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Kurzfassung

Die Goldbandpipra (Manacus vitellinus, engl. golden-collared manakin) ist eine tropische
Vogelart, bei der die Méannchen akrobatische Balztinze auffithren. Um verschiedene
Balztédnze zu vergleichen, filmte ein Team von Biologen die Vogel in freier Wildbahn mit
Hochgeschwindigkeitskameras. Um den Balztanz zu analysieren miissen die Vogel zuerst
getrackt werden, um anschliefend das Verhalten zu klassifizieren und schliefllich zu visua-
lisieren. Das manuelle Labeln jedes Einzelbilds in studenlangem Videomaterial ist ein sehr
zeitintensiver Vorgang. Automatisches Tracking und Verhaltenserkennung erméglichen
eine schnellere Analyse von Videos, die monatelanges Annotieren ersparen kann. In dieser
Arbeit prasentieren wir einen umfassenden State-of-the-Art Report, analysieren die Her-
ausforderungen der Manakin-Videos und présentieren einen Tracker (ManakinTracker),
der die spezifischen Herausforderungen der Manakin-Videos bewéltigen kann. Basierend
auf der Trajektorie erkennen und visualisieren wir das Verhalten des Vogels wahrend
des Balztanzes. Die Manakin-Videos stellen verschiedene Herausforderungen an visuelles
Tracking und automatische Verhaltenserkennung. Die schnelle und abrupte Bewegung des
Vogels fithrt zu starken Bewegungsunschérfen und ist schwer vorherzusagen. Das Aussehen
des Vogels éndert sich stark. Zusatzlich dhnelt der Hintergrund optisch dem Vogel und
verdeckt ihn ganz oder teilweise. Der ManakinTracker findet potenzielle Boundingboxen
mittels Hintergrundsubtraktion, modelliert das Erscheinungsbild des Vogels mit einem
neuronalen Netzwerk und lernt ein Bewegungsmodell. Der ManakinTracker kann erken-
nen, wenn der Vogel das Bild verlasst und ihn wieder erkennen sobald er wieder im Bild
erscheint. Basierend auf der Trajektorie identifizieren wir typische Verhaltensweisen des
Vogels: Hocken, Springen, “Beard-up”-Pose und Fliigelschlag. Das Verhalten wird auf
zwei Arten visualisiert. Wir vergleichen unseren Tracker mit 11 state-of-the-art Trackern
in Bezug auf Robustheit und Genauigkeit und analysieren Félle in denen das Tracking
fehlschlagt.
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Abstract

The golden-collared manakin (Manacus vitellinus) is a tropical bird species, in which
the male performs an acrobatic displays to court mates. To be able to compare different
courtship displays and better understand the courtship dance, biologists recorded the
birds in the wild with high-speed cameras. To analyze the courtship dance the birds
need to be first tracked, so that the behavior can be classified, and finally visualized.
Manually labeling every frame in hours of video material is a time-consuming process.
Automatic tracking and behavior recognition enables faster analysis of videos, which
would save human annotators months of work. In this thesis, we present a thorough
state-of-the-art review and highlight the challenges of the manakin videos. The manakin
videos present several challenges for visual tracking and behavior recognition. The bird’s
rapid and abrupt movement causes strong motion blur and is hard to predict. The bird’s
appearance changes strongly. Additionally, background clutter visually resembles and
occludes the bird. The ManakinTracker is a visual long-term tracker designed to handle
the challenges of the manakin videos. The ManakinTracker finds potential bounding
boxes with background subtraction, models the bird’s appearance with a convolutional
neural network and learns a motion model. It is able to detect the bird moving out of the
frame and re-detect it. Based on the trajectory obtained through the ManakinTracker, we
identify the bird’s typical courtship behaviors: perching, jumping, beard-up posture, and
wing-snap. The behavior is then visualized by plotting the trajectory and in a sequence
plot. We compare our tracker to 11 state-of-the-art trackers in terms of robustness and
accuracy and perform an analysis of tracking failures.
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CHAPTER

Introduction

The golden-collared manakin (Manacus vitellinus) (see Figure 1.1) is a small tropical
bird, which lives in the Panama forest. The males perform elaborate, acrobatic displays
to court mates [FFGT17]. During its courtship dance the male demonstrates its physical
strength by jumping (not flying) between saplings. Mating success seems to be related
to superior motor skills [BSWF11], which allow the male to execute its dance faster and
more precisely. However, it is not fully clear yet how exactly the courtship dance has to
be performed to impress a female. To be able to compare different courtship displays, in
order to better understand the courtship dance, biologists recorded the birds in the wild
with high-speed cameras. The biologists need to analyze a large number of high-speed
recordings of the bird’s courtship dance. To achieve this the birds need to be first tracked,
so that the behavior can be classified, and finally visualized.

Figure 1.1: Close-ups of male (from left: first, second) and female (from left: third,
fourth) golden-collared manakins

Manually labeling every frame in hours of video material, however, is a time-consuming
and tedious process. When the person who labels the videos becomes inattentive errors
can occur.
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INTRODUCTION

Automatic tracking and behavior recognition enables faster analysis of videos, which
would save human annotators months of work. It also enables researchers to work with
much larger datasets, which makes their research findings more robust and thus more
statistically significant.

The contributions of this thesis are as follows:

@ We present a thorough state-of-the-art review and highlight the challenges of the
manakin videos.

@ We propose a novel tracker (ManakinTracker) that can handle the specific challenges
of the manakin videos.

@ Based on the trajectory we recognize and visualize the bird’s behavior during the
courtship display.

The manakin videos present several challenges for visual tracking and behavior recognition.
The main challenge is the fast movement of the bird which causes strong motion
blur (see Figure 1.2). Additionally, the bird’s movement is hard to predict because of
sudden stopping and starting. The bird’s appearance changes abruptly when it
starts or stops moving or when it changes its orientation. While animals are typically
recorded in laboratory conditions with little to no background clutter, the manakin was
recorded in the wild. The bird moves inside the so-called arena, which consists of a
set of saplings. These saplings often occlude the bird while it sits on a sapling or jumps
behind one. Leaves can also occlude the bird or confuse the tracker as some of the yellow
leaves visually resemble the bird’s yellow neck.

Figure 1.2: Images of birds affected by strong motion blur.

To track the bird in the manakin videos, we present the ManakinTracker: a visual
long-term tracker designed to handle the challenges of the manakin videos. The tracker
is initialized with a bounding box in the first frame marking the bird’s location. For
every following frame, the tracker outputs a bounding box. The ManakinTracker consists
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of three main components: candidate generation, an appearance model and a motion
model.

Candidate generation finds potential bounding boxes in the current frame. We use a
background subtraction method (Mixture of Gaussians) to find moving blobs in the
frame, as well as a search window around the previous position.

The appearance model is used to assign a classification score to the candidate bounding
boxes. It is implemented as a convolutional neural network (CNN) pre-trained on
ImageNet and image patches cropped from manakin videos with ground truth bounding
boxes (see Section 2). The CNN classifies an image patch as either bird or background.

We use the motion model to predict the bird’s movement independent of visual cues.
The motion model is used to track the bird through occlusions and to decide between
multiple candidates that are classified as bird. The motion model is implemented as a
Kalman filter [WB95].

The ManakinTracker detects that the bird has left the frame if the predicted bounding
box is partially outside of the frame. The bird is re-detected by scoring image patches
along the frame’s border and blobs that occur inside the border region of the frame.

Based on the trajectory obtained through the ManakinTracker, we recognize the bird’s
behavior. We focus on a pose called “beard-up”, in which the male presents its yellow
neck while perching. The biologists aim to find out if the male points its neck towards the
female bird. We perform behavior recognition based on different information extracted
from the videos: from image patches we find the largest yellow region in order to detect
the yellow neck; based on the trajectory we determine if the bird is jumping or perching
and based on the change of the bounding box area we determine if the bird does a
wingsnap. The behavior is then visualized by plotting the trajectory enhanced with
symbols indicating the length of perching, the presence of a wingsnap and the view to
which the yellow neck points. Additionally we plot the recognized behaviors in a sequence
plot.

We compare our tracker to 11 state-of-the-art trackers in terms of robustness and accuracy.
To gain a better understanding of the weak points of the ManakinTracker, we perform
an analysis of tracking failures.
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CHAPTER

Datasets: Properties and Tasks

2.1 Manakin Datasets

We use two datasets that contain 71 and 12 color video sequences, respectively. The videos
in both datasets show male golden-collared manakins performing their courtship dance.
All videos were recorded by a team of biologists with three synchronized, stationary
high-speed cameras at 60 fps in the Panama forest and have per-frame groundtruth

annotations.

Dataset-2017

Dataset-2018

number of sequences

71

12

camera

Basler acA1920-155uc

Basler acA1920-155uc

recording time

March — April 2017

February 2018

frames per second 60 60
exposure time (in seconds) 1/10000 1/10000
frame size (W x H) 1928 x 1208 px 1936 x 1216 px
avg. groundtruth boundingbox (W x H) 113 x 95 135 x 114
number of frames with groundtruth 15599 16329
average image brightness 79 51
average image saturation 0.38 0.41
average image sharpness 0.0058 0.0041
avg. # of bird leaving frame per seq. 0.25 1.5

Table 2.1: Manakin Datasets
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2. DATASETS: PROPERTIES AND TASKS
Dataset-2017
average variance | minimum | maximum

width 112.5722 1528.0501 38 274

height 94.9747 658.8979 37 242

area 10894.2804 | 33037442.1328 2236 55826

change of area

between two frames 1.006 0.006173 0.54677 2.0142

distance of centers*

between two frames 27.952 729.7115 0.25 158.6295

overlap ratio (IoU**)

between two frames 0.8245 0.078581 0 1

Table 2.2: Properties of groundtruth bounding boxes (in dataset-2017).
*Only distances > 0 were used. **IoU: Intersection over Union [KLM™18]
Dataset-2018
average variance | minimum | maximum

width 135.2468 2343.4884 36 384

height 113.6805 1326.8796 32 409

area 16132.5685 | 89197562.9657 2438 131698

change of area

between two frames 1.0361 0.12163 | 0.084038 8.9182

distance of centers™

between two frames 31.1915 1107.7757 0.16346 | 223.8666

overlap ratio (IoU**)

between two frames 0.828 0.07253 0 1

Table 2.3: Properties of groundtruth bounding boxes (in dataset-2018).
*Only distances > 0 were used. **ToU: Tntersection over Union [KL.M 18]
2.1.1 Comparison of Manakin Datasets
We compare our two datasets in tables 2.1, 2.2, and 2.3. The videos in both datasets
have about the same frame size and were recorded at the same frame rate (60 fps) and
exposure time (1/10000 s) with the same high-speed camera model. Dataset-2017 was
recorded the year before dataset-2018.
The pixels in dataset-2017 are on average 79/51 ~ 1.5 times brighter and slightly
less saturated than the videos in dataset-2018. Image saturation was calculated by
transforming the images to the HSV (which stands for hue, saturation, color) color space
and averaging the saturation component per pixel. We calculated image quality in terms
of average sharpness using the image quality measure described in [DM13] for the patches
cropped from the groundtruth bounding boxes: dataset-2017 reaches a higher value,
i.e. the bird is imaged sharper than in dataset-2018. This is most likely caused by the
6


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Groundtruth annotations

brighter lighting conditions under which dataset-2017 was recorded.

