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Abstract

Precise classification and detection of traffic signs in real-time is one of the non-trivial require-
ments for safe autonomous driving. Convolutional neural networks (CNNs) are a widely accepted
concept for various kinds of image processing and machine vision tasks. Thus, it seems appropri-
ate to use a CNN for detecting and classifying traffic signs. However, state-of-the-art CNNs for
traffic sign detection though accurate are resource hungry due to their inherent structure with
millions of parameters, and thus, not feasible to fit on low-end FPGA platforms.
This work shows that a much smaller, resource- and performance-efficient architecture can achieve
a classification accuracy of 98.34% on real-world images. Therefore, the developed CNN has
a simple, straight-forward architecture with only 60,000 weights and without using expensive
computations like Batch Normalization or Exponential Linear Units (ELU). To reduce the time
required for training such a network, step-size control is used as a way of managing the weight
updates. Furthermore, this work shows that Dropout can improve the accuracy of a small-scale
network, but the effect is smaller compared to larger architectures. Moving to binary weights
increases the resource efficiency and allows an implementation on a ZedBoard with an accuracy
of 96.53%. However, the simple network architecture in combination with the “detection by
classification” approach limits the detection accuracy to approximately 80%.
The results demonstrate that it is not necessary to use a CNN with 1e6 and more weights to
classify traffic signs with high accuracy. On the other hand, a reliable detection requires a more
advanced network architecture. However, this work can be used as a starting point for developing
efficient and reliable detection networks with a small hardware footprint to fit on low-cost FPGA
platforms.
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Kurzfassung

Eine zuverlässige Erkennung von Verkehrszeichen in Echtzeit ist eine der Grundvoraussetzungen
für sicheres, autonomes Fahren. Künstliche neuronale Netze, sogenannte Convolutional Neural
Networks (CNNs), werden erfolgreich für unterschiedlichste Aufgaben in den Bereichen Bildverar-
beitung und Objekterkennung eingesetzt. Daher ist es naheliegend, ein CNN auch zur Erkennung
von Verkehrszeichen einzusetzen. Aktuelle Umsetzungen erreichen zwar eine hohe Genauigkeit,
können aber durch ihre schiere Größe mit mehreren Millionen Parametern nicht auf günstige
FGPA Plattformen portiert werden.
In dieser Arbeit wird gezeigt, dass auch ein deutlich kleineres und in Bezug auf die benötigen
Ressourcen effizienteres Netzwerk 98.34% der Verkehrszeichen richtig zuordnen kann. Das dazu
entwickelte CNN hat einen einfachen Aufbau ohne Verzweigungen oder Schleifen und benötigt
nur etwa 60,000 Parameter. Zusätzlich wird auf aufwendige Methoden wie Batch Normal-
ization und exponentionelle Nichtlinearitäten (ELU) verzichtet. Um die nötige Trainingszeit
des neuronalen Netzes zu reduzieren, werden die einzelnen Updateschritte überwacht und, falls
notwendig, angepasst. Außerdem wird in dieser Arbeit der Einfluss von Dropout auf die erre-
ichbare Klassifizierungsgenauigkeit kleiner Netzwerke analysiert. Es zeigt sich, dass ein positiver
Effekt zwar vorhanden, die erzielbare Verbesserung aber schwächer ausgeprägt ist als bei größeren
CNNs. Durch den Wechsel von Gleitkommaparametern zu binären Parametern kann das en-
twickelte neuronale Netz auch auf einem ZedBoard implementiert werden. Trotz der beträchtlich
gesteigerten Ressourceneffizienz sinkt dieKlassifizierungsgenauigkeit nur um 1.81 Prozentpunkte
auf 96.53%. Ein Nachteil des einfachen Aufbaus des Netzwerkes und des verwendeten

”
Erkennung

durch Klassifizierung“ Ansatzes ist, dass in kompletten Bildern nur etwa 80% der Verkehrszeichen
erkannt werden.
Die Ergebnisse zeigen, dass zur Klassifizierung von Verkehrszeichen mit hoher Genauigkeit kein
Netzwerk mit über einer Million Parametern nötig ist. Andererseits zeigt sich auch, dass eine
sichere und zuverlässige Erkennung eine komplexere Architektur oder deutlich mehr Parameter
benötigt. Dennoch stellt diese Arbeit eine gute Basis für die zukünftige Entwicklung von zu-
verlässigen und gleichzeitig ressourceneffizienten neuronalen Netzen dar, welche auch auf kostengünsti-
gen FPGA Plattformen implementiert werden können.
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Abbreviations

ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
AI Artificial Intelligence
ASIC Application Specific Integrated Circuit
BLIS Blind Spot Information System
BRAM Block RAM
CNN Convolutional Neural Network
DSP Digital Signal Processing
ELU Exponential Linear Unit
FF Flip Flop
FLOPs Floating Point Operations
FPGA Field Programmable Gate Array
FPS Frames Per Second
GPU Graphics Processing Unit
HLS High Level Synthesis
IoU Intersection over Union
IP Intellectual Property
LDW Lane Departure Warning
LIDAR Light Detection And Ranging
LUT Look Up Table
mAP mean Average Precision
MCDNN Multi-Column Deep Neural Network
NAG Nesterov Accelerated Gradient
PCA Principal Component Analysis
PReLU Parametric Rectified Linear Unit
QVGA Quarter Video Graphics Array (Image/Video with a resolution of 320× 240)
RADAR Radio Detection And Ranging
RAM Random Access Memory
ReLU Rectified Linear Unit
RPN Region Proposal Network
RReLU Randomized Rectified Linear Unit
SGD Stochastic Gradient Decent
SoC System on Chip
STE Straight Through Estimator
SVM Support Vector Machine
VGA Video Graphics Array (Image/Video with a resolution of 640× 480)
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1 Introduction

We live in an era where the way we drive cars is about to change. Since the first day of power-
driven vehicles, humans were the only decision-making instance in a car until a few years ago,
the first advanced driver assistance systems (ADAS) had been developed. Well-known examples
are light and rain sensors. In contrast to current developments, they were more comfort than
safety oriented. However, they still take control away from the driver. More recent systems like
adaptive cruise control (ACC), blind spot information system (BLIS), lane departure warning
system (LDW), driver monitoring system, collision avoidance system, and intersection assistant
help the driver in potentially dangerous situations. According to various statistics [16, 22], the
market for ADAS is growing rapidly. Thus, the cars are taking more and more control eventually
leading to fully autonomous vehicles. With Tesla in the leading position, many manufacturers
invest in such self-driving cars. To be aware of the surrounding environment, a lot of different
sensors like LIDAR, RADAR, and cameras are utilized. In combination with advanced image
processing techniques, cameras can detect traffic signs or recognize pedestrians around the car.
Traffic signs play a critical role in our transportation systems informing the driver (or the car)
about upcoming limitations and dangers. For safe autonomous driving, the reliable detection and
classification of traffic signs plays an important role to avoid, for example, dangerous situations
near intersections.

On the other hand, artificial intelligence (AI) is currently gaining a lot of attention. Regarding
machine vision tasks, neural networks, especially convolutional neural networks (CNNs), play an
important role. The history of artificial neural networks goes back to the experiments of Hubel
and Wiesel in 1959 [HW59]. However, it took 39 years before LeCun presented LeNet, a rather
small CNN for handwritten character recognition [LBBH98]. But convolutional neural networks
were still not accepted. It took another 14 years until AlexNet [KSH12] won the ImageNet clas-
sification challenge, a major competition for visual computing. Since then, CNNs were used very
successfully for different tasks in visual computing. Thus, it seems to be logical to apply convo-
lutional neural networks for recognizing and classifying traffic signs in context with autonomous
driving.

1.1 Motivation

Enhanced capabilities of current hardware platforms, the hardware-software co-design and the
data processing techniques in embedded systems led to an increased interest in the design of
intelligent real-time systems. Advanced driver assistance systems is one of the fields where an

1
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Introduction

intelligent processing of data within a short time and a high accuracy is crucial. When using
cameras, object detection and classification targeting, among others, traffic signs [CCWY16,
CMMS12, SGH15, SL11, ZYZ+17], road surface signs [QLY+16], and pedestrians [AKV+15,
RMNM16] is gaining attention in such systems to ensure safe driving of autonomous cars.

Traffic sign detection and classification is a challenging computer vision problem typically per-
formed based on the canonical structural features like size, shape, and color [CWHW10, KGEU08,
LYH+13]. The main problems addressed are perspective changes and illumination variations such
as differing lighting conditions (cloudy weather, night, heavy light, and so on). Furthermore, dis-
tortions due to human-made or natural activities (e.g., tilted, dirty or bleached boards) make
the problem of traffic sign detection and classification even more complex. Another problem is
that most of the used features are hand crafted. Thus, adding more traffic signs requires extra
engineering work to develop the new features required for detecting and classifying the additional
signs.

Nowadays, it is common to use deep learning approaches like convolutional neural networks for
traffic sign detection [CMMS12, ZYZ+17]. Once, a network is designed, retraining with a dataset
containing new traffic signs is enough to adapt it to the additional sign. In the worst case of a
couple of new traffic signs, it may be required to increase the size of the network. However, both
tasks do not require any costly re-engineering.

Current software implementations of neural networks either lack in performance [SEZ+13] or need
a lot of computational resources [CCWY16, RF16] leading to a higher power consumption and
a large packaging. Typically, general purpose object detection frameworks can reach between
5 frames per second (fps) [RHGS15] and 45 fps [RDGF15] on high-end GPUs. For example, a
typical computing GPU, the Nvidia Tesla K20, measures 26.7cm × 11cm × 3.9cm and requires
225W. It does not require additional explanations that such configurations are not practical nor
efficient to use for real-time situations in embedded systems with limited resources.

Specialized hardware accelerators allow massive parallelization and ensure that real-time identifi-
cation and classification of (distorted) traffic signs is possible. Among various hardware platforms,
FPGAs suit the best because of its parallelization, reconfigurability, and low power utilization
properties [FBCS12, AMA13]. Also, they are much cheaper, require less design time, and less
workforce than custom ASIC designs. As FPGAs have limited resources (area, processing capabil-
ities, and memory), current state-of-the-art classification [HZRS15a, SZ14, SLJ+14] and detection
[RF16, RHGS15] networks with millions of full-precision parameters and complex architectures
do not fit low-cost FPGA platforms. Implementing a convolutional neural network a cheap FPGA
requires a simple, straightforward, and efficient architecture with a small number of parameters.

1.2 Problem Statement

The goal of this work is to develop a combined traffic sign classification and detection algorithm
based on state-of-the-art machine learning methods, namely convolutional neural networks. Being
aware of a future FPGA implementation, the network has to be organized in a simple feed-forward
way without any shortcut connections. Due to different latencies of parallel paths, additional
buffers would be required limiting the overall performance of the system. If possible, the final
architecture should not rely on computational expensive functions and full-precision datatypes.
Both require a lot of extra hardware resources and increase the runtime of the system. This
eventually leads to a larger design and a lower framerate. FPGAs are also limited in terms of
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Introduction

on-chip memory. Thus, the neural network has to contain fewer weights than standard GPU
based implementations. Another way to save memory is using binary weights and eventually also
binary activations.

Drastically reducing the size of a network introduces various challenges. Some state-of-the-art
methods like Batch Normalization require computing multiple square roots and other complex
functions which is against the objective of keeping the network simple. Other improvements like
Dropout reduce the active size of a CNN which can be a problem when using small-scale networks.

Most current object detection architectures are designed for winning different competitions. Thus,
the main focus of such networks is predicting a bounding-box (a bounding box is a good metric
to compare different solutions) around the detected object as accurate as possible. Detecting
traffic signs in the context of autonomous driving does not require the exact position of a traffic
sign inside an image. A self-driving car only needs to know what traffic signs are present in the
image, not where they are. However, in some special scenarios were a sign of a nearby road is
visible from the current location, the position inside the image matters. Since excluding such
signs requires more advanced methods and further image processing, these rare scenarios are not
addressed in this work.

The process of developing hardware-based neural networks can be divided into three subtasks

• Develop a hardware-friendly architecture: This includes reducing the number of pa-
rameters, eliminating the use of computational expensive functions and organizing the net-
work in a strict feed-forward way without any shortcuts.

• Minimize the required memory: The necessary memory can be reduced by limiting
the accuracy of the datatypes down to one bit. This results can in binary weight networks
or in full binary networks, i.e., networks with binary weights and binary activations.

• Implement the CNN on an FPGA

The objective of this work is developing a simple architecture with a small memory footprint
similar to the subtasks one and two. After that, each part of the network should be simulated and
synthesized using High-Level Synthesis (HLS) to obtain an approximation for an implementation
on an FPGA.

1.3 Main Contributions

The main contributions of this work can be outlined as follows:

• Development of a resource- and performance-efficient CNN-based Traffic Sign Detection
with only ≈60,000 weights with a classification accuracy above 98%

• Analysis of the efficiency of Dropout in small-scale CNNs.

• Implementation of step-size control as a way to improve the training process.

• Simulation of the CNN in hardware using High-Level Synthesis and generalization of the
synthesis results (hardware footprint) for arbitrary sized layers.
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2 State-of-the-Art

2.1 Convolutional Neural Networks

Convolutional neural networks are widely used for different types of image processing. Two of
the most famous application cases are image classification and object detection. However, this
section starts with an introduction into CNNs and their main building blocks together with an
overview of recent developments. This section will also present various methods to improve the
training efficiency and some of the most important datasets.

2.1.1 Main Building Blocks

The design of convolutional neural networks typically follows a layer-wise structure. The following
sections give a brief overview of the most important layers to present current developments an
to introduce some naming conventions used in this thesis. Each layer accepts an input volume
of Win ×Hin ×Din in and produces an output volume of Wout ×Hout ×Dout where W and H
represent the spatial size, and D represents the depth of a volume. In case of an input image, W
and H are the width and the height and D is the number of color channels, e.g., three for RGB
color images and one for gray-scale images.

2.1.1.1 Convolutional Layers

Convolutional layers are the fundament of any CNN. They produce an output volume by con-
volving K 3-dimensional filters of size F × F × Din spatially over the input volume computing
dot products. The stride S controls the amount of pixels the filters are moved at a time. Finally,
zero-padding with a width of P can be used to prevent filters from smoothing the border sections
too much and to control the size of the output volume. It is convenient to use zero-padding in a
way that the output volume has the same spatial extent as the input volume having only pooling
layers in the network changing the spatial size during the forward pass. Figure 2.1 and Equation
2.1 illustrate the relationship of the hyperparameters stride, filter size and pad.

Wout =
Win − F + 2P

S
+ 1, Hout =

Hin − F + 2P

S
+ 1, Dout = K (2.1)

It is important to note that specific set of hyperparameters in considered to be invalid if the result
of one of the equations above is not an integer.
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State-of-the-Art

Figure 2.1: Single convolutional layer with convolutional parameters filter size F , stride S, and pad P

2.1.1.2 Fully-Connected Layers

Fully-connected layers, also called affine layers, are the core building block of any standard neural
network, and they are widely used in convolutional networks too. Usually, a series of such layers
follows after the convolutional layers to do the classification job based on the features computed
by the conv-layers. As the name states, the neurons in fc-layers are connected to all activations
coming from the previous layer. Some of the most recent papers, however, replaced them with
convolutional layers for increased flexibility. See section 2.1.1.5 for more details.

2.1.1.3 Activation Functions

Activation functions add a non-linearity to a network. A full linear network without non-linear
functions and with one output can be reduced to a single node being not able to express a
complicated function. Figure 2.2 shows a simple, two-layer network and a single neuron both
computing the same function as described by Equation 2.2. It is easy to prove, that such a
transformation exists for every linear network independent of the size of the network.

Figure 2.2: Simple, two layer network with three neurons and an equal single neuron

y = b1(a1x1 + a2x2) + b2(a3x1 + a4x2) = (b1a1 + b2a3)
︸ ︷︷ ︸

c1

x1 + (b1a2 + b2a4)
︸ ︷︷ ︸

c2

x2 (2.2)

An activation function acts on each element of a volume individually computing a fixed mathe-
matical relation. Historically, the sigmoid function was a common choice, but it is barely used
anymore. The main reasons are saturation for very large and small input values (which kills the
gradient) and the fact that the output is not zero-centered (which can lead to problems during
training). A more detailed explanation on the drawbacks is presented in [10]. The hyperbolic
tangent function resolves the latter issue but still saturates for increasing input values. Cur-
rently, the Rectified Linear Unit (ReLU) is the most popular activation function accelerating the
convergence during training. Also, this function does not need expensive computations like the
exponential function. However, ReLUs have the undesirable property that they can die. That
happens when the weights of a previous convolutional or fully-connected layer update during
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State-of-the-Art

training in a way that the output of the neuron is zero for all inputs. Again, [10] gives more
details on that.

There are also some improved versions claiming to fix the dying ReLU problem and further
accelerating the convergence. Leaky ReLU has a small negative slope for values x < 0 instead
of being always zero and in Parametric ReLU (PReLU), the steepness of the negative slope is a
trainable parameter. Another recent variant of the ReLU activation is the Exponential Linear
Unit where the kink at x = 0 is smoothed using the exponential function for x < 0 [CUH15].
Xu et al. discuss different versions of the ReLU function in [XWCL15]. They also compare the
convergence curves while training on the CIFAR dataset (see section 2.1.3.2). Finding the best
activation function is still a very active area of research. In another paper, Xu et al. describe
modifications to improve the performance of sigmoid and hyperbolic tangent activation functions
[XHL16]. Figure 2.3 gives an overview of some of the most important activation functions, and
Table 2.1 shows the corresponding mathematical expressions.

