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Kurzfassung

Simulationen offener Rénder sind bei der Betrachtung von Wellenph&nomenen von beson-
derem Interesse. Methoden, welche komplexe Koordinaten-Streckungen verwenden, kénnen
angewendet werden, um exponentiell abfallende, auslaufende Losungen fiir zeit-harmonische
Gleichungen zu generieren. Das Anwenden einer Fourier-Transformation auf das daraus re-
sultierende System im Raum fiihrt zu einem zeitabhéngigen System, welches mithilfe der
Finite Elemente Methode und passender Zeitschritt-Verfahren diskretisiert werden kann.
In dieser Arbeit betrachten wir verschiedene Varianten komplexer Skalierungen fiir die
Wellengleichung und die Klein-Gordon-Gleichung. Wir untersuchen den Effekt von unter-
schiedlichen Koordinatensystemen und Skalierungs-Funktionen und zeigen ein- und zwei-
dimensionale numerische Ergebnisse.
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Abstract

Open boundary simulations are the subject of great interest when considering wave phe-
nomena. Methods using complex coordinate stretchings can be employed to generate ex-
ponentially decaying outgoing solutions in space for time-harmonic equations. Applying a
Fourier transform to the resulting system in space leads to a system in time domain which
can be discretized using the Finite Element Method and an appropriate time-stepping. In
this thesis we consider different versions of complex scalings for the wave equation and
the Klein-Gordon equation. We study the effects of using different coordinate systems and
scaling functions and give numerical results in one and two dimensions.
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1 Introduction

The aim of this thesis is to discretize wave-type equations in both space and time, and
furthermore introduce a complex scaling method to simulate open domains. Within this
method we examine the effect of different scalings on the solutions.

The wave problem to be considered in this work is the following: Let Qi C R, d € {1,2,3},
be a bounded domain, z € R the spatial variable, and the time interval [0,T] for T > 0
with time variable ¢. We look for a solution p : Qiy X [0,7] — R of the wave equation with
the following conditions:

c%@fp(fn,t) = Ayp(z,t), x € Qunt, t € [0, 7T, (1.1)
p is outgoing, x € OQnt, (1.2)

p(z,0) = f(z), x € Qint, (1.3)
Ip(z,0) = g(z), z € Qint, (1.4)

with initial conditions f(z),g(x). The constant ¢ > 0 is the wave speed. The radiation
condition (1.2) should ensure that the solution p behaves like the solution of the problem
on the whole space R%.

To define and realize the radiation condition we transform the wave equation (1.1) into
the frequency domain via the Fourier transformation. This is done to be able to apply a
frequency-dependent complex coordinate stretching to obtain exponentially decaying out-
going solutions.

Definition 1.1 (Fourier transformation). Let f € L'(R). Then the Fourier transfor-
mation of f is defined by ([Juel5])

f)i= 715\ = [ fla)e ™ o keR
R
The inverse Fourier transformation of f s given by

F U (z) = 217T/Rf(k)eim dk, z €R.

With partial integration for a function ¢ € C*(M) with M C R, ¢(®) € L'(M), and o € N
it follows:

—

¢ (k) = (—ik)*d(k).
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1 Introduction

After the Fourier transformation is applied to the wave equation (1.1) in the time variable
t, considering w as a parameter, the transformed equation is the Helmholtz equation:

(—iw)2h(2,0) = Ap(a,w). (15)
We observe that derivatives in the time variable ¢ transform into multiplications with —iw.

Until now we have considered the problem on a bounded domain. After the transformation
in the frequency space we expand the Helmholtz problem on the whole space, because we
are interested in solutions, which do not reflect at a given boundary. Subsequently, we
apply the Perfectly Matched Layer (PML) method, also called the complex scaling method
or complex coordinate stretching, thus adding an absorbing layer surrounding the inner do-
main or interest, in which all initial values have compact support. This method is used to
damp the solution and absorb the energy, which is transported outside of the inner domain,
i.e. the complex scaling ensures exponential decay of the solution. After the is discretized
in space, we apply the inverse Fourier transformation. Subsequently, an appropriate time
stepping method is used. This corresponds to the vertical method of lines, i.e. the problem
is first discretized in space and then in time.

When using well-known spatial discretization methods like finite difference or finite element
methods, the computational domain needs to be truncated. The aim is thus to be able
to truncate the PML layer domain at a point far enough from the boundary of the inner
domain, such that no energy is reflected. A different variant for the spatial discretization
of the outer domain is to use Hardy space infinite elements. For the time discretization we
either use a second order time integration method or a linearization method to avoid usage
of additional help functions.

The PML method was given its name by Bérenger (see [Ber94]) in the 90s, who used it for
absorbing electromagnetic waves. Besides the complex scaling method, many techniques
for artificial boundary conditions (ABCs) have been developed, among which are the high-
order ABCs (see for example [Giv04,Nat13]). However, in this work only the PML method
is introduced and used.
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2 PML Method for the Helmholtz
Equation

In this chapter the concept of complex scaling for the Helmholtz problem on the whole
space is introduced. The variational formulation, which is later needed for the spatial dis-
cretization with finite elements, is derived and written in different coordinate systems.

We consider the transformed problem on an unbounded domain §2,

(—iw)?p(x) — A Ap(z) = 0, z € RY, (2.1)
Va(x) -n=0, x € 09, (2.2)
p fulfills a radiation condition for |z| — oo. 2.3

We select an inner domain of interest i, which is a compact set with finite boundary
and normal vector n directed outward. The radiation condition (2.3) is needed to ensure
unique solvability of the Helmholtz equation. One possibility is the Sommerfeld radiation
condition (see [Nan08],[Nan16]).

Qext = Rd\Qint

Figure 2.1: An example for domains for the Helmholtz problem (2.1) with Q = R?

The absorption of waves starts at the boundary of 0€2;,; and is done with a complex scal-
ing function, which is applied to the coordinate of the direction of the radiation. However,
in the following sections we introduce different coordinate systems (cartesian, radial and
curvilinear coordinates), and in each system the distinctive coordinate, which needs to be
scaled, is different. The one-dimensional case is the simplest, because there is only one
coordinate to scale. In higher dimensions different coordinate systems may be preferable
depending on the shape of the computational domain, which is discussed further.
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2 PML Method for the Helmholtz Equation

Figure 2.1 shows a possible configuration of the considered domains. The complex scaling
starts at the boundary of {2ins, in which all initial values have compact support. We thus
define the rest of the whole space as the exterior domain eyt := Rd\Qint. Next, we
distinguish the coordinate of the direction of radiation, £ € R, and consider a scaling
function o(w) : C — C, which we apply in the following way

& o(w)é.

In Qe the coordinate ¢ is multiplied with the scaling function o(w), i.e. a function in
(—iw). How this leads to a damping of the solution of the Helmholtz problem is shown in
Chapter 4. There are multiple ways to define the function o(w), thus changing the impact
on the solutions of various wave-type equations. In this work we consider functions of the

forms
o1(w) := —iiw’ (2.4)
oa(w) = B+ ——, (2.5)
g + 25
Ug(w) =1+ m, (26)

with «, 8, a;, B; € R. We call o1(w) the vertical, oa(w) the diagonal, and o3(w) the convo-
lutional scaling.

We define the complex scaled variable via a transformation
x — y(x), (2.7)

with v depending on the choice of coordinate system and the scaling function o(w).

