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Zusammenfassung

Es wird die inkompressible Strömung im Inneren eines geneigten, unterschiedlich beheizten qua-
dratischen Behälters untersucht. Zwei gegenüberliegende Behälterwände werden bei einer kon-
stanten und gleichmäßigen Temperatur beheizt, respektive gekühlt. Die übrigen Seitenwände
werden entweder als perfekt leitend oder adiabatisch modelliert. Der Behälter ist im zweidimen-
sionalen Raum so geneigt, dass eine Beheizung von unten einem Neigungswinkel von α = 0°
und eine Beheizung von oben einem Neigungswinkel von α = 180° entspricht.

Zunächst wird die stationäre Lösung der zweidimensionalen Strömung mit dem Neigungs-
winkel α ∈ [−180°, 180°] betrachtet. Wird die Flüssigkeit von unten beheizt, werden neben
dem klassischen bewegungslosen Zustand der Rayleigh-Bénard-Konvektion, auch andere sta-
tionäre Lösungen beobachtet. Diese Lösungen unterliegen unterschiedlichen Wirbelbildungen,
welche den Behälter ausfüllen. Sie sind durch Variationen des Neigungswinkels kontinuierlich
und nahtlos miteinander verbunden. Diese Zustandsvielfalt wird sowohl bei perfekt leitenden
als auch adiabatischen Seitenwänden aufgefunden. In beiden Fällen werden mehrere Zustände
mit einer ähnlichen Strömungstruktur beobachtet. Um einen Vergleich der verschiedeneren sta-
tionären Lösungen zu erreichen, wird der Wärmeübergang der heißen Wand als Funktion des
Neigungswinkels dargestellt.

Als nächstes wird die Stabilität der Strömung in einem Behälter mit perfekt leitenden
Seitenwänden untersucht. Die Strömung wird in eine zweidimensionale Grundströmung und eine
dreidimensionale Störungsströmung aufgeteilt. Mit Hilfe einer linearen Stabilitätsanalyse wird
die Störungsströmung durch einen Normalmodenansatz dargestellt. Dabei wird angenommen,
dass der Behälter in der dritten Dimension unendlich ausgedehnt ist. Es wird der Verlauf von
Parametern wie der kritischen Rayleigh-Zahl, der Wellenzahl und der Schwingungsfrequenz
in Abhängigkeit vom Neigunswinkel gezeigt. Die lineare Stabilitätsanalyse zeigt eine erhöhte
Stabilität, wenn das Fluid von oben beheizt wird, im Gegensatz zu einer Beheizung von unten.
Im ersten Fall zeigt eine Untersuchung der Änderungsrate der kinetischen Energie, dass die
Destabilisierung hauptsächlich auf den Strömungsimpuls und im zweiten Fall auf den Auftrieb
zurückzuführen ist.





Abstract

The incompressible flow inside an inclined differentially heated square cavity is investigated.
Two walls of the cavity opposite to each other are heated and cooled at a constant and uniform
temperature and the remainder lateral walls are modelled as either perfectly conducting or
adiabatic. The cavity is tilted in the two dimensional space such that an inclination angle of
α = 0° corresponds to a heating from below and α = 180° to a heating from above.

First, we consider the steady state solutions of the two dimensional flow for inclination angles
α ∈ [−180°, 180°]. Alongside the classical motionless state of Rayleigh–Bénard convection, other
steady states are found when the fluid is heated from below. These solutions, composed of a
different number of vortices filling the cavity, are smoothly connected with each other by varying
the cavity’s inclination angle. This observed state multiplicity is investigated for both perfectly
conducting and adiabatic lateral walls, with both cases delivering multiple states with a similar
flow structure. In order to compare the different steady states to each other, the heat transfer
of the hot wall is shown as a function of the inclination angle.

Second, the flow stability inside a cavity with perfectly conducting lateral walls is inves-
tigated. The flow is decomposed into a two dimensional basic flow and a three dimensional
perturbation flow. Using a linear stability analysis, the perturbation flow is represented by a
normal mode ansatz, assuming the cavity is infinitely extended in the third dimension. We
show the curve of parameters such as the critical Rayleigh number, wavenumber and mode
oscillation frequency as a function of the inclination angle. The linear stability analysis shows
an increased stability when the fluid is heated from above compared to a heating from below.
In the former case, a study of the growth of the kinetic energy reveals that the destabilisation
can be attributed mainly to inertia and in the latter case, to buoyancy.
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1
Introduction

1.1 Natural Convection

An example of natural convection is a flow which is the result of a temperature change from
an external heating or cooling source. Initially, a small temperature gradient leads to heat
conduction between the fluid molecules. As the temperature gradient increases, density changes
start to create a flow within the fluid, which is directed from the high density areas to the lower
density areas. In case of a heated or cooled fluid, the flow is directed from the hotter to the
cooler areas of the fluid. The term natural convection covers all flows due to density changes
within the fluid, including density changes due to a temperature gradient [31]. Thus, natural
convection can be induced by gravitational and mass forces that are acting on a fluid as well
as the presence of different phases with different densities within a fluid [31].

It is worth noting that natural convection includes only flows where the flow is not driven
by an external mechanical source. In the opposite case, such flows are classified as forced
convection flows [27]. Usually, buoyancy forces can be neglected in case of forced convection
within a fluid, since the flow is driven by other forces originating from an external source, such
as a pump. Other examples of forced convection include heating and cooling systems with a
ventilator.

Figure 1.1 shows a typical example of natural convection. A hot, cuboid object generates a
flow around it by heating the surrounding air which is driven upwards by the buoyancy force.

Figure 1.1 – Natural convection, air flow around a hot object.
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Once again, the density change of the air is responsible for the resulting flow. This is the
principle by which most conventional heaters operate.

1.2 Hydrodynamic Stability

Per definition, flow patterns that are unable to sustain themselves against small perturbations
are deemed unstable [9]. The term hydrodynamic stability covers the study of the stability and
instability of motions of fluids [13]. The starting point of studying the stability of a laminar
flow is a basic flow, which is defined by the steady or unsteady fields of velocity u0(x, t),
pressure p0(x, t), and temperature θ0(x, t) which need to satisfy the equations of motion and
the boundary conditions of the problem [14]. The basic flow is Liapunov-stable if for any ϵ > 0
there exists a number δ > 0 such that if

∥u(x, 0)− u0(x, 0)∥, ∥p(x, 0)− p0(x, 0)∥, ∥θ(x, 0)− θ0(x, 0)∥ < δ. (1.1)

then

∥u(x, t)− u0(x, t)∥, ∥p(x, t)− p0(x, t)∥, ∥θ(x, t)− θ0(x, t)∥ < ϵ, ∀t ≥ 0, (1.2)

where u(x, t), p(x, t) and θ(x, t) are the velocity, pressure and temperature fields that satisfy
the equations of motions and the boundary conditions. If we consider a two dimensional flow
with u(x, y) which is invariant in the z-axis, it is possible to determine the onset of instability
as of which the flow is no longer two dimensional by decomposing the flow velocity as

u(x, y, z, t) = u0(x, y) + u′(x, y, z, t), (1.3)

where u0 is a basic flow and u′ a three dimensional, time dependent perturbation. More-
over, the equations of motion can be linearised if we assume that u′ is sufficiently small, with
∥u′∥L2 << 1, where the L2 norm is computed using the following formula

∥x∥L2 =

��
Ω

|x|2 dΩ

� 1
2

, (1.4)

with Ω ∈ R2 denoting the domain space. Then, a normal mode ansatz can be introduced for
the perturbation such that

u′(x, y, z, t) =
�

û(x, y)eλt+ikz, (1.5)

where λ is the complex growth rate, k a wavenumber and û is determined from the linearised
system equations. The real part of λ defines if the system is either

• linearly asymptotically stable if ∀iℜ(λi) < 0 or,

• linearly stable if ∀iℜ(λi) ≤ 0 or

• linearly unstable if ∃iℜ(λi) > 0.

The same process can be repeated with the other flow variables, p and θ.
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Figure 1.2 – (a), (b) Pitchfork and (c), (d) saddle–node bifurcation with R = −0.5, 0, 0.5.

Instabilities lead often to bifurcations, which are defined as the branching of the solution from
a known solution branch to a new solution, which is continuously connected to the old solution
[28]. Let us consider the potential equation of

V (x) = −R
x2

2
+

x4

4
, (1.6)

where R is a control parameter. Figures 1.2a, 1.2b show the potential equation plotted at the
values of R = −0.5, 0, 0.5 on the left and the bifurcation plot on the right. For values of R < 0
we see a unique minimum at x = 0 and for R > 0, two minima exist. Thus, by increasing
the control parameter R, the solution branches into two solutions. This bifurcation is defined
as pitchfork bifurcation [28]. Other types of bifurcations are possible, such as the saddle–node
bifurcation in Figures 1.2c, 1.2d, which annihilates two solutions with a change of the control
parameter [28]. In this particular example the potential equation

V (x) = Rx− x3

3
, (1.7)

has two local extrema for R > 0 and one saddle point for R = 0, which is represented by the
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green point on the potential equation in Figure 1.2c. As for R < 0, there are no extrema and
therefore the bifurcation plot shows solutions only for R ≥ 0 as seen in Figure 1.2d.

A classical example flow where hydrodynamic stability has been studied extensively are
Rayleigh–Bénard flows. They serve as a prototype for studying instabilities induced by thermal
convection in related flows [14]. In such flows, the fluid is heated from below and causes a
horizontal density difference in the fluid, which induces a flow. One of the first studies in such
flows was conducted by Bénard [7], who experimentally discovered the formation of cells on
the surface of the fluid, now known as Bénard cells. As the initially resting fluid is heated
from below, the Bénard cells appear on its surface after convection starts in the fluid, which is
triggered after a certain temperature of the bottom boundary is surpassed. Figure 1.3 shows
an experiment from Koschmieder & Pallas [26] where the Bénard cells are visible under an air
surface. Later, Rayleigh [34] considered an initially resting fluid between two infinite planes
with a constant temperature and tried to determine analytically the temperature difference of
the plates as of which a flow could be induced. The control parameter of this problem, which
can be used to determine the stability boundary of the flow, is the Rayleigh number, which is
equal to

Ra =
L3βg∆T

vκ
, (1.8)

where L is the characteristic length scale of the flow, g the gravitational acceleration, ∆T
the temperature difference between the planes, ν the kinematic viscosity and κ the thermal
diffusivity. Rayleigh considered a steady two dimensional basic flow which is invariant in the
third direction. In case of two free boundaries, Rayleigh determined analytically that the onset
of instability occurs as of the critical value of

Rac =
27π

4
≈ 657.51. (1.9)

As of this number, the symmetry of the two dimensional flow is broken and the flow transcends
into a three dimensional flow. The critical wavenumber is given by

kc =
π√
2
≈ 2.221. (1.10)

Drazin [13] considered different boundary conditions for the infinite planes, which they modelled
either as free or rigid, and placed the critical Rayleigh number with two rigid boundaries at
Rac = 1708, with kc = 3.117. Rayleigh–Bénard flows can also be used to describe large scale
flows in the atmosphere, oceans, volcanoes or avalanches, due to the dependence of the Rayleigh
number on L3 [11].

1.3 Buoyancy Driven Flows in Cavities

Buoyancy driven flows are induced by a density difference within the fluid in a gravitational field
[11]. Previously, we covered Rayleigh–Bénard flows, where the flow is driven due to a horizontal
density difference which is caused by a heating from below. Many studies considered the effect
of side walls on the stability of Rayleigh–Bénard flows. Studies such as those of Charlson &
Sani [10] and Davis [12] showed how the side walls can affect the flow stability, with the former
considering a flow inside a cylinder and the later a flow inside rectangular boxes. Other studies
have considered enclosures with vertical heated walls. Unlike Rayleigh–Bénard flows, there are
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Figure 1.3 – Bénard cells under an air surface from Koschmieder & Pallas [26].

no resting states in this configuration [14]. Studies that investigated the flow stability in such
flows include Hart [20], Janssen & Henkes [25] and Gelfgat & Tanasawa [18] to mention a few.

Both aforementioned cases with horizontal or vertical heated walls are shown in Figure 1.4.
The cavities in the figure are assumed to be two dimensional and infinitely extended in the
third dimension. An experimental setup with this configuration can be realised by considering
the square cross section of a slab with a sufficiently larger length compared to the edge length
of the square. The flow is driven by the density difference which is caused by the temperature
gradient ∆T = TH−TC within the flow, since the density of the fluid decreases near the hot wall
and increases near the cold wall. This density difference results into a flow circulation within
the cavity. According to Chassignet et al. [11], a useful term to describe buoyancy driven flows
is the reduced gravity which is defined as

g′ = g
∆ρ

ρ
, (1.11)

where ∆ρ is the local density difference and ρ a representative density. The reduced gravity is
essentially the local acceleration of the flow which is caused by a local density difference. With
heating from below as in Figure 1.4a, other circulations are also possible, with more than one
roll and there is also a motionless state that is realisable. Other studies also investigated the
effect of an inclination in a two dimensional plane on the flow stability in differentially heated
cavities such as Hart [21] and Hiroyuki et al. [22]. The setup in Figure 1.4 is a simplified version
of the subject of this thesis in which the cavity is tilted in a two dimensional space, similarly
to the two aforementioned studies.
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(a)

TH

TC

g

(b)

TH TC

g

Figure 1.4 – Two differentially heated two dimensional square cavities with a buoyancy driven
flow, (a) with horizontal heated walls and (b) with vertical heated walls.

