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Kurzfassung

In dieser Arbeit untersuchen wir lichtartige Randsegmente einer gegebenen Raumzeit,
welche iiber nicht-glatte Ecken miteinander verbunden sind. Wir présentieren ein
lichtartiges Analogon zu dem bekannten Gibbons-Hawking-York (GHY) Randterm
[1,2] und Eckterme, welche Lorentz-Winkel zwischen den Oberflichennormalen
der Randsegmente enthalten. Dafiir folgen wir grob den Behandlungen in [3-5]
und erhalten ein verallgemeinertes Resultat. Als prototypisches Beispiel, welches
lichtartige und zeitartige Randsegmente, verbunden tiber nicht-glatte Ecken enthéllt,
betrachten wir ein Banados-Teitelboim-Zanelli (BTZ) Schwarzes Loch [6,7]. Die
BTZ Losung erfiillt jedoch keine Dirichlet Randbedingungen und daher benétigen
wir holographische Randterme um ein wohl-definiertes Variationsprinzip zu erhalten
(61|gon = 0). Wir zeigen, dass am asymptotischen (zeitartigen) Rand r — oo es nicht
moglich ist einen passenden kovarianten Randterm zu finden und daher konstruieren
wir einen nicht-kovarianten Term, welcher zu verschwindender Variation der Wirkung
fithrt. Dieser nicht-kovariante Term, welcher aus der radialen Komponente der Metrik
besteht, kann als Dilatonfeld am Rand interpretiert werden. Des Weiteren zeigen
wir, dass es nicht moglich ist passende Eckterme zur Wirkung zu addieren, sodass
das Variationsproblem wohl-definiert ist. Als Losung schlagen wir eine geeignete
Fixierung der Boost-Eichung vor, wobei Ecken keinen Beitrag im Wirkungsintegral
mehr geben. Die komplette Wirkung besteht dann aus dem Einstein-Hilbert Term
plus lichtartigen GHY Termen am Ereignishorizont plus einem nicht-kovarianten
Term am asymptotischen Rand. Um Berechnungen einfach zu halten arbeiten wir in

2 + 1 Dimensionen.
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Abstract

We study null boundary segments intersecting each other at non-smooth corners. As a
result, a null analog to the common Gibbons-Hawking-York (GHY) counterterm |[1,2]
and corner counterterms, containing Lorentz angles between hypersurface normals,
are presented. Considering that, we follow loosely the treatments in [3-5] and obtain
a slightly more general result. As a prototype spacetime that exhibits null and
timelike boundary segments connected via non-smooth corners, we investigate a
Banados-Teitelboim-Zanelli (BTZ) black hole (BH) [6,7]. The BTZ solution does
not preserve Dirichlet boundary conditions (bcs) and therefore needs holographic
counterterms added to the action such that we get a well-defined action principle
(01|poar = 0). We show that on the asymptotic (timelike) boundary segment r — oo
it is not possible to construct a suitable counterterm solely out of covariant quantities
and therefore propose a non-covariant counterterm that can be interpreted as a
dilaton-like scalar field on the boundary. Furthermore we show that we cannot find
any counterterms to the corner contributions in the action integral such that the
variation vanishes. We propose to fix the boost gauge in a suitable manner such
that corners do not contribute at all. The full action is then given by the standard
Einstein-Hilbert (EH) action plus GHY-like counterterms on the null segments and
a non-covariant term on the asymptotic boundary. For the ease of the calculations

we work in 2 + 1 dimensions.
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1 Introduction

1.1 Holographic principle and AdS/CFT

Assumed to be a manifest property of quantum gravity the holographic principle was
first proposed by t’"Hooft and Susskind [8,9]. It states that the description of a (d+ 1)
dimensional spacetime is encoded on its d dimensional boundary or in more technical
terms, a gravitational theory in (d 4 1) dimensions is equivalent to a quantum field
theory on its d dimensional boundary. Since a hologram is a three dimensional image
stored on a two dimensional medium, the term “holographic principle” is an accurate
expression indeed.

The development of this proposal was strongly influenced by black hole (BH) ther-
modynamics. Initially BHs were thought to have vanishing entropy but Bekenstein
showed in [10], that BHs having no entropy would violate the second law of ther-
modynamics. In a famous Gedankenexperiment he stated that if one threw an
object with a certain mass into a BH, the entropy in the outer region (outside the
event horizon) would decrease, violating the second law of thermodynamics. Since
an outside observer can only detect that the event horizon area grows, Bekenstein
proposed that the entropy scales with the area rather than the volume, which was
later confirmed by Hawking [11]. In natural units ¢ = i = k = 1, that will be used
throughout this thesis, the so called Bekenstein-Hawking entropy is given by

A
Spy = el (1.1)

In statistical mechanics the entropy is proportional to the number of microstates,
which in turn is proportional to the volume. The fact that for BHs, which are
considered to be the connecting piece between quantum mechanics and gravity, the
entropy scales with the area leads to the proposal that the holographic principle
might be a manifest property of a quantized theory of gravity.

The first concrete realization was given by Maldacena in [12]|, who conjectured an

equivalency between a type IIb superstring theory in an AdSs x S® space and an
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N = 4 super-Yang-Mills theory in four dimensions. This duality is of strong/weak
type, meaning that the coupling parameters in the superstring theory and the dual
super-Yang-Mills theory are inversely related.

To this day there has not been found a proof of this Anti-de-Sitter/Conformal field
theory (AdS/CFT) correspondence. Nonetheless the conjectured relation [12-14]

(/7990 = gy [, )]0 = ()] (12)

CFT

holds for numerous tests by calculating quantities on both sides and checking for
agreement. The left hand side of (1.2) corresponds to the generating functional
of the correlation functions in the CFT, where O(x) is a gauge invariant operator.
The quantity j(x) appears both on the CFT side as the source and as boundary
conditions (bcs) for the field ¢(z) in the classical partition function Zgayity, where
the asymptotic boundary is reached in the limit z — 0.

While being an interesting research topic AdS/CFT fails to describe our universe
properly. AdS spacetimes describe universes with a negative cosmological constant A,
while our universe is equipped with a (small) positive A. In most cases our universe
can be approximated by A = 0, making flat space holography an interesting research

topic as well.

1.2 Gravity in three dimensions

Gravitational theories in more than 241 spacetime dimensions possess a lot of
technical difficulties, especially in the context of holographic analysis. Therefore it
can be useful to work in lower dimensions in order to get more profound conceptual

insights. There are various reasons to work in three spacetime dimensions:

e It is the lowest dimension in which Einstein gravity can be formulated. In two
spacetime dimensions any metric fulfills R, — % JapR = 0 and one dimensional

spacetimes do not possess any curvature at all.

e The curvature is only determined by the cosmological constant A. The Riemann
tensor can be decomposed completely in terms of the Ricci tensor and scalar,
Raved = YacRud + GoiRac — JaaRoc — GoeRab — 3R (YacGoa — Gaagee). The number
of independent components of the Riemann tensor in arbitrary dimensions d

. d?(d?-1 . . .
are given by (12 ), while those of the Einstein tensor G, = Rgp — % Jap R are

given by @. We see that for d = 3 those numbers coincide, which proofs

that the Riemann curvature is completely determined by A, since Gy, = —Agap.

10
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All solutions to Einstein gravity are therefore locally (A)dS or flat (assuming

there is no matter content such that the energy momentum tensor vanishes).

e In contrast to earlier beliefs it has been shown by Banados, Teitelboim and
Zanelli that BHs do exist in three dimensions [6,7]. More importantly those

BHs possess a non-trivial horizon that is two dimensional.

e Even though Einstein gravity in d = 3 does not have any local degrees of
freedom, meaning that there are no wave solutions to Einsteins equations, it
possesses highly non-trivial global dynamics. It has been shown by Brown
and Henneaux in [15] that the physical phase space of asymptotically AdSs
spacetimes, preserving certain fall-off conditions, falls into representations of
two copies of the Virasoro algebra, which is the symmetry algebra of CFTs in
d=2.

e In terms of the holographic dictionary, a theory of gravity in three dimensions,
equipped with Brown-Henneaux bcs, is equivalent to a CFT in two dimen-
sions. This is particularly helpful since the symmetry algebra of CFTs in two

dimensions is infinite dimensional which makes them very tractable.

