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Abstract 

In recent years, the Global Navigation Satellite System (GNSS) has turned out to be a valuable tool for 

remotely sensing the atmosphere. In this context, GNSS tomography evolved to an extremely promising 

technique to reconstruct the spatio-temporal structure of the troposphere. Therefore, this method can 

offer a permanent monitoring service for water vapour and wet refractivity fields at low cost and a 

reasonable spatial resolution compared to conventional observations, like radiosonde and radio 

occultation profiles. However, there are still some challenges and open questions in GNSS tomography 

which extremely affect the quality of the reconstructed field. Hence, the main objective of this 

dissertation is to investigate different strategies to solve some of them. 

The economic issue to deploy multi-frequency receivers with a sufficient spatial resolution of a few 

tens of kilometers is one of the challenges for GNSS tomography. Therefore, the feasibility of using 

single-frequency observations in GNSS tomography as an alternative approach is investigated. Another 

challenge of GNSS tomography relates to different parameterization methods for computing the design 

matrix. Therefore, the effect of the straight-line method versus the ray-tracing method as well as the 

impact of considering the topography in the tomography model is studied for computing the design 

matrix. Further attention is given to multi-GNSS observations in GNSS tomography due to improving 

observation geometry compared to a sole GPS/ GLONASS system scenario. Therefore, by focusing on 

GALILEO's effect, the impact of different constellations is investigated to retrieve a wet refractivity 

field. GNSS tomography is also suffering from the insufficient spatial coverage of GNSS signals in the 

voxels within the given time window. Hence, the design matrix is sparse, and the observation equation 

system of the tomography model is mixed-determined. Thus, physical meaningful constraints as well 

as external data sources should be applied. In this dissertation, the new dataset from the Geostationary 

Operational Environmental Satellite (GOES) sounder supplements the system of observation equations 

and consequently, the tomographic solution leads to an improved reconstructed wet refractivity field. 

Besides, this method is a kind of discrete ill-posed problem. So, all singular values of the structure 

matrix (A) in the tomography problem decay gradually to zero without any noticeable gap in the 

spectrum. Hence, slight changes in the measurements can lead to extremely unstable parameter 

solutions. In consequence, the regularization method should be applied to stabilize the inversion process 

and ensure a stable and unique solution for the tomography problem. The algebraic reconstruction 

techniques (ART) and the Total Variation (TV) method are examined to reconstruct a regularized 

solution with acceptable accuracy. Moreover, the TV method can also reconstruct a promising wet 

refractivity field without any initial field in a shorter time span. Thereby, retrieving the wet refractivity 

field using this method is also investigated. A further attempt is given to analyse the quality of the 

reconstructed field in GNSS tomography. To the author' best knowledge for the first time in GNSS 

tropospheric tomography, the spread of the resolution matrix is employed to assess the quality of the 
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retrieved wet refractivity solution without a need to use reference observations and calculate statistical 

measures like RMS and Bias in this method.  
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Kurzfassung 

In den letzten Jahren hat sich das Globale Navigationssatellitensystem (GNSS) als ein wertvolles 

Instrument für die Fernerkundung der Atmosphäre erwiesen. In diesem Zusammenhang hat sich die 

GNSS-Tomographie zu einer äußerst vielversprechenden Technik entwickelt, um die räumlich-

zeitliche Struktur der Troposphäre zu rekonstruieren. Daher kann diese Methode eine ausgezeichnete 

Alternative zur Überwachung von Wasserdampf und feuchten Refraktionsfeldern zu geringen Kosten 

und einer angemessenen räumlichen Auflösung im Vergleich zu konventionellen Beobachtungen, wie 

Radiosonden- und Radio-Okkultationsprofilen, bieten. Es gibt jedoch noch einige Herausforderungen 

und offene Fragen bei der GNSS-Tomographie, welche die Qualität des rekonstruierten Feldes stark 

beeinflussen. Daher besteht das Hauptziel dieser Dissertation darin, verschiedene Strategien zur Lösung 

einer Vielzahl dieser Probleme zu untersuchen. 

Eine der Herausforderungen für die GNSS-Tomographie ist die wirtschaftliche Frage der Bereitstellung 

von Mehrfrequenzempfängern mit einer ausreichenden räumlichen Auflösung von einigen zehn 

Kilometern. Daher wird die Machbarkeit der Verwendung von Einzelfrequenzbeobachtungen in der 

GNSS-Tomographie als alternativer Ansatz untersucht. Eine weitere Herausforderung in der GNSS-

Tomographie hängt von den verschiedenen Parametrisierungsmethoden zur Berechnung der 

Entwurfsmatrix ab. Daher werden die Auswirkungen der geometrisch geradlinigen Signalausbreitung 

Methode gegenüber der Ray-Tracing-Methode sowie die Auswirkungen der Berücksichtigung der 

Topographie im Tomographiemodell für die Berechnung der Entwurfsmatrix untersucht. Ein weiteres 

Augenmerk wird auf Multi-GNSS-Beobachtungen in der GNSS-Tomographie gelegt, da sich die 

Beobachtungsgeometrie im Vergleich zu einem GPS/GLONASS- Szenario verbessert. Daher wird der 

Einfluss verschiedener Konstellationen untersucht, um das feuchte Refraktionsfeld zu erhalten, wobei 

der Schwerpunkt auf der Hinzunahme von GALILEO liegt. Die GNSS-Tomographie leidet auch unter 

der unzureichenden räumlichen Abdeckung der GNSS-Signale in den Voxeln innerhalb des gegebenen 

Zeitfensters. Daher ist die Entwurfsmatrix spärlich besetzt, und das Beobachtungsgleichungssystem des 

Tomographiemodells ist gemischt-determiniert. Daher sollten sowohl physikalisch sinnvolle 

Einschränkungen als auch externe Datenquellen verwendet werden. In dieser Dissertation ergänzt der 

neue Datensatz des Geostationären Operationellen Umweltsatelliten (GOES) das System der 

Beobachtungsgleichungen, und folglich führt die tomographische Lösung zu einem verbesserten 

rekonstruierten feuchten Refraktionsfeld. 

Außerdem handelt es sich bei der Troposphären-Tomographie um eine Art diskretes ungelöstes 

Problem. So zerfallen alle Singulärwerte der Strukturmatrix (A) allmählich auf Null, ohne dass es zu 

einer merklichen Lücke im Spektrum kommt. Daher können geringfügige Änderungen in den 

Messungen zu extrem instabilen Parameterlösungen führen. Infolgedessen sollte die 

Regularisierungsmethode angewandt werden, um den Inversionsprozess zu stabilisieren und damit eine 

stabile und eindeutige Lösung für das Tomographieproblem zu gewährleisten. Die algebraischen 
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Rekonstruktionstechniken (ART) und die Methode der totalen Variation (TV) werden untersucht, um 

eine regularisierte Lösung mit akzeptabler Genauigkeit zu generieren. Darüber hinaus kann die TV-

Methode auch das vielversprechende feuchte Refraktionsfeld ohne initiales Referenzfeld in einer 

kürzeren Zeitspanne rekonstruieren. Ein weiterer Versuch wird unternommen, um die Qualität des 

rekonstruierten Feldes in der GNSS-Tomographie zu analysieren. In dieser Dissertation wird nach 

bestem Wissen des Autors zum ersten Mal in der GNSS-Troposphären-Tomographie die Spreizung 

(spread) der Auflösungsmatrix verwendet, um die Qualität der abgerufenen Lösung für die feuchte 

Refraktivität zu bewerten, ohne dass Referenzbeobachtungen verwendet und statistische Maße wie 

RMS und Bias in dieser Methode berechnet werden müssen. 
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Chapter 1 

1 Introduction 

One of the most variable components in the Earth’s atmosphere is water vapour , which has a remarkable role in 

the formation of clouds, rain, snow, and air pollution (Troller, 2004;Yao et al., 2016). Hence, improving the 

accuracy of the estimated water vapour could lead to more accurate predictions of severe weather conditions and 

precipitation, as well as enhancing the comprehension of the world's climate change by meteorologists (Brenot et 

al., 2014;Lutz, 2008;Manning et al., 2012;Norquist and Chang, 1994;Zhang, 1999). Various techniques like Lidar 

(Bock et al., 2001;Braun and Rocken, 2003;Tarniewicz et al., 2002), radiosonde, water vapour radiometer (Braun 

et al., 2003;Dodson et al., 1996), ground sensors (Herschke, 2002;Lutz, 2008;Troller, 2004), and radio occultation 

(Andrisaniand and Francesco, 2020;Turk et al., 2019;Wickert et al., 2002) have been applied to measure the spatio-

temporal behaviour of this parameter. However, these methods have some disadvantages and limitations such as 

high cost or poor spatial-temporal resolution (Bai, 2004;Kačmařík and Rapant, 2012;Troller, 2004). Instead, Global 

Navigation Satellite Systems (GNSS) could help to overcome these drawbacks due to the continuous scans of the 

troposphere at a low cost with a reasonable precision and finer spatio-temporal resolution in comparison to the 

common techniques (Bevis et al., 1992;Dick et al., 2001;Douša, 2004;Hurter et al., 2012;Priego et al., 2017;Rocken 

et al., 1995;Wickert et al., 2021). 

In the coming years, the number of available measurements from dense GNSS networks and new satellite 

constellations like GALILEO (Europe), Beidou (China), QZSS (Japan) or IRNSS (India) will dramatically increase 

(Sá, 2018). Analysing the signals of GNSS satellites provides tropospheric products such as Zenith Total Delay 

(ZTD), Slant Tropospheric Delay (STD), and Integrated Water Vapour (IWV) which can apply in atmospheric 

studies and particularly for meteorology and climatology. Nevertheless, all of the derived products from GNSS 

only monitor the behaviour of the troposphere in the zenith or slant directions of a satellite to a receiver without 

capturing spatial variability of the water vapour. To resolve this issue, the tomography technique, which integrates 

slant observations over a time span from a GNSS network, has been being investigated purposefully by different 

researchers to model the wet part of the troposphere in the high spatial and temporal domain. GNSS tomography 

is an all-weather condition emerging remote sensing method in the field of meteorology. Water vapour or the wet 

refractivity distribution in the troposphere can be assimilated in forecasting and nowcasting models. In this 

technique, the area of interest is divided into 3D elements (Voxel) in vertical and horizontal directions and then the 

measurements of the Slant Wet Delay (SWD) are integrated in the desired time period in order to reconstruct the 

behaviour of the wet refractivity in this time window (Rohm and Bosy, 2011;Troller, 2004). Over the past few 

years, the potential of using GNSS to specify the four dimensional (4D) wet refractivity and water vapour  fields 

using Tomography has been evaluated in various studies (Adavi and Weber, 2019;Bender et al., 2011;Brenot et al., 

2020;Ding et al., 2017;Flores, 1999;Gradinarsky and Jarlemark, 2004;Lutz, 2008;Manning, 2013;Möller, 

2017;Nilsson et al., 2004;Perler, 2011;Rohm and Bosy, 2009;Rothacher et al., 1996). 
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1.1 Objectives and Contributions 

The intent of this dissertation is to improve a 4D ground-based GNSS tomography technique in order to better 

understand the tropospheric structure which is essential for water vapour monitoring and nowcasting applications. 

The research of this thesis was motivated by analyzing and improving different features of the tomography model 

by taking into account current developments of tropospheric tomography infrastructures like parameterization and 

solving methodology. In this context, the following objectives and contributions have been considered: 

1. Assessment of the GNSS tomography in different scale regions by considering topography and different 

parameterization methods 

2. Feasibility of GOES-R products as a constraint in order to enhance the GNSS tomography solution 

3. Evaluation of regularization techniques in GNSS tropospheric tomography based on single- and dual-

frequency observations  

4. Investigation of the impact of the GALILEO constellation in combination with GPS and GLONASS 

constellations to estimate the tropospheric delay and solve the ill-posed inverse problem to retrieve the wet 

refractivity field 

5. Optimizing the temporal resolution of the tomography model by applying the Total Variation (TV) 

regularization method  

6. Defining a new method to analyse the quality of the tomography solution using the concept of spread of 

the resolution matrix 

1.2 Thesis outline 

Aside of the introduction, this thesis consists of six chapters, which are demonstrated in brief as follows: 

Chapter 2 gives an overview of the physical foundation of the troposphere with a focus on the characteristic of the 

GNSS signal propagation in this part of the atmosphere. The fundamental models to derive the tropospheric delays 

from the GNSS signals as well as tropospheric refractivity are explained in this chapter.  

Chapter 3 provides the concept of GNSS tropospheric tomography and describes the mathematical basis for the 

solution as well as highlights the solving strategies for the tomography problem. Moreover, a literature review 

covering the remarkable research activities in this field is also reported in this chapter. 

Chapter 4 presents the outline for special case studies which cover parts of two different continents, namely Europe 

and America. In addition, meteorological datasets like synoptic measurements and numerical weather models are 

described in this chapter. All these case studies together with the meteorological dataset provide a good foundation 

for Chapter 5 in order to investigate GNSS tropospheric tomography solutions. 

Chapter 5 investigates the accuracy of the reconstructed tomography field by considering single frequency 

measurements in comparison to dual-frequency measurements, new datasets as a constraint, applying different 

parameterization methods, using different GNSS constellations, and performing a direct regularization method 

named Total Variation (TV) compared to iterative regularization methods. Moreover, a new proxy for the validation 

of the GNSS tomography model, namely ‘spread’, is also studied in this chapter. 
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Chapter 6 depicts the main conclusions from this work and also provides an outlook on possible future work which 

can be implemented in the GNSS tomography in order to enhance the accuracy of the reconstructed wet refractivity 

field. 

1.3 PhD Presentation 

The provided results and datasets in this dissertation are partly based on the published/under-review journal papers, 

which are listed as follows: 

1. Adavi, Z., and Weber, R.: Evaluation of Virtual Reference Station Constraints for GNSS Tropospheric 

Tomography in Austria Region, Adv. Geosci., 50, 39-48, 10.5194/adgeo-50-39-2019, 2019. 

2. Adavi, Z., Rohm, W., and Weber, R.: Analyzing Different Parameterization Methods in GNSS 

Tomography Using the COST Benchmark Dataset, IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 13, 6155-6163, 0.1109/JSTARS.2020.3027909, 2020. 

3. Adavi, Z., and Weber, R.: Application of the Total Variation Method in near real-time GNSS Tropospheric 

Tomography [under review], International Association of Geodesy Symposia,, 2022. 

4. Adavi, Z., Weber, R., and Glaner, M. F.: Assessment of regularization techniques in GNSS tropospheric 

tomography based on single- and dual-frequency observations, GPS Solutions, 26, 

https://doi.org/10.1007/s10291-021-01202-2, 2022a. 

5. Adavi, Z., Weber, R., and Rohm, W.: Pre-analysis of GNSS tomography Solution using the concept of 

Spread of Model Resolution Matrix, Journal of Geodesy, 10.1007/s00190-022-01620-1, 2022b. 

 

 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s10291-021-01202-2
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Chapter 2 

2 Physical Foundation and Propagation Characteristic of the Troposphere 

The earth’s atmosphere can be classified using the well-known features named: ionization, temperature, and 

propagation (Seeber, 1993). By considering the propagation of the radio waves in the atmosphere, two layers can 

be characterized: troposphere and ionosphere. The ionosphere is the upper part of the atmosphere which is a 

dispersive medium relative to the radio waves. Therefore, the propagation delay in this layer is frequency-

dependent and in consequence, it can be eliminated using a linear combination of dual-frequency observables. The 

lower layer of the Earth’s atmosphere is the troposphere which is a non-dispersive medium with respect to micro-

waves signals. This layer of the atmosphere is also called the neutral atmosphere which is basically regarding the 

feature of the temperature profile. 

The propagated GNSS signals are remarkably affected by the troposphere along the entire path to the GNSS 

receiver. As the troposphere is non-dispersive for micro waves frequencies, therefore, the tropospheric effects on 

the signal cannot be eliminated with multi-frequency observations. The troposphere could physically influence the 

signal in two ways: (1) delaying of the propagated rays because of the non-vacuum nature of the troposphere, and 

(2) bending the GNSS signals. 

The fundamental knowledge about the troposphere and also the basic models of tropospheric delays and refractivity 

are presented in this chapter. Moreover, an overview of the current techniques to derive tropospheric features like 

wet refractivity and water vapour is provided here.   

2.1 State of the Troposphere 

The term troposphere was created in 1908 by Teisserenc de Bort and literally implies the sphere of turning, as the 

vertical motions (rising and descending air currents) in this layer are with respect to the vertical gradient of 

temperature(Lutgens et al., 2018). In fact, as shown in Fig 2. 1, different layers of the atmosphere and particularly 

the troposphere, can be determined as function of temperature relative to the height. According to this figure, the 

troposphere is the layer between the sea level ≈ 0 𝑚𝑒𝑡𝑒𝑟 and the upper atmosphere, where the temperature reduces 

linearly by increasing height with the gradient of about −6.5 𝐾 𝑘𝑚⁄  (Wallace and Hobbs, 2006). The actual value 

of this temperature gradient depends on the season, height, and also geographical location(Mendes, 1999). 

Moreover, the upper boundary of the troposphere is the first temperature minimum which is a function of the 

latitude and seasons. In general, the maximum value of the tropospheric height occurs at the equator and 

summertime, and its minimum value shows up in the Polar Regions and wintertime (Dowling and Showman, 

2007;Hall et al., 2011).  
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Fig 2. 1. Typical atmospheric temperature profile of the earth, taken from (Talkshop, 2014) 

 

This lowermost layer of the atmosphere is in the main focus of meteorologists and climatologists due to the 

occurrence of all important weather phenomena in this layer (Lutgens et al., 2018). All violent storms, precipitation, 

rain, snow, hurricanes, and almost all clouds happen in this layer of the atmosphere (Hoyle, 2005;Lutgens et al., 

2018;Möller, 2017). Troposphere encompasses about 80% of the total mass of the atmosphere and also nearly all 

the aerosols and water vapour (Fleagle and Businger, 1980;Wallace and Hobbs, 2006). According to the 

composition of the troposphere, this layer can be subdivided into two constituents named dry air (mixture of 

nitrogen, oxygen and organ as the major constituents) and water vapour (Lutz, 2008;Mendes, 1999;Zhang, 1999). 

Using the ideal gas law and the hydrostatic equation, dry air gases and water vapour are modelled in hydrostatic 

equilibrium (Kleijer, 2004;Zhang, 1999).  

For the ideal (perfect) gases, the equation of state is defined as follows (Kleijer, 2004): 

                                                           𝛼 𝑃 =  𝑅𝑚 𝑇                                                                                                   (2.1) 

with 𝛼    : Specific volume [𝑚3 𝑘𝑔−1] 𝑃    : Pressure [𝑁 𝑚−2] 𝑅𝑚 : Specific gas constant [𝐽 𝑘𝑔−1 𝐾−1]  𝑇    : Temperature [𝐾] 
The specific volume 𝛼 is formulated as: 

                                                          𝛼 ≐ 1𝜌 ≐ 𝑉𝑚                                                                                                                 (2.2) 

where 𝜌 [𝑘𝑔 𝑚−3], 𝑉 [𝑚3] and 𝑚 [𝑘𝑔] are density, volume , and mass, respectively. Applying Eqs. (2.1) and (2.2), 

the equation of state, for both water vapour and dry air are obtained as detailed:  
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                                                              𝑒 = 𝜌𝑣 𝑅𝑣𝑇                                                                                                                  (2.3) 

                                                             𝑃𝑑 = 𝑃 − 𝑒 = 𝜌𝑑  𝑅𝑑𝑇                                                                                                  (2.4) 

whereby: 𝑃𝑑 : Partial pressure of dry air [𝑁 𝑚−2] 𝑒   : Partial pressure of water vapour [𝑁 𝑚−2] 𝑅𝑑 : Specific gas constant of dry air [𝐽 𝑘𝑔−1 𝐾−1]   𝑅𝑣  : Specific gas constant of water vapour [𝐽 𝑘𝑔−1 𝐾−1] 
Here, 𝑅𝑑 = 287.06 ±  0.01 [𝐽 𝑘𝑔−1 𝐾−1]  , and 𝑅𝑣 = 461.525 ±  0.003 [𝐽 𝑘𝑔−1 𝐾−1].  
The specific humidity 𝑞 [𝑔 𝑘𝑔⁄ ] depicts another way to express the humidity as follows (Kleijer, 2004;Möller, 

2017):  

                                                        𝑞 = 𝜌𝑣𝜌 = 0.622 𝑒𝑃−0.378 𝑒                                                                                                        (2.5)  

In addition, by applying the equation of state for moisture, we end up with the following equation: 

                                                           𝑃 = 𝜌𝑚 𝑅𝑚 𝑇                                                                                                                   (2.6) 

where  𝜌𝑚 [𝑘𝑔 𝑚−3] is the density of moisture air. As  𝜌𝑚 = 𝜌𝑑 + 𝜌𝑣 , 𝑅𝑚 can be defined as below: 

                                                  𝑅𝑚 = 𝑅𝑑 (1 + 0.61 𝑤)                                                                                                       (2.7) 

Here 𝑤 [−] denotes a mixing ratio. If we introduce Eq. (2.7) in Eq. (2.6), we obtain:   

                                                 𝑃 = 𝜌𝑚 𝑅𝑑 𝑇𝑣                                                                                                                        (2.8) 

where 𝑇𝑣 [𝐾] is the virtual temperature as defined below: 

                                                   𝑇𝑣 ≐ (1 + 0.61 𝑤) 𝑇                                                                                                            (2.9) 

In a closed system, when the number of water molecules leaving the surface equals the number of returning 

molecules, the air reaches an equilibrium called saturation (Kleijer, 2004;Lutgens et al., 2018). The saturation 

vapour pressure is an empirical function of temperature and given as (Kleijer, 2004;Schüler, 2001):  

                                                  𝑒𝑠𝑎𝑡 = 6.112 𝑒𝑥𝑝 [ 17.62 𝑡243.12+𝑡]                                                                                                       (2.10) 

where 𝑡 is temperature in [℃]. Using this parameter, the relative humidity (𝑅𝐻 [−]) can be expressed as: 

                                                     𝑅𝐻 ≈ 𝑒𝑒𝑠𝑎𝑡                                                                                                                           (2.11) 

Therefore, the troposphere is a function of temperature 𝑇, air pressure 𝑃, and water vapour pressure 𝑒. Fig 2. 2 

shows the profiles of these parameters with respect to the height. According to this figure, the dry part of the 

troposphere is more easily predictable because the air pressure and temperature have stable quantities. In the wet 
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part of the troposphere, the water vapour pressure between the earth’s surface up to about 10 km height is variable 

over time and also location. Therefore, this part of the atmosphere cannot be modelled straightforwardly. 

 

Fig 2. 2.  Profiles of temperature T (a) , partial water vapour pressure e (b) and air pressure (c) on August 24th, 2019 

at 00:00 UTC for RS11035 located at the Vienna airport 

 

2.2 The Water Vapour Distribution in the Troposphere 

Water can emerge in three physical states in the troposphere: ice crystals, liquid droplets, and water vapour. The 

most variable form of the water is vapour. This parameter is highly variable both temporally and spatially, and 

therefore remains challenging to modelling. Almost all water vapour is placed up to about 2 km above the surface 

and only less than 5% of this quantity could be discovered above 5 km (Kleijer, 2004;Shangguan, 2014;Treuhaft 

and Lanyi, 1987). 

