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Abstract.

Numerous algorithms for the recovery of sparse, high-dimensional signals with
independent, identically distributed samples have been discussed in the literature.

Some of the most advanced ones are based on approximated message passing
algorithms and have been shown to perform well in terms of mean-squared error.

Restrictions such as the independence of signal samples as well as rigid
requirements imposed upon the measurement matrix often limit the practical

usability and performance of these algorithms. This thesis attempts to lift some
of these restrictions without constraining the solutions to specific problems. The

resulting algorithms maintain or surpass the performance of Bayesian
approximate message passing under adverse conditions, while retaining

reasonable computational complexity for practical applications.
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Notation

• x is a scalar.

• x is a random variable.

• x is a vector.

• x is a random vector.

• A is a matrix.

• X is a set or a general operator, as evident from the context.

• 0N is the all-zero column vector (0, 0, . . . , 0)T of dimension N .

• 1N is the all-one column vector (1, 1, . . . , 1)T of dimension N .

• fx(x) is the probability density function of the random vector x using the
variable x.

• δ(x) is the Dirac delta function which is zero everywhere except at x = 0

and integrates to one.

• diag(A) is the diagonal of A, a vector.

• Diag(x) is a diagonal matrix and diag(Diag(x)) = x.

• ∇x is the nabla-operator, which computes the gradient with respect to x of
the expression to the right-hand side.

• ∇F (µ) is the Jacobian of F (µ) with respect to µ, where F (µ) is a function
with vector-valued argument and result.

• Nx(x;µ,Σ) is the probability density function of the multivariate Gaussian
distribution with mean µ and covariance matrix Σ. If the vector x is omitted,
it is assumed to be identical to the calligraphic version of the random vector
x. If Σ is written as lowercase σ2, the latter is a vector and Σ is a diagonal
matrix with diag(Σ) = σ2.

• GF(q) with q = pm and p prime, m ∈ N+, m > 0 is the Galois field (finite
field) with q elements.

IX
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Chapter 1

Introduction

The concept of compressed sensing (CS) was first proposed by David L. Donoho in
2006 [22]. The goal was to minimize effort spent on data acquisition and compres-
sion: often, a high-dimensional representation of a complicated signal is acquired
only to apply a lossy compression scheme to obtain a low-dimensional represen-
tation (examples are audio, image and video compression). If it was possible to
obtain a low-dimensional representation right away, a lot of expensive signal pro-
cessing could be eliminated. Also in 2006, Candes, Romberg and Tao presented
results regarding the reconstruction of signals from an incomplete set of Fourier
transform coefficients [17]. They motivated their research with the problem of
signal reconstruction using data from magnetic resonance imaging (MRI) devices.

Representation of an arbitrary signal of limited bandwidth requires sampling at
the Nyquist rate in order to maintain a perfect representation of the signal. If only
a small, “sub-Nyquist”, number of measurements is known, additional information
about the signal is required for reconstruction. A popular model is that of a
“sparse” signal, i.e. the assumption that it is zero most of the time. Even assuming
linear measurements, the problem of signal recovery is hard. By applying certain
relaxations it can be formulated as a convex optimization problem, however. Since
dimensions of such problems are usually too large to employ classical convex solvers,
a plethora of algorithms optimized for the case of linear measurements of sparse
signals were developed. Among these are matching pursuit [44, 47], basis pursuit
[19] as well as the “LASSO” (least absolute shrinkage and selection operator) [58].
Subsequently, algorithms making more explicit use of the signal’s sparsity, such as
iterative thresholding [12, 21] and approximate message passing [23] appeared.

Compressive sensing recovery algorithms are used for a range of applications such
as single-pixel camera systems [27, 35] and medical imaging settings [17]. With
the arrival of Bayesian approximate message passing (BAMP) it became possible
to incorporate even more detailed information about the signal by making explicit
use of its prior. Bayesian approximate message passing extended the scope of
compressive sensing towards the recovery of discrete-valued signals such as the
detection of sparse regression codes [52] and other general inverse problems.
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Structure and Novel Contributions Introduction

1.1 Structure and Novel Contributions

This thesis presents new methods that overcome some of the restrictions existing
algorithms are inhibited by. It is composed of four parts:

• In Chapter 2, the derivation of new reconstruction algorithms for compressed
sensing problems under various conditions is discussed. First, Bayesian ap-
proximate message passing is extended towards multi-dimensional priors.
Subsequently, novel methods are presented that allow BAMP to be applied
to problems involving non-zero mean measurement matrices or variable mea-
surement noise. A “state evolution” formalism accurately predicting the per-
formance of each algorithm is provided.

• Chapter 3 discusses the construction of multidimensional “denoisers” and as-
sociated functions that are required for the operation of BAMP. Explicit ex-
pressions of these functions are provided for several priors. Special attention
is paid to numerical stability.

• A practical application is reviewed in Chapter 4, namely the reconstruction of
compressed LDPC code words. The chapter presents a structured approach
for incorporation of discrete priors with BAMP. Simplifications allowed for
by special signal structures such as those of binary block codes are discussed.

• Finally, numerical simulations are presented in Chapter 5. Comparisons with
existing algorithms are provided. State evolution is employed both for vali-
dation of the numerical results as well as for highlighting improved behavior
of the new methods. We show that for certain signals with high-dimensional
prior, the proposed algorithms perform close to theoretical limits.

The thesis concludes with a short review of its development and discussion of open
research topics.

2
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Chapter 2

Compressed Sensing:

Reconstruction Using

Multivariate Priors

In this chapter, several algorithms to recover an unknown vector x from linear
measurements are presented.

2.1 System Model

For a discrete signal x ∈ R
N , N samples are required for representation in general.

Let y = T (x) be a compressed version of x, with y ∈ R
L, L < N and T a

general compression operator. If (almost) lossless reconstruction of x from y is
required, certain additional information must be known about the signal x. A
popular property is “sparsity”: for a signal x there exists a sparse representation if
there is a bijective transformation S : RN → R

N such that χ = S(x) is sparse “in
the traditional sense”, i.e. the majority of χ’s coefficients are (almost) zero.

In compressive sensing, the compression operator T is usually assumed to be linear,
which is reflected by recovery algorithms such as iterative thresholding [12, 21],
matching pursuit [44, 47] and approximate message passing [23]. The general
acquisition equation y = T (x) of a linear CS system can thus be written as

y = Ax (+w) . (2.1)

Here, the matrix A is the measurement matrix (or sensing matrix ). Often, it is
assumed to have zero-mean, independent and identically distributed (i.i.d.) entries
drawn from a Gaussian or Rademacher distribution. Some algorithms furthermore
require its columns to be normalized. Almost always it is assumed to be a dense
matrix. Since the measurements y ∈ R

L and the signal x ∈ R
N , with L < N , the

matrix A ∈ R
L×N is a wide matrix. The vector w is additive measurement noise.

A system’s subsampling ratio ρ is defined as ρ = L/N.
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Bayesian Optimal Estimation Compressed Sensing: Reconstruction

Since A is a wide matrix, reliably obtaining x knowing y and A is impossible in
general, even in the noiseless case. Any algorithm recovering x therefore needs
to make use of additional information about x. In this thesis, such knowledge
is specified and employed in the form of a prior fx(x) of x. This has several
advantages: on the one hand, a prior is a more complete description of a signal
than traditional models like sparsity. On the other hand, if the prior does not
describe a sparse signal in a traditional sense, it is possible to find an algorithm
directly operating on the non-sparse signal. It is then not necessary to find a
“sparsifying” base S such that χ = Sx with χ sparse. Finally, formulating recovery
algorithms in terms of the prior fx(x) makes it possible to re-use these algorithms
for a variety of problems by plugging in the appropriate prior. Approximations
and optimizations enabled by specially structured priors can then be applied.

2.2 Bayesian Optimal Estimation

For the moment, assume noiseless compressed sensing, i.e. w = 0. Even in this
case, the problem (2.1) is under-determined. A naïve approach to reconstruction of
x is to compute the pseudo-inverse A+ = AT (AAT )−1. The reconstructed vector
is

x̂ = A+y . (2.2)

This solution does not take into account the information provided by the prior
fx(x). In fact, it makes implicit assumptions about the prior: it can be shown that
the pseudo-inverse results in

x̂ = arg min
x̂

‖x̂‖2 s.t. y = Ax̂ , (2.3)

i.e. the solution with the minimal l2 norm that satisfies y = Ax̂. Let the optimality
criteria be the minimization of the error term

ε = Ex

{

‖e‖2
}

= Ex

{

‖x̂− x‖2
}

. (2.4)

The following steps can be performed to minimize the error ε:

x̂ = arg min
x̂

Ex

{

‖x̂− x‖2
}

(2.5)

= arg min
x̂

(
Ex

{
x̂T x̂

}
− Ex

{
xT x̂

}
− Ex

{
x̂T x

}
+ Ex

{
xT x

})
(2.6)

x̂ =

{

x̂
∣
∣
∣∇x̂

(

x̂T x̂− 2x̂T
Ex {x}+

∑

i

Px,i

)

= 0N

}

(2.7)

0N = 2x̂− 2Ex {x} (2.8)

x̂ = Ex {x} , (2.9)
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Compressed Sensing: Reconstruction Bayesian Optimal Estimation

i.e. the error is minimized by the expected value of x. Since y = Ax, knowing y

allows to further reduce the estimation error by minimizing the conditional error

ε′ = Ex|y

{

‖e‖2 |y = y
}

. (2.10)

Performing the same steps as above results in the optimal estimate of x (in terms
of mean squared error (MSE)) as

x̂ = Ex|y {x|y = y} . (2.11)

The distribution fx|y(x|y) is generally unknown, however the distribution of fy|x(y|x)
can be written as

fy|x(y|x) = δ(y −Ax) (2.12)

in the noiseless case. In the language of convex optimization, this conditional
distribution is an equality constraint, i.e.

ya −Aax = 0 ∀a ∈ {1 . . . L} . (2.13)

This constraint describes L hyperplanes in N -dimensional space and thus their
intersection is an at least (N −L)-dimensional space. Additional information pro-
vided by the prior fx(x) is then hoped to be sufficient to reduce this space of
possible solutions to a single solution. For the noiseless case, (2.11) can further be
developed using (2.12) and Bayes’ rule:

fx|y(x|y) =
1

fy(y)
fy|x(y|x)fx(x) . (2.14)

The distribution fy(y) can be written as

fy(y) =

∫

RN

fy|x(y|x)fx(x)dx . (2.15)

In the noiseless case, (2.14) and (2.15) are

fx|y(x|y) =
1

fy(y)
δ(y −Ax)fx(x) (2.16)

fy(y) =

∫

RN

δ(y −Ax)fx(x)dx . (2.17)

The estimate of x can thus be written as (cf. (2.11))

x̂ =
1

fy(y)

∫

RN

xδ(y −Ax)fx(x)dx . (2.18)

It turns out that the integrals required to evaluate (2.18) can be cumbersome to
compute due to the Dirac term. Thus, it can be practical to “soften” the constraint.
The Dirac is substituted by

fy|x(y|x) ∝ exp

(

−β

2

∑

a

(ya −Aax)
2

)

. (2.19)

For β →∞ (2.19) approaches (2.12).
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Noisy Case Compressed Sensing: Reconstruction

2.3 Noisy Case

At this point, the noise can be factored in. For now, it is assumed that the noise
components wa are independent and that they have a finite mean and variance.
Typically, the noise is modeled as Gaussian with

fw(w) ∝ exp

(

−1

2

∑

a

(wa − µwa)
2

σ2
wa

)

. (2.20)

With ya = Aax+ wa and y known thus

wa = ya −Aax . (2.21)

The conditional distribution fy|x(y|x) can then be written as

fy|x(y|x) ∝ exp

(

−1

2

∑

a

(ya −Aax− µwa)
2

σ2
wa

)

. (2.22)

For noise variance σ2
wa

= 0 and mean µwa = 0, the expression (2.22) reduces to
(2.12). In the presence of noise or when using the “softened” constraint as in (2.19),
the conditional distribution fy|x(y|x) can be thought of as the product (versus the
intersection in the hard constraint description) of L “blurry” hyperplanes. Without
loss of generality it shall be assumed that µw = E {w} = 0. If the noise is not
zero-mean the problem can be transformed by setting y′ = y−µw. Plugging (2.22)
into (2.11) gives

x̂ =
1

fy(y)

∫

RN

x exp

(

−1

2

∑

a

(ya −Aax)
2

σ2
wa

)

fx(x)dx . (2.23)

For large N , (2.23) becomes computationally prohibitive. First, one needs to pre-
compute expressions for N integrals over N dimensions (one for each entry of x).
For all but the simplest priors fx(x), this results in large expressions. Secondly,
each of these expressions needs to be evaluated for every instance of the problem.
Another drawback of such an approach is its lack of flexibility. Small changes to
the prior or the noise distribution require recomputation of all integrals.

It is thus beneficial to approximate the computation of x̂. To this end, the sum-
product algorithm has been found to be effective. It should be noted right away
that the sum-product algorithm was derived for graphs that are trees. It shall be
shown that the expression (2.23) does not have a tree-like structure for general
matrices A. The sum-product algorithm efficiently computes the marginals of
a high-dimensional probability density function (pdf). The original sum-product
algorithm (when applied to a pdf that can be represented as a tree) computes all
marginals in the same time it would take a naïve, variable-by-variable algorithm,

6
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Compressed Sensing: Reconstruction Representation as Graph

to compute two marginals [40]. Using these marginals, any moment of a single
variable can easily be calculated. The pdf in (2.23) is

fx,y(x,y) ∝ exp

(

−1

2

∑

a

(ya −Aax)
2

σ2
wa

)

fx(x) . (2.24)

Assuming that the prior fx(x) can be factored, i.e.

fx(x) =
K∏

k=1

fxk(xk) , (2.25)

then the pdf (2.24) can be written as

fx,y(x,y) ∝ exp

(

−1

2

∑

a

(ya −Aax)
2

σ2
wa

)
K∏

k=1

fxk(xk) . (2.26)

Message passing provides a simplification of the problem only if the prior fx(x) can
be factored into many small factors, i.e. K not much smaller than N . The reason
for this will become apparent in the next paragraphs.

2.4 Representation as Graph

In order to apply the sum-product algorithm, the graphical representation of the
pdf (2.26) must be found. In the graph, random variables are represented by white
circular variable nodes, known variables are represented by black circular variable
nodes. Factors are depicted as black squares. If a variable appears in a factor, it is
connected to the appropriate factor node by an edge. An example for such a factor
graph can be seen in Fig. 2.1. In this thesis, variable nodes use the indices i, j, k
while factor nodes are indexed with the letters a, b, unless specified otherwise. To
simplify notation, products of terms indexed by a certain letter include all terms
using the index. A product

∏

i therefore usually ranges over N terms associated
with variable nodes, while the product

∏

j 6=i is composed of N − 1 terms, omitting

the jth term.

Let Xk = {xk,1, xk,2, . . . , xk,κk
}, i.e. the set of all random variables xk,i on which the

factor fxk(xk) depends, with κk = |Xk|. The prior factors fxk(xk) are not required
to depend on the same number of variables. If the condition

Xk ∩ Xl = ∅ ∀k, l ∈ {1, . . . ,K} , k 6= l (2.27)

is satisfied, then the prior factors fxk(xk) are disjoint, i.e. each variable xi is only
connected to a single prior factor (cf. Fig. 2.1). If (2.27) is not fulfilled, it is possible
for any xi to appear in multiple prior factors. This thesis focuses on disjoint prior
factors. A possible approach for a particular problem featuring overlapping priors
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Representation as Graph Compressed Sensing: Reconstruction

y1

fA1

y2

fA2

y3

fA3

y4

fA4

y5

fA5

x1 x2 x3 x4 x5 x6 x7 x8 x9

fx1 fx2 fx3

Figure 2.1: Example of a graphical model describing a pdf with K = 3 factors of
the prior fx(x), N = 9 unknown variables xi and L = 5 known variables yi.

is shown in Chapter 4. Requiring the sets Xk to be disjoint limits the applicability
of compressed sensing recovery algorithms, however.
The sum-product algorithm defines “messages” from variable node to factor node
and vice versa. These messages are functions of a single random variable, which
is involved in the edge connecting the respective nodes. Note that due to the
definition of the graph structure, edges always connect nodes of different type.
The graph is thus “bipartite” as no direct connections between two variable nodes
or two factor nodes can exist. The message passing rules are [40]

ma→i(xi) =

∫

j 6=i
fa(xa)

∏

j∈∂a\i

mj→a(xj)dxj (2.28)

mi→a(xi) =
∏

b 6=a

mb→i(xi) , (2.29)

where in (2.28), the integral computes the marginal with respect to (w.r.t.) the
random variable xi. The functions ma→i(xi) and mi→a(xa) are the messages from
factor node to variable node and vice versa respectively. The function fa(xa) is
the factor corresponding to the factor node with index a. The vector xa contains
all variables adjacent to the factor. The expression j ∈ ∂a \ i indicates that the
product includes all messages from variable nodes adjacent to the factor node a
except the message from the variable node i (which is the target of the message
ma→i(xi)). The marginal mx,i(xi) w.r.t. a variable xi is obtained as

mx,i(xi) =
∏

a

ma→i(xi) . (2.30)
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Compressed Sensing: Reconstruction Representation as Graph

When the pdf can be represented by a tree, message passing rules (2.28) and (2.29)
do not incur circular dependencies. Thus it is sufficient to calculate the messages
for all edges in both directions to obtain marginals of every random variable xi.
In the compressed sensing case, the pdf is given in (2.26). For general matrices A,
this pdf cannot be represented by a tree; it contains cycles. Thus the message pass-
ing rules will contain circular dependencies, giving rise to an iterative algorithm.
The factors corresponding to factor nodes are

fa(x) = exp

(

−(ya −Aax)
2

2σ2
wa

)

(2.31)

fk(xk) = fxk(xk) . (2.32)

The functions fa(x) represent the linear relationship between the measurements
y, the unknown vector x and the sensing matrix A. They are therefore referred
to as the “matrix factors”, with one factor for each row of the matrix A. The
functions fk(xk) are factors of the prior fx(x). The variables ya are known and
marked as such. The random variables xi are depicted as unknown variable nodes.
If condition (2.27) is true, inserting into the message passing rules (2.28) and (2.29)
results in

ma→i(xi) =

∫

j 6=i
fa(x)

∏

j∈∂a\i

mj→a(xj)dxj

=

∫

j 6=i
exp

(

−(ya −Aax)
2

2σ2
wa

)
∏

j∈∂a\i

mj→a(xj)dxj (2.33)

mi→a(xi) = mk→i(xi)
∏

b 6=a

mb→i(xi) (2.34)

mk→i(xi) =

∫

j 6=i
fxk(xk)

∏

j∈Xk\i

mj→k(xj)dxj (2.35)

mi→k(xi) =
∏

a

ma→i(xi) . (2.36)

In (2.33), the index a has been dropped from the factor node’s function argument
due to the fact that it depends on all variables in the vector x. For special matrices
A this might be different. Examples are sparse matrices and blockwise-sparse
matrices. In this thesis, the matrix A is assumed to be dense, however. Due to the
requirement that the sets Xk be disjoint, every variable node xi is only connected
to a single prior fk(xk). If condition (2.27) is not true, the message passing rules
(2.34) and (2.36) become

mi→a(xi) =
∏

k∈∂i

mk→i(xi)
∏

b 6=a

mb→i(xi) (2.37)

mi→k(xi) =
∏

l∈∂i\k

ml→i(xi)
∏

a

ma→i(xi) . (2.38)
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Representation as Graph Compressed Sensing: Reconstruction

The left-hand products in (2.37) and (2.38) are over messages from the prior factors
connected to the variable with index i. Note that the messages defined in (2.33)
to (2.38) contain products of functions which are defined on R. This is compu-
tationally intractable for all but few functions. Approximations are required to
implement the message passing algorithm. In the following sections, some approx-
imations that are possible under certain conditions are discussed. These assume
disjoint prior factors.
While the initialization and termination of the sum-product algorithm is well de-
fined on graphs without cycles, these steps are complicated in presence of cyclic
dependencies. Initialization of the sum-product algorithm is done at the leaf nodes.
A cyclic graph might not contain any leaf nodes, however. Another problem that
only arises in cyclic graphs is message scheduling. Unknown messages are typically
replaced by the “least-informative” one, i.e. m(x) = 1. In cyclic graphs, the or-
der of message computation needs to be chosen since it is not predefined. Different
choices yield different algorithmic behavior. One possible scheduling algorithm is to
use “parallel” (“flooding”) updates, where all messages from factor nodes to variable
nodes (and vice versa) are computed simultaneously. Another scheduling procedure
is that of sequential updates, where messages are passed between a (set of) vari-
able and factor node(s) until they converge, after which the next (set of) variable
and factor node(s) is updated, taking into account previously converged messages.
The sum-product algorithm does not naturally terminate on cyclic graphs. Typi-
cally, a maximum number of iterations limits the execution time. Another stopping
criterion is normalized change of unknown variable’s marginals or their moments.
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Compressed Sensing: Reconstruction Approximating Message Passing

2.5 Approximating Message Passing

As noted in Section 2.4, applying the message passing rules as they are given in
(2.33) to (2.36) verbatim is computationally intractable. It is desirable to find
realizable approximations to the iterative message passing algorithm. In a first
step, some messages are replaced by normal distributions. Normal distributions
are described by just two parameters, namely mean µ and variance σ2, which
reduces computational complexity compared to general function-valued messages.
If the graph corresponding to a pdf is a tree, the messages are scaled pdfs. The scal-
ing factor is well defined in the sense that the marginal w.r.t. a particular random
variable xi obtained by (2.30) is a valid pdf. On graphs with cycles, a naïve itera-
tive message passing algorithm might produce arbitrarily scaled messages (growing,
shrinking and oscillating with iterations). This causes numerical problems. An iter-
ative message passing algorithm must therefore always keep message scaling under
control. Passing the moments instead of function-valued message achieves this as
a side effect.
Using a Gaussian approximation is well justified in the compressed sensing case.
In the subsequent sections, Bayesian approximate message passing is derived for
unknown vectors x with multidimensional, disjoint priors. This work has been
presented in part at the 12th International ITG Conference on Systems, Commu-
nications and Coding (SCC 2019) [9].

2.5.1 Gaussian Approximation

To approximate the message ma→i(xi) (cf. (2.33)) with a Gaussian function, a new
random variable za→i shall be introduced, defined as

za→i = ya −
∑

j 6=i

Aa,jxj→a , (2.39)

with mean µz,a,i and variance σ2
z,a,i

µz,a→i = ya −
∑

j 6=i

Aa,jµx,j→a (2.40)

σ2
z,a→i =

∑

j 6=i

A2
a,jσ

2
x,j→a . (2.41)

It can be shown [43] that (2.33) can be approximated by

m̂a→i(xi) =

√

A2
a,i

2π(σ2
w,a + σ2

z,a→i)
exp

(

−(Aa,ixi − µz,a→i)
2

2(σ2
w,a + σ2

z,a→i)

)

(2.42)

= NAa,ix,i(µz,a→i, σ
2
w,a + σ2

z,a→i) (2.43)

= Nx,i

(

µz,a→i

Aa,i
,
σ2
w,a + σ2

z,a→i

A2
a,i

)

. (2.44)
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Approximating Message Passing Compressed Sensing: Reconstruction

Following the message passing rule (2.33) and using the fact that messages from
matrix factor node to variable node are approximated by a Gaussian, the message
from variable node to matrix factor node is

mi→a(xi) = mk→i(xi)
∏

b 6=a

Nx,i(µx,b→i, σ
2
x,b→i) , (2.45)

where

µx,b→i =
µz,b→i

Ab,i
(2.46)

σ2
x,b→i =

σ2
w,b + σ2

z,b→i

A2
b,i

. (2.47)

The form in (2.45) contains the product of L normal distributions in xi. This
product can be written as a single normal distribution in xi using the relations

1

σ
2(l)
x,i→a

=
∑

b 6=a

1

σ2
x,b→i

(2.48)

µ
(l)
x,i→a = σ

2(l)
x,i→a

∑

b 6=a

µx,b→i

σ2
x,b→i

. (2.49)

The notation σ
2(l)
x,i→a and µ

(l)
x,i→a indicates that these are the mean and variance of

the Gaussian function resulting from the product of normal distributions in (2.45),
intended for computation of the message from the variable node with index i to
the matrix factor node with index a (the “local” means and variances, not taking
into account messages of prior factor nodes). The expressions (2.49), (2.48) are
inconvenient due to the large number of divisions required. Furthermore, they
become numerically unstable for small values of σ2

x,a→i. Note that for σ2
x,a→i =

σ2
x,∗→i (i.e. equal variances) the equations can be reformulated as

1

σ
2(l)
x,i→a

=
L− 1

σ2
x,∗→i

(2.50)

µ
(l)
x,i→a =

1

L− 1

∑

b 6=a

µx,b→i , (2.51)

i.e. the mean becomes the arithmetic mean and the variance is scaled by the factor
(L− 1)−1. If the requirement is introduced that the columns of the matrix A are
normalized (‖A:,i‖2 = 1) and if it can be assumed that A2

a,i ≈ L−1 then (2.47) can
be written as

σ2
x,a→i ≈ L

(
σ2
wa

+ σ2
z,a→i

)
. (2.52)

Using this approximation and plugging (2.52) into (2.50) results in

σ
2(l)
x,i = σ

2(l)
x,i→∗ ≈

L

L− 1

(
σ2
w∗

+ σ2
z,∗→i

)
≈
(
σ2
w∗

+ σ2
z,∗→i

)
. (2.53)
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Compressed Sensing: Reconstruction Approximating Message Passing

For large N and L, the variance of the product of normal distributions is negligibly
larger than the variance in the matrix factor node message. For the next step, set
(cf. (2.46))

µx,a→i =
µz,a→i

Aa,i
=

Aa,i

Aa,i

µz,a→i

Aa,i
≈ L (Aa,iµz,a→i) . (2.54)

Inserting (2.54) together with (2.52) into (2.49) results in

µ
(l)
x,i→a ≈

L

L− 1

(
σ2
w∗

+ σ2
z,∗→i

)∑

b 6=a

L (Aa,iµz,a→i)

L
(

σ2
w∗

+ σ2
z,∗→i

) (2.55)

=
L

L− 1

∑

b 6=a

Aa,iµz,a→i (2.56)

≈
∑

b 6=a

Ab,iµz,b→i . (2.57)

To perform the simplifications in the steps above, a number of assumptions has
been made. These are

1. L≫ 1

2. N ≫ 1

3. ‖Aa,:‖ = 1

4. E

{

A2
a,i

}

≈ 1
L

5. σ2
x,a→i = σ2

x,∗→i .