1.3 BT7Z black holes

Initially it was believed that there could not exist any BH solutions in 2+1 dimensional
Einstein gravity. One of the reasons was that, for vanishing cosmological constant
A, all solutions are locally flat (R = 0). In 1992, Banados, Teitelboim and
Zanelli (BTZ) found a BH solution to Einstein gravity with a negative cosmological
constant [6]. Its global geometry is shown in Fig. 1.1 and the line-element in

Schwarzschild-like coordinates reads

7n2_7ﬂ2)(702_7a2) 2,2 ror. N\ 2

d2:—( + *dtQ d2 2(d Tt dt)

° 1272 + (r2—=r2)(r2—r2) o {de Ir2 ’
(1.3)

where [ is the AdS radius following the definition A = —l% and r,,r_ are real

constants with r, > r_ > 0. The BTZ solution became of great importance since it
exhibits a lot of similarities to the four dimensional Kerr BH. This allows us to derive
conceptual results relevant to our universe in the technically more simple framework

of lower dimensional gravity.

11
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The BTZ BH has an outer Killing horizon at » = r,, which is also an event horizon.

The corresponding Killing vector, whose norm vanishes on r = r reads

r_

k= O+ 0L (1.4)

lT+
Since the line-element (1.3) is symmetric under exchange of the parameters r, and
r_ we must also have a Killing horizon at » = r_ for the Killing vector
a a "+ na

k" = 0f + ?(%. (1.5)
This inner horizon is a Cauchy horizon and vanishes for a non-rotating BH. General
BTZ BHs rotate with an angular velocity () = Z;—;
It has also been shown that, even though there is no Newtonian limit in 3d Einstein
gravity, the BTZ BH is the endpoint of gravitational collapsing dust [16].
Since we work in just two dimensions of space, the area of the event horizon
corresponds to the circumference and therefore the Bekenstein-Hawking entropy is
given by

Ty

SBH - % (16)

A year after the original BTZ paper [6] was published the authors also showed
that a BTZ BH can be seen as an orbifold of global AdS [7]|. In particular, this is
achieved by identifying points by a discrete subgroup of SO(2,2). What is more,
Banados presented in [17| a general solution to AdS Einstein Gravity preserving

Brown-Henneaux bcs!
ds® = dp® + dxtdx~ (6¥ - e_QTPEJ“(xJ“)E_(x_))

(1.7)
+ (d:v+)2 LH(xT) + (dx_)2£_(x_),

where the light cone coordinates o = t + [¢ are used. These types of spacetimes

are called Banados geometries and are fully determined by the two functions £*(z™)

and £~ (z7). The BTZ BH is obtained for constant

_ 1
L= —(rp—r_), L = 1 (ro4r_)%. (1.8)

!Brown-Henneaux bes [15] are a certain type of asymptotically AdSs bes that will be discussed
in more detail in the next section.

12
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Since by its derivation any Banados geometry is asymptotically AdS3, the BTZ
spacetime shares this property. A more detailed analysis of BTZ BHs can be found

in Carlip’s very comprehensive review [18].

Figure 1.1: Carter-Penrose diagram of the BTZ BH. The normal lines correspond to
the asymptotic boundary at r — oo, dashed lines to the event horizon at r = r,
dotted lines to the inner horizon at r = r_ and bold lines to the singularity at r = 0.
The intersection of two dashed lines shows a bifurcation 1-sphere. Note that each
point in the printed diagram corresponds to an S' in the actual Carter-Penrose
diagram.

1.4 Space- and timelike hypersurfaces

This short section on hypersurfaces will follow in large extents the exceptional
treatment in Poisson’s toolkit [19]. The number of spacetime dimensions will be
adapted to 2 + 1 in order to match the topic of this thesis. A hypersurface S
embedded in a three dimensional manifold M, equipped with a metric g,, can either

be specified by a scalar field

Qb(xa) =0, (19)

13
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that puts a restriction on the coordinate vectors z® or by a relation between induced
coordinates on the hypersurface x?, where the index runs only over two components,

and the global coordinates
r* = 2%(z"). (1.10)

The scalar field in (1.9) allows us to uniquely define a normal vector to a space- or

timelike hypersurface?

__ %09 (1.11)

Ng )
V197 0a00y9)|

normalized such that n,n® = ¢ = £1, with the positive sign for timelike and the
negative sign for spacelike hypersurfaces. In foresight to our later treatment of
variational principles we follow [3-5] and demand that the hypersurface description

does not change under variations
d0p = 0. (1.12)

This has the result that the variation of the normal vector does not change its

orientation

1 1
0MNg =0 ——m———= 10,0 =90 | In ———— | n,. 1.13
! ( |gabaa¢ab¢|> o (n \/|gabaa¢ab¢|) " (119)

Furthermore one can project out the normal direction in the metric g4, to obtain the

so called transverse or induced metric
hab = Gap — ENGNyp, (1.14)
where it follows per definition that hn® = 0. Using the parametric equation (1.10)

one can also define vectors tangent to the hypersurface §

dx®
¢ =—. 1.1
%= U (1.15)

On the hypersurface the line-element can be expressed solely in terms of the induced

coordinates

ds?|ls = gabda:“d:cb = h;dztda? . 1.16
j

2Null hypersurfaces possess an ambiguity in the definition of a normal vector that leads to
additional gauge freedom. They will be discussed in detail in Sec. 3.

14
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Here h;; = gabefe? denotes the so called first fundamental form. Note that this
induced 2-metric transforms as a scalar regarding transformations of the global

coordinates % — 2'®. The inverse 2-metric follows the relation
hii = hobelel. (1.17)

We see that the tangent vectors e work as transformation matrices that transform
three dimensional bulk quantities into their corresponding quantities on the hyper-
surface. Since ef'n, = 0 all directions normal to the hypersurface are projected out
in this transformation. However, throughout this thesis we will mainly work in the
global coordinates x® and use the transverse metric hgp.

Decomposing the metric into directions normal and tangent to the hypersurface al-
lows for the introduction of new curvature quantities as well. The extrinsic curvature

(or second fundamental form)
cpd 1
Kab = hahbvcnd = 5 (‘C”h)ab (118)

measures the covariant rate of change of the normal vector projected onto the

hypersurface. Note that it is symmetric in its indices and also orthogonal to n®
Kap = Koy,  Kgn® =0, (1.19)
In general one can also define a hypersurface-covariant derivative

DaTbl...bnc = hrhbr .hZZhgl o hzc)szqu...qn (1.20)

1...C a'"q1 " p1...p2?

which can be used to define intrinsic Riemann curvature R¢,,,; on the hypersurface

via

[Da, Dy) v = R, 0" (1.21)

15
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2 Variational principle

Throughout this thesis we will demand that a consistent theory of gravity fulfills the

principle of a stationary action
0Igon = 0. (2.1)

Historically, variational principles first came up when Fermat proposed that light
rays always take the path of the least time. In a uniform medium this will of course
be a straight line and equal to the shortest distance. When light travels through
different media this simple principle leads to Snell’s law of refraction.

A more general principle was developed by Maupertuis [20], who claimed that light
does not travel along paths of least time nor paths of the shortest distance. He
proposed that light rays follow the path of least action. However, he used a slightly
different definition of this quantity. He defined the action as the sum of distances

travelled by light, weighted by its velocity

S = / vds. (2.2)

Just shortly after Maupertuis, Euler [21] independently developed a principle of least

action to describe the motion of particles with a certain mass m and momentum

5S =6 (/pdq) = 0. (2.3)

The common definition of the action today was strongly influenced by Lagrange and

p=mu

Hamilton. It is given by
S = /L(x,:i:,t)dt, (2.4)

where L(z,2,t) denotes Lagrange’s function that describes the time evolution of

physical systems.

