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Kurzfassung

Die kontinuierliche und diskrete strukturerhaltende Approximation von Chemotaxis-
und Kreuzdiffusionssystemen wird fiir zwei verschiedene Modelle diskutiert: fiir das
Keller—Segel-System und das Poisson-Maxwell-Stefan-System. Beide makroskopis-
chen Systeme verfiigen tiber reichhaltige mathematische Strukturen, z.B. freie Energie-
und Entropiefunktionale. Eine numerische Approximation sollte diese Eigenschaften
niitzen und widerspiegeln. Ein Teilaspekt dieser Arbeit ist daher, durch die Uberset-
zung kontinuierlicher Techniken ins Diskrete, strukturerhaltende Schemata zu en-
twickeln. Weiters werden neue analytische und numerische Ergebnisse fiir die bei-
den Kreuzdiffusionssysteme bewiesen bzw. illustriert. Insbesondere werden drei
Resultate prasentiert: Es wird ein viriales Argument fiir das Keller—Segel-System
im semidiskreten Fall bewiesen, die Konvergenz eines regularisierten Keller—Segel-
Systems zum urspriinglichen System gezeigt und ein strukturerhaltendes Galerkin-
Schema entwickelt sowie die Konvergenz dessen zur kontinuierlichen Losung eines
Poisson-Maxwell-Stefan-Systems bewiesen. Die Arbeit und die Ergebnisse konnen
wie folgt zusammengefasst werden:

Die Existenz von schwachen Losungen und oberen Schranken fiir den Blow-up-
Zeitpunkt von zeitdiskreten parabolisch-elliptischen Keller-Segel-Systemen am zwei-
dimensionalen Fuklidischen Raum wird bewiesen. Durch die Verwendung einer
diskreten Version des klassischen virialen Arguments erhalten wir die gleichen Gren-
zen fir den Blow-up Zeitpunkt wie im bekannten kontinuierlichen Fall. Insbeson-
dere konnen wir dies fiir die wichtigsten impliziten Zeitdiskretisierungen zeigen,
d.h. die impliziten Euler-, BDF- und Runge-Kutta-Methoden. Diese theoretis-
chen Ergebnisse werden durch numerische Simulationen mithilfe einer Upwind-Finite-
Elemente-Methode in Kombination mit einer Zeitdiskretisierung zweiter Ordnung
veranschaulicht.

Dariiber hinaus untersuchen wir den Limes eines Keller—Segel-Systems mit regular-
isierender Kreuzdiffusion zum urspriinglichen System. Insbesondere ist der zusatzliche
Kreuzdiffusionsterm bekannt dafiir, den Blow-up des urspriinglichen Systems zu ver-
hindern. Der Limes des verschwindenden Kreuzdiffusionsparameters wird dabei im
parabolisch-elliptischen und parabolisch-parabolischen Fall rigoros bewiesen. Fiir un-
terschiedliche Parameter werden dabei zwei verschiedene Techniken eingesetzt, um
den Limes zu bilden. Im Fall von sublinearer Signalproduktion wird die Existenz von
globalen schwachen Losungen in der Zeit sowie die Konvergenz der Losungen zu de-
nen des klassischen parabolisch-elliptischen Keller—Segel-Systems bewiesen. Fiir den
Fall einer superlinearen Signalproduktion bestimmen wir Konvergenzraten fiir glatte
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Losungen, die lokal in der Zeit sind (da hier ein Blow-up nicht ausgeschlossen ist).
Der Beweis basiert auf sorgfiltigen Abschétzungen in Sobolev-Réumen und einer
Variante des Gronwall-Lemmas. Numerische Simulationen in zwei Raumdimensio-
nen veranschaulichen die theoretischen Ergebnisse und quantifizieren die Form der
Zellaggregation in Abhéangigkeit des Kreuzdiffusionsparameters.

Abschliefend wird eine volldiskrete Galerkin-Methode eines thermodynamisch kon-
sistenten, transienten Maxwell-Stefan-Systems fiir die Teilchendichten, gekoppelt mit
der Poisson-Gleichung fiir ein elektrisches Potential, untersucht. Das System mod-
elliert die Diffusionsdynamik eines isothermen und ionisierten Fliissigkeitsgemisches
mit verschwindender baryzentrischer Geschwindigkeit. Die Gleichungen werden auf
einer beschrankten Umgebung untersucht, wobei die Analyse verschiedene molare
Massen berticksichtigt. Die Galerkin-Methode bewahrt die Gesamtmasse, die Nicht-
negativitat der Teilchendichten, ihre Schranken, und sie erfiillt das zweite Gesetz
der Thermodynamik in dem Sinne, dass die diskrete Entropieproduktion nicht neg-
ativ ist. Weiters wird die Existenz von Losungen fiir das Galerkin-System und die
Konvergenz einer Teilfolge zu einer Losung des kontinuierlichen Systems bewiesen.
Numerische Simulationen zeigen die empfindliche Abhéangigkeit der Teilchendichten
und der Konvergenzrate zum Gleichgewicht von den molaren Massen.
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Abstract

The continuous and discrete structure-preserving approximation of chemotaxis and
cross-diffusion systems is discussed for two different models: the Keller—Segel system
and the Poisson—Maxwell-Stefan system. Both models feature rich mathematical
structures, e.g. free energy and entropy functionals, and a numerical approximation
should reflect and use these properties. Hence, one aspect of this thesis is to fol-
low the approach to design structure-preserving schemes by translating continuous
arguments to the discrete realm. In particular, three results are shown: A virial
argument for the Keller-Segel system in the semi-discrete case is proved, a regular-
ized Keller—Segel system is shown to converge to the original system, and a fully
discrete structure-preserving Galerkin scheme is developed and the convergence to
the continuous solution of a Poisson-Maxwell-Stefan system is proved. The thesis
and results can be subsumed as follows:

The existence of weak solutions and upper bounds for the blow-up time to time-
discrete parabolic-elliptic Keller-Segel systems on the two-dimensional whole Eu-
clidean space are proved. For various time discretizations, including the implicit
Euler-, BDF-, and Runge-Kutta methods, the same bounds for the blow-up time
as in the well-known continuous case are derived by discrete versions of the virial
argument. The theoretical results are illustrated by numerical simulations using an
upwind finite-element method combined with second-order time discretizations.

In addition, we investigate the limit of a cross-diffusion regularization of the Keller—
Segel system. The additional cross-diffusion term is known to prevent the usual
blow-up behavior of this system. The limit of the vanishing cross-diffusion parame-
ter is proved rigorously in the parabolic-elliptic and parabolic-parabolic cases. Two
different techniques are used to pass to the limit, depending on the parameter set-
ting in question. When the signal production is sublinear, the existence of global-
in-time weak solutions as well as the convergence of the solutions to those of the
classical parabolic-elliptic Keller-Segel equations are proved. For superlinear signal
production terms, convergence rates in the cross-diffusion parameter are proved for
local-in-time smooth solutions (since finite-time blow up is possible). The proof is
based on careful estimates in Sobolev spaces and a variant of the Gronwall lemma.
Numerical simulations in two space dimensions illustrate the theoretical results and
quantify the shape of the cell aggregation bumps as a function of the cross-diffusion
parameter.

Finally, a fully discrete Galerkin scheme for a thermodynamically consistent tran-
sient Maxwell-Stefan system for the mass particle densities, coupled to the Poisson
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equation for the electric potential, is investigated. The system models the diffusive
dynamics of an isothermal ionized fluid mixture with vanishing barycentric veloc-
ity. The equations are studied in a bounded domain, while different molar masses
are allowed. The Galerkin scheme preserves the total mass, the nonnegativity of the
particle densities, their boundedness, and it satisfies the second law of thermodynam-
ics in the sense that the discrete entropy production is nonnegative. The existence
of solutions to the Galerkin scheme and the convergence of a subsequence to a so-
lution to the continuous system is proved. Numerical simulations show the sensitive
dependence of particle densities and equilibration rate on the molar masses.
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1 Introduction

The aim of this thesis is to establish and discuss new results concerning the broad
topic of cross-diffusion and chemotaxis models, regarding structure preserving nu-
merical and continuous approximations for cross-diffusion and chemotaxis models.
In particular, I will present a semi-discrete version of a virial argument and the con-
vergence of a cross-diffusion regularization for the Keller-Segel (KS) system. Fur-
thermore, a fully-discrete scheme in entropy variables for a Poisson-Maxwell-Stefan
(PMS) system is introduced and the convergence of this scheme is proven. The re-
sults are mainly based on the publications [86, 87] (A. Jiingel, O. Leingang) and the
submitted work of [88] (A. Jiingel, O. Leingang, S. Wang). In addition, some sup-
plemental remarks and numerical simulations to further illustrate the topic at hand
and set the findings in context are included. In short, we will analyze the following
two models:

The Keller-Segel System

The (Patlak)-Keller-Segel model describes the evolution of agents, mostly cells, that
produce an (chemo)attracting substance and release it into the environment to attract
other agents [95, 115]. This can lead to self-organization of the agents, and various
modifications of this model are used to describe physical and biological aggregation
processes. The formation of a multicellular organism in the life cycle of the slime
mold amoebae Dictoystelim discoideum is an important example showcasing such a
phenomenon in nature.

The Poisson—Maxwell-Stefan System

The second model, the Poisson—-Maxwell-Stefan system, describes the dynamics of
a charged fluid mixture in the diffusive regime [108, 134]. The fluid mixture can
consist of various subcomponents with different qualitative physical properties. The
interplay between the properties of the components leads to interesting and signifi-
cant effects like up-hill diffusion. In addition, the repulsive or attracting force of an
electric field acting on the charged components is important in various applications,
for instance in sedimentation, dialysis, electrolysis and ion exchange.

I will now continue with a brief introduction to cross-diffusion and chemotaxis sys-
tems, followed by some remarks on structure preserving schemes. The remainder
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1 Introduction

of this chapter is dedicated to the background, the state of the art of the specific
equations in question, and an overview of main results presented in this thesis.

1.1 Cross-Diffusion and Chemotaxis

Two important concepts in physics in order to describe the movement of fluids are the
notion of bulk flow and diffusion flow. The first one describes the movement of the
entire body of a substance according to a pressure gradient. Diffusion on the other
hand, is the movement within the body, without net movement of the substance, due
to the gradient in the concentration of the substance. Hence, the gradient of the sub-
stance induces a flux inside the substance. In particular, the substance moves/diffuses
from an area of high concentration to an area of low concentration. If more than one
substance is present, say A and B, also the gradient of substance A can induce a flux
in substance B. This phenomena is called cross-diffusion. The Keller—Segel and the
Poisson-Maxwell-Stefan system are both examples of quasilinear partial differential
systems, or more specific, cross-diffusion equations. We remark here that, although
chemotaxis is technically not emerging from a diffusion process, we still subsume it,
in view of a mathematical framework, as cross-diffusion; see [142] for a general dis-
cussion of cross-diffusion and its effects. Both models act on the macroscopic level,
i.e. analyse the substance as a continuum instead of individual particles, and can
describe rich dynamics in physics, chemistry and biology. In particular, the macro-
scopic scale allows us to study complex phenomena in a qualitative manner, using
the rich toolbox of modern mathematics. Hence, the field has seen an remarkable
development with respect to mathematical results in recent years, e.g. in popula-
tion dynamics, ion transport, tumor-growth, or multi-component models; see [84]
for a parade of examples and results. Cross-diffusion systems have been shown to
describe a series of effects which are missing in simple diffusion systems. One of
these effects is up-hill diffusion, where, in contrast to the usual diffusion dynamics,
the quantity in question can flow from a region of lower concentration to a region of
higher concentration [17, 47, 99]. Another important phenomenon is chemotaxis, a
fundamental guidance mechanism for cells and other organisms. In short, the flux
of a species depends on the gradient of a chemical substance, the chemoattractant.
This can lead to the self-organization of rather simple agents to form a more complex
organism. Although originally used to describe the aggregation of bacteria and other
singular cells [49, 119], a generalized concept of chemotaxis has already spread to
other areas in science and is applied to models that explore the evolution of cancer,
ecology or crime [114]. Of course, the rather simple systems also have limitations for
certain modeling domains [149]. As we will discuss later in more detail, the elegant
description of chemotaxis on the macroscopic level has led to an enormous amount
of research in mathematics and is continuing to do so, also embedded and coupled
to other systems, like the Navier-Stokes equations [147]. In many cases, the math-


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2 Structure Preserving Schemes

ematical treatment can guarantee the existence of solutions and characterize their
longtime behavior.

Remark 1.1. Curiously enough, there also is a chemotaxis model, that attempts to
investigate the reason for the vast amount of chemotazis models [114, p.12].

The payoff for such diverse dynamics are mathematical difficulties in the analysis,
such as the lack of a maximum or comparison principle. Nevertheless, the rather
recent development of specialized techniques for these systems has paved the way
for the analysis of cross-diffusion systems. One example for such a technique is the
boundedness-by-entropy method [83]. In particular, the approach allows in many
cases to prove the existence of solutions and a L* bound for solutions. This is
done using a semi-discrete approximation procedure; we will discuss a fully discrete
argument for the Poisson-Maxwell-Stefan system in Chapter 4.

1.2 Structure Preserving Schemes

Like most physical models, both the Keller—-Segel as well as the Poisson—Maxwell—-
Stefan system come with innate properties of the quantities involved. For example,
if the solution corresponds to the density of a physical quantity, we expect that
the solution is nonnegative. The model could also specify an upper bound for the
density in the case of a population cap or other properties, such as the conservation
of mass. We also find that models inhere an additional structure specific to them, e.g.
solutions stay constant or decay along an energy or entropy functional. In essence,
rather than trying to fulfill these desired properties or constraints via a very fine
grid or shorter time steps, a structure-preserving scheme is designed to capture the
assumptions of the model in a more tailored and efficient way. I will now give a quick
introduction and argument for structure preserving schemes in general.

Preserving Modeling Assumptions

The above mentioned structures and constraints are often built into the model via
physical assumptions and are reflected in the corresponding continuous mathemati-
cal formulation. In particular, the roles of conservation laws and thermodynamical
entropies in modern modeling already encode functional inequalities into the model.
A violation of these properties and structures renders the outcome of a model un-
physical and often useless, since the assumptions play a vital role in the modeling
of the system. In conclusion, a physical approximation via numerical or continuous
schemes should obey these constraints. But even the discretization of a simple ODE
system can lure solutions into a qualitative behavior that may look convincing on
screen but is simply not true. An example for the Lotka—Volterra model can be found
in [69, Chapter 1], where the numerical approximation fails to capture the well-known
closed orbits of this model.
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1 Introduction

Using All the Information: Analysis goes Numerics

In several cases, the mathematical analysis of a system already reveals structures
and therefore sheds light on the behavior of the solution. This additional knowledge
is unused in the numerics if it is not built into the scheme. One strategy to derive
structure preserving schemes is to mimic or translate the continuous arguments al-
ready used to prove the behavior in the continuous case to the discrete case. Parts
of this thesis are therefore continuing the program to “translate” mathematical tech-
niques from continuous to discrete situations [89, 90, 91]. See also [48] for a first
step towards a general framework for entropy-structure-preserving methods and [55]
for another approach via discretizing the entropy/energy functional. The hope is
that such an approach leads to a more efficient and more stable numerical scheme.
Of course, the idea of structure preserving schemes is not new and found already
numerous applications, see [35, 55]. In particular, structure preserving schemes for
ODEs are already established as one of the go-to-techniques to make simulations
more stable or to retain a known qualitative behavior of solutions.

1.3 The Keller—-Segel System

The (Patlak)-Keller-Segel system [95, 115] describes the collective behavior of bacte-
ria or amoebae that are attracted by a chemical substance they produce themselves.
In a simplified situation, this behavior can be described by the evolution of the cell
density p(z,t) and the density of the chemoattractant ¢(z,t) in the form of the system
(1.1) below. In particular, the solution of the Keller-Segel system shows a distinct
qualitative behavior depending on the initial mass of the cells, i.e. the L! norm of
po- If certain conditions, depending on the domain and the initial conditions, are
fulfilled, the cell density p will start to aggregate over time and eventually a blow-up
of the density function will manifest itself. At least in the radial symmetric case,
blow-up profiles can be described with a delta distribution [72, 143]. If the initial
mass of p is not big enough, no aggregation takes place; the cells simply diffuse. This
dichotomy can model an important part in the life cycle of the slime mold amoebae
Dictoystelim discoideum. When singular cells of the slime mold are starving, they
produce a chemoattractant that signals other cells that they should aggregate and
start the next step in their life cycle: the formation of a multicellular organism. Sim-
ilar to the possible blow-up in the model, such an evolution is only possible if enough
cells are present [59]. This effect, and related asymptotic behavior such as stationary
states, has led to an enormous amount of research and inspired new models in other
areas of applications. See [4, 73, 76] for a survey from a mathematical point of view.
Our approach for this system can be stated as follows: first, we want to translate a
specific blow-up argument in the parabolic-elliptic case, called the virial argument,
to the discrete case. The hope is that such a scheme can be used to numerically
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1.3 The Keller—Segel System

resolve the blow-up in a computationally cheaper way and in turn allows us to com-
pute a more accurate estimate for the blow-up/aggregation time. We are setting the
first step in this direction and will discuss the existence of solutions and the preser-
vation of the virial argument in the semi-discrete case for various discretizations in
time. In addition, we want to prove the convergence of a regularized system to the
original Keller-Segel system. This regularized system shows interesting properties:
the additional cross-diffusion prevents the blow-up of the cell density, but not the
aggregation.

1.3.1 The Model Equations

While there are many versions of the Keller-Segel model, in this thesis we will use
the following;:

Op = div(Vp — pVe), (L.1)

edic=Ac—Bc+p*, e€Q, t>0, .
where 2 C R? is an open domain and o > 0, £, > 0. In addition, we assume
nonnegative initial conditions p(x,0) = po(z), and if € > 0, ¢(x,0) = co(z), with
r € Q. If Q C R? is bounded, we also imply no-flux boundary conditions

Vp-v=Vec-v=0 ondf, t>0,

where v denotes the exterior unit normal vector on 0f). Depending on the parameter
e, this system is also called parabolic-parabolic KS (Keller-Segel model), for € > 0,
or parabolic-elliptic KS, for ¢ = 0. For a = 1, we will call this model the classical
Keller—Segel system. One can view the parabolic-elliptic KS as the limit of a rescaled
version of the parabolic-parabolic case, where it is assumed that the diffusion of the
chemoattractant ¢ is much faster than the movement of the cells. Various derivations
of the model can be found in a range of works: a slightly informal, but informative
continuum mechanic point of view can be found in [110], a diffusive limit of a kinetic
system is described in [4] and a derivation from an interacting stochastic many-
particle system is presented in [135]. We will cite literature concerning this system
in the following subsection tailored to our results. For the moment, we mention here
that for the classical Keller—Segel system (1.1), i.e. « = 1, local-in-time smooth
solutions exist [4, 111, 138] and can experience blow up of the L norm, depending
on the initial datum and the domain in question [9, 10, 22, 38, 82, 111, 138, 146].
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1 Introduction

In addition, we will investigate a Keller-Segel system with a cross-diffusion regu-
larization proposed in [75],

8tp5 = diV(Vpg — ngQs),

1.2
edics = Acs — Bes + 0Aps + (ps)*, =€ Q, t>0, (12)

where 6, c, 8 > 0, ¢ > 0, together with initial conditions ps(z,0) = po(z), and if
e >0, cs(x,0) = co(x), with = € Q. In the bounded case, we prescribe homogeneous
Neumann boundary conditions, i.e.

Vps-v=Ves-v=0 ondf2, t>0.

In contrast to the Keller—Segel system (1.1), under reasonable assumptions on « and
the domain, global-in-time solutions for the system with additional cross-diffusion
(1.2) exist; see [75]. This is just one example of a variety of modifications for the
classical Keller—Segel system that can prevent the blow-up in the classical KS system,
as we will see in Subsection 1.3.3.

Remark 1.2. Informal discussion: The system (1.1) consists of a conservation of
mass equation for p and a diffusion equation for c. Heuristically, we see a compe-
tition between the diffusive term div(Vp) and a cross-diffusion term with opposite
sign proportional to the gradient of the chemoattractant, i.e.— div(pVe), in the first
equation. The second equation is a simple diffusion equation for ¢ but with a source
term depending on p. In short, cells move towards a higher concentration of ¢, but
also spread out in a random-like fashion. At the same time, the production of ¢ is
higher where the cell density p is higher. This feedback can lead to an aggregation
behavior, followed by a blow-up of the solutions as mentioned above. The parameter
B measures the signal degradation rate and o the (cell-depending) production rate of
the chemoattractant c.

1.3.2 Structures and Qualitative Properties

Since we are interested in preserving structures and the qualitative behavior of so-
lutions, let us go through some specific features of the KS (1.1) and the regularized
system (1.2). In order to illustrate the main points, we assume the existence of
smooth solutions on an open domain  C R?. In the case that QO = R, we assume
in addition that the solutions decay fast enough at infinity. We will detail the as-
sumptions in the specific chapters 2 and 3, tailored to our arguments. First of all, in
harmony with the nature of our equation, we have that a solution (p,c) of (1.1) and
ps of (1.2) is nonnegative if (po, ¢p) is nonnegative. In addition, the total mass of the
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1.3 The Keller—Segel System

cells is not changing over time, i.e.

M = ||pol|Lr) = llp()||r@) = |lps(t)||L1(e) for all £ > 0.

Remark 1.3. The nonnegativity for cs in the parabolic-parabolic case holds at least
locally in time. However, the situation in the parabolic-elliptic case is unclear.

The Virial Inequality and Blow-up

Next, we restrict ourselves to the classical parabolic-elliptic KS on the whole plane,
ie. Q =R% ¢ =0, a=1and 8 > 0 and define the second moment of p by
I(t) == [, |z’p(x,t)dz. One can use the system (1.1) and the Poisson equation
structure of the second equation, to derive the following inequality

i) M VB

S - Ve
( 8m) + -

M32\/T 1.
T (0), (1.3)

along solutions (p, ¢) of the system (1.1). See [22] for the derivation of this estimate.
This approach via the second moment is called virial method or virial argument and
is usually used in dispersive equations like the nonlinear Schrodinger equation; see
[139]. In the case 5 = 0, this expression becomes an identity. Now, if ¢t > T*,

271(0)
M(M — 87 —2/BMI(0))’

M > 8r and I(0) small is enough, we infer that I(¢) < 0, contradicting p(-,t) > 0.
Hence, this inequality allows us to identify an upper bound for the maximal lifespan
of a solution and whether a (weak) solution (p, ¢) can exist for all ¢ > 0 or not.

In order to get a better understanding of the mathematical structure, we can rewrite
the system (1.1) into one single equation:

T = (1.4)

dip = div (Vp = p(VBs % p)), p(-,0)=po inR> (1.5)

Here Bg denotes the Bessel potential if 3 > 0, and the Newton potential if 3 = 0
(see Appendix A for the definitions). This nonlocal or long-range interaction leads to
the well-known blow-up dichotomy in the parabolic-elliptic case of (1.1). First, let us
consider the case without degradation: [ = 0. If the initial mass satisfies M < 8,
no aggregation takes place and the solutions exist for all time. On the other hand,
if the mass is supercritical, M > 8, and the second moment Iy := [o, |z|*podz is
finite, the solutions will blow up in finite time [10]. In the limit case M = 8, a
blow-up takes place in infinite time with constant second moment [9]. We remark
that the critical space is L%2(R?) in space dimensions d > 3; see [38]. When the
signal degrades, 8 > 0, a similar criteria holds: the solutions exist for all time for
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1 Introduction

subcritical initial masses M < 87 /f3, and they blow up in finite time for supercritical
masses M > 87/ and sufficiently small second moment I, [22]. The blow-up time
Tax can be estimated from above by T* defined in (1.4).

Free Energy Functionals

In the case o = 1, we can define the free energy functional
1 2, B
Flp] = p(logp—l)—pc—l—§\Vc] +5¢ dx
Q

which is nonincreasing along solutions (p, ¢) of the system (1.1). To be more precise,
the system and integration by parts lead to the following identity

d
—FMZ—dMan—LmV@%p—MW%

dt
see [138] for the corresponding calculations. This identity also hints that the system
(1.1) can be seen as the gradient flow of the free energy functional [7]. From an
analysis point of view, the energy is a Lyapunov functional. In particular, it provides
us with a priori estimates and is used to show global-in-time existence in certain
situations.
For the regularized version, (1.2), we have a similar structure at hand:

9
Flpd = [ paogps = 1)+ o(ead
Q

this time depending on 6. Now, at least formally for smooth solutions (p°,¢’) of the
corresponding system (1.2), we have

Lo = - /Q (4|v\/m|2 + %(|V05|2 + (c5>2)) dz + g /Q pscsdr. (1.6)

dt
If 8 is equal to zero, we have again a Lyapunov functional, and hence the functional
is nonincreasing along solutions. In the case > 0, we can still absorb the right hand
side and derive a priori estimates. This is the main ingredient for the global-in-time
existence shown in [75].

1.3.3 Mathematical Challenges and State of the Art

Although the Keller—Segel system is rather simple, the solution can show complex
(long time) behavior and the analysis is challenging, because we are dealing with
a quasilinear cross-diffusion system. In general, classical approaches out of the
parabolic toolbox, like maximum principle, are not available for this class of sys-
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1.3 The Keller-Segel System

tems. The reformulated problem (1.5) reveals the prototypical nonlocal nature of
the system, which is a challenging topic from an analytic and numerical point of
view; see [94] for an overview of applications. Since the difficulties and approaches
to this problem depend strongly on the setting, we will restrict our literature survey
and the corresponding remarks to the two cases treated in Chapter 2 and Chapter 3.

The Parabolic-Elliptic Case on the Plane:

In this case, we deal with the system (1.1) and assume o« = 1, 8 > 0 and ¢ = 0 for Q =
R2. As already mentioned above, there are clean and simple blow-up criteria via the
virial inequality (1.3) and the existence of weak solutions for all time in the case M <
8 [10]. In particular, the virial argument builds on a symmetry in the cross-diffusion
term of (1.5), the conservation of mass and the nonnegativity of the solution. The
preservation of these three properties in a discrete setting at once is quite challenging.
Most of the numerical approximations use additional tools to stabilize the scheme,
which in turn destroys one of the three properties mentioned above. We start with
some general numerical results concerning this system. A detailed numerical study
of the collapse phenomenon for the parabolic-parabolic case has been performed in
[19]. The asymptotic profile of blow-up solutions in the parabolic-elliptic model was
studied in [40]. Numerical blow-up times were computed, for instance, in [52] using a
kind of H? norm indicator; in [19] using the moving-mesh method; and in [50] using
discontinuous Galerkin approximations.

Since the literature on the analysis and numerical approximation of Keller—Segel
models is enormous, we will only review in the following the papers concerned with
the analysis of numerical schemes and the blow-up behavior of the discrete solu-
tions, in particular those possessing structure-preserving features. We do not claim
completeness and refer to the introduction of [1] for more references. Most of the
numerical schemes for the Keller-Segel model utilize the implicit Euler method for
the time discretization and aim to preserve some properties of the continuous equa-
tions, like (local) mass conservation, positivity (nonnegativity, to be precise) preserva-
tion, or energy dissipation. These schemes use (semi-implicit) finite-difference meth-
ods [29, 125]; an upwind finite-element discretization [122]; an Eulerian-Lagrangian
scheme based on the characteristics method [131]; a Galerkin method with a di-
minishing flux limiter [137]; an implicit-explicit moving mesh method [133]; and
finite-volume methods [53, 152]. A finite-volume scheme was also studied in [1],
but with a first-order semi-exponentially fitted time discretization. Finally, a mass-
transport steepest descent scheme was analyzed in [8]. All these schemes are based
on first-order discretizations.