2.1 Weak formulation

The next step is to derive the complex scaled variational formulation for the Helmholtz
equation in the three coordinate systems, as the weak formulation is further discretized
with finite elements (see Chapter 3). First, consider the unscaled variational formulation
of system (2.1-2.3) on the domain Q. Multiplying (2.1) with test functions p € C§°(£),
and integrating over € yields

(miw)? [ pe)ite) o= [ Ap(a)pla) do =0,

After partial integration, and including the boundary condition (2.2), we get

(—iw)? /Qﬁ(:z:)ﬁ(x) dz + ¢? /Q Vp(z) - Vp(z) de = 0. (2.8)

Note that in later sections other boundary conditions or a right hand side might be used.
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2.2 Cartesian coordinates

The Jacobian of the scaling (2.7) is denoted by

Jy(z) = (e, 20))
L) Oz; =1 dij=1sd

[ERRE!

We define the bilinear forms for f, g € H(f2), distinguishing between Qiny and Qexy:

amlf.9)i= [ F(@)() do (2.9
aext (f, g) = ; f(x)g(x) det Jy () dz, (2.10)
balf0) = | Vf(a)- Vgla) da, (2.11)
bext(f>g) = /Q (Jv(m)*TV f(:c)) : (Jy(x)*Tvg(x)) det J,(z) da. (2.12)

Within Qiys the bilinear forms are not scaled. Hence, the variational formulation of (2.1-2.3)
is stated as:

Problem 2.1. For fixed w > 0 find p € H(£2), such that

Czbint(ﬁaﬁ) =+ Czbext(ﬁaﬁ) = wZ (aint(ﬁ’ﬁ) + aext(ﬁ7ﬁ))v (213)
for all test functions p € H(Q).

Depending on the choice of «, the Jacobian J, and its determinant change accordingly. In
the following sections we derive various choices for v based on different coordinate systems.

2.2 Cartesian coordinates

In this section we consider the Helmholtz problem on R? on a rectangular domain ;¢ =
[—R1, Ri] X [—R2, R2] as shown in Figure 2.2. The concept can of course be applied to
higher-dimensional problems. In this case the (z1,z2)-coordinates are scaled separately,
since, depending on the position, the direction of radiation is either one or both of the two
coordinates.

For x = (x1,x2) we define the complex scaled variable as v(x) := (v1(z),y2(x)) via

ja(w)xja zj > Ry,
’YJ(I) =N Ty, Zj € [_R]’Rj]v ] € {172}’
—jo(w)zj, z; < —Rj.
We put the subscript of the scaling jo on the left side merely to clarify that only the

parameters «;, 3; of the scaling may vary in each direction, and not that we use e.g. the
vertical (o1) and the diagonal (o2) scaling in the same example.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 PML Method for the Helmholtz Equation

N

oo o

Q8
ext

Qint

1
1
1

A\

1
1
1

A\

Figure 2.2: Cartesian coordinates

The Jacobian of the scaling is given by entries [PS10]:

0
0v(x)
Oxo

with determinant det J,(z) = ‘9(’9751”) ()

8
us_ o

ext*

For example, for z = (:El,:EQ) € Ol we have

it holds % = jo(w) and %2

0o

Qext fa

\

Qext

Oz

)

(2.14)

The exterior can be decomposed via Qeyy =

Oy(z)

oz

= —90(w), ie.
Furthermore, rewrite the bilinear forms for f,g € HY(Q):

9y(x) v(x)
81‘1 81‘2 dx,

0f(x) 0g(x

best (£, 9) /

iO

0g(x

dg(x) n

),

83:2 (91’2

1

of (x

)

= 10(w) and

1

agg) = 1. For z € ngt

the sign can be positive or negative.

)) 10(w) dz
9g(x)

I,

1 f(x)
10'( 8.771 10

°°KJ

f(z
( 1 flx) 1
10(w) 8:131 10(w) Oz

1
(w) Oz

0f(x) 0

20’(&)) 8%2 20’(0.)) 8372

o) |

of(x)

(z)

dg(x)

O (z) Iy(z) ,

) 0ot do

L)

8:31

81’1

81'2

(

8352

%

6:132

)

8([31

8{[}2

One example of a cartesian PML is given in [KKS12], where only the three-dimensional
case with the diagonal scaling function is discussed.

Compared to other coordinate systems the cartesian complex scaling is typically easy to
implement. It is used to apply the PML method to problems where it is useful to define
the interior domain as a rectangle.
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2.3 Radial complex scaling

2.3 Radial complex scaling

We further do not assume the domain of interest to be rectangular. For d € {1,2,3}
let Q@ C R? be an unbounded open domain and split it into an interior domain, a circle
Qine = QN Br(0) with radius R and the center at the origin, and an unbounded exterior
domain Qeyt = Q\ Qe with interface I' = 0Bg(0).

For each z € Qext UT there exists a unique pair (£,x) € Ry x I, such that

x=ux(£,X) = <1+]§%) X.

We write £(x) and x(x) for the inverse mappings.

Qext

' = Bg(0)

Figure 2.3: Radial PML

Figure 2.3 illustrates this setting. In correspondance to considerations from before, we have
that £ is the variable of the direction of radiation. We further define the complex scaled
variable

() =

T, x € Qing,
.%‘(U(W)f,f(), WS Qext'

Now, we can formulate the variational formulation of problem (2.1) on the whole space.

2.3.1 2D example in polar coordinates

The use of a radial scaling in the two-dimensional case suggests to transform the problem
into polar coordinates and only apply the scaling to the radial component. We parametrize

the interface I" by:
. cos
x=o¢(n) =R < 7 > :

sinn
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2 PML Method for the Helmholtz Equation

for n € (—m,m). Next, we consider the coordinate transformation ¥, : Ry x (—m,m) —
Qext ul:

o(&,m) = (1 + é) e(n).

We have that
B —sinn
Dep(n) = R( cos) > :

The Jacobian and its inverse are given by

DV, (& n) = <11%90(77), <1 + é) DSO(”)) - (ﬁiﬁfz _(;R:S)czisnnn)’

1 1
DU (€.5) ! = R CO8T) 7 sinn >
(DT, (& m) <—R1+€ sinn R%rgcosn

The determinant is calculated as (see [NW19)):

jdet D, (6] = (14 5 ) v/l det (Do Dot | = (14 5 ) 2.

Further, we define the surface gradient of a function f:I" — C:

VeI = gt (o) Vot o ) (2.15)

We have that
7(‘IJ§0(£’ 77)) = qj@(a(w)ga 77)7

and combining the coordinate transformation and the scaling results in:

Do w6 = DV (ot (78 7).

1
6w ) = (6 V) Drlo@em)

det D(yo W,)(&,n) = o(w) det DV, (o(w)&, n).

Let f,g € H(Q). The exterior bilinear forms of the variational formulation (2.13) can now
be written in the coordinates £, x:

fatengteten) (14 755 ) ae),

bonl1,0) = iy [ b6 ) 5ete ) (14 75 ) ate

+o(w) /R  Vef(a(6.%) - Vrgla(é. %)

tess(.9) = o) |

R+XF

1 + U(W)E
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2.4 Curvilinear coordinates

The integration over I' of a function h : I' — C can be understood as:

/ h(R) dk = / h(o(n)R di.
r o((=m,m))

To separate the equation in radial and tangential components, we introduce a help function

_ vFg(l‘(& )A()) )

U(w(§7§<)) 1+ L}"%)f

In weak form we obtain the system in Qeyt:

U Of 0 ()
o L Sl (1+ 108 aes

o(w)

to(w) / Vil 0)ula( ) d(E5)

2 o o o(w)§ AN
o) [ seteatate ) (1478 ) a0 =0

>

o(w)§ - ) A o ) o
/R+XF <1 + R) u(z (&, %x))u(x (€, %)) d(€, %) —/ Vrg(z(&,%)a(z(£,%)) d(€, %) =0,

R+XF

2.4 Curvilinear coordinates

We want to be able to allow inhomogeneities of the boundary of the domain of interest, but
not necessarily restrict ourselves to rectangular domains, which would need the cartesian
complex scaling, or to circular domains for which we could use radial coordinates.