16
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2.1 Mechanics

As an insightful and technically manageable example we first want to discuss the
action principle in the context of a simple one dimensional theory, namely mechan-
ics!. The Hamiltonian function for a system of N particles with coordinate ¢; and

momentum p; for the i-th particle is given by

Yo%
H(Qla <o d4N, D1y - - 7pN) = 9 + V(q17 <o 4dN, D1y - - 7pN)7 (25)
where V(q1,...,qn,P1,--.,pnN) is an arbitrary potential. The Lagrangian function is

obtained by Legendre transformation which then leads to the action

ty
I:/ dt<_qipi_H(q17"'>qN7p17"'7pN))7 (26)
0

where the dot denotes differentiation with respect to the time coordinate ¢t. Without
loss of generality we also set the initial time ¢; = 0. Variation of the action (2.6) gives
us the equations of motion (EOM) (which in this case are Hamilton’s equations) and

a boundary term

ty ov oV
oI = / dt <_Qi(5pi +0q; <_pi — ) + dp; (_pi - >) =
ty )% . oV t '
= dt | 0q; | —ps — +0pi | ¢ — pi — — q;0p;

It is common to demand Dirichlet bes that fix the coordinates on the boundary but

o .

leave the momenta fluctuating

:¢ow6@Ny (2.8)

0

We see that in order to get a well-defined Dirichlet boundary value problem we have
to add a suitable boundary term to the action (2.6) such that we get rid of the last
term in (2.7). The emphasis here lies on boundary, we do not want to add a bulk
term since this would then lead to different EOM.

!This approach is inspired by D. Grumiller’s lectures on BHs. A more detailed summary can be
found in his lecture notes [22].
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It can easily be checked that adding the term

ty

Ieny = qipi . (2.9)
leads to a well-defined Dirichlet boundary value problem
ty
6I|pom = 6qipi . (2.10)

The subscript GHY in (2.9) refers to Gibbons-Hawking-York [1,2], in analogy to
the common boundary term used in gravity theories. We will introduce it in more
detail in the next section. If ¢y were finite we would now have obtained a well-defined
variational principle.

A problem arises if we consider asymptotic boundaries ¢t; — co. Depending on the
potential V(qi,...,qn,Dp1,--.,pn) there could be systems for which some ¢; — oo
on that boundary. One example is the half binding potential V' (q) = q%, discussed
in [23]. If we take a look at Fig. 2.1 we see that a particle will roll down the potential
and reach ¢ — oo at ¢ty — oo.

vo-L

Vg

08+
06
04+

02+

q

Figure 2.1: Plot of a half binding potential

As a result, it is not possible to impose Dirichlet bes on the asymptotic boundary.
The variation could in theory be finite
ty

lim dg;| #0. (2.11)

ty—o00
This not only leads to an ill-defined action principle but also to a diverging on-
shell action I|gonr. Proceeding as before, we add an additional boundary term

f

S(q1y -, qN, D1, - - - ,pN)‘ on the boundary ¢; — oo. This process is called holo-

graphic renormalization [24]. The term holographic refers to the fact that we are

working on the boundary and renormalization because fixing the action principle also
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leads to a finite on-shell action. The full action that should have vanishing variation

is given by
iy
I = I + Igay + S(qu, -, g, P1y - -+ PN) (2.12)
The variation of (2.12) gives
ty
0S
0y = 0¢; | pi — , 2.13
full q (P 3%‘) ( )
where we see that we get a well-defined variational principle for
08
i = ty — 00. 2.14
Pi= 5 OMtro e (2.14)

Luckily the solution to this problem is already well known and corresponds to

Hamilton’s principle function which is the solution to the Hamilton-Jacobi equation

oS oS oS
H —_— ..., — 1 — =0. 2.1
(qla y 4N, aqla 7an7 ) + 8t 0 ( 5)

2.2 General Relativity

In 1915, Hilbert showed independently from Einstein that the gravitational field

equations (nowadays referred to as Einstein equations)
1
Ry, — éRgab +Agyp, =0 (2.16)

can also be derived from a principle of a stationary action [25]. The corresponding

action governing the laws of Einstein gravity is given by

1
Igp = —— | d&’z/—g(R—2A 2.17
EH = 67 /M v/ =g ( ) ( )
where we adapted the number of spacetime dimensions to 3. In analogy to our

example in mechanics this action only leads to a well-defined variational principle if

we neglect boundary contributions.
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The variation of the action (2.17) yields the EOM and a total derivative term?

6lpy = — 16; o /M Ba/—g (R“b - %Rg“b - Ag“b> 5Gab
+ 1 6; e /M d*u/=gV o (9"0T5, — g™0T%,.) =
(2.18)
= - 16; - /M d*rv/—g (R“b - %Rg“b + Ag“b> 0 Gab
+ 6‘; al. 2/ [hjng (90T, — g™oT,) |

The second term was rewritten using Stokes’ theorem

/de\/—gVaA“:% d*z+/|h|en, A%, (2.19)
M oM

where hg, is the transverse metric and n, normal to the boundary M. The variation

of the Christoffel symbols I'f, contains metric derivatives and is given by
a 1 am
04 = 59" (Vo0 gme + Vedgmb = Vimdgse) (2.20)

Following the procedure introduced in Sec. 2.1, we try to add suitable boundary
terms such that we obtain a well-defined variational principle, demanding Dirichlet
bcs

59@‘3/\4 =0

(2.21)
ncvcégab‘aM £ 0.

These are analogous to (2.8), where the metric corresponds to the (generalized)
coordinates ¢; and its fluctuating normal derivative to the momenta p;. The additional
boundary term that leads to a well-defined Dirichlet boundary value problem was
first derived by Gibbons, Hawking [1] and independently York [2]

19
I = d*x\/|h| K 2.22
GHY Ry ol Y ‘ | ) ( )

where K = K%g,, denotes the contracted extrinsic curvature and ¢ corresponds to
the definition (1.11).

2 Assuming a space- or timelike boundary with corresponding n,n® = ¢ = £1, as in (1.11).
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The variation of the improved action I = Igg + Igyy yields the Brown-York stress

tensor |26] contracted with the metric variation

1
Stlro =~ [ dav/TilTgh o0 (2.23)
oM
1
T% — — (K% — ¢ Kh®) . 2.24
BY 87TG( € ) ( )

Analogously to the mechanics example this action does still not lead to a well-
defined variational principle in the presence of asymptotic boundaries. In general,

the assumption that gab‘ on = U seems unphysical. Usually ¢; = 0 would just

lona
correspond to a vacuum state but a vanishing metric would account for a singularity
on the boundary, which is a rather unnatural event. Depending on the chosen bcs, a

non-vanishing metric variation at the boundary,

Gabypg — 00 (2.25)
0|y, = O(1) (2.26)

is not unlikely and calls for the addition of a holographic counterterm S (gap, Vegap) ’ oM
to the action [24].

We already showed in Sec. 2.1 that holographic renormalization can be obtained by
solving the Hamilton-Jacobi equation. Unfortunately, in d = 3 Einstein gravity, this
is in the least cases exactly solvable. Instead, we try to find S (gup, VeGan) | o PY

making an Ansatz

1
S (Gap, Vela = — d*z+/|h| (a + BK + R + higher derivatives),
(0o et) lose = Tz [ /TRl (B + 7R + i )
(2.27)
where Hamilton’s principle function is expanded as a series of extrinsic and intrinsic
curvature terms. The quantity R = R%,, ;"¢ denotes the contracted intrinsic Ricci

curvature and K the contracted extrinsic curvature (1.18). Higher derivative terms
are K, K K2 RuR®, R? ete.
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2.3 Brown-Henneaux boundary conditions

In their famous paper [15] from 1986 Brown and Henneaux found that the asymptotic
symmetries of a certain type of asymptotic AdS; spacetimes fall into two copies of
the Virasoro algebra, the symmetry algebra of CFTs in two dimensions. To perform
a Hamiltonian analysis and derive the central charges they imposed certain fall-off

conditions

(2.28)

such that the metric asymptotes to AdS in the limit » — oco. It should be mentioned
that [ refers to the AdS radius following A = —l%. These bes are nowadays commonly
referred to as Brown-Henneaux bes. The metric variation preserving them can be

written as

5gtt = 57tt + 0(1)

4 1
591"7” - 671"1"7‘_4 +o0 (_)

r2

09pp = 0Yppl” + 0(1)

S — O (%) (2.29)

dg1, = O(1)

1
5gr<p =0 (ﬁ) )

where factors of [ have been introduced such that the fluctuations 6+, are of the

same dimension.
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It can be more convenient to work in Gaussian normal coordinates and express (2.28)
in a Fefferman-Graham expansion [27|

ds?|oaas, = dp® + (e%”%.(]@ +4@ 4 ) deida?, (2.30)
where the metric is given as a series in orders of e7. The ellipsis refers to terms
that vanish in the limit p — co and the indices ¢, 7 run over the time and angular
coordinate. For Brown-Henneaux bcs the so called boundary metric %-(JQ ) is fixed
while %(J? ) is free to fluctuate.
To check the variational principle for the action I = Iy + Iggy we simply plug the
bes (2.29) into the variation (2.23) and obtain