Conditions 1, 2, 3 and 4 impose tight restrictions on the sensing matrix. These are
an indication why BAMP is not applicable “out of the box” to many compressed
sensing problems, specifically those where the sensing matrix is predetermined by
the problem and cannot be designed. Condition 5 requires that

σ2
wb

+ σ2
z,b→i ≈ σ2

w∗
+ σ2

z,∗→i , (2.58)

which amounts to requiring the noise variances σ2
w,a and also σ2

z,a→i to be at least
approximately independent of a, which is assumed due to the form of (2.41) [23].
An extension towards variable noise variance σ2

w,a is presented in Section 2.6.

For now, only expressions of the “local” means and variances have been derived.
Using these, (2.45) can be written as

mi→a(xi) = mk→i(xi)Nx,i(µ
(l)
x,i→a, σ

2(l)
x,i→a) (2.59)

≈ mk→i(xi)Nx,i(µ
(l)
x,i→a, σ

2(l)
x,i ) . (2.60)
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Approximating Message Passing Compressed Sensing: Reconstruction

The message mi→a(xi) cannot be represented by a normal distribution in many
cases. Whether this is possible depends on the form of mk→i(xi) (cf. (2.45)) and
thus on the prior factor fxk(xk). However, since computation of ma→i(xi) merely
requires the mean and variance of mi→a(xi), it is sufficient to pass these parameters
instead of the function-valued message. They are obtained by the functions Fi(. . . )

and Gi(. . . ), which depend on µ
(l)
x,i→a, σ

2(l)
x,i and mk→i(xi) :

µx,i→a = Fi(. . . ) =
1

Z

∫

ximk→i(xi)Nx(µ
(l)
x,i→a, σ

2(l)
x,i→a)dxi (2.61)

σ2
x,i→a = Gi(. . . ) =

1

Z

∫

x2imk→i(xi)Nx,i(µ
(l)
x,i→a, σ

2(l)
x,i→a)dxi − µ2

x,i→a , (2.62)

where Z is a normalization term. Note that the dependency on the target fac-
tor node a is introduced by the functions’ arguments. For K = N the message
mk→i(xi) is the prior fx,i(xi), which is one-dimensional in that case.
There are two more messages which have so far not been discussed, namely the
message from variable node to prior factor (2.35) and from prior factor to variable
node (2.35). If K = N , the message from variable node to prior factor is not needed
and the message from prior factor to variable node is the prior factor itself (this can
be verified using the message passing rules (2.28), (2.29)). For multi-dimensional
priors they need to be taken into account, however.
The message from variable node with index i to prior factor node with index
k, mi→k(xi) is similar to the product-term in (2.34). It is a product of normal
distributions and as such again Gaussian. Mean and variance are given by (cf.
(2.48), (2.49))

1

σ2
x,i→k

=
∑

a

1

σ2
x,a→i

(2.63)

µx,i→k = σ2
x,i→k

∑

a

µx,a→i

σ2
x,a→i

. (2.64)

There are two differences between (2.63), (2.64) and (2.48), (2.49): firstly the
message’s target, which is the prior factor node with index k instead of the matrix
factor with index a and secondly the fact that the sum ranges over all messages
ma→i. These messages can be computed in a simplified way if the assumptions 1
to 5 on p.13 are justified. Repeating the process outlined in (2.50) to (2.57) results
in

σ2
x,i→k =

σ2
x,∗→i

L
(2.65)

≈ σ2
w∗

+ σ2
z,∗→i (2.66)

µx,i→k = σ2
x,i→k

∑

a

µx,a→i

σ2
x,∗→i

(2.67)

≈ σ2
x,i→k

∑

a

L(Aa,iµz,a→i)

Lσ2
x,i→k

(2.68)
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Compressed Sensing: Reconstruction Approximating Message Passing

=
∑

a

Aa,iµz,a→i . (2.69)

In fact, for the approximated values it is obvious that

σ
2(l)
x,i→a = σ2

x,i→k (2.70)

µ
(l)
x,i→a = µx,i→k −Aa,iµz,a→i . (2.71)

The message from prior factor node to variable node mk→i(xi) is the marginal
w.r.t. the target variable. It is computed as

mk→i(xi) =

∫

· · ·
∫

j 6=i
fxk(xk)

∏

j∈∂k\i

mj→k(xj)dxj . (2.72)

The messages mi→k are normal distributions with parameters µx,i→k, σ
2
x,i→k. In-

serting (2.72) into (2.61), (2.62) results in

µx,i→a = Fi(. . . ) =
1

Z

∫

· · ·
∫

xifxk(xk)Nxk(xk;µ
(l),σ2(l))dxk (2.73)

σ2
x,i→a = Gi(. . . ) =

1

Z

∫

· · ·
∫

x2i fxk(xk)Nxk(xk;µ
(l),σ2(l))dxk − µ2

x,i→a , (2.74)

where Z =

∫

· · ·
∫

fxk(xk)Nxk(xk;µ
(l),σ2(l))dxk . (2.75)

The functions F , G and Z depend on the arguments (µ(l),σ2(l)). The dependency
on the message’s target is introduced by these arguments. Let the κk-dimensional
prior factor node fxk(xk) depend on the random variables

xk = (xj , xj+1, . . . , xi, . . . , xj+κk−1)
T . (2.76)

Then, strictly following the message passing rules, the normal distributionN (µ,σ2)
in (2.73)-(2.75) has parameters

µ(l) = (µx,j→k, µx,j+1→k, . . . , µ
(l)
x,i→a, . . . , µx,j+κk−1→k)

T (2.77)

σ2(l) = (σ2
x,j→k, σ

2
x,j+1→k, . . . , σ

2(l)
x,i→a, . . . , σ

2
x,j+κk−1→k)

T . (2.78)

Note that the values µx,i→k, σ
2
x,i→k depend on the incoming message from the target

of (2.73), (2.74) (which is the matrix factor node with index a). It is desirable to
remove such feedback. The parameters µ(l), σ2(l) should thus be entirely composed

of µ
(l)
x,i→a, σ

2(l)
x,i→a, which take the target (i.e. the matrix factor node with index a)

into account by excluding its message, avoiding feedback (cf. (2.71)).
In conclusion, the functions Fi(. . . ) and Gi(. . . ) for multi-dimensional priors are
defined by (2.73), (2.74). The computation of the message mi→k can be omitted by

reusing the values µ
(l)
x,i→a, σ

2(l)
x,i→a. This has the side effect of improving the resulting

algorithm. Due to the multi-dimensional prior, the functions Fi(. . . ) and Gi(. . . )
are considerably more complicated than in the case of i.i.d. variables xi.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Approximating Message Passing Compressed Sensing: Reconstruction

2.5.2 Vectorization

The message passing approximation outlined in Section 2.5.1 can be implemented
more easily compared to a function-valued message passing algorithm. For some
problems, it is useful to further simplify the algorithm. Due to the graph’s struc-
ture, a number of L × N messages need to be computed in each iteration. Since
L = ρN , this scales with O(N2). In this section, it shall be assumed that the
approximations 1 to 5 (p.13) hold and notation is simplified accordingly.
The means of messages between variable node and matrix factor node are given by
(2.40) and (2.73), repeated here for convenience:

µz,a→i = ya −
∑

j 6=i

Aa,jµx,j→a (2.79)

µx,i→a = Fi(. . . ) =
1

Z

∫

· · ·
∫

xifxk(xk)Nxk(µ
(l),σ2(l))dxk . (2.80)

The vector µ(l), which is the mean of the normal distribution Nxk(µ
(l),σ2(l)) con-

sists of entries (cf. (2.57))

µ
(l)
x,i→a =

∑

b 6=a

Ab,iµz,b→i (2.81)

at the ith position, with the index a given by the target matrix factor index in
(2.80). The goal is to achieve independence of the message’s target. Messages are
generally dependent on their target due to the fact that they exclude the message
received from the target. This again is due to the message passing rules of the
sum-product algorithm and can be thought of as feedback avoidance. It is not
possible to work with non-targeted messages however. It is easy to show that
this results in every node receiving and sending the same messages. Intuitively, as
long as each node knows the last message they sent to a particular target, they
can correct a non-targeted message using knowledge of their own message in the
previous iteration as well as the remote node’s way of operation. Such an approach
is described in the following paragraphs.
Messages can be decomposed into several parts. One of these parts is independent
of the target. The remaining terms consist of target-dependent terms, only one of
which is deemed significant, i.e.

µz,a→i = µz,a + δµz,a→i +O(1/N) (2.82)

µx,i→a = µx,i + δµx,i→a +O(1/N) (2.83)

µ
(l)
x,i→a = µ

(l)
x,i + δ

µ(l)
x,i→a +O(1/N) . (2.84)

In this section, the big-O-notation is used in the sense that

f(N) = O(g(N)) : lim
N→∞

E {|f(N)|} ≤ εg(N), ε ∈ R
+ , (2.85)
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Compressed Sensing: Reconstruction Approximating Message Passing

where g(N) = 1/N usually. Thus, terms that grow slower than ε/N (with ε ≈ 1) as
N becomes large are denoted O(1/N). The decomposition is performed by inserting
(2.82) to (2.84) into (2.79) to (2.81) and identifying terms based on their magnitude
and dependence on the message’s target:

µz,a→i = ya −
∑

j 6=i

Aa,jµx,j→a (2.86)

= ya −
∑

j

Aa,j(µx,j + δµx,j→a +O(1/N)) +Aa,i(µx,i + δµx,i→a +O(1/N))

(2.87)

= ya −
∑

j

Aa,j(µx,j + δµx,j→a)

︸ ︷︷ ︸
µz,a

+Aa,iµx,i
︸ ︷︷ ︸

δµz,a→i

(2.88)

−
∑

j

Aa,jO(1/N) +Aa,i(δ
µ
x,i→a +O(1/N))

︸ ︷︷ ︸

O(1/N)

(2.89)

µ
(l)
x,i→a =

∑

b 6=a

Ab,iµz,b→i (2.90)

=
∑

b

Ab,i(µz,b + δµz,b→i +O(1/N))−Aa,i(µz,a + δµz,a→i +O(1/N)) (2.91)

=
∑

b

Ab,i(µz,b + δµz,b→i)

︸ ︷︷ ︸

µ
(l)
x,i

−Aa,iµz,a
︸ ︷︷ ︸

δ
µ(l)
x,i→a

(2.92)

+
∑

b

Ab,iO(1/N)−Aa,iδ
µ
z,a→i −Aa,iO(1/N)

︸ ︷︷ ︸

O(1/N)

. (2.93)

Note that (2.91) is the decomposition of the arguments µ
(l)
x,i→a of F (. . . ). This gives

rise to a Taylor expansion of F (. . . ):

µx,i→a ≈ F (µ
(l)
x,i) + δ

µ(l)
x,i→a

∂F (µ
(l)
x,i)

∂µ
(l)
x,i

+O(1/N) (2.94)

= F (µ
(l)
x,i)

︸ ︷︷ ︸
µx,i

−Aa,iµz,a

∂F (µ
(l)
x,i)

∂µ
(l)
x,i

︸ ︷︷ ︸

δµx,i→a

+O(1/N) . (2.95)

The Taylor expansion is accurate for many functions F (. . . ) since δ
µ(l)
x,i→a is of

O(L−1/2) and thus much smaller than the argument µ
(l)
x,i. The expression (2.95)
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Approximating Message Passing Compressed Sensing: Reconstruction

is the decomposition for one-dimensional prior factors, i.e. K = N . For multi-

dimensional priors, the function F (. . . ) depends on multiple local means µ
(l)
x,i→a,

each with its decomposition according to (2.91):

µx,i→a ≈ Fi(µ
(l)
xk ) +

∑

j∈K

δ
µ(l)
x,j→a

∂Fi(µ
(l)
xk )

∂µ
(l)
xj

+O(1/N) (2.96)

= Fi(µ
(l)
xk )

︸ ︷︷ ︸
µx,i

−
∑

j∈K

Aa,jµz,a
∂Fi(µ

(l)
xk )

∂µ
(l)
xj

︸ ︷︷ ︸

δµx,i→a

+O(1/N) . (2.97)

In (2.97), the set K contains all indices j of variables xj that appear in the vector
xk (i.e. variables that depend on the same prior factor). It remains to insert the
various terms at the appropriate places. The goal is to have expressions that only
depend on µz,a and µx,i. Starting with (2.91), substitution yields

µ
(l)
x,i =

∑

b

Ab,i(µz,b + δµz,b→i) (2.98)

=
∑

b

Ab,iµz,b +
∑

b

Ab,iAb,iµx,i (2.99)

=
∑

b

Ab,iµz,b + µx,i

∑

b

A2
b,i

︸ ︷︷ ︸

=1

. (2.100)

In (2.100), the second sum evaluates to one due to normalized columns of A. The
expression can be written as

µ
(l)
x = ATµz + µx . (2.101)

Continuing with (2.87), substitution yields (for K = N)

µz,a = ya −
∑

j

Aa,j(µx,j + δµx,j→a) (2.102)

= ya −
∑

j

Aa,jµx,j +
∑

j

Aa,jAa,jµz,a

∂F (µ
(l)
x,j)

∂µ
(l)
xj

(2.103)

= ya −
∑

j

Aa,jµx,j + µz,a

∑

j

A2
a,j
︸︷︷︸

≈1/L

∂F (µ
(l)
x,j)

∂µ
(l)
xj

(2.104)

≈ ya −
∑

j

Aa,jµx,j +
µz,a

L

∑

j

∂F (µ
(l)
x,j)

∂µ
(l)
xj

. (2.105)

The approximation A2
a,j ≈ 1/L can be omitted at the cost of an additional matrix-

vector multiplication per iteration. Note that µz,a which appears in (2.105) is the
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Compressed Sensing: Reconstruction Approximating Message Passing

previous iteration’s value. This is indicated using the iteration index [t] in the
vector-valued expression

µ
[t]
z = y −Aµx + µ

[t−1]
z ⊗

(

B diag(∇F (µ
(l)
x ))

)

. (2.106)

In (2.106), the operator ⊗ denotes component-wise multiplication, i.e. in c = a⊗b,
the vector c is composed of entries ci = aibi. The matrix B has entries Ba,i = A2

a,i.

The expression ∇F (µ
(l)
x ) evaluates to the Jacobian of F (. . . ), whose diagonal has

entries

diag(∇F (µ
(l)
x ))i =

∂F (µ
(l)
x,i)

∂µ
(l)
x,i

. (2.107)

If the approximation A2
a,i ≈ 1/L is applied, (2.106) becomes

µz = y −Aµx +
1

L
µz

(

1
T
N diag(∇F (µ

(l)
x ))

)

(2.108)

= y −Aµx +
µz

L

∑

i

∂F (µ
(l)
x,i)

∂µ
(l)
x,i

. (2.109)

The notation used in (2.106) and (2.108) uses F (. . . ) as a vector-valued function,
i.e. its argument and results are both N -dimensional vectors. However both ex-
pressions still only apply to one-dimensional (K = N) prior factors. Each row of

F (µ
(l)
x ) is a scalar-valued function with the scalar argument µ

(l)
x,i:

F (µ
(l)
x ) =









F1(µ
(l)
x,1)

F2(µ
(l)
x,2)

...

FN (µ
(l)
x,N )









. (2.110)

In case the xi are not identically distributed (but still independent, i.e. the prior
fx(x) can be fully factored, K = N), then Fi(. . . ) are different functions. For
multi-dimensional prior factors fxk(xk), the expression δµx,i→a from (2.97) must be
inserted into (2.88). The derivation is conceptually similar to (2.105), however
there is an additional sum over j ∈ K involved:

µz,a = ya −
∑

i

Aa,i(µx,i + δµx,i→a) (2.111)

= ya −
∑

i

Aa,iµx,i +
∑

i

Aa,i

∑

j∈K

Aa,jµz,a
∂Fi(µ

(l)
xk )

∂µ
(l)
xj

(2.112)

= ya −
∑

i

Aa,iµx,i + µz,a

∑

i

Aa,i

∑

j∈K

Aa,j
∂Fi(µ

(l)
xk )

∂µ
(l)
xj

. (2.113)
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Approximating Message Passing Compressed Sensing: Reconstruction

The expression (2.113) can be simplified if E {Aa,iAa,j} |j 6=i = 0:

µz,a = ya −
∑

i

Aa,iµx,i + µz,a

∑

i

A2
a,i

∂Fi(µ
(l)
xk )

∂µ
(l)
x,i

(2.114)

+ µz,a

∑

i

∑

j∈K\i

Aa,iAa,j
∂Fi(µ

(l)
xk )

∂µ
(l)
xj

︸ ︷︷ ︸

≈0

. (2.115)

Finally, using E{A2
a,i} ≈ 1/L, it is possible to write (2.114) as

µz,a = ya −
∑

i

Aa,iµx,i +
µz,a

L

∑

i

∂Fi(µ
(l)
xk )

∂µ
(l)
x,i

(2.116)

(2.117)

or, using vector-valued notation,

µ
[t]
z = y −Ax+

µ
[t−1]
z

L

∑

i

∂Fi(µ
(l)
xk )

∂µ
(l)
x,i

. (2.118)

2.5.3 Algorithm

Corresponding to the two main steps in the derivation of approximate message
passing, namely approximation by Gaussian functions and vectorization, two re-
construction algorithms can be formulated. The Gaussian message passing algo-
rithm for multi-dimensional priors (MD-GMP) does not include the vectorization
approximation. It is listed in Appendix A, p.113 as Algorithm 6. The approxi-
mate message passing algorithm for multi-dimensional priors is listed on p.114 as
Algorithm 7. It uses both Gaussian approximation and vectorization which results
in a computationally more efficient algorithm.

Note that MD-GMP is a message passing algorithm, it computes targeted messages.
MD-BAMP on the other hand computes local states, using these instead of targeted
messages to calculate updates and compensates for the error with a first-order
Taylor expansion. The complexity of MD-GMP thus scales with the number of
edges in the graph, while MD-BAMP seemingly scales with the number of nodes.
This is not entirely true though – the complexity of MD-BAMP is still O(NL) due
to the matrix-vector multiplications. Furthermore, many expressions in MD-GMP
are similar and can be computed efficiently.

The algorithm listing for MD-GMP is longer than for MD-BAMP mostly since
a state update for the estimation of x as well as targeted messages have to be
computed in each iteration. Furthermore, variance tracking is more complex.
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Compressed Sensing: Reconstruction Approximating Message Passing

2.5.4 State Evolution

The behavior of classical approximate message passing [23] for large dimension
N,L→∞ is characterized by a framework called state evolution [3, 24]. An exten-
sion of state evolution which applies to signals with multivariate priors, yielding
non-separable denoisers, can be found in [5]. The proof holds for Lipschitz contin-

uous functions F . For finite entries of σ
2(l)
xk and fxk(xk) a pdf with limited second

order moments, these functions are always Lipschitz, i.e.

∥
∥F (µ1, σ

2)− F (µ2, σ
2)
∥
∥
2
≤ K ‖µ1 − µ2‖2 , (2.119)

with the Lipschitz constant

K = sup
v,µ

∣
∣vTdiag(∇F (µ, σ2))

∣
∣ <∞ ‖v‖2 = 1, σ2 > 0 . (2.120)

This can be shown using the mean value theorem. State evolution for MD-BAMP
is defined by the recursion

σ2
x,[t] = E

{
1

κk

∥
∥
∥F (x0 + σ

(l)
x,[t−1]n)− x0

∥
∥
∥

2

2

}

(2.121)

σ
2(l)
x,[t] = σ2

w + ρ−1σ2
x,[t] = σ2

w + σ2
z , (2.122)

where n is a random vector whose entries ni are distributed according to the stan-
dard normal distribution and x0 is the true value of the random vector x.
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BAMP for Variable Measurement Noise Compressed Sensing: Reconstruction

2.6 BAMP for Variable Measurement Noise

Motivation. In many practical settings, measurement noise is involved, e.g. in
applications like compressive imaging or compressed coded transmission systems
[52, 8]. In many of these applications, measurement noise is not i.i.d. Another
practically important case is that of compressive sensing systems with measurement
matrices where the rows are scaled by individual scaling factors sa. In this case,
the variance of the sensing matrice’s entries depends on the row and is in general
different from L−1. A simple linear transformation in the form of a diagonal matrix
T with entries Ta,a = s−1

a applied to the measurements and the sensing matrix
transforms the problem such that it satisfies the requirements of MD-BAMP. The
entries of the noise vector w are then scaled and the noise appears to have variable
variance.

Prior work. The noise sensitivity of CS systems in presence of i.i.d. noise has
been discussed extensively for linear measurements of sparse signals [25] and more
generally in [66]. While the literature deals with a range of special types of noise,
such as in 1-bit compressive sensing [15] and general noisy quantized CS [70], mea-
surement noise is usually assumed to be i.i.d. and algorithms do not exploit more
detailed noise models. The MD-GMP algorithm as well as GMP for i.i.d. entries
of x (which can be extracted from the derivation of AMP in [43], for example)
intrinsically allow for variable (although not correlated) measurement noise, due
to the fact that they track the variances of each message separately. These algo-
rithms have high computational complexity, however. It is thus desirable to find
a method that is both fast and enables the use of detailed information about the
structure of the noise. The algorithm, its derivation, discussion and simulation as
well as state evolution are novel results that were first published in the Proceed-
ings of the 26th European Signal Processing Conference (EUSIPCO-2018) in 2018,
published by EURASIP [7]. The algorithm published at EUSIPCO was formulated
as extension for classical Bayesian AMP while this section extends MD-BAMP.
Furthermore, a new, simple formalism allowing for correlated noise is presented in
this section.

Derivation. In order to perform vectorization in Section 2.5, the dependence of
σ2
x,i→a on a was dropped in (2.50). Implicitly, this also introduced the requirement

that σ2
w,a = σ2

w, i.e. that all noise variances are equal. Since this assumption is
restrictive, this section shall discuss a modified version of MD-BAMP that is able
to handle variable measurement noise.
In this section, the noise vector w is assumed to be distributed according to

w ∼
∏

a

N (0, σ2
w,a) . (2.123)

For the derivation it is assumed that the number of different noise variances might
be smaller than L. It shall be shown that this allows for minimization of compu-
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Compressed Sensing: Reconstruction BAMP for Variable Measurement Noise

tational complexity. Thus, |V| different variances σ2
w,a are presumed to exist. The

set V is a set of sets, i.e.

V = {W1,W2, . . . ,WK} , (2.124)

with a set Wk containing all random variables wa with identical variance. The
variance of variables inWk shall be denoted σ2

w,k. Equivalently, and slightly abusing
notation, the set Wk contains all indices a for which the random variables wa

have identical variance σ2
w,k. Subsequently, the derivation of Bayesian approximate

message passing for variable noise variance (BAMP-VN) is presented. The message
passing rules as well as the message’s Gaussian approximation are identical to the
one presented in Section 2.5. For the variances, an iteration according to the
message passing rules is defined in (2.48), (2.62) and (2.41), repeated here for
convenience:

σ
2(l)
x,i→a =




∑

b 6=a

1

σ2
x,b→i





−1

=




∑

b 6=a

A2
b,i

σ2
z,b→i + σ2

w,b





−1

(2.125)

σ2
x,i→a = G(µ

(l)
x,i→a, σ

2(l)
x,i→a) (2.126)

σ2
z,a→i =

∑

j 6=i

A2
a,jσ

2
x,j→a . (2.127)

Using A2
a,i ≈ L−1 again (cf. (2.52) and condition 5 on p.13), it is possible to write

σ
2(l)
x,i→a ≈ L




∑

b 6=a

1

σ2
z,b→i + σ2

w,b





−1

(2.128)

σ2
z,a→i ≈

1

L

∑

j 6=i

σ2
x,j→a . (2.129)

Again it is assumed that all σ2
z,a→i and σ2

x,i→a are approximately equal. Then,

σ2
z,a→i ≈ σ2

z =
N − 1

NL

∑

i

σ2
x,i ≈

1

L

∑

i

σ2
x,i (2.130)

σ
2(l)
x,∗→a = L

(
∑

b

1

σ2
z + σ2

w,b

− 1

σ2
z + σ2

w,a

)−1

(2.131)

≈ σ
2(l)
x = L

(
∑

a

1

σ2
z + σ2

w,a

)−1

. (2.132)

Let L ≫ 1, then the step from (2.131) to (2.132) is a valid approximation. The
omitted term is small compared to the |Wk| − 1 identical terms remaining in the
sum. The biggest approximation error happens if σ2

w,a = 0, i.e. a particular mea-
surement sample ya is unaffected by noise. The approximation (2.132) is then
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BAMP for Variable Measurement Noise Compressed Sensing: Reconstruction

overly “optimistic”, i.e. the estimated value of σ
2(l)
x is too small. Identical noise

variances can be used to minimize computational cost. Expression (2.132) can be
written as

σ
2(l)
x = L




∑

Wk∈V

∑

b∈Wk

1

σ2
w,k + σ2

z





−1

(2.133)

= L




∑

Wk∈V

|Wk|
σ2
k





−1

, (2.134)

with σ2
k = σ2

w,k+σ2
z . Note that (2.134) only requires |V|+1 divisions. If |Wk| ≫ 1,

then due to
∑

k |Wk| = L, |V| needs to be small and thus the computational
complexity is low.
For expectations, one message passing iteration is defined by (2.40), (2.46) and
(2.57), repeated here:

µz,a→i = ya −
∑

j 6=i

Aa,jµx,j→a (2.135)

µx,a→i =
µz,a→i

Aa,i
≈ L(Aa,iµz,a→i) (2.136)

µ
(l)
x,i→a = σ

2(l)
x,i→a

∑

b 6=a

µx,b→i

σ2
x,b→i

(2.137)

≈ σ
2(l)
x,i→a

∑

b 6=a

L(Aa,iµz,a→i)

L(σ2
z + σ2

w,a)
. (2.138)

Writing the sum in (2.138) in terms of Wk results in

µ
(l)
x,i→a ≈

σ
2(l)
x

L




∑

Wk∈V

∑

b∈Wk

µx,b→i

σ2
w,b + σ2

z

− µx,b→i

σ2
w,a + σ2

z



 (2.139)

=
σ
2(l)
x

L




∑

Wk∈V

1

σ2
k

∑

b∈Wk

µx,b→i −
µx,a→i

σ2
w,a + σ2

z



 (2.140)

≈ σ
2(l)
x




∑

Wk∈V

1

σ2
k

∑

b∈Wk

Ab,iµz,b→i −
Aa,iµz,a→i

σ2
w,a + σ2

z



 . (2.141)

While the variances have already lost their “targeted” message-passing character
(cf. (2.130), (2.132)), expectations are still updated using message-passing rules,
requiring computation of LN values in each iteration. Similarly to (2.84), the
message (2.141) is dissected:

µ
(l)
x,i→a = µ

(l)
x,i + δ

µ(l)
x,i→a +O(1/N) , (2.142)
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Compressed Sensing: Reconstruction BAMP for Variable Measurement Noise

using µz,a→i = µz,a + δµz,a→i +O(1/N):

µ
(l)
x,i→a =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,i(µz,b + δµz,b→i +O(1/N))

− σ
2(l)
x

σ2
k

Aa,i(µz,a + δµz,a→i +O(1/N))

=
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,i(µz,b + δµz,b→i)

︸ ︷︷ ︸

µ
(l)
x,i

(2.143)

−σ
2(l)
x

σ2
k

Aa,iµz,a

︸ ︷︷ ︸

δ
µ(l)
x,i→a

+ . . .
︸︷︷︸

O(1/N)

. (2.144)

Again, terms of magnitude O(1/N) are neglected, thereby approximating message
passing. Furthermore, since δµz,a→i = Aa,iµx,i (cf. (2.88)), (2.143) can be reformu-
lated as

µ
(l)
x,i =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b +
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

A2
b,i

︸︷︷︸

≈L−1

µx,i (2.145)

=
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b + µx,i
σ
2(l)
x

L

∑

Wk∈V

|Wk|
σ2
k

. (2.146)

Developing (2.146) by taking into account (2.134), σ
2(l)
x cancels down and thus

µ
(l)
x,i =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b + µx,i (2.147)

with µ′
z,a =

σ
2(l)
x

σ2
k

µz,a , a ∈ Wk (2.148)

µ
(l)
x = ATz′ + µx . (2.149)

The expression (2.147) is similar to µ
(l)
x = ATz + µx in MD-BAMP and indeed

identical for |V| = 1 (i.e. identical noise variances). It remains to deploy the term

δ
µ(l)
x,i→a from (2.144) in the expression for µx,i→a:

µx,i→a ≈ F (µ
(l)
x,i, σ

2(l)
x ) + δ

µ(l)
x,i→a

∂F (µ
(l)
x,i, σ

2(l)
x )

∂µ
(l)
x,i

+O(1/N) (2.150)
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BAMP for Variable Measurement Noise Compressed Sensing: Reconstruction

= F (µ
(l)
x,i, σ

2(l)
x )

︸ ︷︷ ︸
µx,i

−µ′
z,aAa,i

∂F (µ
(l)
x,i, σ

2(l)
x )

∂µ
(l)
x,i

︸ ︷︷ ︸

δµx,i→a

+O(1/N) . (2.151)

Finally, δµx,i→a appears in µz,a:

µz,a = ya −
∑

j

Aa,j(µx,j + δµx,j→a) (2.152)

= ya −
∑

j

Aa,jµx,j +
∑

j

A2
a,jµ

′
z,a

∂F (µ
(l)
x,j , σ

2(l)
x )

∂µ
(l)
x,j

(2.153)

= ya −
∑

j

Aa,jµx,j +
µ′
z,a

L

∑

j

∂F (µ
(l)
x,j , σ

2(l)
x )

∂µ
(l)
x,j

. (2.154)

For multi-dimensional priors, the steps (2.150)-(2.154) are analogous to (2.111)-
(2.118) with µz,a replaced by µ′

z,a as defined in (2.148).

