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Abstract

The main result is a rigorous proof that artificial neural networks without explicit regularization
implicitly regularize the strain energy

∫
(f̂ ′′)2dx when trained by gradient descent by solving

very precisely the smoothing spline regression problem

f̂ := argmin
f∈C2

(
N∑

i=1

(f(xtrain
i )− ytrain

i )2 + λ

∫
(
f ′′)2 dx

)

(1)

under certain conditions1.2 Artificial neural networks are often used in Machine Learning to
estimate an unknown function3 fTrue by only observing finitely many data points. There are
many methods that guarantee the convergence of the estimated f̂ to the true function fTrue as
the number of samples tends to infinity. But in practice there is almost always only a finite
number N of samples available. Given a finite number of data points there are infinitely many
functions that fit perfectly through the N data points but generalize arbitrary bad. Therefore
one needs some regularization to find a suitable4 function. With the help of Theorem 3.1.4
one can solve the paradox why training neural networks without explicit regularization works
surprisingly well under certain conditions1.

1The main Theorem 3.1.4 only considers 1-dimensional wide ReLU randomized shallow neural networks (2.2)
using squared loss (i.e. one hidden layer with n → ∞ many hidden hidden nodes; randomly chosen weights and
biases in the first layer that are not trained—only the last layer is trained with (stochaistic) gradient descend;

d = 1-dimensional input; ReLU activation functions; squared loss L
(

f̂
)

:=
∑N

i=1

(

f̂(xtrain
i )− ytrain

i

)2

is used as

training loss). Some popular engineer’s rules of thumb how to choose meta-parameters can be better understood
with the help of the main theorem, since some of this rules appear as important necessary conditions in the main
theorem: It’s crucial that the weights in the last layer are initialized close to zero (w0 = 0). The learning rate
shouldn’t be too large (γ → 0). Depending on the choice of randomness (probability distributions of the random
weights and biases) the network will converge to a (slightly) adapted version of the regression spline. If one
uses the Keras-default distributions the adapted regression spline does not exactly equal the regression spline,
but if one follows the rule to scale the training data to fit inside the [−1, 1]-cube, one can see intuitively that
in this case the adapted regression spline is typically quite close to the classical regression spline inside [−1, 1].
Then there are more technical assumptions: If one uses plain (stochastic) gradient descend without any explicit
regularization the main result is only exactly provable for the limit of the training algorithm T → ∞. But the
thesis motivates theoretically and empirically what approximately happens if early stopping at T ∈ R≥0 of the
(stochastic) gradient descend is applied. Precise results for early stopping can be applied if a ridge-penalty is
applied on the weights (also known as weight decay, L2-penalty or or Tikhonov regularization). Assumption 2 is
probably not necessary and might be weakened in future work, but makes the proof easier without being very
restrictive in real world computer implementations. Assumption 3 allows the formulation of the easier readable
Theorem 3.1.4 instead of the more general Corollary 3.1.7. This footnote covers all the assumptions made in this
thesis. For most of these assumptions there will be a discussion what happens if they do not hold.

2Equation (1) should be interpreted such that f̂ is the unique minimizer of

f̂ :∈ argmin
f∈C2(R)

(
N∑

i=1

(

f(xtrain
i )− ytrain

i

)2

+ λ

∫

R

(
f ′′(x)

)2
dx

)

,

if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6= xtrain

j .
3Usually fTrue(x) = E [Y |X = x].
4From a Bayesian point of view regularization can be connected to prior information. For example one can

typically assume apriori that the unknown function fTrue is more likely to be smooth than rough.
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Chapter 1

Introduction

Even though neural networks are becoming more and more popular, their theoretical under-
standing is still very limited. Today Neural Networks are mainly used as black box methods
that often work surprisingly well in applications without being fully understood. Today’s most
important open questions in the mathematical theory of neural networks include the following:1

I. Generalisation: Why can neural networks make good output predictions for new unseen
input data even though they have only seen finitely many training data points. How can
one get control of overfitting? How does the trained function behave in between the
training data?

II. Gradient Descend: When training Neural Networks, a typically very high dimensional
non-convex optimization problem is claimed to be solved by (stochastic) gradient descend
quite fast. But what does this algorithm actually do? What does it converge to? What
happens if you stop it after a realistic number of steps?

III. Expressiveness: How expressive are Neural Networks with a finite number of nodes?
[27, 4, 16]

IV. Summary: What are the advantages and disadvantages of different architectures? What
are the advantages and disadvantages compared to other methods like Random Forest or
Kernel-based Gaussian process based methods? Answering I to III would basically solve
IV.

The goal of this thesis is to contribute in answering these questions by rigorously proofing
Theorems 3.1.4 and 3.2.5 that answer question II almost completely (cp. eqs. (5.1) and (5.2)) for
the restricted class of wide Randomized Shallow Neural Networks with ReLU activation. These
answers together with the intuition acquired from sections 1.1 and 1.2 give quite extensive
insights to question I and thus question IV.

The result of this thesis can be seen in analogy to the breakthrough in thermodynamics
theory: Like we are understanding the collision behavior of each particle, we understand the
training behavior of each neuron2. However due to large number of interactions between parti-
cles/neurons the complexity increases in a way that the individual behavior does no longer give
a direct insight into the overall system behavior. In both cases taking the limit to infinity allows

1The literature agrees with questions I–III too be the central questions [25]. Question IV motivates the
important of questions I–III by summarizing them and concluding their implications.

2In this thesis only artificial neural networks are considered. Therefore terms like neurons and neural networks
always refer to their artificial counterparts not to actual biological neurons.

1
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to statistically derive precisely the overall system behavior in terms of interpretable macroscopic
laws/theorems (see Theorem 3.1.43).

1.1 The Regression Problem as Basis for Machine Learning

The setting of supervised machine learning is typically introduced as: Let X be the input
space and Y be the output space. Assume we observe a finite number N of i.i.d. samples
(xtrain

i , ytrain
i ) ∈ X ×Y with i ∈ {1, . . . , N} from an unknown probability distribution on X ×Y.

When we get a new realization of (X,Y ) from the same unknown distribution, but for the new
realization we can only observe X(ω) but not Y (ω), we want to make a prediction f̂(X(ω)) of
Y (ω). For a given cost function C : Y×Y → R we are interested in an estimator f̂ : X → Y with

low expected costs E

[

C
(

Y, f̂(X)
)∣
∣
∣X
]

. As the distribution of (X,Y ) is unknown we cannot

calculate the expected costs. In supervised machine learning one tries to learn an estimator f̂
from the given training data (xtrain

i , ytrain
i )i∈{1,...,N}.

The goal in regression analysis is to get an approximation f̂ : X → Y of an unknown
function fTrue : X → Y. Assume we observe a finite number N of samples (xtrain

i , ytrain
i ) ∈ X ×Y

with i ∈ {1, . . . , N} where ytrain
i is generated as ytrain

i := f̂ (xtrain
i ) + εi, where εi is the noise.

If E [εi] = 0 and C(y, y′) = (y − y′)2, then the unknown true function fTrue corresponds to
fTrue(x) = E [Y |X = x], which connects the two different points of view.

In Chapter 3 these points of view do not matter, because the main theorems there only
tell what function f̂ is learned by a given training algorithm for given training data (to answer
question II). The unknown true distribution of (X,Y ) in one point of view or the unknown true
function fTrue in the other point of view only matter for questions I and IV which are more
connected to Chapter 1.

For simplicity in the rest of this thesis X = R
d with input dimension d ∈ N and Y = R will

be assumed.
Historically one of the first regression analysis was the linear regression [10, 11, 20], where

we restrict ourselves to a tiny subspace of all functions: the space of linear functions. If the
number of samples N is larger than the input dimension d there exists a unique4 function that
fits through the training data the best by minimizing the training loss

L
(

f̂
)

:=
N∑

i=1

(

f̂(xtrain
i )− ytrain

i

)2
. (1.1)

In real world applications the space of linear functions is often not sufficient. Therefore with the
philosophy of machine learning the restriction to a small subspace of functions is not appropriate.
The new challenge is to choose the “most desirable” function f̂ out of the infinitely many

functions with equal training loss L
(

f̂
)

. This opens the question what “most desirable” means

mathematically. At least intuitively engineers have quite specific convictions (also known as
inductive bias) which functions are not desirable (see Figures 1.1 and 1.2). This intuition

3Theorem 3.1.4 results from letting the number of neurons n tend to infinity. In thermodynamics Brownian
motion particle movements or heat equations result from taking the limit of the number of particles to infinity.

4The solution of linear regression is unique if there are d training data input points xtrain
i which are linearly

independent. If the training data points are drawn as i.i.d. samples from a distribution which is absolutely
continuous with respect to the d-dimensional Lebesgue-measure, this is almost surely the case, if d ≤ N .

2
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Figure 1.1: Example: Given these N = 11 training data points (xtrain
i , ytrain

i ) (black dots) there
are infinitely many functions f that perfectly fit through the training data and therefore have
training loss L (f) = 0. Our intuition tells us that we should prefer the straight dotted line over
the oscillating solid line, even though both functions have zero training loss L (f) = 0.
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Figure 1.2: Example: Given these N = 120 training data points (xtrain
i , ytrain

i ) (black dots) there
are infinitely many functions f that perfectly fit through the training data and therefore have
training loss L (f) = 0. For many applications our intuition tells us that we should prefer the
smooth dotted line f∗,λ over the oscillating solid line, even though the smooth function f∗,λ has
training loss L

(
f∗,λ) > 0.
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could be formalized mathematically as a Bayesian prior knowledge5 [6, e.g. page 22].
One approach to capture the engineer’s intuition about the prior knowledge is to directly

regularize the second derivative of f̂ . Therefore in the d = 1-dimensional case the the widely
used spline regression [26, 7, 17] is considered in order to choose the function f̂ with minimizes a
weighted combination of the integrated square of the second derivative and the training loss L.

Definition 1.1.1 (spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0. Then
the (smoothing6) regression spline f∗,λ : R → R is defined7 as:

f∗,λ
7

:∈ argmin
f∈C2(R)









L(f)=
︷ ︸︸ ︷

N∑

i=1

(f(xtrain
i )− ytrain

i )2+λ

∫ ∞

−∞

(
f ′′(x)

)2
dx









︸ ︷︷ ︸

=:Fλ(f)

(1.2)

and for a given function g : R → R≥0 the weighted regression spline f∗,λ
g is defined7 as

f∗,λ
g

7

:∈ argmin
f∈C2(R)

supp(f)⊆supp(g)









L(f)=
︷ ︸︸ ︷

N∑

i=1

(f(xtrain
i )− ytrain

i )2+λg(0)

∫

supp(g)

(f ′′(x))2

g(x)
dx









︸ ︷︷ ︸

=:Fλ,g(f)

. (1.3)

The meta parameter λ controls the trade-off between low training loss and low squared
second derivative. For an example of spline regression (with g(x) = 1 ∀x ∈ R) see f∗,λ in
Figure 1.2.

5From the machine learning point of view one could theoretically formulate this prior knowledge regarding
the unknown distribution of (X,Y ) on X ×Y as a (probability)-measure on the space of all probability measures
on X × Y. From a regression point of view the prior regarding the unknown function fTrue would be be a
(probability)-measure on the set of all functions from X to Y. If the prior measure is a probability measure one
can work perfectly rigorous in the framework of classical Bayes law. If the prior measure is not a probability
measure it is called an improper prior which can also lead to good results in applications. Consider for example
the very restrictive prior measure that assigns measure 0 to the huge set of all nonlinear functions and weights all
linear functions the same. Since this measure assigns ∞ to the subspace of all linear functions, it is an improper
prior. This improper prior leads to the standard linear regression in the case of i.i.d. normally distributed
noise εi. The simple intuitive prior knowledge “I am absolutely sure that fTrue is linear, but I consider all linear
functions as equally likely.” is captured quite well by this improper prior and the solution of the corresponding
Bayesian problem can be computed quite fast (linear regression). But for most real world applications a more
realistic intuitive prior knowledge like “I cannot exclude any function for sure, but I have some vague feeling that
fTrue is more likely to be a ‘simpler’, ‘smoother’ function than a ‘heavily oscillating’ function.”, it is harder to
formalize it mathematically and calculating the solution of such Bayesian problems is often not traceable (with
today’s computational power). Still Bayesian theory can be considered as a very powerful and general abstract
theoretical framework without explicitly solving Bayesian problems and even without explicitly writing down
priors. (If anyone could write down mathematically precisely a prior measure that captures all available prior
knowledge (for each domain) and then develop a fast algorithm to solve the corresponding Bayesian problem, the
field of supervised machine learning would be solved.)

6In the literature the spline regression is often called (cubic) smoothing spline, but in this text f∗,λ will simply
be called regression spline.

