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Abstract

Semiholography is a theoretical framework, set up to provide a consistent effective descrip-
tion of the physical systems involving both weakly coupled and strongly coupled degrees of
freedom, where the latter are modelled by gauge/gravity duality, also known as holography.
In this thesis, we explore this framework in the context of strongly coupled plasmas in non-
equilibrium settings, motivated in particular by the non-equilibrium evolution of the Quark
Gluon Plasma. In the context of QGP, the model couples a weakly-coupled sector, describing
hard partons, with a strongly-coupled soft holographic sector, representing the soft bath of
gluons radiated by the hard partons, via gauge-invariant operators. Following a brief theoreti-
cal introduction, I will describe the semiholographic approach in general and using illustrative
examples, focussing in particular on the phenomenological construction. A key element is that
the semiholographic construction has a locally conserved total energy-momentum tensor.

After the general introduction, I discuss a hybrid two-fluid model coupled via their effective
metrics. This coupling is dictated by the respective energy-momentum tensors. I explore the
consequences of such a coupling in and near thermal equilibrium by investigating the rich phase
structure and the collective modes.

Following this discussion, I will describe a semiholographic toy model for QGP thermaliza-
tion in 2+1 dimensions. This involves a classical Yang-Mills sector, describing the overoccupied
gluon modes at the saturation scale, coupled to a strongly interacting holographic sector, rep-
resenting the soft degrees of freedom. The toy model represents a proof of principle calculation,
demonstrating for the first time the transfer of energy from the Yang-Mills sector at the bound-
ary to a growing black hole in bulk anti-de Sitter (AdS) space including backreaction.

Finally, I will discuss a semiholographic model of trapped impurities in 0 + 1-dimensions.
Along the way, we will develop an algorithm to solve Jackiw-Teitelboim gravity coupled to non-
conformal matter. The holographic sector, represented by an infrared anti-de Sitter spacetime
with non-conformal matter, known as nearly-AdS2, represents a confining potential for the
trapped impurities. The impurities serve as a self-consistent boundary source for the holographic
sector.
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Zusammenfassung

Semiholographie ist eine theoretische Methode zur konsistenten, effektiven Beschreibung von
physikalischen Systemen, die sowohl schwach wechselwirkende als auch stark wechselwirkende
Freiheitsgrade aufweisen, wobei letztere mittels der Dualität von Eichtheorien und Gravitations-
theorien (Holographie) modelliert werden. Diese Arbeit behandelt Semiholographie im Kontext
stark gekoppelter Plasmen in Nichtgleichgewichtszuständen, die insbesondere durch die Nicht-
gleichgewichtsentwicklung des Quark-Gluon-Plasmas (QGP) motiviert sind. Zur Beschreibung
des QGP verwendet man ein Model bestehend aus zwei Sektoren: einen schwach wechselwirk-
enden Sektor, der “harte” Partonen beschreibt, und einen stark wechselwirkenden, “weichen”
holographischen Sektor, welcher das weiche Bad der von den harten Partonen ausgestrahlten
Gluonen darstellt. Die Kopplung der beiden Sektoren erfolgt über eichinvariante Operatoren.
Nach einer kurzen theoretischen Einführung beschreibe ich den semiholographischen Ansatz
im Allgemeinen und verwende anschauliche Beispiele, wobei ich mich insbesondere auf die
phänomenologische Konstruktion konzentriere. Ein Schlüsselelement ist, dass die semiholo-
graphische Konstruktion einen lokal erhaltenen Gesamt-Energie-Impuls-Tensor aufweist.

Nach der allgemeinen Einführung diskutiere ich ein hybrides Zweiflüssigkeitsmodell, das
über effektive Metriken gekoppelt ist. Die Kopplung wird durch die jeweiligen Energie-Impuls-
Tensoren vorgegeben. Ich untersuche die Konsequenzen einer solchen Kopplung im und in
der Nähe des thermischen Gleichgewichts, indem ich die komplexe Phasenstruktur und die
kollektiven Moden des Systems untersuche.

Im Anschluss an diese Diskussion beschreibe ich ein semiholographisches “Spielzeugmod-
ell” für die Thermalisierung des QGP in 2 + 1 Dimensionen. Das Modell besteht aus einem
klassischen Yang-Mills-Sektor, der die hochbesetzten Gluon-Moden nahe der Sättigungsskala
beschreibt, gekoppelt mit einem stark wechselwirkenden holographischen Sektor, der die we-
ichen Freiheitsgrade darstellt. Das Spielzeugmodell dient als “proof of concept” der Berech-
nungsmethode und demonstriert zum ersten Mal die Übertragung von Energie aus dem Yang-
Mills-Sektor am Rand zu einem wachsenden Schwarzen Loch im Anti-De-Sitter-Raum, unter
der Berücksichtigung von Rückkopplung.

Abschließend diskutiere ich ein semiholographisches Modell von eingeschlossenen Verunreini-
gungen in 0 + 1 Dimensionen. Ich entwickle einen Algorithmus, mit dem die Feldgleichungen
der Gravitationstheorie von Jackiw und Teitelboim in Verbindung mit nicht-konformer Materie
gelöst werden können. Der holographische Sektor, der durch eine infrarote Anti-De-Sitter-
Raumzeit mit nicht konformer-Materie, NAdS2, beschrieben wird, stellt einen Potentialtopf für
die eingeschlossenen Verunreinigungen dar. Die Verunreinigungen dienen als selbstkonsistente
Quellen am Rand der Raumzeit für den holographischen Sektor.

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

iv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Preface

The main results and methods presented in this thesis are have been published in the
following articles:

1. A. Kurkela, A. Mukhopadhyay, F. Preis, A. Rebhan and A. Soloviev.
Hybrid Fluid Models from Mutual Effective Metric Couplings.
Journal of High Energy Physics 08, 054 (2018) [arXiv:1805.05213]

2. C. Ecker, A. Mukhopadhyay, F. Preis, A. Rebhan and A. Soloviev.
Time evolution of a toy semiholographic glasma.
Journal of High Energy Physics 08, 074 (2018) [arXiv:1806.01850]

3. L. Joshi, A. Mukhopadhyay and A. Soloviev.
Time-dependent NAdS2 holography with applications.
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Units and conventions

For the metric signature, we take the mostly-plus convention, i.e. the Minkowski metric is

ηµν = Diag(−1, 1, 1, 1).

We will use Greek indices to denote curved coordinates µ = 0, . . . , d. We will use Latin indices
for spatial directions.

Our conventions for the Fourier transform are

f(k) =
∫

ddx

(2π)d
eik·xf(x),

where k · x = −ωt+ kixi.
Unless stated otherwise, we will work in natural units, where the speed of light c = 1,

Boltzmann’s constant kb = 1 and the reduced Planck constant ~ = 1.
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Chapter 1

Introduction

The study of matter produced by heavy ion collisions, performed at various major experi-
mental facilities such as the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory, provides an enormous opportunity
for understanding the fundamental nature of strong interactions. During these high energy
ultra-relativistic collisions involving lead or gold ions, the quarks and gluons making up such
ordinary nuclear matter deconfine. This fleeting, extremely hot and dense state of matter is
known as the Quark Gluon Plasma (QGP). Studying such an exotic state of matter is key to
exploring and understanding the phase diagram of quantum chromodynamics (QCD), the the-
ory of strong interactions. Moreover, the QGP was a major component of the Universe for a
few microseconds after the Big Bang [1].

A typical heavy ion collision begins with two ions approach one another at highly relativistic
speeds. The ions appear as flattened disks or pancakes in the center of mass frame. The disks
are made of partons, namely quarks and gluons. Due to the asymptotic freedom of QCD, it
was thought that after the disks collide, the partons would be liberated and form a weakly
coupled plasma [2, 3]. At such high energies, one could expect perturbation theory to apply
as the strong coupling constant, αs, would be small. Certain observables were computed at
weak coupling, such as the ratio of the shear viscosity, η, to the entropic density, s, to be
η/s ∼ 1/α2

s logαs ≫ 1 [4].
Surprisingly, this ratio was measured to be rather small, η/s < 1, in the wake of a heavy ion

collision. As the remnants of the ions move away from the collision site, certain aspects of the
”fireball” of the QGP matter left behind are better captured by a strongly coupled theory, in
particular by an effective hydrodynamic description [5]. Intriguingly, a computation by Kovtun,
Son and Starinets using holographic techniques [6] yields a ratio of the shear viscosity, η, to the
entropy density, s, to be η

s = 1
4π . It has been shown that this value is universal for a large class

of large N theories in the limit of infinite coupling [7]. The estimated value of η
s of the QGP

produced at CERN and RHIC lies in the ballpark of this ratio.
At late times, as the ”fireball” expands, the temperature of the system decreases to a point

where it becomes more energetically favorable for the quarks and gluons to recombine and form
a gas of hadrons. This is known as the freeze-out regime. This dilute gas of bound states flies
towards the detectors, where the multiplicity and species of particles is measured.

While the final stage of the evolution is beyond a weak-coupling description, certain aspects
of the dynamics at the earliest stage are better described by a weak-coupling approximation,
suggesting the presence of both strongly and weakly coupled degrees of freedom simultaneously.

Currently, there is no theoretical framework which captures the complete evolution of heavy

1
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2 CHAPTER 1. INTRODUCTION

ion collisions in one framework. To date, most work has been done in a solely weak-coupling
scenario or a solely strong-coupling scenario. Weak-coupling scenarios are usually based on
perturbative QCD (pQCD) [9], where the strong coupling constant is treated as small, αs ≪ 1.
The weak-coupling scenario should indeed be suitable to describe, in particular, the early stages
of heavy ion collisions, when the partons are highly energetic and thus, αs can be taken small.
However, for softer modes close to ΛQCD, αs increases sharply. The strong-coupling scenarios
are usually encapsulated by the the Anti de Sitter/Conformal Field Theory (AdS/CFT) cor-
respondence, providing a method to study collective effects which are difficult to describe per-
turbatively. Of course, the interplay between the weak and strong phenomena, for instance
between the semi-hard partons and the soft gluonic bath, would not be captured in just a
weakly or strongly coupled scenario.

Some qualitatitive and quantitative understanding has been achieved with a patchwork of
theories. One particularly notable example of this is [10, 11], where the early post-collision
stage, described via QCD kinetic theory, is matched to hydrodynamic evolution. This approach
is remarkably successful in providing hydrodynamic simulations with realistic initial conditions
arising from kinetic theory, which leads to more tractable predictions.

A proposal for a strong/weak hybrid approach in the QGP, addressing specifically jet quench-
ing, is due to [12–15], where the energy loss of a jet is modeled via the AdS/CFT correspondence.
The holographic aspect comes into play when modelling the soft interactions via trailing string
solutions behind each parton. In particular, the energy loss of partons (light quarks and gluons)
is computed from gauge/gravity duality, which then serves as an input into a hydrodynamic
description of the evolution of the QGP. Note that backreaction was not taken into account.

Another approach to incorporating weak/strong dynamics is known as semiholography, the
central topic of this thesis. The term semiholography was coined by Faulkner and Polchinski [16]
in the context of non-Fermi liquids. As in [17–20], they proposed including gauge/gravity du-
ality into the study of non-Fermi liquids, motivated by the observation that it can reproduce
the low energy critical exponents of fermionic propagators on the Fermi surface, demonstrating
particle-hole asymmetry from first principles that were previously proposed in [21] and [22] on
phenomenological grounds. Including holography in the discussion of condensed matter system
is by no means unique, [23–25]; the key insight was to realize that the non-Fermi liquids that
were studied contain a Fermi surface, which can be tackled with conventional techniques, as
well as an electron propagator with IR-singular behavior. They proposed a linear hybridization
of the conventional electron with a fermionic operator in a quantum critical holographic theory
represented by a freely propagating fermion in the AdS2 ×R2 geometry. Only the IR “half” of
the physics was governed by holography; hence the name “semiholography”. Later Mukhopad-
hyay and Policastro [26] studied a generalization of this model introducing arbitrary couplings
within and between the two sectors with specific large N scalings, which demonstrated that
semiholography can provide an effective description for a large class of non-Fermi liquids. The
dynamical screening of Coulomb interactions reveals the possibility of a novel superconducting
mechanism [27]. For other related works see [27–31].

The first application of semi-holography in heavy ion collisions was discussed by Iancu and
Mukhopadhyay [32]. Namely, the semi-hard, weakly coupled overoccupied gluon modes are
described by classical YM fields, which are minimally coupled to the soft, strongly coupled
degrees of freedom, represented by gauge-invariant operators of the IR-CFT.

This was then modified and extended in [33, 34], where the self-consistency and numerical
validity of the proposed model was tested. An additional demand of this approach was to have
a well-defined action principle, allowing for the construction of a complete energy-momentum
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3

tensor for the total system in flat space. Although the YM system involves an effective metric,
which is determined ultra-locally by the energy-momentum tensor of the holographic sector, this
feature can be re-interpreted as a marginal deformation of the theory in flat space. Similarly the
boundary metric of the holographic geometry representing the strongly interacting IR degrees
of freedom is deformed by the energy-momentum tensor of the YM sector. The full energy-
momentum tensor which is conserved in flat space is local and can be explicitly constructed.
Furthermore, as a numerical test, the authors studied a homogeneous, isotropic model, with the
added simplification that the YM gauge field was chosen to be color-spin-locked. An iterative
procedure to solve the equations was outlined and it was demonstrated that the numerical
procedure converges rapidly.

The semiholography approach was then further supplemented in [35] by a discussion of the
derivation of semiholographic models. In particular it was argued that the perturbative physics
should be able to determine nonperturbative effects, i.e. the strongly coupled holographic sector,
as well as the hard-soft (perturbative-nonperturbative) coupling. This was explored in a simple
model, where two holographic models are coupled semiholographically. The implications for
QCD were also outlined, where the authors claimed that the renormalon Borel poles that are
found in the perturbative series of QCD need to be cancelled against non-perturbative physics.

In this thesis, we study the properties and consequences of semiholographic couplings. In
particular, we consider different aspects of applicability of semiholography. A particular inno-
vation of the semiholographic approach is that one can work with effective descriptions, i.e. the
microscopic detail of an action is not necessary. As a result, we can implement effective descrip-
tions, such as hydrodynamics and kinetic theory, to make computations analytically accessible.
To this end, we begin by considering two fluids coupled semiholographically, which we refer to
as bi-hydrodynamics [36]. This is meant to model the interaction between the long wavelength
excitations of the hard YM sector and the soft, holographic sector, which we expect to be
present at intermediate times during the evolution of the QGP. We then move on to describe
a toy model of glasma, where we demonstrate using numerical AdS/CFT techniques the first
proof of principle transfer of energy from the hard YM sector to the holographic sector [37].
This would model the early times of the QGP.

The outline of this thesis is as follows: chapter 2 describes the relevant theoretical back-
ground to understand the various models considered later, in particular the AdS/CFT corre-
spondence, hydrodynamics and an introduction to kinetic theory. In chapter 3, we describe
the near equilibrium implications of a semiholographic model with metric coupling, i.e. bi-
hydrodynamics. In chapter 4, we consider a scalar semiholographic coupling describing the early
stages of QGP evolution, where energy is transferred from classical YM fields to a black hole.
In chapter 5, a toy model describing the coupling between a scalar field and Jackiw-Teitelboim
gravity coupled to non-conformal matter, known as nearly-AdS2 (NAdS2) is considered. Longer
computations can be found in the appendices. For units and conventions, see page ix. For a
list of abbreviations used, see Appendix F.
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Chapter 2

Theoretical background

In this chapter, we aim to provide the relevant theoretical background and concepts that
will prove useful in this thesis, however without reviewing the areas of general relativity and
quantum field theory, for which we refer for example to [38–41].

We begin by describing the holographic principle as well as stating the AdS/CFT correspon-
dence, which is necessary in motivating semiholography. We then shift our attention to effective
descriptions that will be useful in chapter 4, first focussing on relativistic hydrodynamics and
concluding with an introduction to kinetic theory.

2.1 Holography and the AdS/CFT correspondence

In this section we will provide a brief overview of holography, in particular as it will be
used in this thesis. For a more complete treatment, see the following reviews [42–46] or the
following textbooks: [47–49]. In particular, for a derivation of the AdS/CFT correspondence
without recourse to string theory, it is worthwhile to read [44].

The holographic principle was originially formulated by ‘t Hooft [50] and then further refined
by Susskind [51]. It states that in a theory of gravity, the number of degrees of freedom scale
as the surface area A (instead of as volume V ), like holograms, which store information from
a higher dimensional setting (3D) to a lower dimensional film (2D). The argument describing
this arises from considering the entropy of a black hole, known as the Bekenstein-Hawking
entropy [52,53]:

SBH =
A

4G
, (2.1)

where A is the surface area of the black hole and G is the Newton constant. The maximum
amount of entropy stored in a given volume is given by SBH .

One concrete example of holography is known as the AdS/CFT correspondence. The
AdS/CFT correspondence, also known as the gauge/gravity correspondence, is one of the most
celebrated recent results of theoretical physics, linking two seemingly distinct theories.

The original proposal of Maldacena [54] of the AdS/CFT correspondence can be stated as
follows [48]:

N = 4 Super Yang-Mills (SYM) theory with gauge group SU(N) and coupling
constant gYM is dynamically equivalent to type IIB string theory with string length

5
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6 CHAPTER 2. THEORETICAL BACKGROUND

ls and coupling constant gs on AdS5 × S5 with radius of curvature L. The corre-
spondence maps the free parameters on the field theory, gYM and N , to the free
parameters on the string theory side, gs and L/ls, via

g2
YM = 2πgs and 2g2

YMN = L4/l4s . (2.2)

Note that the string length is often referred to in the literature as ls =
√
α′, where α′ is known

as the Regge slope and related to the string tension, T , via 2πT = 1/α′ [55].
The name of the correspondence arises from the fact that there is a conjectured correspon-

dence between SYM, an example of a conformal field theory (CFT), and a theory of gravity,
living in an Anti-de Sitter (AdS) background.

It is necessary to point out at this point that the AdS/CFT correspondence is exactly as the
name suggests: a correspondence without a formal proof. However, there is a lot of non-trivial
evidence supporting the conjecture. For instance, a check of the correspondence was undertaken
in [56], where correlation functions were compared on both sides of the theory and found to
agree.

The meaning of the correspondence is that the two theories, one a theory of gravity and the
other a field theory, describe the same physics. The AdS/CFT correspondence provides a one-to-
one map between these two theories. This map, commonly referred to as the dictionary, relates
gauge-invariant operators on the field theory side to their respective dual fields on the gravity
side. An explicit way to express this correspondence is by relating generating functionals to
partition functions. Namely, the generating functional of CFT correlation functions is identified
with the partition function of type IIB string theory [57], i.e.

〈e
∫

ddxOφ(0)〉 = Zstring[φ], (2.3)

where φ represents a bulk field dual to an operator O of dimension ∆ and φ(0) represents the

asymptotic boundary value of φ, namely limz→0 z
∆−dφ(z, x) = φ(0)(x). This is how a theory of

gravity in d+ 1 dimensions is related to a field theory in d dimensions.
The conjecture can be explored by considering various limits of its parameters. For instance,

we will consider the weak coupling limit of string theory, where the coupling constant gs ≪ 1,
while L/ls is taken to be constant. Then on the field theory side, gY M ≪ 1, while g2

Y MN is fixed
to be constant. This is only possible in the so-called large N limit or ‘t Hooft limit, N → ∞.

As a result, in this limit, we have one free parameter on each side of the correspondence,
namely the ‘t Hooft coupling λ = g2

Y MN on the CFT side and the radius of curvature L/ls on
the gravity side. Since these are to be kept finite, we can relate these parameters via

L4

l4s
= 2λ. (2.4)

Thus, we only have one free parameter. If we take the string length to zero, then the strings
become point-like. This represents the low-energy limit of string theory, which is described via
a supergravity theory. Taking the string length to zero means that the ‘t Hooft coupling goes to
infinity, i.e. the field theory becomes strongly coupled. More precisely, strongly coupled N = 4
SYM is dual to type IIB supergravity on weakly curved AdS5 × S5.

Hence, the AdS/CFT correspondence in this limit is an example of a weak-strong duality:
a weakly coupled theory of gravity is related to a strongly coupled field theory. As weakly
coupled gravity theories are accessible to study, the correspondence provides a tool to explore
strongly coupled field theories. It should be pointed out that this argument can be reversed:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.1. HOLOGRAPHY AND THE ADS/CFT CORRESPONDENCE 7

weakly coupled field theory can be used to probe strongly coupled, quantum gravity. As this
thesis centers on studying strongly coupled plasmas, we will not pursue this aspect of the
correspondence.

2.1.1 Applications of holography to the QGP

Holography is a promising tool for making progress in understanding the QGP whenever
the coupling grows strong, i.e. αs ∼ 1. In particular, this corresponds to the time a few fm/c
after a heavy ion collision, when the QGP is undergoing hydrodynamical evolution. One can
take the hydrodynamic limit of a given holographic model as in [60,61].

Holography also can tell us about the real time evolution of the QGP by mapping the
problem of colliding nuclei to colliding shock waves in a gravitational theory (the dual of
which sheds insight into the properties of the QGP), see Fig. 2.1. Chesler and Yaffe [62, 63]
laid the groundwork for studying far-from-equilibrium dynamics of gravitational shocks in an
anisotropic, homogeneous system. There have since been many different applications of that
approach: demonstrating that hydrodynamics is a valid description even with large anisotropies
present [64], implementing radial flow [65] and studying collisions in non-conformal theories [66].
For a review of the current status of the field, see [67].

One of the more widely appreciated applications of the AdS/CFT correspondence is due
to Policastro, Son and Starinets [68], where they compute in a holographic model the specific
viscosity, i.e. the dimensionless ratio of the shear viscosity to the entropic density, to be

η

s
=

1

4π
(2.5)

for a strongly coupled plasma. Note that a larger shear viscosity corresponds to more momentum
exchange between distant fluid cells [67]. In a subsequent work, Kovtun, Son and Starinets
speculated that the low value of η/s could be interpreted as a lower bound for a wide range of
physical models [6]. This is aptly summarized in Fig. 2.2.

Figure 2.1: Left: Gravitational shocks simulation from [58]. The nuclei collide in the plane and
move towards the bottom of the image, producing a wake. Right: CGC simulation after the
collision of two nuclei. The glasma forms in the wake of the two nuclei passing through each
other. Figure from [59].

.
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8 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: The ratio of the shear viscosity to the entropy density is plotted against the reduced
temperature for various substances. Note that data from RHIC puts η/s at the lowest known
value in nature, above what is predicted holographically. Plot from [69]

.

There are, of course, some limitations to employing the AdS/CFT correspondence to heavy
ion collisions. One important difference is that the N = 4 SYM theory is superconformal and
does not exhibit confinement. Another is that in the AdS/CFT correspondence one tends to
work in the limit of large number of colors, Nc → ∞, whereas QCD has three colors. As such,
the AdS/CFT correspondence should be treated as an effective tool to access strong coupling
computations, when methods from first principles are not yet mature or the computation is
perturbatively inaccessible.

2.2 Hydrodynamics

Hydrodynamics is an effective macroscopic description of some microscopic theory. It is an
expression of the low energy, long wavelength of a theory and as such, represents an expansion
in gradients. Here, we will follow the discussion of [70]. For a discussion on standard fluid
dynamics, see [71]. A pertinent and useful review on relativistic hydrodynamics can be found in
[72]. A more recent textbook on relativistic hydrodynamics can be found in [73]. Hydrodynamics
has been an effective tool in describing collective behavior in the wake of heavy ion collisions. An
incomplete list of results include: elliptic flow coefficient prediction matching with experiment
at RHIC [74–77], evidence that the QCD shear viscosity is closer to the strong coupling value
than to the weak coupling [5] and development of 3 + 1 dimensional anisotropic relativistic
hydrodynamics [78]. For a more complete review of hydrodynamics in the QGP, see [79] and [80].
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2.2. HYDRODYNAMICS 9

The equations of motion of hydrodynamics arise from considering the conservation of energy,
momentum and other global charges. For this thesis, the hydrodynamical EOM will be just
given by the conservation of the energy momentum tensor

∇µT
µν = 0. (2.6)

If one were to consider additional fields, e.g. heat current, then the equations above are supple-
mented by the conservation of the associated currents, e.g.

∇µJ
µ
i = 0. (2.7)

2.2.1 Perfect fluids

The perfect fluid energy momentum tensor is

Tµν
0 = (ε+ P )uµuν + Pgµν , (2.8)

= εuuuν + P∆µν , (2.9)

where ε is the energy density, P is the pressure and the spatial projection is defined as

∆µν = uµuν + gµν . (2.10)

The combination ε+P is known as the enthalpy. The fluid four-velocity uµ is a timelike vector,
which is normalized via

uµuνgµν = −1. (2.11)

As a warm-up exercise, let’s consider the linearized equations of hydrodynamics in flat space,
namely

∂µT
µν
0 = 0. (2.12)

First we should see if the system is solvable, i.e. the number of variables match the number of
equations. The fluid velocity has four components, one of which is fixed by the normalization,
such that we can choose in the rest frame of the fluid

uµ =











1
0
0
0











+











0
δux

δuy

δuz











. (2.13)

As such, we have four equations in (2.6) with five variables: ε, P and δui. Thus, we need to
provide another equation. Specifically, it is useful to relate the energy density with the pressure,
which is known as the equation of state. For the moment, we will avoid precisely specifying the
equation of state, merely referring to the pressure as a function of the energy density:

P = P (ε). (2.14)

The linearized energy density is given by

ε = ε0 + δε. (2.15)
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10 CHAPTER 2. THEORETICAL BACKGROUND

Now the linearized equations are

∂0δǫ+ ∂iδu
i = 0, (2.16)

∂iP (δε) + uµ∂µδu
i = 0. (2.17)

Noting that the gradient of the pressure can be written as ∂iP = ∂P
∂ε ∂iδε due to the chain rule

and that uµ∂µ = ∂0 in the rest frame of the fluid, we can take the divergence of the last equation
and solve for δui:

∂i∂0δu
i = −∂P

∂ε
∂2ε. (2.18)

We can now take the time derivative of (2.16) and insert (2.18) to arrive at

[

∂2
0 − ∂P

∂ε
∂i∂

i
]

δε = 0, (2.19)

which is just the wave equation. Likewise, a similar equation holds for δui. We can identify the
speed of sound as

c2
s =

∂P

∂ε
. (2.20)

Similarly, we can repeat the above exercise in Fourier space, such that (2.16) and (2.17) read

−iωδε+ ikiδu
i = 0, (2.21)

ikiP (ε) − iωδui = 0, (2.22)

which leads to the dispersion relation

ω =

√

∂P

∂ε
k. (2.23)

Thus, the group velocity, dω/dk, is just the speed of sound given in (2.20).

2.2.2 Dissipative fluids

To add dissipation to the above discussion, it is necessary to supplement the energy mo-
mentum tensor with an extra term:

Tµν = Tµν
0 + Πµν . (2.24)

Naturally, the question arises as to how to specify the form of Πµν . First, we will need to
specify a frame because uµ and T have no microscopic definitions as of yet. We can define uµ as
the energy current, which means it must be the time-like eigenvector of the energy-momentum
tensor with eigenvalue interpreted as the local energy density. We will work in the Landau
frame, where the energy density is the eigenvalue of the following equation

Tµ
νu

ν = −εuµ. (2.25)

In this frame, the dissipative terms are thus orthogonal to the fluid velocity, i.e.

uµΠµν = 0. (2.26)
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2.2. HYDRODYNAMICS 11

As a side note, another common frame choice is the Eckart frame [81], where the number current
is matched to the number density via Nµ = nuµ.

It is useful to recall that the theory of hydrodynamics is given in terms of a derivative
expansion. For the purpose of this thesis, we will restrict ourselves to first order hydrodynamics
(for higher order corrections, see for example [82]). To proceed, one can write down all possible
velocity gradients subject to the chosen frame; see [70] for more details. One finds that to first
order in derivatives in the Landau frame, the dissipation term takes the following form

Πµν = −2ησµν − ζ∇αu
α∆µν , (2.27)

σµν = (∇αuβ + ∇βuα)∆αµ∆βν − 2

3
∇αu

α∆µν , (2.28)

where η is the shear viscosity and ζ is the bulk viscosity. Note that the shear tensor σµν is
symmetric and traceless. The shear viscosity is a measure of the shearing force. The bulk
viscosity is a measure of the resistance of a fluid to deformations due to compression. These
parameters can be computed from the underlying microscopic physics that one is modeling
hydrodynamically or can be determined phenomenologically via experiment.

There is one outstanding issue in implementing first order hydrodynamics: the theory has
acausal modes. An easy way to see this is to consider the linearized problem in one spatial
dimension. Following [83], for the perturbation of the form

ε = ε0 + δε(t, x), uµ = (1,~0) + δuµ(t, x), (2.29)

we see that (2.17) gets an extra viscous term

∂iP (δε) + uµ∂µδu
i + ∂jΠij = 0. (2.30)

Keeping the lowest order terms in derivatives, the fluid velocity in, for example, the y-direction
obeys the following diffusion equation:

∂tδu
y − η

ε0 + P0
∂2

xδu
y = O(δ2). (2.31)

Bringing the above equation to frequency-momentum space using a mixed Laplace-Fourier trans-
form,

δuy → δuye−ωt+ikx, (2.32)

one arrives at

ω =
η

ε0 + P0
k2, (2.33)

which has a group velocity

v =
dω

dk
=

2η

ε0 + P0
k. (2.34)

The speed of diffusion thus grows linearly with wavenumber, meaning that the diffusion speed
will eventually surpass the speed of light and thus violate causality.

In order to cure this potential acausality, one can go to higher order in hydrodynamics. This
is rather involved. A simpler fix is known as the Israel and Stewart method [84–86]. Essentially,
one introduces an additional equation for the dissipative tensor Πµν , such that it relaxes to the

https://www.tuwien.at/bibliothek
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12 CHAPTER 2. THEORETICAL BACKGROUND

form in (2.27). In practical terms, one improves the dissipative term to include a relaxation
time parameter, τπ:

Πµν = −2ησµν − ζ∇αu
α∆µν − τπu

α∇αΠµν . (2.35)

The dissipative term relaxes to its true value in some finite time τπ, limiting the acausality of
the system.

2.2.3 Linear response and the Kubo formula

In this section, we introduce the Green-Kubo formula [87,88] (also sometimes referred to as
just the Kubo formula). Although we will ground the discussion in hydrodynamics, it is impor-
tant to remember that linear response theory proves useful for many theories and techniques
outlined here can be implemented in other sectors, including holography and kinetic theory, see
e.g. [60] and [89], respectively. We will follow the discussion in [90] and [48] for this section.

First, we will provide a quick overview of linear response theory. Consider a theory with a
Hamiltonian, H0, which is perturbed by an external field J(xµ). The external field is coupled
to an operator O. Then the change to H0 is given by

δH = −
∫

ddxJ(xµ)O(xµ). (2.36)

Furthermore, the external fields provide a change to the expectation value of the operators
themselves in a causal manner, which in Fourier space reads

δ〈O(kµ)〉 = GR(kµ)J(kµ), (2.37)

where the retarded Green function is

GR(xµ, yµ) = −iθ(x0 − y0)〈[O(xµ),O(yµ)]〉. (2.38)

In other words, the external fields, J acts as a source for the change of the expectation value,
i.e. the response.

The Kubo formula provides a method to compute transport coefficients in linear response
theory. In particular, we will demonstrate here the computation of the shear viscosity. Consider
perturbing the background metric of a viscous fluid in a homogeneous, time-dependent manner

gµν = ηµν + hµν(t), (2.39)

with h0i = hii = hyz = 0. Note that this perturbation does not modify the equilibrium solution,
so the four-velocity is still in the rest frame uµ = (1,0) and the temperature is unchanged
T = T0. Furthermore, we are considering linear response, so we will drop all terms higher than
linear order in the perturbation, O(h2

xy). Fourier transforming, we can easily compute the shear
tensor (2.28) to find that the only non-zero component is

σxy = −iωηhxy. (2.40)

The energy momentum tensor can be expanded in terms of perturbations [89] via

Tµν = Tµν
(0) − 1

2
Gµν,αβ

R hαβ + . . . , (2.41)
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2.3. KINETIC THEORY 13

where Tµν
(0) is the unperturbed energy momentum tensor and Gµν,αβ

R is the retarded Green
function. Varying the full energy momentum tensor w.r.t. the metric perturbation, we arrive
at

∂

∂hαβ
(Tµν − Tµν

(0)) = −1

2
Gµν,αβ

R (2.42)

⇒ Gxy,xy
R = −iωη. (2.43)

Now if we want to read off the transport coefficient, we see that

η = − lim
ω→0

1

ω
ImGxy,xy

R (ω, k = 0). (2.44)

Remember that we are considering only a time-dependent perturbation. If we were to consider
spatial dependence, then the hydrodynamic limit is given by first taking the wave number, k,
to zero first, followed by the frequency, ω. This is important to point out, as these limits do
not commute in general.

Similarly, we can compute the bulk viscosity via another Kubo relation. We choose another
perturbation

gµν = ηµν + hµν(t), (2.45)

with only hii 6= 0. The shear tensor is traceless, so we only need to consider the bulk term. We
find that

∇αu
α = Γα

α0 = − iω

2
δijhij . (2.46)

Then

ζ = lim
ω→0

1

9ω
δijδklG

ij,kl
R (ω, k = 0), (2.47)

which agrees with [91] if one takes into account the differing definition of the retarded Green
function (by a factor of 4).

2.3 Kinetic theory

Here we follow the discussion in [92]. For an introductory set of lecture notes, see [93].
Some textbooks on the topic are [94] and [95]. In the context of heavy ion collisions, kinetic
theory has a range of applicability especially during the early stages of evolution of the QGP,
when hard partons are in abundance. In particular, one can replace the complications of a first
principles QCD treatment with a kinetic theory [11]. Another example is that one can study
color mode instabilities in the QGP using kinetic theory [96].

Kinetic theory concerns itself with the microscopic detail of particles directly. For illustrative
purposes, it is useful to keep the picture of a classical gas in 3 + 1 dimensions of N distinct
particles with various momenta in mind. We can then introduce a function which keeps track
of the particles’ positions and momenta. This is known as the N -particle distribution function,
which we will call fN = fN (xµ

1 , ..., x
µ
N , p

µ
1 , ..., p

µ
N ). As we are considering a closed system, the

evolution of fN in phase space is conserved due to Liouville’s theorem [94]:

0 =
dfN

dτ
=
[

pµ∂µ + Fµ∂pµ

]

fN , (2.48)
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14 CHAPTER 2. THEORETICAL BACKGROUND

where τ is an affine parameter, pµ = duµ

dτ is the four momentum and Fµ = dpµ

dτ is the four force.
Of course, keeping track of all particle positions and momenta is usually overkill – and

oftentimes unfeasible, as systems of interest typically have a large number of particles. Instead, it
is more practical to introduce the manifestly Lorentz invariant one-particle distribution function,
F = F (xµ, pµ), which labels a single on-shell particle with its position and momentum. The
manifestly Lorentz invariant form of the one-particle distribution function is often reduced by
putting it on-shell:

F (xµ, pµ) = θ(p0)δ(pµgµνp
ν +m2)f(xµ, pj), (2.49)

where the Heaviside function, θ(p0) chooses positive energies and the delta function enforces
the mass-shell condition

p2 = pµpµ = −m2, (2.50)

where m is the mass. To make contact with literature, we will now refer to f = f(xµ, pj) as the
one-particle distribution function, sometimes calling it just the distribution function. Note that
the momentum is defined covariantly, with pν = gµν(x)pµ, (for alternate definitions, see [97,98]
for details).

To extract some more useful macroscopic information from the one-particle distribution
function, it is helpful to integrate out the momentum dependence. The different moments of
the distribution function correspond to physically interesting quantities:

nµ(xµ) = −√−g
∫

d3p

(2π)3

pµ

p0
f(xµ, pi),

Tµν(xµ) = −√−g
∫

d3p

(2π)3

pµpν

p0
f(xµ, pi), (2.51)

where n ≡ n0 is the number density, nµ is the number current and Tµν is the energy momentum
tensor [99]. Note that higher moments can also be considered, but for the purposes of this thesis
these are less interesting.

As a simple example, we can compute the number density and the energy momentum tensor
for a massless gas of particles in flat space. The mass-shell condition then reads

p0 =
√

piη
ijpj . (2.52)

The distribution function for this system is the Maxwell-Jüttner distribution [100,101]:

f = epµuµ/T , (2.53)

where T is the temperature. We then find

n = T 3/π2, (2.54)

Tµν = Diag(ε, P, P, P ), (2.55)

where ε = 3P = 3nT .
The evolution of the distribution function will be described by an equation similar to (2.48),

but with an extra term:

df

dτ
= C[f2]. (2.56)
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2.3. KINETIC THEORY 15

The term on the RHS is the so-called collision kernel. This will depend on higher order particle
distribution functions, namely the two-particle distribution function, encoding higher order
correlations between particles. The two-particle distribution function in turn depends on the
three-particle distribution function and so on. This hierarchy of equations is known as the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [102–105].

Of course, if we wish to describe a physical system without resorting to the full N -particle
information, we will need to truncate this hierarchy at some point, i.e. specify some form for
the collision kernel. There is more than one way to truncate this theory. A widely used method
developed by Maxwell [106] was to assume that the two particle distribution function is just
the product of two independent one-particle distributions, i.e.

f2(xµ
1 , p

µ
1 ;xµ

2 , p
µ
2 ) = f(xµ

1 , p
µ
1 )f(xµ

2 , p
µ
2 ), (2.57)

which is known as the molecular chaos hypothesis.
For the purposes of this thesis, we will be interested in another truncation, namely the

relaxed time approximation (RTA), which is also known as and will be referred to in this
thesis as the Bhatnagar-Gross-Krook (BGK) approximation [107]. This extremely convenient
approximation can be used to facilitate analytical computation and probe near equilibrium
systems. It amounts to identifying the collision kernel as follows

C[f ] =
pµuµ

τ
(f − feq), (2.58)

where τ is the relaxation time and feq is the equilibrium one-particle distribution function.
Clearly, if the one-particle distribution function is in equilibrium, the collision kernel vanishes.
The RTA effectively replaces the microscopic detail of the collision kernel with a tendency of
the system to relax towards its equilibrium value on some characteristic time scale, τ .

Thus, we can write down the Boltzmann equation in the RTA, describing the evolution of
the (one-particle) distribution function f = f(xµ, pi):

[

pµ∂µ + Fµ ∂

∂pµ

]

f =
pµuµ

τ
(f − feq). (2.59)

We can easily see how the RTA is useful if we consider a one dimensional system, setting
Fµ = 0. Furthermore, since feq is a simple constant in this example, we can shift f − feq → f
without loss of generality. Then (2.59) is given by

∂0f = −1

τ
f, (2.60)

which has solution

f ∝ e−t/τ . (2.61)

Shifting back, f → f + feq, we have that f = feq + e−t/τ . Thus, the distribution relaxes to its
equilibrium value exponentially quickly.

The force term, Fµ, is dependent on the relevant physics. For instance, for describing a
system of electromagnetic particles, the force term will be given by the Lorentz force

Fµ = −qFµνuν , (2.62)
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16 CHAPTER 2. THEORETICAL BACKGROUND

where q is the charge, Fµν = ∂µAν − ∂νAµ is the Faraday tensor and uν is the four velocity.
The Boltzmann equation with this forcing term is known as the Maxwell-Vlasov-Boltzmann
equation (see e.g. [108]). For particles in curved spacetime, which we will consider in Chapter
4 when we include effective metric couplings, we have

Fµ = Γµ
αβp

αpβ, (2.63)

where Γµ
αβ is the Christoffel symbol. It is straightforward to see where this force term comes

from. We will do this in the next section, by providing a short derivation of the Boltzmann
equation from the point of view of a single particle.

