in 𝜒𝜒2𝑀𝑀2 ) when 𝑆𝑆�̅�𝑛 is analysed in the logarithmic scale (Eq.1 and [14]). For our data the dB 
threshold was 0.5 dB. 

In total, three different comparisons are done that correspond to the three objectives set in 
Section 1.1. The following subsections present the spectra used in these comparisons. It is noted that, 
in some of the comparisons, a spectrum derived from the DIM DTM is also used. This spectrum is 
referred to as the DIM spectrum. 

3.2.1. Roughness Spectra and the DTM Interpolation Method 

For each data set, three roughness spectra are derived using the NN-, TIN- and four point MP-
interpolated DTMs. For the TLS data set, these three spectra are referred as: TLS NN spectrum, TLS 
TIN spectrum and TLS MP spectrum, respectively. The analogous naming is used for the ULS- and 
ALS-based spectra. For each data set, the next step is to derive the spectral range based on the 
corresponding NN-, TIN- and MP-spectrum. If the spectral range exceeds the dB threshold, then the 
corresponding spatial wavelength (λ𝑡𝑡ℎ) is reported and wavelengths larger than λ𝑡𝑡ℎ are considered 
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to be insensitive on the selection of the interpolation method. The NN-, TIN- and MP-spectra are also 
compared with the DIM spectrum by calculating corresponding (absolute) spectral differences. It is 
noted that the influence of the interpolation method on the DIM spectrum is not analysed because 
DIM DTM was interpolated by the image matching software. 

3.2.2. Roughness Spectra and the Number of TLS Scans 

Our comparison analysed both the combination of TLS scans and the individual scans. The 
former includes the following scan setups: 7+7 Scan Setup, 3+3 Scan Setup, 2+2 Scan Setup and 1+1 
Scan Setup, and Figure 3 shows schematically the scan positions of these setups. The 7+7 Scan Setup 
includes in total 14 TLS scans (seven per each long side of the plot) and its spectrum is referred to as 
7+7 Scan Setup spectrum. Spectra of the remaining setups are analogously named and they refer to 
six, four and two TLS scans, respectively. The analysis of individual TLS scans is further 
distinguished in two groups: single centre scans and single corner scans. The single centre scans are 
placed approximately at the middle of a plot side, i.e. Scan 4 and Scan 14 in Figure 3. The single corner 
scans are placed at one of the corners of the plot, i.e. Scan 1, Scan 11, Scan 7 and Scan 17 in Figure 3. 

Figure 3. The analysed combinations of TLS scans, i.e. the scan setups 

Each of the roughness spectra corresponding to the analysed scan setups is then compared with 
the 7+7 Scan Setup spectrum. The comparison was done by calculating the absolute spectral 
differences between these spectrum pairs. If the spectral differences are smaller than the dB threshold 
for all wavelengths, then the particular setup is considered to provide equally accurate roughness 
spectra as the 14 scan setup. In contrast, if a spectral difference exceeds the dB threshold, then the 
corresponding spatial wavelength (λ𝑡𝑡ℎ) is reported. 

3.2.3. Roughness Spectra and Multi-Scale LiDAR Data 

The comparison of multiscale spectra is done in two steps. First, only the TLS and ULS spectra 
are compared as TLS has better resolution, whereas ULS has much larger coverage. The questions 
how two spectra fit to one another is analysed as in the previous cases, i.e. by employing the dB 
threshold on the absolute spectral difference and reporting  λ𝑡𝑡ℎ . Then, the multi-scale spectra 
comparison is done for all the techniques. The LiDAR spectra (ALS, ULS and TLS) are plotted 
together with the DIM spectrum, and then it is analysed how they fit to one another. The observed 
differences and similarities of the spectrum shapes are interpreted (in the spatial domain) using the 
colour-coded DTM height maps. The LiDAR spectra used here refer to the same interpolation (the 
four point MP). 

For the TLS and ULS spectra, their spectral slope values (𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇  and 𝛼𝛼𝑈𝑈𝑇𝑇𝑇𝑇 ) are additionally 
analysed. This parameter is the slope of the regression line fitted to a spectrum (given in the 
logarithmic scale) within a particular frequency band [1/λ𝑛𝑛1  1/λ𝑛𝑛2 ] [13]. The spectral slopes are 
calculated for a series of frequency bands where λ𝑛𝑛1 is fixed to the DC component (λ𝐷𝐷𝐷𝐷), whereas 
λ𝑛𝑛2is constantly decreasing up to the Nyquist wavelength (𝑛𝑛2 = 1, … ,𝑁𝑁/2). This results in a series of 
TLS and ULS-based spectral slopes 𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇�λ𝑛𝑛2� and 𝛼𝛼𝑈𝑈𝑇𝑇𝑇𝑇�λ𝑛𝑛2�, each of them referring to a different 
lower wavelength λ𝑛𝑛2. Finally, relative spectral differences are calculated from the corresponding 
ULS and TLS spectral slopes: Δ𝛼𝛼�λ𝑛𝑛2� = (𝛼𝛼𝑈𝑈𝑇𝑇𝑇𝑇�λ𝑛𝑛2� − 𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇(λ𝑛𝑛2))/𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇(λ𝑛𝑛2), where 𝑛𝑛2 = 1, … ,𝑁𝑁/2. 
The value Δ𝛼𝛼�λ𝑛𝑛2� shows how the TLS and ULS spectral slopes differ relatively from one another.  
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4. Results

4.1. Sensitivity on DTM Interpolation Method 

Figure 4 compares the results when different interpolation methods (NN-, TIN- and four-
neighbour MP) are used to interpolate TLS, ULS and ALS data. The columns from left to right in 
Figure 4 correspond to the three mentioned data sets, respectively. The top row shows the roughness 
spectra. The middle row shows spectral ranges calculated form NN-, TIN- and MP- spectrum. The 
bottom row shows the absolute spectral differences of the DIM spectrum to NN-, TIN- and MP-
spectrum independently. For the simplicity of the figure, the DIM spectrum is plotted only once, in 
the figure with TLS spectra (Figure 4a). 

Figure 4. The influence of NN-, TIN and four points MP-interpolation on roughness spectra. The 
figures in columns (from left to right) refer to TLS, ULS and ALS data sets, respectively. The top-row 
plots show roughness spectra. The middle-row figures show the spectral ranges. The bottom-row 
plots show the absolute differences between the DIM spectrum and a LiDAR-based spectrum 
referring to each interpolation method, with the horizontal extent being adapted to the respective 
column. The vertical solid line shows the footprint wavelength. 

Figure 4a compares the roughness spectra that refer to the TLS data. There, the NN-, TIN- and 
MP-spectrum visually agree with one another (and also with the DIM spectrum) for wavelengths 
larger than about 1 cm. As expected, the spectra departure from one another at smaller wavelengths. 
The analysis of the TLS spectral range (Figure 4b) shows that the dB threshold is actually exceeded 
at the wavelength of 18.3 mm. Therefore, for our TLS data, NN, TIN or MP interpolations do not 
affect the roughness spectra at wavelengths larger than 18.3 mm. 
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The same analyses for the ULS and ALS data (Figure 4d-e and Figure 4g-h) show that their 
spectral ranges exceed the dB threshold much earlier, at the wavelengths of 1 m and 5 m, respectively. 
This was expected as the ULS and ALS data are acquired at smaller measurement scales (coarser 
resolutions). For the ULS data, the NN, TIN or MP interpolations do not affect the roughness spectra 
at wavelengths larger than 1 m. However, for the ALS data, the selection of interpolation method is 
particularly important as it affects almost all wavelengths. It is only the DC component and the first 
harmonic that are not affected by the interpolation method. One reason why these two surface 
components are not affected could be that our plot length was too small for analysing the ALS data. 
Therefore, a longer plot should be considered to determine accurately the threshold wavelength for 
the ALS data. 