1
167G

5Tl ponr = — / P (5911 — 4 + (1)) (2.31)
oM

We note that the remaining integral is O(1) and therefore does not vanish in the
limit » — oo. Furthermore the Brown-York stress tensor diverges in this limit since
Ty = Tpypo = O (r?). As already proposed in the previous section, instead of
trying to find a solution to the Hamilton-Jacobi equation we can use a simple Ansatz

where the holographic counterterm will only contain a constant

— 1 2
Slom = e /ade |h|a. (2.32)

As a result, the variation of the full action Ity = Igy + Iguy + S | oM becomes

1 a
5]fun}E0M =75 /8/\/[ d2x \% |h|TBI;/—ren5.gab =

2
1 (2.33)
162G, LVIRI ah™) 8ga
1
= 160G, LoV ((1+10) (B9 = F7p0) +0(1),  (234)
where we see that we get a well-defined variational principle for a = —%_ Fixing this

problem also has the nice feature that simultaneously we renormalize the Brown-York
stress tensor, which in terms of the Fefferman-Graham expansion (2.30) is given by

the finite expression

I
TBY—ren,ij - _87TGZ ’Yz(j) (235>
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3 Null boundaries

In the previous sections we showed how to deal with space- and timelike boundaries
embedded in a given spacetime and presented boundary counterterms that have to
be added to the action in order to get a well-defined variational principle. Based
on the hypersurface description ¢(z*) = 0 we could define a unique normal vector
and then build a transverse metric and corresponding curvature quantities. In this
section we follow loosely [3-5,19] but obtain more general results.

A null hypersurface exhibits a normal vector k* that is by definition also tangent to

the hypersurface since
k. k* = 0. (3.1)

This leads to an important ambiguity that only arises for null hypersurfaces. Because

of the fact that k, has vanishing norm we cannot uniquely define its normalization
ko = A0,¢. (3.2)

This ambiguity will be referred to as the so called boost gauge freedom, where
we follow the discussion by Hopfmiiller and Freidel in [28]. This additional gauge

parameter A is assumed to be state-dependent i.e. is allowed to fluctuate
Ok = 0A 00 = (In A) k, = ak,. (3.3)

In order to define a transverse metric we need an auxiliary null vector [* that has a
non-vanishing inner product with k® Throughout this thesis we will demand that [*

is normalized such that

lalyg™ = 0 (3.4)
kalpg® = —1. (3.5)
24
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An induced metric can be constructed that projects out directions given by k% and
[,

Yab = Gab + Kol + laks. (3.6)

We note that k% and [* are both orthogonal to 7,, i.e. have a vanishing inner
product Y,k® = Yl = 0. Because of this property the induced metric (or the
null hypersurface in general) is effectively codimension 2, which means that for our

purposes it will be one dimensional.

3.1 Null-GHY counterterm

Following the general procedure, our first goal is to find a suitable boundary coun-
terterm such that we get a well-defined Dirichlet boundary value problem preserving
the bes (2.21). First we adapt the variation of the Einstein-Hilbert action (2.18) to

null hypersurfaces and obtain on-shell

1 C a a C
0ol yorr = ~ oG » dgdAy/ [y ke (g70T%, — g™oT,) (3.7)

where k® denotes the null normal, ~,, the induced metric and A\ generates null
geodesics on the hypersurface. Following the conventions in [4], we demand that
the auxiliary vectors (¢ should always be outward pointing with respect to the given
spacetime manifold. As a result, k% is not necessarily future-directed and the sign in
(3.7) is fixed to be negative. Note that these conventions differ significantly from 5],
where £ was demanded to be future-pointing and therefore the sign in (3.7) changes
whether the null hypersurface lies in the timelike future or past of the enclosed
spacetime.

The determinant ~ is particularly simple in our case since the null boundary is
effectively one dimensional and therefore v = 7,,'. The variation of the Christoffel

symbols is given by (2.20).

! Assuming that the null directions defined by £ and I® do not include the angular coordinate.
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Following the treatment in [3] we make use of the identities

4] (va&)) = Va(sgb - 5P2b§c

3.8
0 (Val®) = Va0€® + T8, 35

that hold for arbitrary vectors £*. This allows us to extract a total variation term

that can be cancelled by adding a corresponding counterterm to the action

1
Slen| s = 5 /a | dodxd (VRIVak)

1
B ]_67TG OM

(3.9)
dod\\/17] (Vadk + (Vaky — VekYap) g°°) .

We have also adobted Parattu et al.’s notation in [3], where 6k? = 5k + g®dk;. Note
that up to now this derivation is completely equivalent to the space- and timelike
case.

To get more physical insight into what actually happens at the boundary we express
(3.9) in terms of boundary curvature quantities. Unlike in the space- and timelike case

we cannot only define an extrinsic curvature ©% but also surface gravity quantities

k and &
O AV (3.10)
k= —k""V K, (3.11)
R = —1"k"V ks, (3.12)

where we will refer to the latter as auxiliary surface gravity. Note that for null

normals that are globally null
b 1 2
kE°V o ky = §Vak =0, (3.13)

and therefore & vanishes. In principle we can (and will) also define null normals that

only have vanishing norm at the boundary and therefore V, k2 could be non-zero

o
leading to a non-neglectable auxiliary surface gravity. Using these definitions the
boundary counterterm (and null analog to the GHY term) that cancels the total

variation in (3.9) reads

1

— dod/ B 14
el L 7 (©+ Kk +F), (3.14)

Incay = —

where © denotes the contracted extrinsic curvature (3.10).
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In foresight to finding a well-defined variational principle for a BTZ BH we also have
to consider corners in our spacetime. Hence, we have to deal with the V,0k{ term

in (3.9). After some manipulation we get
Va0k] = Va0k® +a (0 + k + &) + k*V,a, (3.15)

where we have used the property of null normals that their variation is proportional
to the original covector and « is defined in (3.3). It will also turn out to be convenient

to manipulate the stress tensor term,
Vakp0g® = =V, 0 — a (k + &) + VK (6l + Slpks) (3.16)

such that the surface gravity terms cancel. In order to partially integrate the
corner terms we have to remind ourselves that for null hypersurfaces k* lies on the

hypersurface, which is built up by null geodesics following the geodesic equation
kN o ky = Kky. (3.17)
These geodesics are generated by the parameter \ that is related to k% via
dz® = k*d\. (3.18)

The contracted extrinsic curvature © can be interpreted as the so called null expansion

since after some manipulation one can show that

1 1
O ="V, ky = =" (L), = RVARTH (3.19)

2 vl

where we made use of the fact that on the hypersurface the induced metric can be

reduced to a codimension 2 metric v,

y® = yABea b (3.20)
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The transformation vectors e are tangent to curves on the hypersurface, which
implies that e}k, = 0 and L;e% = 0. The codimension 2 metric y4p5 acts as a scalar

regarding transformations of the global coordinates % — 2*? and therefore

Ly (vap) = k*Vayap = O\va5- (3.21)

Inserting the identities (3.15) - (3.21) in (3.9) yields a corner term,

Ay

1 1
- a —— 22
167G Jon, ded\\/|7| (a® + k*V ) (167TG /62/\/1 dyp |»y|oz) (3.22)

s

Putting all the pieces together and adding a suitable null-GHY counterterm, the

variation of the action
8 (Ien + Incay) | poy =

S dpd /Y] (Vadk® + VK (loky + 0luka) — (VoK — Veky™) 07ap)
167G OM

_ 1/ dov/Tlo
167TG32M907

takes a slightly more complicated form than for the non-null case. This is a general-

Ay

)
A

(3.23)

ization of the results presented in [3-5|, where the authors made assumptions on the
boost gauge (6k* = 0) or did not allow for V, k? # O‘BM.