7The (weighted) regression spline f∗,λ
g is uniquely defined if ∃(i, j) ∈ {1, . . . , N}2 : xtrain

i 6= xtrain
j .
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Definition 1.1.2 (spline interpolation). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0.
Then the (smooth) spline interpolation f∗,0+ : R → R is defined8 as:

f∗,0+ := lim
λ→0+

f∗,λ
8

∈ argmin
f∈C2(R),

f(xtrain
i )=ytraini ∀i∈{1,...,N}

(∫ ∞

−∞

(
f ′′(x)

)2
dx

)

. (1.4)

The Definitions 1.1.1 and 1.1.2 can also be seen as solutions to mathematically defined
Bayesian problems [17]9.

1.2 The Paradox of Neural Networks

This section discusses the paradox why standard neural networks training algorithms find “de-
sirable” functions f̂ without explicit regularization. Within this paradox we will demonstrate
two severe misassumptions in the classical approach to explain neural networks.

The paradox holds for deep neural networks [13] as well as for shallow10 neural networks.
This thesis resolves the paradox only rigorously in the context of shallow neural networks10 (cp.
Chapter 3). Further work is required to extend the results to deep neural networks.10

Definition 1.2.1 (Shallow neural network10). Let the activation function σ : R → R be Lips-
chitz continuous and non-constant. Then a shallow neural network is defined as NN θ : R

d → R

s.t.

NN θ(x) :=

n∑

k=1

wk σ



bk +

d∑

j=1

vk,jxj



+ c ∀x ∈ R
d (1.5)

• number of neurons n ∈ N and input dimension d ∈ N

• weights wk ∈ R, k = 1, . . . , n

• biases bk ∈ R, k = 1, . . . , n

• weights vk ∈ R
d, k = 1, . . . , n

• bias c ∈ R

• all the weights and biases are summarized in θ := (w, b, v, c) ∈ Θ := R
n ×R

n ×R
n×d ×R.

The paradox (summarized in Figure 1.3) consists of two parts:

1. In the literature it is often claimed that the goal of training a neural network is to find
parameters

θ∗ ∈ argmin
θ∈Θ

L (NN θ) (1.6)

8Analogous to footnote 7 the spline interpolation f∗,0+ is uniquely defined if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6=

xtrain
j .

9More precisely speaking the Definitions 1.1.1 and 1.1.2 can be seen as limits of Bayesian problems [17, p.
502]. The Definitions 1.1.1 and 1.1.2 can not be the solution fo an classical Bayesian problem with a proper proior
(cp. footnote 5 on page 4 and [17, eq. (4.1) on p. 501]).

10In very recent literature it became fashionable to call shallow neural networks “simple deep neural networks”
or “two-layer (deep) neural network” [12, Section 1.1 p. 3]. All three notations make sense since a shallow neural
network has three layers of neurons (input→hidden→output) therefore it has two layers of weights and biases
((v, b) → (w, c)) and thus one hidden layer of neurons. In this thesis we are using the classical notation of “shallow
neural networks” to describe them. When we discuss here or in Chapter 5 that we want to extend our theory to
deep neural networks this can also be read as “even deeper neural networks”.
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such that the corresponding neural network f̂ := NN θ∗ fits through the training data as
good as possible.

But such a NN θ∗ can have bad generalization properties: If n ≥ N−1, there are infinitely
many (1.6)-optimizing shallow neural networks NN θ∗ that generalize arbitrary bad11,
even if there were only zero noise εi = 0 on the training data. If n ≤ N − 2, then
NN θ∗ can be unique, but NN θ∗ might still overfit to the noise on the training data (see
Figure 1.4). The universal approximation theorem [8, 15] tells already that large neural
networks NN θ∗ (or any other universal approximating class of functions) can behave
arbitrary bad (like in Figure 1.1 for example) in between the training data xtrain

i while
having a arbitrary low training loss L (NN θ∗) ≤ ǫ, exactly because of their universal
approximation properties. (If a very small number of neurons n << N

d
were chosen,

overfitting of NN θ∗ would not be such a problem, but then neural networks would loose
their universal approximation property (which is one of their main selling points) and
therefore NN θ∗ could not achieve a low loss L (NN θ∗).)

The paradox is that in practice extremely large neural networksNN θT typically generalize
very well. Actually the main Theorems 3.1.4 and 3.2.5 of this thesis will show how well
neural networks NN θT with an infinite number of neurons behave in between the data.

2. As the optimization problem (1.6) optimizes (in the case of typical activation functions
like ReLUs) an Lebesgue-almost everywhere differentiable function on a finite dimensional
R-vector space Θ the optimization algorithm that first comes to the mind of probably most
engineers is a gradient descend algorithm (which is called backpropagation algorithm in
the case of neural networks). In the case of the training loss L one can use stochastic
gradient descend as well.12

But there are no guarantees that this algorithm converges to global optimum for a general
typically non-convex optimization problem. And numerical experiments show that if one
runs the algorithm for a reasonable time, one is still by far not optimal (w.r.t. the target
function L, that the algorithm claims to try to optimize.) (e.g. Figure 1.4).

1.3 Resolving the Paradox of Neural Networks: Implicit Regu-
larization

In this section the paradox will be resolved and at the end of this section a short overview will
be given how this thesis contributes to a better understanding of this phenomena.

1, 2 and the observation that Neural Networks are very useful in practice can be true at the
same time:

Even though an “optimal” network NN θ∗ would typically perform quite poorly in practice
(cp. 1), we never find NN θ∗ in practice, as one is almost always using a gradient descend
based algorithm to search for NN θ∗ . Because fortunately the back-propagation algorithm that
was designed to find something close to NN θ∗ by minimizing the training loss L does not

11For ReLU activation functions one can easily proof that for every training data
(
xtrain
i , ytrain

i

)

i∈{1,...,N}
there exist infinity many NN θ∗ such that the d-dimensional Lebesgue-measure of the

set
{

x ∈ [0, 1]d
∣
∣
∣ |NN θ∗(x)| > 9999

}

is larger than 99% and L (NN θ∗) = 0.
12The stochastic gradient descend has huge computational advantages in the case of a very large number N of

training observations. In future work we will go more into detail on stochastic gradient descend (cp. item 2 on
page 35), but in this thesis stochastic gradient descend can be treated equivalent to ordinary gradient descend
as we are always taking the limit of the learning rate γ → 0.
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BAD OPTIMIZATION ALGORITHM !

BAD MODEL OF REALITY !

WORKS VERY WELL !

True Problem in Application: f̂ = ?

Bayesian Problem with realistic prior

θ∗ ∈ argmin
θ∈Θ

L (NN θ)
︸ ︷︷ ︸

∑N
i=1(NNθ(x

train
i )−ytraini )

2

, f̂ := NN θ∗

θt+γ = θt − γ∇θL (NN θt) ,

θ0 ≈ 0,
f̂ := NN θT

1.

2.

Figure 1.3: The paradox of neural networks: 1. It would not be a desirable goal for neural
networks to minimize the training loss L solely. 2. The (stochastic) gradient descend algorithm
(also known as back-propagation algorithm) does typically not find the global optimum. Nev-
ertheless the algorithm result in surprisingly useful functions f̂ = NN θT for a wide range of
practical applications.

Figure 1.4: Example: Let N = 100 training samples (xtrain
i , ytrain

i ) be scattered uniformly around
the true function fTrue = 0 and consider a shallow neural networkNN with n = N = 100 hidden
nodes. After 10000 training epochs of Adam SGD [18] the neural network does not converge to
the global optimum NN θ∗ (red line) with L (NN θ∗) = 0, but to a more regular function NN θT

(blue line) which is closer to the true function fTrue.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

achieve13 the goal it was destined to (cp. 2. L (NN θT ) >> L (NN θ∗))—it surprisingly achieves
a much more desirable goal by not only minimizing the training loss L but somehow implicitly14

regularizing the problem. So the bad property 1 of NN θ∗ is not a contradiction to the great
performance of the much more regular NN θT . This phenomena is known in the literature as
“implicit regularization” [24, 23, 21, 19, 28, 25, 12] (also known as “implicit bias”[28]).

Hence the phenomena of implicit regularization demonstrates that the question I about
generalization and question II about the gradient descend algorithm are strongly linked to each
other in practice.

The phenomena of implicit regularization is highly observable in practice [14, 22, 24, 23, 21,
19, 25], but the theory behind it is still mainly open[21, 19, 25, 22].

The contribution of this thesis is to proof very precisely how the implicit regularization works
for a special type of neural networks (see footnote 1 from the abstract)—it regularizes the second
derivative of the network (seen as a function from X to Y ). For the considered type of network
we can prove mathematically to which function the network converges (cp. Definition 3.1.1 and
Theorems 3.1.4 and 3.2.5). In a typical setting this is very close to a regression spline f∗,λ,
whose theory is highly understood [26, 7, 17].

In this thesis we will state two main theorems:

• Theorem 3.2.5 connects the ordinary gradient descend without any explicit regularization
to an implicit ridge regularization of the weights. (Very similar theorems are already well
known [5, 9, 25, 12].)

• Theorem 3.1.4 shows how the weight’s ridge regularization from Theorem 3.2.5 results in
the (slightly adopted) spline regularization of the learned network function if the number
of neurons n → ∞. This theorem is the main contribution of this thesis.

Known theorems in that field are:

• There are many theorems that help to explain how implicit regularization could work on
the weight space (similar to Theorem 3.2.5) [5, 28, 25, 12]. But they do not precisely
explain how this translates to implicit regularization on the function space—only in the
case of classification15 these results give insight about the margins between the classes,
which is a property of the learned function. These papers provide a precise and quite
complete mathematical understanding of linear neural networks without any hidden layers.
The theorems in these papers that deal with neural networks with one (ore more) hidden
layers serve as basis for arguments why an implicit regularization effect can exist on
a qualitative level, but not on a precise quantitative level (especially when non-linear
activation functions σ are considered). So there are still many open questions.

• Since this thesis’ main contribution Theorem 3.1.4 explains the implicit regularization on
the function space, the more closely related literature is [22, 19, 21].

13In the limit training time T → ∞ it can find a global optimum, but not any arbitrary golbal optimum out
of the typically infinite many global optima, but a very special global optimum (c.p. Definitions 2.0.5 and 3.1.3,
Theorems 3.1.4 and 3.2.5 and eq. (5.1)). But typically training is stopped after a few epochs (T << ∞), where
L (NN θT ) >> L (NN θ∗) holds (which is the much more desirable solution—cp. Definition 3.1.1 and eq. (5.2)).

14“Implicitly” means that one uses exactly the same algorithm (gradient descend on the training loss L cp.
Figure 1.3) that one would use, if one did not care about regularization, but running the algorithm results
surprisingly in a very regular NN θT .

15[28, 25] focus more on classification (exponential loss) and [5, 12] focus more on regression (least square
training loss L).
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– [21] studies the implicit regularization for a fully trained shallow neural network NN
with nonlinear ReLU activation functions σ = max (0, ·) in the context of classifi-
cation (cross entropy loss over the softmax as training loss) on a qualitative level.
They use already the notion “pseudo-smooth” [21, e.g. p. 4], but a quantitative
mathematical analysis of the pseudo-smoothness is missing.

– [22] (by Google Brain) also studies the implicit regularization for a fully trained shal-
low neural network NN with nonlinear ReLU activation functions σ = max (0, ·), but
also in the context of regression (differentiable loss function). This paper is closest
to this thesis as its main goal is to explain how the learned neural network func-
tion NN θT behaves macroscopically in-between the training data. They provide a
very rich qualitative understanding of NN θT and provide very helpful visualizations,
but they cannot provide a precise quantitative formula—they cannot completely char-
acterize how the learned function behaves macroscopically. Whereas this thesis can
provide the precise quantitative macroscopic formula (Definition 3.1.1) in the case
of randomized neural networks RNwith the help of Theorem 3.1.4 and eq. (5.2),
which provides a quite complete understanding of RN . (I have already an analogous
theorem in mind for future work that characterize in which sense a fully trained
network NN θT is macroscopically optimal16, which would answer some of the open
questions posed in [22])

– [19] studies implicit regularization of deep neural network with nonlinear ReLU ac-
tivation functions σ = max (0, ·) by trying to explain that the learned function inter-
polates “almost linearly” between samples, which is related to a low (in the case of
ReLUs distributional) second derivative which corresponds to their notion of “gradi-
ent gaps”. Furthermore they try to establish some connection to Brownian bridges.17

In Chapter 2 the considered type of neural networks RN are defined: 1-dimensional wide
ReLU randomized18 shallow neural networks (2.2). The definitions in chapter 2 are important
to understand the main Theorems 3.1.4 and 3.2.5.

16The main difference of NN compared to RN is that in Definition 3.1.1 the squared second derivative is
replaced by the absolute value of the distributional second derivative (the L1-norm has a very natural extension
to distributions). This explains many of the phenomena described by [22]. The proof of this conjecture will be
similar to the proof of Theorem 3.1.4, but the details will be figured out in future work.