Figure 4c shows the spectral differences of each TLS spectrum to the DIM spectrum. The spectral 
differences are the smallest for the MP TLS spectrum. The corresponding spectral differences of the 
ULS and ALS data are more complex, but generally, the differences of the MP spectra are again the 
smallest. This is particularly valid around the footprint wavelength (the vertical black solid lines). It 
is noted that these results refer to the MP interpolation when four neighbours are used. The analysis 
with a large number of neighbours was also done, and the results showed that the roughness spectra 
depart earlier (at larger wavelengths) compared to the four point MP. Thus, the four point MP 
interpolation was used in further analysis. 

Table 2: A summary of the spectral range analysis based on the sensitivity on the basic interpolation 
methods (NN, TIN and MP). The dB threshold, λ𝑡𝑡ℎ and ∆S are introduced in Section 3.2. The values 
in the λfootprint column are spatial wavelengths that corresponds to the size of the laser footprint 
diameter, and in the ∆S(λfootprint) column there are the spectral range values found at λfootprint. The 
last two columns list the figures where the parameters are calculated and where they are later used. 

Data 
dB 

Threshold 
λ𝒕𝒕𝒕𝒕 ∆𝐒𝐒(λ𝐭𝐭𝐭𝐭) λ𝐟𝐟𝐟𝐟𝐟𝐟𝐭𝐭𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐭𝐭 ∆𝐒𝐒(λ𝐟𝐟𝐟𝐟𝐟𝐟𝐭𝐭𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐭𝐭) 

Derived in Used in 
[dB] [cm] [dB] [cm] [dB]

TLS 0.5 1.8 0.5 0.5 3.2 Figure 4b Figure 6a; Figure 7a 
ULS 0.5 100 0.5 2.5 8.5 Figure 4e Figure 6a-c; Figure 7a 
ALS 0.5 500 0.5 16 7.9 Figure 4h Figure 7a 

4.2. Sensitivity on Number of TLS Scans 

Figure 5 shows spectra that are derived from different combinations of TLS scans as explained 
in Section 3.2.2. The DIM spectrum is also plotted. The results show that the setups with multiple TLS 
scans and the single centre scans produce spectra that have very similar shape to both the 7+7 Scan 
setup spectrum and the DIM spectrum (Figure 5a-b). The spectra departure (visually) from one 
another at wavelengths smaller than 1 cm. However, the spectral differences exceed the dB threshold 
at larger wavelengths. It is only the 3+3 Scan Setup spectrum for which the threshold wavelength is 
3.9 mm (Figure 5a). As this wavelength is smaller than the diffraction resolution limit of the TLS data 
(the vertical solid line at λ=5 mm), it can be concluded that the 3+3 spectrum is equally accurate as 
the 7+7 spectrum. Figure 5a also shows that the 2+2 and 1+1 spectra are equally accurate as the 7+7 
spectra for wavelengths larger than about 4 cm (the blue and green vertical dashed lines in Figure 5a, 
respectively). The same is true for each of the two Single Scan Centre spectra, but only for 
wavelengths larger than about 5 cm. However, these four spectra exceed the threshold only locally 
and with max (∆𝑆𝑆𝑛𝑛)  being 0.65 dB, which is just slightly above the dB threshold. These small 
differences are not visible in Figure 5a-b, and thus our reported threshold wavelengths should be 
rather considered as a conservative estimate. 
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Figure 5. Influence of the number of TLS scans on roughness spectra; (a) Measurement setups when 
TLS scans are distributed on both sides of the plot; (b) Measurement setups with a single scan placed 
at the middle of one of the logger plot sides; (c) Measurement setups with a single scan placed at one 
of the plot corners. The vertical solid line shows the footprint wavelength. For comparison, the spectra 
for the 7+7 Scan Setup and the DIM DTM are also shown. 

The shape of the Single Scan Corner spectra (Figure 5c) notably deviate from the 7+7 spectrum 
compared to the Single Scan Centre spectra (Figure 5b). Their threshold wavelengths are one order 
of magnitude larger than the ones corresponding to the other scan setups. More precisely, for 
wavelengths larger than 4 dm, the spectrum derived from any single scan taken from the corner of 
the plot is equally accurate as the 7+7 spectrum. However, as this scan is taken from the corner of a 
10 m plot, it can also be considered as a scan taken from the middle of a 20 m long plot. Therefore, 
based on the results presented in Figure 5b and Figure 5c, the following statements can be drawn: 
• a single TLS scan can measure roughness spectra at wavelength scales of either 4 dm to 20 m or

5 cm to 10 m, with a maximum spectral difference less than 0.5 dB (the dB threshold value).
• a single TLS scan can measure roughness spectra at wavelength scales of 1 cm to 10 m (two

orders of magnitude), but with a maximal difference less than 0.65 dB (the value of max (∆𝑆𝑆𝑛𝑛)
in this frequency band, Figure 5b and Table 3)

The above statements are valid when TLS is applied from high tripods. It is expected that TLS from 
classical geodetic tripods is more sensitive because of larger occlusion effects. However, this is to be 
analysed in further studies. 

It should also be noted that the spectral slope derived from the corner scans already deviates for 
wavelengths of a few dm and smaller. For the central scans and other setups the spectral slope is 
different only at sub cm wavelengths. 

Table 3: A summary of the spectral range analyses based on the sensitivity of the number of TLS scans. 
The spectral differences (∆S) are calculated relative to the 7+7 TLS spectrum (i.e. when all 14 scans are 
used). The dB Threshold, λ𝑡𝑡ℎ  and ∆S  are introduced in Section 3.2. The values in the ∆S(λth) 
column are ∆S values found at the wavelength λ𝑡𝑡ℎ. The values in the column are λ∆𝑆𝑆>0.65 𝑑𝑑𝑑𝑑 spatial 
wavelengths where ∆S  exceeds 0.65 dB. The latter dB value is rounded max �∆S(λth)� , which is 
introduced to show that the Single Scans Centre spectra, 2+2 spectra and 1+1 spectra just slightly 
violate the dB threshold (0.5 dB) i.e. only around λ𝑡𝑡ℎ wavelengths. 

Setup 
Number 
of Scans 

dB Threshold λ𝒕𝒕𝒕𝒕 ∆𝐒𝐒(λ𝐭𝐭𝐭𝐭) λ∆𝑺𝑺>𝟎𝟎.𝟔𝟔𝟔𝟔 𝒅𝒅𝒅𝒅 
Derived in 

[dB] [cm] [dB] [cm] 
3+3 Scan setup 6 0.5 0.4 0.5 0.3 Figure 5a 
2+2 Scan Setup 4 0.5 3.6 0.57 0.5 Figure 5a 
1+1 Scan Setup 2 0.5 4.1 0.62 0.8 Figure 5a 

Single Scan Centre 1 1 0.5 5.3 0.61 0.6 Figure 5b 
Single Scan Centre 2 1 0.5 4.5 0.58 0.5 Figure 5b 
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4.3. Comparison of TLS and ULS Roughness Spectra 

Figure 6a shows the TLS and ULS spectra. Both spectra end at the wavelength that corresponds 
to the TLS and ULS footprint diameter, i.e. 25 mm and 5 mm, respectively. The corresponding grey 
rectangles visualize the frequency band where the DTM interpolation influences the shape of the 
spectra (the λ𝑡𝑡ℎ  and λfootprint  values reported in Table 2, Section 4.1). It can be seen that these 
rectangles (frequency bands) do not overlap, which means that the DTM interpolation does not affect 
the TLS spectrum in the ULS interpolation uncertainty band. Thus, the TLS spectrum can serve as the 
reference for the ULS spectrum on this frequency band. Figure 6b shows the absolute difference 
between the TLS and ULS spectra (the black line). The differences exceed the dB threshold at the 
wavelength of about 116 mm, which is almost five times the ULS footprint. The differences at 
wavelengths larger than this λ𝑡𝑡ℎ  are almost linear as shown by their general trend (the red line 
representing a 20 sample running mean). The differences at wavelengths smaller than this λ𝑡𝑡ℎ are 
more complex, but still below 0.8 dB. 