Only few results are concerned with higher-order time integrators. In [104], a semi-
implicit finite-difference scheme with BDF2 time discretization is analyzed. Strongly
A(f)-stable Runge-Kutta finite-element discretizations were analyzed in [112], and
the convergence of the discrete solution was shown. However, mass conservation or
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1 Introduction

positivity preservation was not verified. As A-stable time integrators are compu-
tationally very costly, often splitting methods are used. A third-order strong sta-
bility preserving (SSP) Runge-Kutta time discretization for the advection term and
the second-order Krylov IIF (implicit integration factor) method for the reaction-
diffusion term, together with a positivity-preserving discontinuous Galerkin approx-
imation in space, was suggested in [150], but without any analysis.

A number of papers are concerned with the preservation of the nonnegativity of
the cell density. An example is [32], where a semi-discrete central-upwind scheme
was proposed. Moreover, in [33], a hybrid finite-volume finite-difference method was
combined with SSP explicit Runge-Kutta schemes (for the parabolic-parabolic case)
or the explicit Euler scheme (for the parabolic-elliptic case). Clearly, a CFL condition
is needed to ensure the stability of the explicit schemes. Another approach was used
in [141] for a related tumor-angiogenesis model, where a Taylor series method in
time allows for higher-order but still explicit schemes. Furthermore, the authors of
[67] propose an energy dissipating and positivity preserving discontinuous Galerkin
scheme. The semi-implicit finite difference scheme of [104], with first order in time
discretization, preserves the mass and the positivity.

We remark that there do not exist SSP implicit Runge-Kutta or multi-step methods
of higher order [64, Section 6]. Moreover, SSP for such methods is guaranteed only
under some finite time step condition [11, 132] (also see the recent work [96]). In
view of these results, positivity preservation of our higher-order schemes cannot be
expected.

We do not aim to preserve the free energy of the Keller-Segel system, since such
schemes usually destroy the symmetry property needed for the blow-up argument;
see Remark 2.4 for details. An exception is the work [8] for a modified version of the
Keller—Segel model in one dimension, where the virial blow-up argument could be
used for an implicit Euler steepest descent scheme, which also provides the decay of
the gradient-flow energy. Some estimates on the discrete free energy in an implicit
Euler finite-volume approximation were shown in [152]. A scheme that dissipates
the free energy numerically was suggested in [26] using a gradient-flow formulation
of the energy functional with respect to a quadratic transportation distance. It is
shown in [125] that the dissipation of the discrete free energy may fail in an upwind
finite-difference scheme. The dissipation of the discrete entropy in a finite-volume
modified Keller—Segel system was proved in [5].

Blow-up and Existence in a Bounded Domain:

We continue this survey with the general case of (1.1) and (1.2) on a bounded open
domain Q C R¢. We start with some blow-up results, this time concerning only the
bounded case with the classical setting of « =1, § =1 and § = 0. In particular, for
d = 2, we can observe a similar behavior as in the unbounded case from above. In the
parabolic-elliptic case, if the initial mass M := ||po||11(q) is small enough, M < 47

10
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1.3 The Keller-Segel System

for a general domain and M < 87 for radial symmetric initial condition, we have
global-in-time smooth solutions. If M > 87, and pg is concentrated enough i.e. the
second moment is small, the solution will blow up in the L* norm [6, 111, 138]. The
condition on the second moment implies that the initial density is highly concentrated
around some point. It is necessary in the sense that there exists a set of initial data
with total mass larger than 87 such that the corresponding solutions are global [3].
In the parabolic-parabolic case, again in two space dimensions and with finite second
moment, the solutions exist globally in time if M < 87 [25]. However, in contrast
to the parabolic-elliptic case, the threshold value for M is less precise [129], and
solutions with large mass can exist globally. In dimensions d > 3, a related critical
phenomenon occurs: the solutions in the parabolic-elliptic case exist globally in time
if {|p°] Ld/2(o) is sufficiently small, but they blow up in finite time if the total mass is
large compared to the second moment [38]. In the parabolic-parabolic case, global
solutions in time exist and diffuse to a constant steady state, provided the critical
norm of py, the L%? norm, is small enough [145]. In general, we see the blow-up in
higher dimensions for arbitrary initial mass [146].

Approaches to Exclude a Blow-up:

In the case av = 1, the system (1.2) becomes the cross-diffusion system introduced
and analyzed in [75]. In [28], a similar set of equations is analyzed, this time with
a nonlinear cross-diffusion term dAp™ with n > 1. It turns out that the additional
cross-diffusion allows us to prove the global existence of solutions for 6 > 0 and
prevents the finite-time blow-up usually expected for this system. Of course, other
modifications can be made to prevent a blow-up of the cell density: one can introduce
nonlinear cell diffusion [20], nonlinear cell diffusion and a nonlinear chemoattractant
sensitivity function [34, 36, 81, 151], volume filling [42], limit the flux [118] or consider
a nonvanishing growth-death model [12, 144] to avoid the blow-up of the cell density.
If « <2/d, § =0, we also have global existence of classical solutions, see [103]. In
the case a > 2/d, 6 = 0, and € = 0, solutions of a slightly different equation blow up,
if the initial mass is big enough [148]. See [4] and [28, 75] for an overview of these
modifications.

Known Results for the Regularized System (1.2):

In the case a = 1, the system features global-in-time weak solutions [75]. For the case
e=0,a=1and d < 3, the equations can be reformulated to fit into the framework
of [97], where an L* bound is shown but no existence result is presented. A numerical
study was performed for the regularized parabolic-elliptic case in [5]. In particular,
it demonstrated that intermediate states of the solution exist; see Chapter 3 for a
continuation of this observation. A finite element scheme for the parabolic-parabolic
case was analyzed in [68], but without highlighting the role of the parameter §.

11
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1 Introduction

1.4 A Poisson—Maxwell-Stefan System

The Maxwell-Stefan equations describe the dynamics of a fluid mixture in the diffu-
sive regime. They have numerous applications, for instance in sedimentation, dialysis,
electrolysis and ion exchange. The system itself was already derived in the 19th cen-
tury by Maxwell using gas theory [108]. In most situations, a component in a fluid
diffuses down the gradient of its concentration, i.e. according to Fick’s law. This
is not always the case; experiments show that in multicomponent fluids the diffu-
sion flux of any component is strongly coupled to that of the other components, i.e.
cross-diffusion appears, to take into account the drag/friction force between the com-
ponents. This can lead to the already mentioned phenomena of uphill diffusion, where
the flux goes from regions of low concentration to regions of high concentration; see
[47] for the original experiment, [17] for a mathematical discussion and [99] for a new
survey of this topic. While Maxwell-Stefan models have been investigated for several
decades from a modeling and simulation viewpoint in the engineering literature (e.g.
[58]), the mathematical and numerical analysis started more recently [15, 63]. The
global existence of weak solutions under natural conditions was proved in [31, 93]
for neutral mixtures. The main tool for proving these results is the boundedness-by-
entropy method, introduced in [83]. In case of ion transport, the electric charges and
the self-consistent electric potential need to be taken into account. Usually, this is
done in the context of Nernst—Planck models [27, 29], where the diffusion flux only
depends on the density gradient of the ith component, and thus without any cross-
diffusion effects. In certain cases, e.g. in an infinitely diluted mixture, we can view
the Nernst—Planck equations as a specific instant of the Maxwell-Stefan equations
for ions [65]. At this point in time, to our knowledge, no mathematical results are
available in the literature for such Poisson—-Maxwell-Stefan models. As stated above,
we want to translate the continuous idea, in this case the boundedness-by-entropy
method, to the discrete world. In particular, we will derive a structure-preserving
fully discrete Galerkin scheme and prove its convergence to the continuous problem.
This provides us also, for the first time, with a global existence result for Poisson—
Maxwell-Stefan systems.

1.4.1 The Model Equations

In order to write down this model, we have to define several quantities and restrict
ourself to a particular setting. We consider an ionized fluid mixture consisting of n
components on a bounded domain 2 C R, with the partial mass density p;, partial
flux J;, and molar mass M; of the ith species. The evolution of the particle densities
p; is governed by the partial mass balance equations

8tp7,—|—leJl :TZ(.CE), 1= 1,...,77,, (17)
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1.4 A Poisson—Maxwell-Stefan System

where 7; are the production rates satisfying > ", r;(z) = 0 and > . | J; = 0. The
variables are functions of the spatial variable y and time ¢. The molar concentrations
are defined by ¢; = p;/M; and x; = ¢;/cioy are the molar fractions, where ¢y =
Z?:l ¢; denotes the total concentration and we have set © = (z1,...,2,). The
partial fluxes J; and the gradients of the molar fractions z; are related by the (scaled)
Maxwell-Stefan equations

N

j=1

where k;i; = kj = 1/(c} M;M;D;;) are the rescaled (reciprocal) Maxwell-Stefan
diffusivities, D; is the driving force, z; the electric charge of the ith component, and
® the electric potential. The numbers D;; = D;; are the Maxwell-Stefan diffusivities
and can be interpreted as inverse drag coefficients. We refer to Section 4.3 for details
on the modeling in our situation. A derivation of the Maxwell-Stefan system itself
from the Boltzmann equation can be found in [17, 58], including a non-isothermal
setting [79]. These equations are coupled to the (scaled) Poisson equation

n

1=1

where A is the scaled permittivity, and f(y) is a fixed background charge. The
equations are solved in a bounded domain Q C R? (d > 1) and supplemented by the
boundary conditions

Ji-v=0 ond), 1=1,...,n, (1.10)
d=0p onlp, VO-r=0 only, (1.11)
where I'p models the electric contacts, I'y = 9Q\I'p is the union of insulating bound-
ary segments, and v denotes the exterior unit normal vector to 9€2. This means that

the mixture cannot leave the container {2 and an electric field is applied at the con-
tacts I'p. The initial conditions are given by

pi(0)=p) inQ, i=1,... n

We assume that the total mass is constant initially, > 1 | p? = 1, which implies from
(1.7) that the total mass is constant for all times, > ", p;(t) = 1, expressing total
mass conservation.

13
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1 Introduction

A Poisson—Maxwell-Stefan Cross-Diffusion System:

Observe that (1.8) defines a linear system in the diffusion fluxes. Since > | D; =0,
the kernel of that system is nontrivial, and we need to invert the relation between
the fluxes J; and the driving forces D; on the orthogonal component of the kernel.
It was shown in [93, Section 2] that we can write (1.8) as D' = —AyJ', where
D' = (Dy,...,Dn1), J = (J1,...,Jn1), and Ay € R®=D*(=1) g invertible but not
positive definite nor symmetric, see Section 4.4.1 for details, and is given by

i1, ezi(Rie = Kin)pe + ki i =,

o (=1, 0
(Ao)ij { kg~ ko) if i # J.

The nth components are recovered from D, = — Z?;ll D; and J, = — Z;:ll J;.
Thus, (1.7)-(1.11) can be written compactly as a cross-diffusion system coupled to a
Poisson equation, i.e.

n—1
Oip' = div(Ag(p) D' (p, @) +7'(x), pp=1- sz’,
=1

—AAD = Z zici+ f(y), inQ,
i=1

where p' = (p1, ..., pn_1), with the mixed boundary conditions

Ag'D'v=0 ondQ,i=1,...,n—1,

(1.13)
d=®, onlp, V®-vr=0 only,

with A;'D’" - v and div(A; ' D’) defined in the Section 1.6.

1.4.2 Structures and Qualitative Properties

The assumptions from above imply that a solution p € R™ of (1.12)-(1.13) is supposed
to be nonnegative and every component p; is constrained from above by one, i.e.
pi €10,1], ¢ =1,...,n. If these bounds are satisfied, we know, by the reformulation
of the system, that the total mass is conserved over time and in particular,

ol i = llpollzr@) = |2] for all £ > 0.
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1.4 A Poisson—Maxwell-Stefan System

Entropy Inequality:

Next, we introduce the entropy
H(p) = [ hip)dy, h(p)= Ciot E zilogz; + - |V(® — @p)|7,
L i=1 2

see Section 4.3 for more details. Using a transformation p — w(p), so-called entropy
variables, we can formally compute that

dH / / u oh
— + [ Vw: BVwdy = ri(r)=—dy, 1.14
] v= ), ) g (1.14)

if &p is constant and Vw : BVw = 27;:11 B;;Vw; - Vw;. This transformation
is well-known in nonequilibrium thermodynamics, where w; is called the electro-
chemical potential and B is the mobility or Onsager matrix. The matrix B in our
case is symmetric and positive definite; see Section 4.4. This implies that the entropy
production (the diffusion term) is nonnegative, which expresses the second law of
thermodynamics. Thus, if the right-hand side is nonpositive, the entropy ¢ — H (p(t))
is a Lyapunov functional and we may obtain suitable estimates for w;. In addition,
the inverse transformation w — p(w) guarantees that the densities p; = p;(w) are
positive and bounded, and it holds that Y " | pi(w) = 1; see Section 4.4 for details.
This property is inherent of the transformation and it holds without the use of a
maximum principle and independent of the functional setting. So if we can show the
existence of a solution w for the system (1.12)-(1.13) in the new entropy variables, we
immediately achieve a solution fulfilling our L* bounds stated above. This technique
has been used to prove existence of the system in [31, 93], but without electric force
terms.

1.4.3 Mathematical Challenges and State of the Art

The main mathematical difficulties in the analysis of the quasilinear cross-diffusion
system (1.12)-(1.13) are rooted in three challenges: the lack of a maximum principle,
the handling of different molar masses and the coupling to the Poisson equation by
an nonlinear drift term. In addition, our goal is to derive a structure preserving
numerical scheme, which at the same time preserves the nonnegativity, the bound
from above and the entropy inequality. In general, this is a challenge in itself, and
not many results include the convergence of such schemes for a nonlinear system.
We also remark that the recovery of the density p from the entropy variables in this
case is not standard, since the inverse function is only known to exist, but no explicit
formula is available; see Subsection 4.4.2. Before presenting our main results, we
briefly review the state of the art of Maxwell-Stefan models.

15
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1 Introduction

Modeling:

The Maxwell-Stefan equations itself were already derived in the 19th century by
Maxwell using kinetic gas theory [108] and Stefan using continuum mechanics [134].
A more mathematical derivation from the Boltzmann equation can be found in
[18, 62], including a non-isothermal setting [79]. An advantage of the Maxwell-Stefan
approach is that the definition of the driving forces can be adapted to the present
physical situation, leading to very general and thermodynamically consistent models
[16]. In order to also consider charged mixtures, like electrolytes, we need to include
the electric force. In many applications, simulations for such mixtures are carried out
using an instance of the Nernst—Planck model [113, 120] without any cross-diffusion
effects. In the case of a ternary gas, Duncan and Toor [47] showed that cross-diffusion
terms need to be taken into account. Dreyer et al. [46] outlined some deficiencies
of Nernst—Planck models and propose thermodynamically consistent Maxwell-Stefan
type models. A numerical comparison between Nernst—Planck and Maxwell-Stefan
models can be found in [121], which also highlights that one needs to take cross-
diffusion into account for an accurate description of a ternary electrolyte. These
shortcomings of the classical Nernst—Planck approach are known, and several (non-
linear) generalizations of the Poisson-Nernst—Planck system have been established
in recent years, leading to cross-diffusion in most cases, e.g. [21, 45].

Analysis:

The first global-in-time existence result to the Maxwell-Stefan equations (1.7)-(1.8)
without Poisson equation was proved by Giovangigli and Massot [63] for initial data
around the constant equilibrium state. The local-in-time existence of classical solu-
tions was shown by Bothe [15]. The entropy structure of the Maxwell-Stefan system
was revealed in [93], and a general global existence theorem could be shown. Further
global existence results can be found in [71, 107]. The Maxwell-Stefan system was
coupled to the heat equation [80] and to the incompressible Navier—Stokes equations
[31]. In [62, Theorem 9.7.4] and [71, Theorem 4.3], the large-time asymptotics for
initial data close to equilibrium were analyzed. The convergence to equilibrium for
any initial data was investigated in [31, 93] without production terms and in [39] with
production terms for reversible reactions. Salvarani and Soares proved a relaxation
limit of the Maxwell-Stefan system to a system of linear heat equations [126].

Numerics:

Surprisingly, there are not many papers concerned with numerical schemes which
preserve the properties of the solution, like conservation of total mass, nonnega-
tivity and entropy production. Many approximation schemes can be found in the
engineering literature, for instance finite-difference [102, 105] or finite-element [25]
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1.5 Main Results and Outline

discretizations. In the mathematical literature, finite-volume [116] and mixed finite-
element [109] schemes, as well as explicit finite-difference schemes with fast solvers
[60] were proposed. The existence of discrete solutions was shown in [109], but only
for ternary systems and under restrictions on the diffusion coefficients. The schemes
of [17, 116] conserve the total mass, while those of [17, 43] also preserve the L
bounds. The result of [43] is based on maximum principle arguments. Note that
we are able to show the L*™ bounds without the use of a maximum principle, as a
result of the formulation in terms of entropy variables, and that we do not impose
any restrictions on the diffusivities (except positivity).

All the cited results are concerned with the Maxwell-Stefan equations for neutral
fluids, i.e. without electric effects.

1.5 Main Results and Outline

Chapter 2 is devoted to results for the parabolic-elliptic case of the Keller—Segel
system, i.e. for the system (1.1) with Q@ = R?, ¢ = 0 and o = 1. In short, we will
derive an upper bound for the blow-up time for various time discretizations for the
time-discretized system. This shows that the “continuous” methods carry over to
the semi-discrete case. Let py be an approximation of p(-, k7), where 7 > 0 is the
time step and k£ € N. We recall the definitions M := fR2 podx of the initial mass and
Iy := [gs |2[*poda of the initial second moment.

e Existence of solutions to the implicit Euler scheme (Theorem 2.2): For a given
pr—1 > 0 and sufficiently small time step 7, there exists a unique weak solution
pr to the semi-discrete equation. Moreover, the scheme preserves the positivity,
conserves the mass and has finite second moment.

e Finite-time blow-up for the implicit Euler scheme (Theorem 2.3): Let M > 87
and let Iy be finite (if & = 0) or I and 7 be sufficiently small (if & > 0). Then,
the semi-discrete solution exists only up to discrete times k7 < T™, where T™
is defined in (1.4).

e BDF schemes: For sufficiently small 7 > 0, there exists a unique weak solution
to the BDF-2 and BDF-3 scheme, conserving the mass and having a finite
second moment. Moreover, under the same assumptions as for the implicit
Euler scheme, the solution blows up and k7 < T* (Theorem 2.6 for BDF-2 and
a > 0, Theorem 2.8 for BDF-3 and o = 0).

e Runge-Kutta schemes (Theorem 2.10): If @ = 0 and under the same assump-
tions as for the implicit Euler scheme, the solution blows up and k7 < T™. The
same result holds for the implicit midpoint and trapezoidal rule if o > 0.
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1 Introduction

e Numerical simulations are performed for several time-discretizations using an
upwind-finite-element scheme in Section 2.4. A numerical study of the conver-
gence rate in time confirms the formal order of convergence.

These results are based on the research together with A. Jiingel (TU Wien) published
under the title Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel
models in the Journal Discrete and Continuous Dynamical Systems-B [86].

The second result, presented in Chapter 3, shows that the solutions of the model
with additional cross-diffusion on a bounded domain, i.e. the system (1.2) with
Q Cc R? and B = 1, converge for § going to zero to the solutions of the original
Keller-Segel system (1.1).

e We prove the existence of nonnegative global-in-time solution for the regularized
system (1.2) via the boundedness-by-entropy method in the case a < 2/d,
e=0,0>0and d < 3 in Section 3.2. In addition, the solution converges to a
unique solution of the original Keller—Segel system (1.1), when d goes to zero.

e There exists a unique smooth, nonnegative and local in time solution in the
general case of (1.2) with e > 0, & > 1, see Section 3.3. According to Theorem
3.2, this solution converges, locally in time, for « = 1 or a@ > 2, as d goes to
zero, to the original solution of the Keller—Segel system (1.1).

e Numerical simulations for the different values of « are presented in Section 3.4.
We treat the cases for a not covered by our analysis. Furthermore, we study an
intermediate state of the solution for different values of § and link the radius
of this bump shaped state to the regularization parameter.

The results presented in this chapter are based on the research in cooperation with
A. Jiingel (TU Wien) and S. Wang (Beijing University of Technology), submitted for
publication under the title Vanishing cross-diffusion limit in a Keller—Segel system
with additional cross-diffusion [88].

The aim of Chapter 4 is to extend the global existence result of [31, 93] to
Maxwell-Stefan systems with electric forces and to suggest a fully discrete and im-
plicit Euler-Galerkin scheme that preserves the structure of the system, namely the
nonnegativity of the particle densities, the L bound Y, p; = 1, and a discrete
analog of the entropy production inequality (1.14). The cross-diffusion terms cause
some mathematical difficulties that are not present in Nernst—Planck models. The
main results shown in this chapter are:

e In Section 4.3, the thermodynamic modeling of the system (1.7)-(1.9) is pre-
sented. Several identities for the fluxes J; are derived and the inversion of the
map p — w is proved rigorously in Section 4.4.
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1.6 Notation

e We prove the existence of a weak solution (p¥, ®*), for every time-step k, to

a fully discrete scheme, Galerkin in space and implicit Euler in time, for the
system (1.12)-(1.13) with different molar masses in Section 4.5. The solution
fulfills the L> bounds with p¥ € (0,1), i = 1,...,n, the total conservation of
mass and a discrete version of the entropy inequality (1.14).

The solution converges to a weak solution of the system (1.12)-(1.13). In par-
ticular, we have global-in-time weak solutions for the Poisson—-Maxwell-Stefan
system with different molar masses; see Section 4.6.

A implementation of the fully discrete scheme is discussed in Section 4.7, fol-
lowed by numerical experiments to illustrate effects stemming from the coupling
to the electric potential ®. A numerical study of the convergence rate suggests
a second order convergence in space.

These results are based on a collaboration with A. Jiingel (TU Wien) and are pub-
lished under the title Convergence of an implicit Fuler Galerkin scheme for Pois-
son—-Mazwell-Stefan systems in Advances in Computational Mathematics [87).

1.6 Notation

1.

We denote by d € N the dimension of the spatial domain and with n € N the
number of components of a system of equations.

Q) C RY will always be an open bounded or unbounded set.

Given two matrices A = (4;;), B = (B;j) € R™*", we define the Frobenius

inner product by
A . B = ZZA”BZJ

i=1 j=1

Given two matrices A = (4;;) € R™" and D = (D;;) € R™? and a vector
v € R, we define the two vectors div(AD), (AD)-v € R™ with the components

a d n
8— AiDij),  (AD)-v), =) AwDijv;,

j=1 k=1 j=1 k=1

n

M&

(div(AD))

1=1,...,n.
D(Q) = C(92) denotes the space of test functions on a domain 2.

(-,+) denotes the duality bracket between the elements of a Banach space X
and its dual X".
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2 The Semi-Discrete Virial Argument
for the Keller—Segel System

This chapter is concerned with the derivation of upper bounds for the blow-up time
in the semi-discrete Keller-Segel system in R%. As stated in the introduction, we will
deal with the following parabolic-elliptic system:

Op = div(Vp — pVe), —Ac+pBc=p inR>% (2.1)

Denoting by Bs the Bessel potential if 5 > 0, and the Newton potential if 5 = 0 (see
the Appendix A for the definitions), this system can be formulated more compactly
as the single equation

Op = div (Vp — p(VBs x p)) inR? (2.2)

with the initial condition

p(-,0) = py in R%
The chapter is organized as follows: We start with a brief revisit of the virial argument
in the continuous setting in Section 2.1. Section 2.2 is concerned with the analysis
of the implicit Euler scheme, while some higher-order schemes (BDF, Runge-Kutta)
are investigated in Section 2.3. In Section 2.4 we provide some numerical examples
to illustrate our theoretical statements.

2.1 Key ldea: The Virial Identity

In order to present the virial argument in a rigorous setting, we will follow the
approach of [10] and define a special kind of weak solution for (2.1). We start
by motivating this definition and assume the existence of a smooth solution p €
CH0,T,C*(R?)) N C(R? x [0,00)), with compact support in space, for the system
(2.1). As mentioned above, we can express the gradient of the concentration ¢ via
the Bessel or Newton potential, i.e.

Ve(z,t) = (VB,B *p)(z,1),
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

for all (z,t) € R? x (0,00). Next, we observe that for 3 > 0,

1 =z
VBi(z) = ~5-rgosllel), e R (23)

with .
gs(r) == / e~ P ds for v > 0, (2.4)
0

using the substitution s = |z|*/(4t). In particular, we can use this identity and test
the first equation of (2.1) with ¢ € D(IR?). Integrating by parts leads to

d
G | o@tetnis = [ Aotz
dt R2 R2

[ Vo) gl — wete ply. )dyd

- — x) ——gg(|r — x x.

o . oo = ol Oely. Dy
Thus, we can observe a remarkable symmetry in the last term that allows us to
rewrite it as

1 _
T2 foae V) ﬁ%(lx —yl)p(x, t)p(y, t)dydx
1 _
== o, [Vo(@) = Vo) |;”_ ;U'Qgﬂqx — yl)plx, t)p(y, t)dzdy.

This reformulation improves the standard formulation in the distributional sense,
since, using the fact that [Vo(z) — Vo(y)] - ﬁ is continuous and has compact
support, it can also handle measure solutions.

Definition 2.1. Let p € L2 (RT; L' (R?)) be nonnegative. We say p is a very weak

loc

solution of (2.1), if p solves

% g (@)p(z, t)dz — /R A¢(x)p(x, t)dr =
B ﬁ - [Vo(x) = Vo(y)] - ﬁ%(!x —yl)p(x,t)p(y, t)dzdy

for all p € D(R?).

For the sake of simplicity, we set § = 0 and derive the virial identity; see [22] for
B > 0. We start by the assumption that p is a very weak solution, in the sense of
(2.1), on an interval [0, 77*) and the second moment of the initial datum is bounded,
i.e. [po|2[*po(x)dx < co. This implies the conservation of mass

ol w2y = |lpol |1 w2y := M,
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2.2 Implicit Euler Scheme

if we use an appropriate approximation for ¢(x) = 1 as a test function; see Theorem
2.2. Testing with |z|?, modulo an approximation argument, see [10], leads to

d , M
— t)de = — — M). 2.
% | JaPote.de = 3-sn =) (25)

Now, the virial identity (2.5) implies a contradiction to the nonnegativity of p for
M > 8m, and hence T < oo. This argument builds on the following three crucial
properties:

e conservation of mass
e nonnegativity of the solution
e and a symmetry in the drift term.

As mentioned above, we want to mimic this argument in the discrete setting. Hence,
a numerical scheme should fulfill all of these three properties at the same time.
Developing such a scheme is a highly nontrivial task and the rest of this chapter
is dedicated to establishing the first results in this direction by handling the time
discretization of (2.5) and the virial inequality in the case § > 0 mentioned above.

2.2 Implicit Euler Scheme

We start with the existence analysis for the implicit Euler case of the Keller—Segel
system (2.2) and their finite-time blow-up, where

1

T

(pk — pk—l) =div (Vpk — kaBg * pk) in RQ. (26)

Here, 7 > 0 is the time step and Bj is the Bessel potential if § > 0 and the Newton
potential if 5 = 0 (see the Appendix A). First, we study the existence of solutions.
For this, let X := L'(R?) N L*(R?) with norm [jullx = max{||u||1:®z), [|u| )}
for u € X.