(a) Sigmoid and simple threshold (b) tanh, hard tanh, and zero-centered thresh-
old

(c) ReLU, leaky ReLU and ELU

Figure 2.3: Plots of commonly used activation functions

There is also another problem with some of the activation functions. For backpropagation, it
is necessary to know the gradient of a non-linearity over the full range of possible input values.
Some functions are not differentiable at every point (all functions with a kink) while others have
a gradient of zero over the entire range except one point (threshold functions). To solve the
first issue, it is enough to define the derivative at those points. A simple solution for the second
problem is presented in [CB16]. They use the sign function without changes during the forward
pass and a hard-tanh shaped gradient during the backward pass.
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State-of-the-Art

σ(x) =
1

1 + e−x
(Sigmoid)

tanh(x) = 2σ(2x)− 1 (tanh)

max(−1,min(1, x)) (hard tanh)

max(0, x) (ReLU)

max(cx, x)/max(αx, x) (Leaky ReLU / PReLU)

c(ex − 1) if x < 0, x otherwise (ELU)

Table 2.1: Different activation functions with c being a constant with c > 0 and α being a trainable
parameter

2.1.1.4 Pooling Layers

Pooling is a common technique to reduce the special size (W and H) of volumes in CNNs helping
to trim the number of parameters. Many state-of-the-art networks use pooling layers in regular
intervals between convolutional layers. Pooling layers operate on each depth slice individually in
a sliding window fashion. The most common versions are maximum pooling and average pooling
where the output is the maximum value or the average value of a window, respectively. Because
pooling is very aggressive in discarding information, it is common to use only small sizes in
practice. Thus, 2x2 maximum pooling is the most widespread one. Table 2.2 gives an overview of
different sizes and the amount of discarded information. It is also possible to use a stride smaller
than the pooling size which is sometimes referred to as overlapped pooling.

Pooling size Stride Discarded activations

2x2 2 75%
3x3 3 88.89%
4x4 4 93.75%

Table 2.2: Amount of discarded activations depending on the pooling size

The output size of any pooling layer can be calculated using Equation 2.3 with the hyperpa-
rameters S (stride) and F (spatial extent). Again, pooling is only possible if the results are all
integers.

Wout =
Win − F

S
+ 1, Hout =

Hin − F

S
+ 1, Dout = K (2.3)

2.1.1.5 Conversions Between Fully-Connected and Convolutional Layers

Both, convolutional layers and fully-connected layers are based on computing dot products. The
only difference is the scope of the filter, i.e., the weights. While the neurons in convolutional
layers look at local regions of an input image, the neurons in fully-connected layers look at
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State-of-the-Art

the whole image at once. As a consequence, any convolutional layer can be represented by an
equivalent fully-connected layer and any fully-connected layer by a corresponding convolutional
layer. Figure 2.4 illustrates the first type of conversion by a small convolution layer with a single
filter of size F = 3. Even in this small example the amount of weights increases by a factor of
25 (225 weights instead of 9). More generally, the necessary number of weights is Nconv = F 2

for a convolutional layer compared to Nfc = F 2 ·H ·W for an equivalent fully-connected layer.
Therefore, this conversion is not useful in practice. This example also demonstrates the increased
(memory-) efficiency of convolutional layers due to parameter sharing and local connectivity. The
corresponding weight matrix of the fully-connected layer consist of a lot of zeros and every line
contains only the same 9 weights at various positions.

Figure 2.4: Conversion from a convolutional-layer to a fully connected layer

However, the conversion in the other direction has significance in some applications. It can be
used to increase the efficiency of the sliding window technique for multi-position classification and
localization as described in section 2.2.2. The fully-connected layer in the right section of Figure
2.4 is equal to the convolutional layer sketched in Figure 2.5. This representation is different to
the one in the left sub-image of Figure 2.4 because it is universally valid for any set of weights.
The conversion does not involve a change in the number of weights. It requires only some simple
reshaping operations performed on the weights as well as on the input and the output volume. To
convert any fully-connected layer into a convolutional layer, the convolutional parameters have
to be set according to the following rules:

• A filter size F equal to the size of the input. Therefore, the input has to be square for most
network architectures.

• A number of filters K equal to the number of neurons in the fully-connected layer.

• No zero padding, i.e., P = 0

• A stride S of 1 (in fact, choosing a different stride should not change anything as the weights
of the filter are connected to the full input).

Such conversions are also possible for fully-connected layers with one-dimensional inputs when
using, for example, the output of Figure 2.5 (1x1x9) as input to the next layer which then performs
a spatial 1x1 convolution. A comprehensive explanation of this transformation can be found in
[8].
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Figure 2.5: Convolutional layer equivalent to the fully-connected layer in Figure 2.4 (right sub-image)
using the same coloring scheme

2.1.1.6 Loss Functions

Loss functions are a crucial part of a neural network. Simply speaking, they measure the dissat-
isfaction of a network with its results, e.g. the class scores s. There are different loss functions
available, depending on the purpose of a network. Because this work mainly focuses on classifica-
tion and classification based detection, this section presents loss functions for classification only.
The second big group, loss functions for regression as used for example for predicting bounding
boxes, are not covered.

In general, the total loss L of a network can be calculated using Equation 2.4 with the num-
ber of training examples N , the loss of each sample Li, the regularization loss R(W ), and the
hyperparameter regularization strength λ. The first term is often called data loss.

L =
1

N

N∑

i=1

(Li) + λR(W ) (2.4)

Next to the L1 and the L2 classifier (using the L1 and the L2 loss, respectively), the most common
classifiers used in practice are the SVM classifier (using the hinge loss) and the Softmax classifier
(using the cross-entropy loss). The different loss functions are summarized in Table 2.3.

Li =
∑

j

|sj − syi | (L1 loss)

Li =
∑

j

(sj − syi)
2 (L2 loss)

Li =
∑

j 6=yi

max (0, sj − syi +∆) (hinge loss)

Li = −log

(

esyi
∑

j e
sj

)

(cross-entropy loss)

Table 2.3: Different loss functions with the score sj of class j, the correct class yi, the score of the correct
class syi

, and j = 1, ..., C for C classes

The Softmax function, as shown in Equation 2.5, takes a real-valued, K-dimensional vector z
and squashes it to a K-dimensional vector f(z) with values in the range [0, 1], so that they sum
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up to 1. From a probabilistic point of view, the Softmax function interprets the values of z
as unnormalized log probabilities and transforms them to normalized class probabilities. This
characteristic is not only useful for computing the loss but also helps to interpret the class scores
at test time.

fj(z) =
ezj

∑K
k=1 e

zk
with j = 1, ...,K (2.5)

An interesting and very recent paper on loss functions for classification can be found in [JC17].
The authors compare how different loss functions affect the learning dynamics of neural networks
and the robustness of the classifiers to diverse effects. For more details and intuitions on loss
functions, especially the SVM and the Softmax classifier, and the regularization loss, refer to [11]
and [9].

2.1.2 Techniques to Improve Learning

Training (convolutional) neural networks can be a tricky task and involves tuning several param-
eters to converge the loss successfully. Even with an assembly of state of the art graphics cards,
it can take up to several weeks depending on the size of the network, the activation function, and
the dataset.

Another problem is overfitting. The network fits the noise in the training data or precisely the
training data instead of generalizing the underlying pattern. When a network achieves a high
training accuracy together with a comparable low validation accuracy, this is a clear indicator
that overfitting occurred. Thus, several techniques have been proposed to accelerate the training
process and to prevent overfitting. The following sections present some of the most important
and widely accepted techniques for that purpose.

2.1.2.1 Update Rules

Update rules define how to update the weights during backpropagation based on the gradient.
The most straightforward update rule is Stochastic Gradient Descent (SGD) where the weights
are changed in the negative gradient direction multiplied by a learning rate η. Table 2.4 gives
an overview of different versions of SGD. Note that the equations in this section are written in
a way how they would be implemented in practice. A more formal notation together with more
in-depth explanations of many different update rules can be found in [Rud16]. SGD has some
problems when the gradient is very steep in one direction and shallow in the other one. A high
learning rate will cause an overshoot in the steep direction, and with a low learning rate, the
network will barely learn in the shallow direction. Adding a momentum term (µ · v) to SGD can
reduce this issue and increases the converge rate. The velocity v builds up in shallow directions
regularized by the momentum parameter µ, which is often set to values around 0.9. In literature,
this approach is simply called SGD with momentum. A further improvement is the so-called
Nesterov Accelerated Gradient (NAG). The idea behind this is that the update step caused by
the momentum term is made anyway independent of the actual gradient. Hence it should be
better to calculate the gradient starting from the end-point of the momentum step. Figure 2.6
(figure redrawn from [12]) illustrates this intuition.
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W = W − η · dW (SGD)

v = µ · v − η · dW
(SGD with momentum)

W = W + v

vold = v
(NAG)v = µ · v − η · dW

W = −µ · vold + (1 + µ) · v

Table 2.4: Different versions of stochastic gradient descent with weights W and a gradient dW

Figure 2.6: Intuition behind Nesterov Accelerated SGD

All these versions of SGD have in common that they use the same learning rate for all parameters.
Adaptive methods like RMSprop [TH12] can tune the learning rate for each parameter individually
(Equation 2.6). The cache variable accumulates past gradients in a leaky way (decay rate γ).
This ensures that the effective learning rate is reduced for high gradients, e.g., steep gradients
but avoids the cache variable to reach high values which would reduce the effective learning rate
to zero over time . Kingma et al. present an improved version called ADAM adding a momentum
term in [KB14].

cache = γ · cache+ (1− γ) · dW 2

W = W − η · dW
(
√
cache+ ǫ)

(2.6)

Of course, the list given above is not exhausting. Second order methods, for example, use the
previous gradient to estimate the curvature of the loss surface for faster convergence. However,
these methods require a lot of memory during training. It is also very common to decay the
learning rate during training after a fixed number of epochs or when the training progress stops,
i.e. the loss function reaches a plateau.

2.1.2.2 Dropout

Dropout, as presented in [SHK+14], is a simple and effective technique to prevent, particularly
wide and deep, neural networks from overfitting. It also increases the classification accuracy and
leads to sparse activations. The idea is to drop neurons with a probability p on every forward
pass during training and to keep all neurons active while testing (Figure 2.7). This reduces the
size and consequently the capacity of the network which lowers the chance of overfitting.
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For high accuracy networks, it is common to train an ensemble of equal CNNs with randomly
initialized weights and to combine them for testing. This often increases the accuracy by one
or two percent. However, training multiple networks can be very time-consuming, especially if
the network and/or the dataset are big. Because dropout samples a new set of neurons for each
forward pass, the final network can be interpreted as an ensemble of a lot of smaller networks.
Another way to explain the increased accuracy is the fact that the features have to be more
robust, i.e., the classification cannot rely on specific features. As a drawback, the layers have to
be more extensive, that is they have to contain more neurons so that the resulting network can
still fit the training data.

Figure 2.7: Effect of dropout on a network with two hidden layers. Network without dropout (left) and
with a dropout of p = 0.5 (right). Dropped neurons are displayed in light gray. (Figure
redrawn from [SHK+14]

At test time, the activations have to be scaled down according to p to ensure that the expected
output and the actual output are the same. In case of dropout with p = 0.5, all activations have
to be divided by a factor of 2. A simple example using a single neuron with two inputs (x1, x2),
two weights (w1, w2) and one output (y) helps to explain the reasons behind rescaling. Without
dropout, the neuron would calculate the output as written in Equation 2.7. This is also true at
test time since dropout is only applied at training time.

y = x1w1 + x2w2 (2.7)

At training time, however, the expected value of y is calculated using Equation 2.8 having four
different cases: Both inputs get dropped, only x1 gets dropped, only x2 gets dropped, and no
input gets dropped.

E(y) =
1

4
[0w1 + 0w2 + 0w1 + x2w2 + x1w1 + 0w2 + x1w1 + x2w2]

=
1

2
[x1w1 + x2w2]

(2.8)

Because y and E(y) are different, the activation (which is equal to the output of the neuron
y) has to be downscaled to ensure y = E(y). In practice, it is more convenient to leave the
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activations untouched at test time and to rescale them during training instead, i.e., to increase
the activations by 1/p. This technique is called inverse dropout.

2.1.2.3 Weight Initialization

A proper initialization of neural networks is vital for the loss function to converge. While a
standard initialization with small random numbers sampled from a normal distribution with
zero mean and a variance of 1 works well for shallow networks, deeper networks hardly train.
As shown in [GB10], the activations tend to get smaller after each layer, i.e., the variance of the
distribution of the activations is shrinking. During the forward pass, this is not a big problem, but
during the backward pass, the gradient also gets multiplied with the weights eventually leading
to tiny gradients for the first layers. Thus, the network will barely learn. In [GB10], the authors
came up with the idea of scaling the variance of the normal distribution for weight initialization
according to the number of inputs and outputs of the layer. With a single layer l computing
yl =

∑n
i=1(x

l
iw

l
i) + bl with a weight vector wl and a bias bl = 0, a better initialization strategy

can be derived as following:

V ar(yl) = V ar(

nl
∑

i=1

xliw
l
i) =

nl
∑

i=1

V ar(xliw
l
i)

=

nl
∑

i=1

(

[E(xli)]
2V ar(wl

i) + [E(wl
i)]

2V ar(xli) + V ar(xli)V ar(wl
i)
)

︸ ︷︷ ︸

assuming zero mean of x, which is not true for ReLU-shaped inputs

=
nl
∑

i=1

V ar(xli)V ar(wl
i) = nlV ar(wl)V ar(xl)

(2.9)

To ensure that V ar(yl) = V ar(xl), V ar(wl) has to be set to 1/nl. Thus, when sampling the
initial weights from a unit Gaussian, they have to be scaled by

√

1/nl.

With taking the forward and the backward pass into account, Glorot et al. came to a similar
result scaling the weights by

√

2/(nl + nl+1) [GB10]. In literature, this strategy is often referred
to as Xavier initialization. However, He et al. discovered that this strategy does not work well
with ReLU non-linearities [HZRS15b]. In the end, they came up with an condition for setting
the variance for a layer l with ReLU-shaped inputs (Equation 2.10) leading to a scaling factor of
√

2/nl.

1

2
nlV ar(wl) = 1, ∀l (2.10)

Other methods like [KDDD15] try to find an optimal initialization using an iterative approach.
First, they draw weights from a unit Gaussian, and then they tune the weights based on the
outputs of the corresponding layer. However, such approaches are more complex and currently
not widely accepted.
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2.1.2.4 Batch Normalization

Batch Normalization [IS15] is a method to normalize the activations after each affine or convolu-
tional layer. Inspired by the different weight initializations methods trying to retain Gaussian-like
inputs to all layers, the basic idea is to simply force the activations to be Gaussian. For that
purpose, they added Batch Normalization layers computing the function in Equation 2.11 where
x̂l,(k) is the normalized version of xl,(k) along each dimension (k) of the layer l. Because a simple
normalization can constrain the following non-linearity too much, they added a set of learnable
parameters γl,(k), βl,(k). The final transformation is given in Equation 2.12. With those param-
eters, the network can learn to undo the normalization by setting γl,(k) =

√

V ar(xl,(k)) and
βl,(k) = E(xl,(k)). As a drawback, Batch Normalization adds additional complexity to the algo-
rithm in both, the forward and the backward pass, thus lowering the performance at test time as
well as the required training time.

x̂l,(k) =
xl,(k) − E(xl,(k))
√

V ar(xl,(k))
(2.11)

yl,(k) = γl,(k)x̂l,(k) + βl,(k) (2.12)

2.1.3 Popular Datasets

This section presents some of the most valuable datasets for evaluating convolutional neural
networks and other image-based machine learning algorithms in different disciplines like classifi-
cation, localization, and detection. This list is by far not exhaustive, but it includes the majority
of datasets used by the papers mentioned in this thesis.

2.1.3.1 ImageNet

ImageNet [21] is a significant and widely used dataset for image classification, object localization,
and object detection containing more than 1.2 million images. It is organized according to the
WordNet hierarchy which is a large database of English words (nouns, verbs, adjectives, and
adverbs) grouped into sets of cognitive synonyms called synsets [19]. ImageNet aims to have
an average of 1,000 images for each synset. They also host an annual challenge, the Image Net
Large Scale Visual Recognition Challenge [RDS+15]. The size of the datasets for those challenges
varies depending on the task and the year, but this year the detection training set contains 50,000
images sampled from a set of 1,000 classes [7].

2.1.3.2 CIFAR

The two CIFAR datasets are subsets of the larger “80 million tiny images” dataset [13] [14]
created for image classification only. The CIFAR-10 dataset consists of 60,000 color images
(50,000 training and 10,000 test images) with a resolution of 32x32 pixels in 10 classes. Following
this structure, the CIFAR-100 dataset contains the same amount of images equally split up in
100 categories.
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2.1.3.3 Pascal

The Pascal Visual Object Classes (VOC) dataset [17] is an image dataset built for classification
and object detection tasks. Depending on the year of release, there are also different challenges
like segmentation, person layout (individual labeling parts of the body – head, hand, and feet)
and action classification (jumping, walking, and many more) available. The latest version features
20 classes with a total number of 11,530 training images together with 27,450 annotated objects
and 6,929 segmentations. Everingham et al. give a deeper insight into this dataset providing
more details about the creation process in [EVGW+10].

2.1.3.4 COCO

COCO, short for Common Object in Context, is a large dataset mainly for object detection,
segmentation and captioning developed by Microsoft Research [4]. It features more than 200,000
labeled images with 80 object categories. Like others, they host annual challenges in different
visual tasks. There is also a paper [LMB+14] available giving an in-depth description of the
dataset.

2.1.3.5 Traffic Sign Datasets

The two most relevant traffic sign databases in central Europe are the German Traffic Sign
Benchmark [20] and the BelgiumTS Dataset [23]. The German Traffic Sign Benchmark fea-
tures two datasets, one for classification, the German Traffic Sign Recognition Benchmark (GT-
SRB) [SSSI12], and one for detection, the German Traffic Sign Detection Benchmark (GTSDB)
[HSS+13]. The GTSRB contains over 50,000 images taken in the wild and therefore offering a
broad range from nearly perfectly visible signs to heavily disturbed, tilted and dirty signboards.
The GTSDB includes 900 high-resolution images with a variety of different scenes and locations
like highways, cities and country roads. Similarly, the BelgiumTS dataset also consists of images
recorded in the wild offering traffic sings in various angles and lighting conditions.