2.6.1 Correlated Noise

Certain problems might exhibit correlated noise. Let E {w} = 0, then C =
E
{
wwT

}
is not diagonal if the entries of w are correlated. It is tempting to

use a whitening transformation to decorrelate w, however this would change the
statistics of the sensing matrix A: let

w = Uu , (2.155)

where u is a zero-mean random vector with E
{
uuT

}
= I and U describes a (rank-

preserving) linear transformation. The covariance matrix of w is

C = E
{
wwT

}
= UUT , (2.156)

with Eigenvalue decomposition

C = V ΛV H = DDT (2.157)

D = V Λ
1
2 . (2.158)

Attempting to whiten the noise results in the vector

v = D−1y = D−1Ax+D−1w , (2.159)

which is the output of a compressive sensing problem where the measurements are
affected by white noise. This transformation changes the statistics of A because
Λ

1
2 is a diagonal real matrix with varying entries

√
λa. The of rows of A′ =

D−1A would exhibit entries of possibly different variance σ2
A,a,i 6= σ2

A,b,i and also
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Compressed Sensing: Reconstruction BAMP for Variable Measurement Noise

σ2
A,a,i 6= L−1. The solution is to use a Karhunen-Loève transformation (KLT) i.e.

multiplying with the (unitary) matrix V −1 = V T :

v = V Ty = V TAx+ V Tw . (2.160)

By setting B = V TA and n = V Tw the CS problem can be written as

v = Bx+ n , (2.161)

where the variance of the transformed noise n is

E
{
nnT

}
= E

{
V TwwTV

}
= E

{
V TUuuTUTV

}
(2.162)

= V TU E
{
uuH

}

︸ ︷︷ ︸

I

UTV = V TV ΛV TV (2.163)

= Λ . (2.164)

Since Λ is diagonal, the transformed CS problem (2.161) can be solved using the
method described in this section.

2.6.2 Algorithm

The algorithm for Bayesian approximate message passing with variable measure-
ment noise is listed in Appendix A, p.115 as Algorithm 9. This algorithm assumes
that the noise samples wa are independent of each other as well as x, A and (thus
also) from y but allows for different variances of each wa. The operation of the
algorithm can be explained intuitively by regarding the modification of µz as a
weighting procedure: noisier, and thus, less reliable entries of µz are multiplied

with a smaller factor σ
2(l)
x /(σ2

w,a + σ2
z ) than more reliable entries, for which the

noise variance σ2
w,a is smaller.

2.6.3 State Evolution

For regular MD-BAMP, the variance σ
2(l)
x at the input of the denoiser is defined by

(2.122), i.e. the sum of the average noise variance σ2
w and the variance σ2

z . In case

of variable noise, the variance σ
2(l)
x is computed according to (2.134). The state

evolution step defined by (2.122) therefore needs to be adjusted and a full state
evolution iteration reads

σ
2(l)
x,[t] = L




∑

Wk∈V

|Wk|
σ2
w,k + ρ−1σ2

x,[t−1]





−1

(2.165)

= L




∑

Wk∈V

|Wk|
σ2
w,k + σ2

z,[t−1]





−1

(2.166)

σ2
x,[t] = E

{
1

κk

∥
∥
∥F (x0 + σ

(l)
x,[t−1]n)− x0

∥
∥
∥

2

2

}

. (2.167)
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction

2.7 BAMP for Non-Zero-Mean A

Motivation. The measurement matrix might be affected by a mean. In cer-
tain systems a nonzero-mean matrix could simplify hardware implementations,
e.g. when it is possible to design the matrix, as is the case for compressed channel
codes. A Walsh-Hadamard transform with a suitably chosen matrix mean does
not need subtractions, for example. In other cases, it might not be possible to
design the measurement matrix at all, because it is defined by a physical system.
Sometimes, the sensing matrix can only be designed to a certain extent, as in com-
pressed image acquisition systems using digital light-processing (DLP) based on
micro-mirror devices [27]. In these systems, light from a certain region (a pixel)
can either be accumulated or discarded, yielding an acquisition matrix with entries
Ba,i ∈ {0, 1}.

Prior work. The problem of nonzero-mean sensing matrices has been examined
in several publications. Since neither the AMP algorithm nor most of its descen-
dants work for non-zero-mean sensing matrices A, adapted algorithms have been
proposed. In [60], mean removal is used in conjuction with an adaptive damp-
ing technique to stabilize the generalized approximate message passing (GAMP)
algorithm [49]. While the modified GAMP algorithm is usable for more general
ill-conditioned measurement matrices, it is still sensitive to the matrix mean. Fur-
thermore, not even the Gaussian message passing algorithm converges for non-zero-
mean A. Reconstruction is possible using GMP with a modified message passing
schedule [16]. GMP is much slower than AMP, however. Another promising al-
gorithm is vector AMP (VAMP), which is stable for a wider variety of sensing
matrices [50] but requires computation of an economy SVD of the sensing matrix.
It is thus desirable to find an approximate message passing algorithm for the case of
nonzero-mean sensing matrix. A subset of the novel results from this section was
first presented at the 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) [10]. This section extends the algorithm towards
multi-dimensional priors and offers a more detailed derivation.

System analysis. One possible explanation as to why GMP does not converge
is the fact that already the simplification of ma→i(xi) with a Gaussian distribution
is not possible anymore. Let

cj = Ba,jxj , (2.168)

za,i = ya −
∑

j 6=i

cj , (2.169)

with B the sensing matrix. For E {Ba,i} = 0,

E {ya} = 0 (2.170)

E {Ba,ixi} = 0 (2.171)
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Compressed Sensing: Reconstruction BAMP for Non-Zero-Mean A

E {cicj} |i 6=j = 0 , (2.172)

even for E {xi} 6= 0 and E {xixj} |i 6=j 6= 0. This is used in (2.41). For E {Ba,i} 6= 0,
the expressions (2.170) and (2.171) only hold if E {xi} = 0 and (2.172) requires
E {xixj} |i 6=j = 0. These conditions are satisfied by many simple CS problems (e.g.
the Bernoulli-Gaussian case). Any systematical estimation error of x is amplified
by the matrix mean, however. In the following paragraphs, the effect of the matrix
mean µB is examined in detail.

Consider the linear compressed sensing system

v = Bx+w , (2.173)

where B ∈ R
L×N with L < N . Again, x is an unknown vector and w measurement

noise. Furthermore, the noise is assumed to be i.i.d. Gaussian with zero mean and
independent of both B and x. In this section, it is assumed that the matrix B

consists of entries that are pairwise independent and obey

E {Ba,i} = µB (2.174)

E
{
(Ba,i − E {Ba,i})2

}
= L−1 . (2.175)

Equivalently, the matrix B can be written as

B = µB11
T +A , (2.176)

with E {Aa,i} = 0 and E
{
(Aa,i)

2
}
= L−1. The mean µB can be estimated with

sufficient precision and does not need to be known beforehand. Taking into account
this decomposition, (2.173) can be written as

v = (µB11
T +A)x+w (2.177)

= µB11
Tx+Ax+w

︸ ︷︷ ︸
y

(2.178)

= µB11
Tx+ y (2.179)

va =
∑

i

µBxi + ya = NµBx̄+ ya . (2.180)

In (2.180), the value x̄ is defined as

x̄ =
1

N

∑

i

xi , (2.181)

i.e. the arithmetic mean of x’s entries. Note that even if Ex {x̄} = 0, its variance is

σ2
x̄ = Ex

{
x̄2
}
=

1

N2

∑

i

∑

j

Ex {xixj} , (2.182)
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction

which is finite for finite N . Thus the expression NµBx̄ causes va to be different
from ya in general. The offset depends on the problem dimension N , the matrix
mean µB and the arithmetic mean of a particular sample vector x. Expectation
and variance of ya are

µya = E {ya} = E

{
∑

i

Aa,ixi + wa

}

(2.183)

=
∑

i

E {Aa,i}E {xi}+ E {wa} = 0 (2.184)

E {yayb} = E

{
(∑

i

Aa,ixi + wa

)(∑

j

Ab,jxj + wb

)
}

(2.185)

= E

{
(∑

i

∑

j

Aa,ixiAb,jxj

)
}

+ E {wawb} (2.186)

= I(a− b)

(

1

L

∑

i

E
{
x2i
}
+ E

{
w2
a

}

)

(2.187)

σ2
y,a =

1

L

∑

i

Px,i + σ2
w , (2.188)

with I(x) = 1 ⇐⇒ x = 0 and I(x) = 0 otherwise. In order to compare the
magnitude of σ2

x̄ and σ2
ya

, assume for the moment that E {xixj} |i 6=j = 0. Then,

σ2
ya

=
1

L

∑

i

Pxi + σ2
w (2.189)

σ2
x̄ =

1

N2

∑

i

Pxi . (2.190)

Keeping in mind that x̄ is scaled with the factor NµB, it becomes obvious that
offset of v from y can be comparable in magnitude to the standard deviation of
y for a particular instance of a CS problem. Therefore, assuming that v = y and
running AMP with A instead of B does not work well: it increases the effective
noise variance such that

σ2
w′ = σ2

w +N2µ2
Bσ

2
x̄ (2.191)

= σ2
w + µ2

B

∑

i

Pxi . (2.192)

It is possible to estimate y by removal of the the arithmetic mean of v, which is

v̄ =
1

L

∑

a

va =
1

L

∑

a

(NµBx̄+ ya) (2.193)

= NµBx̄+ ȳ . (2.194)
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Compressed Sensing: Reconstruction BAMP for Non-Zero-Mean A

Removing the arithmetic mean of v thus results in removal of both the (undesired)
effect of the matrix mean and the arithmetic mean of y. Since the latter should be
retained, mean removal is a trade-off. The variance of ȳ is

E {ȳ} = E

{

1

L

∑

a

ya

}

= 0 (2.195)

E
{
ȳ2
}
= E

{

1

L2

∑

a

∑

b

yayb

}

(2.196)

=
1

L2

∑

a

(

1

L

∑

i

Px,i + σ2
w

)

=
1

L
σ2
y,a , (2.197)

while the moments of x̄ are

E {x̄} = E

{
1

N

∑

xi

}

=
1

N

∑

i

µx,i (2.198)

E
{
x̄2
}
= E







1

N2

∑

i

∑

j

xixj






=

1

N2

∑

i,j

(Rx)i,j . (2.199)

For i.i.d., zero mean xi, the undesired term NµBx̄ therefore has a variance of
µ2
BNσ2

x while ȳ has a variance of σ2
xN/L2 in the noiseless case. For significant µB,

removing the mean of v is therefore desirable.
In the noiseless case, the arithmetic mean of y is zero only if the columns of A

have an arithmetic mean of zero. This can be used when the problem permits a
custom design of the sensing matrix: choosing the matrix such that its columns
have an arithmetic mean of zero makes it possible to compute y from v in the
noiseless case. The same can be achieved in the presence of noise if the CS problem
permits measurement of the arithmetic mean of x. In all other cases, subtracting
the arithmetic mean from v to obtain y results in an estimation error which is
moreover correlated with x. The error ε can be written as

ε = ya − ŷa = ya − (va − v̄) = −µB

∑

i

xi + v̄ (2.200)

=
1

L

(
∑

i

xi
∑

a

Aa,i +
∑

a

wa

)

= ȳ . (2.201)

The variance of the estimation error is thus given by (2.197) and the effective
signal-to-noise ratio (SNR) is thus1

SNReff
dB = 10 log10

(

E
{
y2a
}

E {ε2}

)

= 10 log10

(

σ2
y,a

σ2
ε

)

(2.202)

1The characterization of the estimation error ε as noise is highly inaccurate – all of its samples
are identical and depend on x, A and w. Modeling it as noise is merely useful to obtain a rough
estimate of the quality of results that can be expected when using mean removal.
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction

= 10 log10

(

σ2
y,a

L−1σ2
y,a

)

= 10 log10(L) . (2.203)

It is therefore possible to apply MD-BAMP to a modified noiseless CS problem
where the mean of v and B were removed by setting the noise variance to L−2 ‖y‖22.
It shall be shown below that this stabilizes MD-BAMP for the modified problem
and that MD-BAMP follows the convergence predicted by regular state evolution
with the noise variance set accordingly. Achievable signal-to-distortion ratio (SDR)
of the recovered signal is limited, especially for low-dimensional problems (N ≈ 103)
and low-rate CS (δ = 10−3, N = 105 =⇒ SNReff

dB = 20dB).

Since the BAMP derivation fails at an early stage, the case of non-zero-mean
sensing matrix A shall be incorporated as modification of the original algorithm.
This has multiple advantages: on the one hand the resulting modification can be
applied to existing, BAMP-based algorithms and on the other hand, a number of
theoretical results regarding the performance of BAMP under various conditions
can be reused with slight modifications. The disadvantage is that any optimizations
that are possible due to the non-zero mean of the matrix are lost.

In the following derivation, the dependence of the error term ε on x shall be
exploited to yield optimal recovery in the AMP regime. For the remaining analysis,
assume that

x̄ =
1

N

∑

i

xi 6= 0 (2.204)

ri =
∑

a

Aa,i 6= 0 , (2.205)

as well as unknown x̄. The arithmetic mean of x effects the original BAMP algo-
rithm as per (2.179). This modification is depicted in a graphical model shown in
Fig. 2.2. Note that the setup is similar to GAMP with the crucial difference that
the factors fvy,a depend on x via x̄.

Factor fvy,a. The factors fvy,a represent the dependency between va, ya and x̄

(and optionally the noise wa). In the noiseless case, it is

fvy,a(x̄, ya) = δ(va −NµBx̄− ya) . (2.206)

For Gaussian noise with parameters µw,a = 0 and σ2
w,a > 0 the factor reads

fvy,a(x̄, ya) ∝ exp

(

− 1

2σ2
w,a

(va −NµBx̄− ya)
2

)

. (2.207)

Factor fx̄. This factor describes the relationship between x̄ and x. Here, x̄ is
an auxiliary variable. It is possible to get rid of it by introducing dependencies
between the factors fvy,a and x. Note that this results in adding O(NL) edges
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Compressed Sensing: Reconstruction BAMP for Non-Zero-Mean A

y1

fvy,1

v1

fA1

y2

fvy,2

v2

fA2

y3

fvy,3

v3

fA3

y4

fvy,4

v4

fA4

y5

fvy,5

v5

fA5

x1 x2 x3 x4 x5 x6 x7 x8 x9

fx1 fx2 fx3

x̄

fx̄

Figure 2.2: Example of a graphical model describing a CS problem with a nonzero-
mean sensing matrix B. New edges have been emphasized. There are K = 3
factors of fx(x), N = 9 unknown variables xi and L = 5 known variables va.

while with auxiliary variable only O(N + L) edges are necessary. The factor fx̄ is
given as

fx̄(x̄,x) = δ

(

x̄− 1

N

∑

i

xi

)

. (2.208)

Messages. The message passing rules of the sum-product algorithm can be used
to derive expressions of messages along the newly introduced edges. There are
eight new messages:

• mvy→y,a(ya), from factor node fvy,a to ya,

• my,a→vy(ya), from variable node ya to fvy,a,

• mvy→x̄(x̄), from factor node fvy,a to x̄,

• mx̄→vy(x̄), from variable node x̄ to fvy,a,

• mx̄→f,x̄(x̄), from variable node x̄ to fx̄,

• mf,x̄→x̄(x̄), from factor node fx̄ to x̄,
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction

• mf,x̄→x,i(xi), from factor node fx̄ to xi,

• mx,i→f,x̄(xi), from variable node xi to fx̄.

Following the message passing rules (cf. (2.28), (2.29)), one obtains

mvy→y,a(ya) =

∫

x̄

fvy,a(x̄, ya)mx̄→vy(x̄)dx̄ (2.209)

my,a→vy(ya) = mf,a→y,a(ya) (2.210)

mvy→x̄(x̄) =

∫

x̄

fvy,a(x̄, ya)my,a→vy(ya)dya (2.211)

mx̄→vy,a(x̄) = mf,x̄→x̄(x̄)
∏

b 6=a

mvy,b→x̄(x̄) (2.212)

mx̄→f,x̄(x̄) =
∏

a

mvy,a→x̄(x̄) (2.213)

mf,x̄→x̄(x̄) =

∫

x

fx̄(x̄,x)
∏

i

mx,i→f,x̄(xi)dx (2.214)

mf,x̄→x,i(xi) =

∫

j 6=i

∫

x̄

fx̄(x̄,x)mx̄→f,x̄(x̄)dx̄
∏

j 6=i

mx,i→f,x̄(xi)dxj (2.215)

mx,i→f,x̄(xi) = mf,x,i→xi(xi)
∏

a

mf,a→x,i(xi) . (2.216)

Not all messages are required to achieve convergence. Fig. 2.2 shows that it is
possible to interpret the factor fx̄ and variable x̄ as a new row in the sensing
matrix. It does not correspond to any measured value va, however, contrary to the
factors fA,a and variables ya. It is possible to omit the updates of xi originating
from fx̄. This is equivalent to removing one row from the sensing matrix. For
sensing matrices with a large number of rows, this has negligible effect.
The algorithm can be initialized by starting with the last message, mx,i→f,x̄(xi).
During iterations, this is the tuple (µx,i, σ

2
x,i) with µx,i = F (. . . ) and σ2

x,i = G(. . . ).
For initialization, let

µx,i =

∫

i
xi

∫

j 6=i
j∈K

fx,k(xk)dxjdxi (2.217)

σ2
x,i =

∫

i
x2i

∫

j 6=i
j∈K

fx,k(xk)dxjdxi − µ2
x,i , (2.218)

i.e. the prior mean and variance of xi. Subsequently, mf,x̄→x̄ can be parameterized
using mean and variance with

µf,x̄→x̄ =
1

N

∑

µx,i (2.219)

σ2
f,x̄→x̄ =

1

N2

∑

σ2
x,i . (2.220)
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Compressed Sensing: Reconstruction BAMP for Non-Zero-Mean A

During initialization, mvy→x̄ is unknown and thus, mx̄→vy,a(x̄) consists of the pa-
rameters µf,x̄→x̄ and σ2

f,x̄→x̄. Once mvy,a→x̄(x̄) is known, they can be mixed in
according to (2.212). To maintain parameterization, the message from fvy,a to x̄

can be assumed to approximate a Gaussian distribution.
Now that mx̄→vy,a(x̄) is known, the message from fvy,a to ya can be computed (cf.
(2.209)). The mean and variance of ya compute as (cf. (2.207))

µvy,a→y,a = va −NµBµx̄→vy,a (2.221)

σ2
vy,a→y,a = σ2

w,a +N2µ2
Bσ

2
x̄→vy,a . (2.222)

This can be shown by expressing (2.207) in terms of x̄:

fvy,a(x̄, ya) = N
(

va − ya
NµB

,
σ2
w,a

(NµB)2

)

, (2.223)

computing the product with the Gaussian message given by the parameters µx̄→vy,a

and σ2
x̄→vy,a and finally evaluating the Gaussian integral (2.209) w.r.t. x̄. This

results in

mvy→y,a(ya) ∝ exp





(

2

(

σ2
w,a

(NµB)2
+ σ2

x̄→vy,a

))−1(
va − ya
NµB

− µx̄→vy,a

)2




(2.224)

∝ exp

(

(va − ya − µx̄→vy,a)
2

2
(
σ2
w,a + (NµB)2σ2

x̄→vy,a

)

)

. (2.225)

The mean and variance w.r.t. ya can then be identified as (2.221) and (2.222)
respectively. Subsequently, one iteration of AMP can be computed with µvy,a→y,a

substituted for ya and σ2
vy,a→y,a substituted for σ2

w,a. The initial value of σ2
z,a can be

computed as the empirical variance of µvy,a→y,a. After this iteration, the message
(µy,a→vy,a, σ

2
y,a→vy,a) is

µy,a→vy,a =
∑

i

Aa,iµi→a ≈
∑

i

Aa,iµx,i −
µz,a

L

∑

j

∂F

∂µ(l)
(2.226)

σ2
y,a→vy,a =

∑

i

A2
a,iσ

2
i→a ≈

N

L
σ2
x = σ2

y→vy . (2.227)

Given va and the message from ya to fvy,a, the message from fvy,a to x̄ can be
computed. Since NµBx̄ = va − ya, the message is

NµBµvy,a→x̄ = va − µy,a→vy,a = va −
∑

i

Aa,iµi→a (2.228)

(NµB)
2σ2

vy,a→x̄ = σ2
y,a→vy,a + σ2

w,a . (2.229)
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction

At x̄ there are now L + 1 incoming messages, namely L from the nodes fvy,a and
one from fx̄. Formally and following (2.212), the message from x̄ to the factor
nodes fvy,a is

σ2
x̄→vy,a =




1

σ2
f,x̄→x̄

+
∑

b 6=a

1

σ2
vy,b→x̄





−1

(2.230)

µx̄→vy,a = σ2
x̄→vy,a




µf,x̄→x̄

σ2
f,x̄→x̄

+
∑

b 6=a

µvy,b→x̄

σ2
vy,b→x̄



 . (2.231)

To simplify the derivation, assume from now on that the noise variances are identi-
cal, i.e. σ2

w,a = σ2
w. Since the approximation of σ2

y,a→vy,a in (2.227) does not depend
on a either, the variances σ2

vy,a→x̄ and σ2
x̄→vy,a can also be regarded as independent

of a. The notation is simplified by dropping the factor node index where it is
superfluous. It is thus possible to rewrite (2.229) and (2.230)

σ2
vy→x̄ =

1

(NµB)2

(
N

L
σ2
x + σ2

w

)

(2.232)

σ2
x̄→vy =

(

1

σ2
f,x̄→x̄

+
L− 1

σ2
vy→x̄

)−1

(2.233)

=

(

N2

∑

i σ
2
x,i

+
(L− 1)(NµB)

2

L−1
∑

i σ
2
x,i + σ2

w

)−1

. (2.234)

Furthermore, (2.231) can be written as

µx̄→vy,a = σ2
x̄→vy

(

µf,x̄→x̄

σ2
f,x̄→x̄

+
L− 1

Lσ2
vy→x̄

∑

b

µvy,b→x̄

)

(2.235)

≈ σ2
x̄→vy

(

µf,x̄→x̄

σ2
f,x̄→x̄

+
1

σ2
vy→x̄

∑

b

µvy,b→x̄

)

. (2.236)

2.7.1 Algorithm

The resulting approximate message passing algorithm for nonzero-mean sensing
matrix (MEAN-BAMP) is displayed in Appendix A, p.116 as Algorithm 10. While
it does look more complicated than regular MD-BAMP, its computational complex-
ity is similar: the additional lines (10 - 17) are operating on scalars. While line
15 contains a matrix-vector multiplication, the term can be reused in line 18. The
complexity of the remaining additional expressions grows with N . The number
of additional floating point divisions is constant. Thus, both algorithms have a
complexity of O(NL) due to matrix-vector multiplications.
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Compressed Sensing: Reconstruction BAMP for Non-Zero-Mean A

2.7.2 State Evolution

It is possible to formulate a state evolution recursion by taking into account mod-

ifications to σ
2(l)
x . State evolution for regular BAMP is defined by the recursion

(2.121), (2.122). MEAN-BAMP modifies the second line of the state evolution
since it introduces an effective noise variance σ2

vy→y. Its value is lower bounded
by σ2

w and equal to the value predicted by state evolution for BAMP if µB = 0,
i.e. a zero-mean sensing matrix. Thus, for a zero-mean sensing matrix A, state
evolution for MEAN-BAMP reduces to state evolution for standard BAMP. The
recursion can be written as

σ2
x,[t] = E

{
1

κk

∥
∥
∥F
(

x0 + σ
(l)
x,[t−1]n

)

− x0

∥
∥
∥

2

2

}

(2.237)

σ2
τ,[t] = δ−1σ2

x,[t] + σ2
w (2.238)

σ2
κ,[t] =

(

1

Nµ2
Bσ

2
x,[t]

+
L− 1

σ2
τ,[t]

)−1

(2.239)

σ
2(l)
x,[t] = σ2

τ,[t] + σ2
κ,[t] . (2.240)
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BAMP for Non-Zero-Mean A Compressed Sensing: Reconstruction
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Chapter 3

Denoiser Construction

All variants of the Bayesian AMP algorithm use the functions F , G and the deriva-
tive of F (cf. Algorithm 5 to 10 in Appendix A). These functions are defined in
(2.61), (2.62) and (2.73), (2.74) and repeated here for convenience:

Z =

∫

· · ·
∫

fx(x)Nx(x;µ
(l),σ2(l))dx (3.1)

µx,i = Fi =
1

Z

∫

· · ·
∫

xifx(x)Nx(x;µ
(l),σ2(l))dx (3.2)

σ2
x,i = Gi =

1

Z

∫

· · ·
∫

x2i fx(x)Nx(x;µ
(l),σ2(l))dx− µ2

x,i→a . (3.3)

The arguments of these functions are (µ(l),σ2(l)) which is the local belief regarding
x, computed from incoming messages. The function fx(x) is the prior of the
random vector x. The notation is modified for this chapter. The index k is not
anymore used for identification of the group of variables connected to a prior. The
derivative of F first appears in (2.95). In this chapter, the functions Fi, Gi, F

′
i and

Z are expressed using the following definition:

Ik,i(µ
(l),σ2(l)) =

∫

· · ·
∫

xki fx(x)Nx(x;µ
(l),σ2(l))dx . (3.4)

The expressions (3.1) - (3.3) can then be identified as

Z(µ(l),σ2(l)) = I0(µ
(l),σ2(l)) (3.5)

Fi(µ
(l),σ2(l)) =

I1,i(µ
(l),σ2(l))

I0(µ(l),σ2(l))
(3.6)

Gi(µ
(l),σ2(l)) =

I2,i(µ
(l),σ2(l))

I0(µ(l),σ2(l))
− F 2

i (µ
(l),σ2(l)) . (3.7)

Note that Ik,i|k=0 does not depend on i and thus the index is omitted in (3.5). The
functions (3.4), (3.6) and (3.7) can be expressed in a vector valued notation,

Ik(µ
(l),σ2(l)) =

∫

· · ·
∫

xkfx(x)Nx(x;µ
(l),σ2(l))dx (3.8)
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Denoiser Construction Denoiser Construction

F (µ(l),σ2(l)) =
I1(µ

(l),σ2(l))

I0(µ(l),σ2(l))
(3.9)

G(µ(l),σ2(l)) =
I2(µ

(l),σ2(l))

I0(µ(l),σ2(l))
− F 2(µ(l),σ2(l)) , (3.10)

where the exponentiations xk and F 2 are computed component wise. Furthermore,
all functions take the arguments (µ(l),σ2(l)) which shall henceforth be omitted,
yielding a cleaner notation:

Z = I0 (3.11)

Fi =
I1,i
I0

F =
I1

I0
(3.12)

Gi =
I2,i
I0
− F 2

i G =
I2

I0
− F 2 . (3.13)

The derivative of Fi is computed w.r.t. an entry of the first argument µ(l). In
most variants of BAMP presented in this thesis, only the diagonal of the Jaco-
bian is needed. For sake of completeness, expressions for off-diagonal elements are

presented as well. The derivative of Fi w.r.t. µ
(l)
j is

∂Fi

∂µ
(l)
j

=
1

I0

∂I1,i

∂µ
(l)
xj

− I1,i
I20

∂I0

∂µ
(l)
xj

. (3.14)

The derivative of Ik,i can be written as

∂Ik,i

∂µ
(l)
j

=
1

σ
2(l)
j

∫

· · ·
∫

xki (xj − µ
(l)
j )fx(x)Nx(x;µ

(l),σ2(l))dx (3.15)

=







1

σ
2(l)
j

(

Rk,1,i,j − µ
(l)
j Ik,i

)

if i 6= j

1

σ
2(l)
j

(

Ik+1,i − µ
(l)
j Ik,i

)

if i = j .
(3.16)

The term Rk,l,i,j represents the (un-normalized) mixed moment

Rk,l,i,j =

∫

· · ·
∫

xki x
l
jfx(x)Nx(x;µ

(l),σ2(l))dx . (3.17)

For the diagonal of F ’s Jacobian, this results in

∂Fi

∂µ
(l)
i

=
1

I0σ
2(l)
i

(

I2,i − µ
(l)
i I1,i

)

− I1,i

I20σ
2(l)
i

(

I1,i − µ
(l)
i I0

)

(3.18)

=
1

σ
2(l)
i

(

I2,i
I0
−
(
I1,i
I0

)2
)

(3.19)

=
Gi

σ
2(l)
i

. (3.20)
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Denoiser Construction Denoiser Construction

Thus, the diagonal of the Jacobian is proportional to the variance estimation pro-
vided by Gi. An extension towards the full Jacobian is possible if G is defined to
compute the complete covariance of the estimation. Let

G =
1

Z

∫

· · ·
∫

xxT fx(x)Nx(x;µ
(l),σ2(l))dx− FF T . (3.21)

Here, G returns a matrix, while evaluation of G results in a vector, namely the
diagonal of G. The Jacobian of Ik w.r.t. µ(l) can be written as

∂Ik
∂µ(l)

=

∫

· · ·
∫

xkfx(x)(x− µ(l))TΣ−1(l)Nx(x;µ
(l),σ2(l))dx (3.22)

=
(

Rk,1 − Ikµ
(l)T
)

Σ
−1(l) , (3.23)

which is true for k ≥ 1. Here, Rk,l is the mixed moment

Rk,l =

∫

· · ·
∫

xk(xl)T fx(x)Nx(x;µ
(l),σ2(l))dx , (3.24)

which is matrix-notation for (3.17). Thus, G = R1,1/I0 − FF T . The Jacobian of
F is given by

∂F

∂µ(l)
=

1

I0

∂I1

∂µ(l)
− I1

I20

(
∂I0

∂µ(l)

)T

(3.25)

=
1

I0
(R1,1 − I1µ

(l)T )Σ−1(l) − I1

I20

((

I1 − I0µ
(l)T
)

Σ
−1(l)

)T
. (3.26)

Since Σ
−1(l) is the inverse of a covariance matrix, it is identical to its transpose.

Thus,

∂F

∂µ(l)
=

(

R1,1

I0
− Fµ(l)T − I1I

T
1

I20
+

I1µ
(l)T

I0

)

Σ
−1(l) (3.27)

=

(
R1,1

I0
− FF T

)

Σ
−1(l) (3.28)

= GΣ
−1(l) . (3.29)

Algorithms like VAMP [50] might need to make use of these general expressions.
While both (3.3) and the more general relationship (3.29) also hold for non-diagonal
covariance matrices Σ

(l), this chapter focuses on formulations for use in Bayesian
AMP algorithms. Thus, diagonal Σ

(l) is assumed. Results presented here are
optimized for this case and focus on G instead of the matrix-valued G.
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Composite Priors Denoiser Construction

3.1 Composite Priors

Deriving an expression for complicated priors which might arise from particular
problems can prove difficult. Often, it is more appropriate to approximate this
prior by a linear combination of simple priors, for which expressions of Ik,i are
known. Moreover, high-dimensional priors can be constructed as a product of low-
dimensional or even scalar priors. A combination of both constructions can be used
as a powerful tool to construct complicated priors.

Linear Mixture. Note that the functions Ik,i are linear towards the prior fx(x),
cf. (3.4). Let fx(x) be a linear mixture,

fx(x) =

M∑

m=1

amf
(m)
x (x) , (3.30)

where f
(m)
x (x) are pdfs of identical dimension and the variables am are weights,

with am > 0,
∑

m am = 1. Then, the function Ik,i for the linear combination can
itself be written as linear mixture

Ik,i =

M∑

m=1

amI
(m)
k,i . (3.31)

Note that the functions F , F ′ and G cannot be written as linear mixture. For Ik,i,
the derivatives are

∂Ik,i

∂µ
(l)
j

=

M∑

m=1

am
∂I

(m)
k,i

∂µ
(l)
j

. (3.32)

Product Densities. It is possible to obtain a high-dimensional pdf as the prod-
uct of multiple low-dimensional or scalar pdfs. Since the normal distribution rep-
resenting the local beliefs in Ik,i is uncorrelated, it can be factored (σ2(l) is the
diagonal of the diagonal covariance matrix Σ

(l)). Let

fx(x) =

M∏

m=1

fxm(xm) , (3.33)

where the functions fxm(xm) are pdfs of arbitrary dimension for which expressions

I
(m)
k,i are known. The random vectors xm are distinct. Then the function Ik,i for

the prior fx(x) can be written as

Ik,i(µ
(l),σ2(l)) = I

(n)
k,j (µ

(l)
n ,σ2(l)

n )
M∏

m=1
m 6=n

I
(m)
0 (µ(l)

m ,σ2(l)
m ) , (3.34)
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Denoiser Construction Transformations

where the ith entry of a vector x is the jth entry of xm and it was assumed that
the vectors x, µ(l) and σ2(l) can be written as

x = (xT
1 , . . . ,x

T
m, . . . ,xT

M )T (3.35)

µ(l) = (µ
(l)T
1 , . . . ,µ(l)T

m , . . . ,µ
(l)T
M )T (3.36)

σ2(l) = (σ
2(l)T
1 , . . . ,σ2(l)T

m , . . . ,σ
2(l)T
M )T . (3.37)

The functions F , G and F ′ can be expressed in terms of the component functions

I
(m)
k,i . Let

µx = F (µ(l),σ2(l)) (3.38)

σ2
x = G(µ(l),σ2(l)) (3.39)

µxm = F (m)(µ(l)
m ,σ2(l)

m ) =
I
(m)
1

I
(m)
0

(3.40)

σ2
xm

= G(m)(µ(l)
m ,σ2(l)

m ) =
I
(m)
2

I
(m)
0

− F 2(m) , (3.41)

where F 2(m) is squared component-wise. Then, the vectors µx and σ2
x can be

written as

µx = (µT
x1
, . . . ,µT

xm
, . . . ,µT

xM
) (3.42)

σ2
x = (σ2T

x1
, . . . ,σ2T

xm
, . . . ,σ2T

xM
)T . (3.43)

Similarly, the derivatives of Ik,i and F can be computed component-wise with the

derivative w.r.t. µ
(l)
j only depending on the component I

(m)
k,i or F

(m)
i for which

µ
(l)
j is an entry of the vector µ

(l)
m . The derivatives w.r.t. dimensions which are not

argument to a particular component function are always zero. Product densities are
therefore only useful in conjunction with other compositions, e.g. linear mixtures.

3.2 Transformations

Sometimes it is useful to apply simple transformations to a prior in order to obtain
a different prior without having to re-derive the functions Ik. The most common
of these transformations are discussed here for the one-dimensional case.

Some of the expressions involve a number of terms which cancel out arithmetically.
Numerically, these lead to inaccuracies. These transformations should therefore
only be used if the distribution does not support them intrinsically. The normal,
uniform and Dirac distributions all support translation (by a change of the mean)
and normal, uniform and exponential distributions support linear scaling of the
x-axis (by change of the variance, boundaries or decay parameter respectively).
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Transformations Denoiser Construction

The aim of this section is to derive the functions Itk, F
t and Gt for transformed

priors. These functions are expressions of Ik, F and G, i.e. functions of the non-
transformed priors. Since this section discusses the one-dimensional case, the index
i is not needed for the functions Ik,i, Fi and Gi. Whenever arguments are missing,
they are (µ(l), σ2(l)) for the transformed variant and (u, s2) for the regular one. The
variables u and s2 are defined separately for each transformation.

Translation. A distribution fx(x) can be shifted on the x-axis by a constant
value v. This amounts to convolution with the distribution δ(x − v), which shifts
the distribution towards larger x by v. The functions Ik(. . . ) are

Ik(µ
(l), σ2(l)) =

∫

xkfx(x)Nx(µ
(l), σ2(l))dx . (3.44)

Shifting the prior amounts to

Itk(µ
(l), σ2(l)) =

∫

xkfx(x− v)Nx(x;µ
(l), σ2(l))dx , (3.45)

with χ = x− v (3.46)

dχ = dx (3.47)

=

∫

(χ+ v)kfx(χ)Nx(χ+ v;µ(l), σ2(l))dχ . (3.48)

The normal distribution can be expressed as

Nx(χ+ v;µ(l), σ2(l)) =
1√
2πσ2

exp

(

−(χ+ v − µ(l))2

2σ2(l)

)

(3.49)

= Nx(χ;µ− v, σ2) . (3.50)

For a shift along the x-axis, the values u and s2 are thus

u = µ(l) − v (3.51)

s2 = σ2(l) . (3.52)

Thus, the functions Itk for shifted priors can be expressed in terms of the original
functions Ik:

Itk(µ
(l), σ2(l)) =

∫

(χ+ v)kfx(χ)Nx(χ;u, s
2)dχ (3.53)

=
k∑

m=0

(
k

m

)

vmIk−m(u, s2) (3.54)

It0(µ
(l), σ2(l)) =

∫

fx(χ)Nx(χ;u, s
2)dχ (3.55)

= I0(u, s
2) (3.56)
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Denoiser Construction Transformations

It1(µ
(l), σ2(l)) =

∫

(χ+ v)fx(χ)Nx(χ;u, s
2)dχ (3.57)

= I1(u, s
2) + vI0(u, s

2) (3.58)

It2(µ
(l), σ2(l)) =

∫

(χ+ v)2fx(χ)Nx(χ;u, s
2)dχ (3.59)

= I2(u, s
2) + 2vI1(u, s

2) + v2I0(u, s
2) (3.60)

F t(µ(l), σ2(l)) =
It1
It0

=
I1(u, s

2)

I0(u, s2)
+ v = F (u, s2) + v (3.61)

Gt(µ(l), σ2(l)) =
It2
It0
− F t2 (3.62)

=
I2(u, s

2)

I0(u, s2)
+ 2vF (u, s2) + v2 − F t2(. . . ) (3.63)

=
I2(u, s

2)

I0(u, s2)
− F 2(u, s2) (3.64)

= G(u, s2) . (3.65)

To compute the derivative w.r.t. µ(l) of the transformed functions, the derivative of
Nx(χ;u, s

2) needs to be computed. With u = µ(l)−v and ∂u = ∂µ(l) this evaluates
to

∂N (u, s2)

∂u
=

χ− u

s2
Nx(χ;u, s

2) (3.66)

=
χ+ v − µ(l)

σ2(l)
Nx(χ;µ

(l) − v, σ2(l)) . (3.67)

The derivatives are therefore obtained as

∂Itk
∂µ(l)

=
1

σ2(l)

(∫

(χ+ v)k(χ+ v)fx(χ)Nx(χ;u, s
2)dχ (3.68)

+µ(l)

∫

(χ+ v)kfx(χ)Nx(χ;u, s
2)dχ

)

(3.69)

=
1

σ2(l)

(

Itk+1 − µ(l)Itk

)

(3.70)

∂It0(. . . )

∂µ(l)
=

1

σ2(l)

(

I1 + vI0 − µ(l)I0

)

(3.71)

∂It1
∂µ(l)

=
1

σ2(l)

(

I2 + 2vI1 + v2I0 − µ(l)(I1 + vI0)
)

(3.72)

∂F t

∂µ(l)
=

1

It20

(

It0
∂It1
∂µ(l)

− It1
∂It0
∂µ(l)

)

(3.73)

=
1

σ2(l)

(

I2 + 2vI1 + v2I0 − µ(l)I1 − µ(l)vI0
I0

(3.74)
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Transformations Denoiser Construction

−(I1 + vI0)(I1 + vI0 − µ(l)I0)

I20

)

(3.75)

=
1

σ2(l)

(
I2
I0

+ 2vF + v2 − µ(l)F − µ(l)v (3.76)

−(F 2 + vF − µ(l)F + vF + v2 − µ(l)v)
)

(3.77)

=
1

σ2(l)

(
I2
I0
− F 2

)

=
1

σ2(l)
G(u, s2) . (3.78)

Scaling. This transformation has the effect of “stretching” (or compressing) the
prior. Let χ be the scaled variable

χ = ax , (3.79)

with a ∈ R \ {0}. The transformed pdf needs to be normalized, i.e.

1 =

∫

γfx(ax)dx . (3.80)

With dχ = adx, the constant γ is determined as

1 = γ

∫

fx(χ)
1

a
dχ (3.81)

=
γ

a

∫

fx(χ)dχ

︸ ︷︷ ︸

=1

(3.82)

γ = a . (3.83)

The functions Itk with a scaled prior can be written as

Itk(µ
(l), σ2(l)) =

∫

xkafx(ax)Nx(x;µ
(l), σ2(l))dx (3.84)

=

∫ (χ

a

)k
afx(χ)Nx(

χ

a
;µ(l), σ2(l))

1

a
dχ . (3.85)

The normal distribution Nx(
χ
a ;µ

(l), σ2(l)) needs to be expressed in terms of χ:

Nx(
χ

a
;µ(l), σ2(l)) =

1√
2πσ2(l)

exp

(

−
(χ
a − µ(l)

)2

2σ2(l)

)

(3.86)

=
1√

2πσ2(l)
exp

(

−
(
χ− aµ(l)

)2

2a2σ2(l)

)

. (3.87)

With u = aµ(l) and s2 = a2σ2(l), the normal distribution can be written as

Nx(χ;u, s
2) =

1√
2πs2

exp

(

−(χ− u)2

2s2

)

. (3.88)
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Denoiser Construction Transformations

Note that (3.88) integrates to one because σ2(l) was replaced by s2 in the normal-
ization factor. This is not necessary for the Bayesian AMP algorithm to work,
however, since messages are always normalized. The functions Itk(. . . ) can be writ-
ten as

Itk(µ
(l), σ2(l)) = a−k

∫

χkfx(χ)Nx(χ;u, s
2)dχ = a−kIk(u, s

2) (3.89)

F t(µ(l), σ2(l)) =
It1
It0

=
a−1I1
I0

= a−1F (u, s2) (3.90)

Gt(µ(l), σ2(l)) =
It2
It0
− F t2 =

a−2I2
I0
− a−2F 2 (3.91)

= a−2G(u, s2) . (3.92)

The derivatives are

∂Itk(µ
(l), σ2(l))

∂µ(l)
=

∂

∂µ(l)
a−kIk(u, s

2) (3.93)

=
a−k

a2σ2(l)

(

Ik+1 − aµ(l)Ik

)

a (3.94)

=
1

σ2(l)

(

a−(k+1)Ik+1 − a−kµ(l)Ik

)

(3.95)

=
1

σ2(l)

(

Itk+1 − µ(l)Itk

)

(3.96)

∂F t(µ(l), σ2(l))

∂µ(l)
=

1

It0

∂It1
∂µ(l)

− It1
Im2
0

∂It0
∂µ(l)

(3.97)

=
1

σ2(l)

(

a−2I2 − a−1µ(l)I1
I0

− a−1I1(a
−1I1 − µ(l)I0)

I20

)

(3.98)

=
1

σ2(l)

(

a−2 I2
I0
− a−1µ(l)F − a−2F 2 + a−1µ(l)F

)

(3.99)

=
1

σ2(l)
Gt(µ(l), σ2(l)) =

1

s2
G(u, s2) . (3.100)

Mirroring across the y-Axis. Mirroring priors across the y-axis is equivalent
to scaling with a = −1. Since it is an important case and allows for some simplifi-
cation, the associated expressions are explicitly stated here:

u = −µ(l) (3.101)

s = σ2(l) (3.102)

Itk(µ
(l), σ2(l)) = (−1)kIk(u, s2) (3.103)

F t(µ(l), σ2(l)) = −F (u, s2) (3.104)

Gt(µ(l), σ2(l)) = G(u, s2) (3.105)
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Transformations Denoiser Construction

∂Itk(µ
(l), σ2(l))

∂µ(l)
=

1

σ2(l)

(

(−1)−(k+1)Ik+1 − (−1)−kµ(l)Ik

)

(3.106)

∂F t(µ(l), σ2(l))

∂µ(l)
=

1

σ2(l)
Gt(µ(l), σ2(l)) =

1

s2
G(u, s2) . (3.107)

Extensions for Multivariate Priors. For multivariate priors, the functions
Ik, F (. . . ) and G(. . . ) are vector-valued, i.e. their arguments and resulting values
are vectors. They are evaluated component-wise however, thus extension of the
expressions above towards multivariate priors is straightforward. For example, he
transformed function It

k for a prior fx(x) shifted by v is

It
k(µ

(l),σ2(l)) =

∫

· · ·
∫

xkfx(x− v)Nx(x;µ
(l),σ2(l))dx (3.108)

with χ = x− v (3.109)

dχ = dx (3.110)

=

∫

· · ·
∫

(χ+ v)kfx(χ)Nx(χ+ v;µ(l),σ2(l))dχ . (3.111)

The expressions (3.108) to (3.111) again slightly abuse notation and define vector
exponentiation in a component-wise context, e.g. the expression xk = (. . . , xki , . . . )

T

and x0 = 1. The element-wise approach is also valid for all diagonal entries of the

Jacobian, i.e. the derivatives of Ik’s ith dimension w.r.t. µ
(l)
i . The off-diagonal en-

tries cannot easily be obtained by extension, however. Let T be the inverse of a
particular transformation U , e.g. for U{x} : x 7→ x−v, T {χ} : χ 7→ χ+v. Further-
more, let u and s2 be transformed versions of µ(l) and σ2(l). Then the Jacobian
of It

k w.r.t. µ(l) is

∂It
k(µ

(l),σ2(l))

∂µ(l)
=

∫

· · ·
∫

T {χ}kfx(χ)
∂

∂µ(l)
Nx(χ;u, s

2)dχ . (3.112)

The derivative of the multivariate normal distribution Nx(x;µ,Σ) w.r.t. µ is a
vector:

∂Nx(x;µ,Σ)

∂µ
= Nx(x;µ,Σ)Σ−1(x− µ) . (3.113)

In the context of AMP, the covariance matrix Σ is always diagonal and (3.112)
becomes

∂It
k(µ

(l),σ2(l))

∂µ(l)
= s−2

∫

· · ·
∫

T {χ}kfx(χ)
(

(χ− u)⊗ ∂u

∂µ(l)

)T

Nx(χ;u, s
2)dχ .

(3.114)

In (3.114), the operator ⊗ denotes the component-wise multiplication, the division
∂u/∂µ(l) is performed component-wise and s−2 is the inverse of the diagonal covari-
ance matrix with entries s2i . Since Nx(χ;u, s

2) = Nx(T {χ};µ(l),σ2(l)), however,
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Denoiser Construction Transformations

an off-diagonal entry can also be written as

∂Itk,i(µ
(l),σ2(l))

∂µ
(l)
j

=
1

σ
2(l)
j

∫

· · ·
∫

fx(χ)T {χi}k(T {χj} − µj)Nx(T {χ};µ(l),σ2(l))dχ

(3.115)

=
1

σ
2(l)
j

(

E

{

T {χi}kT {χj}
}

− µjE

{

T {χi}k
})

, (3.116)

where the expectation is w.r.t. the (unnormalized) pdf fx(χ)Nx(T {χ};µ(l),σ2(l)).
For multivariate priors with independent dimensions, the above becomes

∂Itk,i(µ
(l),σ2(l))

∂µ
(l)
j

=
1

σ
2(l)
j

(

E

{

T {χi}k
}

E {T {χj}} − µjE

{

T {χi}k
})

(3.117)

=
1

σ
2(l)
j

Itk,i
(
It1,j − µj

)
. (3.118)

For translations, u = µ(l) − v, s2 = σ2(l), ∂u/∂µ(l) = 1 and T {χ} : χ 7→ χ + v.
The off-diagonal elements thus evaluate to

∂Ik,i

∂µ
(l)
j

= s−2
j (Rt

k,i,j − ujI
t
k,i) . (3.119)

Here, the mixed moment Rt
k,i,j is defined as

Rt
k,i,j =

∫

· · ·
∫

T {χi}kχjfx(χ)Nx(χ;u, s
2)dχ (3.120)

=

∫

· · ·
∫

(χi + vi)
kχjfx(χ)Nx(χ;u, s

2)dχ (3.121)

=

k∑

m=0

(
k

m

)

vmi Rk−m,1,i,j(u, s
2) , (3.122)

where Rk,l,i,j as defined in (3.17). Note that R0,1,i,j = I1,j . For the scaling trans-
formation, u = a ⊗ µ(l), s2 = a2 ⊗ σ2(l), ∂u/∂µ(l) = a and T {χ} : χ 7→ χ/a,
with both “vector-divisions” to be applied component-wise. The off-diagonals are
therefore obtained as

∂Ik,i

∂µ
(l)
j

= ajs
−2
j (Rt

k,i,j − ujI
t
k,i) . (3.123)

In this case, the mixed moment Rt
k,i,j resolves to

Rt
k,i,j =

∫

· · ·
∫

T {χi}kχjfx(χ)Nx(χ;u, s
2)dχ (3.124)

= ajs
−2
j a−k

i Rk,1,i,j , (3.125)

with Rk,l,i,j defined as in (3.17).
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Dirac Distribution Denoiser Construction

3.3 Dirac Distribution

The distribution fx(x) defined as

fx(x) = δ(x− µp) (3.126)

is the Dirac delta with mean µp. It is zero everywhere except at µp and integrates
to 1. This distribution is crucial in compressed sensing since it can be used to model
sparse signals. Furthermore, discrete distributions can be constructed using linear
mixes of Dirac deltas, which is of particular interest when compressive sensing is
used in conjunction with channel codes (e.g. [52, 8]). The functions Ik, F and G
are

Ik = µk
p

(

2πσ2(l)
)− 1

2
exp

(

−(µp − µ(l))2

2σ2(l)

)

(3.127)

F = µp (3.128)

G = 0 . (3.129)

The M -dimensional Dirac delta distribution fx(x) can be written as the product
of scalar Dirac deltas,

fx(x) = δ(x− µp) =

M∏

m=1

δ(xm − µp,m) . (3.130)

The vector valued versions of I0, I1 and I2 are

I0 =
(

(2π)M det(Σ(l))
)− 1

2
exp

(

−1

2
(µp − µ(l))TΣ−1(l)(µp − µ(l))

)

(3.131)

I1 = µpI0 (3.132)

I2 = diag(µpµ
T
p )I0 . (3.133)

In (3.131), the matrix Σ
(l) is a diagonal covariance matrix with entries Σ

(l)
i,i = σ

2(l)
i

and diag(U) is the vector at the main diagonal of the matrix U . The derivative of
Ik can be written as

∂Ik
∂µ(l)

=
µp − µ(l)

σ2(l)
Ik . (3.134)

For the multivariate case, the derivative is

∂Ik,i

∂µ
(l)
j

=
µp,j − µ

(l)
j

σ
2(l)
j

Ik,i . (3.135)

The Dirac distribution becomes interesting in conjunction with linear mixtures
since the functions F , G and F ′ are otherwise constant, i.e. they do not depend on
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Denoiser Construction Dirac Distribution

their arguments. Two examples are presented to graphically illustrate the operation
of the functions F and G. These are on the one hand the (one-dimensional) binary
prior

fx,Bi(x) =
1

2
(δ(x+ 1) + δ(x− 1)) , (3.136)

on the other hand the two-dimensional quaternary prior

fx,Qr(x) =
1

4

(
δ(x− (1, 0)T ) + δ(x− (0, 1)T ) (3.137)

+δ(x− (−1, 0)T ) + δ(x− (0,−1)T )
)
. (3.138)

These functions are plotted in Fig. 3.1 for the binary prior. Note that F can be
expressed as a hyperbolic tangent and G is proportional to 1−tanh2(x). In Fig. 3.2
and Fig. 3.3, results for the quaternary prior are plotted. The “decision regions” can
clearly be distinguished. Note that κ-dimensional priors yield denoisers of the same
dimension, i.e. the input and output for F , G, F ′, I1 and I2 are κ-dimensional,
which makes graphical descriptions hard for κ > 2.