Water vapour is a key parameter in the water cycle of the earth. As shown in Fig 2. 3, the evapotranspiration of 

water sources on the earth is the reason for producing water vapour(Guerova, 2003;Lutgens et al., 2018).  

 

Fig 2. 3. Water cycle of the water vapour (Guerova, 2003) 

(a) (b) (c) 
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The evapotranspiration contains sublimation from snow, transpiration from vegetation evaporation, and ice 

surfaces and ocean and lakes (Guerova, 2003). Therefore, the water cycle happens as condensation and precipitation 

in the form of snow or rain and emanating again by transpiration, sublimation, and evaporation (Guerova, 

2003;Lutgens et al., 2018;Troller, 2004). In this content, water vapour plays an essential role in the climatological 

studies over long and short periods as well as numerical weather prediction (Guerova, 2003). Hence, observing the 

tropospheric water vapour to produce a time series along with its spatial distribution is of essential importance for 

the climate and atmosphere studies (Troller, 2004). Responding to this demand, some techniques and instruments 

have been developed to directly determine the tropospheric water vapour. Table 2. 1 demonstrates some of these 

techniques and instruments. In this table, the limitations and advantages of different techniques are presented. 

Table 2. 1.  Key characteristics of different techniques and instrument to measure the water vapour (table adapted 
from (Champollion et al., 2005;Heublein, 2019;Sá, 2018) 

Technique/Instrument 
Observations 
Conditions 

Horizontal 
Resolution 

Cost 
Time 

Resolution 

Radiosonde All Low High Low 

Ground Sensor Clear Sky High High Low 

Airborne Clear Sky Low High Low 

Spaceborne (Satellite Image) Clear Sky High High Low 

Solar Spectrometer Clear Sky Low High Low 

Water Vapour Radiometer Clear Sky Low High Low 

Radio Occultation All Low High Low 

GNSS (IWV) All High Low High 

GNSS Tomography All High Low High 
 

According to Table 2. 1, GNSS tomography could provide 4D spatio-temporal information of water vapour in all-

weather conditions with an almost reasonable resolution which is also beneficial concerning time and cost aspects 

in comparison to other techniques. Therefore, the main focus of the thesis is on GNSS tomography. Moreover, the 

different aspects and progress of this method will be discussed here. 

2.3 Interactions of GNSS radio waves and the Troposphere 

The troposphere influences the GNSS signals due to the interaction between the radio waves and this part of the 

atmosphere. The effect of the troposphere on the GNSS rays causes the variability of the refractive index and 

therefore this parameter plays an essential role in the propagation of radio waves within the troposphere. On one 

hand, as the refractivity index is larger than unity, the velocity of the ray’s propagation speed is decreased when 

approaching the earth’s surface (slowing). On the other hand, the trajectory of the radio signal deviates from the 

straight line due to the continuous variation of the refractive index (bending). The combination of these two impacts 

on GNSS signals is called propagation delay or tropospheric refraction (𝑑𝑡𝑟𝑝). Fig 2. 4 presents the bending of the 

path of a radio wave due to refractivity index variations. 
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Fig 2. 4. GNSS signal Propagation through the atmosphere 

The tropospheric refraction can be computed as follows (Hoyle, 2005;Mendes, 1999;Troller, 2004): 

                                                         𝑑𝑡𝑟𝑝 = ∫ [𝑛(𝑠) − 1]𝑠𝑎𝑡𝑟𝑒𝑐  𝑑𝑠⏟            𝑠𝑙𝑜𝑤𝑖𝑛𝑔 + [𝑆 − 𝐺]⏟    𝑏𝑒𝑛𝑑𝑖𝑛𝑔                                                                               (2.12) 

where 𝑆 and 𝐺 are the curved path and the geometric path, respectively. 𝑑𝑠 is a differential element of length (𝑠) 
along the ray trajectory between satellite (sat) and receiver (rec). The second term in Eq. (2.12), sometimes called 

geometric delay, is only considerable for radio waves with low observation angles below 10°. Moreover, for a 

horizontally stratified troposphere, this geometric delay vanishes in the zenith direction (Mendes, 1999).  Hence, 

Eq. (2.12) could be simplified to: 

                                                        𝑑𝑡𝑟𝑝 = ∫ [𝑛(𝑠) − 1]𝑠𝑎𝑡𝑟𝑒𝑐  𝑑𝑠                                                                                               (2.13) 

As the refractive index is very close to one, it is frequently replaced with a parameter that is easier to work called 

refractivity (𝑁 [𝑝𝑝𝑚]): 
                                                  𝑁 ≡ 106 (𝑛 − 1)                                                                                                   (2.14) 

Therefore, Eq. (2.13) can be reformulated as noted below:  

                                                     𝑆𝑇𝐷 = 10−6 ∫ 𝑁𝑠𝑎𝑡𝑟𝑒𝑐  𝑑𝑠                                                                                                        (2.15) 

where 𝑆𝑇𝐷 (= 𝑑𝑡𝑟𝑝) is the abbreviation of Slant Total Delay. According to Eq. (2.15), the STD is dependent on the 

refractivity along a satellite to receiver path. This parameter is mainly specified by three meteorological parameters: 

temperature, pressure and water vapour pressure: 

                                                      𝑁 = [𝑘2  (𝑒𝑇) + 𝑘3  ( 𝑒𝑇2)]⏟            𝑁𝑤 + 𝑘1  (𝑝𝑑𝑇 )⏟    𝑁ℎ                                                                                      (2.16) 

Therefore, the refractivity can be separated into a wet (𝑁𝑤) and hydrostatic component (𝑁ℎ): 
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                                                      𝑁 = 𝑁𝑤 + 𝑁ℎ                                                                                                                         (2.17) 

In Eq. (2.16), 𝑘2 and 𝑘3 are the factors of the wet contribution in the total wet refractivity and 𝑘1 relates to the dry 

part of the troposphere. These factors were re-computed over the decades and one of the most commonly used 

parameter sets has been published by (Rüeger, 2002): 𝑘1 = 77.689 2 ± 0.0094 [𝐾 ℎ𝑝𝑎⁄ ]  𝑘2 = 71.2952 ± 1.3         [𝐾 ℎ𝑝𝑎⁄ ]  𝑘3 = 375463 ± 760       [𝐾 ℎ𝑝𝑎⁄ ]  
 

Fig 2. 5 demonstrates the variation of wet refractivity and dry refractivity. According to this figure, the wet part of 

refractivity is almost negligible above 10 km but has a considerable amount in the lowest 5 km. However, the dry 

part of refractivity shows a smooth behaviour with height and it contributes significantly from ground up to 35 km.  

 
Fig 2. 5. Profiles of hydrostatic refractivity (a) and wet refractivity (b) on August 24th, 2019 at 00:00 UTC for RS11035 

located at the Vienna airport 

Substituting Eq. (2.17) in Eq. (2.15) gives: 

                                                  𝑆𝑇𝐷 = 10−6  ∫ 𝑁ℎ𝑑𝑠𝑟𝑒𝑐𝑠𝑎𝑡⏟          𝑆𝐻𝐷 + 10−6  ∫ 𝑁𝑤𝑑𝑠𝑟𝑒𝑐𝑠𝑎𝑡⏟          𝑆𝑊𝐷                                                                                    (2.18) 

or symbolically can be written as follows: 

                                                   𝑆𝑇𝐷 = 𝑆𝐻𝐷 + 𝑆𝑊𝐷                                                                                                                 (2.19) 

whereby Slant Wet Delay (𝑆𝑊𝐷) and Slant Hydrostatic Delay (𝑆𝐻𝐷) are the delays caused by the dry and wet part 

of the troposphere along the signal path. 

2.4 Modelling the Path Delay of GNSS Signals 

When modelling the path delays of GNSS signals, two different aspects have to be considered: 

 Error source: Adverting effects on the performance of GNSS satellites reduces the accuracy of GNSS 

positioning. 

 Information source: Propagation of the radio waves in the troposphere can provide some valuable 

information about random disturbances and also characteristics in this medium. 

(a) (b) 
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Therefore, the tropospheric impact on a GNSS signal should be identified and modelled. However, computing the 

path delay using the integrals defined in Eq. (2.18) requires the determination of the refractivity along the ray 

trajectory. This technique is time-consuming and typically not applicable. Therefore, several models have been 

established which compute the path delay using just a few parameters. In the following, we describe models for the 

path delay in the zenith direction. Moreover, the mapping function and tropospheric gradients are described here, 

as well. 

2.4.1 Hydrostatic Delay Model 

The hydrostatic component of the propagation delay in zenith direction is around 2.2 meters at sea level. Assuming 

a Zenith Total Delay (𝑍𝑇𝐷) of roughly 2.4 meters, then this part of the delay accounts for almost 90% of the total 

delay and refers to Zenith Hydrostatic Delay (𝑍𝐻𝐷).  𝑍𝐻𝐷 can be obtained accurately using meteorological surface measurements like pressure or/and temperature which 

depends on the hydrostatic model. The various hydrostatic models differ mainly due to the assumptions made 

regarding the vertical hydrostatic refractivity profile. However, most of these models have no remarkable difference 

as they are just using different refractivity constants. Therefore, only two well-known strategies to model this part 

of the delay are described in this section.  

•Saastamoinen 

The hydrostatic component of the 𝑍𝑇𝐷 can be estimated with accuracy from millimetre to sub-millimetre, using 

the Saastamoinen model if precise measurements of surface pressure (𝑃𝑠) are available. This model is most 

commonly used in the geodetic techniques and reads as follows (Saastamoinen, 1973): 

 

                                                                𝑍𝐻𝐷 [𝑚] =  (0.0022768) 𝑃𝑠[ℎ𝑃𝑎]1−0.0026 cos 2𝜑−0.00028 𝐻𝑠                                                                                    (2.20) 

where, 𝜑 [𝑑𝑒𝑔] and 𝐻𝑠[𝑘𝑚] are the latitude and orthometric height, respectively.  

• Hopfield 

Another most commonly used model for the hydrostatic delay is the Hopfield model. This model implies the 

assumption of quartically expression of dry refractivity (Hopfield, 1969;Mendes, 1999). The 𝑍𝐻𝐷 of the Hopfield 

model reads as noted below (Hopfield, 1969;Schüler, 2001): 

                                                            𝑍𝐻𝐷 [𝑚] =  (( 0.62291𝑇𝑠[𝐾] ) + 0.0023081) 𝑃𝑠[ℎ𝑃𝑎]                                                     ( 2.21) 

where 𝑇𝑠 [𝐾] is the surface temperature. 

2.4.2 Wet Delay Model 

The wet component of the total delay is much smaller than the 𝑍𝐻𝐷 and therefore it forms solely 10% of the total 

delay. Moreover, modelling of this parameter from meteorological surface measurements is extremely difficult due 

to the strong variation in time and space. In fact, Radiosonde (RS) ascents were analysed for the definition of most 
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models of the wet part. Here, we only present the wet components of the tropospheric total delay of the models 

mentioned before.  

•Saastamoinen 

This model was proposed by Saastamoinen (1973) and it has two important assumptions: (1) linear decrease of 

temperature with height, and (2) a decrease of the water vapour pressure with height. Based on that, the 

Saastamoinen model of 𝑍𝑊𝐷 reads as follows (Mendes, 1999;Saastamoinen, 1973): 

                                                             𝑍𝑊𝐷 [𝑚] = 0.0022768 (1255𝑇𝑠[𝐾] + 0.05) 𝑒𝑠[ℎ𝑝𝑎]                                                                     (2.22) 

where 𝑒𝑠 is the surface water vapour pressure. 

• Hopfield 

Hopfield used a similar procedure as before. She derived the wet zenith delay based on the quartic atmospheric 

profile, which defines the wet component of refractivity (𝑁𝑤) as a fourth-degree function of height above the 

geoid(Hopfield, 1969, 1971, 1972;Schüler et al., 2001): 

                                                             𝑍𝑊𝐷 [𝑚] = [555.7 + 1.792 . 10−4 . 𝑒𝑥𝑝 (𝑡𝑠[℃]22.90)] . 𝑒𝑠[ℎ𝑝𝑎]𝑇𝑠  2 [𝐾2]                                                    (2.23) 

 

It should be noted that the accuracy of these models is not better than a few centimetres (Ghoddousi-Fard, 2009). 

Therefore, this parameter is generally considered as unknown in GNSS data processing due to the difficulty to 

estimate high accurate 𝑍𝑊𝐷 from the wet models. Then, using the estimated 𝑍𝑇𝐷 from the processing of the 

measurements and computed 𝑍𝐻𝐷 from hydrostatic models like Saastamoinen, 𝑍𝑊𝐷 can be calculated: 

                               𝑍𝑊𝐷 = 𝑍𝑇𝐷 − 𝑍𝐻𝐷                                                      (2.24) 

2.4.3 Horizontal Gradient 

Up to now, the troposphere was assumed to be azimuthal symmetric and horizontally layered. This assumption is 

appropriate for most applications. However, azimuthal asymmetry can cause significant errors in geodetic 

measurements. For example, this is one of the largest error sources in raytracing, mainly for low elevation angles 

(Kleijer, 2004). A most common way to deal with these asymmetries is to estimate horizontal gradients, which 

denote approximately the partial derivative of the 𝑍𝑊𝐷 with respect to the latitude and longitude (Dach et al., 

2015;Zus et al., 2019). In the year 1973, Saastamoinen calculated theoretically the maximum magnitude of the 

horizontal gradient of  2 cm at 10° which was comparable to a zenith delay error of fewer than 4 mm (Saastamoinen, 

1973). Therefore, it is essential to account for this error source for low elevation angles. The most common way to 

model these asymmetries is horizontal gradients estimation (Dach et al., 2015;Mendes, 1999). One method to 

represent the azimuthal asymmetry is to consider a tilted troposphere (see Fig 2. 6). 
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Fig 2. 6. Tropospheric layers of refractivity 𝑵𝟏 and  𝑵𝟐 tilted by the angle 𝜷, where 𝜷 is the small angle between the 

geometric zenith direction and tropospheric normal direction 

Having assume 𝛽 is small (cos 𝛽 ≅ 1), we can write (Meindl et al., 2004;Mendes, 1999;Zhang et al., 2021):  

                                                            𝑧̃ = 𝑧 + 𝛿𝑧 = 𝑧 +  𝛽 cos(𝛼 − 𝛼0)                                                                  (2.25) = 𝑧 + 𝛽 cos𝛼0 cos 𝛼 + 𝛽 sin 𝛼0 cos 𝛼 

where 𝑧̃ represents the zenith angle with respect to the normal direction, and 𝛼0 denotes the azimuth of the 

tropospheric normal direction with respect to the geometric zenith direction. Moreover, 𝑧 and 𝛼 are the zenith and 

azimuth angles of the signal, respectively. With definition of 𝑥 = 𝛽 cos 𝛼0 and 𝑦 = 𝛽 sin 𝛼0, Eq. (2.25) can be stated 

as follows (Meindl et al., 2004;Mendes, 1999): 

                                                          𝑧̃ − 𝑧 = 𝛿𝑧 =  𝑥 cos 𝛼 + 𝑦 cos 𝛼                                                                    (2.26) 

and then by using Taylor series, the following expression can be defined for the gradient delay in a tilted 

tropospheric layer (Kleijer, 2004;Dach et al., 2015;Meindl et al., 2004): 

                                                                   𝑆𝑇𝐷𝛼 ≈ 𝑀𝐹𝛼(𝑧)  tan 𝑧 ⏟        𝑀𝑎𝑝𝑝𝑖𝑛𝑔  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐺⃗. [cos 𝛼 sin 𝛼]⏟               𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑙𝑎𝑦 )                                                             (2.27) 

where 𝐺⃗ ≐ [𝐺𝑁; 𝐺𝐸] is a gradient vector in the opposite direction of the projected normal (Kleijer, 2004) where 𝐺𝑁 

and 𝐺𝐸 are the north and east components of that. Accordingly, the second part of Eq. (2.27) can be defined as listed 

below  (Kleijer, 2004;Mendes, 1999): 

                                                                   𝐺(𝛼) ≐ 𝐺⃗. [cos 𝛼 sin 𝛼] = 𝐺𝑁 cos 𝛼 + 𝐺𝐸 sin 𝛼                                                      (2.28) 

Therefore, the gradient delay due to the azimuthal asymmetry is composed of a north and an east component. 

An azimuthal mapping function due to the tilted troposphere was proposed by (Chen and Herring, 1997): 

                                                                   𝑀𝐹𝛼(𝑧) = 1cos 𝑧 cot 𝑧+0.0032                                                                                         (2.29) 
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2.4.4 Mapping Functions 

In order to map a tropospheric delay in zenith direction to a slant delay at different elevation angles (𝜀), mapping 

functions are applied. According to Fig 2. 7, the simple approximation of the mapping function is the inverse of 

the sine function of the elevation angle 𝜀: 
                                                                 𝑀𝐹(𝜀) = 1sin 𝜀                                                                                                                   (2.30) 

which is acceptable for elevation angles above ~15° (Skone, 2003). Therefore, 𝑍𝑇𝐷 can be transformed to 𝑆𝑇𝐷 

using a mapping function as follows: 

                                                   𝑆𝑇𝐷 = 𝑀𝐹(𝜀) 𝑍𝑇𝐷                                                                                                (2.31) 
 

 

 
Fig 2. 7. Map ZTD to STD at the specific elevation angle 

In the past 25 years, a number of researchers have developed more accurate mapping functions (Böhm et al., 

2006a;Böhm and Schuh, 2004a;Davis et al., 1985;Ifadis, 1992;Landskron and Böhm, 2018;Marini, 1972;Niell, 

1996). Eq. (2.32) shows the conventional form of mapping functions for the dry and wet part of the delay with 

three coefficients 𝑎, 𝑏 and 𝑐, for a given elevation angle 𝜀 (Herring, 1992;Marini, 1972;Niell, 1996, 2001): 

                                                                      𝑀𝐹(𝜀) = 1+ 𝑎1+ 𝑏1+𝑐sin 𝜀+ 𝑎sin𝜀+ 𝑏𝑐+sin𝜀                                                                                (2.32)  

The three coefficients 𝑎, 𝑏 and 𝑐 differ for the wet and dry part due to the different thickness of both parts of the 

troposphere (Mendes, 1999). Table 2. 2 displays a list of input parameters required for the hydrostatic mapping 

function and the wet mapping function of three different mapping functions (Böhm and Schuh, 2004b): 
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Table 2. 2. Input parameters for NMF, IMF and VMF mapping functions 

Name 

Type 

Niell Mapping Function 

(NMF) 

Isobaric Mapping Function 

(IMF) 

Vienna Mapping Function 

(VMF) 

Hyd. 𝐷𝑜𝑌, ℎ, 𝜑 𝑧200 , ℎ, 𝜑 ℎ, 𝑎ℎ (, 𝑏ℎ, 𝑐ℎ) 
Wet. 𝜑 𝑠𝑚𝑓𝑤 3, ℎ 𝑎𝑤 (, 𝑏𝑤 , 𝑐𝑤) 

 

In Table 2. 2, 𝑧200 is the height of the 200 ℎ𝑃𝑎 level and 𝑠𝑚𝑓𝑤 3 is computed using a Numerical Weather Model 

(NWM) at each grid point by the following formula (Niell, 2003): 

                                                                 𝑠𝑚𝑤𝑓3 = 𝑙𝑜𝑠𝑤𝑧𝑤𝑑                                                                                                       (2.33) 

with 

                                                                       𝑙𝑜𝑠𝑤 = 0.5 ∑ [𝑁𝑤(ℎ𝑖) + 𝑁𝑤(ℎ𝑖−1)] . (𝑠(ℎ𝑖) − 𝑠(ℎ𝑖−1))𝑁𝑖=2                                    (2.34) 

                                                                      𝑍𝑊𝐷 = 0.5 ∑ [𝑁𝑤(ℎ𝑖) + 𝑁𝑤(ℎ𝑖−1)] . (ℎ𝑖 − ℎ𝑖−1)𝑁𝑖=2                                            (2.35) 

whereby 𝑁𝑤 is the wet refractivity and 𝑠 is the distance along the geometric signal path at an elevation of 3.3°. 
Moreover, ℎ𝑖 denotes the height of the 𝑖𝑡ℎ pressure level. 

The coefficients of the VMF function are calculated optimally based on direct ray-tracing through the European 

Centre for Medium-range Weather Forecasts (ECMWF) model data (Böhm and Schuh, 2004a;Böhm et al., 2006b).  

For the hydrostatic VMF, the coefficients 𝑏ℎ and 𝑐ℎ are extracted from the dry part of the IMF as follows (Böhm 

and Schuh, 2004a;Niell, 1996): 

                                                              𝑏ℎ = 0.002905                                                                                                                  (2.36) 

                                                                   𝑐ℎ = 𝑐0 + [(cos (𝐷𝑜𝑌−28365  . 2𝜋 + 𝜓) + 1) . 𝑐112 + 𝑐10] . (1 − cos𝜑)                          (2.37) 

and the coefficients 𝑏𝑤 and 𝑐𝑤  of the wet VMF, are taken from the non-hydrostatic part of the NMF as shown 

below (Böhm and Schuh, 2004a;Niell, 2001): 

                                                            𝑏𝑤 = 0.00146                                                                                                                      (2.38) 

                                                            𝑐𝑤 = 0.04391                                                                                                                      (2.39) 

The coefficients 𝑎ℎ , 𝑎𝑤 can be calculated by inverting Eq. (2.32) with 𝑏 and 𝑐 fixed as above (Böhm and Schuh, 

2004a). All mentioned coefficients are computed every six hours and therefore this mapping function is available 

in near real-time. 

In this thesis, the VMF1 mapping function is applied to compute 𝑆𝑇𝐷 by Eq. (2.40) due to: 

 Applying a mapping function based on the numerical weather model (IMF and VMF) is more reasonable 

than other choices ( NMF) because of better repeatability of station height and baseline lengths 

 Improving VMF due to the exploitation of this mapping function with the full information of the NWM 

                     𝑆𝑇𝐷 =  𝑉𝑀𝐹1ℎ(𝜀). 𝑍𝐻𝐷 + 𝑉𝑀𝐹1𝑤(𝜀). 𝑍𝑊𝐷 + 𝑀𝐹𝛼(𝜀). [𝐺𝑁 cos 𝛼 + 𝐺𝐸 sin 𝛼]                                         (2.40) 
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Moreover, the Slant Hydrostatic Delay (𝑆𝐻𝐷) and the Slant Wet delay (𝑆𝑊𝐷) can be calculated as follows: 

                   𝑆𝐻𝐷 =  𝑉𝑀𝐹1ℎ(𝜀). 𝑍𝐻𝐷 + 𝑀𝐹𝛼(𝜀). [𝐺𝑁ℎ cos 𝛼 + 𝐺𝐸ℎ sin 𝛼]                                                                        (2.41) 

                   𝑆𝑊𝐷 =  𝑉𝑀𝐹1𝑤(𝜀). 𝑍𝑊𝐷 + 𝑀𝐹𝛼(𝜀). [𝐺𝑁𝑤 cos 𝛼 + 𝐺𝐸𝑤 sin 𝛼]                                                                    (2.42) 

where  𝐺𝑁ℎ and 𝐺𝐸ℎ are the hydrostatic horizontal gradients and 𝐺𝑁𝑤 and 𝐺𝐸𝑤 are the wet horizontal gradients.  
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Chapter 3 

3 GNSS Tropospheric Tomography 

Due to the development of GNSS (more satellites, more signals and more stations), some researchers have been 

focusing on employing the slant measurements to determine the three-dimensional (3D) behaviour of water vapour. 