1.4 Flow State Multiplicity

The non-dimensional Navier–Stokes equations can be defined as

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u. (1.12)

The control parameter in this notation is the Reynolds number Re, which is defined as

Re =
uL

ν
, (1.13)

with u the characteristic flow velocity magnitude, L the characteristic scale length of the flow
and ν the kinematic flow viscosity. If Re → 0, (1.12) has a unique solution. However by
increasing the Reynolds number, multiple flow states can come into existence though saddle–
node bifurcations, in a similar manner as in Figure 1.2d.

In the present thesis, the state multiplicity comes into question for the Rayleigh–Bénard flow
inside the cavity as shown in Figure 1.4a, as well as inclinations where the hot wall remains on
the bottom. Identifying the different steady states was crucial to determine the flow stability, as
each state has different stability properties. Steady state multiplicities have also been confirmed
in similar convective flows. For instance, Gelfgat et al. [17] identified multiple steady states
during a flow stability study in cavities with different aspect ratios and vertical heated walls.
Similarly, Piller et al. [33] showed that the flow inside an inclined channel, which is heated
from one side, can have multiple steady states for the same inclination. Albensoeder et al. [2]
also determined multiple flow states in a two sided lid driven cavity. In this thesis, we use the
results of Huelsz & Rechtman [23] and Boullé et al. [8] to discuss the multiple steady states
that were discovered.



2
Theoretical Basics

2.1 The Inclined Differentially Heated Cavity

Figure 2.1 – Sketch of a differentially heated 2D cavity, with the temperatures TC and TH

for the cold and hot wall respectively. The cavity is rotated with the angle α.

We consider the case of a differentially heated cavity with a square cross section on the x-y
plane and is infinitely extended in the z direction. The origin of the coordinate system is placed
in the middle of the square cross section. The top and bottom walls at y = ±0.5, are cooled
and heated uniformly at a constant temperature of TC and TH respectively. The remaining
lateral vertical walls at x = ±0.5 are modelled as perfectly conducting throughout the majority
of this thesis, apart from Chapter 5, where they are modelled as adiabatic as well.

We also introduce an inclination angle α, which tilts the cavity in a two dimensional plane
as shown in Figure 2.1. The inclination angle α represents a positive rotation of the coordinate
system around the z-axis. The coordinate system can be transformed by taking the direction
of the rotation into consideration which results in the following rotation matrix

R(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 . (2.1)
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2.2 Equations of Fluid Dynamics

The Navier–Stokes equations for a Newtonian fluid, the heat equation and the continuity equa-
tion are defined as

ρ

�
∂

∂t
+ u · ∇

�
u = −∇p+ µ∆u+ f , (2.2a)

ρcp

�
∂

∂t
+ u · ∇

�
T = λ∆T, (2.2b)

∂ρ

∂t
+∇ · (ρu) = 0, (2.2c)

where ρ is the fluid density, t the time, u the flow velocity, p the pressure, µ the dynamic
viscosity and f an external forcing vector in (2.2a). In the heat equation in (2.2b), T is
the temperature, β the thermal expansion coefficient, g is the gravity acceleration, cp the
heat capacity and λ the Fourier coefficient. In order to model the buoyancy forces, we use the
Oberbeck–Boussinesq approximation by adapting the forcing vector f in (2.2a). The Oberbeck–
Boussinesq approximation ignores density differences that are not dependent on the gravity
acceleration g, such as differences caused by changes in pressure [29]. Despite this fact, the
Oberbeck–Boussinesq approximation is accurate in describing buoyancy driven flows, provided
that small temperature differences within the fluid are considered. Moreover, the approximation
is only valid if the resulting density differences in the fluid are negligible compared to the density
of the fluid. Since other density changes are ignored, the fluid is assumed to be incompressible
with ρ =const, which modifies the continuity equation in (2.2c). The resulting three equations
are

ρ

�
∂

∂t
+ u · ∇

�
u = −∇p+ µ∆u+ ρβTg, (2.3a)

ρcp

�
∂

∂t
+ u · ∇

�
T = λ∆T, (2.3b)

∇ · u = 0. (2.3c)

All equations in (2.3) can be non-dimensionalized by introducing the following non-dimensional
scales for the length, time, velocity, pressure and temperature

x = Lx∗, t =
L2

ν
t∗, u =

ν

L
u∗, p =

ρν2

L2
p∗, T = ∆T θ∗,

which transforms them to�
∂

∂t∗
+ u∗ · ∇∗

�
u∗ = −∇∗p∗ +∆∗u∗ +

Ra

Pr
θ∗eg, (2.4a)�

∂

∂t∗
+ u∗ · ∇∗

�
θ∗ =

1

Pr
∆∗θ∗, (2.4b)

∇∗ · u∗ = 0, (2.4c)
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where the dimensionless Rayleigh and Prandtl numbers are defined as

Ra =
L3βg∆T

vκ
, Pr =

ν

κ
, (2.5)

and κ = λ/ρcp is the thermal diffusivity. Since the fluid in cavity is always air in this thesis,
we can fix the Prandtl number to Pr = 0.71. For the sake of readability, the asterisk * symbol
will not be used as of this point when the equations in (2.4) are referenced. Thus, all resulting
equations from (2.4) are non-dimensional. The rotation of the coordinate system is applied to
the governing equations by multiplying the rotation matrix with the unit gravity acceleration
vector e0 in order to obtain

eg = R(α) · e0 =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 ·
 0
−1
0

 =

 sin(α)
− cos(α)

0

 . (2.6)

2.3 Boundary Conditions

The temperatures on the hot and cold walls are:

θ(x, y = −0.5) = θH = 0.5,

θ(x, y = 0.5) = θC = −0.5.
(2.7)

In case the lateral walls are perfectly conducting, the lateral wall temperature decreases linearly
from θH to θC with

θ(x = ±0.5, y) = −y. (2.8)

With adiabatic lateral walls, the heat exchange between the fluid and the surrounding environ-
ment is fixed to zero, such that

∇θ · n = 0, (2.9)

where n is an outward unit normal vector to the lateral walls. The velocity on all walls is
modelled with a no-slip boundary condition and is zero on the whole domain at the start of
each simulation

u(x, y = ±0.5) = 0, u(t = 0) = 0. (2.10)

2.4 Basic Flow

The variables of the flow velocity u, pressure p and temperature θ are combined into a single
flow variable q = (u, θ, p)T . We define the basic flow as q0 = (u0, θ0, p0)

T such that it satisfies
the governing equations in the x-y plane without the time dependent terms in (2.4), as well
as the boundary conditions in Section 2.3. Moreover, we assume that the basic flow is time
independent and two dimensional with q0 = q0(x, y).

2.5 Linear Stability

Next, q can be decomposed into the basic flow, q0(x, y) and an infinitesimal three dimensional,
time dependent perturbation flow q′(x, y, z, t), with ∥q′∥L2 ≪ 1 such that

q(x, y, z, t) = q0(x, y) + q′(x, y, z, t). (2.11)
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Due to homogeneity of the problem in the z-axis and time, a normal mode ansatz can be applied
in the z direction. This leads to

q′(x, y, z, t) =
�

q̂i(x, y)e
λt+ikz + c.c., (2.12)

where q̂i ∈ C represents the complex modes, λ ∈ C the complex growth rates, k ∈ R the
wavenumber and c.c. is a complex conjugate of the leading sum term on the right hand side,
which is added in order to force a real solution for q′. Consequently, the wavenumber is an
additional parameter to the problem. The complex growth rates λ can be written as λ = σ+iω,
where σ is the growth rate of the mode and ω its oscillation frequency. Any mode with σ > 0
represents an unstable mode with a growing perturbation and modes with σ < 0 represent
stable modes where the perturbation diminishes over time.

2.6 Dynamical System Formulation

It is beneficial to express (2.4) with a dynamical system formulation to simplify the equations.
Leaving only the time dependent terms on the left hand side, and by using the flow vector q
which was defined in the previous section, we obtain the following system of equations

∂

∂t
B · q = F (q). (2.13)

F (q) contains all the remaining time independent terms in the right hand side and is defined
as

F (q) =


−u · ∇u−∇p+∆u+

Ra

Pr
θeg

−u · ∇T +
1

Pr
∆θ

∇ · u

 . (2.14)

B is a symmetric matrix operator that matches the time dependent terms of each equation with
the rows of (2.14) and is equal to

B =


1 0 0 0 0

1 0 0 0
1 0 0

1 0
0

 . (2.15)

The basic flow is the steady state solution of the system in (2.13) when q = q0 which can be
expressed by

F (q0) = 0. (2.16)

Inserting the above decomposition of q = q0 + q′ in (2.13) and applying a Taylor expansion in
F (q0 + q′) results in

∂

∂t
B · q′ = F (q0 + q′)

= F (q0) +
∂F (q0)

∂q0

· q′ +O(∥q′∥2L2)

= F (q0)� �� �
=0

+Ap(q0) · q′ +O(∥q′∥2L2).
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F (q0) vanishes as a consequence of (2.16) and Ap(q0)·q′ is obtained by linearising the equations
in (2.4)

Ap(q0) · q′ =


�

∂

∂t
+ u0 · ∇

�
u′ + u′ · ∇u0 −∇p′ +∆u′ +

Ra

Pr
θ′eg�

∂

∂t
+ u0 · ∇

�
θ′ − u′ · ∇θ0 +

1

Pr
∆θ′

∇ · u′

 . (2.17)

All higher order terms in O(∥q′∥2L2) can be neglected due to ∥q′∥L2 ≪ 1 which leads to a
linearised problem with

∂

∂t
B · q′ = Ap(q0) · q′. (2.18)

Applying the normal mode ansatz from (2.12) to q′ leads to the generalized eigenvalue problem
of

λB · q̂i = A(q0) · q̂i, (2.19)

whereA(q0) is a complex matrix due to the complex ansatz in (2.12). In conclusion, the problem
is decomposed into two systems of equations. First, the solution of the basic flow equation
in (2.16) enables obtaining the basic flow q0 and second, solving the eigenvalue problem in
(2.19) delivers the eigenmodes q̂i. We are interested in obtaining the neutral eigenmodes with
σ = 0, where the perturbation neither grows nor decays. The conventional way to achieve
this, is to solve the eigenvalue problem for different values of the Rayleigh number and the
wavenumber until the neutral modes with the neutral values of the Rayleigh number RaN have
been determined. From a numerical point of view, the eigenvalue problem in (2.19) is the
most expensive operation between the two systems of equations and if treated conventionally,
it has to be solved for multiple values of the Rayleigh number and the wavenumber which is
inefficient. Moreover, we are interested in obtaining the minimum neutral Rayleigh number for
each inclination angle depending the wavenumber, which further increases the computational
effort. The numerical solution of these two systems of equations is the main topic of Chapter
3.

2.7 A Posteriori Energy Analysis

In order to have an insight into the instability mechanism, it is beneficial to examine the energy
transfer between the basic state and the perturbation. The perturbation kinetic energy can be
defined as

E ′ =
1

2

�
V

u′2 dV, (2.20)

where V is the volume occupied by the fluid, defined by the square cross section of the cavity
and one wavelength in the z direction measuring zk = 2π/k. We are interested in investigating
the rate of change of E ′ which is given by the Orr–Reynolds equation as

∂tE
′ = ∂t

�
1

2

�
V

u′2 dV



=

�
V

u′ · ∂tu′ dV. (2.21)

Neutral states, where the flow crosses from a stable to an unstable state are characterised by
∂tE

′ = 0 over one period of wavelength due to periodicity. The term ∂tu
′ can be equated to
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the first row of the linearised equations in (2.17) such that

−
�
V

u′ · (u′ · ∇)u0 dV +

�
V

Ra

Pr
T ′ u′ · eg dV +

�
V

u′ ·∆u′ dV = 0. (2.22)

The dissipative term can be further simplified to

D =

�
V

u′ ·∆u′ dV =

�
V

∇u′ : ∇u′ dV, (2.23)

through integration by parts. Consequently, (2.22) can be rewritten as

It +Bt −D = 0, (2.24)

where It is the inertial production term, Bt the buoyancy production term andD the dissipation
term. Finally, since D > 0 the equation above can be normalised such that

I +B = 1, I =
It
D
, B =

Bt

D
. (2.25)

As such, I is the normalised inertia production term and B is the normalised buoyancy term
and are defined as

I = − 1

D

�
V

u′ · (u′ · ∇)u0 dV, (2.26)

B =
1

D

�
V

Ra

Pr
T ′ u′ · eg dV. (2.27)

The instability mechanism can be identified by comparing these two parameters with each
other. If I > B, then the instability is driven by the inertial forces and on the contrary, if
I < B, by the buoyancy. The inertial production term can be further decomposed into four
components as done in [3] with

I1 = − 1

D

�
V

u′
⊥ · (u′

⊥ · ∇)u0 dV, (2.28)

I2 = − 1

D

�
V

u′
∥ · (u′

⊥ · ∇)u0 dV, (2.29)

I3 = − 1

D

�
V

u′
⊥ · (u′

∥ · ∇)u0 dV, (2.30)

I4 = − 1

D

�
V

u′
∥ · (u′

∥ · ∇)u0 dV, (2.31)

in which the perturbation velocity u′ is decomposed into a component tangential and perpen-
dicular to the basic flow velocity u0 with

u′
∥ =

(u0 · u′)u0

∥uo∥ , and u′
⊥ = u′ − u′

∥. (2.32)

The summation of the components Ii is equal to I itself with

I =
4�

i=1

Ii. (2.33)

This decomposition is useful in identifying whether the inertial production is due to lift up
with I2 ̸= 0 or a flow deceleration if I4 ̸= 0. The contribution of I and B to the instability
mechanism will be discussed in detail in Chapter 6 below.