Curvilinear coordinates generate a special coordinate system often used in differential ge-
ometry, and are a generalization of orthogonal polar coordinates. In order to write the
variational formulation of the Helmholtz problem in this coordinate system we have to
rewrite the gradient in curvilinear coordinates, and then apply the complex scaling. In the
following we introduce the overall concept of curvilinear coordinates for arbitrary dimen-
sion d € N and further implement it in the two-dimensional case.

Let Q¢ be a convex bounded domain in ]Rd, ' = 9y a smooth manifold in R with
outer normal n, such that the mapping

R I' — Qe = RO
. +A>< ) ext - \ int, (216)
(€%x) = x+Ln(x),
is a bijection. Let the diffeomorphism ¢ be a parametrization
M —T,
: { ) (2.17)
n =X

such that the columns of Dy(n) = (7;)i=1,...,4—1 are orthonormal tangential vectors 7;. This
embedding goes from a set M € R?~! to the manifold I', and corresponds to the embedding
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2 PML Method for the Helmholtz Equation

Qext

Figure 2.4: Curvilinear coordinates

in the foregoing section.

We can write

D(no¢(n)) = Do(n)(ki(e(n))) = (1iki(e(™)),. .., Ta-1ka-1((n))), (2.18)
with curvatures x;. Furthermore, define the function ¥, : Ry M+ — R,

and compute its Jacobian, inverse Jacobian and determinant, which we make use of later
on,

J(&,n) == DUu(&, 0(n) = (n(p(n), (1 + K(e(n))De(n))

J1 = di 1 A 1 T
(€)= diag (n(@(n)), (A wrapr v IR S md_l(w(n))£> ’
d—1

det J(&m) = [J(1 + m-(@(n))&)\/! det (De(n)" De(n)) |-

i=1

The gradient of a function A in curvilinear coordinates can be written as

1 1

Voh = J TV e h = -
€= L+ k1€ 1+ Ka-1€

9 1o+ Dy(n) diag ( ) Di(n)"'Vrh

23

where we used the surface gradient Vr defined for a function f : I' — C via:

T
Vrflen)) = (Dcp(n)T) Viu(fow)(n), (2.20)

10
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2.4 Curvilinear coordinates

whereas AT := (ATA)7'AT denotes the pseudo inverse of a matrix A € C¥4! with
full rank. The transformed integrals of the Helmholtz problem on a bounded domain for
a,b € R can now be written as

~ d—1

[I'((a b)xT) Vi) ) dr = /(a b)xT 375(5’ )86 (&%) ZHl(l + ri(%)€) d(§, %)

= 1#]14—/{ x)&

/ . ZHH"’]X Vrp(£,%) - i Vrp(€, %) - 7 d(€,%),

2 ) dz = 1+ K , %),
“ [I/((a,b)xl“) pp e /(ab H FrRBIDPEXPE ) %)

whereas the integration over I' of a function h : I' — C can be understood as

[ 6 ax - / o O[3 (Do) Do) |

Example in 2D: In the two-dimensional case we have only one curvature x and one
tangential vector 7, an it thus holds

Ve (§,m) = (n(e(n), 7(1 + £(e(n))E)),
det DW,(&,n) =1+ K(X)E,

such that we can write the Helmholtz problem as

/ <aﬁ (e >%<57ﬁ)<1+m(ﬁ>5>+1Avrﬁ(§,f<>~7vpﬁ<f,fc>-f) d(e,%) =
(a,b)xT

o€ o€ 14 k(%)
2 / (14 k(R)E)P(E, R)F(E, %) d(E, %).
(a,b)xT
(2.21)

The next step is to apply a complex scaling to the to the radial coordinate, £ — o(w)&, in
the transformed equation (2.21). The scaling functions o(w) have the same structures as
mentioned in the foregoing Section 2. The thus defined function v,,(£,7) = ¥(o(w)E, X)
has the Jacobian J, = Dv,, = (n,T(l + /@U(W)f)). For the next step we omit the
arguments to simplify the notation. Applying the complex scaling to the transformed
equation (2.21) yields

/ (ap Opltrowe | ow)
R, xT

T TV VT ) e =

(2.22)
P [ o)+ row)e)p dg,R).
Ry xI

11
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2 PML Method for the Helmholtz Equation

In order to separate the system in integrals of tangential and normal parts we introduce
an additional variable u via

Vrp-t

T 1y /w(w)gg(w)'

iwuo(w)

This leads to a system with test function @ corresponding to w,

/ 0p Op 1 + ko (w)é
R

Ry xI’

+(iw)2/R . o(w)(1 + ko(w)E)pp d(€,%) =0, (2.23)

—iw)? rko(w)é)u - o (w X w DT - o (w x) = 0.
( >/]M<1+ (@)E) <>d<s,>+/R Vi 7 - io(w) d(€,%) = 0

+><F

In the subsequent chapters the behavior of different scalings o(w) is considered based on
this system in curvilinear coordinates.

12
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3 Discretization

To discretize the Problem (2.1) for cartesian, radial and curvilinear coordintaes in space
and time, we use finite elements in space in i, and different time discretization methods.
The exterior domain is either discretized with finite elements or Hardy space based infinite
elements.

3.1 Finite Elements in (¢

The spatial discretization in the inner domain is done using the Finite Element Method
(FEM) (see e.g. [CiaT78]). It aims to find a solution of the variational problem (2.13) on a
finite-dimensional subspace X}, of the solution space X:

Pn € Xy, solves  bing (P, Pn) = w?aint (P, Pr),  Pn € Xn. (3.1)

We decompose the domain ;¢ into elements T' of the triangulation 7 = {T'} and the set
of nodes N' = {z;}. Common elements are trianlges and quadrilaterals (2D) or tetrahedra,
hexahedra and pentahedra (3D) forming a mesh. They can be designed following the
prerequisites from [Cia78]. By means of this setting we define the finite element space X},
(see [Sch18]) of order k € N:

Xp, :={v € C(Qnt) : v|7 is a polynomial of order k VI € T}

Moreover, we choose a basis {t;}i=1,.. n of X}, and we can write the solution of problem
(3.1) as pp, = Zf\; 1wy € Xp,. The basis functions are defined with a support supp(y;) =
{z € Q| ¢i(x) # 0}, which is as small as possible. A convenient choice of basis functions
is the nodal basis via v;(x;) = 0; ; with the Kronecker-6. We further define the matrices

A

h = (@ij)ij=1,..N With a;; 1= aint(i, ¥j),
Bp, = (bij)ij=1,...~ With b;; := bing (¢, 15),
and up, == (u;,...,un)? solves the system of equations:

(Ap — w2Bh)uh =0.

Different basis functions have disjoint support on the triangulation, and non-corresponding
entries in A, and By, vanish, such that the matrices are sparse.

13
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3 Discretization

3.2 Infinite Elements in Qg

An option would be to also use finite elements for the exterior domain, which is done for
the implementation of the examples in 1D. However, this method produces an additional
truncation error.

To avoid the truncation error, we use infinite elements based on Hardy space infinite ele-
ments (see [NW19],[HL09]). The exterior coordinates £, x and a tensor product ansatz space
is used. Figure (3.1) illustrates this idea. The space is composed of boundary functions as
traces of interior basis functions, and basis functions in the normal coordinate:

with special polynomials p; of degree j for some N € N. The interior and exterior discrete
space need to be coupled, such that the resulting space is equivalent to a subspace of H'(2).
To obtain this we indentify an interior basis function with non-vanishing trace on I' with
an exterior basis function.

Figure 3.1: Tensor product basis, and degrees of freedom for triangular finite elements of
order 2 and infinite elements of order 3.