This kind of 3D field reconstruction from combined measurements is denoted as tomography, an approach that has 

been mostly applied in medicine for imaging the human body, like Magnetic Resonance Imaging (MRI). GNSS 

tomography is a promising and developing method to determine the spatio-temporal behaviour of the water vapour 

of the troposphere using the tropospheric slant wet delay (SWD) along the lines-of-sight to each satellite. Therefore, 

the principle input data for GNSS tomography is the GNSS ray path and the tropospheric signal delay. Using these 

observations, the most important but highly variable key element of the troposphere, water vapour, can be modelled 

in terms of temporal variation and spatial distribution. In addition, increasing the length of the derived delay time 

series allows to apply GNSS tomography results for long term meteorology studies. 

For modelling wet refractivity field (𝑁𝑤) using the tomographic technique, the troposphere is discretized to a finite 

number of 3D elements, named voxels. Then, GNSS signals passing through each voxel are used to retrieve the 

spatial and temporal behaviour of the wet refractivity. 

In the following sections, some important studies and notable progress in GNSS tomography are explained. Then, 

the most significant features in the tomography techniques like defining the equation system and tomography model 

are described. After that, the mathematical basis for the tomography solution as well as the solving strategy is 

investigated. Finally, the statistical evaluation of the reconstructed wet refractivity field is discussed. 

3.1 State of the Art in GNSS Tomography 

Over the past two decades, several methods have been developed in order to determine the 3D structure of the 

tropospheric wet refractivity. According to that, the most significant features of the GNSS tomography can be 

divided into four parts: the datasets and constraints used to solve the tomography problem (observations), selection 

of optimal dimensions of voxels and the design of the tomography model (parameterization), how to formulate and 

regularize the tomographic problem (inversion), and evaluation. Therefore, in the following, the most important 

studies regarding these features are presented separately. 

3.1.1 Constraints and Additional Data Sources 

As GNSS signals cannot cover all the model elements in GNSS topography, therefore some constraints and 

additional data sources should be utilized in order to achieve the solution for all voxels. In this regard, both Flores 

et al. (2000a) and Gradinarsky and Jarlemark (2004) used horizontal and vertical smoothing constraints as well as 

a boundary constraint to ensure zero refractivity above a certain height. Braun and Rocken (2003) used a single-

frequency GPS Network together with Raman LIDAR observations to estimate four-dimensional (4D) images of 

water vapour density.  In the year 2004 and in the following years the work of the French group within the 

framework of the ESCOMPTE program (Kačmařík and Rapant, 2012;Cros et al., 2004), Champollion et al. (2005) 
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applied the standard atmosphere as a vertical constraint for mid-latitudes. Moreover, they proposed using surface 

meteorological observations for the reconstruction of wet refractivity in the lowest layer. Another research group 

in China applied the output of a numerical weather model (NWM) as a priori knowledge for wet refractivity 

reconstruction using the GNSS tomography technique (Song et al., 2006). Besides, they defined horizontal 

smoothing constraints by considering a certain degree of correlation between adjacent cell elements based on the 

Gaussian weighted mean using controllable width. In the year 2006, the average results of all radiosonde profiles 

over a certain time of interest used as a priori information in the GNSS tropospheric tomography (Bi et al., 2006). 

Rohm and Bosy (2011) extracted a set of parameters for the observation equation system of the tomography 

problem using the analysis of airflow. In year 2013, Rohm proposed an unconstrained method for GNSS 

tomography using the combination of successive epochs of data (Rohm et al., 2013). 

Xia et al. (2013) suggested applying water vapour profiles above 2 km from radio occultation into the observation 

equation system to overcome the issue of an ill-posed structure matrix in the tomography problem. In the year 

2014, Adavi and Mashhadi-Hossainali applied the Virtual Reference Stations (VRS) as an additional synthetic 

observation to estimate a unique wet refractivity field of the tropospheric tomography model (Adavi and Mashhadi-

Hossainali, 2014).  

Some researchers used the estimated Integrated Water Vapour (IWV) values from interferometric synthetic 

aperture radar (InSAR) to improve the efficiency of the tomography solution (Benevides et al., 2015b;Douša, 

2004;Hurter et al., 2012). In the following, Benevides et al. (2015a) applied high-resolution water vapour from a 

moderate-resolution imaging spectroradiometer (MODIS) to improve the accuracy of the reconstructed 

tomography field. In the year 2018, Radiosonde and Atmospheric Infrared Sounder (AIRS) were used to initialize 

and update a 3-D tropospheric wet refractivity field. Jaberi Shafei and Mashhadi-Hossainali (2020) used reflected 

signals from an air-borne reflectometry mission as an additional constraint in the tropospheric tomography to 

achieve a unique solution. Based on their results, the accuracy of the reconstructed field is sufficient, however the 

reflectometry data should be checked during severe weather conditions before the reconstruction step. 

3.1.2 Voxel Design 

In order to model the wet refractivity in the troposphere, this layer should be spatially divided into a number of 

voxels. It is assumed that the wet refractivity amount in each voxel will stay constant during the study time period. 

Therefore, voxel design is one of the effective parameters to optimize the modelling of wet refractivity. In this 

respect, during the past two decades, some researchers have proposed several methods for the voxel design in the 

GNSS tomography. In the year 2000, Seko et al. introduced a moving cell method to improve the distribution of 

the path-crossed voxels impartially. In their method, all cell elements moved with the same speed of the 

precipitation system for a suitable period. In that case, all voxels translated at the speed of the precipitation system, 

and therefore due to the movement of cell elements, and due to changes of the GPS station geometry, the path 

lengths in each voxel are time-dependent (Seko et al., 2000). The moving cell method to design the tomography 

time-dependent model was further improved by Priego et al. (2017) and Noguchi et al. (2004) for local-scale 

phenomena up to a time resolution of 10 min. In their work, the whole tomography model moved with the speed 

of the horizontal wind velocity. Nevertheless, in this method the effect of vertical wind cannot be resolved due to 
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the complex and unpredictable inherent of the wind velocity. In the year 2004, Troller defined open voxels for each 

horizontal layer to prevent leaving rays from the model boundaries (Troller, 2004). By doing this, all signals are 

crossing voxels from the upper to the lower layers of the tomography model.  

Bi et al. (2006), Bender and Raabe (2007) and Ghafari Razin and Voosoghi (2020) showed that the spatial 

resolution of the tomography model is very sensitive to the density of the GNSS network and the number of 

available GNSS satellites and stations. They suggested to define the horizontal resolution of the tomography model 

based on the distance between neighbouring stations to increase the number of crossed voxels by signal rays. In 

the year 2013, Manning proposed to use an exponential model to define the vertical resolution instead of using a 

lower number of levels as well as equidistant spacing as it leads to better results (Manning, 2013). Adavi and 

Mashhadi-Hossainali (2014) used the model space resolution matrix to define the optimum horizontal resolution 

for the tomography model due to the dependency of this matrix to the property of the design matrix of the 

tomography problem. According to their results, the optimum spatial resolution can be achieved when the 

resolution matrix is close to identity. Chen and Liu (2014) proposed a technique to improve the model elements 

distribution in both vertical and horizontal directions and subsequently enhanced the tomography reconstruction. 

In their method, the optimum resolution is defined according to finding the maximum number of ray-crossing of 

voxels in both longitude and latitude directions. In the vertical direction, the optimal vertical resolution and the 

maximum height of the tomography model are obtained based on the computed water vapour from radiosonde data. 

In the year 2016, Yao and Zhao recommended a novel, optimized method of voxel division for the tropospheric 

tomography. In this method, the vertical boundary is defined like Chen and Liu (2014) based on the derived water 

vapour for a long time period  (Yao and Zhao, 2016). In the horizontal domain, the concept of non-uniform 

symmetrical division of horizontal voxels is considered to increase the total number of voxels crossed by rays. 

Zhao et al. (2020) proposed an innovative method using Adaptive Node Parameterization (ANP) using a 

combination of three meshing techniques to dynamically adjust both the boundary of the tomographic region and 

the position of nodes at each tomographic epoch. The three meshing methods are boundary extraction, Delaunay 

triangulation, and force-displacement algorithm. Based on their research, this method could improve the 

performance of the tomography solution. In the year 2020, Wang et al. proposed ‘The High Flexibility GNSS 

Tomography (HFGT)’ method to define the GNSS tomography model to adapt the size of the GNSS network 

(Wang et al., 2020). In this method, the tomography region and its spatial division at each tomography window is 

defined based on the distribution of the GNSS signals in real time. 

3.1.3 Solving Methodology and Regularization 

Since the year 2000, a number of methods have been developed to reconstruct the tropospheric structure using the 

GNSS tomography, which mainly focuses on the regularization techniques and solving methodology. In this regard, 

in 2000, Hirahara  successfully conducted a 4D tropospheric tomography experiment based on the damped least-

square method due to the singularity of the observation equation system of the tomography problem (Hirahara, 

2000). Braun and Rocken (2003) and Braun (2004) used the extended sequential batch filter to overcome the 

sensitivity of the GNSS tomography model as well as updating the tomography solution. In years 2006 and 2007, 

Nilsson et al. presented a new troposphere tomography method to retrieve the 3D behaviour of the wet refractivity 
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field directly from the raw GPS phase data (Nilsson and Gradinarsky, 2006;Nilsson et al., 2007). This method 

improves the accuracy of the wet refractivity in comparison to the regular GNSS tomography which applies SWD 

observations affected by a number of error sources. Rohm and Bosy (2009) applied the Moore–Penrose pseudo 

inverse to invert the observation equation system of the tomography model. In the proposed method, no additional 

constraint is required and therefore the actual state of the wet refractivity field is reflected by the tomography 

reconstruction. In the year 2011, Perler et al. presented new parameterized methods to reconstruct a 4D water 

vapour field that improve the quality of retrieved images. They applied trilinear and spline functions in ellipsoidal 

coordinates to retrieve the tomography model. Therefore, discretization impacts are minimized without 

considerably increasing the number of unknown parameters (Perler et al., 2011). Bender et al. (2011) implemented 

several members from algebraic reconstruction techniques (ART) to reconstruct the wet part of the troposphere. 

According to their result, the multiplicative techniques (MART) could estimate the tomography solution with 

higher accuracy in least processing time in comparison to other iterative techniques of the ART family.  

In the year 2013, Rohm et al. proposed the new GNSS tomography model named TOMO2 (Rohm et al., 2013) . 

TOMO2 applies a robust Kalman filtering technique to solve the unconstrained tomography model. Besides, 

according to their study, the real SWD dataset is influenced by noise and outliers, and therefore advanced 

processing is required beyond the ordinary Kalman filter for real GNNS data. They also achieved a better 

conditioned model matrix by removing the linearly dependent parameters and observations. Xia et al. (2013) 

presented a combined iterative and non-iterative reconstruction algorithm (CRA) using GPS observations and 

COSMIC profiles. In this method, first, a generalized inverse solution of water vapour density is calculated using 

the NIRT (non-iterative reconstruction technique) by considering COSMIC radio occultation profiles as vertical 

smoothing constraints. Then, the estimates from the NIRT steps are applied in the IRT (iterative reconstruction 

technique). They proposed a new iterative algorithm named improved algebraic reconstruction technique (IART) 

which can remarkably improve the computational efficiency by reducing the number of iterations. In the year 2015, 

Adavi and Mashhadi-Hossainali used a hybrid regularization method to compute a reconstructed tomography 

solution. This method is combined of the Least-Square QR (LSQR) and the Tikhonov regularization techniques 

and benefits from the advantage that both the non-iterative and iterative techniques are independent of an initial 

field (Adavi and Mashhadi-Hossainali, 2015). Guo et al. (2016) proposed for GPS troposphere tomography an 

optimal weighting method to determine the optimal weights for three types of equations, namely the observation 

equation, the horizontal constraint equation, and the vertical constraint equation. According to the obtained results, 

the accuracy of the reconstructed tomography model using the proposed method under various weather conditions 

is significantly better than the conventional equal weighting scheme and constant weighting methods. In the year 

2019, Yoa et al. presented an improved pixel-based tropospheric tomography model. This model uses the layered 

optimal polynomial coefficients which are extracted from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) to reconstruct the 3D water vapour distribution in the troposphere (Yao et al., 2019). The 

proposed method is much more efficient and convenient in equations form compared to the traditional method. 

Ghafari Razin and Voosoghi (2020) used artificial neural networks (ANNs) to model the wet refractivity of the 

troposphere. In their method, the objective function is calculated using the squared difference between SWD from 

GNSS (SWDGPS) and SWD from ANN (SWDANN). Then, the ANN network is trained by a hybrid PSO (particle 
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swarm optimization) -BP (backpropagation) algorithm to obtain the minimum of the objective function as well as 

optimize the network weights. Using the calculated objective function, the wet refractivity can be reconstructed 

with the high accuracy. Haji Aghajany et al. (2020) proposed a new tropospheric tomography based on the B-spline 

function which discretizes vertically some of the model layers whereas the Wet Vapour Density (WVD) B- spline 

function is applied horizontally. This method efficiently reduces the number of unknown parameters due to 

estimation of coefficients of the WVD function in each layer. Consequently, it can overcome the rank deficiency 

of the tropospheric tomography problem. In 2020, Zhao et al. recommended a method to consider the signals 

leaving the side face of the tomography model to improve the stability of the tomography solution using the 

combination of GNSS observations with data derived from the empirical Global Pressure and Temperature 2 wet 

model (Zhao et al., 2020). 

3.2 Tomography Problem Formulation 

The word “tomography” stems from the Ancient Greek words tomo “section/layer” and grafëin “write/record”. 

Tomography is a general technique to determine the characteristics or inner structure of some objects, e.g. the 

Earth’s atmosphere or the human body, based on integrated measurements over the time span in different directions 

and different locations. This method has numerous applications in medicine, earth science, material science, 

archeology and acoustics. The fundamental mathematics behind the tomography was formed by Radon (1986) 

which is also known as Radon transform. The mathematical basis of tomography is now used as the integral 

geometry, where the object is retrieved from measurements existing in the form of integrals over manifolds of less 

dimensionality (Kunitsyn and Tereshchenko, 2003).  

Tomography is an important and informative inverse problem (Aster et al., 2005) and therefore, it can be considered 

as a subset of inverse theory. This method is distinguished by a specific form of the data kernel that includes 

measurements made along signals (Menke, 2012). The tomography model is a function of two or more variables 

that can be related to the measurements by the following equation (Aster et al., 2005;Menke, 2012):                                                      𝑑𝑖 = ∫ [𝑚(𝑥(𝑠), 𝑦(𝑠))]4𝐶𝑖 𝑑𝑠                                                                                                                          (3.1) 
Here, 𝑚 and 𝑑 are the model function and measurements along the ray path. Moreover, 𝐶𝑖 is a curved ray with arc 

length 𝑠. There are several factors that limit a continues formulation of the tomography model (Eq. (3.1)) in reality. 

First, the Dirac delta function is not square-integrable which causes some issues like no integrable singularities at 

the intersection points of rays (Menke, 2012). Second, in 3D cases, rays may not cross at all, and therefore all the s will be zero (Menke, 2012). All of these issues can be solved by replacing rays with tubes of finite cross-sectional 

width (Menke, 2012). As this approximation corresponds to a smoothing of the model function 𝑚(𝑥(𝑠), 𝑦(𝑠)), a 

discretization of the continuous problem (Eq. (3.1)) by dividing it into subregions with constant 𝑚 and adequate 

size to guarantee a reasonable number of rays (more than one), often satisfies demands in this respect (Menke, 

2012). 

The discrete form of Eq. (3.1) can then be noted as (Aster et al., 2005;Menke, 2012;Natterer, 1986):                                                           𝑑𝑖 = ∑ 𝐺𝑖𝑗𝑚𝑗𝑗                                                                                                                                         (3.2) 
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where 𝑖 = 1: 𝑛 and 𝑗 = 1:𝑚 are the number of rays and subregions. Moreover, 𝐺𝑖𝑗 is the length of the 𝑖𝑡ℎ ray in the 𝑗𝑡ℎ subregions. 

In this work, the outlier aims to reconstruct the 3D wet refractivity field based on the discretized form of the 

tomography model (Eq. (3.2)), named the voxel-based tomography, using the rays containing the information of 

tropospheric delays at different elevation angles. Therefore, a tomography model needs to be designed in order to 

retrieve the 3D image of wet refractivity using the integrated rays over the intended resolution time which are 

emitted from GNSS satellites and received at GNSS sites. Fig 3.1 shows the required steps to derive the wet 

refractivity distribution using GNSS observations in the GNSS tomography. In the following parts, the tropospheric 

tomographic reconstruction of wet refractivity using the voxel-based method according to the mentioned phases in 

Fig 3. 1 is presented. 

 

Fig 3. 1. Design of Tomography Model 

3.2.1 Equation System of the Tomography within a Discretised Refractivity Field 

In order to reconstruct the wet refractivity (𝑁𝑤) [unit: ppm] structure, the wet part of the troposphere is discretized 

to 3D voxels. Then, the spatiotemporal behaviour of the wet part of the refractivity is retrieved by analysing the 

impact of the wet part of the troposphere on GNSS signals with an assumption that 𝑁𝑤 is constant in the individual 

model elements. For this purpose, a large number of 𝑆𝑊𝐷𝑠 [unit: mm] are integrated in the GNSS tomography 

according to Eq. (3.3) (Flores et al., 2000a;Heublein, 2019):                                                             𝑆𝑊𝐷𝑖 = 10−6  . ∑ 𝑁𝑤𝑗𝑚𝑗=1  . 𝑑𝑖𝑗                                                                                                           (3.3) 
whereby, 𝑑𝑖𝑗 is the length of the 𝑖𝑡ℎ signal inside the 𝑗𝑡ℎ model element [unit: km] (see Fig 3. 2). According to Eq. 

(3.3), the total slant wet delay observation of each satellite (𝑆𝑊𝐷𝑖) can be defined as a summation over voxels 

intersected by the GNSS signals. 
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Fig 3. 2. Principle of the GNSS Tomography, ray path within the discretized wet troposphere above the GNSS network 

We can reformulate Eq. (3.3) in matrix notation as follows (Flores et al., 2000b):                                                                    𝑺𝑾𝑫 = 𝑨 𝑵𝒘                                                                                                                                 (3.4) 
Here, 𝑺𝑾𝑫 is the observation vector of length m where m is calculated from the number of GNSS stations and 

visible satellites in the defined time window of the tomography model. 𝑵𝒘 represents the refractivity field vector 

of length n where n (𝐿1 × 𝐿2 × 𝐿3) is the number of voxels in the tomography model. Consequently, 𝑨 is a 𝑚 × 𝑛 

matrix with the responsibility of mapping the unknown space onto the measurement space. 𝑨 is called a design 

matrix with the following definition (Rohm and Bosy, 2009): 

                                                         𝑨 =  [𝑑11 0 0    0 ⋯ 𝑑1𝑛𝑑21 𝑑22 𝑑23 0 ⋯ 𝑑2𝑛⋮𝑑𝑚1 ⋮𝑑𝑚2 ⋮0 ⋮ ⋱  ⋮𝑑𝑚4 ⋯ 𝑑𝑚𝑛]                                                                                     (3.5) 

According to Eq. 3.5, the coefficients of the design matrix 𝑨 can be defined as follows: 

                                                       𝐴𝑖𝑗 = {𝑑𝑖𝑗       𝑖𝑓 𝑟𝑎𝑦 𝑖 𝑐𝑟𝑜𝑠𝑠 𝑣𝑜𝑥𝑒𝑙 𝑗0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                        (3.6) 

As shown in Eq. (3.4), matrix 𝑨 is a mapping matrix governed by the resolution of the tomography model, the 

satellite constellation, the distribution of the GNSS receivers as well as the tomography window (Bender et al., 

2011;Lutz, 2008;Troller, 2004). Due to insufficient spatial coverage of the voxels by GNSS rays within the 

tomography window, some of the voxels are intersected by a small number or a plenty number of signals and others 

are not passed at all. Therefore, the design matrix 𝑨 is a sparse matrix , and Eq. (3.4) is mixed-determined (Menke, 

2012). Hence, the exact solution of the tomography problem cannot be estimated directly through Eq. (3.4) since 

the inversion of the design matrix is incalculable. In other words, the model null space of the design matrix is non-

trivial, which causes the partly ill-conditioned tomographic inversion system. In order to reconstruct the wet 

refractivity field using Eq. (3.4), some constraints or external data sources should be added to the tomography 

problem as well as some inversion techniques must be applied which are discussed in more details in Section 3.3 

and Section 3.4.   
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3.2.2 Tomographic Voxel Model 

The 3D tomography model is defined by dividing the wet part of troposphere into finite volume pixels, named 

voxels, to reconstruct the spatio-temporal behaviour of the wet refractivity (see Fig 3. 3). This model is designed 

over the GNSS network and therefore it highly depends on the orography of the study area as well as distances 

between GNSS stations. Moreover, the horizontal and vertical resolution of the voxels should be determined based 

on the GNSS network characteristics. In this regards, here we use the exponential layer function to define the 

vertical spacing between the layers of the tomography model (Manning, 2013;Möller, 2017;Perler, 2011) 

                                                      𝑑ℎ(𝑖) = 𝑑ℎ(0) 𝑞ℎ𝑖                                                                                                                   (3.7) 

where 𝑑ℎ(𝑖) is the height difference of the successive layers and 𝑑ℎ(0) is the height difference between the first 

two layers. Moreover, 𝑞ℎ𝑖  is the growth factor (see (Perler, 2011) for more details). To take into account the 

topography of the investigated area the height of the grid point should be computed based on the elevation model 

of the case study area. Therefore, an appropriate interpolation method like nearest-neighbour interpolation or 

biharmonic spline interpolation is used according to the orography of the case study and density of the elevation 

model. In addition, to ensure that the contribution of low elevation rays (tracked mostly by reference sites at the 

border of our model area) which leave the tomographic model via lateral surfaces is accounted for correctly, the 

tomography area was extended by a sparse outer voxels model. The horizontal size of these boundary zones is 

chosen 5° in this research. Details of this design phase are provided in chapter 5. 