The average area of the groundtruth bounding boxes is 1.4 larger in dataset-2018, because
— in contrast to dataset-2017 — the bounding boxes in dataset-2018 also include the bird’s
wings. The average groundtruth bounding box covers about 0.46% and 0.65% of the
frame area in dataset-2017 and dataset-2018, respectively.

2.2 Groundtruth annotations

The videos of both datasets have groundtruth annotations in the form of axis-aligned
bounding boxes. The annotations were manually created with a tool that allows the user
to place a rectangle over the bird. The annotations of dataset-2017 were generated by a
team of biologists on every second frame using loopy'. The annotations on dataset-2018
were created by myself on every frame.

Even for human annotators it is difficult to accurately draw bounding boxes around the
birds: the strong motion blur smears the bird into an elongated shape, which does not
represent the bird’s true shape. Even for humans it can be hard to distinguish the bird
against the background — under very strong motion blur the bird can even be barely
visible.

There is some uncertainty concerning which part of the bird’s body to include: wings
when extended and feet are not always included. Wings often not visible. While the
biologists did not include the wings, I did because it is useful to recognize some of the
bird’s behaviors (wingsnap, flip). When a part of the bird is occluded, the annotator
has to guess the bird’s shape behind the occluding object. If an annotator is inattentive
even for only one frame and incorrectly selects the bounding box of the previous frame:
if the bird is moving there might be little to no overlap with a correct prediction leading
to tracking failure. Especially during periods where the bird is sitting, annotators had
a tendency of keeping same location even if small movements occur. Every video was
annotated only once, otherwise it would have been possible to find errors by comparing
different annotations for the same frame.

2.2.1 Challenges of the Manakin Dataset

The following properties of the videos make tracking the birds and identifying their
behavior challenging:

Chl: No Markers: In order to not interfere with the manakin’s behavior the biologists
did not place markers on the birds.

Ch2: Speed: While jumping, the bird moves very quickly.

Ch3: Motion blur: Motion blur is an artifact where objects in an image appear
streak-like because the camera integrates all positions of the object along its trajectory
during exposure time. These streaks are characterized by their length and angle. Motion

Thttp://loopbio.com/loopy
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Figure 2.2: Example images from dataset-2018. Left: perching bird; right: jumping bird

Figure 2.1: Example images from dataset-2017. Left: perching bird; right: jumping bird
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2.2. Groundtruth annotations

blur is caused by the relative movement of the camera and objects in the recorded scene.
In our case, the camera is static and the motion blur results from the objects moving in
the scene. Figure 1.2 shows cases where the ManakinTracker fails due to strong motion
blur. Strong motion blur can make the bird hard to recognize as it loses most of its local
features.

Ch4: Size and shape change: The bird’s bounding box changes in size and shape,
especially when the bird opens its wings or turns.

Ch5: Appearance change: Appearance changes occur due to motion blur, when the
bird jumps, does out-of-plane rotations or because of illumination changes and shadows.
Ch6: Occlusion: The bird can be partly or fully occluded by saplings and leaves.
Ch7: Out of frame: The bird frequently leaves the camera’s field of view. Thus, the
tracker has to deal with a target that disappears and should not erroneously track a
different object while the bird is out of frame. When the bird re-appears at an unknown
location the tracker should detect it again and resume tracking.

Ch8: Trajectory: The bird starts and stops abruptly and typically changes direction
when starting a new jump. During a jump, however, the bird’s trajectory is smooth.
Ch9: Background color: The forest is similar in color to both the male and female
bird.

Ch10: Background motion: Leaves and branches move in the background. Saplings
often move when the bird lands on them.

2.2.2 The Golden-collared Manakin

The golden-collared manakin (Manacus vitellinus) is a small Passerine bird that is about
10-11 cm long and weighs around 20 grams. It lives in the tropical forest of Panama.
The males perform an acrobatic courtship dance [OFE13]. The golden-collared manakin
is a sexually dimorphic species: the males are bright and colourful; while the female
is well camouflaged with an olive-green body, darker wings and a black beak [C*35].
The male also has an olive-green rump and black beak but the wings and the top of the
head is black. Its most striking feature is the golden collar that is colored in a shade
of yellow. Part of the golden collar is the so-called “beard”: long feathers (about 20
mm) attached to the base of the beak. The bird can extend the beard using muscles
[C*35, FGDS07, SDF08]. Although the male is brightly colored, it is also camouflaged
by a disruptive pattern in the feathers [CT35]. The golden-collared manakin is a model
species for studying sexual selection, as this bird uses both of the main mechanisms of
sexual selection: male-male competition and female choice.

2.2.3 The Golden-Collared Manakin’s Courtship Dance

The male golden-collared manakin performs a spectacular courtship dance to court
females. The breeding season lasts from January until July or August [CT35, SDF08].
The display takes place in the “arena”: a roughly elliptical region on the forest ground
delimited by vertical saplings. One of the saplings, the “mating sapling”, is used for
copulation at the end of the display if the female is willing to mate [C*35, FGDS07].
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The male cleans the floor of the arena, removing branches and leaves. The clean floor
makes the male’s golden beard more visible during the display [Per17].

The courtship display consists of a sequence of jumps and wingsnaps. The display starts
with the male entering the arena from the top. He sits on a sapling then jumps (not flies)
very fast to another sapling. Mid-jump he does the wingsnap by lifting the wings. While
landing, he opens the wings to turn his body.

As soon as he has landed on the sapling, he assumes a rigid posture — similar to a gymnast
landing after a jump — where he presents his beard (“beard up”), staying in this position
until he does the next jump. In total he jumps between 1 and 20 times, depending on
whether a female is watching. The last step of the courtship display is the (“grunt-jump”):
the male does a jump from the “mating sapling” to the ground including a wingsnap. He
lands on the ground doing a cartwheel (“flip”), then goes into the “beard up” posture.
After holding the position for a short while, he returns to the “mating sapling” making a
“grunt sound” by flapping the wings. On the sapling some males slide a few centimetres
downwards, flapping the wings. Each male develops and practices his own version of the
courtship display [Perl7].

In the beginning of the displays, the female bird watches the males, sitting on a tree
above the arena. In the course of the displays, she sometimes joins one of the males.
This behaviour is called “duo dance” and serves the purpose of observing the male’s
performance more closely. The female does not display herself, i.e. she neither jumps,
instead she flies between the saplings, nor makes wingsnaps. She always lands on the
sapling opposite the male. The female usually flies first, setting the pace, and the male
follows. In a “duo dance” the male jumps faster than in a display without a female and
shows more movements in order to impress the female by demonstrating his motor skills.
At the end of the display, she decides whether she wants to mate. If she does, she stays
on the “mating sapling” and the male slides on top of her to mate; otherwise she leaves
[C*35, FGDS07, BSF15].

2.2.4 Behaviors During Courtship Dance

The biologists have observed distinct behaviors that the male golden-collared manakin
shows during his courtship display. The behaviors can also coincide: for example, the
bird performs a wingsnap while doing a flip or a jump.

B1: On perch. The time the bird spends perching (sitting) on a sapling between jumps
indicates to the female how much rest he needs before being able to do another jump. A
short time on perch correlates highly with mating success [BSWF11].

B2: Jump. The male bird does not fly but jumps between the saplings. Mid-jump it
performs the wingsnap. Biologists suspect that the speed of the jump might be related
to mating success [Perl7].

B3: Wingsnap. The wingsnap is a sonation, i.e. a sound that is not produced by
the vocal chords but mechanically with other body parts. To make the wingsnap, the
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2.2. Groundtruth annotations

Figure 2.3: This drawing shows the golden-collared manakin’s courtship dance (image
from [FGDS07])

golden-collared manakin lifts his wings over his back, making a loud sound when they
touch [SBD*13]. The wingsnap is done in the middle of every jump and sometimes while
the male is sitting [Per17]. Biologists are interested in the wingsnap rate (number of
wingsnaps per display) and the moment in which the bird does the wingsnap during the
jump [Per17].

B4: Beard-up. After landing the bird assumes an upright posture where he presents
his beard. The challenge for him is to skillfully slow down after landing a jump so that

he can assume this position quickly. This movement requires neuromuscular coordination.

The males vary in the time needed to assume the statuary, beard up posture — males
with better coordination can do this movement faster [Perl7]. Besides the time needed
to assume this posture, the biologists are interested in whether the male points the beard
directly at the female.

B5: Flip. While the bird jumps down from the mating sapling it does an unusual
movement called the “flip”: he rotates in a back-flip that requires high neuromuscular
control similar to the beard up posture, since the bird needs to stop abruptly as he lands
[FGDS07]. The flip also includes a wingsnap making it even more difficult. Perinot et
al. [Perl7] suspect that the flip plays a role in the female’s decision making because it
is such a challenging move to perform, but did not find much variance between birds
concerning the duration of the flip.

11
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CHAPTER

Related Work

3.1 Video Tracking

Video tracking is used for autonomous driving, surveillance or sports analysis. Animals are
tracked for behavioral studies, pharmaceutical research, and wildlife counting [NNK*17].

A video tracker has five main parts [MC11]:

e Feature Extractor: extracts information from an area containing the target

e Target Appearance Model: representation of the target appearance that allows
the tracker to distinguish between the target and the background

State Propagation: method to use information obtained in previous frames

Target Appearance and Disappearance Management: deals with target
leaving the frame and discovering the target when it enters the frame

Meta-data Extractor: extracts information to be used in the application for
which the tracker is employed

3.1.1 Tracking: Relevant Terms

In this section we define terms that are relevant for video tracking.

Tracking Task: In this work we only consider visual tracking, i.e. we only use visual
information provided by videos. The task of tracking is to locate an object (also called
target or target object) in all the frames of a video. The tracker is initialized with
the object’s position in the first frame, usually a rectangular bounding box. For all
subsequent frames, the tracker outputs the location of the target object [KLM'18].

13
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Location: We use the term location to refer to a bounding box that encloses the target
object in a given frame. This bounding box is defined by the x and y coordinate of its
upper left corner and its width and height in pixels.

Detection: is the task of locating an object in an image, given only a single image and
no information from prior frames. If the target object leaves the field of view, it also has
to be detected when it re-appears.