2.2 Convolutional Neural Networks for Classification, Localiza-
tion, and Detection

The main building blocks presented above can be combined in various ways to form fully func-
tional convolutional neural networks for a wide range of application cases. It is important to
differentiate between different tasks in computer vision as described in [SEZ+13]. Classification
is the simplest one describing the process of assigning a class label (out of a discrete set of classes)
to an input image. Localization is an extension of classification with an additional output de-
scribing the position of the classified object inside the image with a bounding box. Usually,
images in localization datasets contain exactly one object but a greater amount is also possible.
However, such networks can only produce a fixed number of guesses (class label and position) no
matter how many objects are present in a specific scene. Object detection removes this limitation
being, in theory, able to detect any amount of objects in an image, including zero objects. Taking
these concepts one step further leads to object segmentation where more accurate outlines replace
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bounding boxes. A nice overview of the most important network architectures for classification
and detection is given in [5].

This section starts with presenting different architectures of convolutional neural networks for
classification, localization and detection (Sections 2.2.1 to 2.2.3). After that, a short overview of
binary neural networks and FPGA-based implementations is given in Sections 2.2.4 and 2.2.5.
For convenience, the network details like the number of weights and layers are summarized in
Section 2.4.

2.2.1 CNNs for Classification

In 2012, A. Krizhevsky et al. developed the first CNN winning a major image classification chal-
lenge, the ILSVRC 2012 [KSH12] [2]. Since then this network is often referred to as AlexNet, and
still, a couple of state-of-the-art algorithms use it as an underlying structure. The network fea-
tures a total of 11 layers (five convolutional, three pooling and three fully-connected layers). They
also the exchanged the tanh activations with ReLUs for faster training and applied dropout to
prevent overfitting. In the following years, CNNs started to dominate all classification challenges.
One year later, Zeiler et al. released a paper describing how to visualize and understand neural
networks based on AlexNet by using so-called deconvolution networks [ZF13]. This approach
allows to pass feature maps from inside the network back to the input pixel space and to visualize
them in a for humans understandable way. The authors also tweaked AlexNet a bit to boost its
performance. They changed the filter size in the input layer and added more filters to the third,
fourth and fifth convolutional layer. This network is often called ZF-Net. By removing some
layers and testing the performance of the remaining network, they found out, that the overall
depth of a network matters a lot. With this in mind, Simonyan et al. developed VGG-Net, a
much deeper but simpler convolutional network [SZ14]. The best performing network, VGG-16,
features 16 convolutional layers using only filters of size 3x3 and 2x2 maximum pooling. AlexNet,
for example, uses different filter sizes (11x11, 5x5 and 3x3) and overlapped pooling (3x3 with a
stride of 2).

All three networks presented above share the same underlying architecture. They consist of a
series of convolutional layers (followed by an activation function) with pooling layer in-between
at irregular intervals and some fully-connected layers at the end to compute class scores. With
GoogLeNet, Szegedy et al. introduced a new type of architecture with several convolutional
layers in parallel [SLJ+14]. They call such clusters of convolutional and pooling layers inception
module. Figure 2.8 shows the näıve version in the left sub-image. GoogLeNet consists of several
stacked inception modules with an overall depth of 27 layers (22 convolutional layers) and a total
amount of about 100 individual layers. In 2015, He et al. presented a much deeper network with
a different architecture called ResNet [HZRS15a]. However, they found out that deeper networks
can have a higher training error than shallower networks due to the increased complexity. It seems
that current optimization methods cannot handle very deep networks. To overcome this issue,
the paper introduces shortcut connections. In this work, a shortcut is a simple identity mapping
as illustrated in the right section of Figure 2.8. The authors assume that such an architecture
is easier to optimize than a traditional one. The best performing network, ResNet-152, has 152
weight layers with a computational complexity lower than VGG16 (11.3 billion FLOPs for ResNet-
152 vs. 15.3 FLOPs for VGG16), therefore being very efficient. It is also possible to combine
inceptions modules and ResNets. Szegedy et al. presented the latest version, Inception-v4, in
[SIV16].
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Figure 2.8: Naive inception module (left, redrawn from [SLJ+14]) and simplified ResNet building block
(right, redrawn from [HZRS15a])

2.2.2 CNNs for Object Localization

Common convolutional neural networks as described above are designed to classify full images, i.e.,
to assign an image to the correct class. The next logical step is to localize one object (or any other
fixed number of objects) in a higher resolution image. A common and rather simple approach is
to extend an existing and pre-trained classification network with an additional regression head
forming a two-headed network as shown in Figure 2.9. There are two slightly different ways to
run such a network: On the entire image as a whole or multiple times on different subregions of
the image (see Overfeat). In both cases, the regression head consists of several fully connected
layers being very similar to the classification head. The only major difference is that the output is
a 4-tuple of real numbers instead of a class label. The 4-tuple represents a bounding box around
the localized object, and different papers tend to use different representations. The most common
ones are (x0, y0, w, h) with (x0, y0) being the coordinates of the top left corner and w and h being
the width and the height of the bounding box and (x0, y0, x1, y1) where the 2-tuple (x1, y1) are
the coordinates of the bottom right corner.As a consequence of having a 4-tuple of real numbers,
the loss function has to change. Popular choices are the Euclidean loss (Equation 2.13) and the
Jaccard index, better known as Intersection over Union (IoU, Equation 2.14). Now the regression
head can be trained using one of those loss functions (or any other suitable loss function) together
with a ground truth bounding box provided in conjunction with the training set. At test time,
both heads are attached to the CNN simultaneously.

L =
1

2N

N∑

i=1

‖x1i − x2i ‖22, [3] (2.13)

IoU = J(A,B) =
|A ∩B|
|A ∪B| =

Area of Overlap

Area of Union
, [1] (2.14)

In [SEZ+13], this technique is modified to increase the localization accuracy by running such a
two-headed convolutional neural net in several locations and several scales of the image using
sliding windows. This approach is called Overfeat, and it won the ImageNet Large Scale Visual
Recognition Competition (ILSVRC [2]) localization challenge in 2013. They apply the trained
network in every possible location, hence with a stride of 1, on a higher resolution image. In a
standard sliding window approach where every crop is processed separately one after another,
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Figure 2.9: CNN with two heads attached to the feature map - one regression head to compute bounding
boxed and one classification head.

this would cause a huge computational overhead. To overcome this problem, they took advantage
of the structure of convolutional networks as they share computations in overlapping regions by
default. This requires a network free of fully-connected layers. Having section 2.1.1.5 in mind, the
restriction to use only convolutional layers has no impact on the performance of a network. Figure
2.10 illustrates the benefit of using efficient sliding windows by an example of a neural network
with a conv-pool-conv-conv structure trained on inputs of 14x14. For reasons of simplicity, the
nonlinear activation layers in between are not shown. In the upper image sequence, the network
operates on an input of the same size as the training image resulting in a single output (in the
context of classification and localization, this output consist of a pair of a class confidence and a
bounding box). The lower sequence shows the same network running on a slightly larger input.
It is important to note that each layer is applied successively on the output of the previous layer
instead of using the complete stack of layers on every possible location. The red shaded areas in
figure Figure 2.10 show the extra computation required for larger scale inputs. In this example,
the result is a 2-by-2 map of pairs of outputs containing class confidences and bounding boxes
for four different locations. More generally, the size of the output map and the resolution in one
direction are defined by equations (2.15) and (2.16).

outputMapSize =
InputSize− networkInputSize

∑
poolSubsampling

(2.15)

resolution =
∑

poolSubsampling (2.16)

After running such an efficient sliding window network on multiple scales of the input image, the
authors of [SEZ+13] obtained a high number of pairs of outputs. Then they merged all of these
outputs to get a single class label together with one bounding box.

2.2.3 CNNs for Object Detection

The simplest CNN based object detector classifies individual crops of the input image taken from
every possible position at different scales using sliding windows. In contrast to localization, a
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Figure 2.10: Efficient sliding window example with a 4-layer network (5x5conv-2x2maxpool-5x5conv-
1x1conv). The network is trained on a 14x14 input image (upper section). At test time,
the network is applied on a larger image taking advantage of shared computations (lower
section). Only the red shaded areas require additional computations. The output is a 2x2
map of class scores.

regression head is omitted. Knowing the position and the extent of the current crop, the bounding
box is simply the outline of this crop. Of course, it is possible to combine an overlapping set
of bounding boxes to create a more accurate one. However, this approach requires a very fast
classifier as there are many windows to process. Using the efficient sliding window technique
explained above reduces the computational costs by a large factor.

2.2.3.1 R-CNN

In [GDDM14], Girshick et al. presented a new method for object detection called R-CNN by
combining traditional CNNs with region proposals. Applying a neural net on promising areas
only allows to either use a larger network to get a higher accuracy or to boost the performance
while maintaining the accuracy. In their work, Girshick et al. use selective search to compute
about 2,000 region proposals per image. Next to the selective search algorithm, there are many
options how to implement the selection of promising areas, and R-CNN is not limited to a specific
algorithm. A nice and probably nearly exhausting overview is given in [HBDS16]. After extracting
promising areas, the crops are warped to match the input size of the following convolutional neural
network to compute feature vectors. The features are then fed into a linear SVM for classification
and a bounding box regression module, one of each per class. The left part of Figure 2.11
illustrates this structure. The training pipeline of such a detection network can be split up into
four major steps:

1. Supervised pre-training: Download of any pre-trained classification network or like
AlexNet, ZF net and VGG net. Of course, from-scratch-training is also possible. In
[GDDM14], pre-training is done using the ILSVRC2012 classification dataset (1000 classes).

2. Domain-specific fine-tuning: Replacement of the last fully-connected layer (1000 class
classifier) with a smaller, domain-specific classification layer. In case of the Pascal dataset,
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the new fully-connected layer has 21 categories (20 classes from the dataset plus one class
for the background). Then, the network is trained on the warped proposal windows.

3. Feature extraction: Removal of all fully-connected layers of the fine-tuned network and
computation of the feature vectors by forwarding region proposals through the remaining
network. Saving all features can require a lot of disk space.

4. Detector training: Training of a linear SVM together with a linear bounding box regres-
sion model using the extracted features.

Despite the high test-time accuracy, R-CNNs have three major drawbacks. First, the training
pipeline is long and complex, and because detector training is independent of CNN training,
there is no backpropagation. Hence the CNN features are not updated during detector training.
Second, the algorithm is slow at training time and needs much memory to save the features.
According to [15], it takes about 200GB to store the features for the Pascal dataset. Third,
R-CNNs are rather slow at test time (see Section 2.4 for some numbers). To overcome some of
the problems, Girshick released a follow-up paper presenting an improved architecture called Fast
R-CNN [Gir15]. Figure 2.11 shows the Fast R-CNN architecture on the right side. While the
accuracy is only slightly higher compared to R-CNN, this version achieves a higher frame rate due
to swapping the convolutional network with the region proposals. It also consumes less memory
at training time because of the joint training of the whole system. Applying the convolutional
network on the entire image enables to sharing computation across the image (efficient sliding
window). The ROIs selected from the feature map are warped to a fixed size to use them as input
for the fully-connected layer with a special version of maximum pooling, called RoI pooling. See
[Gir15] for more details on this pooling method.

Figure 2.11: Structure of the R-CNN detection method (left) and of Fast R-CNN (right).

While R-CNN spends the majority of the computation time on the CNN (47s compared to 2s for
region proposals), Fast R-CNN suffers from the selective search algorithm to create the region
proposals (0.32s CNN and still 2s for region proposals. Another follow-up work introducing
Faster R-CNN resolves this issue [RHGS15]. The architecture is still the same as Fast R-CNN,
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but instead of the selective search algorithm, they use a small convolutional network trained to
generate region proposals. This network is called Region Proposal Network (RPN). Table 2.10
shows the improvement in performance achieved with this approach.

2.2.3.2 YOLO

YOLO is an acronym for “You Only Look Once” which is a CNN based object detection sys-
tem focusing on speed as presented in [RDGF15]. Compared to other, classifier based detection
frameworks, YOLO runs on the whole high-resolution image at training time as well as at test
time. This decreases the running time and enables the network to be aware of contextual back-
ground information. As a downside, the authors say that the accuracy is behind other state-of-
the-art methods having localization errors as their main error source. In contrast to [SEZ+13]
and other localization networks, YOLO relies on a single-headed network with a 5-tuple output
(x,y,w,h,confidence).

Redmon et al. also published a paper with two new version called YOLOv2 and YOLO9000
[RF16]. YOLOv2 is an improved version of YOLO being faster and more accurate at the same
time. To achieve this, they added some state of the art techniques like batch normalization and
anchor boxes together with novel ideas. YOLO9000 is a joint model for detection and classifi-
cation. It is trained on a combined dataset of ImageNet (classification) and COCO (detection)
and evaluated on the ImageNet detection dataset. ImageNet contains 1000 different classes and
shares only 44 with COCO meaning that the trained network has only seen classification data
(and no detection data) for most of the test images. However, YOLO9000 can achieve a decent
accuracy while still running in real time. Section 2.4 lists some numbers for performance and
accuracy.

2.2.4 Binary Networks

Especially but not exclusive when targeting hardware (FPGAs) it is necessary to reduce the size
of a neural network. Limiting the precision of the used datatypes lowers the required memory
and helps to improve the efficiency. With SqeezeNet [IMA+16], the authors present a method
called deep compression. Among other improvements, the limit the precision of the datatypes
to 6bit while maintaining an AlexNet classification accuracy. There are also a lot of additional
papers covering that topic, but such compression methods are outside the scope of this work.

In terms of hardware efficiency, binary networks are more interesting. Binary Neural Networks
(BNN) can be divided into two classes, binary weight networks where only the weights are binary
and full binary networks with binary weights and binary activations. Two full binary networks are
presented in [CB16] and [RORF16]. Both implementations use {−1, 1} for binary representation
instead of the more hardware friendly set with {0, 1}. One reason is that using {−1, 1} allows to
use the same architecture as with standard networks as multiplications equal the XNOR operation.
Another advantage is that the outputs of the layers are still approximately zero centered whereas
{0, 1} leads to all positive activations.

When moving to binary weights, there are different strategies of binarization. In [CB16], the au-
thors compare deterministic (Equation 2.17) and stochastic binarization (Equation 2.18) where xb

is the binarized version of x and σ(x) is the hard sigmoid function. They conclude that stochastic
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binarization is more appealing, but because it requires the generation of random numbers, deter-
ministic binarization is more efficient and convenient. Full binary networks also require to change
the order of the layers as illustrated in [RORF16]. The pooling layer has to me moved straight
after the convolutional / fully-connected layers as pooling binary activations would cause a huge
loss of information.

xb = Sign(x) =

{

+1 if x ≥ 0

−1 otherwise
(2.17)

xb =

{

+1 with probability p = σ(x)

−1 with probability 1− p
(2.18)

2.2.5 Hardware-Based Neural Network Architectures

In the last few years, FPGAs have found their way into the (convolutional) neural network
research community. Because CNNs benefit a lot form parallel computing, GPUs are currently
the number one platform to implement them. However, FPGAs also provide a massive amount
of parallel units, but the limited amount of memory is often the biggest bottleneck. Recent high-
end devices now feature enough on-chip memory to allow the implementation of high accuracy
networks.

A high-performance classification system based on a Xilinx VC709 is presented in [LFJ+16]. The
Virtex VC709 is an expensive high-end FPGA platform. For more details on this specific FPGA
refer to [25]. They implemented the full AlexNet structure by optimizing each type of layer for
parallel and pipelined processing and limiting the precision to 16-bit fixed point datatypes across
the whole network. YodaNN [ACRB16] is a hardware-based implementation (ASIC) of a binary
weight network with fixed-point activations. To increase the efficiency, they remap the binary
representation of the weights from {−1, 1} to {0, 1} according to Equation 2.19, where wb∗

i is the
remapped version of the weight wb

i . Next to other improvements regarding energy efficiency, they
used latch-based standard cell memory to store the images during the computations.

wb∗
i =

{

0 if wb
i = −1

1 if wb
i = 1

(2.19)

Another interesting work is the Caffe-to-Zynq project [18] from Xilinx giving an API which
provides a direct connection between the Caffe deep learning framework [3] and the Zynq SoC
(System on Chip) platform. The API takes the output file of Caffe (containing the network
structure and the trained weights) and applies it on a pre-optimized CNN engine running on the
programmable logic of the Zynq SoC.

2.3 Traffic Sign Classification and Detection

Traffic signs are a special application case for general purpose CNNs. Some implementations rely
on the architectures presented in section 2.2 optimized for traffic signs while other approaches
use rather different types of neural networks.
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State-of-the-Art

2.3.1 Classification

A traffic sign classification network consisting of multiple individual networks is presented in
[CMMS12]. This approach is called Multi-Column Deep Neural Network (MCDNN). An MCDNN
is a combination of multiple CNNs where the final prediction is the average of all individual
predictions of each CNN. In this work, they used 25 rather small neural networks (five weight
layers – three convolutional and two fully-connected) grouped in ensembles of five where each one
uses a differently preprocessed version of the input image. During preprocessing, the contrast is
normalized to increase the classification rate. They use the following methods to obtain the five
variants of the input image:

• Unchanged image

• Image Adjustment: Increase contrast so that 1% of the pixels are saturated

• Histogram Equalization: Transform pixel intensities to have a roughly uniform his-
togram.

• Adaptive Histogram Equalization: Tile the image into 8 non-overlapping regions and
transform pixel intensities to have a roughly uniform histogram in each tile.

• Contrast Normalization: Edge enhancement using 5x5 difference of Gaussians filters

On the GTSRB the reached an impressive accuracy of 99.46% with this approach. Sermanet and
LeCun presented a small sized architecture in [SL11]. They use a convolutional neural network
with four weight layers (three convolutional and one fully-connected) with an additional bypass.
The features computed in the first convolutional layer are not only fed into the second layer but
also forwarded to the classifier as high-resolution features. The basic idea behind this approach
is to combine global features (second conv layer) and more detailed local ones (first conv layer).
Zang et al. present a traffic sign classification method called Reformative CNN using different
machine learning strategies (SVM, CNN, AdaBoost) in [ZZZ+16].