  

(a) (b) 

Fig 3. 3. Schematic representation of the tomography model (a) and voxel numbering within the first layer of the 

tomography model (b) 

The horizontal resolution is determined by means of the concept of the model resolution matrix (𝑹𝒎) which was 

firstly used by Adavi and Mashhadi-Hossainali (2014). This matrix is given by:                                                                       𝑹𝒎 = 𝑨†𝑨                                                                                                                                  (3.8) 
where 𝑨† is a generalized inverse of 𝑨 (Eq. (3.4)) and both matrices can be defined using the singular value 

decomposition theorem as follows (Aster et al., 2005): 
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                                                                     𝑨 = 𝑼 𝑺 𝑽 = 𝑼𝑝𝑺𝑝𝑽𝑝𝑇                                                                                                             (3.9)                                                                      𝑨† = 𝑽p𝑺p−1𝑼pT                                                                                                                         (3.10)                                                                                                                       

where 𝑼 [𝑚 ×𝑚] is an orthogonal matrix of eigenvectors (𝒖(𝑖)) that spans the data space (ℛm) (Menke, 2012):                                                                      𝑼 =  [𝒖(1) 𝒖(2) 𝒖(3) … 𝒖(𝑚)]                                                                                  (3.11) 
Moreover,  𝑽 [𝑛 × 𝑛] is an orthogonal matrix of eigenvectors (𝒗(i)) that spans the model space (ℛn) (Menke, 2012):                                                                        𝑽 =  [𝒗(1) 𝒗(2) 𝒗(3) … 𝒗(𝑛)]                                                                                     (3.12) 
 and 𝑺 [𝑚 × 𝑛] is a diagonal eigenvalue matrix which contains nonnegative diagonal elements called singular values 

which are generally arranged in decreasing size [𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑝=𝑚𝑖𝑛(𝑚,𝑛)]. Here, p is the number of non-zero 

singular values. Therefore, 𝑺 can be partitioned as noted below: 

                                                                    𝑺 = [𝑺𝑝 𝟎𝟎 𝟎]                                                                                                                              (3.13) 
and consequently, 𝑼p and 𝑽𝑝 are the first p columns of  𝑼 and 𝑽, respectively.  

Substitution of Eq. (3.9) and Eq. (3.10) into Eq. (3.8) gives:                                                                    𝑹𝒎 = 𝑽𝑝𝑺𝑝−1𝑼𝑝𝑇 𝑼𝑝𝑺𝑝𝑽𝑝𝑇 = 𝑽𝑝𝑽𝑝𝑇                                                                                     (3.14) 
According to Eq. (3.14),  if 𝑟𝑎𝑛𝑘(𝑨) = 𝑝 = 𝑛, 𝑹𝒎 is an identity matrix, and all model parameters will be perfectly 

retrieved. If the model null space of matrix 𝑨 is non-trivial (𝑁𝑢𝑙𝑙(𝑨) ≠ {0}) then 𝑹𝒎 is not an identity matrix, which 

is demonstrating how the resolved model parameters smear out the true model parameters. Therefore, the model 

resolution matrix characterizes whether the model parameters can be predicted well. This matrix can be used as an 

important tool for the experimental design due to the independence from the actual measurements and dependency 

on the a priori field and the data kernel (𝑨) (Menke, 2012). Thereby, with the assumption of knowing the vertical 

resolution, the optimum horizontal resolution of the tomography model can be obtained by means of the resolution 

matrix. Further investigation is presented in Chapter 5. 

3.2.3 Ray-tracing of Signal Path 

In order to create the design matrix of the tomographic inversion system Eq. (3.4), the distances within each voxel 

should be calculated by means of ray-tracing. In recent years, different ray-tracing algorithms have been established 

in the VLBI or GNSS community to estimate different parameters like slant tropospheric delay or the structure 

matrix of the tomography equation system (Haase et al., 2003;Haji Aghajany and Amerian, 2017;Hobiger et al., 

2008;Hofmeister, 2016;Möller and Landskron, 2019;Nafisi et al., 2012). Here, the straight-line strategy and the 

Eikonal ray-tracing as two popular ray-tracing methods to solve the GNSS tomography problem are investigated. 

3.2.3.1 Straight-Line Geometry 

To determine the intersection point of GNSS signals and voxels faces using the straight line ray-tracing the 

corresponding procedures should be applied: 
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a. The Earth-Centered, Earth-Fixed (ECEF) coordinates of  all GNSS stations and all satellites (from SP3 or 

the navigation file) within the tomography window are transformed into the local NEU-system (NEU) 

using the following formula (Cai et al., 2011;Grewal et al., 2007;Siegfried, 2009): 

                                                                 [𝐸𝑁𝑈] = [ − 𝑠𝑖𝑛 𝜆𝑟 𝑐𝑜𝑠 𝜆𝑟 0− 𝑠𝑖𝑛 𝜑𝑟 𝑐𝑜𝑠 𝜆𝑟 −𝑠𝑖𝑛 𝜑𝑟 𝑠𝑖𝑛 𝜆𝑟 𝑐𝑜𝑠 𝜑𝑟    𝑐𝑜𝑠 𝜑𝑟 𝑐𝑜𝑠 𝜆𝑟    𝑐𝑜𝑠 𝜑𝑟 𝑠𝑖𝑛 𝜆𝑟 𝑠𝑖𝑛 𝜑𝑟] [𝑋 − 𝑋𝑟𝑌 − 𝑌𝑟𝑍 − 𝑍𝑟]                                            (3.15) 
where (𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟) and (𝜑𝑟 , 𝜆𝑟 , ℎ𝑟) are the Cartesian and geodetic coordinates of the ENU origin in the ECEF and (𝑋, Y, Z) are the satellite or station coordinates. In this thesis, the middle point of the study area has been chosen as 

the origin. 

b. The line equation between GNSS station (sta) and satellite (sat) is calculated in the NEU as follows:                                                                   𝑙𝑎 + 𝑙𝑑  𝑝𝑎𝑟 = 0;    𝑝𝑎𝑟 ⊆ [0 1]                                                                                                          (3.16) 
with                                                                  𝑙𝑑 = [𝐸𝑠𝑡𝑎 − 𝐸𝑠𝑎𝑡;  𝑁𝑠𝑡𝑎 − 𝑁𝑠𝑎𝑡 ;  𝑈𝑠𝑡𝑎 − 𝑈𝑠𝑎𝑡]                                                                               (3.17)                                                                 𝑙𝑎 = [𝐸𝑠𝑡𝑎;  𝑁𝑠𝑡𝑎;  𝑈𝑠𝑡𝑎]                                                                                                                       (3.18) 

c. 𝑝𝑎𝑟 is computed as noted below:                                               𝑝𝑎𝑟 = [(𝑃1−𝑃0) ×(𝑃2−𝑃0)]×[𝑙𝑎−𝑃0]−𝑙𝑑 .  [𝑃0×(𝑃2−𝑃0)]                                                                                                 (3.19) 
where 𝑃0, 𝑃1 and 𝑃2 are arbitrary points in intended voxel corners, defined by a triangle on the voxel face. 

d. The intersection points between each GNSS line-of-sight and the voxels planes (see Fig 3. 4) are calculated 

by substituting 𝑝𝑎𝑟 in Eq. (3.16). Only points that are situated in the intended voxel are selected. 

 

Fig 3. 4. Schematic representation of voxel faces and intersection points of ray path on it 

e. Finally, the Euclidean distance between inside intersection points is calculated to populate the design 

matrix. 
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3.2.3.2 Eikonal Ray-Tracing Method 
Variation of refractivity through the path trajectory causes some deviation from the straight line. The schematic 

representation of the real path in the tomography model is shown in Fig 3. 5. Therefore, to reconstruct the accurate 

ray path, ray-tracing over a Numerical weather model could be used. The Eikonal equation is the fundamental 

method for ray-tracing which can determine the real path trajectory and also the optical path length between satellite 

and receiver. This equation is valid under the assumption of geometric optic approximation and considering the 

microwave propagation as a ray. (Möller, 2017). According to these assumptions, the propagation path of the 

electromagnetic ray can be determined by solving the Eikonal equation (Born and Wolf, 1999;Hobiger et al., 

2008;Hofmeister, 2016;Nilsson et al., 2013):                                                                                    ‖∇𝐿‖ = 𝑁(𝒓)                                                                                                                  (3.20) 
whereby  𝐿 and 𝛻𝐿 represent the optical path length and the components of ray directions, respectively. Moreover,  𝑁 is the refractive index of the troposphere at position 𝒓.  

 

Fig 3. 5. Geometric illustration of bended path trajectory in tomography model 

 

Eq. (3.20) is a partial differential equation of the first order for 𝑁(𝒓) and it can be denoted in many other different 

forms as well. In the general form, the Hamiltonian conical formalism is applied (Born and Wolf, 1999;Cerveny, 

2005;Hofmeister, 2016;Nafisi et al., 2012;Nilsson et al., 2013): 

                                                                               𝐻(𝒓, ∇𝐿) ≐  1𝛼  {(∇𝐿 . ∇𝐿)𝛼2 − 𝑁(𝒓)𝛼} = 0                                                                     (3.21a) 
                                                                                𝑑𝒓𝑖𝑑𝑢 = 𝜕𝐻𝜕∇𝐿𝑖                                                                                                                        (3.21b) 
                                                                               𝑑∇𝐿𝑖𝑑𝑢 = − 𝜕𝐻𝜕𝒓𝑖                                                                                                                        (3.21c) 
                                                                               𝑑𝐿𝑖𝑑𝑢 = ∇𝐿𝑖  . 𝜕𝐻𝜕∇𝐿𝑖                                                                                                      (3.21d) 
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where 𝐻(𝒓, 𝛻𝐿) represents the Hamiltonian function and 𝛼 is a real number that defines the type of parameter of 

interest 𝑢 (Nilsson et al., 2013). In Table 3. 1, different possible cases for 𝛼 are demonstrated (Cerveny, 

2005;Hofmeister, 2016;Nafisi et al., 2012). 

Table 3. 1. Different options to set a type of the intended parameter in the Hamiltonian Formalism (Cerveny, 

2005;Nafisi et al., 2012) 

𝜶 𝒅𝒖 𝒖 

0 𝑑𝑡 Travel time along the ray [𝑡] 
1 𝑑𝑠 Arc length along the ray [𝑠] 
2 𝑑𝜎 Natural variable along the ray [𝜎] 

 

According to Table 3. 1 by setting 𝛼 = 1, the length of the ray can be determined. In addition, any coordinate system 

could be generally used for solving Eq. (3.20). However, as noted by Alkhalifah and Fomel (2001), the spherical 

coordinate system is more appropriate than the Cartesian coordinate system, due to be the most natural orthogonal 

system to solve the Eikonal equation in a point source case. Moreover, this coordinate system commonly meets the 

demands of ray tracing in the atmosphere. Hence, the spherical coordinate system is applied here to solve the 

Eikonal ray-tracer (Hofmeister, 2016). Consequently, Eq. (3.21) can be rewritten as follow:  

                                                                            𝐻(𝑟, 𝜃, 𝜆) ≐   [𝐿𝑟 + 1𝑟2 𝐿𝜃 + 1𝑟2(sin 𝜃)2 𝐿𝜆] − 𝑁(𝑟, 𝜃, 𝜆, 𝑡) = 0                                  (3.22) 
whereby 𝑟 is a radial distance, 𝜃 [0, π] and 𝜆 [0, 2π] are the co-latitude, and the longitude, respectively. 𝐿𝑟 = 𝜕𝐿 𝜕𝑟⁄ , 𝐿𝜃 = 𝜕𝐿 𝜕𝜃⁄ , and 𝐿𝜆 = 𝜕𝐿 𝜕𝜆⁄  represent the components of the ray directions (Nafisi et al., 2012). Moreover, 𝑡 is a 

time parameter which defines the temporal variability of the refractivity. According to that, the first six equations 

in a spherical coordinate system can be defined by substituting Eq. (3.22) into Eq. (3.21b) and Eq. (3.21c) (Hobiger 

et al., 2008;Hofmeister, 2016;Nafisi et al., 2012): 

                                                                               𝑑𝑟𝑑𝑠 = 1𝜔  𝐿𝑟                                                                                                                              (3.23a) 
                                                                              𝑑𝜃𝑑𝑠 = 1𝜔  𝐿𝜃𝑟2                                                                                                                             (3.23b) 
                                                                             𝑑𝜆𝑑𝑠 = 1𝜔  𝐿𝜆𝑟2(sin𝜃)2                                                                                                                  (3.23c) 
                                                                            𝑑𝐿𝑟𝑑𝑠 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝑟 + 1𝜔𝑟  [𝐿𝜃2𝑟2 + 𝐿𝜆2𝑟2(sin 𝜃)2]                                                                          (3.23d) 
                                                                           𝑑𝐿𝜃𝑑𝑠 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝜃 + 1𝜔   [ 𝐿𝜆2𝑟2(sin𝜃)3]                                                                                      (3.23e) 
                                                                           𝑑𝐿𝜆𝑑𝑠 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝜆                                                                                                                    (3.23f) 
with the auxiliary parameter 𝜔 , as obtained below (Nafisi et al., 2012): 

                                                                          𝜔 =  [𝐿𝑟2 + 1𝑟2 𝐿𝜃2 + 1𝑟2(sin 𝜃)2 𝐿𝜆2   ] = 𝑁(𝑟, 𝜃, 𝜆, 𝑡)                                                               (3.24) 
By solving Eq. (3.23a) to Eq. (3.23f) simultaneously, the positions of all points along the ray trajectory can be 

specified (Hofmeister, 2016;Nafisi et al., 2012). In this work, the Runge-Kutta technique as a known and standard 
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approach to solve these equations is used (Nafisi et al., 2012). For this purpose, the differential equation system 

(Eq. (3.23)) can be written in vector form: 

                                                                        𝑑𝒀𝑑𝑠 = 𝐹⃗(𝑠, 𝒀)                                                                                                                                      (3.25) 
where 𝐹⃗ denotes the system equation of Eq. (3.23) and Y is defined as:                                                                         𝒀 = [𝑟, 𝜃, 𝜆, 𝐿𝑟 , 𝐿𝜃 , 𝐿𝜆]𝑇                                                                                                         (3.26) 
Therefore, to solve Eq. (3.25), the initial conditions of vector 𝒀 are required. For this purpose, (𝑟, 𝜃, 𝜆, 𝑁0, 𝑧0, 𝛼0) 
extracted from the GNSS station at the starting point is considered as the initial guess (𝒀0) (Cerveny, 2005;Nafisi 

et al., 2012;Gegout et al., 2014): 

                                                                    𝒀0 = [  
   

𝑟0𝜃0𝜆0𝑁0 𝑐𝑜𝑠 𝑧0𝑁0 𝑟0 𝑠𝑖𝑛 𝑧0 𝑐𝑜𝑠 𝛼0𝑁0 𝑟0 𝑠𝑖𝑛 𝑧0 𝑠𝑖𝑛 𝛼0 𝑠𝑖𝑛 𝜃0]  
                                                                                                 (3.27) 

Moreover, in order to calculate the Eikonal equation in the 3D case, it is essential to know the gradient components 

of the refractive index with respect to the spherical coordinate system (Hobiger et al., 2008;Nafisi et al., 2012): 

                                                                      ∇𝑁𝑟 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝑟                                                                                                                     (3.28a) 
                                                                      ∇𝑁𝜃 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝜃                                                                                                                             (3.28b) 
                                                                       ∇𝑁𝜆 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝜆                                                                                                                      (3.28c) 
The quantities in Eq. (3.28) can be extracted from the Numerical weather model (See Appendix A for more details) 

(Hobiger et al., 2008;Nafisi et al., 2012). Therefore, this strategy needs plenty of time for the preparation of initial 

values and then computing the ray propagation in the troposphere. In contrast to this, the 2D Eikonal ray-tracing 

can significantly reduce the computation burden due to limiting the ray path to a vertical plane with comparable 

results (Hobiger et al., 2008;Nafisi et al., 2012). Accordingly, in 2D mode, the horizontal gradient of refractivity [∇𝑁𝜃 , ∇𝑁𝜆] is eliminated and consequently the six partial equations (3.23a) to (3.23f) are reduced to the four 

equations shown below: 

                                                                        𝑑𝑟𝑑𝑠 = 1𝜔  𝐿𝑟                                                                                                                                   (3.29a) 
                                                                       𝑑𝜃𝑑𝑠 = 1𝜔  𝐿𝜃𝑟2                                                                                                                                   (3.29b) 

                                                                       𝑑𝐿𝑟𝑑𝑠 = 𝜕𝑁(𝑟,𝜃,𝜆,𝑡)𝜕𝑟 + 1𝜔𝑟  [𝐿𝜃2𝑟2 + 𝐿𝜆2𝑟2(sin 𝜃)2]                                                                                    (3.29c) 
                                                                       𝑑𝐿𝜃𝑑𝑠 = 1𝜔   [ 𝐿𝜆2𝑟2(sin 𝜃)3]                                                                                                                    (3.29d) 
In order to solve the differential equation system (Eq. (3.29)) in 2D-mode, the Runge-Kutta technique can be 

applied (Gegout et al., 2014;Nafisi et al., 2012).  
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The accuracy of the tomography solutions using different parameterization techniques, namely Eikonal and 

straight-line, is assessed against radiosonde measurements in Section 5.3.4. Moreover, the efficiency of the 

spherical coordinate system and variation of ray direction to estimate intersection points with the voxel faces is 

investigated in this section by neglecting bending effect (setting 𝑁 = 1) and solving the equation system of (3.29).  

3.2.4 Applied Constraints 

Due to the inadequate geometric distribution of GNSS stations with respect to the satellite constellation, the number 

of slant delays within the integration period is limited. Therefore, it is usually not possible to collect enough 

measurements in each voxel. In fact, there are three different scenarios for the model’ parameters:  

1) Overdetermined: Voxel with a lot of rays (Fig 3. 6 (a)),  

2) Underdetermined: Voxel without any ray or voxels with equal distance rays which, therefore, cannot individually 

be resolved (Fig 3. 6 (b)), 

3) Mixed-determined: Combination of case (1) and case (2) (Fig 3. 6 (c)). 

  
 

(a) (b) (c) 

Fig 3. 6. Three different scenarios for the parameters of the tomography model, (a) overdetermined, (b) 

underdetermined, and (c) mixed-determined 

According to these scenarios and due to the slow change of the satellites geometry in GNSS tomography during 

the integration time, the whole equation system of the tomography problem (Eq. (3.4)) is mixed-determined 

(Menke, 2012). Hence, the model null space of the design matrix is non-trivial which causes the partly ill-

conditioned tomographic inversion system. Therefore, some constraints as pseudo-observations are added to the 

equation system of the tomographic problem in order to strengthen the design matrix (𝑨) and obtain an optimal 

solution. 

        a) Horizontal Constraint 

For a regional area, a certain model element can be represented by the adjacent voxels due to the stability of the 

atmospheric water vapour (Rius et al., 1997). As a result, the following relative horizontal constraints can be 

defined in each height layer with 𝑙 voxels (Flores et al., 2000b;Rohm and Bosy, 2011): 

              𝑤1,𝑘𝑁𝑤1 + 𝑤2,𝑘𝑁𝑤2 +⋯+𝑤𝑖−1,𝑘𝑁𝑤𝑖−1 − 𝑁𝑤𝑘 + 𝑤𝑖+1,𝑘𝑁𝑤𝑖+1 +⋯+𝑤𝑙,𝑘𝑁𝑤𝑙 = 0                                          (3.30) 
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where 𝑘 refers to voxels in this layer. According to Eq. (3.30), each wet refractivity (𝑁𝑤𝑘  ) is the weighted mean of 

its neighbors at the same layer. The horizontal coefficients or simply weight of the 𝑖𝑡ℎ voxel (𝑤𝑖) can be calculated 

based on the inverse distance as follows (Heublein, 2019;Zhao et al., 2019):  

                                                     𝑤𝑖,𝑘 = { 1𝑑𝑖,𝑘∑ 1𝑑𝑖,𝑘𝑙𝑖=1                     𝑖𝑓 𝑖 ≠ 𝑘−1                                 𝑖𝑓   𝑖 = 𝑘                                                                           (3.31) 

Here, 𝑑𝑖,𝑘 is a distance between the center of voxel k and the center of adjacent voxel (𝑖) of the intended height 

layer. Therefore, the equation system of the horizontal constraint can be expressed as below: 

                                                     𝟎 = 𝑯 𝑵𝒘                                                                                                                          (3.32) 𝑯 is the coefficient matrix of horizontal constraints.  

       b)  Vertical Constraint 

The vertical constraint can be defined using the approximation of the refractivity profile by an exponential decay 

with height as follows (Davis et al., 1993;Elósegui et al., 1998;Flores et al., 2000a)  

In addition, vertical constraints are added to Eq. (3.4) with the purpose to determine the characteristic of the wet 

refractivity field in this direction. Here, an exponential law according to (Davis et al., 1993) has been applied which 

is defined as follows (Elósegui et al., 1998;Yang et al., 2018): 

                                               𝑁𝑤𝑘 (ℎ𝑘) − 𝑒(ℎ𝑘+𝑙−ℎ𝑘) 𝐻⁄  𝑁𝑤𝑘+𝑙 (ℎ𝑘+𝑙) = 0                                                                            (3.33) 

whereby ℎ𝑘 and ℎ𝑘+𝑙 stands for the height of  voxel  𝑘 and voxel 𝑘 + 𝑙, respectively. 𝐻 represents the water vapour  

scale height, which varies between 1 to 2 km (Elósegui et al., 1998;Kleijer, 2004;Yang et al., 2018). Eq. (3.32) can 

be presented in matrix form by considering 𝑽 as a coefficient matrix:    

                                                 𝟎 = 𝑽 𝑵𝒘                                                                                                                               (3.34) 

 

      c)  priori Information 

An a priori constraint can be applied in order to impose the reconstructed wet refractivity field to a given value in 

a specific voxel or layer (Troller, 2004). Generally, this constraint can be extracted from some external dataset like 

radiosonde or radio occultation. Moreover, as the amount of water vapour is negligible in the uppermost layers, the 

wet refractivity is constrained to zero in these layers. Consequently, the prior constraint gives as: 

                                               𝑁𝑤0𝑘 = 1.𝑁𝑤                                                                                                                                (3.35) 

where 𝑁𝑤0𝑘 is an a priori value for the kth voxel. Therefore, the equation system of a priori information can be 

written as: 

                                               𝑵𝒘𝟎 = 𝑩 𝑵𝒘                                                                                                                                        (3.36) 
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By substituting all possible types of constraint equations into Eq. (3.4), the extended tomography model can be 

expressed as follows:  

                                              [𝑺𝑾𝑫𝟎𝟎𝑵𝒘𝟎 ] = [
𝑨𝑯𝑽𝑩] 𝑵𝒘                                                                                                                           (3.37) 

 

3.3 Mathematical Basis for the Inverse Problem Solution 

The tomography model (Eq. (3.1)) belongs to the group of the Fredholm integral equations of the first kind (IFK) 

(Aster et al., 2005;Menke, 2012). This kind of problem is inherently ill-posed. Therefore, due to the nature of IFK 

obtaining a useful solution is difficult. In this work, the discrete form of the IFK integral (Eq. (3.4)) is used. Thus, 

increasing the number of unknowns implies a more and more badly conditioned matrix 𝑨 (Aster et al., 2005). 