Target (Object): The object that is being tracked.

Search Window: A region inside the current frame where the tracker looks for the
target object.

Drift: occurs when the tracker slowly loses the target caused by the tracker erroneously
learning the background’s appearance as the target appearance [BBDL10a].

Single-object Tracker / Multi-object Tracker: A single-object tracker tracks only
one object, while a multi-object tracker tracks multiple objects in the same video. Simple
multi-object tracking can be realized by initializing multiple single object trackers on
different objects in the same video.

Off-line Learning: Training the tracker before tracking starts.

On-line Learning: During tracking the tracker is updated with information (about
background and/or target) of previously seen frames.

Real-time Tracking: processes frames at the same rate that they are produced by
the camera (about 60 frames per second). Real-time tracking is necessary for real-time
applications such as surveillance.

Long-term Tracker / Short-term Tracker: A long-term tracker can re-detect a
target and deal with occlusion, while a short-term tracker is not required to handle
these challenges. A long-term tracker also needs to be able to switch between tracking
and detection [KLM'18]. Long-term trackers are aimed at tracking longer videos than
short-term trackers: the videos used in the VOT2018 [KLM*18] long-term challenge
have 420 frames on average.

Object-specific Tracker: tracker developed to track a specific object e.g. the golden-
collared manakin.

Generic Tracker: tracker developed to track arbitrary objects. The target object might
not have been in the training set. Therefore the tracker’s model might be unfamiliar with
the appearance of the object that is being tracked. If the tracker learns online it only
gets the frames of successful tracking to learn about the appearance of the target object
in this video and — if the tracker makes use of background information — the background.
If the generic tracker allows for off-line training, it can learn about the appearance of
that object before and thus be made into an object-specific tracker.
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3.2. Traditional Trackers

3.1.2 Tracking Birds in Videos

Most computer vision methods to track birds work with videos recorded inside custom-
built arenas [KvBL15, EGKT08, AQRSM12, RBB™11, OGS15] (see Figure 3.1) or on
videos of birds flying against the sky or distant landscapes [SX08, LS12] (see Figure 3.2).
Therefore, background segmentation and tracking is not a particular concern for these
studies. A method to get more precise information about the bird’s position is to equip
them with body markers [RBBT11] (see Figure 3.3). To prevent a behavior change in
the birds, however, the biologists refrained from applying such tracking markers onto
the birds as it could potentially stress the birds or impact their attractiveness and thus
change the female’s response to the display [Perl7].

o

o
)
)
&

Figure 3.1: Birds recorded Figure 3.2: Birds recorded Figure 3.3: Pigeon with
in a custom-built arena against a distant back- body markers [RBB*11].
[KvBL15]. ground [SXO08].

3.1.3 Visual Tracking for Arbitrary Videos

The trackers presented above, which were developed specifically for birds, are not suited
for the challenging conditions present in the manakin dataset. Much more research has
been done to propose generic trackers which can be applied to any target object. Trackers
can be placed into two main categories: traditional trackers based on hand-crafted
features and deep trackers based on deep learning.

3.2 Traditional Trackers

Traditional trackers use hand-crafted feature extractors and traditional machine learning
methods. By using features that are fast to compute, traditional trackers can achieve
faster run-times than deep-learning based trackers. Also, they need less space as they do
not need to store neural networks, which can be very large files. This typically makes
traditional trackers better suited for a resource-constrained environment.

3.2.1 Boosting

The boosting tracker’s [GGB06] main component is a binary classifier based on the
AdaBoost algorithm [ORO01] that assigns a confidence score to an image patch classifying
it as either object or background.

15
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This classifier consists of a pool of weak classifiers. These weak classifiers are based on
features that can be computed efficiently (Haar-like features [24], orientation histograms
[16,21,9], local binary patterns [20]), which allows the tracker to run in real-time even
though the search region is evaluated at multiple positions using a sliding window
approach.

The classifier is trained online on every frame with a positive sample (the tracked object
in the current frame) and negative samples (surrounding background). This enables the
tracker to adapt to a changing target appearance and background, and to select the most
suitable features under changing conditions.

Advantages of Boosting:

e adapts choice of features to changing tracking conditions

e real-time
Disadvantages of Boosting:
e no offline learning

3.2.2 Multiple Instance Learning (MIL)

The MIL tracker [BYB09] uses Multiple Instance Learning. Other trackers update their
model using the new target position as a single, positive training sample. However, if
the target location is inaccurate the classifier will be trained with an incorrectly labeled
sample which might result in drifting.

The MIL tracker, on the other hand, crops a set of positive training samples around the
new, estimated target position, where only some might have the correct label and updates
a boosting classifier similar to AdaBoost [OR01] that can handle ambiguous training
data. Using Haar-like features [VJT01] allows the MIL tracker to run in real-time.

Advantages of MIL:

e can handle inaccurately labeled training data

e real-time

3.2.3 Median Flow

The Median Flow tracker [KMM10] is based on the Forward-Backward error and aims
to find reliable trajectories. The Forward-Backward is determined by measuring the
difference between the trajectory that results from tracking forward to the trajectory
that results from tracking the same frames backwards. This method is also able to detect
tracking failures.
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The Median Flow tracker receives two consecutive frames and the bounding box for the
first frame. Inside this bounding box points are sampled in a grid (see Figure 3.4). These
points are tracked using the Lucas-Kanade Tracker [LK81] to obtain the sparse optical
flow between the two frames. In this way, each point on the grid receives a potential
trajectory, which is evaluated by applying the Forward-Backward error measure. In order
to keep only reliable point trajectories, the 50% which received high error scores are
removed. From the predicted points which are thus assumed to be reliable, the new
bounding box is found by calculating the median of those points’ coordinates.

Tracking points on an object assumes that these points stay at the same distance relative
to each other, i.e. that the object is rigid. The Median Flow tracker can deal with points
on non-rigid parts of the object by rejecting them with the error measure. A sufficient
amount of rigid object parts, however, is still required for tracking. Additionally, a change
in the object’s size can also cause this tracker to fail.

i () Update
o bounding box
Track Estimate Filter out
points tracking error outliers

Figure 3.4: Block diagram of the Median Flow tracker. (image from [KMM10])
Advantages of Median Flow:

e can detect tracking failure
Disadvantages of Median Flow:

e relies on points on the target that stay consistent in brightness
e tracking performance suffers if target is not rigid

e cannot handle change in object’s size

3.2.4 Kernelized Correlation Filter (KCF)

The kernelized correlation filter tracker [HCMB14] calculates the correlations between the
target in the previous frame at the same image region in the current frame shifted vertically


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

3.

RELATED WORK

18

and horizontally. Very fast run times (hundreds of FPS) are possible by expressing the
shifts as cyclic shifts and calculating the correlations in the Fourier domain. The tracker is
trained at each frame using the location that achieved the strongest correlation response.
A disadvantage of using cyclical shifts is that they produce wrapped-around edges (see
Figure 3.5).

Advantages of KCF:

e very fast

e calculates all possible correlations between two image patches
Disadvantages of KCF:

e does not keep a model of past appearances in frames before the previous frame;
calculates correlation only between current and previous frame

e cyclical shifts create artifacts

Figure 3.5: Cyclical shifts produce erroneous wrapped-around edges. Note, for example,
the ground that is below the cyclist in the middle frame was shifted above him in the
left-most image. (image from [HCMB14])

3.2.5 Tracking, Learning and Detection (TLD)

The TLD tracker [KMM11] is aimed at long-term tracking, where an object that moves
out of the field of view of the camera needs to be detected when it re-appears. Besides
a tracking component, their tracking framework contains a detection and a learning
component.

The tracking component, implemented as a Median Flow tracker, finds the object’s
location from frame to frame but fails when the object disappears, and is susceptible to
drift. The detector scans every frame to localize previously observed objects. It detects
the object when it re-enters the camera’s field of view and can also correct the tracker.

The learning component monitors the tracking and detection components. It consists
of two types of so-called “experts” that notice and correct errors in the detector’s
classifications: the P-expert and the N-expert.
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The P-expert tries to find occurrences of the object that have been missed by the detector
by using the trajectory provided by the tracker and turns them into positive training
samples.

The N-expert tries to find examples of background that were misclassified by the detector.
It takes all the patches suggested by the detector and assumes that only the most confident
one depicts the tracked object, as the object can only be in one location at a time. The
other suggestions, in case they do not overlap with the assumed correct location, are used
as negative examples. With these positive and negative samples the detector is updated.

The TLD tracker runs in real-time.

Advantages of TLD:

e real-time
e long-term tracker: can handle occlusion and out-of-frame

e corrects itself

3.2.6 Minimum Output Sum of Squared Error (MOSSE)

The MOSSE tracker is based on the MOSSE filter [BBDL10b], which is a correlation
filter. The MOSSE filter is learned from training images and corresponding outputs.
These outputs are 2D Gaussians with the peak over the target’s center in the respective
training image. The filter is used in a tracker by setting the target location in the new
frame to the position of the peak in the correlation filter output.

The filter is learned by minimizing the sum of squared error between the outputs produced
by convolving the filter with the training images and the expected output for these training
images:

min Z |(filter ® training image;) — training outputi]2
filter p
This is realized by first computing the exact filter for each training image, i.e. the filter
that produces exactly the training correlation output when applied to the training image.
During tracking, the filter is updated by computing the moving average of the exact filters
that were determined for the previously tracked target objects. This approach gives more
weight to target appearances in more recent frames. For efficiency, this computation is
done in the Fourier domain.

The MOSSE tracker can detect occlusion and tracking failure by measuring how pro-
nounced the peak of the correlation output is in relation to the correlation output for
the other pixels. This is achieved my computing the Peak-to-Sidelobe-Ratio. If the peak
is not strong enough the tracker concludes that the target object is occluded or tracking
has failed. In that case the filter is not updated until the object re-appears.
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The MOSSE tracker runs faster than real-time.
Advantages of MOSSE:

e very fast

e can handle occlusion (if target re-appears in the same location)
Disadvantages of MOSSE:

e tends to drift when central point moves away from target’s center (caused by
out-of-plane rotation of the target)

e 1no background information used

e update using running average leads to overfitting to more recent target appearances.
This is a disadvantage as the manakin has several distinct appearances which can
quickly change.

e Gaussians have a round base and are thus better suited for compact objects than
for elongated objects such as the golden-collared manakin.

3.2.7 Channel and Spatial Reliability (CSRT)

The CSRT tracker [LVCZ*17] extends discriminative correlation filters (DCF) with
spatial reliability and channel reliability.

