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Kurzfassung

Die Idee zur Verwendung von model predictive control (MPC) Algorithmen zur Re-

gelung der thermischen Systeme eines smart-Home wird immer beliebter in modernen

smart Homes. Die Effizienz und Performance von MPC Algorithmen hängt stark von

der Güte der vorhandenen Störgrößenprädiktionen ab. Mit der Verbesserung der vor-

handenen Wettervorhersage mittels Messdaten aus hausinternen Wetterstationen und

selbstadaptierenden Belegschaftsprädiktionen könnte das smart-Home nicht nur bes-

seren thermischen Komfort liefern, sondern auch noch elektrische Energie und Kos-

ten sparen. Diese Arbeit stellt einen MPC Regler basierend auf gemischt-ganzzahliger

quadratischen Optimierung vor. Der Regler integriert sowohl das thermische Model,

als auch das elektrische Model, des smart-Home. Der Regelungsalgorithmus berechnet

das globale Optimum unter Berücksichtigung möglicher Randbedingungen des smarten

Stromnetzes. Deshalb kann der vorgestellte Regler die fortlaufenden monetären Strom-

kosten oder die verbrauchte Energie minimieren ohne dabei den thermischen Komfort

zu verletzen. Ein weiteres Hauptmerkmal des Reglers ist, dass ein simples und intuiti-

ves Interface integriert wurde, welches den Bewohnern erlaubt den Regler auf ihre in-

dividuellen Wünsche anzupassen. Durchgeführte ’closed-loop’ Simulationen zeigen die

Effizienz der globalen Optimierung als auch alle weiteren Funktionen des vorgestellten

Regelungskonzeptes.
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Abstract

Model predictive control (MPC) schemes for managing thermal systems in a smart home

are becoming more popular in modern smart homes. The efficiency and performance

of MPC controllers greatly depends on the quality of the available predictions for the

controller. By refining the available weather forecasts with measurements taken from

localized weather stations integrated into the smart home and self-adaptive occupancy

predictions, the smart home could not only provide better thermal comfort, but also

save energy and reduce the costs for the residents. This thesis proposes a mixed-

integer quadratic-programming model predictive control scheme based on the thermal

smart home building model and the electrical system. The controller calculates the

global optima with respect to possible smart grid load constraints. This enables the

control scheme to minimize the consumed energy or operating costs of the smart home

while also guaranteeing thermal comfort. Another key feature of the controller is the

option to provide a simple and easy interface for the occupants of the smart home

to tune their smart home in accordance to their individual preferences. Closed-loop

simulation results showcase the efficient global optimization as well as all the features

of the proposed controller.
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Chapter 1

Introduction

1.1 Motivation

In the European Union about 40% of all energy is used for buildings. Heating and cool-

ing amounts to 2/3 of the energy consumption in buildings. The biggest energy saving

potential can be found in smaller buildings below 1000 m2 as they are responsible for

80% of energy consumed in buildings [1].

By tackling the energy saving potential in residential buildings, which have been esti-

mated to be about 27% - 30% [2], it is possible to decrease the future environmental

impact and reduce the CO2 emissions. With the growing degree of home automation

and the increased spread of ’Internet of things’ devices residential homes will become

smarter. Today those so called smart homes usually integrate lighting control, access

control and heating control. By using the already integrated sensors of a modern smart

home and a more sophisticated occupancy prediction combined with smart algorithms,

it is possible to reduce the operating costs as well as the energy demand of the smart

home while offering the same level of user comfort.

Residential loads are to scale responsible for seasonal and daily peak demands in power

consumption. About 20% of the power generation capacity is only used for satisfying

the peak demands that occur approximately 5% of the time [3]. Reducing the peak

demands and shifting the loads enables utility companies to prolong constructing new

power plants. With the expanded usage of non-constant renewable energy sources, like

wind and photo-voltaic energy, combined with residential battery storage systems it is

possible to reduce the usage of fossil fuel and production of greenhouse gases. When

integrating multiple smart homes into smart grids two demand response management

schemes are being considered: Incentive-based schemes and Price-based schemes. As

described in [3], when utilizing incentive-based schemes the utility company usually has

some degree of direct authority over the consumed energy. While with the price-based

schemes the customer gets charged for the consumed power at a varying rate which
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reflects the abundance/scarcity of energy in the smart grid. This encourages the con-

sumer to manage their loads and shift them to less congested periods.

With the future integration of smart homes into smart grids in mind, it is important

to manage the electrical systems inside the residential home in an optimal way, while

being subject to external smart grid constraints. In Europe a near-zero energy building

standard is going to be desired by 2020 and onwards [2]. This requires local energy

production to cover the residential demand. Resulting in larger residential PV areas

and the usage of residential battery storage systems.

However efficient energy storage systems are currently at the research and test phase

[3] thus, till now they are expensive and uneconomical. As shown in [4] it is possible

to use smaller storage devices when accurate generation forecasts are available. With

increased forecasting errors the capacity of the storage devices also has to increase

significantly.

1.2 Problem description

Programmable thermostats in residential buildings could lead to potentially large energy

savings without sacrificing user comfort, provided the setback schedules are defined cor-

rectly and unexpected events are rare [5]. Using self-learning and adaptive occupancy

prediction schemes in a smart home environment those problems could be avoided. By

reducing the power demand for heating only during periods without occupancy the

smart home can save energy and reduce costs while keeping the residents comfortable

during times they are present.

The main disturbances acting on the thermals of a building are the ambient temper-

ature, the solar irradiation, and the occupancy. The residents do not only influence

the indoor temperature via their body heat but also via usage of electronic devices.

Improving predictions for those disturbances yield to more accurate control results and

solutions closer to the optimum.

While weather forecasts are widely available and generally accurate, they can not ac-

count for local conditions. Buildings on one side of a slope may see lower ambient

temperatures than buildings on the other side or on top. Solar irradiation might be

blocked locally via trees and other obstructions. Identifying the local influences on the

building also lead to more accurate predictions.

Remarkable improvements to the efficiency of electric grids can be achieved when in-

corporating demand side load management and end-user cooperation [6]. Thus it is

advantageous to optimally manage the electrical systems of a smart home in respect to

energy availability in the grid.
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1.3 Research questions

The following research questions are being covered in this thesis:

Is it possible to improve the general weather forecast by using measurements taken

from a weather station to form a localized prediction?

What are the formulations and benefits of a combined controller for building tem-

perature control and electrical system management?

How does a model predictive controller for a smart home benefit from improved weather

forecasts or occupancy predictions?



Chapter 2

Smart Home Model

This section deals with the modeling process of the smart home. The contents of this

section represent an extension of Killian et.al. 2018 [7] which is an article submitted to

the peer-reviewed journal ’Applied Energy’.

Since no two smart homes are identical, the models were kept modular. This allows

for quickly adding/removing components and changing sub-systems. The smart home

is represented by three models: 1) the thermal model, 2) the electrical model, and 3)

the coupling node. The thermal model ensures that a certain level of user comfort

is present in the smart home. It provides indoor temperature predictions based on

ambient temperature, solar irradiation, and occupancy needed for the MPC-scheme.

The electrical model is used to optimally manage the usage of the battery, the PV

systems and the shift-able loads. The final model is the coupling node. It connects

the thermal and electrical model. In this work an electrical heat pump was used as

coupling element. Figure 2.1 shows the overall schematic and the connections between

the sub-models.

electrical

model

heat pump

model
thermal

model

smart home model

user

smart grid environment

Figure 2.1: Schematic overview of the smart home model, presenting the main

model components and disturbances. Figure from [7]
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2.1 Thermal Model of the Smart Home

Identification and modeling of the dynamic model are usually the most difficult and

time-consuming parts [8]. A second order system is chosen for the thermal dynamics

of the smart home with a single temperature-controlled zone. When using lumped

parameter methods for thermal modeling, 2nd order systems offer a good balance be-

tween accuracy and complexity for short-term predictions [9]. When comparing first

and second-order models, [10] concluded that the latter was an improvement in terms

of accuracy while only adding little additional computational effort. Both of those pa-

pers used resistance-capacitance equivalent circuits. Second-order models for buildings

have been successfully parameterized with the usage of black-box methods [11]. In [12]

resistance-capacitance equivalent circuits combined with the usage of AutoregRessive

networks with eXogenous inputs (ARX) and non-linear ARX (NARX) networks were

implemented. The second-order ARX network transformed into a state-space represen-

tation has the same structure as the model utilized in this work.