3
Numerical Methods

In this chapter, the numerical methods that were used in this thesis will be presented. The
code for all numerical methods in this thesis was written in Python 3. With the exception of
the neutral curve tracking method in Section 3.10, all methods in this chapter were already
implemented in the house code that was used during this thesis.

3.1 Weak Formulation

First, we start by introducting the weak or variational form of the governing equations in (2.4),
since this formulation is required by the numerical methods that were used in this thesis. A
partial differential equation (PDE) written in a weak formulation is mathematically equivalent
to its strong form and thus solutions derived from either form are also equivalent to each other
[32]. PDEs written in a strong formulation have continuity and differentiability requirements
imposed on their solutions. The weak formulation does not impose such requirements on the
solution, but instead imposes them on approximation functions, also known as test functions.
Therefore, the advantage of using a weak form lies with the test functions, because they are
generally lesser degree polynomials, which lower the computational effort. In order to derive
the weak form of (2.4), the equations are multiplied by the test functions uV , θV , qV and sub-
sequently integrated over the domain space Ω ∈ R2. Moreover, they inherit the boundary
conditions of their respective variables. Adding all equations leads to�

Ω

�
∂u

∂t
+ u · ∇u

�
· uV dΩ +

�
Ω

∇p · uV dΩ−
�
Ω

∆u · uV dΩ− Ra

Pr

�
Ω

θeg · uV dΩ

+

�
Ω

θV

�
∂θ

∂t
+ u · ∇θ

�
dΩ− 1

Pr

�
Ω

θV∆θ dΩ

+

�
Ω

(∇ · u)qV dΩ = 0.

(3.1)

One then integrates by parts the pressure term, dissipative term and the Laplacian of the
temperature to obtain�

Ω

∇p · uV dΩ =

�
Ω

p∇ · uV dΩ−
�
Γ

p uV · n dΓ� �� �
=0

,
(3.2a)

�
Ω

∆u · uV dΩ =

�
Ω

∇u : ∇uV dΩ−
�
Γ

∇u (uV · n)� �� �
=0

dΓ, (3.2b)
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�
Ω

θV∆θ dΩ =

�
Ω

∇θ · ∇θV dΩ−
�
Γ

(∇θ · n)θV dΓ� �� �
=0

,
(3.2c)

where Γ = ∂Ω is the domain space on the boundaries. The above integration by parts leads
to the derivation of the known test functions, while also lowering the derivative order of the
unknown variables. Moreover, the first two boundary terms in (3.2a) and (3.2b) are trivial due
to the Dirichlet boundary conditions that are imposed on the velocity on uV . In (3.2c), the test
function θV is trivial on the boundary if the lateral walls are adiabatic. If we consider perfectly
conducting lateral walls, the term ∇θ ·n becomes trivial instead. Finally, the above terms can
be reinserted in (3.1) to obtain�

Ω

�
∂u

∂t
+ u · ∇u

�
· uV dΩ +

�
Ω

p∇ · uV dΩ−
�
Ω

∇u : ∇uV dΩ− Ra

Pr

�
Ω

θuV · eg dΩ

+

�
Ω

θV

�
∂θ

∂t
+ u · ∇θ

�
dΩ− 1

Pr

�
Ω

∇θ · ∇θV dΩ

+

�
Ω

(∇ · u)qV dΩ = 0.

(3.3)

3.2 Python Packages

Before we discuss the exact numerical methods that were used in this thesis, this section briefly
describes the most important Python packages that were employed in the coding process.

FEniCS is the main package employed in the code. It is written in Python and C++ that
enables the translation of scientific problems into finite element code [4]. In the scope of this
thesis, it is used for computing the basic flow and to compute any derivatives in tasks such as
the computation of the energy budget. FEniCS is able to solve partial differential equations
(PDE) written in their variational form, such as the non-linear system equation in (3.3).

scipy contains a multitude of algorithms in the areas of optimization, integration, inter-
polation and others [36]. The main purpose of scipy in the code is to solve the eigenvalue
problem in (2.19), using its builtin eigs function.

numpy offers a range of tools such as handling of large multidimensional arrays and useful
mathematical functions [19]. It is mainly used in the code for the purpose of indexing and
sorting data in arrays, as well as for polynomial fitting in tracking the minimum of the neutral
curve in Section 3.10.

matplotlib provides an array of functions for visualizing data using Python [24]. The
majority of the plots in this thesis were created with the help of this library.

3.3 Discretisation

Using the FEniCS library, the velocity and the pressure are discretised using quadratic Taylor-
Hood elements P2, for the velocity and linear P1 elements for the pressure. This is done in
order to satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) condition [15]. The temperature
is discretised using continuous piecewise quadratic polynomials. Since only steady states are
considered, time is not discretised. The mesh is also generated with FEniCS, initially with
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Figure 3.1 – Cavity mesh with 6136 triangular elements, refined on the boundaries.

30 triangular elements on each side of the cavity. Three further refinements occur at a 0.05,
0.01 and 0.005 distance from the walls, which results in a mesh with 6136 elements. The two
dimensional mesh is shown in Figure 3.1 below.

3.4 Basic Flow

The basic flow is obtained mathematically using Equation (2.16). The non linear problem is
solved using Newton’s method with the solve function of FEniCS. A single iteration step of
Newton’s method for this particular equation can be written as

∇F (qn
0 ) ·∆q0 = −F (qn

0 ), (3.4a)

qn+1
0 = qn

0 +∆qn
0 , (3.4b)

where qn
0 is the basic flow on a specific iteration iteration step n and ∇F (qn

0 ) the Jacobian of
F evaluated at qn

0 . On each iteration step, ∆qn
0 is computed by solving the linear system in

(3.4). The algorithm requires an initial guess for qn
0 and continues iterating until convergence

within a given tolerance has been achieved. The absolute or relative norm of the increment are
required to be lower than a tolerance ϵ = 10−7 such that

∥∆qn
0 ∥L2 < ϵ ∨ ∥∆qn

0 ∥L2

∥∆q0
0∥L2

< ϵ. (3.5)

The chosen solver for Newton’s method is MUMPS which stands for Multifrontal Massively
Parallel Solver. Its starting point is a general matrix inversion problem Ax = b. The matrix
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that needs to be inverted, A, can be decomposed into a product of a lower triangular matrix
L and an upper triangular matrix U such that

A = L · U . (3.6)

This decomposition reduces the computational effort due to the shape of L and U and is
executed once every iteration step. The reader can refer to [5] for more information.

3.5 Eigenvalue Problem

The aim of solving the eigenvalue problem in (2.19) is to obtain the most dangerous mode,
which is identified by its eigenvalue λ with the largest real part σ = ℜ(λ). We are interested
to vary the parameters of the problem such that we obtain σ = 0 for the most dangerous
mode. Due to the large parameter space, solving the eigenvalue problem for every variation of
our parameter space, which is defined by the Rayleigh number Ra, the wavenumber k and the
inclination angle α, would be an expensive computational endeavour. As such, the eigenvalue
problem and the basic flow need to be solved only once which delivers an initial guess for the
basic flow q0 and the eigenmodes q̂i. This initial guess is utilised by the continuation method,
which varies the problem’s parameters to locate the neutral states, as described in Section
3.8 below. The eigenvalue problem is solved using scipy’s eigs function. When solving the
eigenvalue problem in (2.19), it is not necessary to compute all eigenvalues and eigenmodes.
Instead, the algorithm in eigs is executed until the largest nλ eigenvalues and eigenmodes have
converged, where nλ is user determined and is set to 150 in the scope of this thesis. Solving
(2.19) delivers the eigenvalue spectrum around (ℜ(λ)=0, ℑ(λ)=0).

However, eigs is based on ARPACK’s shift and invert spectral transformation mode which
improves convergence around a specific portion of the spectrum [30]. This can be beneficial
if we wish to obtain oscillatory modes with ℜ(λ) ≈ 0 and ℑ(λ) ̸= 0, as the eigenvalues of
these modes can be missed by the algorithm without shifting the spectrum. Applying the
transformation on (2.19) expands it to

(A(q0)− σλB)−1B · q̂i = q̂ivλ. (3.7)

σλ is user defined number that shifts the eigenvalue spectrum and is usually sufficient to set it
to 104 in the scope of this thesis. The transformed eigenvalues vλ are defined as

vλ =
1

λ− σλ

. (3.8)

Once computed, the eigenvalues vλ can be used to find the actual eigenvalues of the problem λ
through (3.8).

Even if we consider the transformed eigenvalue problem, it still represents an expensive
computational operation. It cannot be solved by a simple matrix inversion, because matrices
such as A(q0) are too large to be inverted directly. The size of A(q0) depends on the number
of unknown variables on every mesh element. With the chosen mesh in Figure 3.1, this results
in a 56481×56481 sized matrix. In order to remedy this, eigs uses an IRAM algorithm, which
stands for Implicit Restarted Arnoldi Method. The simple Arnoldi method itself belongs to the
Krylov subspace methods [6]. The method uses an arbitrary initial vector b and then computes
the products in a Krylov space which is defined as

Kn = [b,A · b,A2 · b, ...,An−1 · b]. (3.9)
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START q1 =
b

∥b∥L2

v = Aqi
hjn = q∗

jv

v = v − hjnqj

j = 1, 2, ..., i

j = m

FALSE

TRUE

hi+1,i = ∥v∥L2

qi+1 =
v

hi+1,i

i = m
TRUE

FALSE

END

j = j + 1

i = i+ 1

i = 1, 2, ...,m

Figure 3.2 – Arnoldi method block diagram.

The largest matrix of the eigenvalue problem A(q0) can be decomposed into a product of three
matrices such that

A = Q · H · Q∗, (3.10)

where Q is a unitary matrix and H an upper Hessenberg matrix. The matrices Q, H and A
are equally sized with m ×m elements and in our case m = 56481. In order to obtain Q and
H, the algorithm follows the steps in the block diagram in Figure 3.2. The algorithm first uses
an arbitrary vector b and then proceeds to obtain first the elements of H and then Q. The
most expensive operation is the multiplication step of v = A · qi, because of the size of A.

IRAM uses a similar algorithm, with the difference that an additional transformation step is
applied to H. First, a real shift µ is applied on H and then the resulting matrix is decomposed
into a product of an upper Hessenberg matrix QH and an upper triangular matrix RH using a
QR algorithm such that

H− µI = QH · RH . (3.11)

The transformed matrix can then be reinserted in the Arnoldi iteration which does not have to
be restarted from scratch, since A and qi remain the same as before. More information about
IRAM and the shift and invert method can be found in [30].

3.6 Spectral Element Solver: NEK5000

In order to verify the results of the basic flow in Chapter 5, a spectral element software was
used. NEK5000 is capable of solving large scale time dependent flow problems using high order
polynomials [16]. A third-order BDF-EXT scheme, which stands for backwards differentiation
formulae with a time extrapolation scheme, is used for time intergration. The spatial integration
is achieved using tenth order piecewise polynomials defined with the Gauss–Legendre–Lobatto
points on a 20× 20 mesh.
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3.7 Arc Length Continuation for the Basic Flow

Directly solving the basic flow equations in (2.16) with Newton’s method as describe in 3.4,
does not provide all possible steady state solutions when the fluid is heated from below. This
is due to a state multiplicity which is realisable with an inclination angle α < |∆α|, where
∆α ∈ [0°, 25°] is the angle span where a state multiplicity was observed in the present results.
The exact value of ∆α is dependent on the Rayleigh number and the boundary condition of
the lateral walls and will be discussed in Chapter 5. In order to acquire the multiple steady
states within this angle interval, we use the arc length continuation method for the basic flow
which tracks only one basic flow solution by varying the inclination angle and starting from a
computed guess, which is determined using a pseudo arc length. The present method is based
on the Pseudo Arc Length Method in LOCA (Library Of Continuation Algorithms) which is
described in [section 2.1.2 of 35]. We define the generalised arc length equation of the basic
flow q0 and the inclination angle α as

l(q0, α) = c1∥qn
0 − qn−1

0 ∥2L2 + c2|αn − αn−1|2, (3.12)

where the superscript n denotes the iteration step and c1, c2 are coefficients that apply weight
to either q0 or α.