Problems like this are called discrete ill–posed problems as the singular values of its design matrix decays gradually 

towards zero without any noticeable gap between non-zero and zero singular values (Aster et al., 2005;Hansen, 

1998;Menke, 2012). Fig 3. 7 shows an example for the singular values in the tomography problem which slowly 

decay to zero. As a result a small change in the measurements can lead to an enormous change in the parameters 

of the model and therefore an inverse solution is extremely unstable (Aster et al., 2005).  

 

Fig 3. 7. Singular values of the tomography model for 144 voxels 

In order to measure the sensitivity of the inverse solution to perturbations of the data and the design matrix, the 2-

norm condition number is used (Aster et al., 2005;Hansen, 1998):  

                                                          𝑐𝑜𝑛𝑑(𝑨) = ‖𝑨‖2‖𝑨†‖2 = 𝑠1𝑠𝑝                                                                       (3.38)    

Therefore, the condition number is a ratio between the largest (𝑠1) and smallest (𝑠𝑝) singular values of the design 

matrix (𝑨). This parameter can also apply to determine the instability of the solution (Aster et al., 2005). According 

to Eq. (3.38), the condition number shows how inaccurate the estimated solution might be due to errors on the right 

hand side of the equation. Therefore, the tomography equation system (Eq. (3.4)) is ill-conditioned and in 

consequence as said before it is ill-posed as well. In order to stabilize the inversion process and produce a stable 

unique solution, regularization methods should be used at the cost of limiting us to a smoothed model (Aster et al., 
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2005;Hansen, 1998). According to this, the most prominent strategies to regularize the tomography model are 

presented in the next section. 

3.4 Solving Methodology for the Inverse Problem 

The purpose of this section is to summarize important strategies to solve the equation system of the tomography 

model (Eq. (3.4)). As mentioned before, the main characteristic of this problem is that all singular values of the 

design matrix (𝑨) decay gradually to zero without no obvious gap in the spectrum. Therefore, the regularization 

technique should be applied in order to reconstruct the wet refractivity field using the Tomography model. Table 

3. 2 demonstrates various regularization methods which are involved in this work to retrieve the wet refractivity 

structure. According to this table, two different classes of regularization methods are used to produce a stable 

inverse solution: (1) direct regularization algorithm (Total Variation (TV) method), and (2) iterative regularization 

Algebraic Reconstruction Techniques (ART) and its variants Multiplicative Algebraic Reconstruction Technique 

(MART) and Landweber. 

 

Table 3. 2. Various regularization methods to reconstruct the wet refractivity field in this research (Adavi et al., 2022a) 

Regularization Method Regularization Parameter Initial Field 

Landweber 𝜆 ∈ (0,1] 
AROME/TV Outputs MART 𝜆 ∈ (0,2] 

ART 𝜆 ∈ (0, 2 𝑠𝑚𝑎𝑥2⁄ ] 
TV 𝜆, 𝛽 ∈ [24, 213] NONE 

 

Therefore, in this section, some of the ART techniques (ART, MART and Landweber) are detailed. These methods 

have been particularly developed for the tomography reconstruction problems and are mostly applicable to such 

approaches (Aster et al., 2005;Landweber, 1951). Then, the TV regularization technique is described. This method 

was first proposed by  Rudin et al. (1992) for image denoising problems. TV is a nonlinear technique that effectively 

preserves discontinuities in the model and resists noise (Aster et al., 2005;Karl, 2005;Lee et al., 2007;Vogel and 

Oman, 1996). 

3.4.1 Iterative Techniques 
Iterative methods are mainly defined based on the coefficient matrix 𝑨 and prior information which produce a 

sequence of regularized solutions [𝑵𝒘1 , 𝑵𝒘2 , ⋯ ,𝑵𝒘𝑘 ] in each step (𝑘 = 1,2, …) by performing very simple algebraic 

operations such as multiplication and summation between matrices (Hansen, 1998). After a sequence of iterations, 

the estimated solution approaches some other undesired solutions which increase the norm of the error vector. 

Therefore, due to noise the sequence of the solutions converges to the contaminated solution in later stages. Often, 

this phenomena is referred to as semi-convergence (Hansen, 1998;Natterer, 1986). Therefore, selecting the 

appropriate 𝑘 is quite important in the iterative methods as it plays the role of the regularization parameter. There 

are a lot of strategies to obtain an optimum number of iterations k such as Discrepancy Principal (DP), the L-Curve 

method, Flattest Slope (FS) and Generalized Cross Validation (GCV) (Golub and Matt, 1996;Hansen, 1998;Wu, 

2003). Nevertheless, the most reasonable stopping rule strategy is to find a minimum inconsistency between the 
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reconstructed value and the a priori information (Nikazad, 2007). In this work, we apply this method to select the 

appropriate regularization parameter due to access to the radiosonde observations. 

This kind of technique is quite applicable in a large problem with the considerable sparsity in the design matrix 𝑨 

(Aster et al., 2005) as there is no need to invert the coefficient matrix 𝑨 during the reconstruction procedure (Bender 

et al., 2011). Due to that, these techniques have been chosen as the most popular and successful methodologies to 

reconstruct the behaviour of water vapour in the troposphere and also the structure of the total electron content of 

the ionosphere in recent decades (Adavi and Mashhadi-Hossainali, 2014;Bender et al., 2011;Adavi and Mashhadi-

Hossainali, 2015;Kak and Slaney, 1999;Stolle et al., 2006;Xia et al., 2013;Zhao et al., 2018). The main form of the 

iterative regularization technique is represented as below (Kaltenbacher et al., 2008): 

                                                           𝑵𝒘𝑘+1 = 𝑵𝒘𝑘 + 𝐺𝑘(𝑵𝒘𝑘 , 𝑺𝑾𝑫)                                                                                            (3.39) 

whereby 𝐺𝑘 and k are a correction term and iteration number, respectively. 𝐺𝑘 can be defined differently according 

to the desired methodology. This algorithm is a kind of closed-loop process and it starts with an initial guess for 

the unknown parameters field (Lohvithee, 2019), which could be estimated from the NWM model. Then, to correct 

the estimated wet refractivity field for the next iteration, the inconsistency between the estimated wet refractivity 

field and the initial field is computed (Bender et al., 2011;Gordon, 1974;Lohvithee, 2019). Fig 3.8 demonstrates 

the idea behind the iterative techniques. As shown in this figure, the iterative algorithm begins with an initial 

solution and then the next solution is calculated by using the projection of the first solution onto the hyperplane in 

n-dimensional space (line in 2D) defined by the first equation of the system of observation equations. This process 

is repeated for all of the hyperplanes defined by the observation equations system. Finally, if 𝒅 = 𝑨 𝒎 has a unique 

solution, the algorithm converges and otherwise, it will fail (Aster et al., 2005). In the following, very popular 

iterative techniques to obtain an approximate solution of the tropospheric tomography problem are defined. 

 

Fig 3. 8. An example of an iterative algorithm applied to a system of two equations (Figure adopted from Aster et al. 

(2005)) 

Algebraic Reconstruction Technique (ART) - This algorithm has been especially developed for the tomographic 

reconstruction problems (Aster et al., 2005). Moreover, ART is one of the most popular and frequently used 
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algorithms among the different types of iterative methods (Gordon et al., 1970). In this method, the solution is 

updated via sweeps over the rows 𝑨i of the design matrix 𝑨 and therefore, there is no need to invert a large sparse 

matrix 𝑨. Based on this, ART can be formulated as below (Gordon, 1974;Kak and Slaney, 1999) : 

                                                                  𝑵𝒘𝑘+1 = 𝑵𝒘𝑘 +  𝜆 𝑺𝑾𝑫𝑖−〈𝑨𝑖, 𝑵𝒘𝑘 〉〈𝑨𝑖,𝑨𝑖〉  𝑨𝑖                                                                                     (3.40) 

where 𝑖 is the row number. The ART method covers two loops: The inner loop (index i) processes observation by 

observation. The outer loop (index 𝑘) is started after applying all 𝑆𝑊𝐷𝑠 in Eq. (3.40) (Bender et al., 2011;Xiaoying 

et al., 2014b). 𝜆 is a regularization parameter from (0,1] and provides the weight of the correction term with respect 

to the initial wet refractivity field (Bender et al., 2011;Turonova, 2011).  

Multiplicative Algebraic Reconstruction Technique (MART)- In this technique, the successive estimate value 

of the corresponding voxel is corrected by multiplication with 𝐺𝑘 which corresponds to the second factor in Eq. 

(3.39) (Subbarao et al., 1997). In principle, this increases the convergence speed compared to additive techniques 

like ART (Bender et al., 2011;Subbarao et al., 1997). This method can be accomplished using(Subbarao et al., 

1997): 

                                                                    𝑵𝒘𝑗𝑘+1 = 𝑵𝒘𝑗𝑘  .   𝜆 ( 𝑺𝑾𝑫𝑖〈𝑨𝑖, 𝑵𝒘𝑘 〉  )  𝜆 𝐴𝑗𝑖〈𝑨𝑖,𝑨𝑖〉                                                                            (3.41) 

where j is the column number of the voxel. In this method, the regularization parameter 𝜆 is defined within the 

range of (0,2] (Bender et al., 2011). 

Landweber- Landweber is one of the classical iterative regularization techniques and belongs to the Simultaneous 

Iterative Reconstruction Technique (SIRT) family (Hansen, 1998;Kaltenbacher et al., 2008). To retrieve the wet 

refractivity field using this technique, as shown in Eq. (3.42), all rows of the coefficient matrix 𝑨 are used in one 

iteration. This implies that the system of observation equations is solved simultaneously. The wet refractivity field 

in iteration k+1 can be retrieved according to (Landweber, 1951): 

                                                                 𝑵𝒘𝑘+1 = 𝑵𝒘𝑘 +  𝜆𝑘  𝑨𝑇(𝑺𝑾𝑫 − 𝑨𝑵𝒘𝑘 )                                                                     (3.42) 

whereby 𝜆𝑘 is a relaxation parameter which can be optimally determined in a range of 0 < 𝜆𝑘 < 2 𝑠𝑚𝑎𝑥2⁄  (Aster et 

al., 2005;Elfving et al., 2010;Hansen, 1998). However, this strategy, named optimal choice, needs beforehand 

knowledge of the real solution (Elfving et al., 2010). Other strategies to determine the relaxation parameter 𝜆𝑘 are 

line search, 𝜓1-based relaxation strategy, 𝜓2-based relaxation strategy, and modified 𝜓1 and 𝜓2 strategies (Aster et 

al., 2005;Elfving et al., 2010;Hansen, 1998). In this work, the modified 𝜓2-based relaxation strategy is used that 

takes advantage of better damping of the noise propagation and also faster convergence (Elfving et al., 2012;Elfving 

et al., 2010).  

The relaxation parameter in the modified 𝜓2-based relaxation strategy is defined as below (Elfving et al., 2010): 

                                                                  𝜆𝑘 = { √2𝑠𝑚𝑎𝑥2                                   𝑓𝑜𝑟 𝑘 = 0,1𝜏𝑘 2𝑠𝑚𝑎𝑥2  (1 − 𝜉𝑘)                            𝑓𝑜𝑟 𝑘 ≥ 2                                                             (3.43) 
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where 𝜉𝑘 ∈ (0,1) is the unique root in (Elfving et al., 2010):   

                                                               𝑔𝑘−1(𝜉𝑘) =  [(2𝑘 − 1)(𝜉𝑘)𝑘−1] − 1−(𝜉𝑘)𝑘−11−𝜉𝑘 = 0                                                                       (3.44) 
Moreover, 𝜏𝑘 ∈ (0, (1 − 𝜉𝑘)−1) is normally chosen as a constant value 𝜏𝑘 = 𝜏. If 𝜏 > 1 then the convergence is 

accelerated (Elfving et al., 2010).  

3.4.2 Total Variation Method 

The TV regularization method has been used in different kinds of inverse problems such as Computer Tomography 

(CT) reconstruction with low signal-to-noise ratio with promising results (Defrise et al., 2011;Persson et al., 

2001;Sidky et al., 2006;Tang et al., 2009). In recent years, the TV method has also been applied in ionospheric 

tomography (IED) as well. 

 The objective function in the TV regularization method is given as (Jensen et al., 2012;Lohvithee, 2019;Persson 

et al., 2001;Rudin et al., 1992): 

                                                    𝐽(𝑵𝑤) = argmin (𝜏‖𝑵𝑤‖𝑇𝑉 + 12  ‖ 𝑨 𝑵𝑤 − 𝑺𝑾𝑫‖22)                                                  (3.45)                                                   

 whereby, 𝜏 > 0  is the regularization parameter and the TV norm (‖𝑵𝑤‖𝑇𝑉) in Eq. (3.45) can be calculated as 

follows (Persson et al., 2001): 

                                                        ‖𝑵𝑤‖𝑇𝑉 = ‖𝐷⃗⃗⃗ 𝑵𝑤‖1 = ∑ ‖𝐷𝑖,𝑗,𝑘  𝑁𝑤𝑖,𝑗,𝑘‖𝑖,𝑗,𝑘                                                                        (3.46)                                                                        

 where 𝐷𝑖,𝑗,𝑘  𝑁𝑤𝑖,𝑗,𝑘 is the discrete gradient of 𝑁𝑤 at voxel i, j, k. Here, the augmented Lagrangian algorithm for 

TV minimization is used (Li, 2009): 

                                                        ℒ𝐴(𝑤𝑖,𝑗,𝑘 , 𝑁𝑤) = ∑ (‖𝑤𝑖,𝑗,𝑘‖ − 𝒱𝑖,𝑗,𝑘𝑇 (𝐷𝑖,𝑗,𝑘𝑵𝑤 − 𝑤𝑖,𝑗,𝑘) + 𝛽𝑖,𝑗,𝑘2  ‖𝐷𝑖,𝑗,𝑘𝑵𝑤 −𝑖,𝑗,𝑘                                                                                          𝑤𝑖,𝑗,𝑘‖22) − 𝜆𝑇(𝑨 𝑵𝑤 − 𝑺𝑾𝑫) +   𝜇2  ‖𝑨 𝑵𝑤 − 𝑺𝑾𝑫‖22                             (3.47)                               

 where 𝑤𝑖 can be obtained as shown below(Li, 2009): 

                                                      𝑤𝑖 = 𝑚𝑎𝑥 {‖𝐷𝑖,𝑗,𝑘𝑵𝑤 − 𝜐𝑖,𝑗,𝑘𝛽𝑖,𝑗,𝑘‖ − 1𝛽𝑖,𝑗,𝑘 , 0}  (𝐷𝑖,𝑗,𝑘𝑁𝑤−𝜐𝑖,𝑗,𝑘 𝛽𝑖,𝑗,𝑘⁄ )‖𝐷𝑖,𝑗,𝑘𝑁𝑤−𝜐𝑖,𝑗,𝑘 𝛽𝑖,𝑗,𝑘⁄ ‖                                           (3.48)                            

𝜐𝑖,𝑗,𝑘 and λ are continuously updated during the minimization of Eq. (3.47) in each iteration step (Li, 2009;Li et al., 

2010): 

                                                    𝜐̃𝑖,𝑗,𝑘𝑖𝑡𝑒𝑟+1 = 𝜐𝑖,𝑗,𝑘𝑖𝑡𝑒𝑟 − 𝛽𝑖,𝑗,𝑘 (𝐷𝑖,𝑗,𝑘𝑵𝑤∗ − 𝑤𝑖,𝑗,𝑘∗)       𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖, 𝑗, 𝑘                              (3.49a)                                         

                                                    𝜆̃𝑖𝑡𝑒𝑟+1 = 𝜆𝑖𝑡𝑒𝑟 − 𝜇 (𝑨 𝑵𝑤∗ − 𝑺𝑾𝑫)                                                                                (3.49b)                                                                           

 In Eq. (3.49a) and Eq. (3.49b), 𝑵𝑤∗ and 𝑤𝑖,𝑗,𝑘∗ indicate approximate values for Eq. (3.47)  (Li, 2009). Moreover, 

the barrier parameter 𝜇 should be defined based on the sparsity level of the true solution and the noise level in the 

observation (Li et al., 2010). However, the determination of the noise level without accessing the exact solution is 

challenging. According to experience, 𝜇 varies from 24 to 213, and the best value is chosen subject to the RMSE of 
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the recovered field  (Li, 2009;Li et al., 2010).  The value of 𝛽𝑖,𝑗,𝑘  should also been chosen between 24 and 213 (Li 

et al., 2010).  

In Section 5.1.5, various regularization method, including ART methods and TV, are used to retrieve the wet 

refractivity field. Then, the discrepancy of the reconstructed profiles and derived profiles from radiosonde 

observations are investigated. Section 5.1.6 studies the accuracy of the reconstructed wet refractivity field using 

the TV method in different temporal resolutions compared to radiosonde observations. 

3.5 Statistical Evaluation of Tomography Solution 

One of the challenges in the GNSS tomography is the quality assessment of the reconstructed solution. In recent 

years, a lot of efforts have been done by different researchers in order to evaluate the reliability of the estimated 

tomography solution using independent sources such as radiosonde measurements, Numerical Weather Models 

(NWM), and Water vapour Radiometer (WVR) (Bastin et al., 2007;Brenot et al., 2018;Brenot et al., 

2014;Champollion et al., 2009;Elgered et al., 1991;Gradinarsky and Jarlemark, 2004;Hanna et al., 2019;Nilsson et 

al., 2007;Notarpietro et al., 2011;Troller, 2004;Van Baelen et al., 2011) 

Here, two different strategies to evaluate the quality of GNSS tomography model parameters are defined. First, 

some statistical measures like Root Mean Square Error (RMSE), Bias, standard deviation (Std), Relative Error 

(RE), and Mean Absolute Error (MAE) are described. Then, the concept of spread to analyse the quality of the 

reconstructed tomography field is investigated.  

3.5.1 Statistical Tools 

The accuracy of the reconstructed tomography model is normally evaluated using different statistical tools, named 

RMSE, Mean Bias, Std, MAE, and RE (Jia et al., 2021;Rohm and Bosy, 2009;Shangguan et al., 2011;Xiaoying et 

al., 2014a;Zhang et al., 2017;Zhao et al., 2019). These statistics tools can be calculated by the following equations 

(Guerova, 2003;Jia et al., 2021;Xiaoying et al., 2014a;Zhao et al., 2019): 

                                    𝐵𝑖𝑎𝑠   = 1𝑛𝑙  ∑ (𝑵𝒘𝑡𝑜𝑚𝑜𝑖 − 𝑵𝒘𝑟𝑒𝑓𝑖)𝑛𝑙𝑖=1                                                                                                      (3.50)                                                                                                                            

                                   𝑅𝑀𝑆𝐸 = √ 1𝑛𝑙  ∑ (𝑵𝒘𝑡𝑜𝑚𝑜𝑖 − 𝑵𝒘𝑟𝑒𝑓𝑖)2𝑛𝑙𝑖=1                                                                                              (3.51)                                                                                                        

                                    𝑆𝑡𝑑    = √𝑅𝑀𝑆𝐸2 − 𝐵𝑖𝑎𝑠2                                                                                                                       (3.52) 

                                   𝑀𝐴𝐸   = 1𝑛𝑙  ∑ |𝑵𝒘𝑡𝑜𝑚𝑜𝑖 − 𝑵𝒘𝑟𝑒𝑓𝑖|𝑛𝑙𝑖=1                                                                                                             (3.53) 
                                     𝑅𝐸    =  |𝑵𝒘𝑡𝑜𝑚𝑜−𝑵𝒘𝑟𝑒𝑓|𝑵𝒘𝑟𝑒𝑓                                                                                                                                       (3.54) 

Here, 𝑛𝑙 is the number of height levels and 𝑵𝒘𝑡𝑜𝑚𝑜 and 𝑵𝒘𝑟𝑒𝑓 are the computed wet refractivity field from the 

tomography model and from the reference observation data like radiosonde profiles. In this study, we consider only 
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voxels along the vertical profile of the radiosonde ascend that are intersected by the radiosonde at different height 

levels. 

In addition, the quartiles and interquartile range (𝐼𝑄𝑅) can be applied to assess the obtained results. To do so, the 

result is divided into four equal parts, namely first quartile (𝑄1), second quartile (𝑄2), and third quartile (𝑄3) where 𝑄2 is equivalent to the median of the result (Moore et al., 2013). 𝐼𝑄𝑅 is defined as the difference between 𝑄3 and 𝑄1 (Moore et al., 2013). 

3.5.2 Spread of Resolution Matrix 

One of the fundamental challenges in the tomography technique is to appraise the quality of the reconstructed 

model parameters. According to the solution quality, we can identify the regions, which are fairly-well resolved or 

unresolved. One of the well-known tools to deal with inversion problems, e.g. seismology, is the spread of the 

model resolution matrix in order to evaluate the quality of the estimated solution. This quantity measures the quality 

of the model parameters by considering the goodness of data, model resolution matrix and covariance matrix. The 

main concept behind this value is the model resolution matrix 𝑹𝒎, which contains valuable information about the 

design matrix and observation quality. The model resolution matrix 𝑹𝒎 is one of the valuable mathematical tools 

to analyse the quality of the solution of inverse problems (Aster et al., 2005;Menke, 2012). Fig 3. 9 shows an 

instance for the diagonal elements of the model resolution matrix in the first layer of the arbitrary tomography 

model. According to this figure, Voxel 15 is empty, and Voxel 16 is crossed by a few signals, and therefore they 

are poorly resolved by GNSS measurements. 

 

Fig 3. 9. An example of the model resolution matrix with different resolving for the model parameters 

However, in Eq. (3.8), the resolution matrix merely depends on rays’ distribution without counting the quality of 

the initial field and measurement covariance matrix (𝑪𝒐𝒃𝒔). Hence, to identify the model resolution matrix, we 

imagine the true model solution, named 𝑵𝒘𝑡𝑟𝑢𝑒, and the estimated solution, named 𝑵𝒘𝑒𝑠𝑡. The true model parameters 
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are determined by Eq. (3.4) (𝑺𝑾𝑫𝑜𝑏𝑠 = 𝑨 𝑵𝒘𝑡𝑟𝑢𝑒). In practice, the data sources contain some error sources and 

therefore the solution of Eq. (3.4) can be calculated as below:                                                                                                                                        

                                                                   𝑵𝒘𝑒𝑠𝑡 −  𝑵𝒘𝟎 = 𝑪𝒎 𝑨𝑇𝑩−1 [𝑨 𝑵𝒘𝑡𝑟𝑢𝑒 − 𝑨 𝑵𝒘𝟎]                                                    (3.55) 

with  

                                                                   𝑩 =  𝑨 𝑪𝒎𝑨𝑇 + 𝑪𝒐𝒃𝒔                                                                                                                      (3.56) 

whereby  𝑵𝒘𝟎 is an a priori wet refractivity field and could be extracted from the numerical weather model and 𝑩−1 

is the inverse of 𝑩 and can be calculated using Eq. (3.10). In this research, 𝑪𝒎 is a 𝑛 × 𝑛 diagonal matrix and can 

be expressed as (Brenot et al., 2018;Champollion, 2005):   

                                                               𝑪𝒎 = 𝑑𝑖𝑎𝑔 (𝛿𝑚 𝑵𝒘𝟎)                                                                                                                         (3.57) 

where 𝛿𝑚 is a damping coefficient and defined within the range of (0 1).      

