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Kurzfassung

Diese Arbeit enthélt Beitrdge zur Theorie konvexer Korper, das sind konvexe, kompakte
Mengen, in Radumen konstanter Kriimmung, insbesondere der Euklidischen Einheitssphére.

Zuerst wird eine Definition des Schwerpunktkorpers auf der Sphére gegeben, in der die
geometrische Konstruktion ebenjener im flachen Raum imitiert wird. Grundlegende Eigen-
schaften dieses neuen Objekts, einschliellich dessen stochastische Approximation, werden
untersucht, sowie eine isoperimetrische Ungleichung fiir den Polarkérper des sphérischen
Schwerpunktkorpers bewiesen. Dies ist eine gemeinsame Arbeit mit Florian Besau, Peter
Pivovarov und Franz Schuster.

Das zweite Thema dieser Arbeit ist eine randomisierte Version einer isoperimetrischen
Ungleichung von Gao, Hug und Schneider im sphérischen Raum, welche besagt, dass
die Wahrscheinlichkeit, dass ein sphérisch konvexer Kérper mit gegebenem Volumen eine
zuféllig gewdhlte GroB-Hypersphére schneidet, minimiert wird, wenn es sich bei diesem
Korper um eine sphérische Kappe handelt. Zusammen mit Peter Pivovarov wird deren
Ergebnis auf konvexe Hiillen zufillig gewéhlter Punkte erweitert. Es wird gezeigt, dass der
Erwartungswert des obigen Funktionals minimal wird, wenn die Punkte auf sphérischen
Kappen gleichverteilt sind.

Zum Schluss werden Durchschnitte und Vereinigungen endlich vieler geodéatischer Kugeln
mit fixem Radius im sphérischen, Euklidischen oder hyperbolischen Raum, deren Mit-
telpunkte zuféllig gewdhlt werden, betrachtet. Es wird gezeigt, dass das erwartete Volumen
einer solchen Menge zunimmt (im Falle eines Durchschnitts), respektive abnimmt (im Falle
einer Vereinigung), wenn die Dichtefunktionen der Verteilungen der Mittelpunkte durch
ihre Radialsymmetrisierungen ersetzt werden. Dadurch wird ein Resultat von Paouris und
Pivovarov auf Rdume konstanter Krimmung erweitert.
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Abstract

This thesis contains contributions to the theory of convex bodies, that is, convex, compact
sets, in spaces of constant curvature, in particular, the Euclidean unit sphere.

First, a definition of centroid bodies on the sphere is given by mimicking the geometric
construction from flat space. Basic properties of this new object, including a stochastic
approximation procedure, are established, and an isoperimetric inequality for the polar of
the spherical centroid body is obtained. This is a joint work with Florian Besau, Peter
Pivovarov, and Franz Schuster.

The second topic of this thesis is a randomized version of an isoperimetric inequality of Gao,
Hug, and Schneider in spherical space, which says that the probability of a spherical convex
body of given volume meeting a random great hypersphere is minimized, if the body is a
spherical cap. Together with Peter Pivovarov, their result is extended to convex hulls of
finitely many points drawn according to probability distributions. Uniform distributions on
spherical caps are shown to be minimizers. As a corollary, a randomized Blaschke—Santalé
inequality on the sphere is obtained.

Finally, intersections and unions of finitely many geodesic balls of given radius in spherical,
Fuclidean, or hyperbolic space, whose centers are chosen according to probability densities,
are considered. It is shown that the expected volume of such sets is increasing (in the case
of intersections), or decreasing (in the case of unions, respectively), if the density functions
are replaced by their symmetric decreasing rearrangements. Thereby, a result of Paouris
and Pivovarov is extended to spaces of constant curvature.
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CHAPTER 1

Introduction

One of the most fundamental inequalities in convex geometry, the Euclidean isoperimetric
inequality, states that among all convex bodies, that is, convex, compact subsets, in
Euclidean space of a given volume, precisely balls have the smallest surface area. Since
a rigorous proof of this inequality was given in the 19" century, results of a similar type
have appeared for many different geometric quantities, for example Urysohn’s inequality for
mean width, the isodiametric inequality for diameter, or the Blaschke—Santalo inequality
concerning polar volume.

Although the notion of convex bodies easily extends to spherical space, only a small
number of geometric inequalities are known in this setting. It was shown by Paul Lévy
at the beginning of the 20*" century that spherical caps minimize surface area among all
spherical convex bodies of a given volume — a result known as the spherical isoperimetric
inequality.

In recent years, a stochastic approach towards isoperimetric inequalities was developed
by Grigoris Paouris and Peter Pivovarov [Paol7b]. In particular, they have shown that
many of such inequalities admit stronger forms, in which the involved geometric objects
are generated at random and probabilistic quantities, such as expected volume and surface
area, are compared. Again, albeit the progress that has been made in Euclidean space, no
examples of randomized isoperimetric inequalities in spherical space have been discovered
so far.

The first contribution of this thesis is the introduction of centroid bodies in spherical
space. For an origin-symmetric convex body K in n-dimensional Euclidean space, the
centroids of the intersections of K with half-spaces through the origin form the surface of
a convex set, its centroid body I'K. In the case n = 3, this construction first explicitly
appeared in a paper by Blaschke [Blal7], where he conjectured that the ratio of the
volume of a body to that of its centroid body attains its maximum for ellipsoids. This
conjecture was confirmed by Petty [Pet61] (who also coined the name centroid bodies),
by reinterpreting Busemann’s random simplex inequality [Busb3] as what would become
known as the Busemann—Petty centroid inequality.

Since then, centroid bodies and their associated isoperimetric inequalities have been
extended to the LP-setting [Lut97], [Lut00], [Cam02] (see also [Hab09; Ival6; Lut86; Lut90;
Lut10; Ngul8; Zhul2] for further generalizations), where they were shown to lead to
functional affine invariant Sobolev-type inequalities (see [De 18; Had16; Had18; Had19;
Ngul6]). Other applications of centroid bodies have been found in asymptotic geometric
analysis (see e.g., [Bral4; Klal2; Mil89; Pao06]), geometric tomography (see e.g., [Gar06;
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2 Chapter 1 Introduction

Ival7; YasO6b]), and integral geometry (see e.g., [Hab12; Lud05]), as well as recently even
in Finsler geometry (see [Ber14]) and information theory (see [Paol2b]).

In a joint work with Florian Besau, Peter Pivovarov, and Franz Schuster [Bes19], we
introduce a spherical analogue of the centroid body of a centrally-symmetric convex body
in the Euclidean unit sphere, by mimicking Blaschke’s geometric approach to centroid
bodies in linear vector spaces. Combining our geometric definition with the gnomonic
projection, naturally leads to centroid bodies (in the tangent linear space) with respect
to a specific weight. These weighted centroid bodies will allow us to deduce several basic
properties of spherical centroid bodies such as continuity in the Hausdorff metric and
injectivity as well as the fact that, like in the linear setting, all spherical centroid bodies are
C?-smooth and have everywhere positive GauB-Kronecker curvature. Our main results are
a spherical version of the random approximation result for centroid bodies from [Paol2a]
and an isoperimetric inequality for the polar of the spherical centroid body.

This project belongs to a line of research of recent origin, dealing with the question of
which affine constructions and inequalities from linear vector spaces allow for generalizations
to spaces of constant curvature (then no longer compatible with the affine group but rather
the isometry group of the respective space). More results in the same spirit can be found
in [Bes18a; Besl6a; Bes16b; Bes18b; Danl8; Yas06a).

The second focus of this thesis are randomized isoperimetric inequalities in spaces of
constant curvature. In 2002, Fuchang Gao, Daniel Hug, and Rolf Schneider [Gao02] showed
that among all convex bodies in spherical space of given volume, spherical caps minimize
the total measure of great hyperspheres that meet the given set. In a joint work with Peter
Pivovarov [Hac|, we extend this result by replacing the convex body by the convex hull of
finitely many points, drawn independently according to probability distributions, and show
that on average a minimum is attained at uniform distributions on spherical caps. The
proof is carried out entirely on the sphere, using two-point symmetrization and spherical
rearrangements. Moreover, it works similarly in hyperbolic space. By letting the number
of points tend to infinity and drawing from indicator functions on convex sets, we recover
the result by Gao, Hug, and Schneider.

Inequalities for expected mean values have a long history in stochastic geometry and go
back (at least) to Blaschke’s resolution of Sylvester’s four point problem [Blal7], and its
numerous generalizations, e.g., arbitrary dimension [Bus53|, [Gro74], [Cam99], compact
sets and other intrinsic volumes [Pfi82], [Har03], continuous distributions [Paol2a] (see
also [Sch14, Chapter 10]). Interest is driven in part by applications to high-dimensional
probability, especially small-ball probabilities [Paol3], [Paol7b].

Finally, we consider unions and intersections of finitely many gedoesic balls in spherical,
Euclidean or hyperbolic space of a fixed radius and centers chosen independently according
to probability distributions. We prove that the expected volume of such a union or
intersection is decreased or increased, respectively, if one replaces the densities of the
random points by their symmetric decreasing rearrangements. This extends results of
Paouris and Pivovarov [Paol7a] to curved geometries. Moreover, as the number of points
tends to infinity we recover isoperimetric inequalities for outer parallel and r-dual sets
from [Sch48], [Bez18a|. Unions and intersections of balls have already been studied in
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connection with the Kneser—Poulsen conjecture (see e.g. [Bez02; Bez04; Bez18b], and also
[Bez07]). In this work, they yield yet another model of how randomness can be introduced
in geometric inequalities.

Two-point symmetrization has been used as an analytical tool in spaces of constant
curvature, especially in multiple integral rearrangement inequalities [Bae76], [Bur01],
[Mor02], and also more recently in isoperimetric inequalities [Bez18a]. However, such
techniques have not yet been fused with stochastic convex geometry in curved spaces. The
results of Chapters 5 and 6 are a first step in this direction.

This thesis is organized as follows: The second chapter contains background information
about convex geometry and the symmetrization techniques used therein. In the third
chapter, we state important rearrangement inequalities that will provide the technical
backbone of our results. Chapters four to six are devoted to our new results about spherical
centroid bodies, randomized Urysohn-type inequalities and random ball polyhedra.
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CHAPTER 2

Background

This chapter collects all necessary background material that is needed in the subsequent
parts of this thesis. We first choose models for the spaces of constant curvature and fix
some notation. Secondly, we review the basic notions of Euclidean and spherical convexity
along with some important isoperimetric inequalities. Finally, we introduce two important
symmetrization techniques. These will act as the main tools for obtaining the results of
Chapters 4, 5, and 6.

2.1 Models and notation

Let R"*! be (n + 1)-dimensional Euclidean space endowed with the standard Euclidean
scalar product -y = x1y1+- - -+ Zp41Yn+1, Buclidean norm ||z|| = y/z - x, and the indefinite
Minkowski product (z,y) := x1y1 +- -+ Tn¥n — Tni1Yni1. We fixe = (0,...,0,1)T € R*H!
and define the n-dimensional

o Spherical space: S" := {z € R"" |z .2 =1},

« Euclidean space (at height 0): R?, := {z € R*"!|z.e =0},

« Euclidean space (at height 1): R?; := {z € R""!|z.e =1},

 Hyperbolic space: H" := {z € R"™! |z e > 0, (z,z) = —1}.
With M" we denote at once S", Rf;, and H", that is, statements involving M" will be true
in all three geometries. Choosing the affine subspace R¢ as a representative for Euclidean

space will result in more concise formulas. Topological interior int, closure cl, and boundary
bd are always relative to M. Let z € R""!. We will use the following abbreviations:

et i={yeR" z.y=0} and =z :={yeR"™|(z,y) =0}

Moreover, we set H, := x+ and write H; := {y € R*"! |z .y >0} and H; := —H for
the associated halfspaces, and correspondingly use Hag), Hg<C+>, and H;,g_). When working
with two-point symmetrization, we will just write H without subscript for a set of the
form H, "M" or Hé) NM"™ and always take H* to be the halfspace that contains e € M™".
Especially in Chapter 4, we will also use the notation

Sy :=S"nzt, Sf:=S"nHS, S;:=-S;.

xT x

Lastly, we set S*! := S, and R" := RE g, thus, S*~1 C R”, as usual.
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6 Chapter 2 Background

We will write vol, 1 for the standard Euclidean volume measure on R™*1. On all
n-dimensional subgeometries, the volume measure will be the restriction of n-dimensional
Hausdorff measure in R”*!. Although, we introduce two different notations:

o (M"™ \,), whenever we do not distinguish between spherical, Euclidean, and hyper-
bolic geometry.

o (R, vol,) and (S", 0,,), whenever a statement concerns Euclidean or spherical space
only (there will be no statements exclusively about hyperbolic space).

For integrals, we will abbreviate
dx .= d\,(z), dx:=dvol,(x), dzr:=do,(zx),

whenever the measure of integration is clear from the context, and also use measurable as
short for \,-measurable. We write dy (x,y) for the geodesic distance between z,y € M™,
that is,

arccos(z - y), if M"™ = S,
dyin (2,y) =  llz = yll, if M" = Rg,

e,y

arcosh ((z,y)), if M"™ =H".

We denote the orthogonal and special orthogonal groups on R"*! and R" by O(n + 1),
O(n), and SO(n + 1), SO(n), respectively, and write Isom(M") for the group of isometries
on M".

For i € {0,...,n}, let M7 be the collection of i-dimensional totally geodesic submanifolds
of M"™, that is,

M? = {ENM"|E is an (i + 1)-dimensional subspace of R" 1},

We denote the Isom(M"™)-invariant measure on M7 by u”, but again abbreviate integration
as dM := du}(M). The normalization is p?(M?) = 1, if M" = S", and such that
pg ({M € MY | M N By(e) # 0}) = kp—i, if M™ = RT; or H”, where B (e) is the geodesic
ball of radius 1 around e, and «; is the i-dimensional Euclidean volume of the i-dimensional
Euclidean unit ball.

To introduce polar coordinates on M", we set

. [m M =S,
oo, if M* =RZ; or M* = H".

For t € [0, RM], we define the functions

cost, if M" = 8", sint, if M" =8",
cst:=4q1, if M" =Rg, snt:=<t, it M" =Rg,
cosht, if M" = H", sinht¢, if M"™ = H",
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2.2 Convexity 7

and write polar coordinates as x(t,u) := ecst +usnt, for u € S" ! and t € [0, RM}. The
following transformation formula holds in all three geometries:

RM
x)dx = z(t,u)) sn” ! U )
o= [ [ fattw) s e, 2.1

for an integrable function f: M"™ — R (cf., e.g., [Sch48, §3], [San76, Section IV.17.3], or
[Gal04, Sections 3.F and 3.H]). In polar coordinates, we have dyn(e,z(t,u)) = ¢, for
weS"landte [0, RM}. Of course, polar coordinates on R" = R, have the simpler
expression z(t,u) = tu, for u € S*~! and t € [0,00). Sometimes, we also write r instead of
t for the radial variable.

Finally, the words increasing and decreasing will always be used in the non-strict sense.