17The theorems proven in [19] rely on unrealistic assumptions (i.i.d. gradient gaps), but, based on their thoughts,
in the case of shallow neural networks NN with random initialization without any training, one could easily
derive an precise mathematical theorem under realistic assumptions: This shallow network NN θ0 would converge
(n → ∞) to an adapted Brownian bridge with a variable volatility analogous to g introduces later in this thesis
in Theorem 3.1.4 or Definition 3.1.1. If a typical choice of randomness is made, the adapted Brownian bridge
is quite close to an ordinary Brownian bridge (constant volatility) inside the [−1, 1]-cube by similar arguments
as in item 5 on page 36, where we will argument that the adapted regression spline f∗,λ

g,± is close to the ordinary

regression spline f∗,λ inside the [−1, 1]-cube. This adapted theorem would be a more precise version of [2,
Proposition A1] cited in [19]. Similar results for deeper networks would be plausible, still in the case of fully
random weights without any training. But their idea to model trained networks NN θT as Brownian bridges in
the limit of infinitely many neurons n → ∞ does not really fit to the much smoother limits suggested by [22]
or Theorem 3.1.4, Lemma 4.1.11 and eq. (5.2) in this thesis (f∗,λ

g,± is not only smoother but also deterministic in
contrast to a Brownian bridge). Still their observation that [19, Figure 1(b)] looks similar to a Brownian motion
is interesting. Maybe this cannot explained by the limit of neurons n → ∞, but by the limit of training data
N → ∞ to infinity, since they are using the ImageNet dataset which contains millions of samples. But in any
case there are still open questions.

18The most special property of this type of networks is that their first layer is chosen randomly and not trained—
after random initialization only the last layer is trained. One migth expect that this randomness decreases the
regularity of the leanred function, but actually the learned function will be especially smooth this way (in the
sence of integrated squared derivative; cp. Theorem 3.1.4)
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In the two Sections 3.1 and 3.2 the two main Theorems 3.1.4 and 3.2.5 an their respective
definitions will be formulated.

The proofs are in Chapter 4. The rest of the thesis is still understandable, if Chapter 4 is
skipped.

In Chapter 5 the implications of the main Theorems 3.1.4 and 3.2.5 will be summarized in
eqs. (5.1) and (5.2) and planned future work will be discussed.
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Chapter 2

Randomized Shallow Neural
Networks

Definition 2.0.1 (Randomized shallow neural network). Let (Ω,Σ,P) be a probability space,
and the activation function σ : R → R Lipschitz continuous and non-constant. Then a random-
ized shallow neural network is defined as RNw,ω : Rd → R s.t.

RNw,ω(x) :=
n∑

k=1

wk σ



bk(ω) +
d∑

j=1

vk,j(ω)xj



 ∀ω ∈ Ω ∀x ∈ R
d (2.1)

• number of neurons n ∈ N and input dimension d ∈ N

• trainable weights wk ∈ R, k = 1, . . . , n

• random biases bk : (Ω,Σ) → (R,B) i.i.d. real valued random variables k=1,. . . ,n

• random weights vk : (Ω,Σ) → (Rd,Bd) i.i.d. Rd-valued random variables k=1,. . . ,n

Assumption 1. Using the notation from Definition 2.0.1:

a) The activation function σ = max (0, ·) is ReLU.

b) the distribution of the quotient ξk := −bk
vk

has a probability density function gξ with respect

to the Lebesgue-measure.1

c) The input dimension d = 1.

Under this assumptions eq. (2.1) simplifies to:

RNw(x) =

n∑

k=1

wk max (0, bk + vkxj) ∀x ∈ R (2.2)

Definition 2.0.2 (kink positions ξ). The kink positions ξk := −bk
vk

are defined using the notation
of Definition 2.0.1 under the Assumption 1.

Definition 2.0.3 (kink position density gξ). The probability density function gξ : R → R≥0 of

the kink position ξk := −bk
vk

is defined in the setting of Definition 2.0.2.

1Assumption 1b) holds for all the distributions that are typically used in practice. Assumption 1b) implies
that P [vk = 0] = 0 ∀k ∈ {1, . . . , n}. Assumption 1b) could be weakened.
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Definition 2.0.4 (ridge penalized network).

w∗,λ̃(ω) :∈ argmin
w∈Rn

L(RNw,ω)
︷ ︸︸ ︷

N∑

i=1

(RNw,ω(x
train
i )− ytrain

i )2+λ̃||w||22
︸ ︷︷ ︸

F λ̃
n (RNw,ω)

∀ω ∈ Ω (2.3)

RN ∗,λ̃
ω := RN

w∗,λ̃(ω),ω ∀ω ∈ Ω (2.4)

The ridge-penalization is also known as weight decay, L2 (parameter) regularization or
Tikhonov regularization (or ridge regression, ℓ2 penalty, . . . )[13, section 7.1.1 on p. 227].

Definition 2.0.5 (minimum norm network). Let ∀i ∈ {1, . . . , N} : (xtrain
i , ytrain

i ) ∈ R
d+1 for

some N, d ∈ N. Furthermore, RNw,ω be a randomized shallow network with ω ∈ Ω and n ∈ N

hidden nodes such that n ≥ N . For any ω ∈ Ω, the minimum norm network is then defined as
RNw†(ω),ω with weights w†(ω) solving

min
w∈Rn

‖w‖2 , s.t. RNw,ω(x
train
i ) = ytrain

i , ∀i ∈ {1, . . . , N} . (2.5)
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Chapter 3

Main Theorems

3.1 Ridge Regularized RSN → Spline Regularization (d = 1, λ ∈
R>0)

Depending on the distribution of the random weights wk and biases wb the random net-

workRN ∗,λ̃ will converge to a (slightly) adapted version f∗,λ
g,± of the classical regression spline f∗,λ.

Definition 3.1.1 (adapted spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈
R>0. Then for a given function g : R → R≥0 the adapted regression spline f∗,λ

g,± := f∗,λ
g,+ + f∗,λ

g,− is
defined1 with

(

f∗,λ
g,+, f

∗,λ
g,−
) 1

:∈ argmin
(f+,f−)∈T




L (f+ + f−) + 2λg(0)






∫

supp(g)

(

f+
′′
(x)
)2

g(x)
dx+

∫

supp(g)

(

f−
′′
(x)
)2

g(x)
dx











︸ ︷︷ ︸

=:Fλ,g
+−(f+,f−)

,

(3.1)
with

T :=

{

(f+, f−) ∈ C2(R)× C2(R)

∣
∣
∣
∣
supp(f ′′

+) ⊆ supp(g), supp(f ′′
−) ⊆ supp(g),

lim
x→−∞

f+(x) = 0, lim
x→−∞

f ′
+(x) = 0,

lim
x→+∞

f−(x) = 0, lim
x→+∞

f ′
−(x) = 0

}

.

Remark 3.1.2. If for the weighting function g it holds that supp(g) is compact (cp. Assump-
tion 2a)), we define

Cℓ
g := min(supp(g)) and Cu

g := max(supp(g)). (3.2)

Furthermore in that case, the set T of function tuples considered in the minimization of Defini-
tion 3.1.1 can be rewritten: From supp(f ′′

+) ⊆ supp(g) it follows that f ′
+ ∈ C1(R) is constant on

(−∞, Cℓ
g]. With limx→−∞ f ′

+(x) = 0 we obtain that f ′
+(x) = 0 ∀x ≤ Cℓ

g. By the same argument

we obtain f+(x) = 0 ∀x ≤ Cℓ
g. Moreover, we have that ∃c+ ∈ R : f ′

+(x) ≡ c+ on [Cu
g ,∞).

1The tuple
(

f∗,λ
g,+, f

∗,λ
g,−

)

and thus the adapted regression spline f∗,λ
g,± is uniquely defined if g is the probability

density function of a distribution with finite first and second moment and if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6= xtrain

j .
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Analogous derivations lead to f ′
−(x) ≡ c− ∀x ≤ Cℓ

g with c− ∈ R and f−(x) = f ′
−(x) = 0 on

[Cu
g ,∞). Hence altogether we have

T =

{

(f+, f−) ∈ C2(R)× C2(R)

∣
∣
∣
∣
supp(f ′′

+) ⊆ supp(g), supp(f ′′
−) ⊆ supp(g),

∀x ≤ Cℓ
g : f+(x) = 0 = f ′

+(x),

∀x ≥ Cu
g : f−(x) = 0 = f ′

−(x)
}

.

If we assume supp(g) = [Cℓ
g, C

u
g ] we get:

T =

{

(f+, f−) ∈ C2(R)× C2(R)

∣
∣
∣
∣
∃c−, c+ ∈ R :

∀x ≤ Cℓ
g :
(

f+(x) = 0 = f ′
+(x) ∧ f ′

−(x) = c−
)

,

∀x ≥ Cu
g :
(

f−(x) = 0 = f ′
−(x) ∧ f ′

+(x) = c+

) }

.

Definition 3.1.3 (adapted spline interpolation). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and
λ ∈ R>0. Then the adapted spline interpolation f∗,0+

g,± : R → R is defined as:

f∗,0+
g,± := lim

λ→0+
f∗,λ
g,±. (3.3)

The following technical assumption makes the proof of Theorem 3.1.4 easier, even though
it could be weakened (see footnotes 2–5).

Assumption 2. Using the notation from Definitions 2.0.1 and 2.0.3 the following assumptions
extend Assumption 1:

a) The probability density function gξ of the kinks ξk has compact support supp(gξ).
2

b) The density gξ|supp(gξ) is uniformly continuous on supp(gξ).
3

c) The reciprocal density 1
gξ

∣
∣
∣
supp(gξ)

is uniformly continuous on supp(gξ).
4

d) The conditioned distribution L(vk|ξk = x) of vk is uniformly continuous in x on supp(gξ).
5

2Assumption 2a) can probably be weakened a lot, but it is not that restricting because real world computers
only cover a compact range of numbers anyway. This assumption makes proofs much easier and it assures that
a minimum of (3.1) exists. If one skipped Assumption 2a) completely, it could happen that (3.1) does not
have a classical minimum (e.g. P [vk = −1] = 1

2
= P [vk = 1] and bk ∼ Cauchy), but one could easily define

another weaker minimum concept as the limit of minimizing sequences which converge to a unique function on
every compact set. This also corresponds to the unique point-wise limit of minimizing sequences, which is not a
classical minimum, because it doesn’t satisfy all the boundary conditions limx→−∞ f+(x) = 0 = limx→+∞ f−(x)
anymore. Because of this weaker minimum concept, the Theorem 3.1.4 would have to be reformulated a bit at
least, if Assumption 2a) were skipped completely. This weaker minimum concept can also be seen as the limit of
adapted regression splines f∗,λ

g,± for truncated g as the range of the truncation tends to (−∞,∞). This footnote
won’t be proven in this thesis.

3Assumption 2b) could maybe be replaced by the weaker assumption that gξ is (improper) Riemann-integrable,
but almost all the distributions that are typically used in practice satisfy Assumption 2b) anyway.

4Assumption 2c) implies that minx∈supp(gξ) gξ > 0. Similarly to footnote 3, this assumption can probably be
weakened in a way that gξ could have finitely many jumps and that minx∈supp(gξ) gξ could be zero.

5Assumption 2d) can probably be weakened similarly to footnote 3.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

e) E
[
v2k
]
< ∞.6

The following technical Assumption 3 makes the result of Theorem 3.1.4 more readable by
referring to the easier Definition 3.1.1. Without Assumption 3, the Corollary 3.1.7 would still
hold, which is more general than Theorem 3.1.4, but uses the heavier notation of Definition 3.1.5.

Assumption 3. Using the notation from Definitions 2.0.1 and 2.0.3 the following assumptions
extend Assumption 1:

a) gξ(0) 6= 0.7

b) the the distributions of the random weights vk and the random biases bk are symmetric
w.r.t the sign—i.e.:

i) P [vk ∈ E] = P [vk ∈ −E] ∀E ∈ B and

ii) P [bk ∈ E] = P [bk ∈ −E] ∀E ∈ B.

Theorem 3.1.4 (ridge weight penalty corresponds to adapted spline). Let N ∈ N be a finite
number of arbitrary training data (xtrain

i , ytrain

i ). Using the notation from Definitions 2.0.1, 2.0.3,
2.0.4 and 3.1.1 and let8 ∀x ∈ R : g(x) := gξ(x)E

[
v2k
∣
∣ξk = x

]
and λ̃ := λng(0) then under the

Assumptions 1–3 the following statement holds for every compact set K ⊂ R:

P- lim
n→∞

∥
∥
∥RN ∗,λ̃ − f∗,λ

g,±
∥
∥
∥
W 1,∞(K)

= 0.9 (3.4)

Proof. The proof of Theorem 3.1.4 is formulated in Section 4.1.

Without Assumption 3 the Theorem 3.1.4 has to be reformulated to Corollary 3.1.7. This is done in the rest
of this section.