−2 0 2

−1

0

1

µ
(l)
x

F
(µ

(l
)

x
,σ

2
(l
)

x
)

−2 0 2

0

0.5

1

µ
(l)
x

G
(µ

(l
)

x
,σ

2
(l
)

x
) σ

2(l)
x = 1

σ
2(l)
x = 0.1

σ
2(l)
x = 0.01

Figure 3.1: Functions F (left) and G (right) for the binary prior fx,Bi(x) and various

local variances σ
2(l)
x .
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Dirac Distribution Denoiser Construction
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Figure 3.2: Function F (color coded) for the quaternary prior fx,Qr(x). The left
column shows the output for the first dimension, while the right column shows the

result for the second dimension. Variances σ
2(l)
x are 1 (top row) and 0.1 (bottom

row) for both dimensions.
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µ
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Figure 3.3: Function G (color coded) for the quaternary prior fx,Qr(x). Depicted

are the values for input variance σ
2(l)
x = 1 (left) and σ

2(l)
x = 0.1 (right). The input

variance (and in this case, also the output) is identical for both dimensions.
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Denoiser Construction Gaussian Distribution

3.4 Gaussian Distribution

The M -dimensional Gaussian distribution is given by

fx(x) =
(
(2π)M det(Σp)

)− 1
2 exp

(

−1

2
(x− µp)

T
Σ

−1
p (x− µp)

)

, (3.139)

where µp is the prior mean and Σp is the prior covariance matrix. For a Gaussian
prior, the function Ik computes the non-centered, non-normalized kth moment
of the product of two Gaussian distributions. This product is again a Gaussian
function, however. Expressions for the parameters of this product can be found
in [48]. The mean and covariance matrix of the resulting Gaussian function are

Σ =
(

Σ
−1
p +Σ

−1(l)
)−1

(3.140)

µ = Σ

(

Σ
−1
p µp +Σ

−1(l)µ(l)
)

. (3.141)

The computationally intensive steps are the three matrix inversions. One of these
is trivial since Σ

(l) is diagonal. Thus, the inversion only involves L floating-point
divisions; for algorithms that track only a single variance, one floating-point divi-
sion is required. These divisions need to be performed in each iteration, however.
If the parameters of the Gaussian prior are constant, the inverse of its covariance
matrix Σp can be precomputed. However, the inverse of the sum of inverses needs
to be evaluated during each iteration of the algorithm. Using (3.140), (3.141), the
functions F and G can be identified as

F = µ (3.142)

G = diag(Σ) . (3.143)

The normalization term I0 is

I0 =
exp

(
−1

2(µp − µ(l))T (Σp +Σ
(l))−1(µp − µ(l))

)

(
(2π)M det(Σp +Σ(l))

) 1
2

. (3.144)

Thus, the function I1 can be expressed using (3.144) and (3.141):

I1 = µI0 . (3.145)

The function I2 is obtained as

I2 =
(
diag(Σ+ µµT )

)
I0 , (3.146)

with Σ and µ defined in (3.140) and (3.141) respectively. Since the inverse of sums
(cf. (3.144)) as well as the inverse of the sum of inverses (cf. (3.140)) are required,
the identity

(A+B)−1 = A−1(A−1 +B−1)−1B−1 (3.147)
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Gaussian Distribution Denoiser Construction

can be used to avoid computation of the left-hand side at the cost of two extra
matrix multiplications. Numerically, this optimization is sub-optimal. For the
Gaussian distribution, only the derivatives of I0 and I1 are discussed. Derivatives
of Ik with k > 1 can be obtained by applying Isserli’s theorem [34]. The derivative
of I0 can be written as

∂I0

∂µ(l)
= D(µp − µ(l))I0 , (3.148)

where D = (Σp +Σ
(l))−1. The derivative of I1 is

∂I1

∂µ(l)
= µ

(
∂I0

∂µ(l)

)T

+ I0ΣΣ
−1(l) , (3.149)

which is obtained by applying the product rule to (3.145). The expression (3.149)
also contains the derivative of F , which is

∂F

∂µ(l)
= ΣΣ

−1(l) = (Σ−1
p +Σ

−1(l))−1
Σ

−1(l) (3.150)

= Σp(Σp +Σ
(l))−1 , (3.151)

where (3.147) was used. Note that (3.150) agrees with (3.29). Gaussian distribu-
tions are frequently employed in models of sparse signals, using the linear combi-
nation with a Dirac delta. A one-dimensional “Bernoulli-Gaussian” prior can be
expressed as

fx,BG(x) =
1

2

(
δ(x) +Nx(µ, σ

2)
)
. (3.152)

The associated functions F and G are plotted in Fig. 3.4 while the functions I0, I1
and I2 are shown in Fig. 3.5. Note that the denoiser F becomes similar to both the

hard and soft thresholding functions as σ
2(l)
x becomes small. Since the Bayesian

denoiser approaches identity (i.e. x = F (µ
(l)
x , σ

2(l)
x ) = µ

(l)
x ) as |µ(l)

x | becomes large,
the soft thresholder maintains an offset, however.
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Denoiser Construction Uniform Distribution
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Figure 3.4: Functions F (left) and G (right) for the Bernoulli-Gaussian prior

fx,BG(x) and several local variances σ
2(l)
x .
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Figure 3.5: Functions I0 (left), I1 (center) and I2 (right) for the Bernoulli-Gaussian

prior fx,BG(x) and several local variances σ
2(l)
x .

3.5 Uniform Distribution

The uniform distribution is given by

fx(x) =







0 x < a
1

b−a a ≤ x ≤ b

0 b < x ,

(3.153)

with the boundaries a, b ∈ R where a < b. A multivariate version with vector-
valued a, b can be defined as product of one-dimensional uniform distributions.
An M -dimensional uniform distribution can be thought of as a hyperrectangle. In
this section, it is assumed that the distribution’s dimensions are independent. They
become dependent if the hyperrectangle is rotated and its edges no longer align
with the M -dimensional Cartesian coordinate system. In these cases, the functions
Ik involve a definite integral of an M -dimensional Gaussian, for which no closed-
form solutions exist. A numerical approach based on belief propagation can be
found in [20]. This section exclusively discusses multivariate uniform distributions
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Uniform Distribution Denoiser Construction

with independent dimensions. The normalizing factor I0 is given as

I0 =
erf(B)− erf(A)

2(b− a)
, (3.154)

with A and B defined as

A = Q(a, µ(l), σ2(l)) (3.155)

B = Q(b, µ(l), σ2(l)) (3.156)

Q(q, µ(l), σ2(l)) =
q − µ(l)

√
2σ(l)

. (3.157)

The functions I1 and I2 evaluate to

I1 =
1

b− a

(

σ(l)

√
2π

(
exp(−A2)− exp(−B2)

)
(3.158)

+
µ(l)

2
(erf(B)− erf(A))

)

(3.159)

I2 =
1

b− a

(√
2πσ(l)µ(l)

(
exp(−A2)− exp(−B2)

)
(3.160)

σ2(l)

√
π

(
A exp(−A2)−B exp(−B2)

)
(3.161)

σ2(l) + µ2(l)

2
(erf(B)− erf(A))

)

. (3.162)

To obtain the derivatives, the following identities are useful:

∂ erf(x)

∂x
=

2√
π
exp(−x2) (3.163)

∂Q(µ(l), . . . )

∂µ(l)
= − 1√

2σ(l)
(3.164)

∂ erf
(
Q(µ(l), . . . )

)

∂µ(l)
= −

√

2

πσ2(l)
exp(−Q2) (3.165)

∂ exp
(
−Q2(µ(l), . . . )

)

∂µ(l)
= exp

(
−Q2

) q − µ(l)

σ2(l)
. (3.166)

The derivatives are thus obtained as

∂I0

∂µ(l)
=

exp(−A2)− exp(−B2)

(b− a)
√
2πσ(l)

(3.167)

∂I1

∂µ(l)
=

1

b− a

(
1√

2πσ(l)

(
a exp(−A2)− b exp(−B2)

)
(3.168)
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Denoiser Construction Uniform Distribution

1

2
(erf(B)− erf(A))

)

. (3.169)

Two graphical examples are given to showcase the operation of the denoiser for
uniform priors. These are expressed by the pdfs

fx,U(x) = U(−1, 1) (3.170)

fx,BU(x) =
1

2
δ(x) +

1

4

(
U((−1,−1)T , (0, 0)T ) + U((0, 0)T , (1, 1)T )

)
, (3.171)

where fx,U(x) describes a one-dimensional uniform prior with bounds −1 and 1
while fx,BU(x) is a two-dimensional mixture of two uniform distributions and a
Dirac delta. The two-dimensional uniform “squares” have edge length 1 and lie
southwest and northeast of the origin, where the Dirac delta is situated.

In Fig. 3.6, the functions F and G for fx,U(x) are plotted. As σ
2(l)
x becomes small,

the denoiser F approximates a straight line with slope 1 on the interval [−1, 1],
while it saturates at −1 and 1 outside the range. For the two-dimensional prior

fx,BU(x), the variance is particularly large on the off-diagonal, e.g. for µ
(l)
x =

(−1, 1)T . This follows intuition since it is particularly “hard” to associate such
a noisy value with one allowed by the prior. Close to the origin, the decision is
particularly “easy” since with high probability, the noiseless vector was drawn from
the Dirac delta, i.e. it is (0, 0)T .

−2 0 2

−1

0

1

µ
(l)
x

F
(µ

(l
)

x
,σ

2
(l
)

x
)

−2 0 2

10−3

10−2

10−1

µ
(l)
x

G
(µ

(l
)

x
,σ

2
(l
)

x
) σ

2(l)
x = 1

σ
2(l)
x = 0.1

σ
2(l)
x = 0.01

Figure 3.6: Functions F (left) and G (right) for the uniform prior fx,U(x) and

several local variances σ
2(l)
x .
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Exponential Distribution Denoiser Construction

−1 0 1

−1

0

1

µ
(l)
x,1

µ
(l
)

x
,2

−1

0

1

−1 0 1

−1

0

1

µ
(l)
x,1

0

0.1

0.2

Figure 3.7: First dimension of functions F (left) and G (right) for the two-
dimensional Bernoulli-Uniform prior fx,BU(x). Depicted are the values (color

coded) for input variance σ
2(l)
x = 0.1.

3.6 Exponential Distribution

The exponential distribution is given by

fx(x) =

{

λ exp (−λx) x ≥ 0

0 x < 0 ,
(3.172)

where λ is the rate of a Poisson point process. It is useful to define the shorthand
expressions

A =
λσ2(l) − µ(l)

√
2σ2(l)

(3.173)

B =
λ

2
(λσ2(l) − 2µ(l)) . (3.174)

The following expressions of Ik have been formulated to provide numerical stability:

I0 =
λ

2
exp(B) erfc(A) (3.175)

I1 =
λσ(l)

√
2π

exp

(

− µ2(l)

2σ2(l)

)

−
(

B +
λµ(l)

2

)

exp(B) erfc(A) (3.176)

I2 =
λ

2

(

(λσ2(l) − µ(l))2 + σ2(l)
)

exp(B) erfc(A) (3.177)

+
λ√
2π

exp

(

− µ2(l)

2σ2(l)

)
(

σ(l)µ(l) − λσ3(l)
)

(3.178)

∂I0

∂µ(l)
=

λ√
2πσ(l)

exp

(

− µ2(l)

2σ2(l)

)

− λ2

2
exp(B) erfc(A) (3.179)

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Denoiser Construction Chi-Squared Distribution

∂I1

∂µ(l)
=

λ

2
(λ2σ2(l) − λµ(l) + 1) exp(B) erfc(A)− λ2σ(l)

√
2π

exp

(

− µ2(l)

2σ2(l)

)

. (3.180)

Simple expressions for F and F ′ are

F = µ(l) − λσ2(l) +
exp(−A2)

√

2σ2(l)

π

erfc(A)
(3.181)

∂F

∂µ(l)
= 1− exp(−A2)

(
2σ(l) exp(−A2)−

√
2π(λσ2(l) − µ(l)) erfc(A)

)

πσ(l)(erfc(A))2
. (3.182)

For illustration purposes, the functions for the exponential prior with λ = 1 are
plotted in Fig. 3.8. Since the prior is one-sided (i.e. f(x)|x<0 = 0), the function

F ≥ 0 ∀µ(l)
x ∈ R .
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µ
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x

F
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x
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2
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)

x
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µ
(l)
x

G
(µ

(l
)

x
,σ

2
(l
)

x
) σ

2(l)
x = 1

σ
2(l)
x = 0.1

σ
2(l)
x = 0.01

Figure 3.8: Functions F (left) and G (right) for the exponential prior with λ = 1

and various local variances σ
2(l)
x .

3.7 Chi-Squared Distribution

The Chi-squared distribution is given by

fx(x) =







x
k
2−1e−

x
2

2
k
2 Γ( k

2 )
x ≥ 0 (k = 1 : x > 0)

0 x < 0 (k = 1 : x ≤ 0) ,
(3.183)

where k are the “degrees of freedom” and Γ(z) is the Gamma function. If zk are
distributed according to the standard normal distribution, then x =

∑

k z
2
k is chi-

squared with k degrees of freedom. The Gamma function is defined as

Γ(z) =

∫ ∞

0
xz−1e−xdx . (3.184)
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Chi-Squared Distribution Denoiser Construction

For n ∈ N, Γ(n) = (n− 1)!. It is useful to define the shorthand expressions

A =
(σ2(l) − 2µ(l))2

8σ2(l)
(3.185)

B = exp

(

− µ2(l)

2σ2(l)

)

(3.186)

kn =
n+ k

4
. (3.187)

Using the confluent hypergeometric function 1F1(a, b, z) (for a detailled discussion,
see e.g. [2, Chapter 2]), expressions for I0, I1 and I2 can be written as

I0 = 2−
4+3k

4 σ− 4−k
2

(l)B

[√
2σ(l)

Γ (k2)
1F1

(

k0,
1

2
, A

)

(3.188)

−σ2(l) − 2µ(l)

Γ (k0)
1F1

(

k2,
3

2
, A

)]

(3.189)

I1 =
2−k6σ− 2−k

2 B√
πΓ
(
k
2

)

[√
2σ(l)Γ (k2) 1F1

(

k2,
1

2
, A

)

(3.190)

−
(

σ2(l) − 2µ(l)
)

Γ (k4) 1F1

(

k4,
3

2
, A

)]

(3.191)

I2 =
2−k6σ

k
2
(l)B√

πΓ
(
k
2

)

[

2σ(l)Γ (k4) 1F1

(

k4,
1

2
, A

)

(3.192)

−
√
2
(

σ2(l) − 2µ(l)
)

Γ (k6) 1F1

(

k6,
3

2
, A

)]

. (3.193)

The derivatives are

∂I0

∂µ(l)
= 2−3k4σ− 8−k

2 B

{

−
√
2σ(l)

Γ (k2)

[

4µ(l)
1F1

(

k0,
1

2
, A

)

(3.194)

+k(σ2(l) − 2µ(l)) 1F1

(

k4,
3

2
, A

)]

(3.195)

+
1

3Γ (k0)

[

12
(

σ2(l)(2 + µ(l))− 2µ2(l)
)

1F1

(

k2,
3

2
, A

)

(3.196)

+
(

σ2(l) − 2µ(l)
)2

(2 + k) 1F1

(

k6,
5

2
, A

)]}

(3.197)

∂I1

∂µ(l)
=

2−k14σ− 6−k
2

(l)B

3
√
πΓ
(
k
2

)

{

−3
√
2σ(l)Γ(k2)

[

4µ(l)
1F1

(

k2,
1

2
, A

)

(3.198)

+
(

σ2(l) − 2µ(l)
)

(2 + k) 1F1

(

k6,
3

2
, A

)]

(3.199)

+Γ (k4)

[

12
(

σ2(l)(2 + µ(l))− 2µ2(l)
)

1F1

(

k4,
3

2
, A

)

(3.200)
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Denoiser Construction Chi-Squared Distribution

+
(

σ2(l) − 2µ(l)
)2

(4 + k) 1F1

(

k8,
5

2
, A

)]}

. (3.201)

The confluent hypergeometric function 1F1(a, b, z) grows with z at a rate faster
than the exponential function. The expressions above are thus unsuitable for im-
plementation. The confluent hypergeometric function can however be written as

1F1(a, b, z) = ez 1F1(b− a, b,−z) . (3.202)

The argument z = A and all expressions contain the factor B, resulting in terms
of the form

BeA = exp

(

− µ2(l)

2σ2(l)

)

exp

(

(σ2(l) − 2µ(l))2

8σ2(l)

)

(3.203)

= exp

(

σ2(l)(σ2(l) − 4µ(l))

8σ2(l)

)

(3.204)

= exp

(

σ2(l) − 4µ(l)

8

)

, (3.205)

which can be used to obtain expressions more suitable for numerical evaluation.
Critical implementations should consider piece-wise approximations, however. Like
the exponential distribution, the chi-squared distribution is one-sided. Their de-
noiser functions are similar. In Fig. 3.9, the functions F and G for a chi-squared
distribution with one degree of freedom is plotted.
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Figure 3.9: Functions F (left) and G (right) for the chi-squared prior with k = 1

degrees of freedom and various local variances σ
2(l)
x .
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Chi-Squared Distribution Denoiser Construction
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Chapter 4

Compressed LDPC Codes

Low density parity check (LDPC) codes are popular error correction codes. They
were proposed by Robert G. Gallager [31] in 1962 and rediscovered in the 1990s
[54, 42, 41]. Today, they can be found in applications ranging from wired [33]
and wireless [32] local area networks to digital video broadcasting [28], storage
technologies [69] and also in the 5th generation mobile radio access network [29].

Motivation and related work. Recovery algorithms derived in the context of
compressed sensing have been used as detectors in transmission systems before.
The applications range from multi-user detection [63, 36, 37, 8] to detectors of
capacity-achieving codes [52]. Prior work on compressed LDPC codes was pre-
sented in [6], where we constructed the detector by simply combining the LDPC
sum-product detector and BAMP, which yielded an algorithm that is similar to the
one obtained here. The analysis here provides greater detail and better explains the
behavior and limitations of MD-BAMP as detector for compressed LDPC codes.
Compressing code words yields a higher rate, i.e. the fraction of bits per symbol is
larger. The idea is to be able to dynamically adjust the rate for a given channel
quality using a single high-performance code. This goal is achieved by the system
presented in this chapter: the code rate can easily be adjusted by choosing the size
of the matrix A. Another motivation was the approximately Gaussian distribution
of transmit symbols y = Ax, which should provide a shaping gain. This gain is not
realized by the system presented here. Possible reasons and inspiration for future
work is given in Section 5.6 and Chapter 6.

Notation. Some additional notation is required for this chapter. A code word
c of length Nc represents (“encodes”) a vector u of Ku user data symbols (or
“information symbols”). The vector u ∈ {GF(q)}Ku while c ∈ {GF(q)}Nc , where
q = pm, m ∈ N \ {0} and p prime. The algorithms in this chapter are concerned
with binary LDPC codes and thus, p = q = 2. There are 2Ku different user data
words u and thus equally many code words c in a code C. The code C is the set of all
code words c and its size is written as |C| = 2Ku . There exists a bijective mapping

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Compressed LDPC Codes Compressed LDPC Codes

between user data words and code words. This is only possible if Nc ≥ Ku. All user
data words and thus also all code words are assumed to be equally likely to occur.
An LDPC code is a linear block code. It is therefore possible to find a generator
matrix G ∈ {GF(q)}Nc×Ku and a check matrix H ∈ {GF(q)}(Nc−Ku)×Nc . Note
that these matrices are not unique. It can be shown that ∀c ∈ C : Hc = 0.
Furthermore, HG = 0. LDPC codes obtain their name from the fact that there
exists a representation of the check matrix H which is sparse. This particular form
of the check matrix may have more than Nc −Ku rows. The number of nonzero
entries in the ath row of H is called the row weight ρH,a. The equivalent for the
ith column of H is called the column weight γH,i. It is possible to distinguish
between regular and irregular LDPC codes. For the former, the row weight and
column weight is identical for all rows and columns respectively. The latter allows
for variation of the row and column weights. In this chapter, regular LDPC codes
are assumed. It is possible to extend the presented techniques to irregular LDPC
codes, however.
Before transmission, it is necessary to map the code words c to transmit symbol
vectors v. Depending on the choice of transmission system, the transmit symbol
vector v ∈ R

Nt or v ∈ C
Nt . It is possible to use symbol-wise mappings, map

groups of symbols or the whole code word to a transmit symbol. The choice of
this mapping determines Nt. In this chapter, a general zero-mean mapping from
GF(2) 7→ R

0 7→ t (4.1)

1 7→ −t (4.2)

is used and thus Nc = Nt. The value t may depend on the position of the code
word symbol. In this chapter, it is assumed that there is an additional compression
step before transmission. The vectors v are thus referred to as the “inner transmit
symbol vectors”, while the vector y(tx) obtained after the compression step is called
the “outer transmit symbol vector”. Before compression, a number K of inner
transmit vectors v are concatenated:

x = (vT
1 ,v

T
2 , . . . ,v

T
K)T . (4.3)

Thus, a long inner transmit vector x of length N = KNt is obtained. This vector x
can be regarded as a code word of a product code mapped to the transmit symbol
set. The outer transmit symbol vector y(tx) ∈ R

L is then obtained by compressing
x:

y(tx) = Ax . (4.4)

The received symbol vector y shall be affected by additive white Gaussian noise:

y = y(tx) +w . (4.5)

A block diagram of the transmission system can be seen in Fig. 4.1.
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Compressed LDPC Codes Denoiser Construction

u
Encoder Mapper Concatenator Compressor

+w

Joint Decompressor
and Detector

SplitterUnmapperDecoder
û

ci vi x

y(tx)

y

x̂v̂iĉi

Figure 4.1: Model describing transmission system using a compressed LDPC chan-
nel code.

4.1 Denoiser Construction

To obtain expressions for the functions F , G and F ′ using the formalism outlined
in Section 3.1, it is necessary to know the factors fxk(xk) of the prior fx(x). These
have dimension Nc and are determined by the code and the mapper. The prior
factor is thus constructed by a linear combination of multivariate, equally weighted
Dirac deltas. Each code word cj ∈ C can be associated with a Dirac delta at
δ(x− sj). The prior is thus given by

fLDPC
x (x) = 2−Ku

∑

sj∈CR

δ(x− sj) , (4.6)

where sj is the jth code word from C mapped to R. The number of terms in
the sum (4.6) grows exponentially with the length Ku of the user data vector.
A straightforward implementation of the denoiser following Section 3.1 for any
reasonably sized code will be unusable due to limited computational resources. It
is thus desirable to exploit the code’s structure.
For a binary LDPC code, each row in the check matrix H can be regarded as a
parity check equation. Any code word c ∈ C satisfies

hT
a c = 0 , (4.7)

where ha is the column vector representing the ath row of the check matrix H.
The code word symbols identified by the non-zero entries of ha thus form an even
parity check code. The popular sum-product algorithm (SPA) detector [41] for
LDPC codes represents every row of H by a single parity check factor node. A
graphical description of this relationship can be seen in Fig. 4.2. In the context
of compressive sensing, each row of H identifies a sub-vector of symbols with a
common prior factor, expressed as a single parity check code of length ρH (i.e.
the row weight). Note that each code word symbol depends on exactly γH single
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Denoiser Construction Compressed LDPC Codes

parity check factors. These prior factors are “compatible” since their marginal w.r.t.
a particular symbol xi is always

fxi(xi) =
1

2
(δ(xi + ti) + δ(xi − ti)) , (4.8)

where ti ∈ R \ {0} is the inner transmit symbol used by the mapper for the code
word symbol at position i. Since each code word symbol appears in multiple prior
factors, these factors are not disjoint. A graphical model of this setting can be seen
in Fig. 4.3. For each prior factor, a denoiser function F computes the estimated
value µx,i of dependent variables xi. Similarly, a function G computes the variance
of the estimate for each prior factor. Since each variable depends on multiple prior
factors (i.e. parity check functions), it is necessary to achieve a consensus among
the outputs of the functions F and G pertaining to a particular variable.

It is possible to regard the outputs of the γH different functions F , G w.r.t. a
particular symbol xi as separate variables constrained by a binary repetition code.
It will be shown that the output of the functions F , G obtained from a prior
representing a binary repetition code are identical for each dimension; they are
thus suitable to obtain a consensus.