The thermal characteristics of the smart home is assumed to be an ordinary discrete

linear time-invariant (LTI) state-space system given by Eqs. (2.1a) - (2.1b):

xk+1 = Axk + Buk + Ezk, (2.1a)

yk = Cxk. (2.1b)

where A ∈ R
nx×nx is the system matrix, B ∈ R

nx×nu the input matrix, C ∈ R
ny×nx

the output matrix and E ∈ R
nx×nzthe disturbance matrix. Furthermore x ∈ R

nx is the

state vector, y ∈ R
ny is the output vector (indoor room temperature ϑact), u ∈ R

nu is the

input variable (supply temperature of the heating system ϑsupply), and z ∈ R
nz is the

input disturbance vector containing ambient temperature (ϑambient), solar irradiation

and occupancy. nx, nu, ny, and nz represent the dimensions for the specific variables.

The state-space system given by Eqs. (2.1a) - (2.1b) is discretized with a constant sam-

pling time of Ts = 15 min. The discrete time index is denoted with k = {1, . . . , T},

where T is the final time step.

The state-space model for the smart home represents a smart home during the heating

period. The smart home consists of only one temperature controlled zone and measures

the indoor temperature as well as the supply temperature of the heating system. Fur-

thermore, a ventilation system with a heat-exchanger unit, which recovers most of the

thermal energy of the exchanged air, is assumed to be implemented. This also mini-

mizes the heat loss due to manual ventilation while making sure the humidity indoors is

at a comfortable level. Note that heat losses due to open windows or doors are difficult

to detect and should be avoided in any case.
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2.2 Electrical Model of the Smart Home

In this section the electrical part of the smart home model is introduced. An overview

of the topology is presented in Figure 2.2.

~

=

~

replacemen

PV

battery

PV converter
bi-directional

converter

heating freezer
dish

washer

shift-able loads

Q̇occ

grid
pgrid

out

pgrid
in

pbat
out pbat

in

phouse

pPV

Figure 2.2: Schematic of the electrical smart home model used in this work.

Figure from [7]

The following parts are implemented in the electrical model: A photo-voltaic system

(PV) used for generating renewable energy for the smart home and a PV converter

which generates the power output pPV. Furthermore, a residential battery storage

device is implemented. It is assumed that the battery can be charged with pbat
in or

discharged with pbat
out. The smart home is connected to a smart grid which allows it

to buy the power p
grid
in or sell the power p

grid
out to the utility company. The total power

demand phouse of the smart home is divided into shift-able and non-shift-able loads.

The user generated load Q̇occ is the combination of all non-shift-able loads, while the

shift-able loads are subdivided into heating (the power consumption of the electrical

heat exchanger pheat, el) and the two smart appliances given as the freezer with pfreezer

and the dish washer with pdishw. The final part is the bi-directional converter, which

was assumed to have perfect efficiency.

2.2.1 Overview

The combined consumed power of the smart home is given by:

phouse
k = puser

k + p
heat, el
k + pfreezer

k + pdishw
k . (2.2)
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For the mathematical formulation of the global power balance in accordance to the flow

directions of the power given by Figure 2.2 for any sampling time k, see Eq. (2.3):

T
∑

k=1

(pPV
k + p

grid
in,k + pbat

out,k) −
T

∑

k=1

(phouse
k + p

grid
out,k + pbat

in,k ) = 0. (2.3)

The energy balance for the used battery storage system is given in Eq. (2.4):

SoCk+1Q
bat
max = SoCkQbat

max + pbat
in,kηbat∆k − pbat

out,k

∆k

ηbat
, (2.4)

where SoCk+1 is the state-of-charge (SoC) at the discrete sampling time k + 1, the

maximal capacity of the battery is denoted as Qbat
max, and the efficiency for charging

or discharging the battery as ηbat. The constraints for the battery storage system are

given in Eqs. (2.5a)-(2.5c):

SoCmin ≤ SoCk ≤ SoCmax, (2.5a)

pbat
out,k − δbat

k P bat, dis
max ≤ 0, (2.5b)

pbat
in,k − (1 − δbat

k )P bat, ch
max ≤ 0, (2.5c)

where the inequality (2.5a) defines the upper and a lower boundary for the SoC, which

are SoCmin for the lower, and SoCmax for the upper bound. The inequalities (2.5b)-(2.5c)

define a binary variable δk with the properties:

δbat
k =







0 only charging is possible,

1 only discharging is possible.

The maximum allowed discharging rate is denoted as P bat, dis
max and P bat, ch

max denotes the

maximum allowed charging rate. Note that the minimum value of SoC in the battery

is given by 30 % to keep some energy in the battery for unforeseen events like short

power outages and also to account for prediction errors.

The PV converter can utilize power-point-tracking to convert solar-power between two

limits or switch off completely. The electrical circuit equivalent to this behavior is a

switch followed by a variable resistor. The mathematical formulation of these conditions

can be expressed by:

pPV
k = δconv

k (ηconv
k pPV

max,k), (2.6a)

ηconv
k ∈ [ηconv

min , ηconv
max ≤ 1], (2.6b)

where ηconv
min and ηconv

max are the minimum and maximum converter power levels respec-

tively. The generated power by the PV system at time instant k is denoted by pPV
max,k.

The binary variable δconv
k for the converter is defined as:

δconv
k =







0 converter is off,

1 converter is on.
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The last two variables for the power balance shown in Eq. (2.3) are based on the smart

grid. In this work it is assumed that the smart grid can be represented by a perfect

feedback-free drain/source of energy. Variable pricing for buying/selling from the smart

grid are possible. The pricing can change hourly and future prices are know over the

prediction horizon. When buying from the smart grid or selling to the smart grid, the

following inequalities must hold:

δ
grid
k p

grid
in min,k ≤ p

grid
in,k ≤ δ

grid
k p

grid
in,max,k, (2.7a)

(1 − δ
grid
k )pgrid

out,min,k ≤ p
grid
out,k ≤ (1 − δ

grid
k )pgrid

out,max,k. (2.7b)

Note that the binary variable δ
grid
k is defined a:

δ
grid
k =







0 selling energy to the smart grid,

1 buying energy from the smart grid.

The smart home can either purchase power from the grid, as long as the bought power

lies between the minimum required value p
grid
in,min,k and the maximum allowed value

p
grid
in,max,k, or sell to the grid. The sold power must lie between p

grid
out,min,k and p

grid
out,max,k

respectively. The time varying constraints introduced in Eq. (2.7a)-(2.7b) are assumed

to be set by the smart grid and are known over the prediction horizon.

2.2.2 Smart Home Appliances

Two substantially different smart appliances are considered in this work: 1) the smart

freezer and 2) the smart dishwasher. The first represents a variable, but continuous

load while the second represents a scheduling problem.

The smart freezer is able to lower the inside temperature further than required to deep-

freeze its contents. This allows the smart appliance to shift its energy demand to some

degree. The freezer model is given by the LTI state-space model:

ϑfreezer
k+1 = Afreezerϑfreezer

k + Bfreezerpfreezer
k , (2.8)

where ϑfreezer
k is the temperature inside the smart freezing unit, Afreezer is the system

matrix and Bfreezer is the input matrix. The actual power consumption of the freezer is

denoted by pfreezer
k .

The constraints for the freezer are assumed to be:

ϑfreezer
k ∈ [ϑfreezer

min,k , ϑfreezer
max,k ],

pfreezer
k ≤ pfreezer

max ,
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at every time step. The temperature constraints for the freezer are assumed to be

constant and given as [-30◦C, -10◦ C]. The maximal power consumption of the smart

appliance is pfreezer
max .

The smart dishwasher is constrained by a deadline which is defined as the last pos-

sible activation time. There are three different operation modes when dealing with

scheduling problems. The first mode represents the dishwasher loaded and ready to

start. In this mode the optimal starting point needs to be found. This mode is also the

only mode that adds decision variables to the problem statement. The second mode

represents the dishwasher running. During this mode the dishwasher can not be stopped

and a non-constant load is consumed. The last mode represents the dishwasher being

inactive.