2Regarding transformations of the induced boundary coordinates x4 — 2’4, y4p transforms as
a 2-tensor. [19]
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4 Corner contributions

Until now we only worked on isolated boundary segments, that are not connected to
each other. To give a complete description of a given spacetime one also has to take
into account corner contribution that arise at the intersection of two such boundaries.
A complete list of such corners would consist of all 6 possible combinations of
spacelike, timelike and null boundary segments connected to each other. However,
since space- and timelike boundaries basically differ by a factor —1 their derivation is
analogous and we will only present the intersections of space-/timelike, null /spacelike

and null/null boundaries.

4.1 Space-/timelike corner

This type of corner term is already well known and was first presented in [29,30]. We
assume that we have a manifold M equipped with a metric g,;, that describes our
whole spacetime. Let the boundary of this spacetime consist of a timelike segment T
and a spacelike segment S that intersect at a junction C. To describe our boundaries

we can build induced metrics using the corresponding normal vectors n* and s®

gab|$ - hab — NgNy (41)

Gab|T = Tab + SaSp- (4.2)

The junction C is embedded in both § and 7 and we can further decompose the

metric
Jable = Yab — Nap + MMy = Yap + SaSp — Lats, (4.3)

where 7, is the induced metric on the corner and the normal vectors are correspond-

ingly space- and timelike, n,n® = t,t* = —m,m® = —s,5* = 1.
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Varying the action

1
I= / d*z/=g (R — 2A) +—/d2x\/|h K — d2x\/|a | K1,

167G
(4.4)

where K; and K;; denote the contracted extrinsic curvatures on the respective

boundary segments, leads to the following non-vanishing variation on C

! ab
31le = =150 [ dov/Rl O + 1) g (15

For orthogonal boundaries these terms vanish and there would not be any need for a
suitable corner counterterm in the action. In the general case though, one can show

that
(mbna + tbsa) 5gab = 2577a (46)

where ) = arsinh(n,s®) corresponds to the Lorentz angle at which the two boundary

segments are intersecting. As a result we can extract a total variation

81|, = 71778 gaps (4.7)

78 1G dxé( |7|”) + 161G

that leads us to the definition of the suitable corner counterterm

1
Ie=——[d : 4.8
c 87TG/C v/ |vn (4.8)

4.2 Null/spacelike corner

In contrast to the well-known corner term we just presented, the research on inter-
sections that involve null hypersurfaces has only recently started [4, 5].

In order to describe this situation properly we have to be careful with the way we
define the direction of the null normal £%. Throughout this thesis we adopt the
convention of [4] that the k% should always be defined such that {* is outward pointing

with respect to our spacetime manifold M.
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We discuss a case in which the spacelike boundary segment S intersects the null

segment A at its future boundary C'. Thus, the variation of the action

1
I= S/ —2A
167TG/Md$ g(f =24
—— [ & h|K
87TG S v | |
—% ngOd)\\/|’7’(@+/‘€+/€),

leads us to the corner term

1 a
5I|C = —W/Cdx Y| (menadg® + a)

(4.9)

(4.10)

where n, is the normal to S, m, is normal to C embedded in & and « follows the

definition (3.3). To find a suitable counterterm, that will take a similar form to (4.7),

we first state some relations that hold on C

Gablc = Yab — NaTp + MMy,
= Yab — kalb - lakb

ko = (k-n)(ng —myg)
1

la — a a

20k ) (ng +my)
manbég“b = m,on"
a = k,0l%.

(4.11)

(4.12)

(4.13)

(4.14)
(4.15)

Furthermore we require that the metric variation on C embedded in S is equal to C

embedded in A, which gives us

—5n(anb) + §m(amb) = _5k(alb) — 5l(ak’b)
—onng + o0mm, = =0k, — 4l°k,.

Using the relations (4.11) - (4.17) allows us to write
o 4+ myngdg®® = 20 In (k - n) + 1,6k,

where we can see that there is again a Lorentz angle appearing.

(4.18)

Here future does not refer to the time direction but to the null parameter A = A ¢ appearing in

(3.22) that is defined via dz® = k*dA.
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We can now extract a total variation and end up with the final expression

5I|c:—L dxd (Mlm(kn))

8”1G g (4.19)
- / 1 . ab o a
+ 167TG c dl’ |,y| (n (k n)'V 5gab laék ) I
that leads us to the definition of the corner counterterm
1
Ir=—— | d In(k-n). 4.2
¢ =5 . aVPTn s m) (1.20)

Comparing this with [5], we see that our result (4.19) is slightly more general since
we did not fix the boost gauge such that k% = 0. What is more, our derivation was
done assuming no special coordinate system, in contrast to the adapted coordinates
used in [5].

4.3 Null/null corner

Since we introduced the convention that the [* vectors should always be outward
pointing, we can distinguish between two types of corners [4]. The corners are either
located at solely the initial or final values of the corresponding parameters A;/;r, that
are defined on the null boundary segments N; and Np;. To make this statement clear
we examine 2d Minkowski space as an example spacetime that exhibits four types
of null/null corners. After demanding that the [* should be outward pointing with
respect to the spacetime manifold, the direction of the k% is thus fixed by k,[* = —1.

The null normals k% define a parameter \ via
dx“|X = kS dAx, (4.21)

where the subscript X € {I,II,1I1,IV} denotes the boundary segment. In Fig. 4.1
we see that all corners appear either at solely the initial or final values of the
corresponding Ax. For example timelike infinity i* is located at A\; = A;fna and
Arv = Arvfnal. Conversely spatial infinity 0 lies at A\jy = AVinitial and Ay =
AIT1 nitial €tC.

These two cases only differ by an overall sign, hence we only discuss the case with

solely initial corners.
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Figure 4.1: Carter-Penrose diagram of 2d Minkowski space. The null normals have
been defined such that the auxiliary vectors [* are outward pointing with respect to
the spacetime manifold.

We start of with an action of the form

1
I= dPay/— —2A
167TG/M =g (R )
1
- — dod\y\/ ) 73
s7G Iy, ' [v1] (O1 + kr + Fr) (4.22)
1
— S~ ded\\/|vi1| (©rr + kir + ®ir)
87TG Nir

where the boundary counterterms follow the definitions in Sec. 3.1. Variation leads

to a corner term

1
ole = 15 [ dav/Pllar +am), (4.23)

where a; and «y; are defined following (3.3). Just like in Sec. 4.2 we follow loosely [4,5],
meaning that we try to extract a variation of a Lorentz angle from this expression.

After some manipulation we get the simple relation

Ktk
k?I ’ k?H

ar + agr :51H<k1'/€11)+ 6gab- (424)
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This allows us to extract a total variation such that we end up with

1
oI, =—16 G/dm (Vi s - ki)

pakb 1 (4.25)
16 G d \/ ( ke £ S— 5 ln (k] . k’][)’)/ab> 6gab~
The correct null/null corner counterterm is thus given by
IC = d[L‘\/ |’}/ lIl k?[ ]f[[ (426)

16G

It should be pointed out that this is not precisely the same counterterm that the
authors derived in [4, 5], as our result differs by a factor % However, this is not a
disagreement and due to the fact that we did not fix the boost gauge. Demanding

0k® = 0 implies that the second term in (4.25) can be rewritten as a total variation

kiki

DIV s ST (K - Rap), 1.2
Ty Oa n (kr - krr) (4.27)

and leads to the counterterm in [4, 5|

1
IC = —% cdl’\/ |’7| In (l{?[ . ]{3[[). (428)
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5 The BTZ black hole as a prototyp-

ical example

As we already explained in Sec. 2, the GHY-like boundary and corner terms that
we just derived do still not necessarily lead to a well-defined variational principle.
Typically we also need to introduce holographic counterterms to get a vanishing
variation of the action 67|poy = 0. We use a BTZ BH as an example since its
spacetime exhibits null and timelike boundaries in the form of a bifurcate Killing
horizon and an asymptotically (timelike) AdS3; boundary. What is more, we make
explicit comparisons with [31], where a near horizon limit of BTZ was used to define
bes in the context of soft hair [32]. The BTZ line element (1.3) lets us easily find
the Killing horizon at » = r,. Nonetheless we need other coordinates to describe the

whole spacetime at the horizon.