Theorem 2.2 (Existence for the implicit Euler scheme). Let pp_1 € X and

1 1
(m+1/2) (lpr-allx + 1)*

Then there exists a unique weak solution py € X N H'(R?) to (2.6) such that

T <<

o nonnegativity: if pr—1 > 0 then p, > 0 in R2,

e conservation of mass: fR2 prdr = fR2 Pr—1dx,
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

e control of second moment: if [, pp—1|z]Pdx < co then [u, pplz|*dr < co.

Proof. The strategy is to prove first the existence of a unique very weak solution
pr € X to the truncated problem

l/ (P — pr—1)pdx = / prAGdx +/ pi (VBg * py) - Voda (2.7)
T JR2 R2 R2

for all ¢ € H'(R?), where p{ = max{0,pr}. The second step is to show that
pr € H'(R?). Then we can use p; = min{0,px} as a test function in the weak
formulation and prove that p; > 0.

Step 1: Solution to (2.7). To simplify the notation, we write p := py and pg := pg_1.
We introduce the operator Ve : X — L*(R?)?, Vc[p] = VBg % p. We claim that
this operator is well-defined and continuous. Using (2.3) and the fact that gz < 1,
we conclude

Vel = |5 [ sl - st

1 1
cLf by, 1l
27 |lz—y|<1 ’.23 - y’ 27 |lz—y|>1 ‘:C - y‘

1
<Pl + 5 lollrces) < Blollx. (2.8

where b := 1+ 1/(27). This shows the continuity of Ve.
Next, for given p € X, the linear problem

—Ap+7(p—po) = —div(p"Ve[p])

has a unique solution in H'(R?). Indeed, since we have p™ € L*(R?), V¢[p] €
L>*(R*)?, and therefore f := pTVc[p] € L?*(R?)?, we can apply Lemma A.3 in the
Appendix yielding the unique solvability of the linear problem. The solution is given
by

1 ~
p= ;Bl/T * po — VBI/T * <p+VC[ﬁ]) (29)

Hence, we can define the fixed-point operator T : X — X by T[p] := p, and p is
given by (2.9). Clearly, any fixed point of T" is a solution to (2.7). We apply the
Banach fixed-point theorem to 7" on the set S := {p € X : ||pllx < ||pollx + 1}. For
this, we need to show that T": S — S is a contraction.

For the proof of T'(S) C S, we use Lemma A.1, the Young inequality with p = ¢ =
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2.2 Implicit Euler Scheme

r =1 (see the Appendix A), and (2.8):

1
1T (o)l 21 m2) < ;||Bl/f % poll ey + [V Bz x (07 Velp]) | 1 ge)

1
< ;HBl/THLI(RQ)||p0HL1(R2) + ||VB1/T||L1(R2)ch[p]||L°°(R2)HpHL1(R2)
m

T2l

< llpollzr w2y +
Similarly, we obtain
s
1T [p]l oo 2y < [l o0l Loor2) + 571/2bllpll§(~
Combining the previous two estimates, we conclude that
T _1/2 2
ITTplllx < llpollx + 57 bllpll-

Then choosing 7 < (7b)2(||po|x + 1)™*, we see that [|T[p]||x < ||pollx + 1/2, which
shows that T'[p] € S.
To show the contraction property, let p, p € S. Then, estimating as above,

IT]p) = Tlplllx < ||VBy-* (0t Velp] = p"Velp])||
< |NVBiyrlliwe) || (07 = 51)Velp] + 51 (Velp] = Velp))||

T _ _ _
< T2 (0% — p* Il Velpllseey + 17111 Vel — Al iee)
< 720 (|l pollx + 1) llp — Allx.

Since 77'/2b(||pol|x + 1) < 1, T'is a contraction. By the Banach fixed-point theorem,

T has a fixed point p, € X, which is a solution to (2.7).

Step 2: Regularity of the solution to (2.7). We prove that for any 5 > 0, px €

H'(R?) solves

1
;/ (Pk — pr—1)ddr = — Vi - Vodx +/ pi (VBg * pi) - Voda (2.10)
R2 R2

R2
for all ¢ € H'(R?) and satisfies
okl 1 @2y < Collpe—1l2(m2)

for some positive constant Cy which depends on 7 and ||pr—1||x-
Again, we set p := p;, and pg := pp_1. Since p € X C L*(R?), we have pTV¢[p] €
L?*(R?)%. Therefore, by Lemma A.3, p € H'(R?) is the unique solution to (2.10). We
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

take p as a test function in that equation and use the Young inequality:

1

1
o [ = dn < [ (o= ponds = < |Vplfan + [ p"Velg)- Vpda
2T R2 T JR2 R2

1 1
< —§HVP||%2(R2) + §”p||%Q(R2)||vc[p]H%OO(RQ)'

By (2.8) and ||p||x < ||pol|x + 1, we find that

1

2
- /RQ(p2 — po)dz + [V pllia@ey < O olx Mol Z2gez) < 0% (loollx + 1)1l (g2)-

Then, since by := 1 — b*(||po||x + 1)?7 > 0, we infer that

1
172 (gey < b_0||p0||2L2(R2)7

and the claim follows with Cy = 1/v/bg.
Step 3: Nonnegativity of p. Let p—1 > 0in R%. We use p;, = min{0, p;} € H'(R?)
as a test function in (2.10):

1 _ 1 _
—/ (py )2dz < —/ (Pk — Pr-1)py d
T Jr2 T JR2
= —/ !Vp;Pda:Jr/ pr Velpr] - Vo dz <0,
R2 R2

since pr—1p, < 0 and the last integral on the right-hand side vanishes. This shows
that pr, > 0 in R?, and p; = p; in (2.10).

Step 4: Mass conservation. The statement follows immediately if we could use
¢(z) = 1 as a test function in (2.7). Since this function is not integrable, we need
to approximate. As in [98], we introduce the radially symmetric cut-off function
or(z) = ¢(|Jz|/R), where R > 1 and

1 for 0 <r <1,
1-2(r—1)2 forl<r<3/2,

o(r) = ( , ) / (2.11)
22—-r) for 3/2 <r <2,
0 for r > 2.

The following properties hold:
¢r € H*(R?), Rlim or(z) =1 for all z € R?,
—00

& (2.12)

2 for all z,y € R?,

C
Vor(x) = Vorw)| < pzlv =yl |Adn(x)] <
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2.2 Implicit Euler Scheme

for some constants C7, Cy > 0. Let 0 < ¢° € CSO(R2) be a standard mollifier
and set ¢% = ¢r x ¢°. Then ¢% — ¢p in H*(R?) as ¢ — 0 [100, Lemma 1.8.2].
Consequently, up to a subsequence, which is not relabeled, ¢3, = ¢r, Vo3 — Vog,
and A¢% — Agr a.e. in R?. We use ¢% as a test function in (2.7) and insert (2.3):

pkAcb%dﬂf + / pr(V Bg * pi) - Vdpd

1
‘;/ (Pk — pr—1)PRdx

_RQHPkHLle —l——’/ /Rka ) pr(y)gs(|x —y!)l |2 -Voi(x )da:dy‘.

By symmetry and (2.12), the second integral can be estimated as

[ momas(ie - )= |2 v¢€<>dmy\

]R2

/RQ/RQPk )ok(y 9ﬂ(|ﬁv—y|)| | (v¢€() v(b%(y))dydgc

— 2
< o /RZ /R2 pi()pr(y)dydz = WHWHB(M

These estimates allow us to apply the dominated convergence theorem, which leads,
in the limit € — 0, to

1
;/ (,Ok — pk_l)gdex = / pkA¢Rd$ —|—/ pk(VBg * pk) . V¢Rd$
R2 R2 R2

The same estimates as before show that both integrals on the right-hand side can be
estimated by a multiple of 1/R? such that the limit R — oo leads to

1
—/ (pr — pr—1)dx =0,
R2

-
which gives mass conservation.

Step 5: Control of the second moment. Similarly as in step 4, we approximate |z|*
by setting ¥r(z) = |z|?¢r(z), where ¢ is defined in (2.11). Then ¢ € H*(R?),
V1 is Lipschitz continuous on R?, and Atp is bounded. Taking a standard mollifier
©° >0, we set U5 = g x p° € C5°(R?). Using 9% as a test function in (2.7) and
passing to the limit ¢ — 0 and then R — o0, it follows that

1
—/ (pr — pr_1)|xPdz = 4/ prdx + 2/ pr(V Bg * py) - xdz. (2.13)
T JRr2 R2 R2
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

Young’s inequality and estimate (2.8) for Ve¢[py] = VBg * pj, show that

2 pr(VBg * p) - xdx
R2

< Wl pullx / pileld
RQ

bl [ oo+l [ orlofde.
R? R2

Therefore, with [|px||x < [[pr—1llx + 1, (2.13) gives

(1= rbllpncslls + 1) [ plafdo < [ puslaldo+ ra+ bl [ pde.
R2 R2 R2

Since 1 — 7b(||pr—1]|x + 1) > 0, we infer that the second moment of py is bounded if
the second moment of p,_; does so. O

Next, we turn to the finite-time blow up of semi-discrete solutions. Set, for g > 0,

(M —8r? ., w(M-—8m) (2.14)

"=
48M 2B8M?

Theorem 2.3 (Blow-up for the implicit Euler scheme). Assume that

po >0, I:= / po(2)|z)?dr < 00, M := [ podx > 8.
R2

RQ

Let (py) € LY(R?*) N HY(R?) be a sequence of nonnegative weak solutions to (2.6).
Then this sequence s finite with maximal index kya., where, if 5 =10,

27'('[0

By < —— 0 2.15
TM(M — 8r) (2.15)
In case 8 > 0, if additionally Iy < I* and 7 < 7* then
27 1
0 (2.16)

kmax S M
TM(M — 87 — 2y/BMI)

Proof. Let first 5 = 0 and let p; be a weak solution to (2.6) with k > 271y /(7 M (M —
87)), i.e., we assume that (2.15) does not hold. We set I, = [, p|x|*dz. Then, by
(2.13), for any j < k,

I —I;_ 1_47'/ pdeE—l-QT/ p](VBO*pJ) xdx

_4TM__/R2/R2 yg)p]( )dydz,
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2.2 Implicit Euler Scheme

where we used the conservation of mass and the definition of V. By * p. A symmetry
argument leads to

r—vY Jf—
L—ta=andt - [ / Dy )

y|?
=47M — —M2 8T — M
T 5 ( T ).
Summing this identity over j = 1, ..., k and taking into account the choice of k gives
kT M
I, = Iy — = (M — 87) < 0,
T

which is a contradiction to p; > 0.

Next, let 5 > 0. For the proof, we follow the lines of [22, Section 6] but the end of
the proof is different. Let p > 0 be a weak solution to (2.6) such that (2.16) is not
true. Similarly as above, we find that

Iy — I, = 47’/ prdx + 27‘/ pi(VBg * py) - xdx
R2 R2

.
=47 M — 2—/ / gs(Jx = y)) pr() pr () dydx
v R2 JR2

= Srm =+ o [ (=gl =) p@mdyds.  (217)

2T

where we recall definition (2.4) of gg.
We need to estimate 1 — gg(r). For this, let 2 € R?, r = |z] € (0,1/y/B). We
compute

d 2
Sa—gs) = 5 [ L0 = ampla|B(/52) < VK,

where K = 27 sup, . |2|Bi(|z]). It is known that B;(x) behaves asymptotically as
—log|z| as |x| — 0, so K is finite. A numerical computation shows that we have
SUp|; <1 [7|Bi(|z]) ~ 0.0742 and K ~ 0.4662. We conclude that

0<1—gs(lz]) < VBK|z| for 0 <+/Blz| < 1.

This bound, together with 1 — gs(|z|) < 1, shows that the last integral in (2.17) can

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Semi-Discrete Virial Argument for the Keller-Segel System

be estimated as follows:

o / /{\/Bx—y|<1} (1= gs(|z — yI)) pr(x) pi(y)dydax

+.§;L/:A;@u_y21}(1——ggﬂx——yD)pk@ﬂpk@Udydx

< 72—\/f max{1, K} /R2 /R2 |z — ylpr(z) pr(y)dydx
<20 [ ooty < 7L 218)

where we have applied the Cauchy-Schwarz inequality in the last step. We infer from

(2.17) that
+ Tﬂ

1/2
. M3

-
L—0L < —M(@8r—-—M
Kk k1_27T (7T )

Now, the argument differs from that one used in [22]. Set by = /BM?3/?/7 and
v = M(M — 8r)/(2m). Then we need to solve the recursive inequality

Iy — Iy < 7f(I) == 7(boI}* = 7). (2.19)

By definition of I*, we have f(I*) = 0. Since f is increasing and [y < I*, it holds that
f(Ip) < 0. We proceed by induction. Let f(Iy_1) < 0. We suppose that f(I;) > 0
and show that this leads to a contradiction. Inequality (2.19) is equivalent to

1/2 1/2 1/2 1/2
[k/ - [kél [k/ + [kil
L =~/ o -

Since f(Ix—1) < 0, the first factor is larger than or equal to one, and taking into
account f(I) > 0 or I,i/g > /by, we deduce that

12 12 g1/
T < i < e oo
2= by b

which contradicts the smallness condition 7 < 7* = ~/b3. We infer that f(I;) < 0.
Then, summing (2.19) from k =1,...,,

I; < IO+TZf(]k) < Ily+71jf(1p).
=1

We deduce that I; becomes negative for j > —1Iy/(7 f(Iy)) which contradicts py > 0.
This completes the proof. O
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2.3 Higher-Order Schemes

Remark 2.4 (Semi-discrete energy dissipation). [t is possible to design semi-discrete
schemes that dissipate the discrete free energy

1
Ey = / (Pk(lOg pr—1) — §Ck,0k) dx
RQ

(and conserve the mass and preserve the positivity). An exzample, taken from [125],
1s the semi-tmplicit scheme

7 e — pr—1) = div(pr — peVer—1), —Acp_1 + Ber_1 = pr—1  in R%  (2.20)

Indeed, by the convexity of s — slogs, we obtain
/ (pr(log pr — 1) — pr_1(log pr—1 — 1)) dx
R2

_ Vil
< (pr — pr—1)log prdx = 7 — + Vg1 - Vi |de.
R2 R2 Pk

Furthermore, translating the computation in [117, Section 5.2.1] to the semi-discrete
case,

1 1
5/ (prCr — pr—1Cr—1)dx = 5/ ((pk — Pr—1)Ck + pr—1(cr — Ck—1))d$
R2 R2
1
= 5/ ((Pk — Pr—1)Ck + ( — Aleg — cp—1) + Bler — Ck71>)ck71)dx
R2
= / (pr — pr—1)Cr—1dx = —7'/ (V,Ok Ve + pk|Vck_1|2)d:v.
R2 R2

Subtracting the latter from the former expression, we conclude that
E,—E, 1< —7'/ pr|V(log pr — cr_1)|*dz < 0.
RQ

Unfortunately, scheme (2.20) does not allow us to apply the symmetrization arqu-
ment used in the proof of Theorem 2.3, since the drift part depends on two different
time steps. The question whether (2.20) admits solutions that blow up in finite time
remains open. L]

2.3 Higher-Order Schemes

Next, we extent our analysis to higher order schemes. In particular, we will prove
the virial inequality for BDF-2, the implicit midpoint rule and the trapezoidal rule
in the case § > 0 and the case § = 0 for BDF-3 and general Runge-Kutta schemes.
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

2.3.1 BDF-2 Scheme

The scheme reads as

1/3 1 ) .
- <§pk —2pp-1 + §,Ok2> = div (Vpk — pr(VBg * pk)) in R? (2.21)

for £ > 2, where pg is given and p; is computed from py using the implicit Euler
scheme.

Lemma 2.5 (Existence for the BDF-2 scheme). Let 8 > 0, pr_2, pr_1 € L*(R?*) N
L>(R?), and
1 1

(m4+1/2)2 (1 + [12p6-1 — $pr—2llx)*

Then there exists a weak solution p, € L*(R?*) N L>(R?) N HY(R?) to (2.21) with the
following properties:

3
7<=
2

e conservation of mass: ng prdx = fR2 Pr—1dx,
e control of second moment: if [, pp—1|z]Pdx < co then [q. pplz|*dr < co.

Proof. The proof is exactly as for Theorem 2.2 since we can formulate scheme (2.21)
as

T 2
and the first term on the right-hand side plays the role of px_; in the implicit Euler
scheme. The only difference to the proof of Theorem 2.2 is that we replace p; in

(2.7) by py, since the truncation was only needed to show the nonnegativity of pg,
which we are not able to show for the BDF-2 scheme. O]

3 1 1 .
—Api + o PR = (2pk_1 - —pk_g) — div(pVBgs * pi),

Theorem 2.6 (Blow-up for the BFD-2 scheme). Assume that 3 > 0 and
po >0, Ip:= / po(2)|z)?dr < 00, M := [ podx > 8.
R2 R2

Let (pr) C L*(R?*) N H'(R?) be a sequence of nonnegative weak solutions to (2.21).
Then this sequence is finite with maximal index kynax, where kya is bounded from
above according to (2.15) (if B =0) or (2.16) (if 5 > 0 and additionally Iy < I* and
T < 7%, where I* and T are defined in (2.14)).

Proof. The proof is similar to that one of Theorem 2.3 but the iteration argument is
different. First, let 8 = 0. We know from the proof of Theorem 2.3 that

Il - IO = —T7, (222)
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2.3 Higher-Order Schemes

where we recall that v = M (M — 8m)/(27). Using the same approximation of |z|?
as in step 5 of the proof of Theorem 2.3, we can justify the weak formulation (see

(2.13))

1 8
/Xm—m1mWM=—/Xml—m2mﬁM+—ﬂ/mm
R2 3 R2 3 R2
2

+ —7'/ pi(VBg * py) - xdz.
3" Ja

The last integral can be calculated as in the proof of Theorem 2.3 and we end up

with
1 1 = L (I 1 ) + 2 M(87T M)

We iterate this identity and insert (2.22):

k-1
1 2 1 Ty 1
fk—fk—1=@(11—fo)—§TVA 1§=—%—77<1—F) = —T7.

As in the proof of Theorem 2.3, this leads to a contradiction for large values of k.
Next, let 8 > 0. As the first step is computed with the implicit Euler scheme, the
proof of Theorem 2.3 gives the estimate

Il — ]0 S Tf(]1>,

where f(s) = bgy/s — v and by = /BM?/? /7. Moreover, since f(Iy) < 0, we know
that I; < Iy, and this gives f([;) < 0.
For the following time steps, we obtain

1 2T
Ik — Ik—l < §<Ik_1 — Ik_g) + ?f(fk), k > 2. (223)

Let us assume, by induction, that I_; < I_5 and f([;—1) < 0 for £ > 2. We will
prove that I, < Iy_; and f(Ix) < 0. Assume by contradiction that f(I) > 0, which

is equivalent to [;/2 > «v/by. Then, using I — I;_o < 0, we reformulate (2.23) as
AR
L=~/ b T3

Since f(Ix—1) < 0, the first factor is larger than or equal to one, so

g
bo - 37
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

and 7 < /b2 leads to

1/2 1/2 1/2
L/ <Ik/ +[k£1<2_7-<21
b S by 3 30

or ],1/2 < /by, which contradicts f(I;) > 0. We conclude that f(I;) < 0 and
therefore, by (2.23), I < I < 0, showing the claim.

We infer that f(Ix) < f(lx—1) < --- < f(Ip), since f is nondecreasing. Hence,
again from (2.23) and using I} — Iy < 7f(lp),

k-1
1 2T 1 1
Iy = I1 < g([kfl — Iy o) + K} f(l) < 351 (Ih — Io) + 27 ;:1 gf(fo)

< T
- 3k71

FIo) + 7(1 _ )f(fo) —)

3k71

Thus, I < Iy + TZ?ZI f(Io) = Iy + 7k f(ly), and this leads to the contradiction
I, < 0 for sufficiently large k£ € N, completing the proof. O

2.3.2 BDF-3 Scheme

The finite-time blow-up can be also shown for solutions to higher-order BDF schemes,
at least in the case § = 0. As an example, let us consider the BDF-3 scheme

1 . .
6—7(11pk —18pp_1+ 2 — 2pp_3) = div(Vpr — prV By * pr) in R?,  (2.24)

where pi_1, pr—2, and pi_3 are given. The existence of solutions can be shown as in
Lemma 2.5. First, we prove that the scheme preserves the mass.

Lemma 2.7 (Conservation of mass). Let pg, p1, and py be given and having the same
mass M. Then the solution py has the same mass, fRz prdx = M, for k > 3.

Proof. We proceed by induction. Employing the mollified version of the cut-off func-
tion (2.11) as a test function in (2.24) and passing to the limits ¢ — 0 and R — oo,
we arrive at

1
6_ (11pk — 18[)]6,1 + gpk,Q — 2pk,3)dl‘ =0.
T JR2

If k£ = 3, this is equivalent to

18 9 2
dr = —py— — —po |dr =M
/RQPS x /RQ(HM 11P1+11P0) x ;

since po, p1, and py have the same mass M. For the induction step, if pp_1, pr_o,
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2.3 Higher-Order Schemes

and pi_3 for £ > 4 have the same mass, the same argument as above shows that
fR2 Pk = M. O

We recall that I, = [g, pi|z|*dx for k € Ny and v = M (M — 8x)/(27).

Theorem 2.8 (Blow-up for the BDF-3 scheme). Assume that f§ = 0, I — I, =
I — Iy =—717, and

po >0, Iy:= / po(z)|x’dr < 00, M := [ podx > 8.
R2 R?
Let (pr) C LY(R?*) N H'(R?) be a sequence of nonnegative weak solutions to (2.24).
Then this sequence is finite with maximal index kyay, where kya s bounded from
above according to (2.15) (if B =0) or (2.16) (if f > 0 and additionally Iy < I* and
T < 7%, where I* and T are defined in (2.14)).

Proof. We claim that I — I,_; = —77. To prove this, we proceed by induction. Let
k = 3. We take an approximation of |z|* as a test function in (2.24). Then, arguing
as in the previous sections, we find that

11 7 1
— (I3 — 1) — =(I, — I (I — I
6(3 2) 6(2 1)+3(1 0)
1
= ~(11I; — 181, + 91, — 2I;) = — M (87 — M) = —77.
6 2
Since Iy — I} = I, — Iy = —77, it follows that
11 7 1 11
E(Ig — L) = 577 + 3TV TV =T
For the induction step, we assume that I, | — Iy_o = I},_o — I},_3 = —7 for k > 3.
Then, as above,
11 7 1
— (I, — 1) — =(Ip—1 — Ij— (Lo — Iy_3) = —77.
6(k k1) 6(k1 k2)+3(k2 k—3) T
which shows that I, — I = —77. As in the proof of Theorem 2.3, this leads to a
contradiction for large values of k. m

The previous proof can be generalized to all BDF-m methods

1 — :
; Z Qi Pl—i = le(vpk - VBﬁ * pk),

1=0

where a; € R satisfy Y " a; = 1. Note, however, that only the BDF-m schemes
with m < 6 are A(a)-stable, while they are instable for m > 6.
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

2.3.3 Runge-Kutta Schemes

The Runge-Kutta scheme reads as follows:

1

T

(k= pr—1) = Z biK;, K;=div(Vm; —m;VBg xm;),
=1

. (2.25)
mizpk_1+TZainj, izl,...,S,
7=1

where s € N is the number of stages, b; > 0 are the weights, and a;; are the Runge-
Kutta coefficients. We assume that "), b; = 1. The existence of solutions is only
shown for two particular Runge-Kutta schemes; see below.

First, we claim that the mass is conserved in the following sense.

Lemma 2.9 (Conservation of mass). Let p, € L'(R?) be a solution to (2.25) such
that m; € L'(R?) and

! / (pk — pr—1)pdx = Z /R2 b; (m,-AaS +m(VBg*m) - ng)dx
i=1

T JR2

for all € C°(R?). Then

m;dr = / prdr = / pr_1dr, 1=1,... 5.
R2 R2 R2

Note, however, that we do not know whether m; > 0 in R2. Although we expect
physically that p; is nonnegative, this cannot be generally expected for m;.

Proof. Using the mollifier ¢° and the cut-of function ¢r(z) = ¢(|z|/R), where ¢ is
defined in (2.11), as a test function in the weak formulation of the equation for Kj
and performing the limit ¢ — 0, we find that

Kidpdr = | mAdrds + / mi(VBg * m;) - Vorda.
R2

R2 R2

According to (2.12), the first term on the right-hand side can be estimated as

‘ / m; A¢rdx
R2

For the second term, we use formulation (2.3) of VBg, the symmetry argument, and

Cy
< ﬁ“miHLl(R?)-
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2.3 Higher-Order Schemes

the Lipschitz estimate (2.12) for Vg, which leads to

mi(VBg *m;) - Vogrdr

R2

1

T

. / e [ (wR(x)—wR@))-ﬁgﬁqx—ywmi(y)dydx

< g L m) [ Il = 5 e

We deduce that for R — oo, fRQ K,;dx = 0. Hence,
mldx = / pk_ldl’ -+ TZ&Z-J-/ K]d$ = / pk_ld{lf,
R2 R2 = R2 R?2
/ prdr = / Pr—1+ TZbi K,dxr = / Pr_1dz,
R2 R2 -  JR2

RQ

which concludes the proof. n
We are able to show finite-time blow-up for all Runge-Kutta schemes if 5 = 0.

Theorem 2.10 (Blow-up for Runge-Kutta schemes). Let § = 0. Assume that

po >0, Iy:= / po(7)|z)?dr < 00, M := [ podx > 8.
R2

R2

Let (px) C LY(R?*) N H'(R?) be a sequence of nonnegative weak solutions to (2.25).
Then this sequence is finite with maximal index kyay defined in (2.15).

Proof. Using an approximation of |z|? as a test function in (2.25) and passing to the
de-regularization limit (see step 5 of the proof of Theorem 2.3), we find that

I, —1 = b; dr — — i m;(y)dydz | .
=Y ( o T /Rzm / SrEa (””)

=1

By Lemma 2.9, the symmetry argument, and >, b; =1,

Iy — I 1_721; (4M——/ m;(x) 5 mi(y)dyda:)
—TZb(ZLM—]g—;)—;{(SW—M)

Now, we argue as in the proof of Theorem 2.3 to conclude. O
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

The case 8 > 0 is more delicate since m; > 0 is generally not guaranteed. Indeed,
it follows that (see (2.17) and (2.18))

- Tea=730 (%(sw M)+ o /R /R (1— gs(la - y|))mi(x)mi(y)dydx)

<r> b= 20 [ llmtoldy ),

where we recall that v = M (M — 8r)/(27). By the Cauchy-Schwarz inequality,

s \/B 1/2 1/2
bt seyond =y g ([ mlar) ([ wemoi)

and this cannot be estimated further as m; > 0 may not hold. However, for the
midpoint and trapezoidal rule, we are able to give a result. The reason is that these
schemes can be reformulated in terms of py, pr_1, etc. without the use of m;. Clearly,
we still need to assume that p; > 0 but this is expected physically.