The first mode of operation is modeled in the following way:

The duration of the dishwashers operation cycle is given by M samples. The elec-

tric power consumption profile of the M time steps is given by L = [L1, L2, . . . , LM ],

where Lm is the power draw at activation step m . It is assumed that N binary

variables δdishw ∈ [0; 1]1×N exist. Those binary variables are arranged in such a way

that δdishw = [δdishw
1 , . . . , δdishw

N ]T. Where N is the number of possible activation points

over the prediction horizon without considering the deadline. The following inequality

holds: N > M . This is needed for the optimization problem to find the optimal solu-

tion. Defining the matrix L̃ ∈ R
N×N as the lower triangular part of the toeplitz matrix

of [L, 0N−M ], or:

L̃ =























L1 0 · · · 0

L2 L1
...

... L2
. . .

LM
...

0 0 0























, (2.9)

allows the load for the dishwasher to be expressed by:

L̃δdishw = pdishw. (2.10)

The vector pdishw contains N time steps of pdishw
k . The constraints for the smart dish-

washer are given by:

N
∑

k=1

δdishw
k = 1, (2.11a)

N
∑

k=kend+1

δdishw
k = 0. (2.11b)
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Where the Eq. (2.11a) enforces exactly one activation over the N time steps, and

Eq. (2.11b) realizes the deadline kend for the last possible activation step.

2.3 Heating System

The coupling node between the thermal model and the electrical model is given by the

heat pump. This system allows the electrical system to influence the thermal system.

The heat supplied to the heating system is calculated by determining the thermal

heating power pheat and then calculating the needed electrical power pheat, el via:

pheat = ṁcp(ϑsupply − ϑreturn), (2.12a)

pheat, el =
pheat

COP
, (2.12b)

where ṁ represents the mass flow of the circulating water and cp = 4.182 kJ/kgK the

specific heat capacity of water. The supply temperature and the return temperature of

the heating system are given by ϑsupply and ϑreturn respectively. The COP or coefficient

of performance is the efficiency of the heat pump. Since only the heating period is

considered the inequality ϑsupply > ϑreturn and therefore pheat, el ≥ 0 holds true.

Note that additional heat sources such as open fire places or small wood stoves represent

a considerable disturbance for the thermal model. They are difficult to model and

typically no direct measurements exist. Their possible influence could be estimated by

an unknown input observer, see e.g. [13].



Chapter 3

Weather Forecast

In this chapter a localized weather forecasting scheme is introduced. The section

Overview deals with the motivation and problems of weather forecasts. The next two

sections showcase the forecasting methods for ambient temperature and solar irradia-

tion, respectively.

3.1 Overview

Modern numerical weather forecasting services (WFS) use discrete cells for simulating

weather predictions. The initial conditions for those simulations are gathered by land

based weather stations and satellite images. This results in poor localized predictions

as the forecast is valid for the whole cell. The idea is to create a localized weather

prediction based on the WFS and the current local sensor data.

With the usage of autoregressive models with external input (ARX) the model can

learn statistically differences between local conditions (provided via the sensors) and

the WFS predicted conditions.

3.2 Ambient Temperature Forecast

The WFS provides an ambient temperature prediction for the next 80 hours. In the

first 65 hours hourly prediction values are available. After that the WFS only provides

predictions in 3 hour intervals. An example WFS prediction for the ambient tempera-

ture can be seen in Figure 3.1.

The WFS prediction is linearly interpolated and a new time series ϑpred(k) with the

uniform sampling time of Ts = 0.25 h is constructed. Where k = {1, ..., T} with T

being the final time step where predictions are available.
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Figure 3.1: Temperature prediction from WFS. The hourly ambient tempera-

ture predictions are provided for the next 65 hours and after that

in 3 h intervals for an additional 15 hours.

It is assumed that the local weather station on the smart home is measuring the local

ambient temperature ϑamb(k) every 0.25 hours. The last measurements of the local

temperature are saved in the system.

At every time step the vector

xT (k) = [ϑamb(k − n + 1), . . . , ϑamb(k), ϑpred(k), . . . , ϑpred(k + m − 1)] (3.1)

is constructed, where ϑpred(k) is the latest WFS prediction for the current time step

and ϑamb(k) is the current measured ambient temperature. The variables n ∈ N
+ and

m ∈ N
+ represent the order of the denominator and nominator in the resulting ARX

model.

Using the weighted recursive least squares algorithm (WRLS) shown in Equations (3.2a)-

(3.2c),

γ(k) =
P (k)x(k)

xT (k)P (k)x(k) + λ
, (3.2a)

θ̂(k + 1) = θ̂(k) + γ(k)[ϑamb(k + 1) − xT (k)θ̂(k)], (3.2b)

P (k + 1) =
1

λ
[I − γ(k)xT (k)]P (k), (3.2c)

with P (k) ∈ R
(n+m)×(n+m) being the parameter-covariance matrix, θ̂(k) ∈ R

(n+m) rep-

resenting the estimated parameter vector, and γ(k) ∈ R
(n+m) the correction vector.
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The scalar value λ ≤ 1 represents the sensitivity of the algorithm to more recent values.

Choosing a λ closer to 1 will increase the amount of past samples that are significant

to the current parameter estimation. With λ = 1 the WRLS algorithm will behave like

a regular recursive least squares algorithm. Furthermore, I ∈ R
(n+m)×(n+m) is defined

as the unity matrix.

The initial value for the parameter-covariance matrix P is chosen as P (0) = αI where

α ≫ 1. The initial value for θ̂(0) is chosen as a random (n + m) × 1 vector.

The future predictions for the ambient temperature, denoted by ϑ̂amb(k|j + 1) where

j + 1 represents any given future time step and k the current time step are given by

Equation (3.3). Note that j ≥ k and j < T must hold true.

ϑ̂amb(k|j + 1) = x̂T (k|j)θ̂(k), (3.3)

where

x̂T (k|j) = [ϑ̃amb(k|j − n + 1), . . . , ϑ̃amb(k|j), ϑpred(j), . . . , ϑpred(j + m − 1)], (3.4)

with ϑ̃amb(k|i) being defined as

ϑ̃amb(k|i) =







ϑamb(i) if i ≤ k

ϑ̂amb(k|i) else,
(3.5)

In Equation (3.4) ϑpred(j) is the most recent prediction for the time step j. Equa-

tion (3.5) recursively calculates predictions by calling Equation (3.3) until only current

or past measurements are needed in x̂T .

The predicted future values have to be recalculated after every new measurement since

the parameter vector θ̂ is updated in Equation (3.2b).

3.3 Solar Irradiation Forecast

With the WFS providing hourly solar predictions for the next 43 hours a similar WRLS

scheme as in shown in chapter 3.2 can be applied:

Instead of using the global horizontal irradiation (GHI) in W/m2, as provided by the

sensors, the clear sky index is used. The clear sky index τcs is defined by

G = Gcs · τcs, (3.6)

where G is the current global horizontal irradiation (in W/m2) and Gcs is the clear sky

global horizontal irradiation (in W/m2). The clear sky index τcs is an indication for

the transmissivity of the clouds. The GHI for clear sky conditions is calculated via the
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toolbox provided by Sandia National Laboratories [14].

As previously the vector

xT (k) = [τcs(k − n + 1), . . . , τcs(k), τpred(k + 1), . . . , τpred(k + m)] (3.7)

is created at every time step k = {1, ..., T}, where T is the final time step where

predictions are available and τpred(k + 1) the clear sky index calculated with the WFS

data. It is important to note that the current prediction τpred(k) is not used, instead

the next future prediction τpred(k + 1) is. This corresponds to a negative dead time.

The variables n ∈ N
+ and m ∈ N

+ represent again the order of the denominator and

numerator in the resulting ARX model.

During the day the WRLS algorithm shown in equation (3.2a) - (3.5) can be applied to

compute the predictions for the clear sky index τ̂cs. During the night no calculations are

possible due to the lack of measurements. In the morning new initial values for P and

θ̂ are needed since the weather conditions could have changed significantly overnight.