Figure 3.3 demonstrates how the method works. The algorithm starts with the initial pa-
rameters (qn−1

0 , αn−1) and proceeds to predict new guesses (qj+1
0 , αj+1) using Newton’s method

until the solution has converged at the final result of (qn
0 , α

n). Provided that c1 = c2, the final
result should lie on a circle with its origin at (qn−1

0 , αn−1) and a radius of 1, due to the arc
length equation in (3.12). If c1 ̸= c2, the circle becomes an ellipse, which could be beneficial if
the user wants to apply more weight on either q0 or α. Usually better convergence is achieved if
c1 ̸= c2, c1 > c2 and when changes of q0 between two iterations remain small, which is possibly
traced back to the scaling of the basic flow equations. If we combine the basic flow equation in
(2.16) with the arc length equation in (3.12), this leads to the following system of equations�

F (q0, α)

l(q0, α)− 1

�
= 0, (3.13)

which can be solved with Newton’s method to form the algorithm
∂F (q0, α)

∂q

∂F (q0, α)

∂α
∂l(q0, α)

∂q

∂l(q0, α)

∂α

 ·

∆q0

∆α

 = −

 F (q0, α))

l(q0, α)− 1

 . (3.14)

In the first iteration, an initial increment for ∆α0 is defined by the user. With this increment,
the first row of equations in (3.14), which represent a non linear problem, are solved using
Newton’s method. During each iteration step of the Newton method j, new increments ∆qj

0

and ∆αj are used to compute two new approximations for the basic flow, qj+1
0 and the angle

αj+1 as
qj+1
0 = qj

0 + r∆qj
0, (3.15a)

αj+1 = αj + r∆αj, (3.15b)

where r ∈ [0, 1] is a relaxation factor. The process continues until either of the following
conditions for the increments or the residuals have been met

∥∆qj
0∥L2 + |∆αj| < ϵinc ∨ ∥∇F (qj

0)∥L2 + |l(qj
0, α

j)| < ϵres, (3.16)
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Figure 3.3 – Continuation method for the basic flow. The black curve represents the tracked
basic flow solution and the circle represents the arc length equation l(q0, α) in (3.14), with
c1, c2 = 1.

with ϵinc = 10−7 and ϵres = 10−6. Next, starting from the last computed result of (qn
0 , α

n), the
second row of equations in (3.14) is evaluated and the new increments ∆qn+1

0 and ∆αn+1 are
used to obtain two new approximations qn+1

0 , αn+1. The new approximations are then used to
restart the algorithm by solving the non linear problem in the first row of (3.14). The process
repeats itself until a user defined threshold for the angle has been reached.

This method is numerically stable for most cases, but convergence is not always possible,
particularly when two solutions with ∥q1

0 − q2
0∥L2 ≪ 1 and |α1 −α2| ≪ 1 are possible. In order

to enable convergence in such cases, we can adjust c1 and c2 in (3.12) by increasing them up
to 10%. Should that prove insufficient, the method can be restarted by recomputing the basic
flow or from a previously computed basic flow.

3.8 Continuation Method for Neutral Curve Tracking

The continuation method in this section is the main building block of the inhouse code where
the linear stability problem is solved. It enables the tracking of the neutral curve of a mode
with a variation of one of the problem’s parameters. Computing repeatedly the eigenmodes
and the basic flow by varying one parameter each time is a very expensive numerical process.
However, the continuation method varies one of the problem’s parameters in a system which
can be solved using Newton’s method, without the need of solving the eigenvalue problem. As
such, the computational effort is reduced significantly. The method presented here is based
on LOCA’s user guide, specifically the Hopf Point Tracking Algorithm [section 2.1.2 of 35].
The method requires that the eigenvalue problem in (2.19) is solved at least once, in order
to obtain a guess for the eigenmodes. These eigenmodes are complex, with q̂i = q̂R + iq̂I ,
where q̂R, q̂I ∈ R denote their real and imaginary part respectively. Similarly, inserting the
normal mode ansatz of the perturbation in (2.12) in the linearized equations in (2.17) leads to
a complex matrix: A(q0) = AR + iAI . Inserting these notations in (2.19) and equating both
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real and imaginary parts to zero leads to

AR · q̂R −AI · q̂I + ωB · q̂I − σB · q̂R = 0, (3.17a)

AI · q̂R +AR · q̂I − ωB · q̂R − σB · q̂I = 0. (3.17b)

Next, in order to investigate the stability of the problem we enforce σ = 0 such that the real
part of the eigenvalue is always 0. As a result, any solution will be automatically a neutral
state. For example, if the varying parameter is the Rayleigh number, then the continuation
method would output a neutral value RaN . This modifies the equations in (3.17) to

AR · q̂R −AI · q̂I + ωB · q̂I = 0, (3.18a)

AI · q̂R +AR · q̂I − ωB · q̂R = 0. (3.18b)

Therefore, the original eigenvalue problem is split into a system of equations with two unknowns,
q̂R and q̂I . The summarized algorithm reads

JC ·∆x = C. (3.19)

∆x contains the increments with which every unknown variable is incremented after each
iteration and is defined as �

∆q0, ∆q̂R, ∆q̂I , ∆ω, ∆P
�T

. (3.20)

The five unknowns are the basic flow q0, the real and imaginary parts of the eigenmode q̂R

and q̂I , the oscillatory frequency ω and P , which denotes the parameter we wish to vary. As
of this point, since the Rayleigh number is the parameter of interest, let P = Ra. C includes
the following components and residuals

C =



F (q0)

AR · q̂R −AI · q̂I + ωB · q̂I

AI · q̂R +AR · q̂I − ωB · q̂R�
Ω

q̂R dΩ− 1�
Ω

q̂I dΩ


. (3.21)

The first row contains the basic flow equations, whereas the second and third rows originate
from (3.18). The last two rows are scaling conditions for the eigenmodes, where we enforce that
the integral of the real part of the eigenmode is one and the imaginary part zero. Finally, JC
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is the Jacobian of C and is defined as

∂F (q0)

∂q
0 0 0

∂F (q0)

∂Ra
∂AR

∂q
· q̂R − ∂AI

∂q
· q̂I AR −AI + ωB B · q̂I

∂AR

∂Ra
· q̂R − ∂AI

∂Ra
· q̂I + ω

∂B
∂Ra

· q̂I

∂AR

∂q
· q̂R +

∂AI

∂q
· q̂I AI − ωB AR −B · q̂R

∂AI

∂Ra
· q̂R +

∂AR

∂Ra
· q̂I − ω

∂B
∂Ra

· q̂R

0 q̂R 0 0 0

0 0 q̂I 0 0


.

(3.22)
The inversion of JC is the most expensive step in this algorithm and is achieved through
Gaussian elimination. After one iteration, the increments in ∆x are applied to every variable
such that

xn+1 = xn + r∆x, (3.23)

with n denoting the current iteration step and r ∈ [0, 1] a relaxation factor. The new variables
in xn+1 are then used to rebuild C and JC and the process repeats itself until convergence has
been achieved. The main convergence requirement for this method is a starting point which lies
in close proximity to the neutral curve. Convergence is achieved when either of the following
conditions has been met

∥∆qn
0 ∥L2 + ∥∆q̂n

R∥L2 + ∥∆q̂I∥L2 + |∆ω|+ |∆Ra| < ϵinc ∨, (3.24a)

An
Rq̂

n
R −An

I · q̂n
I + ωnB · q̂n

I − σnB · q̂n
R

An
R · q̂n

R −An
I · q̂n

I + ωnB · q̂n
I

< ϵres ∨, (3.24b)

An
I · q̂n

R +An
R · q̂n

I − ωnB · q̂n
R − σnB · q̂n

I

An
I · q̂n

R +An
R · q̂n

I − ωnB · q̂n
R

< ϵres ∨, (3.24c)

F (qn
0 ) < ϵres, (3.24d)

with ϵinc = ϵres = 10−5.

3.9 Coarse Eigenvalue Study

In order to get a good approximation for the eigenmodes with which the continuation method in
Section 3.8 can be initiated, a coarse study of the eigenvalues was conducted beforehand. The
chosen parameter space for angles with α < 90°, the Rayleigh number and the wavenumber is
shown in Table 3.1, where the minimum, maximum and interval points for each parameter are
shown. The eigenvalue problem was solved for every possible combination of these parameters,
which is equivalent to 2850 times.

The parameter space for α > 90°, shown in Table 3.2, was chosen differently because the
critical modes are located at higher Rayleigh numbers as well as wavenumbers. Moreover,
the eigenvalue problem was not solved for all combinations of the parameter space, because
otherwise this would have been a very expensive computational effort due to the size of the
parameter space. Instead, the study is initiated at a specific angle and a Rayleigh number
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Figure 3.4 – Coarse eigenvalue study, α = −35°. Two different neutral modes can be identified
which are represented by the black, red and green curves with Ra as a function of k. The
background color shows the magnitude of ω of the eigenvalue with the largest real part.

Parameter Minimum Maximum Interval Points
α 0° 80° 10
Ra 105 2× 106 19
k 1 15 15

Table 3.1 – Parameter space for the coarse eigenvalue study, α < 90°.

Parameter Minimum Maximum Interval Points
α −70° −10° 20
Ra 106 108 20-40
k 10 50 20-30

Table 3.2 – Parameter space for the coarse eigenvalue study, α > 90°. The interval points for
Ra and k are shown in a range because a different number of points was chosen for each angle.

and we proceed solving the eigenvalue problem for every wavenumber in a given interval. The
process is then repeated for the same angle by raising the Rayleigh number. Once the critical or
other neutral modes of interest are located the study is halted and is re-initiated at a different
angle.

Figure 3.4 shows an example plot of the coarse eigenvalue study for α = 125° with two
neutral modes. Due to the background color, which shows the magnitude of the oscillation
frequency |ω| of the eigenvalue with the largest real part, we can identify that the red mode is
oscillatory and the black mode stationary. For this particular angle, the black mode is also the
critical mode because its minimum at k ≈ 26 has a lower Rayleigh number than the red mode
with a minimum at k ≈ 21.
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3.10 Neutral Curve Tracking

The neutral curve of a mode is approximated by the collection of points in a parameter space
where σ = 0. The neutral Rayleigh values RaN , which are obtained with the continuation
method, are evaluated for specific wavenumbers and angles of inclination. However, since the
neutral curves of the Rayleigh number are dependent on both the wavenumber and the angle,
the neutral curve must be determined using two separate steps. In the code, these steps are split
into an inner and an outer loop. Figure 3.5 shows the complete block diagram for the method,
where both code loops are visualized within the blue and green blocks and their functionality
will be described in the following sections.

3.10.1 Inner Loop: Ra over k

The inner loop searches for the lowest neutral Rayleigh number RaNm with a variation of the
wavenumber k. If initialised without any previously computed neutral points, it requires an
initial guess (k0,RaN,0) with a computed basic flow, eigenvalues and eigenmodes. Three initial
points are obtained using the continuation method with an increment ∆k ∈ [0.01, 0.1] such
that ki+1 = ki +∆k, with i ∈ [0, 1]. These points are then inserted into a polynomial fitting
function which predicts a minimum (km,RaNm) using 2nd order polynomials. After more than
four points have been computed, 3rd order polynomials are used for a higher accuracy. The
polynomial fitting is achieved using numpy’s polyfit function. The inner loop is completed

Figure 3.5 – Neutral curve tracking block diagram. The inner loop contains the continuation
method from Section 3.8 and the outer loop the extrapolation process in (3.26), denoted by
fcont and fext respectively.
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Figure 3.6 – Neutral curve tracking: inner loop, α = 90°. Blue crosses indicate previously
computed neutral points and the red dot the predicted minimum. The arrow shows how the
algorithm obtains new critical points in the direction of the predicted minimum.

once convergence for km has been achieved, which occurs when the relative tolerance

ϵk =
km,i+1 − km,i

km,i

< 10−6. (3.25)

The last computed minimum is the lowest neutral point for one specific angle αn. Furthermore,
if there are no other modes with Rayleigh numbers below this point, it is also a critical Rayleigh
number at the angle αn.

Figure 3.6 shows the process of the minimum tracking. The blue crosses represent the
computed neutral points which were computed using the continuation method for Hopf bifur-
cations. The green curve is the polynomial fit of these points and the red point is the predicted
minimum (km,RaNm). The function proceeds in incrementing k towards the position of the
predicted minimum, as indicated by the arrow. In the process, new points are obtained, by
progressively approaching the actual minimum. Furthermore, the predicted minimum is also
updated using all previously computed points, with more weight on the last computed mini-
mum.