Implicit Midpoint Rule

The implicit midpoint rule is defined by s = 1, a;; = 1/2, and by = 1. Then (2.25)
becomes

1 .
;(pk — pr—1) = div(Vmy; — m;VBg x my),

my = pr_1+ %div(le —m1VBg % my),

and since my = %(pk + pr_1), this can be rewritten as

1 . . .
~(pr — pr—1) = div (V<pk +2p’“ 1) O +2p’“ ~V Bp %). (2.26)
-

Lemma 2.11 (Existence for the midpoint scheme). Let 3 > 0, pr_; € WH1(R?) N
Wheo(R?), and

2 1
— (43 (lokallx + Rlloe-allx + 51 Voealx + 1D

Then there exists a unique weak solution p, € L'(R?) N L=(R?) N H'(R?) to (2.26)
with the following properties:

e conservation of mass: ng prdxr = fR2 Pr—1dx,
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2.3 Higher-Order Schemes

e control of second moment: if [g, pr—1]|z*dzr < oo then [z, pilr|*dz < co.
Moreover, if 8> 0 and pr_1 € Y := WHL{R2) N W (R?) N H3(R?), then pp € Y.
Note that our technique of proof requires higher regularity for p,_; compared to the
implicit Euler scheme. For general Runge-Kutta schemes, the regularity requirement

becomes even stronger, which is the reason why we show existence results only in
special cases.

Proof. We set p := py and pg := pi_1. For given p € X, we solve the linear problem

2 2 1, _ :
< — A+ ;)p = —po+div (Vpo = 5P+ po)VBsx (p+ po)> in R?.

By Lemma A.3, this problem has a unique solution n € H'(R?), and it can be
represented by

2 1 . -
Tpl:=p= ;BQ/T * po + V By ¥ Vpy — §VB2/7- * ((p + po)Ve[p+ po]), (2.27)

writing Ve[p] = VBg % p as in Section 2.2. This defines the fixed-point operator
T:8— S, where S={pe X :|pllx <Cp} and

b T
Cp = ||pol|x + 7”00‘& + §HVP0HX + 1.

It holds T'(S) C S since, using similar arguments as in the proof of Theorem 2.2 and
the smallness condition on 7,

2
| T[p]llx < ;HB2/THL1(R2)HPOHX + IV Byl 212 [ Vol x

1
+ §||V32/T||L1(R2)||P + pollx IVelp + polllx

7T\/F Wb\/? 2
< + VL Vpollx + = ||p +
= HPOHX 2\/§H POHX 4\/§ Hp pOHX

< Cp.
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

We claim that 7': S — S is a contraction. Indeed, let p, p € S. Then

1
IT16] = Tlallx < 5[V Bur + (o + o)V B x (o + po)

— VByr % (p+ po)VBg * (p + po)

X

IN

%H(PﬂL po)VBg* (p+ po) — (p+ po)VBs * (5 + po)||

™ T

NG
+ 100V By (0 = p)llx + ll(p = 5)V B * pollx )

wh\/T
=

and we have 7by/7(Cp+1)/2 < 1. The Banach fixed-point theorem now implies that
there exists a unique fixed point p € X.

By the same arguments used in step 2 of the proof of Theorem 2.2, we infer that
pr € H'(R?). Steps 4 and 5 show the conservation of mass and the finiteness of the
second moment.

It remains to show that if p,_; € Y then p; has the same regularity. By Lemma
A1, pr, € HY(R?) implies that VBg * p, € H*(R?). Therefore,

IN

(1% Bs % p = PV By  pllx

(Cs+1)p—plx,

2 2 .
< - A + ;)pk = ;pk,1 + Apkfl —div ((pk + pkfl)VC[,OkD < L2(R2)

Elliptic regularity then gives p, € H?(R?). We bootstrap this argument to find that
pr € H3(R?) — Wh*°(R?). Taking the L' norm of the gradient of p = p; in (2.27)
shows that ||V pg||11r2) can be estimated in terms of the H? norms of py, pr_1, and
c[pk]. We conclude that py € W1(R?), finishing the proof. O

Lemma 2.12 (Blow-up for the midpoint scheme). Let 5 > 0. Assume that

po >0, Ip:= / po(z)|x*dr < 00, M := [ podx > 8.
R? R2

Let (pr) C L*(R?*) N H'(R?) be a sequence of nonnegative weak solutions to (2.26).
Suppose that Iy < I* and 7 < 27* (see (2.14)). Then this sequence is finite with
mazximal index ky.y defined in (2.16).

Proof. Approximating |z|? as in step 5 of the proof of Theorem 2.3 and using the
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2.3 Higher-Order Schemes

nonnegativity of pp and p,_1, we can estimate as

I~ Iy = / (k= pin) ol
=4TM——/ (Pk + Pe—1)VBg * (pr, + pr—1)dx
=—m+—/ / (1= ga(l — 1)) (ox + Prcr) (@) (1 + prr) (9)dyd

<—rrt VB [ = sl @)+ g e

bo

(1 4 1%,

< -7y + ﬁ\/E@M)MW (L2 + 1) = -+ 3

Setting again f(s) = bgy/s — 7, it follows that
T
Iy — Iy < §(f(]k) + f(]k—1)).

Again, since f(I*) = 0 and f is increasing, we have f(ly) < 0. Let f(lx_1) < 0.
Then -
Iy — Iy1 < Ef(fk)a

and we can proceed as in the proof of Theorem 2.3. O

Trapezoidal Rule

The (implicit, two-stage) trapezoidal rule is defined by s = 2, a1; = a2 = %, by =
by = %, which gives the scheme

1 1.
;(pk — pk—l) = 5 div (V(pk + pk_l) + kaBg * Pk + pk_1VBB * pk—l)- (228)

The existence of weak solutions can be shown exactly as in the proof of Lemma 2.11,
therefore we leave the details to the reader.

Proposition 2.13 (Finite-time blow-up for the trapezoidal rule). Let § > 0. Assume
that

po >0, Iy:= / po(7)|z)?dr < 00, M := [ podx > 8.
R2

R2
Let (pr) be a sequence of nonnegative weak solutions to (2.28). Suppose that Iy < I*
and 7 < 7% (see (2.14) ). Then this sequence is finite with mazximal index kuy.x defined
n (2.16).
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

Proof. Arguing as in the previous blow-up proofs, we obtain
T T
Ik — [k—l =47 M — —/ kaBB * pkda: — —/ pk—1VB,B * pk_ldx
2 R2 2 R2
-
<-rrt VB [ e sy
m R2 JR2
r
s VB [ [ o= sl @)y
7 R2 JR2

<ot MR 4 1),

Now, we proceed as in the proof of Proposition 2.12. n

Remark 2.14 (Explicit schemes). One may ask to what extent explicit schemes
may be considered too. The implicit Euler schemes provides the nonnegativity of
the cell density pg, which generally cannot be proven for the explicit Euler scheme.
Clearly, we assumed nonnegativity of py for higher-order implicit schemes, so, this
argument does not apply to higher-order explicit schemes. In fact, the virial argument
can be applied to explicit Runge-Kutta schemes as well, with the same blow-up
conditions (for f = 0), since the analysis applies to all (explicit or implicit) Runge-
Kutta schemes. On the other hand, BDF schemes are always implicit. Practically,
implicit schemes help to handle the stiff part of the differential equation; recall,
however, that there do not exist SSP implicit higher-order Runge-Kutta or multistep
methods.

2.4 Numerical Examples

The numerical experiments are performed by using the finite-element method in-
troduced by Saito in [122] and analyzed in [124]. In contrast to [122], we choose
higher-order temporal approximations. The scheme uses a first-order upwind tech-
nique for the drift term, the lumped mass method, and a decoupling procedure. We
take § = 11in (2.1) and consider bounded domains only. Equations (2.1) are supple-
mented with no-flux boundary conditions. In the first example, the domain is large
enough to avoid effects arising from boundary conditions. The second example, on
the other hand, illustrates blow-up at the boundary.

2.4.1 Numerical Scheme

Let 75, be a triangulation of the bounded set 2 C R?, where h = max{diam(K) : K €
Tn}, and let D; be the barycentric domain associated with the vertex Pj; see [122,
Section 2] for the definition. Let y; be the characteristic function on D; and let Y}
be the span of all y;. Furthermore, let X} be the space of linear finite elements. The
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2.4 Numerical Examples

lumping operator M;, : X;, — Y} is defined by Myv, = ). vn(P;)xi, where v, € X,
and the mass-lumped inner product is given by

(Vy, wp)p, = (Mpvp, Mpwy,)a, v, wp, € Xp,

where (-, ), is the L? inner product.
For the discretization of the drift term, we define the discrete Green operator
G X — X}, as the unique solution v, = G, fr, € X, to

(V?)h, th)g + (Uh,wh)g = (fh,wh)2 for Wy, € Xh.

(Recall that 8 = 1.) The drift term is approximated by the trilinear form b, : X} —
R,
b (un, vnywn) = > wi(B) Y (0n(P2)B (un) — vn(Py) 855 (un)),
7 PJ‘EAZ‘
where A; is the set of vertices P; that share an edge with F;. For the definition of
$7 we first introduce the set S;7 of all elements K € T, such that P;, P; € K and
the exterior normal vector v;; to 0D; N JD; with respect to D;. Then

S(un) = ) meas((0D; N OD;) k) [(VGhun) |k - viglic]

KeSy

where [s]+ = max{0,%s} for s € R. It is explained in [122] that the trilinear
form approximates the integral [, vV (Gu) - Vwdz, where Gu is the Green operator
associated with —A + 1 on L2

Equation (2.2) is solved in a semi-implicit way. This means, for the BDF-2 scheme
and for given uy, that we solve the linear problem

1/3 T S

;<5p2—2p2 T Q,wh) + (Vph, Vwn)a + bu(un, ph,wn) =0 (2.29)
h

for all wy, € Xj,. Here, pf is an approximation of p(-,7k). This defines the solution

operator N(up) = pp and the scheme is completed by choosing wuy. Saito has taken

up, = pﬁ’l, giving the usual semi-implicit scheme of first order. For higher-order

schemes, we need to iterate. For this, we introduce the iteration uglo) = pfb_l and

ul™ = N(u{™ ") for m > 1. The iteration stops when [Ju{™ — u{™ V| g2y < &
for some tolerance € > 0 or if m > my., for a maximal number m,,.. of iterations.
For later reference, we write scheme (2.29) as

1 .
—My(3ph —4p " + o) = 2(An + Bulph))h, (2.30)

where M), is the lumped mass matrix, A, the stiffness matrix, Bh(pZ) the upwind
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

matrix, and p¥ is the solution vector at time step k after the Picard iteration has
terminated.
In a similar way, we define the scheme with the midpoint discretization:

%(Pﬁ — o wn)n %(V(Pﬁ + i), Vg )o + ibh(uh + pr1s oy + oy Lwn) =0
for all w, € Xj. The resulting linear systems are computed by using MATLAB.
We choose the domain Q = (0, 1)?, which is triangulated uniformly by 2a? triangles
with maximal size h = \/5/ a. The numerical parameters are a = 64, 7 = 5- 1077,
e = 1074, and M., = 500 if not stated otherwise. (In all presented simulations, the
maximal number of iterations was m = 17, i.e., M.y Was never reached.)

2.4.2 Numerical Results

To illustrate the behavior of the solutions, we choose the initial data as a linear
combination of the shifted Gaussians

M Tz —x0)2 + (y — yp)?
meyo(may) = ﬁexp <_ ( 0) % (y yO) )’

where (z9,%0) € (0,1)2, M > 0, and # > 0. Clearly, the mass of W, ,, equals M.
For the first example, we choose § = 1/500, M = 67, and

po = Wo.ss0.33 + Woss066 + Woee,033 + Woes .66

The initial mass is 247 > 87 and thus, we expect the solutions to blow up in finite
time.

Figure 2.1 shows the cell density p(z,t) at various time instances computed from
the BDF-2 scheme. As expected, the solution blows up in finite time in the center
of the domain. Note that the numerical solution is always nonnegative and conserve
the total mass.

A nonsymmetric situation is given by the initial data

1

P0=3

Wo.33,0.66 + %WO‘33,0.33 + Wo.66,0.66
taking = 1/500, M = 67, and the same numerical parameters as above. The total
mass of pg is 117, so we expect again blow up of the solutions. This is illustrated in
Figure 2.2. The solution aggregates, moves to the boundary and blows up. Again,
the discrete solution stays nonnegative and conserves the mass.

We remark that boundary blow-up was analyzed in [129]; also see the presentation
in [138, Theorem 5.1]. The proof uses a localized symmetrization argument, which
possibly can be extended to a semi-discrete implicit Euler scheme.
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Figure 2.1: Cell density computed from the BDF-2 scheme at times ¢t = 0 (top left),

2.4.3 Convergence Rate

t = 0.005 (top right),

= 0.007 (bottom left), ¢ = 0.02 (bottom right).

To calculate the temporal convergence rates and to show that the schemes are indeed
of second order, we compute a reference solution p,e¢ with the very small time step

7=10"°

and compare it in various LP norms with the solutions p, using larger time

step sizes 7. We choose the same initial datum as in the first example with M = 247.

Figure 2.3 shows the LP error

- pref('a T

where the end time 7" = 0.01 is chosen such that the density already started to aggre-
gate but blow up still did not happen. As expected, the L errors are approximately

of second order.
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2 The Semi-Discrete Virial Argument for the Keller-Segel System
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Figure 2.2: Cell density computed from the BDF-2 scheme at times ¢t = 0 (top left),
t = 0.005 (top right), ¢ = 0.02 (bottom left), t = 0.1001 (bottom right).

2.4.4 Numerical Blow-up

We demonstrate that the bound for the blow-up time T* = 7k, derived in the
time-discrete situation can serve as a bound for the numerical blow up. It is well
known that the computation of the numerical blow-up time is rather delicate. For
instance, Chertock et al. [33] use the L> norm of the density as a measure of the
numerical blow-up time, since ||| (q) is proportional to h? (recall that h is the spa-
tial grid size). Numerical blow-up may be reached, for instance, when the numerical
solution becomes negative [32, 136] or when the second moment becomes negative
[70]. However, since our scheme conserves the mass and the grid is finite, the numer-
ical solution cannot blow up in the L norm. Instead, the solution converges to a
state where the mass concentrates at certain points and no further growth is possi-
ble. Moreover, the second moment cannot become negative, provided nonnegativity
is preserved (also see below). A lower bound for the blow-up time was derived in, for
instance, [52, Theorem 2.2] in two space dimensions (but with a non explicit bound)
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2.4 Numerical Examples
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Figure 2.3: L? error e, for p =1,2,4, 00 at time 7" = 0.01 for various time step sizes
7 = 7 (left: BDF-2 discretization; right: midpoint discretization).

and in [23, Prop. 3.1] in three space dimensions.

For the numerical test, we choose the initial datum py = W;; on the domain
Q = (0,2)? with parameters § = 1/500, M = 307, and 7 = 10~°. The grid sizes are
h = 0.02, 0.04, 0.08. The initial density and the density at £ = 44 are displayed in
Figure 2.4. The density almost does not change for time steps k& > 44.

x10

6000 -
4000 -

2000 -

Figure 2.4: Cell density at time step k = 0 (left) and k = kpax = 44. The mesh size
is h = 0.02.

It seems that the solution to the fully discrete semi-implicit scheme exists numer-
ically for all time. Saito observed in [123, p. 144] that his finite-element solution
never blows up in finite time, and he argued that this is because of the preservation
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2 The Semi-Discrete Virial Argument for the Keller-Segel System

of the L' norm. Note that he employed scheme (2.29) with u, = pf*, while we used
a Picard iteration in order to achieve second-order convergence. In fact, the solution
in Figure 2.4 seems to be the steady state of the discrete nonlinear system (2.30).
This is indicated by the behavior of the residuum Ry, = 2||Anpf + Bu(pf)pf e, illus-
trated in Figure 2.5. The residuum tends to zero for increasing time steps k. This
behavior is in contrast to the analytical results, where finite-time blow up occurs for
semi-discrete solutions. Figure 2.6 illustrates the evolution of ||p|| L~ (o) and 1. The
vertical line marks the bound k.« from (2.16). We observe that the L> norm and
the second moment reach a limit close to kpax.

31 8000 |-
6000 |-
<)
= 4000 |-
1 [
2000
o L \ \ \ 0 ‘ ‘ | |
0 10 20 44 60 80 30 44 60 80
time step k time step k

Figure 2.5: The residuum Ry, for time steps 1 to 81 (left) and time steps 30 to 81
(right) versus time steps k.

For coarse meshes or large time steps, the numerical scheme may produce solutions
with negative values. As an example, we take 7 = 1073 and h = 0.02 and choose an
initial datum with steep gradients,

250m  for ¥ < x,y < 2,
polz,y) = ’ ’
0 else;

see Figure 2.7 (top left). For small times, the solution becomes negative around the
steep gradient, but the regions with negative values disappear for larger times. This
is confirmed in the plot L' norm over time, where the L' norm is larger than the total
mass in a certain time interval due to the negative values (note that ||p|| 1) # [, pdx
for functions p : @ — R). The total mass stays constant over time. It seems to be
natural to obtain negative values, since higher-order in time schemes usually require
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2.5 Discussion and Outlook
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time step k time step k

Figure 2.6: L* norm ||py ||~ (q) (left) and second moment I;, (right) versus time. The
vertical line marks the upper bound k.« defined in (2.16).

a CFL-type condition to remain nonnegative [13]. However, after some time, the L'
norm stabilizes and equals the total mass again.

2.5 Discussion and Outlook

Discussion

The main focus in this chapter lies on the extension of the fundamental blow-up
argument for the Keller-Segel system, the virial inequality, to the semi-discrete case
in time. We cluster the discussion of the results in this chapter into the semi-discrete
and the fully discrete part.

Semi-Discrete Results:

The existence of discrete-in-time solutions was proven for implicit Euler, BDF and
implicit Runge-Kutta schemes via a fixed point argument. Observe that the existence
results do not require the condition M < 8, since they are local. In addition, the
smallness condition on 7 is natural, and the time step needs to be chosen smaller
and smaller when the blow-up time is approached. Furthermore, we have shown the
conservation of mass and the virial inequality for these methods. Unfortunately, only
the implicit Euler method guarantees nonnegativity of the solution if the previous
time step was in L. Nevertheless, we have proven an upper bound for the maximal
number of time steps, i.e a maximum time of existence for nonnegative solutions of
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2 The Semi-Discrete Virial Argument for the Keller-Segel System
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Figure 2.7: Cell density computed from the BDF-2 scheme with a coarse mesh at
times ¢ = 0 (top left), ¢ = 0.006 (top right), ¢ = 0.021 (bottom left) and
the L' norm of p (bottom right).

the semi-discrete problem, in the supercritical case M > 8m. An interesting fact
is that the upper bound 7™ is the same for both the continuous and semi-discrete
equations. Although one could expect that the strategy of the implicit Euler case
carries over to other methods, more than minor revisions are needed to adapt to
other discretizations. This struggle surfaces in the case of BDF-3 and § > 0, where
we are not able to prove the virial inequality at this point in time.

Fully Discrete Results:

We have studied a second order in time discretization on the fully discrete level with
a finite element upwind scheme in space. The second order convergence rate in time
is established, at least numerically, for the nonlinear discrete case. This is possible
by the application of a Picard iteration method to resolve the nonlinear term. The
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2.5 Discussion and Outlook

original linearized scheme proposed by Saito is numerically only first order in time,
also for a formally higher order in time discretization. The scheme preserves the total
mass and converges to a discrete steady state before reaching the predicted upper
bound for the blow-up time via the semi-discrete virial argument. The nonnegativity
of the solution is numerically preserved if the mesh and time steps are fine enough.
For coarser meshes or larger time steps, the scheme stays stable but can produce,
temporally, negative values in regions with steep gradients. These numerical results
are the first of their kind, since most numerical studies do not focus on higher order
time discretizations or only use explicit methods.

Outlook

In order to derive a numerical scheme that resolves the blow-up time more accurately,
we want to translate the virial argument to the fully discrete case. Therefore, the
path ahead can be described as follows:

Fully Discrete Virial Argument

A next logical step is to discretize only in space and try to mimic the argument.
Major difficulties arise in the discretization of the drift term. This has to be done
in a way that allows us to perform a discrete version of integration by parts twice in
the diffusion term and still preserve the symmetry properties of the Bessel /Newton
potential. In addition, one has to incorporate the conservation of mass into the
scheme in order to prove the virial argument on a discrete level in space. Each of
these features is not difficult to obtain alone, but to combine them is challenging
and poses many open questions for a future work. Since we are not interested in
boundary aggregation at this point in time, a possible direction is to start with the
radial-symmetric case and to develop a purpose-built finite difference scheme.

Numerics

The numerical scheme presented above shows promising results. The conservation
of mass and nonnegativity lead to a rather stable scheme with second order in time
convergence rate. A more detailed numerical analysis should be performed for this
scheme, built on the already existing analysis for the linearized implicit Euler case
[122]. In addition, the L* norm of the cell density seems to be strongly related to
the mesh size in space; see Figure 2.6. Hence, in order to increase the number of
elements near the blow-up point, an adaptive mesh refinement strategy similar to
[19, 27, 104] should be implemented.
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3 Vanishing Cross-Diffusion
Regularization in a Keller-Segel
System

This chapter is concerned with the regularized system (1.2) and its limit to the
Keller—Segel system (1.1) on a bounded domain 2 C R¢. Thus, we will deal with the
following system

Ops = div(Vps — psVecs), €0ics = Acs + 0Aps —cs+p§ inQ, t>0, (3.1

already introduced above, subject to the no-flux boundary conditions and initial
conditions

Vps-v=Vcs-v=0 ondQ, t>0 ps0)=p" ecs(0)=¢ec inQ, (3.2

where Q C R? (d = 2,3) is a bounded domain, v is the exterior unit normal vector
of 02, > 0 describes the strength of the additional cross-diffusion, and the term p§
with a > 0 is the nonlinear signal production. In particular, we are interested in the
limit § — 0 in (3.1) leading to the Keller—Segel equations

Op =div(Vp —pVe), edic=Ac—c+p® inQ, t>0, (3.3)

with the initial and boundary conditions (3.2).

We will prove two results in this chapter. The first one is the convergence of the
solutions of the parabolic-elliptic model (3.1) with € = 0 to a solution of the parabolic-
elliptic Keller—Segel system (3.3) with € = 0. Since this result holds globally in time
without restriction on the initial mass, we need the restriction a < 1. The second
result is concerned with the derivation of a convergence rate both in the parabolic-
parabolic, i.e. ¢ > 0, and parabolic-elliptic case, ¢ = 0. For a > 1, we cannot
generally expect global solutions and it is therefore natural to consider local solutions
in this case.

The chapter is organized as follows: we will start with a discussion of the key ideas
behind the analysis of the two cases in Section 3.1. The parabolic-elliptic case, for
a < 1, is investigated in Section 3.2, while the general case is presented in Section
3.3. Numerical simulations for the model (3.1) are performed in Section 3.4. We
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3 Vanishing Cross-Diffusion Regularization in a Keller-Segel System

also mention here, that some technical tools for this chapter, including a nonlinear
Gronwall inequality, are recalled in Appendix B.

3.1 Key ldea: Entropy and Gronwall Inequalities

In order to justify the artificial entropy structure introduced in [28, 75] and the
regularizing effect, we want to prove that the solutions of the regularized system
can approximate the solution of the original system in a satisfying way. On the one
hand, this allows us to study the Keller—Segel system from a different perspective and
we can observe what happens when the artificial entropy structure vanishes. On the
other hand, we will see that the regularized system features an intriguing aggregation
behavior without blow-up. We will investigate this behavior in numerical simulations
later on. In particular, we will link the radius of an aggregated bump solution, in
its intermediate state, to the parameter 6. As mentioned above, we will attack the
parabolic-elliptic case with sublinear signal production and the general case with two
different strategies.

The Case a < 1:

We know that the regularized system features global-in-time weak solutions for a = 1,
while the classical Keller—Segel system can experience a blow-up if the initial mass is
too big. The prove for the global-in-time existence of the regularized system builds on
the entropy inequality (1.6) depending on ¢ and the application of the boundedness-
by-entropy method. Thus, we cannot expect to find a uniform estimate in §, which
would allow us to pass to the limit. Nevertheless, we can show a global-in-time
existence result for the parabolic-elliptic case in the case @ < 1 and § > 0. The idea
of the proof is to reformulate (3.1) via introducing the new variable vs := c5+ dps as
the system

Oips = div((1 + 0ps)Vps — psVus), —Avs+uvs=0dps+ps inQ, t>0, (3.4)
together with the initial and boundary conditions
Vps - v=Vous-v=0 indQ, ps0)=p" in. (3.5)

This reformulation was already used in [75] to prove the existence of weak solutions
in the two-dimensional case with o = 1. It transforms the asymptotically singular
expression 6Ap; to a quasilinear parabolic equation, thus simplifying considerably the
asymptotic limit problem. Still, we need estimates uniform in ¢ to apply compactness
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3.1 Key Idea: Entropy and Gronwall Inequalities

arguments. For this, we use the entropy functional H(ps) fQ ps(log ps — 1)du:

dH
—1+4/ Vo7 2dx+5/ VpsPd < /((5p5—|—p°‘+1)d (3.6)

By the Gagliardo—Nirenberg inequality, the right-hand side can be estimated as

o
3 [ ide < S19psl + Cllosli

see Section 3.2 for the proof. The first term on the right-hand side is absorbed by
the left-hand side of (3.6) and the second term is bounded since the total mass is
conserved. In order to pass the limit, we can use the estimate from above combined
with another “entropy” functional H,(p) = fQ psdx. For p =2 or p = 3, this leads
to

/\V 22| 2dac~|—5/ (VD) d$<CHP5Hpﬁl>//22 + Cllog 117y (3.7)

where ((p) > 2 is some function depending on p. If p = 2, the last term is the total
mass, which is bounded uniformly in time. Moreover, the estimate for pé/ > in HY(Q)
from (3.6) implies that ps is bounded in W(Q) < L3/2(Q) such that the first term
on the right-hand side of (3.7) is uniformly bounded as well. Higher-order L?((2)
bounds are then obtained for p > 3.

Clearly, these arguments are formal. In particular, the estimate for H; requires
the test function logps in (3.1), which may not be defined if ps = 0. Therefore,
we consider an implicit Euler discretization in time with parameter 7 > 0 and an
elliptic regularization in space with parameter n > 0 to prove first the existence
of approximate weak solutions with strictly positive ps. This is done by using the
entropy method of [75]. The approximate solutions also satisfy the d-uniform bounds,
and they hold true when passing to the limit (1, 7) — 0. Then the limit 6 — 0 can be
performed by applying the Aubin—Lions lemma and weak compactness arguments.

The Case o > 1:

In the general case, we have to change our viewpoint and derive higher order esti-
mates to pass to the limit for classical solutions. We will use a generalized Gron-
wall inequality as in [77] by deriving carefully H*(2) estimates for the difference
(pr,cr) == (ps — p,cs — ¢). The index s € N is chosen such that we obtain L*>(2)
estimates in order to handle the nonlinearities. If € = 1, we introduce the functions

L(t) = l(pr, cr)(O)F2)s G(t) = [[(or, cr) () [7r2(0) + IVA(PR, cr) (E) 120
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

The aim is to prove the inequality

+C/G ds<C’/ s)+T(s max{“}derC/ G(s)ds + C§?,

where C' > 0 is a constant independent of §. This inequality allows us to apply a
variant of Gronwall’s lemma (see Lemma B.2 in the Appendix), implying an almost
quadratic convergence rate. In the parabolic-elliptic case e = 0, the functions I'(¢)
and G(t) are defined without cg, and the final inequality contains the additional
integral [} I'(s)°+'G/(s)ds, which is still covered by Lemma B.2.