To calculate the new initial values the latest predictions from the WFS are loaded before

sunrise. This prediction is then compared against measurements from past days in a

database of irradiation data.

Algorithm 1 find closest solar days

Require: ∃ τpred,i ∈ R
1×1, τdatab ∈ R

nd×48

normalize τpred to 12h day ⇒ τ̃pred ∈ R
1×48

for j = 1 to nd do

ej =
√

1
48

∑48
i (τ̃pred,i − τdatab,j,i)2

end for

sort ej ascending

The algorithm shown in Algorithm 1 outlines how to search the database (τdatab) con-

sisting of nd normalized days for similar solar days. The 5 days corresponding to the 5

smallest values of ej are chosen to initialize P and θ̂.

For this it is assumed that the measurements in the database are the clear sky indices

τcs present on those days. The latest WFS prediction τpred is assumed to be the predic-

tion for each day. By applying the WRLS algorithm shown in equations (3.2a) - (3.2c)

to those 5 days (ignoring the night phases) the new starting P and θ̂ are calculated for

the next day.

Bacher et.al. 2009 [15] introduced a method for online short-term predictions of so-

lar power generation based on autoregressive models. In his work a clear sky model

similar to Equation (3.6) was used with the difference that the previously cited work
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proposes the usage of smoothing kernels to estimate a clear sky solar power. Further-

more, the usage of diurnal AR components is proposed. While Bacher stated that the

effects of this component were only small and can be left out, it has to be noted that

it implies a dependency on the weather conditions of the last day. In this work no

improvement has been found by including the diurnal component.



Chapter 4

Occupancy Predictions

In this chapter the human element is introduced into the control scheme.

The first section deals with the perception of thermal comfort and what impact gender

and age has on comfort needs. Furthermore, the international standard for ergonomics

of the thermal environment is briefly presented. The second section showcases the

occupancy prediction algorithm. Both, the off-line feature extraction and the on-line

predictions are featured.

4.1 Occupancy Comfort

When designing and operating residential buildings an important boundary condition

is that the thermal comfort quality must be maintained [16]. Before designing a tem-

perature regulating scheme, the human perception of the thermal environment has to

be considered.

There exists no thermal environment that can satisfy everyone due to individual dif-

ferences in experiencing thermal environments [17]. While previously the differences in

thermal comfort for females and males was considered insignificant, more recent studies

revealed a significant gender difference [18]. While [19] found that women prefer higher

room temperatures than men at home, other studies found there is no significant dif-

ference between thermal comfort requirements [18] or neutral temperature [20].

Although females become aware of thermal discomfort earlier than males [21] and ex-

press more dissatisfaction with deviations from their personal optimal thermal environ-

ment [18], males use the thermostats in households more often [19]. The last study

also found that automatic control seemed to fulfill the needs of males better than the

needs of females. Although, being more satisfied during the summer, females tend to

feel uncomfortably cold more often during the winter season than males. It was also

found that the technical knowledge of the heating systems is significantly better for

males than for females, which [19] accounted to complex HVAC systems in offices and
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the lower usage of thermostats by females.

Furthermore, older generations have different needs for thermal comfort compared to

their younger counterparts [22]. Moreover conditions for older people may not be met

if the building services are inadequately designed. J. van Hoof et.al 2017 [22] gave

inadequate means for control of the preferred climate as an example for an inadequate

design. There it is also concluded that ’Equipping the homes of older people with smart

technologies as well as training older people to use the technology may lead to a reduced

need for energy to heat or cool a space and saving operating costs’.

Furthermore are comfortable temperatures and acceptable temperature variations in-

fluenced by parameters which are often not considered by conventional methods [16].

Using improved methods for determining thermal comfort and estimating the thermal

sensation of occupants will improve the resemblance with reality.

The international standard for ergonomics of the thermal environment (ISO 7730 [23])

uses predicted mean votes (PMV) and predicted percent of dissatisfaction (PPD) to

predict the thermal sensations of people to thermal environments. The PMV scale is

thermal comfort scale that is centered around thermal equilibrium of the human body

and the environment (PMV of 0). Positive PMV values represent too warm climate,

while negative values represent too cold conditions. The biggest value for PMV is +3

(hot) and the smallest value is -3 (cold). See Table 4.1.

Table 4.1: PMV values and thermal sensations

PMV thermal sensation

+3 hot

+2 warm

+1 slightly warm

0 neutral

−1 slightly cold

−2 cool

−3 cold

When calculating the PMV various factors like air temperature, clothing factor, relative

air velocity and activity have to be considered.

ISO 7730 defines furthermore the PPD as a function of the PMV. The graphical rep-

resentation of PPD in dependency of PMV is given in Figure 4.1. The PPD is a

non-linear measure for the thermal comfort. The smallest possible value is a PPD of

5% at PMV = 0. One advantage of using the PPD over PMV is that the scale is strictly

positive for both too cold and too hot environments.
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Figure 4.1: PPD as a function of PMV

4.2 Occupancy Prediction

Traditional operation practices try to maintain constant daily indoor temperature tra-

jectories or define constraint-trajectories for minimal and maximal allowed indoor tem-

peratures (e.g.[24]). Enforcing the indoor temperature of the smart home to always

follow the set trajectory is not necessary when the resident is not at home. This would

allow the smart home to save energy without decreasing user comfort.

An adaptive short-term prediction scheme was introduced in [25]. This section repre-

sents a quick overview of the algorithm used. For more details, especially about the

calculations and results the reader is redirected to the original document.

The presented algorithm is self-learning and does not require prior parameterization

or expert knowledge. The method is based on occupancy data which is transformed

via proper orthogonal decomposition (POD) and then clustered into a low dimensional

parameter space. For more information about POD or subspace parameter clustering

the reader is redirected towards relevant literature like [26] and [27] respectively.

4.2.1 Off-line Feature Extraction and Clustering

Sensors in the smart home capture the occupancy status of the residents. The collected

data is expressed by the matrix X ∈ B = [0, 1]N×m, where N are the number of mea-

sured days and m are the collected samples per day. In this work the sampling time was

chosen to be 15 minutes, therefore m = 96. The set B is the probability for occupancy.
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With rmax being the number of significant components for the dimension reduction, the

Algorithm 2 can be written as:

Algorithm 2 off-line order reduction with POD

Require: ∃ data matrix X

Ensure: B = [0, 1]N×m

calculate POD: X = UΣV T

find the significant components σi, ∀i ∈ {1, . . . , N} of the matrix Σ, where all non-

negative numbers σi are given as an order relation in decreasing order

if σrmax
= σl + ε, ∀l ∈ {1, . . . , N} then

choose σ1,...,rmax
as significant components

end if

for i = 1 to rmax do

calculate basis functions: φi = uiσiv
T
i

φ = [φ1, . . . , φrmax
] ∈ R

m×rmax

end for

for i = 1 to rmax do

calculate unknown parameters βi = (φTφ)−1φTxi

xi ∈ R
m×1, xi ⊆ X

end for

After the execution of Algorithm 2 in which the POD, which is a special singular-value

decomposition, was calculated the off-line clustering described in Algorithm 3 is com-

puted:

Algorithm 3 off-line clustering in the parameter space

Require: ∃βj,i ∈ R
1×1, βj,i ⊆ βi

[cluster, βcj
] = k-means(βj,i)

for j = 1 to rc do

calculate features: ϕj = φβcj

end for

With the centroids of the rc clusters βcj
, the occupancy features ϕj can be extracted.