2.3.1 Derivation of the Boltzmann equation in curved spacetimes

Here we present a derivation of the Boltzmann equation, following [92]. We begin by con-
sidering the action for a single particle:

S = −m
∫

ds = −m
∫

ds

√

∣

∣

∣gµν(x)
dxµ

ds

dxν

ds

∣

∣

∣. (2.64)

If we have a collection of N -free particles, the above action then generalizes to

S = −m
N
∑

i=1

∫

dsi

√

∣

∣

∣gµν(xi)
dxµ

i

dsi

dxν
i

dsi

∣

∣

∣. (2.65)

It is straightforward to derive the equation of motion for the relativistic free particle, also known
as the geodesic equation, which reads

d2xµ
i

dsi
+ Γµ

αβ

dxα
i

dsi

dxβ
i

dsi
= 0. (2.66)

Introducing the relativistic momentum as

pµ
i ≡ m

dxµ
i

dsi
, (2.67)

we can now rewrite the action by introducing an integration over xµ and pµ:

S = −m
∫

d4xd4p
N
∑

i=1

∫

dsi δ(x− xi(si))δ(p− pi(si)). (2.68)

We now define the explicitly covariant distribution function

F (xµ, pµ) =
〈

N
∑

i=1

∫

dsi δ(x− xi(si))δ(p− pi(si))
〉

. (2.69)

Now to derive the Boltzmann equation, we make use of the following identity

0 =
N
∑

i=1

∫

dsi
d

dsi

(

δ(x− xi(si))δ(p− pi(si))
)

, (2.70)
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2.3. KINETIC THEORY 17

which leads to

0 =
N
∑

i=1

∫

dsi

[dxµ
i

dsi

∂

∂xµ
i

+
dpiµ

dsi

∂

∂piµ

](

δ(x− xi(si))δ(p− pi(si))
)

,

= − 1

m

N
∑

i=1

∫

dsi

[

pµ
i

∂

∂xµ
+ Γα

µβpiαp
β
i

∂

∂pµ

](

δ(x− xi(si))δ(p− pi(si))
)

,

= − 1

m

N
∑

i=1

∫

dsi
∂

∂xµ

(

pµ
i δ(x− xi(si))δ(p− pi(si))

)

+
∂

∂pµ

(

Γα
µβpiαp

β
i δ(x− xi(si))δ(p− pi(si))

)

, (2.71)

where we used that (2.66) can be rewritten in terms of the momentum as follows

m
dpiµ

dsi
= Γα

µβpiαp
β
i . (2.72)

Taking the ensemble average of (2.71), we arrive at the completely covariant Boltzmann equation

∂µ(Fpµ) + ∂pµ
(FΓα

µβpαp
β) = 0. (2.73)

Expanding (2.73), we have

0 =pµ∂µF + Γα
µβpαp

β∂pµ
F

+ F∂µp
µ + F∂pµ

(Γα
µβpαp

β) (2.74)

The last line vanishes due to metric compatibility

∂µp
µ + ∂pµ

(Γα
µβpαp

β) = pα(∂βg
αβ + Γµ

µβg
αβ + Γα

µβg
µβ)

= pα∇βg
αβ = 0. (2.75)

Of course, as we are interested in describing on-shell particles, the covariant distribution
function is not specific enough. Thus, as mentioned previously, we can further specify

F (xµ, pµ) = θ(p0)δ(pµgµνp
ν +m2)f(xµ, pi). (2.76)

Integrating over p0, we have

0 =
∫

dp0 θ(p0)δ(pµg
µνpν +m2)

(

pµ∂µ + Γα
jβpαp

β∂pj

)

f (2.77)

+
∫

dp0
∂θ(p0)

∂p0
Γα

0βpαp
βδ(pµg

µνpν +m2)f (2.78)

+
∫

dp0 θ(p0)f
(

pµ∂µ + Γα
jβpαp

β∂pµ

)

δ(pµg
µνpν +m2). (2.79)

If we examine (2.78), we see that the Heaviside step function is hit with a derivative, which is
nothing more than the delta function, i.e.

∂θ(p0)

∂p0
= δ(p0). (2.80)
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18 CHAPTER 2. THEORETICAL BACKGROUND

Thus (2.78) vanishes for particles with non-zero energy.
Next, we examine (2.79) closer

(

pµ∂µ + Γα
jβpαp

β∂pj

)

δ(pµg
µνpν +m2) ∝ 1

2
pµpαpβ∂µg

αβ + Γα
µβp

µpαp
β,

∝ pνpαpβg
µν
(

∂µg
αβ + Γα

µγg
γβ + Γβ

µγg
γα
)

,

= ∇µg
αβ = 0, (2.81)

due to metric compatability.
Thus we see that we are left with (2.77), which if we integrate over the energy, p0, leaves us

with the collisionless Boltzmann equation in a curved background:

[

pµ∂µ + Γα
iβpαp

β ∂

∂pi

]

f = 0. (2.82)

2.3.2 Linearized Boltzmann equation

Now we can proceed to linearize the curved Boltzmann equation, following [89]. For sim-
plicity, we will linearize around a flat background, namely the Minkowski metric, as follows

gµν(xµ) = ηµν + hµν(xµ). (2.83)

This perturbation will induce a change in the distribution function, as well as the equilibrium
distribution function. The equilibrium in the curved background is different to the equilbrium
in flat space. This will induce a fluctuation in the temperature and the fluid velocity

T (xµ) = T0 + δT (xµ), (2.84)

uµ(xµ) = uµ
0 + δuµ(xµ), (2.85)

uµ
0 = (1, 0, 0, 0). (2.86)

Furthermore, we require that to linear order in perturbations the 4-velocity is properly normal-
ized, i.e.

−1 = uµuµ ⇒ −1 = uµ
0u

ν
0(ηµν + hµν) + 2δuµηµνu

ν ,

⇒ −1 = −1 + h00 − 2δu0,

⇒ δu0 =
1

2
h00. (2.87)

Thus the equilibrium distribution function is

feq = f0 + δfeq, (2.88)

f0 = epµuµ/T , (2.89)

δfeq = f0
p0

T0

(

viδui +
δT

T0

)

. (2.90)

Finally, the distribution function will be given by

f(xµ) = f0 + δf(xµ). (2.91)
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2.3. KINETIC THEORY 19

Then, Fourier transforming (2.59) and expanding to linear order in perturbations, we have

ipµkµδf + Γµ
αβp

αpβ ∂f0

∂pµ
=
pµuν

0ηµν

τ
(δf − δfeq), (2.92)

which we can solve for δf to arrive at

δf =
1

ipµkµ + p0

τ

(p0

τ
δfeq + Γµ

αβp
αpβ ∂f0

∂pµ

)

,

=
1

−iω + i~v · ~k + 1
τ

(1

τ
δfeq + Γµ

αβ

pαpβ

p0

∂f0

∂pµ

)

, (2.93)

where ~v ≡ ~p/|~p|.
Now we can compute the correction to the energy momentum tensor due to the metric

perturbation:

Tµν = Tµν
0 + δTµν , (2.94)

which is just given by integrating δf in (2.51), i.e.

δTµν =
∫

d3p

(2π)3p0
pµpνδf. (2.95)

An important step is to compute the fluctuations of the temperature and velocity as functions
of the metric perturbations. We do this by identifying δT 00 = δε and δT 0i = (ε+P )δui, where ε
is the energy density and P is the pressure. Specifying the dependence of the energy density on
temperature means that we can write δε = δε(T ), i.e. for a relativistic massless gas the energy
density goes like

ε ∼ T 4. (2.96)

Thus, if we apply these four conditions, we can compute δT (hµν) and δui(hµν), eliminating
these hydrodynamic variables.

2.3.3 Transport coefficients in kinetic theory

From here it is straightforward to compute retarded Greens functions, i.e.

Gµν,αβ =
δTµν

δhαβ
. (2.97)

Following the discussion from Sec. 2.2.3, we can compute transport coefficients in kinetic theory.
As a simple example, we consider the perturbation (2.83), but with hxy as the only nonzero
component.

We find that in this case the hydrodynamic variables vanish (δT = 0 = δui) and we are left
with the energy momentum tensor proportional to hxy. Computing (2.97) in the hydrodynamic
limit k → 0, ω → 0, we find comparing to (2.44)

η =
(ε+ P )τ

5
, (2.98)

which if we use the thermodynamic identity ε+ P = Ts, where s is the entropy density, means
we can identify [82, 89] the ratio of the shear viscosity to the entropy density in the BGK
approximation to be

η

s
=
Tτ

5
. (2.99)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

20 CHAPTER 2. THEORETICAL BACKGROUND

2.3.4 Conservation of the energy momentum tensor

Here we show that the energy momentum tensor for a system described by a Boltzmann
equation is indeed conserved in curved spacetime. For simplicity and elegance, we use the
manifestly covariant expression for the energy momentum tensor. We have

∇µT
µν = ∂µT

µν + Γα
µαT

µν + Γν
µαT

µα

=
∫

d4p

m
√−g∂µ(pµpνF ) +

∫

d4p

m
pµpνF∂µ

1√−g
+ Γα

µαT
µν + Γν

µαT
µα

=
∫

d4p

m
√−g

[

∂µ(pµpνF )
]

+ Γν
µαT

µα, (2.100)

where we used that

∂µ
1√−g = − 1√−gΓα

µα. (2.101)

We can proceed by noting that the covariant derivative of the inverse metric vanishes due to
metric compatibility:

∇µg
αν = ∂µg

αν + gβνΓα
µβ + gαβΓν

µβ = 0. (2.102)

Then

∇µT
µν =

∫

d4p

m
√−g

[

∂µ(pµpνF ) + pµpαΓν
µα

]

=
∫

d4p

m
√−g

[

pν∂µ(pµF ) + Fpµ∂µp
ν + FpµpαΓν

µα

]

=
∫

d4p

m
√−g

[

pν∂µ(pµF ) + Fpµpα(∂µg
αν + gαβΓν

µβ)
]

=
∫

d4p

m
√−g

[

pν∂µ(pµF ) + Fpµpα(−gβνΓα
µβ)
]

(2.103)

We can use the product rule to rewrite the last term and drop the boundary term, to arrive at

∇µT
µν =

∫

d4p

m
√−g

[

pν∂µ(pµF ) + pν ∂

∂pµ

(

FΓα
µρp

ρpα

)

]

= 0 (2.104)

The last equality follows from (2.73).
Thus, we have shown that in the absence of collisions, the energy momentum tensor is

conserved.
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Chapter 3

Semiholographic couplings

In this chapter, we aim to provide an outline of the generic couplings between the two
sectors of a semiholographic construction. First, we will discuss the effective description of
semiholography, following [36]. We will then extend this by describing an action principle for
semiholographic theories. Finally, we will present a few illustrative examples, demonstrating
the semiholographic philosophy and approach in the simplest possible systems: coupled pendula
and a QFT with simple harmonic oscillation.

3.1 Semiholographic couplings and effective descriptions

The main advantage of our method in the context of phenomenology is that it works even
when we cannot invoke action principles for the effective descriptions of one or both subsystems.
The full dynamics is obtained by solving the subsystems in a mutually self-consistent way as
has been illustrated in the case of the vacuum state in a toy example [35].

We consider a dynamical system S in a fixed background metric g
(B)
µν (to be set to the

Minkowski metric ηµν in most of Chapters 4 and 5 and set to the Bjorken background in
Sec. 4.2), which consists of two subsystems S1 and S2. The notation that we will use is that
relevant quantities of the subsystems will be distinguished either with a label of 1, 2 or by having
(or not) a tilde for quantities in S2.

The coupling between the two subsystems will be chosen in a democratic fashion, motivated
by the discussion in [35]. In this context, democratic coupling denotes that both subsystems
are deformed in the same way. The semiholographic coupling between the two sectors works
by promoting the background metric and the couplings of each subsystem to functionals of the
operators of the other one. The individual subsystems will exhibit covariant dynamics involving
the conservation of their respective energy momentum tensors, tµν and t̃µν , in their respective
effective background metrics while the full system, S, will have a local energy momentum tensor
that will be conserved in the actual background metric, which for most of this thesis, will be
the flat Minkowski metric. The two subsystems are assumed to share the same topological
space so that we can use the same coordinates for both of them (and thus the total system).
Coordinate transformations would thus affect the background metric of the complete system
and the effective metrics of the subsystems simultaneously.

To see this in action, we can begin by focussing on the case of scalar operators, O and Õ. We
can consider two subsytems with couplings λ and λ̃. We can deform the coupling democratically

21
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22 CHAPTER 3. SEMIHOLOGRAPHIC COUPLINGS

via

λ(xµ) = λ0 + αÕ(xµ), λ̃(xµ) = λ̃0 + αO(xµ), (3.1)

where we introduce the dimensionful semiholographic coupling, α, and λ0 and λ̃0 are constants.
It is worthwhile to point out that the coupling equations, (3.1), are a non-dynamic set of
equations, i.e. these are algebraic or auxiliary equations, so that no new degrees of freedom are
added by the coupling. In the present example, the Ward identities for each subsystem are
simply

∂µt
µ

ν = O∂νλ, ∂µt̃
µ

ν = Õ∂ν λ̃. (3.2)

We can then construct an energy-momentum tensor, Tµ
ν , for the full system

Tµ
ν = tµν + t̃µν − αOÕδµ

ν , (3.3)

which is easily shown to be conserved using the coupling equations (3.1) and the Ward identities
(3.2),

∂µT
µ
ν = ∂µt

µ
ν + ∂µt̃

µ
ν − α∂µ(OÕδµ

ν ),

= αO∂νÕ + α(∂νO)Õ − α∂ν(OÕ) = 0. (3.4)

Next, we will describe the tensorial effective metric coupling. In this case, the two subsystems
have covariant dynamics w.r.t. their individual effective metrics gµν and g̃µν . These effective
metrics are locally determined by the subsystem energy-momentum tensors, i.e.

gµν = gµν [t̃αβ , . . .], g̃µν = g̃µν [tαβ , . . .]. (3.5)

The two subsystems are closed w.r.t. to their effective metrics, but they can exchange energy

and momentum from the point of view of the physical background metric g(B)
µν (which will be

later set to be ηµν). The diffeomorphism invariance of the two subsystems imply the Ward
identities

∇µt
µν = 0, ∇̃µt̃

µν = 0, (3.6)

where ∇ and ∇̃ refer to the covariant derivatives with respect to the different effective metrics
with the Levi-Civita connections

Γµ
νρ =

1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ) = Γµ(B)

νρ +
1

2
gµσ(∇(B)

ν gσρ + ∇(B)
ρ gσν − ∇(B)

σ gνρ),

Γ̃µ
νρ =

1

2
g̃µσ(∂ν g̃σρ + ∂ρg̃σν − ∂σ g̃νρ) = Γµ(B)

νρ +
1

2
g̃µσ(∇̃(B)

ν g̃σρ + ∇̃(B)
ρ g̃σν − ∇̃(B)

σ g̃νρ). (3.7)

Above, ∇(B) is the covariant derivative with respect to g(B)
µν and Γµ(B)

νρ is the corresponding Levi-
Civita connection. Note that these relations indicate that from the point of view of the actual

physical background metric g(B)
µν , the identities (3.6) imply that work is done on the respective

subsystems by external forces. The second equalities in each of the above equations can be
readily verified. Expanding the term in brackets on the RHS

1

2
gµσ(∇(B)

ν gσρ + ∇(B)
ρ gσν − ∇(B)

σ gνρ) =
1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ)

− 1

2
gµσ

[

Γα(B)
νσ gαρ + Γα(B)

νρ gασ

+ Γα(B)
σρ gαν + Γα(B)

ρν gασ

− Γα(B)
σρ gαν − Γα(B)

σν gαρ

]

. (3.8)
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3.1. SEMIHOLOGRAPHIC COUPLINGS AND EFFECTIVE DESCRIPTIONS 23

The first term is just the Christoffel symbol Γµ
νρ. The underlined terms cancel out and we are

left with

1

2
gµσ(∇(B)

ν gσρ + ∇(B)
ρ gσν − ∇(B)

σ gνρ) = Γµ
νρ − 1

2
gµσ

[

Γα(B)
νρ gασ + Γα(B)

ρν gασ

]

,

= Γµ
νρ − Γµ(B)

νρ , (3.9)

as required.
Finally, we require that the forms of the effective metrics gµν and g̃µν are chosen in such

a way that there exists an energy momentum tensor Tµν for the full system, which is locally

conserved in the physical background metric g(B)
µν :

∇(B)
µ Tµν = 0. (3.10)

Since the effective metrics will be described by a non-dynamical equation, we anticipate that
the full energy-momentum tensor will only depend on the energy-momentum tensors of the
individual sectors and the background metric:

Tµν = Tµν [g(B)
µν , t

µν , t̃µν ]. (3.11)

Hence one can readily construct effective descriptions of the full dynamics from the effective
descriptions of the subsectors.

3.1.1 Determining effetive metric coupling rules

In this subsection, we determine the precise form of the coupling (3.5). We start the con-
struction of the coupling rules between two subsystems by demanding that the total system S

has a conserved energy-momentum tensor Tµν in the physical background metric g(B)
µν . Setting

g
(B)
µν = ηµν , we should have

∂µT
µν = 0, (3.12)

while simultaneously satisfying the Ward identities of the two subsystems (3.6) in their respec-
tive curved metrics.

For the rest of this section, unless indicated otherwise, all lowering and raising of indices
is done by the effective metric of the respective theory, i.e. by tµν we will mean tµρgρν and
tµν = gµρt

ρσgσν , etc. The Ward identity of subsystem S1 implies that

0 = ∇µt
µ

ν = ∂µt
µ

ν + Γµ
µρt

ρ
ν − Γµ

νρt
ρ

µ, (3.13)

⇒ 0 = ∂µ(tµν

√−g) − 1

2
tµσ√−g∂νgµσ. (3.14)

To arrive at the second line, we multiplied both sides of (3.13) with
√−g and used

Γµ
µν = ∂ν(ln

√−g), Γµ
νρt

ρ
µ =

1

2
tµρ∂νgµρ. (3.15)

Similarly, the Ward identity for subsystem S2 implies that

∂µ(t̃µν

√

−g̃) =
1

2
t̃µσ
√

−g̃∂ν g̃µσ. (3.16)
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24 CHAPTER 3. SEMIHOLOGRAPHIC COUPLINGS

Using these Ward identities, it is straightforward to verify that the following local relations for
the effective metrics

gµν = ηµν + γ ηµαt̃
αβηβν

√

−g̃ + γ′ ηµνηαβ t̃
αβ
√

−g̃,
g̃µν = ηµν + γ ηµαt

αβηβν

√−g + γ′ ηµνηαβt
αβ√−g, (3.17)

where γ and γ′ are coupling constants (with mass dimension −D, where D is the dimension of
spacetime), allow us to construct a symmetric conserved tensor for the full system in flat space.

We can now construct

Kµ
ν = tµν

√−g + t̃µν

√

−g̃ + ∆Kδµ
ν , (3.18)

with

∆K = −1

2

[

γ (tρα√−g)ηαβ(t̃βσ
√

−g̃)ησρ + γ′ (tαβ√−g)ηαβ(t̃σρ
√

−g̃)ησρ

]

(3.19)

that is subject to the conservation equation

∂µK
µ
ν = ∂µ

[

tµν

√−g + t̃µν

√

−g̃ + ∆Kδµ
ν

]

,

= ∂µ

(

tµν

√−g)+ ∂µ

(

t̃µν

√

−g̃)+ ∂ν∆K

=
1

2
tµσ√−g∂νgµσ +

1

2
t̃µσ
√

−g̃∂ν g̃µσ

− 1

2
∂ν [γ (tρα√−g)ηαβ(t̃βσ

√

−g̃)ησρ + γ′ (tαβ√−g)ηαβ(t̃σρ
√

−g̃)ησρ] (3.20)

=
1

2
tµσ√−g∂ν

[

gµσ −
√

−g̃(γ ηµαt̃
αβηβσ + γ′ ηµσηαβ t̃

αβ)
]

+
1

2
t̃µσ
√

−g̃∂ν

[

g̃µσ − √−g(γ ηµαt
αβηβσ + γ′ ηµσηαβt

αβ)
]

(3.21)

= 0. (3.22)

To get to (3.20), we have used the two Ward identities, (3.14) and (3.16). The final equality
holds due to the coupling equations (3.17).

Similarly, it is straightforward to see that

L ν
µ = t ν

µ

√−g + t̃ ν
µ

√

−g̃ + ∆Kδ ν
µ (3.23)

satisfies
∂νL

ν
µ = 0. (3.24)

Putting (3.18) and (3.24) together, we can define a symmetric and conserved total energy-
momentum tensor Tµν = ηµρT ν

ρ = Tµ
ρηρν with ∂µT

µν = 0 = ∂µT
µ
ν by

Tµ
ν =

1

2
(Kµ

ν + L µ
ν ). (3.25)

We can easily generalize the above construction for a curved background metric g(B)
µν instead

of the Minkowski metric using the identities in (3.7) which imply

Γµ
νµ − Γ(B)µ

νµ = ∂ν(ln
√−g) − ∂ν(ln

√

−g(B)) = ∂ν

(

ln
√−g√
−g(B)

)

=
√

−g(B)
√−g

∂ν

( √−g√
−g(B)

)

=
√

−g(B)
√−g

∇(B)
ν

( √−g√
−g(B)

)

, (3.26)
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3.1. SEMIHOLOGRAPHIC COUPLINGS AND EFFECTIVE DESCRIPTIONS 25

where we have used that
√−g/

√

−g(B) is a scalar under general coordinate transformations.
With the help of these relations, one can readily see that the consistent coupling rules have

the following general covariant forms

gµν = g
(B)
µν +

(

γ g
(B)
µα t̃

αβg
(B)
βν + γ′ g

(B)
µν t̃

αβg
(B)
αβ

)

√−g̃
√

−g(B)
,

g̃µν = g
(B)
µν +

(

γ g
(B)
µα t

αβg
(B)
βν + γ′ g

(B)
µν t

αβg
(B)
αβ

)

√−g
√

−g(B)
. (3.27)

Then with

∆K = −γ

2



tρα

√−g
√

−g(B)



 g
(B)
αβ



t̃βσ

√−g̃
√

−g(B)



 g
(B)
σρ

−γ′

2



tαβ

√−g
√

−g(B)



 g
(B)
αβ



t̃σρ

√−g̃
√

−g(B)



 g
(B)
σρ , (3.28)

the full conserved energy-momentum tensor is again given by (3.25), and it satisfies ∇(B)
µ Tµ

ν = 0
in the actual background where all degrees of freedom live. (Note Tµν = Tµ

ρg(B)ρν).
It is interesting to note that more general consistent couplings can be constructed. The case

of the most general scalar couplings was studied in [35]. The case of general tensorial coupling is
explored in Appendix A of [36] (correcting and generalizing Ref. [35] in this respect). Note that
in both of these cases, we would be permitting higher powers of operators with new coupling
constants carrying correspondingly higher inverse mass dimension. In Chapter 4 and 5 we will
restrict ourselves to the lowest order coupling rules (3.17) and (3.1), respectively.

An observant reader would have noticed that the dimensionful coupling constants seem
arbitrary. It is interesting to note that we will find that physical requirements restrict the
range of these parameters. For example, as we will see in the equilibrium and near-equilibrium
systems considered in Chapter 4, requiring that the system is causal leads to the condition that
γ > 0.

Note that this discussion can be generalized in a straightforward manner to n subsystems.
This would mean that there would be n coupling equations. For example, in the case of the ten-
sor coupling, the effective metrics would be each deformed by the n−1 other energy-momentum
tensors in a democratic way, each with a pair of coupling constants exactly as in (3.27).

3.1.2 Thermodynamic consistency of the phenomenological construction

An important test that the formalism laid out in the previous section is sound is to determine
whether it is thermodynamically consistent. Practically, thermodynamic consistency means that
for any consistent effective metric coupling rule with a total conserved energy-momentum tensor
(3.25) with a globally defined temperature, T , we will have a total entropy S(T ). Note that
this discussion is general, covering not only the simplest metric coupling rules (3.17), but also
the most general ansatz for ∆K found in Appendix A of [36].

We proceed by considering a system with a static gravitational potential, such that the
background metric is:

g
(B)
µν = diag

(

−e−2φ(x), 1, 1, 1
)

, (3.29)
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26 CHAPTER 3. SEMIHOLOGRAPHIC COUPLINGS

where φ(x) is static. We will assume that we can obtain flat-space solutions by smoothly taking
φ(x) → 0. Then, we can make static ansätze for the effective metrics of the individual sectors,
i.e.

gµν = diag(−a(x)2, b(x)2, b(x)2, b(x)2), g̃µν = diag(−ã(x)2, b̃(x)2, b̃(x)2, b̃(x)2). (3.30)

The individual energy-momentum tensors will be in thermodynamic equilibrium w.r.t. to their
respective temperatures, T1 and T2,

tµν = diag
(

ǫ1(T1(x))

a(x)2
,
P1(T1(x))

b(x)2
,
P1(T1(x))

b(x)2
,
P1(T1(x))

b(x)2

)

,

t̃µν = diag

(

ǫ2(T2(x))

ã(x)2
,
P2(T2(x))

b̃(x)2
,
P2(T2(x))

b̃(x)2
,
P2(T2(x))

b̃(x)2

)

. (3.31)

The metric coupling equations will involve no derivatives of the metric and as such, will still
be algebraic. However, the coupling equations need to be taken in their generalized form with

nontrivial background metric, g(B)
µν .

Now, there are multiple temperatures at play for the moment. Since we are assuming that
the full system is in thermal equilibrium, the system or physical temperature, T , of the full
system S is given simply by the inverse length of the thermal circle, i.e.

T −1 =
∫ β

0

√

−g(B)
00 dτ, (3.32)

where β is the inverse temperature and τ is the imaginary time. The temperature for each
subsystem is defined similarly as

T−1
1 =

∫ β

0

√−g00dτ, (3.33)

T−1
2 =

∫ β

0

√

−g̃00dτ, (3.34)

so that the two subsystem temperatures are related to the temperature of the physical system

in flat space g(B)
µν = ηµν via

T1(x)a(x) = T2(x)ã(x) = T (x)e−φ(x) = T0, (3.35)

where T0 is a constant, parametrizing the global thermal equilibrium of the full system in the
background metric (3.29).

Now, we demonstrate that the above assumption of a global equilbrium temperature is
compatible with the Ward identities. Using (3.14), we can check that the conservation of the
individual thermal energy-momentum tensors (3.31) in the respective effective metrics (3.30)
imply that

∂iP1

ǫ1 + P1
+
∂ia

a
= 0,

∂iP2

ǫ2 + P2
+
∂iã

ã
= 0, (3.36)

respectively. Note that b(x) and b̃(x) do not feature directly in the above equations. Since
dP1 = s1dT1, ǫ1 + P1 = T1s1, dP2 = s2dT2, ǫ2 + P2 = T2s2, we can show with a little algebra
that the conservation equations (3.36) are equivalent to

∂i(ln(T1a)) = 0, ∂i(ln(T2ã)) = 0, (3.37)
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and thus implied by the global equilibrium condition (3.35).
By construction, the effective metric couplings ensure that the total energy-momentum

tensor, which can be parameterized as

Tµν = diag
(

E(T (x))e2φ(x),P(T (x)),P(T (x)),P(T (x))
)

, (3.38)

will be conserved in the background metric (3.29), since the individual thermal energy-momentum
tensors are conserved with respect to the respective effective metrics. We therefore have

∂iP
E + P − ∂iφ = 0. (3.39)

Equations (3.35) and (3.37) together imply that

∂iT
T − ∂iφ = 0, (3.40)

and therefore
∂iT
T =

∂iP
E + P . (3.41)

Identifying E + P = T S leads to
∂iP = S∂iT . (3.42)

Since the above should hold for arbitrary smooth φ(x), we conclude that

dP = SdT , (3.43)

where the variation is taken by changing the constant parameter T0. Together with E +P = T S
the above implies

dE = T dS. (3.44)

This shows that thermodynamic consistency follows from the conservation of the full energy-
momentum tensor as ensured by our effective metric coupling. In particular, assuming E + P =
T S and the global equilibrium condition (3.35), we obtain dE = T dS from the conservation of
the full energy-momentum tensor. Clearly, we can take the limit φ(x) → 0 limit to obtain the
proof of thermodynamic consistency in flat space.

We can now deduce the form that S takes. Since the form of the full energy-momentum
tensor with one contravariant and one covariant index is such that the explicit interaction terms
involving ∆K are always diagonal, they come with opposite signs for E and P. Therefore,

(ǫ1 + P1)ab3 + (ǫ2 + P2)ãb̃3 = (E + P)e−φ(x). (3.45)

Thus from (E + P) = T S we get

T1s1ab
3 + T2s2ãb̃

3 = T Se−φ(x). (3.46)

The relation between the temperatures (3.35) reduces this to

S = s1b
3 + s2b̃

3. (3.47)

Furthermore, the above form holds for the general consistent effective metric coupling discussed
in Appendix A of [36]. Thus, we obtain a general proof of thermodynamic consistency with
(3.35) and the above form of the full entropy.
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3.2 Semiholographic couplings through an action principle

Although the orginal formulation of semiholography [32] stressed that only an effective
description of each sector was needed for a complete formulation, making it useful for phe-
nomenology, it became clear that one can reformulate the semiholographic picture from the
point of view of an action. This makes the formulation cleaner when a microscopic description
is available, while functionally equivalent to the previous method.

3.2.1 Scalar coupling

The scalar coupling action will be the subject of Chapter 5 and 6. We will provide a slightly
more general construction here. The scalar action in (3.3) is given by

S[φ, φ̃, O, Õ] = S[φ,O] + S[φ̃, Õ] − 1

α
OÕ, (3.48)

where φ and φ̃ represent matter fields, and O and Õ represent the auxiliary scalar sources.
The final term has the interpretation of the scalar coupling due to semiholography where α
represents the coupling.

3.2.2 Tensor coupling

Here we provide the full action of the semiholographic model with democratic tensorial
couplings. Thusfar, the method employed builds the complete energy momentum tensor of the
full system subject to the Ward identities of each subsector being satisfied. Here we turn the
argument on its head: given an energy momentum tensor, would it be possible to construct an
action which satisfies the semiholographic constuction? From (3.25), the full energy-momentum
tensor is explicitly

Tµ
ν

√

−g(B) =
1

2

√−g
(

tµν + t µ
ν

)

+
1

2

√

−g̃
(

t̃µν + t̃ µ
ν

)

− δµ
ν

√−g√−g̃
√

−g(B)

(γ

2
t · t̃+

γ′

2
tρσg

(B)
ρσ t̃γδg

(B)
γδ

)

, (3.49)

t · t̃ ≡ tραg
(B)
αβ t̃

βσg
(B)
σρ , (3.50)

and the corresponding coupling equations (3.27) given by

gµν = g
(B)
µν + γ

√−g̃
√

−g(B)
g

(B)
µγ t̃

γδg
(B)
δν + γ′

√−g̃
√

−g(B)
g

(B)
µν t̃ · g(B),

g̃µν = g
(B)
µν + γ

√−g
√

−g(B)
g

(B)
µγ t

γδg
(B)
δν + γ′

√−g
√

−g(B)
g

(B)
µν t · g(B). (3.51)

The complete action reads

Sfull[φ, φ̃, gµν , g̃µν , g
(B)
µν ] =

∫

dDx
[√−gL[φ, gµν ] +

√

−g̃L̃[φ̃, g̃µν ]

+
1

2γ

√

−g(B)
(

g − g(B)
)

·
(

g̃ − g(B)
)

− γ′

2γ

√

−g(B)
(g · g(B) −D)(g̃ · g(B) −D)

γ + γ′D

]

, (3.52)
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3.3. AN ILLUSTRATIVE EXAMPLE OF SCALAR COUPLING 29

where D = d + 1 is the number of spacetime dimensions. The variation of this action with
respect to the:

• matter fields, φ and φ̃, gives the usual equations of motion for each subsystem,

• effective metrics, gµν and g̃µν , yields the coupling equations (3.27),

• background metric, g(B)
µν , gives the full energy-momentum tensor (3.25).

Furthermore, the individual sectors satisfy their respective Ward identities (3.6). For more
details, see Appendix A.

Remember that the effective metrics, gµν and g̃µν , are auxiliary fields. As such, they are
not dynamical. The full system has only one dynamical metric, i.e. the background metric,

g
(B)
µν . In this thesis, we take the background metric to be flat (either a Minkowski or Bjorken

background). In principle, one could be interested in the situation where the background metric
is evolving dynamically. One could then supplement the action (3.52) with an Einstein-Hilbert
term:

S = Sfull[φ, φ̃, gµν , g̃µν , g
(B)
µν ] +

1

16πG

∫

dDx
√

−g(B)R(B). (3.53)

We will have an extra equation of motion in this case, arising from the variation w.r.t. the
background metric:

R
(B)
µν − 1

2
g

(B)
µν R

(B) = 8πGTµν , (3.54)

with the energy-momentum tensor on the RHS given by (3.25) and (3.49). We can remark that
this equation can be supplemented to the phenomenological discussion.

3.3 An illustrative example of scalar coupling

In this section, we will discuss an illustrative example of the scalar semiholographic coupling.
We will not consider a holographic sector here, as holographic computations add technical
complications.

k

θ1 θ2

Figure 3.1: A system of pendula coupled with a spring serves as an example of dynamical
sourcing.
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In fact, we will reinterpret a well-known system of two pendula coupled by a spring, as
shown in Fig. 3.1. The philosophy will be to consider each pendulum as its own subsystem,
with the spring acting as some “external” force. Of course, as the system is particularly simple,
it is clear how the spring will effect the behavior of the pendula.

The action of this system in the small angle approximation is given by

S =
∫

dt
[1

2

(

θ̇2
1 − ω2θ2

1 + θ̇2
2 − ω2θ2

2

)

+ θ1J1 + θ2J2 − 1

k
J1J2

]

, (3.55)

Omitting the last term, the action has the interpretation of two uncoupled scalar 0 + 1 dimen-
sional harmonic oscillators, driven by external sources Ji with i = 1, 2.

The last term acts as the semiholographic coupling. Essentially, we are supplying the system
with an additional coupling constraint equation with coupling constant k. Using the Euler-
Lagrange equations

∂S

∂θi
− ∂t

∂S

∂θ̇i

= 0, (3.56)

∂S

∂Ji
− ∂t

∂S

∂J̇i

= 0, (3.57)

we see that the EOM of the system is given by

θ̈1 + ω2θ1 = J1, (3.58)

θ̈2 + ω2θ1 = J2, (3.59)

θ1 =
1

k
J2, (3.60)

θ2 =
1

k
J1. (3.61)

Of course, the last two equations are not dynamical and so we can eliminate the “external”
sources Ji to arrive at

θ̈1 + ω2θ1 = kθ2, (3.62)

θ̈2 + ω2θ2 = kθ1. (3.63)

The conserved energy can be computed from (3.55). The total energy momentum tensor
is just Tµν = T 00 ≡ E. Anticipating the later chapters, we divide the total energy into three
contributions: the energies of the two pendula, E1 and E2, and the interaction energy, Eint:

E = E1 + E2 + Eint, (3.64)

E1 =
1

2
(θ̇2

1 + ω2θ2
1), (3.65)

E2 =
1

2
(θ̇2

2 + ω2θ2
2), (3.66)

Eint = −kθ1θ2. (3.67)

The split of the energies is summarized in the right panel of Fig. 3.2 for a particular choice of
parameters and initial conditions.
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θ1θ2

0 5 10 15
-1.0

-0.5

0.0

0.5

1.0

1.5

t

Etot

E1

E2

Eint

0 5 10 15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

Figure 3.2: Example solution for two coupled pendula with frequencies ω1 = 2.5 and ω1 = 2,
initial conditions θ1(0) = 1, θ′

1(0) = θ2(0) = θ′
2(0) = 0 and spring constant (semiholographic

coupling) k = 1. Left: the motion of the the two pendula. Right: the total energy is conserved,
while the energies of the two subsystems and the interaction energy are oscillatory.

3.4 Semiholographic harmonic oscillator

Here we consider an example of the tensorial coupling, i.e. one which induces a change in
the effective metric of each theory. The model will rest on a field theoretic description of a
classical simple harmonic oscillator in a curved background, i.e. the massive scalar field.

3.4.1 The 0 + 1D case

We can now consider a slightly more involved example, one which, however, doesn’t provide
a meaningful coupling. This negative example still provides the simplest example of a metric
coupling (as opposed to the scalar coupling in the previous section).

We begin with the action of a harmonic oscillator, x(t), in a curved background

S[x(t), gtt] =
1

2

∫

dt
√−g(−gttẋ2 −m2x2) ≡ 1

2

∫

dt eL, (3.68)

where we introduce the einbein

gµν = ηαβe
α
µe

β
ν ,

⇒ gtt = −e2. (3.69)

The equation of motion is
∂t(e

−1ẋ) + em2x = 0. (3.70)

The energy momentum tensor is simply

ttt =
2√−g

∂S

∂gtt
= ẋ2 − e2L. (3.71)

The conservation equation is given by

0 = ∂tt
tt + 2Γt

ttt
tt

⇒ 0 = e2∂tt
tt + ttt∂te

2 = ∂t(e
2ttt) (3.72)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

32 CHAPTER 3. SEMIHOLOGRAPHIC COUPLINGS

So the combination e2ttt is a constant of motion.
We now couple this oscillator to another via the semiholographic metric coupling rules. We

embed the two subsystems in the same flat topological space, i.e. g(B)
µν = ηµν . Say the second

system is described by the action S̃[y(t), g̃tt]. The two systems are coupled via the following
coupling equations:

gtt = ηtt + γηttt̃
ttηtt

√

−g̃,
g̃tt = ηtt + γηttt

ttηtt

√−g, (3.73)

which have the following form

−e2 = −1 + γt̃ttẽ,

−ẽ2 = −1 + γttte. (3.74)

Note that in higher dimensions, we have a tensorial term (e.g. ∝ g
(B)
µα tαβg

(B)
βν ) and a trace term

(e.g. ∝ tαβg
(B)
αβ g

(B)
µν ) in the coupling equations. Clearly in 0+1 dimensions, there is no distinction

between these two terms.
To simplify notation, say that e2ttt = a and ẽ2t̃tt = ã, as these are constants of motion from

(3.72). Then the coupling equations are solvable:

1 − ẽ2 = γttte = γ
a

e

⇒ e =
γa

1 − ẽ2
. (3.75)

Substituting this into the other coupling equation leads to

0 = ẽ5 − ãγẽ4 − 2ẽ3 + 2ãγẽ2 + (1 − a2γ2)ẽ− ãγ (3.76)

which is a quintic equation for the metric ẽ. A similar equation holds for e. This means that
once the initial conditions are specified, the metric coupling remains non-dynamical, as does
the energy-momentum tensor of each sector.

The total energy momentum tensor is then

T tt = ettt + ẽt̃tt − 1

2
γeẽtttt̃tt, (3.77)

which is conserved due to the previous discussion.
Thus, we conclude by remarking that the 0 + 1D dimensional case is too simplistic to have

an interesting metric coupling.