By means of discretization we get a system of equations of the form
Z qi(—iw)Miuh(t) = 0, (3.2)
i

fori=1,...,k,k € N with rational functions g;.

3.3 Transformation in time domain

The inverse Fourier transformation (1.1) takes the complex scaled system (3.2) from the
frequency space back to the time domain, where multiplications with (—iw) transform into
derivatives in time. The resulting equation can be written as

> () Myup(t) =0, (3.3)

%

14
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3.4 Linearization

i.e. as a sum of rational functions ¢; in derivatives of time multiplied with correspondent
matrices and solution vectors for i = 1,...,k,k € N. Due to the fact that ¢; are rational,
we have various options concerning the time discretization. We can write this equation as
a first or second order system and define additional functions to dispose of fractions with
time derivations in the denominator. Both concepts are introduced below.

3.4 Linearization

The wave problem includes second order time derivatives. Applying the complex scalings to
the transformed Helmholtz problem and transforming back from the frequency space can,
as seen above, leave the variational formulation with terms with time derivatives in the
denominator. It can thus become rather difficult to skillfully design help functions in order
to avoid those terms. To handle this problem, we thus introduce a method to linearize the
second order problem and then use the implicit Euler method.

As an example consider the following problem for Mgy, My, My € C"*™ u, f € C™:
Mou(t) + My0yu(t) + MadPu(t) = f(t).

For ease of notation, write
Mou + Mlu/ + MQUN = f. (34)

Introducing v := u’ leads to the new system,

Mou + Myv + Moy = f,

W —v=0.
This can be equivalently written as
Mo M1 u 0 M2 u’ o
0 ) )= (2 %) ()
We thus define the matrices
~ My M, = (0 My
M._< ! In), M._(In ! )
with which we can rewrite the problem as a first order equation,
(NI + 0,MD)u(t) = (),

with M, M € C?"*2" f(t),u(t) € C*". Furthermore, we can use first order time integration
methods such as the implicit Euler method.

The implicit Euler method for some start vector ug € C™ and time step 7 € R, is defined
by
;41 ‘= Uy — T(M + TM)_I(M’U,Z' — z‘+1) = E(ui, fi+1,7'), (3.5)

15
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3 Discretization

where f; := f(i7). For our purposes, the right hand side f may be equal to zero. In each
step of the Euler method we have to apply the inverse of (M + 7M) to a given vector.

The motivation for using this method rather than some second order time integration is
that it enables us to solve systems like

Mou + Mlu/ + Mgu// + A 0, (36)

_—u =
a+ B0
or systems with more complex terms of powers of time derivatives in the denominator with-
out having to introduce new help functions in the variational framework. As an example
set a, 8 =1 and A = [,,. Introducing

v=1,

u—aa = Bd,

yields
A MO M1 A B 0 M2 0
M = 0 I, 0 , M=| -, 0 0
In 0 —OéIn 0 0 _BIn

Due to the special structure of the matrix (M + TM) the application of its inverse can
be realized using a Schur complement. This reduces the inversion of the large matrix of
dimension 3n X 3n to the inversion of a n X n matrix. Note that this is independent of the
number of additional variables needed to linearize the given problem.

To this end we implement a Python class with the following functions:

class IELP(TimeIntegrator):
??’Implicit Euler for linearizable Problems’’’

def __init__(self,Vh,Vt,Sh,St,tau,u0,f=None):

def InvertSchurComp(self,inversetype,freedofs = None):
# realize the inversion of the Schur complement

def Step(self):
# one time step of the implicit Euler

A~ccording to the motivational example above we assign the values, partitioning M and
M:

Vh = [My, M;, A], Vt = [None, M>, None],
Sh = array([[0,1,0],[1,0, —al), St = array([[-1,0,0],[0,0,51]).

We then call the function IELP (Vh,Vt,Sh,St,tau,u0) and optional source term with time
step tau and initial value u0:

16
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3.5 Second order time integration

timeint = IELP(Vh,Vt,Sh,St,tau,u0)

timeint.InvertSchurComp ()

i=0

while True:
timeint.Step()
Redraw()
i+=1

The inversion of the Schur complement is done only once.

3.5 Second order time integration

Instead of linearizing and using the implicit Euler method we can write (3.6) as a second or-
der problem and use a time-integrator for second order problems. For the one-dimensional
problems we further use the following second order method and employ the linearization
method to the two-dimensional cases.

We now introduce a second order time integration method of the following structure. Con-
sider the problem
Myu + Mlu' + MQU” = 0. (37)

We use the approximations

U1+ 2w+ Ui

u(tl) ~ Ug 4 )
Uj+1 — Ui—1
Ui — 2U; + U1
() o) = LT 2T L

and define the matrices
2

A ::TZMO + %Ml —+ MQ,

72

B =My — 2Mp,

7_2

-
C:=—My— =M; + M
7 o= 5 =+ My,
such that it holds
Auir + bu; + Cu;—q = 0.
After reformulation we get
Uj+1 = —A_lBui - A_ICui,l.

For small time steps 7 it is thus crucial to ensure invertibility of the matrix A, which is
approximately Ms for small time steps. In Chapter 4 we see how one can choose (pos-
sibly needed) help functions to provide invertibility. We will see in Chapter 6 that the
linearization method proves to be much faster regarding computational costs.

17
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4 1D Klein-Gordon and Wave Equation

The aim of this chapter is to write the variational formulation for the complex scaled
Klein-Gordon problem in one dimension with the scaling functions o;(w) (2.4) from before.

4.1 Motivation

The motivation for considering the so-called Klein-Gordon equation comes from wave guides
in more dimensions, where the equation is implicitly included. To derive the Klein-Gordon
equation we examine the Helmholtz equation in two dimensions on a wave guide with the
shape:

0

By separation of variables the unknown of the Helmholtz problem can be split into the two
cartesian coordinates, p(z,y) = p(z)q(y), and we can write the Helmholtz equation (with
wave speed ¢ = 1) as:

—AyyP(2)g(y) — w?p(r)g(y) = 0.

Additional calculation yields
=" (x)a(y) — p(=)q" (y) — *p(x)q(y) = 0. (4.1)

Dividing by p(x)q(y) gives

This leads to the eigenvalue problem for y € [0, 7],
—q"(y) = Ma(y),
solved by q(y) = cos(ny),n? = \,n € N. Integrating this into the equation (4.1) yields
—p" () cos(ny) + p(x)n® cos(ny) — w?p(x) cos(ny) = 0,

which can be written as

—p"(z) — (W? — n®)p(z) = 0. (4.2)
Equation (4.2) is the so-called Klein-Gordon equation, which reads as the Helmholtz equa-
tion for wave numbers ky(w) = Vw? — n? (and not only kn(w) = /@?).

19
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4 1D Klein-Gordon and Wave Equation

4.2 The problem

Let © = Qiny U Qpm1 € R a bounded domain and the interface I' = i N Qppy. In this
chapter we consider the following version of the so-called Klein-Gordon equation in space
and time in one dimension:

c%@fp(x,t) = 92p(x,t) — pot(z)?p(z, 1), x € Q,tel0,T], (4.3)
Ozp(z,t) =0, x € 00, t € [0,7], (4.4)
p(z,0) = f(x), x € Qing, (4.5)
Op(z,0) = g(x), z € Qint, (4.6)

which reads as the wave equation with the additional potential term —pot(z)%p(x,1t),
R D T > 0, and wave speed ¢ > 0. The initial conditions f,g have compact support
in Qipt. The Klein-Gordon equation corresponds to (4.2) in the motivation above.