4.2.2 On-line Occupancy Prediction

After the possible occupancy features have been extracted in the off-line calculation the

on-line predictions presented in Algorithm 4 can be computed. There the variable τ is
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the actual time stamp, µX = E{Xi}, ∀i = {1, . . . , N}, µϕ = E{ϕj}, ∀j = {1, . . . , rc},

and the RMSE-value is used to evaluate the fit between the individual model out-

puts ϕ̂j,p and the measured output ϕj,p over the occupancy prediction horizon, ∀p =

{1, . . . , npred}. The prediction model ϕ̂∗ is chosen as described by Algorithm 4. In this

Algorithm 4 on-line occupancy prediction

Require: ∃ features ϕj ∈ R
1×m, ∀j = {1, . . . , rc}

define calculation window: ncalc

define prediction window: npred

t-test statistic: H0 : µX − µϕ = ω0; with α = 0.05;

Require: X and ϕ

for p = τ to τ − ncalc do

[decision H0, p-value] = t-test(Xp, ϕjp
, α), ∀j = {1, . . . , rc}

end for

for j = 1 to rc do

for p = τ + 1 to τ + npred do

ϕ̂∗ = ϕ
max{p-value}
j,p ∧ min{RMSE(ϕj,p, ϕ̂j,p)}

ϕ̂∗ ∈ R
1×npred

end for

end for

work the prediction window npred for the occupancy prediction was chosen to be the

same as the calculation window ncalc, therefore npred = ncalc = 6 h (24 samples).

For further information about the occupancy prediction, see [25].



Chapter 5

Mixed-Integer Quadratic

Programming MPC

In this chapter the control schemes used in the simulations are described. The contents

of this chapter represents an extension of Killian et al. 2018 [7], which is an article in

the journal ’Applied Energy’. The controller has to primary ensure that the thermal

requirements for user comfort are met. Secondary the controller also has to make sure

the electrical systems are being used in an efficient way. This includes the decision

when to charge/discharge the battery, when to buy from or sell to the grid, and when

to operate the smart appliances.

5.1 Overall Control Structure

The control scheme is chosen to be a model predictive controller (MPC). The funda-

mental control structure is shown in Figure 5.1. The actual indoor temperature in the

smart home is denoted as ϑact.

The smart home plant model was described in chapter 2. The manipulated variables

u∗ consists of the inputs for the electrical plant (binary and continuous variables) and

the inputs for the heat pump (heat supply temperature).

Table 5.1 gives an overview of the controlled variables, manipulated variables and distur-

bances. Where semi-continuous variables describe variables that are continuous under

certain discrete conditions. For example the battery can be charged continuously when

the discrete condition (δbat
k = 0) is satisfied. Otherwise charging is prohibited and only

discharging is possible.

The external inputs for the mixed integer quadratic programming (MIQP)-MPC are

the occupancy prediction ϕ̂∗ described in chapter 4, the weather forecasts, the user

preferences expressed as weighting factors, the preferred reference temperature trajec-
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Figure 5.1: Schematic control structure of the smart home and MPC . Figure

from [7].

tory, and the prices as well as constraints of the smart grid. The user is tasked to find

an trade-off between comfort (Q), monetary cost (S), and energy efficiency (P), which

is represented in the global optimization criteria via weighting factors.

5.2 MIQP Cost Function

The global optimization criteria is given by Eqs. (5.1a)-(5.1e).

J∗ ≡ J(u∗) = min
∆u

J(u), (5.1a)

where

J(u) =
np
∑

k=0

[(ϑref
k − ϑact

k )′Qk(ϑref
k − ϑact

k )

+ ∆uk
′Rk∆uk + (gbuy

k Sk + Pk)pgrid
in,k

− gsell
k Skp

grid
out,k], (5.1b)

subject to
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Table 5.1: List of controlled and manipulated variables as well as disturbances

of the MPC

controlled variable indoor room temperature ϑact

manipulated variables

continuous heat supply temperature ϑsupply

PV converter power point tracking ηconv
k

smart freezer power consumption pfreezer
k

semi-continuous buying/selling from the grid p
grid
in,k / p

grid
out,k

battery charging/discharging pbat
in,k / pbat

out,k

discrete smart dishwasher activation point δdishw

PV converter on/off δPV
k

disturbances occupancy (acting on thermal and electrical part)

ambient temperature ϑamb

solar irradiation (acting on thermal and via PV on electrical part)

grid prices and constraints

Eqs. (2.3) − (2.12b) from Chapter 2,

∆u1,k, ∈ [−5◦C, 5◦C], (5.1c)

u∗1,k ∈ [26◦C, 50◦C], (5.1d)

ϑact
k ∈ [ϑact

min,k, ϑact
max,k]. (5.1e)

With the first element of u∗k, denoted as u∗1,k, being defined as the heat supply tempera-

ture ϑ
supply
k . The constraints in Eq. (5.1d) are designed for the heating period only. An

easy adaption for cooling in the summer is possible. The minimum and maximum in-

door temperature constraints (5.1e) are time-varying and dependent on the occupancy

prediction. If occupancy is predicted the absolute difference between the constraints

and the set reference temperature ϑref
k gets smaller. If no occupancy is predicted the

gap between ϑref
k and the allowed lower/upper constraint is bigger. Note that the indoor

room constraints in Eq. (5.1e) are modeled as soft-constraints to ensure feasibility of

the optimization problem.

In the definition of the cost function in Eq. (5.1b) the prediction horizon of the MIQP-

MPC is denoted as np. In the chosen formulation the control horizon is the same as

the prediction horizon. Also seen in this equation are the user-chosen weighting ma-

trices: Qk is the matrix to weight the user comfort, Rk is the penalize-matrix for the

manipulated variables, the matrix Sk weights the cost for buying from the smart grid
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and therefore represents operating costs, the matrix Pk is the weight for the energy

efficiency to minimize energy bought from the grid and therefore maximizing the usage

of the internal renewable energy source. The variable prices for buying and selling from

the smart grid are given as g
buy
k and gsell

k respectively. The power consumed from the

smart grid is given as p
grid
in,k , and the power sold to the smart grid is denoted by p

grid
out,k.

5.3 User Weights

As described in the previous section the user is tasked to balance the weighting matrices

in Eq. (5.1b). Usually the end-user lacks the technical knowledge to do this in an efficient

manner. Therefore an easy to use scheme is presented to allow the users to balance

their individual preferences. The overall performance of the smart home MIQP-MPC is

a trade-off between three conflicting goals: 1) to provide the best possible user comfort,

2) to minimize the operating costs, and 3) to spend as little external energy as possible.

These goals are represented by the weights Q, S, and P respectively. The individual

corners of the proposed interface shown in Figure 5.2 represent those goals.

The user is now tasked to select a point inside the triangle. The closer the point is

eco: P

comf: Qcost: S

Figure 5.2: Interface for the user to choose their individual weights. Figure

from [7]

to one of the corners the more the respective goal is prioritized by the controller. By

mapping the coordinates of the chosen point, represented by barycentric coordinates,

into the weighting factors it is possible to visually balance the conflicting goals.

The weights in the corners were a priori chosen by the manufacturer to ensure smooth

operation.
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5.4 Mixed-Integer Solver

Traditional MPC problems usually have a quadratic or linear cost function and linear

constraints in the form of lb ≤ A · x ≤ ub, where x ∈ R
nx is the decision variable

vector, A ∈ R
nb×nx is the linear constraint matrix, lb ∈ R

nb and ub ∈ R
nb are the

lower and upper bounds respectively. Note that nb denotes the amount of boundary

conditions and nx the amount of decision variables. Therefore a quadratic programming

(QP) solver is usually suitable.

The proposed controller utilizes binary decision variables in the formulation in addition

to continuous decision variables, see Table 5.1. This renders the problem non-convex

and mathematically difficult to solve. For algorithms to still be able to solve those

kind of problems efficiently methods like branch-and-bound [28], branch-and-cut [29]

or cutting planes [30] have to be used. The used solver for the mixed-integer-problem

(MIP) was Gurobi 7.5.2. Gurobi supports 17 different types of cutting planes, 14

different MIP feasibility heuristics, symmetry detection, parallel branch-and-cut, and

non-traditional tree-of-tree searches in the current version[31]. This allows the solver

to converge to the optimal solution quickly and reliable.



Chapter 6

Results

6.1 Overview

In this chapter the simulation setups as well as the results of this work are presented.

The section 6.2 showcases the introduced localized weather forecasting scheme. The

section 6.3 deals with the simulation setup and results of the MIQP-MPC scheme pro-

posed in Chapter 5. The impacts of the localized weather prediction on the performance

of the controller can be seen in section 6.4. For the results of the occupancy prediction

algorithm presented in Chapter 4 the reader is referred to Killian et al.2018 [25].