3.4.2 The 1 + 1D case

We now turn our attention to one dimension higher than the previous case. The action that
we consider is for a massive time-dependent scalar field, φ = φ(t):

S[φ(t), gµν ] =
∫

d2x
√−gL = −1

2

∫

d2x
√−g(∂µφg

µν∂νφ+m2φ2), (3.78)

which leads to the following EOM:

0 =
1√−g∂µ

(

gµν√−g∂νφ
)

−m2φ. (3.79)
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We can parametrize the effective metric via

gµν =

(

−a2 0
0 b2

)

= b2

(

−v2 0
0 1

)

, (3.80)

where we introduce the effective light-cone velocity 1 > v = x/y > 0, a useful parameterization
which tells us about the causal structure of the solution. We discuss effective light-cones in
detail in Chapter 4. The EOM now reads

0 = ∂t

( φ̇

v

)

+m2vb2φ

⇒ 0 = φ̈− ∂t log(v)φ̇+m2v2b2φ, (3.81)

where φ̇ = ∂tφ. Note that the time derivative of the logarithm of the light-cone velocity enters as
the coefficient of φ̇, which would tempt us to identify it as a time dependent damping coefficient.

The energy momentum tensor of this sector is diagonal and reads

tµν =
2√−g

∂S

∂gµν
,

⇒ tµν = ∂µφ∂νφ+ gµνL. (3.82)

Remember that ∂µφ = gµν∂νφ. Explicitly, we have the following non-zero components

ttt = a−4φ̇2 − a−2L, and txx = b−2L. (3.83)

We now introduce a second subsystem, which is also described as a free massive scalar field,
with mass m̃, in a curved background with action S̃[φ̃, g̃µν ] of the same form as (3.78). The
equation of motion for this sector is

0 = ¨̃φ− ∂t log(ṽ) ˙̃φ+ m̃2ṽ2b̃2φ̃. (3.84)

ϕϕ˜

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

1.5

t

v

v
˜

0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

Figure 3.3: Left panel: numerical solution for two massive scalar fields with masses m = 1.5
and m̃ = 1, initial conditions φ(0) = 1, ∂tφ|t=0 = 0, φ̃(0) = 0, ∂tφ̃|t=0 = 1 and couplings γ = 1
and r = 2. Right panel: the effective light-cone velocities of both sectors. The green line denotes
the light-cone velocity of the Minkowski background, i.e. the speed of light c = 1.
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Etot
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Eint

Figure 3.4: Total energy, individual subsystem energies and interaction energy for the choice
of parameters and initial conditions described in Fig. 3.3. Note that E1 refers to the energy of
the first subsystem and E2 of the other subsystem.

We embed these two subsystems, S and S̃, in a Minkowski background metric g(B)
µν = ηµν . The

two systems are then coupled via the coupling equations (3.27), which for completeness we
reproduce for this specific case:

−v2b2 = −1 + γ
((∂tφ̃)2

ṽ3b̃2
− L̃
ṽ

+ rṽb̃2t̃ · η
)

,

−ṽ2b̃2 = −1 + γ
( φ̇2

v3y2
− L
v

+ rvb2t · η
)

,

b2 = 1 + γṽ(L̃ − rb̃2t̃ · η),

b̃2 = 1 + γv(L− rb2t · η), (3.85)

where to make connection with Chapter 4 we introduce the dimensionless constant r ≡ −γ′/γ
and the shorthand notation t · η ≡ tµνη

µν = −ttt + txx.
Now the setup is complete. The system of equations that we need to solve involve the

EOM of each subsystem, (3.81) and (3.84), and the set of coupling equations, (3.85). Even in
this example, the equations are high degree and do not permit an analytic solution, but are
otherwise numerically solvable.

The result of a particular computation can be found in Fig. 3.3 and 3.4. Note that the
effective light-cone velocities in the right panel of Fig. 3.3 are bounded by the speed of light.
The energies can be divided as in the previous section. From (3.49), we read off

E1 =
1

2

√−g
(

t00 + t 0
0

)

, (3.86)

E2 =
1

2

√

−g̃
(

t̃00 + t̃ 0
0

)

, (3.87)

Eint = −γ

2

√−g√−g̃
√

−g(B)

(

t · t̃− rtρσg
(B)
ρσ t̃γδg

(B)
γδ

)

, (3.88)
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There is no dissipation in the subsystems as can be seen in Fig. 3.4, so although (3.81) looks to
contain a dissipative term, this is illusory.
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Chapter 4

Hybrid metric model

In the present chapter, we build on the semiholographic metric coupling, introduced in
Chapter 3. Since working with holography is technically involved, we will instead focus on a
particularly interesting limit in the QGP dynamics. The physical picture to keep in mind is
that we are a few fm/c after the collision and the soft sector has had time to gain energy.
We will assume that both sectors are in thermal equilibrium and study the implications of the
semiholographic coupling in this case.

First, we will be considering the coupling between two perfect conformal fluids in a Minkowski
background in Sec. 4.1. We can characterize this equilibrium state by a set of parameters, which
we can restrict by requiring causality and ultraviolet completeness. Furthermore, we find that
the complete system exhibits a rich phase structure, which takes the system from a sum of two
individual subsystems at low temperatures to a new emergent conformal system at high temper-
atures. The transition is either a cross-over or a first-order transition, and the two are separated
by second-order critical endpoint with specific heat critical exponent α = 2/3. Next in Sec. 4.2,
we briefly consider the case of two coupled inviscid Bjorken subsystems. In Sec. 4.3, we will
consider two fluids described by relativistic hydrodynamics, in particular working in first order
hydrodynamics with viscous corrections. In the shear sector, we find that the overall viscosity
interpolates between the viscosities of the individual subsystems and decreases with the coupling
between the subsystems. In the sound sector, we have two modes where only one is propagating
with the thermodynamic speed of sound at large coupling. However both have attenuation
vanishing with the square of momentum, implying that spatially homogeneous density pertur-
bations of the individual subsystems are not attenuated. This means that more dynamics is
required for the thermal equilibrium to be reached between the two sectors. Finally, in Sec. 4.4,
we describe the perturbative sector by an effective kinetic theory and the non-perturbative sec-
tor by a strongly coupled fluid to ascertain to what extent non-hydrodynamic modes in one
subsystem are attenuated due to the other dissipative subsystem.

This chapter is largely based on work published in [36], with the exception of Sec. 4.2.

4.1 Perfect fluids

We now will outline the 3+1 dimensional case of two coupled perfect fluids. For a discussion
in general d+ 1 dimensions, see Appendix B.

37
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38 CHAPTER 4. HYBRID METRIC MODEL

4.1.1 General equilibrium solution

We now will assume that we have a full system, S, in a flat background g(B)
µν = ηµν , composed

of two subsystems, S1 and S2. These subsystems will be described as perfect fluids, which will
be interacting via the coupling equations (3.17) that deform their respective effective metrics.
Furthermore, let’s assume that the subsystems are thermalized with respect to their static,
homogeneous and isotropic effective metrics, for which we make the ansätze:

gµν = diag(−a2, b2, b2, b2), g̃µν = diag(−ã2, b̃2, b̃2, b̃2), (4.1)

where the constants a, b, ã, b̃ are to be determined self-consistently. It is useful to keep in mind
that if one of the systems is to be described by gauge/gravity duality, the simple metric ansatz
above does not pertain to the bulk, but rather to the boundary of the gravity dual.

The energy-momentum tensors of the subsystems are then of the form

tµν = (ǫ1(T1) + P1(T1))uµuν + P1(T1)gµν , with uµ = (1/a, 0, 0, 0),

t̃µν = (ǫ2(T2) + P2(T2))ũµũν + P2(T2)g̃µν , with ũµ = (1/ã, 0, 0, 0), (4.2)

i.e.

tµν = diag
(

ǫ1(T1)

a2
,
P1(T1)

b2
,
P1(T1)

b2
,
P1(T1)

b2

)

,

t̃µν = diag
(

ǫ2(T2)

ã2
,
P2(T2)

b̃2
,
P2(T2)

b̃2
,
P2(T2)

b̃2

)

, (4.3)

with individual temperatures T1 and T2. Recall from the previous chapter that the temperatures
of both systems are related via (3.35), which in the present case reads:

T = T1a = T2ã. (4.4)

So although there are two temperatures, these are related in a simple manner and the system
temperature, T , parameterizes the space of equilibrium solutions.

The simplest coupling rules (3.17) now read

1 − a2 =
(

γ
ǫ2(T2)

ã2
− γ′

(

−ǫ2(T2)

ã2
+

3P2(T2)

b̃2

))

ãb̃3,

b2 − 1 =
(

γ
P2(T2)

b̃2
+ γ′

(

−ǫ2(T2)

ã2
+

3P2(T2)

b̃2

))

ãb̃3,

1 − ã2 =
(

γ
ǫ1(T1)

a2
− γ′

(

−ǫ1(T1)

a2
+

3P1(T1)

b2

))

ab3,

b̃2 − 1 =
(

γ
P1(T1)

b2
+ γ′

(

−ǫ1(T1)

a2
+

3P1(T1)

y2

))

ab3, (4.5)

which along with (4.4) determine a, b, ã and b̃ as functions of T and the coupling constants γ
and γ′.

Finally, we can assume that the total energy-momentum tensor is given by

Tµν = (E + P)UµUν + Pηµν , Uµ = (1, 0, 0, 0), (4.6)
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4.1. PERFECT FLUIDS 39

where we can compute the full energy-density and pressure from (3.25) to find

E = ǫ1(T1)ab3 + ǫ2(T2)ãb̃3

+
γ

2

(

ǫ1(T1)ǫ2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

)

ãb̃3ab3

+
γ′

2

(

−ǫ1(T1)

a2
+

3P1(T1)

b2

)(

−ǫ2(T2)

ã2
+

3P2(T2)

b̃2

)

ãb̃3ab3,

P = P1(T1)ab3 + P2(T2)ãb̃3

−γ

2

(

ǫ1(T1)ǫ2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

)

ãb̃3ab3

−γ′

2

(

−ǫ1(T1)

a2
+

3P1(T1)

b2

)(

−ǫ2(T2)

ã2
+

3P2(T2)

b̃2

)

ãb̃3ab3. (4.7)

4.1.2 A consistency check on thermodynamics of the full system

Using the thermodynamic identities

ǫ1,2 + P1,2 = T1,2s1,2, E + P = T S, (4.8)

and taking (4.7) into account, we can determine the total entropy density,

T S = T1s1(T1)ab3 + T2s2(T2)ãb̃3 = T
[

s1(T1)b3 + s2(T2)b̃3
]

, (4.9)

showing that the total entropy density is the sum of the two entropy densities. Therefore, we
identify the total entropy current as

Sµ =
√−gsµ

1 +
√

−g̃sµ
2 (4.10)

for sµ
1 = s1(T1)uµ, sµ

2 = s2(T2)ũµ, and Sµ = SUµ.
This indeed makes perfect sense in a general non-equilibrium situation. When each sector

has an entropy current sµ
1,2 satisfying

∇µs
µ
1 ≥ 0, ∇̃µs

µ
2 ≥ 0, (4.11)

this implies
∂µ(

√−gsµ
1 ) ≥ 0, ∂µ(

√

−g̃sµ
2 ) ≥ 0, (4.12)

such that
∂µ(

√−gsµ
1 +

√

−g̃sµ
2 ) = ∂µSµ ≥ 0. (4.13)

In thermal equilibrium, we also need to have

dE = T dS, (4.14)

or, equivalently, dP/dT = S, for thermodynamic consistency, which we have shown in Sec. 3.1.2.
We will now show the consistency of (4.4), (4.9) and (4.14) for the coupling discussed

here as well as for the coupling rules that generalize (3.17). The mutual compatibility of
the thermodynamic identities (4.8) and (4.14) of the full system with the global equilibrium
condition (4.4), along with the additivity of the total entropies that can be expected from the
fact that each subsystem is closed in an effective point of view, provides a strong low-energy
consistency check of our approach.
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40 CHAPTER 4. HYBRID METRIC MODEL

With the results (4.7), the thermodynamic relation E + P = T S is evidently fulfilled with
T = T1a = T2ã and S = s1b

3 + s2b̃
3, when ǫ1,2 + P1,2 = T1,2s1,2. Here we shall check that then

also

S =
dP
dT , (4.15)

holds provided the two subsystems satisfy

s1 =
ǫ1 + P1

T1
=
dP1

dT1
, s2 =

ǫ2 + P2

T2
=
dP2

dT2
. (4.16)

We need to evaluate

dP
dT =

d

dT
[

P1ab
3 + P2ãb̃

3
]

− γ

2

d

dT
[{

ǫ1a
−1b3

}{

ǫ2ã
−1b̃3

}

+ 3 {P1ab}
{

P2ãb̃
}]

−γ′

2

d

dT
[(

−ǫ1a−2 + 3P1b
−2
)

ab3
(

−ǫ2ã−2 + 3P2b̃
−2
)

ãb̃3
]

. (4.17)

Differentiating the equations for the metric factors allows us to substitute the derivatives of the
parts written within curly brackets as follows:

γ
d

dT
{

ǫ1a
−1b3

}

= γ′ d

dT
[(

−ǫ1a−2 + 3P1b
−2
)

ab3
]

− 2ã
dã

dT , (4.18)

γ
d

dT {P1ab} = −γ′ d

dT
[(

−ǫ1a−2 + 3P1b
−2
)

ab3
]

+ 2b̃
db̃

dT , (4.19)

γ
d

dT
{

ǫ2ã
−1b̃3

}

= γ′ d

dT
[(

−ǫ2ã−2 + 3P2b̃
−2
)

ãb̃3
]

− 2a
da

dT , (4.20)

γ
d

dT
{

P2ãb̃
}

= −γ′ d

dT
[(

−ǫ2ã−2 + 3P2b̃
−2
)

ãb̃3
]

+ 2b
db

dT , (4.21)

This leads to

dP
dT =

d

dT
[

P1ab
3 + P2ãb̃

3
]

+ ǫ1b
3 da

dT + ǫ2b̃
3 dã

dT − 3P1ab
2 db

dT − 3P2ãb̃
2 db̃

dT ,

=
dP1

dT ab3 + (ǫ1 + P1)
da

dT b3 +
dP2

dT ãb̃3 + (ǫ2 + P2)
dã

dT b̃3,

=
dP1

dT1

dT1

dT ab3 + T1
dP1

dT1

da

dT b3 +
dP2

dT2

dT2

dT ãb̃3 + T2
dP2

dT2

dã

dT b̃3,

= s1b
3
(

dT1

dT a+ T1
da

dT

)

+ s2b̃
3
(

dT2

dT ã+ T2
dã

dT

)

,

= S. (4.22)

The two expressions within parentheses in the last step are both dT /dT = 1, which completes
the proof: dP/dT = S.

4.1.3 Causal structure of equilibrium solution

Causality is a powerful, necessary requirement for physical systems. The dynamics of each
subsystem are bound causally by their respective effective metrics only. As a result, causality in
the full system (which we have assumed here to be Minkowski) is not guaranteed a priori. Since
the causal structure of the dynamics taking place in the subsystems is dictated by the respective
effective metrics only, causality in the full system, which is living in Minkowski space, is not
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t

x

t

x

Figure 4.1: The gray light cone is the background Minkowski metric ηµν . The blue light cone
is the effective metric gµν . For clarity, only one of the effective metrics is shown. Note that the
Minkowski light cone always needs to encompass the effective light cone for all values of the
coupling, γ > 0. Left: Low γ1/4T . Right: High γ1/4T . Note that massless excitations w.r.t. the
effective metric are perceived as massive excitations in the Minkowski background.

guaranteed. For instance, massless excitations in Minkowski space travel at c = 1, whereas in
e.g. massless excitations in subsystem S1 would propagate at a velocity v = a/b. There is no
requirement thusfar for c > v.

As such, we can eliminate solutions of (3.17) that have superluminal propagation. To see
this in action, take the sum of the first and second as well as of the third and fourth equation
in (4.5), leading to

b2 − a2 = γ

(

ǫ2(T2)

ã2
+
P2(T2)

b̃2

)

ãb̃3 ≥ 0,

b̃2 − ã2 = γ

(

ǫ1(T1)

a2
+
P1(T1)

b2

)

ab3 ≥ 0, (4.23)

independent of γ′. The inequality follows by requiring that the individual light cones remain
below c:

b2 − a2 = b2(1 − v2) ≥ 0. (4.24)

Thus, we require that the coupling constant γ ≥ 0, the individual subsystem energy densities
are not negative ǫ1,2 ≥ 0 and we allow for a small range of negative pressures v2P1,2 ≥ −ε. The
change in the light cone can be aptly summed up in Fig. 4.1. Note that the (blue) effective
light cone defined by the metric gµν is contained entirely within the light cone defined by the
background Minkowski metric.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

42 CHAPTER 4. HYBRID METRIC MODEL

4.1.4 Conformal subsystems

It is clear that (3.17) is not yet a closed system of equations. We need to further specify
equations of state to relate the energy densities to the pressures. For simplicity, we will consider
the case of conformal subsystems. The equations of state of the two subsystems are then simply

ǫ1(T1) = 3P1(T1) = 3n1T
4
1 ,

ǫ2(T2) = 3P2(T2) = 3n2T
4
2 , (4.25)

with constant prefactors n1 and n2. Then the energy-momentum tensors tµν and t̃µν are traceless
with respect to the effective metrics gµν and g̃µν , which can be seen easily by taking the trace
of (4.2) and (4.3).

It becomes useful to parameterize our coupling equations in terms of the effective light cone
velocities, where

v :=
a

b
, ṽ :=

ã

b̃
, (4.26)

which are associated with the effective metrics gµν and g̃µν , respectively. In this case, the total
entropy of the system (4.10) is

S = 4T 3
(

n1

v3
+
n2

ṽ3

)

, (4.27)

where we used that the entropy of each subsystem is just

s1,2 =
ǫ1,2 + P1,2

T1,2
= 4n1,2T

3
1,2. (4.28)

The coupling equations, together with the assumption of conformality and the temperature
condition (4.4), leads to

1 − v2b2 = 3γT 4n2
1 − r(1 − ṽ2)

ṽ5b̃2
,

b2 − 1 = γT 4n2
ṽ2 + 3r(1 − ṽ2)

ṽ5b̃2
,

1 − ṽ2b̃2 = 3γT 4n1
1 − r(1 − v2)

v5b2
,

b̃2 − 1 = γT 4n1
v2 + 3r(1 − v2)

v5b2
, (4.29)

where

r := −γ′

γ
, (4.30)

is a dimensionless coupling constant that we shall use from now on in exchange for γ′. Elimi-
nating b and b̃ yields the two equations

n1γT 4 =
v5(1 − ṽ2)(3 + ṽ2)

[3 + v2ṽ2 − 3r(1 − v2)(1 − ṽ2)]2
, (4.31)

n2γT 4 =
ṽ5(1 − v2)(3 + v2)

[3 + v2ṽ2 − 3r(1 − v2)(1 − ṽ2)]2
. (4.32)
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4.1. PERFECT FLUIDS 43

Since causality implies 0 < v, ṽ < 1, we see that solutions exist for arbitrary T only when the
denominator on the right-hand side of (4.31) is able to reach a zero. This leads to

0 = 3 + v2ṽ2 − 3r(1 − v2)(1 − ṽ2),

⇒ r =
3 + v2ṽ2

3(1 − v2)(1 − ṽ2)
(4.33)

Clearly, the range of r is between ∞ > r > 1. Thus for ultraviolet completeness for the simplest
coupling rules (3.17), we require that r > 1. Otherwise this model would exist only up to some
finite value of T .

Now we present some general observations that we can make analytically.
Although the subsystems are conformal, when the two sectors interact, the full system in

general is no longer conformally invariant. We find the trace, using the expression for the full
energy density and pressure (4.7), to be

−Tµνηµν = E − 3P =
6γn1n2T 8

v3ṽ3a2ã2

[

3 + v2ṽ2 − 3r(1 − v2)(1 − ṽ2)
]

. (4.34)

Note that in [36] there is a typo in the coefficient of this expression.
The term in square brackets in (4.34) is the square root of the denominator in (4.32). It is

positive in the small γ case (where v = ṽ = 1). Due to the previous discussion, it cannot change
sign for any finite value of γT 4. Therefore, the conditions for causality γ > 0 and condition
for ultraviolet completeness, r > 1, imply that the interaction measure E − 3P = −Tµ

µ is
positive, which is also a feature of (lattice) Yang-Mills theories at finite temperature [109,110].
Furthermore, since large T 4 in (4.31) corresponds to a small value of the square root of the
denominator in (4.32), we see that the interaction measure goes to zero for large temperatures
and the full system thus approaches conformality for large T .

Also, one can derive perturbative expansions for all quantities (for more details, see Ap-
pendix C). When writing down perturbative results, we shall assume that γT 4 and γ′T 4 are of
the same order, i.e. r is of order 1. For small couplings or for small temperature, |γ|, |γ′| ≪ T −4,
the resulting a, ã, v, and ṽ are all close to unity, and thus E − 3P ≈ 24γn1n2T 8, i.e., the full
system approaches conformality at small temperature as expected. This corresponds to the
decoupling limit of the system.

The emerging conformality at large temperatures can also be seen in the speed of sound
(squared) of the full system, defined thermodynamically by

c2
s =

dP
dE =

(

d ln S
d ln T

)−1

, (4.35)

which expanded up to third order in γT 4 reads

cs(T ) =
1√
3

− 8√
3
γT 4 n1n2

n1 + n2
− 32

√
3γ2T 8n1n2(n2

1 + n2
2)

(n1 + n2)2
+ O((γT 4)3). (4.36)

With conformal subsystems the dependence on r = −γ′/γ appears only at third order. In
quantities which only depend on v and ṽ, as is the case for the entropy, also the third-order
term is still independent of r.

As shown in Appendix C, the high-temperature behavior of the total system is governed by
the fact that the metric factors a, ã, b, b̃ asymptote to linear functions of the physical temperature
T . Since the effective temperatures of the subsystems are given by T1 = T /a and T2 = T /ã,
they stop growing together with T and instead saturate at finite values proportional to γ−1/4.
For r = 2 Fig. 4.2 displays this behavior for equal and unequal subsystems, i.e., n1 = n2 and
n1 6= n2, respectively.
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n1=n2=1, r=2
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Figure 4.2: Effective temperatures of the subsystems as a function of the physical temperature
with r = 2 for equal subsystems in the left panel and unequal (n2 = n1/10) subsystems in the
right panel. As the physical temperature increases, the effective temperature of the subsystems
first increases in line with the former (the dotted line marks equality), but when T becomes
larger than γ−1/4, the effective temperatures asymptote to a limiting value. This limiting value
is larger for the subsystem with fewer degrees of freedom.

Equal subsystems

For the special case where the number of degrees of freedom are equal, i.e. n1 = n2, it is
clear that v = ṽ. The numerical solution of (4.31) is displayed in Fig. 4.3 for various values of
r > 1.

It turns out that for

1 < r < rc =
1

540
(195 + 43

√
15 +

√

30(4082 − 557
√

15)) ≈ 1.1145

more than one solution exists. This corresponds to a phase transition that will be discussed in
Sec. 4.1.4. For details on how we analytically determined the critical value of r, see Appendix
B.

Concentrating first on the case r > rc, the behavior of the pressure and the interaction
measure is shown in the left panel of Fig. 4.5 for a typical case, when the coupling r = 2.
Intriguingly, P/T 4 shows an increase somewhat reminiscent of the deconfinement crossover
transition in QCD.

Since S/T 3 ∝ v−3, the entropy increases from the decoupling limit value at γ1/4T = 0,
where v = 1, in parallel to the drop in v displayed in Fig. 4.3.

The speed of sound squared (4.35) is shown in the right panel of Fig. 4.5. At γ1/4T = 0,
c2

s unsurpisingly takes the conformal value, c2
s = 1

3 , as both subsystems are conformal and this
is the decoupling limit. For intermediate values, the speed of sound squared drops from the
conformal limit, indicating a crossover as opposed to a phase transition. Finally, for γ1/4T → ∞,
the speed of sound squared asymptotes to conformal behavior from below.

In the case of two identical conformal subsystems, the relation between the effective light
cone velocity v and γT 4 is given by the roots of a polynomial equation of 9th degree (given in
(4.31) for v = ṽ), which has no general closed form solution. However, it is simple to determine
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0.0 0.2 0.4 0.6 0.8 1.0
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0.4

0.6
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1.0

γ1/4T

a
/b

(n1=n2=1)

r=100

r=10

r=2

r=1.1

r=1.001

Figure 4.3: Effective light-cone speeds of the two subsystems with n1 = n2 = 1 for different
values of r = −γ′/γ. Above r = rc ≈ 1.1145 there is a unique solution for all values of γ1/4T
(full lines), while below rc there are ranges of γ1/4T with three solutions (dashed lines).
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Figure 4.4: Left panel: light-cone susceptibility, χv for equal subsystems n1 = n2 = 1, fixed γ
and varying r. Right panel: the logarithmic derivative of the logarithm of the susceptibility.
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Figure 4.5: Left panel: Pressure (black line) and trace of the energy-momentum tensor (red)
divided by T 4, with the asymptotic value of the pressure indicated by the short dashed line.
Right panel: speed of sound squared (full black line) – both for n1 = n2 = 1 and r = 2. As
γ1/4T increases from small to large values, a crossover between regimes with different values of
P/T 4 takes place that is accompanied by a dip in the speed of sound which takes on a conformal
value in both asymptotic regimes. At large γ1/4T and for sufficiently low values of r (including
the case r = 2 at hand), the speed of sound in the full system turns out to be larger than the
effective light cone speed v of the subsystems (green dashed line: v2).

the asymptotic value of v:

v2
∞ := lim

γT 4→∞
v2 =

3r −
√

3
√

4r − 1

3r − 1
. (4.37)

Evidently, the entire physical range 0 < v∞ < 1 is covered as 1 < r < ∞.
It is important to point out something which might be counterintuitive. We note that for

certain values of r, the asymptotic light cone velocity can be smaller than the conformal speed
of sound, 1/

√
3. From (4.37) and knowing that for large γ1/4T the speed of sound asymptotes

to the conformal value, we see that this is the generic case for r < 7/3. In the right panel of
Fig. 4.5, we have plotted this for r = 2, where the green dotted line is the light cone velocity.
There is no contradiction to causality, since this occurs within the light cone of the physical
system, ηµν . The dynamics of the individual subsystems are being superseded by the collective
dynamics between them. This idea will be developed further in Section 4.3.2.

Unequal subsystems

For unequal systems one can show (using formulae (4.31) and (4.32)) that there exist solu-
tions for v and ṽ in the limit γT 4 → ∞ for any value of n2/n1 and r > 1. They are given by
the (sextic) equations

3[r(1 − v2
∞) − 1]5/2

(4r − 1)v5∞[r(1 − v2∞) + v2∞/3]1/2
=
n2

n1
=

(4r − 1)ṽ5
∞[r(1 − ṽ2

∞) + ṽ2
∞/3]1/2

3[r(1 − ṽ2∞) − 1]5/2
, (4.38)

which have a unique solution in the domain 0 < v∞, ṽ∞ < 1 when r > 1. In the extreme limit
that one of the systems completely dominates, say n2/n1 → 0, the asymptotic effective light-
cone velocity of the smaller system approaches zero, ṽ∞ ∼ O((n2/n1)1/5), while the dominant
system has the limit v∞ →

√
1 − r−1. This case of one dominant system is described further in

Appendix B.2.
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Figure 4.6: Unequal systems with n1 = 1, n2 = 0.1 and r = 2. Left panel: light-cone velocities
squared in the two subsystems (v2: upper, blue line, ṽ2: lower, red line) compared to c2

s (dashed
black line). Right panel: entropies of the two subsystems (S1: upper, blue line, S2: lower, red
line).

In Fig. 4.6, the full numerical solution of the effective light-cone velocities is displayed for
n2/n1 = 1/10 and r = 2 as well as the entropies of the two subsystems. The blue line is the
dominant system. While the smaller subsystem has a much larger relative growth of S/T 3

than the larger subsystem, the latter remains dominant. Considering again the extreme limit
n2/n1 → 0, S2/S1 changes from being of order n2/n1 at low γT 4 to (n2/n1)2/5 at high γT 4.

At the value r = 2 used in Fig. 4.6, the behavior of the speed of sound is similar to the case
shown in Fig. 4.5. Again, there is a dip at the crossover between the regimes of small and large
γ1/4T , where cs asymptotes to the conformal value 1/

√
3. In the case displayed in Fig. 4.6, now

only one of the effective light-cone velocities, namely the smaller subsystem light-cone velocity
ṽ, falls below the conformal value of the speed of sound at large γ1/4T .

Phase transition

Here we discuss the nature of the phase transition of the two coupled perfect fluids. For
1 < r < rc, perturbative expansions have to break down for 1 < r < rc, where the light-
cone velocity is multivalued at finite values of γT 4, as shown in Fig. 4.3 for n1 = n2. For
1 < r < rc ≈ 1.1145 in the case n1 = n2 and 1 < r < rc ≈ 1.25 for n1 6= n2, this corresponds to
a first-order phase transition that turns into a second-order phase transition at rc.

We can characterize the phase transition by introducing the light-cone susceptibility:

χv :=
∂v

∂(γ1/4T )
, (4.39)

which we have plotted in Fig. 4.4 for equal subsystems, n1 = n2 = 1, and various r. Note that
χv diverges near the critical temperature as we approach rc. In the right panel, we plot the
logarithmic derivative of the logarithm of χv and find that if we approach the phase transition
from above Tc, then the light cone susceptibility scales like

χv ∼ (γ1/4T )−3. (4.40)

In Fig. 4.7 pressure and entropy are plotted in the region around the first-order phase
transition for equal subsystems, n1 = n2 = 1, and r = 1.1. The range in γ1/4T where the
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Figure 4.7: Pressure (left panel) and entropy (right panel) around the first-order phase transi-
tion with n1 = n2 = 1 and r = 1.1. The pressure of the ground state is given by the maximal
value at each temperature. At the critical temperature the slope changes discontinuously. The
lines which extend smoothly beyond this point when coming from lower or higher temperatures
correspond to superheating or supercooling phases, respectively. (The lower line connecting
the endpoints of supercooling and superheating corresponds to the entropy curve with negative
slope and thus cannot be accessed physically.) The dotted line in the entropy curve indicates
the jump in the entropy that occurs when there is no supercooling or superheating.

pressure has three solutions corresponds to the possibility of superheating or supercooling,
indicated by red and blue lines, respectively. This happens if one does not immediately switch
to the thermodynamically preferred phase with higher pressure (lower free energy). The third
solution, denoted by a gray line, which directly connects the endpoints of superheating and
supercooling, is always thermodynamically disfavored and cannot be accessed physically, as it
comes with negative specific heat (corresponding to the part of the curve for the entropy with
negative slope).

In Fig. 4.8 the effective temperature of the subsystems is shown for the same set of param-
eters as above. At the phase transition the effective temperature jumps and approaches the
asymptotic value from above as the physical temperature goes to infinity. In fact, although
hardly visible in the left plot in Fig. 4.2, the effective temperature also approaches the asymp-
totic value from above for r = 2 in the crossover region; only for r & 2.048 (in the case of
n1 = n2) the effective temperature eventually shows monotonic behavior.

At r = rc the phase transition becomes second-order with continuous pressure and entropy.
In Appendix B and D, the parameters of the second-order phase transition are obtained in
closed form for n1 = n2 in arbitrary dimension. We can determine the critical exponent α,
which characterizes the specific heat, in 3 + 1 dimensions to find

CV ∼ |T − Tc|−α, α =
2

3
, (4.41)

which is independent of n2/n1. It is different from any mean-field result, as well as larger than
the value in the Ising model (α ≈ 0.11) or in the polymer models (α ≈ 0.236), which are the
largest values occurring in N vector models (for N = 1 and N = 0, respectively) [111]. The
comparatively large value of α in (4.41) is within the same ballpark as in the matrix model for
deconfinement in [112], which yields α = 3/5. Curiously, this value of α is precisely the same as
in the four-state Potts or Ashkin-Teller model, which describes a regular lattice with two Ising
spins per site [113,114].
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Figure 4.8: The behavior of the effective temperature of the subsystems during the first-order
phase transition with n1 = n2 = 1 and r = 1.1. The dotted line in the entropy curve indicates
the jump in the effective temperature when there is no supercooling or superheating.
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Figure 4.9: Speed of sound (squared) in two systems where one or both are replaced by a gas
of free massive bosons at r = 2. If both systems are massive, the speed of sound starts from
zero at zero temperature; if one is still conformal, the lower end point remains at 1/3. The
values given in the plot legend refer to the two masses in units of γ−1/4. (The massless case
corresponds to n1,2 = π2/90 in (4.25).)

The qualitative features of the phase transition are the same for unequal conformal subsys-
tems. For 1 < r < rc, the transition is first order, at r = rc the phase transition is second order,
and for r > rc it is a crossover. Furthermore, the critical value rc shows a rather weak depen-
dence on n2/n1, it lies in the narrow interval 1.119 . . . < rc < 1.25, and the critical exponent α
at the second-order phase transition point r = rc is always 2/3 (for more details see Appendix
D).

4.1.5 Massive subsystems

The simplest coupling rules, (3.17) and specifically (4.5) with r > 1 and γ > 0, also make
sense for a more general choice of equations of state of the subsystems. In this subsection, we
consider two free Bose gases with various masses, described by the on-shell distribution function:

f1 =
1

e−
√

p2+m2
1/T1 − 1

, (4.42)
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and similarly for the other subsystem. The energy density and pressure can be computed via
(2.51), which after the integration over angles gives:

ε1 =
n1

2π2

∫ ∞

0
dp
√

p2 +m2
1p

2f1, (4.43)

P1 =
n1

2π2

∫ ∞

0
dp

p4

√

p2 +m2
1

f1, (4.44)

and similarly for the other subsystem.
We can then proceed to compute the total energy density E and P via (4.7) and find the

speed of sound for the full system via (4.35). In Fig. 4.9, we display the results for the speed of
sound (squared) for r = 2 and a variety of masses, where there is only a crossover. We see that
generically, when both subsystems have massive particles, the speed of sound starts from zero
at γT 4 = 0 and non-monotonically approaches the conformal value at large γT 4. When one or
both components contain massless particles, c2

s starts from the conformal value of 1/3.
The way approximate conformality is approached at high T is again similar to the conformal

case discussed above, although we cannot demonstrate this analytically as in Appendix C. The
high-temperature behavior for r > 1 is governed again by an asymptotically linear behavior of
the metric coefficients a, ã, b, b̃ ∼ T . Such a behavior is at least consistent with the (simplest)
coupling rules (3.17): Once a, ã, b, b̃ have grown sufficiently large, these equations are homoge-
neous of degree two in the metric coefficients, provided the effective temperatures T1, T2 become
constant, which is the case when a, ã ∼ T .

However, an important difference to the conformal case is that the trace-term ∆Kδµ
ν in

the full energy-momentum tensor is no longer subdominant, but in fact needed to cancel the
contributions to the trace of the full energy-momentum tensor at order T 4. This is a consequence
of the form (4.9) of the full entropy, S = s1(T1)b3+s2(T2)b̃3 ∼ T 3, together with thermodynamic
consistency, S = dP/dT (which is proved in Section 3.1.2 for arbitrary equations of state of the
subsystems).

We expect that it is equally possible to couple more involved equations of state than gases
of free massive particles with the simplest coupling rule and to obtain a UV-complete setup.

4.2 Bjorken fluids

We now briefly turn our attention to Bjorken fluids, following [115]. Bjorken flow describes
a simple model for heavy ion collisions. We assume that the collision axis is along the z-axis and
the system is otherwise homogeneous. Essentially, the nuclei are modelled as infinite flat sheets
in the transverse (x, y) directions. Furthermore, the matter produced in the forward light cone
is boost invariant. The background metric is given in Milne coordinates as

g
(B)
µν = diag(−1, 1, 1, τ2), (4.45)

where τ =
√
t2 − z2 is the proper time. Note that the Bjorken background is flat, but expanding.

A perfect fluid in this background has the following form:

Tµν = diag(E ,P⊥,P⊥,
PL

τ2
) (4.46)

The uncoupled inviscid Bjorken equation leads to the Ward identity of the following form:

∇µt
µν = 0 ⇒ ∂τ E +

E + PL

τ
= 0, (4.47)
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where PL is the longitudinal pressure (in the z-direction). There are two important cases to
consider. First, in the case of a conformal isotropic fluid, i.e. PL = P⊥ = P and E = c2

sP, where
c2

s = 1/3 is the speed of sound, we find the solution of (4.47) is

E ∼ τ−4/3. (4.48)

In the case of extreme anisotropy, when PL ≪ P⊥, we find find from (4.47)

E ∼ τ−1. (4.49)

Thus, we are motivated to choose the following ansatz for the effective metrics

gµν = diag(−a2, b2, b2, c2), (4.50)

g̃µν = diag(−ã2, b̃2, b̃2, c̃2). (4.51)

The energy-momentum tensors are given by

tµν = diag
( ε

a2
,
P⊥
b2
,
P⊥
b2
,
PL

c2

)

, (4.52)

t̃µν = diag
( ε̃

ã2
,
P̃⊥
b̃2
,
P̃⊥
b̃2
,
P̃L

c̃2

)

, (4.53)

which we choose to be conformal, with equations of state ε = 2P⊥ + PL and ε̃ = 2P̃⊥ + P̃L.

The evolution of both subsystems is determined by the conservation of the energy-momentum
tensors:

0 = ∂τε+ ε∂τ log(bc) + 2P⊥∂τ log b+ PL∂τ log c, (4.54)

0 = ∂τ ε̃+ ε̃∂τ log(b̃c̃) + 2P̃⊥∂τ log b̃+ P̃L∂τ log c̃, (4.55)

As a check, it is instructive to see that we recover the EOM in the Bjorken background. In this
case, b = 1 and c = τ and we see that we indeed recover (4.47).

The coupling equations (3.27) in this case are given by

1 − a2 = γ
ãb̃2c̃

τ

[ ε̃

ã2
+ r

(2P̃⊥
b̃2

+
τ2P̃L

c̃2
− ε̃

ã2

)]

, (4.56)

b2 − 1 = γ
ãb̃2c̃

τ

[ P̃⊥
b̃2

− r
(2P̃⊥
b̃2

+
τ2P̃L

c̃2
− ε̃

ã2

)]

, (4.57)

c2 − τ2 = γ
ãb̃2c̃

τ

[τ4P̃L

c̃2
− rτ2

(2P̃⊥
b̃2

+
τ2P̃L

c̃2
− ε̃

ã2

)]

, (4.58)

1 − ã2 = γ
ab2c

τ

[ ε

a2
+ r

(

2P⊥
b2

+
τ2PL

c2
− ε

a2

)

]

, (4.59)

b̃2 − 1 = γ
ab2c

τ

[P⊥
b2

− r
(2P⊥
b2

+
τ2PL

c2
− ε

a2

)]

, (4.60)

c̃2 − τ2 = γ
ab2c

τ

[τ4PL

c2
− rτ2

(2P⊥
b2

+
τ2PL

c2
− ε

a2

)]

. (4.61)
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From the discussion in the previous section, we can add (4.56) to (4.57) and (4.59) to (4.60),
which cancels the terms proportional to r to leave us with

b2 − a2 = γ
ãb̃2c̃

τ

[ P̃⊥
b̃2

+
ε̃

ã2

]

> 0, (4.62)

b̃2 − ã2 = γ
ab2c

τ

[P⊥
b2

+
ε

a2

]

> 0, (4.63)

c2

τ2
− a2 = γ

ãb̃2c̃

τ

[τ2P̃L

c̃2
+

ε̃

ã2

]

> 0, (4.64)

c̃2

τ2
− ã2 = γ

ab2c

τ

[τ2PL

c2
+

ε

a2

]

> 0. (4.65)

This set of inequalities arises from considering that the effective light-cone velocity in the per-
pendicular direction, i.e. 1 > v⊥ = a

b > 0, as well as the light-cone velocity in the longitudinal
direction, i.e. 1 > vL = a

(c/τ) > 0, needs to remain within the Minkowski light cone. We can
conclude that we need to choose γ > 0, as in the previous case. Notice that we can permit
negative pressures, so long as v2

⊥,LP⊥,L > −ε and likewise for the other subsystem.