Figure 6. Comparison of TLS and ULS spectra. 

Similar conclusions can be drawn from the relative differences Δ𝛼𝛼  between ULS and TLS 
spectral slopes (Figure 6c). Starting from a wavelength of 1 m, the slope difference constantly 
increases and reaches a maximum of -15 % around λ𝑡𝑡ℎ. However, for wavelengths smaller than λ𝑡𝑡ℎ, 
the slope differences erroneously decrease and eventually change their sign. One reason for this 
different behaviour of the ULS spectrum for wavelengths larger and smaller than λ𝑡𝑡ℎ is that the ULS 
data have less overlapping footprints. A deeper investigation of this behaviour, however, requires 
further experimentation. 

4.4. Multi-Scale Spectra and DTMs 

Figure 7a shows all the LiDAR spectra together with the DIM spectrum. As in Figure 5a, the 
LiDAR spectra end at the wavelengths that corresponds to their footprint diameter (the λfootprint 
values in Table 2), and the grey rectangles show the frequency bands affected by the DTM 
interpolation (the λth values in Table 2). It is only for the TLS spectrum that the frequency band is 
shown differently. The vertical, dashed blue line marks λ𝑡𝑡ℎ  as reported in Table 2 (1.8 cm, the 
influence of interpolation method), whereas the longer wavelength of the grey rectangle (the left, 
vertical full blue line), refers to a wavelength where the TLS and DIM spectra difference exceeds the 
dB threshold. This wavelength is just slightly smaller than 1 cm, which is about two times the TLS 
footprint. Therefore, our DIM spectrum and MP4 TLS spectrum can be used interchangeably for 
wavelengths larger than 1 cm. For wavelengths smaller than 1 cm, the difference between the TLS 
and the DIM spectrum increases linearly. 

Figure 7a also shows that the interpolation uncertainty bands of the ALS and ULS spectra 
overlap. This means that the ULS spectrum can serve as the reference for the ALS spectrum, but only 
in the non-overlapping frequency part, i.e. for wavelengths larger than 1 m. Around this wavelength, 
the ALS spectrum differs the most from the other spectra (Figure 7a). These modulations at the 
wavelengths around 1 m and larger are also visible in the spatial domain, when the color-coded DTM 
heights are compared (Figure 7b-e). This visualization of the DTMs shows that the global 
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microtopography pattern of the plot is similar for the DIM, TLS and ULS DTMs, whereas for the ALS 
DTM, this pattern is distorted.  

Figure 7. The spectra from the multi-scale data and the color-coded height values of the corresponding DTMs. 
The black and red rectangles in the DTMs mark the sub areas shown in the following figure. 

The ULS spectrum differs the most from the TLS and DIM spectra at a different scale, namely at 
wavelengths of a few dm. Figure 8a-d renders the DTMs within the area marked by the black 
rectangles in Figure 7b-e to emphasize better the microtopography components of dm wavelengths. 
For the TLS and DIM DTMs, this microtopography pattern appears very similar at this scale. For the 
ULS DTM, the pattern is slightly distorted. For ALS DTM, however, the pattern is severely distorted 
at the scale of “few dm”, which is expected as its footprint size is of the same order of magnitude. 
Finally, Figure 8e-g renders the DTMs from the area marked by the red rectangles in Figure 7b-e to 
emphasize the differences at cm to mm wavelengths. Here, the ULS DTM shows severely deformed 
microtopography pattern compared to the TLS and DIM DTMs, which is again expected as the ULS 
footprint is larger than this scale. However, at this scale, also the differences between the TLS and 
DIM DEMs become visible. An example is a tiny branch (marked with the black arrow) that is still 
visible in the DIM DTM and in a nadir image of this area (Figure 8e and Figure 8h, respectively), 
whereas this element is not visible in the TLS DTM (Figure 8f). These mm-scale differences between 
the TLS and DIM DEMs are also reflected in the corresponding spectra which start to depart from 
one another at wavelengths smaller than 1 cm (Figure 7a). 

Figure 8. Color-coded height visualization of the DIM-, TLS-, ULS and ALS-DTM in the zoom-in areas marked 
in Figure 7. 

5. Discussion

5.1.1. Spectral Analysis 

Investigating the roughness spectra is a method to analyse DTMs. It gives consistent results for 
the TLS data in the analysis of the scan setup and quantifies the loss of information when reducing 
the number of scans. Also, in the extreme case of using only one scan on the edge of the plot, the loss 
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of quality is quantified. Likewise, the wavelength at which the spectra deviate significantly from each 
other due to different interpolation methods provides insight on the relevance of the choice of a 
certain method. The analysis of the spectra for different interpolation methods from LiDAR data at 
all investigated scales also allowed the conclusion that the four point moving plane interpolation, 
which involves smoothing, is to be preferred over NN and TIN interpolation. Finally, the analysis of 
the difference to a reference spectrum provides a measure that concentrates on the resolution and 
damping of amplitudes of a specific DTM. This is additional information compared to other methods 
of DTM analysis such as the DEM of Differences (DoD), or the measures of the distribution of vertical 
height differences (mean, standard deviation, etc.). 

5.1.2. The dB Threshold 

In this paper, the dB threshold that corresponds to the 95 % confidence interval of the ensemble-
wise averaged periodogram is used to determine the wavelengths over which the spectra can be used 
interchangeably. For our data, this dB threshold was 0.5 dB, which is a rather strict threshold value 
compared to other studies. For example, in an application of roughness spectra for microwave 
backscatter models, a spectra difference threshold of 2 dB was acceptable [36]. Then, in a sea floor 
roughness application, the spectra differences were analysed using a threshold of 1 dB [19]. 
Therefore, the λ𝑡𝑡ℎ  values reported in this paper should be considered as rather conservative 
estimates. 

A dB threshold that is tailored to a particular application would exactly define requirements for 
the LiDAR measurements and the roughness spectrum calculation, but only for this particular 
application. A threshold based on the confidence interval of the roughness spectrum has the 
advantage of being application independent, and furthermore, it accounts for the variance of the 
ensemble-wise averaged spectrum. 

5.1.3. ALS and ULS Data 

Comparison of multi-scale LiDAR data is always challenging as such measurements involve 
many setup parameters. Our TLS data, for example, were optimal for the analysis as the plot was 
oversampled by a large number of scans, and by scanning in the correlated sampling mode, i.e. with 
highly overlapping footprints within a single scan. This then allowed for optimizing the TLS setup 
for the roughness spectrum calculation. On the other hand, ALS and ULS did not offer an as extensive 
sampling of the plot as in the TLS case. Therefore, to optimize the ALS and ULS setups for roughness 
spectra calculation, it would be important to acquire ALS and ULS data that have both highly 
overlapping footprints within the scan line and a large number of scans (strips) that cover the plot. 