Definition 3.1.5 (asymmetric adapted spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0.
Then for given functions g+ : R → R≥0, g− : R → R≥0 the asymmetric adapted regression spline f∗,λ

g+,g−,± :=

f∗,λ
g+,g−,+ + f∗,λ

g+,g−,− + γ∗,λ
g+,g−

is defined10 with
(

f∗,λ
g+,g−,+, f

∗,λ
g+,g−,−, γ

∗,λ
g+,g−

) 10

:∈

argmin
(f+,f−,γ)∈Tg+,g−






L (f+ + f− + γ) + λ







∫

supp(g+)

(

f+
′′
(x)

)2

g+(x)
dx

P [v > 0]
+

∫

supp(g−)

(

f−
′′
(x)

)2

g−(x)
dx

P [v < 0]
+

γ2

P [v = 0]E
[
max (0, b)2

]













︸ ︷︷ ︸

=:F
λ,g+,g−
+− (f+,f−,γ)

,

(3.5)

6Assumption 2e) is in typical scenarios always satisfied. Assumption 2e) together with Assumption 2a) and
d) implies that E

[
v2k
∣
∣ξk = x

]
is bounded on supp(gξ).

7Assumption 3a) has to be satisfied in the way Definition 3.1.1 and Theorem 3.1.4 are formulated in this thesis,
but all the theory of this thesis could be easily reformulated (see Corollary 3.1.7 for example) if Assumption 3a)
were not satisfied. All the theorems of this thesis would hold as well if one replaces g(0) by a fixed value g(xmid)
or for example by

∫ 1

−1
g(x)dx, but the results are better interpretable if xmid lies somewhere “in the middle” of

the training data. Theorem 3.1.4 would even hold true if one skips g(0) completely by replacing it by 1 (see
Corollary 3.1.7 and Definition 3.1.5).

8Since all vk are identically distributed and all ξk are identically distributed as well, the conditioned ex-
pectation E

[
v2k
∣
∣ξk = x

]
that obviously only corresponds on their distribution does not depend on the choice of

k ∈ {1, . . . , n}. Therefor we will sometimes use notations like E [v|ξ = x] := E [vk|ξk = x]
9Using the definition of the P- lim, equation (3.4) reads as: ∀ǫ ∈ R>0 : ∀P ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 :

P

[∥
∥
∥RN ∗,λ̃ − f∗,λ

g,±

∥
∥
∥
W1,∞(K)

< ǫ

]

> P .

10The optimization problem (3.5) should be interpreted such that 0
0

is replaced by zero (For example, if

P [v = 0] = 0 the last fraction should be ignored.). The triple
(

f∗,λ
g+,g−,+, f

∗,λ
g+,g−,−, γ

∗,λ
g+,g−

)

and thus the adapted

regression spline f∗,λ
g,± is uniquely defined if g+,g− are probability density functions of distributions with finite

first and second moment and if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6= xtrain

j .
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with

Tg+,g− :=

{

(f+, f−, γ) ∈ C2(R)× C2(R)× R

∣
∣
∣
∣
supp(f ′′

+) ⊆ supp(g+), supp(f
′′
−) ⊆ supp(g−),

lim
x→−∞

f+(x) = 0, lim
x→−∞

f ′
+(x) = 0,

lim
x→+∞

f−(x) = 0, lim
x→+∞

f ′
−(x) = 0,

P [v > 0] = 0 ⇒ f+ ≡ 0,

P [v < 0] = 0 ⇒ f− ≡ 0,

P [v = 0] = 0 ⇒ γ = 0

}

.

Definition 3.1.6 (conditioned kink position density g+ξ , g−ξ ). The conditioned kink position density g+ξ : R →

R of ξk conditioned on vk > 0 is defined such that
∫

E
g+ξ (x)dx = P [ξk ∈ E|vk > 0] ∀E ∈ B. Analogous

∫

E
g−ξ (x)dx = P [ξk ∈ E|vk < 0] ∀E ∈ B

Corollary 3.1.7 (generalized Theorem 3.1.4). Let N ∈ N be a finite number of arbitrary training data
(
xtrain

i , ytrain

i

)
.

Using the notation from Definitions 2.0.1, 2.0.4, 3.1.5 and 3.1.6 and let11 ∀x ∈ R : g+(x) := g+ξ (x)E
[
v2k
∣
∣ξk = x, vk > 0

]
,

g−(x) := g−ξ (x)E
[
v2k
∣
∣ξk = x, vk < 0

]
and

˜̃
λ := λn then under the Assumptions 1 and 2 the following statement

holds for every compact set K ⊂ R:

P- lim
n→∞

∥
∥
∥
∥
RN ∗,˜̃λ − f∗,λ

g+,g−,±

∥
∥
∥
∥
W1,∞(K)

= 0.12 (3.6)

Proof. The proof of Corollary 3.1.7 is analagous to the proof of Theorem 3.1.4 in Section 4.1. (The footnotes 1,
2 and 6 on pages 18, 19 and 22 in Section 4.1 help to understand this analogy.)

3.2 RSN and Gradient Descent → Implicit Ridge Regulariza-
tion (d ∈ N)

The following results in Section 3.2 are analogous to the results presented in [5, 9, 25, 12], but
we are going to formulate them here in the context of random shallow networks RN .

Definition 3.2.1 (time-T solution). Let ∀i ∈ {1, . . . , N} : (xtrain
i , ytrain

i ) ∈ R
d+1 for some N, d ∈

N and RNw be a randomized shallow network with n ∈ N hidden nodes. For any ω ∈ Ω and
T > 0, the time-T solution to the problem

min
w∈Rn

N∑

i=1

(RNw,ω(x
train
i )− ytrain

i )2

︸ ︷︷ ︸

L(RNw,ω)

(3.7)

is defined as RNwT (ω),ω, with weights wT (ω) ∈ R
n obtained by taking the gradient flow

dwt = −∇wL (RNwt) dt, (GD)

w0 = 0,

corresponding to (3.7) up to time T .
11Since all vk are identically distributed and all ξk are identically distributed as well, the conditioned ex-

pectation E
[
v2k
∣
∣ξk = x

]
that obviously only corresponds on their distribution does not depend on the choice of

k ∈ {1, . . . , n}.
12Using the definition of the P- lim, equation (3.6) reads as: ∀ǫ ∈ R>0 : ∀P ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 :

P

[∥
∥
∥RN ∗,˜̃λ − f∗,λ

g+,g−,±

∥
∥
∥
W1,∞(K)

< ǫ

]

> P .
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Remark 3.2.2. In practice, the weights wT of the time-T solution as introduced in Defini-
tion 3.2.1 are approximated by taking τ := T/γ steps of size γ > 0 according to the Euler
discretization

ŵt+γ = ŵt − γ∇wL(RN ŵt),

ŵ0 = 0,

corresponding to (GD).

Lemma 3.2.3. Let ∀i ∈ {1, . . . , N} : (xtrain

i , ytrain

i ) ∈ R
d+1 for some N, d ∈ N and for any

ω ∈ Ω, let RNw,ω be a randomized shallow network with n ≥ N hidden nodes. Define further
X(ω) ∈ R

N×n via

Xi,k(ω) := σ



bk(ω) +
d∑

j=1

vk,j(ω)x
train

i,j



 ∀i ∈ {1, . . . , N} ∀k ∈ {1, . . . , n} ,

where xtrain

i,j denotes the jth component of xtrain

i . For any T ≥ 0, the weights wT (ω) corresponding
to the time-T solution RNwT (ω),ω satisfy

wT (ω) = − exp
(

−2TX⊤(ω)X(ω)
)

w†(ω) + w†(ω), (3.8)

with weights w†(ω) corresponding to the minimum norm network (see Definition 2.0.5).

Proof. The proof of Lemma 3.2.3 is formulated in Section 4.2.

Remark 3.2.4 (limiting solution of gradient descent). By Lemma 3.2.3, the weights wT corre-
sponding to the time-T solution converge to the minimum norm solution w† as time tends to
infinity—i.e. taking the limit T → ∞ in (3.8), we have limT→∞wT (ω) = w†(ω) ∀ω ∈ Ω.

Proof. The proof of Remark 3.2.4 is formulated in Section 4.2.

Theorem 3.2.5. Let RNwT be the T -step solution and consider for λ̃ = 1
T

the corresponding

ridge solution RN ∗, 1
T (cp. Definitions 2.0.4 and 3.2.1). We then have that

∀ω ∈ Ω : lim
T→∞

∥
∥
∥
∥
RN ∗, 1

T
ω −RNwT (ω),ω

∥
∥
∥
∥
W 1,∞(K)

= 0. (3.9)

Proof. The proof of Theorem 3.2.5 is formulated in Section 4.2.
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Chapter 4

Proofs

In this chapter, we rigorously prove the results presented throughout this thesis.

4.1 Proof of Theorem 3.1.4 (RN ∗,λ̃ → f
∗,λ
g,±)

All the lemmas necessary for the proof of Theorem 3.1.4 will be derived in this section. We
start by defining the objects that are central to the subsequent derivations.

Throughout this section, we henceforth require Assumptions 1–3 to be in place.

Definition 4.1.1 (estimated kink distance h̄ w.r.t. sgn (v)). Let RN be a randomized shallow
neural network with n hidden nodes as introduced in Definition 2.0.1. The estimated kink
distance w.r.t. sgn (v) at the kth kink position ξk corresponding to RN is defined as1

h̄k :=
2

n gξ(ξk)
. (4.2)

Definition 4.1.2 (spline approximating RSN). Let RN be a real-valued randomized shallow

neural network with n hidden nodes (cp. Definition 2.0.1) and f∗,λ
g,± = f∗,λ

g,+ + f∗,λ
g,− ∈ C2(R)

be the adapted regression spline as introduced in Definition 3.1.1. The spline approximating
RSN RN w̃ w.r.t. f∗,λ

g,± is given by

RN w̃(ω),ω(x) =

n∑

k=1

w̃k(ω)σ (bk(ω) + vk(ω)x) ∀ω ∈ Ω ∀x ∈ R (4.3)

1Without Assumption 3b) one would define:

h̄+
k :=

1

nP [vk > 0] g+ξ (ξk)
(4.1a)

h̄−
k :=

1

nP [vk < 0] g−ξ (ξk)
. (4.1b)

Under Assumption 3b) we have the equality:

h̄k = h̄+
k = h̄−

k. (4.1c)
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with weights w̃(ω) defined as2

w̃k(ω) := w
f
∗,λ
g,±,n

k (ω) :=







h̄k(ω)vk(ω)
E[v2|ξ=ξk(ω)]

f∗,λ
g,+

′′
(ξk(ω)), vk(ω) > 0

h̄k(ω)vk(ω)
E[v2|ξ=ξk(ω)]

f∗,λ
g,−

′′
(ξk(ω)), vk(ω) < 0

∀k ∈ {1, . . . , n} ∀ω ∈ Ω.

Further we define ∀ω ∈ Ω:

K
+(ω) := { k ∈ {1, . . . , n} | vk(ω) > 0 } , (4.4a)

K
−(ω) := { k ∈ {1, . . . , n} | vk(ω) < 0 } (4.4b)

and w̃+ := (w̃k)k∈K+ respectively w̃− := (w̃k)k∈K− . With the above, spline approximating RSNs
can be alternatively represented as

RN w̃(ω),ω(x) =
∑

k∈K+(ω)

w̃k(ω)σ (bk(ω) + vk(ω)x)

︸ ︷︷ ︸

=:RN+

w̃+(ω),ω

+
∑

k∈K−(ω)

w̃k(ω)σ (bk(ω) + vk(ω)x)

︸ ︷︷ ︸

=:RN−
w̃−(ω),ω

. (4.5)

Remark 4.1.3. The spline approximating RSN introduced in Definition 4.1.2 is a particular
randomized shallow neural network designed to be “close” to the adapted regression spline
f∗,λ
g,± in the sense that its curvature in between kinks is approximately captured by the size of
corresponding weights w̃.

Definition 4.1.4 (smooth RSN approximation). For w∗,λ̃ and RN ∗,λ̃ as in Definition 2.0.4
with corresponding kink density gξ consider for every x ∈ R the kernel

κx : R → R, κx(s) := ✶B 1
2
√

ngξ(x)

(s)
√
ngξ(x) ∀s ∈ R,

where B 1
2
√

ngξ(x)
:= {τ ∈ R : |τ | ≤ 1

2
√
ngξ(x)

}. The smooth RSN approximation fw∗,λ̃
then is

defined as the convolution3

fw∗,λ̃(ω)(x) :=
(

RN ∗,λ̃
ω ∗ κx

)

(x) ∀ω ∈ Ω ∀x ∈ R. (4.6)

Moreover, with the notation

RN ∗,λ̃(x) =
∑

k∈K+

w∗,λ̃
k σ (bk + vkx)

︸ ︷︷ ︸

=:RN ∗,λ̃
+

+
∑

k∈K−
w∗,λ̃
k σ (bk + vkx)

︸ ︷︷ ︸

=:RN ∗,λ̃
−

∀x ∈ R. (4.7)

2Note that under Assumption 1b), the set {vk = 0} is of zero measure for any k ∈ {1, . . . , n} and hence
is not included in the definition of the weights w̃(ω). Without Assumption 3b) (and with a weakened form of
Assumption 1b)), w̃ would need to be reformulated:

w̃k(ω) := w
f
∗,λ
g+,g−,±

,n

k (ω) :=







h̄+
k(ω)vk(ω)

E[v2|ξ=ξk(ω),v>0]
f∗,λ
g+,g−,+

′′

(ξk(ω)), vk(ω) > 0

h̄−
k(ω)vk(ω)

E[v2|ξ=ξk(ω),v<0]
f∗,λ
g+,g−,−

′′

(ξk(ω)), vk(ω) < 0

max(0,bk(ω))

nP[v=0]E[max(0,b)2]
γ∗,λ
g+,g−

, vk(ω) = 0

∀k ∈ {1, . . . , n} ∀ω ∈ Ω.