The total energy-momentum tensor, Tµν , is computed from (3.25) and we find

T 0
0 ≡ −E = −ab2c

τ
ε− ãb̃2c̃

τ
ε̃− ab2cãb̃2c̃

τ2
∆K, (4.66)

T⊥
⊥ ≡ P⊥ =

ab2c

τ
P⊥ +

ãb̃2c̃

τ
P̃⊥ − ab2cãb̃2c̃

τ2
∆K, (4.67)

TL
L ≡ PL =

ab2c

τ
PL +

ãb̃2c̃

τ
P̃L − ab2cãb̃2c̃

τ2
∆K, (4.68)

∆K =
1

2
γ
[ εε̃

a2ã2
+

2P⊥P̃⊥
b2b̃2

+
τ4P̃LPL

c2c̃2

]

(4.69)

+ γr
[ εε̃

2a2ã2
− P⊥ε̃

ã2b2
− P̃⊥ε

a2b̃2
+

2P⊥P̃⊥
b2b̃2

+ τ2
(P⊥P̃L

b2c̃2
+
P̃⊥PL

b̃2c2
− P̃Lε

2a2c̃2
− PLε̃

2ã2c2

)

+
τ4P̃LPL

2c2c̃2

]

.

The energy-momentum tensor is conserved in the Bjorken expanding background, ∇(B)
µ Tµ

ν = 0.
Note that if we compute the total (partial) enthalpy, we find that it is simply the sum of the
subsystem partial enthalpies:

E + P⊥ =
√−g(ε+ P⊥) +

√

−g̃(ε̃+ P̃⊥), (4.70)

E + PL =
√−g(ε+ PL) +

√

−g̃(ε̃+ P̃L), (4.71)

We can now proceed to simplify the coupling equations by using the light-cone velocities,
vL, v⊥, ṽ and ṽL, to replace b, b̃, c and c̃. Eliminating a and ã and using the conformal equations
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of state, we are left with

√−gP⊥ =
v2

⊥v
2
L

γN2

(

ṽ2
⊥ + (ṽ2

⊥ + 2)ṽ2
L

)(

ṽ2
L − ṽ2

⊥ + (1 − ṽ2
⊥)ṽ2

Lv
2
L

)

, (4.72)

√

−g̃P̃⊥ =
ṽ2

⊥ṽ
2
L

γN2

(

v2
⊥ + (v2

⊥ + 2)v2
L

)(

v2
L − v2

⊥ + (1 − v2
⊥)ṽ2

Lv
2
L

)

, (4.73)

√−gPL =
v2

⊥v
2
L

γN2

(

ṽ2
⊥ + (ṽ2

⊥ + 2)ṽ2
L

)(

2ṽ2
⊥ − 2ṽ2

L + (1 − ṽ2
L)ṽ2

⊥v
2
⊥
)

, (4.74)

√

−g̃P̃L =
ṽ2

⊥ṽ
2
L

γN2

(

v2
⊥ + (v2

⊥ + 2)v2
L

)(

2v2
⊥ − 2v2

L + v2
⊥ṽ

2
⊥(1 − v2

L)
)

, (4.75)

N ≡ v2
⊥(ṽ2

⊥(r(ṽ2
L(3v2

L − 1) − v2
L + 3) − ṽ2

Lv
2
L − 1) − 2rṽ2

L(v2
L + 1))

− 2v2
L(rṽ2

⊥(ṽ2
L + 1) − 2rṽ2

L + ṽ2
L). (4.76)

If we have solutions for arbitrary large pressures, we need the denominator of the RHS to vanish.
This provides a condition for the asymptotic values of velocities, which reads

N = 0 ⇒ r =
v2

⊥ṽ
2
⊥(1 + ṽ2

Lv
2
L) + 2ṽ2

Lv
2
L

v2
⊥

(

ṽ2
⊥(ṽ2

L(3v2
L − 1) − v2

L + 3) − 2ṽ2
L(v2

L + 1)
)

− 2v2
L

(

ṽ2
⊥(ṽ2

L + 1) − 2ṽ2
L

) . (4.77)

Note that if we take the isotropic limit, vL → v⊥ and similarly for the other sector, we recover
(4.33).

A notable difference to the previous discussion is that now the effective metrics have a
non-trivial Ricci scalar, which is given by

R =
1

a2

(

2
[

∂τ log(b)
]2 − 4∂τ log(a)∂τ log(b) − 2∂τ log(a)∂τ log(c)

+ 4∂τ log(b)∂τ log(c) +
4b′′

b
+

2c′′

c

)

, (4.78)

(and similarly for the other sector). Clearly, when we are in the Bjorken background with
a = b = 1 and c = τ , the Ricci scalar vanishes and we are again in flat space, R = 0. When we
turn on the metric coupling, we see that the Ricci scalar is non-vanishing. This is demonstrated
numerically in the left plot of Fig. 4.10.

4.2.1 A few interesting cases

In the following, we will consider a variety of numerical solutions. We will take the view
that the tilded sector will be always represented by an isotropic conformal fluid P̃⊥ = P̃L = P̃
and ε̃ = 3P̃ , whereas the untilded sector will also be conformal with ε = 2P⊥ + PL and the
different relationship between the pressures will be the distinguishing feature of the numerical
explorations. The interpretation of this setup is that the tilded subsystem represents the soft
degrees of freedom, a conformal fluid, whereas the untilded subsystem represents the hard sector.

It is also important to remember that at this level of discussion, the individual subsystems do
not have a mechanism with which to evolve their pressures. Thus, when we set the relationship
between the untilded subsystem’s longitudinal and transverse pressure, this is kept fixed. We
are then watching the evolution of the full system’s energy density and pressure.

To somewhat standardize the discussion, we will set γ = 1 and r = 2. Furthermore, we
begin the simulation at τ0 = 0.3 and set our initial conditions as ε(τ0) = 0.25 and ε̃(τ0) = 0.1.
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R

R
˜
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0.5

τ
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0.20

τ

ϵ tot-
2
P
⟂-

P
L

ϵ tot
Figure 4.10: Left: Ricci scalar for the Bjorken flow, with choice of parameters as in the text
and PL = ε, P⊥ = 0. Right: Trace of the full system for the same parameters. The figures
would look qualitatitively similar with the other parameters, so we have not included it here.

An interesting observation is that the anisotropic sector induces an anisotropic light cone
(i.e. v⊥ 6= vL) in the other subsystem, while the isotropic sector tends to induce an isotropic
light cone.

We also note that the trace of the total system acts in a similar way for the cases that we
consider, namely the trace vanishes for late times as can be seen in Fig. 4.10.

Isotropic inviscid fluids

Here we consider the case of two coupled conformal isotropic inviscid fluids. In this case,
the perpendicular and the longitudinal light cones coincide for both fluids vL = v⊥, which are
plotted in Fig. 4.11. We also see that the energy of both subsystems drops with time, as we
would expect in a Bjorken expanding system. Furthermore, the anisotropy parameter, PL/P⊥,
is exactly 1, i.e. the total pressures are isotropic. We can see in Fig. 4.12 for late times that the
total energy density tends to the isotropic value, as does the total pressure.

Transverse particle (TP) distribution

We set PL = 0, which implies ε = 2P⊥. This corresponds to free particles with only
transverse momentum. In Fig. 4.13, we plot the light-cone velocities for both subsystems. The
generic behavior of the light-cone velocities is to asymptote to 1. This is not surprising, as we
expect for large τ for the system to fly apart and for interactions to decrease. When we plot the
ratio of the light-cone velocities, it becomes clear that the light cones in the isotropic system
are deformed by the anisotropic system and become anisotropic. In the bottom right plot, we
also plot the ratio of the energy densities, which falls off in the same way as the previous case.

In Fig. 4.14, we plot the ratio of the longitudinal pressure to the transverse pressure of
the full system, which is known as the anisotropy parameter. It is curious to note that this
parameter increases at early times, indicating that the system is tending to isotropize, before
falling away.
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v⟂=vL
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˜⟂=v˜L
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τ
Figure 4.11: Light-cone velocities and energy densities in the case of two isotropic fluids. Left:
light-cone velocities are degenerate in each subsystem. Right: energy densities in each subsys-
tem.
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-
d
ln
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d
ln
τ
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0.28

0.30

0.32
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P
/ϵ

Figure 4.12: Anisotropy in the isotropic fluid case. For late times the full system seems to
isotropize. Left: The anisotropy parameter for the total pressures. The orange line represents
full isotropy, PL/P⊥ = 1. Right: The power law fall-off of the total energy density. The fully
isotropic value is in orange, E ∼ τ−4/3. Bottom: The total pressures, P⊥ and PL. The green
line is the isotropic value 1/3.

Longitudinal particle (LP) distribution

Here, we set PL = ε, P⊥ = 0. The anisotropy of this choice is apparent in Fig. 4.15. The
light cones develop anisotropically, but tellingly, the light cone of the anisotropic subsystem
(induced by the isotropic fluid subsystem), is approximately isotropic, whereas the isotropic
fluid feels an anisotropic light cone. This is summarized in the bottom left plot. As before, the
energy densities drop with increasing time.

In Fig. 4.16, the anisotropy parameter approaches the isotropic value from a maximal
anisotropic value. In the bottom plot, the two pressures approach the conformal value from two
different directions, while the total energy density approaches the isotropic fall-off (4.48).

Dark energy-like configuration

We now set PL = −ε = −P⊥, which is dark energy-like w.r.t. the longitudinal direction.
In Fig. 4.17, we see that the behavior of the untilded subsystem’s light cone is similar to the
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Figure 4.13: Light-cone velocities and energy densities for TP. Top left: light-cone velocity in the
perpendicular directions. Top right: light-cone velocities in the longitudinal direction. Bottom
left: ratio of the longitudinal light-cone velocities to the perpendicular light-cone velocities.
Note that the system with the isotropic equation of state has the more anisotropic behavior of
light cones. Bottom right: energy densities of the two subsystems.
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Figure 4.14: Characterizing TP anisotropy. Left: The anisotropy parameter for the total pres-
sures. Right: The power law fall-off of the total energy density. Bottom: The total pressures,
P⊥ and PL.
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Figure 4.15: Light-cone velocities and energy densities in the LP case. Top left: light-cone
velocity in the perpendicular directions. Top right: light-cone velocities in the longitudinal
direction. Bottom left: ratio of the longitudinal light-cone velocities to the perpendicular light-
cone velocities. Bottom right: energy densities of the two subsystems.
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Figure 4.16: LP anisotropy. Left: The anisotropy parameter for the total pressures. The
orange line represents full isotropy, PL/P⊥ = 1. Right: The power law fall-off of the total
energy density. The fully isotropic value is in orange, E ∼ τ−4/3. Bottom: The total pressures,
P⊥ and PL. The green line is the isotropic value 1/3.
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previous case. Interestingly, the transverse light-cone velocity of the fluid subsystem freezes
to a smaller value than the speed of light. Furthermore, the behavior of the energy density
is distinct from the previous discussion: the fluid energy density decreases as before, but the
hard subsystem has its energy density increase to some finite value. Since the isotropic fluid is
drained, it is logical to conclude that the anisotropy of the system increases.

In Fig. 4.18, we see more evidence that the full system becomes more anisotropic. The
longitudinal pressure becomes more negative, while the transverse pressure becomes as positive.
Finally, from the plot on the top right, we see that the total system energy density at late times
behaves like

E ∼ τ0, (4.79)

as opposed to the usual fall-off behavior of the energy density in a Bjorken background, (4.48)
and (4.49). Essentially, the negative longitudinal pressure is compensating the effects of the
expansion, such that the energy density of the system remains constant.
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Figure 4.17: Light-cone velocities and energy densities in the dark energy-like case. Top left:
light-cone velocities in the perpendicular direction. Top right: light-cone velocities in the longi-
tudinal direction. Bottom left: ratio of the longitudinal light-cone velocities to the perpendicular
light-cone velocities. Bottom right: energy densities of the two subsystems.

4.3 Bi-hydrodynamics

In the following we investigate the linearized perturbations of the full hybrid system about
thermal equilibrium. We consider two subsystems, whose energy-momentum tensors are param-
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Figure 4.18: Anisotropy in the dark energy-like case. Left: The anisotropy parameter for the
total pressures. Right: The power law fall-off of the total energy density. Bottom: The total
pressures, P⊥ and PL.

eterized up to first order in the gradient expansion according to (2.24), which is given explicitly
as

tµν = (ǫ1 + P1)uµuν + P1g
µν − 2η1σ

µν ,

t̃µν = (ǫ2 + P2)ũµũν + P2g̃
µν − 2η2σ̃

µν . (4.80)

For simplicity we will continue to analyze the case of conformal subsystems, and therefore we
will set the bulk viscosities in each subsystem, ζ1 = ζ2 = 0, with equations of state given by
(4.25).

Since the thermal equilibrium is homogeneous and rotationally symmetric, we can classify
the perturbations into three distinct sectors, which are called the shear, sound and tensor
channels. Each channel has distinct low energy characteristics. If we take the hydrodynamic
limit in both sectors, only the shear and sound channels yield dynamic propagating modes with
distinct forms of dispersion relations. The tensor channel in the bi-hydrodynamic limit does
not have a pole, but is useful for computing the shear viscosity of the full hybrid system using
the Kubo formula.

4.3.1 Bi-hydrodynamic shear mode

In the shear sector, the velocity fields of both sectors point in the same direction, but are
orthogonal to the momentum of a perturbation, i.e. the direction of its propagation. Without
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loss of generality, we will assume that the momentum k is in the z-direction and the velocity
fields are in the x-direction. We can thus consistently assume that the effective metrics are
parametrized via

gµν = diag(−a2, b2, b2, b2) + δgµν , g̃µν = diag(−ã2, b̃2, b̃2, b̃2) + δg̃µν (4.81)

with the non-vanishing components of δgµν and δg̃µν

δg01 = βei(kz−ωt), δg13 = γ13e
i(kz−ωt),

δg̃01 = β̃ei(kz−ωt), δg̃13 = γ̃13e
i(kz−ωt). (4.82)

The perturbed velocity fields in both sectors including the infinitesimal linearized perturbations
assume the form:

uµ =
(

1

a
, νei(kz−ωt), 0, 0

)

, ũµ =
(

1

ã
, ν̃ei(kz−ωt), 0, 0

)

. (4.83)

Note that the metric perturbations (4.82) preserve the norm of the velocity fields (4.83) at the
linearized level. Furthermore, in the shear channel, there is no temperature perturbation, as
this would enter at higher order.

Thus the perturbed hydrodynamic energy-momentum tensors of the individual sectors is
given by

tµν = diag
(

ǫ1(T1)

a2
,
P1(T1)

b2
,
P1(T1)

b2
,
P1(T1)

b2

)

+ δtµν ,

t̃µν = diag
(

ǫ2(T2)

ã2
,
P2(T2)

b̃2
,
P2(T2)

b̃2
,
P2(T2)

b̃2

)

+ δt̃µν , (4.84)

with the non-zero components of δtµν and δt̃µν being

δt01 = −P1β + (P1 + ǫ1)νab2

a2b2
ei(kz−ωt), δt13 =

(

−P1γ13

b4
− ik

η1ν

b2
+ iω

η1γ13

ab4

)

ei(kz−ωt),

δt̃01 = −P2β̃ + (P2 + ǫ2)ν̃ãb̃2

ã2b̃2
ei(kz−ωt), δt̃13 =

(

−P2γ̃13

b̃4
− ik

η2ν̃

b̃2
+ iω

η2γ̃13

ãb̃4

)

ei(kz−ωt).

(4.85)

The hydrodynamic equations of the two sectors in the two effective metrics are

∇µt
µν = 0, ∇µt̃

µν = 0, (4.86)

which read explicitly in Fourier space as

ω
(ǫ1 + P1)(β + νab2)

a2b2
= −ik2 η1ν

b2
+ iωk

η1γ13

ab4
,

ω
(ǫ2 + P2)(β̃ + ν̃ãb̃2)

ã2b̃2
= −ik2 η2ν̃

b̃2
+ iωk

η2γ̃13

ãb̃4
. (4.87)

As discussed previously, the hydrodynamic equations automatically guarantee the conservation
of the full energy-momentum tensor at the linearized level.

We will also introduce the dimensionless parameters κ1, κ2, which parameterize the shear

η1 =
κ1

π
n1T

3
1 , η2 =

κ2

π
n2T

3
2 (4.88)
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so that
4πη1

s1
= κ1,

4πη2

s2
= κ2. (4.89)

With a Minkowski background metric, the linearized coupling equations determining β, β̃,
γ13 and γ̃13 are simply

δg01 = −γδt̃01ãb̃3, δg13 = γδt̃13ãb̃3,

δg̃01 = −γδt01ab3, δg̃13 = γδt13ab3. (4.90)

With (4.82) and (4.85) the solutions are:

β =
4γn2T

4
2 ab̃

(

ãb̃2ν̃ − γn1T
4
1 b

3ν
)

−aã+ γ2n1n2bb̃T
4
1 T

4
2

, (4.91)

γ13 =
iγkn2T

3
2 b
(

πκ2ν̃ãb̃
2 − γκ1n1T

3
1 νab(πT2ã− iκ2ω)

)

π2
(

γ2n1n2T
4
1 T

4
2 aã− bb̃

)

+ γ2n1n2T
3
1 T

3
2 (κ1κ2ω

2 − iπω(κ2T1a+ κ1T2ã))
,

and similarly for β̃ and γ̃13.
Inserting these into the linearized hydrodynamic equations (4.87) yields equations for ν and

ν̃ of the form
QAB(ω, k)νB = 0, (4.92)

where νA = (ν, ν̃) and QAB is a 2 × 2 matrix. The eigenmodes have dispersion relations ω(k)
for which the determinant of Q vanishes, i.e.

detQ(ω(k), k) = 0. (4.93)

The corresponding eigenvectors involve a momentum dependent combination of ν and ν̃. These
modes are intrinsic to the full system, independent of external perturbations.

The shear-diffusion modes are modes with a dispersion relation of the characteristic form:

ωI = −iDIk
2 + O(k3), (4.94)

where the index I labels different solutions. Note that DI = DI(T , γ, γ′) in general.
We find that the perturbative expansions of the shear diffusion constants DI are given by:

Da(T ) =
κ1

4πT − γκ1n2T 3

π
+
γ2κ1n2T 7[n2(κ1 − κ2) + n1(9κ2 − 5κ1)]

π(κ1 − κ2)
+ O(γ3),

Db(T ) =
κ2

4πT − γκ2n1T 3

π
+
γ2κ2n1T 7[n1(κ1 − κ2) − n2(9κ1 − 5κ2)]

π(κ1 − κ2)
+ O(γ3). (4.95)

In the decoupling limit, γ1/4T → 0 (with fixed r), we recover the usual shear diffusion modes
of the individual subsystems.

The propagating mode corresponding to the first diffusion constant D1 involves velocity
amplitudes with1

ν̃ =
(

4n1κ1

(κ1 − κ2)
γT 4 + O(γ2T 8)

)

ν (4.96)

1Note that the combination of ν and ν̃ in the propagating mode is k−independent. This is so because each
element in the matrix Q in (4.92) is O(k2) at the leading order on-shell, i.e. when ω = −iDa,bk2 + · · · .
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and therefore it is indeed localized mostly in the first subsystem when γT 4 is small. Similarly,
the other propagating mode has

ν = −
(

4n2κ2

(κ1 − κ2)
γT 4 + O(γ2T 8)

)

ν̃ (4.97)

and thus is localized mostly in the second subsystem for small γT 4. For finite γT 4, both these
modes receive significant contributions from both subsystems (see Fig. 4.19).

The dependence on γ′ of the perturbative expansions (4.95) start only at third order in
the perturbative expansion – so this dependence is weak at small γT 4. We also note that the
perturbation expansion in γT 4 evidently breaks down when |κ1 −κ2| . γT 4, irrespective of the
values of n1 and n2.

In the coincidence limit of κ1 = κ2 = κ, we instead obtain the following perturbative series

Da(T ) =
κ

4πT , (4.98)

Db(T ) =
κ

4πT − γT 3κ(n1 + n2)

π
+
γ2T 7κ

(

n2
1 − 10n1n2 + n2

2

)

π
+ O(γ3T 11),

where one of the diffusion modes turns out to be independent of γT 4. The propagating mode
corresponding to this γT 4-independent diffusion constant has

ν̃ =
(

1 +
3

2
(n1 − n2)γT 4 + O(γ2, γ′2)

)

ν. (4.99)

When n1 = n2, i.e. when the two subsystems are identical, then the propagating mode is exactly
given by ν̃ = ν (parallel and equal motion within the subsystems). In any case, this mode gets
significant contributions from both subsystems even in the decoupling limit γ, γ′ → 0. The other
propagating mode corresponding to the second diffusion constant Db in (4.98) is the following
combination of ν and ν̃ where

ν = −n2

n1

(

1 +
9

2
(n1 − n2)γT 4 + O(γ2, γ′2)

)

ν̃. (4.100)

When n1 = n2, this mode is exactly given by ν = −ν̃ (anti-parallel and equal motion within the
subsystems). This mode evidently gets significant contributions from both subsystems even in
the decoupling limit γ1/4T → 0 (as long as |κ1−κ2| ≪ γ1/4T ). The nonperturbative dependence
of ν̃/ν on γ1/4T is displayed in Fig. 4.19.

Kubo formula

We now turn our attention to defining the shear viscosity of the full system. We consider
an extrinsic homogeneous time-dependent perturbation, such that the background metric is
perturbed via

gµν = ηµν + hµν(t), (4.101)

with only h13(t) 6= 0. Now we are interested in only the external linear response, as in Sec. 2.2.3.
First, we note that the velocity fields, ν and ν̃, as well as the temperature perturbations in each
sector, vanish at first order in the derivative expansion for homogeneous γ13 and γ̃13, as can be
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Figure 4.19: The relation between the velocity amplitudes ν and ν̃ of the shear eigenmodes
displayed in Fig. 4.20 in the form ξ ≡ 2

π arctan(ν̃/ν). A value of ξ = 0 or ξ = ±1 (with these
two latter values to be identified) means that the mode is carried only by subsystem 1 or 2,
respectively; ξ = 0.5 or ξ = −0.5 corresponds to exactly equal amplitudes with equal or opposite
phase.

deduced from e.g. (4.87). Thus, the linearized perturbations of the energy momentum tensors
of the individual subsystems are

δt13 = −P1

b4
γ13 − η1

ab4
γ̇13 + O(∂2

t ),

δt̃13 = −P2

b̃4
γ̃13 − η2

ãb̃4
˙̃γ13 + O(∂2

t ). (4.102)

The coupling equations (3.17) will only involve homogeneous perturbations of γ13(t) and γ̃13(t)
and take the following form:

γ13 = h13

(

1 − 2γP2ãb̃+ γ′
(

− ǫ2
ã2

+ 3
P2

b̃2

)

ãb̃3
)

− γP2
ã

b̃
γ̃13 + O(∂t),

γ̃13 = h13

(

1 − 2γP1ab+ γ′
(

− ǫ1
a2

+ 3
P1

b2

)

ab3
)

− γP1
a

b
γ13 + O(∂t). (4.103)

Solving the above coupling equations, we obtain

γ13 =

(

1−2γP2ãb̃+γ′

(

− ǫ2
ã2 +3

P2
b̃2

)

ãb̃3

)

−γP2
ã

b̃

(

1−2γP1ab+γ′

(

− ǫ1
a2 +3

P1
b2

)

ab3

)

1−γ2P1P2
aã

bb̃

h13 + O(∂t),

γ̃13 =

(

1−2γP1ab+γ′

(

− ǫ1
a2 +3

P1
b2

)

ab3

)

−γP1
a
b

(

1−2γP2ãb̃+γ′

(

− ǫ2
ã2 +3

P2
b̃2

)

ãb̃3

)

1−γ2P1P2
aã

bb̃

h13 + O(∂t). (4.104)

The energy-momentum tensor of the full system including the linearized perturbation is
straightforward to compute from (3.25). We find that it assumes the standard hydrodynamic
form with vanishing velocity and temperature perturbations. Note it is not a priori clear that
even if the individual sector energy-momentum tensors are hydrodynamic, the full energy-
momentum tensor also assumes a hydrodynamic form. This is particularly so because there
are two independent entropy currents. Although in this specific example, the full energy-
momentum tensor does indeed assume a hydrodynamic form, in the following subsection we
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Figure 4.20: Shear diffusion constants Da,b (blue and orange lines) corresponding to shear

eigenmodes in the hybrid fluid model for different parameters as a function of γ1/4T compared
to the overall (Kubo) shear diffusion constant D (red lines) corresponding to the total shear
viscosity η/S ≡ TD. Full and dashed lines correspond to equal numbers of degrees of freedom,
n1 = n2 = 1, and unequal ones, n1 = 1, n2 = 1/10, respectively. The left panel has equal values
of individual shear viscosities κi = 4πηi/si = 1, the right panel has κ1 = 10 so that the first
system corresponds to a more weakly coupled sector.

will find counterexamples. Explicitly,

δT 13 = −Ph13 − ηḣ13 + O(∂2
t ) (4.105)

where P is the equilibrium pressure of the full system given by (4.7). We can then read off the
shear viscosity η of the full system:

η =
1

1 − γ2P1P2
aã
bb̃

{

η1b

[(

1 − 2γP2ãb̃+ γ′
(

− ǫ2
ã2

+ 3
P2

b̃2

)

ãb̃3
)

− γP2
ã

b̃

(

1 − 2γP1ab+ γ′
(

− ǫ1
a2

+ 3
P1

b2

)

ab3
)]

+ η2b̃

[(

1 − 2γP1ab+ γ′
(

− ǫ1
a2

+ 3
P1

b2

)

ab3
)

− γP1
a

b

(

1 − 2γP2ãb̃+ γ′
(

− ǫ2
ã2

+ 3
P2

b̃2

)

ãb̃3
)]

}

. (4.106)

Note that the bulk viscosity would play no role in the shear sector or in the response to a
homogeneous h13(t) perturbation of the background metric.

Given that S of the full system is given by (4.9) we readily obtain the full system η/S. We
may thus define the Kubo diffusion constant:

D ≡ η

T S =
κ1n1 + κ2n2

4πT (n1 + n2)
+ O(γ). (4.107)

In Fig. 4.20 the shear diffusion constants DI in (4.95) corresponding to shear eigenmodes
are compared with the overall diffusion constant D corresponding to the total shear viscosity
η/S ≡ TD for various parameters. The left panel shows the situation for two strongly coupled
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4.3. BI-HYDRODYNAMICS 65

systems with ηi/si = 1/4π, whereas the right panel has one sector more weakly coupled. The
dashed lines denote the case where one subsystem, namely S1, contributes more to the pressure
(n1 > n2). We find that D is always between the individual shear diffusion constants DI .

The shear diffusion constants decrease when the effective coupling, γ1/4T , is dialed from
zero. There is a slight nonmonotonic behavior in the crossover region between weak and strong
coupling between the subsystems for the full viscosity. At large coupling all results appear to
saturate at finite values.

Finally, it is worthwhile to note that when solving (4.93), one in fact obtains two additional
eigenmodes which are spurious. These are non-hydrodynamic, i.e. ω is finite as we take k to
zero. Furthermore, when k vanishes, these eigenmodes correspond to spontaneous fluctuations
of the effective metric components γ13 and γ̃13 without involving any fluctuation of the velocity
fields or any external background metric fluctuation. This fluctuation is possible due to the
presence of time-derivatives of the effective background metrics in (4.102): these make the
coupling equations (4.90) dynamical in the sense that these are differential equations for γ13 and
γ̃13. These spurious modes are also acausal, having positive imaginary parts in the dispersion
relation. This is related to the acausal behavior of first-order hydrodynamics. We can cure this
bad behavior by embedding the first order hydrodynamics of each sector into an Israel-Stewart
framework, kinetic theory or holographic gravity. This will be discussed in detail in the next
section.

To summarize our findings for shear diffusion and specific viscosity:

1. The full system has two shear diffusion modes with diffusion constants Da,b such that
T Da,b decrease monotonically with increasing temperature T before saturating at finite
values at large T .

2. The overall specific viscosity η/S derived using the Kubo formula from the total conserved
energy-momentum tensor is in between the values of T Da,b with slight nonmonotonic
behavior at the phase transition.

3. When one of the systems has a dominant contribution to the total energy/pressure and
a different specific viscosity, the overall specific shear viscosity is closer to that of the
dominant system.

4.3.2 Bi-hydrodynamic sound mode

We now turn our attention to the sound mode. Owing to the rotational symmetry of the
thermal equilibrium state, we can consistently assume that the velocity fluctuations in both
sectors are longitudinal, i.e., pointing in the same direction as the momentum k. Without loss
of generality, we will take ν, ν̃ and k to be in the z-direction. The consistent forms of the
effective metrics are (4.81) with the non-vanishing components of δgµν and δg̃µν are

δg03 = βei(kz−ωt), δg00 = −2a δa ei(kz−ωt),

δg11 = δg22 = (2b δb+ χ)ei(kz−ωt), δg33 = (2b δb− 2χ)ei(kz−ωt),

δg̃03 = β̃ei(kz−ωt), δg̃00 = −2ã δã ei(kz−ωt),

δg̃11 = δg̃22 = (2b̃ δb̃+ χ̃)ei(kz−ωt), δg̃33 = (2b̃ δb̃− 2χ̃)ei(kz−ωt). (4.108)
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The normalized four-velocity fields are

uµ =
(

1

a
− 1

a2
δa ei(kz−ωt), 0, 0, νei(kz−ωt)

)

,

ũµ =
(

1

ã
− 1

ã2
δã ei(kz−ωt), 0, 0, ν̃ei(kz−ωt)

)

. (4.109)

We may also anticipate that the temperatures also fluctuate from their equilibrium values so
that we also have

δT1e
i(kz−ωt) and δT2e

i(kz−ωt). (4.110)

The non-vanishing components of the linearized perturbations of the individual hydrodynamic
energy-momentum tensors then turn out to be:

δt00 =
(

1

a2

dǫ1
dT1

δT1 − 2
ǫ1
a3
δa

)

ei(kz−ωt), δt03 =
(

P1

a2b2
β +

ǫ1 + P1

a
ν

)

ei(kz−ωt),

δt11 = δt22 =
(

1

b2

dP1

dT1
δT1 − 2

P1

b3
δb− P1

b4
χ+ i

2η1

3b2
kν + i

η1

ab4
ωχ

)

ei(kz−ωt),

δt33 =
(

1

b2

dP1

dT1
δT1 − 2

P1

b3
δb+ 2

P1

b4
χ− i

4η1

3b2
kν − 2i

η1

ab4
ωχ

)

ei(kz−ωt), (4.111)

and similarly

δt̃00 =
(

1

ã2

dǫ2
dT2

δT2 − 2
ǫ2
ã3
δã

)

ei(kz−ωt), δt̃03 =
(

P2

ã2b̃2
β̃ +

ǫ2 + P2

ã
ν̃

)

ei(kz−ωt),

δt̃11 = δt̃22 =
(

1

b̃2

dP2

dT2
δT2 − 2

P2

b̃3
δb̃− P2

b̃4
χ̃+ i

2η2

3b̃2
kν̃ + i

η2

ãb̃4
ωχ̃

)

ei(kz−ωt),

δt̃33 =
(

1

b̃2

dP2

dT2
δT2 − 2

P2

b̃3
δb̃+ 2

P2

b̃4
χ− i

4η2

3b̃2
kν̃ − 2i

η2

ãb̃4
ωχ̃

)

ei(kz−ωt). (4.112)

The linearized coupling equations take the form:

δgµν = γ
√

−g̃
(

ηµρδt̃
ρσησν +

1

2
ηµρt̃

(eq)ρσησν g̃
αβδg̃αβ

)

+γ′ηµν

√

−g̃
(

ηρσδt̃
ρσ +

1

2
ηρσ t̃

(eq)ρσ g̃αβδg̃αβ

)

,

δg̃µν = γ
√−g

(

ηµρδt
ρσησν +

1

2
ηµρt

(eq)ρσησνg
αβδgαβ

)

+γ′ηµν

√−g
(

ηρσδt
ρσ +

1

2
ηρσt

(eq)ρσgαβδgαβ

)

. (4.113)

The hydrodynamic equations of motion in the respective effective metrics take the form:

ikaν − iω

(

δs1

s1
+ 3

δb

b

)

= 0,

ikãν̃ − iω

(

δs2

s2
+ 3

δb̃

b̃

)

= 0,

ik

(

δT1

T1
+
δa

a

)

− iω

(

β

a2
+
νb2

a

)

+
4

3
k2 η1

ǫ1 + P1
ν + 2ωk

η1

ǫ1 + P1

χ

ab2
= 0,

ik

(

δT2

T2
+
δã

ã

)

− iω

(

β̃

ã2
+
ν̃b̃2

ã

)

+
4

3
k2 η2

ǫ2 + P2
ν̃ + 2ωk

η2

ǫ2 + P2

χ̃

ãb̃2
= 0. (4.114)
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To find the eigenmodes, we first solve (4.113) for δa, δã, δb, δb̃, χ, χ̃, β and β̃ in terms of the
physical dynamical hydrodynamic variables δT1, δT2, ν and ν̃. Subsituting in that solution into
(4.114) leaves us with four equations for four variables, ν, ν̃, δT1 and δT2. We can represent
this, like in the previous discussion of the shear sector, via

QAB(ω, k)νB = 0, (4.115)

where νA = (ν, ν̃, δT1, δT2) and QAB is a 4×4 matrix. The dispersion relations of the eigenmodes
are obtained by requiring that the determinant of Q vanishes, just as in the shear sector.

First off, it is useful to examine the simplest case: two identical perfect fluids, i.e. when the
subsystems have the same number of degrees of freedom n1 = n2 and vanishing shear viscosity,
η1 = η2 = 0. Furthermore, the individual energy momentum tensors and effective metrics are
identical. Then the eigenmodes can be obtained from

ik a ν − iω

(

δs1

s1
+ 3

δb

b

)

= 0,

ik

(

δT1

T1
+
δa

a

)

− iω

(

β

a2
+
νb2

a

)

= 0. (4.116)

Remember that the full thermal equilibrium solution is parametrized by the temperature
T . We can vary (4.4) to arrive at

δT = T1(T )δa+ a(T )δT1, (4.117)

with δa = δã = (da(T )/dT )δT , δb = δb̃ = (db(T )/dT )δT and δT1 = δT2 = (dT1(T )/dT )δT .
We can now perturb the full energy momentum tensor by an infinitesimal velocity υ in the

z-direction and an infinitesimal temperature fluctuation, such that the non-zero components of
the energy momentum tensor are

T 00 = E +
dE
dT δT , T 11 = T 22 = T 33 = P +

dP
dT δT , T 03 = (E + P)υ. (4.118)

The conservation of the full energy-momentum tensor in flat space yields the linearized Euler
equations:

ikυ − iω
δS
S = 0, ik

δT
T − iωυ = 0. (4.119)

The diagonal components of the fluctuations can always be mapped to a change in δT even if
the systems are not identical. If we solve β and β̃ in terms of ν and ν̃ using the off-diagonal 03-
component of the coupling equations, and then compute the off-diagonal 03-component of the
full energy-momentum tensor, we can always define the υ of the full system as an appropriate
linear combination of ν and ν̃ by demanding the form (4.118) of the full energy-momentum
tensor.

We now focus on the off-diagonal component T 03. Specifically, we observe from (4.118) that

δT 03 = δT 0
3 = (E + P)υ, δT 3

0 = −(E + P)υ. (4.120)

With our assumptions for the effective metric and the perfect fluid forms of the energy-momentum
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tensor, we find

δt03 = δt̃03 =
P1

a2b2
β +

ǫ1 + P1

a
ν,

δt 3
0 = δt̃ 3

0 = −(ǫ1 + P1)νa,

δt03 = δt̃03 = (ǫ1 + P1)

(

b2

a
ν +

1

a2
β

)

. (4.121)

From (4.118), any consistent coupling equations should lead to

δT 3
0 = 2ab3δt 3

0 , δT 0
3 = 2ab3δt03. (4.122)

Furthermore thermodynamic identities for any consistent coupling ensure that E+P = 2ab3(ǫ1+
P1). Therefore it follows from (4.120), (4.121) and (4.122) that any consistent coupling equation
should imply

b2

a
ν +

1

a2
β = νa = υ. (4.123)

The coupling equations always ensure that conservation of the individual energy-momen-
tum tensor in the individual effective metric leads to conservation of the full energy-momentum
tensor in flat space.

We can show that the eigenmode of the full system corresponds to the thermodynamic sound
of the full system. To do this, we need to show that the Euler equations of the full energy-
momentum tensor in flat space will lead to the individual Euler equations being satisfied in the
individual effective metrics. We will need identical systems with identical energy-momentum
tensors living in identical effective metrics. Otherwise the number of conservation equations of
the full system are outnumbered by the individual conservation equations. At the linearized
level, we need to show that (4.119) implies (4.116).

We note that thermodynamic variation ensures that δS/S = 2δs1/s1 +3δb/b since S = 2s1b
3

in the case of identical systems. Similarly, δT /T = δT1/T1 +δa/a since T = T1a. It is then easy
to see that (4.119) implies (4.116) because of the two relations in (4.123) which follows from
consistent coupling equations. We then conclude that for any consistent coupling between two
identical systems with identical effective metric solutions at equilibrium, the thermodynamic
sound will correspond to one of the eigenmodes at the leading order in the derivative expansion.
In this mode, the velocity fields in the two identical systems are parallel to each other so that
ν̃ = ν.

Even for identical perfect fluid systems there is another eigenmode where δT1 6= δT2 and
ν 6= ν̃. In this mode, the velocity fields are anti-parallel to each other so that ν̃ = −ν.
Most importantly, the thermodynamic relation δT = δ(T1a) = δ(T2ã) is not satisfied by the
fluctuations. This mode does not travel at the speed of thermodynamic sound. When n1 6= n2,
it turns out that neither of the two eigenmodes does; in this case the thermodynamically defined
speed of sound is in between the velocities of the eigenmodes.