We have the hypothesis that an extensive sampling of the plot with ALS and ULS would 
certainly result in more optimistic λ𝑡𝑡ℎ values then the ones reported here for the ULS and ALS data. 
For example, in Figure 3, the spectral range value ∆𝑆𝑆𝑓𝑓𝑓𝑓 at the footprint wavelength is almost 8 dB for 
ALS and ULS data, whereas for TLS data, this value is about 3 dB. This shows that the ULS and ALS 
spectra are more sensitive to the interpolation method than the TLS spectra. One reason for this could 
be a lower footprint overlap of ULS and ALS data compared to the TLS data. It would be interesting 
to see, for example, if both ∆𝑆𝑆𝑓𝑓𝑓𝑓 and λ𝑡𝑡ℎ values would be smaller than the values reported in Section 
4.1 when derived from ULS and ALS data with highly overlapping footprints. In addition, it would 
be interesting to see if the complex differences observed between the TLS and ULS spectra (Figure 
6b) could become linear, like the differences observed between the TLS and DIM spectra (the grey 
rectangle with blue edges, Figure 7a). Highly overlapping footprints correspond to an extremely 
dense sampling of surface heights, and thus, roughness spectra will be less affected by the 
interpolation method. This means that the agreement between TLS and ULS spectra can be expected 
to improve even to sub dm wavelengths, e.g., when the sampling distance of ULS points is notably 
smaller than the ULS footprint diameter. Having further in mind that our dB threshold is rather strict 
compared to other publications, it can be concluded that ULS data has a high potential to replace TLS 
data for roughness spectrum calculation in many applications. This should be, however, shown in 
further experiments. 
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5.1.4. Limitations and Suggested Further Experiments 

The idea behind this work was to initiate the quality analysis of roughness spectrum calculation 
from LiDAR data. The outcome, indeed, provided valuable conclusions on the TLS setup and the 
comparison of TLS, ULS and ALS spectra (the range of their interchangeability). However, the 
experiment also revealed that both the experimental setup and the roughness spectra analysis can be 
improved in further studies. 

One way to extend the analysis of roughness spectra could be, e.g., by propagating them further 
through geophysical models and analysing how the model predictions are sensitive to changes in the 
roughness spectrum. This analysis would help in defining better dB thresholds for particular 
applications. Then, further analysis could consider more complex interpolation methods, such as 
Kriging. As Section 4.3 showed, the TLS spectrum can be used as the reference in optimizing the 
interpolation parameters for ULS data, e.g. by minimizing the differences between the ULS- and TLS- 
spectrum at wavelengths smaller than 1 m. Similarly, the ULS spectrum can then be used as the 
reference to optimize the interpolation parameters for ALS data. 

Such an analysis would also require improvements in the experimental setup and data 
acquisition. For example, the plot size should be much longer than 10 m for analysing the ALS 
spectra. A plot size of 100 m, for example, would be feasible for TLS, as it can be surveyed with 10 
TLS scans (according to the conclusions from Section 4.2). ULS and ALS data should be acquired with 
a point spacing (both within and between the scan lines) notably smaller than their footprint 
diameters (the correlated scanning [23]). This means that the plot should be scanned from a large 
number of overlapping strips (flight lines). Such data would allow for the optimisation of ALS and 
ULS setups for roughness spectrum calculation as was done here for our TLS data. 

6. Conclusions

In this paper we used TLS, ULS and ALS point clouds of a 1 m x10 m gravel plot to derive and 
analyse roughness spectra from interpolated DTMs. The TLS, ULS and ALS spectra are calculated as 
the ensemble-wise averaged periodograms. The spectral comparison is done using the dB threshold 
that is based on the 95 % confidence interval of the ensemble-wise averaged periodograms. The aim 
was to determine the scales (spatial wavelengths) over which the spectra can be used 
interchangeably. Furthermore, the extensive sampling of the plot with TLS allowed to optimize the 
TLS measurement setup for roughness spectra calculation. 

The analysis showed that one TLS scan can be used to measure 10 m long plots and derive 
roughness spectra that are reliable for wavelengths larger than 5 cm (ten times the TLS footprint size). 
One TLS scan can also measure 20 m long plots, but then the roughness spectrum is only reliable for 
wavelengths larger than 4 dm. At this wavelength, the spectral differences (deformations) remain 
below the derived dB threshold (0.5 dB). However, one TLS scan can also measure roughness spectra 
over 1 cm (two times the TLS footprint size) to 10 m wavelengths, but with spectral differences reaching 
up to 0.65 dB (thus slightly violating the threshold based on the 95 % confidence interval). 

The results also showed that a TLS setup with six scans (three per each longer plot side) provides 
equally accurate roughness spectra as any other setup that includes more than six TLS scans. 
Furthermore, it was shown that the TLS spectrum (based on all the scans) is not affected by basic 
interpolation methods (nearest neighbour, TIN or moving planes) at wavelengths larger than about 
2 cm (four times the TLS footprint size). Finally, the comparison of TLS and DIM spectra showed that 
they agree well to one another for wavelengths larger than 1 cm (two times the TLS footprint size). These 
conclusions refer to a TLS scanning performed from large tripods (scan heights of about 2.5 m) and 
in the correlated sampling mode, i.e. overlapping footprints within a single scan. 

The comparison of the ULS and TLS spectra showed that they agreed well to one another for 
wavelengths larger than about 1.2 dm (about five times the ULS footprint size). At these wavelengths, 
the ULS spectral slope overestimates the TLS spectral slope by about 15 %, although the spectral 
difference is below 0.5 dB. The results also showed that the ULS spectrum is not affected by the choice 
of interpolation method at wavelengths larger than about 1 m. Therefore, the optimisation of the 
interpolation parameters is required to get accurate ULS spectra at wavelengths smaller than 1 m. 
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The plot size was too small to derive more conclusions about the ALS spectrum. However, the 
analysis showed that only the DC component and the first harmonic (5 m wavelength) of the ALS 
spectrum are not affected by the interpolation methods. 

The above results refer to the dB threshold that is strict compared to the dB thresholds used in 
other applications (e.g. 1 dB or 2 dB in sea floor roughness and microwave backscatter modelling, 
respectively). Thus, the above conclusions are rather conservative, and show that ULS data has high 
potential to replace TLS data for roughness spectra calculation in many applications. However, this 
has to be analysed in detail in further studies. 
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4 Discussion 

Most of  the particular aspects are already discussed within the studies (papers) presented 
in the previous section. Therefore, the focus here is on a more general discussion. First, each of  
the particular parametrisation (surface roughness, 3D shoot model and the canopy 
transmittance) is separately discussed with respect to the following aspects: current open 
questions and possible solutions, possibilities for upscaling and their further applications. The 
last subsection here discusses the three different description approaches exercised in this work 
(geometric-stochastic, geometric-deterministic and geometric-radiometric descriptions) and 
presents certain observations drawn from the studies. 