3This “convolution” is a bit special, because the kernel κx changes with x ∈ R. Therefore, the nota-

tion RN ∗,λ̃ ∗ κ would not be properly defined, but we could define RN ∗,λ̃ ∗∗ κ as:
(

RN ∗,λ̃
ω ∗∗ κ

)

(x) :=
(

RN ∗,λ̃
ω ∗ κx

)

(x) =
∫

R
RN ∗,λ̃

ω (x − s)κx(s)ds ∀ω ∈ Ω ∀x ∈ R. Hence, fw∗,λ̃

:= RN ∗,λ̃ ∗∗ κ would be an-

other correct way to define fw∗,λ̃

.
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with w∗+,λ̃ :=
(

w∗,λ̃
k

)

k∈K+
and w∗−,λ̃ analogously defined as w̃+ and w̃−, we have

fw∗,λ̃
(x) =

(

RN ∗,λ̃
+ ∗ κx

)

(x)
︸ ︷︷ ︸

=:fw∗,λ̃
+ (x)

+
(

RN ∗,λ̃
− ∗ κx

)

(x)
︸ ︷︷ ︸

=:fw∗,λ̃
− (x)

∀x ∈ R. (4.8)

Remark 4.1.5. For any x ∈ R the kernel κx introduced in Definition 4.1.4 satisfies

1.
∫

R
κx(s) ds = 1 and

2. limn→∞ κx = δ0, where δ0 denotes the Dirac distribution at zero.

Proof of Theorem 3.1.4. The two auxiliary functions RN w̃ and fw∗,λ̃
defined above in Defini-

tions 4.1.2 and 4.1.4 will play an important role in this proof.4

In the end we want to show the convergence of RN ∗,λ̃ to f∗,λ
g,±. Our strategy to achieve this

goal is to proof that both these functions RN ∗,λ̃ and f∗,λ
g,± get closer to the same function fw∗,λ̃

in the limit n → ∞. The first first convergence will be shown in Lemma 4.1.13. The proof of

the second convergence fw∗,λ̃ → f∗,λ
g,± will need more steps—first we will show the convergence

F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

→ F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

(in multiple steps based on Lemmas 4.1.10 and 4.1.14)

to further imply with the help of Lemma 4.1.17 the convergence fw∗,λ̃ → f∗,λ
g,±.

Following this strategy we proof Theorem 3.1.4 step by step:

step -0.5 Before starting with the proof, we need the auxiliary Lemmas 4.1.6 and 4.1.7

step 0 Lemma 4.1.8 shows

P- lim
n→∞

∥
∥
∥RN w̃ − f∗,λ

g,±
∥
∥
∥
W 1,∞(K)

= 0.

step 1 It is directly clear that

F λ̃
n

(

RN ∗,λ̃
)

≤ F λ̃
n (RN w̃) ,

because of the optimality of RN ∗,λ̃ (see Definition 2.0.4).

step 1.5 The auxiliary Lemma 4.1.9 will be needed for step 2 and step 4

step 2 Lemma 4.1.10 shows

P- lim
n→∞

F λ̃
n (RN w̃) = F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

.

step 2.5 The auxiliary Lemmas 4.1.11 and 4.1.12 will be needed for step 3 and step 4

step 3 Lemma 4.1.13 shows

P- lim
n→∞

∥
∥
∥RN ∗,λ̃ − fw∗,λ̃

∥
∥
∥
W 1,∞(K)

= 0.

step 4 Lemma 4.1.14 shows

P- lim
n→∞

∣
∣
∣F λ̃

n

(

RN ∗,λ̃
)

− F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)∣
∣
∣ = 0.

4At the end of the proof we will see that the functions RN ∗,λ̃, fw∗,λ̃

and RN w̃ will converge to the same
function f∗,λ

g,± in probability with respect to the Sobolev-norm [1] ‖·‖W1,∞(K).
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step 5 After defining T̃ (see Definition 4.1.15) it follows directly (with help of Remark 4.1.16)
that

F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

≤ F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

holds, because of the optimality of
(

f∗,λ
g,+, f

∗,λ
g,−
)

∈ T̃ .

step 6 Combining step 1, step 2, step 4 and step 5 we directly get:5 and sometimes

F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

step 4≈ F λ̃
n

(

RN ∗,λ̃
)

P

± ǫ1 ≤
step 1
≤ F λ̃

n (RN w̃)
P

± ǫ1 ≈
step 2≈ F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

P

± ǫ1
P

± ǫ2
step 5
≤ F λ,g

+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

P

± ǫ1
P

± ǫ2,

and thus:

F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

step 4
step 2
step 1

/ F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

P

± ǫ3
step 5
≤ F λ,g

+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

P

± ǫ3,

which directly implies

P- lim
n→∞

F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)

= F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

. (4.9)

step 7 Lemma 4.1.17 shows

P- lim
n→∞

∥
∥
∥fw∗,λ̃ − f∗,λ

g,±
∥
∥
∥
W 1,∞(K)

= 0,

if one applies it on the result (4.9) of step 6.

step 8 Combining step 4 and step 7 with the triangle inequality directly results in the state-
ment (3.4) we want show.

Lemma 4.1.6 (Poincaré typed inequality). Let f : R → R differentiable with f ′ : R → R

Lebesgue integrable. Then, for any interval K = [a, b] ⊂ R such that f(a) = 0 there exists a
C∞
K ∈ R>0 such that

‖f‖W 1,∞(K) ≤ C∞
K

∥
∥f ′∥∥

L∞(K)
. (4.10)

If additionally f is twice differentiable with f ′′ : R → R Lebesgue integrable, there exists a
C2
K ∈ R>0 such that

‖f‖W 1,∞(K) ≤ C2
K

∥
∥f ′′∥∥

L2(K)
. (4.11)

5We are using the following notation:

an ≈ bn
P

± ǫ1 :⇔ ∀ǫ1 ∈ R>0 : ∀P1 ∈ (0, 1) : ∃n0 ∈ N : ∀n ∈ N>n0 : P [an ∈ bn + [−ǫ1, ǫ1]] > P,

but a complete formalization of this notation would be quite long. This notation needs to be interpreted depending
on the context—e.g.:

bn
P

± ǫ1 ≈ bn
P

± ǫ1
P

± ǫ2 :⇔ ∀ǫ2 ∈ R>0 : ∀P2 ∈ (0, 1) : ∃n0 ∈ N : ∀n ∈ N>n0 : P [bn ∈ cn + [−ǫ2, ǫ2]] > P2,

or sometimes it makes sense to replace “∈” by “⊆” in a reasonable way. And in the proofs of some later lemmas

P

±ǫ2 can have the meaning of

P
δ,ǫ1→0

± ǫ2 instead of

P
n→0

± ǫ2 depending on the context.
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Proof. By the fundamental theorem of calculus, if ‖f ′‖L∞(K) < ∞, then

‖f‖L∞(K) = sup
x∈K

∣
∣
∣
∣

∫ x

a

f ′(y) dy

∣
∣
∣
∣
≤ |b− a| sup

y∈K
|f ′(y)|.

Hence it follows that

‖f‖W 1,∞(K) = max
{

‖f‖L∞(K) ,
∥
∥f ′∥∥

L∞(K)

}

≤ max{|b− a|, 1}
∥
∥f ′∥∥

L∞(K)
= C∞

k

∥
∥f ′∥∥

L∞(K)
.

Similarly, by the Hölder inequality we have

∥
∥f ′∥∥

L∞(K)
= sup

x∈K

∣
∣
∣
∣

∫ b

a

f ′′(y)✶[a,x](y) dy

∣
∣
∣
∣
≤ sup

y∈K

∥
∥f ′∥∥

L2(K)

∥
∥✶[a,y]

∥
∥
L2(K)

= |b− a|
∥
∥f ′′∥∥

L2(K)
.

Thus (4.11) follows from

‖f‖W 1,∞(K) ≤ C∞
K

∥
∥f ′∥∥

L∞(K)
≤ C∞

K |b− a|
∥
∥f ′′∥∥

L2(K)
= C2

K

∥
∥f ′′∥∥

L2(K)
.

Lemma 4.1.7. Let RN be a real-valued randomized shallow network. For ϕ : R2 → R uniformly

continuous such that for all x ∈ supp(gξ), E
[

ϕ(ξ, v) 1
ngξ(ξ)

|ξ = x
]

< ∞, it then holds that6

P- lim
n→∞

∑

k∈K+:ξk<T

ϕ(ξk, vk)h̄k =

∫ Cu
gξ

∧T

Cℓ
gξ

∧T
E [ϕ(ξ, v)|ξ = x] dx (4.12)

uniformly in T ∈ K.

Proof. For T ≤ Cℓ
gξ

both sides of (4.12) are zero, thus we restrict ourselves to T > Cℓ
gξ
. By

uniform continuity of ϕ and 1
gξ

in ξ, for any ǫ > 0 there exists a δ(ǫ) such that for every

|ξ′−ξ| < δ(ǫ) we have |ϕ(ξ, v) 1
gξ(ξ)

−ϕ(ξ′, v) 1
gξ(ξ′)

| < ǫ uniformly in v. W.l.o.g. assume supp(gξ)

is an interval. Thus, by splitting the interval [Cℓ
gξ
, Cu

gξ
∧ T ] into disjoint strips7 of equal length

6The same statement as (4.12) is true analogous if one replaces K+ by K
− of course. Also

P- lim
n→∞

∑

k:ξk<T

ϕ(ξk, vk)
h̄k

2
=

∫ Cu
gξ

∧T

Cℓ
gξ

∧T

E [ϕ(ξ, v)|ξ = x] dx

holds analogously. Without Assumption 3b) the statement (4.12) needed to be reformulated as:

P- lim
n→∞

∑

k∈K+:ξk<T

ϕ(ξk, vk)h̄
+

k =

∫ Cu

g
+
ξ

∧T

Cℓ

g
+
ξ

∧T

E [ϕ(ξ, v)|ξ = x, v > 0] dx

P- lim
n→∞

∑

k∈K−:ξk<T

ϕ(ξk, vk)h̄
−

k =

∫ Cu

g
−

ξ

∧T

Cℓ

g
−

ξ

∧T

E [ϕ(ξ, v)|ξ = x, v < 0] dx

7Assume ∃ℓ1, ℓ2 ∈ Z : Cℓ
gξ

= δℓ1, C
u
gξ

= δℓ2 to make the notation simpler. For a cleaner proof, one should
choose a suitable partition of supp(gξ).
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δ ≤ δ(ǫ), we have8

∑

k∈K+

ξk<T

ϕ(ξk, vk)h̄k =

7
=

∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]







∑

k∈K+

ξk∈[δℓ,δ(ℓ+1))

ϕ(ξk, vk)h̄k







≈
∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]







∑

k∈K+

ξk∈[δℓ,δ(ℓ+1))

(

ϕ(ℓδ, vk)
2

ngξ(ℓδ)
± ǫ

n

) |{m ∈ K
+ : ξm ∈ [δℓ, δ(ℓ+ 1))}|

|{m ∈ K+ : ξm ∈ [δℓ, δ(ℓ+ 1))}|







≈
∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]






∑

k∈K+

ξk∈[δℓ,δ(ℓ+1))

ϕ(ℓδ, vk)

|{m ∈ K+ : ξm ∈ [δℓ, δ(ℓ+ 1))}|
2|{m ∈ K

+ : ξm ∈ [δℓ, δ(ℓ+ 1))}|
ngξ(ℓδ)




± ǫ.