5.1 Near-horizon boundary conditions

To start of we shift the horizon to x = r —r, = 0 and go over to a corotating frame,
which will later help us to derive null coordinates. The corresponding coordinate

transformations

= 5 5 (7“2 — ri) , O =p— r_t’ (5.1)

lead to a near horizon line element, that asymptotes to Rindler space in the limit

z—0

12 r_ r2 —r?
p da® + QaT:UZdtcw + (ri + = _.1'2) de*. (5.2)

d2:—2 thZ
S a“r +l2+ 2

2 _ .2
Note that we defined a := H——

12ry
will demand bes such that da = 0. The authors in [31] proceeded their calculations

, which will later turn out to be useful because we

in the Chern-Simons (CS) formulation and also defined their bes in this framework.
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One of its advantages is that those bes can be formulated to be independent from
the radial coordinate. Hence, a well-defined variational principle was found that also
holds on the boundaries x = 0 and x — oo.

To get more geometric insight we proceed in the metric formulation. Assuming
a state-independent Rindler acceleration our bcs in this Rindler-type gauge are

non-vanishing for the angular components only,

adr_x?
0 0 l

R ; - (5.3)
adr_x? 2§r+r+(l2+x2)7257«_74_x2
! O 12

These bes differ significantly from Brown-Henneaux bes since dgy, = O(2?). This
is due to the fact that we chose a corotating frame in order the access the horizon
region x = 0 properly. Thus, this spacetime is not asymptotically AdS; in the sense
of Brown-Henneaux, but rather asymptotes to a rotating AdSs in the limit z — oo.
Before we proceed our calculation by choosing a Kruskal-like gauge in order to
properly describe the horizon and more importantly the bifurcation 1-sphere, we
check if we are able to add boundary counterterms to the action such that we get
a well-defined variational principle on the x — oo hypersurface. The most general

Ansatz we propose is a counterterm of the form,

Is = %/Bd% |h| ((1 +a) K+ ?) ; (5.4)

where we have allowed for an arbitrary prefactor in front of the GHY - term plus
a constant cosmological boundary term. We do not take into account any higher
order terms like K2, K, K® and R4R in the expansion (2.27) since they will only
effectively contribute to higher orders in % The contracted intrinsic curvature R
is also not considered since it corresponds to the Euler characteristic and therefore
has vanishing variation. As a result, we propose that the only possible covariant

counterterms are completely determined by « and £.
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Varying the total action I = Igy + I5 leads to the boundary term

M@H+%w3:

1
= — —— [ &z/|h| [ (1 +2a) K® — (1+a)+é h?® — aKnn® | §gap
167TG B l
Y Pa/ TRt (2V 18 gs — Vb >
—167@/8 /TR (2V o ghe — VoSgu) =

=— IG;G/Bde (M(2a+5+1)+a5r+(2a+5+2)+(9 (%)) :
We see that it is not possible to find a pair («, 5) such that (5.5) vanishes in the
limit x — oo. We therefore propose to add a suitable non-covariant counterterm to
obtain a well-defined variational principle. This result is rather surprising since the
bes used in [31] are equivalent to ours and lead to a well-defined variational principle
in the CS-formulation, which leads us to suspect that this formulation might not
be completely equivalent to the metric formulation when we also take boundaries
into account. A suitable non-covariant term we could add is the metric component
Gow since it is O(-5) and state-independent. To clarify this argumentation we should
point out that ¢ \/W = O(2?) and therefore a counterterm proportional to g, will
only affect the O(1) term in (5.5) and make our problem solvable. We use the Ansatz

L B
JK_%GAdx\m<u+mK+l+l%Q, (5.6)

where we chose v as an arbitrary prefactor and divided by the AdS radius [ to make
it dimensionless. When we now vary the total action we get an expression that

vanishes for the right choice of (a, 3,7)

M@H+%WB:

1 2 b B v b b
- 1+20) K — (1 42 Y s
e Bd:c ]h!(( + 2a) (( +oz)—|—l—|-lgm h aKn'n’ | dgau
«Q 2 / ab, ¢
167TG /Bd € | | n ( vaégbc VC(;gbc)

B 1 , [ 2adr x? 1
——167TG/Bd:U(1—2(204+5+1)+a(5r+(2a+ﬁ+2’y+2)—|—(’) ~)
(5.7)
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We see that we get a well-defined variational principle for v = —% and a family of
(a, B) defined by 2a: + 3 = —1!. For the remainder of our calculations we work with
a = 0 and § = —1 since this leads us to the standard GHY-counterterm plus a
holographic counterterm that includes non-covariant corrections. Thus, neglecting

other boundary segments for now, the correct action is given by

1 1 1
I=1Ipy+Iony — —= | @b =+ =0us |- 5.8
EH GHY — &7 : Al (l 219 (5.8)
Of course this additional, non-covariant counterterm leaves room for interpretation.
One way to look at it could be that, since we are on an x = const. hypersurface, the
x-direction actually gets projected out and g,, could be considered as a scalar field
with respect to the boundary coordinates (¢, ¢). In a Kaluza-Klein-like split, where
the electromagnetic vector potential A, = L[ would be zero, this should lead

Gaax
g:r;d)
to AdS Einstein equations on the boundary including a dilaton-like scalar field g,..

We will not further discuss this matter though and proceed with our task to find a
well-defined variational principle for the BTZ BH, including all boundary segments.

5.2 Horizon boundary conditions

To properly access the Killing horizon and the bifurcation 1-sphere we have to
perform another coordinate transformation. In order to find suitable null coordinates

we have to solve the geodesic equation

: 2
—a?2*t* + 2 i? =0, (5.9)

where the dot denotes differentiation with respect to an affine parameter 7. Further-
more we demanded that the angular coordinate does not depend on 7 and therefore
does not give any contributions to the geodesic equation. Solving Eq. (5.9), we find

that null geodesics are defined by

T
at =In ——————, 5.10
[+ V12 + 22 (5.10)
which allows us to define Kruskal-coordinates
l l
- - t (5.11)

U= ——e™, V=— "
I+ /12 + 22 I+ V12 + 22

!This result is equivalent to Eq. (14) in [33], where a transverse gauge for the fluctuations 67y,
was assumed.
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Due to the fact the we assumed ¢ = 0 those coordinate transformations only involve
state-independent quantities. As a result, the metric fluctuations dg4,, formulated
in the Rindler-like coordinates are equivalent to those formulated in Kruskal-like

coordinates. The transformed line element and the bes now read

41 APBr_ APBr_
i =2 qvav+ 2V gvag - U gvag a2
UV —12) UV —12) UV —12)
APUV (r3 —1r2) )
+ — +r? | d¢?
( UV —12)° . )
20r_ 13V
0 0 (lz—UV3)2
26r_ 13U
0Gab = 0 0 _(ngJv)2 . (5.13)
25r_I3V 25r_13U 2(57’+7‘+(l2+UV) —4l257‘77‘7UV>
(2—-UV)2  (12-UV)? (12—UV)?
U

Uv =12

Figure 5.1: Carter-Penrose diagram of the BTZ patch r, <r < oc.
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In this coordinate system we observe that the BTZ patch in Fig. 5.1 has three

different boundary segments connected via non-smooth corners:

e The ingoing (U = 0) Killing horizon

The outgoing (V' = 0) Killing horizon

e An asymptotic (timelike) boundary at UV = [?, corresponding to x — 0o

The bifurcation 1-sphere at U =V =0

A null/timelike corner at U =0,V — oo

A null/timelike corner at V = 0,U — oo

5.2.1 Boundary segments

To distinguish between the two horizon segments we denote quantities defined on
the V' = 0 horizon with an index I and quantities on U = 0 with an index II. For
now, we do not fix the boost gauge on those hypersurfaces yet and the null normals

and auxiliary vectors take the form

kro= ACS;/, krra = Bci?
1 1 (5.14)

.
In Sec. 3.1 we derived a boundary counterterm as natural analog to the GHY-
counterterm. We check now if adding such a counterterm leads to a well-defined
variational principle on the respective horizon segment. Neglecting corner terms for
now, we observe that, after inserting k, and [,, the variation of the action, preserving
the given bcs, vanishes on the horizons U = 0 and V = 0 without the need for

holographic renormalization

) (IEH + INGHY,I) ‘EOM,HI -

1
=——— [ dod\iV/|vi| (VaOk§ + YOk} (0lr okrp + 6lipkia))
167TG H
1
+ [ ded\rv/ || (V] = Veking®) 0vra =
167TG H

1 (3r2 +7r2) ry0A — 2r_ A (Oror_ — 26r_ry) )
~ 167G /Hz dodAs ( 122 V+0O(V7)