4.1 Surface Roughness 

4.1.1 Standardization of  Roughness Parametrisation 

In this work, different measurement techniques are applied and analysed for roughness 
assessment. Therefore, one practical question is how to standardize roughness results that are 
derived from different measurement techniques. Shepard et al. (2001) recognized this problem 
very early and suggested to standardize (a) the data processing methodology (i.e. certain 
processing steps such as detrending, filtering and intervening) and (b) a list of  the important 
parameters to repot (e.g. RMSh, Hurst exponent, RMS deviation, etc.). The standardization is 
then exercised in the same study on traditional roughness measurements such as mechanical 
profilers, helicopter-borne stereophotography, differential GPS and profiling with a levelling 
instrument and a measurement tape). Jester and Klik (2005) compared roller chain, pin meter, 
portable laser scanner and close-range stereophotography for soil roughness assessment. Their 
analysis showed that each measurement technique has its field of  application. Furthermore, they 
observed that some measurement techniques, such as stereophotogrammetry, require expert 
knowledge in order to avoid measurement errors in the resulting DSM. The roughness 
standardisation is also a subject in more recent studies. Smith (2014) suggested the 
standardization of  the roughness definition, terminology and the measurement scale in the 
characterization of  roughness in Earth science. Martinez-Agirre et al. (2016) analysed cross-
correlation of  21 roughness parameter derived for different soil roughness types, and suggested 
just two of  them (the limiting elevation difference and the mean upslope depression index) to 
be used for differencing among the soil roughness types. 

The results of  this dissertation directly contribute to the roughness standardization topic. In 
Paper II, Paper III and Paper VI, it was shown that each measurement technique has their 
roughness spectra accurate only in a particular frequency band and that some of  these bands are 
overlapping one another. When parameters such as spectral slope or RMSh are derived in the 
overlapping frequency band, then their values are also independent of  the measurement 
technique used. However, one open question is how to compare roughness parameters derived from the 
non-overlapping frequency band. Another related question is how to quantify the differences 
(modulations) of  roughness spectra in the non-overlapping band? 

One method for this problem can be to estimate the transfer function (the frequency response 
and filter kernel functions) between two spectra. The frequency response 𝐻𝐻(𝑗𝑗2π𝑓𝑓) is a complex 
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function that defines how the magnitudes and phases of  a so-called input spectrum (X) need to 
be modulated to produce the magnitudes and phases of  an output spectrum (Y), in a linear shift-
invariant system. The magnitude modulation, i.e. gain 𝐺𝐺(𝑓𝑓), is the ratio of  individual magnitudes 
of  the two spectra, as a function of  the frequency 𝑓𝑓 (Ingle and Proakis 1997, p53-60): 

𝐺𝐺2(𝑓𝑓) = 𝑆𝑆𝑦𝑦𝑦𝑦(𝑓𝑓)
𝑆𝑆𝑥𝑥𝑥𝑥(𝑓𝑓)

 , (2) 

where 𝑆𝑆𝑦𝑦𝑦𝑦(𝑓𝑓) and 𝑆𝑆𝑥𝑥𝑥𝑥(𝑓𝑓) are the power spectral densities (squared magnitudes) of  the output 
and input spectra, respectively. The inverse Fourier transform of  the frequency 
response 𝐻𝐻(𝑗𝑗2π𝑓𝑓) gives the corresponding filter kernel in the spatial domain. The output signal 
can then be calculated as the convolution of  the input signal with the kernel function. In optical 
imaging, for example, the filter kernel corresponds to the point spread function and its Fourier 
transform gives the optical transfer function (Fiete 2010, p62). 

Figure 4 shows how a filter kernel and its gain function looks like when estimated using the 
ensemble averaged spectra of  a TLS DEM and a DIM DEM. The TLS DEM has lower 
resolution compared to the DIM DEM as its magnitudes are modulated at wavelengths smaller 
than about 1 cm (Figure 4c). Furthermore, this modulation is linear up to 5 mm wavelength, 
which was the diameter of  the laser footprint. Figure 4b shows the empirical gain function (blue 
line) derived for the two spectra, and Figure 4a shows the corresponding empirical filter kernel 
(the blue dots) derived as the inverse Fourier transform of  the frequency response function. 
Finally, the empirical filter kernel is approximated by a Gaussian function (the red lines in Figure 
4a-b) with a standard deviation of  8.7 samples (4.4 mm), whereas the amplitude was 0.07 (the 
area below the Gaussian is 1). 

Figure 4: Estimation of  the filter kernel: (a) the empirical filter kernel and its Gaussian approximation, 
(b) empirical gain function (the magnitude modulation) and its Gaussian approximation and (c) The
original TLS and DIM spectra and the spectra from the DIM DEM convolved with the Gaussian kernel.

The above example shows that linear spectral differences can be quantified by a Gaussian kernel 
in the spatial domain. Therefore, the high-resolution DIM DEM can be convolved with such a 
kernel to get a smoothed DEM from which a TLS spectrum can be simulated. As shown in 
Figure 4c, this simulated TLS spectrum (the black line) approximates well the original TLS 
spectrum (the green line) in the frequency band of  linear spectral differences (5 mm – 1 cm 
wavelengths). Therefore, the filter kernel gives a theoretical framework for standardizing the 
roughness parameters derived from a roughness spectrum. This concept should be explored and 
proofed in further roughness spectra studies. 

4.1.2 Surface Roughness Reference 

Introducing an absolute reference for roughness measurements and derived parameters is a 
challenging task. In studies where old measurements techniques are replaced with new ones this 
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is not the problem, as the old technique can serve as a relative reference to the new one. This 
relative comparison is important for transferability of  old results. For example, Mattia et al. 
(2003) analysed the differences in roughness indices derived from a mechanical and laser 
profilometers, and Alex Martinez-Agirre et al. (2018) analysed the differences between laser 
profilometers and point clouds derived from TLS and DIM of  close-range images.  

In this dissertation, only new measurement technologies are analysed, and the relative reference 
is always derived by using a dataset with the highest spatial resolution. For example, in Paper II, 
the triangulating laser scanner is used as the relative reference for TLS. This triangulating scanner 
has a GSD of  about 0.7 mm, which is about five times smaller than the TLS footprint diameter 
in this study (4 mm). Then, in Paper VI, the DIM DEM was used as the relative reference for 
TLS. The DIM DEM was derived using handheld images with a GSD of  0.5 mm, which was 
ten times smaller than the TLS footprint diameter in this study (5 mm). Within the same study 
and for optimizing the number of  TLS scans, a point cloud of  14 merged TLS scans was used 
as the reference for TLS setups using a smaller number of  scans. Paper VI also showed that TLS 
can serve as the reference for ULS- or ALS-spectrum, and that ULS-spectrum can serve as the 
reference for ALS spectrum. This shows that the selection of  relative reference depends also on 
the question analysed. 

The results of  this dissertation also show that there is no single measurement technique that can 
serve as the relative reference for both low- and high-frequency surface components. For high-
frequency surface components (wavelengths < ~1 m), DIM of  close-range images can be used as the 
relative reference for laser scanning data. However, it is strongly recommended that the GSD of  
the images is notably smaller than the laser footprint. As a rule of  thumb, it can be recommended 
that the GSD is one order of  magnitude smaller than the laser footprint. However, the question 
how much exactly the GSD should be smaller than the footprint (or one footprint from another, 
or one pixel from-another) is important and should be analysed in further studies.  