2.3.2 Detection

Current state-of-the-art traffic sign detection networks often rely on the different versions of
R-CNN. In [CCWY16] the authors focus on detecting Chinese traffic signs building their self-
developed dataset. Similarly, [ZYZ+17] presents an R-CNN to detect Chinese traffic signs but
they also treat traffic lights as traffic signs. However, the final network based on VGG16 has
problems on small signs and produces some overlapping bounding boxes. The authors claim that
these issues lead to the rather low accuracy of 34.5 mAP. A different approach using a combination
of fixed and trainable filters is presented in [WLL+13]. They also used a method called bootstrap
where wrongly classified images in the validation set are moved to the training set. Then they
trained the network a second time resulting in an increase of the accuracy by about 1%.

A high-performance FPGA implementation (Xilinx ZC706) for traffic sign detection following a
different approach is presented in [SLYO17]. Because current CNNs are too complex for hardware
platforms, they use haar-like features similar to the Viola-Jones face detection method [VJ01].
The final detector can run at 126 frames per second on high-definition images (1080p). As a
downside, this implementation can only detect a single class. In their work, Shi et al. used
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State-of-the-Art

stop signs. Another FPGA based detection algorithm is introduced in [SGH15]. In contrast to
the previous method, no kind of training is involved, and the used platform is much cheaper
(Xilinx Spartan 6). The detection relies on unique, handcrafted features which are mainly based
on colors and color transitions. Although the presented architecture is restricted to speed limit
signs, Schwiegelshohn et al. claim that an extension to more classes is no problem. Unfortunately,
they give no clues on the accuracy nor the used dataset.

2.4 Comparison of Different Network Architectures

To finish of the chapter on the State of the Art, this section shows a brief comparison of the net-
works mentioned in Section 2.2 split up into classification networks (Section 2.4.1) and detection
networks (Section 2.4.2).

2.4.1 Classification Networks

Table 2.5 and Table 2.7 give an overview of current general purpose classification networks re-
grading network structure (number of layers, weights) and performance. Table 2.6 and Table 2.8
list some neural network architectures specialized on traffic sign classification again split up in
two tables, one for the network structure and one showing different performance metrics.

2.4.1.1 Network Structure

Architecture Layers Weights Source

AlexNet 11 (5 conv, 3 pool, 3 fc) ≈6.2e7 [KSH12]
ZF-Net 11 (5 conv, 3 pool, 3 fc) ≈1e8 [ZF13]
VGG16 21 (13 conv, 5 pool, 3 fc) ≈1.4e8 [SZ14]

GoogLeNet 27 (22 conv, 5 pool, 3 fc)1 ≈6.8e6 [SLJ+14]
ResNet 154 (151 conv, 2 pool, 1 fc) ≈1.7e6 [HZRS15a]

Table 2.5: Layer-structures of different classification networks

Architecture Layers Weights Source

MCDNN 8 (3 conv, 3 pool, 2 fc) ≈1.5e6 [CMMS12]
CNN + bypass 6 (3 conv, 2 pool, 1 fc) ≈3.7e6 [SL11]

Table 2.6: Layer-structures of different traffic sign classification networks

1GoogLeNet is 27 layers deep with a total number of about 100 layers
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State-of-the-Art

2.4.1.2 Performance

Architecture Platform Top-5 error Test set Classes Source

AlexNet 2x GTX 580 15.3% ILSVRC 2012 1,000 [KSH12]
ZF-Net GTX 580 14.8% ILSVRC 2012 1,000 [ZF13]
VGG16 4x Titan Black 7.2% ILSVRC 2012 1,000 [SZ14]

GoogLeNet - 6.7% ILSVRC 2014 1,000 [SLJ+14]
ResNet 8x GPU 3.57% ILSVRC 2012 1,000 [HZRS15a]

Inception-v4 +
Incept. ResNet v2

Kepler 3.08% ILSVRC 2012 1,000 [SIV16]

Table 2.7: Classification accuracy and used platforms for different classification networks

Architecture Platform Accuracy Test set Classes Source

MCDNN 4x GTX 580 99.46% GTSRB 43 [CMMS12]
CNN + bypass - 99.17% GTSRB 43 [SL11]

Reformative CNN Intel Core2Duo 98.09% GTSRB 32 [ZZZ+16]

Table 2.8: Classification accuracy and used platforms for different traffic sign classification networks

2.4.2 Detection Networks

Similar to the section on classification networks above, Table 2.9 gives an overview of the structure
of current state-of-the-art object detection networks. Table 2.10 and Table 2.11 show a comparison
of the performance of some networks regarding accuracy (mAP) and speed (FPS).

2.4.2.1 Network Structure

Architecture Layers Weights Source

OverFeat 11 (5 conv, 3 pool, 3 fc) ≈1.5e8 [SEZ+13]
YOLO 30 (24 conv, 4 pool, 2 fc) ≈2.7e8 [RDGF15]

YOLOv2 25 (19 conv, 6 pool) ≈2e7 [RF16]
R-CNN (AlexNet) 11 (5 conv, 3 pool, 3 fc)3 ≈6.2e7 [GDDM14, KSH12]
R-CNN (VGG16) 21 (13 conv, 5 pool, 3 fc)3 ≈1.4e8 [GDDM14, SZ14]

Table 2.9: Layer-structures of different detection networks

2Prohibitory, mandatory and danger signs
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State-of-the-Art

2.4.2.2 Performance

Architecture Platform mAP FPS Test set Classes Source

OverFeat K 20x 24.3 0.5 ILSVRC 2013 200 [SEZ+13]

YOLO Titan X 63.4 45 Pascal VOC 2007 20 [RDGF15]
YOLO+Fast R-CNN K 40 75.0 ≈3 Pascal VOC 2007 20 [RDGF15]

Fast YOLO Titan X 52.7 155 Pascal VOC 2007 20 [RDGF15]

R-CNN (Alex-Net) K 20 58.5 0.056 Pascal VOC 2007 20 [GDDM14]
R-CNN (Alex-Net) K 20 31.4 0.056 ILSVRC 2013 200 [GDDM14]
R-CNN (VGG16) K 20 66.0 0.02 Pascal VOC 2007 20 [GDDM14]

Fast R-CNN (VGG16) K 40 66.9 0.43 Pascal VOC 2007 20 [Gir15]

Faster R-CNN (VGG16) K 40 69.9 5 Pascal VOC 2007 20 [RHGS15]
Faster R-CNN (VGG16) K 40 78.8 5 Pascal VOC 20074 20 [RHGS15]

Faster R-CNN (ResNet-101) 8x GPU 76.4 - Pascal VOC 2007 20 [HZRS15a]
Faster R-CNN (ResNet-101) 8x GPU 85.6 - Pascal VOC 20074 20 [HZRS15a]

GoogLeNet - 43.9 - ILSVRC 2014 200 [SLJ+14]

Table 2.10: Detection accuracy using the mean Average Precision (mAP) metric, speed, and used plat-
forms for different general purpose detection networks

Architecture Platform mAP FPS Test set Classes Source

Faster R-CNN (VGG16) GTX980Ti 90.9 6.25 self created Chinese 219 [CCWY16]
Faster R-CNN (ZF-Net) GTX980Ti 90.9 16.67 self created Chinese 219 [CCWY16]
Faster R-CNN (VGG16) - 31.5 - - - [ZYZ+17]

Cascaded Classifiers ZC706 99.85 126 German+Belgium 1 [SLYO17]

Table 2.11: Detection accuracy using the mean Average Precision (mAP) metric, speed, and used plat-
forms for different traffic sign detection networks

3Network architecture / size only given for underlying network
4Trained on a joint dataset of VOC 2007, VOC 2012 and COCO
5Training time accuracy
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3 Project Description

3.1 Dataset Creation

Having a good dataset is vital to train a neural network successfully. Thus, a suitable dataset for
solving a specific problem has to be selected or created with care. For traffic sign classification
and detection in the European region, the GTSRB (classification), the GTSDB (detection), and
the BelgiumTS datasets are available (see Section 2.1.3.5). However, all of them are not ideal
for a combined classification and detection network. This Section will explain the modifications
made to the mentioned datasets in order to use them in this project.

3.1.1 Background Information

Both, the GTSRB and the BelgiumTS dataset, are designed for traffic sign classifications contain-
ing only images with traffic signs. Training a neural network to also distinguish between traffic
signs and background information requires the dataset to imply negative samples as well. The
GTSDB contains high-resolution images (1360×800) of different real-world scenes with annotated
traffic signs (Figure 3.1). Those images are perfectly suitable to generate tiles with background

Figure 3.1: Example images of the GTSDB dataset. The annotated traffic signs are highlighted in green
and purple. The bounding box of the stop sign (purple) has a size of 32 × 32 pixels. Note:
The GTSDB contains only annotations for prohibitory (including speed limits), mandatory
and warning signs as well as stop and give way signs. Thus, the blue pedestrian crossing sign
in the left image is not annotated.
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Project Description

information. Thus, they are divided into equal sized tiles with a resolution of 32×32. The reasons
for choosing this resolution will be explained in the next section. Because 1360 is not a multiple
of 32, the size of the images have to be adjusted in width to simplify the process of tiling. Some
of the images are also surrounded by a tiny, white border. Although this should not be an issue,
all images are cropped in both, width and height, to the closest multiple of 32 before tiling. Tiles
with traffic signs (or parts of traffic signs) are removed.

3.1.2 Training-, Validation-, and Test-Set

The dataset used in this work is a combination of the GTSRB and the BelgiumTS dataset to
increase the generalization during training by having more variations of each sign in the dataset.
As the focus of this work is to detect and classify different classes of traffic signs, not each
sign individually. Therefore, a second set of annotations is added to all images in the training,
validation, and test set grouping all signs in ten classes. In Table 3.1, the used class IDs are shown
together with some examples related to the classes, and Table A.1 (Appendix A) lists all traffics
signs present in the dataset including the individual sign IDs and the corresponding class IDs.
The training set is the GTSRB with background images and images added from the BelgiumTS
training set, while the test set is the GTSRB test set with additional background images.

Class ID Name Examples

0 Warning Signs Uneven Road, Road Works
1 Prohibitory Signs No Overtaking, No Entry
2 Mandatory Signs Turn Left, Straight Only
3 Informational Signs Pedestrian Crossing
4 End-of Signs End of Overtaking Restricions
5 Speed Limits Speed Limit (50)
6 Give Way Give Way
7 Stop Stop
8 Priority Road (End of) Priority Road
9 Background -

Table 3.1: Traffic Sign Classes

Usually, the validation set is subsampled from the training set at random. However, the GTSRB
training dataset contains a sequence of 30 images of the same traffic sign recorded when getting
closer (Figure 3.2). Similarly, the BelgiumTS consist of multiple three-image-consecutions taken
from different camera angles (eight cameras are mounted around the recording van) of each
traffic sign. Thus, random subsampling would cause the validation set to be not independent of
the training set. To overcome this issue, the validation set is created by hand selecting sequences
from the training images.

Figure 3.2 also shows, that the images in the GTSRB dataset are of different size, which is true for
the BelgiumTS dataset as well. However, training convolutional neural networks with a dataset
of equal sized images is more efficient. Hence, all images in the dataset are rescaled to a resolution
of 32 × 32 pixels. During detection, this resolution defines the smallest size of detectable traffic
signs. The purple bounding box in Figure 3.1 (right image) has a spatial extent of 32× 32 pixels
giving an idea of the maximal detectable distance of a traffic sign.
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Project Description

Figure 3.2: Typical image sequence of the GTSRB recored while approaching to a traffic sign

3.1.3 Artificial Distortions

Adding distortions to the training images of a dataset, as described in [SL11], is a common
technique to increase the robustness and generalization of a network. Thus, the entire dataset is
doubled in size, and the following distortions are added to one half:

• Rotations between −20◦ and 20◦ (αr)

• Brightness shifts by adding numbers between -40 and 40 to all three channels equally to
take different lighting conditions into account (αb)

• Color shifts by adding numbers between -30 and 30 to all three channels individually to
consider different illumination conditions, i.e. more blueish or reddish light (α1

c , α
2
c , α

3
c)

• Gaussian noise with zero mean and a maximum variance of 1.25e−3 (αn)

The integer values for rotation, color shift, and brightness shift, are randomly drawn from a
uniform distribution and the Gaussian noise from a normal distribution. To avoid that all random
modifications are applied with their maximum values, the strengths are normalized as shown in
Equations 3.1 to 3.3. This ensures a constant total distortion.

αr = γr ·Xr with Xr ∽ U{−20, 20}
αb = γb ·Xb with Xb ∽ U{−40, 40}
αi
c = γc ·Xc with Xc ∽ U{−30, 30} for i ∈ {1, 2, 3}

αn = γn ·Xn with Xn ∽ N{0, 1.25 · 10−3}

(3.1)
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with

γr =
X1

Xsum

, γb =
X2

Xsum

, γc =
X3

Xsum

, γn =
X4

Xsum

(3.2)

and

Xsum =
4∑

k=1

Xk with Xk ∽ U{1, 1000} (3.3)

so that γr + γb + γc + γn = 1. In the equations above, U denotes a uniform distribution and N a
normal distribution. Before applying the modifications to the images, αr, αb, and αi

c are rounded
to the closest integer. It is also important to make sure that the results are in the range {0, 255}
to avoid an over- or underflow.

Figure 3.3 shows how the distortions affect the training images with the original images in the
first row and the distorted tiles in the second row. The color of the first image is slightly shifted
to the blue, the second last image is rotated a bit more reddish, and the last tile is marginally
brighter. However, the added noise is not visible as the amount is rather low and the images are
tiny.

Figure 3.3: Effect of the artificial distortions on some images of the training set
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Figure 3.4: Distribution of the traffic sign classes in the used dataset for the training, validation and test
set
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3.1.4 Final Dataset

With added background information and artificial distortions, the full dataset consists of 140,360
training images of which 73,128 images contain background information, 7,822 validation images
(4,460 background images) and 20,631 test images (10,137 background images). Figure 3.4 shows
how the classes are distributed over the dataset. Ideally, the distribution should be equal for all
three subsets which is approximately fulfilled. To satisfy the traffic sign detection requirement,
about the half of each set contains background information. Thus, the traffic sign images should
be equally distributed over the remaining 50%. However, the classes 3, 4 and 7 are highly
underrepresented while the classes 0 and 5 are overrepresented. This issue can be addressed in
future work when revising the dataset.

3.2 Small-Scale Convolutional Neural Networks for Combined
Traffic Sign Classification and Detection

The focus of this work is developing a small-scale convolutional neural network for combined
traffic sign classification and detection, as outlined in the introduction. In this context, small-scale
means not only a low number of weights but also includes a simple straight-forward architecture
without computationally expensive functions like the exponential function. This section presents
the architecture designed for that purpose and gives insights on the training methods used.

3.2.1 Architecture

In the previous chapter, different architectures for object and traffic sign classification and de-
tection have been presented. The simplest approach for combined classification and detection
would be applying any classification network (like AlexNet) at different locations and scales of
an image. The primary disadvantage is that this approach requires a lot of computational power.
Very similar, but much more efficient is the efficient sliding window technique used in the Overfeat
architecture. The only limitation compared to the straightforward implementation is that the
classification network has to be built with convolutional layers only. However, this is not really
an issue as any fully connected layer can be converted to a convolutional layer. More advanced
methods like YOLO and the R-CNN family focus on accurate bounding boxes. Since knowing the
exact position of a traffic sign inside an image is nice to have but not necessary for autonomous
driving, those architectures do not add useful information compared to simpler methods. For that
reason, an architecture based on the efficient sliding window technique similar to the Overfeat
network is utilized in this work.

The following sections first describe the developed architecture from a classification viewpoint.
Then the same architecture is analyzed considering the traffic sign detection task.

3.2.1.1 Classification Network

As described in Section 3.1.2 above, the images used for training and traffic sign classification
are RGB color images with a resolution of 32x32 pixels. Since the dataset is divided into ten
classes, the network produces an array with 10 class scores. However, for traffic sign detection,
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the system should be able to process images of arbitrary size. One way to fulfill this requirement
is taking advantage of the efficient sliding window technique (Section 2.1.1.5). As a consequence,
the resulting network has to be fully convolutional, i.e., all necessary affine layers have to be
converted to convolutional layers (Section 2.2.2).

Under these constraints a simply base convolutional architecture with 5× 5 convolutional layers
as shown in Figure 3.5a together with the layer details in Figure 3.5b is utilized: (5× 5 conv ⇒
ReLU ⇒ 2× 2 max-pool) · 2 ⇒ 5× 5 conv ⇒ ReLU ⇒ 1× 1 conv. Converting the affine layer to a
five-by-five and the output layer to a one-by-one convolutional layer leads to a full-convolutional
network. For clarity, those layers will still be referred to as affine and out in this work, although
they compute convolutions. As described in Section 2.1.1.5, all filters operate with a stride
of one, and no zero padding is applied. A ReLU non-linearity directly follows each weight-layer
(except the out layer). Even if Exponential Linear Units (ELUs) and other more recent activation
functions can improve the training process, they are contrary to the objective keeping the network
less complex. For details on how the different activation functions are defined, please refer to
Section 2.1.1.3.

Assuming a stride of one, two stacked 3× 3 convolutional layers have the same receptive field as
a single 5 × 5 layer, which can be easily proven using Equation 2.1. To increase the efficiency
and decrease the size of the network at the same time, the second convolutional layer (conv2)
and the affine layer are replaced by such a block of two consecutive three-by-three layers. Figure
3.5c shows the adapted layer structure. Using multiple smaller layers back-to-back has several
advantages. First, they add additional non-linearities which allow the network to learn more
complex features. Second, 3x3 layers reduce the number of necessary memory accesses when it
comes down to FPGA implementations. A single 3×3 layer also requires 64% fewer computations
compared to a 5× 5 layer, and in pipelined streaming hardware, the latency is 64% smaller too.