2.2 Convexity

We start with general facts about convex sets, that are true in spherical, Euclidean, and
hyperbolic space, and will later point out distinct features. Let K C M" (or K C R").
If for any x,y € K, x # —y in the case M"™ = §", the shortest geodesic segment [z, y]
connecting x, y lies inside K, we call K convez. In Fuclidean space, we have

[z,y) ={(1—t)x +ty|0 <t <1}

Moreover, K is a convexr body if it is convex, compact, and non-empty. We will write
K(M"™) for the set of all convex bodies in M", and for a set A C M", we let K(A) be the
subset of convex bodies contained in A. The convex hull of a set A, denoted by conv A, is
the intersection of all convex sets containing A. In the case of M"™ = S", we exclude the
whole sphere from the set of convex bodies. A convex body K C S” is called proper, if it is
contained in an open hemisphere, that is, K C intS;} for some u € S™.

We will use the letter x for the following function: For any set A C M", we define

)1, i A#D,
x(4) = {0, if A=0. (22)

Note that on convex bodies in R™ and H", and on proper convex bodies in S", x equals
the Euler characteristic (which is usually denoted by x in the literature). The Euler
characteristic can be extended to more general sets in a way different from our definition.
As we are interested in intersection probabilities of sets, we stick with (2.2).

We now define origin-symmetry in M". For x € M"™ we denote its geodesic reflection
about the origin e € M" by

= —x+2(x-e)e,

that is, orthogonal reflection about span{e} in R"*!. A subset A C M" is called (centrally)-
symmetric with center e € M", if A := {2°|x € A} = A. Let K.(M") denote the subset
of all centrally-symmetric convex bodies in M". If M" = S™ and K € K.(S") is centrally-
symmetric, then K C SF. Moreover, if K is proper, we have K C int S7.
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8 Chapter 2 Background

Next, we describe the metric structure of X(M"). Let A C M" be non-empty. We write
dvin (2, A) = inf{dmn (2, y) |y € A}
for the distance of z from A. For » > 0 and, we denote Bby
Ay i={x e M" |dyn(z,A) <r} and A" :={x € M"|dyn(z,y) <rVyec A},

the outer parallel and the r-dual (cf. [Bez18a]) set of A. Further, for x € M", r > 0 let
B, (x) = {z}, be the geodesic ball of radius r around z. Then one has

A, = U B,(x) and A" = ﬂ B, (x).

€A €A

On S™, we also write C,(u) = B, (u) for the spherical cap of radius r centered at u € S™.
The Hausdorff distance between closed sets A, B C M" is given by

opn (A,B) = min{0 < r < RM: AC B, and B C A}

It induces a topology on X(M") that we will examine more closely in the following
paragraphs, where we consider Euclidean and spherical space separately.

In R™, there are different ways to associate functions to convex bodies: For K € K(R")
the support function hg: R™ — R is given by

hi(z) =sup{z-y|y € K}.

The function hg is sublinear, that is, it satisfies hi(tx) = thi(x) and hi(x +y) <
hi(z) + hi(y) for all 2,y € K and t > 0. If u € S"~ !, hg(u) is given by the smallest real
number ¢, such that K is contained in tu + H, . Moreover, every sublinear function on R"
is also the support functions of a convex body (see e.g. [Sch14]).

The Minkowski sum of two sets A, B C R"” is defined as

A+ B:={a+blac Abe B}.

A very useful feature of support functions is that hx i = hx + hy, for every K, L € K(R"),
and that 6gn (K, L) = sup{|hx (u) — hp(u)|: u € S}

One can also describe K € K(R™) by giving its radial function pg(x): R™\ {0} — R*,
defined by

pi(x) =sup{t > 0|tz € K}.

More generally, radial functions can be used to describe star-shaped sets, that is, sets S
that satisfy [0,z] C S, whenever x € S. In Chapter 4, we will also use radial functions to
describe unbounded sets, and hence allow the value +oc.

There is a natural notion of duality between convex bodies in Euclidean space: For
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2.2 Convexity 9

K € X(R™) containing the origin in its interior, the polar body of K is defined by
K°={zeR":z-y<lforallye K}.

We have hgo(u) = pxr(u)~! for all w € S*"! and all K € K(R") that contain the origin
in their interior. The isoperimetric inequality associated to polar bodies is the famous
Blaschke—Santald inequality [San49]:

vol, (K°) < vol,(Byx),

for every centrally-symmetric convex body K € K(R™) that contains the origin in its
interior. Here, By is the Euclidean ball around the origin, whose volume equals that of K.

The volume of an outer parallel set in R™ has a simple expression, which is known as
the Steiner formula: Let K € K(R™) and € > 0, then

n

voly(Ke) = Y Vi(K)kn—ie" ™,
=0

where kj_; is the (n — ¢)-dimensional volume of the (n — i)-dimensional unit ball, and
Vi(K) is the ith intrinsic volume of K, a quantity that is invariant under translations and
rotations of K. For example, V;, equals regular volume, V;,_1 (up to a constant) surface area,
and V| the Euler characteristic. More generally, we have the following integral-geometric
formulas:

Vi(K) = (”) fin / Y(KNE)dE, (Crofton) (2.3)
RiRn—q AGry_,

where AGr)_; is the affine (n — ¢)-Grassmanian, that is, the set of all (n — 4)-dimensional
affine subspaces (i.e. M]'_,) equipped with its motion-invariant measure, normalized as in

Section 2.1, and

Vi(K):(ﬁ) fin /G . vol;(K|F) dF, (Kubota) (2.4)

t ) Kikn—i

where Gr}' is the Grassmanian, that is, the collection of all i-dimensional affine subspaces
equipped with its rotation-invariant probability measure, and K|F is the orthogonal
projection of K onto F' (see e.g. [Sch08]).

For the intrinsic volumes, the isoperimetric inequalities are known (see e.g. [Schl4,
Section 7.4]): they are minimized on balls,

Vi(K) = Vi(Bk), (2.5)

forall 1 <i<n, K € X(R"), and where again By is a ball, whose volume is that of K.
These inequalities have been extended to the following random setting: Let N € N and
X1, ..., Xn be independent random vectors on some probability space ({2, A,P), that are
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10 Chapter 2 Background

identically distributed uniformly in K, that is,

ILK(J})

X; ~ 00
vol, (K)

dx,

for all 1 < i < N. In other words, P(X; € A) = % for A C R™ measurable. We

define a random set [K|y as

[K]n = conv{Xy,...,Xn}.

Correspondingly, for independent random vectors Z1, ..., Zy identically distributed uni-
formly in By, that is,
LBy (:U )
o B\ g
" vol,(Bk) o
we set [Bg]n := conv{Z1,...,Zn}. Then the following inequalities hold:
EVi([K]n) > EVi([Bk]n), (2.6)

for all 1 < i < n. Here, as opposed to (2.5), the case i = n is non-trivial and due to
Groemer [Gro74]. For i < n, (2.6) was obtained by Pfiefer [Pfi82] (see also [Har03]).

If we let the number of points N go to infinity, we have that [K]y — K almost surely
in the Hausdorff metric, and hence that EV;([K]y) — V;(K). This means that in the
limit (2.6) implies (2.5). For an overview over the various stochastic strengthenings of
isoperimetric inequalities confer the survey of Paouris and Pivovarov [Paol7b].

Next, we recall facts from spherical geometry. However, the main part of this section is
devoted to the gnomonic projection and spherical centroids as well as their interplay, for
which we prove several auxiliary results needed in the next sections. As a general reference
for this section we recommend [Bes16a], [Gla96], or [Sch08, Section 6.5].

For 0 <k <mn, a k-sphere S € M?'_, is a k-dimensional great sub-sphere of S", that is,
the intersection of S” with a (k + 1)-dimensional subspace in R"*!. Clearly, every k-sphere
is convex.

Also on S, we have a similar notion of polarity: Let K € X(S™), then its (spherical)
polar body K* is given by

K'={xeS"|z-y<0forallye K}.

The spherical version of the Blaschke-Santald inequality associated to the spherical polar
body was obtained by Gao, Hug, Schneider in 2002 [Gao02]:

on(K") < on(Ck), (2.7)

where C is a spherical cap, such that 0,(Cx) = 0, (K).
The expression for the spherical volume of outer parallel sets of a proper spherical convex
body K € K(S"), known as the spherical Steiner formula, is more complicated, compared
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2.2 Convexity 11

to Euclidean space:

n—1

on(K2) = wnVa(K) + > fi(e)wjwn—j-1V;(K), (2.8)
1=0

where w; = 0;(S?), w,Vp(K) = 0, (K) and

3
fie) == / cos’ tsin™ 71 ¢ dt.
0

Early versions of the spherical Steiner formula for different classes of sets occur in works of
Allendoerfer [All48] and Herglotz [Her43]; a proof for spherical convex bodies can be found
in [Gla96].

Although the coefficients V; appearing in (2.8), are invariant under rotations of the
body K, one is reluctant to call them the spherical intrinsic volumes. The reason is that,
unlike in R™, expressions as in the formulas of Crofton and Kubota yield different series of
functionals U;, W;: K(S") — R: Set

Ui(K) ::/n V(K N 8)dS,

n—i

and for the spherical projection onto an i-sphere, K|S := SNpos(K NL"), where L € Gr7,
such that S = L NS™, and pos denotes the positive hull, pos A = {tz |t € R,z € A}, set

Wi

Wi(K) = 1/W o:(K|S) dS,

Between V;, U;, and W;, we have the relations

n

L5
%Uz-(K): 3 Viear(K) and Wi(K) = Vi(K),
k=0 k=i

see [Gla96]. Surprisingly, not many of the isoperimetric problems for these series of
functionals are solved. There is the spherical isoperimetric inequality, saying that caps
minimize spherical surface area V,,_1 (= Up,—1/2), by Lévy (see also [Sch48], [Ben84]):

Vi-1(K) > V,,_1(Ck),

where Ck is a spherical cap whose spherical volume is that of K. One usually formulates
this inequality in terms of volumes of outer parallel sets:

on(Kt) 2 0n((Ck)t),

for t > 0. The second known result is due Gao, Hug and Schneider [Gao02] and concerns
U;. Since in Euclidean space, the isoperimetric inequality for the first intrinsic volume is
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12 Chapter 2 Background

named after Urysohn, the following inequality is often referred to as the spherical Urysohn
inequality:

Ui(K) > Ui(Ck). (2.9)

Different to the situation in R™, no random extensions of any of the spherical isoperimetric
inequalities are known. There is one remarkable identity that is special to S™. It shows
that inequalities (2.7) and (2.9) are equivalent:

Proposition 2.2.1. Let K € KX(S™) be a convex body. Then

UWK)  20u(K")
fr—g (M5 _y) " on(S") b

Proof. If K is proper the proof can be found in [Gao02, eq. 20]. On the other hand, as
soon as K contains antipodal points, we have U;(K) = p!_;(M?_;) and int K* = (. [

n—1

In Chapter 5, we will consider the functional U; simultaneously in all three geometries
and write

Uy (K) == / X(K N M)dM, (2.10)

for K € K(M"™). Note that since K is compact, the integral in (2.10) is always finite.

We move on now with more preparatory material, that we will need in the later chapters.
The next lemma contains useful properties of the spherical Hausdorff metric.

Lemma 2.2.2. For m € N, let Cp,,C C S™ be closed and K,L € X(S™) such that

dsn (K, L) < 5. Then the following statements hold:

(a) The sequence C,, converges to C in the spherical Hausdorff metric if and only if it
does so in the Hausdorff metric of the ambient space R"H1;

(b) Ssn(K,L) = 6sn(bd K, bd L);
(c) dsn(K,L) = 6sn (K*, L¥).

Proof. Statement (a) is a consequence of the fact that |[u — v|| < dsn(u,v) < |ju — v|| for
all u,v € S”, that is, of the equivalence of the spherical and the Euclidean distance in the
ambient space.

In order to see (b), we use that for ds»(x, K) < 7, there exists a unique point p(kK, z) in
K such that dgn(z,p(K, z)) < dgn(x,y) for all y € K (see e.g. [Sch08, Section 6.5]). From
this, (b) follows by the same argument as in the linear setting (see e.g. [Schl4, Lemma
1.8.1]).

Finally, a proof of (c) was, for example, given in [Gla96, Hilfssatz 2.2]. O

We turn now to one of the most important tools in spherical convexity, the gnomonic
projection. First, recall that for e € S™, the gnomonic projection with respect to e is given
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2.2 Convexity 13

by
u

ge 1 intSF — R" = €05 ge(u) = P

In the following, we write g, : R**! — R"*! for the orthogonal reflection about R in
R™*1. Our next lemma contains several well known properties of the gnomonic projection,
the proofs of which can be found, e.g., in [Besl6a] and [Gao02].

Lemma 2.2.3. The gnomonic projection ge : int ST — R™ has the following properties:

(a) The map ge is a bijection with inverse given by

1.k -1 T+e
:R™ — intS = —
9e intSF,  g. (2) T

(b) If S C S"™ is a k-sphere, 0 < k < n — 1, such that S NintS} is non-empty, then
ge(S NintSF) is a k-dimensional affine subspace of R™. Conwversely, g-' maps
k-dimensional affine subspaces of R™ to k-spheres in int ST .

(c) The map g. induces a homeomorphism between K(int ST) and K(R™).
(d) For every u € int ST, we have ge(u) = —ge(u).
(e) For every K € K(intS}) containing e in its interior, ge(0eK*) = ge(K)°.

For our purposes it is important to know the push-forwards of certain measures on S™
under gnomonic projection. These are the content of the following lemma.

Lemma 2.2.4. Let g.: intST — R™ be the gnomonic projection.

(a) The push-forward 7,, :== ge# 0, under g. of spherical Lebesgue measure oy, is absolutely
_n+l
2 .

continuous with density given by &,(z) = (1 + ||z||?)
(b) For u € intST, we have u-e = ¢(ge(u)), where ¢p(z) = (1 + ||3:H2)7%

e’

e g(u)
Rn

Sn Uu

Figure 2.1: Gnomonic projection g.: int S} — R"
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14 Chapter 2 Background

(¢) The push-forward T, ‘= ge#7, under ge of the absolutely continuous measure T,
on St with density u — e - u is also absolutely continuous with density given by

Yale) = (L4 ]?) =7

Proof. In order to see (a), we need the Jacobian of the inverse g; ' at z € R™. It was, for
example, calculated in [Bes16b, Proposition 4.2] and is given by

_n+1

Jget(z) = (L+||z]I*) 772 = &(x).

Thus, by the area formula (see, e.g., [Magl2, Theorem 8.1]), we have
o) = [ ()
ge(A)

for every Borel set A C int S}, which proves (a).
Statement (b) follows from Pythagoras’ theorem, since ||ge(u)||> +1 = (u - e)~2, and,
finally, combining (a) and (b) yields statement (c). O

2

Next, we discuss the notion of centroids for certain subsets of the unit sphere which we
use in Chapter 4 (for other notions of centroids on S", cf. [Gal93]).

Definition. For {uy,...,un} € S" and a Borel subset A C S"™ such that o,(A) > 0, we
define their respective spherical centroids by

SN [udn)
s(ur, - un) - s(A) : | [y wdoy(u)|

N
HZi:l Ui

whenever they exist, that is, whenever the denominators are non-zero.