3.2 The Parabolic-Elliptic Case

In this section we will deal with the system (3.4)-(3.5) in the case a < 2/d. We
set Qr = Q x (0,T) and state an existence result for § > 0 and the corresponding
convergence result in one theorem:

Theorem 3.1 (Convergence for the parabolic-elliptic model). Let  C R? (d = 2, 3)
be bounded with Q) € CY1, T > 0,5 >0, =0, and 0 < p’ € L>®(Q). If a < 2/d,
there exists a weak solution (ps,cs) € L*(0,T; H'(2))? to (3.1)-(3.2) satisfying

Oips € L*(0,T; H'(Q)'),  ps € LP(0, T3 LX), 5+ 6ps € L0, T; WH(9)),
for any p < co. Furthermore, as 6 — 0,

ps = p  strongly in L*(Qr),
Vps — Vp weakly in L*(Qr),
cs +dps =" ¢ weakly™ in L>(0,T; I/V“”(Q))7 p < 00,

where (p,c) € (L*°(0,T; L>()))? is the unique solution to (3.2)-(3.3).

Proof. We start by an approximation procedure and by deriving the uniform bounds
from discrete versions of the entropy inequalities (3.6) and (3.7). This will allow us
to use the strategy discussed in Section 3.1 in a rigorous way.

Step 1: Solution of a regularized system and entropy estimates. We show the
existence of solutions to a discretized and regularized version of (3.4). For this, let
N € Nand 7 = T/N, and set p(w) = exp(w/§). This means that we transform
w = dlogp. Let wb™t € H?*(Q) and v*~ ! € HL(Q) be given and set p/ = p(w?) for
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3.2 The Parabolic-Elliptic Case

j =k, k — 1. Consider for given 7 > 0 and n > 0 the regularized system

l ko k=1 k k_ kx,,kY
T/Q(” P )</>d:v+/Q(<1+5p Vo' = p"Vor) - Vode
=1 / (Aw*Ap + 02|V PVu" - Vo + wpF¢)dz, (3.8)
Q
/(Vvk VO + v0)dx = / (60" + (p*)*)0da (3.9)
Q Q

for p € H*(Q2) and 6 € H'(Q). The time discretization is needed to handle issues due
to low time regularity, while the elliptic regularization guarantees H?()) solutions
which, by Sobolev embedding (recall that d < 3), are bounded. The higher-order
gradient term |Vw*|2Vw* - V¢ is necessary to derive LP()) estimates. The existence
of a solution wk € H?(Q), 0 < v* € H(Q) follows from the techniques used in the
proof of Proposition 3.1 in [75] employing the Leray—Schauder fixed-point theorem.
Since these techniques are rather standard now, we omit the proof and refer to
[75, 83, 84] for similar arguments.

Inequality w¥p* = whe" /0 > ewth 1 = p* — 1 allows us to show as in [75, page
1004] that the total mass ||p*||11(q) is bounded uniformly in é.

Entropy estimates are derived from (3.8)—(3.9) by choosing the test functions ¢ =
w*/§ = log p* and 6 = p*, respectively, and adding both equations. Then the terms
involving Vv* cancel and after some elementary computations, we end up with

= [0 =)z 4 [ VP 5 [ 9

T

3 [ (@ 5Tt ) da
Q

< / (= 0" +0(p")* + (pF)* ") de < / (60" + (p")* ) de,  (3.10)
Q Q
where h(s) = s(logs — 1) for s > 0. Using the Gagliardo—Nirenberg inequality with
o = d/(d + 2), the Poincaré-Wirtinger inequality, and then the Young inequality
with p = 1/0, p’ = 1/(1 — o), it holds for any v € H*(Q2) and u > 0 that
o 2(1—0c o 2(l—0o
lullza@) < Cllullie lulfie) = C(IVullia@ + lulie) lul e

< N(HVUH%Q(Q) + ||U||%1(Q)) + C(M)Hu“%l(ﬂ) = MHVUH%Q(Q) + C(M)Hu“%l(ﬂ)'
(3.11)
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

We deduce from this inequality that the first term on the right-hand side of (3.10)
can be estimated as

)
5 [ (04dn < SI9 sy +

where here and in the following, C' > 0 denotes a constant independent of n, 7, and
0, with values varying from line to line. The first term on the right-hand side can be
absorbed by the left-hand side of (3.10), while the second term is bounded. Using
st < 52 + 1 for s > 0 (since a < 1) and (3.11), the second term on the right-hand
side of (3.10) becomes

0
/Q (o) +de < / (64 + 1) < SNV 220 + Cllot @) + C).

Inserting these estimations into (3.10), we conclude that

1 B )
2 [ 06— )+ [ 190 e+ S [ (9P

T

+g/9<(Awk)2+52|vwk|4+(wk)2pk)dx < C(Q). (3.12)

Step 2: Further uniform estimates. The estimates from (3.12) are not sufficient
for the limit 6 — 0, therefore, we derive further uniform bounds. Let p = 2 or
p = 3. We choose the admissible test functions p(p*)P~t and (p — 1)(p*)? in (3.8)-
(3.9), respectively, and add both equations. The convexity of s — sP implies that
sP —tP < p(s —t)sP~L. Then, observing that the terms involving Vo* cancel, we find
that

1 4
» [y = e o= [ s TEE) [ 9
Q p

-
" ”p/ (AWt AP~ + 572Vt PVt - V(o 4 wh(ph)) da
Q0
<@- 1)/ (S(pM)PH + (pF)Pr ) d.
Q
By (3.11), we find that

5
5/9(0’“)”“0537=5H(p'“)(p“)/2!\%a(m < IV )T a0 + Cl ") T s )

The estimate for (p*)*™P requires that a < 2/d. Indeed, we deduce from the
Gagliardo-Nirenberg inequality with ¢ = d(2a + p)/((d + 2)(« + p)) and similar
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3.2 The Parabolic-Elliptic Case

arguments as in (3.11) that

o a a o a -0
/ﬂ (") da = 1) 5ty < CIO ) I PRI

L2(e+p)/P(Q

(a+p)o/ o 1—o
:C(||V<p’“>p/2lliz<m+||<p’“>”/2||%1<m) Py

< S(IV 210 + 1521 0) + ClOMP ),

l\DII—‘

where B(p) := 2(a+p)(1 —0)/((a + p)(1 — o) — a) > 2 (the exact value of B(p)
is not important in the following). For the last step, we used the crucial inequality
(aw+ p)o/p < 1 (which is equivalent to a < p/d).

Because of p¥ = exp(w*/d), a computation shows that the integral with factor n
can be written as

”p/ (AW AP + 572Vt PVt - V(P 4 wh(ph)) da
Q

2
_no. k\p—1 R, p—1 k|2 i 12 k|4
= Dot —) [ (07| (30t + )+ G - 09Vt
+77p/ wheP" 3 .
Q

The last integral is bounded from below, independently of §. Since p = 2 or p = 3,
the first integral on the right-hand side is nonnegative. (At this point, we need the
term |[Vw"|?Vw" - V¢.) Summarizing these estimates, we infer that

1
= @y = e+ [ VPR e
Q Q Q

.
< CI(P) P20 + CHE 1 . (3.13)

Step 3: Limit (n,7) — 0. Let w (x,t) = w*(z), p-(x,t) = p(w"(z)), v (2, t) =
vF(z) forx € Qand t € (k—1)7, k7], k =1,..., N, be piecewise constant functions
in time. At time ¢t = 0, we set w,(z,0) = log p°(z) and p,(x,0) = p°(x) for z € Q.
(Here, we need p° > C' > 0 in © and another approximation procedure which we
omit; see, e.g., [84, Proof of Theorem 4.1].) Furthermore, we introduce the shift
operator m,p,(x,t) = p;(x,t —7) for € Q, t > 7. Then the weak formulation
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

(3.8)—(3.9) can be written as

/ / — TPy <bda;dt—|—/ / (14 6p;)Vp, — p;Vu,) - Vdadt

= —n/ / (Aw,A¢ + 6| Vw, |*Vw, - Vo + w,p,¢)dudt, (3.14)
0 Q

T T
/ /(VUT -Vl + v, 0)dxdt = / /((5pT + pf)0dzdt, (3.15)
0o Jo o Ja

where ¢ : (0,T) — H?(Q2) and 6 : (0,T) — H' () are piecewise constant functions.
Multiplying (3.12) by 7, summing over k£ = 1,..., N, and applying the discrete
Gronwall inequality [84, Lemma A.2| provides the following uniform estimates:

o+l Loz + 1022 2o.rmi 9y + 62| pr 200 @) < C, (3.16)
02| Aw, || 12igp + 0462 Vwr | pa@py + 0" wrpl 2| r2i0p) < C. (3.17)

The (simultaneous) limit (7, 7) — 0 does not require estimates uniform in §. There-
fore, we can exploit the bound for p, in L?(0,T; H'(£2)). Together with the uniform
L>=(0,T; L*(2)) bound, we obtain from the Gagliardo—Nirenberg inequality as in [84,
page 95] that (p,) is bounded in L**?/¢(Qr), recalling that Q7 = Q x (0,7T). Since
—Av; + v, = 0p, + p is bounded in L**?/9(Q7), we deduce from elliptic regularity
a uniform bound for v, in L**2/4(0, T; W**+2/4(Q))). Therefore, p, Vv, is uniformly
bounded in L'*/4(Qr) and p,Vp, is uniformly bounded in LZ4+2/CHD (). Con-

sequently, (p, WTpT) /7 = div((1 4+ 6p,)Vp, — p;Vv,) is uniformly bounded in
L(2d+2)/(2d+1)(0 T w1 ,(2d+2) /(2d+1)(Q)>‘

The Aubin-Lions lemma in the version of [44] shows that there exists a subse-
quence, which is not relabeled, such that, as (n,7) — 0,

pr — p strongly in L*(0,T; LF(Q))

for any p < 6 and in LY(Qr) for any g < 24 2/d. Moreover, because of the bounds
(3.16), again for a subsequence, as (n,7) — 0,

Vp. — Vp weakly in L*(Qr),
7_71(,0 ﬂ-TpT) N 3tp weakly in L(2d+2 /(2d+1) (O T; w1t ,(2d+2) /(2d+1)(Q)),
v, — v weakly in L**¥(0, T, W**¥4(Q)).
We deduce that p,Vp, — pVp and p,Vov, — pVov weakly in L'(Qr) as well as

pe — p® strongly in L*(Qr).
The limit in the term involving 7 is performed as in [75]: Estimates (3.17) imply

60


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2 The Parabolic-Elliptic Case

that, for any ¢ € L4(0,T; H*(Q)),

T
’n/ / (Aw,A¢ + 672 |Vw, |*Vw, - Vo + w.p,¢)dudt
0o Ja

<l Awe | 2 188l 2 @r) + 102 Vw- 7100 IVl L3()
+ llwe 22| 22 1P | Lo |0l L2
< OO + 0" bl paormz) — 0 asn — 0.

Thus, performing the limit (n,7) — 0 in (3.14)—(3.15), it follows that (p, ¢) solve

T
/ (Orp, & dt+/ / (14 6p)Vp — pVv) - Vodadt = 0, (3.18)

/ /vu V0 + v0)dadt = / /5p+p )odadt, (3.19)

where, by density, we can choose test functions ¢ € L°°(0,T; H(Q)) and § € L*(0, T}
H'(2)). The initial datum p(0) = p is satisfied in the sense of H'(Q)’; see, e.g., [83,
pp. 1980f.] for a proof.

Step 4: Limit & — 0. For this limit, we need further uniform estimates. Let (p,, v,)
be a solution to (3.14)—(3.15). We formulate (3.13) as

/Q(pp (7,pr)" )dm+/ /|vpp/2| dzdt + — / /|v PHD/2)2 g dt

<0 [ I i+ 0 [ 12t (3.20)

where we recall that C' > 0 is independent of (n,7,8). The L>*(0,T;L*(Q)) and
L*(0,T; H()) bounds for ( p'?) show that

T
[ 190t =1 [ 1020 it < 4 [ 16 90
< A prllLoe0,7;01 () /HVpl/QHLz(Q)dtSC.

Thus, (p,) is bounded in L0, T; W (Q)) < L2(0,T; L*>?(Q)), as d < 3.
Let p = 2 in (3.20). As the right-hand side of (3.20) is uniformly bounded, we
infer the bounds

51/2

lorllimossia + ooz + 82152 sz < C.
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

Choosing p = 3 in (3.20), the right-hand side is again bounded, yielding the estimates

o+ |l o 0,7 L3(2)) + 51/2||p3||L2(0,T;H1(Q)) < C.

By elliptic regularity, since —Av, +v, = dp, + p € L>(0,T; L3(Q)), the family (v,)
is bounded in L>(0,T; W23(Q)) < L*(0,T; W?(Q)) for all p < oco.

We know from Step 3 that (p,,v,) converges in some norms to (ps,vs) = (p,v)
solving (3.18)-(3.19). By the weakly lower semicontinuity of the norm and the a.e.
convergence p2 — p? in Qrp, it follows that, after performing the limit (n,7) — 0,

195 ]| L= o.m:230)) + |08 220,m5m1 ) + 621105 220,510 + [V ]| L= o () < C.
(3.21)
We wish to derive a uniform estimate for the time derivative Oyps. Let ¢ €

L*(0,T; H'(Q)). Then

r )
[ @onorar] < (190slhan + 5196 an ) IVl

+ | psll 20,4 ) IV s || oo 0, L4 ) | VOl 2007y < O

This shows that (9;p;) is bounded in L?(0,T; H*(Q2)"). By the Aubin-Lions lemma
in the version of [130], there exists a subsequence, which is not relabeled, such that,
as 0 — 0,

ps — p strongly in L*(0,T; LP(Q)), p <6.

Furthermore, we deduce from the bounds (3.21), again for a subsequence, that

Vps — Vp weakly in L*(Qr),
SV (p3) — 0 strongly in L*(Qr),
dips — Oyp  weakly in L*(0,T; H(Q)),
vs —* v weakly® in L®(0,T; W"(Q)), p< .

In particular, psVvs — pVo weakly in L2(Qr). Thus, we can perform the limit § — 0
in (3.18)—(3.19), which gives

T T
B,p, $Vd Vp — pVo) - Vodadt = 0,
| @yt [ [ (Vo590 Voo

T T
/ /(Vv - VO + vl)dxdt = / / p“0dx
0o Jo o Ja

for all ¢, 6 € L*(0,T; H(Q)). Furthermore, we show as in [83, pp. 1980f.] that
p(0) = p° in the sense of H'(Q)".
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3.3 The Parabolic-Parabolic Case

Step 5: Convergence of the whole sequence. The whole sequence (ps, vs) converges if
the limit problem has a unique solution. Uniqueness follows by standard estimates if
p, Ve € L2(0,T; L®(Q)). Since —Ac+c = p* € L=(0,T; L*>*(Q)) and 3/a > 3 > d,
elliptic regularity shows that ¢ € L>=(0,T; W3/%(Q)) < L>(0,T; W'*°(Q)). Then
(74, Lemma 1] shows that p € L>(0,T"; L*°(2)), finishing the proof. O

3.3 The Parabolic-Parabolic Case

It is shown in [75] that (3.1)—(3.2) with @ = 1 has a global weak solution in two space
dimensions. Since the solutions to the limiting Keller—Segel system may blow up after
finite time, we cannot generally expect estimates that are uniform in § globally in
time. In order to follow the local-in-time approach presented above, we need higher-
order estimates not provided by the results of [75]. Therefore, we first show the local
existence of smooth solutions and then the corresponding uniform H*({2) bounds.
These bounds will be sufficient to use a nonlinear Gronwall argument and to prove
the following theorem:

Theorem 3.2 (Convergence rates). Let  C R? (d < 3) be a bounded domain with
smooth boundary and let (p°,c°) € (WP(Q))? for p > d if e = 1 and p° € C**(Q)
for some v € (0,1) if e = 0. Furthermore, let a« = 1 or o > 2 and let (ps, cs) and
(p,c) be (weak) solutions to (3.1) and (3.3), (3.2), respectively, with the same initial
data. Then these solutions are smooth locally in time and there exist constants C' > 0
and 69 > 0 such that for all0 < § < dy and X > 0,

|(ps — pscs — ©)|| oo, m2(0) < C5 .

Proof. Step 1: Local existence of smooth solutions. Let ¢ = 1. The eigenvalues of
the diffusion matrix associated to (3.1),

a0=(5 7).

equal A = 1 +1y/0p, and they have a positive real part for all p > 0, i.e., A(p,c) is
normally elliptic. Therefore, according to [2, Theorem 14.1] (also see [85, Theorem
3.1]), there exists a unique maximal solution to (3.1)-(3.2) satisfying (p, c) € C=(Q x
(0,7%); R?), where 0 < T* < oo.

Next, let € = 0. We use the Schauder fixed-point theorem to prove the regularity
of the solutions to (3.4)—(3.5). We only sketch the proof, since the arguments are
rather standard. We introduce the set

S={peC’@x[0,7)):0<p <R, [Plcrr@xpm < K}

for some R > 0 and M > 0. Let p € S. By elliptic regularity (combining Theorems
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

2.4.2.7 and 2.5.1.1 in [66]), the unique solution to
—Av+v=0p+p* inQ, Vp-v=0 on 0,

satisfies v € C°([0,T]; W*P(Q)) for all p < oo. Hence, by Sobolev embedding,
h:=pVv € C°(Q x [0,T]). Thus, using [101, Lemma 2.1 iv], the unique solution to

Op=div((14+6p)Vp—h) inQ, t>0, Vp-vr=0 ondQ,

satisfies p € C7/2(Q x [0,T]). By elliptic regularity again, v € C?7/2(Q x [0,T1]).
Consequently, h € C?7/2(Q x [0, T]) and applying [101, Lemma 2.1iv] again, we infer
that p € C>1(Q x [0,T]). It is possible to show that p € S for suitable R > 0 and
M > 0. Hence, the existence of a solution to (3.4)—(3.5) follows from the Schauder
fixed-point theorem.

Elliptic regularity implies that v € C*1(Qx[0,T]). Then f := div(pVv) € CHH(Qx
[0, T]) and the solution u = p to the linear parabolic equation dyu—Au—div(pVu) = f
in 2, t > 0, with no-flux boundary conditions satisfies u € C?+71+7/2(Qx [0, T]) [106,
Corollary 5.1.22] (here we need p° € C?*7(Q2)). Thus, the regularity of f improves
to f € C11H/2(Q) x [0,T]). By parabolic regularity [54, Theorem 9.2, p. 137],
we infer that u € C?*72(Q x [0,T]). Bootstrapping this argument and using [54,
Theorems 10.1-10.2, pp. 139f.], we find that p = u € C>=(Q2x (0, T]) and consequently
v e O®(Q x (0,T]).

Step 2: Preparations. Let € = 1, let (ps, cs) be a local smooth solution to (3.1)-
(3.2) with 0 < § < 1, and let (p,c) be a local smooth solution to (3.2)-(3.3). Then
pPr = ps — p and cg := c5 — c solve

Opr = div (Vpr — prV (¢ + cg) — pVeg), (3.22)
Ocr = Acg — cp + 0A(p+ pr) + (p+ pr)* — p* In Q, £>0, (3.23)

(pr, cr) satisfies homogeneous Neumann boundary conditions and vanishing initial
conditions:

Vor-v=Veg-v=0 ondQ, t >0, pr(0)=cr(0)=0 in Q.
The aim is to prove a differential inequality for
L) = (pr, cr) D)2y G) = [1(prs cr) O 20 + IVA(pRs cr) ()20

where ||(pr, cr)l|% = llprll% + llcr||% for suitable norms || - || x.
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3.3 The Parabolic-Parabolic Case

Step 3: H'(Q) estimates. We use pg as a test function in (3.22):

1d

5%”/)1%”%2(9) + [IVorllZa) = / prV(c+ cr) - Vprdr + / pVeg - Vprdr
Q Q

= Il + [2.

By Young’s inequality, for any n > 0, we have
I < IV palaey + ol [V er 2o < LIV prlEaq + C) [ Ver]2s
=5 @ T 5 1Pl 2@ =5 L2(€) L2(Q)

where here and in the following, C' > 0 and C(n) > 0 denote generic constants
independent of § but depending on suitable norms of (p, ¢). The embedding H*()) —
L>(92) (for d < 3) gives

1 1
I < 77HVPRH%2(Q) + %HVCH%W(Q)HpRH%?(Q) + %HPRH%N(Q)HVCRH%?(Q)
< 7I||VPR||%2(Q) + C(TI)HPR”%'Z(Q) + C(n)HPRH%{?(Q)||VCR||%2(Q)'

Combining the estimates for I; and I and choosing n > 0 sufficiently small, we find
that

d
aHPRH%%Q) + C”VPRH%Q(Q) <C(1+ ||/)R’|§{2(Q))‘|VCR"%2(Q) + CHpRHiQ(Q)' (3.24)

Next, we use the test function cg in (3.23):

1d

5@“01@”%2(9) + HCRH%_ﬂ(Q) = —5/9 V(p + pR) . VCRd$ —+ /S; ((,0 + pR)a — pa)CRd.’L’

:[3+[4.

Thus, for any n > 0,
n 2 62 2 2
I3 < §HVCRHL2(Q) + %(HVpHLZ(Q) + HVPRHL2(Q))
Ui
< §||VCR||%2(Q) +CIVprlZaq + C(n)d*.

For the estimate of I, we apply the mean-value theorem to the function s — s
(recalling that a > 1):

(0 + pr)* — p%| < O+ [lprl =) |prl < O+ [lp&llS=ig)lrrl-
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

Hence, together with the embedding H?(Q2) < L*°(Q),

a—1
I < nllerll3a) + C) (1 + llprl ey lorl2 ).

Collecting these estimates and choosing 1 > 0 sufficiently small, it follows that

1d

2(a—1)
S llenlZa + Cllealln < CIVprliag + O+ lorllise) lorlae + 8

(3.25)
Thus, summing (3.24) and (3.25),

d
pril cr)lli2@) + Cll(or, cr)llip@ < C(T(t) + T(t)* + T(1)7) + C6%  (3.26)

Step 4: H?*(Q) estimates. We multiply (3.22) by —Apr and integrate by parts in
the expression with the time derivative:

1d

2dt”vPR||L2 —|—||ApR||%2(Q) :/Qdiv (pRV(c+cR))Adex+/Qdiv(chR)Adex

= / (VpR -V(c+ cr) + prA(c+ CR))Adex
Q
+ / (Vp -Ver + pAcg)Aprdr =: I5 + Ig.
Q

Then, taking into account inequality (B.1) in the Appendix,

Is < 77||APR||%2(Q) + C(n)vaRH%Q(Q) + C(n)HVPR”%{l(Q)HVCR”%P(Q)
Cllprlza@) + Cllprlln ol AckllF g
Is < 77||APR||%2(Q) + C(")HVCRH%P(Q) + C(”)HACRH%Q(Q)’

and choosing 1 > 0 sufficiently small, we end up with

1d

5771 VPrlliz@ + ClArRlLa@) < Cliorllie) + C(L+ 1V orli @) lerllizq)

+ CHPRHJ%P(Q)HACRH?{l(Q)' (3.27)
We multiply (3.23) by —Acg and estimate similarly as in Step 3:
IVerlTa) + 1AL @) + I Verlz2q)

= 6/ A(p + pr)Acgdx + / ((p +pr)* — pa)AcRda:
Q

< nllAcallzz) + C(1+ lpalliso) ) Iprltae) + CO* | Apallza ) + C5*

2dt|
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3.3 The Parabolic-Parabolic Case

Hence, for sufficiently small n > 0,

57 IIVerlzz) + 1Ak Z2@) + 1 VerllZa
< C(1+ llprliee) lorll iz + CFl1Apxl72q) + C5. (3.28)

Adding this inequality and (3.27), adding ||cg||3. 2(qy on both sides, using (B.2) in the

Appendix, and choosing ¢ > 0 sufficiently small to absorb the term C62||Apr||? 12(0)>
we infer that

d
IV (or, cr)llzz @) + Cll(or; cr)lizi0) < Cllprs cr)lliz) + CIV prllan @) Verllin o)

+ Cllplln ol Acklzn @) + Cllorlisg) lerlizq + €8
< C(T(t) + D)+ () + T(H)G(t)) + Cs°. (3.29)

Step 5: H3(Q2) estimates. We apply the Laplacian to (3.22) and (3.23) and multiply
both equations by Apg, Acg, respectively:

1d

th”ApRHB(Q) + HVA:OR“LQ Q) = / Vdiv(prV(c+ cr)) - VApgrdx

+ / Vdiv(pVeg) - VAprdr = I; + Iy,
g g7 1Achl + IV Ackl) + 1 Acalaey = 5 | VAG+ pr) - ¥ crds
+ / V (P+ PR)" — Pa) - VAcgrdx = Iy + Ihp.
Q

We estimate

Is < nllVAp& 72 + CIV div(pVer) |72 + Cllorlirg)
< 77||VApR||%2(Q) + 0(77)||CR||12L[2(Q) + C(U)HVACRH%Q(Q) + C(U)HPRH%I?(Q)

Taking into account

Vdiv(prVeg) = V(VpR -Vegp + pRAcR)
= (Ver - V)Vpr + (Vpr - V)Ver + VprAcg + prV Ack,

and inequalities (B.1) and (B.3) in the Appendix as well as the embedding H?(Q) <
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

L*>(Q), we obtain

IV div(prVer)|72) < IVerllie@lIV2 RN 20) + IV PRI 0 IV R F1 0
+ IV prllin @l AcrllFnq) + llorlFe o) VACR] 720
< C”IORH%{?(Q)(HVACRH%Q(Q) + ||CR||§12(Q))7

which gives
I; < 77||VACR||%2(Q) + 0(77)”/71%”?12(9) + 0(77)”/71%”?12(9)(||VACR||%2(Q) + HCRH%I?(Q))‘

This gives, again for sufficiently small n > 0,

1d

2dt||APR||%2(Q) + CHVAPRH%%Q) < OH(pRuCR)“}QLI?(Q) + C||PR||%12(Q)||CR||%{2(Q)

+ C(1+ lprllz@) IVACRIT20)  (3.30)
Next, we estimate Iy and Iq:
Iy < lIVACg||Z2iq) + C()0* |V AprZ2g) + C6°,
Io = a/ ((p+pr)* " = p* ") Vp - VAcpdz
Q

+ / (p+ pr)* Vg - VAcgdr = J; + J.
Q

We find that
2(a—1
Jo < ||V Acg|lzq) + Cn) (1 + HpRHH(2(Q))) IV prl720)-
By the Hoélder continuity of s — 571, it follows that

(a-1)

o 2
T2 <C [ pal" [V Acrlds < 1V Acalii0) + Clnllorl i) o
2(a—1
< 0| VAca] 72 + Ol prlifse) -
Consequently, for sufficiently small n > 0,

1d

5 dtHACRH%Q(Q) + CHVACRH%Q(Q) + ||ACR||%2(Q)

2(a—1 2(a—1
< Cllonle) + C(1+ ol IV prlaga) + CF IV Apallaqo) + C8.
(3.31)

Adding the previous inequality and (3.30) and taking § > 0 sufficiently small
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3.3 The Parabolic-Parabolic Case

such that the term 052||VAPR||%2(Q) is absorbed by the corresponding term on the
left-hand side of (3.30), we infer that

d
Ell(pm cr)|Z2) + ClIIVA(pR, cr)l72() + CllAck[|720)
< Cll(pr, cR)H%{Q(Q) +C(1+ HPR||12L12(Q)) ||VACR||%2(Q) + CHpRHJQLIQ(Q)HCRH?{?(Q)
+ Cllorllieg) + C(+ lprlliae ) I Vorl3z) + €6
<COT@E)+TE)* " +T)*+T)* +T()G(t)) + Co. (3.32)

Step 6: End of the proof for ¢ = 1. We sum inequalities (3.26), (3.29), and (3.32):

d
% (H(pRa CR) “2H1(Q) + HA([)R, CR) H%Q(Q))

+C(Il(prs cr)ltr2() + IVA(PR: cr) [ Z2())
<COT@E)+ D)+ D)+ T +T(H)G(t)) + Co°. (3.33)

To get rid of the term T'(¢)*~!, we need the condition o > 2. Indeed, under this

condition,
L) <I(@t)+T ()~

We also remove the term I'(¢)? by defining x := max{«, 2} and estimating
D(t)? <T(t) +T(t)".
We deduce from elliptic regularity that
(1) < ClApa.cr)Faay + Cllonrca) oy

Therefore, integrating (3.33) over (0,t) and observing that (pg,cg)(0) = 0, (3.33)
becomes

I(t) + C/tG(s)ds < c/t(ns) +T(s)%)ds + C’/tF(s)G(s)ds + O

Lemma B.2 proves the result for e = 1.
Step 7: Parabolic-elliptic case ¢ = 0. Since there is no time derivative of cp
anymore, we need to change the definition of the functionals I'(¢) and G(¢):

Lo(t) = llprlliz@y,  Go(t) = llprllie@q) + IVAp&IT2q)-

The estimates are very similar to the parabolic-parabolic case with two exceptions: In
(3.32), we have estimated the terms || prl|72q)[|VACR(Z2(q) and [|prl 7z gy llcrl Tz,
from above by I'(t)G(t). In the present case, we cannot estimate ||VACRH%2(Q) by
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

Go(t) and we need to proceed in a different way.
Estimates (3.28) and (3.31), adapted to the case € = 0, become

2(a—1
1ACRIZ2 ) + [ Verl22@) < OO+ lprlagy ) orlZaq) + COAprl22q, + CO?
< C(To(t) + To(t)*) + C8°,
2(a—1 2(a—1
IVACR]F20) + 1Ak ]F200) < Cliorl 3 + C(1+ loallisw) ) I Vorll? e,

The term (52HVApRH%2(Q) can be absorbed by the corresponding term on the left-
hand side of (3.30). The critical term || pRH%S‘&I))HVpRH%Q(Q) is bounded from above
by I'(¢)*. Thus, ||VACR||%2(Q) is estimated by I'g(¢)* and lower-order terms, and con-
sequently, ||pRH§12(Q) ><||VACRH%2(Q) in (3.30) is estimated by ['¢(t)*Go(t), together

with lower-order terms. Furthermore, |[prl|%2 g llcrlZz2( gy is bounded by To(t)**,

up to lower-order terms. More precisely, a computation shows that

d
E(HIOR“%H(Q) + HApRH%Q(Q)) + C(”/)RH%{?(Q) + HVAPRH%%Q)) + CGo(t)
< O(To(t) + To(t)? + To(t)* ™+ To(t)* + To(t)*™ 4+ To(t)Go(t)
+ Do(t)*Gol(t) + 6°Go(t)) + C6>.