For low-frequency surface components (wavelengths > ~1 m), it is, however, still questionable whether 
DIM of  close-range images can serve as the reference. The reason is that DEMs based on images 
may contain systematic residuals due to an imperfect functional model set in the bundle block 
adjustment (BBA). These systematic errors are also known as block bending, or dome effects 
(Eltner and Schneider 2015; Heng et al. 2010; James and Robson 2014). Eltner et al. (2015) 
reported a large dome effect when BBA neither estimates radial lens distortions, nor comprises 
ground control points, which is for example the case for the VisualSFM software. Kaiser et al. 
(2014) and Eltner and Schneider (2015) used undistorted images to mitigate the dome effect, 
relying on a camera calibration done beforehand. James and Robson (2014) showed that 
convergent images can improve the estimation of  image distortion parameters and reduce the 
dome effect. Paper III shows that systematic errors can occur due to weakly tied sub-blocks of  
BBA. This paper also showed that these systematic errors introduce notable deformations in the 
shape of  the roughness spectrum at low frequencies (at wavelengths corresponding to the image 
footprint side or larger). Therefore, DIM of  close-range images can serve as the reference, but 
only when the results of  BBA are free from systematic residuals. Another reference technique 
for low-frequency surface components can be TLS. Paper VI showed that one TLS scan can 
measure accurate roughness spectra for wavelengths between 5 cm and 10 m. This would be 
enough to serve as the reference for both ALS and ULS data. 
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4.1.3 Roughness Spectra as Quality Measure of  a DEM 

It is already discussed in the Section 5.1.1 of  Paper VI that spectral analysis is also a suitable 
method to analyse the quality of  DEMs/DTMs/DSMs. It is shown that the roughness spectra 
can quantify the quality loss when using one or more TLS scans, or when using different 
interpolation methods. The quality loss is reflected as the magnitude modulation, which can also 
be quantified with the gain (see Eq.(2) and Figure 4) as discussed in in Section 4.1.1. In Paper II 
(and in Paper III and Paper VI indirectly), it was shown that the magnitude modulation is directly 
related with the DEM/DTM/DSM resolution and with angular resolution of  the laser scanning 
data as defined in Lichti and Jamtsho (2006). Paper II showed that the amount of  noise (coming 
from random measurement errors) present in a DEM is reflected well by the deformations of  
the spectrum shape at high frequencies. Finally, Paper III showed that systematic errors in a 
DEM cause the deformations of  the roughness spectrum at low frequencies. Therefore, the 
spectral analysis provides additional information to classical quality assessment methods such as 
histogram analysis of  the residuals and the DEM of  differences (DoD). 

4.2 3D Shoot Model 

Paper I presented the methodology and the 3D shoot model derived from micro-scale 
triangulating laser scanning data. This is the first (to the author’s best knowledge) 3D shoot 
model at individual needle level on the basis of  laser scanning data. However, to understand the 
canopy scattering problem, complete 3D tree architectures (stem-branch-foliage models) are also 
required (Côté et al. 2009; Disney et al. 2006). Therefore, one of  the open questions here is how 
to upscale the 3D shoot model and derive a realistic 3D model of  the whole tree or even a tree 
patch. One way for upscaling the 3D shoot model is to clone the 3D branch model on the basis 
of  tree information derived from TLS, ULS and ALS. Such an upscaling approach will be shortly 
discussed here. 

An upscaling of  the 3D shoot model by its cloning would require the following input: a point 
cloud of  a tree or a 3D stem-branch model, positions and orientations for cloning the 3D shoot 
model. A high-resolution TLS point cloud can be used for a stem-branch modelling, but such 
data underrepresent the crown top due to the occlusions associated with scanning a tree from 
the ground (Eysn et al. 2013; Raumonen et al. 2013; Wang et al. 2016). Novel ULS do not have 
this problem as the scanning is performed from the air (above the canopy), while the resulting 
point clouds depict similar within and below canopy details as TLS point clouds (Wang et al. 
2016; Wieser et al. 2017). Foliage points classified from TLS or ULS data would be an ideal 
starting point for deriving the position and orientation for the cloning of  the 3D shoot model. 
This classification can be done, e.g., using the machine learning methodology presented in Wang 
et al. (2017). Another possibility would be to classify foliage points using a 3D stem-branch 
model, e.g., derived by the methodology suggested by Raumonen et al. (2013) or Eysn et al. 
(2013).  

Figure 5 shows major upscaling steps done for the needs of  the 3DVegLab project (Felix 
Morsdorf  et al. 2015). The aim was to derive a realistic 3D tree model up to the needle level that 
is based entirely on laser scanning data. Figure 5a shows the input 3D cylinder model of  the 
stems and branches that is derived by Lothar Eysn using the methodology explained in Eysn et 
al. (2013). Figure 5b-c show the steps performed by the author of  this dissertation to derive the 
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cloning positions and orientations for the 3D shoot model from Paper I. The green points in 
Figure 5b are the needle points classified by analysing the distance to the input 3D stem-branch 
model. Figure 5c shows the alpha hull derived from the needle points to definite the tree crown. 
The green points in Figure 5d shows the cloning locations determined from local TLS point 
density. Figure 5e shows the shoot orientation visualized by the blue arrows that was derived for 
each cloning position. The orientation was defined using the nearest point at the 3D stem-branch 
model to the cloning position and implying certain predefined orientation rules of  the shoot 
plane.  

Figure 5: Major processing steps for upscaling the 3D shoot model. (a) 3D stem-branch model derived 
by Lothar Eysn (Eysn et al. 2013), (b) classified needle points, (c) alpha hull derived from the needle 

points, (d) cloning positions and (e) cloning orientation. 

Cloning positions and orientations (Figure 5d-e) are then provided for further modelling of  the 
3D forest scene. This modelling and visualisations of  individual trees and the final scene is done 
by another 3D VegLab project partner (the Remote Sensing Laboratories, University of  Zürich). 
More details about these steps can be found in Reik Leiterer et al. (2012) and Felix Morsdorf  et 
al. (2015). Figure 6 shows the main elements of  the upscaling approach done within the 
3DVegLab project.  

Finally, it is noted that Paper I also presented a method for a broad leaf  modelling with micro-
scale laser scanning data. However, this output was not explored within the 3DVegLab project. 
In contrast to the needle modelling, there are few studies on single broad leaf  modelling reported 
in the meanwhile (Tang et al. 2017; Wang et al. 2013) 
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Figure 6: Generation of  the 3D forest scene within the 3DVegLab project (Felix Morsdorf  et al. 2015; Reik 
Leiterer et al. 2012). (a) 3D stem-branch model (credits: Lothar Eysn), (b) 3D shoot model (Paper I); (c) 
and (d) visualisations of  the single tree 3D model and 3D model of  the forest scene, respectively. Figures 
(c) and (d) are prepared by the Remote Sensing Laboratories, University of  Zürich (Felix Morsdorf  et al.
2015; Reik Leiterer et al. 2012, www.geo.uzh.ch/microsite/3dveglab/).

4.3 Canopy Transmittance 

4.3.1 Leaf-Off  vs. Leaf-On ALS Data 

It is already discussed in Section 6.2 of  Paper IV that the canopy transmittance method does not 
require assumptions on vegetation-ground scattering characteristics as it only relies on the energy 
of  ground echoes. The observed ground echo energies are normalized by the energy of  single 
ground echoes found in their vicinity, which makes that the calibration constant cancels out. 
This means that the method also does not require calibration of  the echo energies. However, the 
method relies on the single ground echoes, as they are necessary for the normalization of  the 
observed ground echo energies. This discussion focuses more on this issue by analysing a leaf-
on ALS dataset, where the number of  single ground echoes is limiting due to closed canopy, i.e. 
less canopy gaps compared to leaf-off  data. In Paper IV, a leaf-off  data set was analysed. 