By simplifying Eq. (3.55), we obtain (Brenot et al., 2018;Menke, 2012;Tarantola, 2005): 

                                                            𝑵𝒘𝑒𝑠𝑡 −  𝑵𝒘𝟎 =  [𝑪𝒎 𝑨𝑇𝑩−1𝑨 ] (𝑵𝒘𝑡𝑟𝑢𝑒 −  𝑵𝒘0)                                                              (3.58) 

Eq. (3.58) defines how closely the estimated model parameters fit a true model. Therefore, according to Eq. (3.58), 

the model resolution matrix 𝑹𝒎 is given by Eq. (3.59) as follows (Aster et al., 2005;Menke, 2012):  

                                                           𝑹𝒎 = 𝑪𝒎 𝑨𝑇𝑩−1𝑨                                                                                                          (3.59) 

According to Eq. (3.59), if the null space of the design matrix is trivial 𝒩(𝑨) = {𝟎} and, in other words, if the 

resolution matrix is identity (𝑹𝒎 = 𝑰), then, all voxels will be recovered exactly with high accuracy. Moreover, it 

reflects valuable information on the reconstruction quality of each inversion parameter (Menke, 2012). Based on 

that, large diagonal elements with small off-diagonal elements indicate the desired parameter could be adequately 

resolved by the current geometry and quality of observation data. Large off-diagonal elements lead to a low quality 

of the determined parameters. 

Therefore, Menke (2012) applied the spread of the diagonal and off-diagonal elements of the resolution matrix to 

measure the goodness of the resolution in inverse problems is as follows: 

                                                    𝑆𝑝𝑟𝑒𝑎𝑑  (𝑹𝒎) =  ∑ ∑ [𝑅𝑚𝑖𝑗 − 𝛿𝑖𝑗]2𝑀𝑗=1𝑀𝑖=1                                                                      (3.60) 

where 𝛿𝑖𝑗 are the elements of the identity matrix 𝑰. Eq. (3.60) is sometimes called the Dirichlet spread function. 

However, the Dirichlet spread function is not a proper measure of the goodness of resolution because the off-

diagonal elements of this matrix are all weighted equally, despite whether they are close or far from the main 

diagonal (Menke, 2012). Therefore, a weighting factor 𝑊𝑖𝑗 can be added to solve this issue. Consequently, Eq. 

(3.60) is rewritten as follows (Menke, 2012;Miller and Routh, 2007;Toomey and Foulger, 1989): 

                                                 𝐵𝐺𝐻:   𝑆𝑝𝑟𝑒𝑎𝑑 (𝑅𝑚𝑖) =  ∑ 𝑊𝑖𝑗 [𝑅𝑚𝑖𝑗 − 𝛿𝑖𝑗]2𝑀𝑗=1                                                                    (3.61) 



 

40 
 

Here, 𝑊𝑖𝑗 is the physical distance between elements in [km]. The new spread function is frequently called the 

Backus-Gilbert (BG) spread function (Kaltenbacher et al., 2008;Piretzidis and Sideris, 2016). In this research, 𝑊𝑖𝑗 
is calculated based on the Gaussian inverse distance (GID) between voxels in the same layer, namely horizontally, 

and therefore 𝑊𝑖𝑗 is zero for voxels in different layers. From now on, the BGH abbreviation is used for the BG 

spread due to considering GID for every horizontal layer. According to Eq. (3.61), a well-resolved parameter 

corresponds to a smaller spread of the corresponding row of the model resolution matrix, whereas a poorly resolved 

parameter corresponds to a larger one. 

Another way to define the spread is as follow (Maercklin, 2004;Michelini and McEvilly, 1991): 

                                             𝑀𝑖𝑐ℎ:   𝑆𝑝𝑟𝑒𝑎𝑑 (𝑅𝑚𝑖) = 𝑙𝑜𝑔 [‖𝑅𝑚𝑖‖−1∑ ( 𝑅𝑚𝑖𝑗‖𝑅𝑚𝑖‖)2 𝐷𝑗𝑖𝑀𝑗=1 ]                                                               (3.62)  

where ‖𝑅𝑚𝑖‖ is the 𝐿2 norm for the 𝑖𝑡ℎ row of the resolution matrix 𝑅𝑚.This definition for the spread is known as 

Michelini spread function (Mich). In Eq. (3.62), 𝐷𝑗𝑖  is the spatial distance between the ith and jth model parameters. 

Here, in contrast to BGH, the spread value is negative and a larger negative value corresponds to a well-resolved 

parameter. Section 5.3.5 assesses the spread of the resolution matrix as a prior quality indicator for the reconstructed 

wet refractivity field. 
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Chapter 4 

4 Outline of Study Areas and Datasets 

In the first section of this chapter, four field campaigns to analyse the impact of different features in the GNSS 

tomography solution are presented. Two of the campaign areas are located in Austria, one of them covers most of 

the western parts of the Czech Republic and East Germany and the last one is part of the USA CORS GNSS 

network. In section 2, the meteorological ground measurement network is defined. The pressure measurements of 

this network are spatially interpolated to the location of GNSS stations in order to estimate the hydrostatic part of 

the tropospheric delay. Moreover, radiosonde observations are also presented in this part. This type of observation 

is applied as a gold reference to assess the accuracy of the reconstructed wet refractivity field in the respective 

campaign areas. In the last part of this section, the GOES-R sounder products are introduced as constraints in the 

system of observation equations in order to improve the tomography solution. In section 3, the types of numerical 

weather models which are applied in this work are defined. Two of these models, named AROME and ALADIN, 

only cover the region of Europe, and one of them, called ERA5, as a global model, could apply to the different 

parts of the world. 

4.1 Study Areas 

In this section, four different datasets are presented, which will be used to evaluate the accuracy of the reconstructed 

wet refractivity field by means of different strategies like regularization techniques, parameterization methods, and 

observations of multiple GNSS constellations. In the first part, two different GNSS networks in the Austria region 

are introduced. Then, the COST benchmark dataset is detailed, which contains real and simulated measurements. 

Finally, the CORS GNSS network located in the part of the USA is defined. 

4.1.1 Austria 

In Austria, several regional Real-Time Kinematic (RTK) reference networks are operated. Here, data of two of 

these networks, labelled EVN and EPOSA are investigated. In the first part, the EPOSA (Echtzeit Positionierung 

Austria) GNSS network is introduced. Then, the EVN (Energie Versorgung Niederösterreich) GNSS network 

which is placed in Lower Austria is stated. 

4.1.1.1 EPOSA Network 

EPOSA is the GNSS network operated by Energie Burgenland AG, ÖBB Infrastruktur AG, and Wiener Netze 

GmbH which consists of thirty-eight permanent GNSS stations covering the whole Austrian territory. Therefore, 

this network has considerable potential for tropospheric tomography modelling and other meteorological studies. 

In this work, GPS+ GLONASS observations of only twenty-one permanent GNSS reference stations of the EPOSA 

network are, mostly located in the eastern part of Austria, considered due to the availability of their observations 

for the time of interest, DoYs 232-245 in August 2019. Rinex files of the GNSS sites include phase and code 

observations with a rate of 15 seconds for GPS, and GLONASS satellites. Therefore, the area of interest extends 
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from 13.40˚ to 17˚ in longitude, and 46.5˚ to 48.5˚ in latitude according to the location of selected GNSS permanent 

stations. Fig 4. 1 demonstrates the distribution of the multi GNSS stations as well as the location of the radiosonde 

station RS11035.  

 

Fig 4. 1. GNSS network of the EPOSA in the eastern part of Austria (Adavi et al., 2022a) 

In this network, the heights of the GNSS sites vary from 220 m to 860 m. The mean interstation distance is about 

60 km. In the next chapter, the feasibility of using single-frequency observations in comparison to the dual 

frequency observations and the impact of different regularization methods are analysed using this dataset. 

4.1.1.2 EVN Network 

EVN is the GNSS network utilized by the Austrian power supply company Energie Versorgung Niederösterreich 

which consists of twelve permanent reference GNSS stations located across the area of Lower Austria. Rinex files 

of reference stations include phase and code observations with a rate of 15 seconds for GPS, GLONASS, and 

GALILEO satellites.  

In this campaign, the spans DoYs 100-109 in April and DoYs 233-244 in August 2019 are considered to analyse 

the impact of GALILEO on the accuracy of the reconstructed tomography field. More details about these items 

could be found in the next chapter. Fig 4. 2 shows the location of the ten stations that are used in this study and 

also the place of the radiosonde station for evaluation of the tomography solution. The heights of the GNSS sites 

vary from 218 m to 860 m and the distances between stations range from 32 km to 151 km.  
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Fig 4. 2. GNSS network of the EVN in the lower part of Austria 

 

4.1.2 COST Action 

The EU COST Action ES2016 aimed to improve: (a) the quality of precise point positioning using the advanced 

GNSS techniques, (b) severe weather forecasting, and (c) climate monitoring (Douša et al., 2016;Jones et al., 2018). 

The campaign delivered tropospheric ZTDs with a time resolution of 1 hour and horizontal gradients with 6 hours’ 

time resolution as well as ALADIN numerical weather model data and products (Douša et al., 2016). This dataset 

covers the strong precipitation period in June 2013 leading to atypical floods. This allows to study the troposphere 

dynamics and content during such crisis.  

In this work, the area ranging from 10.15˚ to 14˚ in longitude, and 49˚ to 52˚ in latitude located in the central part 

of Europe is visited. This campaign contains 72 stations, which are located mostly in East Germany and western 

parts of the Czech Republic. The height difference between these stations is about 815 m and the average distance 

is about 48 km in the GNSS network. Spatial distribution of GNSS stations and the location of radiosonde stations 

used for this study are shown in Fig 4. 3. 
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Fig 4. 3. GNSS network of the COST Action in the central Europe 

 

Here, the time span 160-176 in the year 2013 is considered in order to investigate the impact of ray-tracing methods 

on the accuracy of the tomography solution in comparison to straight-line methods. Moreover, analysis of the 

spread of the resolution matrix as a proxy for the quality of the GNSS tomography is performed in this campaign 

due to the availability of the synthetic data in this campaign as well as huge precipitation on some days within the 

period of interest. Table 4. 1 shows an overview of the applied datasets in the area of interest. 

 

Table 4. 1. Applied dataset and time period in the GNSS network of the COST Action 

Dataset Period Data 

GNSS 160-176 SWD, NWP model 

Synthetic 149-165 Synthetic SWD, NWP model 
 

 

4.1.3 USA CORS Network 

The Continuously Operating Reference Stations (CORS) network covers more than 1900 stations in the United 

States, Canada, Mexico, Central and South America, the Caribbean, and Iraq (Snay and Soler, 2008). The network 

is designed by NOAA/National Geodetic Survey (NGS) for multi-purpose like positioning, navigation, 

meteorology, and geophysics applications using GNSS data containing code and carrier phase measurements. 

Moreover, more than 200 organizations, various governments, academic, and private organizations, contribute to 

this program in order to share data with NGS. These data are analysed and distributed free of charge for numerous 

geodetic researches and applications (Snay and Soler, 2008;CORS, 2022;SOPAC, 2022).  



 

45 
 

In this thesis, only 72 GNSS stations of this network are utilized, which cover a territory mostly located in North 

America ranging from 38.4˚ to 42.8 ˚ in latitude, 87.2 ˚ W to 83 ˚ W in longitude. Fig 4. 4 presents the area of 

interest in this study with the distribution of GNSS receivers and the location of the radiosonde station. The 

minimum and maximum geodetic heights in this network are 128 m and 337 m, respectively and therefore the area 

is almost flat without any considerable height differences between stations. In addition, interstation distances vary 

from 4 km to 480 km in this campaign.   

The CORS campaign is used in order to analyse in Section 5.4 the efficiency of GOES-R sounders as a new 

constraint to improve the accuracy of the reconstructed wet refractivity field.  

 

Fig 4. 4. The area of interest in the CORS network 

 

4.2 Meteorological Observations 

In this part, the most important meteorological dataset which is used to compute required inputs for the GNSS 

tomography is described. This data can be divided into three different categories. In the first category, the surface 

meteorological observations like pressure and temperature are presented. These types of measurements are applied 

to estimate the hydrostatic part of the tropospheric delay and then the most important input, SWD, could be 

calculated using Eq. (2.40). Here, only the TAWES network is introduced which is responsible for providing 

meteorological measurements throughout Austria. The COST campaign contains SWD data for both synthetic and 

real datasets. For the CORS campaign, the Global Pressure Temperature 3 (GPT3) model was used to estimate the 

pressure as the surface meteorological measurements which was not available for this network. The GPT3 is an 

empirical model on a 5° × 5° and 1° × 1° global grid including various meteorological parameters such as pressure, 

temperature, and specific humidity (Landskron, 2017;Landskron and Böhm, 2018). All meteorological parameters 
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were obtained from monthly average pressure levels data of the ECMWF Re-Analysis product (ERA-Interim) 

(Landskron, 2017). The GPT3 empirical model can be employed with reasonable accuracy when there is no access 

to the meteorological measurements (Park et al., 2018;Yuan et al., 2020). Here, a Matlab program established at 

TU Wien was used to calculate the GPT3 outputs, particularly pressure. To do so, only the station location (𝜑, 𝜆, ℎ), 
the date and the GPT3 model with spatial resolution 1° × 1° were used. Please refer to (Landskron, 2017;VMF Data 

Server, 2022) for more details. The second category belongs to the data which has the role of enhancing the model 

accuracy. In this work, the GOES-R meteorological products for the first time are applied in the tomography model 

in order to achieve a unique solution with reasonable accuracy. The last category contains some external data which 

is used as a reference model to compare with the retrieved wet refractivity field. Here, radiosonde observations are 

utilized as a reference model for the validation of the tomography solution. In the following, all mentioned data 

categories in the tropospheric tomography of this work are presented in separate sections. 

4.2.1 Surface Meteorological Data 

TAWES is the national meteorological network of Austria which is operated by the Zentralanstalt für Meteorologie 

und Geodynamik (ZAMG). This network is one of the most dense synoptic networks in the world comprising more 

than 250 semi-automatic weather stations. Fig 4. 5 demonstrates the distribution of the synoptic stations throughout 

Austria. 

 

Fig 4. 5. Distribution of TAWES stations in Austria 

 

The TAWES stations measure meteorological parameters such as pressure, temperature, wind speed, wind 

direction, and relative humidity with a rate of 10 minutes. Fig 4. 6 reports the time series of relative humidity (RH), 

temperature (T), and pressure (P) for one of the TAWES stations located at (48.11°, 13.67°, 660.92 𝑚) on DoY 243 

September 1st, 2017. These measurements could be interpolated to the GNSS receiver sites using appropriate 
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methods such as polynomial, inverse distance weighting (IDW), and Kriging according to the type of parameters, 

the distance between synoptic stations and the receiver station, and the topography of the area of interest (see for 

e.g. (Al-Shaery et al., 2011;Stahel et al., 2006)).  

 

Fig 4. 6. Time series of relative humidity RH (a), Temperature T, and air pressure P on DoY 243 in year 2017 located 
at (𝟒𝟖. 𝟏𝟏°, 𝟏𝟑. 𝟔𝟕°, 𝟔𝟔𝟎. 𝟗𝟐 𝒎 ) in the TAWES network 

In this work, only the pressure parameter at the location of the GNSS receiver is required to feed the Saastamoinen 

model to compute ZHD. Therefore, the polynomial method is applied to estimate the pressure at the desired position 

(𝜑, 𝜆, ℎ) with an error of less than ±1 ℎ𝑝𝑎 (Stahel et al., 2006): 

                                                               𝑃̂ = 𝑎0 + 𝑎1𝜆 + 𝑎2𝜑 + 𝑎3 ℎ                                                                        (4.1) 

where 𝑃̂ is the fitted pressure, 𝑎0 is the intercept of the fitted line, and 𝑎1, 𝑎2, and 𝑎3 refer to the slope coefficients. 

These coefficients are estimated by applying the least square method to the TAWES pressures located with an 

average distance of 40 km from the intended GNSS stations. By substituting derived coefficients, the pressure at 

the GNSS station is computed using Eq. (4.1).  

4.2.2 Radiosonde Observations 

The radiosonde is acknowledged as a highly accurate standard technique to measure the meteorological parameters 

of the atmosphere since 1950 (Sá, 2018). The radiosonde is a balloon-borne instrument package that measures 

different parameters such as temperature (𝜎𝑇 = ±0.5°𝐶), pressure (𝜎𝑃 = ±1ℎ𝑝𝑎 − ±2ℎ𝑝𝑎), relative humidity (𝜎𝑅𝐻 =±5%), and geopotential height and transmits them to a ground receiver using radio waves (Heublein, 

2019;Manning, 2013). Moreover, measurements of wind speed and wind direction are also acquired due to the 

tracking of the radiosonde in the flight via GPS (NWS, 2022). The radiosonde profiles associated to the radiosonde 

station are accessible at 00:00 UTC and 12:00 UTC and can be freely downloaded via NOAA (NOAA, 2022) or 

Wyoming weather Web (UMYO, 2022).  Fig 4. 7 shows the radiosonde ascending a few minutes after launching 

the balloon. 

(a) (b) (c) 
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Fig 4. 7. Radiosonde ascending a few minutes after launch (TWV, 2022) 

In order to validate the tomography solution in the area of interest, radiosonde station measurements are used. Table 

4. 2 lists the utilized radiosonde stations with their geodetic coordinates. For this purpose, the retrieved wet 

refractivity field is interpolated to the RS location in each layer using the Inverse Distance Weighting (IDW) 

method (Wong, 2017) and assuming a strict vertical noise of the radiosonde when passing the different layers. 

Table 4. 2. Radiosonde stations in different campaigns 

Campaign Radiosonde Station Location Available 

Austria (EVN/EPOSA) 11035 16.37E, 48.25N, 200 

NOAA/ Wyoming 

weather Web 
COST 

10548 10.38E, 50.57N, 450 

10771 11.90E, 49.43N, 419 

CORS 72426 83.94W, 39.25N, 317 
 

4.2.3 GEOS-R Data 

The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the latest generation of geostationary 

satellites operated by the National Oceanic and Atmospheric Administration (NOAA) of the United States (US). 

The first two of the GOES-R series named GOES-16 and GOES-17 were launched in November 2016 and March 

2018, respectively (Schmit et al., 2019). GOES-16 is located at 75°𝑊 (GOES-East) and GOES-17 is operated at 135°𝑊 about 36000 km above the Earth’s equator. Fig 4. 8 illustrates the geographical coverage region of the 

GOES-16 and GOES-17 satellites.  
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Fig 4. 8. Geographical coverage area of the GOES-16 and GOES-17 (eoPortal Directory, 2022) 

The main instrument on-board in the GOES-R series is the Advanced Baseline Imager (ABI) in order to observe 

the Earth’s weather (Schmit et al., 2017;Schmit et al., 2005). Therefore, these satellites could provide continuous 

and valid environmental data for weather analysis, forecasts, and monitoring (Yu and Wu, 2012). The ABI sounder 

includes two channels in the visible part of the electromagnetic spectrum, four channels in the near-infrared and 

ten channels in the infrared and therefore this sounder views the Earth with 16 spectral bands (Schmit et al., 2018). 

The ABI sounder has a four times finer spatial resolution (0.5–2 km) and more than five times faster coverage rate 

(30 sec to 10 min) in comparison to the previous generation of GEOS imagers (Schmit et al., 2019;Schmit et al., 

2018). The ABI sounder provides the Legacy Atmospheric Profile (LAP) products over each 5 × 5 ABI pixels box 

region with clear-sky IR channel radiances as follows (Schmit et al., 2019;Yu and Wu, 2012): 

 Legacy atmospheric vertical moisture profile (LVM) 

 Legacy atmospheric vertical temperature profile (LVT) 

 Total precipitable water (TPW) 

 Layered precipitable water (LPW)  

 Derived atmospheric stability indices (DSI)  

These products could be generated in three different coverages: Full Disk (FD), continental United States 

(CONUS), and Mesoscale. Table 4. 3 describes some properties of these products. 

Table 4. 3. Coverage Regions of ABI products (Carlomusto, 2019) 

Coverage region Description 

FD Near hemispheric earth region centered at the longitude of the sensing satellite 

CONUS 
An approximately 3000 km x 5000 km region intended to cover the continental United States within 

the constraints of viewing angle from the sensing satellite 

Mesoscale 

An approximately 1000 km x 1000 km dynamically centered region in the instrument’s field of 

regard. The particular coverage region associated with a mesoscale product is operator- selected to 

support high-rate temporal analysis of environmental conditions in regions of interest 
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A full explanation of the LAP products can be discovered in the volume 5 of GOES-R Series Product Definition 

and User's Guide (PUG) (Carlomusto, 2019).  

In this work, only LVM and LVT products of GOES-16 are used in order to compute the wet refractivity field as 

an initial field to improve the quality of the tomography solution. Table 4. 4 summarizes the performance 

requirements of those profile (Carlomusto, 2019;Schmit et al., 2017). 
 

Table 4. 4. LVM and LVT profiles performance requirements 

LAP Products Range Geographic Range Measurement Accuracy Mapping Accuracy 

LVM 0 to 100 % 
FD, CONUS and 

Mesoscale 

Surface to 500 hPa: 18% 500 

to 300 hPa: 18% 300 to 100 

hPa: 20% 

5 km 

LVT 180 to 320 K 
FD, CONUS and 

Mesoscale 

1 K below 400 hPa and 

above boundary layer 
5 km 

 

The temperature and moisture profiles include values at 101 standard pressure levels in the atmosphere between 

0.005 and 1100 hPa (Carlomusto, 2019). Fig 4. 9 shows an example of LVM (RH) and LVT (T) products for an 

arbitrary point in the area scanned by GOES-16 on the 1st of August 2019 at noontime. 

 

Fig 4. 9. Legacy vertical profile of relative humidity RH (a), Temperature T of GOES16 on August 1, 2019 

 

Due to existing some gaps in this dataset, the natural neighbour interpolation method has been employed to produce 

missing data values. This method is a fast, reliable and robust technique which is closely associated with the 

Delaunay triangulation and the Voronoi diagram (Ledoux and Gold, 2005). Therefore, Eq. (4.2) is used in order to 

estimate 𝑅𝐻 or 𝑇 at the desired location as follows (Ledoux and Gold, 2005;Sibson, 1980): 

                                                                  𝑧̂ = ∑ 𝑤𝑖𝑁𝑖=1  𝑧𝑖                                                                                             (4.2) 

(a) (b) 
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where 𝑧̂  is the estimated value at the query location, and 𝑧𝑖 is the known value at each point located in the Voronoi 

polygon. 𝑛 is the number of neighbor polygons, and 𝑤𝑖  denotes the weight of each polygon and can be calculated 

as below (Ledoux and Gold, 2005;Sibson, 1980): 

                                                                𝑤𝑖 = 𝑉𝑜𝑙𝑖𝑉𝑜𝑙𝑡𝑜𝑡𝑎𝑙                                                                                                            (4.3) 

Here, 𝑉𝑜𝑙𝑖 and 𝑉𝑜𝑙𝑡𝑜𝑡𝑎𝑙 are the volume of polygon 𝑖 and the total volume of 𝑛 neighbor polygons. Accordingly, 𝑤𝑖 
is always between 0 and 1. 