3.10.2 Outer Loop: Ra over α

The outer loop searches for the neutral Rayleigh numbers RaN with a variation of the inclination
angle α. If no previous minimum neutral points for at least two angles have been computed, the
outer loop uses an increment ∆α ∈ [0.05, 0.5] such that αn+1 = αn +∆αn. The algorithm then
enters the inner loop and also obtains km,n+1 and RaNm,n+1. Two initial points are required to
start the extrapolation process in the outer loop. Afterwards, an extrapolation function is used
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to predict the minimum of the next angle. The extrapolation function computes the distance
du between the first computed minimum (α0, km,0,RaNm,0) and the last computed minimum
(αM , km,M ,RaNm,M), with M denoting the total amount of points. The norm of this distance du
is used to predict the next point along a polynomial, which is derived from the aforementioned
computed minima using numpy’s polyfit function. The predicted point (αg

n+1, k
g
n+1,Ra

g
N,n+1)

is determined by the following algorithm

(∆αn,∆km,n,∆RaNm,n) = P

�
1 +

du
M − 1

�
, (3.26a)

(αg
n+1, k

g
n+1,Ra

g
N,n+1) = (αn, km,n,RaNm,n) + (∆αn,∆km,n,∆RaNm,n), (3.26b)

where P (x) denotes the polynomial that is derived from all the previously computed minima.
Afterwards, the predicted point is inserted in the inner loop and the process repeats itself until
a user defined threshold for the inclination angle has been breached.

3.10.3 Error Handling

As previously stated, the neutral curve tracking makes predictions based on the history of the
computed minima of the neutral curves. One important feature of this method is the ability
to save these points and to load them on prompt. This enables restarting the method without
losing data in the eventuality of a crash. Crashes are common due to the numerical instability of
the continuation method when the solution diverges significantly from the original guess for the
eigenmodes or the basic flow. The first remedy to potential crashes, is setting the relaxation
factor to r < 0.5 in the inner loop in order to track the first minimum and afterwards to
r = 0.9. In case changing the relaxation factor proves insufficient, k is altered by 1‰, which
in most cases enables convergence. Finally, in case these remedies do not succeed in achieving
convergence, the eigenvalue problem and the basic flow are recomputed at the point where the
method failed to converge. Thus, the method is restarted from the newly computed guess. The
method contains additionally various checks to ensure that the same neutral mode is being
tracked.



26 3. Numerical Methods



4
Validation

The methods and tools mentioned in the previous section were tested against literature results
in benchmark simulations. Additionally, a convergence study was also conducted in order to
confirm that the chosen mesh density would provide accurate results. The aim of this section
is to prove that all the aforementioned methods and tools were properly validated before being
employed in the scope of this thesis. As we only consider air in the cavity, the results below
were obtained with Pr = 0.71.

4.1 Convergence Study

Tables 4.1 and 4.2 summarise the results of the convergence study, in which the Nusselt number
over the hot cavity wall NuH is compared for different values of Ra, α and the initial tensor
mesh division N with perfectly conducting and adiabatic lateral walls respectively. NuH is a
non dimensional quantity which is used to quantify the heat transfer over the hot wall and is
defined as:

NuH = −
� 1

0

∂θ

∂y
dx. (4.1)

Results are omitted for cases where the basic flow solver failed to converge, such as for Ra > 107

and α > 30° in Table 4.1. However, convergence for such cases is not necessary since the
onset of instability occurs at lower Rayleigh numbers with lower angles as shown in Chapter 6
below. Similar cases failed to converge when adiabatic lateral walls were considered, such as
for Ra > 108 and α > 30° in Table 4.2, which are also not relevant since they the maximum
Rayleigh number in Chapter 5 is equal to 105. The study showed that N = 30 is a good balance
between performance and accuracy, since the Nusselt numbers between N = 30 and N = 40
converge up to the third digit in most cases.

4.2 Modes at α = 90◦

Table 4.3 presents a comparison between the computed modes and the modes in Winters [37],
Gelfgat & Tanasawa [18] and Xin & Le Quéré [38]. All aforementioned papers consider a
differentially heated squared cavity with perfectly conducting walls, with a rotation equivalent
to α = 90° in this thesis. Winters [37] and Gelfgat & Tanasawa [18] did not use a three
dimensional modelling for the perturbation and as such their results represent a non critical,
but neutral mode with k = 0. The results for |ωN | from Xin & Le Quéré [38] were scaled



28 4. Validation

NuH

α N Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

10◦
20 1.619 2.987 5.243 - -

30 1.619 2.990 5.312 - -

40 1.619 2.990 5.320 - -

30◦
20 1.779 3.293 6.152 - -

30 1.779 3.295 6.188 - -

40 1.779 3.296 6.193 - -

50◦
20 1.842 3.420 6.450 11.407 -

30 1.842 3.422 6.472 11.694 -

40 1.842 3.422 6.475 11.783 -

70◦
20 1.832 3.452 6.789 13.087 -

30 1.832 3.454 6.798 13.232 -

40 1.832 3.454 6.799 13.230 -

90◦
20 1.748 3.357 6.789 12.731 23.820

30 1.748 3.358 6.798 12.741 23.948

40 1.747 3.358 6.799 12.747 23.923

110◦
20 1.585 2.955 5.603 10.450 19.281

30 1.585 2.955 5.605 10.453 19.100

40 1.585 2.955 5.605 10.448 19.127

130◦
20 1.361 2.237 3.876 6.849 12.307

30 1.361 2.236 3.876 6.846 12.170

40 1.361 2.236 3.876 6.843 12.141

Table 4.1 – Perfectly conducting lateral walls: Nusselt number for different angles α, Rayleigh
numbers Ra, and initial tensor mesh division N .

with
√
Ra/Pr to match the scaling of the system equations in (2.4). Out of the five presented

modes, four of them are oscillatory modes, with |ωN | > 0. The critical mode is a non oscillatory
mode with Rac = 1253217, kc = 5.82 and |ωN | = 0. On the other hand, the critical mode for
oscillatory instability is Mode 2, with Rac,os = 1640208, kc,os = 7.2 and |ωc,os| = 2150.21. The
relative error for all parameters between the present results and Xin & Le Quéré [38] is in the
order of 10−3.

4.3 Neutral Curve of Mode 1

Figure 4.1 shows the neutral curve over the wavenumber k of the critical mode, Mode 1 in Table
4.3. Points below the neutral curve represent stable and above it unstable states. The relative
error between the current results and [38] is plotted below the neutral curve and is defined as

ϵ =

����RaN,p − RaN,l

RaN,l

���� , (4.2)
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NuH

α N Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

10◦
20 2.286 4.135 6.963 - -

30 2.286 4.138 6.992 - -

40 2.286 4.138 6.997 - -

30◦
20 2.436 4.417 7.887 14.228 -

30 2.436 4.420 7.894 14.235 -

40 2.436 4.420 7.896 14.272 -

50◦
20 2.483 4.554 8.432 15.469 28.295

30 2.483 4.556 8.438 15.502 27.985

40 2.483 4.556 8.439 15.532 28.185

70◦
20 2.428 4.674 8.953 16.682 30.622

30 2.428 4.675 8.955 16.684 30.543

40 2.428 4.676 8.955 16.698 30.572

90◦
20 2.245 4.521 8.830 16.563 30.709

30 2.245 4.522 8.827 16.534 30.388

40 2.245 4.522 8.826 16.527 30.275

110◦
20 1.913 3.675 6.868 12.543 22.930

30 1.913 3.675 6.865 12.511 22.609

40 1.913 3.674 6.864 12.493 22.492

130◦
20 1.505 2.346 3.613 5.642 9.247

30 1.505 2.346 3.610 5.627 9.081

40 1.505 2.345 3.610 5.617 9.030

Table 4.2 – Adiabatic lateral walls: Nusselt number for different angles α, Rayleigh numbers
Ra, and initial tensor mesh division N .

where the index l indicates literature results from [38] and p indicates present results. ϵ is in
the order of 10−2 for most wavenumbers, with the exception of values for the Rayleigh number
where k < 4, as a consequence of the steepness of the neutral curve at this range. From this
curve, it is also possible to identify the critical point for α = 90° at (kc = 5.82, Rac = 1.25×106),
which is also shown in Table 4.3.
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Winters [37]

RaN - - - - 2109200

kN - - - - 0

|ωN | - - - - 2745.63

Gelfgat & Tanasawa [18]

RaN - - - - 2108040

kN - - - - 0

|ωN | - - - - 2745.19

Xin & Le Quéré [38]

RaN 1256870 1640317 1751794 1997110 -

kN 5.85 7.19 7.39 7.57 -

|ωN | 0 2152.02 2637.79 3228.45 -

Current

RaN 1253217 1640208 1752476 1999159 2106621

kN 5.82 7.20 7.40 7.58 0

|ωN | 0 2150.21 2636.18 3227.29 2743.59

Table 4.3 – Critical Rayleigh number, wavenumber and frequency, for α = 90°. All modes
are neutral modes except mode 1, which is critical.
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Figure 4.1 – Neutral curve of the most dangerous mode as a function of k, α = 90°. Blue
points indicate current results and red triangles results from Xin & Le Quéré [38]. The curve
minimum is marked with a black cross. Below, the error between both datasets is shown.



5
Steady State Multiplicity

In this section, the evolution of the two-dimensional steady state for two different Rayleigh
numbers, Ra = 2.5× 104 and Ra = 105, upon variation of the inclination angle in the range of
α ∈ [−180°, 180°] is investigated. We consider two different cases for the lateral walls which are
either perfectly conducting or adiabatic and that the fluid in the cavity is air with Pr = 0.71.
The Nusselt number at the hot cavity wall NuH , shown in (4.1) above, was used as a means of
comparison between the different steady states as well as the maximum and the average flow
velocity magnitude which are defined as

umax = max
��

u2
x + u2

y

�
, uavg =

�
u2
x + u2

y, (5.1)

respectively and where ux and uy are the components of the velocity on the x and y axis
respectively. It should also be noted that if we consider two flows at the angles of α and −α
and equal Nusselt numbers between the two, then the flow structure of the later will be the
mirrored flow structure of the former with respect to y = 0, following the symmetry relation of

(ux, uy, p, θ, α)(x, y) → (−ux,−uy,−p, θ,−α)(−x, y). (5.2)

This relation is valid independent of the boundary condition of the lateral walls.

The basic flow was computed conventionally using Newton’s method in Chapter 3 for most
inclination angles. However, a variation of the inclination angle with |α| < ∆α and 0 < ∆α <
25° required that the basic flow be computed using the arclength continuation method for the
basic flow in Section 3.7 due to an existence of multiple steady states which are smoothly
connected to each other. The angle interval where state multiplicity is possible includes angles
with α < |∆α| and the size of ∆α is dependent on the Rayleigh number and the boundary
condition of the lateral walls, which will be discussed in the sections below. The present results
largely agree with the results of Huelsz & Rechtman [23] who considered an identical case as
ours with adiabatic lateral walls. However, instead of showing a smooth connection between
them the steady states, they observed a discontinuity from one state to another in a form of a
hysteresis since they missed some solution branches.

Moreover, many of the presented steady states originate from the two dimensional convection
modes of the unstable stratification in a cavity with the same geometry as ours and adiabatic
lateral walls which Boullé et al. [8] thoroughly outlined in their study. The reader is also
referred to the study of Adachi & Mizushima [1], which conducted a similar study with the aim
of identifying the two dimensional convection modes of the unstable stratification in a water
filled cavity with Pr = 7.
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5.1 Perfectly Conducting Lateral Walls

First, we consider the case of a cavity with perfectly conducting walls, which corresponds to the
default case of this thesis. The evolution of NuH over α is shown for Ra = 2.5×104 and Ra = 105

in Figure 5.1. The squares represent data from NEK5000, which are in good agreement with
the current data, with a relative error for the Nusselt number in the order of 10−3. Independent
of the Rayleigh number, the graph is always symmetrical with respect to α = 0° due to the
symmetry relation in (5.2). Higher Rayleigh numbers lead to an increase of NuH , although
at α = ±180◦ the Nusselt number is always 1, which corresponds to a stratified motionless
state. The maximum Nusselt number is located at α = ±59.35° with NuH,max = 2.381 for
Ra = 2.5× 104 and at α = ±70° with NuH,max = 3.454 for Ra = 105.

The multiple states are occur at angles α < |∆α|, with 0 < ∆α < 8°. The discovered
states are grouped into different, independent solution sets and the number of the sets as well
as ∆α are dependent on the Rayleigh number. As such, a state that belongs to one solution
set cannot transition continuously to a solution which belongs to another set. There is always
a main solution set whose states have continuous transitions to states that lie outside of the
angle interval of state multiplicity, with α > |∆α|. Therefore, Figure 5.1 displays only the main
solution sets and the other discovered solution sets will be shown in detail in the next sections
below.