Spatial reliability is realized through a spatial reliability map which is an approximate
segmentation of the target object: it is 1 at pixels that cover the target and 0 at pixels that
cover the background. The spatial reliability map is constructed based on the probability
of colors occurring in certain locations using color histograms of the foreground and
background. The purpose of the spatial reliability is to prevent background pixels from
contributing to the filter response. As a result, larger search region sizes are possible and
non-rectangular objects can be handled better without the filter learning the parts of the
background inside of the object’s bounding box that are not covered by the object.

At every frame, the CSRT tracker first localizes the target using the spatial reliability
map and reliability scores of the previous frame (see Figure 3.6). Then, using the localized
target as a training example, the spatial reliability map, filters and reliability weights are
updated.

In the localization step, the CSRT tracker combines multiple feature channels through
weights, called channel reliability scores, giving more weight to feature channels that
show better discriminative power which is measured in two ways:

1. The highest filter response value per-channel, as a higher peak in a filter response is
assumed to indicate a more reliable filter.
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Correlation

Weighted sum
Correlation filter  Reliability /

channels weights

1

New target location

Figure 3.6: To localize the target an image region is convolved with correlation filter
channels. The resulting correlation responses are weighted by channel reliability weights
and summed up. The peak in the summed correlation responses indicates the new target
location. (image from [LVCZ117])

2. The relation of the highest and second highest peak, as one unique peak would indicate
a clearer “decision” of the filter. This measure is not ideal, however, if a similar object
occurs close to the target.

For the feature channels, standard features are used: histogram of oriented gradients
(HoG) [DT05] and Colornames [VDWSVL09] as well as a gray-scale channel. On a CPU,
the CSRT tracker achieves run times close to real-time.

Advantages of CSRT:

e can adapt to changing tracking conditions by varying the weights given to different
features

e can handle search regions in which large parts of the region is covered with back-
ground (search region with large padding or non-rectangular object) by using spatial
reliability map. The manakin often does not cover its bounding box, e.g. when it
moves diagonally.

e Colornames might be a useful feature to detect the male manakin’s conspicuous
yellow neck.
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Disadvantages of CSRT:

e Histogram of oriented gradients might not be a useful feature as it relies on consistent
lines in the object, which are not present in the manakin due to blur.

3.3 Deep trackers

Deep trackers are based on deep learning. They use deep features, extracted from a deep
neural network. In the long-term tracking challenge VOT2018 [KLM*18], 10 out of 11
competing used CNN features.

3.3.1 MobileNet based Long-term Tracking by Detection (MBMD)

The MBMD tracker [ZWW 18] is the winner of the VOT2018 long-term tracking challenge
[KLM*18]. MBMD is a long-term tracker that consists of three main parts: a regression
network, a verification network and a dynamic switch scheme to recognize if the tracked
object is present or absent and switch between local search and re-detection, accordingly
(see Figure 3.7).

The regression network gets as input a template (the patch cropped from the initial
ground truth bounding box) and the search region: a region in the current frame centered
on the location of the tracked object in the previous frame. Both are fed into convolutional
neural networks (MobileNet architecture [HZC117]), which serve as feature extractors.
The resulting feature maps are fused and put into a region proposal network [RHGS15]
that outputs candidate bounding boxes with corresponding similarity scores that reflect
the similarity of the candidate to the template. The regression network is trained only
off-line to avoid accumulating errors introduced by on-line training — the template it
compares the current frame to remains the object’s appearance in the first frame.

The output of the regression network (the candidate bounding boxes with similarity
score) is fed into the verification network. This network starts with the candidate that
received the highest similarity score and classifies it with a CNN (VGGM architecture
[CSVZ14]), going down the list of candidates ranked by similarity score until it classifies
a candidate as foreground. The tracker then proceeds by making a decision whether
the object is still present based on the similarity score of the selected candidate and the
classification score the CNN assigned to that candidate. If the object is deemed absent a
search of the full image is conducted otherwise the object is searched in the proximity of
the tracked object. The verification network is updated on-line to adapt to appearance
changes of the object.

Advantages of MBMD:

e cannot erroneously learn background during tracking in the first part of the network
by using only the template from the first frame as a reference image to compare
against
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Figure 3.7: Diagram of MBMD. MBMD'’s network takes as input the current search region
and the template from the initial frame. From both, features are extracted (FE) which
are fused and feed into the region proposal network (RPN), which proposes potential
bounding boxes and corresponding similarity scores. The bounding box proposals receive
a classification score from the verification network which is combined with the similarity
score assigned by the regression network into a confidence score. Depending on that
confidence score the model switches between local and global search. [ZWWT18].

Disadvantages of MBMD:

e By not updating the first part of the model (the regression network) this tracker
might not be able to handle strong appearance changes.

3.3.2 Distractor-Aware Long-term Tracking (DA Siam LT)

DA Siam LT [ZWB™18] placed second in the VOT2018 long-term tracking challenge
[KLM™*18]. This tracker is based on the Siamese region proposal network (SiameseRPN)
[LYW™18], which is a Siamese network followed by a region proposal network. The
network is trained off-line and updated on-line during tracking. The input to the
SiameseRPN is a pair of images, the Siamese network measures their similarity and the
final output of SiameseRPN are region proposals inside a given search region. In order to
increase the number of object classes in the training dataset during off-line training, DA
Siam LT uses not only frames from video datasets, but also image pairs generated from
large detection datasets by applying data augmentation techniques, such as translation,
re-scaling and artificial motion blur.

During tracking, there is only one positive example of the tracked object available per
frame, while the entire background can be sampled for negative examples. However, if
the background is randomly sampled, most samples will typically not contain objects,
which makes them easy to recognize as background and thus not useful in improving
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the discriminative ability of the network. Instead, the region proposal network looks
for negative examples that are harder for the network to classify, called distractors.
Distractors can also be objects from the same class as the tracked object. While the
region proposal of the RPN which received the highest score is chosen as the target, the
rejected region proposals with similarity scores above a threshold are used as distractors.
By including the distractors in the similarity metric, it becomes domain-specific.

DA Siam LT enables long-term tracking through a local-to-global search region strategy:
if low detection scores indicate tracking failure, the search region is increased by a constant
step size, which allows the tracker to re-detect the target once it re-appears. DA Siam
LT runs faster than real-time.

Advantages of DA Siam LT:

e offline learning on large-scale datasets, including still images augmented with
artificial motion blur

e strategy to focus on learning with difficult and thus more useful negative samples
e long-term tracker: can re-detect target object
e real-time performance

e more flexible than fixed search region size: grows search region if object is not
detected, which might help to find a fast moving object

3.3.3 Efficient Convolution Operators for Tracking (ECO)

ECO [DBKF17] is a short-term tracker based on the Discriminative Correlation Filter
(DCF) method and is the improved version of C-COT (Continuous Convolution Operator
Tracker) [DRSKF16], which was one of the top performing trackers in the VOT2016
challenge [KLM*16]. Like C-COT, ECO is based on a CNN pre-trained on ImageNet.
The CNN is used to extract feature maps from the search region in the current frame.
These feature maps consist of the input image patch and the convolutional layers from
the CNN. Based on the feature maps, both trackers learn continuous convolution filters.
When convolved with the feature maps, these filters produce a continuous confidence
score inside an image region centered on the previous location of the target. The target
is localized where the confidence score reaches its peak (Fig. 3.9).

C-COT learns a convolution filter for every feature map — many of which barely have
an influence on target localization. In contrast, ECO fuses the convolution filters into
multi-channel filters instead of learning one filter per feature channel. This results in a
convolution operator with a much smaller number of parameters (80% less than C-COT)
that need to be trained. This less complex model avoids overfitting and is faster to train.

Other trackers store one training sample for each frame for online training. Due to space
limitations, however, some samples have to be removed from the training set — typically
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these are the oldest samples. ECO uses a more refined approach: It models the training
data as a mixture of Gaussian components, where each component models a different
form of the target’s appearance (see Figure 3.8). In each frame, for the new training
sample, a new component is added. If the number of components exceeds a given limit,
the new component is either discarded (if its weight is too small) or the two most similar
components are merged. This representation of the training set is more compact than
storing all previously seen samples and thus enables a more diverse representation of
the target’s varying appearances with a reduced risk of overfitting to more recent target
appearances.

For further speed-up, the convolution operator is not updated at every frame but only
when a significant change to target appearance has occurred. ECO realizes this by
performing an update after a fixed number of frames. They even report better tracking
results when updating at every fifth frame, compared to updating at every frame.

Figure 3.8: Instead of simply storing a fixed number of previously seen frames (bottom
row), the ECO tracker represents the previously seen frames as a mixture of Gaussian
components (top row). Each component captures a different version of the target’s
appearance [DBKF17].

Advantages of ECO:

e computing a continuous score enables sub-pixel accuracy

e uses information from multiple convolutional layers of the CNN
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Multi-resolution deep Learned continuous Confidence scores Final continuous confidence
feature map convolution filters for each layer output function

Figure 3.9: Continuous convolution filters are applied to a multi-resolution feature map
to produce a continuous confidence score of the target. The target’s center in the current
frame is assumed to be at the peak of the confidence score [DRSKF16].

e keeps multiple representations of previously seen target appearances. For tracking
the manakin, this can be useful because it has quickly varying but reoccurring
kinds of appearances (on perch, jumping, wings open, etc.).

3.3.4 Generic Object Tracking Using Regression Networks
(GOTURN)

GOTURN [HTS16] is a short-term tracker based on a convolutional neural network
(CNN). The CNN takes two images as input: the target in the previous frame padded
to include some context around the target and the search region in the current frame,
which is the current frame cropped with the target bounding box of the previous frame
enlarged by a constant factor. The output of the CNN are the coordinates of the new
target bounding box within the search region obtained though regression (see Figure
3.10).

The CNN is trained only offline on large-scale video and image datasets but not updated
online during tracking. To train with a video, two consecutive frames are randomly taken
from a video sequence; to train with a still image the image is cropped and resized in
order to simulate movement of the depicted object. Although the training data created
from still images is not as realistic as the frames taken from videos as they only contain
motion in the form of translation and size change and no other types of deformation, these
samples help to increase the diversity of objects that the network sees during training.
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GOTURN runs in real-time as it skips the time-consuming CNN update as well as
performing CNN inference only once per frame.

Advantages of GOTURN:
e very fast
Disadvantages of GOTURN:

e cannot handle occlusion
e no online learning: does not adapt to target appearance

e input to network is crop from previous and current frame: potential overfitting to
most recent target appearance

Current frame Conv Layers
Search Region :

Fully-Connected
Layers

At M KR R R Predicted location
| of target
within search region

What to track
Previous frame Conv Layers

Figure 3.10: GOTURN’s CNN takes the current and previous frame as input and outputs
the coordinates of the target bounding box (green box) in the search region inside the
current frame. [HTS16].