4.3 Numerical Weather Model 

Numerical weather prediction models (NWPM) play an important role in meteorology and climate change studies 

in recent decades due to the appearance of a variety new meteorological measurements and strong processing 

techniques (Yang et al., 2013;Stensrud, 2009). These models could generate either short-term weather forecasts or 

long-term climate predications using a series of mathematical models (Yang et al., 2013). NWPM models acquire 

observations of meteo sensors like ground meteorological stations, radiosonde weather balloons, commercial 

aircraft and remote sensing weather satellites. Then, the state of weather is predicted at any future epoch by 

processing these measurements with computer models containing atmosphere and oceans models (Stensrud, 

2009;Yang et al., 2013). Therefore, the final outcome of the NWPM contains meteorological parameters such as 

air pressure, wind, temperature, humidity, cloudiness, precipitation, evaporation, and soil moisture to describe the 

weather system in time. The basic mathematical equations for NWPM models that could estimate the most 

important characteristics of the atmosphere behaviour rely on (Pu and Kalnay, 2019;Stensrud, 2009): 

 Newton’s second law (density, pressure, wind) 

 Conservation of mass (density, wind) 

 Conservation of energy (temperature, wind) 

 Equation of state (density, pressure, temperature) 

These equations are also known as primitive equations. In consequence, the future state of the weather system can 

be predicted at the instant time 𝑡 by knowing the evaluation laws of the atmospheric state at the instant time 𝑡0 

(Alves et al., 2016). Fig 4. 10 shows NWPM outputs displaying the temperature, pressure levels, and wind at the 

initial state time and also six hours later for the COST campaign on the 29th of May 2018.  
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(a) (b) 

Fig 4. 10. Surface temperature, pressure levels and wind at (a) 00:00 UTC, and (b) 06:00 UTC 

 

The NWMP models can be different in terms of horizontal and vertical resolution, temporal resolution, and 

coverage (global or regional). Most regional NWPM models and some global models apply finite difference 

methods in all spatial dimensions to solve the NWPM equations system (Collins, 2013). For the rest of the models 

such as global medium range forecasting models and global climate models, finite difference methods and spectral 

methods are used in the vertical direction and horizontal directions, respectively (Collins, 2013;Jang and Hong, 

2016). Table 4. 5 summarizes the most important NWM models with their significant characteristics.  
 

Table 4. 5. Well-known NWM models with their main characteristics 

NWM Horiz. Res Vert. Res Temp. Res Converge Format Tem. Coverage 

ERA Interim 0.125-3 
37 levels 

(1000-1 hpa) 
00,06,12,18 global 

NetCdf, 

grib 
1979-2019 Aug 

ERA5 0.25 
37 levels 

(1000-1 hpa) 
Hourly global 

NetCdf, 

grib 
1979-present 

AROME 0.028×0.018 
23 levels 

(1000-100 hpa) 
Hourly 

Regional 

(Europe) 
grib 2008-present 

ALADIN 0.042 
87 model levels 

(1023-1 hpa) 
00, 06, 12, 18 

Regional 

(Europe) 
grib 1997-present 

 

These models could provide accurate weather parameters at discrete grid points for any certain time. However, 

appropriate spatio-temporal interpolation methods are demanded in order to find meteorological parameters at a 

specific single point. In this work, the following steps are applied to compute the meteorological parameters of the 

desired point at the time of interest: 

a) Horizontal Interpolation 
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The horizontal interpolation is required to estimate the meteorological parameters at the location of the grid points 

of the tomography model or an arbitrary integration point. In this work, the bilinear interpolation method is applied 

(Hobiger et al., 2008;Schüler, 2001). 

b) Vertical Interpolation 

The vertical interpolation is carried out to determine the weather parameters at the actual height, which is essential 

for the wet refractivity computation. It is much more suitable to use separate interpolation methods for temperature, 

water vapour pressure, and air pressure due to the nonlinearity of these parameters for computation of refractivity 

(see Eq. (2.16)) (Hobiger et al., 2008;Nafisi et al., 2012). Therefore, a simple linear interpolation method could be 

applied in order to determine temperature at the specific height level (Hobiger et al., 2008;Nafisi et al., 

2012;Schüler, 2001). In the case of air pressure and water vapour pressure, a logarithmic interpolation is performed 

to gain values of these parameters at the desired vertical level (Hobiger et al., 2008;Nafisi et al., 2012;Schüler, 

2001). 

c) Temporal Interpolation 

As the GNSS observations, as well as the tomography model, have different temporal resolution in comparison to 

the NWM products, the temporal interpolation method is required for each observation epoch. The weighted 

average is the most applied method to estimate the meteorological parameters at the time of interest (Nafisi et al., 

2012). Hence, this method is applied to calculate the wet refractivity using Eq. (2.16) at the tomography epoch.  

By considering these points, different numerical weather models are used in the investigated campaigns in order to 

estimate the initial field for the GNSS tomography model. Table 4. 6 demonstrates the models applied within the 

different campaigns. 

Table 4. 6. Applied numerical weather models in different campaigns 

campaign NWM 

EPOSA/EVN AROME/ERA5 

COST ALADIN 

CORS ERA5 
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Chapter 5 

5 Analysis of GNSS Tomography Features for different Campaigns 

This chapter aims to analyse important features of GNSS tomography in four different case studies, which have 

been described in chapter 4. In Section 1, the feasibility of using single-frequency (SF) observations compared to 

dual-frequency (DF) observations is investigated. Moreover, the ART techniques and the TV method are assessed 

in this section. The impact of different GNSS constellations in the tropospheric tomography are examined in 

Section 2. Analysis of the topography effect as well as ray-tracing methods in the GNSS tomography are studied 

in Section 3. Moreover, the spread of the resolution matrix as a proxy for GNSS tomography quality is analysed in 

this section. Finally, the feasibility of using GOES-R as an initial field is discussed in Section 4. 

5.1. EPOSA Network: Evaluation of Regularization Methods in GNSS Tomography 
based on Single- and Dual-Frequency Observations and Feasibility of Near-real Time 
Tomography 

The resolution of the reconstructed wet refractivity is highly dependent on the GNSS network density. 

Consequently, an existing dense GNSS network is one of the essential pre-requirements in this approach. However, 

the use of DF receivers is not economically practicable in this regard, as these receivers are remarkably expensive. 

As an alternative, SF receivers can be considered to achieve a sufficient spatial resolution for GNSS meteorology 

(Bai, 2004;Deng et al., 2009;Krietemeyer et al., 2018). Therefore, in this section, the potential of SF observations 

in comparison to DF observations is examined for reconstructing the wet refractivity field in the EPOSA GNSS 

network with twenty-one stations. To quantify the ionospheric delay in the SF processing in Precise Point 

Positioning (PPP) mode, the Satellite-specific and Epoch-differenced Ionospheric Delay (SEID) model is used 

(Deng et al., 2009). Aside from the impact of SF and DF observations on the accuracy of ZTD and the wet 

refractivity field, a second essential component in GNSS tomography is investigated in this section. This second 

element concerns the effect of various regularization techniques, including ART methods and TV, by considering 

SF and DF observations. 

Another challenge in GNSS tomography is the dependency of the accuracy of the retrieved wet refractivity structure 

on the quality of the a priori field using some of the solution strategies like ART methods. Therefore, the retrieved 

tomography field may be very similar to the a priori field instead to reflect the real physical conditions if the chosen 

regularization parameter was not suitable. Another challenging task in the GNSS tomography is to reconstruct a 

reasonable near-real-time solution, especially when the number of rays is low and the area covered by the voxel 

model is large. Here, the TV method is used to retrieve a regularized solution without any initial field in a shorter 

time span. 

Therefore, first, the designed tomography model for the EPOSA network is defined. Then, the estimation of the 

ZTD using SF observations in PPP mode and DF observations in double-difference mode are described. In the first 

strategy, SF observations are processed using PPP in goGPS software. In the second strategy, DF observations are 
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processed in double-difference mode with the Bernese software. The accuracy of the estimated ZTD using SF and 

DF modes is discussed in comparison to ZTD derived from the NWM model. In this study, the AROME 

(Applications of Research to Operations at MEsoscale) model, which is one of the regional NWM models in 

Europe, is employed. After that, the reconstructed wet refractivity field using different regularization methods on 

two different observation types (SF and DF) are compared to radiosonde observations. Finally, the obtained results 

using the TV and Landweber method in different temporal resolutions compared to radiosonde observations are 

investigated.  

5.1.1 Tomography Model Configuration 

For parameterization above the area of interest, we need to select an optimum size of the model elements. Here, 

the model space resolution matrix (𝑹𝒎) concept (Adavi and Mashhadi-Hossainali, 2014;Adavi and Weber, 2019) 

was applied to select an optimal horizontal resolution of the tomography model between 40 km and 70 km (see Fig 

5. 1). As described in Section 3.2.2, an optimal resolution is obtained when the resolution matrix is close to identity 

(Aster et al., 2005). This means the well-resolved and poor-resolved model elements are close to 1 and 0, 

respectively. According to Fig 5.1, when the number of poorly resolved model elements (shaded voxels) by GNSS 

signals is decreased, resolution matrices have converged to the identity matrix (see Fig 5. 1 (d)). However, as the 

refractivity is considered as a constant value in each voxel, the model elements should not be too large. Hence, 60 

km was selected as the optimum horizontal resolution. In the vertical direction, an exponential layer function was 

applied (see Eq. (3.7)). Nine vertical layers are employed in this study.  
 

 

  
(a)                                                                                                                (b) 
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(c)                                                                                                    (d)  

Fig 5. 1. The tomography model for the horizontal resolutions of (a) 40 km, (b) 50 km, (c) 60 km and (d) 70 km (Adavi 
and Weber, 2019) 

5.1.2 GNSS Data Processing 

This section introduces two different strategies for estimating the ZTD. In the first strategy, the undifferenced PPP 

mode is applied for tropospheric modelling in the goGPS software using SF observation data (Herrera et al., 2016). 

The ZTD is derived by processing dual-frequency (DF) observations with the Bernese GNSS software in the second 

one.  

5.1.2.1 PPP Strategy using SEID Algorithm 

The ionospheric delay is one of the major error sources in GNSS based positioning. For that reason, the ionospheric-

free linear combination (IF LC) built of dual-frequency observations is normally used in PPP. Unfortunately, cheap 

SF receivers do not track observations on a second frequency. In addition, the accuracy of the ionospheric model 

should be a few tens of TECU in order to achieve promising results using SF observations. This quality can neither 

be provided at the moment by well-known broadcast models like Klobuchar or NeQuick nor by IGS-GIMs. To 

overcome these difficulties Deng et al. (2009) developed a technique that derives a synthetic second frequency 

from multi-frequency receivers located close to the SF receiver using the geometry-free linear combination. They 

call this approach the Satellite-specific and Epoch-differenced Ionospheric Delay (SEID) model (see Fig 5. 2). 

Hence, with the generated synthetic second frequency, it is possible to calculate a PPP solution using the 

ionospheric-free linear combination. By exerting this method, Deng et al. (2009) have reached an RMS of 3 

millimeters of the ZTD estimates in comparison to ZTD estimates based on PPP solutions using real observations 

on two frequencies. The generated synthetic frequency data was derived from reference stations within a distance 

of 52 km to 75 km. 

In this study, data of the four IGS (International GNSS services) stations GRAZ, MEDI, WTZR, and ZIMM were 

applied together with the SEID model to generate the synthetic second frequency for the case study stations from 



 

57 
 

which only SF observations were used. Due to the fact that goGPS supports SEID only for GPS, no other GNSS 

were included in the analysis. For the PPP solution, CNES (Centre National d’Etudes Spatiales) final products 

available from CDDIS (Crustal Dynamics Data Information System) were used for satellite orbits and clock 

solutions. In this case study, the ZTD was estimated with an update rate of 30 seconds. Then, the estimated ZTD 

values were averaged over every 1 hour in order to provide better consistency with the processing of the 

tomography model. 

 

 

Fig 5. 2. Building L2 observations used in goGPS software (Scheme 1) (Adavi et al., 2022a) 

5.1.2.2 Network Strategy 

Generally, the process of ZTD determination by means of the Bernese GNSS software in baseline mode is 

illustrated by the flow diagram in Fig 5. 3 (Dach et al., 2015). According to this figure, phase and code observations 

are preprocessed, and single-difference observations are created. After a successful cycle slip detection and marking 

of outliers, station coordinates and ZTDs are calculated in the parameter estimation step (GPSEST). 

http://www.cnes.fr/
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Fig 5. 3. Flowchart of tropospheric parameter estimation using the Bernese GNSS software (Scheme 2) (Adavi et al., 

2022a) 

Final precise orbits and earth rotation parameters provided from CNES are applied to achieve high precision. 

Ephemeris data is parametrized via the collocation method in module ORBGEN and interpolated to the desired 

GNSS observations epochs (here 30 sec). For datum definition, the coordinates of the IGS stations, GRAZ, MEDI, 

WTZR, and ZIMM, were tightly constrained. Besides, the relative and absolute a priori ZTD sigmas for all stations 

were set to 5 meters and 1 meter, respectively. In contrast to the float PPP scheme, the phase ambiguities were 

fixed in the DF scheme. In this strategy, ZTD was estimated every 15 minutes over the investigated period. Finally, 

hourly mean values of the estimated DF ZTDs were calculated to establish better consistency with the tomography 

model. Table 5. 1 summarizes the main inputs and settings applied to estimate ZTD in baseline mode. 



 

59 
 

 

Table 5. 1. Bernese GNSS processing settings 

Parameters Bernese Processing 

Reference System ITRF2014 

Coordinate format XYZ 

Satellite Orbit and Clock IGS Final Products (CDDIS) / 30 sec 

Earth Rotation Parameters IGS Final ERPS (CDDIS) 

Tropospheric Model 

Dry Dry GMF 

Wet Wet GMF 

Mapping Function VMF1 

Gradient CHENHER 

Ionospheric Model Global Ionospheric Models “GIMs” (CODE) 

Ocean tidal loading FES2004 model (Chalmers) 

Atmospheric tidal loading Ray and Ponte 2003 model based on ITRS 2010 

Ambiguity Fixing Strategy Quasi Ionosphere-Free (QIF) 

GNSS System GRE/GR/GE 

Phase centre eccentricities 

and variations 
PCV.I14 

Observation type Phase and Code 

Elevation angle 5 degrees 

Observation sampling rate 30 sec 
 

5.1.3 Weather Condition in the Study Period 

Observations on days 232-245 in August 2019 have been chosen due to the unstable weather conditions with high 

and low amounts of precipitation in the period of interest. Fig 5. 4 shows variations of total precipitation 

(accumulated water in the frozen and liquid states, including rain and snow (Muñoz Sabater, 2022)) revealed by 

the AROME model and the observed relative humidity calculated from radiosonde data.  

  

Fig 5. 4. Variations of relative humidity up to 4 km height (a) and average of total precipitation within the whole area 

(b) during the time of interest (Adavi et al., 2022a) 

 

(b) (a) 
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5.1.4 GNSS ZTD in Comparison to NWM ZTD 

To illustrate the impact of schemes on the ZTD and SWD's accuracy, the estimated ZTD from SF and DF 

observations were compared to the ZTD derived by ray-tracing through the AROME model. As shown in Fig 5. 5, 

the consistency of the derived ZTDs by the DF algorithm is higher compared to ZTDs calculated from SF data both 

at midnight and noontime. However, the performance of both strategies with respect to AROME at noontime is 

slightly superior compared to midnight. In addition, the inconsistency between the SF ZTDs and AROME ZTDs 

is much more visible in comparison to DF ZTDs and AROME ZTDs. This could be explained by considering the 

float solution of the PPP ZTD estimation process. Moreover, remaining mis-modelling of ionopsheric variation by 

the SEID algorithm could affect the ZTD solution (Aichinger-Rosenberger, 2021). Nevertheless, the obtained 

results show the potential of the SF observations to estimate ZTD with an average RMSE of less than 7.5 cm with 

respect to AROME ZTD. 

 

 

Fig 5. 5. Average RMSE of ZTD difference at 00:00 UTC (a) and 12:00 UTC (b) determined for days 232–245 for single-

frequency and dual-frequency observations with respect to AROME (Adavi et al., 2022a) 

Table 5. 2 summarizes the average RMSE for both SF and DF strategies at midnight and noontime during the 

period of interest. The numbers in brackets denote the minimum and maximum RMSE among all GNSS stations. 

(a) 

(b) 
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Table 5. 2. Mean RMSE over all stations with respect to AROME ZTDs for SF and DF schemes during the period of 

interest (Adavi et al., 2022a) 

RMSE [meter] Midnight Noontime 

SF Scheme 0.085 [0.038 0.130] 0.065 [0.021 0.125] 

DF Scheme 0.020 [0.013 0.034] 0.018 [0.012 0.026] 

 

Moreover, Table 5. 3 reports the mean Bias during the period of interest for SF and DF schemes at midnight and 

noontime. Again the numbers in brackets denote the minimum and maximum bias among all GNSS stations. 

According to this table, the range of Bias variations in the DF scheme is smaller than in the SF scheme. In addition, 

a considerable Bias of the SF ZTDs of about 0.23 meters shows up for station WEYE. This may return to 

insufficiently resolved ambiguities that have an impact on the ZTD estimation process. 

Table 5. 3. Mean Bias over all stations for SF and DF schemes during the period of interest (Adavi et al., 2022a) 

Bias [meter] Midnight Noontime 

SF Scheme 0.021 [-0.017 0.230] -0.022 [-0.085 0.078] 

DF Scheme -0.009 [-0.026 -0.002] -0.006 [-0.019 0.001] 

 

Fig 5. 6 represents the time series of SF ZTD and DF ZTD for two example stations, GRAZ (height approx. 538 

m) and TRAI (height approx. 407 m), compared to AROME ZTD during the period of interest at midnight and 

noontime. As shown in this figure, the discrepancy between the GNSS ZTD for both SF and DF schemes against 

the AROME ZTD is relatively high at noontime. This difference most probably returns to the quality of the 

employed part of the AROME model for the GRAZ station since the estimated ZTDs are close to the computed 

tropospheric delays by IGS analysis centres. For instance, the difference between the ZTDs from IGS and the 

estimated DF ZTDs is less than 0.01 cm and 0.02 cm at noontime for DoYs 236 and 238, respectively. Nevertheless, 

the behaviour of DF ZTD generally shows considerable similarity with the AROME ZTD. The correlation between 

the time series of SF ZTD and AROME ZTD is also appreciable but not as high as for DF ZTD. 
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Fig 5. 6. Time series of average ZTD using SF and DF schemes for GRAZ and TRAI stations at midnight (a) and 

noontime (b) (Adavi et al., 2022a) 

 

In order to gain a better representation of the consistency of GNSS ZTD in both schemes and AROME ZTD, the 

Pearson correlation was calculated during the period of interest at midnight and noontime for all GNSS stations. 

Indeed, the correlation was estimated per hour between the ZTD series of GNSS stations. Table 5. 4 summarizes 

the mean correlation over all investigated days. Similar to Table 5. 2 and Table 5. 3, the numbers in brackets show 

the minimum and maximum correlation among all studied GNSS stations. According to these results, DF ZTD is 

consistent with AROME ZTD for both midnight and noontime. For SF ZTD, the correlation drops significantly but 

remains still above 50%. Therefore, still a reasonable but limited consistency with AROME can be stated which is 

slightly higher at noontime in comparison to midnight. The lower correlation of the SF ZTD can be explained by 

complexity to describe the ionospheric delay with SEID. Moreover, there might also be artifacts from model 

deficiencies e.g., satellite clocks in PPP processing. As expected a successful integer fixing of the ambiguities 

improves the results and leads to a much more accurate estimation of the SF ZTD. 

 

 

(a) 

(b) 
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Table 5. 4. Mean Correlation over all stations for SF and DF schemes during the period of interest (Adavi et al., 2022a) 

Correlation [%] Midnight Noontime 

SF Scheme 66 [49 92] 79 [43 93] 

DF Scheme 97 [89 99] 97 [94 99] 

 

It has to be highlighted that not only the GNSS ZTDs but also deficiencies in the AROME model can cause 

inconsistency between ZTDs time series. Fig 5. 7 shows the differences between relative humidity (RH) and 

temperature (T) of the AROME model and RS measurements on DoY 235. As can be seen in Fig 5. 7, the difference 

between temperature profiles of AROME and RS are varying from −2 K to 4 K. For RH profiles, the difference 

range is changing between -40% and 60%.  

 

Fig 5. 7. Difference of T (left) and RH (right) of the AROME model in comparison to radiosonde (RS) observations on 

DoY 235 at midnight (hour 00:00 UTC) at RS11035 location (Adavi et al., 2022a) 

Table 5. 5 summarizes mean RMSE of temperature and relative humidity in comparison to RS11035 profiles (red 

star in Fig 4.1) during the period of interest. 
  

Table 5. 5. Daily RMSE of AROME meteorological profiles in comparison to RS measurements (Adavi et al., 2022a) 

Parameter Up to 5 Km 5 km to 18 km 

T [K] Max= 2.33 and Min= 0.35 Max= 2.23 and Min= 0.77 

RH [%] Max= 25.52 and Min= 7.07 Max= 32.81 and Min= 8.81 

 

5.1.5 Iterative Regularization Techniques versus TV 

In this section, the accuracy of the reconstructed profiles using different strategies is evaluated by reference 

radiosonde observations located at Vienna airport (RS11035) at midnight and noontime. Fig 5. 8 presents the 

studied schemes in this research. As shown in this figure, the wet refractivity field is reconstructed by considering 
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SF and DF datasets using the ART techniques and TV method. Overall, the wet refractivity outcome of seven 

different regularization methods are compared to the radiosonde wet refractivity on basis of SF and DF observations 

in this research, which are: (1) Landweber+ AROME, (2) MART+ AROME, (3) ART+ AROME, (4) TV, (5) 

Landweber+ TV, (6) MART+ TV, and (7) ART+ TV. Moreover, it should be highlighted that the time resolution 

of the tomography model is chosen to be 1 hour that means 24 epochs in each day. 