While this definition of spherical centroids makes use of the vector space structure of
the ambient space, it is well known that both cs(u1,...,uy) and c5(A) can also be defined
(with more complicated formulas) intrinsically, that is, by making use only of the metric
structure of the sphere (see e.g., Galperin [Gal93], where he also characterized cs by a set
of natural properties).

In order to carry out explicit computations later on, we combine now the gnomonic
projection with spherical centroids. To this end, we need to consider centroids in R™ with
respect to arbitrary densities.

Definition. For {x1,...,znx} C R" and a positive function f: R" — RT, let
1 N
cr(wr,. . an) = = Y @) (2.11)

For an absolutely continuous measure pn on R™ and a bounded Borel subset A C R™ such
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2.2 Convexity 15

that u(A) > 0, we define the p-centroid of A by

1
cu(A) == FL(A)/A:EdM(x) (2.12)

Our next lemma will be critical for the proof of the main results of Chapter 4. Here and
in the following, we use again the notation from Lemma 2.2.4.

Lemma 2.2.5. If {uy,...,uny} CintS}, then
ge(cs(u17 e ,’LLN)) = C¢<ge(u1)7 e ,ge<’U,N)) (213)
If ACintST is a Borel subset such that o,(A) > 0, then
ge(cs(A)) = c7,(ge(A))- (2.14)
Proof. By Lemma 2.2.4 (b) and definition (2.11), relation (2.13) follows from
v SN, S (ive) (5 —e) L
e Zuz =N —¢= N =N Z¢($i)$i,
i=1 Dimg Ui e Dim Ui e D i O(wi)

where z; = ge(u;), 1 <i < N. In order to prove (2.13), we use again the area formula (see,
e.g., [Magl2, Remark 8.3]) to obtain

Coan_ dawdont)  fu g @ @de
) = o) T, e g @)dg s

Since for x € R, we have ||z + ¢||> = 1 + ||z||?, and by the proof of Lemma 2.2.4 (a)
Jg 1 (z) = &,.(x), we conclude that

C pw@teyde [ (@t e)dTa(z)
geles(A)) = Jooay € (@ +€)én(z) dx °= Joo(ay Ldn(z) ¢
S 7 (z) = A
=) T = e )

We conclude this section by collecting a number of properties of spherical centroids for
later reference.

Proposition 2.2.6. Let {uy,...,un} CS" and K,,, K € X(S™), m € N, such that their
spherical centroids exist. Then the map cs has the following properties:

(a) 1t is continuous, that is, if u;m — w; for 1 <i < N and K,,, - K, m € N, in the
spherical Hausdorff metric, then

Cs(Wimy .- uNm) = Cs(ut,...,un) and cs(Kpm) = cs(K).
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16 Chapter 2 Background

(b) It is O(n + 1)-equivariant, that is, for every ¥ € O(n+ 1), we have

cs(Vuq, ..., 0uy) =9cs(ug,...,uny) and cs(VK) = deg(K).

(¢) It is proper, that is, cs(K) € int K.

(d) It is consistent, that is, if Uy,...,Un are independent random variables uniformly
distributed in K, then

CS(Ul, cey UN) — CS(K)
almost surely as N tends to infinity.

Proof. Property (a) is trivial in the discrete case and follows for convex bodies from the
continuity of spherical volume in the Hausdorff topology on convex bodies (see e.g. [Gla96,
Hilfssatz 2.4]), since

‘/mudan(u) —/Kudan(u)

Property (b) is also trivial in the discrete case and for convex bodies a simple consequence
of the O(n + 1)-invariance of spherical Lebesgue measure and the transformation rule for
integrals.

In order to see (c), note that v € int K if and only if w-u < 0 for all w € K*. Now since
w - cs(K) <0 for all w € K*, by definition, we obtain the desired property.

Finally, since 0,,(bd K) = 0 and int K is proper, and (b), we may assume for the proof
of (d) that K C intS}. Then, by Lemma 2.2.4 (a), the random vectors X; := g.(U;),
1 <7 < N, are independent and identically distributed according to

< on(KpAK) — 0.

Ly (k) 5.,
an(ge (K))

Moreover, by Lemma 2.2.5, we have

1
es(Uns . Un)) = — X)X,
ge(cs(Un N)) Zi]\i1¢(Xi);¢( )

But, by the strong law of large numbers (see, e.g., [Dud02, Theorem 8.3.5]),

N
> d(Xi) = ¢(x) don(z) = Tn(ge(K))
1=1

ge(K)
and
N
S 6(X0) X, / 6(2)z ddn(z) = / 2 d7 ()
i—1 ge(K) ge(K)
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2.3 Symmetrizations 17

almost surely as N — oo. Since, by the continuous mapping theorem, the product of
almost surely convergent sequences of random variables converges almost surely to the
product of their limits, we obtain from another application of Lemma 2.2.5,

1 ~
gelex(Ur . Un) = s [ i) = e (aulK) = gu(e. (K0,

almost surely as N — oo, which, by Lemma 2.2.3 (c), yields property (d). O

2.3 Symmetrizations

Consider the following optimization problem: minimize geometric quantity A over all convex
bodies K C M" of given volume c¢. Whenever A is continuous and geodesic balls (of suitable
radii) are conjectured to be extremal, one can hope to find a family of transformations,
or symmetrizations, (Sy)aea, such that each Sy: X(M"™) — K(M") preserves volume,
and decreases A. To conclude that balls are indeed minimizers, one then needs to find
for each K € KX(M") a sequence (Am)men C A, such that the iterated symmetrizations
Si,, © S\ K converge to a geodesic ball. Classical examples for A are surface area, the
other instrinsic volumes (see (2.5)), or the diameter diam K = sup{||lz — y|,z,y € K},
where K € X(R™). We describe now two important symmetrization techniques used in
convexity: Steiner symmetrization in R and two-point symmetrization in M".

We start with Steiner symmetrization (see, e.g., [Sch14, Section 10.3] or [Art15, Section
1.1.7]). Let u € S"~! be a unit vector and H its orthogonal complement in R™. The Steiner
symmetral S, K of a bounded, measurable set K C R" that has non-empty interior is
defined is follows: For each line G = {z + Ru}, z € H, orthogonal to H, that intersects K,
SuK NG is a closed interval with midpoint in H, such that vol; (S, K N G) = vol; (K N G).
In particular, if K € K(R™), there exist f,g: K|H — R such that f is concave, g is convex,
and

K={z+tu:z e K|H,t € [g(x), f(x)].

In this case, Sy K is given by

S K = {x—i—tu: veK|H,te _f@) —g(@) (@) _g(x)”.

2 ’ 2

Here, K|H denotes the orthogonal projection of K onto H.

By Fubini’s theorem, vol,(S,K) = vol,(K) for bounded, measurable sets K C R".
Moreover, if K € KX(R™), so is S, K. The following result states that balls can be reached
by iterated Steiner symmetrizations. It can be found, e.g., in [Art15, Theorem 1.1.16].

Proposition 2.3.1. Let K € K(R") be a convex body with non-empty interior. Then
there exists a sequence of directions u,, € S*', such that S,, o---o Sy K converges in
the Hausdorff metric to a Euclidean ball of the same volume as K.

Many classical geometric extremal problems can be solved by showing first that a geomet-
ric quantity of a convex body behaves monotonically whenever a Steiner symmetrization is
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18 Chapter 2 Background

Figure 2.2: A Steiner symmetrization of K.

applied to the body, and then using the above proposition that exhibits balls as extremizers.

Lastly, Steiner symmetrization can be extended to functions, using the layer-cake formula:
Let f: R® — R* be integrable, such that in particular, all sup-level sets {f > s}, s € R,
are bounded and measurable, then

5.0@) 1= [ Ls.roa(a)ds.

Clearly, S, F is integrable and ||Sy f||z1(rr) = || f|lL1 (®n)-

Next, we consider two-point symmetrization, also known as polarization, in M" (see,
e.g., [Bael9, Section 1.7], [Bro00], or [Wol52]). Its ingredients are hyperplanes and
orthogonal reflections: For every M € M"_,, we can find a vector u € R""! such that
M = u N M", where the orthogonal complement is taken either with respect to Euclidean
or Minkowski scalar product in R**1. A hyperplane H € M?_; divides M" into two
connected components, which we will call the closed halfspaces H+ and H~ in such a way
that always e € H'. The associated orthogonal reflection about H will be denoted by
p: M™ =M™, If H = v NM", for u € R"*!, then p is given by

T — 23, if M™ = 8",
pT = p([,U) = X — 2%[@6 — (U . 6)6], if M = 271,
-2, if M™ = H".

Lemma 2.3.2. Ifz,y € H" then dyn(z,y) < dyn (2, p(y)).
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2.3 Symmetrizations 19

Proof. Indeed, let z be the intersection of the geodesic segment [z, py| with H. Then
dyn (2,y) < dyin (@,2) + dyin (2,y) = dyin (2,2) + dyin (2,0y) = duin (2,0y)
by the triangle inequality. O
If we decompose a set K C M" as

K=(KNpK)U[(KNH")\K¥|U[(KNH")\ K",

/

Ksym Kﬁx K mov
the two-point symmetrization T = (H, p, T) with respect to H is given by

TK = (KN pK)U[(KNHY)\ K™ Up [(K;nH™)\ K¥™] .

K;?m Kfix pKvmov

Note that all unions are disjoint up to sets of measure zero, which immediately shows that
M (TK) = M\ (K) for all measurable sets K C M™. Intuitively, T pushes as much mass as
possible towards e (that is, into H') without double-covering points.

Proposition 2.3.3. Let K C M" be a compact set with non-empty interior. Then there
exists a sequence of two-point symmetrizations (T, )men such that Ty, o0---0T1 K converges
in the Hausdorff metric to a geodesic ball of the same volume as K.

Proof. The full compactness argument is included in the proof of Proposition 3.3.3, so we
give here only an idea of how one can obtain the statement. Let Br be a geodesic ball
around e € M"™ that contains K and T be the set of all sets that can be reached from K by
applying iterated two-point symmetrizations. Then every member of T is contained in Bp,
and thus cl T is compact in the Hausdorff metric. Let Bg be a geodesic ball around e whose
volume is that of K. Then the function L — \,(L N Bk) is continuous in the Hausdorff

€ pK
° e — H+
p Jmov K fix
.‘ K sym
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, H
TK
[(Ill()\'
e H~
T

Figure 2.3: A two-point symmetrization of K.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

20 Chapter 2 Background

metric and thus attains a maximum L’ on ¢l T. Suppose L' # By, then there exist 7 > 0
and points z,y € M" such that B,(z) C L'\ Bg and B,(y) C Bk \ L'. Now, apply to L’
one more two-point symmetrization 7' = (H, p, T') such that H is the orthogonal bisector
of [x,y] to arrive at a contradiction, since \,,(T'L' N Bg) > A\, (L' N Bg). O

The two-point symmetrization of a function f: M" — RT is given by

Tf@) = {méx{f(w),f(pw)}, it e,
min{ f(x), f(px)}, ifxe H .

We have Tl = Ik for any set K C M"™. More generally,

{Tf>s}=T{f > s} (2.15)

for all s > 0. To see this, write

{Tf>s}={xeH": max{f(x) f(pr)} >s}U{x € H™: min{f(x),f(px)} > s},
Dy Do
T{f>s}={x: f(x) >sA flpz)>s}u{z e H': f(z) > s}JU{x € H': f(px) > s},

g

EH Es E‘;

and note that D; C Fy U E3 and Dy C Fq, and on the other hand F; C Dy U Dy and
Es U E3 C Ds.
For a continuous function f € C(M") and ¢ > 0, denote by

w(0, ) = sup{|f(x) = F()|: dun (2,y) < 6,2,y € M"}

the modulus of continuity of f.

Lemma 2.3.4 ([Bae76]). For every continuous function f € C(M"), § > 0, and every
two-point symmetrization T, we have

w(0, Tf) <w(o,f).

Proof. We reproduce the proof from [Bae76, Lemma 1]: For numbers ay, ag, b1, b2 € R and
a1 = max{ay, as}, ag = min{ay, a2}, f1 = max{by,ba}, f2 = min{by, b2}, we have

max{|ay — Bi], |ag — Ba|} < max{la; — b1, [az — bal}.

Now, let T'= (H,p,T) and x,y € H' or z,y € H~ with dypn (z,y) < §. Then by the above
inequality, and since dy (px,py) = dyn (x,y), we get

Tf(z) = Tf(y)| < max{|max{f(z),f(pz)} — max{f(y).f(py)},
| min{f(x),f(px)} — min{f(y),f(py)}}
< max{|f(z) = fW)], [f(px) = flpy)[} < w(0, f).
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2.3 Symmetrizations 21

If on the other hand, say, z € H' and y € H—, we have

Tf(x) = Tf(y)| < max{[f(z) = f()| |f(z) = flpy)l,
[f(pz) = F()I, [f (px) = flpy)]} < w (0, f),

since also dyin (z,py) = dyin (px,y) < dym(x,y) < 0, by Lemma 2.3.2. O
We close this section with a lemma that is needed in Chapter 6.

Lemma 2.3.5. Let T = (H,p,T) be a two-point symmetrization, K,S C M", such that S
is symmetric with respect to H, that is, p(S) = S. Then we have

T(KNS)=TKnNS, (2.16)
T(KUS)=TKUS. (2.17)

Proof. Let K = K™ KfiX(J K™V a5 above. We compute:

(KNS =KNnSNpKNpS=KnNpKNS=KY"NSY,
(KUSY™™ = (KUS)Np(KUS) = (KNpK)US = K¥™U§.
Moreover, denoting by A¢ = M"\ A the complement of a set A in M", we have
(KNS =(KNSNHH\ (KNS =(KNH'NS)\ (K¥™NS)
= (KNH")\KY)nS=K">ng,
(KUS)™=(KUuS)NHM\ (KUS)¥ = ((KNH)U(SNH"))N(KY™US)"
= K N H* N (KY™)°n s° = K ge,
and similarly (K NS)™Y = K™V NS, (K US)MY = K™V NS¢ Thus,
T(KNS)= (KNS U (KnNS)™uUp((KnS)m)
= (K™ N S)U (Kﬁ" N S) Up (K™ NS)
= (KU K™ U pK™)n S =TK NS,
T(KUS)=(KUS)™ U (KUS)™Up(KUS)™m)
= (K™ U S)U (Kﬁ" N SC) U p (K™Y N §¢)
= SUKY™y (Kﬁx UpK™v) N SC)
=SuU ((Ksym U KU pK™ov) 0 (K™ U SC>
= (SUTK)N(SUKY™U S =TK US,

which concludes the proof. ]
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CHAPTER 3

Rearrangement inequalities

In this chapter, we put together various integral inequalities concerning the rearrangements
of functions. They provide the analytic foundation for the geometric inequalities appearing
later in Chapters 4, 5, and 6. A good introduction to the subject is offered in the books of
Lieb and Loss [Lie01] or Baernstein [Bael9].

3.1 Definition and basic properties

During this short presentation of rearrangements we mostly follow [Lie01, Chapter 3|. For
a measurable set A C M" that has finite volume \,(A) < oo, we define its symmetric
rearrangement A* as the open ball around the origin e € M" such that

An(A*) = A, (A).