3.3.5 Comparison of Video Trackers

In this section, we compare the trackers presented above and analyze their usefulness for
our datasets described in section 2.

Online learning. The trackers employ different strategies to update their model during
tracking. GOTURN and MedianFlow do not perform any updates: while this makes
tracking faster, the tracker cannot adapt to the changing appearance of the target object
or the background.
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CSRT, KCF, MOSSE, CSRT, MIL, and ECO only update on positive samples, which
are extracted from the current frame based on the predicted target location.

The MBMD tracker updates only the second part of the network (verification) to avoid
incorrect learning in the first part. In the first part of the network, this tracker uses
the target object from the first frame (for which the groundtruth was given) as a
reference and proposes potential new target location to the verification part of the
network. As a consequence, candidates that are rejected by the first stage never reach
the verification stage, which adapts to target appearance. Thus, this tracker relies on the
target appearance staying close to its appearance in the initial frame.

MOSSE extracts a training sample in every frame and weighs the set of training samples
using a moving average so that the most recent appearances contribute more strongly to
its appearance model. Sampling at every frame, however, can lead to redundancies in the
training set and lead to overfitting to more recent target appearances. ECO addresses
this issue by updating its convolution operator only after a fixed number of frames to
increase the likelihood that sufficient change to the target’s appearance has taken place.

Some trackers employ strategies to improve the sampling of training examples. ECO tries
to avoid storing redundant training samples and instead keeps diverse representations of
the target appearances observed in the training samples. DA Siam LT samples negative
training samples that are difficult for the CNN to classify and are thus more useful in
making the network more discriminative.

All of the positive samples that are acquired during tracking — except for the initial one
— are based on the tracker’s own prediction and are thus unreliable. Therefore, some
trackers use strategies to increase the likelihood of updating only on training samples
that have a higher chance of showing only the target object.

Offline learning. Offline learning refers to training a tracker’s classifier on available
data before the trackers starts tracking the video. The traditional trackers (boosting,
MIL, Median Flow, KCF, TLD, MOSSE, CSRT) do not train offline.

All of the deep trackers presented above (MBMD, DA Siam LT, ECO, GOTURN) use
CNNs pre-trained on frames extracted from video datasets. Additionally, GOTURN and
DA Siam LT generate training samples from large-scale image datasets by simulating
pairs of consecutive video frames from still images.

Features. Features are extracted from the video frames using feature extractors. Good
features represent some aspect of the target object that makes it possible to discriminate
it from the background. Traditional trackers use hand-crafted features. The most simple
feature is just the raw image itself. Boosting uses Haar-like features, histogram of oriented
gradients, and local binary patterns; MIL also uses Haar-like features; Median Flow —
and TLD, which uses Median Flow as its tracking component — uses the brightness of
the points it tracks; KCF and MOSSE apply a correlation filter directly to the image;
CSRT uses histogram of oriented gradients, Colornames, and the gray-scale image.
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3.3. Deep trackers

The histogram of oriented gradients relies on edges (usually these are the borders of the
object [MC11]). The bird’s silhouette changes significantly between frames, however,
because of the strong motion blur and because the bird is a non-rigid object.

The trackers use different strategies to combine multiple features: The boosting tracker
weighs features based on the current background and feature appearance. Similarly, MIL
uses an algorithm inspired by AdaBoost. CSRT uses channel weights to control the
influence of the individual features on the final output.

Deep trackers use “deep” features, i.e. features extracted by the convolutional layers
of a deep neural network. MBMD and DA Siam LT input deep features into a region
proposal network. DA Siam LT additionally uses a CNN to get a classification score.

The advantage of deep features is that they are more powerful than shallow machine
learning methods. Deep neural networks are able to extract high-level features [ZZXW19).
With increasing layer depth the features extracted by the convolutional layers become
more high-level.

One disadvantage of deep features is that the deep neural network require more space.
MBMD, for example, requires two networks that take up about 100 MB in total. Deep
features are also less interpretable than hand-crafted features.

Motion model. All the trackers presented above except for the Median Flow tracker
predict the movement of the target only by using search regions centered at the previous
target location, which can be interpreted as a motion model that assumes that the target
location in the current frame is close to the target location in the previous frame and a
movement in every location is equally likely. The Median Flow tracker is based on the
Lucas-Kanade Tracker which estimates optical flow.

There is a trade-off when it comes to the size of the search region: while a smaller search
region is faster to process, a larger search region is more likely to include the target in
its new location. When the target moves fast a search region of fixed size might be too
small to include the target in the current frame. DA Siam LT grows the search region
iteratively when the tracker fails to locate the target.

Localization. Based on the features extracted in the current and previous frame as well
as the bounding box predictions for previous frames, the tracker estimates the location of
the bounding box in the current frame. The tracker needs some kind of scoring function
to select the location which reaches the maximum score among the potential locations
[MC11].

Boosting and MIL use an AdaBoost classifier fusing multiple weak classifiers. MOSSE,
KCF, CSRT, and ECO use correlation filters to locate the target in an image patch. A
correlation filter takes an image patch or feature map as input and outputs a function
that should peak at the location of the target. The correlation filter is learned with
training images and a corresponding 2D output that has its maximum at the target
center. MOSSE and KCF use the raw images as input, CSRT learns correlation filters for
multiple feature channels (all hand-crafted features), and ECO trains correlation filters
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on multiple feature maps extracted from a CNN. MBMD combines scores obtained from
a region proposal network with the classification score from a CNN and selects among
the region proposals the one that reached the maximum combined score. DA Siam LT
also uses a region proposal network and selects the proposals which received the highest
score, the other proposals are used as negative training samples.

Runtime. Real-time runtimes are required for certain applications, such as surveillance,
where the frames need to be processed at the same (or faster) speed as they are produced
by the camera, which is usually at 60 frames per second. Fast run times can be achieved
by using some of the following options: choosing features that are fast to compute,
avoiding online updates, smaller size of the search region, limiting the number of image
patches that are classified, or using powerful hardware.

For our task, real-time runtimes are not required as the manakin videos are already
recorded when the tracker is applied.

Long-term / Short-term tracking. Long-term tracking places additional challenges
on a tracker: long occlusions and the target leaving the frame and re-appearing must be
handled. Some short-term trackers can handle limited amounts of occlusion. MOSSE, for
example requires the target not to move outside of the search region while it is occluded.
TLD, MBMD, and DA Siam LT are designed to be long-term trackers, while the other
presented trackers are short-term trackers.

In our task, the bird leaves the frame which requires re-detection, therefore a long-term
tracker is necessary.

3.4 Behavior Recognition and Representation

This work investigates behavior recognition and representation of birds. In section 2.2.4
we describe the behaviors that the golden-collared manakin has been observed to display
during its courtship dance. While there has been little research into recognizing and
representing the behavior of birds, researchers have tried to automatically detect the
behaviors of other animal species as well as humans.

3.4.1 Behavior Recognition

The behavior of animals is studied to improve animal welfare on farms with the aim of
increasing productivity [LXC*18], inside laboratories [CHP*14], to understand sexual
selection [Perl7], to study the effects of drugs in pharmaceutical research [SGK15], or to
study, conserve and manage wild animals [NNK*17].

3.4.2 Behavior Recognition for Birds

Traditionally, when studying the behavior of birds, observers watch the birds in the field
and manually record the duration and type of behaviors they see [DuV07]. In some
studies, researchers additionally record videos so that details of the behaviors can later
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3.4. Behavior Recognition and Representation

be analyzed by watching the videos frame-by-frame [DuV09, SGL17]. For example, Ota
et al. [OGS15] analyzed the courtship dance of the blue-capped cordon-bleu, which
resembles a step dance, by counting the number of steps the bird executes using standard
video editing software.

Manual Software Tools

Software tools are available that assist biologists in quantifying the bird’s behaviors,
such as JWatcher [Sta08] which lets the user watch a video and records key presses to
indicate the start and end of a behavior. The software then calculates statistics based on
the duration of the individual behaviors. JWatcher has been used by Lukianchuk et al.
[LMD14] to analyze the courtship dance of the long-tailed manakin. Noldus Observer
XT [ZBWT09] is another software tool that lets users analyze videos frame by frame.
Ullrich et al. [UNS16] used it to code the behavior of the zebra finch’s choreography.

ImageJ [RSH™17, ASSRE12] is an image processing software for scientific images that can
be used to measure distances in individual frames extracted from a video in order to de-
scribe differences between courtship displays in more detail. Ribeiro et al. [RACGMM19]
used ImageJ to measure flight height and the distance between male and female birds;
Manica et al. [MGPM16] measured the jump heights of a songbird (blue-black grassquit)
with ImageJ. Similarly, Miles et al. [CMF18] used a software tool (MB-Ruler Pro) to
measure angles in individual video frames to identify the deepest bow and widest wing
position in the choreography of a tropical bird (Montezuma oropendola).

These tools do not enable automatic behavior recognition but merely assist the researchers
in recording the behaviors manually. The researchers are still required to watch every
frame of the entire video dataset, which is typically many hours long, and decide which
behavior they want to assign to what they saw in each video frame. Thus, such approaches
are very time-consuming. They rely on the subjective perception of the researchers, so
these decisions may be biased. Additionally, since watching hour-long videos is a very
monotonous and tiring process, errors can occur when the observer becomes inattentive.

3.4.3 Automatic Behavior Recognition for Animals

Automatic behavior recognition software is available for animals that are more com-
monly used as model species in pharmaceutical research, such as rats. EthoVision XT
[vDvdHtB*13] provides a software module that can automatically recognize rat behavior.
It recognizes some behaviors based on the trajectory of three body points on the rat
(nose, center and tail base), as well as its body shape. For this method to work, the
body points need to be visible and consistently recognizable. In our task, however, the
complex movement of the bird and clutter in the scene cover body points that might be
considered for this approach [Perl7]. Additionally, severe blur distort potential body
points on the bird.

EthoVision XT also deducts behaviors from the rat’s location in the cage: for example
the rat can be classified as feeding when the rat is in close proximity to the feeder inside
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its cage. The system was developed for videos recorded in a cage by an overhead camera.
However, our datasets were recorded from side-views and in an environment that contains
strong clutter. This tool was developed specifically for rats, which exhibit a specific
set of behaviors that differs from the behaviors of other animals. There exists no such
tool for automatically recognizing the behavior of golden-collared manakins or any other
comparable species.

Behavior Recognition based on Trajectory

Some approaches to behavior recognition aim to recognize certain behaviors based on
the trajectory of one or more body points. Matsumoto et al. [MUUT14] studied how
rats explore novel objects based on the 3D trajectory of the rat’s nose. Steward et al.
[SGK15] propose tracking zebrafish to examine how their motion patterns change under
the influence of different drugs. The behavior of the fish is classified with decision trees
that are constructed based on features of the 3d trajectory, such as velocity, angular
velocity and position in the tank. Winkler et al. [Win18] monitor the behavior of honey
bees by tracking bees in videos and based on the trajectory, measure the time a bee
spends outside of the hive and how often it leaves the hive. Liang et al. [LXCT18]
recognize the behavior of cows based on their trajectories.