Observing that I'g(t) < C(HpRH?{l(Q) + HApRH%Q(Q)) and To(t)* 1+ To(t)* < To(t) +
Lo(t)*™!, choosing § > 0 sufficiently small, integrating in time, and observing that
I'0(0) = 0, we arrive at

Lo(t) + C’/t Go(s)ds < C’/t(FO(S) + To(t)*1)ds

0

+ C/t(Fo(s) + To(s)*™)Go(s)ds + O8>

An application of Lemma B.2 finishes the proof. O

3.4 Numerical Simulations

We present some numerical examples for system (3.1)—(3.2) in two space dimen-
sions and for various choices of the parameters a and 0. Equations (3.1) are dis-
cretized by the implicit Euler method in time and by cubic finite elements in space.
The scheme is implemented by using the finite-element library NGSolve/Netgen
(http://ngsolve.org); see also [127, 128]. The mesh is refined in regions where large
gradients are expected. The number of vertices is between 2805 and 12,448, and the
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3.4 Numerical Simulations

number of elements is between 5500 and 24,030. The time step is chosen between
102 and 10~* when no blow up is expected and is decreased down to 1073 close to
expected blow-up times. The resulting nonlinear discrete systems are solved by the
standard Newton method. The Jacobi matrix is computed by the NGSolve routine
Assemblelinearization. The surface plots are generated by the Python package
Matplotlib [78]. We do not use any kind of additional regularizations, smoothing
tools, or slope-limiters. All simulations are performed for the parabolic-parabolic
equations with o > 0.
We choose the same domain and initial conditions as in [28], i.e.

Q={zeR?:|z| <1} and

Pz, y) =80(x* +9* — 1)*(z —0.1)*2+5, (z,y)=0, (z,y)€Q. (3.34)

A computation shows that the total mass M = fQ p°dz = 257 /3 > 8 is supercritical,
i.e., the solution to the classical Keller—Segel system can blow up in the interior of the
domain. A sufficient condition is that the initial density is sufficiently concentrated
in the sense that [, |# — xo|?pdz is sufficiently small for some z, € Q. Blow up at
the boundary can occur if zo € 92 and M > 4.

Ezxperiment 1: o = 1. We choose the initial datum (3.34) and the values a = 1,
§ = 1073, In this nonsymmetric setting, the solution exists for all time and the density
is expected to concentrate at the boundary [75]. Figure 3.1 shows the surface plots for
the cell density at various times. Since the total mass is initially concentrated near
the boundary, we observe a boundary peak. Observe that there is no L* blow-up.
The steady state is reached at approximately 7' = 2.5. By Theorem 3.2, the peak
approximates the blow-up solution to the classical Keller—Segel system, as illustrated
in Figure 3.2. We see that the L°° norm of the density becomes larger with decreasing
values of .

Ezperiment 2: a > 1. First, we choose the value o = 1.5. The initial datum
is still given by (3.34). Since a > 1, we cannot exclude finite-time blow-up, which
is confirmed by the numerical simulations in Figure 3.3. Numerically, the solution
seems to exist until time 7" ~ 0.079. The numerical scheme breaks down at slightly
smaller times when § becomes smaller. This may indicate that the numerical break-
down is an upper bound for the blow-up time for the classical Keller—Segel model.
The break-down time becomes smaller for larger values of «. Indeed, Figure 3.4
shows a stronger and faster concentration behavior when we take o = 2.5.

Experiment 3: Multi-bump initial datum. We take o = 1 and § = 5-1073. As
initial datum, we choose a linear combination of the bump function

M _ 2 _ 2
Wﬂ?o,y07M<x?y) =5, XPpP ( - (l‘ ‘TO) il (y yO) )7 (x7y) € Q7

276 20
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Figure 3.1: Cell density with a = 1 and § = 1072 at times ¢t = 0 (top left), t = 0.1
(top right), t = 2.0 (bottom left), t = 5.0 (bottom right).

where (xg,v0) € Q, M > 0, and 6 > 0. Setting § = 1072, we define ¢ = 0 and

0
P = Woas 0100 + W_02504r + Wo —0.254r + Wo,0.254r
+ Wo,05.47 + Wo,035.47 + Wos.04r + Wos0.254r-

The evolution of the density is presented in Figure 3.5. The density concentrates
in the interior of the domain and the peak travels to the boundary. At time ¢t = 1,
the peak is close to the boundary which is reached later at t = 2.5 (not shown). A
similar behavior was already mentioned in [5] for the parabolic-elliptic model using
a single-bump initial datum.

Experiment 4: Shape of peaks. The previous experiments show that the shape of
the peaks depends on the value of §. In this experiment, we explore this dependence
in more detail. We claim that the diameter and the height of the bump can be
controlled by §. We choose @ = 1 and the initial datum p® = W ¢ 20, with 6 = 1/400
and ¢ = 0. Furthermore, we prescribe homogeneous Dirichlet boundary conditions
for ¢ to avoid that the aggregated bump of cells moves to the boundary. Figure
3.6 (top row) shows the stationary cell densities for two values of §. As expected,
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3.4 Numerical Simulations

104
T T
Al|— 6=001 PP
—e—§ =0.001 .’
---§=10"" K

Figure 3.2: Cell density at time 7' = 2.5 with @ = 1 and § = 1072 (top left), § = 1073
(top right), § = 10™* (bottom left). The L> norm of the density is shown
in the bottom right panel.

the maximal diameter of the peak (defined at height 1072) becomes smaller and the
maximum of the peak becomes larger for decreasing values of §. The level sets show
that the solutions are almost radially symmetric and the level set for p = 1072 is
approximately a circle. This behavior is quantified in Figure 3.6 (bottom row). We
observe that the radius depends on § approximately as r ~ §°43 and the height
approximately as pupax ~ 0%,

We remark that under no-flux boundary conditions for the chemical concentration,
the same behavior of the bumps can be observed for intermediate times. However,
the bump will eventually move to the boundary (as in Figure 3.5), since the chemical
substance is not absorbed by the boundary as in the Dirichlet case.

Experiment 5: Two peaks and their journey. In this experiment we consider the
rectangle Q = [0,1] x [0,0.4] with the same parameters as in the last experiments
and § = 0.0003. This time, we consider two bumps as initial conditions, i.e. p° =
Wo20213x + Woz20613x and ® = 0 with § = 1/500, and follow their path to a
stationary state. The results can be observed in Figure 3.7 for the density p. In
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

I
— 0=0.01

80 *
S
g 60 B
]
=
40 *
20 *
| | | | |
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t _10—2

Figure 3.3: Cell density at time T* = 0.079 with a = 1.5 and § = 1072 (top left),
§ = 1073 (top right), § = 10~* (bottom left). The L* norm of the density
is shown in the bottom right panel.

addition, we added a contour plot for the density p in Figure 3.8 and for concentration
¢ in Figure 3.9. After a short time of diffusing, since no chemoattractant is initially
present, we see an aggregation of the density p at two different points. When the
aggregation has concluded, we can observe that the bumps are traveling and fusing
into one bump. Finally, this bump moves to the boundary and a stationary state
is reached numerically. We remark that the domain is symmetric in the y direction
and the concentration ¢ should therefore be distributed in both corners evenly. This
creates a checkmate situation for the density p. Nevertheless, this stationary state is
a rather unstable. If the mesh size is not fine enough, the bump will leave this state
and travel to one of the two nearby corners.
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3.5 Discussion and Outlook

I
— §=0.01

200 |1 —a— 5 = 0.001 |
---§=10"* I
S :
3
=
= 100| .
| | | |
0 1 2 3

t _10—3

Figure 3.4: Cell density at time 7% = 3.35- 1072 with @ = 2.5 and § = 1072 (top
left), § = 1073 (top right), 6 = 10™* (bottom left). The L> norm of the
density is shown in the bottom right panel.

3.5 Discussion and Outlook

Discussion

The topic of this chapter was a cross-diffusion regularization of the Keller—Segel sys-
tem on bounded domains and its rigorous limit to the classical Keller—Segel system.
We will structure the discussion of the results in two parts: a review of the analytical
part and the conclusions that we can draw from the numerical simulations.

Analytical Results:

We have used two different strategies to pass to the limit in the regularized equa-
tions. In the parabolic-elliptic case with sublinear production rate, we could apply
the boundedness-by-entropy method to establish the existence of a solution to an
approximating system. In particular, we have discretized in time and added a higher
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System

2,000 -

1,000 |-

(o]l Lo ()

Figure 3.5: Cell density with « = 1 and § = 5- 107 at times ¢t = 0 (top left),
t =5-1073 (top right), t = 1 (bottom left). The L*> norm of the density
is shown in the bottom right panel.

order regularization in space. The combination of two entropy functionals allowed us
to derive H' and higher order L? bounds uniform in all three regularization param-
eters. A discrete and continuous version of the Aubin-Lions lemma was then used
to pass to the limit in a subsequence. We have simultaneously performed the limit
in the time and space approximation, proving the existence of solutions to the cross-
diffusion regularized problem for sublinear signal production. The gathered estimates
are then used to pass to the limit in the cross-diffusion regularization. In particular,
we have shown the existence of bounded solutions to the Keller-Segel model in the
sublinear signal production case. Furthermore, the boundedness implies the unique-
ness of the solution by a standard argument. This allows us to conclude that, in fact,
the whole sequence is converging.

The general case with linear or at least quadratic signal production was attacked
by a different approach. Since the solutions to the limit equations are known to
blow up, there is no hope for uniform estimates of weak solutions. A compactness
argument as in the previous case seems therefore futile. Thus, we chose a different
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3.5 Discussion and Outlook
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Figure 3.6: Cell density at time ¢t = 5 (stationary case) with o = 1 and § = 1072 (top
left), 6 = 5-107* (top right). Log-log plots of the radius of the density
level set p = 1072 versus ¢ (bottom left) and of the maximum of p versus
d (bottom right).

path and discussed the problem for smooth solutions. The proof for the existence of
local-in-time smooth solutions to the regularized parabolic-parabolic and parabolic-
elliptic system for at least linear signal production is standard, but the result is
original. After establishing a series of tedious higher order estimates, we were able
to use a nonlinear Gronwall lemma to derive an almost linear convergence rate. The
optimal convergence rate is expected to be linear in this case. The reason for the
non-optimality comes from the variant of the nonlinear Gronwall lemma proved in
Lemma B.2. We conjecture that an optimal rate holds (changing the constants in
Lemma B.2), but since this issue is of less interest, we did not explore it further. The
condition of linear or at least quadratic signal production comes from the fact that
the derivative of the mapping s +— s is Holder continuous exactly for these values.
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3 Vanishing Cross-Diffusion Regularization in a Keller—Segel System
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t

Figure 3.7: Cell density with o = 1 and § = 0.0003 at times ¢ = 0 (top left), ¢ = 0.08
(top right), ¢ = 0.22 (bottom left). The L norm of the density is shown
in the bottom right panel.

Numerical Results:

The theoretical results are illustrated by numerical simulations, using the software
tool NGSolve/Netgen. We used higher order finite elements in space and an implicit
Euler discretization in time. The implicit scheme guarantees, at least numerically,
the conservation of mass. In particular, the numerical results in Section 3.4 indicate
that the convergence result may still hold for o € (1,2). For positive values of §, the
(globally existing) cell density forms bumps at places where the solution of the clas-
sical Keller—Segel system develops an L*>°(€2) blow up. Compared to the numerical
results in [5, 68, 75|, we investigate the dependence of the shape of the bumps on
. In a radially symmetric situation, it turns out that the radius of the bump (more
precisely the diameter of a level set ps =~ 0) behaves like §* with a = 0.43, and the
maximum of the bump behaves like 6=° with b ~ 1.00. In addition, we observed the
merging of two aggregated bumps into one subjected to no-flux boundary conditions
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3.5 Discussion and Outlook

for both quantities. This bump is then traveling to a (heuristically correct) point
at the boundary. The surface-, heat- and L*-plots indicate the existence of these
two different intermediate states and one final stationary state. The distribution of
chemoattractant in both corners keeps the bump then in a rather unstable station-
ary state. We remark, that in this case, the same stationary state is reached with
homogeneous Dirichlet boundary conditions for the chemoattractant.

Outlook

The results presented are limited to a certain parameter setting. Several extensions
can be considered in a future work. First, the limitation of linear and quadratic signal
production seems quite technical and should be treatable with a different approach.
Second, one could extend the solution concept to measures, as in the previous chapter.
This would allow to derive uniform estimates, independent of the signal production
rate. Such a uniform bound seems hard to establish, but a possible compactness argu-
ment in this case would round off the analysis performed in this chapter. In general,
it seems to be an obvious next step to approach the analysis of the classical Keller—
Segel blow-up through the cross-diffusion regularization. A more detailed study of
the relation between the aggregation radius and the regularization parameter should
therefore be performed. Furthermore, this simple control over the aggregation radius
could be used to capture the aggregation of cells in a more physically meaningful way.
More modeling in this direction, using additional terms and parameter fitting, could
be performed to establish tailored extensions of the Keller-Segel model in order to
describe biological and physical phenomenons. Last but not least, we mention here,
that this cross-diffusion regularization also introduces an artificial entropy for this
system. In particular, this allows one to use a structure preserving discrete entropy
variable scheme for systems without entropy structure. Using a similar strategy as
in the next chapter, we have performed numerical simulations with such a scheme;
not presented in this thesis. This could lead the way for a new general method to
design structure preserving schemes via the use of artificial entropy variables.
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Figure 3.8: Filled contour plot of the cell density with « = 1 and 6 = 0.0003 at times
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Figure 3.9: Filled contour plot of the concentration ¢ with = 1 and ¢ = 0.0003 at

times ¢ = 0.015,0.62,0.07,0.08,0.15 and 0.22 (top left - bottom right).
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4 A Structure Preserving Scheme for
a Poisson—Maxwell-Stefan System

In this chapter, we mathematically analyze Poisson—-Maxwell-Stefan systems for the
first time and show a discrete entropy production inequality. In particular, we extend
the existence result of [93] for neutral mixtures to the case of charged mixtures
and handle at the same time different molar masses as in [31]. This leads to a
coupling of the Maxwell-Stefan system with a Poisson equation and the additional
cross-diffusion terms cause some mathematical difficulties that are not present in a
Nernst—Planck model, nor in the model for uncharged mixtures. As already stated
in the introduction, we will deal with the system

n—1
auf = div(4y () D' (p, @) +7'(2), pu=1-3 pi
=1

—AAD = Zzici + f(y), inQ,
i=1

where p' = (p1,...,pn-1), D' = (D1,...,Dn_1) and Ay' is neither positive definite
nor symmetric. In addition, we impose the mixed boundary conditions

AJ'D' v =0 ondQ, i=1,...,n—1, 49

(I):q)p ODPD, V&.-v=0 ODFN, ()
with Ag'D’ - v and div(A;'D’) defined in the Section 1.6. Under the assumptions
stated in Section 4.2, this is an equivalent formulation of the Poisson—-Maxwell-Stefan
system (1.7)-(1.11). The aim for this chapter is to translate the boundedness-by-
entropy method for such a system into the fully discrete setting. In particular, this
will provide us with the corresponding L*>° bounds of the discrete solution, and a
discrete version of the entropy production inequality. Furthermore, we will show
that this scheme converges to a solution of the continuous model (4.1)-(4.2).

The chapter is structured as follows: we begin by presenting the key idea of this
chapter in Section 4.1 and the main results in Section 4.2. In Section 4.3, we detail
the thermodynamic modeling of system (1.7)-(1.9). Some auxiliary results on the
formulation of the fluxes J; and the inversion of the map p — w are presented in
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

Section 4.4. Sections 4.5 and 4.6 are devoted to the proof of the main theorems.
Finally, some numerical simulations are shown in Section 4.7.

4.1 Key ldea: A Discrete Boundedness-by-Entropy
Method

We start by introducing the entropy variables

logz; logx, Zi Zn
w; =

where M; is the molar mass and z; is the charge of the ith component, and formulate
the first equation of (4.1) as

o' (w, @) — div(B(w, ®)Vw) = r'(z(w, )), (4.4)

where B = (B;;) € R"=D*(=1 i5 symmetric and positive definite; see Section 4.4.1
for details. The Poisson equation reads as

—AAD = Z zici(w, ®) + f(y). (4.5)

We observe that now p, ¢ and x are functions of w and ®. In particular, the system
is now fully nonlinear, with a nonlinear function acting on the time derivative and
a nonlinear diffusion term in (4.4), and a nonlinear source term in (4.5). The first
advantage of this formulation is the positive definiteness of the matrix B. It allows
us to derive an inequality for the already introduced entropy functional

- A
1) = [ Moy, hp) = D ailog i+ 51V(0 = @)l
@ i=1

since a formal computation shows that

dH / - oh
—+ [ Vw: BVwdy = / ri(x)=——dy, 4.6
i/ [ Sring, (4.6

if ®p is constant and Vw : BVw = Z?;:ll B;;Vw; - Vw;. As already stated in the
introduction, this inequality and the positive definiteness of B reveals the Lyapunov
functional property of the entropy H. In addition, we will show that the inversion
of p — w is well defined, nonnegative, bounded from above by one, and it holds

that > | p;(w) = 1; see Subsection 4.4.2. In many cases, such a structure paves the
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4.1 Key Idea: A Discrete Boundedness-by-Entropy Method

way for the usage of the boundedness-by-entropy method to show the existence of a
solution; see e.g. [83]. These are the properties we want to carry over to the discrete
realm. Simplified, the approach consists of the following steps:

1. Transform the system into entropy variables and show the existence of an in-
verse transformation.

2. Discretize in time and regularize in space.

3. Use the entropy inequality in a fixed-point argument to show the existence of
a weak solution in the new variables.

4. Pass to the limit in the regularization and the time discretization.
We will now propose a fully discrete version of this argument and a numerical im-
plementation that will preserve the structural properties discussed above.

An Implicit Euler Galerkin Scheme

First, as the method already builds on the discretization in time of a weak formula-
tion, we choose a Galerkin discretization in space. Set HL(Q) = {u € H'(Q) :u=0
on I'p} and let (§%%)) be a basis of Hp () and (v*)) be a basis of H'(€2; R"!) such
that v € L>(Q;R*1). For example, we can choose the eigenvectors of a compact
symmetric operator like the Laplacian with the corresponding boundary conditions,
see Appendix Lemma A.4 for a regularity result. We introduce the Galerkin spaces

Py =span{8® ... 6™ Vy =span{o®, ... o™}

Furthermore, let 7> 0 and N € N and set 7 = T//N > 0. These definitions allow us
to consider the implicit Euler Galerkin scheme

% /Q (Pl(uk +wp, ®*) — p'(u*! + wp, q)k_l)) - ¢dy + E/Quk - pdy
" / Vo : B(u" +wp, @)V (u* + wp)dy = / r(@(uf + wp, %)) - ¢dy, (4.7)
Q Q
A/QVQ)’“'VQdy: /Q (;zici(uk—l—wp,(bk) +f(y))0dy (4.8)

for p € Viy, 8 € Py, € > 0, and we have defined

- —(Z-2)e
wp = (Wp1,...,Wpp-1), Wp;= YA D.
7 n
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

The discrete entropy variables are given by w* = u* +wp, and we used the notation
ci(wk, ®F) = pi(wk, ®F)/M;, x;(wk, ®F) = c;(wk, dF)/ck for i =1,... n, and &, =
S0, pr(wk, @)/,

Furthermore, let ®° € H'(Q) N L>(Q) be the unique solution to

n 0
_)\Ach:Zzi%%—f(y)inQ, Vo . v=0onTy, @& =&ponlp.
i=1 ¢

This defines (p° ®°). We will show in Theorem 4.1 and Theorem 4.3, that this
discrete formulation has a solution, that the inverse of the entropy transformation
exists and that this scheme converges to a weak solution of the continuous problem.
In order to implement this scheme, we have to take care of the nonlinear terms. We
will accomplish this by combining a semi-implicit approach with a classical Newton
iteration. In addition, we only know that the inverse of the entropy transformation
exists, but no explicit formula is available. Hence, we have to use a fixed point
argument in order to regain the original variables. This discretization and iteration
procedure is carried out in Section 4.7.

4.2 Main Results

Before we continue with the rigorous arguments, we will state the main results of
this chapter in detail. Therefore, we impose the following assumptions:

(A1) Domain: Q C R?is a bounded domain with Lipschitz boundary 9Q = I'n UT'y,
where I'n N 'y = 0, T'y is open in 0f2, and meas(I'p) > 0.

(A2) Given functions: The initial datum p° = (p?,...,p%) is nonnegative and mea-
surable, satisfying p? =1 — 3" p? > 0. The boundary data ®, € H'(Q) N

=1 "1
L>(Q) solves —AA®p = fin Q and V®p - v = 0 on I'y. Furthermore, let
feL>).

(A3) Diffusion matrix: For any given p € [0, 00)" satisfying > p; = 1, the trans-
pose of the matrix A = (A4;;) € R™*", defined by

A= Z?:Le;si Kiepe for i = 7,
? —kijpi for i # j,

has the kernel ker(A") = span{1}, where 1 = (1,...,1) € R",

(A4) Production rates: The functions r; € C°([0, 1]™; R) satisfy >, 7:(x) log x;/M; <
C,. for some constant C,. > 0 and all z € (0,1]",i=1,...,n.
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4.2 Main Results

Assumptions (A1) and (A2) are rather natural. By definition of A, it holds that
ker(A") C span{1}. If k;; > 0 (and p; > 0), a computation shows that span{1} =
ker(AT). For the general case k;; > 0, this property cannot be guaranteed and needs
to be assumed. This explains Assumption (A3). Assumption (A4) is needed to derive
the entropy production inequality (4.6). It is satisfied for reversible reactions, see [39,
Lemma 6] or [41]. It also holds in the context of a tumor-growth model, see [92].

Theorem 4.1 (Existence for the Galerkin scheme). Let Assumptions (A1)-(A4)
hold. Then there exists a weak solution (w® ®F) € Vy x Py to (4.7)-(4.8) with

wk = uf + wp, satisfying

e preservation of L™ bounds: 0 < p¥ <1 fori=1,...,n;
e conservation of total mass: > ., pf =1 in Q;

e discrete entropy production inequality:
H(p") + 7'/ V(w* —wp) : B(w*, ®*)Vw”dy + 57’/ |wk — wp|dy
Q Q

<7C, |Q|+7’/Z—n N(DF — ®p)dy + H(p*), (4.9)

where p* = p(wk, ®F).

Theorem 4.1 is proved by using a fixed-point argument in the entropy variables.
Using w® — wp as a test function in the fully discrete version of (4.4), we show in
Section 4.5 that

H(p*) + TK/ > IV (@) Pdy + 57/ lw* — wp|?dy < ThK + H(p"),

where K > 0 only depends on the given data. This is an estimated version of (4.6).
The term involving ¢ is needed to conclude a uniform L? estimate for w*, which is
sufficient to apply the Leray-Schauder fixed-point theorem in the finite-dimensional
Galerkin space. The e-independent gradient estimate for ¥ cannot be used since it
does not give an estimate for w? (see (4.3)). It is possible to analyze system (4.7)-
(4.8) for e = 0 — see Step 2 of the proof of Theorem 4.3 —, but we lose the information
about w” and obtain a solution in terms of p*. The term involving ¢ is technical and
not essential for the numerical simulations (or the structure preservation). However,
we are not able to prove an existence result in terms of the entropy variable without
such a regularization.

Remark 4.2 (Conservation of partial mass). When r; = 0, we have from (1.7)
conservation of the partial mass ||p;||r1 (). This conservation property does not hold
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

exactly on the discrete level because of the e-reqularization. It holds that for any
d > 0, there exists g > 0 such that for any 0 < e < gy (¢ is the value in (4.7)),

|||Pf||L1(Q) - ||P?||L1(Q)| < 5||P?||L1(Q)» t=1,...,n—1,

n—1
ok llzi@ = Ioblloi@| <6 1Al

The proof is the same as in [93, Theorem 4.1]. As 6 > 0 can be chosen arbitrarily
small, this shows that the numerical scheme preserves the partial mass approrimately.

Theorem 4.3 (Convergence of the Galerkin solution). Let Assumptions (A1)-(A4)
hold. Let (p*, ®%) be a solution to (4.7)-(4.8) and set

pl(y,t) = pf(y),  al(yt) =2 (y), < (y.t) =ciy), @ (y,t) =D (y)

fory e Q, t e (k—=1)r, k7], i =1,...,n and introduce the shift operator (o.pl)(y,t) =
P (y) fory € Q andt € ((k—1)7,k7]. Then there exist subsequences (not relabeled)
such that, in the subsequent limits € — 0, then N — oo, and finally T — 0,

pi — pi strongly in LP(0,T; LP(Q)) for any p < oo,
] =~ x;, O =& weakly in L*(0,T; H(Q)),
)/

T Hpi —0-(p])) = ip  weakly in L*(0,T; H'(Q)'), i T,

and the limit (p, ®) satisfies for all p € L*(0,T; H'(Q; R 1)) and 0 € HL(),

/ (0,0, d)dt + / / Ve : Ay (p) D dydt = / / ) - ¢dydt, (4.10)

/vq> Védy—/ﬂ('_ e/ ))edy, (4.11)

where D; = Vu; + (zix; — (2 - 2)p) VP, pi = cotMizi, and cor = > oy pi/M;.
Moreover, p, =1— 3" p..