Figure 4.2: Depiction of the relationship between parity check constraints (black
squares) and code word symbols (circles) of a cyclic LDPC code with Nc = 15 and
Ku = 7.
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Compressed LDPC Codes Denoiser Construction

y1

fA1

y2

fA2

y3

fA3

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 4.3: Graphical model of compressed LDPC code words with code word
length Nc = 3 and user data vector length Ku = 1. A total of K = 3 code words
are concatenated to form an inner transmit symbol vector of length N = 9. The
outer transmit symbol vector consists of L = 3 symbols ya.

y1

fA1

y2

fA2

y3

fA3

fcons

x1 x2 x3 x4 x5 x6 x7 x8 x9

fspcc

Figure 4.4: This graphic extends Fig. 4.3 by adding consensus factor nodes fcons

and auxiliary variables for the parity check nodes fspcc.
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Single Parity Check Code Compressed LDPC Codes

4.2 Single Parity Check Code

A single parity check code (SPCC) can be obtained by appending a single parity
symbol to a vector of Ku user data symbols. Thus, the length of a code word c is
Nc = Ku + 1. The parity symbol is chosen such that

1
T
Nc

c = 0 . (4.9)

Such a code is called an even parity check code. If the SPCC is defined over GF(2),
a second practically important case exists. Let the parity symbol be chosen such
that

1
T
Nc

c = 1 , (4.10)

then the code is an odd parity check code. Note that, while the even parity check
code is a linear code, the odd parity check code is not (the all-zero code word c = 0

is not in C). Let the ith code word symbol ci of a binary SPCC be mapped to a
transmit symbol ±ti ∈ R. Without loss of generality the concrete mapping from
GF(2)→ R shall be 0→ ti, 1→ −ti. Then, a prior fx(x) describing the SPCC in
the transmit symbol domain can be obtained as

fSPCC
x (x) = 2−Ku

∑

sa∈CR

δ(x− sa) , (4.11)

where sa is the ath code word in the single parity check code C mapped to R, i.e.
the ith entry of sa is sa,i ∈ {+ti,−ti}. Using the expressions (3.131) - (3.133) and
applying the composition rules from Section 3.1, the function Fi is obtained as

Fi =

∑

a I
(a)
1,i

∑

a I
(a)
0

=

∑

a sa,iI
(a)
0

∑

a I
(a)
0

. (4.12)

In (4.12), the functions I
(a)
k,i correspond to the ath element of the sum (4.11). The

function I0 is given by (3.131). The normalization term ((2π)Nc det(Σ(l)))−
1
2 ap-

pears in all terms of the sums in (4.12) and thus cancels out. Such a modified

function I
(a)mod
0 can be written as

I
(a)mod
0 = exp



−1

2

∑

j

(sa,j − µ
(l)
j )2

σ
2(l)
j



 (4.13)

= exp



−1

2

∑

j

1

σ
2(l)
j

(

s2a,j − 2sa,jµ
(l)
j + µ

2(l)
j

)



 (4.14)

= exp



−1

2

∑

j

s2a,j + µ
2(l)
j

σ
2(l)
j



 exp



−1

2

∑

j

−2sa,jµ(l)
j

σ
2(l)
j



 . (4.15)
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Compressed LDPC Codes Single Parity Check Code

Note that the left-hand factor in (4.15) appears in all elements of the sums in
(4.12). This is due to s2a,j being independent of the code word: squaring the jth

symbol of any code word always results in t2j . The modified function I
(a)mod
0 can

thus be written as

I
(a)mod
0 = exp




∑

j

sa,jµ
(l)
j

σ
2(l)
j



 . (4.16)

It shall prove useful to define

αj =
tjµ

(l)
j

σ
2(l)
j

. (4.17)

It is then possible to write (4.16) as

I
(a)mod
0 = exp

(∑

j

αa,j

)

=
∏

j

eαa,j , (4.18)

where αa,j = ±αj depending on the sign of sa,j . Inserting (4.18) into (4.12) results
in

Fi =

∑

a sa,i
∏

j e
αa,j

∑

a

∏

j e
αa,j

. (4.19)

Since sa,i can only take on two different values, the sums can be partitioned de-
pending on its value:

Fi = ti

∑

a:sa,i=ti

∏

j e
αa,j −∑a:sa,i=−ti

∏

j e
αa,j

∑

a:sa,i=ti

∏

j e
αa,j +

∑

a:sa,i=−ti

∏

j e
αa,j

(4.20)

= ti
eαi
∑

a:sa,i=ti

∏

j 6=i e
αa,j − e−αi

∑

a:sa,i=−ti

∏

j 6=i e
αa,j

eαi
∑

a:sa,i=ti

∏

j 6=i e
αa,j + e−αi

∑

a:sa,i=−ti

∏

j 6=i e
αa,j

. (4.21)

In (4.21), the reformulation was obtained by making use of the fact that all factors
eαi are identical within a particular sum. Note that (4.21) has the form

Fi = ti
eαiX − e−αiY

eαiX + e−αiY
(4.22)

X =
∑

a:sa,i=ti

∏

j 6=i

eαa,j (4.23)

Y =
∑

a:sa,i=−ti

∏

j 6=i

eαa,j . (4.24)

The following reformulation yields a more suitable expression:

Fi = ti
eαiX − e−αiY

eαiX + e−αiY
(4.25)
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Single Parity Check Code Compressed LDPC Codes

= ti
(eαi − e−αi)(X + Y ) + (eαi + e−αi)(X − Y )

(eαi + e−αi)(X + Y ) + (eαi − e−αi)(X − Y )
(4.26)

= ti
eαiX − e−αiX + eαiY − e−αiY + eαiX + e−αiX − eαiY − e−αiY

eαiX + e−αiX + eαiY + e−αiY + eαiX − e−αiX − eαiY + e−αiY
(4.27)

= ti
2(eαiX − e−αiY )

2(eαiX + e−αiY )
(4.28)

= ti

eαi − e−αi

eαi + e−αi
+

X − Y

X + Y

1 +
eαi − e−αi

eαi + e−αi

X − Y

X + Y

(4.29)

= ti
tanh(αi) +

X−Y
X+Y

1 + tanh(αi)
X−Y
X+Y

. (4.30)

Note that the derivation did not make use of the structure of the code up to now. If
the prior describes a single parity check code, the variables X and Y describe single
parity check codes of length Nc−1 and thus their prior is composed of 2Ku−1 Dirac
deltas of dimension Nc − 1. One of these codes will have odd, the other one even
parity. For the particular symbol mapping chosen above, the codes described by
X and Y have even and odd parity respectively. Nonetheless it is still possible to
split these codes into smaller single parity check codes using a similar procedure as
applied before, i.e. separating the code words based on the value of one particular
coordinate (symbol). Any symbol can be chosen:

X = eαk

∑

a:sa,k=tk
∧sa,i=ti

∏

j 6=k,i

eαa,j + e−αk

∑

a:sa,k=−tk
∧sa,i=ti

∏

j 6=k,i

eαa,j (4.31)

= eαkU + e−αkV (4.32)

Y = eαk

∑

a:sa,k=tk
∧sa,i=−ti

∏

j 6=k,i

eαa,j + e−αk

∑

a:sa,k=−tk
∧sa,i=−ti

∏

j 6=k,i

eαa,j (4.33)

= eαkV + e−αkU . (4.34)

Two single parity check codes of size 2Ku−2 have thus been created, identified by
U and V . Since X had even and Y had odd parity, selecting all code words in X
with sa,k = tk and removing the kth symbol results in an even parity check code
of length Nc − 2. Conversely, selecting all code words in Y with sa,k = −tk and
removing kth symbol results in an even single parity check code of length Nc − 2
which is identical to the one obtained from X. These codes are named U while the
odd single parity check codes were named V . Again it is possible to obtain a more
suitable expression:

X = eαkU + e−αkV (4.35)

∝ (eαk + e−αk)(U + V ) + (eαk − e−αk)(U − V ) (4.36)
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Compressed LDPC Codes Single Parity Check Code

= eαkU + e−αkU + eαkV + e−αkV + eαkU − e−αkU − eαkV + e−αkV (4.37)

= 2(eαkU + e−αkV ) (4.38)

Y = eαkV + e−αkU (4.39)

=∝ (eαk + e−αk)(U + V )− (eαk − e−αk)(U − V ) . (4.40)

Furthermore,

X − Y =
1

2
(eαk − e−αk)(U − V ) (4.41)

X + Y =
1

2
(eαk + e−αk)(U + V ) (4.42)

X − Y

X + Y
= tanh(αk)

U − V

U + V
. (4.43)

This procedure can then be repeated until the smallest parity check codes are
obtained. These codes have length two and consist of two code words. The codes
are given by

U = eα0eα1 + e−α0e−α1 (4.44)

≡
{
(t0, t1)

T , (−t0,−t1)T
}
= CRU (4.45)

V = e−α0eα1 + eα0e−α1 (4.46)

≡
{
(−t0, t1)T , (t0,−t1)T

}
= CRV . (4.47)

Then,

U − V = eα0(eα1 − e−α1) + e−α0(e−α1 − eα1) (4.48)

= (eα0 − e−α0)(eα1 − e−α1) (4.49)

U + V = eα0(eα1 + e−α1) + e−α0(e−α1 + eα1) (4.50)

= (eα0 + e−α0)(eα1 + e−α1) (4.51)

U − V

U + V
= tanh(α0) tanh(α1) . (4.52)

An expression for Fi of a single parity check code is thus given by

Fi = ti
tanh(αi) +

∏

j 6=i tanh(αj)

1 +
∏

j tanh(αj)
. (4.53)

The expression (4.53) is problematic due to possible division by zero, in which case
the numerator also vanishes, yielding the undefined form 0/0. Using the relation

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
, (4.54)

a practically more usable expression for Fi is obtained as

Fi = ti tanh
(

αi + atanh
(∏

j 6=i

tanh(αj)
))

. (4.55)
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Single Parity Check Code Compressed LDPC Codes

The derivation did not include any approximations and thus the formulation of Fi

in (4.53) is exact. The function Gi can therefore be found as

Gi =
I2,i
I0
− F 2

i =

∑

a s
2
a,iI

(a)
0

∑

a I
(a)
0

− F 2
i . (4.56)

Again, s2a,i = ti ∀a and it can thus be pulled out of the sum, yielding

Gi = t2i

∑

a I
(a)
0

∑

a I
(a)
0

− F 2
i = t2i − F 2

i . (4.57)

This function follows intuition: as the algorithm converges towards the true value
of the ith symbol, which is ±ti, the variance becomes zero. The derivatives w.r.t.

µ
(l)
j are

∂I
(a)
0

∂µ
(l)
j

=
1

σ
2(l)
j

(

I
(a)
1,j − µ

(l)
j I

(a)
0

)

(4.58)

∂I
(a)
1,i

∂µ
(l)
j

=
1

σ
2(l)
j

(

R
(a)
1,1,i,j − µ

(l)
j I

(a)
1,i

)

(4.59)

I
(a)
1,i = sa,iI

(a)
0 (4.60)

R
(a)
1,1,i,j = sa,isa,jI

(a)
0 . (4.61)

The derivative of Fi (4.12) computes as

∂Fi

∂µ
(l)
j

=
1

∑

a I
(a)
0

∑

a

∂I
(a)
1,i

∂µ
(l)
j

−
∑

a I
(a)
1,i

(
∑

a I
(a)
0

)2

∑

a

∂I
(a)
0

∂µ
(l)
j

(4.62)

=

∑

a sa,isa,jI
(a)
0 − µ

(l)
j

∑

a I
(a)
1,i

σ
2(l)
j

∑

a I
(a)
0

(4.63)

− Fi

σ
2(l)
j

∑

a I
(a)
0

(
∑

a

I
(a)
1,j − µ

(l)
j

∑

a

I
(a)
0

)

. (4.64)

For the diagonal of the Jacobian, i.e. i = j, this results in

∂Fi

∂µ
(l)
i

=
1

σ
2(l)
i

(

t2i − µ
(l)
i Fi − F 2

i + µ
(l)
i Fi

)

(4.65)

=
t2i − F 2

i

σ
2(l)
i

, (4.66)
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Compressed LDPC Codes Single Parity Check Code

which agrees with (3.20). The off-diagonal terms are

∂Fi

∂µ
(l)
j

∣
∣
∣
∣
i 6=j

=
1

σ
2(l)
j

(∑

a sa,isa,jI
(a)
0

∑

a I
(a)
0

− µ
(l)
j Fi − FiFj + µ

(l)
j Fi

)

(4.67)

=
1

σ
2(l)
j

( ∑

a sa,isa,jI
(a)
0

∑

a I
(a)
0

︸ ︷︷ ︸

Hi,j

−FiFj

)

. (4.68)

The expression Hi,j shall be examined more closely. Note that the sum in the
numerator depends on the product of sa,i and sa,j , which is ±titj . For parity check
codes of length Nc = 2, the values sa,i, sa,j are highly correlated: the product
sa,isa,j = titj for even parity check codes and sa,isa,j = −titj for odd parity check
codes. For single parity check codes with Nc > 2, any two coordinates are pairwise
uncorrelated, i.e. there is an equal number of code words where sa,i = sa,j and

sa,i 6= sa,j . The sum does not evaluate to zero however, since the functions I
(a)
0 can

have different values. In a similar procedure as above, the sum is partitioned based
on the sign of the product sa,isa,j . The expression Hi,j can therefore be written as

Hi,j =

∑

a sa,isa,jI
(a)
0

∑

a I
(a)
0

= titj

∑

a:sa,i=sa,j
I
(a)
0 −∑a:sa,i 6=sa,j

I
(a)
0

∑

a:sa,i=sa,j
I
(a)
0 +

∑

a:sa,i 6=sa,j
I
(a)
0

. (4.69)

Again, I
(a)
0 can be written as product of exponentials, cf. (4.18). The sums can be

further partitioned, depending on the particular values of sa,i and sa,j . Further-
more, the exponentials associated with the ith and jth coordinate can be extracted.
For the individual sums, this yields

∑

a:sa,i=sa,j

I
(a)
0 =







eαi+αj

U
︷ ︸︸ ︷
∑

a

∏

k 6=i,j

eαa,k a : sa,i = ti ∧ sa,j = tj

e−(αi+αj)
∑

a

∏

k 6=i,j

eαa,k

︸ ︷︷ ︸

U

a : sa,i = −ti ∧ sa,j = −tj
(4.70)

∑

a:sa,i 6=sa,j

I
(a)
0 =







eαi−αj

V
︷ ︸︸ ︷
∑

a

∏

k 6=i,j

eαa,k a : sa,i = ti ∧ sa,j = −tj

e−(αi−αj)
∑

a

∏

k 6=i,j

eαa,k

︸ ︷︷ ︸

V

a : sa,i = −ti ∧ sa,j = tj .
(4.71)

It can be shown that the codes obtained by the expressions marked as U are
identical. They are obtained by selecting all code words of a longer single parity
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Single Parity Check Code Compressed LDPC Codes

check code where two particular code word symbols (namely those at positions
i and j) are equal. The new code of length Nc − 2 represented by U thus has
the same parity as the code of length Nc. The codes marked as V are similarly
obtained by selecting all code words whose symbols differ at positions i and j. The
new code of length Nc− 2 thus has the opposite parity of the longer code of length
Nc. Therefore, (4.69) can be written as

Hi,j = titj

(
eαi+αj + e−(αi+αj)

) ∑

a:sa,i=sa,j

I
(a)
0 −

(

eαi−αj + e−(αi−αj)
) ∑

a:sa,i 6=sa,j

I
(a)
0

(

eαi+αj + e−(αi+αj)
)

︸ ︷︷ ︸
u

∑

a:sa,i=sa,j

I
(a)
0 +

(

eαi−αj + e−(αi−αj)
)

︸ ︷︷ ︸
v

∑

a:sa,i 6=sa,j

I
(a)
0

(4.72)

= titj
uU − vV

uU + vV
= titj

(u− v)(U + V ) + (u+ v)(U − V )

(u+ v)(U + V ) + (u− v)(U − V )
(4.73)

= titj

u− v

u+ v
+

U − V

U + V

1 +
u− v

u+ v

U − V

U + V

. (4.74)

Furthermore, the terms involving u and v can be conveniently dissected into

u− v

u+ v
=

eαi − e−αi

eαi + e−αi

eαj − e−αj

eαj + e−αj
(4.75)

= tanh(αi) tanh(αj) . (4.76)

Assuming even parity check codes, the code represented by U is even and the one
represented by V is odd. Analogous to the procedure described in (4.31) to (4.34),
the terms involving U and V can therefore be factored into products of hyperbolic
tangents. The function Hi,j is thus defined as

Hi,j = titj
tanh(αi) tanh(αj) +

∏

k 6=i,j tanh(αk)

1 +
∏

k tanh(αk)
. (4.77)

The derivative of Fi w.r.t. µ
(l)
j (cf. (4.68)) can therefore be written as

∂Fi

∂µ
(l)
j

∣
∣
∣
∣
i 6=j

=
1

σ
2(l)
j

(

titj
tanh(αi) tanh(αj) +

∏

k 6=i,j tanh(αk)

1 +
∏

k tanh(αk)
− FiFj

)

. (4.78)

Note that the expression in the brackets of (4.78) remains identical if i and j are
swapped, which can be used for efficient implementation.
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Compressed LDPC Codes Consensus Function

4.3 Consensus Function

It has been mentioned above that for each symbol xi, there are outputs from γH
different functions F , G, i.e. one for each parity check that a symbol xi is associated
with. To obtain a consensus among these results, a binary repetition code can be
used. The functions F and G obtained by deriving the denoiser of the repetition
code will prove to be suited as consensus function, i.e. for obtaining an estimate of
xi and its variance σ2

x,i as required by the MD-BAMP algorithm. The prior of a
repetition code is

fx(x) =
1

2

K∏

k

δ(xk + τk) +
1

2

K∏

k

δ(xk − τk) . (4.79)

This prior describes a binary code in K-dimensional space, with the two possible
code words being c0 = (τ1, . . . , τk, . . . , τK)T and c1 = −c0. This section describes
the use as consensus function, thus all symbols τk are equal and the variables xk
are replicas of xi. To obtain consensus for the symbol xi of the LDPC code, let
τk = ti. Since (4.79) is a linear mixture of two multivariate Dirac deltas, the
expression (4.12) can be used to obtain the denoiser F , yielding

Fi = Fk =

∑

a sa,kI
(a)
0

∑

a I
(a)
0

(4.80)

= ti

∏K
k=1 e

αk −∏K
k=1 e

−αk

∏K
k=1 e

αk +
∏K

k=1 e
−αk

, (4.81)

with the sum in (4.80) consisting of two terms and all sa,k ∈ ±τk. Note that the
expression for the kth dimension of the denoiser (4.81) does not depend on k. Using
the shorthand β =

∑

k αk, the fraction (4.81) becomes

Fi = ti
eβ − e−β

eβ + e−β
= ti tanh(β) . (4.82)

The function G can be obtained by following the steps performed for single parity
check codes (cf. (4.56)). Thus, G is

Gi = Gk = t2i − F 2
i = t2(1− tanh2(β)) . (4.83)

At this point it is necessary to find the definition of αk. While it seems logical to

use an expression like (4.17), with µ
(l)
k and σ

2(l)
k set to the results of the functions

Fi (cf. (4.55)) and Gi (cf. (4.57)) of the K single parity check nodes neighboring the
symbol xi, this choice yields poor performance. A heuristic approach inspired by
the original SPA detector for LDPC codes gives better results. The SPA detector
[41] operates on log-likelihood values li. Messages are passed between factor nodes,
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Consensus Function Compressed LDPC Codes

which correspond to parity checks, and variable nodes, which represent the code
word symbols. These messages are given by

li→k = li +
∑

m 6=k

lm→i (4.84)

lk→i = 2atanh
(∏

j 6=i

tanh
( lj→k

2

))

. (4.85)

Here, li is the log-likelihood value of the ith symbol, while li→k and lk→i are the
messages passed from variable to factor and vice versa. Both messages can be found
in the denoiser (4.55). The message lk→i appears in (4.55) (up to a factor of 2) when
setting αi = 0 and removing the outer tanh function. In (4.55), the sum covers
just one parity check node, namely the node for which the denoiser was derived.
Finally, the hyperbolic tangent is the denoiser of the repetition code, where the
two values αk are on the one hand αi and on the other hand atanh(

∏

j 6=i tanh(αj)).
Following (4.84), the variable β in (4.82) shall be defined as

β = αi +
∑

k

αk→i , (4.86)

where the message αk→i is

αk→i = atanh
(∏

j 6=i

tanh(αj→k)
)

(4.87)

and finally, the message αj→k is (cf. (4.84))

αi→k = αi +
∑

m 6=k

αm→i . (4.88)

In (4.86), αi is defined as in (4.17), all other terms do not depend on µ
(l)
i . Thus,

the derivative of Fi w.r.t. µ
(l)
i is obtained as

∂Fi

∂µ
(l)
i

=
t2i

σ
2(l)
i

(1− tanh(β)) , (4.89)

which is consistent with (4.83) and (3.20). This formulation is also justified by
the graphical model in Fig. 4.4 (p.67). Setting αi to zero in the denoiser of the
single parity check nodes neighboring the symbol xi is equivalent to excluding the
message from the target variable in the computation of the reply, as required by
the sum-product message passing rules (cf. (2.28)).
The variables αj appearing in the denoiser (4.55) can be thought of as messages
from the variable node representing the symbol xj towards the parity check node
fk. The definition of αj does not take into account messages from other parity
check nodes. It is computed using a belief about the “received” symbol represented
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Compressed LDPC Codes Consensus Function

by µ
(l)
j , σ

2(l)
j only. The formulation (4.88) correctly takes into account messages

from other parity check nodes.
It should be pointed out that the denoiser obtained using definitions (4.82), (4.83)
and (4.86)-(4.88) results in a “stateful” denoiser, i.e. it depends on previous it-
erations. It is therefore not straightforward to obtain results via state evolution
estimation using Monte-Carlo methods.
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Chapter 5

Results

In this chapter, results of numerical simulations are presented and interpreted. The
performance criteria of choice is the signal-to-distortion ratio in decibel, defined as

SDRdB = 10 log10

(

‖x‖22
‖x̂− x‖22

)

, (5.1)

which is the negative normalized mean-squared error (NMSE) in decibel. Note
that this definition has the unfortunate side-effect of making comparison of SDR
values difficult if x has nonzero mean and the estimation of x̂ was unbiased. The
estimated (recovered) signal is denoted x̂ while the original signal vector is written
as x. The subsampling ratio ρ is defined as

ρ =
L

N
. (5.2)

Signals x are sampled from multi-dimensional priors fx(x). Samples from these
priors are concatenated into a vector of size N , i.e.

x = (xT
1 ,x

T
2 , . . . ,x

T
N/K)T , (5.3)

where K is the dimension of the prior and the vectors xi are samples of the prior
fx(x). The dimension N of the vector x is chosen such that it is an integer multiple
of K, typically N = 1000. For algorithms that use an abort threshold ε, it is set
as ε = 10−4. In many cases, this threshold also limits the achievable SDR. The
number of iterations is limited to tmax = 300, unless specified otherwise. The
algorithms used in this chapter are listed in Appendix A, p.109ff.

All simulations were performed using double-precision (IEEE 754-1985 [1]) float-
ing point numbers and a custom simulation framework written in C++. For linear
algebra, the “Eigen” template library (version 3) was used. Multi-threading and
clustering features combined with the execution speed of optimized C++ code en-
abled high-resolution simulations.
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Multi-dimensional Sparse Signals Results

5.1 Multi-dimensional Sparse Signals

Most classical recovery algorithms, like iterative thresholding and matching pursuit
are applicable to sparse signals only. Furthermore they, as well as AMP, assume
zero mean, i.i.d. coefficients of the unknown vector x. To compare the performance
of these algorithms, test signal vectors are drawn from a Bernoulli-Gaussian prior,

fx,BG(x) = (1− γ)δ(x) + γNx(0,Σ) , (5.4)

where, γ is a measure of the sparsity, and Σ is the covariance matrix. For one-
dimensional priors the standard normal distribution is used. For multi-dimensional
priors the covariance matrix is obtained by rotation of an uncorrelated multivariate
Gaussian with unit variance in the first dimension and a variance of 0.1 in all other
dimensions. The rotation matrix is chosen such that the axes become aligned with
the unit vectors defined by the columns of a Hadamard matrix.
All simulations were performed with N = 1000 (unless specified otherwise) and L
such that the subsampling ratio ρ ranges from ρ = 0.01 to ρ = 0.985 in increments
of ∆ρ = 0.025. The sparsity γ ranges from γ = 0.025 to γ = 1 in increments
of ∆γ = 0.025. The SDR is plotted for a range of −5dB ≤ SDRdB ≤ 50dB,
which is a reasonable trade-off maintaining visibility of regions where algorithms
diverge (which results in low SDR), regions where excellent recovery is achieved
and preserving sufficient contrast for phase transitions. Values outside this range
are clamped towards the nearest value in the range. Both (MD-)BAMP and
(MD-)GMP are supplied with the prior of the signal for recovery, while AMP
is provided with the signal’s variance. The iterative thresholding algorithms as
well as matching pursuit (MP) and orthogonal matching pursuit (OMP) are pro-
vided with the sparsity γ of the signal. The abort threshold is set as ε = 10−4

and the maximum number of iterations is limited to 100 except for MP and OMP,
where the maximum number of iterations is γN . The algorithms are listed in
Appendix A. For these simulations, the variant of MD-BAMP with simplified On-
sager term (Algorithm 8, p.114) was used. Any state evolution estimations were
performed using Monte-Carlo sampling to compute the expectation in (2.121).
Classical BAMP exhibits comparatively good performance in terms of SDR at a
given subsampling ratio ρ for i.i.d. entries of x, as shown in Fig. 5.1. It outperforms
all other algorithms except Gaussian message passing, which offers similar perfor-
mance (cf. Fig. 5.2a) but is significantly slower. Approximate message passing as
well as orthogonal matching pursuit offer reasonable recovery. Their SDR is plot-
ted in Fig. 5.2b and Fig. 5.2f respectively. Note that OMP achieves superior SDR
for very sparse signals (γ < 0.2) since in many cases it recovers x exactly. This is
possible if its choice of active entries of x is correct in each iteration and ρ ≥ γ,
i.e. there are at least as many measurements as active entries in x. Its recovery
performance for dense signals γ > 0.7 is inferior to AMP. Our implementation of
AMP exhibits instability at small ρ, i.e. for a small number of measurements, as
can be seen in Fig. 5.2b. Finally, iterative hard thresholding and matching pur-
suit are suitable only for very for sparse signals (γ < 0.3) and achieve comparably
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Results Multi-dimensional Sparse Signals
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Figure 5.1: Recovery performance (SDR, color coded) of BAMP vs. sparsity γ and
subsampling ratio ρ for i.i.d. entries of x with Bernoulli-Gaussian prior.

mediocre SDR, shown in Fig. 5.2d and Fig. 5.2e. Iterative soft thresholding (IST)
has similar performance. Note that our particular variant of the IST algorithm
becomes unstable for γ > 0.5 (i.e. rather dense signals).
Comparison is simplified by plotting the “phase transition” vs. subsampling ratio
ρ and sparsity γ. Since the phase transition is not sharp for finite N , a particular
recovery SDR value has to be chosen. Here, a threshold of 20dB SDR was applied.
The phase transition becomes steeper for larger signal length N . An example of
this effect can be see in Fig. 5.3. Thus, 20dB were chosen as slightly above the point
where the recovery SDR is identical for a fixed subsampling ratio ρ and variable
signal length N . The phase transitions for one-dimensional priors are plotted in
Fig. 5.4. Note that the theoretical limit for recovery, i.e. the minimum subsampling
ratio required for recovery of a signal of a given sparsity is not achieved by any
algorithm. This limit can be found using the Rényi information dimension d(x).
Let the random variable x be distributed according to the measure ν,

ν = (1− γ)νd + γνc , (5.5)

where 0 ≤ γ ≤ 1, νd is a discrete measure and νc is an absolutely continuous
measure. Then [51, Theorem 3]

d(x) = γ . (5.6)
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Multi-dimensional Sparse Signals Results
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(a) Gaussian message passing
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(b) Approximate message passing
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(c) Iterative soft thresholding
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(d) Iterative hard thresholding
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(e) Matching pursuit
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(f) Orthogonal matching pursuit

Figure 5.2: Performance of several recovery algorithms in terms of SDR (color
coded) vs. sparsity γ and subsampling ratio ρ for i.i.d. entries of x with Bernoulli-
Gaussian prior. The color coding is identical to Fig. 5.1 for all plots.
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Results Multi-dimensional Sparse Signals
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Figure 5.3: Performance (SDR) of MD-BAMP at various dimensions N and sub-
sampling factors ρ for a two-dimensional prior. The sparsity is constant at γ = 0.5.
The granularity of the measurement dimension is 0.01N . Each point is obtained
as average of 1000 simulations.
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Figure 5.4: Phase transitions of several algorithms. The SDR of a particular algo-
rithm is larger than 20dB southeast of the associated curve.
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Multi-dimensional Sparse Signals Results