Behavior Recognition based on Location

Some approaches determine the behavior based on the animal’s spatial position in the
frame. Ings et. al [IWC12] use the 3D trajectory of bees to detect which flowers they
choose to land on. Nakarmi et al. [NTX14] track hens using background subtraction and
determine their behavior based on their location: for example, if a hen visits the feeding
area a feeding behavior is registered. Such approaches require “meaningful” sections in
the recorded area. For the manakin such an approach is only applicable in a limited
way: the perching behavior is linked to the manakin resting on a sapling; for the flip
the manakin moves towards the ground. Other behaviors, such as the wing-snap can
take place anywhere in the arena. However, we do not have an annotation available that
segments the frame into semantic regions.

Behavior Recognition based on Image Patches

In addition to the trajectory, Nie et al. [NTIM11] use the silhouette of segmented animals
(mice in their case) to detect behaviors based on the area of the body. They also use
frame-to-frame differences to get the frequency of very fast, repetitive limb movements to
identify scratching in different parts of the mouse’s body. Similarly, Crispim-Junior et al.
[CdAN17] automatically recognize the behavior of laboratory rats by classifying central
tendency and variance of the mice’s body area and length as well as distance travelled
and the number of changed pixels with a Multilayer Perceptron network.
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3.4. Behavior Recognition and Representation

Deep-Learning Approaches

DeepLabCut [MMC™18, NMC™19] and LEAP [DPAW™19] extract posture data by
tracking body points in videos using deep-learning. These systems are trained on images
in which the body points are marked. From the body points poses can be inferred which
can then be categorized into behavior states.

DeepLabCut is an open-source software that uses a deep convolutional network to track
user-selected body points without requiring physical markers on the animal. DeepLabCut
uses ResNets pre-trained on ImageNet, where the classification layer have been replaced
by deconvolutional layers. The output of the network is a map that gives the probabilities
that any of the selected body points is present in a particular location in the input the
image. It requires training data of about 50 to 200 frames labeled with body points to
achieve human labeling accuracy. From the trajectories of the body points, the researchers
can deduce the behavior of the recorded animal.

LEAP (LEAP Estimates Animal Pose) is a framework for estimating the position of
body points on animals with deep learning. It also contains a graphical interface to let
the user label body points of interest. The network requires a minimum of 100 labeled
frames for training. It uses a 15-layer, fully convolutional neural network that outputs
a probability distribution for each body point’s location in the image. The network is
trained iteratively: the user first labels ten images that are used to train the network and
create preliminary labels for the other images in the dataset that the user can adjust to
produce the ground truth. Both LEAP and DeepLabCut need about 500 labeled images
to reach human-level accuracy [NMC*19).

These approaches can be extended to analyze the behaviors of other species by training
the neural networks on data annotated with body points of the desired species. To use
such an approach hundreds of images with body point labels would be needed which
would require considerable effort and thus exceeds the scope of this thesis. Our datasets
only contain bounding box annotations that mark the entire bird. However, since details
such as the legs or the beak are not discernible due to blur when the bird is moving fast,

it is questionable if it would be possible to annotate body points throughout the videos.

Instead of basing the detection of behavior states on the trajectory of an animal, Stern et
al. [SHY15] use a Convolutional Neural Network (CNN) to classify video frames. They
trained a CNN to recognize if a fruit fly (Drosophila) is on egg-laying substrate or not,
achieving a success rate of 99.9%.

Norouzzadeh et al. [NNKT17] automatically identify the species and behavior of wild
animals in camera-trap images using CNNs. The CNNs were trained on a large-scale
dataset (3.2 million images) of camera-trap images from the Snapshot Serengeti project
[SKL*15]. Every image has labels concerning the species depicted, the number of animals
present and the behaviors, such as eating or resting, shown. As the images come from
camera traps, they are imperfect: animals can be far away or too close, they might be
occluded and lighting conditions differ. Their networks reach 94% accuracy at identifying
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animals. This approach, however, requires behavior labels — our dataset only contains
bounding box labels indicating the location of the birds.

Human Action Recognition

Several deep-learning architectures have been proposed for human action recognition
[CZ17]. However, these networks have to be trained on hundreds of images representing
each action class. There are large-scale datasets for human action recognition [KCS*17]
that encompass hundreds of human action classes — such as hugging, punching, swimming
— that have been successfully used to pre-train action recognition models for videos [CZ17].
Such datasets, however, offer little value for animal action recognition as animals and
their behaviors (e.g. sniffing, flying) have little visual resemblance to humans and the
behaviors (e.g. playing the violin) that they display.

3.4.4 Behavior Representation

There are different ways to represent the behavior of humans and animals. Andrienko et
al. [AA18] describe how state transition graphs can be used to summarize movement
data, so that the meaning behind the transitions between locations can be analyzed.
They use locations in space as states and the movements between those locations as the
(oriented) edges. Figure 3.11 shows a state-transition-graph that visualizes the behavior
of inhabitants of a city by depicting specific, meaningful locations in the city (such as
the person’s home or company) as circles and movement from one location to another
as lines that connect those circles, where thicker lines indicate more transitions. This
approach requires locations and the movement between them to have meaning.

company

O work

(D ermo place

colleague’s home O

museum O home breakfasticofiee

O
sport O

hotel

home 2

Figure 3.11: State-transition-graph for analyzing the behavior of people by showing their
movements between meaningful locations in a city (image from [AA18]).

Ribeiro et al. [RACGMM19] and Ullrich et al. [UNS16] use a similar diagram (see Figure
3.12) to visualize the behavior of birds but they use the observed behaviors, such as
head movement or hopping, as states (depicted as rectangles) and arrows to indicate the
transition from one behavior to another. Numbers on the arrows indicate the likelihood
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3.4. Behavior Recognition and Representation

of a transition. This type of diagram does not show the order in which the behaviors
take place or where they occurred in space.

0.03

Butterfly flight
0.“11 0.02 049 lTO 87
062
_| | Bow before Head -
copulation || up-down

U.BBl

0.01

0.1

Figure 3.12: Right: Diagram of Swallow-tailed Manakin’s courtship dance. The numbers
stand for the probabilities of a transition. (image from [RACGMM19]); Left: Sequence
diagram of zebrafinch’s courtship dance. (image from [UNS16])

In sports, representing a sequence of actions is of interest as it enables coaches and other
stakeholders to analyze games and find ways to improve the performance of the players.
Ono et al. [ODS18] show the course of baseball games in a timeline, which depicts how
players move between locations marking interesting states. Trajectory data typically
suffer from occlusion, which are avoided in this type of visualization.

Berman et al. [BCBS14] visualize a fly’s leg movements over time by segmenting the fly
in every frame of a video and aligning the segmented images. The images are transformed
into a set of time series, which are then transformed to spectrograms. Every point in time
is then mapped to 2D space. In the 2D representation, peaks represent more common
behaviors (see Figure 3.13).

image postural spectrogram nonlinear spatial
processing and alignment decomposition generation embedding segmentation

Figure 3.13: Visualization of fly behavior. Right image: Peaks (red) represent stereotypical
behaviors (image from [BCBS14]).
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CHAPTER

Tracking and Recognizing the
Behavior of the Manakin

4.1 Visual Tracker

The tracker provides the location of the bird throughout the videos under the challenging
conditions outlined in Section 2.2.1 while making use of the fact that the camera is
stationary. The tracker consists of two main parts: an appearance model to discriminate
between the tracked bird and the background and a motion model, which estimates the
movement of the bird. During tracking, the motion model provides potential locations in
a given frame and the appearance model classifies these locations to determine the final
location of the bird in that frame.

4.1.1 The ManakinTracker

We propose a tracker, that

e detects moving blobs in the scene with a Mixture Of Gaussians model (MOG)
[SG99],

e decides if a candidate location visually resembles a male golden-collared manakin
with a fine-tuned Convolutional Neural Network (CNN),

e estimates the location of the target using a Kalman filter [WB95] to track the bird
through occlusion and to verify blob-based predictions.

4.1.2 Blob Detection: Mixture Of Gaussians

Making use of the fact that the videos were recorded with a stationary camera, we use a
method based on background subtraction to segment the foreground. We chose Mixture
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4. TRACKING AND RECOGNIZING THE BEHAVIOR OF THE MANAKIN
extract blobs | MOG
blobs
N
classify blobs | CNN @ no bird-blobs found
l
blobs extract candidates in search
classified as bird region around previous location

close to location . .

@ predicted by motion model bounding box candidates
main blob [ classify candidates | CNN ]—)@ no bird-candidates found
) ! 1)
add blobs close to main blob ] candidates A
[ J, classified as bird
| predicted bounding box | [ average overlapping candidates ] predicted bounding box predicted bounding box
is previous bounding box | |is bounding box
J, predicted by motion model
| predicted bounding box |
Figure 4.1: Flowchart of ManakinTracker.
Of Gaussians (MOG) because it can handle small movements in the background. For
every frame, MOG generates a foreground mask from which we extract moving objects,
called blobs (Figure 4.2). Out of these candidate blobs, we aim to select the ones that
contain the target — and discard those that contain other objects such as moving leaves,
branches or the female bird.
Figure 4.2: Foreground mask (right) generated by Mixture Of Gaussians model of frame
(left). The blue box marks the extracted blob.
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4.1. Visual Tracker

4.1.3 Appearance Model: CNN architecture

To decide which candidates contain the target we use a CNN, since CNNs have shown top
performance in object classification in images [ZZXW19]. Our CNN is based on AlexNet
[KSH12], which is a CNN pre-trained on ImageNet, that takes 227x227 pixels RGB
images as input. We use the pre-trained layers of AlexNet for our CNN, except for the
last 3 layers, which we replace with a new fully connected layer, a new softmax-layer and
a new output layer to match our two classes: target (i.e. male golden-collared manakin)
and background (i.e. forest). The output of our CNN is a background score and a target
score in [0, 1]. We fine-tune this new CNN with image patches of male golden-collared
manakins and background cropped from a set of sequences in our dataset, that does not
contain the sequence in which we currently track the bird. During tracking the CNN is
not updated further.

4.1.4 Motion Model: Kalman Filter

We use a Kalman Filter to predict the target location in the absence of reliable visual
information. Reliable visual information is given by a blob, or candidate location(s)
extracted around the target’s previous position, that receives a high target score by our
CNN. We also use the Kalman Filter’s location estimation if we find more than one blob.
In this case, we select the blob that is closest to the Kalman Filter’s location estimation.
The linear Kalman Filter is initialized with the ground truth bounding box in the first
frame and updated with the estimated target location at each frame after tracking. The
linear Kalman Filter estimates an ongoing movement of the target at constant velocity,
based on the target’s previous locations.