Figure 7 illustrates possible cases with respect to the number of  single ground echoes (green 
asterisks) when applying the transmittance method. In Case 1 and Case 2, there are single ground 
echoes in a cell (the aggregating unit), and thus, 𝑇𝑇𝑐𝑐 can be readily calculated. In Case 2, 𝑇𝑇𝑐𝑐 is 1 as 
there are only the single ground echoes in a cell. In Case 3, the observed ground energy is 0, and 
thus, 𝑇𝑇𝑐𝑐 is also 0. However, the most interesting case is Case 4 where there is no single ground 
echo within the cell, but there are other ground echoes to be normalized. If  the calculation is 
strictly referd to cell, then on Case 4 the 𝑇𝑇𝑐𝑐 method cannot be applied. However, if  the cell size 
is larger, some neighbouring single ground echoes may fall within the larger cell. Therefore, the 

134



critical parameter to analyse the applicability of  the 𝑇𝑇𝑐𝑐 method is distance from a ground echo 
to its nearest neighbouring single ground echo 𝑑𝑑𝑛𝑛𝑛𝑛 (Figure 7, Case 4). 

Figure 7: Different cases when applying the canopy transmittance method. 

The test area used in Paper IV is also used here to analyse the relation between 𝑇𝑇𝑐𝑐 and 𝑑𝑑𝑛𝑛𝑛𝑛 for 
the leaf-on and leaf-off  LiDAR data. Therefore, the leaf-off  ALS strip used here is the same 
ALS strip used in Paper IV. For the same area, a leaf-on ALS strip is also available, but with 
slightly different fight direction compared to the leaf-off  ALS strip. This ALS strip was collected 
with the RIEGL LMS-Q 680i full-waveform LiDAR instrument. Therefore, these leaf-on data 
are associated with a larger footprint size and different wavelength compared to the leaf-on data 
(0.3 m vs. 0.15 m and 1550 nm vs. 1064 nm, respectively). Mean point density was similar for 
both datasets (6 and 6.9 last echoes per m2). It is noted that the data acquisition and 
preprocessing of  this leaf-on ALS strip was done by Gottfried Mandlburger within a long-term 
project of  studding the morphodynamics of  the Pielach river (Mandlburger et al. 2015a; 
Mandlburger et al. 2015b).  

Figure 8a-b shows the scatterplots of  𝑑𝑑𝑛𝑛𝑛𝑛 and 𝑇𝑇𝑐𝑐 for a leaf-on ALS strip and the leaf-off  ALS 
strip. The scatterplots refer to the overlapping area between the two strips (the orange polygons 
in Figure 8c-d). Both scatterplots shows larger 𝑑𝑑𝑛𝑛𝑛𝑛 distance for smaller 𝑇𝑇𝑐𝑐 values (𝑇𝑇𝑐𝑐 < 0.2), 
which is expected as the latter indicates at dense vegetation. However, the scatterplot for the 
leaf-on data (Figure 8a) shows more points at 𝑑𝑑𝑛𝑛𝑛𝑛distances larger than 5 mm (points above the 
horizontal dashed line in Figure 8a-b). This suggests that the cell size should be larger than 5 m 
in order to avoid Case 4 in Figure 7. Now, the question is where such cases occur spatially. Figure 
8c-d shows that, for leaf-on data (red points), 𝑑𝑑𝑛𝑛𝑛𝑛 larger than 5 m occurs mostly around Plot 3-
5. The former two plots contain extremely dense coniferous forest and for them the quantile
99 % of  𝑑𝑑𝑛𝑛𝑛𝑛 is 8.3 m. Plot 3 contains dense deciduous vegetation and the same 𝑑𝑑𝑛𝑛𝑛𝑛 statistics
for this polygon is 5.6 m. Another notable cluster of  red points is marked with the black arrows
in Figure 8c. These points appear at slopes where the terrain exposition is oriented away from
the LiDAR line of  sight. Thus, topography causes unfavourable scanning geometry, which then
leads to no single ground echoes found in the vicinity.

The above analysis shows that the 𝑇𝑇𝑐𝑐 method works for leaf-on data, but with certain limitations. 
The limitations can occur when there are no single ground returns near the last-of-multiple 
ground returns. This occurs when scanning with a larger footprint (> 0.2 m) over extremely 
dense coniferous forest and extremely dense decides forest under leaf-on conditions (in both 
cases with 𝑇𝑇𝑐𝑐 < 0.2). In addition, no single ground echoes may occurs when the slope is oriented 
away from the LiDAR line of  sight. These particular issues, however, affect only the spatial 
resolution of  𝑇𝑇𝑐𝑐 as they can be overcome by using, a larger cell size, or search radius. Another 
possibility would be to work on segments and not on cells. 

135



Figure 8: Analysis of  distance to the nearest neighbouring single ground echo (𝒅𝒅𝒏𝒏𝒏𝒏) for a leaf-on and the 
leaf-off  ALS data over the test area of  Paper IV. 

4.3.2 Upscaling and Comparing Canopy Transmittance 

Canopy transmittance is related to the vegetation-structural and biophysical parameters such as 
LAI and gap fraction. However, canopy transmittance is also well-defined physical parameter 
that quantifies the amount of  (laser) radiation attenuated when passing through a vegetation 
layer. Therefore, canopy transmittance is also important for understanding space-borne LiDAR 
signals. The LAI will be, for example, Level-2&3 product of  the upcoming space-borne GEDI 
(Global Ecosystems Dynamics Investigation LiDAR) mission. The GEDI instrument will be 
mounted on International Space Station and provide nearly global sampling with a waveform 
LiDAR sensor that operates at 1064 nm wavelength and has a footprint diameter of  22 m 
(Marselis et al. 2016). Therefore, an upscaling of  the canopy transmittance at the GEDI footprint 
size will help separating vegetation and ground portions of  GEDI waveforms recorded over 
vegetated area. The waveform stacking method presented in Paper VI can be used to extend the 
canopy transmittance method for deriving 𝑇𝑇𝑐𝑐 values at the GEDI footprint scale. For such a 
global application, it would also be interesting to test the performance of  the 𝑇𝑇𝑐𝑐 method in dense 
tropical forest. Furthermore, it would be interesting to compare the 𝑇𝑇𝑐𝑐 method that is based only 
on ground echoes with the gap fraction method suggested by Armston et al. (2013) where data-
derived vegetation-ground reflectance ratio is used.  

There are also other possibilities to extend this work on canopy transmittance. Recent studies 
on UAV-borne tomoradar showed that this technique can also be used for deriving canopy 
transmittance and vegetation-structural parameters (Piermattei et al. 2017). In such studies, the 
LiDAR-based canopy transmittance from Paper IV can serve as the optical limit for the radar 
based canopy transmittance. Also, a number of  studies is recently focusing on exploring 
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multispectral LIDAR data (mostly green and infrared channels) for land cover or tree species 
classification (Matikainen et al. 2017; Yu et al. 2017). Therefore, it would be interesting to analyse 
and compare the canopy transmittance derived from green and infrared channels, especially 
knowing that the former is associated with a larger beam divergence angle. 

4.4 Surface Observations from Laser Scanning 

… Selection of  the Surface Description Approach: In this work, geometric-stochastic, 
geometric-deterministic and geometric-radiometric descriptions of  natural surfaces are 
exercised. The selection of  one particular description depends on many factors, but primarily 
depends on the fact how the natural surface is treated in particular environmental or physical 
models (e.g. of  hydraulic flows, erosion rates, landscape evolution or electromagnetic scattering). 
However, many of  these models are tailored for outdated geometric and radiometric 
measurements available at the time when the model is developed. There is, however, an 
impression that contemporary measurements offer even more information than the current 
environmental and physical models can handle. For example, it is a question if  current radiative 
transfer models can handle a 3D model of  a forest patch containing the needle level objects. 
Another question is whether current scattering or hydraulic models can be extended to include 
information on individual soil clods and pebble clusters that can be readily derived from, e.g., 
TLS or ULS data. Therefore, it would also be interesting to revisit current definitions of  natural 
surfaces in environmental and physical models from the perspective of  the contemporary 
measurements. 