6.2 Weather Forecast

In this section the results of the localized weather forecast algorithms described in

Chapter 3 will be shown.

Both ambient temperature and solar irradiation forecasting simulations use data col-

lected over a period of 36 days. The smart home’s weather station collects measurements

for ambient temperature (in deg C) and solar irradiation (in W/m2) hourly. The solar

measurements are available for each of the cardinal directions. All measurements were

linearly interpolated to a common sampling time of 15 minutes.

6.2.1 Ambient Temperature Forecast

The values for n and m in (3.1) represent the order of the ARX model. The denominator-

order is set by n and represents how many past measurements are used in the model.

The numerator order is defined by m and corresponds to the amount of future predic-

tions used.

Since the ARX model represents a stochastic system rather than a physical system

no correct model order can be determined. The optimal order for the model was de-
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Table 6.1: Parameters used for the ambient forecast

Variable Value

Np 96 Samples = 24 hours

n 1

m 2

λ 0.995

S
ig

n
ifi

ca
n

ce

S
ig

n
ifi

ca
n

ce

npnp
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Figure 6.1: Parameters significance and global model significance over the pre-

diction horizon for ambient forecasting

termined by testing the global significance of the model and the significance of the

individual parameters and choosing the values that offer the best trade-off between

them. The parameters used for the simulation can be found in Table 6.1. In the right

plot of Figure 6.1 the adjusted coefficient of determination R2
adj and a global F-Test

with pglob being the probability that at least one value of θ̂(k) 6= 0 are shown over the

prediction horizon np for the chosen parameters. Furthermore the results of the t-test

for parameter significance over the prediction horizon np can be seen in the left plot of

Figure 6.1.

In the Figure 6.2 a comparison of the ARX model predictions ϑ̂amb and the WFS predic-

tions ϑpred over a sample 7 day interval are shown. The black dash-dotted line represents

the real temperature ϑamb measured by the sensor. The ARX model predictions are the

outputs after a long enough period of time for the parameters to settle down.

To show that the WFS in Figure 6.2 does not simply have a static offset, a zero order

ARX model with the output ϑ̂zero was calculated. This was done by setting xT in
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Figure 6.2: 7 day interval of WFS and ARX-Model output for ambient fore-

casting

Equation (3.1) to xT = 1. The rest of the algorithm stays the same. After a run-in

period the different RMSE over the prediction horizon are compared. This can be seen

in Figure 6.3. The RMSE between two variables is defined as the root mean square

error, or:

RMSE(ϑamb, ϑ̂amb) =

√

√

√

√

1

K

K
∑

k=1

(ϑamb(k) − ϑ̂amb(k))2 (6.1)

The RMSE for the WFS, RMSE(ϑamb, ϑpred), is fairly constant at 3◦C over the whole

prediction horizon. For short term predictions the ARX model and the zero order model

create good results. While the ARX model stays constant with a RMSE(ϑamb, ϑ̂amb) of

about 1.5◦C, the RMSE(ϑamb, ϑ̂zero) increases until it even surpasses the WFS between

30 ≤ np ≤ 65. The reason for the RMSE(ϑamb, ϑ̂zero) to decline at higher np values is

because of the daily recurring variations in temperature during the day.

6.2.2 Solar Irradiation Forecast

As seen in subsection 6.2.1, the optimal values for n and m were evaluated by examining

the parameter significance and the global model significance. The chosen simulation

parameters can be found in Table 6.2. The results for parameter and global mode

significance for the chosen parameters are visualized in Figure 6.4. It has to be noted

that the rising significance over the prediction horizon np is caused by the fact that the

amount of samples, which can be used for long-term predictions are decreasing due to
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Figure 6.3: RMSE between the ARX-Model output, the WFS and the zero-

order model for ambient forecasting

sunset.

Table 6.2: Parameters used for the solar forecast

Variable Value

Np till sunset

n 1

m 3

λ 0.98

In Figure 6.5 the ARX model output τ̂cs and the WFS predictions τpred can be seen for

4 selected days. The black dash-dotted line represents the real (measured) clear sky

index τcs. During the start/end of the sunny days the value for the clear sky index τcs

is bouncing around. This is due to the small magnitudes of solar irradiation measured

and also small magnitudes of clear sky solar irradiation Gcs computed which leads to

unstable estimations. During the day, when the clear sky index settles down, the pre-

dictions are stable. In Figure 6.6 the outputs have been converted to GHI in W/m2.

A zero-order model is introduced by setting xT = 1 in Equation (3.1). The predictions

of the zero-order model are denoted by τ̂zero. The RMSE values of the ARX model
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Figure 6.4: Parameters significance and global model significance over the pre-

diction horizon for solar forecasting

prediction RMSE(τcs, τ̂cs), the WFS prediction RMSE(τcs, τpred), and the zero-order

model RMSE(τcs, τ̂zero) can be seen in Figure 6.7. The prediction of the clear sky index

yields a similar behavior to the ambient temperature prediction:

The zero-order model and the ARX model provide good short time predictions. While

previously the ARX and WFS models produced constant results, this time the error

grows over the prediction horizon. The difference between ARX and WFS predictions

is smaller, but the ARX produces still better results than WFS over the whole horizon.
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Ĝ
G
Gcs

Figure 6.6: Comparison of WFS and ARX-Model output for solar forecasting

on 4 selected days



6.2 Weather Forecast 32

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45

N
o
rm

a
li

ze
d

Ir
ra

d
ia

ti
o
n

np

RMSE comparison

RMSE(τcs, τ̂cs)

RMSE(τcs, τpred)

RMSE(τcs, τ̂zero)

Figure 6.7: RMSE between the ARX-Model output, the WFS and the zero-

order model for solar forecasting



6.3 MIQP-MPC 33

6.3 MIQP-MPC

The smart home model presented in Chapter 2 is used for the simulations in combination

with the MIQP-MPC proposed in Chapter 5. The solver applied to the MIQP-problem

is Gurobi 7.5.2, see [31]. Until noted otherwise the parameters shown by Table 6.3 are

used in the simulations.

Table 6.3: Simulation parameters

variable value

Tsim 7 days

sampling time k 15 min

dishwasher 1 activation per 2nd day

L = [2, 0.5, 0.5, 1] kW

COP 3.7

ṁ 0.1025 kg·s−1

ϑreturn 26◦C

Qbat
max 6.54 kWh

P bat, dis
max 2.3 kW

P bat, ch
max 3.0 kW

P PV
max 4.5 kW at STC [32]

SoCmin 30 %

SoCmax 95 %

SoCk=0 90 %

ηconv
min 10 %

ηconv
max 100 %

ηbat 0.935

np 96 samples = 24 h

The predictions for the ambient temperature and the solar irradiation are provided by

weather services and do not utilize the localization scheme presented in Chapter 3. The

smart home is assumed to possess a weather station and therefore can measure the

current ambient temperature and the current solar irradiation. It is further assumed

that the smart home incorporates various sensors to detect occupancy reliably and the

occupancy prediction scheme shown in Chapter 4 outputs predictions for the next 6 h.

Since the prediction horizon np with 24 hours is longer than the occupancy prediction,

the last value of the prediction is continued till the end np. Likewise it is assumed that
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the indoor temperature ϑact is being measured.

The occupancy generated load Q̇occ is based on the average residential power consump-

tion during the day and is assumed to be known over the prediction horizon [33].

The soft constraints for the indoor temperature are dependent on the occupancy pre-

diction ϕ̂∗ and given by the following equations:

ϑact
min,k = ϑref

k − (−5ϕ̂∗k + 5), (6.2a)

ϑact
max,k = ϑref

k + (−4ϕ̂∗k + 5), (6.2b)

where a value of 0 for ϕ̂∗k means no occupancy and ϕ̂∗k = 1 means certain occupancy.

The user comfort will be expressed via two metrics. The first metric represents the

temperature RMSE(ϑref
p , ϑact

p ) where p are all the time steps where the smart home is

occupied. The second metric is defined by the predicted percentage of dissatisfaction

(PPD), which is a measurement for thermal discomfort, see Section 4.1 or [23]. It is

important to note that the PPD also depends on various factors like activity, clothing

and air velocity. Those parameters were chosen in such a way that maximal user com-

fort was achieved at the set indoor temperature ϑref. It has to be further noted that the

smallest value for the PPD is 5%. The average PPD (aPPD) represents the average of

all the PPD values when the smart home was occupied.