When the two systems are identical and we consider the eigenmode which at leading order
propagates at the speed of full system thermodynamic sound, we find that we cannot map
the first-order (identical) hydrodynamic fluctuations of the individual systems to that of a
hydrodynamic form for the full system. To see this, we may repeat the steps of the above
argument with χ = χ̃ 6= 0 and η1 = η2 6= 0 and find that for generic η1 the modified form of
(4.123) does not imply that we can obtain (4.116) with first-order corrections from the first-order
correction of (4.119) (linearized Navier-Stokes equation in flat space).
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Figure 4.21: Sound modes and their attenuation coefficients for equal and unequal conformal
systems, same κ = 1 (corresponding to ηi/si = 1/4π), with the slower mode a plotted in blue,
and the faster mode b plotted in orange. The black line represents the thermodynamic speed
of sound and associated attenuation coefficient from the Kubo formula. The green dashed line
shows the light-cone velocities squared of the two subsystems (in the case of n2 = 1/10 only ṽ2

is in plot region). In the case n1 = n2 the lines for c2
a,b meet and could be continued smoothly

by switching the designation; however for any n1 6= n2 we have cb > ca at nonzero γ1/4T . The
discontinuous behavior of the damping rates Γa,b for n1 = n2 is in fact the limit of smooth
curves as n1 → n2 from different starting values.
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The dispersion relations of the eigenmodes have the same characteristic sound-like form,

ω(a,b) = ±c(a,b)k − iΓ(a,b)k
2 + O(k3). (4.124)

The perturbative expansions of the speed of sound modes and their respective attenuation
coefficients are given by

ca =
1√
3

(

1 − 2(n1 + n2)γT 4 − 48n1n2γ
2T 8

)

+ O(γ3),

Γa =
κ1n1 + κ2n2

6πT (n1 + n2)
− n1n2(9κ1n1 − κ2n1 − κ1n2 + 9κ2n2)

3π(n1 + n2)2
γT 3 + O(γ2),

cb =
1√
3

(

1 − 8n1n2γ
2T 8

)

+ O(γ3),

Γb =
κ2n1 + κ1n2

6πT (n1 + n2)
− (n1 − n2)

(

2κ2n
2
1 + 7n1n2(κ1 − κ2) − 2κ1n

2
2

)

3π(n1 + n2)2
γT 3 + O(γ2), (4.125)

with the dependence on r = −γ′/γ showing up only in the higher-order terms.
For equal partial pressures, n1 = n2, the dependence of the sound attenuation coefficients

on κ1 and κ2 simplifies: both Γa and Γb are proportional to (κ1 + κ2) to all orders in γ1/4T .
Moreover, the attenuation coefficient of the faster mode, Γb, (which coincides with the thermo-
dynamically defined speed of sound (4.35)) becomes independent of the coupling γ1/4T .

Mode a has velocity and temperature fluctuation fields with perturbative expansions

ν̃ =
n1

n2

(

1 +
21

2
(n2 − n1)γT 4 + O(γ2, γ′2, k)

)

ν,

δT1 = ± T√
3

(

1 + 2n2γT 4 + O(γ2, γ′2, k)
)

ν,

δT2 = ±n1

n2

T√
3

(

1 +
1

2
(21n2 − 17n1) γT 4 + O(γ2, γ′2, k)

)

ν. (4.126)

and mode b similarly has

ν̃ = −
(

1 − 1

2
(n1 − n2)γT 4 + O(γ2, γ′2, k)

)

ν,

δT1 = ± T√
3

(

1 + 2n2γT 4 + O(γ2, γ′2, k)
)

ν,

δT2 = ∓ T√
3

(

1 +
1

2
(n2 + 3n1) γT 4 + O(γ2, γ′2, k)

)

ν. (4.127)

Above, the + sign refers to the case when the mode is propagating parallel to the momentum
k and − sign refers to the case of opposite propagation. For equal partial pressures, n1 = n2,
mode a and b have ν̃ = ν and ν̃ = −ν, respectively, to all orders.

It is instructive to compare the attenuation coefficients of the two modes with the full system
attenuation coefficient. The sound dispersion for a hydrodynamic system in flat space is given
by

ω = ±csk − iΓsk
2 + O(k3), (4.128)

where cs is the speed of thermodynamic sound and Γs = (2/3)(η/T S) is the attenuation coeffi-
cient. The shear viscosity, η, for the system was computed in (4.106). Interestingly, none of the
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Figure 4.22: Attenuation coefficients Γa,b of the sound eigenmodes (slower mode a in blue, faster
mode b in orange) for unequal conformal systems with different κ. The black line gives the Kubo
formula result for sound attenuation.

propagating modes attenuates in the expected hydrodynamic way, even when one mode travels
at the speed of thermodynamic sound, as is the case for identical subsystems.

The nonperturbative results for the speeds and attenuations of the propagating modes in the
sound channel have been plotted in Fig. 4.21 and 4.22, respectively. Two cases are considered,
one where both fluids are strongly coupled and the other, where one is more weakly coupled
than the other. Furthermore, the hydrodynamic sound attenuation Γs of the full system is
included for comparison. We find that for equal partial pressures, n1 = n2, the value of ca,b

coincide for two points: at the decoupling limit γ1/4T = 0 and one finite value of γ1/4T . For
unequal partial pressures, n1 6= n2, the crossing at the latter point is lifted, such that mode b
is always faster than mode a for γ1/4T > 0. A cusp in ca,b develops in the limit n1 → n2, while
Γa,b becomes discontinous. As we deduced previously from the perturbative series, for equal

partial pressures, max(Γa,Γb) is a constant independent of γ1/4T and the results for the two
modes could all be connected smoothly.

Fig. 4.23 displays ṽ/v for the corresponding sound eigenmodes as well as the associated
(adiabatic) fluctuations of the total entropy density Sµ=0. The discontinuities at n1 = n2 are
spurious and only arise when taking the limit n1 → n2 starting from n1 6= n2.

In summary, our findings for the sound sector are:

1. The thermodynamic speed of sound of the full system, cs, is always between the velocities
of the two sound modes ca and cb, that is ca ≤ cs ≤ cb, and coincides exactly with one of
the modes for n1 = n2.

2. At high temperatures, cs and cb approach 1/
√

3 due to emergent conformality.

3. At temperatures above the crossover from weak to strong inter-system coupling, the ve-
locity of the faster mode (b) quickly approaches the thermodynamically defined speed of
sound.

4. Near the crossover temperature, the velocity fields of the two modes change their phase
with v (or ṽ) vanishing at a certain value of γ1/4T for mode a (or b). Mode a has out-
of-phase oscillations for large γ1/4T with decreasing total entropy fluctuations δSµ=0 and
speed slower than the thermodynamic speed of sound.
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Figure 4.23: Left panel: the relation between the velocity amplitudes ν and ν̃ of the sound
eigenmodes displayed in Fig. 4.20 in the form ξ ≡ 2

π arctan(ν̃/ν). Right panel: the corresponding
fluctuation amplitude of the total entropy density, δS ≡ δSµ=0, divided by νT 3. Mode a and b
are given in blue and orange, respectively, with full and dashed lines representing n1 = n2 = 1
and n1 = 1, n2 = 1/10. The divergence of δS/(T 3ν) of mode a at one value of γ1/4T is due to
a zero of ν (corresponding to |ξa| = 1); here a velocity field is present only in subsystem 2.

5. While cs and cb can become larger than the effective light-cone speeds v, ṽ, the velocity of
the slower mode, ca, remains smaller than v, ṽ. This mode thus lies within both effective
light cones.

6. The value of the attenuation coefficient obtained from the Kubo formula is between that
of the sound modes for large γ1/4T .

7. While the dependence of the attenuation coefficients on γ1/4T is in general complicated,
at temperatures sufficiently above the crossover region the slower “non-acoustic” sound
mode is always the more weakly damped one.

8. The coupling studied in our setup provides no pure damping modes, i.e. the imaginary
part of the speed of sound vanishes as k → 0. This reflects the fact, that this interaction
is not sufficient to equilibrate the two subsystems, e.g. in a homogeneous configuration
with subsystems at unequal temperatures.

4.4 Coupling a kinetic sector to a strongly coupled fluid

We now turn our attention to coupling a kinetic theory to a hydrodynamic sector in this
section. We do this to obtain a qualitative understanding of a coupled system of weakly inter-
acting and strongly interacting degrees of freedom. The system we have in mind is comprised of
a subsystem S1, a gas of massless particles (gluons) described by kinetic theory, and subsystem
S2, a strongly interacting holographic gauge theory described by dual gravitational perturba-
tions of a black hole, which are coupled via the mutual effective metric coupling. Using the
fluid/gravity correspondence [70], we may further simplify gravitational dynamics to that of
a fluid with a low value of η/s if we are interested in the long time dynamics. Due to the
appearance of spurious modes and associated acausalities we will need to embed first-order
hydrodynamics in a more complete description, i.e. in an Israel-Stewart framework with an
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4.4. COUPLING A KINETIC SECTOR TO A STRONGLY COUPLED FLUID 73

extremely small relaxation time. In the future we plan to do a more complete calculation by
involving the relaxation dynamics of the strongly coupled sector as described holographically
via quasi-normal mode perturbations of a black brane.

It is useful to revisit some of the discussion regarding kinetic theory in curved spacetime
from Sec. 2.3. We will follow the discussion found in Refs. [89, 116]. Ignoring for simplicity
effects of quantum statistics and thermal corrections, the thermal equilibrium of the weakly
coupled and dilute kinetic sector is described by a Maxwell-Jüttner distribution

f0(pi) = n0e
pµuµ/T1 , (4.129)

where we have assumed that the distribution function is homogeneous and isotropic. Further-
more, we need to provide a mass-shell condition. We are interested in describing massless
gluons, so we can determine p0 via

pµpνgµν = 0. (4.130)

We now define

p ≡
√

px2 + py2 + pz2, (4.131)

so that we can determine using (4.1) that

p0 = p
b

a
. (4.132)

Recalling from (4.2) that the four-velocity is uµ = (−a, 0, 0, 0), leads us to

f0(pi) = n0e
−pb/T1 . (4.133)

We are left to determine the normalization constant of the distribution function, n0. Recall
that the energy-momentum tensor corresponding to a quasi-particle distribution f is given
by (2.51) with p0 = g0µp

µ satisfying the mass-shell condition, i.e. p0 = −a2p0. As before,√−g = ab3. The equilibrium conformal energy-momentum tensor then takes our previously
assumed form (4.2):

tµν = diag

(

3n1T
4
1

a2
,
n1T

4
1

b2
,
n1T

4
1

b2
,
n1T

4
1

b2

)

, (4.134)

where n1 is our previously introduced (theory-dependent) parameter if we identify

n0 = n1π
2. (4.135)

Therefore, to make contact with the previous sections, we will set n0 to n1π
2.

For convenience, we use spherical coordinates for the components of the momenta, so that

px = p sin θ cosφ,

py = p sin θ sinφ

pz = p cos θ. (4.136)

A linearized fluctuation of the quasi-particle distribution about equilibrium can be written as:

f(p, θ, φ, xi, t) = n1π
2e−pb/T1 + δf(p, θ, φ, xi, t). (4.137)
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For computational purposes, it is useful to split the linear term δf into two parts, one con-
tribtuting to the dissipation and one not, each having a specific momentum k and a specific
frequency ω component, according to

δf(p, θ, φ, xi, t) =
(

δf (eq)(p, θ, φ) + ∆f(p, θ, φ)
)

ei(k·x−ωt). (4.138)

The term δf (eq) can be defined uniquely such that it produces a perturbation δtµν (eq) in the
energy-momentum tensor that is of a perfect fluid form. Only the term ∆f will contribute to
the dissipation. If δgµν is the self-consistent effective metric fluctuation in the kinetic theory,
then in the relaxation time approximation δf obeys the linearized Boltzmann equation, also
known as the Anderson-Wittig equation:

(

∂t +
pi

p0
∂i

)

δf − δΓi
βγ

pβpγ

p0

∂

∂pi
f0 = −a

τ
∆f, (4.139)

where δΓµ
αβ is the linearized Levi-Civita connection obtained from δgµν . Note that p0 also

receives a corresponding linear contribution, such that the mass-shell condition is satisfied.
Furthermore, in a conformal theory τ should be proportional to T−1

1 and we may parametrize

τ(T1) =
5κ1

4πT1
(4.140)

where κ1 is a dimensionless constant, which will be eventually identified with 4πη1/s1 as before.
Furthermore, we will embed the strongly coupled fluid into an Israel-Stewart framework,

where the relaxation time is set to

τ̃(T2) =
5λ

4πT2
. (4.141)

In order to isolate the strongly coupled fluid from the relaxation dynamics, we will take λ very
small, such that τ̃ is small. Unlike the kinetic sector where τ determines the shear viscosity
(this can be seen via consistent reduction to hydrodynamics), note that τ̃ is an independent
parameter which only affects second-order hydrodynamics.

4.4.1 Branch cut in response functions of the kinetic sector

We can show that an infinite number of quasi-particle distribution fluctuations decouple from
the strongly coupled sector in the sense that all perturbed observables will get contributions
purely from the kinetic sector. For instance, it is easy to see that fluctuations of the form

δf = F (p)G(θ, φ)e−iωt+ik·x, with G(θ, φ) = H1(θ) cos(nφ) +H2(θ) sin(nφ)

and n ≥ 3 (4.142)

have vanishing fluctuations of the energy-momentum tensor

δtµν ∝
∫

d3p

p0
pµpνδf(x,p, t) = 0. (4.143)

Also, if all the perturbations in the strongly coupled fluid are set to zero, we can then self-
consistently assume that the coupling equations yield

δgµν = δg̃µν = 0. (4.144)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.4. COUPLING A KINETIC SECTOR TO A STRONGLY COUPLED FLUID 75

✲ Re ω/T

✻

Im ω/T

−k/T k/T

•••••••••••••••••••••••••••••••••••••••••••••••••••s s

−
k
T

a
b

−i 4π
5κ

1

k
T

a
b

−i 4π
5κ

1

x−i
Γ

0

T

Figure 4.24: Analytic structure of the response function in the kinetic sector. The branch
cut arising from (4.146) is given by the thick black line. The pole corresponding to the pure
damping mode (4.166), which lies on the second Riemann sheet, is indicated by the cross in
violet.

In this case we have δf = ∆f and the linearized Anderson-Wittig equation (4.139) reduces to

(

ω − a

b
n · k + i

a

τ

)

δf = 0, (4.145)

where ni = pi/p and τ is the relaxation time in the kinetic sector as defined in (4.140). Choosing
without loss of generality k along the z-direction we obtain

ω =
a

b
k cos θ − i

a

τ(T1)
= vk cos θ − i

1

τ(T )
, (4.146)

where we have used that T1a = T at equilibrium with T being the physical temperature of the
full system. The above dispersion relation is summarized in Fig. 4.24. There is a branch cut in
the response function that stretches in the lower half of the complex ω plane horizontally from
−(a/b)k−i/τ(T ) to (a/b)k−i/τ(T ). Physically, the factor of v = a/b is the effective equilibrium
light-cone velocity, which reflects that the massless gluons propagate along this effective light
cone. The imaginary part turns out to receive no correction when expressed in terms of the full
system temperature T .

4.4.2 Poles in response functions of the kinetic sector

We now consider quasi-particle distribution fluctuations which are dissipative. As in Sec.
4.3, we can split the propagating modes of the full theory into shear, sound, and tensor channels.
Again, we will focus our attention particularly on the shear and sound channels – the tensor
channel has no hydrodynamic mode. In order to characterize it properly, we would require to
embed the strongly coupled fluid into gravity, which is beyond the scope of this thesis.

We find that some of the propagating modes in both the shear and sound channels are
identical to the case of the conformal bi-hydrodynamics. This is not surprising, as both the
kinetic and Israel-Stewart sectors can be consistently truncated to conformal hydrodynamics
individually. In particular, we will see that with the parametrization (4.140) of the kinetic
relaxation time, we get exactly the same results as before, when we identify κ1 with 4πη1/s1.
Reproducing the results from bi-hydrodynamics provides a consistency check of our calculations.
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In addition to the bi-hydrodynamic modes detailed in the previous section, there are two
other non-hydrodynamic propagating modes in the full system in both the shear and sound
channel. These contribute poles in the response function. We find that one of these modes is
continuously connected to the damping in the kinetic sector as we switch off the effective metric
coupling. This is particularly worthy of attention since in the case of the hydrodynamic sector,
Israel-Stewart dynamics has been used simply as a tool for consistent embedding hydrodynam-
ics and not for capturing actual relaxation dynamics. We will see that if the Israel-Stewart
relaxation time is set to zero by taking λ → 0 limit, the other damping mode has a smooth
limit that captures the effective metric interactions of the kinetic sector with a strongly coupled
fluid. Furthermore, if we take k → 0 limit, there is no way to distinguish the shear and sound
channels owing to rotational symmetry of the equilibrium. Thus, we find that the damping
coefficient of the full system will then be the same in both shear and sound channels. This
provides a consistency check of our calculations.

Let us first focus on the shear channel. The effective metric fluctuations of the two sectors
will be given by (4.81) and (4.82). In the kinetic sector, the local mass-shell condition (4.130)
will imply that at the linearized level:

p0(p, θ, φ, z, t) =
pb

a
+ δp0(p, θ, φ, z, t),

δp0(p, θ, φ, z, t) = p

(

β

a2
+
γ13

ab
cos θ

)

sin θ cosφ ei(kz−ωt). (4.147)

Recall that the four velocity has a self-consistent fluctuation of uµ = (1/a, νei(kz−ωt), 0, 0) and
that there is no fluctuation in the temperature in the shear channel. Furthermore, we obtain:

pµu
µ = −pb+

p

b
(νb3 − γ13 cos θ) sin θ cosφ ei(kz−ωt). (4.148)

The linearized fluctuation of the quasi-particle distribution function takes the form (4.138) with
k in the z-direction and we find

δf (eq)(p, θ, φ) = e
− pb

T1
p

T1b
(νb3 − γ13 cos θ) sin θ cosφ. (4.149)

We compute δf (eq) by considering the fluctuation in pµu
µ since the local equilibrium distribution

by definition takes the form n1π
2e−pµuµ/T1 . Note that δf (eq) indeed reproduces the fluctuation

in the energy-momentum tensor which takes a perfect fluid form.
The linearized Boltzmann equation (4.139) can then be explicitly solved to obtain:

∆f(p, θ, φ) = f0
p sin θ cosφ

(−(β + νab2)bω + (kνa2b2 − aγ13ω) cos θ
)

T1ab(−ω + k a
b cos θ − ia

τ )
. (4.150)

In the kinetic sector, the energy-momentum tensor (2.51) assumes the linearized form

tµν = diag
(

ǫ1
a2
,
P1

b2
,
P1

b2
,
P1

b2

)

+ δtµν , ǫ1 = 3P1 = 3n1T
4
1 , (4.151)

with the non-vanishing components of δtµν :

δt01 = −P1β + (P1 + ǫ1)νab2

a2b2
ei(kz−ωt), δt13 =

(

−P1γ13

b4
+ π13

)

ei(kz−ωt), (4.152)
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where

π13 =
1

8π3

∫ ∞

−∞
dp
∫ π

0
dθ
∫ 2π

0
dφ p3b2 cos θ sin2 θ cosφ ∆f(p, θ, φ). (4.153)

Comparing (4.152) with (4.85), we see that the perfect fluid parts of the energy-momentum
tensor perturbation match perfectly. The dissipative contribution in (4.152) originates from ∆f
and is given by π13. Using the solution (4.150) for ∆f in (4.153) we find that:

π13 =
2n1T

4
1

k5a5b2τ4

(

γ13ω(ia+ τω) + k(−iνa2b2 + βτω)
)

(4.154)
(

2k3a3τ3 + 3kab2τ(a− iτω)2

+3(iab+ bτω)(−k2a2τ2 + (iab+ bτω)2)arctanh
(

kaτ

iab+ bτω

)

)

.

In order to obtain the hydrodynamic limit, we need to expand the right hand side above for
small τ , which yields

π13 = −i4n1T
4
1 τ

5ab4

(

kνab2 − γ13ω
)

+ O(τ2). (4.155)

From the above expansion, it is clear that the expansion in τ is essentially the derivative expan-
sion. Substituting the above form of π13 in (4.152) and comparing again with the hydrodynamic
form (4.85), we find a perfect match, if we identify

η1 =
4n1T

4
1 τ

5
, (4.156)

i.e. η1/s1 = T1τ/5 and κ1 = 4πη1/s1 as we have claimed.
The energy-momentum conservation equation with δtµν given by (4.152) and the metric

perturbation given by (4.82) amounts to:

∇µt
µν = ∂µδt

µν + Γν
µα[δgµν ]t(0)µα + Γα

µα[δgµν ]t(0)µν = 0

⇒ (ǫ1 + P1)(β + νab2)ω − ka2b2π13 = 0. (4.157)

It is straightforward to check that the above reduces to the standard hydrodynamic equation
(4.87) when π13 is approximated by (4.155). We can regard (4.154) and (4.157) as dynamical
equations for π13 and ν.

One can explicitly check that the conservation equation (4.157) is equivalent to the linearized
version of the matching condition

uµ(tµν − tµν (eq)) = 0, (4.158)

in which the projected energy-momentum tensor obtained from the full quasi-particle distribu-
tion f should agree with that obtained from f (eq). In fact, this matching condition is necessary
to ensure energy-momentum conservation. At the level of linearized shear-sector fluctuation,
the matching condition reduces to

∆t01 ≡ 1

8π3

∫ ∞

−∞
dp
∫ π

0
dθ
∫ 2π

0
dφ

p3b3

a
sin2 θ cosφ ∆f(p, θ, φ) = 0. (4.159)

Explicitly, we can check that if we use ∆t01 = 0 with the on-shell form of ∆f given by (4.150)
and the equation of motion (4.154) for π13 to solve for the variables ν and π13, we find that
indeed the energy momentum tensor (4.157) is conserved.
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Embedding the holographic conformal fluid (with ǫ2 = 3P2 = 3n2T
4
2 as in the previous

subsection) in the Israel-Stewart framework we obtain:

δt̃01 = −P2β̃ + (P2 + ǫ2)(ν̃ab)2

ã2b̃2
ei(kz−ωt), δt̃13 =

(

−P2γ̃13

b̃4
+ π̃13

)

ei(kz−ωt). (4.160)

The linearized Israel-Stewart equation of motion of π̃13 is:

(−ib̃τ̃ω + (ãb̃)4)π̃13 − iη2γ̃13ω − ikη2ν̃ab
2 = 0. (4.161)

The conservation of energy-momentum tensor is similar to that of the kinetic sector in (4.157):

(ǫ2 + P2)(β̃ + ν̃ab2)ω − kã2b̃2π̃13 = 0. (4.162)

The equations (4.161) and (4.162) are the equations of motion for π̃13 and ν̃. Recall that the
hydrodynamic limit is reproduced for small τ̃ .

We once again parametrize:

η2 =
n2κ2

π
T 3

2 . (4.163)

Later, we will take the limit λ → 0 in which τ̃ (4.141) vanishes.
We now repeat the steps in the previous subsection. First, we use the coupling equations

(4.90) to solve for β, β̃, γ13 and γ̃13 in terms of the physical variables ν, ν̃, π13 and π̃13. Next,
we substitute these solutions for β, β̃, γ13 and γ̃13 in the dynamical equations, namely (4.154),
(4.157), (4.161) and (4.162) to obtain the 4 × 4 matrix equations:

QAB(ω, k)ΛB = 0 (4.164)

where ΛB = (ν, π13, ν̃, π̃13). Finally, we obtain the eigenmodes ω(k) by solving detQ = 0 at
each k.

There are four propagating modes for each k as discussed earlier. Two of these exactly
reproduce the bi-hydro shear-like eigenmodes obtained earlier with diffusion constants Da and
Db. This serves as a consistency check.

Additionally, there are two relaxation eigenmodes. One of these eigenmodes is related to the
Israel-Stewart relaxation mode. Its damping constant becomes large for small λ and therefore
can be decoupled. The corresponding propagating mode in this limit is localized mostly in the
Israel-Stewart sector and involves the following combination of π13 and π̃13 where

π13 =
(

4n1

5
γT 4 + O(γ2T 8)

)

π̃13 (4.165)

when γT 4 is small.
The damping constant of the other relaxation mode remains finite. It is of the form

ω(k) = −i
[

Γ0 + O(k2)
]

(4.166)

with perturbative expansion in the limit λ → 0 according to

Γ0 =
4πT
5κ1

+
16πn1n2(5κ1 − 4κ2)

125κ2
1

γ2T 9 + O(γ3). (4.167)

This is interesting because the Anderson-Witting kinetic theory does not have a non-hydrodynamic
pole – the mutual metric coupling evidently causes a pole to be generated from the branch cut
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Figure 4.25: Pure damping modes (identical in shear sector and sound sector). Left panel:
damping constant Γ0 that remains finite when λ → 0; right panel: damping constant ΓI of
the Israel-Stewart relaxational mode which is large for small λ (however, λ cannot be made
arbitrarily small at large γ1/4T , see text).

discussed above (for γT 4 → 0 it coincides with the cut). This pole is farther from the real
axis than the cut when κ1 > κ2, i.e. when the kinetic sector is more weakly coupled than the
second sector described by pure hydrodynamics. The corresponding propagating mode involves
the following combination of π13 and π̃13 where

π̃13 =
(

4n2κ2

5κ1
γT 4 + O(γ2T 8)

)

π13, (4.168)

so that it is mostly localized in the kinetic sector as expected in the limit of small γT 4.
Interestingly, when 5κ1 = 4κ2 all corrections to Γ0/T vanish and we find that Γ0/T =

4π/5κ1, as the perturbation series (4.167) indicates. However, in this case the λ → 0 limit
becomes sick because the other mode becomes unstable. This is consistent with the expectation
that the non-kinetic sector should have a lower η/s as it is more strongly coupled.

Furthermore, the departure of Γ0/T from its decoupling limit value 4π/5κ1 in the full
calculation is found to be very small for any value of γ1/4T (see the left panel of Fig. 4.25).
The damping constant ΓI of the Israel-Stewart relaxational mode is evaluated in the right panel
which is indeed large for all γ1/4T for the small value of λ chosen. However, it turns out that
one cannot take the limit λ → 0 for large γ1/4T , since ΓI diverges at a certain value of γ1/4T
beyond which it turns negative, corresponding to an instability. One thus has to keep λ finite
in order to decouple this mode.

Repeating the same calculation in the sound channel, we find that we indeed reproduce the
bi-hydro sound sector modes and the same damping coefficient Γ0.

A remarkable outcome from our calculations is that non-hydrodynamic observables turn out
to receive mild or no non-perturbative corrections even when the hydrodynamic sector receives
large qualitative and quantitative modifications.
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Chapter 5

Time evolution of a toy
semiholographic glasma

In the present chapter, we describe a toy model of glasma, semiholographically coupled
to a black hole via a scalar operator. In Sec. 5.1, we will first describe the setup in general,
discussing the details of coupling an arbitrary dimensional semiholographic scalar coupling
between classical Yang-Mills and a black hole, before moving on in Sec. 5.1.1 and 5.1.2 to detail
the specifics of the model that we consider. In order to simplify the simulation presented in
this chapter, we will model the hard sector by a classical Yang-Mills theory in 2 + 1 dimensions
and the soft sector by a gravitational theory in 3 + 1 dimensions (although the field theoretic
dual in this case is unknown). We are confident that the qualitative behavior of the system will
not change in a 3 + 1 dimensional spacetime. In Sec. 5.3, we demonstrate that energy is indeed
transferred from the hard sector to the soft sector via this coupling.

This chapter is based on [37].

5.1 Scalar coupling between Y M and AdS

As mentioned above, we model the hard degrees of freedom by a classical Yang-Mills theory.
This is in agreement with the CGC and glasma description of the early stages of the QGP
[117, 118]. We extend the glasma picture by including soft degrees of freedom by including
a holographic description. Practically speaking, we replace non-perturbative QCD by N = 4
super Yang-Mills theory, which at infinite coupling and a large number of colors allows for a
dual description in terms of classical supergravity.

In this discussion, the number of spacetime dimensions d will be kept arbitrary, before we
specify the dimension in the next section. The interaction between the hard and soft sectors is
established by deforming each of the sectors with gauge independent single trace operators of
the respective other.

The (coarse-grained) operators at our disposal in the effective description of the soft sector
are the energy momentum tensor T µν , the glueball density operator H, and the Pontryagin
density A, as discussed in [33]. In the present chapter, we will restrict ourselves to the coupling
of the scalar operator H only. This is obtained from the generating functional, W , by varying
with respect to the source, h, e.g.

H =
1√−g

δW [h]

δh
, (5.1)
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82 CHAPTER 5. TIME EVOLUTION OF A TOY SEMIHOLOGRAPHIC GLASMA

where gµν is the metric of the spacetime. In this context, the background metric gµν serves as
a computational device and will be set to the Minkowski metric ηµν eventually. Note that a
non-trivial choice for the source corresponds to a marginal deformation of the theory.

Starting from the classical Yang-Mills action, we can also easily deform the hard sector with
a scalar operator by adding a source term

SYM = − 1

4g2
YM

∫

ddx
√−g (1 + χ(x))F a

µνF
aµν , (5.2)

with the Yang-Mills coupling constant gYM and a is an SU(N) color index running from 1 to
N . The non-Abelian field strength in terms of the gauge field is given by Fµν = ∂µAν −∂νAµ −
i[Aµ, Aν ]. Some observations are in order. First, we notice that this deformation amounts to
locally rescaling the Yang-Mills coupling constant gYM. Second, a calculation of the reponse
analogous to (5.1) yields

1√−g
δSYM

δχ
= − 1

4g2
YM

F a
µνF

aµν . (5.3)

In the next step, as outlined in Chapter 3, we bring the two deformed sectors into contact by
simply adding SYM[Aµ, χ] and W [h] supplemented with an interaction term for the two scalar
deformations

S = − 1

4g2
YM

∫

ddx
√−g (1 + χ(x))F a

µνF
aµν +W [h] − Qd

s

β

∫

ddx
√−ghχ. (5.4)

The saturation scale Qs appears for dimensional reasons and is accompanied by a phenomeno-
logical dimensionless free parameter β, which allows for the tuning of the interaction between
the two sectors.

Inspecting (5.4) immediately reveals that the two scalar fields, H and h, are non-dynamical,
i.e. auxiliary fields. Computing their equations of motion yields

h = − β

4Qd
sg

2
YM

F a
µνF

aµν , χ =
β

Qd
s
H, (5.5)

which indeed connects the deformations of each sector to gauge independent single trace oper-
ators of the respective other sector. After integrating out H and h the action becomes

S = − 1

4g2
YM

∫

ddx
√−gF a

µνF
aµν +W

[

− β

4Qd
sg

2
YM

F a
µνF

aµν

]

. (5.6)

This form of the action is discussed in general, including the tensor and pseudoscalar coupling
channels in [33].

Let us now turn to the equations for the dynamical degrees of freedom: the gauge field Aµ

and the expectation value H. The equation of motion arising from the variation w.r.t. the gauge
field reads

Dµ

[(

1 +
β

Qd
s
H
)

F aµν
]

= 0, (5.7)

where the gauge covariant derivative is Dµ = ∇µ − iAa
µT

a with ∇µ denoting the Levi-Civita
connection of the background metric gµν .

For calculating H we employ the holographic dictionary, which maps the generating func-
tional W to the (d+1) dimensional classical on-shell supergravity action and operators to fields
in the gravity theory satisfying asymptotically AdS boundary conditions. The relevant terms
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5.1. SCALAR COUPLING BETWEEN YM AND ADS 83

of the action for our purposes are given by the Einstein–Hilbert action with a cosmological
constant coupled to a massless Klein-Gordon scalar field

Shol =
1

2κ

∫

dd+1x
√

−G
(

R− 2Λ − 1

2
(∇φ)2

)

, (5.8)

where κ = 8πG, the cosmological constant is Λ = − (d−1)(d−2)
2L2 and we set the AdS radius L = 1.

The bulk equations of motion arising from (5.8) are

GMN ∇M ∇Nφ = 0 ,

RMN − 1

2
RGMN − ΛGMN = κ(∇Mφ∇Nφ− 1

2
GMN (∇φ)2) . (5.9)

In Fefferman-Graham coordinates, where ρ = 0 denotes the location of the conformal bound-
ary of the (d+1) dimensional spacetime, the metric and the scalar field have the following
asymptotic expansions [119]:

Gµν =
1

ρ

(

g(0)µν + . . .+ ρd/2g(d)µν + O(ρd/2 log(ρ))
)

, (5.10)

φ = φ(0) + . . .+ ρd/2φ(d) + O(ρd/2 log(ρ)), (5.11)

from which we can read off the expectation values

Tµν =
d

κ
g(d)µν +Xµν , (5.12)

H =
d

κ
φ(d) + ψ(d), (5.13)

where Xµν and ψ(d) are local functionals of the boundary sources. The leading coefficient in
the metric expansion is fixed by the background metric, i.e. g(0)µν = gµν . The non-normalizable
mode of the scalar field φ(0) is dual to the source in the generating functional W , which in our
setup is related to the Lagrange density of the classical Yang-Mills sector

φ(0) = − β

4Qd
sg

2
YM

F a
µνF

aµν . (5.14)

We conclude this section by briefly discussing the energy momentum tensor of our semiholo-
graphic model

Tµν = tµν
YM + T µν + tµν

int (5.15)

=
1

g2
YM

(

1 +
β

Qd
s
H
)(

FµαF ν
α − 1

4
gµνFαβF

αβ
)

+ T µν − hHgµν . (5.16)

Each of the three contributions is obtained by the variation of the corresponding term in (5.4)
with respect to gµν and employing Eqs. (5.5). We will refer to tµν

YM as the Yang-Mills energy
momentum tensor, T µν as the holographic energy momentum tensor (computed in (5.12)) and
tµν
int as the interaction energy momentum tensor. Note that this expression defines the interaction

energy in a different way than in [33], where the terms in tµν
YM proportional to H were assigned to

the interaction energy momentum tensor. The assignment of the contributions to the different
sectors is somewhat arbitrary. The advantage of the above form is that tµν

int only consists of the
deformation terms, which in our case are the two simplest gauge independent single trace scalar
operators.
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The conservation of the energy momentum tensor ∇µT
µν = 0 is implied by separate Ward

identities in the respective sectors of our model

∇µT µν = H∂νh, (5.17)

∇µt
µν
YM =

Qd
s

β
h∂ν

(

1 +
β

Qd
s
H
)

. (5.18)

The sum of the terms on the right hand side is precisely −∇µt
µν
int. Furthermore, we also want

to mention the trace anomalies of the individual sectors, which read

gµνT µν = (d− 4)Hh+A, (5.19)

gµνt
µν
YM = (d− 4)

(

1 +
β

Qd
s
H
)

Qd
s

β
h, (5.20)

where A denotes the holographic conformal anomaly, which is a local functional of the boundary
sources and vanishes for the case considered below. Note that in general even if both T µν and
tµν
YM are tracefree, eg. for gµν = ηµν and d = 4, the full system is not conformal due to the

contribution gµνt
µν
int = −d Hh. This is a similar situation as discussed in the bi-hydrodynamics

case with the tensor coupling in Chapter 4, where the two conformal subsystems coupled semi-
holographically led to a full system which was not conformal generally.

5.1.1 Classical Yang-Mills sector

For the numerics presented in the next section, we will work in a d = 2 + 1 dimensional
spacetime with gµν = ηµν and restrict to isotropic homogeneous SU(2) color gauge fields in
temporal gauge, Aa

0 = 0, A3
0 = 0 with a = 1, 2. To further simplify this toy model as far as

possible, we make tµν
YM diagonal by assuming color-space locking, Aa

i = δa
i f(t) and A3

i = 0 with
i = 1, 2. The single remaining degree of freedom f(t) satisfies an equation for an anharmonic
oscillator with time dependent damping obtained from (5.7)1

f ′′(t) + f(t)3 = f ′(t)
βH′

1 + β
Q3

s
H
. (5.21)

The energy density and the pressure are

ε =
1 + β

Q3
s
H

2g2
YM

(2f ′(t)2 + f(t)4), p =
1 + β

Q3
s
H

2g2
YM

f(t)4 . (5.22)

The source for the dilaton in terms of the YM fields is given by (5.5)

h =
β

2Q3
sg

2
YM

(2f ′2 − f4). (5.23)

5.1.2 Holographic sector

To be consistent with the YM sector we also impose homogeneity and isotropy in the spatial
field theory directions of the bulk theory of the holographic sector. We make the following
ansätze for the metric and the massless scalar field in in-going Eddington-Finkelstein coordinates

ds2 = −A(r, v)dv2 + 2dvdr + S2(r, v)(dx2
1 + dx2

2), φ = φ(r, v) . (5.24)

1Eq. (5.21) is an unforced damped nonlinear Duffing equation. The latter appears in many contexts and has
been extensively studied [120,121].
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We fix the residual gauge freedom r → r + ξ(v) of the metric by setting ξ = 0. The equations
of motion (5.9) then take the following form2

S′′ = −κ

4
S
(

φ′)2 , (5.25)

Ṡ′ =
3S

2
− ṠS′

S
, (5.26)

φ̇′ = − Ṡφ′

S
− φ̇S′

S
, (5.27)

A′′ =
4ṠS′

S2
− κφ̇φ′ , (5.28)

S̈ =
ṠA′

2
− κφ̇2S

4
, (5.29)

where prime denotes radial derivatives f ′ = ∂rf and the dot-derivative is defined as ḟ =
∂vf − 1

2A(r, v)∂rf . Near the boundary, r = ∞, solutions to these equations can be expressed
as power series in r

A(r, v) = r2
∞
∑

n=0

an(v)r−n , (5.30)

S(r, v) = r
∞
∑

n=0

sn(v)r−n , (5.31)

φ(r, v) = κ
∞
∑

n=0

φn(v)r−n . (5.32)

Fixing the conformal boundary metric to Minkowski ds2
b = r2ηµνdx

µdxν determines the leading
coefficients a0 = 1 and s0 = 1, and the gauge choice ξ = 0 determines the subleading coefficient
a1 = 0. Solving the equations order by order in r gives

A(r, v) = r2 − 3

4
φ′

0(v)2 + a3(v)
1

r
+ O(r−2) , (5.33)

S(r, v) = r − 1

8
φ′

0(v)2 1

r
+

1

384

(

φ′
0(v)4 − 48φ3(v)φ′

0(v)
) 1

r3
+ O(r−4) , (5.34)

φ(r, v) = φ0(v) + φ′
0(v)

1

r
+ φ3(v)

1

r3
+ O(r−4) , (5.35)

where the normalizable modes φ3(v) and a3(v) remain undetermined in this procedure and need
to be extracted from the full bulk solution. Furthermore one obtains the relation

a′
3(v) =

1

8

(

12φ3φ
′
0(v) − 3φ′

0(v)4 + 4φ′′′
0 (v)φ′

0(v)
)

. (5.36)

In order to identify the expectation values of the energy momentum tensor and the scalar
operator it is convenient to asymptotically transform the series solutions (5.33) and (5.35)
to Fefferman-Graham coordinates (5.10). The relevant coefficients in the Fefferman-Graham
expansion in terms of their Eddington-Finkelstein counterparts are given by

φ(0) = φ0, φ(3) = φ3 +
1

3
φ′′′

0 − 1

4
(φ′

0)3, g(3)ij =
1

3
diag(−2a3, a3, a3) . (5.37)

2It is interesting to note that these equations are equivalent to those of a homogeneous but anisotropic black
brane without scalar matter.
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The expectation values of the energy momentum tensor and the scalar operator are then given
by

Tµν =
3

κ
g(3)µν =

1

κ
diag(−2a3,−a3,−a3) , (5.38)

〈O〉 ≡ H =
3

κ
φ(3) =

3

κ
(φ3 +

1

3
φ′′′

0 − 1

4
(φ′

0)3) . (5.39)

Evaluating the holographic Ward identity (5.17) reproduces the relation (5.36) we find from
solving the near boundary expansion

(g(3)0
0)′ = φ(3)φ(0) . (5.40)

5.2 The iterative procedure

In this section we describe how we obtain solutions for given values for the couplings β and
gYM for the time evolution problem of the coupled system (5.21), (5.25)–(5.29), given initial
energies in the Yang-Mills sector (ǫini

Y M ) and the holographic sector (ǫini
hol).