Some recent papers like [IMA+16] and [RDGF15] use 1 × 1 compression layers in front of the
primary convolutional layers to greatly reduce the number of weights. This strategy is also applied
in this work in order to address the problem of eventually fitting the traffic sign classification and
detection network on low-end FPGAs. Figure 3.5d shows the updated layer structure including
four of those compression layers. The squeezing layers add another four non-linearities making
the final network ten layers deep. Reducing the depth of the input matrices does not necessarily
have a negative impact on a networks accuracy. One way to explain this behavioral is that
compression layers combine the incoming features to more complex ones which is similar to the
idea of Boosting [24]. To keep the network simple, batch normalization is not used in the final
architecture. Though it can enhance the accuracy, this technique has an unfavorable effect on
the performance during the forward pass. The reason is that batch norm requires computing the
square root of the variance and the expectation of several vectors (Section 2.1.2.4) which is not
ideal for running on FPGAs.

Table 3.2 compares the base structure, the modified structure with consecutive three-by-three
layers and the final layer structure with 1×1 compression layers regarding the size of the network.
For the latter ones, Table 3.2 additionally gives the size of each sublayer too. It is interesting to
note that while two stacked three-by-three layers decrease the number of parameters for conv2,
they increase the size of the affine layer. This happens because the depth of the input and output
volume of the second convolutional layer does not change so that both sublayers act on input
volumes with equal depth. However, the increase from 32 to 64 activation maps in the affine layer
requires a 3×3×64 layer with 64 input maps leading to a high number of weights inside. Overall,
the 3 × 3 version saves about 4% weights, but, more important, it prepares the architecture for
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(a)

conv1
5x5x32

pool1
2x2 maxpool

conv2
5x5x32

pool2
2x2 maxpool

affine
5x5x64

out
1x1x10

(b)

conv1
5x5x32

pool1
2x2 maxpool

conv2
3x3x32
3x3x32

pool2
2x2 maxpool

affine
3x3x64
3x3x64

out
1x1x10

(c)

conv1
5x5x32

pool1
2x2 maxpool

conv2
1x1x16
3x3x32
1x1x20
3x3x32

pool2
2x2 maxpool

affine
1x1x24
3x3x64
1x1x32
3x3x64

out
1x1x10

(d)

Figure 3.5: Architecture of the used CNN (a) together with different implementations of the layers conv2
and affine: Simple base structure (b), improved version using 3× 3 convolutional layers (c),
and final structure with additional 1×1squeezing layers (d). All convolutional layers operate
at a stride of one without zero-padding and the pooling layers have a stride of two.

employing squeezing layers. Thus, the final structure reduces the total number of weights by
38%.

3.2.1.2 Detection Network

Because the network is fully-convolutional, it can be directly applied on input images with arbi-
trary size (efficient sliding window). This is illustrated in Figure 3.6. The CNN takes an RGB
color image with Win ×Hin × Cin and produces a score map of Wscores ×Hscores × Cscores with
Cscores = 10 for ten classes. The class predictor, shown on top of the score map in Figure 3.6,
is responsible for interpreting the class scores to get the final predictions. There are a couple of
algorithms that the prediction function can be chosen from. The possibilities include a simple
max-function picking the maximum score, thresholding at a minimum confidence level using the
softmax function (Equation 2.5), and more advanced methods taking a small neighborhood and
multiple scales into account. A short evaluation of some potential choices is given in Section 4.2.
In the end, the class predictor produces a classification map of Wscores ×Hscores × 1 containing
the predicted labels. In this case, a number between zero and nine for the ten traffic sign classes.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Project Description

Layer weights (base) weights (3x3) weights (final)

total sublayers total sublayers

conv 1 2,400 2,400 - 2400 -

conv 2 25,600 18,432
9,216

11,520

512
4,608

9,216
640
5,760

affine 51,200 55,296
18,432

35,072

768
13,824

36,864
2048
18,432

out 640 640 - 640 -

total 79,840 76,768 (-3.8%) 49,632 (-37.8%)

Table 3.2: Comparison of the number of weights for the base-architecture, when using only 3× 3 layers
(except in conv 1), and for the final, optimized architecture

The width and height of the score map (and the classification map) can be calculated using
Equations 3.4, where P is the total sub-sampling caused by pooling, C is the number of convo-
lutional layers, and Fk is the spatial convolution size of filter k with sub-sampling of Pk behind.
In practice, the size of the input image is not completely arbitrary, because the size of the score
map has to be whole-numbered. Alternatively, whole-numbered map sizes can also be achieved
by chopping off the fractional digits and proper sizing of the array size. However, such a strategy
requires some structural changes in the neural net framework, and therefore, it is rarely used in
practice.

Wscores =
Win

P
−

C∑

k=1

Fk − 1

Pk

, Hscores =
Hin

P
−

C∑

k=1

Fk − 1

Pk

(3.4)

To know which resolutions of images are eligible as input to the neural network is essential for
actually using it for traffic sign detection. For convenience, the parameter settings of the 5 × 5
base structure are used since there is no difference between the various versions regarding width
and height of the score map. Thus, the following settings for the parameters of Equation 3.4
apply:

P = 4, C = 4

P1 = 4, P2 = 2, P3 = P4 = 1

F1 = F2 = F3 = 5, F4 = 1
(3.5)

Then, the equation for Wscores then turns into
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RGB Input Image 
(any size)

conv. net

score map
class predictor

10

3
Win

Hin

Wscores Hscores

1

classification
map

Figure 3.6: Setup for traffic sign detection

Wscores =
Win

P
−

C∑

k=1

Fk − 1

Pk

=
Win

4
−
[
5− 1

4
+

5− 1

2
+

5− 1

1
+

1− 1

1

]

=
Win

4
− 7

(3.6)

where the sum simplifies to a constant. In order to obtain an integer Wscores, the remainder of
Win/4 has to be zero. This is the first condition for Win. Naturally, the score map has to contain
at least one set of class scores. The inequation Win/4− 7 ≥ 1 results in the second condition for
Win. Repeating this calculation for Hscores leads to an elementary set of conditions:

Win % 4 = 0 and Win ≥ 32

Hin % 4 = 0 and Hin ≥ 32 (3.7)

with % being the modulo operator. It does not need to be explained further that those conditions
are easy to fulfill. Table 3.3 summarizes the sizes of the classification maps for different input
images and the total number of class labels. The corresponding score maps contain ten times as
much values since the dataset has ten classes. As expected, a 32× 32 training image results in a
1-by-1 classification map.

Another point to take care about is the resolution of the scores. Taking a second look at Equation
3.6 and neglecting the subtracted constant reveals that the resolution of is about four pixels,
independent of the size of the input. Examining Figure 3.2 and Figure 3.3 indicates that a shift
of four pixels should not affect the classification task because it would only change a small part of
the background. Even in the worst case, when the traffic sign fills out the 32×32 tile completely,
the training network should be robust enough to ignore such a distortion.
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Project Description

Image Type Resolution Classification map size Total labels

Training image 32× 32 1× 1 1
QVGA 320× 240 73× 53 3,869
VGA 640× 480 153× 113 17,289

HD ready (720p) 1280× 720 313× 173 54,149
GTSDB (cropped) 1344× 768 329× 185 60,865
GTSDB (original) 1360× 800 333× 193 64,269
Full HD (1080p) 1920× 1080 473× 263 124,399

Table 3.3: Resulting size of the classification map and total number of labels for different sizes of input
images when using the developed architecture

3.2.2 Training Methods

Having a good dataset and a proper architecture are only two of the three ingredients required
for a good performing convolutional neural network. The third factor is training the network.
This includes not only the training process itself, but also, among others, weight initialization,
hyperparameter tuning, and managing the learning rate. This section covers those topics and
gives details on the training methods used.

3.2.2.1 Step Size Control

It is common to adjust the size of an update step during training by modifying the learning rate,
e.g., with some decaying function. Popular choices are, among others, the exponential decay,
where the learning rate is multiplied with a factor smaller one after each training epoch and a
training dependent step decay, where the learning rate is reduced when the training process stops.
A simple way to detect a stalling training process is monitoring the loss over time. When the loss
reaches a plateau, the learning rate should be decreased. This often results in a global learning
rate for all layers. Some methods like [IH00] use individual learning rates for each individual
weight. However, such adaptive gradient-based algorithms seem to be fallen a bit out of favor for
training neural networks. A possible reason could be that they require much more memory than
current methods. For each weight matrix, an equal sized matrix of learning rates is needed and,
in case of weight backtracking, an additional matrix holding the previous weight updates.

The learning rate, as well as the strength and the implementation of the decay, are tunable
hyperparameters. Setting them correctly is vital for successful training. If the learning rate is too
low, the network would barely learn, and a large learning rate would lead to a diverging loss. In
this context, it is advantageous to monitor not only the loss but also the size of the update steps.
Because the values of the individual weights can span across several orders of magnitude, the
absolute step size is not a good metric. The ratio of the updates, the magnitude of the updates
relative to the magnitude of the weight values provides more useful information as it eliminates
the influence of the actual weight values.

This relative step size can be defined as the quotient of the normed weight matrix and the normed
update step matrix, i.e., the output of the update rule. Equation 3.8 shows the Frobenius norm
of a multi-dimensional weight matrix W with individual weights wij and the relative step size r is
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Project Description

defined in Equation 3.9. According to [6], the relative size of an update step should be somewhere
around 1e− 3.

‖W‖F =

√
∑

w∈W

|wij |2 (3.8)

r =
‖W‖F
‖step‖F

(3.9)

While tracking the ratio of the updates gives hints on how to set the learning rate, it still requires
a lot of testing and tuning. In the presented work, this idea is taken one step further. Instead of
just monitoring the relative step size, it is used to modify the learning rate. In other words, large
steps lead to a reduced and tiny steps to an increased learning rate. Therefore, the following rule
applies:

η =







η · η−, if r > αu

η · η+, if r < αl

η, otherwise

(3.10)

where η− and η+ are the factors to increase or decrease the learning rate with 0 < η− < 1 < η+,
and αu and αl being the upper and the lower threshold, respectively. At first glance, this idea
seems a bit counterproductive. The two hyperparameters learning rate and decay rate are replaced
by four new parameters to tune. Nevertheless, the learning rate and the decay rate are more
critical to set. It turns out, that this method is very robust to variations of the parameters as
long as the upper threshold is not too big and the thresholds are separated by a factor of at least
five. Additionally, both threshold values can be decreased over time similar to the learning rate.
Depending on the size of the mini batches during training, the initial setting of the thresholds can
vary. In general, bigger mini batches allow a higher learning rate. Thus, the upper threshold can
also be higher. For a mini batch size of 50, αu = 2.5e−3 to 5e−3 and αl = 5e−4 seems to work
well and for 100 samples in each batch, αu = 1e−2 and αl = 5e−3 leads to a good and stable
training process. For the decrease and increase factors, η− = 0.75 to 0.95 and η+ = 1.1 to 1.25
are reasonable default choices.

For training the network architecture described above, the step size control is applied to each
layer individually. This results in ten different learning rates maintaining the advantages of having
multiple, data dependend learning rates without the downside of requiring more memory during
training. Figure 3.7 shows a comparison between standard training and training with activated
step size control. In both cases the rmsprop update rule with an equal initial learning rate is
used. Even though the loss functions converges a bit faster with standard training in the first
third, step size control makes the update steps more consistent eventually ending up with a lower
loss.

3.2.2.2 Spatial Dropout in Small-Scale Networks

Dropout, as described in Section 2.1.2.2, is a standard technique to avoid overfitting and to
increase the accuracy of a neural network. However, overfitting is usually not a big concern
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Figure 3.7: Effect of step size control on the loss function

in small-scale neural networks, but the possibility of increasing the accuracy is motivating the
following experiments. Since the network is built only using convolutional layers, it is more
meaningful to drop complete feature vectors instead of single activations. In fact, this matches
the basic idea of dropout as convolutional layers can be interpreted as applying a single neuron at
different locations. Thus, the activation map contains multiple outputs of a single neuron. This
is the idea behind spatial dropout as presented in [TGJ+14].

Depending on the number of dropped neurons, the size of the active CNN and consequently
its capacity gets reduced. That being said, dropout can have a negative impact on a networks
accuracy if the remaining network does not have enough capacity to learn a specific dataset. This
can especially a problem in networks with small layers. In the following experiments, dropout
with varying strength is applied on different layers of the CNN.

Section 2.1.2.2 explains that the weights have to be rescaled at test time in order to have the
outputs of the neurons at test time equal to their expected output at training time. However,
this is just an approximation which is only valid for wide layers. The error of this approximation
drastically increases for small layers. A short example illustrates the problem using inverted
dropout. Let y be a vector of activations with five elements sampled from a normal distribution
N{10, 1}: y = [10, 9.67, 9.88, 10.03, 9.91]. The mean of the activations at test time is

ȳtest =
1

5

5∑

i=1

yi = 9.898 (3.11)

A dropout with p = 0.5 could then lead to a binary dropout mask db = [0, 1, 1, 0, 0]. For
convenience, the obligatory correction factor is directly applied in this mask resulting in d =
db/p = [0, 2, 2, 0, 0]. Then, the mean of the activations during training is
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ȳtrain,1 =
1

5
(y · d) = 7.82 (3.12)

The difference between ytest and ytrain,1 is quite big because the real dropout ratio is rather
different preal = 0.4. This leads to the new dropout mask dreal = db/preal = [0, 2.5, 2.5, 0, 0] and
a much better approximation:

ȳtrain,2 =
1

5
(y · dreal) = 9.775 (3.13)

Thus, the real dropout ratio is used in the presented work to scale the activation. This requires
additional computations slowing down the training process as the dropout mask has to be analyzed
every time. However, small layers do not suffer too much from that penalty and the better
approximation is worth the overhead. In Figure 3.8a, the error of the standard approximation
method is plotted for different layer sizes and different dropout ratios, and Figure 3.8b shows
the result using the real dropout ratio for layers with less than 500 filters. Both figures show
the standard deviation of the absolute error between the activations at test and at training time
averaged over 100 forward passes, where the dropout mask is re-sampled for each forward pass.
Comparing both figures shows, that the error in the range relevant for this work is reduced by a
factor of five.

3.2.2.3 Training Details

Besides step-size control and dropout, there are also a couple of other things to take care of.
Because the network has a total depth of ten layers and no batch normalization is used to control
the variance of the layer outputs, a proper weight initialization strategy is key. As described
in Section 2.1.2.3, it is recommended to sample the weights from a normal distribution with
N{0, 1/

√

n/2} when using ReLU activations. However, it turned out that using this strategy
sometimes leads to a diverging loss. Rescaling all weights with an additional factor of 0.75 resolved
this issue. The bias vectors do not require a particular initialization strategy and are therefore
set to zero.

As an update rule, Rmsprop is used. The slightly more advanced ADAM method shows no
advantage regarding accuracy or convergence rate of the loss. One possible explanation is the
fact that controlling the size of an update step can be interpreted as a way of building up a
momentum. Small update steps directly lead to an increased learning rate and large steps to a
reduced learning rate. Pure Rmsprop has only the capability of reducing the effective learning rate
of each weight individually for high gradients due to building up a cache. Step size control adds
a second layer of adapting the learning rate on top. The more simple, SGD-based update rules
performed a bit worse regarding the convergence rate of the loss. As a consequence, Rmsprop is
the best choice to go with for the experiments in the next chapter.

The last thing to mention are the settings of the learning rate and its decay. The initial value
of the learning rate is arbitrary in a wide range. Due to controlling the step size, it will be
automatically increased or decreased to a proper value. However, a very large setting can lead
to a large gradient and together with ReLU non-linearities, this could become a problem. A
large gradient can cause the weights to be updated in a way that the ReLUs will never be active
again (dead ReLU). An initial setting between 1e−4 and 1e−2 should be safe in most of the
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(a) Dropout without calculating the real ratio
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(b) Dropout with calculating the real ratio for layers with less than 500
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Figure 3.8: Comparison of the common approximation for rescaling the activations (a) with a version
with improved accuracy for small layers (b)

cases. Decaying the learning rate directly is not necessary when using step size control but
it is meaningful to decrease the step size thresholds over time. Although an automatic decay
mechanism is easy to implement, the upper and the lower threshold are adjusted manually by
inspecting the loss. As soon as the loss stops decreasing, the thresholds are scaled down by a
factor of 2 oder 2.5. Starting from αu = 1e−2 and αl = 1e−3, they eventually ended up with
αu = 5e−4 and αl = 5e−5 in the following experiments.

The last point to note is preprocessing of the data, the inputs. Depending on the type of data,
people use different methods like mean subtraction, normalization, and principal component
analysis (PCA). When it comes down to images as input data, compression methods like PCA are
rarely used. In contrast to that, zero-centering the data by subtracting the mean is very common
and essential. A zero-centered input data together with randomly initialized weights leads to an
approximately zero-centered output of a convolutional or affine layer. In case of ReLU activations
(and other zero-centered activation functions), this helps to improve the training process. For
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subtracting the mean, the necessary RGB mean image Imean is calculated over the entire training
of the dataset described in Section 3.1 set using

Imean =
1

Ntrain

Ntrain∑

n=1

In (3.14)

The mean image is shown in Figure 3.9. It is extremely important to note that the mean image has
to be calculated on the training set only. Then, the mean image has to be saved for subtracting it
from all validation and test images. This especially plays a role in a future FPGA implementation
as Imean requires some additional memory. To keep preprocessing as simple as possible, no
normalization is used because it would need additional memory and also logic to apply the
normalization on every incoming image.

Figure 3.9: Mean image Imean calculated over the entire set of training images

3.3 Binary Network Architectures

Moving from full precision to binary networks can save not only a lot of memory but also simplifies
the necessary computations. This section will first explain how to modify the architecture to get
a binary weight network. In a second step, the activations will also be binarized leading to a full
binary network.