… Laser Scanning Data and Spatial and Frequency Surface Information: One interesting 
observation is how the requirements on laser scanning data can be totally different when a 
geometric-stochastic description is analysed in spatial or frequency domain. This is nicely 
illustrated in Paper VI, where it was shown that a roughness spectrum derived from one TLS 
scan is equally accurate as the spectrum derived from 14 TLS scans. However, a DTM 
interpolated from single TLS scan over a 1 m x 10 m plot would be suboptimal compared to a 
DTM interpolated from 14 TLS scans. This is because the occlusion effects1 are much larger for 
a single- than for 14-TLS scans, which would result in different interpolation errors in the single-
scan DTM. In contrast, the roughness spectrum is perfectly appropriate, as statistics derived 
from ensemble averring based on 500 profiles is simply not sensitive on these interpolation 
artefacts. This is another argument why it is important to reconsider the surface descriptions in 
existing environmental and physical models so that the maximum of  the contemporary 
measurements is explored. 

Paper II, in contrast, shows that there are methods that provide good performance in both spatial 
and frequency domain. There, the DTM interpolation parameter is optimized by following the 
behaviour of  the spectral slope at high frequencies. The result is a DTM that has stochastically 
unique property, i.e. maximizes fractal dimension (minimizes spectral slope) at high-frequency 
surface components. However, this DTM also has good performance in the spatial dolman as 
its shaded heights (a visualisation based on surface first derivative) neither show the presence of  
the measurement noise or the oversmoothing effects ( Figure 5a-c in Paper II).  

1The TLS occlusion effects are discussed and illustrated by the Figure 3c, Figure 4b-c and Figure 8 of  Paper II 
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… Smallest Surface Details: Apart from the canopy transmittance, surface roughness analysis 
and 3D shoot modelling tackle one very interesting photogrammetric question is – what is the 
smallest object that can be modelled/reconstructed/described by laser scanning or digital 
images? In many applications, the objects of  interest are notably larger than the measurement 
noise or resolution (instantaneous field of  view of  the instrument). Therefore, investigating the 
modulations/deformations of  objects at the scale similar to data resolution is irrelevant in such 
applications. However, in roughness analysis, these objects have to be characterized. Therefore, 
for roughness studies, it will always be important to understand high-frequency modulations 
associated to particular measurement technique. Furthermore, it would be interesting to analyse 
what is the smallest frequency that can be reconstructed and what is its relation to the laser 
footprint size or the image’s GSD. For example, TLS resolution is diffraction limited and 
depends on the laser beam diameter at the exit designed by the sensor manufacturer. In contrast, 
with digital images (multi-view stereo techniques) one can approach to the object much closer. 
However, the question would be what is the smallest GSD that would still provide enough 
texture for image matching. Then, it is also important to know the maximum area that can be 
measured at such high resolution. For roughness studies, these measurements should minimize 
the systematic errors of  the block and the number of  ground control measurements. 

The above aspects are challenging and require further measurement experiments as well as 
profound photogrammetric knowledge. Ideally, independent experimentation performed by 
different groups in a form of  a benchmark would give a perfect base to arrive at the best solution. 
The aim of  such a benchmark would be on the reconstruction of  the smallest detail with minimal 
systematic errors for the given measurement technique. 
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5 Conclusions 

In this research high-resolution laser scanning data (including both geometric and radiometric 
observations) are used to describe different natural surfaces, such as soil, gravel, and vegetation 
by using geometric-stochastic, geometric-deterministic, and geometric-radiometric approaches. 
The research contributed by introducing new and improved methods of  modelling high-
resolution laser scanning data for land-surface parametrisations such as surface roughness, 3D 
vegetation models, and canopy transmittance. These parametrisations serve as the description 
of  natural surfaces in many environmental and physical models, such as water flows, soil 
erosions, landscape evolution, radiative transfer, and surface scattering models. 

Surface Roughness of  soil and gravel surface is analysed here mainly with roughness spectra derived 
from TLS, ULS, and ALS data, but also from UAV and handheld images. A new method is 
suggested for interpolating a DTM with a unique stochastic property by using laser scanning 
point clouds. Such a DTM has favourable characteristics for roughness analysis, as it filters out 
the measurement noise and avoids the oversmoothing of  the high-frequency surface 
components. Furthermore, a methodology for roughness spectrum calculation and analysis is 
suggested for comparison of  roughness spectra derived from different photogrammetric point 
clouds. Analysis of  different measurement setups and laser scanning data showed that one TLS 
scan can measure a roughness spectrum at wavelengths from one centimetre to a few tens of  
metres. However, when particular roughness parameters are estimated, such as RMSh, 
correlation length, and spectral slope in a high-frequency band, then the incidence angle of  laser 
beams should be below 50° to avoid scanning artefacts due to an oblique scanning geometry. 
Novel ULS can readily provide accurate roughness spectra at wavelengths larger than one metre. 
Smaller wavelengths of  up to a few centimetres would also be possible to depict with the ULS, 
but that would require further experiments and method optimisation. Finally, DIM of  handheld 
images showed a considerable potential to serve as the reference and provide accurate spectra at 
millimetre wavelengths. The UAV images showed that they could be a flexible alternative for 
laser scanning in roughness measurements. However, further investigation will be required to 
optimise this measurement method. 

A 3D Shoot Model with individual needle details is derived for the first time in this work from a 
micro-scale triangulating laser scanner. The suggested method is semiautomatic and involves a 
manual digitization of  an end shoot and its cloning on the basis of  a skeleton derived from an 
automatic classification of  needle and wooden branch parts of  the analysed shoot. The method 
can be applied for deriving a database of  3D shoot models for different species. This 
information can be used later to generate realistic 3D tree models, as was done within the 
3DVegLab project. One way to do so is by using TLS or ULS point clouds of  a tree to determine 
the cloning positions and the orientations for the 3D shoot model. Such data are relevant for 
building a 3D scene of  a forest patch, which, in turn, can be used for simulating and analysing 
EO data with radiative transfer models. 

Canopy Transmittance is a physical and vegetation-structural parameter that is analysed here as a 
geometric-radiometric description of  the vegetation surface. An improved method is suggested 
for deriving canopy transmittance from small-footprint ALS waveform data. The method 
considers only the energy of  ground echoes that is normalized by the energy of  single ground 
echoes. The method does not require calibration of  the observed energies, because the 
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calibration constant is cancelled out in the normalization step. Furthermore, the method does 
not require the vegetation-ground reflectance correction or an assumption for the vegetation 
extinction coefficient. An analysis of  the leaf-on and leaf-off  data showed that the canopy 
transmittance method could be readily applied for both data sets, but with certain parameter 
adoptions for extremely dense vegetation. In addition to the canopy transmittance method, 
another method is suggested for stacking the ALS waveforms to the space-borne LiDAR 
footprint level. This method can be used for an upscaling of  the canopy transmittance method, 
which is relevant for interpretation and global biomass prediction with incoming space-borne 
LiDAR data. 

The information and novel methods about surface roughness, 3D vegetation models, and canopy 
transmittance presented in this dissertation provide a basis for a better understanding and 
description of  natural surfaces. Further work should be focused more on their upscaling and 
implementation in new environmental and physical models. 
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