We proceed to solve the coupled system in an iterative manner, which is summarized in
Fig. 5.1. We initialize the iterative loop with an initial guess for the gauge field, f(t), which we
get from solving the uncoupled YM equation (5.21) with β = 0:

f(t)′′ + 2f(t)3 = 0 . (5.41)

This is just the equation for an anharmonic oscillator, with solutions given in terms of the
Jacobi elliptic function

f(t) = ± 4
√

2C sn





4

√

C

2
(t− t0)

∣

∣

∣

∣

∣

∣

− 1



 , (5.42)

where the integration constant C/g2
YM = ǫini

Y M can be identified via (5.22) with the initial energy
in the YM-sector. Without loss of generality we set t0 = 0, which corresponds to our initial
time.

Using this initial guess (5.42) with a particular value for β, we compute the time dependent
boundary source for the gravity system φ(0)(t) = h(t) via (5.23). This serves as the input
for the gravity system, which we can now evolve using the spectral method as in [122], using
20 Chebyshev grid points in the holographic direction and a 4th order Adams-Bashforth time
stepping algorithm with step size ∆t = 1/800. In order to get a well defined initial value
problem resulting in a stable time evolution, it is necessary to choose a computational domain
in the bulk direction that contains the apparent horizon rah, defined by Ṡ(t, r)|rah

= 0, on the
initial slice.3 Initial data for the gravity system are fixed by a3(t = 0) = −ǫini

hol/2 and a radial
profile for the scalar field which evaluates to φ(r, t = 0) = −βǫini

Y M for the initial guess (5.42)
in combination with the Ward identy (5.40). To measure the accuracy of our numerical scheme
we monitor in each time step the violation of the constraint equation (5.29) and the Ward
identity (5.40) whose absolute values we demand to be smaller than 10−6. From the solution
of the gravity problem we extract, via (5.38) and (5.39), the time evolution of Tµν(t) and H(t)
respectively.

3Note that other authors [58, 63, 123] employ the gauge function ξ to fix the apparent horizon to a constant
value in the radial direction which is then used to bound the computational domain.
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Generate initial guess by
solving unsourced Yang-

Mills equation DµF
µν = 0

Finish

Compute sources for the
gravity system φ(0) = h[f ]

Check conservation of to-
tal EMT @µT

µν = 0

- Solve the gravity problem with
boundary sources and extract H

φ = ... + z3 κ
2L2H + ...

- Check holographic WI

- Solve the sourced Yang-Mills
equation DµF

µν = Jν [H]
- Check YM WI

f

φ(0) fnew,H

True

False

fnew

H

Figure 5.1: Flow chart of the iterative procedure explained in the main text.

We can now feed in H(t) into the Yang-Mills equation (5.21) and solve for the new f(t)
with the Mathematica routine NDSolve, with the same initial conditions as in the initial guess
(5.42). This completes the first iteration.

To check how well the iterative procedure is working, we compute the total energy momen-
tum tensor (5.16) with the new f(t) and H(t) and check to see if it is conserved in time up to
O(10−5) or better. If this is the case, we stop the iteration. If not, we proceed to iterate again.

We usually find that one iteration is not enough. At this point, we do not have an analytic
guess for f(t), which introduces numerical noise into the gravity system via the boundary
source (5.23). This problem can be somewhat alleviated by implementing a low-pass filter on
f(t) before we feed it to the gravity code. We use the Mathematica routine LowpassFilter as
our filtering tool and choose a cutoff frequency of 0.1 and filter kernel of length 1. In Appendix
E we discuss the procedure in more detail.

5.3 Energy transfer from the hard to the soft sector

To obtain results, we set the Yang-Mills energy density to be ǫYM/Q
3
s = 1, the initial

energy of the strongly coupled sector to be ǫhol/Q
3
s = 0.004 and the Yang-Mills coupling as

gYM/
√
Qs = 1. As mentioned in the previous section, we stop the iterative procedure when we

have a constant total energy of the system. The left panel in Fig. 5.2 shows the total energy
density for each iteration for β = 0.01. Each iteration improves the total energy conservation.
However, with each iteration the numerical errors in the solution of the respective sub-sectors
accumulate, see Appendix E. We stop the procedure after four iterations in this case, since it
provides the optimal trade off between obtaining sufficiently well-behaved total energy on the
one hand and consistent sub-sectors on the other hand.

We plot the numerical solution for the gauge field degree of freedom, f(t), in the right panel
of Fig. 5.2 for three different values of β. We can already see that as time goes on, the solution
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1st 2nd 3rd 4th initial

20 40 60 80 100
Qst

1.00

1.05

1.10

1.15

1.20

ϵtot/Qs
3

β=0 β=0.01 β=0.015 β=0.02

10 20 30 40 50
Qst

-1.0

-0.5

0.5

1.0

f/Qs

Figure 5.2: Left: Total energy for β = 0.01 as function of time for subsequent iterations. Right:
The YM gauge field, f(t).

decreases in amplitude and in frequency, indicating that the gauge field is losing energy. The
stronger the coupling, β, the more rapidly the gauge field loses energy.

In top panel of Fig. 5.3, we see that indeed the energy is decreasing in the YM sector. In
contrast to this, the holographic sector is gaining energy almost monotonically as seen in the
middle panel of Fig. 5.3. We find that this behavior is independent of the sign of β. The
interaction energy, dispayed in the bottom panel of Fig. 5.3, has an oscillatory behavior around
zero, while decaying over time with decreasing frequency. The energy transfer is expected to
continue until the YM sector is empty, i.e. when the source h(t) vanishes.

Motivated by the CGC picture of heavy ion collisions, we chose the initial conditions such
that the YM sector carries all of the energy initially in the form of highly overoccupied gluons
at the saturation scale, while the holographic IR sector is initially empty and thus represented
by pure AdS. However, due to numerical issues, we needed to start the simulation with a small
regulator black hole in the gravitational bulk. To understand the role of this regulator, we plot
in Fig. 5.4 the gain in the holographic energy for different initial conditions for fixed initial
YM energy. Provided ι := ǫini

hol/ǫ
ini
YM ≪ 1, we see that the results are fairly independent of the

regulator and thus our choice ι = 0.004 used for the plots is reasonable.
It is also worthwhile to discuss the role of entropy in our present setup. The hard sector

consists only of a single dynamic degree of freedom, f(t), which means that the associated
entropy is zero. In the holographic sector, the situation is different. The area of the apparent
horizon, shown in the left panel of Fig. 5.5, provides a commonly used proxy for entropy,
which we use as estimate for the lower bound for the entropy in the combined system. We
find that the entropy growth increases with increasing β, as can be seen in the right plot of
Fig. 5.5. Furthermore, we numerically checked that the effective apparent horizon entropy is
monotonically increasing with time in all our simulations.
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β=0 β=0.01 β=0.015 β=0.02

10 20 30 40
Qst

0.80

0.85

0.90

0.95

1.00

ϵYM/Qs
3

β=0 β=0.01 β=0.015 β=0.02

10 20 30 40
Qst

0.05

0.10

0.15

0.20

0.25

ϵhol/Qs
3

β=0.01 β=0.015 β=0.02

5 10 15 20
Qst

-0.010

-0.005

0.005

0.010

ϵxc/Qs
3

Figure 5.3: Upper: The energy density of the YM sector against time. Middle: The energy
density of the holographic sector. Lower: The exchange energy as a function of time.
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=0.004 =0.5 =1 =5 =10 =20

10 20 30 40 50
Qst

0.02

0.04

0.06

0.08

0.10

0.12

(ϵhol-ϵhol
ini )/Qs

3

0.01 0.10 1 10 100


0.10

0.12

0.14

0.16

0.18

0.20

(ϵhol-ϵhol

ini )/Qs

3

Figure 5.4: Left: The time evolution of the gain in ǫhol for different initial conditions ǫini
hol with

ǫini
YM/Q

3
s = 1 and β = 0.01. The curves for ι ≡ ǫini

hol/ǫ
ini
YM ≤ 1 lie on top of each other. Right:

The gain in ǫhol at Qst = 50 as a function of ι.

10 20 30 40
Qst

0.1

0.2

0.3

0.4

0.5

rAH

β=0.01 β=0.015 β=0.02

10 20 30 40 50
Qst0.00

0.01

0.02

0.03

0.04

SAH

Figure 5.5: Left: Radial position of the apparent horizon for β = 0.02. The gray region
indicates the interior of the black hole. Right: Entropy in the holographic sector computed
from the corresponding areas of the apparent horizons.
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Chapter 6

Semiholography in NAdS2

In this chapter, we change gears and discuss a semiholographic model of impurities for low
dimensional systems. As outlined in the Introduction, from the point of view of phenomeno-
logical applications, the semiholography approach gives us a flexible way to apply holography
to various setups, where the UV-complete description is not relevant [16, 124]. It is from this
perspective that we apply the semiholographic approach to study confined strongly interacting
impurities.

In particular, the nearly-AdS2 (or NAdS2) holographic subsystem that we will consider
[125–128] is a useful arena to explore fundamental questions. It can be used to probe the
AdS/CFT correspondence, given that some possible dual systems, like the Sachdev-Ye-Kitaev
(SYK) model, can also be solved in the large N limit [129,130] (see also [131–133]). It can also
pave the way for a better understanding of real-time holography, potentially leading to new
insights on quantum many-body systems (especially those which are maximally chaotic) and
on the black hole information loss paradox. The latter could be approached via a solvable toy
model of real-time black hole evaporation. In order to accommodate these applications, NAdS2

holography would need to be extended to include additional propagating modes, i.e. bulk fields,
which we do here in the classical regime in real time.

In the model described in this chapter, the NAdS2 holographic sector captures the dual
infrared dynamics of many-body interactions localized at the origin, where the impurities are
confined. The motion in space of an impurity can be thought of as a deformation of this
0 + 1−dimensional NAdS2 holographic theory with the time-dependent position of the impu-
rity representing a self-consistent external source of an irrelevant operator with a dynamically
generated expectation value. The displaced impurity follows simple Newtonian dynamics un-
der the influence of the force generated by its coupling to the NAdS2 – the dual irrelevant
holographic operator now generates the tension of the confining force. Since the NAdS2 holo-
graphic sector is an infrared conformal theory, it should be deformed only via an irrelevant
operator. The semiholographic model probes the dynamics at intermediate energy scales phe-
nomenologically, such that the total energy of the system is always conserved. We study the
exact time-dependent solutions of the full system in this model.

The gravitational description for NAdS2 holography is two-dimensional Jackiw-Teitelboim
(JT) gravity with non-conformal matter [134–136]. A key feature of the JT model is that the
metric is always locally AdS2, due to the non-propagating dilaton field. Acting like a Lagrange
multiplier, the dilaton’s equation of motion enforces the Ricci scalar to be a constant, as it
is not coupled to matter. Moreover, the dilaton’s boundary condition generates non-trivial
states in the dual theory even in the absence of matter, which can be characterized by time-

91
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reparametrizations just like in the SYK model. It should be noted that since the dilaton is not
coupled to matter, this form of JT gravity cannot be lifted to a higher dimensional setup, as
we expect that from a higher dimensional compactification that the dilaton would couple to
matter, see e.g. [137–141].

As a warm-up, we turn our attention first to the pure holographic setup and explore bound-
ary quenches. Unsurprisingly, we find that the mass of the pre-existing black hole always
increases. The situation is remarkably different in our semiholographic model, where we find
that the pre-existing black hole is always completely depleted of its mass at long time. This
behavior is the opposite of what we find in higher dimensional semiholographic setups in the
presence of scalar mutual couplings, as was the case in Chapter 5. A similar phenomenon of
disappearance of horizon in the bulk in nearly AdS2 setups has been found in [142]. The expla-
nation proposed for this result also works naturally in our case. Furthermore, at late time the
solution does not approach the vacuum as far as the radial profile of the dilaton is concerned. At
a fixed value of the mutual coupling, we find a non-equilibrium phase transition as we increase
the initial velocity of the impurity.

To do this, we introduce in Sec. 6.1 Jackiw-Teitelboim (JT) gravity coupled to matter and
its holographic interpretation. In Sec. 6.2, we describe the algorithm used to find explicit time-
dependent solutions in JT gravity and study quenches. In Sec. 6.3, we detail the semiholographic
model of impurities and study its solutions.

The bulk of this chapter is based on work discussed in [143].

6.1 NAdS2

6.1.1 Bulk equations of motion

The simplest example of a non-trivial two-dimensional pure gravity is the Jackiw-Teitelboim
model [134–136]. The general version of the action which is suitable for taking the large N type
limit in the dual theory is

S =
1

16πG

[∫

d2x
√−gΦ

(

R+
2

L2

)

+ Smatter[g, χ]
]

+
1

8πG

∫

du
√

−hΦbK, (6.1)

where G is Newton’s constant, Φ is the dilaton field with boundary value Φb, χ are matter fields
and the final term is the Gibbons-Hawking-York counterterm. Note that the u appearing in the
final term is the boundary time, i.e. the time an observer on the boundary would measure.

We can learn a lot about this theory by considering the equations of motion. We see that
the dilaton field Φ does not couple to matter, which means that if we vary the action w.r.t. Φ,
we simply obtain

R+
2

L2
= 0. (6.2)

In other words, the bulk metric, gµν , is always locally pure AdS2. Furthermore, variation
w.r.t. the bulk metric leads us to

TΦ
µν + Tµν = 0, (6.3)

where

TΦ
µν ≡ ∇µ∇νΦ − gµν∇2Φ +

1

L2
gµνΦ, and Tµν = − 2√−g

δSmatter

δgµν
. (6.4)

Note that the Bianchi identity is satisfied when R = −2/l2. Therefore, the equation of motion
(6.3) is indeed consistent in a locally AdS2 background spacetime. We set the AdS radius L = 1.
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We have yet to specify the matter action. In fact, we will avoid doing so until Sec. 6.1.3 to
keep the discussion general. In doing so, we will not assume that the matter sector is conformal,
thus generalizing the results in [125,128].

To proceed, we make use of the local conservation law:

∇µT
µν = 0, (6.5)

where the metric is locally AdS2. We adopt Fefferman-Graham coordinates:

ds2 =
1

z2

(

−dt2 + dz2
)

, (6.6)

in which (6.5) reads
∂zTzt = ∂tTtt, ∂z(zTzz) = Ttt + z ∂tTzt. (6.7)

The general form of Tµν is

Tzt(z, t) = Fǫ(t) +
∫ z

ǫ
dz1 ∂tTtt(z1, t), (6.8)

Tzz(z, t) =
Gǫ(t)

z
+
z

2
∂tFǫ(t) +

1

z

∫ z

ǫ
dz1 Ttt(z1, t)

+
z

2

∫ z

ǫ
dz1 ∂

2
t Ttt(z1, t) − 1

2z

∫ z

ǫ
dz1 ∂

2
t Ttt(z1, t)z

2
1 , (6.9)

with

Fǫ(t) = Tzt(ǫ, t), (6.10)

Gǫ(t) = ǫTzz(ǫ, t) − ǫ2

2
∂tTzt(ǫ, t), (6.11)

where ǫ is an arbitrary radial cut-off, which we will eventually take to the boundary at z = 0.
The boundary conditions for the bulk matter fields determine Fǫ(t) and Gǫ(t). Thus, the
components of the energy momentum tensor are entirely determined in terms of Ttt.

Explicitly, the components of (6.3) are

∂2
z Φ +

∂zΦ

z
− Φ

z2
= −Ttt, (6.12)

∂z∂tΦ +
∂tΦ

z
= −Tzt, (6.13)

∂2
t Φ +

∂zΦ

z
+

Φ

z2
= −Tzz (6.14)

in the Fefferman-Graham coordinates. We see that (6.12) involves only radial derivatives, which
determines the radial profile of Φ. The other two equations are simply time-dependent equations
determining data at the cut-off z = ǫ. The most general solution of (6.12) can be parameterized
as

Φ(z, t) =
αǫ(t)

z
+ βǫ(t)z − z

2

∫ z

ǫ
dz1 Ttt(z1, t) +

1

2z

∫ z

ǫ
dz1 Ttt(z1, t)z

2
1 . (6.15)

Substituting the above into (6.13) and (6.14), and also utilizing (6.8) and (6.9) we obtain

2∂tβǫ(t) + Fǫ(t) = 0, (6.16)

∂2
t αǫ(t) + 2βǫ(t) +Gǫ(t) = 0. (6.17)
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As claimed, these determine the two time-dependent functions in (6.15) and thus the data on the
cut-off. Finally, with (6.10) and (6.11), we obtain the following useful form of these constraints:

∂tβǫ(t) = −1

2
Tzt(ǫ, t), (6.18)

∂3
t αǫ(t) = Tzt(ǫ, t) +

ǫ2

2
∂2

t Tzt(ǫ, t) − ǫ ∂tTzz(ǫ, t). (6.19)

Note that (6.16) and (6.17) are equivalent to the above only if we choose appropriate integration
constants in αǫ(t). We can readily address this issue if we use the following integral forms for
αǫ(t) and βǫ(t):

βǫ(t) = −Cǫ − 1

2

∫ t

−∞
dt1Tzt(ǫ, t1), (6.20)

αǫ(t) = Aǫ +Bǫt+ Cǫt
2

+
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

[

Tzt(ǫ, t3) − ǫ ∂tTzz(ǫ, t3) +
ǫ2

2
∂2

t Tzt(ǫ, t3)

]

. (6.21)

Above Aǫ, Bǫ and Cǫ are arbitrary integration constants. These expressions together with (6.15)
thus completely specify Φ in the presence of bulk matter.

6.1.2 Holographic interpretation

The holographic dictionary for the JT model has been established in [125–128] with holo-
graphic renormalization established in [144–146]. In general, it is necessary to establish a cut-off,
such that the dual quantum theory lives on an appropriate slice, z = ǫf(t), which should be
determined self-consistently from the EOM. The dimensionful parameter ǫ is related to the UV
cut-off of the dual theory and as such is an external parameter. Under certain circumstances
when the matter sector satifies certain conditions, we can take the limit ǫ → 0 and the trajectory
z coincides with the boundary at z = 0. In this happy situation, the dual quantum theory is
UV complete.1

We first work in the latter case, when the limit ǫ → 0 can be taken. It is natural to impose
that background metric for the dual quantum theory is ds2 = −du2. Let us parametrize bulk
coordinates via the boundary time z(u) and t(u), which we use to describe the cut-off trajectory.
The holographic dictionary then implies that the induced metric on the cut-off should be

htt(z(u), t(u)) = − 1

ǫ2
. (6.22)

To achieve this, we require that

z(u) = ǫt′(u) + O(ǫ2), (6.23)

where the prime denotes differentiation w.r.t. u. We can determine the function t(u) by the
boundary condition on Φ. The key to obtain SL(2, R) symmetry in the IR is to impose the
boundary condition where the value of Φ on the cut-off trajectory satisfies

Φb(u) = Φ(z(u), t(u)) =
φr(u)

ǫ
, (6.24)

1This statement is true strictly in the large N limit only where the classical gravity approximation is valid.
In such cases however, the theory is not actually embeddable in a higher dimensional holographic theory as
discussed before. Nevertheless, the presence of UV completion for a large range of irrelevant deformations should
not surprise us because the dual quantum theory lives in 0 + 1-D.
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where φr(u) is an arbitrary function, which we will set to a constant and refer to it by φr

following [127].

We will see later that for well behaved matter sector where we can take the limit ǫ → 0, the
most singular term in (6.15) is indeed z−1 and its coefficient is

α0(t) = lim
ǫ→0

αǫ(t). (6.25)

Then it follows from (6.15), (6.23) and (6.24) that

αǫ(t(u)) = φrt
′(u) + O(ǫγ) with γ > 0, i.e. α0(t(u)) = φrt

′(u). (6.26)

As an example, the subleading power, γ, is 1/2 in presence of a minimally coupled massive free
bulk scalar field with m2 = 5/16.

Clearly, the function t(u), which reparameterizes the boundary time, captures the dynamics
of gravity. It should be determined from the bulk equations of motion. To see this, we consider
the on-shell action of the pure gravity sector. First, we compute the extrinsic curvature K of
the cut-off trajectory {γ(u) : (z(u) = ǫt′(u), t(u))}. The result is

K =
1 − ǫ2 t′′′(u)

t′(u)
(

1 − ǫ2 t′′(u)2

t′(u)2

)
3
2

= 1 − Sch(t, u)ǫ2 + O(ǫ4).

The on-shell action of the pure gravity sector is then

Sgrav
on−shell =

1

8πG

∫

du
√

−h ΦbK =
1

8πG

∫

du
1

ǫ

φr

ǫ
K

=
φr

8πG

∫

du
(

1

ǫ2
+ other singular terms − Sch(t, u) + · · ·

)

, (6.27)

where

Sch(t, u) =
t′′′(u)

t′(u)
− 3

2

t′′(u)2

t′(u)2
(6.28)

is the Schwarzian derivative [147]. The higher order terms vanish in the limit ǫ → 0. The
ε-divergent terms, such as the ǫ−2 and divergences arising from the matter sector, e.g. one
proportional to ǫ−3/2 which occurs in the presence of a minimally coupled free bulk scalar field
with m2 = 5/16, can be subtracted away by appropriate local counterterms to render the limit
ǫ → 0 finite [144, 145]. We emphasize that new singular terms at subleading orders in ǫ can
appear in the presence of bulk matter. After adding the counterterms and taking the ǫ → 0
limit, we obtain

Sgrav
on−shell =

φr

16πG

∫

du (−2Sch(t, u)), (6.29)

which gives part of the action for the variable t(u) that determines the cut-off trajectory.

This equation for t(u) can always be obtained from the renormalized on-shell action. How-
ever, equivalently assuming that the limit ǫ → 0 exists we will be able to also obtain it from
the constraint (6.19) rather easily. This will be the topic of the next subsection.
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6.1.3 Time-reparametrization at the boundary

We now work in the limit of ǫ → 0. We return to (6.26) and differentiate both sides three
times w.r.t. t to find

...
α0 = φr

(Sch(t(u), u))′

t′(u)2
, (6.30)

where the dot and prime denote differentiation w.r.t. t and u, respectively. Cleary (6.19) now
reads

φr (Sch(t(u), u))′ = t′(u)2 lim
ǫ→0

[Tzt(ǫ, t(u)) − ǫ ∂tTzz(ǫ, t(u))] , (6.31)

where we dropped the term proportional to ǫ2. Thus, the existence of the limit on the RHS
consititutes a necessary condition on the matter sector. We would then only need to worry
about choosing the right integration constants, such that we have (6.20) and (6.21).

We now consider a simple example, which will be our workhorse for the rest of this chapter.
We consider a minimally coupled massive free scalar field, χ, in the bulk with mass squared
m2 = 5/16. The dual operator in the quantum theory has ∆ = 1

2(1 +
√

1 + 4m2) = 5
4 . As we

will later describe, this example can be generalized in a straightforward manner to 3/2 > ∆ > 1.
Sourcing the bulk scalar then results in an irrelevant deformation in the dual quantum theory.

The Klein-Gordon equation for the scalar field

∂2
zχ− ∂2

t χ− 5

16z2
χ = 0, (6.32)

in the locally AdS2 spacetime has a solution with the following asymptotic expansion

χ(z, t) = Jp(t)z− 1
4 +Op(t)z

5
4 + J̈p(t)z

7
4 + O(z

13
4 ), (6.33)

where Jp, the non-normalizable mode, will be interpreted as the source term in subsequent
discussion, while Op, the normalizable mode, will be viewed as the response. Although the
Klein-Gordon equation can be solved exactly, we will focus only on its asymptotic expansion,
specified entirely in terms of Jp(t) and Op(t).

The components of the energy momentum tensor of this field are given by

Ttt =
1

2

(

(∂tχ)2 + (∂zχ)2 +
5

16z2
χ2
)

,

Tzt = ∂tχ∂zχ,

Tzz =
1

2

(

(∂tχ)2 + (∂zχ)2 − 5

16z2
χ2
)

. (6.34)

Using the asymptotic expansion (6.33), we can readily find that

lim
ǫ→0

[Tzt(ǫ, t) − ǫ ∂tTzz(ǫ, t)] =
3

2

(

5

4
Op(t)J̇p(t) +

1

4
Jp(t)Ȯp(t)

)

. (6.35)

Therefore, we satisfy the necessary condition for our holographic dictionary to make sense in
the limit ǫ → 0.

We can now check that the formal solution of the dilaton field, given by (6.15), indeed yields
the desired asymptotic behavior when ǫ → 0. Using the explicit form of the energy momentum
tensor (6.34) with the asymptotic expansion (6.33), we find

Φ(z, t) =
α0(t)

z
+
J2

p (t)

4
√
z

+ lim
ǫ→0

(

βǫ(t) − J2
p (t)

16ǫ
3
2

)

z + O(z
3
2 ) (6.36)
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where all the other subleading termshave finite ǫ → 0 limit. It might seem that we have a
problem with the term proportional to z, but we can use (6.20) to obtain

βǫ(t) = −C0 +
1

8ǫ
3
2

∫ t

−∞
dt1Jp(t1)J̇p(t1)

−1

2

∫ t

−∞
dt1

(

5

4
Op(t1)J̇p(t1) − 1

4
Ȯp(t1)Jp(t1)

)

= −C0 +
J2

p (t)

16ǫ
3
2

− 1

2

∫ t

−∞
dt1

(

5

4
Op(t1)J̇p(t1) − 1

4
Ȯp(t1)Jp(t1)

)

(6.37)

with C0 = limǫ→0Cǫ. Crucially, we have assumed above that

lim
t→−∞

J2
p (t) = 0. (6.38)

This is a vital assumption as it underpins the sensible asymptotic behavior that we want for Φ.
Assembling the result using (6.20), (6.21), (6.35), (6.36) and (6.37), we find

Φ(z, t) =
1

z

(

A0 +B0t+ C0t
2

+
3

2

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

[

5

4
Op(t)J̇p(t) +

1

4
Jp(t)Ȯp(t)

]

)

+
J2

p (t)

4
√
z

+ z

(

−C0 − 1

2

∫ t

−∞
dt1

(

5

4
Op(t1)J̇p(t1) − 1

4
Ȯp(t1)Jp(t1)

))

+ O(z
3
2 ), (6.39)

where we assume (6.38).
Thus, we can conclude that if Jp(t) vanishes sufficiently fast in the far past, then the asymp-

totic expansion of Φ has non-singular coefficients in the limit ǫ → 0. Furthermore, the relevant
integrals are finite.

Eventually we determineOp(t) from Jp(t) due to regularity which implements causal response
in holography (see Sec. 2.2.3 for a discussion on response in hydrodynamics). Also due to the
time-translation symmetry of AdS2, if Jp(t) is constant then so is Op(t). In this case, although
Φ is modified as evident from (6.39), the ǫ → 0 limit is non-problematic.

Now that we know we are working with a finite theory, we can investigate the time-
reparametrization equation (6.31) in the limit ǫ → 0, which in our example reduces to

(Sch(t(u), u))′ = t′(u)2 3

2φr

(

5

4
Op(t(u))J̇p(t(u)) +

1

4
Jp(t(u))Ȯp(t(u))

)

. (6.40)

The bulk regularity condition which we will study explicitly later implies that

Op(t) =
∫ t

−∞
dt1GR(t− t1)Jp(t1), (6.41)

where GR(t− t1) is the retarded Green function.
We can now reparameterize our time to the boundary time, u, such that the source (per-

turbation), which couples to the dual operator with ∆ = 5/4 is actually

J(u) = t′(u)− 1
4Jp(t(u)) (6.42)
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and similarly the expectation value of the operator that is the measured response is

O(u) = t′(u)
5
4Op(t(u)). (6.43)

Therefore, the regularity condition implies in the boundary time that

O(u) =
∫ u

−∞
du1GR(t(u) − t(u1))t′(u)

5
4 t′(u1)

5
4J(u1). (6.44)

Substituting (6.42) and (6.43) in (6.40), we obtain the time reparameterization equation

(Sch(t(u), u))′ =
3

2φr

(

5

4
O(u)J ′(u) +

1

4
J(u)O′(u)

)

. (6.45)

The above equation should be understood with O(u) defined via (6.44). Thus the time-
reparametrization equation is actually a fourth-order integro-differential equation. One of the
main properties of the Schwarzian derivative is that it is invariant under a fractional linear
transformation of t(u)

t(u) → at(u) + b

ct(u) + d
, (6.46)

where ad− bc = 1. Note that this means that the transformation can be characterized by three
parameters. The reparametrized retarded correlation function

GR(t(u) − t(u1))t′(u)
5
4 t′(u1)

5
4 ,

is also invariant under such a transformation, owing to the SL(2, R) symmetry of the background
AdS2 geometry in which the Klein-Gordon equation is solved. Thus, we can conclude that the
time-reparameterization equation (6.45) retains SL(2, R) symmetry even in the presence of
minimally coupled bulk matter.

This discussion can be generalized in a straightforward manner. It becomes clear that ∆ has
a limited range for the case of a minimally coupled free bulk scalar field. If we choose ∆ ≥ 3/2,
then the leading asymptotic behavior of Φ is more singular than z−1. For example, the choice
of ∆ = 3/2 corresponds to leading z−1 log z asymptotics of Φ. Then the on-shell action has a
log ǫ Sch(t, u) term, which cannot be subtracted by a local counterterm, similar to the case of a
conformal anomaly. Thus, a holographic interpretation of a ∆ ≥ 3/2 deformation makes sense
only after imposing a UV cut-off in the dual theory.

Hence, if we consider a minimally coupled free bulk scalar field with −1/4 < m2 < 3/4,
i.e. corresponding to a deformation with 1/2 < ∆ < 3/2, the general form of the time-
reparametrization equation is

(Sch(t(u), u))′ = C∆

(

∆O(u)J ′(u) + (∆ − 1)J(u)O′(u)
)

, (6.47)

with

O(u) =
∫ u

−∞
du1GR(t(u) − t(u1))t′(u)∆t′(u1)∆J(u1), (6.48)

and C∆ = (2∆ − 1)/φr, which can be set to unity by choosing φr = 2∆ − 1. As before, the
equation is symmetric under SL(2, R) transformation of t(u) due to the SL(2, R) invariance of

GR(t(u) − t(u1))t′(u)∆t′(u1)∆.

Furthermore, Φ has an asymptotic expansion with non-singular coefficients in the limit ǫ → 0.
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6.1.4 Useful coordinate transformations

As we saw from the equation of motion from the dilaton field (6.2), the metric is locally
always AdS2 in JT gravity. Gravity has no local bulk dynamics. Nevertheless, a diffeomorphism
of the bulk coordinates which is non-trivial at the boundary has a physical effect as it produces
a non-topological on-shell action. The time-reparametrization is described by the variable t(u),
which maps the physical (boundary) time u of the observer to the time coordinate t of Fefferman-
Graham coordinates. However, due to the SL(2, R) symmetry of the on-shell action, an SL(2, R)
transformation of t(u) has no physical effect on observables, such as correlation functions. Thus,
the physically distinct solutions of t(u) are members of the Diff /SL(2, R) coset.

In absence of matter, the time-reparametrization equation (6.47) implies that the Schwarzian
derivative of t(u) must be a constant, i.e.

Sch(t(u), u) = ±2π2

β2
, (6.49)

with β a real parameter. This represents a third order differential equation for t(u). We have
two distinct solutions, depending on the sign of the constant.

For the negative sign of the Schwarzian derivative of t(u), the solution is

t(u) = tanh
(

πu

β

)

, (6.50)

up to a SL(2, R) transformation. The three parameters of the SL(2, R) transformation (6.46)
along with β supply the necessary four integration constants of (6.47).

If the Schwarzian derivative of t(u) is a positive constant, then the solution is

t(u) = tan
(

πu

β

)

, (6.51)

up to a SL(2, R) transformation. In this case, the solution is periodic with period β. A periodic
Lorentzian time does not make sense, so we reject such solutions as unphysical.

However, if we were working in an Euclidean signature, we would accept the periodic solu-
tions, as these can indeed be interpreted to be thermal solutions with temperature β−1. Under
Euclidean continuation where both t → it and u → iu, the Schwarzian reverses sign. In this
case, only positive constant values of the Schwarzian are physically acceptable. Futhermore,
under u → iu, the Lorentzian solution (6.50) goes to the Euclidean solution (6.51), such that
indeed t → it.

The bulk interpretation of the time reparameterization, t(u), is that it is the boundary limit
of a bulk diffeomorphism. It is important to note that the bulk diffeomorphism corresponding
to a given t(u) is not unique, since we need to gauge fix. To address this, it is convenient to go
from Fefferman-Graham coordinates to ingoing Eddington-Finkelstein gauge in which the AdS2

metric takes the form:

ds2 = − 2

r2
drdu−

(

1

r2
−M(u)

)

du2, (6.52)

where the boundary time u is also an ingoing null bulk coordinate. The function M(u)
parametrizes the residual gauge freedom, i.e. diffeomorphisms which preserve this gauge. To
see this explicitly, we first choose M(u) = 1 and write the metric in this gauge as

ds2 = − 2

ρ2
dρdτ −

(

1

ρ2
− 1

)

dτ2. (6.53)
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To get back to (6.52) with an arbitrary M(u), we need to perform the (gauge-preserving)
diffeomorphism

τ = τ(u), ρ =
τ ′(u)r

1 − τ ′′(u)
τ ′(u) r

, (6.54)

with
−2Sch(τ(u), u) + τ ′(u)2 = M(u). (6.55)

Under such a diffeomorphism, the ingoing null coordinate (observer’s boundary time) u maps
to τ which is the ingoing null coordinate (boundary time) of a black hole with a fixed mass
of M = 1. The map, τ(u), is determined by the dynamical mass M(u). Furthermore, the
radial coordinate, ρ, transforms by a time-dependent fractional linear transformation, whose
parameters are determined by τ(u).

We now want to relate the Fefferman-Graham time t to the observer’s time u. We can do this
by first mapping t to τ and then mapping τ to u. To bring the bulk metric (6.6) to the ingoing
Eddington-Finkelstein form (6.53) with M(u) = 1, we need to perform the diffeomorphism

t =
1

2

(

tanh
(

τ

2
+ arctanh ρ

)

+ tanh
(

τ

2

))

,

z =
1

2

(

tanh
(

τ

2
+ arctanh ρ

)

− tanh
(

τ

2

))

. (6.56)

At the boundary z = 0, i.e. ρ = 0, we find that

t = tanh
(

τ

2

)

, (6.57)

which matches with the form (6.50) if we set β = 2π. In this case, as we see from (6.49),

Sch(t, τ) = −1

2
. (6.58)

Next, we obtain the general ingoing Eddington-Finkelstein form of the metric (6.52) with
an arbitrary M(u) from the canonical Fefferman-Graham coordinates by simply substituting
(6.54) into (6.56). Then at the boundary z = 0, i.e. r = 0, we find that

t(u) = tanh
(

τ(u)

2

)

. (6.59)

The composition law of the Schwarzian derivatives is given by

Sch((f ◦ g)(u), u) = Sch(g(u), u) + g′(u)2Sch((f ◦ g)(u), g(u)), (6.60)

which we use along with (6.58) and (6.59) to find that

Sch := Sch(t(u), u) = Sch(τ(u), u) − 1

2
τ ′(u)2. (6.61)

Comparing with (6.55), we obtain

Sch = −1

2
M(u). (6.62)
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6.2. FINDING EXPLICIT TIME-DEPENDENT SOLUTIONS 101

This relates the boundary variable t(u) to the time-dependent black hole mass M(u), and thus
provides a bulk interpretation of t(u). As such, we have derived this time-reparametization
equation from the bulk gravitational constraints.

Another way to arrive at the equation of motion for t(u) given by (6.47) is by working
directly with the ADM mass, MADM, in terms of the Schwarzian of t(u) [127]. The actual ADM
mass of the black hole is [125,127]

MADM(u) =
φr

16πG
(−2Sch) =

φr

16πG
M(u). (6.63)

Therefore,

−Sch(t(u), u) =
8πG

φr

MADM(u). (6.64)

The pure JT on-shell gravitational action (6.29) in the presence of a minimally coupled bulk
scalar field is modified to

Sgrav
on−shell =

φr

16πG

∫

du (−2Sch(t(u), u)) +
1

16πG

∫

duJ(u)O(u). (6.65)

Computing the EOM for t leads directly to (6.47).

6.2 Finding explicit time-dependent solutions

6.2.1 Conserved charges and Ward identities

In the case of pure JT gravity, the Noether charges corresponding to the SL(2, R) sym-
metries have been discussed in [127]. The infinitesimal SL(2, R) transformations are t(u) →
t(u) + ǫ δt(u), with δt(u) = 1, t(u), t(u)2 generating translation, dilation and special conformal
transformation, respectively, with corresponding conserved charges:

Q0 =
t′′′(u)

t′(u)2
− t′′(u)2

t′(u)3
, (6.66)

Q1 = t(u)

(

t′′′(u)

t′(u)2
− t′′(u)2

t′(u)3

)

− t′′(u)

t′(u)
, (6.67)

Q2 = t(u)2

(

t′′′(u)

t′(u)2
− t′′(u)2

t′(u)3

)

− 2t(u)
(

t′′(u)

t′(u)
− t′(u)

t(u)

)

. (6.68)

We can readily see that

Q′
i(u) =

t(u)i

t′(u)
Sch′, (6.69)

for i = 0, 1, 2. Clearly, these charges are conserved on-shell in pure JT gravity, i.e. when
Sch(t(u), u) is a constant. Furthermore, the Casimir

Q2
1 −Q0Q2 = −2Sch, (6.70)

is a constant in the absence of matter.
For later convenience, we define the Noether charges

Q =
1

2
(Q0 −Q2), Q± =

1

2
(Q0 +Q2 ± 2Q1). (6.71)
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Shifting to the variable τ(u), which is the boundary time of the M(u) = 1 black hole and is
related to t(u) via (6.59), we obtain the explicit forms

Q =
τ ′′′(u)

τ ′(u)2
− τ ′′(u)2

τ ′(u)3
− τ ′(u), (6.72)

Q+ =

(

τ ′′′(u)

τ ′(u)2
− τ ′′(u)2

τ ′(u)3
− τ ′′(u)

τ ′(u)

)

eτ(u), (6.73)

Q− =

(

τ ′′′(u)

τ ′(u)2
− τ ′′(u)2

τ ′(u)3
+
τ ′′(u)

τ ′(u)

)

e−τ(u), (6.74)

which satisfy

Q′ =
1

τ ′(u)
Sch′, Q′

± =
e±τ(u)

τ ′(u)
Sch′. (6.75)

Furthermore, the Casimir is
Q2 −Q+Q− = −2Sch. (6.76)

We can solve for the derivatives of τ at a given value of τ in terms of the Noether charges:

τ ′ =
1

2

(

Q
−
eτ +Q+e

−τ − 2Q
)

, (6.77)

τ ′′ =
1

4

(

Q
−
eτ −Q+e

−τ
) (

Q
−
eτ +Q+e

−τ − 2Q
)

, (6.78)

τ ′′′ =
1

4

(

Q2
−
e2τ +Q2

+e
−2τ −Q

(

Q
−
eτ +Q+e

−τ
)) (

Q
−
eτ +Q+e

−τ − 2Q
)

. (6.79)

This suggests a method to obtain τ(u) in the absence of matter. We initialize at a boundary
time u = uin by specifying the value of τ(uin) and the three Noether charges, Q± and Q.
From (6.75), it is clear that in the absence of matter, the Noether charges remain constant. At
the initial instant we can then use (6.77) to obtain τ ′(uin). Next, we update τ using a finite
difference method, such as

τ(uin + ∆u) = τ(uin) + τ ′(uin)∆u. (6.80)

Thus, we can generate the complete numerical solution of τ(u).
Note that one can always set the Noether charges to the following constant values

Q = −2π

β
, Q± = 0, (6.81)

via an appropriate SL(2, R) transformation. In this case, Sch = −2π2/β2 and

τ(u) = τ(uin) +
2π

β
(u− uin). (6.82)

Furthermore, without changing the values of the charges given by (6.81), we can set initially

τ(uin) =
2π

β
uin,

and reproduce (6.50). When we choose the initial value of τ(uin), we are effectively rotating
t(u) in SL(2, R). We can define an SL(2, R) frame by the one parameter family of SL(2, R)
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6.2. FINDING EXPLICIT TIME-DEPENDENT SOLUTIONS 103

transformations that leaves a chosen set of Noether charges invariant. As such, the SL(2, R)
transformation is not physically observable, so we can derive all real-time properties of the
thermal equilibrium state at temperature β−1 from the solution (6.50) linear in u.