In Theorem 4.3, (-,-) denotes the duality bracket between the H'({; R"!)’
and H'(Q;R"1). The difficult part of the proof is the estimate of the diffusion term
because of the contribution of the electric field. We show in Lemma 4.8 that

/ Vuw® : BVuwFdy > K/ ZM;/Q%C@ > Kl/ Z V(2522 dy — Ky
Q Q5 i Q=1

holds for some constants K, K1, K5 > 0, which are independent of £, N, and 7. Then
the uniform L* bound for z¥ gives a uniform H'({2) bound for z¥ and consequently
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4.3 Modeling

for p¥. Weak compactness allows us to pass to the limits ¢ — 0 and N — oo, and
the limit 7 — 0 is performed by means of the Aubin-Lions lemma.

4.3 Modeling

We consider an isothermal electrolytic mixture of n fluid components in the bounded
domain 2 C R? (d > 1) with boundary 9. We assume that the mixture is not mov-
ing, so the barycentric velocity vanishes. The thermodynamic state of the mixture
is described by the partial mass densities pq, ..., p, and the electric field E. The
partial mass density represents the mass of the substance per unit volume. In ther-
modynamics, one introduces also the molar concentrations ¢;, signifying the amount
of substance per unit volume. These quantities are related by p; = M;c;, where M;
is the molar mass, the mass of the substance, divided by its amount. The total
concentration is defined by cior = Y i ¢;. Furthermore, z; = ¢;/cior = pi/(ctot M)
denotes the molar fraction, being the amount of the substance, divided by the total
amount of all constituents of the mixture. We suppose the quasi-static approximation
E = —V®, where ® is the electric potential.

The evolution of the mass densities p; is governed by the partial mass balances [45,
(4)

8tpz—|—d1VJ1:n(x) inQ,t>O,i:1,...,n,

where x = (x1,...,x,) is the vector of molar fractions, J; the diffusion flux, and r;(x)
the mass production rate of the ith species. We assume that the total flux and the
total production vanishes,

n

it]z:oa Zrl(x) :07
=1

i=1

which are necessary constraints to achieve total mass conservation, 9; Y ., p; = 0.

We suppose that the total initial mass is constant in space, > i, p? = pior > 0, which

implies that the total mass is constant in space and time, Y | p;(t) = pyor for ¢t > 0.
The electric potential ® is given by the Poisson equation [46, (3) and (25)]

—eo(l+ x)AP = FZZZ'CZ' + f(y) in £,

i=1

where £y is the dielectric constant, x the dielectric susceptibility, F' the Faraday
constant, z; the charge number of the ith species, and f(y) with y € £ models the
charge of fixed background ions.

The basic assumption of the Maxwell-Stefan theory is that the difference in speed
and molar fractions leads to a diffusion flux. They are implicitly given by the driving
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

forces d; according to [16, (200)]

_i%(Ji/Mi)—%(Jj/Mj) 4 i1

CtotDij

=1

where the numbers D;; = Dj; are the Maxwell-Stefan diffusivities. Inserting the
definition z; = p;/(cior M;), we find that

oy e (4.12)

In the present situation, the driving force is given by two components, the variation

of the chemical potential y; and the contribution of the body forces b; [16, (211)]:

ciM; Pi
RT 1T RT

di: (bi_btot)7 izl,...,n,

where R is the gas constant and 7" the (constant) temperature. Since (D;;) is sym-

metric, summing (4.12) from ¢ = 1,...,n leads to > .  d; = 0. Furthermore,

S Vu; vanishes too; see below. This shows that by, = proy Doy pibi. We as-

sume that the only force is due to the electric field (i.e., we neglect effects of gravity),
It remains to determine the chemical potential. We define it by u; = Ohmix/0pi,

where hmix(p) = et RT (> i, z;log x;+1) is the mixing free energy density [45, (23)].

Then
1 Ohpmix RT (lo +1)
i = = i )
H ciot M; O M; &

and the driving force becomes

d; = ;V logzi + 2 (Z___Z@>W

RT \ M; Ptot = Mj
F Pi
= Cto \Y 3 = Ly — : Vo , 4.13
¢ t( T+ RT(ZJE (2 :z:)pmt) ) (4.13)
where z = (21,...,2,) and z = (21, ...,2,). The Gibbs-Duhem equation

n

ahmix n IOg xT; + 1 n
;pz apl - hmix(p) = RT;pzTZ - CtotRT(;{L‘i IOg T + 1) =0

shows that the pressure vanishes, which is consistent with our choice of the driving
force (see [16, (211)]). The driving force in [121, (7)] contains a non-vanishing pressure
that is related to our expression for the total body force. The resulting driving force
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4.4 Auxiliary Results

(4.13), however, is the same.
We summarize the model equations:

Opi +divJ;, =mri(x), i=1,...,n, (4.14)
—co(1L+X)A = F Y zic; + f(y), (4.15)
i=1
~ pii—pid; _ d; r ( pi )
; C?OtMiMj Dij ¢t RT ( )Ptot ( )

and the relations
n
o= Pi - Pi o — c
T ) T ) tot — E i
Mi CtotMi i1

The original system (1.7)-(1.9) is obtained from (4.14)-(4.16) after setting A = go(1+
X)/F, ki = 1/(c2 M;M;D;;), and D; = d;/cior and after nondimensionalization. In
particular, we scale the particle densities by pi (then the scaled quantities satisfy
>, pi =1) and the electric potential by F/(RT).

4.4 Auxiliary Results

We collect some auxiliary results needed for the existence analysis. The starting
point is relation (1.8) between the fluxes J; and the gradients Vz;. Observe that
the coefficients k;; depend on p; via cyop = E?:l pi/M;. This dependency does not
complicate the analysis since the results in this section hold pointwise for any given
pi and ¢t is uniformly bounded by

1 " pi 1
maxX;=1,..n Mz = ot Z M, — mini:me Mz

i=1 v

4.4.1 Expressions for the Diffusion Fluxes

We review three different expressions for the diffusion fluxes following [31, 93] and
extend the formulas to electro-chemical potentials. We reformulate (1.8):

Ji J;
Di==> kij(pji = piJs) = = Y kijpip; (p_ - _J)- (4.17)

i J#i Pi
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

The symmetry of (k;;) implies that Y " ; D; = 0. Compactly, we may write D =
—AJ, where D = (Dy,...,D,)", J=(J1,...,J,)", and A = (A;;) with

A= Z?:u;éi Kiepe for ¢ = j,
! —kijpi for ¢ # j.

By Assumption (A3), it holds that im(A) = ker(AT)t = span{1}+, where 1 =
(1,...,1)T € R". We conclude from [93, Lemma 2.2] that all eigenvalues of A :=
Alim(a) are positive uniformly in p € [0,1]" and that A is invertible. Since Yoo Ji=
0, each row of J = (Jy,..., J,) is an element of im(A), so the linear system D = —AJ
can be inverted, vielding J = —A~1D.

We obtain another formulation by inverting the system in the first n — 1 variables.
Setting D' = (Dy,...,D,—1) and J' = (J1,...,Jp_1), we can write D' = —AyJ',
where the matrix Ay = (A%) € R"D*=1 is defined by

A0 — le 1 Z;ﬁz( — kin)pe + kin if i = 4,
1) (kz] kln)pz lf Z 7é j

It is shown in [31, Lemma 4] that Ay is invertible and A;" is bounded uniformly in
p €[0,1]". Thus, J' = —A;'D".
Finally, we invert the relations (4.17). Using J, = — 37" Ji, these relations (or

the equivalent form D; = — 37" | A;;J;) can be written as
D, D,
___:_ZCUJJ, (4.18)
pi

where

Y. — { >t opi Kiepipe  fori=j,
i

—kiipip; for i # j.

The matrix =Y = (-Y;;) € R™" is symmetric (since (k;;) is symmetric), quasi-
positive, irreducible, and it has the strictly positive eigenvector 1 with eigenvalue
zero. Hence, by the Perron-Frobenius theorem, the spectral bound of (=Y;) is a
simple eigenvalue (with value zero) and the spectrum of (Y;;) consists of numbers
with positive real part and zero. Thus, Y is positive semidefinite.

We claim that the matrix C' = (Cj;) € RM=D*("=1) ig positive definite on span{1}+.
Indeed, let y € span{p}*. Then y-p = 0. Since 1-p = 1, we have y & span{1} =
ker(Y) and consequently, span{p}* C ker(Y)¢. This means that —Y is negative
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4.4 Auxiliary Results

definite on span{p}*+. A computation shows that for any vector w = (w1, ..., w,_1) €
R™ !, it holds that

n—1 n Y.

Z Cijwiwj = Z i’&?{&?j

ij=1 ij=1 PiPi
where w; = w; for i =1,...,n—1 and w, = —Z?;llwi. Then w = (wy,...,w,) €

span{1}*. Since —Y is negative definite on span{p}*, we infer that (—Y;;/(pip;))
is negative definite on span{1}+. Therefore, C' is positive definite on span{1}*. Tts
inverse B := ¢;,tC~! with B = (B;;) exists, only depends on the mass density vector
p, and is positive definite uniformly for all p € [0,1]" satisfying > . p; = 1 [31,
Lemma 10]. We deduce from (4.18) and (1.8) that

n—1
S22

j=1 Pi
— Viegz; Vlogz, Z; Zn
5 Bw( M; M, i (Mj Mﬂ)WP)
7=1
n—1
= — ZBZJVMJ
j=1

fori=1,...,n—1and J, = — 3.'=" J;, recalling definition (4.3) of w;. We summa-
rize:

Lemma 4.4 (Formulations of J;). Equations (4.17) can be written equivalently as
J=—A"'D, J =-A;'D', J =—BVuw.

The last expression for J; shows that the partial mass balances (1.7) can be for-

mulated as
Oyp' — div(BVw) = 1'(p),

where p = p(w) and B = B(p(w)). By Definition (4.3), w is a function of p (and ®).
The inverse relation p(w) is discussed in the following subsection.

4.4.2 Inversion of p — w

Definition (4.3) defines, for given ® € R, a mapping x — w. We claim that this
mapping can be inverted. If the molar masses are all the same, M := M;, this can
be done explicitly:

B exp(Mw; — (z; — 2,)®P)
1+ 37 exp(Mw; — (25 — 2,)®)’

j=1

1=1,...,n—1,

pi(w)
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

and p, =1 —Z?:_ll pi- Unfortunately, when the molar masses are different, we cannot

derive an explicit formula. Instead we adapt Lemma 6 in [31].

Lemma 4.5 (Inversion of w and z). Let ® € R and define the function
Ws : {.T = (21,...,2,) € (0,1)": Zx, = 1} — R
i=1

by We(z) = (wi(z), ..., wu_1(x)), where

logz; logx, 2 Zn .
, = — +{—=—-—— 1D =1,...,n—1.
w;(x) i : ( i n> . RN 1)

Then Wy is invertible and we can define z(w, ®) = (z'(w, ®), v, (w, ®)) := Wy ' (w),
where o' (w, ®) = (21,...,2,_1) and v, (w,®) =1 - 3"z,

Proof. The proof is similar to that one of [31, Lemma 6]. Let w = (wy,...,w,—1) €
R" ! and ® € R be given. Define the function f : [0,1] — [0,00) by

n—1
=31 — )M M exp | Myw; — M [ = — 22 )@ 0,1].
o) = 30— exp o 04— )] sefon
Then f is continuous, strictly decreasing, and 0 = f(1) < f(s) < f(0) for s € (0,1).
Hence, there exists a unique fixed point sy € (0,1) such that f(sg) = so. We define

(1 _ M; [/ Mn, O Vo e - _
z; = (1 —s9) exp{]\/flwl M1<Mi Mﬂ)@}>0, i=1,...,n—1. (4.19)

By definition, we have 327" z; = f(s0) = so < 1. We set 2, = 1 — 59 > 0 such that
Y, x; = 1. Moreover, (4.19) can be written equivalently as

logz; log(1— so) 2 Zn
rva q) = Wy,
M, + M. + W

and since 1 — sy = m,,, this shows that Wy '(w) = (2/, z,,) is the inverse mapping. [

Given p € [0, 1], we know that z; = p;/(ciotM;) for i =1,...,nand > x; = 1.
This relation can be inverted too. We recall [31, Lemma 7]:

n—1

Lemma 4.6 (Inversion of p and z). Let 2/ € (0,1)" ! and z,, =1 -3 1" x; > 0 be
given and define fori=1,...,n,

n —1
pi(2") = pi = coo My,  where cyop = <ZM]-J;J-) .

J=1
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4.5 Existence of a Discrete Solution

Then p = (p1,-..,pn) 18 the unique vector satisfying p, = 1 — Z?:_ll pi >0, z; =
pif (ctotM;) fori=1,....n, and cior = Y oy pi/M;.

Combining Lemmas 4.5 and 4.6, we conclude as in [31] that the mapping p — w
can be inverted. In fact, we just have to define p' = p/(2/(w, ®)).

Corollary 4.7 (Inversion of p and w). Let w = (wy,...,w,_1) € R"! and ® € R
be given. Then there exists a unique vector p = (p1,...,pn) € (0,1)" satisfying
Yoy pi = 1 such that (4.3) holds for p, =1 — Z?:_ll pi and x; = p;/(cior M;) with
Crot = 91y Pi/M;. The mapping p' : R™ — (0,1)", p/(w, ®) = (p1,.- -, pn-1), 18
bounded, i.e. |p'(w,®)| <1 for all (w,P) € R™.

4.5 Existence of a Discrete Solution

Proof of Theorem 4.1

Step 1: existence of solutions. The idea is to apply the Leray-Schauder fixed-point
theorem. We need to define the fixed-point operator. For this, let y € L>°(Q; R"1)
and o € [0,1]. Since (y,®) — pi(w(y),P) is a bounded function with values in
(0,1), we can use Schauder’s fixed-point theorem and standard arguments to show
the existence of a solution ®* — ®, € Py of the nonlinear finite-dimensional problem

A/chbk-vedy:/ﬂ (;zici(x—l—wp,q)k)—i-f(y))edy

for all # € Py. In particular, the solution is unique and we have ®* € L>(Q), for
® — p;(w, ®) is Lipschitz continuous and ®p € L®(12).
Next, we wish to solve the linear finite-dimensional problem

a(u,p) = oF(¢) forall p € Vi, (4.20)

where

a(u, @) :/Qw:B(X+wD,<I>’f)vudy+e/Qu.¢dy,

F(¢) = —l/Q (P (x + wp, ®*) — p/ (" +wp, @) - pdy

T

+ / ' (z(x +wp, PF)) - pdy — / V¢ : B(x + wp, ) Vwpdy
Q Q

for u, ¢ € Vi, where we set in case k = 1, p/(u® + wp) := (p°)'. Since x + wp €
L*(;R™1) and ®F € L>(Q), Corollary 4.7 shows that p(x + wp, ®*) is bounded.
We know from Section 4.4.1 that the matrix B = B(x + wp, ®¥) is positive definite
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

and its elements are bounded. We deduce that the forms a and F' are continuous on
Vn. Exploiting the equivalence of the norms in the finite-dimensional space Vi, we
find that

a(u, u) > ellull2q) > eKnllullf g

for some constant K > 0, which implies that a is coercive on Vy. By the Lax—
Milgram lemma, there exists a unique solution v € Vy C L®(Q;R™') to (4.20)
satisfying

EKN||u||§{1(Q) < a(u,u) = oF(u) < Kpl|u| g1(a), (4.21)

for some constant K, which is independent of 7 and o. Using again the bounds for
o' and 7/, we find that the constant K is independent of ®*. Since all norms are
equivalent in the finite-dimensional setting, this provides a uniform L*(€2) bound for
u.

This defines the fixed-point operator S : L>®(;R" 1) x [0,1] — L®(Q;R" 1),
S(x,0) = u. Standard arguments, see for example [83], show that S is continuous.
Since Vy is finite-dimensional, S is also compact. Furthermore, S(x,0) = 0. Estimate
(4.21) provides a uniform bound for all fixed points of S(-,0). Thus, by the Leray-
Schauder fixed-point theorem, there exists u* € Vi such that S(u* 1) = u*, and
w® == u* + wp, ®* solve (4.7)-(4.8).

Step 2: proof of the discrete entropy production inequality (4.9). We use the test
function 7(w* — wp) € Vy in (4.7) and set p* := o/ (w*, ®F):

/(pl‘C — " (W —wp)dy + 7'/ V(w* —wp) : B(w", ®*)Vw*dy
Q Q
+ 57/ lw* — wp|Ady < 7'/ ' (z%) - (w* —wp)dy.
Q 0

We claim that the first term on the left-hand side is greater than the difference of
the entropies at time steps k£ and k — 1. To show this, we split the entropy density
into two parts, h(p*) = hi(p*) + ha(p"), where

g A
m(p*) = iy Zx’“ logaf, ha(®*) = J|V(®" = 0p)f*,

where we recall that =¥ = p¥/(ck M;) and &, = " | pF/M;. By the convexity of
h1, we have

log 2%
N NS Y S R ko k-1 i
< 5y () (0" =) > ok — ol v
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4.5 Existence of a Discrete Solution

Therefore, using p* — pk=t = — S0 (pk — ph=1),

_ . _ logaziC _ log:v,’i
[ o) = )de < [ (St0k - o EEE - R ay
Q Q . % n

- v w1 [logzk  logak
= E S t— ~ | dy. 4.22
/Q - (i — pi >< M, M, ) Y ( )

i=1

For the estimate of hsy, we first observe that

n—1 n—1
)3 i ( A Mn) > (= TR T

i=1
— Z(p _
n=1

We infer from the Poisson equation (4.8) and Young’s inequality that

/Z (5 o) @ - w0y
/Z F_ ph "(fb @Ddy_/z,zzc—c N (@F — B p)dy
_/\/V — ("' = ®p)) - V(O — ®p)dy
> 2/!V ~p) de——/\v (@ @) Py
— [ (@) = haf@*))ay.

%

n—1

Taking into account the property r,,(p¥) = — "1 r;(p¥), definition (4.3) of wF, and
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

Assumption (A4), we compute

1

- 1 1 K
/r'(xk) - (w* —wp)d / ri(z ( 08 7, ng")dy
Q Q=1 Mn
n—1 .
(R = ) (@8 — dp)d
S i) e

_ log z¥ Z;
= ri(x® Ld +/ ri(aP) == (dF — ®p)d
/Q ;:1 (z") v Y ; ;:1 (z") Wz-( p)dy

< CQ| + / Zri(a:k)%(cbk — ®p)dy, (4.23)
Q- 7

Combining (4.22)-(4.23) gives the conclusion.

4.6 Convergence of the Scheme

Proof of Theorem 4.3

Let (w®, %) be a weak solution to scheme (4.7)-(4.8) and define p* = p(wk, ®*).

Step 1: uniform estimates. We derive estimates for p* and ®* independent of ¢, 7,
and N. The starting point is the discrete entropy production inequality (4.9), and
the main task is to estimate the diffusion part.

Lemma 4.8 (Estimate of the diffusion part). There ezist constants K; > 0 and
Ky > 0, both independent of €, 7, and N, such that

/ V(w* —wp) : BVw*dy > K, Z |V (2} 1/2H2 — K.

=1

Proof. We drop the superindex £ in the proof to simplify the notation. Recall that
A = Alim(a), where im(A) = span{1}*+. We introduce as in the proof of Lemma 12
in [31] the symmetrization Ag = P~Y/2APY2 where P2 = MY2X'/2 and M'/? .=
dlaug(]wl/2 ...,Mé/z), X112 .= dlag(xl/z, . 1/2) Then A L= p1/24-1p1/2 jg 4
self-adjoint endomorphism whose smallest eigenvalue is bounded from below by some
positive constant which depends only on (k;;).

Since 0 =", J; = > ., (BVw);, we can express the last component in terms of
the other components, (BVw), = — >+ (BVw);, where (BVw); = > ! BV,
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4.6 Convergence of the Scheme

fori=1,...,n—1. Then

n—1
Viogz; Vlogux, < 2 ) }
Vw:BVw:Z{ -~ + (= -2 )Vd s - (BVw);
— M; M, M; M,
n—1 n—1

1 1
= Z 7 Vlogzi + 2®) - (BVw); — == V(logz, + 2,®) Y (BVw);

7 n -
i=1

—~ 1
= Z MV(log z; + 2,®) - (BVw);.

To simplify the notation, we set ¥; = V(log z; + z;®)/M;, and ¥ = (¥y,...,¥,). By
Lemma 4.4, BVw = A™'D = PY2A'P~1/2D. Hence,

Vw: BVw =¥ : BVw =W : MYV2XV2A X V2 12D

1/2 1/2, % — —1/2 4 r—1/2
= UM (A a2 M Dy
ij—l

- Z 2V, + 2z} V@) M A (AGh M
3,7=1

><(2Vx;/2 (zjau'l/2 (- 2)pjx 1/2)V<I>) (4.24)

In view of > 1"  (BVw); = 0, it follows that

n

Z (M.’l/2x.’1/2(z . SL’)in(I)) (121/5);1]\/[;1/2 (2V:1:]1./2 (zjscl/ (x - z)pjx;1/2)vq>)

1 (2
ij=1

= Z o(z-2)VP)A (ij (zjz; — (z - 2)p; VD)

i,7=1
n

= (c(z . m)V@) . Z(va)i =

i=1
Adding this expression to (4.24), we find that
Vw : BVw = Z MZ-_I/Q(Qinl/2 + (ziz; 12 — (z-2)pix; 1/ V@)(A )i_lej_l/Z

1,7=1

X (2Vx;/2+(zjx]1-/2 (z-x)pjz; 12 Vo).

The matrix Ag' is positive definite on im(Ag) = span{p'/2}*. A simple compu-
tation shows that the vector M~V2(2Vzl"? + (zzl? — (x - 2)piz; /*VO)™, lies in

7
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

span{p'/?}+. We obtain
Vw: BVw > Kp Y M7 2Va}? + (zi2)? — (a - 2)pia; PV @[
i=1

D D A o [P e

=1 i=1
where K; > 0and K, > 0depend on M, ..., M,. Since z; and pl-x;l/Q = (piciot M;)*/?
are bounded, the previous inequality becomes
Vw: BVw > K Y [Va;*]? — K| VO], (4.25)
i—1

where K3 depends on Ky and z;.
In the following, let K > 0 be a generic constant independent of £, n, and 7. We
estimate the expression involving the boundary term

Vwp : BVw = Vwp : Ay' D'

— i(Aal)ij (]\Z—: — %) Vo) - (in + (ziz; — (2 - a:)pz-)Vq))

ij=1
[]( n—1 )
< 35 + 5; |V:L“,~ + (ziw; — (2 x)pi)Vé} ,

where K > 0 depends on V®p, z;, M;, and Aal. Since 0 < z; < 1, we have
|V |? = 4SL'¢|V:C}/2|2 < 4|V3r:;/2|2 and therefore,

K
Vuwp : BVw < — + 48|V * P + K|V ®|2. (4.26)
We infer from (4.25) and (4.26) that
- 1/22 2 K
V(w—wp) : BVuwdy > (K1 —48) Y ||V |72y — K3l VO F20) — 5
& i=1
By the boundedness of ¢;, the elliptic estimate for the Poisson equation gives

[P 1) < K(1+ |leillzz@) < K. (4.27)

This proves the lemma. O

Combining the discrete entropy inequality (4.9) and the estimate of Lemma 4.8
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4.6 Convergence of the Scheme

and summation over k leads to the following result.

Corollary 4.9. There exist constants K1 > 0 and Ky > 0, both independent of €, n,
and T, such that

—i—TKlZZHV 1/2||L2(Q)+572|\w —wpl[32iq) < TREK+H(p"). (4.28)

j=1 i=1 j=1

Step 2: limit ¢ — 0. For a fixed time step k, let (w®, ®¢) be a solution to (4.7)-
(4.8) with p® = p(w®, &%) and x5 = p5 /(5 M;). Estimates (4.27) and (4.28) yield the
following uniform bounds:

165\ ooy + |25 | ooy €2, i=1,...,m, (4.29)
2511 + 195|212 +€”2Hw5||m <K, (4.30)

where K > 0 is independent of € and N. The bound for 25 in H'(Q) is a consequence
of the bound for (x5)'/2 in H'(Q2) from (4.28) and the uniform L> bound for z§ from
(4.29). We claim that (p$) is bounded in H'(Q). Indeed, according to Lemma

’L

4.6, it holds that cf,, = (3 7_; M;xz5)~", and this expression has the uniform lower
. Then, since (xf

bound (max; M;)~! and the uniform upper bound (min; M;) ™ ) is
bounded in H'(Q), also (c¢{,,) is bounded in H'(2). This implies that pf = ¢, M;x$
is uniformly bounded in H'(f2), proving the claim. Observing that the embedding
HY(Q) — L*(Q) is compact, there exist subsequences, which are not relabeled, such
that as ¢ — 0,

x5 — x;,  pf = pi, O — @ strongly in L*(€),
ri = wy, pf—p;, ©° — @ weakly in H(Q),

(2

ew; — 0 strongly in L*(€2).

In view of the L* bounds for (x£) and (p5), the strong convergences for these (sub-)
sequences hold in LP(Q) for any p < co. Consequently, ¢f,, — Ciot == 2 iy pi/M;
strongly in L?(Q), and we can identify p; = ¢y M;x; for ¢ = 1,...,n. Furthermore,

¢ = p5/M; — ¢; == pi/M; strongly in L*(Q), i=1,...,n.
Recalling definition (1.8) of D;, we have
= Vi + (zix; — (2 - 2%)p; )VO® — D; :=Va; + (zix; — (z-2)p;)) VO (4.31)

weakly in L9(Q) for any ¢ < 2 and ¢ = 1,...,n. Since (D7) is bounded in L3(9),
there exists a subsequence which converges to some function D; weakly in L*((2).
By the uniqueness of the weak limits, we can identify D; = D;. This shows that
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

the convergence (4.31) holds in L*(2). We deduce from the strong convergence of
(x5), the boundedness of (z5) in L>(2), and the continuity of r; that r;(x®) — r;(x)
strongly in L?(Q).

We know from Lemma 4.4 that B(w®)Vw® = Ay'(p°)(D?). As Ay'(p) is uniformly
bounded for p € [0,1]" and (p°) converges strongly to p, we infer that Aj'(p°) —
Agt(p) strongly in L?*(Q); the convergence holds even in every LP(f2) for p < oo.
Then, because of (4.31) and using the continuity of p — Ay (p),

AN pP)(DF) — Agt(p)D' weakly in LI(Q) for all ¢ < 2.

In fact, since Ay (p°)(D?)’) is bounded in L?*(Q2) and thus (up to a subsequence)
weakly converging in L?(€2), the convergence holds in L*().

These convergences are sufficient to perform the limit ¢ — 0 in (4.7)-(4.8). We
conclude that (p*, ®*) := (p, @) solves

! /Q (") — (1)) - oy + /Q Vo Ay o)V pkdy = /Q () - gy, (4.32)

T

A /Q VoF . Vody = /Q <§n:zic§+ f(y)>9dy (4.33)

=1

for all ¢ € Vi, 0 € Py.