We will extend this definition to positive functions by means of the layer-cake representation
formula:

f(x) = /0 " Xty (@) ds.

Let f: M™ — RT, be a measurable function that vanishes at infinity, that is, satisfies
A({f > s}) < oo for all s > 0 (in particular, integrable functions have this property). We
define the symmetric decreasing rearrangement of f to be

f*(x):/o X{f>spx (@) ds.

In particular, x% = x 4%. The following facts can be found, e.g., in [Lie01, Section 3.3]:
Facts. The symmetric decreasing rearrangement has the following properties:

e It is non-negative, radially symmetric, and radially decreasing, that is,
f*(x) = * (),
if dym (z,e) = dyn (y, €), and
(@) = f*(y),

Zf dM" (LU, 6) < dM" (y) 6)'

23
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24 Chapter 3 Rearrangement inequalities

o The level sets of f* are the symmetric rearrangements of the level sets of f, in
particular,

An({* > s}) = MW({f > s}),
o If f e LP(M") for 1 <p< oo, then f* € LP(M") and

Hf*HLP(M") = ||f”Lp(Mn).

for all s > 0. In particular, the set of probability densities on M™ is closed under
taking symmetric decreasing rearrangements.

o It is non-expansive, that is,

1f* = g*leequrny < IIf — gllzrquny,
for all f,g € LP(M"™), where 1 < p < 0.

In this chapter, we are concerned with integral inequalities involving rearrangements of
functions of the following type:

Problem. Let N € N. Find functions : (M™)N — R* that satisfy

N N
/(Mn)N VU(z1,...,7N) ]_;[lfi($i) dz; < /(Mn)N U(ry,...,TN) il;[lfi*(xi)dxi, (3.1)

for all integrable functions f1,...fx: M"* — RT.

The functions f; can be seen as probability densities of independent random variables
X;. In this case, the integral in (3.1) equals the expectation of ¥(X1,..., Xy) and the
inequality tells us that this value is increasing, whenever the f; are replaced with their
symmetric decreasing rearrangements.

A strategy towards such inequalities is to employ symmetrization techniques that
gradually approach the symmetric decreasing rearrangement, and show that inequality
holds at each step of this approximation process. We will see two examples of this method
in the subsequent sections.

3.2 Inequalities via Steiner symmetrization

It is shown in [Bra74], that if f: R® — R™ is integrable, its symmetric decreasing rear-
rangement can be approximated in the L'-norm by a sequence of Steiner symmetrizations
of f, that is, there exist directions u,,, m € N, such that

S © -0 Suy [ — fXllL1mny — 0,

as m — oo. Using Christ’s version [Chr84] of the classical Rogers/Brascamp—Lieb—Luttinger
rearrangement inequality [Rogh7], [Bra74], Paouris and Pivovarov [Paol2a] obtained the
following theorem:
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3.3 Inequalities via two-point symmetrization 25

Theorem 3.2.1 ([Paol2a)). Let N € N, fi,... fy: R® — R* be integrable and ¥ : (R")N —
R* satisfy the following condition: For each u € S*™' and every Y = {y1,...,yn} C u*
the function ¥y : RN — Rt defined by

(tr, s tn) = Wy (t) = Y (y1 +ti, ..., YN + tyu)

is even and quasi-concave (which means its sup-level sets {¥y > s} are convex for all
s> 0). Then (3.1) holds, that is,

N N
W(:L’l,...,x]\[) fz(xl) dl’i S / W(:L‘l,...,x]v) fz*(xz) da;i,
/(Rn)N 21_[1 (RN zl_Il

In [Paol2a], [Corl5], and [Paol7b] it is then shown that various geometric functionals
such as, for example,

U(xy,...,zy) = —vol, (conv{£xy,...,tzN}),
or
U(x1,...,xN) = vol, (conv{tzy,...,£zN}"),

indeed satisfy the assumptions of Theorem 3.2.1. We state now a particular result of [Cor15],
that we will need in Chapter 4. If z1, ...,z are vectors in R", we write (x1,...,zy) for the
n x N-matrix that has columns 1, ...,zn. Also, set (z1,...,2n)C :={(z1,...,2N8)c|c €
C} for any set C € RV,

Theorem 3.2.2 ([Corl5]). Let N € N, fi,..., fn: R® — R* bounded, integrable functions,
and v be a finite, absolutely continuous Borel measure on R™ that has a radially symmetric
and radially decreasing density. Then

o N
/(Rn)NI/<(;](1’1,...7$N)BoA£> )L[lfz(mz)dxldx]v
1 o N
< v =(@,...,x )Bég) > fX(xi)dzy ... dzn.
/(R")N <<N ! N 1131 1 N

Here, Boj\é:{teRN] —1<t;<1 foralll <i< N} is the unit ballz’n(évo.

We note that the proof of Theorem 3.2.2 in [Corl5] was given for probability densities
bounded by one. However, it goes through verbatim in the case of arbitrary bounded,
integrable functions.

3.3 Inequalities via two-point symmetrization

In this section we review inequalities of the form (3.1) that arise from repeated two-point
symmetrizations. Since two-point symmetrization is similar in spherical, Euclidean, and
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26 Chapter 3 Rearrangement inequalities

hyperbolic space, this method has the advantage of providing inequalities that hold in all
three geometries.

Theorem 3.3.1 ([Mor02]). Let N € N and fi,..., fn: M®™ — R" be integrable, and
v (MM)N — RY of the form

kpﬁ(xl,...,xN) :Hliij(dMn(.’L'i,m'j)), (3.2)
1<J

where rk;;: RT — RT are decreasing functions for all i < j. Then (3.1) holds, that is

N N
Ue(xy,...,zn) | | fi(zi) de; < / U (z1,...,ZN) fi"'(xi)dxi.
/(Mn)N Zl_Il (M) }_[1

A version of Theorem 3.3.1 has also appeared in [Bur01]. We remark that although the
proof in [Mor02] is carried out in Euclidean space, it (as noted in the paper) goes through
as well in spherical or hyperbolic space.

Since the functionals we consider in Chapters 5 and 6 are not of the form (3.2), Theorem
3.3.1 will not be applicable. On the other hand, we will provide new examples of functions
U(x1,...,zy) that satisfy (3.1).

We now give a detailed explanation of the method described by Baernstein and Taylor
in [Bae76] on how to obtain (3.1) (in the opposite direction, with >), once one knows
that the integral in (3.1) decreases whenever the functions fi,..., fy are replaced by their
two-point symmetrals with respect to a common hyperplane. A good resource is also
[Bael9, Chapter 2]. We start with a preparatory lemma that relates rearrangements with
two-point symmetrizations.

Lemma 3.3.2 ([Bae76]). Let f: M™ — R* be integrable and T = (H, p,T) any two-point
symmetrization in M™. Then the following holds:

(a) For x € H™ we have f(z)f*(x) + f(px)f*(px) < Tf(x)f*(x) + Tf(px)f*(px)
(b) [y |f(2) = F*(@)Pdx > [y [T f(x) = f*(2)]* da

Proof. We give the argument of [Bae76, Lemma 1]: Let aj, as, b1, by € R be numbers with
b1 > bs. Using notation from the proof of Lemma 2.3.4, the following holds:

a1b1 + asbs < by + aigbs
If € H, we have f*(z) > f*(px) and thus

f@)f* (@) + fpz) f* (pz) < Tf(2) f* (@) + Tf(px) f*(px),
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3.3 Inequalities via two-point symmetrization 27

which is (a). Integration over H™ yields
f@)f* @) do= [ Fa)f* (@) + f(pa) 1 (o) do
Mn H+
< | TH@ @)+ T o) da = [ T @) do

n

hence, (b) follows from
/ @) - Fo)Pde= [ f@Pde— [ f@f@det [ @)
n Mn M Mn

and the fact that two-point symmetrization preserves L?-norms. ]

We now introduce the following notation for the expressions appearing in (3.1):

N
Io(f1,- .. fn) ::/n.../nkp(xl,...,xN)Hfi(a:i)dazl...dmN, (3.3)
=1

for a measurable function ¥: (M")" — R* and bounded, integrable functions f;: M™ —
R*, 1 <4 < N. Sometimes, we will also consider the truncated functional

IF(fr, o fN) = To(pgfi, - 1B fN),

where Bp is the geodesic ball of radius R > 0 around the origin e € M"™. Clearly, in the
case M™ = S", we have I'* = I whenever R > 7.

The next proposition is due to Baernstein and Taylor in the case M = S"™. We reproduce
their proof and show that it works similarly in Euclidean or hyperbolic space.

Proposition 3.3.3 ([Bae76]). Let fi,..., fn: M™ — Rt be bounded, integrable functions,
and let : (M™)N — R be bounded and measurable. Furthermore, assume that

Iy(fi,....fn) > Le(T f1,..., TfN),

for every two-point symmetrization T on M"™. Then

Proof. We follow [Bae76, Section 2]. We start with the following facts:
(1) HBRfi — fz in Ll(Mn) as R — oo,
(i) [ (frseees )] < 1 loo TRy il ),
(iii) the map f + f* is continuous in L!(M")
(iv) there are sequences (gbg)jeN in C.(M"™), spt qbg C spt f;, such that qﬁg — fi in LY(M")
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28 Chapter 3 Rearrangement inequalities

Indeed, (i) follows from dominated convergence, (ii) is a standard estimate, (iii) follows
from the non-expansivity of symmetric decreasing rearrangements (see [Lie01, Theorem
3.5]), and (iv) is an application of Urysohn’s lemma.

By (i) and (ii), we can assume without loss of generality that spt f; C Bg, and by (ii),
(iii) and (iv), we can restrict further to continuous functions f; (supported in Br) and
denote this space by C(Bgr) C L?(Bg). We define for f € C(Bg)

8(f):={F € C(Bg): w(-,F) <w(-, f) and F* = f*}.

We show now that 8(f) is a compact subset of L?(Bg). Since f is uniformly continuous, for
each € > 0 there exists § > 0, such that w(d, F') < w(d, f) <, for all F' € 8(f). Moreover,
| F'loo = [[F*loo = | f*|lcc- Hence, 8(f) is a uniformly equicontinuous, uniformly bounded
family of continuous functions, thus relatively compact in (C(BR), | - |lcc) by the Arzela-
Ascoli theorem. Since the map f +— f* is continuous also in the (C(BR), | - [le) topology
(take p — oo in [Lie01, Theorem 3.5]) and the sets {w(d, F') < w(d, f)} and therefore

{w(, F) <w(, )} = m {w(é, F) <w(d, f)},

JeRT

are closed (by the triangle inequality), the set S(f) is compact in (C(BR), || - |loo)- It is also
compact in (C(Bg), || - |I12), since by [|f[|72 < An(Br)||f]|%, the latter space has a coarser
topology.

Next, by Lemma 2.3.4, T8(f) C 8(f) for every two-point symmetrization T'. Since, by
the Cauchy—Schwarz inequality, we have

N
o (frse e S < MBRM N oo [T I ill 28
i=1

for fixed fi,..., fnv € C(BgR), the set

Pe={(F1,..., Fn) €8(f1) x -+ x8(fN): I(fr,- .., fN) = L(F1,... . FN)}

is compact in L?(Bg) x --- x L?(Bg). By assumption, P is closed under simultaneous
two-point symmetrizations (Fi,...,Fy) — (TF1,...,TFy). We are done, if we can show
that P contains (f7,..., f¥).

By compactness, there exist (FY, ..., FY) € P such that

N N

S I = f¥llz2(5p) = min {Z I — Xl 2(Bry: (F1,-.. . Fn) € rp} .

i=1 =1

Without loss of generality, assume that FY # f*, that is, there exists t > 0 such that
Ey:={F) >t} #{f¥ >t} = Ey, Ei,E»C Bg.

Since \p(E1) = A (E2), there exist € int(E; \ Ez) and y € int(Es \ E1). Let H € M

n—1
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3.4 From rotation invariance to balls 29

be the totally geodesic hypersurface that orthogonally bisects the geodesic segment [z, y],
p the reflection about H, and T the associated two-point symmetrization. Then we can
find a small ball B around y, such that B C (Es \ E1) and pB C (E; \ E3).

For all z € B, we then have f}(2) >t > f*(pz) and F}(pz) >t > F(z), yielding

FP(2) [ (2) + FL(p2) [ (p2) < TFY(2) f¥(2) + TFY (p2) 7 (p2).

Since, by Lemma 3.3.2 (a), the same inequality holds with “<” for all z € Bg, we get

| Fefea< [ TREREE
Br

Br

and, since T preserves L?-norms,
| IRt = [0 2 g
Br Br

> /B (TH) TR () / TF) — 2.

Bgr

Moreover, by 3.3.2 (b) we have

/ FO— f*[2 > / TE? — f*2
Br Br

for 2 <1i < N, hence,

N N
SONFY = 2 > D NTF = [l 25
=1 i=1

which, since (TFY,...,TFY) € P, is a contradiction. O

3.4 From rotation invariance to balls

In some situations, one can improve (3.1) even further, by showing that among radially
symmetric, radially decreasing densities, (multiples of) indicator functions of geodesic balls
are extremizers. To do so, we give two instances of a bathtub-type argument. For the first
one, we follow [Corl5, Lemma 4.3]:

Proposition 3.4.1. Let N € N, fi,..., fnv bounded, radially symmetric, and radially
decreasing functions, L1, ..., Ly € X(R") and ¥: (R*)N — RT be measurable, radially
symmetric, and radially decreasing in each coordinate. Then

N
/(Rn)ng(xl"xN)H(ﬂLz(xl)fz(wz))* day - doy
=1 N
S/(Rn)N w(xh'-"xN)H]lBi(xi)fi@z’)d:m'--de,

i=1
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30 Chapter 3 Rearrangement inequalities

where B; is a ball around the origin, such that fLi filx)dx = fBi fi(z) dz.

Proof. Since rearrangements preserve integrals, we have for 1 <i < N|

/n(ﬂBifi)(m) dx = /n(]lLifi)(l’) dx = /n(]lLifi)*(.%') dx.

Denote by fi: Rt — R* the decreasing function that satisfies fi(||z||) = fi(z) for all
x € R", and let R; be the radius of the ball B;. Using polar coordinates z(t,u), t € R,
u € S"1, we see that

c©_

Ri
/ fittLdt = / (Lp, fi)*()t" L at. (3.4)
0 0
Now, define functions o; : R™ - R, 1 <i < N, by

ai(t) = (Lo g o) (6) = (Tu F* (@) 770

Then, by (3.4) and the fact that (1z,f;)* < fi (because f; is radially symmetric and
radially decreasing), the a; have the following two properties:

<0 fort>R;,

(i) /OOO ai(t) dt =0 (ii) ai(t> { >0 for t < R;.

Combining (i) and (ii), it follows that for any radially symmetric, and radially decreasing
F:R" - RT, we have

/Oo F(t)ay(t)dr = /OO (F(t) — F(R;)) ai(t) dt > 0
0 0

or equivalently, by the definition of «;, that

0o R;
/ F(Ip, f)*)t" 1t < / Ffi(t)t"tdt.
0 0

Transferring back to cartesian coordinates, this inequality becomes

Fa) (L, (z) fi(z))* do < /n F(x)1p,(x) fi(x) de.