6.3.1 Performance Modes Comparison

As shown in Section 5.3, the end-users can tune their individual controller by balancing

between the 3 modes ’comf’, ’eco’ and ’cost’. The different behavior for each perfor-

mance mode is presented in this subsection.
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Figure 6.8: Comparison of the indoor room temperature of different controller

weights. Note that the notation "day 1" represents the first day of

simulation at 00:00. Figure from [7].

Figure 6.8 showcases the different resulting indoor temperatures ϑact for each MIQP-

MPC performance case. All cases have the same reference set-point ϑref of 23◦C. The

upper and lower soft constraint temperatures ϑact
min,max for the indoor temperature ϑact

are also chosen to be the same among all cases and are given by the Equations (6.2a)-

(6.2b).

As desired, the indoor temperature of the ’comf’ mode (ϑact
comf) is tracking the reference

temperature all the time, while the other two cases (’eco’ mode ϑact
eco and ’cost’ mode

ϑact
cost) are reducing the indoor temperature ϑact during times without occupancy. While

the ’cost’ mode is selling all surplus energy to the grid, the ’eco’ mode is utilizing the

thermal mass of the smart home by over-heating the rooms during times of energy

excess. This over-heating of the smart home enables the controller to use the thermal

mass of the smart home as an additional energy storage.

The differences between the ’eco’ and ’cost’ mode are visualized in detail in Figures 6.9

and 6.10. There the upper subplots showcases the different power-sources as positive

values (generated PV power, buying from grid, discharging the battery) and power-

sinks as negative values (selling to grid, charging the battery and operating the smart

appliances). The ’cost’ mode features substantially more power sold to the grid (nega-

tive values of grid) and uses the battery to buy power from the grid when the price is

at the lowest. In the lower subplots the SoC of the battery over the simulation time is

shown.
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Figure from [7].
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The disturbances acting on the system during the simulations are presented in Fig-

ure 6.11 as well as the applied control variables for each case. Note that the plotted

ambient temperature, solar irradiation and occupancy are the actual values acting on

the system and not the predictions for the MIQP-MPC.
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Figure 6.11: Manipulated variables and disturbances during the 7 day simula-

tion case, related to Fig. 6.8. Figure from [7].

The performance numbers of the different modes are given in Table 6.4. Furthermore,

another mode called ’center’ is introduced which represents the case of choosing the

geometric center in Figure 5.2.
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Table 6.4: Performance modes comparison for 7 days

mode operating cost grid energy average PPD RMSE(ϑref
p , ϑ

act
p )

comf 4.54 AC 123 kWh 5.12 % 0.19◦ C

eco 3.88 AC 101 kWh 5.77 % 1.05◦ C

cost 3.72 AC 110 kWh 5.91 % 1.24◦ C

center 4.06 AC 109 kWh 5.31 % 0.54◦ C

The results from Table 6.4 can also be seen in the spider diagram illustrated by Fig-

ure 6.12. Note that the center of this diagram represents the best trade off between the

metrics. Curves with larger inside area represent worse performance. Unsurprisingly

the ’comf’ mode has the lowest aPPD value while the ’cost’ mode is the most cost effi-

cient and the ’eco’ mode consumes the least energy. Both the ’eco’ and the ’cost’ cause

approximately the same thermal discomfort. The ’center’ mode is a trade off between

all the performance metrics.

Perf overview for 7 days
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Figure 6.12: Performance of the different modes over 7 days from Fig. 6.8.

Figure from [7].

6.3.2 Smart Grid Power Constraints

The smart grid can impose load constraints on the smart home by changing the values

of p
grid
in,min,k, p

grid
out,min,k, p

grid
in,max,k and p

grid
out,max,k where setting any of the minimal variables



6.3 MIQP-MPC 39

to nonzero values would force the smart grid to either consume or provide power to the

smart grid. On the other hand when any of the maximal variables are set to zero the

smart home cannot buy from the smart grid (pgrid
in,max,k = 0) or sell to the smart grid

(pgrid
out,max,k = 0).

In the following simulation it was assumed, that the smart grid requests the smart home

to not consume any power during a 4h night period starting at 00:00 on the second day

by setting p
grid
in,max,k = 0. The smart home was informed of that constraint well in ad-

vance.

2017

2017

indoor room temperature

manipulated variable

◦
C

◦
C

day 1, 00:00

day 1, 00:00

day 1, 12:00

day 1, 12:00

day 2, 00:00

day 2, 00:00

day 2, 12:00

day 2, 12:00

day 3, 00:00

day 3, 00:00

u∗
1,sim

simulation time

u∗
1,norm

ϑref ϑact
sim ϑact

norm ϑact
min

20

20

40

60

18

22

24

26

cannot buy

from grid

Figure 6.13: Thermal impact of grid-side load constraints. Figure from [7].

In Figure 6.13 the difference between the indoor temperature between the case with

load constraint (ϑact
sim) and without load constraint (ϑact

norm) can be seen. In both cases

the MIQP-MPC was in the ’cost’ mode. Before the load constraint is enforced the

controller over-heats the smart home to minimize the energy expense during the time

the battery has to be used. The violation of the lower soft constraint on the second day

at 12:00am is not caused by the load constraint, but rather by the occupancy prediction

not expecting the user to return so early.

The responses of the electrical systems are presented in Figure 6.14. Comparing the
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top two plots, the energy demand is shifted to before and after the grid-side load

constraint. The bottom graph shows how the SoC of the battery system is affected

by the constraint. Where SoCsim represents the state of charge in the case with load

constraint and SoCnorm the case without load constraints.
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Figure 6.14: Electrical impact of grid-side load constraints. Figure from [7].

6.4 Parametric Study on MIQP-MPC Performance

The performance of model predictive control schemes depends on the available distur-

bance predictions. The proposed smart home controller is no exception. The perfor-

mance and efficiency of the MIQP-MPC is dependent on various predictions for ambient

temperature, solar irradiation, occupancy, grid prices and user generated loads. While

some disturbances are known more accurate in advance, like it was assumed with the
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grid prices, most of the disturbances can only be predicted. The following two subsec-

tions are showcasing how prediction quality influences the MIQP-MPC performance.

6.4.1 Weather prediction impact

To compare the impact of the proposed localized weather forecasting scheme presented

in Chapter 3 a series of simulations is performed.

For a more general overview of the simulation parameters see Section 6.3. Instead of

using the predictions for ambient temperature and solar irradiation provided by the

weather forecasting services (WFS), the localized prediction scheme based on autore-

gressive models with external inputs (ARX) is applied. Another series of simulations

with the real future ambient temperature and solar irradiation as predictions is carried

out to serve as a benchmark. This series is denoted by the label ’real’ and illustrates

the best possible result for each operation mode. Note that all the simulations carried

out in this subsection still utilize the occupancy prediction scheme presented in Sec-

tion 4.2. The Tables 6.5-6.7 illustrate the impact of the different predictions on the

earlier defined metrics and operation modes.

Table 6.5: Prediction modes comparison ’comf’ mode for 7 days

Prediction mode operating cost grid energy average PPD RMSE(ϑref
p , ϑact

p )

WFS 4.54 AC 123 kWh 5.12 % 0.19◦ C

ARX 4.53 AC 123 kWh 5.13 % 0.16◦ C

Real 4.40 AC 119 kWh 5.11 % 0.08◦ C

Table 6.6: Prediction modes comparison ’eco’ mode for 7 days

Prediction mode operating cost grid energy average PPD RMSE(ϑref
p , ϑ

act
p )

WFS 3.88 AC 101 kWh 5.77 % 1.05◦ C

ARX 3.74 AC 101 kWh 5.93 % 1.21◦ C

Real 3.71 AC 99.7 kWh 5.89 % 1.25◦ C

Table 6.7: Prediction modes comparison ’cost’ mode for 7 days

Prediction mode operating cost grid energy average PPD RMSE(ϑref
p , ϑ

act
p )

WFS 3.72 AC 110 kWh 5.91 % 1.24◦ C

ARX 3.69 AC 109 kWh 5.93 % 1.28◦ C

Real 3.65 AC 107 kWh 5.89 % 1.29◦ C
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Note that the average PPD is non-linear and the lowest possible value is 5%. Because

of the non-linearity the average PPD can actually increase slightly while the RMSE

decreases. This can be seen in Table 6.5 when comparing the WFS and the ARX

predictions.