For a constant value of Sch = −2π2/β2, we can parametrize all real values of SL(2, R)
charges as follows

Q = −2π

β
cosh θ cosφ, Q− =

2π

β
(sinh θ cosφ+ sinφ),

Q+ =
2π

β
(sinh θ cosφ− sinφ). (6.83)

The general solution corresponding to the above charges are:

τ(u) =
β

π
arctanh





e
θ

2

(

cosh η
2 cos φ

2 + sinh η
2 sin φ

2

)

tanh
(

π
β
u
)

+ e
θ

2

(

sinh η
2 cos φ

2 + cosh η
2 sin φ

2

)

e−
θ

2

(

sinh η
2 cos φ

2 − cosh η
2 sin φ

2

)

tanh
(

π
β
u
)

+ e−
θ

2

(

cosh η
2 cos φ

2 − sinh η
2 sin φ

2

)



 .

(6.84)

The parameters θ, φ and η represent an SL(2, R) transformation of t(u) as should be clear
from (6.50). However, it is explicit in (6.83) that only θ and φ along with β determine the
Noether charges. The parameter η nevertheless sets the value of τ(uin) and is thus not a
redundant variable. The above parametrization will be useful in characterising the dynamics in
the presence of matter.

6.2.2 The algorithm

In this subsection, we detail the algorithm used to determine time-dependent solutions,
namely τ(u) for a given source J(u). We build on the discussion from the previous subsection,
by first turning our attention to the modified Noether charges in the presence of matter. This is
a straightforward computation, using the time reparameterization equation (6.47) and the con-
servation equations for the charges (6.75). Then, setting C∆ = 1 by choosing φr appropriately,
these modified Ward identities are

Q′ = τ ′(u)

(

∆Oth(τ(u))
dJth(τ(u))

dτ(u)
+ (∆ − 1)Jth(τ(u))

dOth(τ(u))

dτ(u)

)

, (6.85)

Q′

+ = eτ(u)τ ′(u)

(

∆Oth(τ(u))
dJth(τ(u))

dτ(u)
+ (∆ − 1)Jth(τ(u))

dOth(τ(u))

dτ(u)

)

, (6.86)

Q′

−
= e−τ(u)τ ′(u)

(

∆Oth(τ(u))
dJth(τ(u))

dτ(u)
+ (∆ − 1)Jth(τ(u))

dOth(τ(u))

dτ(u)

)

, (6.87)

where

Jth(τ(u)) = J(u)τ ′(u)∆−1, (6.88)

Oth(τ(u)) = O(u)τ ′(u)−∆. (6.89)

Note that the subscript th is meant to remind the reader that the relevant object is living in
the thermal background (6.53). The integrated form of the Ward identities are

Q(u) −Q(uin) =

∫ τ(u)

τ(uin)

dτ1

(

∆Oth(τ1)
dJth(τ1)

dτ1

+ (∆ − 1)Jth(τ1)
dOth(τ1)

dτ1

)

, (6.90)

Q+(u) −Q+(uin) =

∫ τ(u)

τ(uin)

dτ1 e
τ1

(

∆Oth(τ1)
dJth(τ1)

dτ1

+ (∆ − 1)Jth(τ1)
dOth(τ1)

dτ1

)

, (6.91)

Q
−

(u) −Q
−

(uin) =

∫ τ(u)

τ(uin)

dτ1 e
−τ1

(

∆Oth(τ1)
dJth(τ1)

dτ1

+ (∆ − 1)Jth(τ1)
dOth(τ1)

dτ1

)

. (6.92)
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Furthermore, we can identify the Hamiltonian, H(u), i.e. the Noether charge corresponding
to the u-translation symmetry which is broken explicitly in the presence of J(u), by rewriting
the time-reparametrization equation (6.47) in the following form

dH(u)

du
= J ′(u)O(u), (6.93)

from which we can read off

H(u) = Sch(t(u), u) − (∆ − 1)J(u)O(u)

= Sch(τ(u), u) − 1

2
τ ′(u)2 − (∆ − 1)τ ′(u)Jth(τ(u))Oth(τ(u)). (6.94)

where in the last line we have used (6.61). In our algorithm, the Ward identity (6.93) will
provide a consistency check and accuracy test for numerics.

As a final ingredient in our algorithm, we will need a method to obtain O(u) self-consistently
from J(u). Of course, if we know t(u) for u < u0, then (6.48) tells us how to obtain O(u).
Unfortunately, the integral in (6.48) can only be defined via an appropriate analytic continuation
for which it is necessary to first go to frequency space – this will be a cumbersome procedure
for a non-trivial t(u), which is not linear or a simple function of u.

We can circumvent this problem by exploiting the scalar source, Jth(τ(u)), and the response,
Oth(τ(u)), defined in (6.88) and (6.89) living in the metric (6.53) with M(u) = 1 and with
boundary time τ(u). In these coordinates, the form of the Klein-Gordon equation is

∂ρ(d+χ) +
∆(∆ − 1)

2ρ2
χ = 0, (6.95)

where

d+ = ξ · ∇, with ξρ = −1

2
(1 − ρ2), ξτ = 1. (6.96)

With an input of Jth(τ) obtained from (6.88) and initial conditions χ(ρ, τ = 0), we can readily
solve this equation via the method of characteristics to obtain Oth(τ). Then, we can extract
O(u) using (6.89).

To see how this works explicitly, we return to the specific case of ∆ = 5/4. It is useful to
first define the finite term

d+χ := d+χ− 1

8
Jth(τ)ρ− 5

4 − 5

8

dJth(τ)

dτ
ρ− 1

4 , (6.97)

because d+χ has a non-singular asymptotic expansion

d+χ ≈ −5

8
Oth(τ)ρ

1
4 , (6.98)

near the boundary ρ = 0. We note that

∂τχ = d+χ+
1

2
(1 − ρ2)∂ρχ+

1

8
Jth(τ)ρ− 5

4 +
5

8

dJth(τ)

dτ
ρ− 1

4 . (6.99)

Furthermore, the equation of motion for d+χ is

∂ρd+χ+
5

32ρ2

(

χ− Jth(τ)ρ− 1
4 − dJth(τ)

dτ
ρ

3
4

)

= 0. (6.100)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6.2. FINDING EXPLICIT TIME-DEPENDENT SOLUTIONS 105

so that

d+χ(ρ, τ) = −
∫ ρ

o
dρ1

5

32ρ2
1

(

χ(ρ1, τ) − Jth(τ)ρ
− 1

4
1 − dJth(τ)

dτ
ρ

3
4
1

)

. (6.101)

Note that the integral above on the right hand side is finite.
We can now compute O(u) as follows. At an initial time τin, we have χ(ρ, τ = τin) and Jth(τ)

for all τ < τin. This means that we can use (6.101) to generate d+χ. We can then compute ∂τχ
using (6.99), which enables us to propagate χ to the next time instant. Furthermore, we can
extract Oth(τ) from (6.98) for all τ < τ0, which means we can compute O(u) from (6.89).

We are now ready to describe our algorithm for finding τ(u) for a given J(u):

1. Given initial values of τ(uin) and the three SL(2, R) charges, we can extract τ ′(uin) using
(6.77) and τ ′′(uin) using (6.78).

2. From τ ′(uin) and known J(u), we can extract Jth(τ(uin)) using (6.88) and then dJth/dτ
at τ(uin) since we also know τ ′′(uin).

3. Given an initial profile of χ (more on this later), Jth and dJth/dτ at τ(uin) we extract the
initial profile of d+χ.

4. We then obtain Oth(τ) at τ(uin) using (6.98).

5. We can now update the three SL(2, R) charges corresponding to the next time instant
using (6.90), (6.91), (6.92).

6. We propagate τ to the next time instant using a finite difference scheme with τ ′(uin).
Furthermore, we propagate the radial profile of χ to the next time instant via ∂τχ which
can be extracted from known d+χ via (6.99).

7. We repeat all steps above at the next time instant.

Note that the bulk scalar field is evolving in a geometry (6.53), whose boundary time is τ(u)
with a M(u) = 1 black hole. The integrated form of the Ward identity (6.93)

H(u) −H(uin) =
∫ u

uin

du1 J
′(u1)O(u1) (6.102)

can be used to check the accuracy of the numerics, namely by extracting O(u) from Oth(τ(u))
using (6.89).

The source J(u) has two physical effects: (i) the Hamiltonian H becomes time-dependent,
and (ii) the SL(2, R) frame varies since all Noether charges (6.72) are time-dependent. The
latter point suggests that even if the system settles down in the far future with a constant
value of the Hamiltonian, the SL(2, R) frame will still be generically different from the initial
one. The difference between initial and final SL(2, R) frames can be detected via long-time
correlations between far past and far future, although only the relative difference between the
initial and final SL(2, R) frames is physical.

We can keep track of the change in the SL(2, R) frame of the pure AdS2 boundary time by
making use of (6.83). Since we know the three Noether charges and τ(u), we can obtain the
instantaneous values of β(u), θ(u) and φ(u), as well as η(u). Note that we are not promoting
β, θ, φ and η to time-dependent variables in (6.84).
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An alternative algorithm: We could have followed a more direct route, without appealing
to a conformal mapping of the source J(u) to that of a state with a constant temperature. In
this case, we could have used the bulk geometry (6.52) to update M(u) = −2Sch = Q2 −Q+Q−
along with the SL(2, R) charges. The Klein-Gordon equation would contain M(u) (but not its
derivative), which leads directly to O(u) via the method of characteristics. However, it turns
out that especially in the semiholographic case of Sec. 6.3, Jth and Oth give us useful insights.

6.2.3 Quenches in NAdS2 holography

In this subsection, we will investigate quenches in NAdS2 holography. It may be interesting
to note that quantum quenches in the SYK model have been studied in [148,149], although here
we studied different types of deformations.

We perturb a pre-existing thermal state by a decaying scalar source. In this case, the mini-
mally coupled bulk scalar fields will vanish initially in absence of sources, otherwise they would
be singular. Therefore, as initial conditions, we will choose for χ to vanish on the initial time
surface – if chosen sufficiently far in the past, then it will be so in any bulk coordinate system.
Furthermore, due to the presence of SL(2, R) symmetry, we can always set initial temperature
to be 1/(2π) (i.e. β(u → −∞) = 2π and M(u → −∞) = 1 in the bulk). Additionally, by means
of an appropriate time-independent SL(2, R) transformation, we can choose τ(u → −∞) ≈ u.
These conditions thus can be expressed as:

τ(uin) = uin, Q(uin) = −1, Q+(uin) = Q−(uin) = 0. (6.103)

Specifically, we will work with a Gaussian source, J(u), plotted in Fig. 6.1a. The source
J(u) couples to an operator O(u) with ∆ = 5/4, which is ploted in Fig. 6.1b. After conformal
mapping to the state with constant temperature 2π, the source Jth(τ(u)) and the response
Oth(τ(u)) are plotted in Fig. 6.1c and Fig. 6.1d, respectively. Clearly, there is little visible
difference due to the conformal mapping.

The time-dependence of the black hole mass (remember that Hsch = −M/2) and the
SL(2, R) charges are shown in Fig. 6.2a and Fig. 6.2b, respectively. The final black hole
mass is larger than the initial value, although the mass does not grow monotonically, as is in
the case of high dimensional analogues. The final SL(2, R) frame is different from the initial
one. In principle, this SL(2, R) rotation would be physically measurable. There would be some
numerical difficulty, as it would require computing correlation functions G(u, u′) with very large
separation u − u′ and with fixed (u + u′)/2 when J is large. Thus, we explicitly find that the
quench (pump) leads to formation of soft hair on the black hole represented by SL(2, R) frame
rotation.

From the SL(2, R) charges, we can construct the derivatives of τ(u), shown in Fig. 6.3.
Remarkably, τ always saturates to a constant value at late times, so that the map of the time
of the physical state to that of the fixed temperature state has a finite endpoint. We observe
that τ ′ is always positive (ensuring that the map to the time of the fixed temperature state is
causal), whereas τ ′′ is always negative.

6.3 A semiholographic model for trapped impurities

Having properly motivated the holographic sector, we can now turn our attention to a
NAdS2 semiholographic model. The model aims to describe confined impurities, which are
strongly interacting.
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(a) Plot of J(u).
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(c) Plot of Jth(τ(u)).
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(d) Plot of Oth((τ(u)).

Figure 6.1: Sources and responses: As expected, the responses die down at late time once the
sources vanish.
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(a) Plot of HSch = −1/2 M(u): This plot is very
similar to the case of quenches in higher dimen-
sional holographic systems where M(u) grows but
not monotonically.
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(b) Plot of the SL(2, R) charges as a function
of time: Note that the final SL(2, R) frame is
different since Q± are non-vanishing.

Figure 6.2: The time-dependence of the black hole mass and the SL(2, R) charges.
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τ(u)τ'(u)τ''(u)τ'''(u)
-2 0 2 4 6 8 10

-3

-2

-1

0

1

2

3

u

Figure 6.3: The plot of τ(u), which maps the time of the physical state to that of the fixed
temperature state, and its derivatives. The generic result is that τ(u) saturates to a constant
and its derivatives vanish.

The time-dependent position of an impurity, ~X(u), can be treated as an extra field in the
effective 0 + 1−D theory. When the orbital angular momentum vanishes, the motion is one-
dimensional. Here we will restrict ourselves to this simple situation of one-dimensional motion
of a single impurity. We will assume that the impurity follows Newtonian dynamics, subject to
a confining potential from the holographic side.

The role of the strongly interacting NAdS2 holographic sector in our model is to depict
the dual IR dynamics of the localized mutual interactions of the impurities confined at the
origin X(u) = 0. The motion in space of a displaced impurity can be thought of as sourcing a
deformation of the NAdS2 holographic theory. Then we can interpret X(u) as a self-consistent
external source to the NAdS2. The center of the force, X(u) = 0, is the value of the source for
which the deformation to the Schwarzian action vanishes.

Thus, the whole description is semiholographic, i.e. there is a holographic sector with a
self-consistent dynamical source at the boundary and with a total conserved energy.

The effective string tension of the confining force is the self-consistent expectation value of
an operator O in the NAdS2 holographic theory. Therefore, the confining potential takes the
form

V = λO(u)X(u), (6.104)

where λ is a dimensionful hard-soft coupling constant. We can then identify

J(u) = λX(u), (6.105)

i.e. that the position of the impurity is proportional the source J(u) (non-normalizable mode) of
the bulk scalar field χ dual to the operator O(u). As before, we require that the holographic the-
ory admits only irrelevant deformations about the Schwarzian action, while retaining SL(2, R)
invariance in the large N limit (classical gravity approximation). This implies that O(u) must
have scaling dimension ∆ such that 1 < ∆ < 3/2. The dual bulk field χ has mass 0 < m2 < 3/4
since m2 = ∆(∆ − 1) (recall that we set the AdS radius to unity) with asymptotic expansion

χ(r, u) ≈ λX(u)r1−∆ + · · · . (6.106)

The boundary field X(u) follows Newton’s law in the potential (6.104):

miX
′′(u) = −λO(u) (6.107)
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where mi is the mass of the impurity. Its kinetic energy is

Hkin =
1

2
miX

′(u)2, (6.108)

which satisfies
H ′

kin = −λO(u)X ′(u). (6.109)

The algorithm for determining O(u) along with the time reparametrization τ(u) (equiva-
lently, the mass M(u) of the AdS2 black hole) has been discussed Sec. 6.2. Assembling our
previous results, we quote the equation of motion (6.93) for τ(u)

(

Sch(τ(u), u) − 1

2
τ ′(u)2 − λ(∆ − 1)X(u)O(u)

)′
= λO(u)X ′(u). (6.110)

As before, we can map the source to the AdS2 black hole background (6.53) with M(u) = 1

Xth(τ(u)) = X(u)τ ′(u)∆−1, (6.111)

solve the Klein-Gordon equation in that background to find Oth(τ(u)) from which we can extract
O(u) using the relation:

O(u) = Oth(τ(u))τ ′(u)∆. (6.112)

The equations (6.107) and (6.110) completely specify the semiholographic dynamics.
In fact, we are considering a similar semiholographic system as in Chapter 5, see (5.6), since

we have a scalar coupling. We can write the action of the full system

S[X, t] =
1

16πG

∫

du
1

2
miX

′2 − Sgrav
on−shell[J(u) = λX(u)], (6.113)

where Sgrav is given by (6.65). This action should be viewed as a functional of the impurity
position, X(u), and the time reparameterization function, t(u).

Varying the action w.r.t. X(u), using

16πG
δSgrav

δX(u)
= 16πG

δSgrav
on−shell

δJ(u)

δJ(u)

δX(u)
= λO(u),

we recover (6.107). On the other hand, extremizing Sgrav
on−shell w.r.t. t(u) yields (6.110).

We note that adding (6.109) to (6.110) yields a total conserved energy, Htot,

H ′
tot = 0, (6.114)

which is explicitly given by

Htot = Hkin + Sch(τ(u), u) − 1

2
τ ′(u)2 − λ(∆ − 1)X(u)O(u),

= Hkin − 1

2
M(u) − λ(∆ − 1)X(u)O(u),

= Hkin +Hsch +Hint. (6.115)

In the second line, we have used (6.62) relating M(u) and τ(u). In the third line we define the
various contributions to the total energy, Htot, into (i) the kinetic energy of the particle Hkin

as defined in (6.108), (ii) the black hole mass term Hsch = −1/2M(u) and (iii) the hard-soft
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interaction energy Hint = −λ(∆ − 1)X. We readily see that the terms other than Hkin can be
interpreted as a self-consistent effective potential:

Veff = −1

2
M(u) − λ(∆ − 1)X(u)O(u). (6.116)

It might seem a bit unusual that the impurity and the on-shell gravitational action have
a relative sign between them in (6.113), but such a relative sign is expected in the context of
effective JT gravities (see Appendix A of [150] for a simple example of this in the case of a
central force problem).

Furthermore, we should point out that, in order to have the right dimensions, we would
need to write M(u)c2

IR in (6.115), where cIR is the effective velocity for causal propagation in
the infrared sector. We set cIR = 1.

We set our initial conditions by considering the equilibrium. This is when X(u) = 0,
where the confining force vanishes. In this case, the bulk is thermal at the ambient medium
temperature, i.e. M(u) is a constant. The bulk scalar vanishes as does O(u).

To usher in time-dependence, we introduce a kick, generated by an external force F (u).
This can be thought of originating from a fluctuation in the medium where the impurities are
living. We will assume that the impulse has the form of a delta function, i.e.

F (u) = miv0δ(u− u0). (6.117)

The equation for X(u) given by (6.107) should be replaced by

miX
′′(u) = F (u) − λO(u). (6.118)

Thus, the full system exists in the equilibrium configuration for times before the impulse
is imparted, u < u0. At u = u0, the system is kicked by F (u), which imparts a finite velocity
X ′(u0) = v0 for the impurity, which means the total energy is not conserved at this time
instant. Immediately following the impulse u > u0, the total energy will be conserved. We
will set mi = 1 for convenience and the initial temperature to β−1 = 1/(2π) by using scaling
symmetry as before. Thus, the time-evolution will be determined by the parameters v0 and the
hard-soft coupling λ.

The algorithm detailed in Sec. 6.2.2 will be slightly modified in this case. Unlike in the
previous case, where the source was fixed initially to be Gaussian, here we have to update the
source X(u) dynamically according to (6.118). Thus, we update the value of X(u) via a finite
difference method after the sixth step of the algorithm.

As for parameters, we freely choose our initial SL(2, R) frame and thus choose them accord-
ing to (6.103). We will set the scaling dimension ∆ of O to be 5/4. We will also assume that
v0 > 0 because we want to investigate how far the impurity can be pushed from the center of
the confining force.

It should be noted that the sign of λ is not relevant in our model. Since the source of the
bulk scalar is J(u) = λX(u), it follows that the response O(u) will also be proportional to λ.
Thus, we see that the interaction term λX(u)O(u) and the confining force λO(u) in (6.107) are
even in λ.

6.3.1 Non-equilibrium phase transitions

In this subsection, we will numerically explore the semiholographic model described in the
previous section, by varying the initial velocity v0 and the hard-soft coupling λ.
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The behavior of the system for any value of v0 and λ at early times is that the mass of the
hole M(u) increases (i.e. Hsch decreases), while the interaction energy Hint is positive. Due
to total energy conservation, it is clear that the particle kinetic energy Hkin increases initially,
i.e. the impurity accelerates.

At late times, we find the unintuitive result that the mass of the black hole M(u) always
goes to zero, with the remaining energy going to either the particle kinetic energy, Hkin, or to
the interaction energy, Hint.

Moreover, the late time behavior of the impurity is that it always decelerates, eventually
reaching a terminal velocity, vf . When the energy goes to the kinetic energy, the final kinetic
energy of the impurity is less than its initial velocity vi. Energy conservation implies that

1

2
miv

2
i − 1

2
Mo =

1

2
miv

2
f , (6.119)

where mi is the mass of the impurity (particle) and M0 is the initial black hole mass. The
interaction term is absent, as we start in equilibrium with the impurity at the center X = 0.
The above relation determines vf . In the other case, when the energy at late times goes entirely
to the interaction energy, Hint, the particle comes to a full stop as its kinetic energy vanishes.

We can determine which of these outcomes is fated for the impurity, by noting that the
interaction energy at late times is always negative. The two cases then boil down to the
interaction energy going to zero from below or saturating to a negative constant. The first
outcome is possible if and only if the total energy is positive since the kinetic energy is always
positive. In the other case, the total energy has to be negative. Since the initial interaction
energy is zero as noted above, Htot is simply given by

Htot =
1

2
miv

2
0 − 1

2
M0 (6.120)

as the sum of initial values of the kinetic energy andHsch. The final outcomes can be summarized
for

v0 >

√

M0

mi
, Hkin has non-zero energy at late times, (6.121)

v0 <

√

M0

mi
, Hint has non-zero energy at late times. (6.122)

In the marginal case when v0 =
√

M0/mi, i.e. the total energy is zero Htot = 0, both Hint and
Hkin vanish at late time along with Hsch.

Another phase transition can be revealed when considering the bulk solution. The phase
transition depends on whether the mass of the black hole M(u) always stays positive throughout
the time evolution, or whether it oscillates between being positive and negative as it goes to
zero. The first case occurs for

v0 > vc(λ) >

√

M0

mi
, (6.123)

where the energy ends up entirely in the impurity sector. We will refer to this as phase I
behavior. For v0 < vc(λ), we can have either the impurity comes to a full stop or reaches a
terminal velocity, depending on which condition of (6.121) or (6.122) is satisfied. We will refer
to this phase as phase II. The critical velocity vc(λ) separating the two phases is a monotonically
increasing function of λ.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

112 CHAPTER 6. SEMIHOLOGRAPHY IN NADS2

The remarkable result of our semiholographic setup is that the final black hole mass always
vanishes for late times. This is in stark contrast to the pure holographic case considered in
the previous section and at odds with a higher dimensional picture. This is similar to the
observation of a disappearing horizon in [142], where the work was being done by the black hole
rather than on it (see also [151]). The semiholographic model has a similar interpretation due to
total energy conservation: the black hole does work on the impurity, as well as contributing to
the confining potential. Furthermore, it is worthwhile to point out that in semiholography, the
late time dynamics are controlled by the hybrid collective modes, as was discussed in Chapter 4,
and not by the quasi-normal modes of the individual subsystems. Thus, the long term behavior
of a semiholographic system can be very different from that of a purely holographic system.

However, in higher dimensions, a similar simulation shows that if the boundary fields do not
have many degrees of freedom and only scalar hard-soft couplings are present as in our case, the
black hole sucks up all the energy, depleting the boundary sources [37]. The case of JT gravity
is then peculiar. We also note that it cannot be embedded in a higher dimensional setup as the
dilaton does not couple to matter directly.

An illustrative example of phase I behavior

Here we will study the case of v0 = 2.0 for λ = 0.4 as an example of phase I behavior,
i.e. behavior found in (6.123). The black hole mass is always positive definite as it approaches
zero for late time. Hsch is negative definite and it goes to zero from below. We plot the energies
in Fig. 6.4a. In this example, one can observe that Hsch and Hint both vanish at long time,
while Hkin stabilizes to a constant value.

In Fig. 6.4b, we plot the time-dependence of the SL(2, R) charges, which diverge at long
time, although the Casimir goes to zero, which is not surprising as the Casimir is proportional
to the black hole mass.

In Fig. 6.5a, we plot the sources in both geometries, X(u) and Xth(τ(u)). We plot the
responses in O(u) in Fig. 6.5b and Oth(τ(u)) in Fig. 6.5c. We find that the source X(u) reaches
a terminal velocity at late times, while the response O(u) suprisingly vanishes faster than X(u)
grows, such that Hint also vanishes. Interestingly, the source and the response in the thermal
background, Xth(τ(u)) and Oth(τ(u)), respectively, do not behave at all like their counterparts
in the other geometry. This is what we would have expected from the discussion of the pumped
states in Sec. 6.2.3. Instead, we find that neither decays at late time, but Hint is proportional
to τ ′(u)XthOth, which goes to zero, since τ ′(u) decays rapidly. Finally, O(u) stays positive
from some intermediate timescale to late times, such that the force on the impurity is indeed
confining in the long run.

Our solution raises an interesting question: as the black hole evaporates classically, can
we recover the information of the initial conditions from the asymptotic late time behavior?
As Fig. 6.4b makes clear, all of the SL(2, R) charges diverge at late time while their Casimir
vanishes. Intriguingly, we can fit the late time behavior to an exponential proportional to eau

extremely well (with an adjusted R square = 0.99), which means that all the SL(2, R) charges
grow exponentially with the same exponent a. Since the Casimir vanishes at late times, we
can conclude that the exponent a is SL(2, R) invariant and an observable. Remember that the
initial conditions are labelled by two parameters: (i) the velocity v0 and (ii) the initial mass of
the black hole. The total conserved energy determines vf , the terminal velocity of the impurity.
We can then expect that the initial conditions can be recovered completely from the exponent
a, as well as vf . Fig. 6.6, where we have plotted a against v0 for a fixed unit initial mass of
the black hole, supports this point of view, as a grows monotonically as a function of v0. This
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0
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u

(a) Plot of energies as function of time: Note that the
total energy Htot = Hkin + Hint + Hsch is conserved
after the initial impulse and is finally transferred to
Hkin, the particle kinetic energy. The mass of the black
hole M = −2Hsch remains positive and decays to zero
eventually.

Q-
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Q+
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0

50
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u

(b) Plot of the SL(2, R) charges as a function of time in
phase I. Although all of them diverge at late time, their
Casimir (and thus the black hole mass) vanishes.

Figure 6.4: The plots for energies and SL(2, R) charges for v0 = 2.0 and λ = 0.4

merits more investigation.

Illustrative examples of phase II behavior

The second phase appears for v0 < vc(λ). We first set v0 = 0.9 and λ = 0.4. In this case,
the mass of the black hole becomes negative after finite time (i.e. Hsch becomes positive) before
vanishing at long time as shown in Fig. 6.7a. As we will discuss below, a naked singularity forms
exactly when the mass vanishes and it should imply a burst of soft bulk radiation. However,
unlike phase I, the kinetic energy of the impurity goes to zero at late time, meaning that the
impurity comes to a full stop after travelling a finite distance, with the remaining energy ending
up in Hint, the self-consistent confining potential energy. The SL(2, R) charges decrease and
seem to saturate to a finite value, unlike in the first phase, as shown in Fig. 6.7b.

Clearly, Fig. 6.8a shows that X(u) and Xth(u) saturate to a finite value. Similarly, in
Fig. 6.8b we can see that O(u) saturates to a non-zero value at long time, so that indeed
Hint = −(λ/4)XO becomes a constant at long time. In the thermal geometry, Oth(τ(u))
diverges (see Fig. 6.8c), but τ ′ decays faster, which leaves Hint = −(λ/4)τ ′XthOth going to
a constant. Note that O(u) is positive at long time and the final value of confining potential
energy is negative as claimed before.

We now turn our attention to the case of
√

M0/mi < v0 < vc(λ). Let us study what happens
with λ = 0.5. When v0 = 1.1, the impurity retains a terminal velocity because we choose
√

M0/mi = 1.0, but Hsch crosses zero twice before finally vanishing from below as illustrated in
Fig. 6.9 (see the inset plot). In other words, for a finite time period there is a naked singularity,
but before and after this period, the black hole mass is positive and the singularity is hidden by
the horizon. As mentioned above, the development of a naked singularity could again indicate
that the particle should disintegrate into softer fragments if we incorporate quantum effects in
the bulk as suggested in [152].
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X
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(a) Plot of X(u) and Xth(τ(u)) as functions
of time. Note X(u) eventually reaches lin-
ear growth regime implying that the particle
reaches a terminal velocity. Xth(τ(u)), the
source conformally mapped to a black hole of
unit mass, saturates to a constant.
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(b) Plot of O(u) as a function of time. The
eventual rapid decay of O(u) ensures that
Hint ∝ X(u)O(u) vanishes at long time.
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O
th

(c) Plot of Oth(τ(u)): Note as Xth(τ(u)) sat-
urates, Oth(τ(u)) grows with time. However,
the rapid decay of τ ′ ensures that Hint ∝

τ ′(u)Xth(τ(u))Oth(τ(u)) also decays in this
frame.

Figure 6.5: The plots of sources and responses for v0 = 2 and λ = 0.4.
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Figure 6.6: a, the exponent for late-time growth of SL(2, R) charges as a function of v0 for
λ = 0.4 and fixed unit initial mass of the black hole. Note that a grows monotonically with v0.

Our results suggest that for
√

Mi/m0 < v0 < vc(λ), corresponding to the energy ending up in
the kinetic sector, the mass M(u) crosses zero an even number of times before finally vanishing
from above. The case of v0 = 1.1 is illustrated further in Fig. 6.10. For v0 <

√

Mi/m0, our
results are consistent with odd number of zero crossings of M(u) before its final disappearance.
Interestingly, the case of v0 =

√

Mi/m0, where Hint, Hkin and M(u) all disappear finally
corresponds to a single zero crossing of M(u). However, we warn the reader that since the
amplitude of the oscillation of M(u) drops dramatically, it is not easy to numerically verify
definitively the number of zero crossings. This would require refined numerics, taking into
account higher precision and also longer time simulations.

This phase transition merits further detailed study. In particular, we know that the order
parameter of this transition is simply the inverse of the crossing time, which is the smallest
value u∗ when M(u∗) = 0. Since M(u) never crosses the origin and is positive definite at any
finite value of u for v0 > vc(λ), the order parameter vanishes in phase I. In phase II, the order
parameter is finite leading to the formation of a naked singularity at u = u∗ as discussed above.
However, in order to study the phase transition carefully, we need to simulate the full system
for very long time for v0 close to vc which is currently a significant numerical challenge. We
leave this for the future.
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(a) Plot of energies as function of time: Note that the
total energy Htot is conserved after initial kick and is
finally transferred to Hint, the confining potential en-
ergy. The mass of the black hole M = −2Hsch becomes
negative after finite time and then eventually vanishes
at long time.
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(b) Plot of SL(2, R) charges as a function of time. Note that they saturate to
finite values.

Figure 6.7: The plots for energies and SL(2, R) charges for v0 = 0.9 and λ = 0.4.
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(a) Plot of X(u) and Xth(τ(u)): Both of them sat-
urate to constant values at late time. The particle
stops at a finite distance from the origin.
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(b) Plot of O(u): O(u) saturates to a constant value
at late time so that Hint ∝ X(u)O(u) also saturates
to a constant.

0 2 4 6 8 10 12

0

50

100

150

200

250

u

O
th

(c) Plot of Oth(τ(u)): Note Oth(τ(u)) diverges at
late time since Xth(τ(u)) saturates to a constant
value. However, Hint ∝ τ ′(u)Xth(τ(u))Oth(τ(u))
also saturates to a constant in this frame because the
decay of τ ′ compensates for the growth of Oth(τ(u)).

Figure 6.8: The plots of sources and responses for v0 = 1.4 and λ = 0.4.
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2 4 6 8
u
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v0=0.8
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v0=2.0

Figure 6.9: Different phases for λ = 0.5 as can be seen from the behavior of M(u) = −2Hsch(u)
for various choices of initial velocities. The inset plot shows that multiple crossings of zero is
possible for M(u) when the total conserved energy is positive.
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Figure 6.10: The four energies in the case of v0 = 1.1 and λ = 0.5. The double crossing of
Hsch about zero is hard to discern here, so one can refer to the inset plot in Fig. 6.9. The final
transfer of energy goes to the kinetic energy of the particle.
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Chapter 7

Closing remarks

7.1 Summary

In this thesis I studied semiholographic models with the ultimate goal to understand ther-
malization in nonabelian gauge theories. After reviewing in Chapter 2 the relevant theoretical
background of holography, hydrodynamics and kinetic theory, I described the semiholographic
framework in Chapter 3. I first motivated the phenomenological construction of semiholography
in Sec. 3.1. Semiholography only needs an effective description in order to provide self-consistent
couplings between two sectors. Although requiring only effective descriptions is the main ad-
vantage of semiholography for phenomenology, I discussed in Sec. 3.2 the more general case of
semiholography in the case the microscopic detail is known, i.e. when there is an action princi-
ple. I then described two simple examples of the scalar and metric coupling in Sec. 3.3 and 3.4,
respectively, to demonstrate how semiholography works.

Having set the stage, in Chapter 4, I discussed a phenomenological model of semiholography
near equilibrium. In Sec. 4.1, I described the metric coupling between two perfect fluids in a
flat Minkowski background, where the effective metric tensors encode the interactions. My
collaborators and I found that the metric coupling induces a change in the light cones of each
subsystem. Moreover, we found that there is a first or second order phase transition (otherwise
an analytic crossover) in this model depending on the coupling parameters. In Sec. 4.2, I studied
fluids in a Bjorken expanding background and found novel behavior of the coupled systems. I
then turned the discussion back to Minkowski space, where we investigated viscous corrections
to the perfect fluids in Sec. 4.3. In the shear channel, we found that the shear diffusion constant
would decrease in each subsystem with increasing coupling, while the overall shear viscosity
assumed an intermediate value between the two modes. In the sound channel, we found that
one of the two modes would always have a speed close to the thermodynamic speed of sound,
whereas the other was slower. In Sec. 4.4, one of sectors was described by a kinetic sector.
We found that the non-hydrodynamic relaxation modes changed little or not at all due to the
effective metric coupling.

Then in Chapter 5, I discussed a toy glasma model, which demonstrated for the first time
energy transfer from the hard Yang Mills UV sector to the soft IR gravity theory. This was
accomplished via a self-consistent numerical AdS/CFT simulation with a backreacted dynamical
boundary source. Although this model was formulated in 2 + 1 dimensions for simplicity, the
same results should hold qualitatively in 3 + 1 dimensions.

In the final example in Chapter 6, we investigated a semiholographic model describing the
motion of a trapped impurity, where an impurity following Newtonian dynamics was coupled

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

120 CHAPTER 7. CLOSING REMARKS

to the strongly coupled dual of NAdS2, describing the self-consistent confining potential. We
found that there were two distinct phases, depending on the initial velocity of the impurity.
Remarkably, the black hole would always lose its mass to the dynamical boundary source or
the interaction energy.

7.2 Outlook

There are plenty of possible applications and extensions of the ideas presented in this thesis.
Here is a nonexhaustive list:

Fluctuations in semiholography. It would be useful to include fluctuations in semi-
holography. They very well may be crucial for full thermalization, but are beyond the large
N limit. Furthermore, in Chapter 5, although the strongly coupled sector was inherently
in a quantum regime, fluctuations did not couple to the glasma. Thus, the model can be
improved from a more conceptual point of view by implementing couplings to quantum
fluctuations.

Viscous corrections to Bjorken flow. In Chapter 4.2, we have only considered the
invsicid case for a semiholographically coupled Bjorken fluid. Of course, if we would like
to make the story more closely related to the situation in QGP, we would need to add
viscous effects to see if isotropization can occur.

Attractors for conformal fluids. In the context of Bjorken flow, we can also take a look
at attractor solutions in models like [82] to study off-equilibrium attractors as in [153].
It would be interesting to, say, couple two fluids and understand the late-time behaviors,
such as if the full system would go to a hydrodynamic attractor as well. One of the
sectors could be replaced by a kinetic-like sector, possibly providing an avenue to study
the interplay of non-hydrodynamic modes with hydrodynamic attractors.

Making the toy glasma model more realistic. We can make the discussion in Chap-
ter 5 more realistic by incorporating anisotropies in 3 + 1 dimensions. This would require
work on two fronts. First, we have to improve the numerical stability of our solution
procedure, particularly solving the Yang-Mills equation without introducing too much
numerical noise. Second, we would want to relax the symmetry assumptions, incorporat-
ing anisotropies and spatial inhomogeneities. This would mean that the spin-2 coupling
channel would be opened allowing to use the full semiholographic description as detailed
in [33,36].

Improving the NAdS2 model. A simple way to extend the discussion in Chapter 6 is
to experiment with the form of the impurity. We can generalize its Newtonian dynamics
to the relativistic case. Furthermore, we can make the impurities massive, as well as
self-interacting, and investigate the effect of multiple impurities.

Recovering initial information in NAdS2. As the semiholographic NAdS2 repre-
sented a simple example of an evaporating black hole, it can work as a laboratory to
study the sensitivity of the final state to initial conditions. In particular, it will be in-
teresting to explore to what extent the soft hairs, i.e. the SL(2, R) charges, can preserve
information about the initial conditions.
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7.3. CONCLUSIONS 121

NAdS2 chain models. We can further expand our discussion in Chapter 6 by considering
a chain or lattice of NAdS2 holographic systems. The neighboring sites would be coupled
by the the local SL(2, R) charges. This can be used to explore many interesting questions
at the interface of quantum information and many-body dynamics. For instance, as we
have mentioned previously, in the semiholographic model we are already able to recover
the complete information of the initial conditions from the final state, involving the evap-
orating black hole. We could investigate the existence of possible bounds on the response
of the final state to initial conditions. Finally, we can use this model to study chaotic
behavior in a far from equilibrium state.

Semiholography in other contexts. Semiholography is quite a flexible framework,
allowing one to couple in principle any classical field theory to a strongly coupled dual.
For instance, it would be interesting to couple a kinetic theory to a holographic theory
to study how the quasinormal mode spectrum can influence analytic structure in kinetic
theory.