After the Fourier transformation is applied to the equation (4.3) in the time variable ¢,
considering w € R as a parameter, the transformed equation (with wave speed ¢ = 1) reads
(iw)*p(z, w) = 87p(z,w) — pot(z)*p(z,w),

which can be rewritten as
— 82p(x) — (w® — pot(z)?)p(z) = 0. (4.7)
Solutions of the Helmholtz equation have the form
p(x) = exp(i\/o?x),

and, if we define the potential term as a constant function, the solutions of the Klein-Gordon
equation have the representations

e w > pot = p(x) = exp(i/w? — pot?x)
e w < pot = p(z) = exp(—+/pot? — w2x)

The next step is to derive the variational formulations of the Klein-Gordon and the Helmholtz
problem with different scaling functions. The goal is to receive sufficiently damped solu-
tions.

The sketch in Figure (4.1) shows the propagation of the real part of a wave in 1D, i.e. the
solution of a Helmholtz-type problem with an initial value with compact support in Q.
After a few time steps the wave moves in the directions of the boundaries of iy, where
the PML Q1 begins. At the interface the real part of the wave should be damped due
to the scaling and decrease exponentially, such that no energy is reflected from the outer
boundary of Q. Without the PML the waves move on towards the outer boundaries
where they are reflected and proceed back into the inner domain.
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4.3 Vertical scaling

Qpmi Qing Qpmi t =13 Qing

Figure 4.1: Propagation of waves with (left) and without (right) PMLs

4.3 Vertical scaling

We consider the vertical scaling function,

17 xEQinta
o1(w) = o LeQ
pmls

—a,
with @ € R, and examine its influence on the Klein-Gordon equation from system (4.3)
in the variational formulation. Moreover, we define the function pot(x) as a piecewise
constant function with support in €. This way it acts as a potential change. The
following illustration explains why we call this the vertical scaling.

() ()

! R(z)
Qint mel Qint Q(:xt

Figure 4.2: Scaling function o1 (w) on the left, and scaling o2(w) (4.4) on the right side.
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4 1D Klein-Gordon and Wave Equation

First, we multiply the terms with a test function p, integrate over the domain 2 = Qi U
Qpm1 and use partial integration on the Laplacian term. Remembering that the variational
formulation is not altered in )i, by the scaling function, we now only consider the changes
within Qpm1. Note that the potential function pot(z) is constant in 1, and we can thus
omit the dependence on z,

(i) [ i@ do+ [

pml

O0pp(x)0pp(x) dx +/ pot?p(z)p(z) dz = 0. (4.8)

pml mel

Corresponding to the bilinear forms (2.1) we define the following bilinear forms for f,g €
H'(Q)

e (frg) = /Q pot? f(z)g(x) da,

int
coil£19) 1= [ pot?f(w)g(e) det 1, (1) da.
The weak formulation of the Klein-Gordon problem is now stated as:
Problem 4.1. For a fixed w > 0 find p € H*(Q), such that

Pbint (P, D) + bext (B, ) + Cint (B, ) + Cext (P, D) = W (aint (D, ) + aext (B, D)),
for all test functions p € H'Q.

In the following we only consider the exterior bilinear forms. Next, the scaling function

is applied to the spatial variable x, such that we can again denote the scaled variable as

~v(x) = o(w)x. Note that the scaling function o(w) contains the factor —iw, which, after

transforming back from the frequency space, translates to a derivative in the time variable:
o o

— o
Taking each integral of (4.8) and applying the scaling function to the spatial variable leads
to a number of new integrals, corresponding to 2.1. We thus set

1 «
L~ . \2 ~ ~
ex ) = \— > I d
te(5.9) = (1) [ (@) ) da
= —zw/ e H(x)p(x) dx
- Qo 02p p ’
—iw —w «
bex A;N = —— 0P c————0p d
+(5, D) /Q T p(z) - —=——0:p(z) dz

1
~ iw / ~0,p(x) - Dupl(a) da
Qext «Q

ot «

Defining the help function v := P —p, the third term can be written as

—iw
A~ 2 A (O 2N
Cext(pap) = pot p(l‘)ip(ﬂj‘) dzx
Qext —ww

— [ pot av(a)pta) da.
Qext
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4.3 Vertical scaling

The help function v and its test function w therefore have to satisfy the following equation:
iw/ v(z)w(x) do +/ pot ap(z)w(x) dx = 0. (4.9)
Qext Qext

The help function v is introduced to dispose of the fraction in —iw.

The implementation is done in Netgen/NGSolve, where one can easily define compound
finite element spaces with trial functions from different spaces:

h1l = H1l(mesh,order=order,complex=False)

hipml = H1l(mesh,order=order,definedon=mesh.Materials(’pml’),complex=False)
12pml = L2(mesh,order=order-1,definedon=mesh.Materials(’pml’),complex=False)
fes = FESpace([h1,12pml])

p,v = fes.TrialFunction()
q,w = fes.TestFunction()

In the code snippet above we define fes as the compound finite element space with corre-
sponding trial and test function pairs.

4.3.1 Helmholtz

The vertical scaling —5- performs well on the Helmholtz equation, but as is shown later it
does not lead to a damped solution in the case of the Klein-Gordon equation. Applying
o1(w) to the solution yields:

p(x) = exp(i\/ﬁal (w)x) = exp(—ax).

Hence, this scaling is optimal for @ > 0 and performs equally well for all w, because
the solution has exponential decay independent from the frequencys. For the Helmholtz
problem it is thus primarily not necessary to consider additional scaling functions, which
may lead to a larger system due to more needed help functions.

4.3.2 Klein-Gordon

The solution of the Klein-Gordon problem, however, can not be damped with o1 (w). First,
we consider the case w > pot. We have

/432 t2
o1(w)ivw? — pot? = —« u7

w
N——

>0

which, integrated into the solution, yields

w? — pot?
p(z) =exp | —a—2x | .

w
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4 1D Klein-Gordon and Wave Equation

This leads to exponential decay for o > 0. In the other case, if w < pot, the solution is

p(x) = exp ( — v/pot? — w? (;—j)x) = exp < - ia'pOtQ_WZ:r>

w
and thus oscillates for o > 0 and does not decay.

In the first case the solution is damped exponentially with « > 0, but for small frequencies
the solution oscillates and is not damped. Thus, other scaling functions better suited for
this problem are further considered.

4.4 Diagonal scaling function
A different approach for a scaling function is (see Figure 4.2):

17 MRS Qintn
o2(w) = —fBiw + «

, T E mela
—1Ww

with «, 8 € R. Applying o2(w) to (4.3), we get the integrals:

Gext () = (—iw)” /Q P (W) d‘”

=i [ Giepte) o+ (i [ Gile) (o) do

2 _
Qext C 1w

The second term reads as

b (5. ) = /Q (%) 0u(x) <B(_Z‘)"+a> O(x) (W) dz

o \ B ) O (2)0p(z) dz

| e
— iw / (—iwey + c2)g(2)d,p() da
w)?

ext

= (—i / c19(x)0xp(x) dz — iw/ c29(x)0,p(z) da,
Qext
0zp
—iw) +
sponding test function z. Together the functions fulfill the following equation:

whereas the help function g is defined via ¢1(—iw)g + cag = with the corre-

(—iw)Q/Q ca1fg(x)z(z) do — iw/Q (c2f + c1a)g(z)z(z) dx

+ / cog(x ) do — / Oxp(z = 0.
Qext Qext
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4.4 Diagonal scaling function

The third term reads as

ot (P, ) = /Q  pot?h()p(a) (5(_“"”“) da

—iw

— [ Spotti@ip(e) dot [ pot?i(a)p(e)-S ds
Qvext Qext —ww
. ., . . pot « )
With the additional help function v defined by the equation 0;c3v + c4v = =———p and its
—iw

corresponding test function w, the third term now reads:

| vottitwpte) di = [ porita)i () o

= Bpot’p(z)p(z) dz —|—/ pot(—iwesv(x) + cyv(z))p(z) d

Qext Qext
= Bpot?p(x)p(z) dz — iw/ cspotv(x)p(z) dz
Qext Qext

+/ capotv(z)p(x) dz,
cht
whereas the help function v has to fulfill

(—iw)Q/ csv(x)w(z) doe — z'w/ cqv(x)w(z) doe = / potap(z)w(z) dz.
Qext Qext Qext
Hence, the problem contains three trial functions: the solution p, and the help functions v

and g, leading to a larger system matrix than in the case above.