The number of nodes within a δ-strip follows a binomial distribution with

E
[
|{m ∈ K

+ : ξm ∈ [δℓ, δ(ℓ+ 1))}|
]
= P [vk > 0]n

∫

[δℓ,δ(ℓ+1))
gξ(x) dx ≈ 1

2
n(δgξ(ℓδ)± δǫ̃),

for any δ ≤ δ(ǫ, ǫ̃), since gξ is uniformly continuous on supp(gξ) by Assumption 2b). For
δ ≤ δ(ǫ, ǫ̃) small enough we have L(vk) ≈ L(v|ξ = ℓδ) ∀k ∈ K

+ : ξk ∈ [δℓ, δ(ℓ+ 1)) and we may
apply the law of large numbers to further obtain

∑

k∈K+:ξk<T

ϕ(ξk, vk)h̄k ≈
∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]

(

E [ϕ(ξ, v)|ξ = ℓδ]
P

± ˜̃ǫ

)

δ

(

1± ǫ̃

gξ(ℓδ)

)

± ǫ

≈








∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]

(

E [ϕ(ξ, v)|ξ = ℓδ] δ

)

P

± ˜̃ǫ|Cu
gξ

− Cℓ
gξ
|








(

1± ǫ̃

gξ(ℓδ)

)

± ǫ

Since 1/gξ(·) and E [ϕ(ξ, v)|ξ = ·] are bounded on supp(gξ), and ǫ, ǫ̃ depend on δ only, we may
for some ǫ∗, P ∗ ∈ (0, 1) define

ǫ :=
ǫ∗

3
, (4.13a)

ǫ̃ :=
ǫ∗minx∈supp(gξ) gξ(x)

3|Cu
gξ

− Cℓ
gξ
|
(

maxx∈supp(gξ) E [ϕ(ξ, v)|ξ = x] + 1
) , (4.13b)

˜̃ǫ :=
ǫ∗

3|Cu
gξ

− Cℓ
gξ
| , (4.13c)

˜̃P := (P ∗)
δ

|Cu
gξ

−Cℓ
gξ

|
, (4.13d)

n∗
0 := ˜̃n0(˜̃ǫ,

˜̃P ). (4.13e)

8The notation ±ǫ from footnote 5 on page 21 and slight adaptions of it will be used in this proof a lot. The
relations of all the epsilons will be explicitly described in (4.13)
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With the above it follows, that for any ǫ∗, P ∗ ∈ (0, 1) there exists a n∗
0 such that ∀n > n∗

0 :

P








∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

k∈K+:ξk<T

ϕ(ξk, vk)h̄k −
∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

∧T ]

E [ϕ(ξ, v)|ξ = ℓδ] δ

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ǫ∗







> P ∗.

For δ small enough, the above Riemann sum converges uniformly in T to yield the desired
result.

Lemma 4.1.8 (step 0). For any choice of penalty parameter λ > 0 and K ⊂ R compact, the

spline approximating RSN RN w̃ converges to the adapted regression spline f∗,λ
g,± in probability

w.r.t. ‖·‖W 1,∞(K) with increasing number of nodes, i.e. for any λ > 0 and K ⊂ R we have

P- lim
n→∞

∥
∥
∥RN w̃ − f∗,λ

g,±
∥
∥
∥
W 1,∞(K)

= 0.9

Proof. Let λ > 0 and K ⊂ R compact with [Cℓ
g, C

u
g ] ⊂ K. Directly from the definition (4.5) of

RN+
w̃+ and RN+

w̃+ and the Definition 3.1.1 of f∗,λ
g,± it follows that it is sufficient to show:

P- lim
n→∞

∥
∥
∥RN+

w̃+ − f∗,λ
g,+

∥
∥
∥
W 1,∞(K)

= 0 and (4.14)

P- lim
n→∞

∥
∥
∥RN−

w̃− − f∗,λ
g,−
∥
∥
∥
W 1,∞(K)

= 0 . (4.15)

W.l.o.g. we restrict ourselves to proving (4.14), as the latter limit follows analogously. By
Lemma 4.1.6 it suffices to show that

P- lim
n→∞

∥
∥
∥
∥
RN+

w̃+

′
− f∗,λ

g,+

′
∥
∥
∥
∥
L∞(K)

= 0. (4.16)

Since for any x ∈ K

RN+
w̃+

′
(x) =

∑

k∈K+

w̃kvk =
∑

k∈K+

f∗,λ
g,+

′′
(ξk)

v2k
E [v2|ξ = ξk]

h̄k,

we may employ Lemma 4.1.710 with ϕ(z, y) = f∗,λ
g,+

′′
(z) y2

E[v2|ξ=z]
to obtain

P- lim
n→∞

RN+
w̃+

′
(x) =

∫ Cu
gξ

∧x

Cℓ
gξ

∧x
E

[

f∗,λ
g,+

′′
(ξ)

v2

E [v2|ξ = z]
|ξ = z

]

dz =

∫ Cu
gξ

∧x

Cℓ
gξ

∧x
f∗,λ
g,+

′′
(z) dz

uniformly in x ∈ K. Employing the fundamental theorem of calculus we further obtain

P- lim
n→∞

RN+
w̃+

′
(x) = f∗,λ

g,+

′
(Cu

gξ
∧ x)− f∗,λ

g,+

′
(Cℓ

gξ
∧ x) ∀x ∈ R.

9 Using the definition of the P- lim, we get:

∀ǫ ∈ R>0 : ∀P ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 : P

[∥
∥
∥RN w̃ − f∗,λ

g,±

∥
∥
∥
W1,∞(K)

< ǫ

]

> P.

10Note that ϕ(x, y) is uniformly continuous on supp(gξ) since by definition f∗,λ
g,+ ∈ C2(R) and supp(gξ) is

compact by Assumption 2.
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By Remark 3.1.2 we have that f∗,λ
g,+

′
(Cℓ

gξ
∧ x) = 0 for any x ∈ R. Since by the same remark,

f∗,λ
g,+

′
is constant on [Cu

gξ
,∞), we finally obtain

P- lim
n→∞

RN+
w̃+

′
(x) = f∗,λ

g,+

′
(x) uniformly in x ∈ K.

Hence (4.16) follows.

Lemma 4.1.9 (L(fn) → L(f)). For any data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, let (fn)n ∈ N)

be a sequence of functions that converges point-wise11 in probability to a function f : R → R,
then the training loss L (c.p. eq. (1.1)) of fn converges in probability to L (f) as n tends to
infinity, i.e.

P- lim
n→∞

L(fn) = L(f). (4.17)

Proof. By continuity, the result follows directly:

P- lim
n→∞

L (fn) = P- lim
n→∞

N∑

i=1

(fn(x
train
i )− ytrain

i )2

=
N∑

i=1

(

P- lim
n→∞

fn(x
train
i )− ytrain

i

)2

=
N∑

i=1

(f(xtrain
i )− ytrain

i )2 = L (f) .

Lemma 4.1.10 (step 2). For any λ > 0 and data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, we have

P- lim
n→∞

F λ̃
n (RN w̃) = F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

, (4.18)

with λ̃ and g as defined in Theorem 3.1.4.

Proof. We start by showing

P- lim
n→∞

λ̃ ‖w̃‖22 = 2λg(0)








∫

supp(g)

(

f∗,λ
g,+

′′
(x)

)2

g(x)
dx+

∫

supp(g)

(

f∗,λ
g,−

′′
(x)

)2

g(x)
dx








. (4.19)

Since ‖w̃‖22 = ‖w̃+‖22 + ‖w̃−‖22 we restrict ourselves to proving

P- lim
n→∞

λ̃
∥
∥w̃+

∥
∥2

2
= 2λg(0)

∫

supp(gξ)

(

f∗,λ
g,+

′′
(x)

)2

g(x)
dx. (4.20)

11If P- limn→∞ ‖fn − f‖W1,∞(K) = 0, then fn converges point-wise in probability to f (by using Sobolev’s
embedding theorem [1] or by assuming fn and f to be continuous). Hence Lemma 4.1.9 can be used to-
gether with Lemma 4.1.8 to show P- limn→∞ L(RN w̃) = L(f∗,λ

g,±) or together with Lemma 4.1.13 to show

P- limn→∞ L
(

RN ∗,λ̃
)

= L
(

fw∗,λ̃
)

.
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With the definitions of w̃+, λ̃ and h̄ we have

λ̃
∥
∥w̃+

∥
∥2

2
= λ̃

∑

k∈K+

(

f∗,λ
g,+

′′
(ξk)

h̄kvk
E [v2|ξ = ξk]

)2

= λ̃
∑

k∈K+

((

f∗,λ
g,+

′′
)2

(ξk)
h̄kv

2
k

E [v2|ξ = ξk]

)

h̄k

= 2λg(0)
∑

k∈K+

((

f∗,λ
g,+

′′
)2

(ξk)
v2k

gξ(ξk)E [v2|ξ = ξk]

)

h̄k.

An application of Lemma 4.1.7 with ϕ(x, y) =

(

f∗,λ
g,+

′′
)2

(x) y2

gξ(x)E[v2|ξ=y]
further yields (4.20)

via

P- lim
n→∞

λ̃
∥
∥w̃+

∥
∥2

2
= 2λgξ(0)E

[
v2|ξ = 0

]
∫

supp(gξ)
E

[(

f∗,λ
g,+

′′
)2

(ξ)
v2

gξ(ξ)E [v2|ξ = x]2

∣
∣
∣
∣
ξ = x

]

dx

= 2λgξ(0)E
[
v2|ξ = 0

]
∫

supp(gξ)

(

f∗,λ
g,+

′′
)2

(x)

gξ(x)E [v2|ξ = x]
dx

= 2λg(0)

∫

supp(gξ)

(

f∗,λ
g,+

′′
(x)

)2

g(x)
dx.

Thus we have proven the convergence of the penalization terms (4.19). Together with Lem-
mas 4.1.8 and 4.1.9, (4.18) follows.

Lemma 4.1.11. Using the notation of Definitions 2.0.2 and 2.0.4 the following statement holds:

∀ǫ ∈ R>0 : ∃δ ∈ R>0 : ∀ω ∈ Ω : ∀l, l′ ∈ {1, . . . , N} : ∀n ∈ N










∣
∣ ξl(ω)− ξl′(ω)
︸ ︷︷ ︸

=:∆ξ(ω)

∣
∣ < δ ∧ sgn (vl(ω)) = sgn (vl′(ω))




⇒

∣
∣
∣
∣
∣

w∗,λ̃
l (ω)

vl(ω)
− w∗,λ̃

l′ (ω)

vl′(ω)

∣
∣
∣
∣
∣
<

ǫ

n




 ,

if we assume that vk is never zero.

Proof. We will proof the even stronger statement:

∣
∣
∣
∣
∣

w∗,λ̃
l

vl
− w∗,λ̃

l′

vl′

∣
∣
∣
∣
∣

1
≤

conditioned on
sgn(vl)=sgn(vl′ )

|∆ξ|
λ̃

N∑

i=1

∣
∣
∣RN ∗,λ̃(xtrain

i )− ytrain
i

∣
∣
∣

2
≤ (4.21a)

2
≤ |∆ξ|

λ̃

√
N

√
√
√
√

N∑

i=1

∣
∣
∣RN ∗,λ̃(xtrain

i )− ytrain
i

∣
∣
∣

2 3
≤ |∆ξ|

λ̃

√
N

√
√
√
√

N∑

i=1

|ytrain
i |2, (4.21b)

because with the help of inequality (4.21), δ := ǫλg(0)
√

N
∑N

i=1|ytraini |2
would be a valid choice of δ in

the statement of Lemma 4.1.11.
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1. Proof of (4.21a): First we define the disturbed weight vector w∆s such that

w∆s
k := w∗,λ̃

k +







+∆s
|vl| k = l

− ∆s
|vl′ | k = l′

0 else-wise

by shifting a little bit of the distributional second derivative ∆s from the l′th kink to the
lth kink. By a case analysis (or by drawing a sketch) one can easily show conditioned on
sgn (vl) = sgn (vl′):

∀x ∈ R :
∣
∣
∣RN ∗,λ̃(x)− (RNw∆s(x))

∣
∣
∣ ≤ ∆x∆s. (4.22)

As RN ∗,λ̃ is optimal the derivative

0 =
dF λ̃

n (RNw∆s)

d∆s

∣
∣
∣
∣
∣
∆s=0

= λ̃2

(

w∗,λ̃
l

vl
− w∗,λ̃

l′

vl′

)

+
dL (RNw∆s)

d∆s

∣
∣
∣
∣
∆s=0

(4.23)

has to be zero. Transforming this equation and taking absolute values on both sides gives:

∣
∣
∣
∣
∣
λ̃2

(

w∗,λ̃
l

vl
− w∗,λ̃

l′

vl′

)∣
∣
∣
∣
∣

(4.23)
=

∣
∣
∣
∣
∣

dL (RNw∆s)

d∆s

∣
∣
∣
∣
∆s=0

∣
∣
∣
∣
∣

(4.22)

≤ 2
N∑

i=1

∣
∣
∣

(

RN ∗,λ̃(xtrain
i )− ytrain

i

)

∆ξ
∣
∣
∣ .

(4.24)
Dividing both sides by 2λ̃ results in (4.21a).

2. (4.21a)≤(4.21b) holds because of the general inequality ∀a ∈ R
N : ‖a‖1 ≤

√
N ‖a‖2.

3. (4.21b) holds because the optimal network RN ∗,λ̃will never be worse than the 0-function.

Lemma 4.1.12 (w
∗,λ̃
v

≈ O( 1
n
)). For any λ > 0 and data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, we

have

max
k∈{1,...,n}

w∗,λ̃
k

vk
= P-O

n→∞

(
1

n

)

.12 (4.25)

Proof. Let k∗ ∈ argmaxk∈{1,...,n}
w

∗,λ̃
k

vk
and thus

w
∗,λ̃
k∗
vk∗

= maxk∈{1,...,n}
w

∗,λ̃
k

vk
. W.l.o.g. assume

12Using the definition of P-O, eq. (4.25) reads as:

∀P ∈ (0, 1) : ∃C ∈ R>0 : ∃n0 ∈ N : ∀n > n0 : P

[

max
k∈{1,...,n}

< C
1

n

]

> P.
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k∗ ∈ K
+.