4.1.5 Tracking

The male bird’s location is initialized with the ground truth bounding box in the first
annotated frame. For each frame, we detect blobs and classify them with our CNN. Out
of the blobs that receive a target score greater than ¢, we select the one that is closest
to the location predicted by the Kalman filter as our main blob. The bird can be partly
occluded (e.g. by the sapling it sits on), so we add blobs to the main blob, which were

classified as target (target score greater than ¢2) and which are close to the main blob.

Since we do not know the width of the saplings, we consider two blobs as close if the
distance between the boundaries of the two bounding box is less than the largest width
or height of one of the two blobs. If we find a blob or combination of blobs, that fits

these conditions, it becomes the target bounding box for the current frame (Figure 4.3).

If we find no blobs in a frame or none that receive a high enough target score we search
the bird in the region around its previous location. This usually happens, when the bird
is not moving and thus not recognized as a blob. We shift the previous bounding box to
the left, right, top, bottom and diagonally and crop image patches at these candidate
locations. We resize these image patches to fit the CNN’s input size and classify them
with the CNN. A candidate location which receives a target score of t3 or above, is
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Figure 4.3: The two small blobs (small blue bounding boxes) are combined into a bigger
blob (big blue bounding box). The white text indicates the blobs’ target scores.

Figure 4.4: Bird is sitting and no blob was found (red box: candidate locations with
target score > t3, white box: final bounding box)

assumed to contain the target. To avoid false positives, we exclude candidate positions,
which do not overlap with the majority of overlapping candidate positions that were
classified as target. The average of these candidate locations is the bounding box for the
current frame (Figure 4.4). Since the bird tends to sit still at the start of the video, we
keep the initial bounding box if the CNN assigns a target score of t4 or above to the
image patch cropped at the bird’s initial location and if we find no blob in that frame.

In our experiments, we achieved good results when we set the thresholds t; and t3 to
0.8 and 0.9, respectively. t3 is used for image patches that are not based on blobs and
thus typically contain sitting birds. t3 is set to 0.9 instead of 1, because we noticed that
when the bird is sitting, the ground truth location usually gets a score of 0.9 and above,
but that candidate locations which receive a score of 1 are often not a better estimation
than those with a slightly lower score. t; is set to a lower value than t3 because t; is
used for image patches that are based on blobs. In those cases the bird is typically
moving which can make it harder to recognize for the CNN due to motion blur and shape
distortion.
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4.1. Visual Tracker

In case we find no candidate locations, which we can assume to contain the target —
because the bird is largely or fully occluded or unrecognizable to the CNN — we will
rely on the location predicted by the Kalman filter (Figure 4.5). This prediction can
be unreliable because the bird might either move or sit while it is not visible. The
Kalman filter estimates the bird’s movement as a continuation of its previous movement,
which is only useful if the bird keeps moving while it is occluded. Because of this, we
only use the Kalman filter’s estimation if we assume that the bird is moving (i.e. not
sitting). Otherwise, we use the bird’s previous location as the current target bounding box.

Figure 4.5: Middle: The Kalman filter’s location estimation (black box) is used as the
bounding box output when the bird becomes invisible to the camera during a jump. Left,
right: The bird is visible and can thus be recognized by the CNN. (green boxes: ground
truth; red boxes: candidate locations classified as target; white boxes: bounding box
output for current frame)

We assume that the bird is perching if the difference between image patch crop; cropped
with the previous bounding box from the current frame t and the image patch crops_1
cropped from the previous frame at the same location is below a threshold and the CNN
score of the image patch from the current frame is above 0.5. In that case the previous
bounding box is the predicted bounding box for the current frame.

1 N
N Z Cropt — Cropg—1
i=1

N ... number of pixels in the image patch.

If the bird is recognized as sitting, the Kalman filter is re-initialized to the current
location, because the bird tends to jump in a different direction than before it landed,
and the Kalman filter would predict an ongoing movement in the same direction as before
the landing. If the bird leaves the frame — i.e. we estimate its location to be partially
outside of the frame — candidate locations are placed along the edges of the frame to
detect the bird when it re-enters the frame. To avoid a false positive detection while the
bird is outside the frame, the target bounding box estimate must be based on a blob in
this case.
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Advantages of the ManakinTracker:

e uses a Kalman Filter and MOG, and thus does not rely solely on the visual
information in a single frame but detects motion based on multiple frames. This
allows the ManakinTracker to handle target movement during occlusion.

e uses a CNN fine-tuned to recognize male golden-collared manakins (including highly
blurry and partially occluded) with high accuracy

e In most cases (particularly during jumps) blobs give accurate bounding boxes and
no further correction of the bounding boxes’ dimensions is necessary.

e can track the bird efficiently in most frames by classifying only a limited number of
image patches extracted from blobs (usually 1-4 per frame)

Disadvantages of the ManakinTracker:

e is fine-tuned to track golden-collared manakins. To track a different target, the
CNN needs to be trained with groundtruth data of that target.

e requires video sequences as input that were recorded with a stationary camera.

4.1.6 Open Issues

Using blobs as bounding boxes works well as long as the entire bird moves — if the bird
sits still and moves only partly, for example only its head, the bounding box enclosing
the blob will only contain the moving part of the bird.

When the bird lands on a thin sapling, the sapling moves along with the bird, which
leads to a blob that includes parts of the sapling along with the bird. This could be
corrected in post-processing by adjusting bounding boxes, that strongly increased in size
shortly before the bird started sitting.

In some cases the tracker recognizes the female bird as the target, even though the CNN
was only trained on male birds. This suggests that the CNN is not dependent on the
male bird’s yellow neck for a correct classification. The downside of this is, that if the
male and female bird are both present in a frame the two have to be distinguished by
the tracker. One solution would be to train a CNN on images of female birds also, which
would require ground truth bounding boxes for the female birds. Currently, we handle
this issue by choosing the blob that is closest to the location predicted by the Kalman
filter if there are multiple blobs that get a high target score.
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4.2. Automatic Behavior Recognition

4.2 Automatic Behavior Recognition

Based on the trajectory and the image patches cropped with the bounding boxes predicted
by the tracker, we aim to recognize the bird’s behavior in each frame by identifying the
behaviors described in Section 2.2.4.

B1: On perch. When the bird is on perch, it moves only slightly, so this behavior can
be recognized as the distance between the centers ¢;_1 and c¢;41 of the bounding boxes
before and after the current frame t being less than a small threshold thresh;ymp.

perch = true, if \/(ci—1 — ct1)? < threshjump

false, otherwise

B2: Jump. The start and end of a jump can be identified through the distance between
bounding box centers ¢;—1 and ¢;41: when the bird starts jumping it moves away from a
sapling until is stops moving when it has reached another sapling.

) true, if \/(ci—1 — ci41)? > threshjump
jump =
false, otherwise

B3: Wingsnap. When the bird does a wingsnap, it lifts the wings above the body.
This can be recognized as the bounding box area increasing between consecutive frames
t-1 and t during a jump.

areay

jump & > threshwingsnap

area;_1

B4: Beard-up. The beard-up pose occurs while the bird is perching. As the biologists
are interested in the moment when the bird is fully stationary in the beard up, we
can measure the level of blur or measure correlation between consecutive patches, as
the correlation should strongly increase as soon as the bird does not move anymore.
Additionally, we will detect the male’s yellow neck based on color values and identify the
direction it points at by determining in which of the three views view, views, and views
the yellow region appears largest in. Regions of yellow color will be identified using the
Colornames feature [VDWSVL09].

perch & max (yellow area)
view1,views ,views

4.2.1 Detecting the Yellow Neck

While it is easy for humans to assign colornames to image pixels, this is not as straight-
forward for a computer. In the computer the colors are represented by three values per
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pixel (R,G,B) that have to be mapped to a color name, in our case yellow. However,
color values are strongly impacted by lighting conditions.

The biologists hypothesize that the male bird presents its yellow neck to the female
during the beard-up posture. To investigate this hypothesis, we aim to detect the yellow
neck and determine towards which of the three camera views the male bird points its
neck.

We have considered three approaches to detect the male’s yellow neck:

1. using thresholds

2. finding the color closest to perfect yellow (R,G,B) = (1,1,0)

3. using the Colornames feature [VDWSVL09]. Colornames is a feature that assigns
a color name, such as “yellow”) to every pixel based on the pixel’s (R,G,B) values.
Colornames was trained on images found through Google Image Search, where images
that contain e.g. the color yellow where found by searching the term “yellow”. Since
these images where labeled by humans, the colors found in those images reflect how
humans perceive colors in real-world images.

Approach 1, setting specific thresholds to color values is sensitive to changes in lighting
conditions. As the videos in our dataset vary strongly in lighting it is difficult to define a
range of values between fixed thresholds that work for all videos.

Approach 2 will detect a region of a different color, which is the closest to perfect yellow,
if there is no yellow region present in the image patch.

Approach 3 also labels regions as yellow that are more beige and do not look like the
yellow of the bird’s neck.

As all of these approaches are based on color values, they will all fail if the yellow neck is
not visible in the image. This can be the case if the neck is occluded or the bird faces in
a different direction. An issue for all approaches is yellow clutter in the image patch that
is larger than the bird’s yellow neck.

We will use the Colornames feature since it is the most robust to varying shades of yellow
as well as shadows and is able to detect the absence of a yellow region.

4.3 Visualization of Trajectory and Behavior

We created two types of interactive visualizations for the bird’s behavior during its
courtship dance: a trajectory Visualization and a sequence Visualization. The visual-
izations are based on the trajectory obtained by the visual tracker and the result of the
behavior recognition. The purpose of the visualizations is to represent the data in such a
way that the biologists can compare multiple videos of courtship performances to find
similarities and differences among them in order to allow them to find characteristics
that make a courtship performance successful.
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4.3. Visualization of Trajectory and Behavior

4.3.1 Trajectory Visualization

In the trajectory visualization (see Figure 4.6), a red line represents a jump, a green circle
represents perching — the radius of the circle endcodes the duration of perching. The
wing snap is shown by a cross along the jumping path. The trajectory can be optionally
superimposed on the selected video frame to compare the video data with the detected
behavior.

4.3.2 Sequence Visualization

In the sequence visualization, every frame is represented by a rectangle. Each rectangle
encodes a behavior. The rectangles are aligned in a sequence. A red rectangle represents
jumping, while a green rectangle represents perching. A smaller white rectangle inside of
a red rectangle indicates a wingsnap. On top of the sequence of rectangles that show
jumping, perching and wing snap, another sequence of rectangles indicates the camera
view in which the bird mainly points its beard during the beard-up pose. The three
camera views are represented by three different colors (magenta, cyan, and yellow).