3.3.1 Binary Weight Network

Moving to a binary weight network is a rather straightforward task. When using the binary
representation {−1, 1}, the network structure does not has to be changed. The weights are still
stored as full precision variables to allow a gradient-based weight optimization, but for the forward
and backward pass, the weights are binarized using Equation 3.15.

wb = Sign(w) =

{

+1 if w ≥ 0

−1 otherwise
(3.15)

However, binarized weights introduce one major problem. After subtracting the mean, the input
to the first layer can, in theory, contain values between -255 and 255. In practice, values in the
range of {−127, 127} is much more likely. The weights in full precision networks are smaller than
1 which ensures that the outputs of a layer s scaled down. Figure 3.10 shows the distribution
of the weight of the conv1 layer. Since the weights in binary weight networks are equal to 1 (or
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Figure 3.10: Distribution of the weights in the conv1 layer

-1), no rescaling happened. This leads in increasing layer outputs. As a result, training is very
inefficient.

The best way to overcome this issue is rescaling the activations after each layer. Among other
methods, the half the mean of the squared weights performed best during testing as it is a good
measure for the scale of the weights. Alternatively, the mean of the absolute values also works
well. The standard mean is not an option as the distribution of the weights is approximately
symmetric around zero. In Table 3.4, the mean of the outputs of each of the main layers for one
forward pass for the full precision network, the binary weight network, and the binary weight
network with rescaling is shown. It is clearly visible, that the activations of the full precision
network and the binary weight network with rescaling are similar while the activations of the
standard binary weight network are much bigger.

conv1 conv2 affine out

full precision 35.93 17.25 19.03 15.67
binary weights 446.78 2.87e+5 7.66e+8 1.75e+9

binary weights (rescaled) 20.7 31.74 4.93 3.67

Table 3.4: Mean value of the activations after each of the main layers

3.3.2 Full Binary Network

In contrast to a binary weight network, a full binary network architecture requires more structural
changes. First, the ReLU non-linearity has to be exchanged with a threshold type function. In
case of the simulation using the {−1, 1} representation, simply thresholding at zero with a sign
function should be fine. For a future FPGA implementation with a {0, 1} representation, a
decision boundary greater zero has to be used instead. A suitable choice would be the half of
the number of weights in the previous layer. Another possibility is making the threshold level a
trainable parameter so that the network can find the best value during training.
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The second change affects the order of the layers. It is common to chain convolutional (and
affine) layers with an activation function together and refer to this combination as a single layer.
This eases the overall architecture. Also, the sequence of activation function and pooling layer
is arbitrary in full precision and binary weight networks for most activation functions as long as
they are monotonically increasing. Thus, it makes no difference whether to apply a non-linearity
or the max-pool function first. However, this is not true for the sign function. If one would
execute the binarization before pooling, the pooling layer would only receive values of -1 or +1.
This would require some kind of tie breaker like always taking the first activation or randomly
sampling one activation. The result would be a big loss of information in both situations. To
overcome this issue, pooling has to take place before applying the threshold-like non-linearity.

Multiplication XNOR
X1 X2 Y X1 X2 Y

-1 -1 1 0 0 1
-1 1 -1 0 1 0
1 -1 -1 1 0 0
1 1 1 1 1 1

Table 3.5: Equality of the multiplication with values in {−1, 1} and the XNOR operation with {0, 1}

Such full binary networks are not only extremely memory efficient but also very simple to com-
pute. Depending on the datatype, binary weights can reduce the required memory by a factor
of 64 (when using 64bit doubles for training the network). With a {0, 1} representation, the
multiplications and additions simplify to XNOR and bit-counting operations. These operations
are highly resource-efficient and fast, especially on hardware platforms like FPGAs and ASICs.
Besides modifying the decision boundary of the threshold function, the convolutions itself have
to be adapted to compute the XNOR operation. In Table 3.5, the equality of the multiplication
with a {−1, 1} binary representation and the XNOR operation is shown. The remaining network
structure can be left unchanged The remaining network structure can be left unchanged and the
rescaling the activations like described in the previous section is not necessary because binarizing
the activations is already similar to rescaling. Also, dropout is not applied here for two reasons.
First, dropout reduces the effective size of the network and a binary network already has a smaller
representational power compared to a full precision network. Second, binarizing the weights is
also some kind of regularization making the regularization effect of dropout unnecessary.
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4 Results

The following sections present the results obtained from different experiments regarding clas-
sification and detection accuracy. The experiments cover different sized networks as well as
different implementations. This includes comparing the accuracy of the full precision network
with an equal sized binary weight network and a full binary network. The last section contains
a hardware simulation of a binary convolutional layer using high-level synthesis (HLS) to get an
approximation of the size in hardware of the network, i.e., the required resources.

4.1 Classification Results

The first thing to test is how the different networks perform in the classification task. After testing
different sized networks trained with the dataset explained in the previous chapter, a slightly
modified dataset is used to train another network with the same architecture but a different
output layer for binary classification, i.e., for deciding whether a tile contains a traffic sign or not
without assigning a traffic sign class (class ID between 0 and 8). Finally, experiments performed
on the binary-weight and full binary network show the impact of a limited representational power
on the classification accuracy.

4.1.1 Ten-Class Classification

The network presented in Section 3.2.1 is only one example implementation out of a manifold of
possibilities using the same architecture as all layers can be changed in width and dropout can be
added at various locations. The following sections will present the results obtained with different
implementations.

4.1.1.1 Network-Size Experiments

Various sized versions of the classification network are tested to find the best one for fitting the
traffic sign dataset. Table 4.1 lists five networks named after the number of weights used, where
the 50k network is the one developed in Section 3.2.1. Based on that, the 40k net has smaller
and the 60k net wider convolutional layers. Last but not least, the 50k v2 net features the small
convolutional layers of the 40k version together with a fairly wide affine layer. With this setup,
it is possible to draw conclusions about which layers impact the classification accuracy most.
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Results

The last row in Table 4.1 shows the best accuracy achieved on the validation set. For a meaningful
comparison, all networks are trained with identical parameter settings and for an equal number
of epochs without dropout. The reason for omitting dropout is that the effect depends on the
size of the layers and changing layer sizes could manipulate the results. Additionally, the dropout
strength is also a tunable hyperparameter. Testing different sized networks with diverse dropout
settings would lead to a huge number of networks which is not manageable within this work. For
a discussion on dropout, see Section 4.1.1.2. Comparing the results obtained with the 40k, the
50k and the 60k networks shows that the size of the conv1 and conv2 layers directly influences
the accuracy positively. Looking at the 40k and the 50k v2 network reveals that increasing the
size of the affine layer also improves the accuracy of the network. However, the achieved gain is
smaller compared to enlarging both convolutional layers. Opposing the 50k to the 50k v2 network
supports this argument as the 50k architecture reaches a higher accuracy while having the same
number of weights. Finally, the 100k network performs about the same as the 60k architecture.
The tiny difference can be neglected because training one of these networks again can lead to a
higher difference than 0.01%. Overall, the 60k network is the best choice out of the architectures
presented in Table 4.1. The accuracy is approximately 0.25 percentage points better compared
to the 50k network, and with some additional training, it should be possible to break the 99%
mark. On the other hand, the 10,000 extra weights can absorb possible penalties from moving to
binary weights better.

40k 50k 50k v2 60k 100k

conv 1 5x5x24 5x5x32 5x5x24 5x5x40 5x5x32

conv 2

1x1x12 1x1x16 1x1x12 1x1x20 1x1x16
3x3x32 3x3x32 3x3x32 3x3x48 3x3x48
1x1x16 1x1x20 1x1x16 1x1x24 1x1x24
3x3x32 3x3x32 3x3x32 3x3x48 3x3x48

affine

1x1x16 1x1x24 1x1x16 1x1x24 1x1x32
3x3x64 3x3x64 3x3x64 3x3x64 3x3x96
1x1x32 1x1x32 1x1x40 1x1x32 1x1x48
3x3x64 3x3x64 3x3x80 3x3x64 3x3x96

out 1x1x10 1x1x10 1x1x10 1x1x10 1x1x10

val. accuracy (%) 96.79 98.73 97.72 98.97 98.98

Table 4.1: Different full-precision network configurations together with the best validation accuracy
achieved

4.1.1.2 Dropout Experiments

Table 4.2 shows the effect of dropout on the network architecture described in Section 3.2.1 (50k
network). Dropout is used with a probability p of keeping a feature map active in the second
(conv2) and the third (affine) layer. For convenience, both 3x3 sublayers inside one layer share the
same probability p and dropout is not applied on the 1x1 reducing layers. Because the first layer
(conv1) is rather small, no dropout is applied there (p = 1). The results in Table 4.2 show, that
dropout decreases the gap between the training accuracy and the validation accuracy as expected
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Results

but the accuracies itself get reduced as well. The network was trained for an equal number of
epochs for all five experiments. In literature, it is often recommended to train networks with
applied dropout for more epochs. A frequent suggestion is to increase the number of training
epochs approximately by the amount of dropped neurons, e.g., to extend the training time by
30% for a dropout of (p = 0.7). However, stretching the training time was omitted in this work
due to limited computational resources as this would eventually end up with doubling the total
training time.

dropout settings of p val. acc. (%) training acc. (%) gap
conv1 conv2 affine val avg

1 1 1 99.48 98.52 0.95 1.35
1 1 0.85 99.24 98.46 0.78 1.3
1 1 0.7 99.01 98.29 0.72 1.22
1 0.85 0.85 99.08 98.32 0.76 1.19
1 0.85 0.7 98.68 98.03 0.65 1.27

Table 4.2: Effect of different dropout settings on the validation accuracy using the 50k network. In the
last two columns, the gap between the best validation accuracy and the corresponding training
accuracy and the average gap size are shown.

When looking at the summarized results in Table 4.2, the differences in the accuracies are rather
small making a decision based on the facts only difficult. When omitting the last row, the gap
between the best and the worst accuracy is only 0.23 percentage points. Based on the tiny
accuracy difference between no dropout and dropout with (p = 0.85) in the affine layer together
with the decreased gap size, the second option is chosen for the final architecture.

4.1.1.3 Detailed Results (60k Network)

Based on the previous experiments, the final classification network uses the 60k structure together
with a dropout of p = 0.85 for the affine layer. Figure 4.1 shows the loss function, the relative
size of the update steps, and the classification accuracy on the training and the validation set.
The combination of these three plots helps to analyze the efficiency of the training progress. In
the beginning, the update steps are quite large to speed up the convergence of the loss during
the first training epochs. Then, the size of the update steps is greatly reduced to fine-tune the
weights. The second plot also shows the effect of step size control. Except for the first few
epochs, the step size is kept constant for some time and when the training process stops, the
step size is reduced. The loss in Figure 4.1 contains a lot of noise which can be explained by
using mini-batches of 100 training images for each forward pass. A larger batch size usually
decreases this noise but also requires much more memory during training. Another advantage of
the mini-batches is that the introduced noise helps training the network as this can be interpreted
as some kind of regularization. Figure 4.1 also shows that the accuracy improves very fast in
the beginning. After the first epoch, the validation accuracy is already above 90%, and after two
epochs, a validation accuracy of slightly above 95% is reached. The gap between the training and
the validation accuracy at the best validation accuracy is 0.69 percentage points with an average
of 1.01. These values are lower than all numbers in Table 4.2 which is a good indicator that
dropout works as expected. Finally, the best validation accuracy of this network is 98.97%.
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Results

Figure 4.1: Loss, weight update ratio (relative step size), and classification accuracy recored when train-
ing the 60k network. The orange line in the first two plots is the sliding mean over 200
samples for an easier interpretation of the trend.

After finding the best network by cross-validating different architectures and dropout settings and
selecting the best performing set of weights using the validation set, the final network is ready
to be applied to the classification test set. On this data, the 60k network achieves an accuracy
of 98.34%. For a more detailed result, Figure 4.2a shows the per-class accuracies together with
the mean accuracy. Note that simply averaging those accuracies would lead to a different result
because the test set does not contain the same number of images for each class. Two classes,
namely class one (prohibitory signs) and class nine (background images) fall behind the other
classes. In case of the background images, this drop can be explained by the complexity of this
class. The included images show everything that is not a traffic sign, and thus, this class contains
a huge variety of objects making a correct classification much more difficult. To analyze the
reason for the comparable low accuracy of class one, another visualization giving a more in-depth
view is necessary. Figure 4.2b shows the confusion matrix. In its diagonal, the confusion matrix
contains the per-class accuracies from Figure 4.2a. The other columns show the percentages of
wrong classifications and each row should sum up to 1. For convenience, values smaller than
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Results

0.1 are omitted in the plot, and all other values are rounded to a single decimal place. Thus,
the condition of summing to 1 may not be fulfilled by all rows. The confusion matrix reveals
that 1.6% of the prohibitory signs are wrongly classified as stop signs, and another 0.5% are
classified as speed limits. Both cases can be explained by the design of the dataset. Especially
the “No Entry” sign looks similar to a stop sign as both are mainly red with a white section in
the center. Also, prohibitory signs and speed limits are very similar. Surprisingly, not a single
stop sign is misclassified as any other sign. The reasons for this unexpected behavior are hard to
identify, but it probably has something to do with how the network has trained. Figure 4.2b also
shows how the wrongly classified background images are distributed over the other classes. Those
misclassifications are strongly related to the amount of similar looking objects in the full-scale
test images. Significantly improving the accuracy for the background class would require a bigger
network to cover more fine-grained details.

(a) (b)

Figure 4.2: Per-class accuracies together with the mean accuracy (orange line) ((a)) and confusion matrix
((b)) when applying the 60k network on the test set.

Another interesting thing is to look at the weights after training the network. The filters of
the first layer are easy to display and to interpret. The weights in such a filter represent how
much the filter, and therefore the entire network, likes a specific color or a transition between
two colors. Thus, those filters react to the most basic shapes, colors and edges. When working
with a dataset containing RGB images, the conv1 filters can be directly visualized as they are
just multiple small color images weighting the input channels. Higher level filters with more than
three input channels are much harder to visualize and interpret. For example, they could be
plotted as grayscale images where each pixel of the image is the average of all input channels to
this filter, though such a representation is not meaningful. Instead, there are different methods
like presented in [ZF13] available, but visualizing neural networks is outside the scope of this
work. Nevertheless, looking at the weight of the first layer can be still useful to analyze the
training efficiency.

Figure 4.3a shows the randomly initialized filters of the conv1 layer and Figure 4.3b the trained
filters after remapping them to the range 0 to 255. In a well-trained network, the filters should
look clean with little to no noise. This is often used as an easy way of checking whether the
network trains properly or not. Thus, the trained weights in Figure 4.3b indicate that there is
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something wrong with the training process, but the network still performs well as shown above.
Several circumstances can explain this behavior, and it is worth discussing them briefly.

(a) (b)

Figure 4.3: Randomly initialized weights ((a)) and weights after training the network ((b))

First of all, the gradient could vanquish during backpropagation leading to tiny update steps and
eventually prevent learning. This possibility can be eliminated quickly because the filters before
and after training look different and, more important, step size control would cause an extremely
high learning rate to maintain the selected step size. This is not the case as proven in Table 4.3
where the last learning rates of all layers are listed.

conv1 conv2 affine out

9.6e-6 2.16e-5 1.11e-5 2.85e-5 1.5e-5 2.84e-5 1.3e-5 2.25e-5 1.09e-5 0.0123

Table 4.3: Learning rates of all individual layers at the end of training.

A second possibility is that subtracting the mean during preprocessing causes the filters to be
uninterpretable. Since the input images now contain also negative values, liking a specific color
is expressed either by a positive valued weight with a positive input or a negative valued weight
with a negative input. Training a network without preprocessed training images leads to similar
looking filters allowing the conclusion that subtracting the mean is also not the reason for the
random looking filters.

Another way to explain this behavior is that the following squeezing layer combines the conv1
filters with the weights of the squeezing layer to more reasonable looking filters. Combining the
conv1 filters with the weights of the first reducing layer leads to the filters shown in Figure 4.4.
Again, these filters look quite random and thus, this explanation is not valid as well.

Figure 4.4: Filters after the first squeezing layer

The last possibility is that, due to the squeezing layers, the network is deeper than required for
traffic sign classification. Thus, the filters in the conv1 layer could be responsible for some kind
of pre-filtering before following layers compute actual, more interpretable features.
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4.1.1.4 Binary Weight Network

Similar to the full precision network above, the binary weight network is based on the 60k network,
but dropout is omitted to avoid further reducing the effective capacity of the network. The
architectural changes are described in Section 3.3.1.

During training, the binary weight network reached a validation accuracy of 96.37% which is only
2.6 percentage points lower than the full precision network with 32bit weights. At test time, the
60k network with binary weights achieves a classification accuracy of 96.53% with the per-class
accuracies in Figure 4.5a and the confusion matrix in Figure 4.5b. Note that the y-axis of Figure
4.5a starts at 0.85 compared to 0.9 in Figure 4.2b. The accuracies are lower but very similarly
distributed like the ones of the full precision network with significant drops for the classes 1 and
9. Thus, the given discussion is also valid in this case.

(a) (b)

Figure 4.5: Per-class accuracies together with the mean accuracy (orange line) ((a)) and confusion matrix
((b)) when applying the binary weight version of the 60k network on the test set.

The results using the binary weight network suggest that a full-precision like accuracy can be
accomplished with a slightly larger binary weight network. This should not be a problem regarding
the required memory as there is plenty of room between the binary weight and the full-precision
network.

4.1.1.5 Full Binary Network

Moving to a full binary network with binary weights and activations requires more structural
changes as explained in Section 3.3.2. Again, no dropout is used to keep the effective capacity of
the network as big as possible.

The full binary network reaches a validation accuracy of 87.63% which is about 9 percentage points
lower than the binary weight network. This leads to the assumption that binary activations have
a much higher impact on the performance of a network than binary weights. At test time, the
accuracy is 86.5%. The corresponding per-class accuracies and the confusion matrix are shown in
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Figure 4.6a and Figure 4.6b. Note that the accuracy scale of Figure 4.6a starts at zero this time.
Apart from the reduced accuracy values, the per-class accuracies plot with accuracy drops for the
classes 1and 9 looks very similar to the plots of the full-precision and the binary weight network.
This suggests a proper training process. However, the accuracy for class 3 (informational signs) is
very bad. One reason is that this class contains way less images compared to the other classes as
shown in Figure 3.4. The test set, for example, includes only 10 images. Thus, misclassifications
will not average out. The confusion matrix shows that only one out if the ten images is classified
correctly, but five images are assigned to class 8 (Priority Road) for no apparent reason.