F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

λ̃

Lemma 4.1.10
P

≥ 1

2λ̃
F λ̃
n

(

RN ∗,λ̃
)

(4.26a)

≥ 1

2

∑

k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

w∗,λ̃
k

2
(4.26b)

=
1

2

∑

k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

w∗,λ̃
k

2

v2k
v2k (4.26c)

Lemma 4.1.11
≥ 1

4

w∗,λ̃
k∗

2

v2k∗

∑

k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

v2k (4.26d)

P

≥ 1

8

w∗,λ̃
k∗

2

v2k∗

nδgξ(ξk∗)

2
E
[
v2k
∣
∣ξk = ξk∗

]
. (4.26e)

Transforming inequality (4.26) and using the definition λ̃ := λng(0) gives:

w∗,λ̃
k∗

2

v2k∗

P

≤ 16

n2

F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

δgξ(ξk∗)λg(0)
. (4.27)

Taking the square root of both sides an using some bounds, we get:

w∗,λ̃
k∗

vk∗

P

≤ 4

n




F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

δminx∈supp(g) gξ(x)λg(0)





1
2

. (4.28)

This proofs statement (4.25) by choosing C from footnote 12 as:

C := 4




F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

δminx∈supp(g) gξ(x)λg(0)





1
2

. (4.29)

Lemma 4.1.13 (step 3). For any λ > 0 and data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, we have

P- lim
n→∞

∥
∥
∥RN ∗,λ̃ − fw∗,λ̃

∥
∥
∥
W 1,∞(K)

= 0, (4.30)

with λ̃ as defined in Theorem 3.1.4.

Proof. By Lemma 4.1.6 (as RN ∗,λ̃, fw∗,λ̃
are zero outside of supp(g) + supp(κx) like described

in Remark 3.1.2), we only need to show that for all ǫ > 0:

lim
n→∞

P

[∥
∥
∥
∥
RN ∗,λ̃

′
− fw∗,λ̃

′∥∥
∥
∥
L∞(K)

< ǫ

]

= 1.

W.l.o.g. it is sufficient to prove:

lim
n→∞

P

[∥
∥
∥
∥
RN ∗,λ̃

+

′

− fw∗,λ̃
+

′∥∥
∥
∥
L∞(K)

< ǫ

]

= 1.
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For every x ∈ K and ω ∈ Ω, using the Definition 4.1.4 of fw∗,λ̃
+ we have

RN ∗,λ̃
+

′

(x)− fw∗,λ̃
+

′

(x) = RN ∗,λ̃
+

′

(x)−
(

RN ∗,λ̃
+

′

∗ κx
)

(x)

=

∫

R

RN ∗,λ̃
+

′

(x)κx(t) dt−
∫

R

RN ∗,λ̃
+

′

(x− t)κx(t) dt

=

∫

R

(

RN ∗,λ̃
+

′

(x)−RN ∗,λ̃
+

′

(x− t)

)

κx(t) dt.

Using the definition of RN ∗,λ̃
+ we get:

RN ∗,λ̃
+

′

(x) =
∑

k∈K+:ξk<x

w∗,λ̃
k vk (4.31)

and hence with rn := 1
2
√
ngξ(x)

we can get after some algebraic calculations:

RN ∗,λ̃
+

′

(x)− fw∗,λ̃
+

′

(x) =
∑

k∈K+:x−rn<ξk<x

w∗,λ̃
k vk

∫ ξk

x−rn

κx(s− x)ds

−
∑

k∈K+:x<ξk<x+rn

w∗,λ̃
k vk

∫ x+rn

ξk

κx(s− x)ds =

=
∑

k∈K+:x−rn<ξk<x

w∗,λ̃
k

vk
v2k

∫ ξk

x−rn

κx(s− x)ds

−
∑

k∈K+:x<ξk<x+rn

w∗,λ̃
k

vk
v2k

∫ x+rn

ξk

κx(s− x)ds

Thus we can use the triangle inequality13 and the properties of the kernel κx to get:

∣
∣
∣
∣
RN ∗,λ̃

+

′

(x)− fw∗,λ̃
+

′

(x)

∣
∣
∣
∣

≤ 1

2

∑

k∈K+:x−rn<ξk<x+rn

∣
∣
∣
∣
∣

w∗,λ̃
k

vk
v2k

∣
∣
∣
∣
∣

(4.32a)

≤ 1

2
max
k∈K+

∣
∣
∣
∣
∣

w∗,λ̃
k

vk

∣
∣
∣
∣
∣

∑

k∈K+:x−rn<ξk<x+rn

v2k (4.32b)

Lemma 4.1.12
≤ P-O

n→∞

(
1

n

)

P-O
n→∞

(√
n
)
= P-O

n→∞

(
1√
n

)

(4.32c)

uniformly in x on supp(gξ) and thus on K (since outside of supp(gξ)+ (−rn, rn) both functions
and there derivatives are zero).

Lemma 4.1.14 (step 4). For any λ > 0 and data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, we have

P- lim
n→∞

∣
∣
∣F λ̃

n

(

RN ∗,λ̃
)

− F λ,g
+−
(

fw∗,λ̃
+ , fw∗,λ̃

−
)∣
∣
∣ = 0, (4.33)

with λ̃ as defined in Theorem 3.1.4.
13Actually one could use a much tighter bound the triangle inequality used in inequality (4.32a), because in

asymptotic expectation the positive and negative summands would cancel each other instead of adding up.
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Proof. Lemmas 4.1.9 and 4.1.13 show together that

P- lim
n→∞

∣
∣
∣L
(

RN ∗,λ̃
)

− L
(

fw∗,λ̃
+ , fw∗,λ̃

−
)∣
∣
∣ = 0.

So it is sufficient to show:

P- lim
n→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ̃
∥
∥
∥w∗,λ̃

∥
∥
∥

2

2
− 2λg(0)








∫

supp(g)

(

fw∗,λ̃
+

′′

(x)

)2

g(x)
dx+

∫

supp(g)

(

fw∗,λ̃
−

′′

(x)

)2

g(x)
dx








∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

(4.34)

Since
∥
∥
∥w∗,λ̃

∥
∥
∥

2

2
=
∑

k∈K+ w∗,λ̃
k

2
+
∑

k∈K− w∗,λ̃
k

2
, we restrict ourselves to proving

P- lim
n→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ̃
∑

k∈K+

w∗,λ̃
k

2
− 2λg(0)

∫

supp(gξ)

(

fw∗,λ̃
+

′′

(x)

)2

g(x)
dx

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (4.35)

Using the Definition 4.1.4 of fw∗,λ̃
+ we get:

fw∗,λ̃
+

′′

(x)
Definition 4.1.4

=
∑

k∈K+:|ξk−x|< 1
2
√

ngξ(x)

√
ngξ(x)w

∗,λ̃
k vk (4.36a)

=
∑

k∈K+:|ξk−x|< 1
2
√

ngξ(x)

√
ngξ(x)

w∗,λ̃
k

vk
v2k (4.36b)

Lemma 4.1.11≈




w∗,λ̃
lx

vlx
± ǫ

n




∑

k∈K+:|ξk−x|< 1
2
√
ngξ(x)

√
ngξ(x)v

2
k (4.36c)

≈




w∗,λ̃
lx

vlx
± ǫ

n





(

1
P

± ǫ1

)

P [vk > 0]ngξ(x)

(

E
[
v2k
∣
∣ξk = x

] P

± ǫ2

)

(4.36d)

Lemma 4.1.12≈
w∗,λ̃
lx

vlx
P [vk > 0]ngξ(x)E

[
v2k
∣
∣ξk = x

] P

± ǫ3 (4.36e)

uniformly in x on K for any lx satisfying lx ∈ K
+ : |ξl − x| < 1

2
√
ngξ(x)

∀x ∈ supp(gξ). Therefore

we can plug this into the right-hand term of eq. (4.35):

2λg(0)

∫

supp(gξ)

(

fw∗,λ̃
+

′′

(x)

)2

g(x)
dx ≈ 2λg(0)

∫

supp(gξ)

(
w

∗,λ̃
lx

vlx
P [vk > 0]ngξ(x)E

[
v2k
∣
∣ξk = x

] P

± ǫ3

)2

g(x)
dx

≈ 2λg(0)

∫

supp(gξ)

(
w

∗,λ̃
lx

vlx
P [vk > 0]ngξ(x)E

[
v2k
∣
∣ξk = x

]
)2

g(x)
dx

︸ ︷︷ ︸

=
λ̃n

2

∫

supp(gξ)




w∗,λ̃
lx

vlx





2

gξ(x)E
[
v2k
∣
∣ξk = x

]
dx

P

±ǫ4
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by uniformity of approximation (4.36) and by using the definitions of λ̃ := λng(0) and g(x) :=
gξ(x)E

[
v2k
∣
∣ξk = x

]
. In the next steps we show that the left-hand term of eq. (4.35) converges

to the same term as the right-hand side did:14

λ̃
∑

k∈K+

w∗,λ̃
k

2 14
= λ̃

∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

]







∑

k∈K+

ξk∈[δℓ,δ(ℓ+1))

(

w∗,λ̃
k

vk

)2

v2k







Lemma 4.1.11≈ λ̃
∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

]










w∗,λ̃
lδℓ

vlδℓ
± ǫ5

n





2
∑

k∈K+

ξk∈[δℓ,δ(ℓ+1))

v2k

︸ ︷︷ ︸

≈
(

1
P

±ǫ6

)

n
2
δgξ(δℓ)

(

E[v2k|ξk=δℓ]
P

±ǫ7

)







Lemma 4.1.12≈ λ̃n

2

∑

ℓ∈Z

[δℓ,δ(ℓ+1))⊆[Cℓ
gξ

,Cu
gξ

]








w∗,λ̃
lδℓ

vlδℓ





2

δgξ(δℓ)
(
E
[
v2k
∣
∣ξk = δℓ

]) P

± ǫ8





Riemann≈ λ̃n

2

∫

supp(gξ)




w∗,λ̃
lx

vlx





2

gξ(x)E
[
v2k
∣
∣ξk = x

]
dx

P

± ǫ9

This proves eq. (4.33).

Definition 4.1.15 (extended feasible set T̃ ). The extended feasible set T̃ is defined as:

T̃ :=

{

(f+, f−) ∈ H2(R)×H2(R)

∣
∣
∣
∣
supp(f ′′

+) ⊆ supp(g), supp(f ′′
−) ⊆ supp(g),

f+(x) = 0 = f ′
+(x) ∀x ≤ Cℓ

g,

f−(x) = 0 = f ′
−(x) ∀x ≥ Cu

g

}

.

by replacing C2(R) by the Sobolev space [1] H2(R) := W 2,2(R) ⊃ C2(R) in T from Defini-
tion 3.1.1.

Remark 4.1.16. If one replaces C2(R) by the Sobolev space H2(R) := W 2,2(R) in Definition 3.1.1

the minimizer
(

f∗,λ
g,+, f

∗,λ
g,−
)

does not change—i.e.:

argmin
(f+,f−)∈T

F λ,g
+− (f+, f−) = argmin

(f+,f−)∈T̃
F λ,g
+− (f+, f−) .

Lemma 4.1.17 (step 7). For any λ > 0 and data (xtrain

i , ytrain

i ) ∈ R
2, i ∈ {1, . . . , N}, for any

sequence of tuples of functions
(
fn
+, f

n
−
)
∈ H2(R)×H2(R) such that

P- lim
n→∞

F λ,g
+−
(
fn
+, f

n
−
)
= F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

, (4.37)

then it follows that:

P- lim
n→∞

∥
∥
∥

(
fn
+ + fn

−
)
− f∗,λ

g,±
︸︷︷︸

f
∗,λ
g,++f

∗,λ
g,−

∥
∥
∥
W 1,∞(K)

= 0. (4.38)

14Assume ∃ℓ1, ℓ2 ∈ Z : Cℓ
gξ

= δℓ1, C
u
gξ

= δℓ2 to make the notation simpler. For a cleaner proof, one should
choose a suitable partition of supp(gξ).
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Proof. Define the tuple of H2(R)-functions

(
un+, u

n
−
)
:=
(

f∗,λ
g,+, f

∗,λ
g,−
)

−
(
fn
+, f

n
−
)

(4.39)

as the difference. The difference
(
un+, u

n
−
)
of elements from T and T̃ obviously lies in T̃ .