4.3.3 Behavior Representation: Interaction

The two visualizations are connected: when the user moves the slider along the sequence
visualization, the trajectory is shown up until the frame selected with the slider. The
slider enables the user to scroll through the sequence and select a frame of interest. The
same behavior is encoded with the same color in both visualization types. The user can
select which videos to compare. The selected video is shown from all three view points.

Figure 4.6: Trajectory visualization. Red lines: jumps, radius of circles: duration of
perching, crosses: wing snaps.
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Figure 4.7: Screenshot of Visualization.
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CHAPTER

Evaluation

5.1 Visual Tracking

We tested all trackers presented in Sections 3.2 and 3.3 on the videos in the two Manakin
datasets (see Section 2). To test the ManakinTracker we split dataset-2017 into two
parts and trained two CNNs on each halve. We then tested each sequence using the
CNN that was trained with the training set that did not contain that sequence. The
ManakinTracker was tested on dataset-2018 with a CNN trained using only dataset-2017.

5.1.1 Performance Metrics
To measure the trackers’ performance, we measure accuracy and robustness.

Accuracy is measured as the Intersection over Union (IoU) [KLM™'18] between the
groundtruth bounding box (gt) and the bounding box predicted by the tracker (pred)
over all frames for which a groundtruth annotation is available:

1N
N Zl IOU (gty, predy)
t—

10U — area(gt N pred) 0,1] {O, if gt and pred have no overlap

area(gt U pred) 1, if gt and pred are identical

N ... total number of frames in all videos with groundtruth annotation

Robustness is measured as the number of frames in each video until the first tracking
failure occurs, starting from the frame in which the bird first moves.

In the beginning of the videos the bird typically sits before it starts jumping (on average
65.18 and 24.58 frames in dataset-2017 and dataset-2018, respectively). Since we wanted
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to avoid counting tracking of the sitting bird as successful tracking (which could be
achieved by simply keeping the initial ground truth bounding box by default), we start
counting the number of tracked frames as soon as the bird has started moving. Starting
from the first frame in which the bird has moved so far that its bounding box does not
overlap with the bounding box in the initial frame anymore, we count the number of
frames until tracking fails, i.e. zero overlap with ground truth.

5.1.2 Performance on Manakin Datasets

We ran the trackers described in Sections 3.2 and 3.3 on the 83 videos in the Manakin
datasets (described in Section 2) that contain at least 50 frames with ground truth
annotation after the point where the bird first starts moving. Our goal was to evaluate
the trackers’ robustness and to find out if the trackers are suitable for tracking the videos
in the Manakin dataset.

The ManakinTracker is the most robust among all the tested trackers for both datasets. It
tracks 3 times more frames in the dataset-2017 and 2.2 times more frames in dataset-2018
than the second most robust tracker ECO.

The ManakinTracker also achieves the highest accuracy for both datasets. The second
highest accuracy on dataset-2017 is achieved by the ECO tracker, which is a deep tracker
aimed at high accuracy. CSRT reaches a higher accuracy than ECO on the dataset-2018,
however, as it only tracks about 17 frames per sequence in that dataset, the accuracy is
not as meaningful. The same applies for the accuracy values given for TLD, KCF, MIL
and BOOSTING trackers for dataset-2017 have limited significance as the number of
tracked frames is below 1 frame per sequence on average.

Among the traditional trackers, all but the CSRT tracker fail at the bird’s first move
in at least 85% of the sequences. MOSSE and Median Flow performed the worst: they
tracked no frames successfully in any of the videos. This is probably caused by the strong
appearance change the bird exhibits when starting to move.

Among the traditional trackers, only the CSRT tracker was able to track the bird in
more than 50 frames (in 13% of the videos in dataset-2017). However, the CSRT tracker
still failed to track the bird when it first moves in 58% of the videos in dataset-2017.

The two deep trackers MBMD and GOTURN only track about 4 frames per sequence on
average. Both of those trackers do not adapt to a strong change in target appearance:
MBMD does not update the part of the network that proposes potential bounding boxes
and GOTURN does not perform any on-line learning.
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Figure 5.1: The histograms show the number of frames per sequence in dataset-2017
each of the trackers was able to track the bird after it first starts moving. (Our tracker
highlighted in orange)
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Figure 5.2: The histograms show the number of frames per sequence in dataset-2018
each of the trackers was able to track the bird after it first starts moving. (Our tracker
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5.1. Visual Tracking
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Figure 5.3: Bar chart showing the average number of successfully tracked frames
per sequence per tracker in dataset-2017 (left) and dataset-2018 (right).
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Figure 5.4: Bar chart showing the average accuracy achieved by each tracker in
dataset-2017 (left) and dataset-2018 (right).
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5.1.3 Failure Analysis

To gain a better understanding of the causes of tracking failures, we inspected the frames
on which the tracking failure occurred.

Tracking failures can occur when the male bird ...

e is occluded or strongly distorted by motion blur and a piece of clutter that visually
resembles the bird is in close proximity (see Figure 5.5).

e jumps directly behind the female bird and the female resembles the male bird (see
Figure 5.6).

e sits on a sapling, only the head is detected and it then proceeds to “swing” its head
first behind and then to the other side of the sapling (see Figure 5.7).

e is affected by strong motion blur when it starts a jump and is thus not recognized
(see Figure 5.8).

e has moved outside of the frame and a piece of clutter or the female bird is tracked
instead.

In a technical report [Gos19], we evaluated how motion blur influences the effectiveness
of the ManakinTracker. If the CNN used in the ManakinTracker relies on motion blur
to recognize the bird, this could pose a problem when the biologists use a different
camera with higher frame rate in future recordings because under the same lighting
conditions a higher frame decreases motion blur. We simulated the bird’s appearance
by superimposing three colored circles and found that stronger motion blur lowered the
confidence of the CNN and lead to more tracking failure. Thus, we conclude that the
ManakinTracker will perform better on sharper videos.

5.2 Behavior Recognition and Representation

Using the distance that the bird has moved between the previous and next frame to
distinguish between perching and jumping works in most cases. An incorrect prediction
can occur when the bird jumps slowly or either moves while perching or the predicted
bounding box is inaccurate. If perching is incorrectly recognized as jumping this will
show up in the trajectory view as multiple smaller circles in the location where the bird
is sitting. If a frame during a jump is recognized as perching a small circle will appear
on the red line that encodes the jump.

Wing-snaps are recognized based on the change of bounding box area between consecutive
frames. This wing motion is very similar to the flapping of the wings that the bird
does when starting and landing. In the trajectory view, wingsnaps and flapping can
be distinguished by their distance to the sapling: flapping occurs close to a sapling.
The correct detection of the extension of the wings depends on the level of motion blur.
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5.2. Behavior Recognition and Representation

Figure 5.5: Example of background clutter being falsely recognized as the bird. Right
column: Close-ups of the clutter. In the top row the clutter resembles the bird viewed

from behind, in the bottom row the clutter resembles the bird’s yellow and black head.

Green: groundtruth bounding box, red: predicted bounding box.

Figure 5.6: Example of the female being falsely tracked when the two birds’ paths cross.

Green: groundtruth bounding box, red: predicted bounding box.
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Figure 5.7: Example of the tracker losing the bird when the bird moves its head behind
the sapling. Green: groundtruth bounding box, red: predicted bounding box.

Figure 5.8: Example of the tracker losing the bird when it starts a jump. Green:
groundtruth bounding box, red: predicted bounding box.

If motion blur is too strong, the wings will not be included in the blob and thus the
predicted bounding box.

To find the direction in which the bird points its yellow neck, we find the largest connected
region of yellow pixels among the three camera views. This can fail if the bird is closer
to one of the cameras and the neck is projected larger onto the frame recorded by that
camera.

An advantage of the trajectory visualization is that it preserves spatial information: for
example the user can see the shape of the bird’s trajectory and see which saplings the
bird lands on most often. The user can see if the bird lands on the same spot — the circles
will be concentric if the bird sits again in the exact same location. A disadvantage of the
trajectory visualization is that — as the bird jumps back and forth inside its arena — lines
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5.2. Behavior Recognition and Representation

cross and it can be hard to tell different jumps apart. This is mitigated by the three
views shown side-by-side where different parts of the choreography can be seen more
clearly from a different angle. Additionally, a slider allows the user to show the sequence
only until a selected frame and follow the bird’s path by scrolling through the video.

The sequence visualization is very compact: it enables the user to compare a large number
of sequences at the same time. There are no line crossings — every behavior can be clearly
seen. However, as the sequence visualization contains no spatial information (i.e. no
information in what place of the frame a behavior occurred), it is beneficial to combine
this type of visualization with the trajectory visualization.

While the visualization’s main purpose is to gain insight into the bird’s courtship dance
and to compare different displays, it can also be useful to spot errors in the automatic
behavior recognition. For example the user can detect a wingsnap in the video that was
not recognized as an area change during automatic behavior recognition or check if a
detected wingsnap is instead the flapping of the wings that the bird does when starting
and landing.
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CHAPTER

Conclusion

We collaborated with a team of biologists led by Prof. Dr. Leonida Fusani from the
University of Vienna, who provided us with two datasets that show courtship dances
performed by a tropical bird called golden-collared manakin. Both datasets have per-
frame bounding box annotations of the male bird. The birds were recorded in the jungle,
in a strongly cluttered environment, and move at a rapid speed which leads to significant
motion blur. Automatic behavior recognition is available for human behaviors and
some species that are commonly recorded in laboratories but no such software has been
developed for the golden-collared manakin or a comparable species in a highly challenging
environment.

We developed the ManakinTracker, a novel visual tracker that is able to handle the
specific challenges of the videos in manakin datasets. The ManakinTracker exploits the
fact that the videos were recorded with a stationary camera by using a background
subtraction method to extract moving objects from the frame that serve as potential
locations. It uses a convolutional neural network trained offline on manakin videos to
handle the strongly varying appearance of the bird. By estimating the movement of the
bird with a Kalman filter, the ManakinTracker can track the bird when it moves through
occlusions.

Based on the trajectory obtained through tracking, we extract the bird’s moved distance,
change in area and the largest yellow region to recognize typical behaviors and visualize
them in two linked views. The behavior visualization makes the behaviors visible at one
glance and enables the biologists to compare different courtship displays.

Our tracker achieved better robustness and accuracy on the manakin videos than 11
state-of-the-art visual trackers. Automatic tracking and behavior recognition enables the
biologists to process the videos much faster than watching the videos frame-by-frame and
manually label the position and behavior of the bird. By visualizing each video with two
different visualizations the behaviors can be compared in a compact way while preserving
spatial information.
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