R

Now, given ¥: (R")Y — R* that is radially symmetric, and radially decreasing in each
coordinate, we can apply the above inequality coordinatewise (¥ [[;~, L, f; is still radially
decreasing in each coordinate for all 1 < m < N) to obtain the statement. O

Secondly, we argue as in [Paol2a, Lemma 3.5]:
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3.4 From rotation invariance to balls 31

Lemma 3.4.2. Let f: [OjRM] — RT be bounded, measurable and assume that

RM
f(t)sn" L tdt < oo.
0

Define A € [O,RM] such that

RM

A
f@mw%ﬁ:/|m@m“%m
0 0

Then for any increasing function ¢: [O,RM] — RT,
RM RM
[ swrmy s tedz [ o) lelo O

Proof. By the monotonicity of ¢ and the positivity of sn on [0, RM] (see Section 2.1), we
can estimate

RM A RM
s tdi= [ oot des [ o) e
0 0 N
A RM
2/<Wﬁ@w“Hﬁ+Mm F(t) st dt
OA AA
= [ omrws v oa) [Tl - ) s
A A
> [Toswsrtars [T o0 (17 - 10
A
= [ oo s e,
which gives the statement. -

Using polar coordinates z(t,u) = ecst+usnt, t € [O, RM], u € S" ! on M" (cf. Section
2.1), we can formulate the next proposition. It is a variant of [Paol2a, Proposition 3.9].

Proposition 3.4.3. Let N € N, fi,..., fy: M" — R™ be bounded, integrable functions,
and let : (M™)N — R be bounded, measurable, such that the function

o(t1, ..., ty) = / e / 1 U(x(ty,ug),...,z(ty,un)) dug ... duy
Sn—= N
is increasing in each coordinate. Then, using the notation from (3.3), we have

IJ’(fik’ ceey f]t[) > Iu’/(”leoo]pr SRR ||fNH00]lBN)7

o ||fi||L1(Mn)

where B; is a geodesic ball around the origin e € M™ such that A\, (B;) = A
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32 Chapter 3 Rearrangement inequalities

Proof. We can assume without loss of generality, that already f; = fi"', since taking
rearrangements neither changes L' nor L norms. Using (2.1), we obtain

N
Lp(fl,...,f]v)_/ / ![/(arl,...,xN)Hfi(xi)dxl...de,
RM RM
:/ / / / U(z(ty,ur),...,x(ty,un))
sn—1 sn=1.Jo 0
N
X H fz(x(t,,ul)) sn! tidty...dtyduy...duy
i=1
By the radial symmetry of f;, we can write f;(t;) = fi(z(t;,u;)) to arrive at

I‘I/(fh?fN):/ ¢(t177tN>HfZ(tZ)Snn71tzdt1dtN
0 0 i=1

Now, as in the proof of Proposition 3.4.1, applying Lemma 3.4.2 successively to each
coordinate and noticing that

A 1 Nkn m 1 ”fiHLl(Mn)
M (Bi) = nnn/ sn" " tdt = fi(t)sn"tdt = ————,
0 1 fillso Jo 1 filloo
where the A; € RT come from the lemma, yields the statement. O
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CHAPTER 4

Spherical centroid bodies

We introduce the spherical centroid body of a centrally-symmetric convex body in the
Euclidean unit sphere. Two alternative definitions — one geometric, the other probabilistic
in nature — are given and shown to lead to the same objects. The geometric approach
is then used to establish a number of basic properties of spherical centroid bodies, while
the probabilistic approach inspires the proof of a spherical analogue of the classical polar
Busemann—Petty centroid inequality. The results in this chapter are published in joint
work with Florian Besau, Peter Pivovarov, and Franz Schuster [Bes19].

4.1 Definition and basic properties

In Euclidean space, the boundary of the centroid body of an origin-symmetric convex
body K is given by the (Euclidean) centroids of intersections of K with halfspaces in all
directions (see e.g. [Gar06, Section 9.1] or [Sch14, Section 10.8]). We mimick this procedure
on the unit sphere by replacing halfspaces with hemispheres and computing spherical
centroids instead.

Definition. For a convex body K C S™ which is centrally-symmetric with center e € S™,
we define its spherical centroid body I'sK by

bd K = {cs(KNS}) :u € Se}.

We will show that 'K is indeed a well defined proper spherically convex body which is
centrally-symmetric with the same center as K.

In the linear setting, a probabilistic approach towards centroid bodies was first noted in
[Paol2a], and can be described as follows. Given an origin-symmetric convex body L C R”
and N € N independent random points X1, ..., Xy distributed uniformly in L, define the
(random) convex body

N
1
N(Xy,...,Xy) = NZ —X;,X;] = conv{c(+X1,...,+ Xn)}, (4.1)

where [—X;,X;] denotes the line segment joining +X;, the sum is the standard Minkowski
addition, and ¢(x1,...,zn) denotes the usual centroid of finitely many points in R™. The
crucial observation from [Paol2a] is that I'(X1,..., Xy) converges almost surely in the
Hausdorff metric to the centroid body I'L as N tends to infinity.

33
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34 Chapter 4 Spherical centroid bodies

Although there is no natural analogue of Minkowski addition on S™, both the convex hull
and centroids of finite point sets do have natural counterparts. In order to mimic definition
(4.1) on S™, we can therefore use the second equation in (4.1), but here we replace —v with
the geodesic reﬂection of v about e € S", that is, v — v¢ := —v + 2(v - e)e, and use the
abbreviation v(©) for {v,v¢}.

Definition. For a proper finite set {uy,...,un} C S™ contained in int S}, we define

Ige(ur,. .. ,uy) == conv {cs <uge), . ,u%?)} .

Since our main tool in this chapter will be gnomonic projection, we discuss in the first
part of this section the definition and properties of weighted centroid bodies in linear vector
spaces. The second part is devoted to spherical centroid bodies and their basic properties.
We also establish a few auxiliary results required for the proof of Theorem 4.2.1.

We begin with a definition of weighted centroid bodies of arbitrary convex bodies in R™.

Definition. For {z1,...,xx} C R™ and a positive function f: R™ — RT define

h(If(x1,...,xN),u) = S f Z\u (x3)xq|. (4.2)
i=1

For a finite Borel measure p on R™ with positive density and L € K(R™), define the
p-centroid body of L by

h(I',L,u) /]u yl du(y) (4.3)

Note that, by our assumption on pu, I, L is an origin-symmetric convex body for every
L € X(R™). While I't(z1,...,zn) is, in general, always an origin-symmetric, compact,
convex set, it has non-empty interior if and only if span{xy,...,zx} = R™. It is also worth
noting that when p is taken to be Lebesgue measure, (4.3) defines Blaschke’s classical
centroid body (of the not necessarily origin-symmetric) body L. In the following, when
f=1in (4.2), we simply write I'(x1,...,xy) and use h([—z,z],u) = |u- z| for every z € R",
to see that, in this case,

N
I'(zy,....xN E — X4, Tj).

Our first goal is to relate weighted centroid bodies with weighted centroids. In the
discrete case this is the content of the following lemma.

Lemma 4.1.1. Let {z1,...,.xx} C R™ be a finite subset and assume that f: R™ — RT is
even. Then

I'p(x1,...,xN) = conv {cy(£x1,...,£aN)}.
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4.1 Definition and basic properties 35

Proof. Since for arbitrary z1,...,zy € R™, we have
N
Z[_Zi’ zi] = conv{tz; +-- -+ 2n},
i=1

we obtain

:I:f(a:l)xl +..-+£ f(a:N)acN} ‘

But, since f is even, this is equal to conv {cs(£x1,...,£xN)}. O

I'i(z1,...,2N) = conv{

In contrast to I'y(x1,...,xN), which is, as a Minkowski sum of line segments, always
a polytope, our next lemma shows that the boundary of I'),L exhibits higher regularity.
For the classical centroid body this was first proved by Petty [Pet61] and we follow his
arguments closely (see also [Hual8, Theorem 1.2] for a recent variant). In order to state
the result precisely, recall that a convex body L is said to be of class Ci if the boundary
of L is a C? submanifold of R” with everywhere positive GauB—Kronecker curvature.

Lemma 4.1.2. Let p be a finite Borel measure on R™ with positive bounded density and
L € X(R™). Then I',L is of class Ci. In particular, it is strictly convex.

Proof. We first want to show that h(1,L, ) is twice differentiable. To this end, we compute
its directional derivative at € R™ in the direction v € S*~! by

. h(IyL,x+tu) — h(I,L,x) 1 </
lim £ = = u-yd y—/ u-ydu(y) ).
0+ t (L) \Jrnms uw) LNHy Hy)

Consequently, the gradient of h(I},L,-) exists and is given by

vhrL ) = ( vt [ yau(s))

In order to compute second derivatives at £ € R”, we choose an orthonormal coordinate
frame {ei,...,e,} such that z = (0,...,0,Z,)T, where Z, > 0 (see, e.g., [Bus58, p. 57]).
Since Vh(I,L,-)(x) is 0-homogeneous in z, it follows that

0*h(I, L, -
Oe;0ey,

for 1 <i < n. Letting x = (0,...,0,:rj,0,...,0,:fn)T for j < n, we get for 7,5 < n,

O, L, (2) — oI, L, @)

Oe; Oe; 2 /
: - = y'du(y)—/ yidu(y) |-
Tj zjp(L) < LAHEOH: LaH; nHY

(4.4)
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36 Chapter 4 Spherical centroid bodies

In order to compute the limit ; — 0 in (4.4), we make the change of variables y; = vy,
ey Yn—1 = Up—1, and y, = v;tanv,. The Jacobian of this transformation is given by
J(v) = vjsec? vy,. Note that it is negative on LNH, NHZ when x; > 0 and on LNH NH;
when z; < 0. Letting o := arctan(|z;|/z,),

| yn = (tanwvy)y; for x; <0,
H{vn) := { yn = —(tanwy,)y; for z; > 0,

and L*(v,) := LN H(v,) N Hg‘; for v, > 0, the right hand side of (4.4) becomes

2 @ a
m (/0 sec? Up, 4,0+(vn) dv, + /0 sec? Un, <p*(vn) dq;n)7 (4.5)

where
Lpi(s) = / 05 fu(vi,. .. Un—1,v; tans) dvy - - - dvy,—1
LE(s)

with f,, being the density of y. In order to compute the limit o — 0 in (4.5), we use that,
by the mean value theorem, for every function ¢ which is continuously differentiable near 0
such that ¢(0) = 0 and every ¢ continuous near 0,

o, B
lim /0 ¢'(s)p(s) ds = (0).

Taking here ((s) := tans, ¢ = T, and letting & — 0 in (4.5) as well as changing back to

the variables y1,...,yn—1, we obtain
Oh(I,L, OM([LL,) (-

L )(x)— (8; )(x) 9

. Oe;
lim i - i Fa(ts o Yne1,0) dy1 - -~ dyn_1,
o3 =0 Zj an(L)/LﬂHIyZy] fulwn Yn—1,0) dy Yn—1

provided we can show that T is continuous near 0. But since L C Bpg for some Euclidean
ball By of radius R in R™ and for every sq € (0,¢), L*(s) — L*(sg) in the Hausdorff
metric in R™ as s — sq, it is not difficult to see that

9™ () — ™ (s0)| = 0.
Letting A := (h”)?]_:l1 denote the Hessian matrix of h(I,L,-) at z € R" (w.r.t.
{e1,...,en_1}), we can now conclude that for any b € R~ \ {0},

2
bAb:/ (by)2f(ylaay *170)dy1dy71>07
Znp(L) Jnm, g " "
that is, A is a positive-definite matrix. Since T was arbitrary, it is well known (cf. [Sch14,
Section 2.5]), that this implies that I, L is of class C%. O]

The following lemma shows that the weighted centroid body with respect to an even
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4.1 Definition and basic properties 37

LNHf NH;

H

(’LJ‘

Figure 4.1: Sketch for the proof of Lemma 4.1.2

measure of an origin-symmetric convex body L can also be obtained geometrically.

Lemma 4.1.3. Let p be a finite even Borel measure on R™ with positive density and
assume that L € KX(R") is origin-symmetric. Then

bdI,L = {c,(LNH}):ueS" '}
Proof. Since p is even and L origin-symmetric, we have for v € S"~1,
WL, u) = 1/ !u-yldu(y)zz/ u-ydu(y)
(L) J (L) Jrnm
1

ydu(y) = u-cu(LNH).

U¢7
p(L N H) ~/LHHJL

Thus, by the definition of support functions, ¢, (L N H;) € bd I, L. Since I, L is strictly
convex by Lemma 4.1.2, all boundary points are obtained in this way. ]

We also note that if L in Lemma 4.1.3 is not origin-symmetric, then a similar computation
shows that every boundary point of I',L is a convex combination of ¢, (L N H;) and
—c (LN Hy) for u € St (cf. [Gar06, Section 9.1]).

We now turn our focus towards spherical centroid bodies and first recall their definition:
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38 Chapter 4 Spherical centroid bodies

For K € X.(S™) with center e € S™, its spherical centroid body is defined by
bd K = {cs(KNS}) :u €Se}.

Note that since K has nonempty interior, cs(K NS}) exists for every u € S.. Moreover,
since K C ST, Proposition 2.2.6 (c) implies that bd I'sK is contained in int ST and, hence,
we can consider its gnomonic projection.

Proposition 4.1.4. Let K € KX.(S") have center e € S™ and let g : int S — R™ denote
the gnomonic projection. Then

ge(bd IK) = bd I g.(K NintSY).

Proof. Let us first assume that K is proper, that is, K = K NintS}. Then, by Lemma
2.2.5, we have

ge(bd IsK) = {c2(ge(K NST)): u € Se}.

But since g.(K NS}) = g.(K) N H; for every u € S, T is even, and g.(K) is origin-
symmetric, it follows from Lemma 4.1.3 that

ge(bd I K) = {cz(ge(K) N H ): u € Se} = bd I5 ge(K).

Now, if K is not proper, then g.(K NintS}) is a closed, convex, and origin-symmetric
set in R? with nonempty interior which is unbounded. However, since 7 has finite first
moments, that is, [p, y; d7(y) < oo for all 1 <i < n, (4.3) still makes sense and defines a
convex body I+ g.(K NintS}) in RZ.

Moreover, since the density function v of 7 is radially symmetric, radially decreasing,
and satisfies

/ lyiyj¢(yla"'7yn—170)dyl"'dyn—l < 00

for all 1 < 4,57 < n — 1, it is not difficult to show that Lemma 4.1.2 also holds for
Iz go(K NintS}) (the key is to prove continuity near 0 of the respective functions p* from
(4.5)), and, therefore, so does Lemma 4.1.3. Consequently, since removing sets of measure
zero does not affect centroid computations, the arguments from the first part of the proof
yield the desired relation also for nonproper K. O

As a consequence of Proposition 4.1.4 and the properties of the gnomonic projection, we
obtain that the spherical centroid body map is, in fact, well defined.