The basic flow is illustrated at the angles of 135°, 90° and 45° along the curve of NuH

in Figure 5.2. Both Rayleigh numbers lead to a similar flow regime within the cavity until
α = 0° and both exhibit a stratification at α = ±180°. Naturally, the flow at Ra = 105

exhibits stronger velocity gradients on the walls. As the angle gradually increases, the fluid
rotates around a single vortex which eventually evolves into more vortices when the inclination
angle lies within the interval of state multiplicity with |α| < ∆α. Since the state multiplicity
manifests differently depending on the Rayleigh number, it will be analysed in two separate
sections, each covering a different Rayleigh number.

5.1.1 Solution set at Ra = 2.5 × 104, conducting lateral walls

The solution set for Ra = 2.5×104 is shown in detail in Figure 5.3, together with the points (a)
to (f) for which the basic flow and their corresponding flow variables are shown in Figure 5.4
and Table 5.1 respectively. In this particular configuration, there is only one solution set. The
state multiplicity can be observed between points that have an equal inclination angle, such as
the pairs (a)-(f), (b)-(e) and (c)-(d). Despite an equal inclination angle, the Nusselt number
and the flow velocity are different between these pairs, as seen in Table 5.1. The solutions that
the solver usually locates without the continuation method for the basic flow, are located on
the upper branches of the loop, which in this case have Nusselt numbers with NuH > 1.9. The
maximum and average flow velocities are higher on these branches than in the lower branches.
As a result, the upper branches are more stable and the solver is able to locate them without
the continuation method for the basic flow. At (a) a single clockwise rotating vortex around
the centre of the cavity dominates the flow and additionally, two vortices exist on the lower
left and upper right corner of the cavity, rotating counter clockwise. Compared to the other
points, the Nusselt number and the average flow velocity reach their highest values at (a), with
NuH = 1.913 and uavg = 23.223 respectively. It should be noted that another symmetrical
solution can exist at (a), with a counter-clockwise rotating flow. The corner vortices gradually
grow in size, as seen in (b) and (c) and the Nusselt number decreases to NuH = 1.695 at



5.1. Perfectly Conducting Lateral Walls 33

−180 −135 −90 −45 0 45 90 135 180

α[◦]

1.0

1.5

2.0

2.5

3.0

3.5

NuH

Figure 5.1 – NuH as a function of α with perfectly conducting lateral walls. Data coloured
in blue indicate Ra = 2.5 × 104 and in green Ra = 105. Continuous lines indicate present
results, while the squares denote the computed points with NEK5000. The angle interval
of state multiplicity, centered around α = 0°, is shown in detail in Figures 5.3 and 5.5 for
Ra = 2.5× 104 and Ra = 105 respectively.

(a) α = 135° (b) α = 90° (c) α = 45°

(d) α = 135° (e) α = 90° (f) α = 45°

Figure 5.2 – Basic flow at different angles with conducting lateral walls, (a)-(c) with
Ra = 2.5× 104 and (d)-(f) with Ra = 105. Temperature is shown by colours, with hot in-
dicating warmer and blue colder areas. The dashed streamlines indicate a clockwise flow in the
cavity, with negative vorticity and arrow indicates the direction of gravity.
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Figure 5.3 – Ra = 2.5 × 104: Plot of the set of possible solutions as a function of NuH over
α with conducting lateral walls, including the points of interest (a)-(f). The squares represent
data obtained with NEK5000.

(a) (b) (c) (d) (e) (f)

α 0◦ 5◦ 7◦ 7◦ 5◦ 0◦

NuH 1.913 1.778 1.695 1.456 1.229 1

umax 46.069 41.329 38.158 24.519 16.674 0

uavg 23.223 19.289 16.801 9.913 6.401 0

Table 5.1 – Ra = 2.5 × 104: Flow variables α, NuH , umax and uavg at the points (a)-(l) for
the solution sets with conducting lateral walls.

(c). At point (d), the corner vortices occupy a much larger area than at (a)-(c) and a sharp
reduction of the Nusselt number and the mean flow velocity is observed, with NuH = 1.456 and
uavg = 9.913 at (d). Moreover, we can observe a turning point on the loop between (c) and
(d) where the reduction takes place, which is located at α ≈ 8°. This turning point also marks
the limit in which state multiplicity is possible, with ∆α = ±8°. At (e) the Nusselt number
and the average flow velocity are further reduced as the middle vortex moves away from the
cavity’s corners. Finally, the flow is halted at point (f) due to a stratified temperature field and
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(a) (b) (c)

(d) (e) (f)

Figure 5.4 – Ra = 2.5 × 104: Basic flow on the set of possible solutions with conducting
lateral walls. The streamlines are represented as full lines in areas with positive vorticity,
which indicates a local counter clockwise rotation of the flow. In other aspects, the plots follow
the notation in Figure 5.2.

the Nusselt number reaches a minimum of NuH,min = 1.

5.1.2 Solution sets at Ra = 105, conducting lateral walls

By increasing the Rayleigh number, four separate and independent solution sets were discovered,
as shown in Figure 5.5. The main solution set, coloured in blue, is the only set shown in
Figure 5.1. The solution sets with lower Nusselt numbers, coloured in red and green are more
unstable and have a lower average flow velocity. The angle interval of state multiplicity in
this configuration is defined by the maximum angle span of the red solution sets, such that
∆α = ±4.7°. Figure 5.6 shows the basic flow on the points (a)-(l) and Table 5.2 shows the flow
characteristics of each point.

Overall, the main solution set has higher Nusselt numbers than its counterpart at Ra =
2.5 × 104. For instance, the Nusselt number at (a) is equal to 1.913 for Ra = 2.5 × 104 as
opposed to 2.645 for Ra = 105. The basic flow in the main solution set at point (a) is very
similar to its equivalent point at Ra = 2.5× 104, with a single vortex dominating the flow. The
corner vortices gradually increase in size at points (b), (c) and the Nusselt number and the
average flow velocity decrease to NuH = 2.131 and uavg = 36.130 at (c). Instead of a transition
to a stratification with NuH = 1, the decrease of the Nusselt number is reversed at α ≈ ±1°.
As such, the current data suggests that it is not possible for the fluid to arrive at a resting
state when the cavity is tilted from α > |∆α| towards α = 0° with a pre-existing flow. At point
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Figure 5.5 – Ra = 105: Plot of the sets of possible solutions as a function of NuH over α
with conducting lateral walls, including the points of interest (a)-(l). There are four separate
solution sets and each set is marked with a different colour, with the exception of the two red
coloured sets which are symmetric towards each other. The squares represent data obtained
with NEK5000.

(a) (b) (c) (d) (e) (f)

α 0◦ 2◦ 2◦ 0.5◦ 0◦ 2◦

NuH 2.645 2.471 2.131 2.177 2.512 1.293

umax 112.324 106.195 89.240 68.631 76.393 28.189

uavg 53.471 47.733 36.130 30.443 35.724 9.751

(g) (h) (i) (j) (k) (l)

α 2◦ 2◦ 4◦ 4◦ 2◦ 0◦

NuH 1.471 1.445 1.408 1.266 1.168 1.014

umax 43.328 50.983 46.242 30.551 21.764 0.192

uavg 17.067 19.790 17.646 12.046 7.268 0.66

Table 5.2 – Ra = 105: Flow variables α, NuH , umax and uavg at the points (a)-(l) for the
solution sets with conducting lateral walls.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6 – Ra = 105: Basic flow on the solution sets with conducting lateral walls. The
plots follow the notation in Figures 5.2 and 5.4.
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(d), we see how the original vortex has started to evolve into two additional vortices, which is
accompanied by an increase of the Nusselt number to NuH = 2.177. (c) and (d) have a similar
average flow velocity, although the maximum velocity is higher at (c). Finally, at point (e) four
counter-rotating vortices which are equal in strength are formed, with NuH = 2.512.

The two following sets, coloured in red, are characterized by a much lower average flow
velocity and a greater multitude of vortices compared to the main set, which also leads to lower
Nusselt numbers in a range of NuH ∈ [1.1, 1.5]. The points (f)-(k) are part of the red solution
set with α > 0. The flow patterns are similar to those of the main set, with the difference that
many vortices have evolved into two or more additional vortices. For example, points (g)-(i) are
very similar to (a)-(c), but the dominating vortex in the latter has evolved into three separate
vortices. Similar conclusions can be made between points (d) and (f) or even (e) and (k).
Lastly, the flow on the green set includes flows with a negligible average flow velocity which
does not change significantly from the conducting state, as seen at its highest point (l), with
NuH ≈ 1 as well as uavg, umax ≈ 0.

5.2 Adiabatic Lateral Walls

Figure 5.7 shows the curve of NuH over α when we consider adiabatic lateral walls. In the
present data, the maximum Nusselt number is located at α = ±56° with NuH,max = 3.193 with
Ra = 2.5 × 104 and at α = ±75° with NuH,max = 4.684 with Ra = 105, while the minimum
Nusselt number in both cases is one. The multiple states occur at angles α < |∆α| with
∆α < |23°|.

Data from NEK5000 are once again are in good agreement with the present data, with a
relative error in the order of 10−3. Moreover, data from [23] also largely agree with the present
data with the maximum relative error amounting to 3.92% at α = ±40° with Ra = 105. The
study includes data for the Nusselt number within the angle interval of state multiplicity for
both Rayleigh numbers, as well as for α ∈ [−180°, 180°] with Ra = 105.

The study of Huelsz & Rechtman [23] used a transient approach coupled with a lattice
Boltzman method to locate the steady states and therefore, they missed some solutions within
the angle interval of state multiplicity. Instead, they discovered steady states on the upper
branches on the main solution set, which are marked as crosses in Figure 5.7. While varying the
inclination angle from α = −180° to α = 180°, they observed that the Nusselt number gradually
decreased for angles within the interval of state multiplicity but as of a certain inclination angle
the Nusselt number rapidly increased again, which was caused by a discontinuity between the
solutions. This discontinuity manifested itself at either of two angles, ±αdis depending on
whether the cavity was tilted from α = −180° to α = 180° or backwards, which formed a
hysteresis. In their data, the discontinuity occurred at αdis = ±21° with Ra = 2.5 × 104 and
at αdis = ±18° with Ra = 105. Since NEK5000 also uses a transient scheme, no solutions were
retrieved on the lower branches of the main solution set and a discontinuity was also observed
which occurred at approximately the same angles as in [23].

The basic flow is illustrated at the angles of 135°, 90° and 45° along the curve of NuH in
Figure 5.8. We see a similar flow structure as with conducting lateral walls in Figure 5.2, with
a single, dominant vortex in the cavity. However, the velocity gradients on the boundaries for
both Rayleigh numbers are stronger as opposed to those with the conducting lateral walls.
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Figure 5.7 – NuH as a function of α with adiabatic lateral walls. Data coloured in blue
indicate Ra = 2.5× 104 and in green Ra = 105. Continuous lines indicate present results, while
the squares denote the computed points with NEK5000. The crosses represent literature data
from Huelsz & Rechtman [23]. The angle interval of state multiplicity, centered around α = 0°,
is shown in detail in Figures 5.9 and 5.11 for Ra = 2.5× 104 and Ra = 105 respectively.

(a) α = 135° (b) α = 90° (c) α = 45°

(d) α = 135° (e) α = 90° (f) α = 45°

Figure 5.8 – Basic flow at different angles with adiabatic lateral walls, (a)-(c) with
Ra = 2.5× 104 and (d)-(f) with Ra = 105. The plots follow the notation in Figures 5.2 and
5.4.
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5.2.1 Solution sets at Ra = 2.5 × 104, adiabatic lateral walls

The solution sets for Ra = 2.5 × 104 are shown in detail in Figure 5.9 by NuH as a function
of α. Two distinct solution sets can be identified, the main set, plotted in blue and a second
set, plotted in red. The angle interval of state multiplicity where α < |∆α| can be defined by
the maximum angle of the main set, such that ∆α = ±21°. The crosses spanning the upper
branches of the main solution set, represent literature data from Huelsz & Rechtman [23]. They
agree largely with the present data, with a consistent error of under 2%. The basic flow at the
points (a)-(l) is shown in Figure 5.10 and their respective flow variables in Table 5.3.

Much like with conducting lateral walls, a single vortex dominates the flow as seen at the
points (a)-(b) with two diagonally placed vortices on the upper left and lower right corner of the
cavity respectively. Point (a) has the highest Nusselt number and average flow velocity out of
all points, with NuH = 2.764 and uavg = 32.249 respectively. At point (c), the diagonally placed
vortices have grown in size and the Nusselt number as well as the average flow velocity have
decreased significantly compared to (a)-(b), with NuH = 1.691 and uavg = 15.404 respectively.
The transition from (a) to (c) requires a much larger maximum angle span of ∆α = ±21°
compared to ∆α = ±8° in the conducting case for Ra = 2.5×104. The Nusselt number and the
average flow velocity further decrease to NuH = 1.228 and uavg = 7.738 at point (e). After this
point, this trend is reversed and the Nusselt number increases to NuH = 1.4 at point (f). The
three vortices become equal in size at point (f) and are in alignment with the gravity vector
and the average velocity reaches a local maximum of uavg = 9.275. Subsequently, the middle
vortex is split into two separate vortices which forms four counter rotating vortices of equal
strength at point (h), where NuH = 1.099 marks the minimum Nusselt number of the main
solution set. Point (h) also marks the lowest average velocity of the main solution set, with
uavg = 5.437.