7.3 Conclusions

In conclusion, semiholography is an interesting framework to explore the possible interplay
between strongly and weakly coupled subsystems, by coupling a field theory to a theory dual to
a gravitational one in a self-consistent manner. The features of the theory are as rich as they are
diverse: phase transitions, irreversible energy transfer and even something akin to black hole
evaporation in NAdS2, to name a few. Although the specific examples considered in this thesis
were motivated by understanding the QGP and other strongly coupled nonabelian plasmas, the
framework is robust enough to work in other contexts, such as condensed matter systems and
cosmology.
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Appendix A

Derivation of the semiholographic
action

Here we calculate the full action of the semiholographic model with democratic couplings,
which recovers the full stress tensor given by (3.49). We make the following ansatz for the form
of the full Lagrangian

√

−g(B)Lfull =
√−gL[gµν ] +

√

−g̃L̃[g̃µν ] +
√

−g(B)Lint (A.1)

with the idea that as γ, γ′ → 0, Lint → 0 and the subsystems decouple. We find that

Lint =
1

2

√−g√−g̃
√

−g(B)
√

−g(B)

(

γt · t̃+ γ′tρσg
(B)
ρσ t̃γδg

(B)
γδ

)

(A.2)

It is worthwhile to point out that the derivation does not depend on the variation of the stress
tensor with respect to the effective metric, i.e. the only information that we need from each
subsystem is that the variation of the subsystem Lagrangian w.r.t. the effective metric is the
subsystem stress tensor.

The derivation of this result proceeds as follows. We consider the full energy-momentum
tensor:

Tµ
β

√

−g(B) = −2g(B)
αβ

∂
(
√

−g(B)Lfull

)

∂g
(B)
αµ

,

= −2g(B)
αβ

[∂(
√−gL)

∂g
(B)
αµ

+
∂(

√−g̃L̃)

∂g
(B)
αµ

+
∂(
√

−g(B)Lint)

∂g
(B)
αµ

]

,

= −2g(B)
αβ

[∂(
√−gL)

∂gρσ

∂gρσ

∂g
(B)
αµ

+
∂(

√−g̃L̃)

∂g̃ρσ

∂g̃ρσ

∂g
(B)
αµ

+
∂(
√

−g(B)Lint)

∂g
(B)
αµ

]

,

= g
(B)
αβ

[√−gtρσ ∂gρσ

∂g
(B)
αµ

+
√

−g̃t̃ρσ ∂g̃ρσ

∂g
(B)
αµ

− 2
∂(
√

−g(B)Lint)

∂g
(B)
αµ

]

. (A.3)
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124 APPENDIX A. DERIVATION OF THE SEMIHOLOGRAPHIC ACTION

Now we make use of the coupling equations

gµν = g
(B)
µν + γ

√−g̃
√

−g(B)
g

(B)
µγ t̃

γδg
(B)
δν + γ′

√−g̃
√

−g(B)
g

(B)
µν t̃

γδg
(B)
γδ

g̃µν = g
(B)
µν + γ

√−g
√

−g(B)
g

(B)
µγ t

γδg
(B)
δν + γ′

√−g
√

−g(B)
g

(B)
µν t

γδg
(B)
γδ (A.4)

We then have

Tµ
β

√

−g(B) = g
(B)
αβ

[(√−gtρσ +
√

−g̃t̃ρσ
)

δ
(α
ρ δ

µ)
σ

+ γ
√−gtρσ ∂

∂g
(B)
αµ

(

√−g̃
√

−g(B)
g

(B)
ργ t̃γδg

(B)
δσ

)

+ γ
√

−g̃t̃ρσ ∂

∂g
(B)
αµ

(

√−g
√

−g(B)
g

(B)
ργ tγδg

(B)
δσ

)

+ γ′√−gtρσ ∂

∂g
(B)
αµ

(

√−g̃
√

−g(B)
g

(B)
ρσ t̃γδg

(B)
γδ

)

+ γ′√−g̃t̃ρσ ∂

∂g
(B)
αµ

(

√−g
√

−g(B)
g

(B)
ρσ tγδg

(B)
γδ

)

− 2
∂(
√

−g(B)Lint)

∂g
(B)
αµ

]

(A.5)

We can rewrite the second line as

γ
√−gtρσ ∂

∂g
(B)
αµ

(

√−g̃
√

−g(B)
g

(B)
ργ t̃γδg

(B)
δσ

)

= γ
∂

∂g
(B)
αµ

(√−gtρσ

√−g̃
√

−g(B)
g

(B)
ργ t̃γδg

(B)
δσ

)

− γ

√−g̃
√

−g(B)
g

(B)
ργ t̃γδg

(B)
δσ

∂

∂g
(B)
αµ

(√−gtρσ
)

, (A.6)

and the third line as

γ
√

−g̃t̃ρσ ∂

∂g
(B)
αµ

(

√−g
√

−g(B)
g

(B)
ργ tγδg

(B)
δσ

)

= γ

√−g̃
√

−g(B)
g

(B)
ργ t̃ρσg

(B)
δσ

∂

∂g
(B)
αµ

(√−gtγδ
)

+ γ

√−g̃
√

−g(B)

√−gt̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
δσ g

(B)
ργ

)

+ γ
√−g

√

−g̃t̃ρσg
(B)
ργ tγδg

(B)
δσ

∂

∂g
(B)
αµ

1
√

−g(B)
. (A.7)

Similarly to the terms proportional to γ, we can rewrite the fourth line and fifth lines as

γ′√−gtρσ ∂

∂g
(B)
αµ

(

√−g̃
√

−g(B)
g

(B)
ρσ t̃γδg

(B)
γδ

)

= +γ′ ∂

∂g
(B)
αµ

(√−gtρσ

√−g̃
√

−g(B)
g

(B)
ρσ t̃γδg

(B)
γδ

)

− γ′
√−g̃
√

−g(B)
g

(B)
ρσ t̃γδg

(B)
γδ

∂

∂g
(B)
αµ

(√−gtρσ
)

, (A.8)
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and

γ′√−g̃t̃ρσ ∂

∂g
(B)
αµ

(

√−g
√

−g(B)
g

(B)
ρσ tγδg

(B)
γδ

)

= γ′
√−g̃
√

−g(B)
t̃ρσg

(B)
ρσ g

(B)
γδ

∂

∂g
(B)
αµ

(√−gtγδ
)

+ γ′
√−g√−g̃
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
ρσ g

(B)
γδ

)

+ γ′√−g̃√−gt̃ρσg
(B)
ρσ tγδg

(B)
γδ

∂

∂g
(B)
αµ

( 1
√

−g(B)

)

.

Finally, recall that

∂

∂g
(B)
αµ

1
√

−g(B)
= − 1

2
√

−g(B)
g(B)αµ. (A.9)

Putting it all together

Tµ
β

√

−g(B) = g
(B)
αβ

[(√−gtρσ +
√

−g̃t̃ρσ
)

δ
(α
ρ δ

µ)
σ

+ γ

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
δσ g

(B)
ργ

)

+ γ′
√−g√−g̃
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
ρσ g

(B)
γδ

)

− γg(B)αµ

√−g√−g̃
2
√

−g(B)
t · t̃− γ′g(B)αµ

√−g√−g̃
2
√

−g(B)
g

(B)
ρσ t̃ρσtγδg

(B)
γδ

+
∂

∂g
(B)
αµ

[

− 2
√

−g(B)Lint +

√−g√−g̃
√

−g(B)

(

γt · t̃+ γ′tρσg
(B)
ρσ t̃γδg

(B)
γδ

)

]

(A.10)

+ γ′
√−g̃
√

−g(B)
g

(B)
ρσ t̃γδg

(B)
γδ

∂

∂g
(B)
αµ

(√−gtρσ
)

− γ′
√−g̃
√

−g(B)
t̃ρσg

(B)
ρσ g

(B)
γδ

∂

∂g
(B)
αµ

(√−gtγδ
)

(A.11)

+ γ

√−g̃
√

−g(B)
g

(B)
ργ t̃γδg

(B)
δσ

∂

∂g
(B)
αµ

(√−gtρσ
)

− γ

√−g̃
√

−g(B)
g

(B)
ργ t̃ρσg

(B)
δσ

∂

∂g
(B)
αµ

(√−gtγδ
)]

.

(A.12)

We see that the last two lines vanish. The line above that vanishes as well, if we identify

Lint =
1

2

√−g√−g̃
√

−g(B)
√

−g(B)

(

γt · t̃+ γ′tρσg
(B)
ρσ t̃γδg

(B)
γδ

)

. (A.13)

The terms that are left are nothing more than the stress tensor. This becomes clear after
further manipulation.

Tµ
β

√

−g(B) = g
(B)
αβ

[(√−gtρσ +
√

−g̃t̃ρσ
)

δ
(α
ρ δ

µ)
σ

+ γ

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
δσ g

(B)
ργ

)

− γ

2
g(B)αµ

√−g√−g̃
√

−g(B)
t · t̃

+ γ′
√−g√−g̃
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
ρσ g

(B)
γδ

)

− γ′

2
g(B)αµ

√−g√−g̃
√

−g(B)
g

(B)
ρσ tγδg

(B)
γδ t̃

ρσ
]

(A.14)
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126 APPENDIX A. DERIVATION OF THE SEMIHOLOGRAPHIC ACTION

We expand the first line of the above

g
(B)
αβ

(√−gtρσ +
√

−g̃t̃ρσ
)

δ
(α
ρ δ

µ)
σ =

1

2

√−g
(

tµσg
(B)
βσ + tσµg

(B)
βσ

)

+
1

2

√

−g̃
(

t̃µσg
(B)
βσ + t̃σµg

(B)
βσ

)

(A.15)

Using the coupling equations, we have

1

2

√−g
(

tµσg
(B)
βσ + tσµg

(B)
βσ

)

+
1

2

√

−g̃
(

t̃µσg
(B)
βσ + t̃σµg

(B)
βσ

)

=

√−g
2

(

tµβ + t µ
β

)

+

√−g̃
2

(

t̃µβ + t̃ µ
β

)

− γ

√−g√−g̃
√

−g(B)

(

g
(B)
βγ t̃

γδg
(B)
δσ tµσ + g

(B)
σγ t̃

γδg
(B)
δβ tµσ

)

− γ′
√−g√−g̃
√

−g(B)

(

tµσg
(B)
βσ t̃

γδg
(B)
γδ + t̃µσg

(B)
βσ t

γδg
(B)
γδ

)

=

√−g
2

(

tµβ + t µ
β

)

+

√−g̃
2

(

t̃µβ + t̃ µ
β

)

− γg
(B)
µα

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
δσ g

(B)
ργ

)

− γ′g
(B)
µα

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
ρσ g

(B)
δγ

)

(A.16)

Thus, we have

Tµ
β

√

−g(B) = g
(B)
αβ

(√−gtρσ +
√

−g̃t̃ρσ
)

δ
(α
ρ δ

µ)
σ

+ γg
(B)
µα

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
δσ g

(B)
ργ

)

− γ

2
δµ

ν

√−g√−g̃
√

−g(B)
t · t̃

+ γ′g
(B)
µα

√−g̃√−g
√

−g(B)
t̃ρσtγδ ∂

∂g
(B)
αµ

(

g
(B)
ρσ g

(B)
δγ

)

− γ′

2
δµ

ν

√−g√−g̃
√

−g(B)
g

(B)
ρσ tγδg

(B)
γδ t̃

ρσ
]

=

√−g
2

(

tµβ + t µ
β

)

+

√−g̃
2

(

t̃µβ + t̃ µ
β

)

− γ

2
δµ

β

√−g√−g̃
√

−g(B)
t · t̃− γ′

2
δµ

β

√−g√−g̃
2
√

−g(B)
t̃ρσg

(B)
ρσ tγδg

(B)
γδ (A.17)

which is indeed the full stress tensor.
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A.1. REWRITING THE INTERACTION TERM 127

A.1 Rewriting the interaction term

Temporarily setting γ′ → 0, it is also interesting to note that we can rewrite the interaction
term via the coupling equations. First observe that using the coupling equations

(gµν − g
(B)
µν )g(B)µα(g̃αβ − g

(B)
αβ )g(B)νβ = g(B)µαg(B)νβγ

√−g̃
√

−g(B)
g

(B)
µγ t̃

γδg
(B)
δν γ

√−g
√

−g(B)
g

(B)
αγ t

γδg
(B)
δβ

=

√−g̃
√

−g(B)

√−g̃
√

−g(B)
γ2t · t̃. (A.18)

We can write the action as

Sfull[φ, φ̃, gµν , g̃µν , g
(B)
µν ] =

∫

dDx
[√−gL[φ, gµν ] +

√

−g̃L̃[φ̃, g̃µν ]

+
1

2γ

√

−g(B)(gµν − g
(B)
µν )g(B)µα(g̃αβ − g

(B)
αβ )g(B)νβ

]

. (A.19)

Then the equations of motion for the matter fields are the standard Euler-Lagrange equations.
The variation of the above action w.r.t. gµν yields

0 = −1

2
tµν

√−g +
1

2γ

√

−g(B)(g̃µν − g
(B)
µν )

→ g̃µν = g
(B)
µν + γtµν

√−g
√

−g(B)
, (A.20)

where we used the shorthand

tµν ≡ g
(B)
µγ t

γδg
(B)
δν . (A.21)

This is nothing more than the coupling equation, which we can view as a constraint equation
on the form of the two effective metrics.

A.1.1 Adding the trace term

We will still need to incorporate the trace term. First we take the trace of a coupling
equation with respect to the background metric

g̃µν = g
(B)
µν +

√−g
√

−g(B)
(γtµν + γ′g

(B)
µν t · g(B)),

→
√−g
√

−g(B)
t · g(B) =

g̃ · g(B) −D

γ + γ′D
, (A.22)

where D = g
(B)
µν g(B)µν is the spacetime dimension. This means that we can reinterpret the

coupling equations

g̃µν = g
(B)
µν (1 + γ′ g̃ · g(B) −D

γ + γ′D
) +

√−g
√

−g(B)
γtµν

⇒
√−g
√

−g(B)
γtµν = g̃µν − g

(B)
µν (1 + γ′ g̃ · g(B) −D

γ + γ′D
).
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128 APPENDIX A. DERIVATION OF THE SEMIHOLOGRAPHIC ACTION

So if we improve our interaction term by this factor

1

γ

√

−g(B)
(

(g − g(B)(1 + γ′ g · g(B) −D

γ + γ′D
)) · (g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)) + extra

)

, (A.23)

(where we now aim to determine the form of the extra terms), then the variation of the full
action w.r.t. gµν is

0 = −tµν

√−g +
1

γ

√

−g(B)
(

g̃µν − g
(B)
µν (1 + γ′ g̃ · g(B) −D

γ + γ′D
)

− γ′g
(B)
µν (

g(B) · (g̃ − g(B)(1 + γ′ g̃·g(B)−D
γ+γ′D )

γ + γ′D
) +

δextra

δgµν

)

⇒ g̃µν = g
(B)
µν + γtµν

√−g
√

−g(B)
+ γ′g

(B)
µν

( g̃ · g(B) −D

γ + γ′D
+
g(B) · g̃ −D(1 + γ′ g̃·g(B)−D

γ+γ′D )

γ + γ′D

)

− δextra

δgµν

g̃µν = g
(B)
µν + γtµν

√−g
√

−g(B)
+
γ′g

(B)
µν (g̃ · g(B) −D)

γ + γ′D
(1 +

γ

γ + γ′D
) − δextra

δgµν
(A.24)

So we see that if we add a term like

γγ′(g · g(B) −D)(g̃ · g(B) −D)

(γ + γ′D)2
(A.25)

to the action, then we have exactly the right coupling rules. Note that (A.25) is nothing more
than the term proportional to γ′ in (A.13)

γ′(g · g(B) −D)(g̃ · g(B) −D)

(γ + γ′D)2
= γ′

√−g
√

−g(B)

√−g̃
√

−g(B)
t · g(B)t̃ · g(B) (A.26)

The full action now reads

Sfull[φ, φ̃, gµν , g̃µν , g
(B)
µν ] =

∫

dDx
[√−gL[φ, gµν ] +

√

−g̃L̃[φ̃, g̃µν ]

+
1

2γ

√

−g(B)
(

g − g(B)(1 + γ′ g · g(B) −D

γ + γ′D
)
)

·
(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)

+
γ′

2

√

−g(B)
(g · g(B) −D)(g̃ · g(B) −D)

(γ + γ′D)2

]

, (A.27)

which can be further simplified to

Sfull[φ, φ̃, gµν , g̃µν , g
(B)
µν ] =

∫

dDx
[√−gL[φ, gµν ] +

√

−g̃L̃[φ̃, g̃µν ]

+
1

2γ

√

−g(B)
(

g − g(B)
)

·
(

g̃ − g(B)
)

− γ′

2γ

√

−g(B)
(g · g(B) −D)(g̃ · g(B) −D)

γ + γ′D

]

, (A.28)

where the contractions are to be taken w.r.t. the background metric g(B)µν .
Now the story is complete: the variation of this action w.r.t. the matter fields yields the usual

EOMs. The variation w.r.t. the effective metrics now gives the complete coupling rules. These
can be thought of as auxiliary fields since their EOMs are just algebraic equations. Finally, the
variation w.r.t. the background metric yields the full theory stress tensor.
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A.1.2 A check on the Ward identities

It is straightforward to see that the Ward identity for each system holds. We treat gµν , g̃µν

and g
(B)
µν as fundamental fields and consider the variation of the on-shell action

δSfull =
∫

d4x
[δ

√−gL[gµν ]

δgµν
δXgµν +

δ
√−g̃L̃[g̃µν ]

δg̃µν
δX g̃µν + δ(interactions) (A.29)

Consider the infinitesimal spacetime translation

xµ → xµ + εµ, (A.30)

under which the metrics transform as

δεgµν = ∇µεν + ∇νεµ, (A.31)

δεg̃µν = ∇̃µεν + ∇̃νεµ. (A.32)

δεg
(B)
µν = ∇(B)

µ εν + ∇(B)
ν εµ. (A.33)

Note that considering the variation with g
(B)
µν means we arrive at the Ward identity for the

complete system. Now we focus on just the variation with respect to gµν . Then, using that

√−gtµν = −2
δ
√−gL[gµν ]

δgµν
(A.34)

and after partial integration

0 = δSfull =
∫

d4x
[1

2
ε(ν∇µ)t

µν√−g +
1

2γ
ε(ν∇µ)

[

√

−g(B)
{(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)µν

− γ′

γ + γ′D
g(B)µνg(B) ·

(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)

+
γ′γg(B)µν(g̃ · g(B) −D)

(γ + γ′D)2

}]

=
∫

d4x
[1

2
ε(ν∇µ)t

µν√−g +
1

2γ
ε(ν∇µ)

[

√

−g(B)
{(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)µν

− γ′

γ + γ′D
g(B)µν(g̃ · g(B) −D)g(B) ·

(

1 − γ′D

γ + γ′D
− γ

γ + γ′D

)}]

=
∫

d4x
[1

2
ε(ν∇µ)t

µν√−g +
1

2γ
ε(ν∇µ)

[

√

−g(B)
(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)µν]

.

(A.35)

Then using the coupling equation, we have that

1

γ
∇µ

[

√

−g(B)
(

g̃ − g(B)(1 + γ′ g̃ · g(B) −D

γ + γ′D
)
)µν]

= ∇µt
µν√−g, (A.36)

i.e.

0 = δSfull ∝
∫

d4xε(ν∇µ)t
µν√−g. (A.37)

Thus the WI are satisfied for the individual subsystems.
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Appendix B

Semiholographic perfect fluids in
arbitrary dimensions

Here we generalize the previous discussion in Sec. 4.1 of two perflect fluids in 3+1 dimensions

to d + 1 dimensions. As usual, we choose the background metric to be flat g(B)
µν = ηµν . We

assume homogeneity and isotropy, so that the metric will be diagonal and of the form

g00 = −a2, gii = b2, g̃00 = −ã2 and g̃ii = b̃2. (B.1)

The energy momentum tensors of the two perfect fluids are

T 00 =
ε

a2
, T ii =

P

b2
, T̃ 00 =

ε̃

ã2
and T̃ ii =

P̃

b̃2
. (B.2)

The coupling equations are

gµν = ηµν + γT̃µν

√

g̃ + γ′ηµν T̃αβη
αβ
√

g̃,

g̃µν = ηµν + γTµν
√
g + γ′ηµνTαβη

αβ√
g. (B.3)

Explicitly, this reads

1 − a2 = ãb̃d
[

γ
ε̃

ã2
− γ′

(dP̃

b̃2
− ε̃

ã2

)]

, (B.4)

b2 − 1 = ãb̃d
[

γ
P̃

b̃2
+ γ′

(dP̃

b̃2
− ε̃

ã2

)]

, (B.5)

1 − ã2 = abd
[

γ
ε

a2
− γ′

(dP

b2
− ε

a2

)]

, (B.6)

b̃2 − 1 = abd
[

γ
P

b2
+ γ′

(dP

b2
− ε

a2

)]

(B.7)

Clearly, there is no time dependence in these equations. As such, these equations represent a set
of algebraic equations. After specifying an equation of state for both P (ε) and P̃ (ε̃), (B.4)-(B.7)
represents a closed set of equations.

Note that we require γ > 0 to ensure that the light cones are within the light cone defined by
the Minkowski metric, i.e. 1 > a

b ⇒ b > a. This can be seen by adding the first two equations
and, equivalently, the last two:

b2 − a2 = γ
[ P̃

b̃2
− ε̃

ã2

]

ãb̃d > 0, (B.8)

b̃2 − ã2 = γ
[P

b2
− ε

a2

]

abd > 0. (B.9)

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

132APPENDIX B. SEMIHOLOGRAPHIC PERFECT FLUIDS IN ARBITRARY DIMENSIONS

To make contact with Sec. 4.1, we choose for both sectors to be conformal, such that their
equation of state is

ε = dP = dn1T
d+1
1 , and ε̃ = dP̃ = dn2T

d+1
2 . (B.10)

Furthermore, we assume that the system is in thermal equilibrium, such that the physical,
system temperature, T , is related to the effective temperatures, T1 and T2, via

T =
√−g00T1 = aT1, (B.11)

T =
√

−g̃00T2 = ãT2. (B.12)

We now make a change of variables to include light-cone velocities, namely v = a
b and ṽ = ã

b̃
.

This is a useful choice as the light-cone velocity is bounded between 1 > v > 0, 1 > ṽ > 0. This
leads to the following equations

dn1T
d+1(γ + γ′(1 − v2))

v2+db2
+ ṽ2b̃2 = 1, (B.13)

n1T
d+1(dγ′(1 − v2) − γ)

v3b2
+ b̃2 = 1, (B.14)

dn2T
d+1(γ + γ′(1 − ṽ2))

ṽ2+db̃2
+ v2b2 = 1, (B.15)

n2T
d+1(dγ′(1 − ṽ2) − γ)

ṽ2+db̃2
+ b2 = 1, (B.16)

Introducing the dimensionless ratio

r = −γ′

γ
, (B.17)

and eliminating b2 and b̃2, leads us to

γn1T d+1 =
vd+2(1 − ṽ2)(d+ v2)

[d+ v2ṽ2 − dr(v2 − 1)(ṽ2 − 1)]2
, (B.18)

γn2T d+1 =
ṽd+2(1 − v2)(d+ ṽ2)

[d+ v2ṽ2 − dr(v2 − 1)(ṽ2 − 1)]2
. (B.19)

Since the light cone velocities are bounded by causality to the range 1 > v, ṽ > 0, we see that
solutions with arbitrary temperatures are only possible when the denominator on the right hand
side of the above equations is zero. This provides a condition on the range of r:

r =
d+ v2ṽ2

d(v2 − 1)(ṽ2 − 1)
(B.20)

Clearly, we require that r > 1 for arbitrary dimensions.

B.1 Phase transition in arbitrary dimensions for n2

n1
= 1

We now consider phase transitions in arbitrary dimensions for equal subsystems, i.e. when
v = ṽ and b = b̃. Note that a phase transition corresponds to v(T ) being a multivalued function
of T . This can be seen in Fig. B.1, where we plotted for the value of r where the second-order
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B.1. PHASE TRANSITION IN ARBITRARY DIMENSIONS FOR N2
N1

= 1 133

0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

v

n
γ

T
4

Figure B.1: The relation between γT 4 and v = a/b (for n1 = n2) at the critical value r = rc

(full line) with the critical point indicated by a black dot on top of it in 3 + 1 dimensions. The
dotted and dashed lines correspond to a crossover situation with r = 1.1rc and a first-order
phase transition with r = 0.95rc, respectively.

phase transition occurs, as well as one value in the crossover and another in the first-order
regime. Note that in this plot only the part connected to v = 1 (corresponding to γT 4 = 0) is
physically realised; increasing γT 4 from zero to infinity lowers v to a finite limiting value (in
3 + 1 dimensions, given in (4.37)).

Hence, if we are interested in determining the onset of a phase transition, we are interested
in the critical points of T (v). We begin by considering (B.18) for identical systems:

γn1T d+1 =
vd+2(1 − v2)(d+ v2)

[d+ v2v2 − dr(v2 − 1)(v2 − 1)]2
. (B.21)

Below r∗, r will have multiple zeros, which correspond to the minima/maxima of T (v). Above
r∗, there are no zeros. It is not difficult to conclude that the zero of (??) will coincide with
the minimum/maximum of r in the range 0 < v < 1. So, we are interested when r has one
minimum in the range 0 < v < 1. It turns out that there is exactly one such value. We can find
the critical points by taking the derivative of the above w.r.t. v:

d

dv

(

γn1T d+1
)

= 0. (B.22)

This then produces an equation linear in r, which we can then solve for

r =
d3(v2 − 1) + d2(v6 + 3v2 − 2) + d(v6 − 5v4 + 12v2 − 4)v2 − 2(v2 − 2)v6

d(v2 − 1)2(d2(v2 − 1) + d(v4 − 5v2 − 2) − 2v2(v2 + 2))
(B.23)

The maxima of r(v) determines the critical value rc, as this determines the critical behavior of
T . This means that we need to solve

0 =
dr

dv
,

⇒ 0 = d5(v2 − 1)2 + 3d4(v2 − 1)2v2 + d3(3v8 − 6v6 − 13v4 + 8v2 − 4)

+ d2(v8 − 2v6 − 23v4 − 12)v2 − 12d(v4 + 2)v4 − 4(v4 − 2v2 + 4)v6 (B.24)
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0.6 0.7 0.8 0.9 1.0

vc

0.01

0.02

0.03

0.04

0.05

Tc

d=3

Figure B.2: The critical temperature as a function of the critical velocity. The blue point
represents the d = 3 critical point. Note that the d → ∞ limit is represented in the lower right
hand corner, Tc → 0 as v → 1.

in the range 1 > v > 0. This determines the critical velocity vc, which is then used to determine
rc and the critical temperature Tc.

If one considers d = 1, 2, it becomes clear that the above equation has no solution for physical
values of the light-cone velocity, i.e. 1 > v > 0. This leads us to conclude that for identical
conformal subsystems, there are no phase transitions in d = 1, 2. The d = 3 case is the lowest
dimension of a phase transition, which was discussed in [36] and Sec. 4 and will be the subject
of the next subsection. It is worthwhile to mention some observations on higher dimensions.
As d → ∞, we have that rc → ∞, Tc → 0 and vc → 1. This behavior is monotonic as can be
seen in Fig. B.2.

B.1.1 The critical value in 3 + 1 dimensions

In this subsection we compute the associated critical values in 3 + 1 dimensions for equal
subsystems. We begin by considering (B.24) when d = 3, which reads

0 = 5v10 + 35v8 − 142v6 − 666v4 − 135v2 + 135, (B.25)

which is a quintic in v2. There is only one solution in the range 1 > v2 > 0, which can be given
in closed form

v2
c

∣

∣

∣

n1=n2

=
1

5

(

2
√

85 + 10
√

15 − 5 − 4
√

15
)

≈ 0.35097. (B.26)

We can plug this critical value of the light-cone velocity into (B.23) to find the critical value of
r:

rc

∣

∣

∣

n1=n2

=
1

540

(

195 + 43
√

15 +

√

30
(

4082 − 557
√

15
)

)

≈ 1.114509. (B.27)

This leads to a critical value of the temperature in (B.21) to be nγT 4
c ≈ 0.0539768.
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Figure B.3: The effective light-cone velocity of the vacuum subsystem as a function of temper-
ature.

B.2 Vacuum solution

A curious observation can be made when we examine the consequences of setting the number
of degrees of freedom in one subsystem to zero, i.e. the vacuum state, whereas the other system
is non-vacuum. We can set T̃µν = 0, but Tµν 6= 0, and consider the coupling equations (B.3):

gµν = ηµν , (B.28)

g̃µν = ηµν + γTµν
√
g + γ′ηµνTαβη

αβ√
g. (B.29)

Clearly, the matter sees the physical background metric ηµν , i.e. the light-cone velocity v = 1.
What about the other, empty sector? For conformal matter, the coupling equations imply that
the light-cone velocity of the empty sector is

ṽ =

√
1 − dγP√
1 + γP

(B.30)

where d is the spatial dimension. Note that the light-cone velocity is physical for a limited range
of pressures. To illustrate the point, let’s consider an arbitrary dimension, where the pressure
can be parameterized by n1T

d+1. This means that there is a critical temperature where the
light-cone velocity drops to zero, given by

Tc =
(

n1γ
)− 1

d+1 (B.31)

This extreme case can be understood by re-examining Fig. 4.6. In the case n2 → 0, v → 1 for
all γ1/4T (the blue line), while the other line ṽ will behave like in Fig. B.3.
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Appendix C

Low and high temperature behavior
of perfect fluids

This appendix centers on discussing the low and high temperature regime for conformal
perfect fluid subsystems in the case r = −γ′/γ > 1 in 3+1 dimensions, such that solutions exist
for all values of the physical temperature T . Moreover, we show the emergence of conformality
in the limit of large γT 4.

For small γT 4, a power series expansion of the solutions to the set of equations (4.29) can
be easily obtained and we find that the leading terms of the metric coefficients are

a2 = 1 − 3n2γT 4 + (12r − 27)n1n2(γT 4)2 +O
(

(γT 4)3
)

,

ã2 = 1 − 3n1γT 4 + (12r − 27)n1n2(γT 4)2 +O
(

(γT 4)3
)

,

b2 = 1 + n2γT 4 + (12r + 5)n1n2(γT 4)2 +O
(

(γT 4)3
)

,

b̃2 = 1 + n1γT 4 + (12r + 5)n1n2(γT 4)2 +O
(

(γT 4)3
)

, (C.1)

while the effective light-cone velocities can be expanded as:

v =
a

b
= 1 − 2n2γT 4 − 16n1n2(γT 4)2 +O

(

(γT 4)3
)

,

ṽ =
ã

b̃
= 1 − 2n1γT 4 − 16n1n2(γT 4)2 +O

(

(γT 4)3
)

. (C.2)

Note that r first shows up at third order.
As discussed in Section 4.1.4, the light-cone velocities asymptote to finite values v∞, ṽ∞

for large γT 4, provided r > 1. These values are obtained by solving the sixth-order algebraic
equations (4.38), which reduces to a quadratic equation with solution (4.37) when n1 = n2.

The full, nonperturbative equation determining the light-cone velocities as a function of γT 4

is given by (4.31) and (4.32) which were obtained by solving first the quadratic equations for
b2 and b̃2 that are implied by (4.29). Using (4.31) and (4.32) in the relations for b2 and b̃2 one
finds

a4 ≡ b4v4 =
3 + ṽ2

v(1 − ṽ2)
n1γT 4,

ã4 ≡ b̃4ṽ4 =
3 + v2

ṽ(1 − v2)
n2γT 4. (C.3)
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Moreover, one can derive the simple identity

b̃2

b2
=

3 + v2

3 + ṽ2
. (C.4)

At small γT 4, all metric coefficients as well as v and ṽ tend to unity, with 1 − v2 and 1 − ṽ2

proportional to γT 4. As one can check easily, (C.3) confirms the first-order coefficients in (C.2).
At large γT 4, where v and ṽ approach nonvanishing values v∞ and ṽ∞ below unity, (C.3)

implies that the metric coefficients a, ã, b, b̃ grow linearly with physical temperature T . Since
the effective temperatures of the subsystems are given by T1 = T /a and T2 = T /ã, this means
that they saturate at finite values proportional to γ−1/4,

γT 4 → ∞ ⇒ T1 →
(

3 + ṽ2
∞

v∞(1 − ṽ2∞)
n1γ

)−1/4

, T2 →
(

3 + v2
∞

ṽ∞(1 − v2∞)
n2γ

)−1/4

. (C.5)

This behavior of the metric coefficients, together with saturation of tµν and t̃µν , implies that
at large T the coupling rules (3.17) become

gµν ≈ γ gµρt̃
ρσgσν

√−g̃√−g + γ′ gρσ t̃
ρσgµν

√−g̃√−g ,

g̃µν ≈ γ gµρt
ρσgσν

√−g√−g + γ′ gρσt
ρσgµν

√−g√−g . (C.6)

Hence, for conformal subsystems

tµν

(

γ gµρt̃
ρσgσν

√−g̃√−g + γ′ gρσ t̃
ρσgµν

√−g̃√−g

)

≈ tµνgµν = 0, (C.7)

or, equivalently,

t̃µν
(

γ gµρt
ρσgσν

√−g√−g + γ′ gρσt
ρσgµν

√−g√−g

)

≈ t̃µνgµν = 0, (C.8)

so that the pure trace terms in the full energy-momentum tensor Tµ
ν proportional to δµ

ν become
small compared T 4, ∆K/T 4 ≈ 0. Hence, at large T ,

Tµ
µ/T 4 ≈ (tµµ

√−g + t̃µµ

√

−g̃)/T 4 = 0. (C.9)

From the full solution we in fact find that Tµ
µ/T 4 ∼ γ−1/2T −2.
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Appendix D

The critical exponent of the
second-order phase transition

In this appendix, we derive the value of the critical exponent α in the specific heat of the
full system,

CV = T ∂S/∂T ∼ |T − Tc|−α (D.1)

when T → Tc, for the case of two conformal subsystems (4.25) where S is given by (4.27). The
full entropy can be computed in d+ 1 dimensions, where we find

S = (d+ 1)T d
(

n1v
−d + n2ṽ

−d
)

. (D.2)

The critical exponent α in the specific heat (D.1) can be inferred from the simple relationship
(D.2) between entropy and effective light-cone velocities. In the vicinity of the critical point we
have for equal subsystems n = n1 = n2,

|S − Sc| ∼ 2d(d+ 1)nT d
c v

−d−1
c |v − vc|. (D.3)

As we have seen, the critical point is determined by the simultaneous vanishing of the first and
second derivatives of T 4 as given by (B.21) with respect to v. Hence,

|T d+1 − T d+1
c | ∼ (d+ 1)T d

c |T − Tc| ∼ |v − vc|d (D.4)

up to some constant prefactor, and thus

|S − Sc| ∼ |T − Tc|1/d, CV ∼ |T − Tc|−1+1/d. (D.5)

Recall from the discussion in Appendix B for equal subsystems in d = 1, 2, there is no phase
transition. Thus, this result is valid for d ≥ 3. We see that α → 1 when d → ∞.

In the main text, we are concerned with a 3 + 1 dimensional system, so we have

CV ∼ |T − Tc|−2/3, (D.6)

i.e. α = 2/3.
In the case of two conformal systems with n1 6= n2, the critical exponent α is independent

of n2/n1 and only the values of rc and Tc change. One then has to solve the two equations
(4.31) and (4.32) numerically, which gives functions v = v(T ) and ṽ = ṽ(T ). For sufficiently
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large values of r, both functions are single-valued; phase transitions occur when these functions
develop infinite tangents. Combining (4.31) and (4.32), one finds that

n2

n1
=
ṽ5(1 − v2)(3 + v2)

v5(1 − ṽ2)(3 + ṽ2)
≡ ρ(v, ṽ) = const. (D.7)

Because

0 =
∂ρ

∂v

dv

dT +
∂ρ

∂ṽ

dṽ

dT , (D.8)

the zeros of dT /dv and dT /dṽ have to occur simultaneously in general. A critical endpoint with
second-order phase transition appears when two zeros of dT /dv (or dT /dṽ) merge as r → rc

from below, such that also d2T /dv2 vanishes and a saddle point (in one dimension) arises. In
principle, such a saddle point could have the next two higher derivatives vanish, too, which
would change the critical exponent α to −4/5. However, with the one additional free parameter
n2/n1 there is not enough freedom for a corresponding fine-tuning.
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Appendix E

Numerical accuracy of the toy
glasma iterative procedure

In this appendix we use an illustrative example, to demonstrate the numerical feasibility of
our iterative procedure, outlined in Chapter 5. We set our couplings to β = 0.2 and gYM/

√
Qs =

0.5, while the initial conditions are ǫini
Y M/Q3

s = 0.1 and ǫini
hol/Q

3
s = 1/250.

In Fig. E.1, we plot the violation of the total energy conservation ∆ǫtot(t) = ǫini
tot − ǫtot(t).

This is defined as difference between the total energy at t0 = 0, namely ǫini
tot = ǫini

Y M + ǫini
hol, and

the total energy during the time evolution ǫtot(t) = ǫY M (t) + ǫhol(t) + ǫxc(t). We find that our
numerical scheme reaches ∆ǫtot(t)/Q

3
s ≈ O(10−5) (or smaller) after four iterations.

A characteristic feature of our numerical method is that more iterations make the long time
behavior better behaved, as can be seen in the plot of the Yang-Mills energy in four subsequent
iterations, see the right panel of Fig. E.1. This behavior is induced by the way we choose our
initial guess, which typically is more accurate at earlier times. At later times, when already a
significant amount of energy has been transferred, the ansatz and the true solution can have
very different amplitude and phase, thus requiring multiple iterations to improve upon the initial
guess.

1st 2nd 3rd 4th

0 50 100 150 200
Qst

10
-8

10
-6

10
-4

10
-2

|Δϵtot|/Qs
3

initial 1st 2nd 3rd 4th

50 100 150 200
Qst

0.075

0.080

0.085

0.090

0.095

0.100

ϵYM/Qs
3

Figure E.1: Left: Violation of the total energy conservation (∆ǫtot(t) = (ǫini
Y M +ǫini

hol)−(ǫY M (t)+
ǫhol(t))+ǫxc(t)) as function of time in four subsequent iterations for parameters described in this
appendix. Right: Time evolution of the energy in the Yang-Mills sector for the same parameters
in four subsequent iterations.
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Figure E.2: Left: Violation of the holographic Ward identity. Right: Constraint in the Einstein
equations.

During each iteration, we monitor the Ward identity (5.17) and the constraint (5.29). We
can see that in the left plot of Fig. E.2, the Ward identity is fulfilled to an accuracy better
than 10−12 during most time steps. In the current example, there are a small number of times
steps for which the accuracy decreases systematically with each iteration, but we find that this
always remains below 10−7. In right plot of Fig. E.2, we see that a similar picture holds for
the constraint in the gravity simulation. During most time steps for subsequent iterations,
the absolute value of the maximum violation in the bulk direction of the constraint (5.29)
remains smaller than 10−12, while for a handful of time steps the error grows with the number
of iterations. This numerical noise can be traced back to numerical errors introduced when
solving the classical Yang-Mills equation (5.21). In particular (5.39) shows that derivative of
higher order enter the calculation of H, which then in turn complicate the solution of the
classical Yang-Mills equation and make the filtering procedure necessary in the first place.
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Appendix F

Abbreviations

3+1D 3+1 dimensions / dimensional

AdS/CFT Anti-de Sitter/Conformal Field Theory

BGK Bhatnagar-Gross-Krook

EOM equation(s) of motion

IR infrared

JT Jackiw-Teitelboim

LHC Large Hadron Collider

LHS left hand side

NAdS2 nearly-Anti-de Sitter in 1 + 1 dimensions

QCD quantum chromodynamics

QGP quark-gluon plasma

RHIC Relativistic Heavy Ion Collider

RHS right hand side

RTA relaxed time approximation

SU special unitary

UV ultraviolet

w.r.t. with respect to

YM Yang-Mills
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