Corollary 4.1.5. Let K € X.(S") have center e € S™ and let g, : int ST — R™ denote the
gnomonic projection. Then I'sK € X (S™) is proper and has center e. Moreover,

ge(I'sK) = = go(K Nint ST).
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4.1 Definition and basic properties 39

Proof. Since I+L is an origin-symmetric convex body in R™ for any (possibly unbounded)
closed, convex set L C R™ with nonempty interior, the statement follows from Proposition
4.1.4 and Lemma 2.2.3. O

With the following proposition we collect several basic properties of the spherical centroid
body map.

Proposition 4.1.6. The spherical centroid body map I's: K (S™) — K.(S™) has the fol-
lowing properties:

(a) It is O(n + 1)-equivariant, that is, I's(VK) = 9K for all ¥ € O(n + 1);
(b) It is continuous;

(c) It is injective on bodies of equal spherical volume;

(d) TsK is of class C2 for every K € K.(S").

Proof. Property (a) is an immediate consequence of Proposition 2.2.6 (b) and the definition
of ILK.

In order to prove (b), let K,,, K € X.(S") such that K, — K in the spherical Hausdorff
metric. In addition, let us first also assume that all K,,, and K have the same center e € S™.
In this case, it follows that K, NS} — K NS} for all u € S, and thus, by Proposition
2.2.6 (a),

cs(Km NSH) — cs(KNSY). (4.6)
Now note the following two consequences of (4.6):

(i) For every v =cs(KNS}) € bd I';K, there exists a sequence vy, € bd I'sK,, such that
Um — v, namely vy, = (K, NS)).

(ii) For every convergent subsequence vy, — v with v,,, € bd I'sK,,, we have v € bd I, K.
Indeed, since vy, = cs(Sf[mZ N K,y,) for some u,, € S, and S, is compact, we find a
subsequence (which we again call u,,,) such that u,,, = u € S, and, thus,

v=lim c, (Sj{ml N Kml> = (St NK) € bdT}K.
—00

Moreover, the sequence bd I, K,, C S is bounded in R™**.

It is well known (cf. [Schl4, p. 69]) that (i) and (ii) imply bd I'sK,, — bd ;K in the
Hausdorff metric in R"*!. Consequently, by Lemma 2.2.2 (a) and (b), I'sK,, — [3K in
the spherical Hausdorfl metric.

It remains to settle the case where the bodies K,, have center e¢,, € S™ and K has
center e € S". Clearly, the convergence K,, — K implies that e,, — e as m — oco. In the
following, we make use (twice) of the fact that if J,,,9 € O(n + 1) and K,,, K € X.(S"),
then 9,, — ¢ and K,, — K imply 9,,K,, — YK in the spherical Hausdorff metric. To
apply this, note that since e,, — e, there exists a sequence ¥,, € O(n + 1) such that
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40 Chapter 4 Spherical centroid bodies

Ymem = e and 9, — Id. Hence, ¥,,K,, — K and, since all 9,,,K,, have center e, property
(a) and the first part of the proof of (b) imply

Il Kom = Ts(OmKm) — LK.

Making use a second time of the above fact, now for ¥,,! — Id, yields I';K,, — I'sK which
completes the proof of (b).

In order to prove the injectivity property (c), let K, L € K.(S™) such that [sK = I'yL
and assume w.l.o.g. that 7(K) < 7(L). Since I'sK and I'sL have the same center as K and
L, respectively, it follows that K and L have the same center, say e € S"”. Moreover, by
using polar coordinates, we have

—5 drdv,

h(Isge(K NintST)u) = / lu - v
1+72)2

1 /pgg(Kﬂint Sj)(v> Tn
Sn—1 T(K) (

where p, ity denotes  the (possibly infinite) radial function of K N intS7.
Hence, by our assumption that I' ;K = I,L, Corollary 4.1.5, and the injectivity of the
spherical cosine transform on even functions (cf. [Gar06, Theorem C.2.1]), we conclude

that
1 P ge(Knint sj)(v) r’ 1 P ge(Lint sj)(”) r’
— dr = ———— dr
7(K) Jo (1+7r2)"% (L) Jo (1+72)"%

for all v € S*~1. Thus, since t — fg (1 + 7"2)_HT+2 dr is strictly increasing, it follows that

pge(Kﬂint Sj) (U) < pge(Lﬂint Sj) (U),

for all v € S”~! or, equivalently, K C L. Hence, if K and L have equal spherical volume,
they must coincide.

Finally, for the proof of (d) assume that K € K.(S™) has center e € S™. Since the
restriction of g. to any spherical cap of radius a < § is a diffeomorphism onto some
Euclidean ball in R™, the boundary of I';K is a C? submanifold by Lemma 4.1.2 (and its
extension to unbounded convex sets discussed in the proof of Proposition 4.1.4). Moreover,
it follows from [Bes16b, Lemma 4.4] that the spherical Gaui—-Kronecker curvature of I's K
at u € S™ vanishes precisely when the one of I;g.(K NintS}) vanishes at g.(u) € R".

Hence, Lemma 4.1.2 and its extension complete the proof. O

Before we continue, we remark that, like Blaschke’s classical centroid body map (see
[Lut90]), it is not difficult to see that I's is not monotone under set inclusion.

In the last part of this section, we establish a couple of auxiliary results concerning
discrete spherical centroid bodies defined above,

Ise(ui,...,un) = conv {CS (uge), . ,ug\?))} ,

which are used in Theorem 4.2.1 to approximate spherical centroid bodies of convex bodies.
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4.1 Definition and basic properties 41

(Recall that here, {u1,...,un} C int S and u(®) = {u,u}.)

Note that, by definition and Lemma 2.2.6, I's c(u1,...,un) € K.(S") has center e and is
proper. Lemma 2.2.6 also implies that the map I . is continuous and O(n + 1)-equivariant.
Moreover, as a direct consequence of Lemma 2.2.3 (d), Lemma 2.2.5, and Lemma 4.1.1 we
obtain for its gnomonic projection the following.

Corollary 4.1.7. For e € S", let g. : int S} — R" denote the gnomonic projection and
{ug,...,un} CintS}. Then

Ge(Lse(ur,...,un)) = I'y(g(ur),...,g(un)).

Recall that our definition of I's ¢(uy, ..., uy) was motivated by relation (4.1) for discrete
centroid bodies in a linear vector space. However, in the linear setting, there is an alternative
way to express these I'(z1,...,xn), for z1,...,zxy € R™ namely,

N
1 .
I'(z1,...,2N5 *NZ —xi, i) = {c(yry ... yn) 1y € [—miyx),1 <i < N}

By mimicking this approach on the sphere, we define, {u1,...,uy} C int ST,

I e(ur,...,un) :={cs(v1,...,on) 1 v; € [uf,u],1 <i < N},

where [uf, u;] denotes the geodesic segment connecting u$ and the geodesic reflection of
u; about e. These new sets are, in general, not spherically convex. However, there is the
following interesting relation between them and I c(u1, ..., uN).

Proposition 4.1.8. For e € S” and any {uy,...,unx} C int ST, we have

e’
Ie(ur,...,un) = convfs,e(ul, Ce e UN)-

Proof. Let ge : int S} — R™ denote gnomonic projection. Then, by Lemma 2.2.3, it suffices
to prove that

ge(Ise(ut,...,un)) = conv ge(Lse(ut,...,un)).
But, by Lemma 4.1.7 and Lemma 2.2.5, this is equivalent to

Iy(z1,...,xn) =conv{cs(y1,...,yn) 1 ¥i € [—xi, 24,1 <i < N}, (4.7)

1

where ¢(x) = (1 + ||z||*)”2 and x; = ge(u;), 1 <i < N. In order to prove (4.7), note that,
by Lemma 4.1.1,

I'y(z1,...,2N) = conv {cy(£x1,...,xaN)}
C conv{cy(y1,---,yn) 1 ¥i € [—x, 23,1 <i < N}

Thus, it only remains to prove the reverse inclusion. To this end, recall that for z1,..., 25 €
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42 Chapter 4 Spherical centroid bodies

R™ and v € S™,

h(F¢(217"’7ZN)7U) Z ¢ Z¢zz ‘U ZZ|
i=1

Using Vo (z) = —¢(z)3z, a straightforward computation yields

i h(F¢()‘217"’72N)7v) = HZlH P 2Z¢ |:|U i12| +‘U‘Zi’] > 0.

dX\|\_
A=1 (Ez L 6(z1) )
Repeating this computation for z,..., 2y shows that for any v € S"~!, the function
(21,...,2n) = h(L4(21,...,2n),0) is radially increasing in every coordinate. By applying

this fact to each coordinate successively, we obtain for all y; € [0,2;], 1 < ¢ < N, and every
ve St

hIy(y1,-. ., yn),v) < h(Lg(x1,...,2N),v),

that is, I'g(y1,...,yn) € I'p(2z1,...,xn). But, since both sets are origin-symmetric, this
inclusion also holds for all y; € [—z;,x;], 1 <i < N. In particular,

C¢(y17"’7yN) € F¢>(y17ny) g F¢(I’1,...,$N).
Since I'y(z1,...,xN) is convex, this concludes the proof. O

In the next section, we present Theorem 4.2.1, showing that the discrete centroid bodies
I'se(u,...,un) approximate I'sK, when uy,...,uy are chosen randomly from K. By
Proposition 4.1.8, the same holds true for the bodies conv fs,e(ul, ...,upn). Our final result
of this section is a critical ingredient in the proof of these facts and based on a variant of
the proof of [Paol2a, Corollary 5.2].

Lemma 4.1.9. Let u,v be finite, absolutely continuous Borel measures on R™ and let f
denote the density of p with respect to v. Then, for L € KX(R™) and independent random
vectors X1, ..., XN on R"™, identically distributed according to ]}L) dv, we have

Ff(Xl,...,XN) — FML
almost surely in the Hausdorff metric as N — oo.

Proof. By the strong law of large numbers (see, e.g., [Dud02, Theorem 8.3.5]), we have

1y _ )
N;f( duz)—y()
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4.2 Statement of results 43

and

1 N
*E ly - Xi| f(X; _>7 ly - x| f(x) dv(x ly - x| du(x
N 2 / /

almost surely for every y € R™ as N — oo. Since the product of almost surely convergent
sequences of random variables converges almost surely to the product of their respective
limits, we conclude

W(IH( X1 XN y) = =% f( Z!y Xl f(X
=1

IR (L)/L|y-x|d,u(:z:) = h(Iu(L),y),

almost surely for every y € R™. This proves the desired statement, since pointwise
convergence of support functions is equivalent to the convergence of the respective bodies
in the Hausdorff metric (see, e.g., [Sch14, p. 54]). O

Finally, we note that Lemma 4.1.9 holds true for any closed and unbounded convex set
L in R™ as long as p has finite first moments (so that I}, L exists).

4.2 Statement of results

Our first result concerns random approximation of spherical centroid bodies by spherical
polytopes.

Theorem 4.2.1. Let K C S™ be a spherically convexr body which is centrally-symmetric
with center e € S™. IfUy,...,Un are independent random unit vectors distributed uniformly
in K, then

Fs,e(Ulv s 7UN) — IsK

almost surely in the spherical Hausdorff metric as N tends to infinity.

Secondly, we obtain an isoperimetric inequality for the polar of the spherical centroid
body. For a fixed e € S, denote by 7 the absolutely continuous (w.r.t. to o) measure on
S™ with density dr(u) = |e - u| do(u).

Theorem 4.2.2. If K C S" is a spherically convex body which is centrally-symmetric with
center e € S™, then

o(ITK) <o(ICk),
where CJ, is the spherical cap centered at e such that T(C}) = 7(K).
4.3 Proofs

The strategy of our proofs will be to establish a corresponding result in Euclidean space
and apply gnomonic projection to transfer it to the sphere. We begin with Theorem 4.2.1.
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44 Chapter 4 Spherical centroid bodies

Proof of Theorem 4.2.1. Let us first assume that K is proper, that is, K C int ST, and let
again g, : int S — R" denote the gnomonic projection. Putting X; := g.(U;), 1 <i < N,
the independence and uniform distribution of the U; together with Lemma 2.2.4 (a), implies
that the X; are independent random vectors in R", identically distributed according to

]lge(K)
(g¢(K))

Moreover, by Lemma 2.2.4, we have

do.

n+2
1 (4| d7
¢x) = (1+[|z]*)72 = =T = o
(Lt a2y~ 47

Hence, by Lemma 4.1.9, we obtain
F¢(X17"'7XN) — F?(ge(K))7

almost surely in the Hausdorff metric as N — oo. Applying now g, ! and using Lemma
2.2.3 and Corollaries 4.1.5 and 4.1.7, we arrive at the desired statement

F576(U1,...,UN) — I K.

If K is not proper, then we still have K C S}, and, since K \ int S} is a set of measure
zero, we may assume that Uy, ..., Uy lie in int ST. Thus, as in the first part of the proof,
it follows from Lemma 4.1.9 and the remark directly following it, that

Ty(X1,...,XN) = I3 (g(K NintS})) ,

where, as before, X; := g.(U;), 1 <i < N. Applying ¢! and using Corollaries 4.1.5 and
4.1.7 yield again the desired result. O

As an immediate consequence of Theorem 4.2.1 and Proposition 4.1.8, we note the

following:

Corollary 4.3.1. Let K € K.(S™) have center e € S™. If Uy,...,Un are independent
random unit vectors distributed uniformly in K, then

Convf&e(Ul,...,UN) - I.K

almost surely in the spherical Hausdorff metric as N — oo.

We turn to the proof of Theorem 4.2.2 which is based on the following proposition of
independent interest.

Proposition 4.3.2. Let u,v be finite, absolutely continuous Borel measures on R™ such
that their densities are radially symmetric and radially decreasing. Then, for an origin-
symmetric convex body L € K(R™), we have

V(L) < I/(FﬁBZ),
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4.3 Proofs 45

where BY is a Buclidean ball around the origin, such that p(BY) = u(L).

Proof. Let X1,..., Xy and Z1,...,Zy be two families of independent random vectors in
R™ such that each family is identically distributed according to
11 (x) Lpu(z)
u(L) u(BY)

respectively, and denote by f,: R" — R™ the density of y. Using the notation introduced
in the paragraph preceeding Theorem 3.2.2, we have

du(x) and

du(),

N

1 1 N

F(l'l»--wl‘N)—N [_$iami]_ﬁ(x17-~-7xN)Bm'
1

%

Thus, we can invoke Theorem 3.2.2, with f;(x) = L1 (z) fu(z), and Proposition 3.4.1, with
fi = fu and L; = L, to obtain

E[v(I°(Xy1,...,XN)] <E[v(I°(Z,....2Zx))]. (4.8)

Now, by Proposition 4.1.9, we know that I'(X1,...,Xn) — I,(L) almost surely in the
Hausdorff metric as N — oo. Moreover, since taking the polar body and v are continuous
on origin-symmetric convex bodies in R™ (see, e.g., [Corl5, Lemma 5.2]), we also have that

v(I°(Xy,...,XN)) = v (I[;L)

almost surely as N — oo. Since I,L has nonempty interior, there exists » > 0 such
that, for N large enough, we have rBf C I'(Xi,...,Xy) almost surely and, hence,
v(I°(Xy,...,X§n)) <v (%Bg) almost surely. Therefore, by the theorem of dominated

convergence, we conclude that
Elv(I°(X1,...,XN)] = E[v(I7L)] =v(I5L)
and, by the same arguments,
E[v(I'°(Zy,...,2Zn))] = E v (IyB})] =v (I5B}).
Thus, by letting N — oo in (4.8), we obtain the desired inequality. O

We are now in a position to prove Theorem 4.2.2:

Proof of Theorem 4.2.2. Let us first assume that K is proper, that is, K C intS}, and
let again g, : intSf — R™ denote gnomonic projection. Since, by Lemma 2.2.4, the
push-forwards g.#o0 =: 0 and g.#7 =: T have radially symmetric and radially decreasing

densities, an application of Proposition 4.3.2 to the origin-symmetric convex body g.(K)
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46 Chapter 4 Spherical centroid bodies

yields

5 (I29.(K)) <7 (T2 B}, 1)) =7 (I£9.(CR)) (4.9)
Thus, using Corollary 4.1.5, the desired inequality

o(I5K) <o(I5Ck)

follows by applying g; ! to (4.9).