(5.15)
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d(Igu + Incay.11) |E0M,Hu o

1
=——— | dod\i/Ivil (Vadki; + YOk (lirakirs + Olirekinra))
167TG Hir
1
+ = dpdirv/ Iyl (VoK = Vekiyit) 0%iran =
].67TG Hir
1 (3r2 +72) rydB — 2r_B (0ryr_ — 26r_ry)
=— dodA U+0U? .
167G J,,, 17" ( 272 o)

(5.16)

We see that both integrals are at least of linear order in V' or U and therefore lead to
a well-defined variational principle on the horizon (neglecting corner terms). The last
boundary segment we have to work on is the UV = [? element. The corresponding
normal vector is given by

oo UE—UV) g VIE-UV) 5 (5.17)

212/ UV 212/ UV

and is normalized such that n,n* = 1. We already saw earlier in this section that
in order to get a well-defined variational principle we have to add a suitable non-
covariant counterterm as well as a cosmological boundary term. Since non-covariant
terms, by definition, do not behave well under coordinate transformations, we cannot
just transform the term introduced in (5.8). Instead, we will add a term proportional
to (guy) ™!, which is similar to g,, in the sense that it is also state-independent and

O(55). Thus, we use an Ansatz of the form

1

I =——
B 87TG B

d*x |h| ((1 + a) K+ g + %(gU\/)_l) . (518)

Adding this to the Einstein-Hilbert action gives the variational principle

5 (Ign + Is) | 5 =

1 2 b B v b b
- - 1 2 ab 1 ~ s ab a
e Bd:v || (( +2a) K (( +a) + l —I—lgm h aKnn’ | dgau
Qo
— A2/ |h|h*n¢ (2V 40 gpe — Vedgay) =
167TG/B X || ’fl( a0Gbe cgab>

_ 1 2 2@6T+x2 1
o 167TG/Bd r (—52 (2a+B+1)+adry 2a++4y+2)+ 0O (;)) ,
(5.19)
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where 2?2 = (lf‘flg“//f — 00 at the boundary. We see that choosing v = —;11 and
2a 4 8 = —1 sets the leading two terms to zero and therefore gives us well-defined

action principle. Again, we set @« = 0 and § = —1. This way we get the standard
GHY-counterterm plus holographic corrections. Still neglecting corner terms the
holographically renormalized action for the total spacetime M, including all three

boundary segments is thus given by

I = Igy + Inguay, + Incuvir + loay + Ihe =
1 2
= Er/—al R+ =
167rG/M v g( * 12)
1

_ % " d(;ﬁdA[\/ |’)/[| (@[ + K1 +f€_])

(5.20)

T dodXir/|vir| (Orr + k1 + Fir)
81G Sy,

1
—— | &z+/|h|K
+87TG B v | |

1 11
@ (= o))
el H(ﬁzu(gw) )

5.2.2 Corner contributions

As already mentioned earlier in this section, our prototype spacetime consists of
three boundary segments with non-smooth intersections. Therefore we also check for
a well-defined variational principle on these corners and, if necessary, add suitable
corner counterterms to the action (5.20).

First we examine the V' = U = 0 corner C;/r;, which corresponds to the bifurcation
1-sphere and therefore is a null/null corner. The null normals (5.14) are defined such
that the auxiliary vectors [ /11 are outward pointing with respect to the spacetime
manifold and as a result k¢ is pointing in the positive U-direction and k¢, in the
positive V-direction. As we can also observe in Fig. 5.1, the corner is located at
Ar = Ar; and A\jp = Arp;, where Agjpp follow the definition (3.18).
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We showed in Sec. 4.3, that after adding the null-GHY terms on the horizon segments

Hi/r1 the variation of the action at the corner is given by

1
5I|CI/11 =~ 167G /CI/II dor/|y] (ar + arg) (5.21)

where 7 = 77 4 = Vi1.60- Following the definition (3.3), a; and ay; are determined

by the null normals and auxiliary vectors that we defined in (5.14),
Oy = k‘[’a(ﬂ?, A = ]{?[]7(1(”?[. (522)

After adding the corner term derived in (4.26) and inserting [¢ fies k¢ I and 742 the

action variation on U = V = 0 becomes
1 koKl 1
ol = —— | dov/ S (ky - ki)Y ) 8gu =
Curm 167TG/C oVl (k] Tor 2 R Ry ) 0ge

A
I/I1

The factor of % in the logarithm can either be removed by adding a constant

(5.23)

holographic renormalization term of the form

1

[CI/H,hr = _@ d(b |7’ In (2)7 (5'24)

Cr/ir

or by redefining the boost gauge parameters® A or B such that ATB — AB. Since
the corner is one dimensional we do not have any possible curvature terms that we
could add in order to get rid of the state-dependent term in the logarithm. Adding
terms proportional to ¢ 11 also just gives us terms depending on 6 A or B again.
As a consequence, we propose that the only way to get vanishing variation on this

corner is to demand

B= (5.25)

such that we are left with only one additional boost gauge degree of freedom instead

of two.

2At the corner the transverse metrics V1,ab a0nd Y11 qp are equivalent i.e. 'y}lbégab = V?}’égab =
7798940 =: 7**0gas

3This does not correspond to gauge fixing nor does it result in any loss of generality. The
additional (fixed) factor in front of A and/or B in (5.14) can, for example, be obtained by redefining

the hypersurface equation ¢ (z%) = 0 — qg(x“) = %(b (z*) =0.
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The other corners appearing in Fig. 5.1 are both an intersection of either the U = 0
or the V' = 0 horizon H;,;; with the timelike UV = [ hypersurface B. This corner
can be described as the % = const. boundary of a UV = const. hypersurface, which
corresponds to ¢t = const. and x = const. in terms of Schwarzschild-like coordinates.
Therefore the normal vector m, ~ 0, (%) is orthogonal to n® and dm, ~ m,.

As a result, the corner contribution coming from the asymptotic boundary B vanishes

since
Manp0g™® = 6 (M ng) + dmen® + dngm® = 0. (5.26)

The null hypersurfaces H;/;; intersect B at Ar/rr = Ar)r1,6nal and, as already shown

in (3.22), the variation of the action on those corners is thus given by

1

ey = ——— 2
0 ‘CI/B 167G e d¢ |’}/[’Oé] (5 7)
1
Tler s = — V : 2
) ’CII/B 167G /CH/B d¢ ")/][‘Oq[ (5 8)

Since we do not have to try to cancel the mgn,6g® term anymore, we expand o JIT
using the Lorentz angle between k* and an arbitrary vector £,

kI/H,a(sg?/H

ar/ir = 01In (kI/H : 51/11) - (5-29)

krjir - &y
Given that k, = 0 we can, without loss of generality, express £* as a linear combination
of the normal vectors n® and m®,

§yrr = payin® + vim®, (5.30)

where pu;/;r and vpp; are coefficients that we want to fix such that we get a well-
defined action principle on the corners. The corresponding corner counterterms that

we can add to the action (5.20) are thus given by

1
le,s = 15-G /1/3 do/ [y | In (k- &)

1
Iey s = e /H/B do/ |yl n (krr - &1r)-

(5.31)
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We observe that, after adding those counterterms, the variation of the action cannot

be renormalized for any choice of the coefficients ji;/;; and vy/r;

1 krqo&t 1 u
51‘01/6 ~ 167G Ao/ il ( Ly 511“ (kr - 51)71b59ab) =

Cr/s kr-&r
e—at v ,,.2 7712 r
HIT_QF(&T‘_’_’I"_’_ — 57»_T_) In (l ( I\/;Jr,u] +)A)
X

<. =
167G Cr/s l7’+\/7”3_7 <U[ 7’_2|_ — T% + ,U]T+>
vi(dryry —or_r_)In (zeat(w v ri_raJrMu)A) (5.32)

ryxT

1 4
167G Cr/s l <VI\/W+ ,U[T+>

" vir_(oryr_ —or_ry)

1
x
167G Je, Iry (VI\/W+ /L[?‘+>

1 or_r_ —oryry 1
+ 1575, ( T O (‘)) ’