At point (i) on the second set, we see very similar values for the Nusselt number and the
average flow velocity as (h), with NuH = 1.1 and uavg = 5.434 respectively. However, the
basic flow at these points differs greatly, since their vortices have an opposite vorticity when
compared to each other. At point (i), the fluid is injected towards the heated walls, whereas at
point (h) the fluid flows from the heated walls towards the cavity’s centre. At points (j) and
(k) the average flow velocity gradually decreases, and the upper right and lower left vortices
are displaced away from the corners. Finally, the flow is halted at point (l), where the Nusselt
number reaches a minimum of NuH,min = 1.

According to the results of Boullé et al. [8], there should be four unique states originating
from the unsteady stratification for Ra = 2.5×104, each one corresponding to a different number
of vortices at α = 0°. The present results have located three of these states, namely the single
vortex at (a), the three vortices at (f) and the four vortices at (h) and (i). Therefore, there is
probably one solution that was missed which is characterised by two equally sized vortices.

5.2.2 Solution sets at Ra = 105, adiabatic lateral walls

Figure 5.11 shows the solution sets for Ra = 105 with NuH as a function of α. There is a good
agreement between the present results and the literature data of [23], represented by the crosses,
with a consistent error of under 2%. The basic flow at the points (a)-(l) is shown in Figure
5.12 and their respective flow variables in Table 5.4. In total, there are three distinct solution
sets. The angle interval of state multiplicity where α < |∆α| is defined by the maximum angle
of the red solution set, ∆α = ±22°.
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Figure 5.9 – Ra = 2.5× 104: Plot of the sets of possible solutions as a function of NuH over
α with adiabatic lateral walls, including the points of interest (a)-(l). There are two separate
solution sets and each set is marked with a different colour. The crosses represent data from
Huelsz & Rechtman [23] and the squares data obtained with NEK5000.

(a) (b) (c) (d) (e) (f)

α 0◦ 20◦ 10◦ 10◦ 0◦ 0◦

NuH 2.764 2.541 1.691 1.519 1.228 1.400

umax 59.868 54.066 36.983 29.154 18.159 23.324

uavg 32.249 28.993 15.404 12.446 7.738 9.275

(g) (h) (i) (j) (k) (l)

α 0◦ 0◦ 0◦ 2◦ 0◦ 0◦

NuH 1.228 1.099 1.100 1.081 1.008 1

umax 17.077 10.807 10.904 10.101 2.688 0.006

uavg 6.949 5.437 5.434 4.633 1.112 0.001

Table 5.3 – Ra = 2.5 × 104: Flow variables α, NuH , umax and uavg at the points (a)-(l) for
the solutions sets with adiabatic lateral walls.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10 – Ra = 2.5 × 104: Basic flow on the solution sets with adiabatic lateral walls.
The plots follow the notation in Figures 5.2 and 5.4.
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The main solution set, plotted in blue, has generally higher Nusselt numbers than
Ra = 2.5× 104. For instance, the Nusselt number at point (a) amounts to NuH = 3.91 for
Ra = 105 as opposed to NuH = 2.764 for Ra = 2.5 × 104. Although the upper branches of
the main solution set are similar in nature as those for Ra = 2.5× 104, we see a very different
evolution of the Nusselt number occurring at its lower branches. Starting from point (a), we
once again observe a single vortex dominating the flow. The corner vortices grow gradually at
points (b) and (c) and their growth is accompanied by a reduction of the Nusselt number and
the average flow velocity until a close proximity to (c) at about α = 3.5°. At this point, the
Nusselt number reaches a local minimum of NuH ≈ 1.9. By further decreasing the inclination
angle, the decrease of the Nusselt number is reversed and the centre vortex evolves into two
separate vortices, as seen at (c). Finally, four equally sized, counter rotating vortices appear
at point (d), with NuH = 2.568 and uavg = 41.949. Unlike Ra = 2.5× 104, point (d) is not the
minimum of the main set. The new minima are instead located close to α = ±3.5°.

The second set, plotted in red, spans a wide range of Nusselt numbers and angles with
NuH ∈ [1.2, 3.5] and α ∈ [−22°, 22°]. At point (e) we see a similar flow as point (d), where
the fluid is injected towards the heated walls at the former and the cavity’s centre at the later.
Contrary to Ra = 2.5× 104, there is a greater difference between the Nusselt numbers and the
flow velocities of these points. Nevertheless, the difference between these variables is still small.
For instance, the Nusselt number measures NuH = 2.568 at (d) as opposed to NuH = 2.507 at
(e). At point (f), we see a displacement of the four vortices towards the corners as well as a
change in their size. Moreover, the Nusselt number decreases slightly to NuH = 2.075. The two
clockwise rotating vortices at (e) now appear to be merging at point (g), where we also see a
significant increase of the Nusselt number to NuH = 3.545. At about α = ±13°, the second set
reaches its maximum Nusselt number, NuH = 3.66. Finally, the vortices at (g) evolve into eight
equally sized vortices at point (h), where the Nusselt number and the average flow velocity
reach a minimum of NuH = 1.218 and uavg = 7.214 respectively.

The third set, coloured in green, is the only solution set which is connected to the stratified,
motionless state. Point (i) exhibits a similar solution to point (h), with eight vortices rotating
in the opposite direction but with a higher Nusselt number, with NuH = 1.46. The curve of
the Nusselt number crosses the centre of the graph at α = 0° multiple times, with some of the
vortices merging at point (j) or even rearranging into nine vortices as seen at point (k). Finally,
the flow is halted at point (l) and the Nusselt number reaches a minimum of NuH,min = 1.

According to the results of Boullé et al. [8], there should be ten unique states originating
from the unsteady stratification for Ra = 105, each one corresponding to a different number of
vortices at α = 0°. Presently, a multitude of solutions have not yet been determined, with the
exception of the single vortex solution at (a), the three vortices at (j), the four vortices at (d)
and (e), the eight vortices at (h) and (i) and the nine vortices at (k).

5.3 Comparison of the State Multiplicity

5.3.1 Variation of the Rayleigh number

A comparison of the solution sets of the Rayleigh numbers Ra = 2.5× 104 and Ra = 105 shows
that the state multiplicity is very sensitive to variations of the Rayleigh number, independent
of the boundary condition of the lateral walls. The bifurcation analysis of Boullé et al. [8]
showed that the number of the modes of the unstable stratification at α = 0° is dependent
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Figure 5.11 – Ra = 105: Plot of the sets of possible solutions as a function of NuH over α
with adiabatic lateral walls, including the points of interest (a)-(l). There are three separate
solution sets and each set is marked with a different colour. The crosses represent data from
Huelsz & Rechtman [23] and the squares data obtained with NEK5000.

(a) (b) (c) (d) (e) (f)

α 0◦ 15◦ 3◦ 0◦ 0◦ −15◦

NuH 3.910 2.466 2.022 2.568 2.507 2.075

umax 141.286 106.756 72.778 85.801 84.077 71.876

uavg 73.005 46.955 31.383 41.494 41.299 31.869

(g) (h) (i) (j) (k) (l)

α 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

NuH 3.545 1.218 1.460 1.189 1.080 1.007

umax 112.172 16.788 36.132 18.827 11.427 0.102

uavg 44.786 7.214 15.789 7.843 4.710 0.041

Table 5.4 – Ra = 105: Flow variables α, NuH , umax and uavg at the points (a)-(l) for the
solution sets with adiabatic lateral walls.
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(a) (b) (c)

(d) (e) (f)
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(j) (k) (l)

Figure 5.12 – Ra = 105: Basic flow on the solution sets with adiabatic lateral walls. The
plots follow the notation in Figures 5.2 and 5.4.
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on the Rayleigh number. Considering adiabatic lateral walls, they showed that there are four
modes for Ra = 2.5× 104 and ten for Ra = 105. The present results showed that many of the
discovered steady states originate from these modes. As such, higher Rayleigh numbers allow
the emergence of more steady states at α = 0°.

Through the increase of the Rayleigh number, we also observe an increase of the Nusselt
number. In the adiabatic case, the highest Nusselt number at point (a) rises from 2.764 to
3.910 between both Rayleigh numbers, which corresponds to an increase of 41%. Moreover,
an increase of the Rayleigh number leads to a decrease of the maximum angle span of the
main solution set, with a larger decrease when considering perfectly conducting lateral walls.
Additionally, the angle span of the main solution set decreases by 69% with perfectly conducting
lateral walls as opposed to 22% with adiabatic lateral walls. Therefore, smaller tilting angles
are required on the main set for a smooth transition of the flow when the Rayleigh number
increases. Finally, the current results suggest that the minimum Nusselt number of the main
set is located at its centre (α = 0°) for lower Rayleigh numbers. For higher Rayleigh numbers,
this does not seem to be the case since the main set has two symmetrical minima with respect
to α = 0°.

5.3.2 Conducting or Adiabatic Lateral Walls

The boundary condition of the lateral walls, conducting or adiabatic, also affect the state mul-
tiplicity significantly. The current data shows that higher Nusselt numbers are achieved with
adiabatic instead of conducting lateral walls. Considering Ra = 2.5 × 104, we can observe an
increase of the highest Nusselt number at α = 0° from 1.941 to 2.764 between both boundary
conditions for the lateral walls, which corresponds to an increase of 42%. Moreover, a conduct-
ing boundary condition decreases the maximum angle span of all solution sets. For instance,
for Ra = 2.5× 104, we see the angle span changing from ∆α ≈ 8° with conducting lateral walls
to ∆α ≈ 22° with adiabatic lateral walls, which corresponds to an increase of 175%. When
comparing our results with both boundary conditions for Ra = 2.5× 104, we can also see how
the second solution set is completely absent when a conducting boundary condition is chosen.



6
Linear Stability Analysis

Applying all methods that were mentioned in Chapter 3 enables locating the neutral and critical
curves which extend in α ∈ [−180°, 180°]. This section presents the neutral and critical curves
of the Rayleigh number as a function of α and also illustrates the basic flow and the three
dimensional perturbation at a selection of points on the critical curve. The fluid in the cavity
is air, with Pr = 0.71.

6.1 Neutral and Critical Curves over the Inclination

Angle α

Figure 6.1 shows the curve of the critical Rayleigh number Rac together with several other
critical parameters as a function of the inclination angle α listed below.

• Critical wavenumber kc

• Critical magnitude of the oscillation frequency |ωc|
• Normalised buoyancy production term B from (2.27)

• Maximum flow velocity magnitude umax from (5.1)

• Average velocity magnitude uavg from (5.1)

Each mode is represented by a differently coloured neutral curve. If the mode is critical in an
angle interval, its neutral curve is represented by a thick line and if there is another critical mode
besides it the neutral curve is marked by a thin line. The flow is linearly stable for Ra < Rac.
Due to the symmetry relation of the basic state with respect to 0° in (5.2), only positive angles
are shown. The mode which covers the angle range of α ∈ [−36°, 36°], coloured in purple, has
two separate branches as a consequence of the steady state multiplicity. The most dangerous
mode is found in the range of α ∈ [−10°, 10°], coloured in gray, which is a stationary mode with
ωc = 0. Its lowest Rayleigh number is located at α = 0° with Rac = 2941.58 and kc = 3.375. At
this point, the basic state is a stratification with uavg = 0. As previously discussed in Chapter
5, there is also a stratification at α = ±180° and this is the only possible basic state when the
fluid is heated from above. As such, we see that the stability of the flow increases with larger
angles as it approches α = 180◦, shown by the critical Rayleigh number, which increases by
several orders of magnitude. At α = 180° the flow stability is infinite due to an absence of a
flow.
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Figure 6.1 – Critical and neutral curves as a function of α from top to bottom Rac, kc, ωc,
B, umax and uavg. Each mode is plotted with a different colour and is critical for angles where
a thick line is present. Crosses in the graphs of Rac and kc represent literature data from [38].
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Smaller inclination angles tend to lead to smaller critical wavenumbers, with kc < 15 for
α < 110°. However, as α increases, the wavenumbers also increase significantly with kc > 15 as
of α > 110°. The highest critical wavenumber is detected at α = 146.88° with kc = 47.77. On
the other hand, the lowest critical wavenumber is detected at α = 8.82° with kc = 2.96.

Most modes are non oscillating with ωc = 0 and do not show in Figure 6.1 due to the
logarithmic scale in the graph for |ωc|. Oscillating modes centered around α = 90° have the
highest frequencies with |ωc| > 103. The largest frequency is located at α = 104.31° with
|ωc| = 5647.18.