If K € X.(S™) is nonproper, then we still have K C S}, and we can choose a sequence
K, € X.(S™) of proper convex bodies with center e such that K, — K in the spherical
Hausdorff metric. Moreover, by the first part of the proof, we know that o(I';K,,) <
o(I'yCk ) for all m € N. But, since o, 7, and I's are continuous on X.(S") (the latter
by Proposition 4.1.6 (b)), and taking the polar is continuous on proper bodies in K.(S™)
(recall that I'sL is proper for all L € X.(S™) by Corollary 4.1.5), we obtain the desired
inequality by letting m — oo. O

We conclude this chapter with three remarks concerning possible extensions and improve-
ments of Theorem 4.2.2. We begin by discussing a version for not necessarily centrally-
symmetric bodies. To this end let K € X(S™) be proper and assume that K C int S}, for
some w € S" or, equivalently, that w € —int K*. Moreover, let 7,, denote the absolutely
continuous measure on S" with density dr,(u) = |u - w|do(u) and let 7, := guw#7w denote
its push-forward under gnomonic projection g,, : int S, — RY, 0+ If we define the spherical
centroid body of K by

gw(FsK) = F?wgw(K)a (4.10)
then the arguments leading up to Theorem 4.2.2 yield the inequality
o(IK) <o(l;CR).

However, we are reluctant to use (4.10) as definition for I'; K, since, on the one hand, it is
not intrinsic and, on the other hand, there is the question what would be a natural choice for
w € —int K*7 Of course, this choice should coincide with the center for centrally-symmetric
bodies, like, for example, the centroid c¢s(K). We do not know whether ¢;(K) € —int K*
for every proper K € KX(S™), apart from special cases:

Lemma 4.3.3. Let K € K(S"). If K C —K*, then cs(K) € —K*.

This may seem trivial, but if we are able to bound K from above by a self-dual body
(L=—-L"), then K C L =—L* C —K* follows. So for instance, if K is contained in a cap
of radius 7, or if K is contained in a self-dual spherical convex polytope (for instance the
regular simplex of edge length 7), then K € —K* and ¢,(K) is contained — int K.

Lemma 4.3.4. Let K € X(S"). If diam(K) < 7, then cs(K) € —int K*.
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4.3 Proofs 47

Proof. Since diam(K') = max{dgn(u,v) |u,v € K}, we have u-v > 0 for all u,v € K. This
means that

u € ﬂ Sy
veEK
for all u € K. Since
K*=()s,
veEK
and —S; =S, we get K C —K*, in particular ¢s(K) € — int K*. O
Lemma 4.3.5. Ifn =2, then cs(K) € —int K* for all K € X(S?).

Proof. Let a € R? be any vector, and F(z) := a x z, where x denotes the cross product in
R3. We apply Stokes’ theorem to K as a surface in R and obtain

/ rot F'(u) - udo(u) = F(u(s)) - T(s)ds.
K 0K

Here, T is the tangential unit vector field along the positively oriented boundary curve of
K, that is, K lies on the left of that curve. We compute rot F' = a, and since

(a xu)-T=det(T,a,u) =det(a,u,T) =a-(uxT),

we end up with

a-/Kuda(u)_a.;/M(uxT)(s)ds,

for any a € R3, that is,

/Kuda(u) = ;/81( (uxT)(s) ds.
n(s)

Here, n(s) is the inward pointing normal vector to K at s € 0K, in particular, —n(s) € K*.
Now, for v € K, compute

Y Joren(s) - vds
i n(s) -vds]

since —n(s)-v <0 for all s € 0K and —n(s)-v > 0 on a set of positive measure. Hence,
veintS:S(K),and thus ¢s(K) € —int K*. O

cs(K)

Our second remark concerns a possible version of Theorem 4.2.2, where C7; is replaced
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48 Chapter 4 Spherical centroid bodies

by C%, that is, the inequality
o(I[TK) < o(I1CF), (4.11)

where C; is a spherical cap such that o(C%) = o(K). This would be a stronger isoperi-
metric inequality than Theorem 4.2.2, since C} C C% for every K € X (S") with center
e € S™ and equality holds if and only if K is already a cap centered at e.

A possible approach to establishing (4.11) is via a spherical analogue of inequality
(4.8). More precisely, if Uy,...,Uy and Vi,...,Vy are independent random unit vectors
uniformly distributed in K and C¥,, respectively, is it true that

E [0 (I7(Ur,....Ux))] <E[o (I (Vis ..., Vi))]? (4.12)

A combination of inequality (4.12) with Theorem 4.2.1 would then yield (4.11).

Finally, let us state the most interesting and probably hardest open problem concerning
spherical centroid bodies — a spherical analogue of the Busemann—Petty centroid inequality:

Open Problem. If K € K.(S"), then
o(IK) > o(I:,C¥%). (4.13)

Let us emphasize that inequality (4.13) would not only imply Theorem 4.2.2, by combining
(4.13) with the spherical Blaschke-Santalé inequality from [Gao02], but the stronger
inequality discussed in the above remark. Moreover, (4.13) would also imply the classical
Busemann—Petty centroid inequality by considering spheres with radii going to infinity and
rescaling.
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CHAPTER b

Randomized Urysohn—-type inequalities

As a natural analog of Urysohn’s inequality in Euclidean space, Gao, Hug, and Schneider
[Gao02] showed in 2002 that in spherical or hyperbolic space, the total measure of totally
geodesic hypersurfaces meeting a given convex body K is minimized when K is a geodesic
ball. We present a random extension of this result by taking K to be the convex hull of
finitely many points drawn according to a probability distribution and by showing that the
minimum is attained for uniform distributions on geodesic balls. As a corollary, we obtain
a randomized Blaschke—Santal6 inequality on the sphere. The results in this chapter are
joint work with Peter Pivovarov [Hac].

5.1 Statement of results

Let M" be either spherical, Euclidean, or hyperbolic space, equipped with its isometry-
invariant volume measure A,, and define

UL (K) = / (N M),

for K C M" compact and convex as in (2.10). Our first main theorem then reads as follows:

Theorem 5.1.1. Let N € N and f1,..., fx: M™ — R bounded, integrable. Set

N
I(fl,...,fN):/n.../nUl(conv{xl,...,mN})Hfi(xi)dxl...dacN.
i=1

Then
where fi* denotes the symmetric decreasing rearrangement of f;, 1 < i < N. Under the
additional assumption that in the case M"™ = S" the functions f1,..., fn are supported in
int S}, also

I ) 2 I fillse Ly - LN oo LBy ), (5.2)

where the B; are geodesic balls in M™ centered at e € M", satisfying

| fill £t (v
An(By) = L0,
B) = ile

49
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50 Chapter 5 Randomized Urysohn—type inequalities

The left hand sides in (5.1) and (5.2) may be infinite in the cases M" = Ry, or H".

Let N € N, K C M" compact, and X1,..., Xy be independent random points uniformly
distributed in K. Then we denote by

[K]n = conv{Xy,...,Xn}

the random set given by the convex hull of the N random points (see also Section 2.2). By
plugging in indicator functions on compact sets in Theorem (5.1), we obtain the following
inequality for the expected value of Uy on [K]p.

Corollary 5.1.2. Let N € N and K C M" be compact. Then
EUL([K]n) = EUL([Bk]N),
where By is a geodesic ball satisfying A (K) = A\ (Bk).

If additionally K is convex, then [K]y — K almost surely in the Hausdorff metric as N
tends to infinity, and thus Corollary 5.1.2 recovers the inequality (2.9) by Gao, Hug, and
Schneider.

As noted in [Gao02], there is a special relationship between U; and spherical polar
duality (see Proposition 2.2.1). In this way, (5.1) can also be reinterpreted as a spherical
Blaschke—Santalé inequality in stochastic form.

Theorem 5.1.3. Let N € N and f1,..., fn: S® — R* bounded, integrable and assume
that all f;, 1 <1i < N, are supported in the hemisphere ST.Set

) N
I(fi,...,fn) = /n/n )\n(conv{xl,...,xN}*)Hfi(ﬂ?i)dm-~d$N~
i=1

Then

I(freo fn) ST 1) (5:3)
where f¥ denotes the symmetric decreasing rearrangement of f;, 1 <i < N. Under the
additional assumption that the functions f1,..., fny are supported in int ST,

I 1) < A AllsoTens - [N llsoLow),

where the C; are spherical caps centered at a common point, satisfying

| fill L1 (s
A (Cy) = Willzisn
N T

Again, by plugging in indicator functions on compact sets in (5.3), we obtain as a
corollary:
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5.2 Proofs 51

Corollary 5.1.4. Let N € N and K C S" be compact. Then
EAn([K]N) < EAn([Ck]N),
where Ck is a spherical cap satisfying A\ (K) = M\ (Ck).

Following a strategy similar to Chapter 4, one can arrive at a symmetric version of
Corollary 5.1.4, where [K]y is replaced by the convex hull of the random points X; and
their reflections about some fixed origin, by transferring a result of [Corl5] from Euclidean
space to the sphere using gnomonic projection. However, here we take a different path and
work directly on M" to obtain Theorem 5.1.1 in full generality.

5.2 Proofs
The proof of Theorem 5.1.1 does not rely on the deterministic result by Gao, Hug,
and Schneider. Rather, we first prove a rearrangement inequality for I(fi,..., fx) that

reduces the problem to radially decreasing densities. This is similar to the route taken
in the Euclidean setting [Paol2al, [Paol7b], but we use two-point, rather than Steiner
symmetrization.

We split the proof into two parts: first, we show how to pass from given functions to their
symmetric decreasing rearrangements. In a second step, we further move from radially
symmetric, decreasing functions to (multiples) of indicators of geodesic balls. For positive,
bounded, and integrable functions fi,..., fxy on M" write

N
I(fl,...,fN):/n... . Ul(COHV{xl,...,$N})Hfi(aji)dw1...de.
i=1

Proposition 5.2.1. Let fi,..., fv: M™ — RT bounded, integrable. Then

I(fio o fN) Z 10 SR

Proof. For bounded, measurable subsets Ki,..., Ky C M" we set I(Ky,...,Ky) =
I(1g,,...,1x,). Our first step is to show that I(Ky,...,Ky) > I(TK,,...,TKy) for
every two-point symmetrization (H, p,T). To this end, for M € M"_,, let

n—1»

I(Kl,...,KN;M)::/ / x(conv{z1,..., ey} N M)dz; ..., dxyN.
K Kn

We want to investigate how the quantity I(K1,..., Kn; M)+ I(Ky,..., Ky; pM) changes,
when the K; are replaced by T K;. Note that we have

by the p-invariance of x. We begin by decomposing each K; according to the symmetrization

K= (KiNpK)U[(K;nHT)\ K™ U [(K;nH7)\ K™,

Sm ~~
mov
K; Kiix K;
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52 Chapter 5 Randomized Urysohn—type inequalities

that is, TK; = K;"™ U KX U pK/P°V. Now, let (71,...,2x) € K1 x---x Ky and introduce
the following labeling:

{ar,...,an,} = {xi|zi € K¥™,1 <i < N},

{bl,...,le} = {.TZ|:L’Z EKiﬁx,l SZSN},

{e1, .. ey, b i={mi|x; € K"V, 1 <i < N},

where Ng + N1 + No = N. For brevity we will use the notation z := pzx for z € M" and
consider the tuples

N
Dy = (al,...,aNo,bl,...,le,cl,...,cNQ)6xilei,
- - N
Dy = (al, ..,aNO,bl,...,le,Cl,...,CNQ)6XiflKl,
— (7 " T - N
D3 :=(ay,...,an,,b1,...,bn,,C1,...,CN,) € Xiq pK,
7 T _ N
Dy = (al, ..,aNO,bl,...,le,Cl,...,CN2)6 XiflpKz,
and
- _ N
FEp = (al, ..,aNo,bl,...,le,Cl,...,CNQ) < Xi:lTKi7
~ ~ ~ ~ N
Ey = (al,...,aNo,bl,...,le,cl,...,cNQ)E Xi:lTKi7
(= — 7 A N
Es = (al,...,aNo,bl,...,le,cl,...,cNQ) S Xi:lpTKia
R 7 A N
Ey = (al,...,aNo,bl,...,le,cl,...,cNQ) S Xi:lpTKi-

Note that exchanging ¢; with ¢;, 1 <1 < Nj, yields the mapping

Dy~ Ey, Dyw Ey, D3+ Es, Dy Ey, (5.4)
whereas exchanging by, with by, 1 < k < N; induces

Dy~ Ey, Do+ Es, D3+ Ey, D4+ FEj. (5.5)

We claim that

4 4
Z x(conv{D;} N M) > Z x(conv{E;} N M) (5.6)
i=1 i=1
for almost all M € M7_,, that is, we tacitly assume that x1,...,zx do not lie on M. We

will verify the claim by checking all possible positions of the points a;, by, ¢; relative to M.
In doing so, we mean by a pair of points a point and its reflection about H, that is x and
x = px. We call a pair of points x and z split if they lie on opposite sides of M.

o Case 1: None of the pairs of b’s are split. By (5.5), the terms on both sides of (5.6)
are just a permutation of each other, thus there is equality in (5.6).

o Case 2: None of the pairs of ¢’s are split. By (5.4) and the same argument as in the
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5.2 Proofs 53

first case, we have equality in (5.6).

o Case 3: There exist split pairs of b’s and split pairs of ¢’s. Suppose that {bg, by},
1 <k < N;and {¢,g}, 1 <1< Ny are split. Since by, € H' and by, c; € H™,
the geodesic segments [by, ¢;] and [by, ¢ intersect in H. As M divides M™ into two
connected components, by and ¢; must lie on one side of M, whereas b and ¢; must
lie on the other. Thus, the left hand side of (5.6) equals 4 and the inequality holds.

Integrating the pointwise inequality (5.6) over K X --- x Ky yields

20 (K1, ... . Kn; M)+ 2I(Ky,. .., Ky; pM)
—21(K1, ..., Kn; M) + 2I(pK1, ..., pKn: M)
>2I(TKy,...,TKn; M) +2I(pTK,,...,pTKn; M)
= 2(TKy,...,TKx: M) + 21(TK, ..., TKy: pM),

that is, the quantity I(Ky,...,Kn; M)+ I(K1,...,Kn; pM) decreases whenever the sets
Ky,..., Ky are replaced by TKy, ..., TKy.