Define the penalty term of F λ,g
+− as:

P λ,g
+− (f+, f−) := 2λg(0)






∫

supp(g)

(

f+
′′
(x)
)2

g(x)
dx+

∫

supp(g)

(

f−
′′
(x)
)2

g(x)
dx




 . (4.40)

This penalty P λ,g
+− is obviously a quadratic form. Note that

(fn
+,fn

−)+
(

f
∗,λ
g,+,f

∗,λ
g,−

)

2 ∈ T̃ . Since the
training loss L is convex, we get the inequality:

L

(

fn
+ + fn

− + f∗,λ
g,+ + f∗,λ

g,−
2

)

≤ L
(
fn
+ + fn

−
)

2
+

L
(

f∗,λ
g,+ + f∗,λ

g,−
)

2
. (4.41)

Since the penalty P λ,g
+− is a quadratic form, we get with the help of some algebraic calculations

the inequality:

P λ,g
+−





(
fn
+, f

n
−
)
+
(

f∗,λ
g,+, f

∗,λ
g,−
)

2



 ≤ P λ,g
+−
(
fn
+, f

n
−
)

2
+

P λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

2
− P λ,g

+−
(
un+, u

n
−
)

4
. (4.42)

Adding the inequalities (4.41) and (4.42) results in:

F λ,g
+−





(
fn
+, f

n
−
)
+
(

f∗,λ
g,+, f

∗,λ
g,−
)

2



 ≤
F λ,g
+−
(
fn
+, f

n
−
)
+ F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

2
︸ ︷︷ ︸

(4.37)
≈ F λ,g

+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

P

± ǫ

−P λ,g
+−
(
un+, u

n
−
)

4
. (4.43)

Together with the optimality of
(

f∗,λ
g,+, f

∗,λ
g,−
)

this result leads directly to:

F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

optimality
Remark 4.1.16≤ F λ,g

+−





(
fn
+, f

n
−
)
+
(

f∗,λ
g,+, f

∗,λ
g,−
)

2



 (4.44a)

(4.43)

/ F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

P

± ǫ− P λ,g
+−
(
un+, u

n
−
)

4
. (4.44b)

By subtracting

(

F λ,g
+−
(

f∗,λ
g,+, f

∗,λ
g,−
)

− P
λ,g
+−(un

+,un
−)

4

)

from both sides of ineq. (4.44) and multiplying

by 4 we get:

P λ,g
+−
(
un+, u

n
−
) (4.44)

/
P

±4ǫ,

which implies that
P- lim
n→∞

P λ,g
+−
(
un+, u

n
−
)
= 0. (4.45)
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First we will show that the weak second derivative un+
′′
converges to zero:

∥
∥
∥un+

′′
∥
∥
∥
L2(K)

≤
maxx∈supp(g)g(x)

2λg(0)
P λ,g
+−
(
un+, u

n
−
)

∀K ⊆ R, (4.46)

because
(
un+, u

n
−
)
∈ T̃ has zero second derivative outside supp(g). Thus, P- limn→∞

∥
∥
∥un+

′′
∥
∥
∥
L2(K)

=

0 (by combining eqs. (4.45) and (4.46)). This can be used to apply two times the Poincaré-typed
Lemma 4.1.6 (first on un+

′′
then on un+

′
) to get for every compact set K ⊂ R:

P- lim
n→∞

∥
∥un+

∥
∥
W 1,∞(K)

= 0, (4.47)

as
(
un+, u

n
−
)
∈ T̃ satisfies the boundary conditions at Cℓ

g (cp. Remark 3.1.2) because of the
compact support of g. Analogously, P- limn→∞

∥
∥un+

∥
∥
W 1,∞(K)

= 0 for every compact set K ⊂ R

and hence:
P- lim
n→∞

∥
∥un+ + un−

∥
∥
W 1,∞(K)

= 0. (4.48)

Thus, by the definition (4.39) of
(
un+, u

n
−
)
we get

P- lim
n→∞

∥
∥
∥

(
fn
+ + fn

−
)
− f∗,λ

g,±
︸︷︷︸

f
∗,λ
g,++f

∗,λ
g,−

∥
∥
∥
W 1,∞(K)

(4.39)
= P- lim

n→∞

∥
∥un+ + un−

∥
∥
W 1,∞(K)

(4.48)
= 0,

which shows (4.38).

4.2 Proof of Theorem 3.2.5 (RNwT ,ω → RN ∗, 1
T

ω )

In this section we prove all the results (Lemma 3.2.3, Remark 3.2.4 and Theorem 3.2.5) presented
in Section 3.2. These results are analogous to the results presented in [5, 9, 25, 12], but we will
repeat the proofs briefly in this section.

Proof of Lemma 3.2.3. We need to show that for any ω ∈ Ω,

wT (ω) = − exp
(

−2TX⊤(ω)X(ω)
)

w†(ω) + w†(ω), (“(3.8)”)

satisfies (GD). Let ω ∈ Ω be fixed and set y := (ytrain
1 , . . . , ytrain

N )⊤. Clearly, w0 = 0. Since

∇wL(RNw) = 2X⊤(Xw − y),

(GD) reads as
dwt = −2(X⊤Xwt −X⊤y) dt. (4.49)

Differentiating (3.8) we obtain

d

dt
wt = 2X⊤X exp

(

−2tX⊤X
)

w†. (4.50)

Moreover, since

−2(X⊤Xwt −X⊤y) = 2X⊤X exp
(

−2tX⊤X
)

w† − 2X⊤yw† + 2X⊤yw†

= 2X⊤X exp
(

−2tX⊤X
)

w†

the result follows (as the solution of linear ODEs is unique, because of Picard-Lindelöf theorem).
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Proof of Remark 3.2.4. Using some basic knowledge about the Moore-Penrose pseudoinverse
[3] and singular value decomposition one can directly see that the minimum norm solution w†

does not have any singular-value-components in null-space of the matrix X. Combining this
with some basic knowledge about the matrix exponential of diagonalizable matrices the result
follows, since the matrix-exponential in eq. (3.8) only preserves the null-space of X—every
singular-value-component outside the null-space is scaled down to zero as T → ∞.

Proof of Theorem 3.2.5. First, we note that obviously

lim
T→∞

w∗, 1
T (ω) = w†(ω) ∀ω ∈ Ω (4.51)

holds by Definitions 2.0.4 and 2.0.5.
Secondly, the continuity of the map (Rn, ‖·‖2) → W 1,∞(K) : w 7→ RNw,ω implies: ∀ω ∈ Ω:

lim
T→∞

∥
∥
∥
∥
RN ∗, 1

T
ω −RNw†(ω),ω

∥
∥
∥
∥
W 1,∞(K)

= 0, because of eq. (4.51) (4.52a)

lim
T→∞

∥
∥
∥RNwT (ω),ω −RNw†(ω),ω

∥
∥
∥
W 1,∞(K)

= 0, because of Remark 3.2.4. (4.52b)

Thirdly, by applying the triangle inequality on eqs. (4.52) the result (3.9) follows.
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Chapter 5

Conclusion and Future Work

Combining the main Theorems 3.1.4 and 3.2.5 tells us that that for a large number of training
epochs τ = T/γ and a large number of neurons n, the obtained network

RN
ŵT,ŵ0

ŵ0→0≈ RN ŵT

γ→0≈ RNwT

T→∞≈
Theorem 3.2.5

RN ∗, 1
T

P
n→∞≈

Theorem 3.1.4
f∗,0+
g,±

g
g(0)

→ 1

≈ f∗,0+ (5.1)

is very close to the spline interpolation f∗,0+, where each of the
→≈ in eq. (5.1) corresponds to a

mathematically proved exact limit in the very strong1 Sobolev-Norm ‖·‖W 1,∞(K) (in probability

in the case of
P

n→∞≈ ). But the much more interesting statement for applications is that for
arbitrary training time T ∈ R>0 (including early stopping T << ∞) in typical settings the
following equations hold approximately:

RN
ŵT,ŵ0

ŵ0≈0≈
1

RN ŵT

γ≈0≈
2
RNwT ≈

3
RN ∗, 1

T

P
n large

≈
4

f
∗, 1

Tng(0)

g,±

standard distrib.
for v and b

and K⊆[−1,1]
≈
5

f
∗, 1

Tng(0) , (5.2)

where each of the “≈” holds up to a (small) approximation error (that can be strictly larger
than zero).2 It is planned to give a better understanding of approximation (5.2) in future work:

1. The first approximation should be quite easy but is not focus of this thesis.3 (As only the
last layer of RN is trained, one could just start with w0 = 0)

2. A small learning rate γ is more important, but not the main focus of this thesis.4 Future
work could contain a short discussion why stochastic gradient descend allows a larger total
step size per epoch, which is quite intuitive (cp. footnote 12 on page 6). An interesting
insight from this thesis is that for a randomized network RN the learning rate γ should

1Convergence in ‖·‖W1,∞(K) implies uniform convergence on K for example or convergence in W 1,p(K). Even

stronger Sobolev-convergenve like in W 2,p, cannot be defined, because RNw /∈ W 2,p(K)
2By assuming T = 1

(λng(0))
= 1

λ̃
, eq. (5.2) should be read as:

RN
ŵ

1
λng(0)

,ŵ0

ŵ0≈0
≈
1

RN
ŵ

1
λng(0)

γ≈0
≈
2
RN

w
1

λng(0)
≈
3
RN ∗,λng(0)

P
n→∞

≈
Theorem 3.1.4

f∗,λ
g,±

standard distrib.
for v and b

and K⊆[−1,1]
≈
5

f∗,λ

3Lemma 4.1.12 demonstrates, that with increasing n the initial weights ŵ0 should be chosen closer to zero.
4For thinite values of T standard result about Euler discretization can be used. In the limit T → ∞ one can

formulate a direct argument that combines items 2 and 3: limT→∞ ŵT = w†, if the learning rate γ < 1/r(X⊤X)
is smaller than 1 over the spectral radius (largest eigenvalue) of X⊤X [5, p. 4] [12, p. 11].
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typically be chosen approximately inverse proportional to the number of neurons n. An-
other interesting insight that we might elaborate in more detail in future work is that the
“approximation error” we get from larger values of γ has a very specific structure that
allows to some extent to explain it on a macroscopic functional level.

3. Multiple papers assume that the third approximation is quite precise for arbitrary values
of T ∈ R>0 without rigorous proof [5, 9, 25]. I have already a theory in mind that would
be able to give a better understanding of the typically “rather small” but not vanishing
“approximation errors”, that could even have a positive effect by canceling out with the
“approximation errors” from 5 to some extend. This theory could be part of close future
work. 3 would be particularly interesting for real world applications by explaining early
stopping.5

4. Theorem 3.1.4 is proven in this thesis’ Section 4.1, but future work might show how many
neurons n are actually needed to get good results.

5. The adapted regression spline f∗,λ
g,± is already an easily interpretable macroscopically de-

fined object. Intuitively it is already very plausible, that f∗,λ
g,± is very close to the very

desirable f∗,λ on the [−1, 1]-cube (and in its close surrounding), if one uses typical6 dis-
tributions for v and b, if the training data is scaled and shifted to fit into the [−1, 1]-cube.
And with the same intuition one can see that if popular rules of thumb like scaling and
shifting the data to the [−1, 1]-cube are broken, one can obtain very worthless functions

f∗,λ
g,±. This is an important contribution of Theorem 3.1.4 to answering question IV about
which choices one should make to get good results with machine learning, as Theorem 3.1.4
also tells you under which conditions the algorithm would give you bad results.

The next steps in future works will probably be:

• Generalizing to multidimensional input in X = R
d. (I will publish this theorem very

soon.)7

• With the insights won from Theorem 3.1.4, possibilities arise how to save computational
time, memory and energy consumption by replacing certain groups of neurons by others
algorithms (or simply by adding certain direct connections form input to the output
skipping the hidden layer). This can also offer other advantages8. Theorem 3.1.4 and its
proof inspire to choose special types of randomness for the weights and biases. It would
be interesting if they provide advantages for RNand for other architectures.7

• Proofing convergence to a differently regularized function in the case of ordinary training
of both layers of NN instead of only training the last layer (cp. footnote 16 on page 9
and the subitem about [22]).7

5Instead of λ̃ = 1
T

it would be probably better to chose λ̃ = se−2sT

1−e−2sT with an appropriate choice of s to

get better approximation bounds. In this thesis we used λ̃ = 1
T
, because it is suggested by the literature [5,

Section 2.3 on p. 5].
6For example, bk, vk ∼ Unif(−c, c) i.i.d. uniformly symmetrically distributed or bk, vk ∼ N (0, c) i.i.d. normally

distributed with zero mean.
7Since we will publish these theorems very soon, it would be a waste of resources if multiple people work

on it independently. If you are working on similar results, it makes more sense to collaborate—if you want to
do so, please contact Hanna Wutte and me by writing to ilovemathematik-MasterThesisJakobHeiss@yahoo.com.
(Other feedback, remarks and questions are very welcome as well to the same mail-adress or directly to me.)

8By certain modifications of the network one could also make the algorithm numerically more stable and
adjust the regularization—e.g. the adapted regression spline can easily be moddified to the ordinary regression
spline.
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• Generalization do deep neural networks with more hidden layers (e.g. deep convolutional
neural networks).7
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