(a) (b)

Figure 4.6: Per-class accuracies together with the mean accuracy (orange line) ((a)) and confusion matrix
((b)) when applying the full-binary version of the 60k network on the test set.

The results are a clear indicator that the capacity of the network is too small to fit the traffic
sign data with high accuracy. Thus, the number of weights has to be increased.

4.1.2 Two-Class Classification

The 60k network can also be used for binary classification by simply adapting the out layer to
two output classes. This experiment uses the pretrained network from Section 4.1.1.3 for faster
training with a re-initialized affine layer, i.e., the conv1 and conv2 layers remain unchanged and
the affine and out layers are trained from scratch.

The network achieves an accuracy of 99.35% on the validation set with a gap between training
and validation accuracy of 0.43 percentage points. On the test set, the mean accuracy is 98.86%.
Figure 4.7a shows the per-class accuracies and Figure 4.7b the confusion matrix where class 0
represents traffic signs and class 1 background images. L. Like the ten-class classification, the
two-class classification also shows a significant accuracy drop for the background image class. The
confusion matrix also suggests the conclusion that in case of the two-class classification almost
all traffic signs can be detected (only 0.1% false negatives). The high classification accuracy
for class 0 can be explained by shared features across varicose traffic sign classes. For example,
most prohibitory signs are very similar to speed limits. However, the number of false positives,
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i.e., background images classified as traffic signs, is slightly larger than in the ten-class scenario.
There is no obvious reason for this behavior, and thus, it is not possible to give a reasonable
explanation.

(a) (b)

Figure 4.7: Per-class accuracies together with the mean accuracy (orange line) ((a)) and confusion matrix
((b)) when applying the two-class version of the 60k network on the modified two-class test
set.

4.2 Detection Results

After evaluating the performance of the classification task, the 60k network is also analyzed
regarding its detection accuracy. Therefore, the network is applied to the full-size images, and four
downsampled versions taken from the GTSDB dataset. This dataset does not contain annotations
for informational signs. Furthermore, the annotations consist of tight bounding boxes together
with the corresponding sign ID. Thus, it is hard to compare the results with existing works using
the as exactly locating the position of a traffic sign it is not the purpose of this work. The most
common performance metric, the mean average precision (mAP) heavily penalties discrepancies
from the ground truth. The results presented in this section are based on a simplified version of
the GTSDB which only contains the annotated classes. A specific traffic sign is said to be detected
when the ground truth labels match the outputs of the network independent of the position of
the bounding box. A downside of this method is that false positives can manipulate the results
and informational signs are completely skipped. As a consequence, the obtained results are only
an estimation. To overcome those limitations, the GTSDB has to be reworked which will be done
in future work (see Chapter 5).

Using the efficient sliding window technique requires a very high classification accuracy. As
shown in Table 3.3, the network produces an array of 329x185 class labels when applying it to
the cropped GTSDB dataset. This equals a total of 60,865 labels for the original sized images
only where most of them contain background information. Thus, even an accuracy of 99% for the
background class would lead to an average of 609 false positives. The best performing network,
the 60k full-precision net, however, has an accuracy of 94.3% for this class resulting in an average
of 3,469 false positives. For that reason, the detection performance is only evaluated for the
full-precision 60k network and the two-class network.
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In Figure 4.8a, one example image of the GTSDB is shown together with the detection results in
Figure 4.8b. Because individual colors for all nine traffic sign classes can be hard to distinguish,
all detected signs share one color for the bounding box. Note that each of the bounding boxes is
simply drawn around the corresponding label and no post-processing is done at this stage. The
predicted class is obtained by selecting the class with the highest score, which is very efficient
but not ideal. As assumed, there are a lot of false positives, especially in the upper right part
of Figure 4.8b. The left “Attention Sign” is not detected because it is slightly too large on this
scale of the image. In practice, this problem is solved by applying the network on different scales
of the input image, but for convenience, not every scale is shown here.

(a) (b)

Figure 4.8: Example image of the GTSDB dataset ((a)) and basic detection results ((b))

A more reasonable way of selecting the predicted class is using the Softmax function (Equation
4.1) and thresholding the computed confidence at a fixed level. That means that a detected
traffic sign is only valid, i.e., a different label than ten is assigned to a tile, if the confidence is
above a minimum value. Otherwise, the tile is set to contain background information. Figure
4.9a shows that when using a threshold of 0.8, the number of false positives is reduced compared
to the trivial approach in Figure 4.8b. However, even with a threshold of 0.99 (Figure 4.9d),
the improvement is moderate. A downside of the Softmax function is that it requires more
complex computations (exponential function). The complexity is a problem especially for a
future hardware implementation as it requires a significant amount of resources. The exponential
functions also introduce another problem. The scores are typically in the range of 1e1 up to 1e3
with some even higher outliers. Exponentiating these values leads to extremely high numbers
blowing up almost every modern embedded system. Although there are some normalization
tricks to overcome this issue, the additional computations increase the footprint of an FPGA
implementation even more. Thus, using the Softmax function is not feasible in this case.

fj(z) =
ezj

∑K
k=1 e

zk
with j = 1, ...,K (4.1)

A more efficient solution is checking a 3-by-3 neighborhood around each position the score matrix
using a sliding window. . Like in the first experiment, the predicted class labels are obtained by
selecting the maximum score in the score matrix. The currently examined label is in the center
of the neighborhood. Only if the entire window contains this label at least N times, i.e., the
remaining eight locations contain the label N − 1 times, the detected traffic sign is marked as
valid. Figure 4.10 shows the detection results for N = 2 and N = 3. A higher value of N is
more aggressive, and even for N = 3, two of the three previously detected signs are not detected
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(a) Minimum confidence: 0.8 (b) Minimum confidence: 0.9

(c) Minimum confidence: 0.95 (d) Minimum confidence: 0.99

Figure 4.9: Detection results using the Softmax function and thresholding the confidence at different
levels

anymore. Thus, setting N = 2 seems a good solution. In both cases, however, one false positive
remains. Overall, checking a 3-by-3 neighborhood gives more accurate results than the Softmax
function while keeping the necessary computations at a minimum. A larger neighborhood, e.g., 5-
by-5, is less meaningful because it does not add further constraints. In contrast, a bigger window
increases the chance of finding an additional label making this method less efficient.

(a) Neighborhood checking with N = 2 (b) Neighborhood checking with N = 3

Figure 4.10: Detection results using 3-by-3 neighborhood-checking with N = 2 and N = 3

For a comparison, Figure 4.11 shows the results using the two-class classification network. As
expected, the number of false positives in Figure 4.11a is higher than in the scenario above because
the two-class classification network has a slightly lower accuracy for the background class. On
the other hand, having only two classes allows a more aggressive neighborhood checking. Figure
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4.11b shows the results with N = 3. In this case, all false positives are eliminated. The resulting
tiles could now be fed into a second classification network to assign the correct class labels to
each tile. These results suggest combining the ten-class classification network with the two-class
network in a way similar to Faster R-CNN to reach even better accuracies.

(a) Basic results (taking the maximum score) (b) Neighborhood checking with N = 3

Figure 4.11: Detection results using the 2-class classification network

Overall, the ten-class network was able to detect and classify 98.1% of the traffic signs and the
two-class network reached an accuracy of 95.9%. Again, it is important to state that these values
could be corrupted by false positives. Repeating the experiments above on 40 different images at
various scales reveals that the accuracies have to be reduced by approximately 15% to 20% for the
ten-class network and by about 5% for the two-class network. Thus, the final detection accuracy
is around 80% for the ten-class network and 90.9% for the two-class network. While the ten-class
network has a higher accuracy before applying this correction factor, it turned out that it is
also more prone to false positives than the two-class network. This leads to a significantly worse
estimated performance when taking the false positives into account. Although a full-precision
network produces the results above, a binary weight network should allow similar detection rates
when increasing the number of the weights used as its classification accuracy is not far behind the
full-precision network. A similar conclusion can be drawn for the full binary network. However,
the classification accuracy is a couple of percentage points worse compared to the binary weight
network.Thus, the number of weights has to be significantly increased, and the threshold of the
sign-activation function may have to be adapted too.

4.3 Hardware Simulation

In this last section of Chapter 4, the approximate size of the 60k network in an FPGA is deter-
mined using high-level syntheses (HLS) based simulations.

4.3.1 Simulation Setup

For simulation, the Zynq SoC (xc7z020clg484-1) is used, which is, for example, mounted on the
widely used ZedBoard. The obtained results regarding the number of required resources are also
valid for other Zynq SoCs and Xilinx FPGAs as long as they share the same technology. Table 4.4
lists the resources available on the mentioned Zynq SoC where BRAM 18K is a dedicated 18kbit
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LUT FF DSP48E BRAM 18K

53,200 106,400 220 280

Table 4.4: Available resources on the xc7z020clg484-1

memory block (block RAM), and DSP48E is a special slice for efficient digital signal processing
applications. The other resources are flip-flops (FF) and look-up tables (LUT).

During simulation, a clock frequency of 100MHz is used. However, higher frequencies like are
also possible to improve the speed of the design when necessary.

4.3.2 Simulation Results (Binary Weight Network)

Implementing the full-precision network on an FPGA is not a good idea because floating-point
computations are very inefficient on hardware platforms and the required memory is significantly
larger compared to binary weights. However, the binary weight network presented in Section 3.3.1
with the results in Section 4.1.1.4 has one problem. It requires rescaling the weights (division)
which results in full-precision weights. For the following simulations, the architecture is modified
to overcome this issue. First, the division is replaced by the much more efficient binary shifting
operation. Second, the activations are limited to 10-bit signed integer variables. Although both
modifications are not tested in the sections above, such a network is more convenient for an FPGA
implementation, and the impact on the performance should be low. The results of the full binary
network support this assumption because even binary activations do not cause the accuracy to
drop below 87%. If necessary, the size of the network can be increased to compensate a possible
negative effect.

The following simulations are based on a single, binary 3-by-3 filter applied to an input with
one channel in a sliding window fashion. This can be implemented very efficiently on an FPGA
in a streaming environment. A one-channel input could, for example, be a grayscale image.
This simple filter is then extended to multiple input channels and multiple outputs representing
the number of filters applied. To save resources, the weights are stored using the {0, 1} binary
representation although the network uses -1 and 1. Figure 4.12 shows a simplified version of
the original code. The loops iterate over a square filter matrix W and a window A, each of size
FILTER SIZE×FILTER SIZE. The result of this convolution is summed up in the temp variable.

for i=0 to FILTER SIZE
for j=0 to FILTER SIZE

temp = temp + A[ i ] [ j ] ∗ W[ i ] [ j ]

Figure 4.12: Original code using a {−1, 1} binary representation and multiplications

The modified version of this code is shown in Figure 4.13. The “multiply and sum” section is
replaced by an if -condition. Next to reducing the required memory for the weights, this modifica-
tion also removes the multiplication leading to a more efficient code. Also, the ReLU functionality
is directly included in the output of the convolutional layer. Because each convolutional layer
(except the out layer) is followed by a ReLU layer, it is convenient to link both layers together.
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Another benefit of this combination is that the output fits in an unsigned integer variable of 8bit
instead of a 10bit signed integer.

for i=0 to FILTER SIZE
for j=0 to FILTER SIZE

i f W[ i ] [ j ] = 0 then
temp = temp + A[ i ] [ j ]

else
temp = temp − A[ i ] [ j ]

Figure 4.13: Modified code for a {0, 1} representation. As a consequence, the multiplication is replaced
by a more simple if -condition.

With the modifications above, the binary weight network is simulated using Vivado HLS. As-
suming a hardware-friendly C/C++ code, HLS allows a simple and fast hardware synthesis. In
this context, hardware-friendly means, among other constraints, that the loops should not have
variable boundaries and that an array should not be accessed more than two times in a single
loop iteration (dual-port memory).

Because the design is pipelined and embedded in a streaming environment, it can process one
input at each clock cycle. One input can contain multiple variables depending on the number of
input channels. This would allow a frame rate of 325fps. However, synthesizing such a design
shows, that a single 3-by-3 layer with 32 input channels and 64 filters (which matches the size
of the last layer) would require more LUTs than available on the FPGA. The results together
with the utilization in are given in Table 4.5. Of course, such an implementation is not feasible
in practice, and a frame rate of 325fps is not necessary for traffic sign detection.

LUT FF DSP48E BRAM 18K

74,911 (141%) 67,475 (63%) 0 (0%) 64 (23%)

Table 4.5: Resource usage for a full-parallel design of a 3x3 convolutional layer with 32 input channels
and 64 filters

A nice property of HLS is that the performance and footprint of a synthesized design can be
easily modified by changing some synthesis parameters (directives). In case of a convolutional
layer, it is meaningful to compute each filter element at a time and share the resources between
those computations. For a 3-by-3 layer, this causes a drop in the execution time by a factor of
9 leading to a frame rate of 36fps which is still an acceptable value. If necessary, the frame rate
can be increased to 72fps when doubling the FPGA clock to 200MHz. Table 4.6 presents the
simulation results of different layers of the 60k architecture. Because the design does not require
DSP48E slices, these resources are not shown. Compared to the previous results, the necessary
LUTs of the layer with 32 channels and 64 filters are reduced by a factor of 8.3 and the flip-flops
by 8.5, but the required memory blocks remain unchanged. The reason for this is that buffering
two lines of each input channel requires one memory unit per line and channel. Because buffering
requires two accesses per memory block in a single clock cycle, these accesses are the limiting
factor. Thus, the number of necessary BRAM 18K units is independent of the width and the
height of the input feature map as long as one line fits in each memory block. The limit is a
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width of 2048 since the BRAM 18K blocks are organized as 2048 slots with 9bit each and the
inputs have a size of 8bit.

Channels Filters LUT FF BRAM 18K

20 48 4,418 (8%) 3,722 (3%) 40 (14%)
24 48 5,223 (10%) 4,558 (4%) 48 (17%)
24 64 6,790 (13%) 5,779 (5%) 48 (17%)
32 64 9,025 (17%) 7,942 (7%) 64 (23%)

Table 4.6: Simulation results for the 3x3 convolutional layers of the 60k architecture

To generalize the results above for an arbitrary 3-by-3 convolutional layer, it can be useful to find
a function for the required FFs and LUTs depending on the number of input channels and filters.
Therefore, additional simulations are done with the results presented in Table B.1 (appendix).
These values are then fed into Matlab’s surface fitting tool. Figure 4.14a shows the fitted surface
for the LUT resources and Figure 4.14b the corresponding residuals. The residuals show that
the maximum fitting error is about 50 which allows a good approximation for the larger layers of
Table B.1.
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Figure 4.14: Surface fitted to the LUT simulation results ((a)) and corresponding residuals ((b))

Similarly, fitting a surface to the simulated FF resources leads to the surface in Figure 4.15a
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Results

together with the residuals in Figure 4.15b. The errors are slightly larger than in the previous
case but with a maximum of about 75.
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Figure 4.15: Surface fitted to the FF simulation results ((a)) and corresponding residuals ((b))

Both surfaces can be approximated by a polynomial function with an order of two in the first
and an order of three in the second dimension. The function is given in Equation 4.2 where
d is the number of input channels, and k is the number of filters applied. The values of the
nine parameters p00 to p03 are given in Table 4.7 for calculating the number of LUTs as well
for calculating the number of FFs. For the number of required BRAM units, no surface fitting
method is necessary. Because there are two line buffers for each input channel, the number of
needed memory blocks is simply twice the number of input channels.

p(d, k) = p00 + p10d+ p01k + p11dk + p20d
2 + p02k

2 + p21d
2y + p12dk

2 + p03k
3 (4.2)

Table 4.8 compares the synthesis results taken from Table 4.6 with the calculated layer sizes using
Equation 4.2. The small differences indicate that Equation 4.2 is a good approximation. Note
that the layer in the first row of this table is not used for surface fitting. Validating the results
of surface fitting with other layer sizes shows, that the majority of errors is smaller than 1% with
some outliers up to 2%. Overall, the polynomial function gives a decent approximation for the
size of the hardware implementation without having to perform a time-consuming synthesis.

The 60k architecture also contains a couple of 1 × 1 squeezing layers and also the out layer has
this structure. Therefor, it is necessary to simulate those layers too in order to get an idea of
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Results

Parameter LUT FF

p00 -1.735 11.485
p10 4.695 10.368
p01 9.619 -0.1605
p20 0.3045 0.1657
p11 4.562 3.971
p02 -0.2487 -0.1318
p21 -0.004765 0.01062
p12 -0.005713 -0.009464
p03 0.002561 0.001588

Table 4.7: Parameters for calculating the number of LUTs / FFs of an arbitrary 3×3 convolutional layer
using the polynomial function given in Equation 4.2

Channels Filters LUT FF

synth calc diff synth calc diff

20 48 4,418 4,410 8 (0.18%) 3,722 3,729 7 (0.19%)
24 48 5,223 5,266 43 (0.8%) 4,558 4,564 7 (0.15%)
24 64 6,790 6,824 34 (0.5%) 5,779 5,782 3 (0.052%)
32 64 9,025 9,010 15 (0.17%) 7,942 7,967 27 (0.34%)

Table 4.8: Comparison of the synthesis results and the calculated results using Equation 4.2 regarding
the number of LUTs / FFs required for an arbitrary sized 3× 3 convolutional layer

the final hardware footprint of the whole system. Table 4.9 contains the HLS synthesis results of
the squeezing layers as well as the out layer. Similar to the 3-by-3 layers, the layer does not run
at the maximum possible performance. It produces one output every eight clock cycles which
greatly decreases the required resources. For the 60k architecture, the squeezing layers require
an average of 1.34% of the available LUTs and an average of 0.3% of the available FFs. Thus,
it should be enough to approximate the size of a squeezing layer with 1.5% of the look-up tables
and 0.5% of the flip-flops instead of using a more complicated polynomial. Table 4.9 also reveals
that the 1-by-1 layers do not require any BRAM units. The reason is that a 1 × 1 convolution
does not require buffering complete lines as the mask has a size of one in each dimension. This
is also the main reason for having a rather small footprint in hardware.