Step 3: limit N — oo. Let (p™,®Y) be a solution to (4.32)-(4.33). Estimates
(4.29)-(4.30) are independent of N. Thus, we can exactly argue as in step 2 and
obtain limit functions (z, p, ®) and ¢; = ¢y Myz; for i = 1,...,n as N — oco. These
functions satisfy (4.32)-(4.33) for all ¢ € Viy and 6 € Py and for all N € N. The union
of all Viy is dense in H'(2; R""!) and the union of all Py is dense in H}(f2). Thus, by
a density argument, system (4.32)-(4.33) holds for all test functions ¢ € H'(Q; R""1)
and 6 € H},(Q).

Step 4: limit 7 — 0. Let (p*, ®*) be a solution to (4.32)-(4.33) with test functions
¢ € HY(HR™Y) and 0 € HL(Q). Then pf = cf Maz¥ and ¢ = pF/M; for i =
1,...,n. We set

PLy.t) =Py, ai(y,t) =af(y), yt)=cy), @ (yt)=2y)
fory e Q,t € (k—1)7,k7],i=1,...,n and introduce the shift operator (o, p7)(y,t) =

P Hy) for y € Q and t € ((k — 1)7,k7]. Finally, we set DI = Val + (z;27 — (2 -
27)pl)VOT and T' = mr for some fixed m € N. Then we can write system (4.32)-
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4.6 Convergence of the Scheme

(4.33) as

/ |y = oY) - oyt + / [ 9o 45 )0y
/ / ) - ¢dydt, (4.34)
A /Q VO™ - Vldy = /Q (izicf +f(y))9dy (4.35)

for all piecewise constant functions ¢ : (0,7) — HY(Q; R* ') and 0 : (0,T) — HL ().
The entropy inequality (4.28), formulated in terms of (p7,®7), provides us with
further uniform bounds since the right-hand side of (4.28) does not depend on 7:

107 | @r) + |27 | Lo () < K, (4.36)
107 220,750 )y + 127 | 220 mr ) + 1 R7 M| 220,700 () < K, (4.37)

where we have set Q7 = Q x (0,7). As a consequence, (D7) is bounded in the space
L*(0,T; HY(9)).

It remains to derive a uniform estimate for the discrete time derivative of p™.
Taking into account the uniform bound for A;'(p7), it follows that

T
"—a:(p7)) -¢dydt‘ S/O IVl 2146 (0 [z 1 (D7) | 2oy dt

4 / 17 @) Lz 1l e dt < Cllollzores ).
0

As the piecewise constant functions ¢ : (0,7) — H'(2; R""!) are dense in the space
L?(0,T; H*(;R"1)), this estimate also holds for all ¢ € L*(0,7T; H'(Q; R"1)), and
we conclude that

() = o (p) <K, & i=1,....n-1

HL2(0,T;H1(Q)/)
This estimate also holds for ¢+ = n since p] =1 — Z?;ll or.

By the Aubin-Lions lemma in the version of [44], there exists a subsequence of (p7)
which is not relabeled such that, as 7 — 0,

pr — p; strongly in L*(Qrp), i=1,...,n.

In view of the L> bound (4.36) for p7, this convergence also holds in L?(§2r) for any
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

p < 0o. Furthermore, by (4.37), we have up to subsequences,

] =~ x;, ® — & weakly in L*(0,T; H'(Q)),

)

T H(p] — 0-(p])) = Qipi weakly in L*(0,T; H'(Q)').

In particular, D] — D; weakly in L?(Qr), and we can identify D; = Va; + (z;2; — (2 -
x)p;)V®. The strong convergence of (p™) and the weak convergence of (D7) imply
that

A P NDTY = A (p)D' weakly in L9(Qy), g < 2.
Again, since (A (p7)(D7)') is bounded in L?(Q7), this convergence holds in L?(Qr).

Furthermore, 7/(z7) — r'(x) strongly in L?*(Qr). Therefore, we can pass to the limit
7 — 0 in (4.34)-(4.35) yielding (4.10)-(4.11).

4.7 Numerical Simulations

In this section, some numerical experiments based on scheme (4.7)-(4.8) in one space
dimension are presented. We stress the fact that the experiments just serve as a fea-
sibility study and more effort is necessary to perform two- or three-dimensional simu-
lations showing, for instance, the effects coming from the mixed boundary conditions.
In the context of semiconductor simulations, we refer to [56]. The one-dimensional
setting presented here models liquid electrolytes, which can be used as a simplified
version of a model for dye-sensitized solar cells [121].

4.7.1 Discretization and lteration Procedure

Let €2 = (0,1) be divided into n, € N uniform subintervals of length A = 1/n,. We
use uniform time steps with time step size 7 > 0 and piecewise linear finite elements
with the usual conforming P1 finite-element space on the uniform partition, i.e.

Py := {p € C(Q) : p|; is affine on each subinterval I},
Vy = {v € C(Q;R" 1) : v|; is affine on each subinterval I}.

We impose Dirichlet boundary condition for the electric potential ®: ®(0) = 0
and ®(1) = U, where U is the applied voltage. Given the variables (w, ®), the molar
fractions x; are computed from the fixed-point problem (see the proof of Lemma 4.5)

F(s) = jz_;lu — s)Mi/Mn gy [Miwi — M (Z— - Z-")%] . se01], (438

with unique solution sy € (0,1). This nonlinear set of equations is solved by the
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4.7 Numerical Simulations

MATLAB routine fzero. The molar fractions are recovered from (4.19),

T = (1—30)M¢/Mnexp [Miwi—Mi(%—]\'z—”>q>], i=1,...,n—1,

and z,, = 1—so. Then we set (see Lemma 4.6) cor = (31, Mz;) ™' and p; = oMy,
fori =1,...,n. Note that we can compute the diffusion matrix B(p(w, ®)), given w
and @, explicitly from the formula B(p(w, ®)) = ciotC~*(p(w, ®)), where the matrix
C(p) is defined in Section 4.4.1.

Instead of solving the nonlinear discrete system (4.7)-(4.8) by a full Newton method,
we employ a linearized semi-implicit approach, i.e., we linearize p(w, ®) and use the
previous time step in the diffusion matrix B(w). More precisely, let w € Vy and
® € Py be given. We linearize p(w, ®) by

p(W, ®) + Vo p (W0, @) - (w—w, o — D).
This leads to the problem in the variable ¢ = (w —w, ® — ®):

L(¢,¢) = F(¢), K((,,0)=G(0) forall ¢ € Vi, 0 € Py, (4.39)

where
L(C,6) = / Va0, 8) - (¢, S)dy + 7 / 0,6 B(w,3)0,(dy
Q
— . bd
+5T/Q(C wp) - Ppdy,
F(¢) = — / (F(@.) — f (w1, B5)) - gy — 7 / 0,6 - B(w, 3)0,wdy,

K(Gu8) = A [ 9,,0.0dy - /Z TV i@, ) - Oy,

G(6) = -\ /Q 0,80,0dy + /Q (z”:%pi%@ + f(y))edy.

i=1

The iteration with starting point (w,(lo),@;lo)) = (wht, ®F1) is then defined by
(W™ Y .= (5, B) + ¢ for m > 0. The iteration stops when [|C[lp < col
for some tolerance €, > 0 or if m > myax for a maximal number of iterations. We
summarize the scheme in Algorithm 1.

All integrals appearing in the scheme are computed by a three-point Gaussian
quadrature rule. The matrix B = ¢;,C~ ! is evaluated explicitly, where C' is the
matrix from Section 4.4.1. The linear system (4.39) and the fixed-point problem
(4.38) are solved using MATLAB. We choose the numerical parameters h = 1072,
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

Algorithm 1 (Pseudo-code for the finite-element scheme in entropy variables.)

1: procedure MAXWELL-STEFAN SYSTEM IN ENTROPY VARIABLES
—_(0) =(0) - - =0 0 0 0
2 Set (W) 8,) = (w08, g = 0@, By), 4y = g/ (M) ) =
Z” (ph )Z/Mza m = 07 Etol > 07 and Mmax-

=1

3 while err > g and m < mpya. do

4 Solve linear system (4.39) with solution (.

5: Set (@™ Y = @, T + C.

6: Solve the fixed-point problem (4.38) with solution sq.
7 Compute ZB( ™) and p (mﬂ)

: e e o= (B, 7)), 3 e

9 (m+1) « (m).

10: end while
11: end procedure

7 =1073, g = 10712 and ¢ = 2772 ~ 2.2204 - 107'¢ (the scheme works also for
e = 0). We have compared our results with the solutions from a finite-element scheme
derived from the original system in the variables p; and a Picard iteration procedure
for the nonlinear discrete system. It turned out that the results are basically the
same, Le. ||p; — pi(w, P)|| o) < 10710,

4.7.2 Numerical Examples

In all numerical examples, we neglect reaction terms, set mu., = 200, and choose
the diffusivities according to [17, 58]: Dj2 = 0.833, D13 = 0.680, and Doz = 0.168
for n = 3. The charges are given by z; = 2o = 1 and 23 = 0 and the initial data is
defined as in [17]:

0.7 for y < 0.25,
My) =< —2(0.7—n)y —2(0.257 — (0.7-0.75)) for 0.25 < y < 0.75,
i for 0.75 <y <1

for n =27, p3(y) = 0.2, and p5(y) = (1 — p} — p3)(y) for y € Q = (0,1). The
parameter 17 > 0 is needed to transform the initial conditions to the entropy variables.
It can be avoided by changing the first step of the iteration procedure but since 7
equals the machine precision, there is practically no difference in the results.

For the first example, we suppose that all three molar masses are equal to one
and that the boundary conditions for the electric potential are in equilibrium, i.e.
My, = My = M3 =1 and ®(y) = 0 for y € {0,1}. The dynamics of the particle
densities and the electric potential are shown in Figure 4.1. The solution at time
t = 17 is essentially stationary and, in fact, in equilibrium. Because of the choice of
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4.7 Numerical Simulations

the parameters, the stationary solution is symmetric around x = %

1
—a— t=0
081 ---1t=0.2 ||
—t=17
0.6 - a
g
04 *
0.2 N /
!
00 0.5 1
Y
8
—a— t =0
---1t=0.2
6 —t=17 ||
,a 4, ,/, \\ ]
20 |
0 \
0 0.5 1
Y Yy

Figure 4.1: Example 1: Particle densities p; and electric potential for molar masses
My, = My = M3 = 1 versus position at various times. The boundary
conditions for the electric potential are in equilibrium.

In order to study the convergence of our iterative linearization procedure, we plot
the evolution of the iteration parameter m over time in Figure 4.2. It turns out that
the number of iterations is decreasing as time progresses. Initially, the algorithm
needs m = 48 iterations and for ¢ > 0.2 only m = 9 iterations. The maximum
number my., = 200 was never reached in all examples and the maximum number of
iteration was always beyond m = 50.

The situation changes drastically when the molar masses are different (example
2). Figure 4.3 shows the stationary solutions with the same parameters as in the
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

Figure 4.2: Example 1 and 2: Plot of the iteration parameter m versus time ¢t. After
t > 0.2, iterations stop at m = 9 in both examples.

previous example except M; = 6. Here, the discrete relative entropy is defined by
k
Dy IV (@ - o) )

- [ (05‘“ 2 {rilog <(l‘h %

where (pf, ®F) is the finite-element solution at time k7 and (25°, ®%°) is the stationary
solution. The integral and gradients are computed by the trapezoidal and gradient
routines of MATLAB. The semi-logarithmic plot of the relative entropy shows that
the entropy converges to zero exponentially fast.

For example 3, we choose the same initial conditions and parameters as before,
but we take non-equilibrium boundary data ®(0) = 10, ®(1) = 0. The solutions at
time t = 8 for various molar masses M; are displayed in Figure 4.4. Since p; and
p2 have both positive charge and the potential on the left boundary is positive, both
species avoid the left boundary and move to the right.

In example 4, we interchange the roles of M; and Ms, i.e., we choose M; =1 and
M, € {2,4,6}. We observe in Figure 4.5 that the first species is more concentrated
at the right boundary while in the previous example, this holds true for the second
species.

The previous examples show that the convergence rate to equilibrium strongly
depends on the ratio of the molar masses. It turns out that this effect is triggered
by the drift term, and without electric field, the convergence rates are similar for
different molar masses. This behavior can be observed in Figure 4.6 (example 5),
where we have taken the same parameters as in the previous example but neglect the
electric field. In this situation, the steady state is constant in space and explicitly
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4.7 Numerical Simulations

P3

0.8

0.6

0.4

0.2

- My =1

log H*(p};)

- M =1

Figure 4.3: Example 2: Particle densities p; at time ¢ = 4 versus position and relative

entropy (bottom right) for molar masses M; = 6 and My = M3 = 1. The
boundary conditions for the electric potential are in equilibrium.

computable; indeed, we have p° = mean(2)~'(|p?]|11(q). Note that the steady state

in the previous examples is not constant.

Finally, we compute the numerical convergence rate when the grid size tends to zero
for the situation of example 3 (non-equilibrium boundary conditions for the poten-
tial). We choose the time ¢ = 0.01 and the time step size 7 = 10~%. The solutions are
computed on nested meshes with grid sizes h € {0.01,0.005,0.0025,0.0006, 0.0001}
and compared to the reference solution, computed on a very fine mesh with 25601
elements (h ~ 4-107°). As expected, we observe a second-order convergence in space;

see Figure 4.7.
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System
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Figure 4.4: Example 3: Particle densities p; at time ¢ = 8 versus position and rela-
tive entropy (bottom right) for various molar masses M;. The boundary
conditions for the electric potential are not in equilibrium.

4.8 Discussion and Outlook

Discussion

The results presented in this chapter regarding the rigorous mathematical treatment
of the PMS system are first of their kind. We will discuss them from an analytical
and numerical perspective.

Analytic Point of View:

In this chapter, we have derived the Poisson-Maxwell-Stefan system for an ionized
fluid mixture in the isothermal and diffusive regime. In particular, we stated the
physically correct driving force and revealed the Lyapunov property of the corre-
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4.8 Discussion and Outlook

1 2 1
—-- My =2 & --- My =2
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g i
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0.2 ,, . i
O |
0 0.5 1 1

)

RIS

log H*(p

Figure 4.5: Example 4: Particle densities p; at time ¢ = 8 versus position and rela-
tive entropy (bottom right) for various molar masses Ms. The boundary
conditions for the electric potential are not in equilibrium.

sponding entropy functional. This was achieved by using the entropy variables and
the corresponding reformulation of the diffusion flux. Although the thermodynam-
ical background of the modeling implies the existence of an entropy structure by
assumption, one finds that the derivation of the thermodynamical consistent driving
force, that includes the electric potential, is still a challenging task. Furthermore,
we have shown the first global-in-time existence result for this system. In addition,
the solution fulfills the expected L*° bounds. The main extension with respect to
previous results and difficulty from a theoretical point of view is the derivation of
gradient estimates and the handling of the electric potential in the drift term.
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

log H*(pf)

Figure 4.6: Example 5: Semi-logarithmic plot of the relative entropy H*(pf) versus
time, without electric potential and for different molar masses.

Numerical Point of View:

We have shown the existence of solutions for a fully-discrete implicit Euler Galerkin
scheme. The idea and strategy for this scheme is the translation of the boundedness-
by-entropy method into the discrete setting. Hence, the scheme is based on the
reformulation of the problem via the entropy variables. The existence on the discrete
level is proved via the Leray—Schauder fixed point theorem. The scheme preserves
the upper and lower bounds of the continuous solution. In particular, the solutions
are nonnegative and hence, the scheme is positivity-preserving. Furthermore, the
scheme conserves the total mass and fulfills the corresponding discrete entropy in-
equality with an arbitrarily small regularization term. The regularization leads to
a failure of partial mass conservation, but the error can be made arbitrarily small;
see Remark 4.2. In addition, a subsequence of the solutions to the discrete scheme
converges to a solution of the continuous problem. The convergence is shown with
the help of the discrete entropy inequality. In the last part of the chapter, we also
propose an implementation of this scheme in one dimension. The main issue here is
to recover the original variables, since no explicit inverse transformation is available.
We remark that this problem only appears in the case with different molar masses.
Fortunately, we can bypass this problem via a fixed point iteration. The implementa-
tion uses a linear finite element discretization and a semi-implicit approach to resolve
the nonlinearities. This approach circumvents the computation of the gradient of the
diffusion matrix B with respect to the entropy variables. In particular, the coeffi-
cients of B are only known with respect to the original variables. Thus, an additional
fixed point iteration would be required to compute the gradient of B. The conver-
gence rate is numerically of second order in space. In addition, several simulations
that show the dependence of the nonconstant steady and of the equilibration rate on

112


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.8 Discussion and Outlook
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Figure 4.7: Discrete L?-error relative to the reference solution for the densities and
the potential (bottom right) at time ¢ = 0.01.

the molar masses were performed.

Outlook

This is the first mathematically rigorous treatment of the Poisson-Maxwell-Stefan
system and hence it paves the path to several open questions connected to this system.

Analysis of the Longtime Behavior:

The numerical simulations indicate that solutions converge exponentially fast to a
nonconstant steady state. Usually, one can exploit the entropy functional to derive
a relative entropy. Combined with Sobolev embeddings, this has led to an analytical
result for the decay rate in the case without electric potential [93]. Such an approach
is not straightforward in our case, since the electric potential leads to a nonconstant
steady state. In particular, we have to solve two problems in a future work: first,
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4 A Structure Preserving Scheme for a Poisson-Maxwell-Stefan System

one has to show the existence of a stationary solution of the equation, and second,
we have to find a way to extend the usual relative entropy argument with respect to
a drift term. While the first obstacle should be a simple adaption of our proof for
the nonstationary system, it seems unclear how to deal with the drift term at this
point in time.

Convergence of the Full Scheme:

The linearization procedure in the implementation is not captured by our analysis,
since this would be beyond the scope of this thesis and is postponed to a future work.
A possible approach in this direction could be a combination of the scalar results in
[30] to ensure stability of the linearized system and [24] to show the convergence
of the linearization procedure. Furthermore, we would like to achieve some kind of
uniqueness result, under additional conditions, for the continuous equation. This is
challenging for cross-diffusion systems, but it would be an important ingredient to
prove the convergence of the whole scheme instead of a subsequence. A rather limited
result for uniqueness could be the consequence of the Gajewski entropy approach [57].
The strategy was used to show uniqueness for a similar model, but with the very
strong assumption that all charges are equal, i.e. z; = 2z, ¢ = 1,...,n, and that all
diffusion coefficients are equal to one [61].

Numerics:

Our implementation is carried out in one dimension and the only obstacle for higher
dimensions is the recovery of the original variables. Thus, one has to implement a
fixed point iteration in two or three dimensions. In addition, the scheme should be
tested with real world parameters and the performance compared to other available
options.

Long Term Goal: A Discrete Boundedness-by-Entropy Method

The bigger picture for these results is an analytical and numerical framework that
translates the abstract boundedness-by-entropy method into a fully discrete scheme.
A first step in this direction was done in [48], but without any kind of convergence
result or numerical implementation. In particular, also other kinds of space dis-
cretizations should be considered, e.g. [14]. The advantage of such an approach is
quite obvious: one could use this framework to derive a positivity-preserving scheme
that respects also upper bounds and preserves the entropy structure. In addition,
one could use this structure to show the convergence of the scheme, a very rare result
for numerical schemes that deal with nonlinear systems.
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A Appendix: Some Auxiliary Results

We recall that the function

— L log |z] for =0
. 2m ,
Bﬁ(I) = { 1 fOOO tfn/Qefﬂt*|I|2/(4t)dt for B >0,

(471.)71/2
defined for x € R", is called the Newton potential if 3 = 0 and the Bessel potential
if B # 0. We need the following properties of the Bessel potential.

Lemma A.1 (Bessel potential). Let § > 0 and k € Ny. Then Bg is a fundamental
solution of the operator —A + . For given f € H*(R"), the function u = Bg* f €
H 2(R™) solves

—Au+Pu=f inR"

Furthermore, it holds that DY(Bg % f) = Bg * DVf for all multi-indices v € N,
lv| < k and

(A1)

Y

C(n) T
wwoegiz 1VBslve = 55

B 20, |Bsllwi@ =

|

HVBﬂnLl(]R“) = (A.2)

where the constant C'(n) > 0 only depends on n.

Proof. We only prove (A.2), since the other properties are standard; see, e.g., The-
orem 1.7.1, Corollary 1.7.2, and Examples 12.5.8 in [100]. By Fubini’s theorem and
the substitution u = x/ V/4t, we find that

1 o0 ,
VBl apem = — [ /21 s / 040 | d
IVBsllor e 2(4t)n/2/0 S |z|dax
_ T 12t = ul? 1 ~1/2
— 7r”/2/0 t— /2 Pdt e lu|du = 7r(n—1)/2ﬁ C(n),

where C(n) = [g. e~ 1"P|u|du. In particular, when n = 2, we obtain

oo 2w 3/2
C(2) = / / e r2dedr = L,
o Jo 2

ending the proof. m
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A Appendix: Some Auxiliary Results

Lemma A.2 (Young’s inequality). Let g € LY(R"), h € L"(R") for 1 < q,r < o0,
and 1/q+1/r =1/p+ 1. Then g+ h € LP(R™) and

19 * Al Lr@ny < |9l an) |2l 2 &)

Lemma A.3 (Elliptic problem). Let 7 > 0, f € L*(R?)?, and g € L*(R?). Then
there exists a unique weak solution p € H'(R?) to

—~Ap+1Hp—g)=—divf inR% (A.3)

and this solution can be represented as
1
p==Bi,*xg—VBi,*f inR. (A.4)
-

Equation (A.3) corresponds to the implicit Euler discretization of a parabolic prob-
lem with p being the solution at the actual time step and g being the solution at the
previous time step. Although the result is standard, we give proof for the sake of
completeness.

Proof. Let fr € C3°(R?)? be such that f, — f in L*(R?)? as k — oco. By Lemma
A.1, there exists a unique solution p, € H'(R?) to

—Apk—i-Til,Ok :Tilg—dink, (A5)

and, by the variation-of-constants formula and integration by parts,

ple) = £ (B +9)(@) = [ (VB ) o). (A6)

RQ

Taking the test function pp — p, in the difference of the weak formulations for pg, pe
corresponding to fx, fe, respectively, it follows that

1
IV (0x = plen + Sl = ol = [ (o= 0 V(o = pida
1 1
< §ka — foll72@e) + §|’V(Pk — o)l T2 g2y
Since (f,) is a Cauchy sequence, (py) is a Cauchy sequence in H'(R?) and hence there
exists a p € H'(R?), such that p, — p strongly in H'(R?) as k — oo. Therefore, we

can perform the limit £ — oo in the weak formulation of (A.5) leading to (A.3).
It remains to show (A.4). Let p = (1/7)By/r x g — VB * f.
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Then, by Lemma A.2 and (A.6),

1P = pllr2wey < 1P — prlleee) + ok — pll 2@
< |lp = prllze@ey + [IVByell oy | fr — fll2@e)-

The right-hand side can be made arbitrarily small by choosing k sufficiently large.
This shows that p = p in R2. O

Lemma A.4. Let Q C R? be a open and bounded set with 02 € C%'. Then there
exists an orthonormal basis (vy)n>1 of L*(Q) with v, € HY(Q) N C>=(Q).

Proof. Let f € L*(Q2) and define the solution operator K : L?(Q) — L?*(Q) by
K f = u, with u € H'(Q) the unique solution to the elliptic problem

/Vu~Vg0dx+/ug0dm:/fg0da: for all o € H*(Q).
Q Q Q

We claim that K is a compact, positive and self-adjoint operator. The first property
follows by Rellich-Kondrachov, i.e. by the compact embedding H'(Q2) — L?(Q).
Positivity of K is straight forward, since for f € L?(Q) and K f = u, we have

(K f, Nz = (u, £z = [Vul[f2q) + [[ul[F2q) > 0.
Furthermore, we have for K f = u; and Kg = uy, f,g € L*(Q),

/Vu1Vu2d:L’—|—/u1u2dx:/fUQdm:/guldm.
0 0 0 Q

Thus, K is self-adjoint and the spectral theorem for compact symmetric operators,
see e.g. [37][Chapter 2, Section 5|, implies the existence of a Hilbert basis (v )n>1
of L?(Q) consisting of eigenfunctions of K. Since K is positive and injective, we
conclude that the corresponding sequence of eigenvalues (j,),>1 are strictly positive.
Let v, € H'(2) be an eigenvector for the eigenvalue p,, then we have

1
/ Vu, - Vodr + / vppdr = | —uv,pdx for all p € HY(Q).
Q Q Q Hn

Hence, by interior elliptic regularity, see [51][Subsection 6.3.1] and bootstrapping we
have v, € H{".(Q2) for every m > 1 and the standard Sobolev embedding implies

loc

v, € C™(9Q). O
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B Appendix: A Nonlinear Gronwall
Inequality

Lemma B.1 (Inequalities). Let d < 3, Q C R? be a bounded domain, and 0 € C*1.
There exists a constant C' > 0 such that for all u, v € H'(Q),

[uvllz2@) < Cllullay @ llvlla @), (B.1)
for all uw € H*(Q) with Vu-v =0 on 0,
lullZ @) < C(1AUlIZ @) + el @) (B.2)
and for all uw € H*(Q) with Vu-v =0 on 05,
lullfrs) < CUIVAUlT2 ) + [ullfzq)- (B.3)

Inequality (B.1) follows after applying the Cauchy—Schwarz inequality and then
the continuous embedding H'(Q) < L*(Q2); (B.2) is proved in [66, Theorem 2.3.3.6],
while (B.3) is a consequence of [140, Theorem 2.24].

Lemma B.2 (Nonlinear Gronwall inequality). Let § > 0 and T', G € C°([0,T]) be
nonnegative functions, possibly depending on 0, satisfying

I'(t)+ Cy /t G(s)ds < C1T'(0) + Cy /t(F(s) +I'(s)*)ds
+ C38” /tms) +1(s))G(s)ds + Cad",

where a > 1, >0, v >0, v >0, and Cy,...,Cy > 0 are constants independent
of 0. Furthermore, let T'(0) < C50” for some Cs > 0. Then there exists 6y > 0 such
that for all 0 < 6 < g, 0<t<T, and 0 < e < v,

T(t) < Cs6"~".

Proof. A slightly simpler variant of the lemma was proved in [77, Lemma 10]. As-
sume, by contradiction, that for all 6, € (0, 1), there exist 6 € (0,dy), to € [0,77,
and € € (0,v) such that I'(¢y) > C50”~¢. Since I'(0) < C56” by assumption and I is
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B Appendix: A Nonlinear Gronwall Inequality

continuous, there exists ¢; € [0,%y) such that I'(¢;) = C50”° and I'(t) < C50" ¢ for
all t € [0,t1]. This leads for ¢ € [0, ] to

t t
I(t)+ Co/ G(s)ds < C1C56” + Co(1 + (C56"°)* 1) / [(s)ds
0 0
t
+ C36°(C50" ¢ + (C56" 7)) / G(s)ds 4+ Cy0".
0

Since v — ¢ > 0, the integral over G(s) on the right-hand side can be absorbed for
sufficiently small 6 > 0 by the corresponding term on the left-hand side. This implies
that

t
[(t) < (C1Cs + Cy)d" + 2C; / D(s)ds, 0<t<t.
0

Then Gronwall’s lemma gives, for sufficiently small §; > 0 and 0 < § < dy,
C
[(t) < (C1Cs + Cy)d7e?eT < 755”—6 < C50"7F, 0<t<t.

which contradicts I'(¢;) = C58"=. O
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