+

T

+

—1 kII a(sffrlj 1 b
5] = d 7 e _1 k . a 5 " _
‘CH/B 167G Cirve oV || <k5H e + 5 n (krr - E10)7%0 gap
eat v ,,,2 _,,,2 r
prrr2 (oriry — dr_r_)In (’ ( H\/;—i—un +)B)

T

= L / do
167G 2 2 2 2
Cri/s lryo/r —rZ (—vi/ry — 712 + prrs
VII((5T+7’+ B (57“,7’,) n <leat(_l/11\/7”i—r2-HLUTJr)B) (533)

LT

1
167G d¢ -

@ Cri/s l (—VH 7’3_ —7r2 + /LHT’_,_)
1 / dé vrr—(0ryr— —or_ry)

Cri/s

— X
167G Iry (_VH\/W + uum)

1 or_r_ —oryry 1
— d -]
" TonC /Cu/s ¢< ri —r? +O<:E)>

Xz
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430V
(2-UVv)*’
this corner. We see that while we could find a solution (y7/rr,vr/rr) that leads to

Here we reintroduced the radial coordinate x = which goes to infinity at
a vanishing O(x) term, the O(1) is not affected by our corner counterterms (5.31).
That means, in order to get a well-defined variational principle, preserving the bcs
(5.3), we propose to fix the boost gauge in a suitable manner. The most convenient
gauge we can pick is setting A = B = 1. Then 0k;, = 0k, = 0 and there are
no corner contributions in the action integral at all. As a result, (5.20) is the total
action that leads to a well-defined variational principle on the full spacetime manifold,

including all boundary segments and, non-contributing, corners.
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6 Conclusion

We explicitly calculated boundary counterterms for null boundaries and non-smooth
corners. Doing so we followed loosely [3-5] and derived explicit expressions for the
stress-tensor on the different boundary segments. We used a slightly more general
framework since we did not assume that the null normals are null globally. Instead
we loosened this assumption and only demanded that k£“ is null on the corresponding
boundary segment. We then wanted to construct a boundary counterterm for the
soft hair bes introduced in [31] and found that working in the metric formulation, it
is not possible to find a suitable covariant counterterm on the asymptotic boundary
such that we get a well-defined variational principle. This could be a hint that the
CS-formulation might not be completely equivalent to the metric formulation in the
presence of boundaries. As a solution, we proposed a non-covariant counterterm that
involved a Kaluza-Klein-like scalar field, which could be interpreted as a dilaton-like
field from the perspective on the boundary. What is more, we found Kruskal-like
coordinates that allowed us to analyze the horizon region and the bifurcation 1-
sphere. We found that, demanding the bes (5.3), it is not possible to find corner
counterterms to the action such that we get a well-defined variational principle.
Instead we proposed to fix the boost gauge, that appears due to an ambiguity in the
definition of null normals (5.14), in an adequate manner. The full action leading to
a well-defined variational principle, assuming certain bcs and a boost gauge fixing

such that k7, = 6) and k7, = 07, is then given by
I = Igy + Inguay + Incuviar + loay + Ihe =

1 . 2

1
— % " dqﬁCD\[\/ |’Y]| (@] + Ry +/‘€_j) -

1 , 11 .
2 K—>—— .
+ 37 Bd z/|h] < 1T (guv) )

A dod i/ |Vir| (O + ki + Rip)
87TG Hir

(6.1)
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A Explicit Expressions

A.1 Brown-Henneaux boundary conditions

The following identities have been used in calculations throughout Sec. 2.3:

1 ! 1
fha 9””6“ <T+O<T3>>5a (A1)

hab = Gab — NagNp = O (r%) 0 0 (r%) (A3)
o0(1) o(%) r+0())

e = (l +0(1) o) ) )

0 (1) r2+0(1) y
h=deth;; = Jl"—;l +0(r?) (A5)
V—h= 72 +0(1) (A.6)
1 “R+0M) (k) o)

Ko=gLhy=| 0 0() o) (A7)
o)  0(Gx) T+oMm/,

K =K%, = % +0 (Z) (A.8)

V=hK™8ga = 0vpp — 67t +0(1) (A.9)

\/thhabégab =2 (57904,0 —dvu) +o(1) (A.10)

V=hah®5ga, = ol (74 — 67i) + 0 (1) (A.11)
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A.2 Near-horizon boundary conditions

The following identities have been used in calculations throughout Sec. 5.1:

e (bro(2))
e~ (iro())r

—a?z24+ 0 (m%)

hap = 0

= 0(E) 0

0 ar_— x2

0 () |

,L_<—ﬁﬁ+ogg 240 ()
v a2’ L0 (L) w+ri+o

x

h=dethy = ——+~

2.2 .4 5 o 9 1
T—a’f'+1’ +O(Jj2)

2 1 1
voh=9H —alry + 0| =
2 x?

l

_a’ _ a%

l 2

Koy = 0
ar_x ar_

12 + 2

+0 (52)

0

(A=r) oy (L
— + i+ 0 ()

(%) >

)

n“nbégab =0
V=hh®nV ,6gpe = —

V—hh®n°V .8gay =0

2a8r . x?
2

49

ab

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

A.3 Horizon boundary conditions

The following identities have been used in calculations throughout Sec. 5.2:

kro =AY
2+0(V)
ki=1 0(V?)
o)
-%240(V)
1o = 0
o)
a 1 a
kir.a = B6Y
ow?) \"
k?[ = g +0 (U)
o)
0
lira=| -2+0(U)
2r_V
= +0(U)
a 1 a
lir = _E(SU
0 0 VL0 (V?)
VI,ab = 0 0 0

QTZ,V +0 (V2) 0 7,._2’_ + 4(7”‘2#_[227)[]‘/ +0 (VZ)

ab

'VII,ab = O O *2ZZU2+ O (U2)
0 —ZU o) 24 TR o)

ab

%
l2
Ng=——"—""-—|U
VUV (12 = UV)
a
. 2—Uv
n' = ———
212UV

20

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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1*v 4 203r_V

U(2—-UV)? (z2—vuv)? (lLayv)2
4 ‘v 213r_U
hab = -V T V@E-ov? @) (A.38)
203r_V 23r_U riit42(r] —2r2 )UVIP+r3 UPV?
@-vv)? - @2-uv)? (2-vv)? ab
1’v 12 Ir_V
1 2iUV 2V VU3 2TV Na%
Kab _ = (,Cnh) , _ + > l2 _ l2U _ Ir_U (A39)
2 a (52 _ UV) 2/ UV 2VUV3 VUV
r_V U 2(T2 7742)\/W
VUV VUV + - ab
0 0 i
r_(1*+U%v?)A
Vakry = 0 ~ 2 —W (A.40)
2r_V2A r_(P4+UVHA (P2-r2)V(124UV)A
A-—U2vz T 15uzve 2120V ab
2V B r_ (l4+U2V2)B
TP_UV 0 P=102V]2
Vakrrp = 0 0 A (A.41)
r_(1'+U%v?)B ar 2B (ri—r2)U(I>+UV)B
15—1U2V?2 T p2ve 11120V ab
0 24+ 0(V) 0
Slrakry + 6lipkra = | 24 +0O(V) 0 Wer_A—r-04) 1 o(V)
2U(6r_A—r_5A
0 zﬁ) +0O(V) 0 b
(A.42)
0 BB o) —Dr-BordB) L o)
Olrrakrry + 0lrrvkir e = %?B o) 0 0
2V (ér_B—r_4&B)
- + O(U) 0 0 ab
(A.43)
Vi =r++0(U/V) (A.44)
a A (T-Qi- + TQ—) vV 2
Vak§ = R +0(V?) (A.45)
B(r2 +r2)U
Vaki = (”—J) +0(U?) (A.46)
2r3
2Ar_ or_ —r_o0 2 —r2)84
v, ke = ZAr=(redro —rory) +ry (i —r2)ody (v?) (A.47)
2ri
2Br_ (ryér— —r_dry)+ry (r2 —1r2) 6B 5
V.k$ = 53 U+0(U?) (A.48)
J’_
AB
k[7ak?1' - 7 + O (UV) (A49)
2r_ or_ —r_ory)AB
KOk Ogap — 2= (T40T 127; r)AB Gy Lo (U*V?) (A.50)
+
ab __ _ab _ ab __ ~ab _ 25T+ A
Y7 09ab = V1709ab = V1 0VI,ab = VI10VII,ab = +0O(UV) (A.51)

T+
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