Channels Filters LUT FF BRAM 18K

40 20 504 (0.9%) 234 (0.2%) 0 (0%)
48 24 690 (1.3%) 324 (0.3%) 0 (0%)
64 32 1,207 (2.3%) 537 (0.5%) 0 (0%)
64 10 465 (0.9%) 226 (0.2%) 0 (0%)

Table 4.9: Simulation results for the 1x1 convolutional layers of the 60k architecture. Rows one to three
are squeezing layers and row four is the out layer
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Results

For an approximation of the hardware size of the whole 60k architecture, two additional layers
have to be analyzed. These are the 5-by-5 convolutional input layer and the 2-by-2 max-pooling
layers. Synthesizing the convolutional layer results in an usage of 1,422 (3%) LUTs, 1,040 (1%)
FFs, and 12 (4%) BRAM 18Ks under the same constraints as used for the 3 × 3 layers. The
pooling layers are simple to analyze. The hardware required for finding the maximum out of four
values should be minimal, but 2-by-2 pooling requires buffering one line of each input channel.
Because splitting up the maximum operation, i.e., taking the maximum of two values followed
by taking the maximum of the resulting value and two additional values (see Equation 4.3), does
not change the result, half of the necessary BRAM units can be saved. In more detail, taking the
maximum of the two values to be buffered reduces the required memory as well as the memory
accesses by the factor of two since a new value only has to be stored every second clock cycle. As
a result, each 2-by-2 max-pooling layer needs a number of BRAM units equal to the half of the
input channels of this layer. That is 20 for the first and 24 for the second pooling layer.

max(a0, a1, a2, a3) = max(max(a0, a1),max(a2, a3)) = max(max(a0, a1), a2, a3) (4.3)

Combining all simulation results allows giving an approximation for the whole 60k architecture.
Summing up all resources from the different layers as described above leads to the hardware
footprint given in Table 4.10. Based on previous experiences with HLS, the final hardware blocks
(IP cores produced by the Vivado HLS tool) require about 5% fewer resources (LUTS and FFs)
due to further optimizations. Table 4.10 indicates that the BRAM 18k blocks are the main
limitation of the Zynq SoC mounted on the Zed Board. It is also important to note that the
given approximation does not include resources required for controlling the individual blocks,
controlling a suitable camera and filtering the detection results. However, there are plenty LUTs
and FFs available to implement those functionalities, but it is important to pay attention to the
BRAM blocks.

LUT FF DSP48E BRAM 18K

30,434 (57%) 24,686 (23%) 0 (0%) 256 (91%)

Table 4.10: Estimation of the required resources for the 60k network on a ZedBoard
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5 Conclusion and future work

5.1 Conclusion

The objective of this work was to develop a resource- and performance-efficient convolutional
neural network for combined traffic sign detection and classification. The final architecture has
only 60,000 weights without using computational expensive functions and reaches a classification
accuracy of 98.34% at test time. This result is very close to other state-of-the-art implementations
(see Section 2.4.1), but with only 3% to 8% of the weights. However, the accuracies are hard
to compare as different works use different datasets with varying numbers of classes. Moving
from full-precision to binary weights can drastically improve the resource efficiency of an FPGA
implementation at the cost of only 1.81 percentage points of classification accuracy. Compared to
that, a full-binary network of equal size reaches only a test-time accuracy of 86.5% which indicates
that such configurations require significantly more weights or that a better training method is
needed.

On the other hand, reliable traffic sign detection is a more demanding task. As a consequence,
applying the network to a full-scale image in a sliding window fashion results in an accuracy of
approximately 80%. Again, it is not easy to draw a comparison to existing solutions (Section
2.4.2) since this work does not focus on outputting precise bounding-boxes. Thus, it is not possible
to use the mean Average Precision (mAP) as accuracy metric. The detection results also show
that a classification based detection requires a very high classification accuracy because running
the network on a 640 × 480 image produces 60,865 predictions and an overall accuracy of 99%
still causes 608 misclassifications. To reduce the number of misclassifications, this work compares
some possible post-processing methods of which neighborhood checking works best.

Finally, this work shows that it is possible to implement a high-accuracy neural network on a
low-cost FPGA platform. Generalizing the synthesis outputs helps to get an approximation of
the hardware size of arbitrary layers. The results also show that the required memory due to
buffering is the major limitation while storing binary weights does not require block memory
resources.

5.2 Future work

This work has shown that a small-scale convolutional neural network can achieve a state-of-the-
art classification accuracy but lacks at detecting traffic signs when applied to an image using
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Conclusion and future work

the detection by classification approach. One alternative solution could be a modified Faster
R-CNN approach based on such a binary weight network. Because it is not necessary to locate
the traffic signs precisely in the context of autonomous driving, the regression head predicting
four bounding box coordinates can be removed to save resources. Another thing to optimize is
the region pooling together with the feature warping which takes place after the convolutional
network. There are two possibilities to do this. The first and probably simpler one is finding a
resource and performance efficient way of transforming and rescaling the features to equally sized
feature maps so that they can easily be fed into the fully connected network. The second solution
is modifying the region pooling algorithm in a way that it directly outputs suitable features.

Another thing to work on is improving the accuracy of full binary networks. Such networks allow
a very efficient implementation on an FPGA platform, but they are still not mature enough to be
widely used in practice. The main advantages of full binary networks are the convolution operation
implemented using XNOR and bit-counting functions and the reduced memory requirements due
to buffering. Because the activations are binary, it is not necessary to buffer lines of 8bit values.
One of the biggest problems is training full binary networks. However, improving the training
process, also for full precision networks, is a very active area of research with new papers appearing
at regular intervals.

Last but not least, the dataset is another topic to be worked on. Heaving a properly designed
training and validation set is crucial for reaching a high accuracy. One problem discovered in this
work is that most datasets are designed for traffic sign detection with accurate bounding boxes.
However, this is not required in this context as outlined in Section 1.2. Thus, it is necessary to
rework the dataset to obtain more valuable results at test time.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

A Dataset Sign IDs

Name Sign ID Class ID Name Sign ID Class ID

Speed Limit (20) 0 5 Traffic Signals 26 0
Speed Limit (30) 1 5 Pedestrian Crossing 27 0
Speed Limit (50) 2 5 Children 28 0
Speed Limit (60) 3 5 Cyclist Crossing 29 0
Speed Limit (70) 4 5 Slippery Road 30 0
Speed Limit (80) 5 5 Animals (Deer) 31 0
End of Speed Limit (80) 6 4 End of all Restrictions 32 4
Speed Limit (100) 7 5 Turn Right 33 2
Speed Limit (120) 8 5 Turn Left 34 2
No Overtaking 9 1 Straight only 35 2
No Overtaking (Lorries) 10 1 Turn right or continue straight 36 2
Crossroad w. non-priority road 11 0 Turn left or continue straight 37 2
Priority Road 12 8 Follow lane on the right side 38 2
Give Way 13 6 Follow lane on the left side 39 2
Stop 14 7 Roundabout mandatory 40 2
Closed to all 15 1 End of overtaking Restrictions 41 4
No Lorries 16 1 End of overtaking Restr. (Lorries) 42 4
No Entry 17 1 Dangerous Curves (right first) 43 0
Other Dangers 18 0 Road narrows from both sides 44 0
Dangerous curve (left) 19 0 Road narrows from left 45 0
Dangerous curve (right) 20 0 No Left Turn 46 1
Dangerous curves (left first) 21 0 No Right Turn 47 1
Uneven Road 22 0 Pedestrian Crossing 48 3
Slippery Road 23 0 Cyclist Crossing 49 3
Road narrows from right 24 0 End of Priority Road 50 8
Road Works 25 0 Background 99 9

Table A.1: Traffic Sign IDs

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

B Complete Simulation Results

Channels Filters LUT FF BRAM18k Channels Filters LUT FF BRAM18k

1 1 26 18 2 24 1 412 434 48
1 4 56 29 2 24 4 759 763 48
1 16 156 47 2 24 16 2,068 1,890 48
1 24 219 62 2 24 24 2,894 2,625 48
1 32 287 72 2 24 32 3,695 3,209 48
1 48 394 92 2 24 48 5,223 4,558 48
1 64 512 110 2 24 64 6,790 5,779 48

4 1 56 77 8 32 1 605 593 64
4 4 132 119 8 32 4 1,042 1,114 64
4 16 402 271 8 32 16 2,785 2,649 64
4 24 569 341 8 32 24 3,874 3,556 64
4 32 728 439 8 32 32 4,915 4,528 64
4 48 1,023 574 8 32 48 6,998 6,350 64
4 64 1,369 758 8 32 64 9,025 7,942 64

16 1 203 293 32
16 4 483 504 32
16 16 1,378 1,212 32
16 24 1,947 1,675 32
16 32 2,483 2,091 32
16 48 3,568 2,920 32
16 64 4676 3,752 32

Table B.1: Complete overview of the simulation results for 3x3 convolutional layers used for surface
fitting
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[IH00] Igel, Christian ; Hüsken, Michael: Improving the Rprop Learning Algorithm.
In: Proceedings of the Second International Symposium on Neural Computation,
NC’2000, 2000, S. 115–121

[IMA+16] Iandola, Forrest N. ; Moskewicz, Matthew W. ; Ashraf, Khalid ; Han, Song
; Dally, William J. ; Keutzer, Kurt: SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <1MB model size. In: CoRR abs/1602.07360 (2016)

[IS15] Ioffe, Sergey ; Szegedy, Christian: Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In: CoRR abs/1502.03167
(2015)

[JC17] Janocha, Katarzyna ; Czarnecki, Wojciech M.: On Loss Functions for Deep
Neural Networks in Classification. In: CoRR abs/1702.05659 (2017)

[KB14] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Optimization.
In: CoRR abs/1412.6980 (2014)
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Rob ; LeCun, Yann: OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks. In: CoRR abs/1312.6229 (2013)

[SGH15] Schwiegelshohn, F. ; Gierke, L. ; Hübner, M.: FPGA based traffic sign
detection for automotive camera systems. In: 2015 10th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2015, S. 1–
6

[SHK+14] Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ; Sutskever, Ilya ;
Salakhutdinov, Ruslan: Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. In: Journal of Machine Learning Research 15 (2014), S. 1929–
1958

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

LITERATURE LITERATURE

[SIV16] Szegedy, Christian ; Ioffe, Sergey ; Vanhoucke, Vincent: Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. In: CoRR
abs/1602.07261 (2016)

[SL11] Sermanet, P. ; LeCun, Y.: Traffic sign recognition with multi-scale Convolutional
Networks. In: The 2011 International Joint Conference on Neural Networks, 2011.
– ISSN 2161–4393, S. 2809–2813

[SLJ+14] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ; Reed, Scott E.
; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke, Vincent ; Rabinovich,
Andrew: Going Deeper with Convolutions. In: CoRR abs/1409.4842 (2014)

[SLYO17] Shi, W. ; Li, X. ; Yu, Z. ; Overett, G.: An FPGA-Based Hardware Accelerator
for Traffic Sign Detection. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25 (2017), April, Nr. 4, S. 1362–1372. – ISSN 1063–8210

[SSSI12] Stallkamp, J. ; Schlipsing, M. ; Salmen, J. ; Igel, C.: Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. In: Neural
Networks (2012), Nr. 0, S. –. – ISSN 0893–6080

[SZ14] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional Networks for
Large-Scale Image Recognition. In: CoRR abs/1409.1556 (2014)

[TGJ+14] Tompson, Jonathan ; Goroshin, Ross ; Jain, Arjun ; LeCun, Yann ; Bregler,
Christoph: Efficient Object Localization Using Convolutional Networks. In: CoRR
abs/1411.4280 (2014)

[TH12] Tieleman, T. ; Hinton, G.: Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning, 2012

[VJ01] Viola, P. ; Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001 Bd. 1, 2001. – ISSN 1063–6919,
S. I–511–I–518 vol.1

[WLL+13] Wu, Y. ; Liu, Y. ; Li, J. ; Liu, H. ; Hu, X.: Traffic sign detection based on
convolutional neural networks. In: The 2013 International Joint Conference on
Neural Networks (IJCNN), 2013. – ISSN 2161–4393, S. 1–7

[XHL16] Xu, Bing ; Huang, Ruitong ; Li, Mu: Revise Saturated Activation Functions. In:
CoRR abs/1602.05980 (2016)

[XWCL15] Xu, Bing ; Wang, Naiyan ; Chen, Tianqi ; Li, Mu: Empirical Evaluation of
Rectified Activations in Convolutional Network. In: CoRR abs/1505.00853 (2015)

[ZF13] Zeiler, Matthew D. ; Fergus, Rob: Visualizing and Understanding Convolutional
Networks. In: CoRR abs/1311.2901 (2013)

[ZYZ+17] Zuo, Z. ; Yu, K. ; Zhou, Q. ; Wang, X. ; Li, T.: Traffic Signs Detection Based
on Faster R-CNN. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW), 2017, S. 286–288

[ZZZ+16] Zang, D. ; Zhang, J. ; Zhang, D. ; Bao, M. ; Cheng, J. ; Tang, K.: Traf-
fic sign detection based on cascaded convolutional neural networks. In: 2016 17th
IEEE/ACIS International Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), 2016, S. 201–206

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Internet References

[1] http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-
detection/. Available at http://www.pyimagesearch.com/2016/11/07/

intersection-over-union-iou-for-object-detection/ (9/2017).
[2] ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013). Available at http:

//www.image-net.org/challenges/LSVRC/2013/results.php (9/2017).
[3] Berkeley Artificial Intelligence Research (BAIR). Caffe - Deep learning framework (Sum-

of-Squares / Euclidean Loss Layer). Available at http://caffe.berkeleyvision.org/

tutorial/layers/euclideanloss.html (9/2017).
[4] COCO Consortium. COCO - Common Objects in Context dataset. Available at http:

//cocodataset.org/#home (9/2017).
[5] Deshpande, Adit. The 9 Deep Learning Papers You Need To Know

About. Available at https://adeshpande3.github.io/adeshpande3.github.io/

The-9-Deep-Learning-Papers-You-Need-To-Know-About.html (8/2017).
[6] L. Fei-Fei, A. Karpathy, and J. Johnson. Lecture 5, Slide 100 — Track the ratio of weight

updates / weight magnitudes, 2016.
[7] Kaggle Inc. Kaggle - ImageNet Object Localization Challenge. Available at https://www.

kaggle.com/c/imagenet-object-localization-challenge (9/2017).
[8] Karpathy, Andrej. Stanford.edu, cs231n - Convolutional Neural Networks. Available at

http://cs231n.github.io/convolutionalnetworks/ (8/2017).
[9] Karpathy, Andrej. Stanford.edu, cs231n - Linear Classification. Available at http:

//cs231n.github.io/linear-classify/ (8/2017).
[10] Karpathy, Andrej. Stanford.edu, cs231n - Neural Networks 1. Available at http://cs231n.

github.io/neural-networks-1/ (8/2017).
[11] Karpathy, Andrej. Stanford.edu, cs231n - Neural Networks 2. Available at http://cs231n.

github.io/neural-networks-2/ (8/2017).
[12] Karpathy, Andrej. Stanford.edu, cs231n - Neural Networks 3. Available at http://cs231n.

github.io/neural-networks-3/ (8/2017).
[13] Krizhevsky, Alex. CIFAR-10 and CIFAR-100 dataset. Available at https://www.cs.

toronto.edu/~kriz/cifar.html (8/2017).
[14] Krizhevsky, Alex; Nair, Vinod; Hinton, Geoffrey. 80 Million Tiny Images - Visual Dictionary.

Available at http://groups.csail.mit.edu/vision/TinyImages/ (8/2017).
[15] Li, Fei-Fei; Karpathy, Andrej; Johnson, Justin. Stanford cs231n - Lecture 8: Spatial Local-

ization and Detection (2016). Available at http://cs231n.stanford.edu/slides/2016/

winter1516_lecture8.pdf (7/2017).
[16] Mordor Intelligence. Advanced Driver Assistance Systems (ADAS) Mar-

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

INTERNET REFERENCES INTERNET REFERENCES

ket. Available at https://www.mordorintelligence.com/industry-reports/

advanced-driver-assistance-systems-market (12/2017).
[17] PASCAL2 Network of Excellence on Pattern Analysis, Statistical Modelling and Compu-

tational Learning. The PASCAL Visual Object Classes Homepage. Available at http:

//host.robots.ox.ac.uk/pascal/VOC/ (9/2017).
[18] Presentation by Xilinx. Embedded Vision Alliance - ”Caffe to Zynq: State-of-the-Art

Machine Learning Inference Performance in Less Than 5 Watts,”. Available at https:

//www.embedded-vision.com/platinum-members/xilinx/embedded-vision-training/

videos/pages/may-2017-embedded-vision-summit-kathail (7/2017).
[19] Princeton University. Princeton University ”About WordNet”. Available at http://

wordnet.princeton.edu/ (9/2017).
[20] Ruhr-Universität Bochum, Institut für Neuroinformatik. German Traffic Sign Benchmark.

Available at http://benchmark.ini.rub.de/dev/index.php?section=home&subsection=
news (5/2017).

[21] Stanford Vision Lab, Stanford University, Princeton University. ImageNet. Available at
http://www.image-net.org/index (8/2017).

[22] Statista - The Statistics Portal. Estimated size of the global Level 1 ADAS market be-
tween 2016 and 2025 (in million U.S. dollars). Available at https://www.statista.com/
statistics/789583/estimated-global-adas-market-growth/ (12/2017).

[23] Timofte, Radu. BelgiumTS Dataset. Available at http://btsd.ethz.ch/shareddata/

(5/2017).
[24] Wikimedia Foundation, Inc. Boosting (machine learning). Available at https://en.

wikipedia.org/wiki/Boosting_(machine_learning) (11/2017).
[25] Xilinx Inc. Xilinx Virtex-7 FPGA VC709 Connectivity Kit. Available at https://www.

xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html (9/2017).

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Erklärung
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