4.4.1 Helmholtz

Ko
w

In the case of g2 (w) we have iwos(w) = iw (8 — 2) = Biw —a. The real part of the solution

of the Helmholtz equation,

p(z) = exp(iwos(w)z) = exp(fiwr — ax)
= exp(—ax)(cos(fwx) + isin(fwz)),

is thus decreasing exponentially with @ > 0 and 8 € R. The exponential decay is not
dependent on w, but the oscillation is.

4.4.2 Klein-Gordon

If w > pot, the scaled solution of the Klein-Gordon equation takes the form

plw) = exp (ivw? —pot? (8- ) z) =
- (Zﬂ Vit = potte - O‘@l) (4.10)

= exp (—a'WLWm> (cos <ﬂ\/w2 — pot%) + isin (ﬂ\/wQ - pot%)) ,

w
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4 1D Klein-Gordon and Wave Equation

and the solution has exponential decay for o > 0 and 8 € R.

For w < pot, the solution is

/ t2_ 2
p(x) —exp( By pot? —w?r + ia+——— po d ),

and the solution thus decreases for § > 0 and a € R.

Again, considering (4.10) we observe for high frequencies, using the result
2 _ t2
lim Y22 TPOY g
w—r00 w

that the exponential decay is not dependent on w and the solution converges to 0 for
x — 0o. Again, the exponential decay is not dependent on w, but the oscillation is.

4.5 Convolutional scaling
The third considered scaling function is the so-called convolutional scaling:

1) HANS Qintv

o3(w) = ks a+ 2

ﬁ1 Boiw

for a1, a9, as, B, P2 € R. We make the specification a; = 0, as we later see from the
explicit solution that this additional parameter deteriorates the decay of the solutions of
the Helmholtz and the Klein-Gordon problems.

, T E meb

First, rewrite the scaling function in the following way:

a .
az + 55 agiw — ag

Bi — Beiw  Briw — Ba(—iw)?’

The first term of (4.3) thus reads

a2

5. D) = (—iw)? — d(x)p(x) dx
veal.9) = () [ L) a
— (—iw)? /Q  cog(a)p(e) de — (~i) /Q (@) da,

whereas we have introduced two new help and corresponding test functions functions (g, z)

and (v, w) defined via g := pand v := 5 fulfilling

B1 + B2(—iw) —B1(—iw) — f2(—iw)?

brg(a)z(o) do — i | Gag(o)z(a) o [ pla)a(a) do =0,

Qext Qext
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4.5 Convolutional scaling

and
iw Bro(z)w(z) do — (—iw)? Bov(z)w(z) do — / p(z)w(z) de = 0.
Qext Qext Qext
The second term reformulates to

bext (P, P) = i / A

Qo —2(—1w) — a3

— (—iw)? P2 p(x)0,p(x) dx
(iw)? | = 0p()D,p(x) d

—iw) — ag

O02p(2)0pp(w) da

— i [ Bustula) do— (<iw)? | Pasdaile) do.
Qext Qext

1

—ag(—iw) — ag

using the help function s := 0,p with corresponding test function r fulfilling

iw/ ags(z)r(z) d —/ azs(x)r(z) dz —/ Ozp(x)r(z) do = 0.
cht cht cht
The third term now reads

coxs (P, B) = / pot2ang(2)j(z) dr — / potZagu(x)p(z) da.
Qext Qext

Hence, we need three additional test functions.

4.5.1 Helmholtz

For the convolutional scaling we calculate

. W — Q3
#00sl) = B i
_ —asf — afaw? Z.a2ﬁ1w — agfaw
B + B3 Bt + Biw?

Integrating this into the solution yields

() = ex <—04351 — apfow? x) <COS (0425100 — 04352wx> +isin (Oé2ﬁ1w - agﬁzwx>>
P P\ 8+ g B2 1 flu? [ '

The solution thus has exponential decay if «s, ag, 51, 82 > 0.

For high frequencies we observe

. —a3f — azfow? fo% . afiw — azfow
lim = lim

Ww—00 /B% + /B%wQ _57 w—r00 /8% + ﬁ%wQ

=0,

such that the decay and the oscillations become independent from w.
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4 1D Klein-Gordon and Wave Equation

The additional parameter cv; mentioned above would increase the oscillations and is there-
fore omitted. For the diagonal scaling, however, it is useful.

We observe that the vertical scaling function o;j(w) is a special case of o3(w) if we set
ag = 0,a3 = «, 1 = 1, and B = 0. Also, the diagonal scaling o9(w) is a special case of
o3(w) if we set a1 = B, a0 =0,a3 = «, /1 = 1, and f2 = 0.

4.5.2 Klein-Gordon

Again, we start by considering the case w > pot, such that we have for the solution

P(z) = exp (itxsazuv QJZ_Ixﬁ2x>

Briw + [ow?
a3f1 + agfw® /w? — pot? <04251 —a3b 5 )
=eX — x cos | —5———\V w* — pot‘x
’ < e w G VTP

+isin (0‘251—0‘352 Vg potzx) ) 7

B3 + B3w?

and the solution has exponential decay if ao, as, 51, 82 > 0.
If w < pot the solution yields

~ a3 — Qolw 3 3
T) = ex —_— ot — w=x
p(x) P (Blzw e VP >

_ 2

3% + Baw? Fw + Brw?
. o + a3fl )
+ism | ————5—5— ot — w2x .
( P+ Bt VP

Thus, we need to ensure that agfs — s > 0 for as, asg, 81, #2 > 0 for the solution to have
exponential decay.

For high frequencies we observe

. _agfi+ anfow? \/w? — pot? _ o

w—00 IB% + ﬂ%uﬂ w ,82 '

and we find that the exponential decay is independent from w. The oscillations also become
independent from w as we observe

m bl e

wW—00 ﬁ% + B%Qﬂ
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4.6 Comparing the scaling functions

4.6 Comparing the scaling functions

The question arises why different scaling functions are considered and for which examples
they are appropriate. In this section we want to argue why in special cases it makes more
sense to use the second (4.4) or the convolutional scaling (4.5) instead of the vertical scal-
ing (4.3) even though the variational formulations become more complex and more help
functions have to be introduced, which further enlarges the system matrix.

In Example 1 the vertical scaling is applied to the Helmholtz problem, and in the second
example we show how the vertical scaling fails to damp the solution of the Klein-Gordon
problem. In the third example we consider a problem to argue for which settings the con-
volutional scaling performs better than the diagonal scaling.

All implementations and plots are done within the Python interface NGS-Py of the finite
element software Netgen/NGSolve!, which includes a mesh generator (see [Sch97],[Sch14]).

Since we already rewrote the problems as second order systems in time, we use the second
order time integration method from Section (3.5).