Wu and Verdú show [64, 65, 67] that under the assumption of linear encoding, a
signal originating from a memoryless source distributed according to a discrete-
continuous mixture can be reconstructed if the rate of the encoder is at least d(x).
The theoretical subsampling limit is therefore ρ = γ.
For multi-dimensional priors, MD-BAMP achieves better recovery compared to all
other algorithms, which assume i.i.d. components of the unknown vector x. For a
K = 2-dimensional prior, the recovered SDR can be seen in Fig. 5.5a for AMP and
Fig. 5.5b for MD-BAMP. Phase transitions for increasing prior dimension K can be
seen in Fig. 5.6a. For increased dimension, MD-BAMP approaches the Rényi limit.
This behavior is predicted by the state evolution recursion defined by equations
(2.121), (2.122). The 20dB-thresholds estimated by state evolution are plotted as
dotted lines in Fig. 5.6b.
The state evolution recursion can also be plotted in the style of an “Exit-plot”,

where the evolution of σ2
z is plotted as function of σ

2(l)
x and vice versa, pertaining

to equations (2.121), (2.122). Extrinsic information transfer plots (“ExIT”) were
initially developed by Stephan ten Brink [56, 57] to help with analysis and design
of iteratively decoded codes. Even though different quantities are plotted in case of
AMP-based algorithms, the name “Exit” plot is reused here due to the similar style
and operation. Plots of this type are shown in Fig. 5.7. If there is no measurement

noise σ2
w, then σ

2(l)
x = σ2

z and the equation describes a straight line. The behavior of

the denoiser F determines the variance σ2
z depending on σ

2(l)
x . Note that the factor

ρ−1 is accounted for in the equation of the denoiser in this section’s plots. This
effectively separates the effects of additive measurement noise and the action of the
denoiser at a given subsampling ratio and allows for easier comparison. Clearly,
once the condition

ρ−1
E

{

(F (. . . , σ
2(l)
x )− x0)

2
}

︸ ︷︷ ︸

=G(...,σ
2(l)
x )

= σ
2(l)
x (5.7)

is fulfilled, the estimate cannot be improved any more and the algorithm converges
towards a fixed point. The achievable SDR is determined by the point where the
two curves meet. To achieve convergence of x̂ towards the true value of x, a “chan-
nel” must remain open between the curves describing the behavior of the denoiser
for a certain subsampling ratio ρ and the action of the matrix projection and possi-

ble measurement noise. For large σ
2(l)
x , the MSE of the denoiser F saturates at the

prior variance of the signal. Decreasing the subsampling ratio ρ amounts to larger

σ2
z at the output of the denoiser F for a given variance σ

2(l)
x . In a logarithmic plot,

halving ρ amounts to a shift of the curve describing the denoiser by 3dB. For priors
with Rényi dimension d(x) > 0 it is therefore possible to indicate the Rényi limit:

it is impossible for any denoiser to perform better than this limit for all σ
2(l)
x . For

d(x) = 1 (i.e. signals without discrete components), the Rényi limit coincides with
the diagonal describing the matrix projection.
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Results Multi-dimensional Sparse Signals
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Figure 5.5: Performance in terms of SDR of AMP and MD-BAMP for a two-
dimensional Bernoulli-Gaussian prior with sparsity γ and subsampling ratio ρ.
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Figure 5.6: Phase transitions for priors of different dimensions K. The SDR of a
particular algorithm is larger than 20dB southeast of the associated curve. The
phase transitions as estimated by state evolution are plotted as dotted lines (right
side only). The corresponding curves lie on top of each other, thus different colors
were selected to enhance visibility.
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Multi-dimensional Sparse Signals Results

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

σ2
z

σ
2
(l
)

x
σ
2(l)
x = σ2

z

Rényi limit
K = 1
K = 2
K = 4
K = 8

10−2 10−1
10−2

10−1

σ2
z

σ
2
(l
)

x

σ
2(l)
x = σ2

z

Rényi limit
K = 1
K = 2
K = 4
K = 8

Figure 5.7: “Exit” plot of a Bernoulli-Gaussian signal with K-dimensional prior,
sparsity γ = 0.5 and subsampling ratio ρ = 1.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Results Noisy Compressed Sensing

5.2 Noisy Compressed Sensing

This section discusses the behavior of MD-BAMP and BAMP-VN in presence of
non-uniformly distributed measurement noise. Signals in this section are drawn
from a sparse multi-variate Bernoulli-Gaussian prior as defined in (5.4). The spar-
sity is fixed at γ = 0.5. The signal-to-noise ratio (SNR) in decibel is defined as

SNRdB = 10 log10

(

‖Ax‖22
‖w‖22

)

, (5.8)

where w is the measurement noise which is assumed to be distributed according
to the normal distribution. The behavior of MD-BAMP in presence of i.i.d. noise
can be illustrated using state evolution and “Exit” plots. For both MD-BAMP and
BAMP-VN the state evolution recursion consists of two equations. The behavior of
the denoiser does not depend on the measurement noise w. The second equation
depends on the measurement noise variance σ2

w. For MD-BAMP, the equation
reads (cf. (2.122))

σ
2(l)
x = σ2

w + σ2
z , (5.9)

while for BAMP-VN it is (cf. (2.165))

σ
2(l)
x = L

(
∑

Wk∈V

|Wk|
σ2
w,k + σ2

z

)−1

. (5.10)

Clearly, the variance σ
2(l)
x is lower bounded by the average noise variance σ2

w in
(5.9). The behavior is plotted in Fig. 5.8. The expression (5.10) is identical to
(5.9) if noise variances σ2

w,k are equal. In all other cases, the sum is dominated

by the smallest σ2
w,k. Indeed, as long as there is a set Wk whose entries wa of w

have zero variance, the variance σ
2(l)
x tends to zero as σ2

z goes to zero. This does
not necessarily mean that having any number |Wk| of low-noise (or even noiseless)
measurements ya is sufficient to guarantee convergence towards the true x. An

upper bound for σ
2(l)
x is

σ
2(l)
x =

(
∑

Wk∈V

|Wk|
L(σ2

w,k + σ2
z )

)−1

<

(

|Wk|
Lσ2

w,min + Lσ2
z

)−1

, (5.11)

where on the right-hand side the set Wk with the smallest variance was selected
an all other terms in the sum were omitted. If the contrast of the noise variances
σ2
w,k is large, e.g. if σ2

w,min = 0, then the upper bound is a good approximation of

σ
2(l)
x and

σ
2(l)
x ≈ L

|Wk|
(
σ2
w,min + σ2

z

)
(5.12)
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Noisy Compressed Sensing Results
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Figure 5.8: “Exit” plot for MD-BAMP with i.i.d. Gaussian noise. The signal sam-
ples are drawn from an 8-dimensional Bernoulli-Gaussian prior, the subsampling
ratio ρ = 1. Three different noise levels are plotted.

=
L

|Wk|
σ2
w,min +

N

|Wk|
σ2
x . (5.13)

Since |Wk| ≤ L, the effective noise variance σ2
w ≈ Lσ2

w,min/ |Wk| is usually larger

than the smallest noise variance. Furthermore, the variance σ2
x at the output

of the denoiser is scaled with N/ |Wk| instead of N/L. This result is intuitive:
if all but a certain set of measurements ya are extremely noisy, the algorithm’s
performance should be comparable to that of an algorithm which is supplied with
the L′ = |Wk| noise-free measurements only. This is equivalent to a subsampling
ratio ρ′ = |Wk| /N .

This behavior can be observed in Fig. 5.9, where 10% of measurements are noise-
free while the other 90% are affected by Gaussian noise with identical variance.
In regions of large σ2

z , the noise term in (5.9) is negligible. Conversely, for small
σ2
z , only noise-free measurements can further improve the estimation. Since only

10% of measurements are noise-free, the lines associated with the matrix projection
equation are converging towards a parallel of the line showing evolution in the noise-
free case. This parallel is shifted by 10dB to the left. This is roughly equivalent
to using a subsampling ratio of ρ = 0.1, as predicted by approximation (5.13).
For the signal with sparsity γ = 0.5, BAMP-VN does not perform significantly
better than MD-BAMP. The behavior of BAMP-VN can be observed in Fig. 5.9a.
The fixed points for BAMP-VN are almost identical to MD-BAMP, which assumes
i.i.d. noise and thus behaves as shown in Fig. 5.8a. Since 10% of measurements
are noiseless, the signal with sparsity γ = 0.1 is the densest recoverable signal.
This can be observed in Fig. 5.9b. The Bayesian denoiser for the 8-dimensional
Bernoulli-Gaussian prior does not quite achieve the Rényi bound, thus BAMP-VN
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Results Noisy Compressed Sensing
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Figure 5.9: “Exit” plot for BAMP-VN with non-uniform Gaussian noise. The signal
samples are drawn from an 8-dimensional Bernoulli-Gaussian prior, the subsam-
pling ratio ρ = 1. A fraction of 10% of measurements are noise-free. Three different
average noise levels are plotted.

does not converge towards x exactly for the γ = 0.1 sparse signal. Its fixed points
promise much better recovery SDR compared to regular MD-BAMP (cf. Fig. 5.8b).
Any sparser signal (i.e. γ < 0.1) will show even better performance for this noise
pattern.

So far, the two extreme cases have been examined, namely i.i.d. Gaussian noise
and “sparse” noise, where some measurements ya are noisy while others are noise-
less. Even for other noise-patterns, BAMP-VN shows improved SDR, however.
To demonstrate this effect, assume an acquisition system in which two different
types of sensors exist. One type of sensor has a superior noise figure such that the
variance of the noise affecting the measurements is smaller by a certain factor 1/β.
Furthermore, assume that two thirds of the sensors are of the low-noise type. In
such cases BAMP-VN improves upon MD-BAMP’s recovery SDR due to the fact

that σ
2(l)
x converges to smaller values. An “Exit” plot comparing the behavior can

be seen in Fig. 5.10. Numerical results are shown in Fig. 5.11. Given a noise vari-
ance contrast of β = 10, BAMP-VN (Fig. 5.11a) yields slightly better results than
MD-BAMP (Fig. 5.11d). Larger values of β furthermore improve performance,
enabling BAMP-VN to work in low-SNR conditions, as shown in Fig. 5.11b. In
case of sparse noise, recovery is possible at any SNR at the cost of an increased
subsampling ratio. This rate approaches 3γ/2 as the SNR becomes smaller. This
can be seen in Fig. 5.11c and agrees with (5.13).
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Noisy Compressed Sensing Results
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Figure 5.10: “Exit” plot comparing the performance of BAMP-VN and MD-BAMP
for variable noise. The subsampling ratio ρ = 1, the average noise level is 20dB.
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Figure 5.11: Recovery SDR for various noise patterns and SNR. Two thirds of
measurements are affected by noise whose variance is smaller by 1/β. In case of
sparse noise, two thirds of measurements are noiseless. The signal samples are
drawn from an 8-dimensional Bernoulli-Gaussian prior with sparsity γ = 0.5.
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Results Non-Zero-Mean Sensing Matrix

5.3 Non-Zero-Mean Sensing Matrix

This section discusses the behavior of MEAN-BAMP for systems with non-zero-
mean measurement matrix B. Furthermore, the performance of MD-BAMP with
simple mean-removal is examined. Examples in this section use two different types
of signals. A zero-mean signal is sampled from an 8-dimensional Bernoulli-Gaussian
prior with sparsity γ = 0.5, while a nonzero-mean signal is obtained from a similar
prior, shifted such that its mean is µx = 1N , i.e.

fx(x) = (1− γ)δ(x− 18) + γN (18,Σ) , (5.14)

with Σ as defined in Section 5.1. This nonzero-mean signal is used in numerical
simulations showing that MEAN-BAMP behaves as predicted by state evolution
even when both the sensing matrix B and the signal x are non-zero-mean.

Again, state evolution lends itself well to the analysis of MEAN-BAMP as well as
MD-BAMP with mean-removal (MR-BAMP). A possible state evolution recursion
for MEAN-BAMP is given by the expressions (2.237) to (2.240). Both algorithms
are initialized with a sensing matrix A and a vector of measurements y which are
obtained from the mean-affected matrix B and the original measurement vector v
by removal of the arithmetic mean. As shown in Section 2.7, this incurs an addi-
tional error with a variance of L−1σ2

y . While MEAN-BAMP iteratively eliminates
this error by estimating the correct arithmetic mean of a particular measurement
vector y, MR-BAMP ignores it and is therefore limited by an additional noise term.
The initial variance of y’s entries is captured by σ2

τ in (2.238). The variance of the
error is smaller by a factor L−1. The variance σ2

κ is roughly equivalent to the error
variance provided µB is large enough. The initial error variance can therefore be
identified graphically by finding the initial value of σ2

z and determining the associ-
ated value of σ2

κ. MR-BAMP is limited by a noise-floor at this level as shown in

Fig. 5.12. Since σ
2(l)
x is the sum of σ2

κ and σ2
τ , the latter is almost identical to σ

2(l)
x

due to the former being orders of magnitude smaller. For any reasonably large L
and matrix mean µB, it is therefore possible to use state evolution as defined for
MD-BAMP ((2.121) - (2.122)) to estimate the performance of MEAN-BAMP. The
artificial noise level is 30dB for L = 1000 and roughly 23dB for L = 200, which
can be seen in Fig. 5.12a and Fig. 5.12b respectively.

Numerical simulations confirm the findings obtained via state evolution. As shown
in Fig. 5.13, when MEAN-BAMP is used in settings with µB 6= 0, it achieves per-
formance comparable to MD-BAMP in the zero-mean-matrix regime. In fact, the
recovered signal is almost identical. This agrees well with state evolution which is
highly similar to MD-BAMP. Merely employing mean-removal is roughly identical
to a noisy signal. In Fig. 5.13 it can be seen that MR-BAMP has similar perfor-
mance as MD-BAMP operating at an equivalent noise level and zero-mean matrix.
While the state evolution estimation (dotted) agrees well with the performance in
the noisy case, MR-BAMP slightly outperforms the estimation. The precise reason
for this deviation has not yet been thoroughly investigated.
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Other Sparse Priors Results
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Figure 5.12: “Exit” plot for MEAN-BAMP and MR-BAMP. The sparsity γ = 0.1,
N = 1000. The sensing matrix mean µB = 1.

The MEAN-BAMP algorithm is also applicable to signals with non-zero mean. Re-
sults for this case can be seen in Fig. 5.14. Values of the SDR at small subsampling
ratio ρ start at a higher value due to (5.1) not accounting for the signal mean.

5.4 Other Sparse Priors

Some signals are not accurately modeled by Bernoulli-Gaussian priors. Other pri-
ors can be obtained using the methods outlined in Chapter 3. In this section,
numerical results for a small number of sparse priors are presented. The main goal
is comparison of phase transition curves with those of Bernoulli-Gaussian priors.

Two different mixed discrete-continuous distributions are discussed. One is a
Bernoulli-Exponential mixture while the second is a Bernoulli-Uniform mixture.
Both are defined for prior dimensions K ∈ {1, 4}. Their pdfs are given by

f
(K=1)
x,BE (x) = (1− γ)δ(x− 1) + γ exp(−x) (5.15)

f
(K=4)
x,BE (x) = (1− γ)δ(x− 14) + γ exp(−1T4 x) (5.16)

f
(K=1)
x,BU (x) = (1− γ)δ(x) + γU(−1, 1) (5.17)

f
(K=4)
x,BU (x) = (1− γ)δ(x) +

γ

2
(U(−14,04) + U(04,14)) , (5.18)

where U(a, b) denotes the uniform distribution with the support defined by the
minimum a and the maximum b. Furthermore, U(a, b) is the product of uniform
distributions, i.e.

U(a, b) =
∏

k

U(ak, bk) . (5.19)
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Results Other Sparse Priors
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Figure 5.13: Performance of MEAN-BAMP and MR-BAMP in terms of SDR vs
subsampling ratio ρ.
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Figure 5.14: K = 8-dimensional prior, µB = 1, µx = 1
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Other Sparse Priors Results

Note that while the individual components of the multi-dimensional priors can be
factored, this is not true for their linear combination. Thus, the entries of x are de-
pendent. This dependence is exploited by MD-BAMP to achieve successively better
SDR for higher dimensions. The recovery SDR achieved by MD-BAMP can be seen
in Fig. 5.16. The Bernoulli-Exponential distribution is one-sided and has a mean
of µx = 1, therefore the SDR towards the northwest (i.e. for small subsampling
ratio ρ and dense signals) is relatively large. The support of the Bernoulli-Uniform
distribution is bounded, contrary to the two other distributions, whose support is
not bounded. Thus, while the denominator of (5.1) can become arbitrarily large
for Bernoulli-Gaussian and Bernoulli-Exponential distributions, it is limited for
Bernoulli-Uniform distributions. The SDR is thus not easily comparable. The
phase transitions for the various priors are similar, however. They are shown in
Fig. 5.15. The 20dB-boundary is not particularly well suited here since it creates
the impression of MD-BAMP performing better than the theoretical optimum. It
should be noted again that the Rényi limit specifies the minimum rate needed for
perfect recovery, i.e. SDR =∞.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4
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f
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f
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Figure 5.15: Phase transitions of MD-BAMP for various priors. The SDR of a
particular algorithm is larger than 20dB southeast of the associated curve.
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Results Other Sparse Priors

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ρ

γ

(a) Bernoulli-Gaussian, K = 1

0.2 0.4 0.6 0.8
ρ

0

20

40

(b) Bernoulli-Gaussian, K = 4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ρ

γ

(c) Bernoulli-Exponential, K = 1

0.2 0.4 0.6 0.8
ρ

0

20

40

(d) Bernoulli-Exponential, K = 4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ρ

γ

(e) Bernoulli-Uniform, K = 1

0.2 0.4 0.6 0.8
ρ

0

20

40

(f) Bernoulli-Uniform, K = 4

Figure 5.16: Performance of MD-BAMP in terms of SDR (color coded) vs. sparsity
γ and subsampling ratio ρ for various priors and prior dimension K.
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Discrete Priors Results

5.5 Discrete Priors

Purely discrete priors have applications in coding theory and data transmissions
systems. An example of a practical problem with a purely discrete prior can be
found in Chapter 4, with results in Section 5.6. Other examples are detection in
multi-user systems [8], sparse regression codes [52] and OFDM crest factor reduc-
tion [30].
Numerical simulations for signals drawn from two discrete distributions are given in
this section. One is a simple binary distribution while the other one is derived from
a parity check code with parameters (Nc,Ku) = (5, 2) and generator polynomial
g(x) = x3 + x+ 1 on GF(2). Their pdfs are given by

fx,Bi(x) =
1

2
(δ(x− 1) + δ(x+ 1)) (5.20)

fx,P3(x) =
1

4
(δ(x− (1, 1, 1, 1, 1))+ (5.21)

δ(x− (−1,−1, 1,−1, 1))+ (5.22)

δ(x− (1,−1,−1, 1,−1))+ (5.23)

δ(x− (−1, 1,−1,−1,−1))) . (5.24)

The achievable subsampling ratio ρ for purely discrete mixtures has been observed
to be ρ = 1/2 for binary distributions [43] such as (5.20). This limit applies to
BAMP as well as algorithms based on linear programming [67] and is highly sub-
optimal: the Rényi information dimension d(x) = 0 for purely discrete mixtures
and thus, the minimum rate for which error-free recovery should be possible is
ρ = 0 (i.e. L = 1 for N → ∞). Exploiting the structure of high-dimensional dis-
tributions such as the parity check code described by fx,P3(x) yields better results
than the binary prior fx,Bi(x), as can be seen in Fig. 5.17. The “Exit“ plot asso-
ciated with fx,Bi(x), obtained via state evolution, is shown in Fig. 5.18. Contrary
to distributions with a continuous component, where the variance at the output of
the denoiser tends to become zero only as the variance at its input becomes vanish-
ingly small, denoisers of purely discrete distributions exhibit output signal variance

σ2
x which tends to zero even for finite input variance σ

2(l)
x . Such distributions are

therefore not sensitive to noise up to a certain level.
Using a Bayesian denoiser obtained as per Chapter 3 appears to result in an achiev-
able subsampling region ρ > 1/2H2(x). The position of the phase transition is not
influenced by the size N of the unknown vector, although larger N realizes a slightly
steeper “waterfall” region. Discrete-continuous mixtures with multiple Dirac com-
ponents similarly result in a sub-optimal threshold, an example of which has been
shown in [67], where a so-called “simple” signal is investigated.
Such “simple” signals occur in infrared absorption spectroscopy and can be modeled
as the mixture of a continuous pdf fx,c(x) with support on the unit interval [0, 1]
and two Dirac deltas at zero and one respectively, such that

fx,simple(x) =
1

2
(1− γ) (δ(x) + δ(x− 1)) + γfx,c(x) . (5.25)
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Results Discrete Priors
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Figure 5.17: Phase transition in terms of symbol error probability vs. subsampling
ratio ρ of MD-BAMP for discrete mixtures.
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Figure 5.18: “Exit” plot of a binary prior at subsampling ratio ρ = 1. The noise
level is computed in terms of Eb/N0.

The phase transition for noiseless compressed sensing and recovery algorithms
based on linear programming has been shown to be

ρ =
γ + 1

2
(5.26)

for the simple signal prior [67, 26]. For γ = 0, the prior results in a binary signal
and the phase transition becomes ρ = 1/2. There are several limitations which
prevent any algorithm from achieving perfect recovery close to L = 1 in practice.
In systems where the vector y is the result of measurements of physical quantities,
the subsampling ratio is limited by the resolution of the analog-to-digital (A/D)
converter. Furthermore, all recovery algorithms are limited by the choice of digital
number representation. Both limitations arise from the fact that the number of
bits used to represent the measurement vector y needs to be at least as large as the
number of information bits one is trying to recover. The popular double precision
floating point type occupies 8 bytes of memory and can therefore (due to reserved
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Discrete Priors Results
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Figure 5.19: Minimum number of samples L necessary for binary signals of length
N under various conditions.

special bit patterns) represent less than 264 different numerical values. To give
a concrete example, when using double precision floating point numbers, at least
L ≥ 16 samples (= 1024 bit) are required to be able to store a signal of length
N = 103 sampled from an i.i.d. binary prior such as (5.20). Further restrictions can
be due to the type of measurement matrix. Using Rademacher matrices (whose
entries are i.i.d. and Aa,i ∈ {−1, 1}) for measurement of binary signals results in
binomial distributed entries ya with distribution parameters n = N+1 and p = 1/2.
The Shannon entropy of the binomial distribution is given by

H2(ybin) =
1

2
(log2(πe(N + 1))− 1) +O(1/(N + 1)) . (5.27)

Assuming that the measurements ya are independent, the minimum number of
samples is

L '
2N

log2(πe(N + 1))− 1
. (5.28)

Limits for various practical setups are plotted in Fig. 5.19. Perfect recovery is
impossible below the given value for a selected (combination of) conditions. For
example, any algorithm employing an 8-Bit representation of ya for compressive
sensing recovery of binary signals with Rademacher measurement matrices is lim-
ited by the choice of sensing matrix for N / 3 · 104, beyond this point it is limited
by the selection of numerical representation (or possibly the resolution of the A/D
converter). Note that approaching the Rényi limit of L = 1 requires either small
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Results Discrete Priors

problem dimension (N < 64) or extremely precise digital number representation.
These limits apply to noiseless compressive sensing. Noisy measurements are fur-
thermore limited due to finite channel capacity. Note that the performance of
BAMP (or, to my knowledge, any algorithm with polynomial complexity that is
applicable to Gaussian measurement matrices) is not approaching these practical
limits, however.
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Compressed LDPC Codes Results

5.6 Compressed LDPC Codes

In this section, the behavior and performance of MD-BAMP as joint decompressor
and detector for compressed LDPC codes is analyzed. Since state evolution is not
usable due to the denoiser being stateful, numerical simulations were employed.
The codes used for simulations are binary regular LDPC codes derived from Eu-
clidean geometries [38]. These codes combine several advantages, one of them being
that they are cyclic and it is therefore easy to realize an encoder. Their properties
are listed in table 5.1, where Nc and Ku are the code word and the user data word
length respectively, while N is the size of K concatenated code words and R is
the rate of the (uncompressed) code. The last column lists the smallest ratio of
energy per bit vs. noise power spectral density for the given rate on an additive,
white Gaussian noise (AWGN) channel. The number of samples (i.e. simulated
code word transmissions) was chosen such that at least 106 symbols are computed
per parameter combination.

The code word lengths Nc of the codes examined in this section range from 15
to 4095 and are thus relatively short1. Even at these block lengths and when
concatenating a small number of code words (cf. (4.3)), the size of the matrix
A becomes large. For simulations, the Fast Hadamard Transform (FHT) was
therefore used instead of a matrix with Gaussian entries. Compression is achieved
by discarding all but a random subset of rows of the transform’s output vector.
This is equivalent to populating the sensing matrix A with randomly selected rows
from the associated Walsh-Hadamard transform matrix2. This process was also
used by Rush et al. in [52]. The complexity of a matrix-vector multiplication is
then O(N log(N)) instead of O(NL). A limited subset of results was presented at
the 19th Joint Workshop on Communications and Coding [11]. Simulation results
in this section have been obtained by using an updated implementation and aim
for better accuracy.

Using the denoiser for LDPC codes as derived in Chapter 4 together with MD-
BAMP results in a “Turbo” structure3. Detection is performed iteratively. Each
iteration can be split into two components: in a first step, the inner transmit
symbols x are estimated using the sensing matrix A and the received symbols y.
The estimation is performed independently for each received symbol with the aim
of minimizing the individual squared estimation error ε2 = E

{
(ya −Aax)

2
}

(cf.
(2.31)) under the assumption of Gaussian noise. Due to several approximations,
this operation is realized as a matrix-vector multiplication (cf. line 5 in Algorithm 8,
p.114). This step neglects constraints such as the limited symbol alphabet of x

and the structure of the code. In a second step, the denoiser (which is highly

1This is due to limited computational resources available for simulations.
2Note that normalization is different from the FHT, which assumes a square matrix. Further-

more, the first column (and row) of the Walsh-Hadamard matrix is 1 and should not be used in
the sensing matrix.