Our next step is to use the layer-cake formula to generalize the previous inequality to
functions. Let f1,..., fzv: M™ — RT be bounded, integrable functions and set

N
I(fi,..., fn; M) ::/n.../nx(conv{ml,...,xN}ﬂM)Hfi(xi)dxl...,da;N.
i=1

Figure 5.1: conv{D;} (left) and conv{E;} (right) for i € {1,2,3,4}.
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54 Chapter 5 Randomized Urysohn—type inequalities

Indeed, we have that

I(f1,..., fN; M)+ I(f1,..., fn; pM) =
ARy AR T RN TR BT

FI({fr> 51} {fn > snbipM)dsy .. .dsy
2/0 /0 IT{f1 >s1},....,T{fn > sn}; M)

+I(T{f1 > s1},...,T{fn > sn};pM)dsy...dsn
_/OOO.../OOOI({Tfl>sl},...,{TfN>sN};M)

+I({Tf1 > 81},...,{TfN > SN};pM)dsl...dSN
:I(Tfl,...,TfN;M)+I(Tf1,...,TfN;pM).

Here, we used the layer-cake representation f(z) = [;° Liss,) () ds, identity (2.15), and
the above inequality for sets. We can now apply Proposmon 3.3.3 to the bounded function
U(xy,...,xn) = x(conv{xy,...,any} N M)+ x(conv{z1,...,znx} N pM) to obtain

I(fi, oo INs M)+ I(f1so fns pM) 2 I(fF5 o fR M) + I(FF, - fs pM).
The proof of the inequality is now completed by integrating M over M} _,. O

Proposition 5.2.2. Let fi,..., fnv: M" — R bounded, integrable, with spt f; C int §F,
1 <i< N, in the case M = S™. Then

I(ff?af]tf) > I(HfIHOO]lBU""HfNHoo]lBN)

where B; is a geodesic ball around e such that \,(B;) = Hﬁ””f.%

Proof. We use polar coordinates around e € M" (see Section 2.1),
x(t,u) = ecst+usnt, te [O,RM},UES”_I,

and appeal to Proposition 3.4.3. In doing so, we will justify monotonicity in each coordinate
of the following function:

d(t1, ..., ty) = /Sn_l . /Sn—lX (conv{(z(t1,u1),...,z(ty,un)} N M)
+ x (conv{(z(t1,u1),...,x(ty,un)} N M) duy ...duy,

where M € M}'_, is fixed and ¢ := —z + (x - e)e denotes the geodesic reflection of z € M”
about e, that is, orthogonal reflection about span{e} in R**!,

Without loss of generality, we assume that e ¢ M, and show that ¢ is increasing in
t1 =:t. We fix ta,...,ty and uy,...,uy and write z(t) := z(t,u1) and z; := x(t;, u;),
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2 < i < N. Define

(conv{z(t)®, z2,...,an} N M),
(conv{z(t)%, z5,..., x5} N M),

aq(t) ==
as(t) ==

(conv{z(t),za,..., Ny} N M), ao(t):=
(conv{z(t),z5,..., 25} N M), aut):=

and set a(t) := ay(t) + aa(t) + as(t) + ay(t).

Note that we have a1 = af and ap = af. Our goal is to show that the function
Q: [0, RM] — {0,1,2,3,4} is increasing in t. We set X := conv{zs,...,zn} and consider
the following cases:

o Case 1: e € X, and thus, e € X€¢. For s <t, we have [e, z(s)] C [e, z(t)] as geodesic
segments. Therefore

a1(s) = x(conv{le,z(s)|U X} N M) < x(conv{[e,z(t)]UX} N M) =ai(t),

and similarly for ag, as, ay, hence, a(s) < a(t).
o Case 2: e ¢ X, and thus, e ¢ X°.
— Case 2a: M meets both X and X°¢. Here, a(t) = 4.

— Case 2b: M meets X but not X¢. We first show that in this case e must lie on
the same side of M as X¢. Assume the opposite, that is, e lies opposite of X¢.
Since M meets X, there exist points of X on either side of M. Therefore, we
find y € X lying opposite of e. But then y¢ € X¢, and thus the segment [y, y°]
also lies opposite of e, which is a contradiction, as e € [y, y¢] (Here, we use that
in the spherical case the functions fi,..., fy, and thus their rearrangements,
L f;‘[ are supported in int S}). Hence, for ¢ small enough, we have

a1(t) =1, ag(t) =1, a3(t)=0, au(t) =0,

that is, a(t) = 2. As ¢ increases, as soon as either x(t) or z(t)¢ cross M, as(t) =1
or as(t) = 1, that is, a(t) = 3.

— Case 2¢: M meets X€ but not X is similar to Case 2b.

~- M (Case 2b)

M (Case 2d)

Figure 5.2: Different positions of the hypersurface M in Cases 2b and 2d.
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56 Chapter 5 Randomized Urysohn—type inequalities

— Case 2d: M meets neither X nor X¢. If X and X*¢ lie on opposite sides of M,
then a(t) = 2 is constant, as a;(t) + a3(t) = 1 and aa(t) + au(t) = 1 (except for
at most one value of ¢, where x; or z{ might lie on M). If X and X*¢ lie on the
same side of M, then so does e, and thus, a(t) = 0 for small ¢, and «(t) = 2,
as soon as x(t) or x(t)¢ cross M, since then a;(t) =1, a(t)s =1 or a(t)s = 1,
a(t)y = 1, respectively.

Integrating ui, ..., un over S"~! x .. x S*~! now yields that

2¢(t,t2,...,tN):/ / a(t)duy .. .duy
S§n—1 Sn—1
is increasing in ¢ as well. Hence, an application of Proposition 3.4.3 gives

I(ff, o fRs M)+ I(fF - N M)
2 ([ filloLys - s ([N lloo LBy s M) + ([ filloo LBy - - 1N lloo LBy MF)

Once again, integrating M over M?'_; concludes the proof. O


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

CHAPTER 6

Random ball-polyhedra

We present inequalities for the expected volume of the intersection or union of finitely many
geodesic balls of given radius, whose centers are chosen according to probability densities.
Namely, we show that extremizers are to be found among radially symmetric, radially
decreasing density functions. We treat spherical, Euclidean, and hyperbolic space at once
and thereby extend a result by Paouris and Pivovarov [Paol7a] to curved geometries.

6.1 Statement of results

Let M"™ be either spherical, Euclidean, or hyperbolic space, equipped with its isometry-
invariant volume measure \,. Our first theorem is about intersections of geodesic balls,
sometimes referred to as ball polyhedra (see, e.g., [Bez07]):

Theorem 6.1.1. Letr >0, N € N and f1,..., fnv: M® — RT bounded, integrable. Set

N N
i=1 =1
Then

I'(freo o fN) S TTUE - IR, (6.1)

where f¥ denotes the symmetric decreasing rearrangement of f;, 1 <i < N.

Let r > 0, N € N, K C M" compact, and X1i,..., Xy be independent random points
uniformly distributed in K. Then we denote by

N
() = (1) Br(Xi)
i=1

the random set given by the intersection of N balls of radius r, centered at the X;. By
plugging in indicator functions on compact sets in Theorem 6.1.1, we obtain the following
inequality for the expected volume of (K).

Corollary 6.1.2. Letr >0, N € N and K CM" be compact. Then
EX((K)y) < EAn((Bi) ),

where By is a geodesic ball satisfying A\, (K) = A\, (Bk).

57
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58 Chapter 6 Random ball—polyhedra

If in addition K is convex, then since
(K)y = K" ={x e M" |dyin(z,y) <rVy € K}

almost surely in the Hausdorff metric as N tends to infinity, Corollary 6.1.2 recovers an
isoperimetric inequality for K" due to Schmidt [Sch48] and Bezdek [Bez18a]. Also note
that for z1,...,xny € S™, we have

N
conv{xy,...,zn}" = ﬂ Bz (—;),
i=1
thus, Corollary 6.1.2 yields another method to obtain Corollary 5.1.4. Our second result
concerns unions of geodesic balls:

Theorem 6.1.3. Letr >0, N € N and f1,..., fnv: M"* — RT bounded, integrable. Set

N N
I’r‘(fla'”va) :/an-/n)\n <UBT('I’)> Hfz(l'z)dzﬂldl’N
=1 =1
Then

IT(flafN)ZIT(ff(?f]tf)? (62)

where f* denotes the symmetric decreasing rearrangement of f;, 1 <i < N.

Let Xi,...,Xn as above and write (K), y = Uf\il B, (X;) for the random set given by
the union of N balls of radius r, centered at the X;. By taking indicator functions on
compact sets in Theorem 6.1.3, we obtain as a corollary:

Corollary 6.1.4. Letr >0, N € N and K C M" be compact. Then

EXn((K)r,n) = EAn((Bk)r,n),
where By is a geodesic ball satisfying A, (K) = A, (Bk).
Again, if in addition K is convex,
(K)rn = K = {z € M" [dy (2, K) <7}

almost surely in the Hausdorff metric as N tends to infinity, and thus Corollary 6.1.4
recovers the spherical isoperimetric inequality for outer parallel sets (see, e.g., [Sch48] or
[Ben84]).

6.2 Proofs

We prove both Theorems 6.1.1 and 6.1.3 at the same time, since the arguments are almost
identical.
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6.2 Proofs 59

Proof of Theorems 6.1.1 and 6.1.3. We start as in the proof of Theorem 5.1. For bounded,
measurable subsets Ki,..., Kny C M" we set I"(K},...,Ky) = I"(1k,,...,1k,) and
I(Ky,...,Ky) == I,(1k,,...,1k,). Our first step is to show that I"(K,...,Ky) <
I"(TKy,...,TKy) and I.(Ky,...,Ky) > I,(TKy,...,TKy) for every two-point sym-
metrization (H, p,T). We begin by decomposing each K; according to the symmetrization

K= (K;NpK;)U[(K;nHY)\ K™ U[(K;nH™)\ K™,

/

v ~~
sym f mov
K; Kix K;

that is, TK; = K;"™ U KX U pK™V. Now, let (z1,...,25) € K1 X --- x Ky and use
again the labeling:

{al,...,aNO}:: {JJ”:I)Z'EKisym,lS’L'SN}

{br,....bn} = {wi|zi € K1 <i <N}

{617"'7CN2}:: {xz|xleKZmOV71SZSN}7

where Ny + N1 + No = N. With the notation & := pz for x € M"™ we consider the tuples

D1 = (al,...,CLNO,bl,...,le,Cl,...,CNQ) c Xﬁ\;lKi,

D2 = (al,...,ELNO,bl,...,le,Cl,...,CNQ) c Xﬁ\;lKi,
and

El = (al,...,aNO,bl,...,le,El,...,ENQ) S Xﬁ\ilTKi,

FEsy = ((_11,...,C_LNO,bl,...,le,El,...,ENQ) S Xﬁ\ilTKi.

Note that exchanging ¢; with ¢;, 1 < [ < N, that is, performing the symmetrization
K; — TK;, yields the mapping

Dli—>E1, D2|—>E2.

We claim that

A
A
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60 Chapter 6 Random ball—polyhedra

In order two prove this claim, we introduce the following abbreviations:

No Ny Ny

a:i= m B, (a;), b:= ﬂ Br(bj)a c:i= m By (ck),
i=1 j=1 k=1
Ny Ny No

a:= () B.(a), b:= (") B:(b)), c:= () B:(@),
i=1 7=1 k=1
NO Nl N2

A= Bi(a), B:=J B:(b)), C:=J Br(er),
i=1 j=1 k=1
N() Nl N2

A= B.(a), B:= B (5)), C:=JB(a)
i=1 j=1 k=1

Using this notation, (6.3) and (6.4) read as

An(@anbnec)+ A (@anbne)

< A(anbneé)+ A (aNbNT) (6.5)
M(AUBUC) + A\ (AUBUC) >

An
M(AUBUC) + M\ (AUBUQ)
Setting furthermore

d:=bnNc, d:=bnNc, s;:=ana, so:=aUa,
D:=BUC, D:=BUC, Si:=ANA, S := AUA,

we can use the additivity of volume to rewrite (6.5) and (6.6) as

An(dNisy) + Ap(dNisg)
)\n(D @] 51) + )\n(D U SQ)

(dNs) 4+ A (dNsy) (6.7)

<A\
> M(DUST) 4+ A (D U Sy).

Note that s;,S;, i = 1,2 are symmetric with respect to orthogonal reflection about H, that
iS? P(Sz) = S;, P(Sz) = S’i7 i = 172

The next two identities can be found in [Bez18a, Lemma 5] and [Ben84, Proposition 1.1]:
Let M C M" be any set and > 0. If we write M" := (|, cp; Br(x) and M, := {J, ¢y Br(2),
then

T(M")
T (M)

(TM)" (Bezdek) (6.9)

-
2 (TM), (Benyamini) (6.10)
Now, in (6.9) and (6.10), let

M = {bl,...,le,Cla"'7CN2}7
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6.2 Proofs 61

then
TM = {b1,...,bn,,C1,...,CNy },

and so M" =d, (TM)" =d, M, =D, (T'M), = D. Thus, (6.9) and (6.10) yield
TdCd and TDDD.

Intersecting and joining with the H-symmetric sets s; and S;, i = 1,2, and using (2.16) and
(2.17), we obtain

T(dNs;))=TdNs; CdNs; and T(DUS;)=7TDUS; 2DUS;,

for ¢ = 1,2. Since two-point symmetrization is volume preserving, taking volumes on both
sides proves (6.7) and (6.8) and therefore also (6.3) and (6.4).
Integrating the pointwise inequalities (6.3) and (6.4) over K; x --- x Ky yields

2I"(K4,...,KN) <2I"(TKy,...,TKy),
2I.(Ky,...,Ky) > 2I,(TK,,...,TKy),
that is, I" (K1, ..., Ky; M) increases, whereas I,.(K1, ..., Ky; M) decreases whenever the
sets K1,..., Ky are replaced by TK;, ..., TKy.
Next, we use the layer-cake formula to generalize the previous inequality to functions.

Let f1,..., fv: M" — R* be bounded integrable functions. Using f(xz) = [;° Lifss(2) ds,
we have by the above inequality for sets and (2.15) that

Pt = [ [T > s) > sxDdsr sy
S/Oo.../oolr(T{fl>81},...,T{fN>SN})d51...dsN
:/ / IT {Tf1>81}, ..,{TfN>SN})d81...dSN
=I"(Tf1,....,Tfn),
and similarly
n(fl,...,fN)=/()Oo.../:°1r<{f1>81},...,{fN>8N}>dsl...dsN
Z/OOO.../OOOIT(T{fl>81},...,T{fN>SN})d81...dSN

= OO.../OOOIT({Tfl>81},...,{TfN>SN})d81...dSN

:IT(TflaanN)
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62 Chapter 6 Random ball—polyhedra

We can now finish the proof by applying Proposition 3.3.3 to the bounded functions

N

lI/r(a:l, . ,.’L‘N) =\ (m Br($1)> s
’LJ:VI

LDT(:Ul, ce ,:L‘N) = /\n (U Br(l'l)) 5
=1

to obtain the desired inequalities. ]
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