By utilizing the ARX predictions instead of the WFS predictions the controller in ’eco’

mode achieves 82.35 % of the possible cost savings shown by the benchmark case. When

in ’cost’ mode the controller accomplishes 42.86 % of the benchmark case operating cost

reduction. Even in ’comf’ mode the MIQP-MPC manages to reach 7.14 % of the possible

operating costs reduction. With the localized predictions this mode also achieves 27 %

of the indoor temperature RMSE improvements given by the benchmark case.

6.4.2 Occupcancy Prediction Impact

This subsection illustrates the impacts of the occupancy prediction method proposed

in Section 4.2 on the MIQP-MPC performance. The simulation parameters remain

unchanged from those defined in Section 6.3. The predictions for ambient tempera-

ture and solar irradiation are provided by the WFS. A simulation is carried out with

an accurate prediction of the occupancy. This is achieved by using the actual future

occupancy data as predictions for the controller. This simulation is compared to a

simulation where the adaptive occupancy prediction method is used. Figure 6.15 il-

lustrates the thermal results of both simulations. The indoor temperature denoted by

ϑact
real is the result of the simulation with the accurate occupancy prediction while ϑact

pred

is the result of the adaptive occupancy prediction. The soft-constraints ϑact
real, min \max

are calculated from Equations (6.2a)-(6.2b) with the real occupancy whereas the soft-

constraints ϑact
pred, min \max are calculated with the predicted occupancy.

A noticeable difference can be seen starting from day 3, 12:00 to the end of day 5.

During those days the user is present in the smart home most of the time, but the occu-

pancy prediction is struggling to predict this behavior. A typical situation for this kind

of user presence could be a sick-day. For the remaining days the adaptive algorithm

has successfully identified the usual leave and coming home times. The metrics for the

different MPC modes can be seen in Table 6.8.

Table 6.8: Performance modes comparison with actual future occupancy data

mode operating cost grid energy average PPD RMSE(ϑref
p , ϑ

act
p )

comf 4.60 AC 125 kWh 5.10 % 0.22◦ C

eco 4.10 AC 110 kWh 5.14 % 0.90◦ C

cost 3.92 AC 112 kWh 5.13 % 1.05◦ C

The comparison to the results of Table 6.4 are given in Table 6.9. It is obvious that
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Figure 6.15: Thermal impact of occupancy prediction. For both simulations

the controller was in ’cost’ mode.

the average PPD was improved in all modes. Furthermore, all modes have higher

operating costs and energy demands. This is because during the earlier mentioned

period the smart home has to maintain a higher indoor temperature due to the certain

predictions and thus requires more power. The slightly higher RMSE for the ’comf’

mode is insignificant, while the lower RMSE values for the other modes showcase a

much better result.

Table 6.9: Performance differences between Table 6.4 and Table 6.8

mode operating cost grid energy average PPD RMSE(ϑref
p , ϑ

act
p )

comf +0.06 AC +2 kWh −0.02 % +0.03◦ C

eco +0.22 AC +9 kWh −0.63 % −0.15◦ C

cost +0.20 AC +2 kWh −0.78 % −0.19◦ C



Chapter 7

Discussion

A MIQP-MPC has been proposed for thermal control as well as energy management

in smart homes. The defining feature of the controller formulation is that it includes

both, a thermal model and the electrical model of the smart home. This allows the

MIQP-MPC to solve both problem statements given by the models in one iteration

and therefor globally optimize the entire smart home. One of the drawbacks of MPC

scheme is that the performance is depending on the quality of the available predictions

of disturbances of the prediction horizon. The proposed prediction scheme for localized

weather forecasts has demonstrated that it not only improves the available weather fore-

casts but also reduces the operating costs of the smart home. The suggested occupancy

prediction algorithm is self-learning and adaptive and therefore excellently suited for

the task. Furthermore, the occupancy prediction algorithm could be further improved

by separating weekdays and weekends/holidays during the feature extraction.

Another drawback of MPCs are the long computation times and the complex solving

algorithms needed. Since a common sampling time of Ts = .25 hours was used, real

time control via MPC is possible. Tuning the controller can be achieved by the end-user

via the proposed method for generating the user weights as the interface is easy to use

and intuitive. Especially older generations and people who do not use thermostats that

often should benefit from the simplicity of the concept.

The research questions asked in Section 1.3 are being answered below:

Is it possible to improve the general weather forecast by using measurements taken from

a weather station to form a localized prediction?

An ARX-model based localized weather forecasting scheme for ambient temperature

as well as solar irradiation has been proposed for smart homes. With the aid of this

scheme the ambient temperature can be predicted more accurately over the whole pre-

diction horizon. The short term predictions up to 3 hours are vastly improved and
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the long term predictions also offer an improvement compared to regular WFS. The

solar irradiation forecasting scheme offers a method to account for changing weather

conditions overnight. This allows the ARX-model to tune the parameters for the new

conditions without relying on measurements. The short term improvements offer more

accurate results. For the performance numbers of the improved forecasts, see the last

paragraph. The solar predictions can only be calculated till sundown, reducing the

sample size for the long term predictions. The smaller sample size also increases the

uncertainties when interpreting the results. Although the numeric results indicate an

improved RMSE for the long term irradiation predictions, further data should be col-

lected and investigated. Weather stations are already standard equipment in modern

smart homes. Those weather stations usually collect ambient temperature and solar

irradiation along with humidity. Furthermore, the smart home controllers are usually

able to connect to the Internet and send/receive data, allowing them to retrieve predic-

tions form WFS. This would enable modern smart homes to implement the presented

localized weather forecasting scheme with little to no additional costs for the end-user.

What are the formulations and benefits of a combined controller for building tempera-

ture control and electrical system management?

The presented MIQP-MPC controller offers various benefits compared to conventional

controllers used in smart homes. The MIQP-MPC guarantees the thermal comfort in

the smart home while also optimizing the monetary costs and smart grid consumed

energy. Due to the combination of the QP problem given by the thermal smart home

model and the MILP problem given by the electrical smart home model the MIQP-

MPC is able to do the comfort management as well as the electrical management. This

enables the MIQP-MPC to optimally shift electrical loads, including heating, to min-

imize costs or account for possible energy shortages. The combined controller is well

suited for demand side load constraints imposed on the smart home by smart grids as

demonstrated by the results. Furthermore, smart appliances have been implemented to

showcase the flexibility of the controller when scheduling loads. The thermal model also

enables the smart home to utilize the thermal capacity of the building. This enables

the usage of smaller residential battery systems. The performance results are given

by given closed-loop simulations and showcase the advantages and effectiveness of the

MIQP-MPC for the mentioned cases.

How does a model predictive controller for a smart home benefit from improved weather

forecasts or occupancy predictions?

The introduced localized weather forecasting method for generating improved ambient

temperature predictions and solar irradiation predictions offer significant advantages in

reducing the operating costs. In one example the localized weather forecast managed
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to achieve 82.35 % of the potential savings compared to traditional WFS. While the

more accurate predictions did not obtain a significant reduction of consumed energy,

they did reduce the temperature RMSE in the ’cost’ mode significantly. The occupancy

prediction method proposed in Section 4.2 is based on extracting statistical features of

smart home based sensors. The extracted features represent usual daily occupancy tra-

jectories. While the algorithm is self-learning and switches reliable between identified

occupancy trajectories, it is still limited by being solely based on sensors inside the

smart home. Thus, it can only react to unpredicted occupancy once the user enters the

smart home. A more sophisticated occupancy prediction method will improve the user

comfort, but it is questionable if further cost and energy savings can be achieved. In

the investigated cases the resident had a fairly regular schedule during most days which

was learned by the prediction algorithm and predicted accurately. During those days

the smart home controller was able to utilize the times without occupancy for energy

and cost saving purposes.
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