3The structure is identical for all priors, however we feel that the term “Turbo” is more justified
when the application is a detector.
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Results Compressed LDPC Codes

short name Nc Ku R N K Eb/N0 at Capacity

m2s2 15 7 0.467 10050 670 -0.111dB

m2s3 63 37 0.587 10017 159 0.296dB

m2s4 255 175 0.686 10200 40 0.637dB

m2s5 1023 781 0.763 10230 10 0.763dB

m2s6 4095 3367 0.822 40950 10 1.116dB

m3s2 63 13 0.206 10017 159 -0.956dB

m3s3 511 139 0.272 10220 20 -0.747dB

m3s4 4095 1377 0.336 40950 10 -0.540dB

Table 5.1: Properties of codes and simulation parameters.

similar to the LDPC sum-product detector) improves upon the estimation µ
(l)
x at

its input. Its output, the vector µx of estimated inner transmit symbols, is then
used to compute a new residual µz, which is in turn passed back to compute a new

estimate of µ
(l)
x aiming to minimize the estimation error ε. The algorithm iterates

until it converges or aborts after a certain number of steps.
The performance of the joint system depends on the SNR at the input of the
denoiser. For uncompressed LDPC codes using fixed-power binary signaling on
an AWGN channel, the SNR Eb/N0 is determined by the channel noise spectral
density. To simplify the following analysis, let the symbol energy Ex = 1. In the
case of uncompressed binary signaling, the energy per bit given by an (Nc,Ku)
binary code with rate Rc = Ku/Nc is Eb = R−1

c . For the compressed system, the
energy of a transmit symbol vector y(tx) is obtained by compressing K code words,
thus

Ey(tx) = E

{∥
∥
∥y

(tx)
∥
∥
∥

2

2

}

= L
N

L
σ2
x

︸︷︷︸

=1

= N = KNc . (5.29)

Such a transmit symbol vector y contains K ·Ku information (user) symbols (bits),
and the average energy per information bit Eb is therefore

Eb =
KNc

KKu
=

Nc

Ku
=

1

Rc
, (5.30)

which does not depend on the sampling ratio ρ = L/N and is identical to the energy

per bit in the uncompressed system. The noise at the input of the denoiser is σ
2(l)
x ,

which is (cf. (2.122))

σ
2(l)
x =

N

L
σ2
x + σ2

w , (5.31)
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Compressed LDPC Codes Results
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Figure 5.20: Comparison of the LDPC sum-product detector and MD-BAMP in
the uncompressed case in terms of symbol error ratio vs. Eb/N0.

where σ2
x is the average variance at the output of the denoiser and σ2

w the noise
variance. At the input of the denoiser, the SNR is therefore strictly larger than
for the uncompressed system, where the noise variance at the detector is σ2

w. If
MD-BAMP converges towards the true vector x, the variance σ2

x at the output
of the denoiser becomes zero and the SNR is identical to the uncompressed sys-
tem. Initially, the SNR is larger however, thus the denoiser can be expected to
perform inferior to the detector in an uncompressed system and thus, the joint
decompressor/detector realized using MD-BAMP can be expected to have inferior
performance compared to the uncompressed system. Note that this is true even for
systems with ρ ≥ 1. This is indicative of the system not achieving a coding gain.

The performance of the LDPC sum-product algorithm (LDPC SPA) is shown in
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Results Compressed LDPC Codes
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Figure 5.21: Symbol error ratio (color coded) vs. subsampling ratio ρ (bottom axis)
and SNR using MD-BAMP as joint decompressor and detector. The rate in bit
per transmit symbol is given in the (nonlinear) top axis. Note that the two plots
cover different Eb/N0 and subsampling regions. The color coding is identical for
both plots. Dark blue regions indicate zero encountered symbol errors.

Fig. 5.20, where it is also compared with BAMP at subsampling ratio ρ = 1. For
these simulations, the SNR Eb/N0 was incremented in steps of 0.5dB in general,
with closer intervals in the “waterfall” region of selected codes. All simulations range
to at least 8dB Eb/N0. For any parts not plotted, no symbol errors occurred. The
symbol error probability of the LDPC SPA simulations replicate results in [38] (the
associated graphs are labeled “EG-LDPC SPA bit”). MD-BAMP exhibits inferior
performance by about 1-1.5dB for codes of length Nc ≥ 255.

In Fig. 5.21, the performance in terms of symbol error ratio vs. subsampling ratio
and SNR Eb/N0 is shown. The m3s3 code in Fig. 5.21a is representative for the
performance for low-rate codes. For these codes, it is possible to maintain a small
symbol error probability even at a small subsampling ratio ρ. Due to the small code
rate, the effective rate in bit per symbol is limited to ∼ 0.85. For high-rate codes
such as m2s5, which is shown in Fig. 5.21b, the smallest achievable subsampling
ratio ρ is comparatively large. Due to the intrinsically high rate, even moderate
compression results in a feasible effective rate in bit per symbol. Thus, the m2s5
code can operate at a rate of up to ∼ 1.4 bit per symbol. Note that MD-BAMP
operating with a denoiser for i.i.d. binary symbols maintains low symbol error
probability (i.e. P (ŝi 6= si) < 10−5) for rates ρ > 0.5 (equivalent to 2 bit per
symbol) and Eb/N0 ' 10.5dB. Therefore, this region of operation can easily be
realized.

It remains to find codes outperforming MD-BAMP in conjunction with an i.i.d.
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Compressed LDPC Codes Results

binary prior. Such codes maintain a small symbol error probability for either
Eb/N0 / 10.5dB or rates > 2 bit per symbol. In Fig. 5.22, the transitions from
large to small symbol error probability are plotted. While the low-rate codes from
the m3-family enable subsampling ratio ρ < 0.5, their effective rate remains small.
Codes with large block length and high rate are limited to subsampling ratio ρ > 0.5
but achieve effective rates of up to ∼ 1.6 bit per symbol. None of the codes achieve
the rate of two bit per symbol attained by MD-BAMP with binary pior. Therefore,
only regions with small symbol error probability at an SNR of Eb/N0 / 10.5dB
provide superior performance compared to compressed i.i.d. binary signals. The
highest rate in this region is realized using the m2s6 code, which outperforms binary
signaling up to a rate of ∼ 1.5 bit per symbol.
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Figure 5.22: Achievable combinations of subsampling ratio (top), code rate (bot-
tom) vs. SNR Eb/N0. The symbol error rate of a particular code is smaller than
10−5 northeast of the associated curve.

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 6

Conclusions and Future Work

Research into the topic of compressive sensing given multi-dimensional signal priors
was initially motivated by the desire to obtain a BAMP algorithm for compressive
sensing given complex valued measurements. It quickly became clear that pursuing
this path would needlessly limit the scope of possibilities. On the one hand, papers
covering approximate message passing for complex-valued signals had already been
published [45]. On the other hand, the complex case stays simple for the case of
independent real and imaginary parts of complex entries xi only. Given dependen-
cies between real and imaginary parts, a two-dimensional denoiser is required, even
if samples of the complex signal x are otherwise independent.

This realization motivated the derivation of an algorithm that would allow depen-
dencies between an arbitrary number of real-valued entries of x. Even though this
work does not offer a formulation for a recovery algorithm using complex-valued
variables, the presented methods are nonetheless applicable, using suitable map-
pings to real numbers.

Detailed knowledge of the Bayesian approximate message passing algorithm en-
abled further work on other problems. While the option of in some form non-i.i.d.
noise is usually not considered in compressive sensing, it becomes relevant given the
extended range of applications that recovery algorithms are now applied to, which
include coded transmission systems, user activity detection in MIMO scenarios and
more. The case of nonzero-mean sensing matrices had already been the topic of
several publications. These provided valuable clues leading towards an algorithm
promising optimal recovery for (almost) any matrix mean.

Opportunities

While widening the applicability of BAMP-based algorithms towards more gen-
eral inverse problems, this work leaves many questions unanswered. For example,
numerical evidence as well as state evolution seem to suggest that making use of
detailed knowledge of the signal, represented by high-dimensional priors, results
in recovery performance approaching the Rényi limit. Efficient algorithms oper-
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Conclusions and Future Work Conclusions and Future Work

ating at or near this limit consistently for any type of signal are so far unknown,
although it has been shown that special measurement matrices can improve perfor-
mance [39]. Modifying the matrix statistics (apart from its mean) requires careful
adaptation of the BAMP algorithm, which generally expects the matrix entries to
be i.i.d. It is possible to fall back to GMP, whose computational complexity makes
it unattractive for practical applications, however.

It would be desirable to find near-optimal algorithms that merely require scaling of
the rows (or columns) of the sensing matrix. The scaling factors can then be hidden
in the signal prior or by using appropriate transformations. Note that modifications
of this kind can lead to diverging variances, i.e. it might be necessary to track more
than one variance value. Not doing this might yield inferior results, comparable to
using a single average noise variance when more detailed information is available.

Rush et al. achieve channel capacity with sparse regression codes (SPARCs) [52] us-
ing suitably adjusted symbol amplitudes. Unfortunately, the structure of SPARCs
incurs computational complexity that is exponential in the number of bits per
code word. It would be desirable to achieve a similar result using more powerful
underlying codes, such as LDPC codes.

Other applications include compressed imaging systems. Compressive sensing tech-
niques have already been successfully applied to single-pixel sensing systems at vis-
ible wavelengths [27] and in the terahertz region [18]. A variety of techniques has
been developed, most of which recover the image in the wavelet domain. This can
be done with simple schemes like soft thresholding or by making use of the wavelet
coefficient’s structure [55]. One of the best-performing algorithms uses a classical
image denoising method (“non-local means denoising”), suitably adapted for use
with AMP [46]. One of the difficulties of integrating a general denoiser with AMP
is the requirement to know the derivative as well as the variance at the output of
the denoiser. Note that these techniques all deal with monochromatic images. The
field of multi-spectral compressive imaging offers interesting challenges, however.
While it seems obvious to use multidimensional priors to make use of correlation
between spectral components, preliminary experiments using methods presented in
this thesis have shown that on its own, this is insufficient to approach the quality
offered by recovery algorithms profiting from the (apparent) sparsity of an image in
the wavelet domain, done independently per spectral component. A system com-
bining the advantages of both techniques could allow for higher compression rates
than currently achieved by CS recovery algorithms.

Many problems might profit from an approach less focused on exact statistical
signal properties and more on integrating successful methods from other fields
of research. While not yet popular, using on-line learning algorithms for “blind”
recovery (i.e. without knowledge of the signal prior) have shown to yield excellent
results [61] for i.i.d. unknown xi. Applying the same strategy to high-dimensional
priors is more challenging, due to the much larger number of variables that need to
be estimated. For high-dimensional problems it might therefore be advantageous to
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Conclusions and Future Work Conclusions and Future Work

integrate machine-learning algorithms, which has been done successfully for OFDM
channel estimation [68].
Of practical importance is also the type of sensing matrix occurring in a particular
problem. It is desirable to employ matrices that allow for fast (i.e. O(N log(N)))
computation of matrix-vector multiplication. This is due to storage and com-
putational complexity growing quadratically otherwise, which is impractical in
many settings. Fortunately, linear measurements in physical systems are some-
times structured, e.g. in the case of non-destructive testing using ultrasound [53],
where a Toeplitz structure was exploited. A Python library offering fast evaluation
of many structured matrix operations can be found in [62]. While some of these
structures might be suitable for use with BAMP right away (or with small modifi-
cations, such as Hadamard type matrices), others may exhibit correlated columns
or non-i.i.d. entries. Extending BAMP in this direction is another open topic.
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Appendix A

Algorithms

A number of algorithms have been developed to recover a sparse signal from a small
number of linear measurements. For each of these, several varieties exist. They
improve certain aspects of their underlying algorithm, like the popular “FISTA”
(fast iterative shrinkage-thresholding algorithm), which improves the convergence
speed of ISTA [4]. Another example is orthogonal matching pursuit, which provides
a more accurate recovery than its predecessor, matching pursuit. The particular
variants of the algorithms used for comparison as well as those presented in this
work are listed here.

A.1 Matching Pursuit

The matching pursuit [44] algorithm recovers a vector x from measurements y = Ax.
In each iteration, the algorithm determines which of the non-selected columns of A
best match the residual, adds this column to the selected columns and updates the
estimate of x as well as the residual z. The algorithm stops when the change in
the estimated vector x̂ drops below a threshold ε or when a predefined number γ of
nonzero entries of x has been estimated. A variant of MP exists, called orthogonal
matching pursuit (OMP) [47], which computes the least-squares optimal estimate
for the set of selected indices.
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Matching Pursuit Algorithms

Algorithm 1 Matching Pursuit

1 z ← y, S ← {}.
2 Set constants tmax, γ ← |{xi 6= 0}|, ε.
3 All other variables are initialized to zero.
4 repeat

5 x(l) ← ATz

6 k ← arg maxi∈{1...N}\S |x(l)i |
7 S ← S ∪ {k}
8 x̂[t−1] ← x

9 x̂k ← x
(l)
k

10 z ← y −Ax̂

11 until t > tmax or |S| ≥ γ or t > 1 and
∥
∥x̂− x̂[t−1]

∥
∥
2
< ε ‖x̂‖2

Algorithm 2 Orthogonal Matching Pursuit

1 z ← y, S = {}.
2 Set constants tmax, γ = |{xi 6= 0}|, ε.
3 All other variables are initialized to zero.
4 repeat

5 x(l) ← ATz

6 k ← arg maxi∈{1...N}\S |x(l)i |
7 S ← S ∪ {k}
8 B:,j ← A:,i, i ∈ S, j : 1 . . . |S|
9 v ← (BTB)−1BTy

10 x̂[t−1] ← x

11 x̂k ← vj , j : Bj = Ak

12 z ← y −Ax̂

13 until t > tmax or |S| ≥ γ or t > 1 and
∥
∥x̂− x̂[t−1]

∥
∥
2
< ε ‖x̂‖2
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Algorithms Iterative Thresholding

A.2 Iterative Thresholding

Two variants of iterative thresholding exist. Iterative hard thresholding (IHT)

[12, 13] uses a hard thresholding function η(x
(l)
i ) to estimate x from the projection

x(l) = ATz. The thresholding function is defined as

η(x
(l)
i , τ) = I(|x(l)i | > τ) · x(l)i , (A.1)

with I(x) an indicator function which evaluates to one if the expression x is true,
otherwise it evaluates to zero. If the number γ of nonzero entries of x is known, the
threshold s can be chosen such that the largest γ entries are selected. The entries
of the matrix are assumed to be i.i.d. and distributed according to N (0, L−1). To
maintain stability of the algorithm, it is necessary to compensate by A’s largest
singular value smax. This can either be computed or approximated using Bai-Yin’s
law [59]. The matrix is assumed to have size L × N . Often, a tuning factor α
is used. The iterative soft thresholding algorithm [21] is conceptually identical to
iterative hard thresholding, but a soft thresholding function is used:

η(x
(l)
i , τ) = I(|x(l)i | > τ) · (|x(l)i | − τ) · sign(x(l)i ) , (A.2)

with the indicator function I(x) defined as before and sign(x) returns the sign of
its argument, i.e. +1 if it is positive, 0 if it is zero and −1 otherwise.

Algorithm 3 Iterative Thresholding

1 z ← y

2 Set constants tmax, τ , α, ε, smax ← 1 +
√

N/L.
3 All other variables are initialized to zero.
4 repeat

5 x(l) ← α/s2maxAz + x̂

6 x̂[t−1] ← x

7 x̂i ← η(x
(l)
i , τ), i : 1 . . . N

8 z ← y −Ax̂

9 until t > tmax or t > 1 and
∥
∥x̂− x̂[t−1]

∥
∥
2
< ε ‖x̂‖2

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Approximate Message Passing Algorithms

A.3 Approximate Message Passing

The approximate message passing (AMP) algorithm is similar to soft thresholding.
Approximate message passing adds the “Onsager-Term” z

L ‖x̂‖0. The term is orig-
inates from statistical physics [14] where it is used in a similar fashion, i.e. for a
term that serves as first-order correction. Furthermore, AMP also employs a differ-
ent method of setting the threshold of the soft thresholding function. Despite their
similarity, the two algorithms have different origins. Iterative soft thresholding was
derived by minimizing a particular cost function while AMP is an approximation of
the sum-product algorithm applied to a graph representing the compressive sens-
ing setting. In Algorithm 4, σ2

w is the noise variance and σ2
x the variance of any

entry of x. Bayesian approximate message passing uses a denoiser function called
F instead of the soft thresholding function but is otherwise similar to AMP. An
additional function G is used to estimate the variance at the output of the denoiser
F .

Algorithm 4 Approximate Message Passing

1 z ← y

2 Set constants tmax, ε, σ
2
w, τ2 = σ2

w + N
L σ2

x.
3 All other variables are initialized to zero.
4 repeat

5 x(l) ← Az + x̂

6 x̂[t−1] ← x

7 x̂i ← η(x
(l)
i , τ), i : 1 . . . N

8 z ← y −Ax̂+ z
L ‖x̂‖0

9 τ2 ← σ2
w + τ2

L ‖x̂‖0
10 until t > tmax or t > 1 and

∥
∥x̂− x̂[t−1]

∥
∥
2
< ε ‖x̂‖2

Algorithm 5 Bayesian Approximate Message Passing

1 z ← y

2 Set constants tmax, ε, σ
2
w, σ

2(l)
x = σ2

w + N
L σ2

x.
3 All other variables are initialized to zero.
4 repeat

5 x(l) ← Az + x̂

6 x̂[t−1] ← x

7 x̂i ← F (x
(l)
i , σ

2(l)
x ), i : 1 . . . N

8 z ← y −Ax̂+ z
L

∑

i
∂F (x

(l)
i ,σ

2(l)
x )

∂x
(l)
i

9 σ
2(l)
x ← σ2

w + N
L

∑

iG(x
(l)
i , σ

2(l)
x )

10 until t > tmax or t > 1 and
∥
∥x̂− x̂[t−1]

∥
∥
2
< ε ‖x̂‖2
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Algorithms Message Passing for Multi-Dimensional Priors

A.4 Message Passing for Multi-Dimensional Priors

Two variants of message passing for multi-dimensional priors exist, which are pre-
sented in Section 2.5. Gaussian message passing, listed as Algorithm 6, uses Gaus-
sian approximations of messages between factor and variable nodes while Bayesian
approximate message passing (Algorithm 7) computes updates of local states, using
a correction term to compensate for non-targeted messages. A simplified version
of MD-BAMP, which only requires the diagonal of the Jacobian of F , is listed as
Algorithm 8.

Algorithm 6 MD-GMP

1 σ2
x,a→i ← ‖y‖2

LA2
a,i

, µx,a→i ← ya

2 Set constants σ2
wa

, tmax, ε, Aa,i.
3 All other variables are initialized to zero.
4 repeat

5 σ
2(l)
x,i ←

(
∑

a
1

σ2
x,a→i

)−1

6 µ
(l)
x,i ← σ2

x,i

∑

a
µx,a→i

σ2
x,a→i

7 µ
(l)
x,k ←

(

. . . , µ
(l)
x,i, . . .

)T
i ∈ K

8 Σ
(l)diag

x,k ←
(

. . . , σ
2(l)
x,i , . . .

)T
i ∈ K

9 µ
[t−1]
x,i ← µx,i

10 µx,i ← Fi(µ
(l)
x,k,Σ

(l)
x,k)

11 σ
2(l)
x,i→a ←

(
∑

b 6=a
1

σ2
x,b→i

)−1

12 µ
(l)
x,i→a ← σ

2(l)
x,i→a

∑

b 6=a
µx,b→i

σ2
x,b→i

13 µ
(l)
x,k→a ←

(

. . . , µ
(l)
x,i→a, . . .

)T
i ∈ K

14 Σ
(l)diag

x,k→a ←
(

. . . , σ
2(l)
x,i→a, . . .

)T
i ∈ K

15 µx,i→a ← Fi(µ
(l)
x,k→a,Σ

(l)
x,k→a)

16 σ2
x,i→a ← Gi(µ

(l)
x,k→a,Σ

(l)
x,k→a)

17 µx,a→i ←
(

ya −
∑

j 6=iAa,jµx,j→a

)
1

Aa,i

18 σ2
x,a→i ←

(

σ2
wa

+
∑

j 6=iAa,jσ
2
x,j→a

)
1

A2
a,i

19 until t > tmax or t > 1 and
∑

i

∣
∣
∣µx,i − µ

[t−1]
x,i

∣
∣
∣

2
< ε ‖µx‖2

20 x̂ = (. . . , µx,i, . . . )
T
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Message Passing for Multi-Dimensional Priors Algorithms

Algorithm 7 MD-BAMP

1 µz ← y, σ
2(l)
x ← 1

L ‖y‖
2

2 Set constants σ2
w, tmax, ε.

3 All other variables are initialized to zero.
4 repeat

5 µ
(l)
x ← ATµz + µx

6 µ
[t−1]
x ← (µT

x0
,µT

x1
, . . . ,µT

xK
)T

7 µxk ← Fk(µ
(l)
xk , σ

2(l)
x I)

8 σ2
xk
← Gk(µ

(l)
xk , σ

2(l)
x I)

9 va ← µz,a
∑

iAa,i
∑

j∈K Aa,j
∂Fi(µ

(l)
xk

,σ
2(l)
x I)

∂µ
(l)
xj

10 µz ← y −Aµx + v

11 σ
2(l)
x ← σ2

w + 1
L

∑

i σ
2
x,i

12 until t > tmax or t > 1 and

∥
∥
∥µ̂x − µ̂

[t−1]
x

∥
∥
∥

2
< ε ‖µx‖2

13 x̂ = (. . . , µT
xk
, . . . )T

Algorithm 8 MD-BAMP with simplified Onsager term

1 µz ← y, σ
2(l)
x ← 1

L ‖y‖
2

2 Set constants σ2
w, tmax, ε.

3 All other variables are initialized to zero.
4 repeat

5 µ
(l)
x ← ATµz + µx

6 µ
[t−1]
x ← (µT

x0
,µT

x1
, . . . ,µT

xK
)T

7 µxk ← Fk(µ
(l)
xk , σ

2(l)
x I)

8 σ2
xk
← Gk(µ

(l)
xk , σ

2(l)
x I)

9 va ← µz,a

L

∑

i

∂Fi(µ
(l)
xk

,σ
2(l)
x I)

∂µ
(l)
xj

10 µz ← y −Aµx + v

11 σ
2(l)
x ← σ2

w + 1
L

∑

i σ
2
x,i

12 until t > tmax or t > 1 and

∥
∥
∥µ̂x − µ̂

[t−1]
x

∥
∥
∥

2
< ε ‖µx‖2

13 x̂ = (. . . , µT
xk
, . . . )T
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Algorithms MD-BAMP for Variable Noise

A.5 MD-BAMP for Variable Noise

This algorithm, dubbed BAMP-VN, extends MD-BAMP towards variable mea-
surement noise. It is derived in Section 2.6.

Algorithm 9 BAMP-VN

1 µz ← y, σ2
z ← ‖y‖22 L−1

2 Set constants σ2
wa

, tmax, ε, A.
3 All other variables are initialized to zero.
4 repeat

5 σ
2(l)
x ← L

(
∑

Wk∈V
|Wk|

σ2
w,k

+σ2
z

)−1

6 µ′
z,a ← σ

2(l)
x

σ2
w,a+σ2

z
µz,a

7 µ
(l)
x ← ATµ′

z + µx

8 µ
[t−1]
x ← µx

9 µx ← F (µ
(l)
x , σ

2(l)
x )

10 σ2
x ← G(µ

(l)
x , σ

2(l)
x )

11 va ← µ′

z,a

L

∑

i

∂Fi(µ
(l)
x,i ,σ

2(l)
x )

∂µ
(l)
x,i

12 µz ← y −Aµx + v

13 σ2
z ← N−1

NL

∑

i σ
2
x,i

14 until t > tmax or t > 1 and

∥
∥
∥µx − µ

[t−1]
x

∥
∥
∥

2

2
< ε ‖µx‖22

15 x̂ = µx
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MD-BAMP for Nonzero-Mean Sensing Matrices Algorithms

A.6 MD-BAMP for Nonzero-Mean Sensing Matrices

The MEAN-BAMP algorithm extends MD-BAMP towards compressed sensing
problems with a nonzero-mean sensing matrix B. Its derivation is presented in
Section 2.7.

Algorithm 10 MEAN-BAMP

1 Set constants σ2
w, tmax, ε, B.

2 A = B − µB11
T

3 µz = v − 1
L

∑

a va

4 σ
2(l)
x = σ2

w + L−1 ‖µz‖22 + 1
L2

(
∑

i σ
2
x,i + Lσ2

w

)

5 All other variables are initialized to zero.
6 repeat

7 µ
(l)
x = ATµz + µx

8 µx = F (µ
(l)
x ,σ

2(l)
x )

9 σ2
x = G(µ

(l)
x ,σ

2(l)
x )

10 σ2
vy→x̄ =

1
(NµB)2

(
1
L

∑

i σ
2
x,i + σ2

w

)

11 σ2
x̄→vy =

(

N2
∑

i σ
2
x,i

+ L−1
σ2
vy→x̄

)−1

12 σ2
vy→y = σ2

w + (NµB)
2σ2

x̄→vy

13 σ
2(l)
x = σ2

vy→y +
1
L

∑

i σ
2
x,i

14 µf,x̄→x̄ =
1
N

∑

i µx,i

15 µvy,a→x̄ =
1

NµB

(

va −
∑

iAa,iµx,i +
µz,a

L

∑

i
∂F

∂µ
(l)
x,i

)

16 µx̄→vy = σ2
x̄→vy

(

µf,̄x→x̄

σ2
f,̄x→x̄

+ L−1
Lσ2

vy→x̄

∑

b µvy,b→x̄

)

17 µvy→y = v −NµBµx̄→vy1

18 µz = µvy→y −Aµx + µz
1
L

∑

i
∂F

∂µ
(l)
x,i

19 until t > tmax or t > 1 and

∥
∥
∥µx − µ

[t−1]
x

∥
∥
∥

2

2
< ε ‖µx‖22
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Appendix B

Acronyms and Abbreviations

AMP Approximate Message Passing

AWGN Additive, White Gaussian Noise

BAMP Bayesian Approximate Message Passing

BAMP-VN Bayesian Approximate Message Passing for Variable Noise variance

CS Compressed Sensing

DLP Digital Light Processing

EUSIPCO European Signal Processing Conference

FHT Fast Hadamard Transform

GAMP Generalized Approximate Message Passing

GMP Gaussian Message Passing

ICASSP International Conference on Acoustics, Speech and Signal Processing

IHT Iterative Hard Thresholding

IST Iterative Soft Thresholding

KLT Karhunen-Loève Transformation

LASSO Leas Absolute Shrinkage and Selection Operator

LDPC Low Density Parity Check

MEAN-BAMP Bayesian Approximate Message Passing for nonzero-MEAN sens-
ing matrices

MD-BAMP Bayesian Approximate Message Passing for Multi-Dimensional pri-
ors
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Acronyms and Abbreviations Acronyms and Abbreviations

MD-GMP Gaussian Message Passing for Multi-Dimensional priors

MIMO Multiple-Input and Multiple-Output

MP Matching Pursuit

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NMSE Normalized Mean Squared Error

OFDM Orthogonal Frequency Division Multiplexing

OMP Orthogonal Matching Pursuit

pdf Probability Density Function

SDR Signal-to-Distortion Ratio

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

SPARC Sparse Regression Code

SPCC Single-Parity Check Code

VAMP Vector Approximate Message Passing

i.i.d. independent and identically distributed

w.r.t. with respect to

s.t. subject to
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