The buoyancy production term B is larger than 0.5 for α < 86°, which points to buoyancy
being the dominant driving force of the instability mechanism. In the opposite case with
α > 86°, inertia becomes the dominant destabilising factor instead. An exception to this rule
is made by two modes in the angle range of α ∈ [99°, 104°], displayed with light green and
cyan lines, where buoyancy is instead dominant. Otherwise, the transition of the dominant
destabilising factor is easily observable on the graph and occurs at α = 86.55°, between the
red and yellow modes. Starting from the stratification at α = 0° at the gray mode, we observe
that the stratification is destabilised entirely due to buoyancy, since B = 1. Buoyancy is also
dominant on the purple mode at α = 0°, however its contribution to the instability decreases
by increasing the inclination angle. This trend is reversed at α = 58°, when the green mode
becomes critical. In the interval of α ∈ [72°, 76.5°], inertial effects have a stabilising effect on
the flow, since B > 1 and consequently I < 0 in this range. At higher angles there is virtually
no contribution from the buoyancy term and destabilisation occurs mainly due to the inertial
forces. At even higher angles with α > 160◦, buoyancy forces even have a stabilising effect on
the flow, since B < 0 in this range.

The maximum flow velocity umax generally follows the trend of the critical Rayleigh number
particularly at higher angles, except for α > 140°, where a decrease is observed. The average
velocity uavg also increases with higher angles, with the difference that there is no significant
increase as of α > 120°.

6.2 Three Dimensional Flow Perturbation

In this section, the three dimensional flow perturbation together with the basic flow of neutral
and critical states at the angles α = 0°, 30°, 80°, 90°, 100°, 110°, 120° and 140° are presented.
Table 6.1 shows the critical values of these states, together with the energy budget. If ωc ̸= 0,
its sign indicates the propagation direction of the perturbation. A positive value with ωc > 0
indicates a propagation from z to −z. Due to periodicity, the perturbation is plotted for one
wavelength measuring zk = 2π/k. We also introduce the phase velocity which is a useful term
to describe the propagation of the perturbation in the z-axis in oscillatory modes, defined as

up = −ωzk
2π

= −ω

k
. (6.1)

As such the phase velocity up is directly proportional to the oscillation frequency ω and inversely
proportional to the wavenumber k.

The most dangerous mode is shown in Figure 6.2a. It is part of the lower branch of the
basic state at α = 0° and belongs to the gray mode in Figure 6.1. The basic flow is a stratified
temperature field and the mode has the highest wavelength compared to the other plotted
modes. Since this is an non-oscillatory mode with ωc = 0, the isosurfaces of the strongest
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α Rac kc ωc B I zk up

0°, lower 2.942× 103 3.375 0.0 1.0 0.0 1.862 0.0

0°, upper 2.509× 104 5.292 -93.850 0.762 0.232 1.187 17.73

30° 1.826× 105 6.299 -177.586 0.54 0.467 0.997 28.18

80° 9.829× 105 7.387 1152.91 0.971 0.031 0.851 -156.151

90° 1.253× 106 5.819 0.0 0.092 0.908 1.080 0.0

100° 4.116× 106 7.189 4113.62 0.836 0.164 0.874 -572.21

110° 5.584× 106 14.806 0.0 0.218 0.787 0.424 0.0

120° 2.220× 107 19.256 2306.033 0.079 0.927 0.326 -119.647

140° 9.204× 107 35.575 0.0 0.069 0.923 0.177 0.0

Table 6.1 – Critical values Rac, kc and ωc together with the energy budget terms B and I
and the resulting wavelength zk and the phase velocity up for the modes in Figures 6.2, 6.3 and
6.4.

perturbation are organised into two cellular structures which are equal in size and do not
propagate along the z-axis. The following two modes, at α = 0° and α = 30° in Figures 6.2b
and 6.2c respectively, are oscillatory modes with ωc ̸= 0. As such, the perturbation does not
have a cellular structure. The former mode at α = 0°, is part of the upper branch of the
basic state and belongs to the purple mode in Figure 6.1. Its basic flow features one large
vortex and two recirculation zones in the top left and bottom right corners of the cavity. This
flow structure is almost identical with one of the solutions previously discussed in Chapter 5
with Ra = 2.5 × 104 and conducting lateral walls. The aforementioned recirculation zones
are also visible at α = 30°. The areas where the perturbation is stronger in both modes are
concentrated mainly around the heated walls, particularly in Figure 6.2c. The instability of all
aforementioned modes is mainly driven by buoyancy since B > I as seen in Table 6.1.

The next mode, shown in Figure 6.3a at α = 80°, is also an oscillatory mode with a higher
phase velocity since its frequency |ωc| = 1152.91 is much higher than the previous modes, which
was |ωc| = 93.659 and |ωc| = 177.586 respectively. The basic flow has no visible recirculation
zones in the corners. Instead, two new zones of recirculation have appeared close to the centre
of the cavity, placed diagonally from each other. As the Rayleigh number increases, we can
also observe how the thermal stratification becomes stronger and the isotherms are nearly
perpendicular to g. Buoyancy forces once again drive the instability and the regions with
the strongest perturbations are gathered around the corners of the cavity, particularly on the
bottom left and top right corners where the flow is accelerated.

The mode at α = 90°, shown in Figure 6.3b, with the conducting walls placed horizontally,
has a similar basic flow to α = 80°. The isosurfaces with the strongest perturbations are equally
spread around the cavity and are slightly more amplified around the regions of recirculation of
the basic state. In fact, at α = 90° buoyancy is responsible for only 9.2% of the perturbation
kinetic energy growth rate. The components of I are shown Table 6.2 for all modes in which
the instability is driven by inertia with I > B. In this particular mode, we can see that I2 > I4
which is an indication that the inertial instability is driven by lift up in the boundary layer as
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α I1 I2 I3 I4 I

90° 0.040 0.601 0.077 0.191 0.908

110° 0.0 0.320 0.128 0.340 0.787

120° 0.078 0.165 0.193 0.491 0.927

140° 0.009 0.122 0.187 0.606 0.923

Table 6.2 – Decomposition of the inertial contribution I into I1, I2, I3 and I4 in modes where
inertia is dominant with I > B.

opposed to a flow deceleration.

The last mode in this figure at α = 100° and in Figure 6.3c, has the highest frequency out
of all the plotted modes with ωc = 4113.62, which also leads to the highest absolute phase
velocity of |up| = 572.21. Interestingly, the perturbation is stronger around the bottom left and
top right corners much like the mode at α = 80°. Moreover, buoyancy drives the instability
with B = 0.836 as opposed to inertia with I = 0.164 which explains the similar structure of the
perturbation isosurfaces with the mode at α = 80°, since both modes are destabilised mainly
due to buoyancy. As such, the perturbation is stronger in the regions where buoyancy forces
drive the flow such as the bottom left and upper right corners of the cavity.

By increasing the inclination angle, the wavenumber sharply increases which leads to smaller
wavelengths as seen in Figure 6.4. Namely, we see an increase from k = 7.189 at α = 100°
to k = 14.806 at α = 110°, which corresponds to a change of 105%. In all of the modes of
this figure, inertia is the dominant factor that destabilises the flow with I > B. As such,
the components of I of these modes are shown in 6.2. At α = 110°, shown in Figure 6.4a,
the recirculation zones start to migrate towards the boundaries due to the high velocity in
these regions. The perturbation is stronger only on the boundaries and also in the regions of
recirculation where the flow is decelerated. Due to ωc = 0, there is no propagation on the
z-axis. The inertial instability is driven almost equally by both lift up and deceleration since
I2 ≈ I4. As of the next mode at α = 120°, shown in Figure 6.4b, the isosurfaces with the
strongest perturbation are entirely located on the bottom and upper corners of the cavity,
where a deceleration of the basic flow occurs. This can also be verified by the components of
I, since I4 > I2 for this mode. As the inclination angle increases, the magnitude of the velocity
on the boundaries increases at the expense of the velocity in the centre of the cavity. Moreover,
the temperature field of the basic state becomes steadily more stratified as the critical Rayleigh
number increases with larger angles. Both of these facts can be observed in detail in the last
mode at α = 140°, shown in Figure 6.4c. The flow deceleration in the bottom and upper corners
of the cavity is the dominant source of instability with I4 ≈ 5I2.
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Figure 6.2 – Basic flow (left column) and temperature perturbation isosurfaces (right column)
at the angles 0° (both branches) and 30°. In both columns, the cavity is tilted to match the
direction of gravity, which is indicated by the black arrow on the left column. On the right,
the length of the three dimensional cavity on the z-axis is equal to one wavelength. Areas in
red indicate θ > 0 and in blue θ < 0. Dashed streamlines indicate a clockwise flow and full
streamlines a counter-clockwise flow.
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Figure 6.3 – Basic flow (left column) and temperature perturbation (right column) at the
angles 80°, 90° and 100°. The plots follow the notation in Figure 6.2.
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Figure 6.4 – Basic flow (left column) and temperature perturbation (right column) at the
angles 110°, 120° and 140°. The plots follow the notation in Figure 6.2.



7
Conclusion

In this thesis, we studied the state multiplicity and the flow stability inside an inclined differ-
entially heated cavity for air with Pr = 0.71.

7.1 Steady State Multiplicity

In Chapter 5, we studied the steady state multiplicity in an inclined cavity which occurs when
the fluid is heated from below. Two opposing walls of the cavity were heated and cooled
respectively and the remaining lateral walls were either perfectly conducting or adiabatic. For
both cases, the flow at two different Rayleigh numbers was studied extensively, namely at
Ra = 2.5 × 104 and Ra = 105. By studying the heat flux on the hot cavity wall using the
Nusselt number NuH as a function of the inclination angle α, we showed how multiple steady
states can exist through saddle node bifurcations points. Moreover, we discussed how changing
either the Rayleigh number or the boundary condition of the lateral walls affects the state
multiplicity.

The multiple steady states are grouped in independent solution sets. Many of the steady
states at α = 0° in these sets originate from the modes of the unstable stratification, which
Boullé et al. [8] showed in their paper where they considered adiabatic lateral walls and other-
wise identical parameters to our problem. Steady states that originate from these modes can
emerge only if the neutral Rayleigh number of these modes has been surpassed. As such, higher
Rayleigh numbers allow the emergence of more such states and also lead to a higher number
of solution sets. Higher Rayleigh numbers also lead to higher Nusselt numbers, a decrease of
the maximum angle span of the main solution set and a displacement of the minimum point
on the main solution set away from the symmetry axis of α = 0° in both directions, resulting
in two minima instead of one.

An adiabatic boundary condition is for the lateral walls leads to higher Nusselt numbers
and a larger angle interval where state multiplicity is realisable. On the contrary, a conducting
boundary condition leads to a smaller angle interval where state multiplicity is realisable and
effectively decreases the maximum angle span of all solution sets.

Based on the results of Boullé et al. [8], there are probably more steady states than those
presented in this thesis when considering adiabatic lateral walls and as such, future work on
this subject could reveal them. Moreover, it would also be interesting to investigate the effect
that different Rayleigh numbers have on the state multiplicity and the solution sets.
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7.2 Linear Stability Analysis

In Chapter 6, we studied the flow stability using a linear stability analysis with perfectly
conducting lateral walls and presented the critical curve of the Rayleigh number and other
critical parameters as a function of the inclination angle. The most important find of this
study was that the critical Rayleigh number increases with larger angles. On the other hand,
the flow is most unstable at α = 0°, at the lower branch of the state multiplicity where the
basic state is motionless with a stratified temperature field. The wavelength of the perturbation
is significantly higher at smaller angles, in particular on the lower branch at α = 0°. Larger
angles result to a much smaller wavelength instead. Most critical modes are stationary and
most critical oscillating modes are centered around α = 90° in the critical curve.

Moreover, we analysed the energy budget of the perturbation in order to determine the
dominant factor which drives the instability mechanism, which is either inertia or buoyancy.
With the exception of two modes close to α = 100°, there is a clear distinction between the
angle intervals of dominance of inertia and buoyancy, in which buoyancy drives the instability
with α < 86° and inertia with α > 86°. Thus, buoyancy is more dominant in the instabil-
ity mechanism at lower Rayleigh numbers. As for higher Rayleigh numbers, inertia is more
dominant and at larger angles it is contributing to the instability due to a deceleration of the
flow at two opposite corners of the cavity. Moreover, modes with ωc ̸= 0 are usually desta-
bilised by buoyancy rather than inertia. The regions with the strongest perturbations within
the cavity were located in the majority of the plotted modes at the boundaries of the cavity
and particularly at the corners.

Future work could include studying the flow stability with adiabatic instead of conducting
lateral walls, particularly in the angle interval of state multiplicity, centered around α = 0°.
Moreover, another interesting subject of research would be to study the effect of an inclination
around the y instead of the z-axis, or even a combination of the two. The tools that were
developed to conduct the linear stability analysis in this thesis are capable of performing both
of the aforementioned tasks.
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[38] Xin, S. & Le Quéré, P. 2001 Linear stability analyses of natural convection flows in
a differentially heated square cavity with conducting horizontal walls. Phys. Fluids 13,
2529–2542.



60 Bibliography