"https://ngsolve.org/
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4 1D Klein-Gordon and Wave Equation

4.6.1 Example 1

1.2

0.2 : ‘ : : 0.2 ‘ ‘ :
-10 -5 0 10 -10 -5 10
X
=4.5
1.2 ; ; ; ; 1.2 ; : .
1 1
0.8} 0.8}
—~ 067 067
X Ke)
= 0.4t 04l
0.2} 0.2k
0 0
0.2 ‘ : : : 02 ‘ ‘ :
0 -10 -5 0 10 0 -10 -5 10
X
=6.9
1.2 ; ; ; ; 1.2 ; : .
1 1
0.8} 0.8}
06} 06}
X Ke)
04| g4l
0.2} 0.2}
0 0
0.2 ‘ : : : 02 : : :
0 -10 -5 0 10 0 -10 -5 10
X X

Figure 4.3: Solution of Helmholtz problem with scaling o (w) and PML layers [—14, 4] and
[4,14] on the left (blue) and without PML on the right (red).
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4.6 Comparing the scaling functions

Figure 4.1 has already shown us how the solution of the Helmholtz problem should behave
when using the PML method. If we set pot = 0 in the considerations from above, we
effectively solve the Helmholtz problem, and the solution should be damped well for all
scaling functions.

In Figure 4.3 the solution of the following example using the scaling function o1 (w) is
shown. In this example we consider Q¢ = [—4, 4] and a PML of thickness 10. The initial
condition is a gaussian peak. The outgoing wave is damped in €, according to the con-
siderations from before. Without any scaling the wave proceeds to move outside of i
and is eventually reflected at the outer boundary. The other scaling functions transport
the energy outside of €2, in the same manner.

10’7 1 1 1 1 1 1 1 1 1

Figure 4.4: Energy over time in inner domain ;¢
Figure 4.4 shows the Energy in the inner domain of the complex scaled solution,
B =5 [ (e +10up(t,0)) .
int

A plateau is visible at the beginning, where the wave has not left the domain. After
surpassing the interface, the PML starts and the solution is damped, such that no energy
proceeds back into Qjyt.
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4 1D Klein-Gordon and Wave Equation

4.6.2 Example 2

The vertical scaling function (4.3) works fine for the Helmholtz equation with either an
initial condition with support in Q.. In this case it is thus not necessary to define other,
more expensive, scalings. However, the Klein-Gordon equation shows different results due
to the potential term (pot) indicating a difference in material.

t=20 t=0.65
: : : : 0.8 : : : : :
0.8 F E 0.6F i
06F E 04t _
ol S JU -
s o ] s or T
0.2+ E 0.2r |
04} - 0.4} 1
0.6 - 06} _
0.8 - : : : : 0.8 . . . . :
-15 -10 5 0 5 10 15 -15 -10 5 0 5 10 15
X X
t=1.85 t=2.3
0.8 : : : : : 0.8 : : : : :
06F E 06+ E

04} 1 04} 1
06 1 -06F E
08 . . . . . 08 . . . . .
-15 10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X X
t=4.9 t=25.6
0.8 T T T T T 0.8 T T T T T
0.6 E 0.6 E
04t . 04t .
02F E 02 E
X ot - X oof =2 — _ /]
o o
-0.2F E -02F i
04} - 04t -
-0.6 E -0.6F E
08 . . . . . 08 . . . . .
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X X
Figure 4.5: Comparison of scaling functions (blue: o1(w) = —:, red dashed: o3(w) =
B — ) for Klein-Gordon equation with potential at interface (-4 and 4).
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4.6 Comparing the scaling functions

Figure 4.6: Solution at time ¢t = 50 with o1 (w) (blue) and o3(w) (red dashed).

Figure 4.5 represents the solution of the Klein Gordon equation with a potential

0 € Qint,
pOt(IL‘) _ x int
3 x€ mel;

and a gaussian peak in the origin as initial value at different time steps. The inner domain
was set as Qiny = [—4,4]. The PMLs on the left and right side are [—14, —4], and [4, 14]
and are as such considerably large. This was done to eliminate the suspicion of reflections
due to too early truncation. The time step was set as 7 = 0.01. The blue line represents
the solution with the vertical scaling, and the red dashed line shows the solution with the
convolutional scaling. For this scaling the solution is not well damped in the PMLs, whereas
the convolutional scaling o3 manages to absorb the solution, which is the desired property
of the PML method. Note that the diagonal scaling o9 also works for this problem. At
time step ¢ = 1.85 the moment is captured where the outgoing wave starts to surpass the
interface. The later snapshots show that the solution with the vertical scaling does not
stay near zero, and even alternates in a wide range between positive and negative values.
As time passes, energy proceeds back into i, when using the vertical scaling o;(w), thus
distorting the solution in the interior. This can be seen in Figure 4.6. The convolutional
scaling manages to damp the solution at the boundary.

4.6.3 Example 3

This example shows a case in which the convolutional scaling performs better than the
diagonal scaling. The inner domain was set as [—1.5,1.5] with PMLs of thickness 10 on
both sides. We choose an initial value that produces high oscillations,

0, r < -1,
r(z) = ¢ sin(50x), =z € [-1,1],
0, x> 1.

Figure 4.7 shows the solution with the convolutional scaling (red dashed) and the diagonal
scaling (blue), whereas the solutions are overlapping in Qi,;. The wave packs proceed to-
wards the interface.
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4 1D Klein-Gordon and Wave Equation

+ [

gogh.\'\hv\(‘\i”ﬂw
S
15 1\}%“25“1“{&)”}0;”\% 1.5

Figure 4.7: Solution with initial source 7(z) in Qip¢.

Figure 4.8 shows the solution after the waves have reached the PMLs. The solutions are
zero at the outer boundary of the PMLs for both scalings, and zooming in on the left
plot we can see in the right plot that both solutions have exponential decay. However, the
solution with the diagonal scaling o2(w) (blue) shows high oscillations in the PML region.
The solution with the convolutional scaling o3(w) (red dashed) is much smoother, and we
can therefore argue that the spatial discretization in the PML region must be much finer
when using the diagonal scaling adding to computational costs.

t=4.08

t=4.08
0.5
A
et | 1
— ‘\MH‘H‘ ”
® o “”\M‘““‘“ \‘ ‘
a H‘HH\H ‘H ‘H
]
Bl
Il
| i
6 5 4 3 2 R
X

Figure 4.8: Damping of the solution with convolutional scaling o3(w) (red dashed) and

diagonal scaling o2(w) (blue).

The H!'-seminorm in the PML domain is defined as

Pl (@) = 102Dl Lo (@) = (/

and is shown in Figure 4.9.
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4.6 Comparing the scaling functions

18
16|
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"0t

2
IV plf?
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o N B~ O
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t

Figure 4.9: H(t) over time for the convolutional scaling (red) and the diagonal scaling (blue)

in Qpmi.

At t = 100 the wave pack arrives at the interface. For the diagonal scaling the H'-
seminorm keeps growing until all the energy has left the inner domain, and only then it
starts decreasing.
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5 Curvilinear complex scaling in 2D

As discussed before, the starting point for the complex scaling with curvilinear coordinates
is the system (2.23):

0pOop 1+ ko(w)é o - 5
L acae o den i [ olnvirdes

—{—(—z’w)Z/R - o(w)(1+ ko(w))pp d(&,%x) =0,  (5.1)

—iw)? ko (w)&)uuo(w X iw D - Tuo(w x) = 0.
( )/]Mm @uio() di€5) +iw [ Trprao() di€5) =0

+><F

This system is written with wave speed = 1, but we want to consider a formulation with
wave speed c(x) that is constant inside and outside of the wave guide as illustrated in
Figure 5.1. Outside of ;¢ it is defined as

ClOe () = E(x(2)).
The mass term in (5.1) is thus multiplied with 1/¢?(z).
We consider this problem on open waveguides as shown in Figure 5.1. Using this geometry

we are not able to use cartesian or radial coordinates, since the inhomogeneity in the
exterior does not align with these coordinates.

|I CA=2C] Y
! ]
| |
1 C=C I
A — | | —_—
| |
| |
! |
\ I’
\
\ 7
\ Qin‘c y Qext

Figure 5.1: Open waveguide.
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5 Curvilinear complex scaling in 2D

We define the following bilinear forms

) (=), B

(). (2) = L atecdes s [ vnvaes),
A(2). (D)= [ o Feper+ Veperi) )
A0 (- L (3w
)G (b o

and can rewrite the system (2.23) as

al(0) (= (0) (B - (). (B crorram (D).
reiwporel(D) (D) + -awrn(P). (2))

Discretization yields matrices A, B, C, D, E, F for the bilinear forms a, b, c,d, e, f. A right-
hand side can be introduced in the same way. The discretized system reads as

2

)

(a(lwA + B+ (—iw)o(@)C + (~iw)’o(@)D + (~iw) o (@)’ + (—m)QF) w0 =0,

~

with vy := (i ) We define the help functions

9 1

vy = (—iw)“vy, v:= v, v3:=o(w)(—iw)vy, v4:= o (w)*(—iw)vo. (5.2)

o(w)

Depending on the choice of o(w), we have to add more variables to linearize the equations
(5.2). We can now easily insert the vertical, diagonal and convolutional scaling functions
for o(w). The next step is to transform the system into the time domain. The resulting
first order system can now be solved using the implicit Euler method from Chapter 3.4.

o
Example: Using the convolutional scaling function os(w) = Zfirgngj for the problem above

38


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

yields the system:
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corresponding to the example in Section 3.4.
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5 Curvilinear complex scaling in 2D

5.1 Example 1

In this example we want to show a two-dimensional waveguide using the convolutional com-
plex scaling. Figure 5.2 shows the wave diffusion in the waveguide, which is highlighted
in the first plot. We use infinite elements for the exterior domain. The geometry is the
same for all following examples. Corresponding to Figure 5.1 we have set the wave speed
inside the waveguide as ¢p = 1 and outside as ¢; = 1/1/60. In all examples we set a time
dependent source f(t) = 15cos(5t) in the left corner.

-2.08Be-61 -1.0688e-81 A.A06e+88 1.800e-A1 2.688e-01

t=0.21 t=2.89

3.

-

B A

i

t=4.23 t=6.49

Figure 5.2: Waveguide with time dependent source and ¢; = 1/1/60.

The energy propagates along the waveguide and most of it flows out of it, such that no
energy reflects back from the outside. We observe that, as we have set different wave speeds
co and c¢1, the wave propagation is much slower outside of the wave guide.
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5.2 Example 2

5.2 Example 2

As a second example we take the problem from above, but set the outer wave speed as
c1 = 4/1/10. We see in Figure 5.4 that the wave speed outside of the waveguide is higher
compared to the first example.
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Figure 5.3: Waveguide with time dependent source with outer wave speed ¢; = 1/1/10.

As the wave speed outside of the waveguide is now higher than in the first example, less
energy is directed along the waveguide. Again, the solution is well damped at the boundary.
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5 Curvilinear complex scaling in 2D

5.3 Example 3

In Chapter 4 we have argued that the vertical scaling fails to damp the solution of the
Klein-Gordon problem, which is related to two-dimensional wave guides. To this end, we
apply the vertical scaling o;1(w) to the problem of the previous example, again setting

¢1 = /1/10.

-2 .880e-A1 —-1.600e-A1 A.808e+AA 1.0688e-81 2. A8de-A1
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Figure 5.4: Waveguide with time dependent source with convolutional scaling o3(w) on the
left and vertical scaling o1 (w) on the right.

The solutions are the same at first, but the vertical scaling fails to damp the solution at

the boundary, and energy is reflected back. Comparing the two solutions for ¢ = 239 we
observe that the solution inside the wave guide is distorted when using the vertical scaling.
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6 Computational Costs

We mention again that problems were implemented using the finite element software Net-
gen/NGSolve. We have used different time discretization methods for the one- and two-
dimensional problems and further examine the difference in their computational costs. We
used shared memory parallelization with 12 kernels for all computations on a computer
with four Intel Xeon CPU E7-8867 v3 with 16x2.50GHz and 2048GiB memory.

6.1 Time integration without Schur complement

To compare the computational costs for the different scaling functions we consider a one-
dimensional Helmholtz problem on i, = [—20,20] and PMLs [—60, —20], [20, 60] with
time step size 7 = 0.001 and no right-hand side. Figure 6.1 shows the average duration of
one time step for computing the solution over the mesh size with finite element order 2. In
this example we used the second order time integration method without Schur complement
inversion from Chapter 3.5.

time/step

¥
3

0 0002  0.004 0006 0008  0.01
h

Figure 6.1: The average duration of one time step over mesh size h.

The computational time is the largest for the convolutional scaling o3 (light green) as it
needs three additional help functions compared to the diagonal scaling oo (red dashed),
which needs two, and the vertical scaling o; (blue) needing none. For this example, where
all three scaling functions damp the solution well, the vertical scaling is naturally the best
choice as it is the cheapest, but we have shown in earlier examples that for the Klein-Gordon
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6 Computational Costs

problem it does not manage to damp the solution and can therefore not be used. In Example
(4.6.3) we showed that, using the convolutional scaling, the mesh size h of the outer domain
can be chosen much larger than for the diagonal scaling, and the computational costs can
thus be reduced. For all scalings, the largest amount of the time is taken up by calculation
and application of the matrix factorization.

6.2 Time integration with Schur complement

To compare the two time integration methods we consider the same problem as for the
second order time integration without Schur complement inversion from above with the
linearization method from Chapter 3.4 with Schur complement inversion. Using the convo-
lutional scaling with the second order time integration yields a more expensive computation
due to the use of more additional help functions enlarging the system matrix. But since
it is the scaling we most likely want to use, we want to compare its performance with the
second order method to the linearization method. Figure 6.2 shows the average duration
of one time step for the second order method (light green) and the linearization method
(blue). Comparing this to Figure 6.1 we see that the computational time of the lineariza-

10 *
0,4 Second order

—+—Linearization

time/step
=

3

_3 1 1 1 1
107, 0002  0.004 0006 0008 001
h

Figure 6.2: The average duration of one time step over mesh size h with the second order
method (light green) and the linearization method (blue).

tion method is even smaller than the computational time for the vertical scaling o;(w)

with the second order scheme. Note that, within the linearization method, the matrix to
be inverted has the same size for all scaling functions.
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7 Conclusion

In this thesis we considered the complex scaling method for the wave equation and the
Klein-Gordon equation. The problems are transformed via the Fourier transformation, and
a complex coordinate stretching is applied to the coordinate of the direction of radiation.
This was done in cartesian, radial and curvilinear coordinates in Chapter 2. Though the
complexity of notation may increase with curvilinear coordinates, we can now use the PML
method on various shapes of the domain of interest. We compared the effect of different
complex scalings, the vertical, diagonal and convolutional scaling, on the outgoing solu-
tions. For the Helmholtz problem in one dimension we have found that all scalings damp
the solution, but the solution of the Klein-Gordon problem can only be damped with the
diagonal and convolutional scaling, whereas the diagonal scaling may produce oscillations.
The vertical scaling proves to have undesired influences on the exponential decay of the
solutions, as was shown for the one-dimensional case in Chapter 4. As the one-dimensional
Klein-Gordon equation is related to wave guides in more dimensions, we have found that
the convolutional scaling is also preferable for two-dimensional wave guides, and that the
vertical scaling fails to damp the solution.

We have provided numerical examples in one and two dimensions to show the behavior
of the solutions for different scalings. The time discretization was done with two different
methods, a second order time integration and a linearization method, which has smaller
computational costs.
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