 

Fig 5. 8. Studied schemes on basis of SF and DF observations (Adavi et al., 2022a) 

Fig 5. 9 demonstrates the average of MAE in the wet refractivity field over the period of interest for the SF and DF 

schemes that apply to different regularization methods in order to reconstruct the tomography solution. According 

to Fig 5. 9 (a,b), the performance of the SF scheme is comparable with the DF scheme especially when the AROME 

model is applied as an initial field at midnight. However, the differences between SF and DF schemes for the ART 

method were increased at noon, which may return to the sensitivity of the ART method to the existing noise in SF 

ZTD. Moreover, the TV regularization method provides promising results mainly for the DF scheme. Therefore, 

the TV algorithm could provide an acceptable reconstructed wet refractivity field without the existence of an initial 

field. In addition, the output of the TV method was applied in the ART techniques as an initial guess. ART+ TV is 

generally superior for the DF scheme based on Fig 5.9. Moreover, ART+ TV has minimum MAE for the SF scheme 

at midnight, but MART+TV provides better results compared to other ART techniques+ TV during noontime. 
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Fig 5. 9. MAE of the reconstructed wet refractivity profiles for heights up to 2 km at 00:00 UTC (a), 2 km to 6 km at 

00:00 UTC (b), up to 2 km at 12:00 UTC (c), and 2 to 6 km at 12:00 UTC (d) at RS11035 location (Adavi et al., 2022a) 

In order to discover the overall accuracy of the retrieved wet refractivity using the tomography method, the 

dispersion of the different schemes in comparison to the radiosonde profile at RS11035 was calculated for the 

period of interest. Fig 5. 10 shows the scatter-plot of wet refractivity for the DF scheme (left panel) and for the SF 

scheme (right panel). The y-axis denotes wet refractivity (in ppm) calculated from the RS measurements, while the 

x-axis shows wet refractivity of the tomographic approach. Each graphic covers 252 data points evaluated within 

the 14 days period investigated here times the 9 voxels (height layers) above the RS launch site times 2 launches 

per day (14×9×2=252). According to Fig 5. 10, the spreading of the reconstructed tomography field in the DF 

scheme is generally smaller than in the SF scheme. The TV algorithm for both, the DF and SF schemes, shows a 

comparable dispersion to the least-square line. The match between RS and reconstructed wet refractivity by 

applying the AROME model as a priori field is closer than for other schemes for both, the SF and DF strategies. 

Moreover, as shown in Fig 5. 10, applying TV output as an initial field for ART regularization techniques provides 

reasonable results in both schemes. 
 

(a) (b) 

(c) (d) 
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Fig 5. 10. Comparison of reconstructed wet refractivity of DF schemes (left panel) and SF schemes (right panel) to 

RS11035 wet refractivity during the period of interest (Adavi et al., 2022a) 

To better interpret the obtained results, the slope of the least-square line is reported in Table 5. 6. According to this 

table and also Fig 5. 10, it could be concluded that the performance of all ART techniques (ART, MART, and 

Landweber) + AROME for the SF scheme is as good as for the DF scheme since the slope of the corresponding 

least-square lines is almost close to 1:1. The TV method and ART techniques+ TV for both schemes slightly 

underestimate the wet refractivity field. However, the obtained results from these methods are also reasonable. 
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Table 5. 6. The slope of the least-square line for all regularization methods in SF and DF schemes (Adavi et al., 2022a) 

 
Lndw 

+Arom 

MART 

+Arom 

ART 

+Arom 
TV 

Lndw 

+TV 

MART 

+TV 

ART 

+TV 

SF 1.00 0.97 0.98 0.90 0.91 0.92 0.91 

DF 1.02 0.99 1.01 0.91 0.92 0.91 0.94 

 

According to the reported values in Table 5. 7, the correlation for different regularization techniques in SF and DF 

schemes are almost higher than 95% except for MART+TV in the SF scheme, which is about 93%. Therefore, the 

retrieved wet refractivity for SF and DF schemes using all regularization techniques correlates considerably with 

the RS profile.  

Table 5. 7. Correlation Coefficient [%] between the reconstructed wet refractivity profile and RS profile using different 

regularization methods for SF and DF schemes during the period of interest (Adavi et al., 2022a) 

 
Lndw 

+Arom 

MART 

+Arom 

ART 

+Arom 
TV 

Lndw 

+TV 

MART 

+TV 

ART 

+TV 

SF 97.98 98.65 98.56 95.77 96.06 93.21 97.63 

DF 97.80 98.42 96.67 94.98 95.23 95.68 95.57 

 

The average RMSE of wet refractivity for all days considered for the location of RS11035 are listed in Table 5. 8 

(see Appendix B for daily RMSE results). It can be concluded that the differences of the reconstructed refractivity 

profiles by applying the AROME model as an initial field (obtained from both the SF and DF schemes) with respect 

to refractivity calculated from RS data are less than 4.6 ppm and 9.5 ppm at midnight and noontime, respectively. 

In addition, the accuracy of the TV method and TV+ ART techniques for SF and DF schemes is roughly comparable 

during the studied epochs. In general, as expected, the DF scheme shows a lower RMSE almost for all 

regularization techniques compared to the SF scheme. Nevertheless, even in the SF scheme, the TV method and 

TV+ ART techniques could provide reasonable results in tropospheric tomography. 

Table 5. 8. Average RMSE [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035 

(Adavi et al., 2022a) 

 

Lndw 

+Arom 

MART 

+Arom 

ART 

+Arom 
TV 

Lndw 

+TV 

MART 

+TV 

ART 

+TV 

00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 

SF 4.51 6.76 4.02 5.37 4.01 9.37 8.52 8.23 7.89 8.24 8.94 6.33 6.11 8.99 

DF 4.09 5.94 2.93 4.56 3.32 4.69 7.81 6.85 7.84 6.73 6.37 6.73 4.86 5.04 
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The average Bias was also calculated over the study period to assess further the accuracy of the reconstructed wet 

refractivity field, using different regularization methods in SF and DF schemes. Table 5. 9 summarizes the average 

bias for the location of RS11035 during the whole experimental period. According to that, the bias of the 

reconstructed tomography profile using different regularization techniques is almost the same for SF and DF 

schemes at midnight and noontime. Similar to the MAE, the bias for ART+ AROM and ART+ TV during noontime 

in the SF scheme is significant. Mis-modeling of the ionospheric delay by the SEID model might be a potential 

reason. In addition, this could be due to higher solar activities during the noontime, which causes noise in SF ZTD 

and consequently SWD observations, since the ART technique is especially sensitive to the existing noise in the 

observations. Moreover, it should be highlighted that the correlation between reconstructed profiles and RS profiles 

obtained by various regularization schemes in the SF scheme is almost higher than for the DF scheme, while bias 

and RMSE demonstrate different results. This may return to the fact that correlation is not sensitive to any shift in 

the reconstructed wet refractivity profile with respect to the RS profile. Nevertheless, all statistical results show 

promising results using TV and ART techniques + TV for DF and SF schemes to reconstruct wet refractivity in the 

troposphere. 
 

Table 5. 9. Average Bias [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035(Adavi 

et al., 2022a) 

 

Lndw 

+Arom 

MART 

+Arom 

ART 

+Arom 
TV 

Lndw 

+TV 

MART 

+TV 

ART 

+TV 

00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 

SF 0.20 1.14 -1.23 -0.16 -0.62 5.88 -1.52 -0.84 -1.34 1.02 -2.31 -0.73 -0.83 5.57 

DF 0.38 0.54 0.05 -0.99 -0.23 -0.49 -1.02 -1.01 -1.15 -0.95 -0.27 -2.22 0.67 -0.40 

 

5.1.6 Feasibility of Near-Real-Time Tomography using TV Method 

One of the challenges that stand in GNSS tomography is the dependency of the accuracy of the retrieved wet 

refractivity structure on the quality of the a priori field using some of the solution strategies like ART methods. 

Therefore, the retrieved tomography field may be very similar to the a priori field instead to reflect the real physical 

conditions if the chosen regularization parameter was not suitable. Another challenging task in the GNSS 

tomography is to reconstruct a reasonable near-real-time solution, especially when the number of rays is low and 

the area covered by the voxel model is large. 

 In this part, the feasibility of the TV technique to reconstruct the wet refractivity in a short tomography window is 

investigated. The main strategy of this research is presented in Fig 5. 11. As shown in this figure, six different 

temporal resolutions (10 minutes to 60 minutes) with a time step of 10 minutes are defined and then the wet 

refractivity field is estimated using the TV method. Moreover, the Landweber method by considering the AROME 

model as an initial field is also applied to retrieve the wet refractivity solution to interpret the TV results better. 
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Finally, radiosonde measurements located at Vienna airport (RS11035) are utilized to compare the estimated wet 

refractivity field in order to obtain the accuracy of the proposed method. 

 

 

Fig 5. 11. Main strategy of studying the feasibility of the TV method for the near real-time reconstruction (Adavi and 

Weber, 2022) 

Fig 5. 12 shows examples of the reconstructed wet refractivity profiles in comparison to the RS profiles for three 

days of the study period with different performances on DoYs 232, 237, and 244. Fig 5. 12 (a) and Fig 5. 12 (b) 

present the results for midnight and noontime, respectively. Even for shorter tomography windows of up to 40 

minutes, the agreement between the reconstructed profiles and the RS profile at midnight is at the 5 ppm and 7.6 

ppm level, for DoYs 232 and 237, respectively. However, on DoY 244, the performance of the TV method is poor 

at midnight and reaches 13.6 ppm for a temporal resolution of 10 minutes. During noontime, the RMSE of the 

retrieved model in comparison to the RS profile for the tomography windows of shorter than 40 minutes on DoYs 

232, 237, and 244 are about 4.85 ppm, 7.3 ppm, and 4.4 ppm, respectively. For temporal windows of more than 40 

minutes, the quality of the reconstructed profiles using the TV method is quite good for all sample days at midnight 

and noontime. In the following, the efficiency of the TV method is demonstrated by MAE, RMSE, and Std 

calculated over the whole period. 
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(a) 

 
(b) 

Fig 5. 12. Comparison of tomographic refractivity profiles of different tomography windows to the profile calculated 

from RS11035 data at midnight (a), and noontime (b) for DoYs 232, 237, and 244 (Adavi and Weber, 2022) 

Fig 5. 13 presents the average MAE over the experimental period for the reconstructed wet refractivity in different 

temporal resolutions. According to the obtained results, for the lower layers, the inconsistency between the retrieved 

field and RS wet refractivity is mostly better at noontime in comparison to midnight. Moreover, the discrepancy 

between the tomography solution and the RS profile is almost decreasing with extending the tomography time 

window. However, for a temporal resolution of 20 minutes and 30 minutes at midnight, the inconsistencies are 

pretty high compared to other tomography windows due to the considerable condition number of the structure 

matrix on DoYs 242-244. For the upper layers from 2 km to 6 km, the obtained results for noontime and midnight 

are comparable. Additionally, the discrepancy of reconstructed wet refractivity with respect to the RS profile 

generally amounts to 7 ppm or less for spans longer than 40 minutes for both studied height layers.  
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Fig 5. 13. Average MAE of the reconstructed wet refractivity field for heights up to 2 km, and 2 to 6 km at midnight 

and noontime at RS11035 location (Adavi and Weber, 2022) 

In the next step, RMSE, Std, and Bias were calculated for the reconstructed wet refractivity field using the TV 

method during the entire study period at midnight and noontime. Table 5. 10 reports the average value over all 14 

days of these statistical parameters for different temporal resolutions at midnight (see Appendix C for daily RMSE 

results). The numbers show that the performance of the tomography model, calculated with high temporal 

resolution, is comparable with longer time steps. As expected, the RMSE, Std and MAE of the tomography solution 

with 60 minutes temporal resolution are slightly better than for other schemes. By looking at Table 1, it becomes 

clear that the average Biases for the temporal resolutions of 20 minutes and 30 minutes are larger than for 10 

minutes. As shown in Table C. 1 (see Appendix C), this is due to the three problematic days (DoYs 242-244) with 

the highest inconsistency with respect to the RS profiles, which most probably returns to the weak performance of 

the tomography model in the lower layers (see Fig 5.13). The main factors for this inconsistency could be related 

to the low amount of water vapour in the troposphere (see Fig 5.4 (b)) and the lack of proper definition of the 

regularization parameter for the TV technique. For the shown Bias values in Table 1, there is no general judgment 

due to the different behaviour of this quantity by extending temporal resolution. This could return to the varying 

signs of the Bias and the sensibility of this statistical parameter to the systematic errors in the GNSS data processing, 

meteorological measurements (here pressure), and the instability of the retrieved solution using the TV method. 

However, it is worth mentioning that a sensor Bias is usually removed by the meteorologists before assimilation in 

the NWM models based on test periods. So in case the parameter retrieval ‘environment’ is stable, also the bias 

should be kept stable and can be absorbed before assimilation. Furthermore, according to the reported Bias in Table 

1, it turns out that the wet refractivity solutions calculated in tomography windows of more than 10 minutes are 

averagely underestimating RS wet refractivity over the experimental period. 
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Table 5. 10. Average RMSE, Std, and Bias over the experimental period for all different temporal resolutions (epoch 
00:00 UTC, location: RS11035) (Adavi and Weber, 2022) 

 

 

 

 

 

 

 

 

 
 

 
 

Table 5. 11 presents the statistical evaluation of retrieved wet refractivity using the TV method at noontime (see 

Appendix C for daily RMSE results). From this table, it becomes obvious that the performance of the TV technique 

at noontime enhanced up to 30 % compared to midnight. This is generally because of the low accuracy of the 

retrieved wet refractivity for DoYs 242-244. For other days, the accuracy of the tomography solution is comparable 

at midnight and noontime. Additionally, the amount of water vapour is higher at noontime in comparison to 

midnight. This variation of water vapour is a crucial factor for the TV performance. Furthermore, the estimated 

tomography profiles using the TV method are generally underestimating the wet refractivity of the reference RS 

profile similar to midnight according to the reported Bias values.   

Table 5. 11. Average RMSE, Std, and Bias over the experimental period for all different temporal resolutions (epoch 

12:00 UTC, location: RS11035) (Adavi and Weber, 2022) 

 

 

 

 

 

 

 

 

 

 
 

 

In the next step, the average correlation between the reconstructed wet refractivity with the RS profile was 

calculated over the experimental period at midnight and noontime. According to the reported correlations in Table 

5. 12, it can be stated that the behaviour of the retrieved profiles is considerably close to the RS profile with a 

Midnight RMSE [ppm] Std [ppm] Bias [ppm] MAE [ppm] 

10 min 6.77 6.46 0.33 1.70 

20 min 7.72 7.26 -0.28 2.11 

30 min 7.46 6.95 -0.61 1.93 

40 min 5.80 5.30 -0.41 1.86 

50 min 6.05 5.70 -0.97 1.58 

60 min 5.26 5.02 -0.71 1.19 

Noontime RMSE [ppm] Std [ppm] Bias [ppm] MAE [ppm] 

10 min 5.72 5.24 -0.46 1.91 

20 min 5.47 5.05 -0.90 1.77 

30 min 5.81 5.29 -0.74 1.98 

40 min 5.50 5.04 -0.003 1.79 

50 min 4.98 4.58 -0.07 1.58 

60 min 4.82 4.54 -0.30 1.18 



 

73 
 

correlation of more than 95 % and 97 % for all tomography windows at midnight and noontime, respectively. In 

addition, the correlation between the tomography solutions and RS wet refractivity is slightly higher at noon than 

for midnight. As expected, the correlation of the tomography solution with the RS profile almost increases with 

extending the tomography time window. 

Table 5. 12. Average correlation coefficient [%] over the entire study period between the retrieved wet refractivity 

profile and RS profile for different temporal resolution (Adavi and Weber, 2022) 

 10 min 20 min 30 min 40 min 50 min 60 min 

Midnight 96.40 95.12 95.61 97.38 97.23 97.98 

Noontime 97.84 97.88 97.69 98.03 98.37 98.48 

 
 

In order to gain a better interpretation of the obtained results, the wet refractivity field was also reconstructed using 

the Landweber technique by considering the AROME model as an a priori field. According to Fig 5. 14, the RMSE 

of the Landweber method at midnight is smaller than for the TV method in all temporal resolutions. The TV 

technique has provided a more reliable or at least comparable tomography solution with respect to the Landweber 

method for all temporal resolutions at noontime. Additionally, the quality of the reconstructed field using the 

Landweber method technique extremely depends on the initial field, and it does not change significantly with 

varying the tomography window. In comparison, the accuracy of the wet refractivity retrieved by the TV method 

is clearly increased by extending the temporal window up to 60 minutes especially at midnight. It should also be 

highlighted that the TV technique has provided a more reliable tomography solution than the Landweber method 

for all temporal resolutions at noontime.   

 

 
Fig 5. 14. Average RMSE over the entire study period for TV and Landweber methods at midnight and noontime 

(Adavi and Weber, 2022) 

According to the obtained results, the TV technique reconstructed the wet refractivity field with an accuracy of less 

than 8 ppm and 6 ppm at midnight and noontime, respectively. In addition, the accuracy of this method was 

comparable with the accuracy of the Landwber method even in a short tomography window at noontime and 
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windows of at least 40 minutes at midnight. Thereby, the TV method would be a good choice to estimate the 

tomography solution, especially when there is no access to the (reliable) initial field. 

5.2. EVN Network: Impact of the GALILEO Constellation on the Tropospheric 
Tomography 

To improve observation geometry compared to a sole GPS/ GLONASS system scenario, observations to further 

multi-GNSS might be applied. This advanced scenario has become an essential research point in the recent decade. 

Therefore, the aim of this part is to investigate the impact of different constellations to solve the ill-posed inverse 

problem to retrieve the wet refractivity field by focusing on GALILEO's effect on the accuracy of the estimated 

refractivity. Regarding this, the designed models were loosely constrained to the a priori field to provide an 

optimum situation for assessing the influence of the GALILEO constellation in the tomography solution. Therefore, 

as shown in Fig 5. 15, three different schemes, namely (1) GPS + GLONASS + GALILEO (GRE), (2) GPS+ 

GLONASS (GR), and (3) GPS+ GALILEO (GE), have been considered to analyse the impact of the GALILEO 

constellation on the accuracy of the reconstructed wet refractivity field. 

 

Fig 5. 15. Different Schemes to analyse the impact of GALILEO on the tomography solution 

In this section, first, the configuration of the designed tomography model for the EVN network is described. Then, 

the weather conditions in the study period are described. After that, the ZTD estimated from different constellations 

(GRE, GR, and GE) is compared to the derived ZTD from the AROME model using ray-tracing for evaluating the 

precision of GNSS ZTDs. Finally, the Landweber method is applied to reconstruct the wet refractivity field in the 

GRE, GR, and GE schemes. 

5.2.1 Tomography Model Configuration 

Here, the model space resolution matrix has been again applied in order to select the optimum horizontal resolution 

for the tomography model covered by the EVN network (see Section 4.1.1.2 in Chapter 4).Therefore, five different 

horizontal resolutions from 30 km to 70 km with step size 10 km were considered. According to the obtained 

results, 60 km was picked out as an optimum resolution due to the minimum discrepancy with the identity matrix 
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as well as reasonable size (not too large) to assume a constant value of wet refractivity per voxel. Fig 5. 16 shows 

the designed tomography model for the EVN network. 

 

Fig 5. 16. Designed Tomography Model for the EVN network 

 

Moreover, the exponential layer model was applied to define the vertical layer. Wet refractivity in each voxel was 

assumed to be stable for 1 hour and therefore, the temporal window is 1 hour in the designed tomography model. 

Fig 5. 17 illustrates the configuration of the designed tomography model in this case study. 

 

Fig 5. 17. Tomography configuration in the EVN network 

 

5.2.2 Weather Condition in the Study Period 

In order to investigate the impact of the GALILEO constellation on the GNSS tomography solution, two different 

time periods have been chosen. The first period covers 10 days in April 2019 from 100 to 109 (Fig 5. 18 (a-b)) and 

the second period covers DoYs 233-244 in August 2019 (Fig 5. 18 (c-d)). According to Fig 5. 18 (a-b), the 

atmospheric conditions in the second half of the April time window were mostly dry. Therefore, this period has 

been considered as the dry time of the tomography model. In contrast to April, the time period in August 2019 has 

been judged as the wet period due to considerable precipitation and humidity and also according to the report of 

the European Severe Weather Database (ESWD). 
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Fig 5. 18. Variations of relative humidity up to 4 km height (a, c) and average of total precipitation within the whole 

area (b, d) during the study period 

5.2.3 GNSS ZTD in Comparison to NWM ZTD 

GNSS ZTD (GRE, GR, and GE) was determined by means of the Bernese GNSS software in baseline mode for 

the EVN network (see Table 5. 1 and Fig 5. 3 for more details). Table 5. 13 summarizes the Std values for the 

different time periods and mentioned schemes using the Bernese software. Based on that, the estimated ZTDs using 

different constellations are on average less than 1.4 mm and 2 mm for the April and August periods, respectively. 
 

Table 5. 13. Average Std for different Schemes in ZTD outputs (TRP file) of Bernese GNSS software 

       Std [mm] 

Study Period 
GRE GR GE 

Apr (100-109) 1.3± 0.4 [mm] 1.3± 0.4 [mm] 1.4± 0.5 [mm] 

Aug (233-244) 1.8 ± 0.6 [mm] 1.8± 0.6 [mm] 2.0± 0.7 [mm] 
 

To evaluate the estimated ZTDs, the GNSS ZTD estimated using GRE, GR, and GE schemes has been compared 

to the derived ZTD by ray-tracing through the AROME numerical weather model. Fig 5. 19 shows the average 

(d) (c) 

(b) (a) 
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RMSE of the GNSS ZTD over all GNSS stations located in the EVN network with respect to derived ZTD from 

the AROME model for the April period. According to this figure, the consistency between derived ZTDs from 

different schemes and AROME ZTD is generally comparable during the experimental period. However, RMSE 

values are considerable on some days for various schemes. This may return to the quality of GNSS observations, 

and the number of created baselines which subsequently affect the ambiguity fixing rate (see Table 5. 1 and Fig 5. 

3 for more details). Therefore, different results are expected by changing baseline sets.  Moreover, the quality of 

the AROME model has also an impact on the obtained RMSE. Table 5. 14 details the average RMSE for the 

different GNSS schemes at midnight and noontime. As demonstrated in this table, RMSE values for all schemes 

during the noontime are slightly better than midnight. Nevertheless, the reported RMSEs are close for all schemes. 

 

Fig 5. 19. Average RMSE of ZTD values determined for days 100-109 for GRE, GR, and GE schemes with respect to 

AROME at midnight (a), and noontime (b) 

 

Table 5. 14. Mean RMSE over all stations for GRE, GR, and GE schemes during April, DoYs 100-109 of the year 2019 

RMSE [meter] GRE GR GE 

Midnight 0.012 [0.003 0.026] 0.013 [0.005 0.026] 0.012 [0.006 0.025] 

Noontime 0.011 [0.005 0.019] 0.009 [0.006 0.016] 0.010 [0.005 0.018] 
 

The scatter plots of the different schemes (GRE, GR, and GE) relative to the AROME model have been provided 

in order to analyse the estimated ZTD. According to Fig 5. 20, the similarity between GNSS ZTD and AROME 

ZTD is higher than 99 percent for all schemes in April 2019. 

(a) (b) 
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Fig 5. 20.  Scatter plots of the GNSS-based ZTDs and AROME-based ZTD for DoYs 100-109 of the year 2019 

The same verification was done for the wet period in August 2019. According to Fig 5. 21, the average RMSE for 

GRE and GR schemes are slightly smaller than for the GE scheme over the experimental period. Nevertheless, the 

estimated ZTDs for all schemes agreed with the AROME ZTD at a level of a few subcentimeter.  
 

 

Fig 5. 21. Average RMSE of ZTD values determined for days 233-244 for GRE, GR, and GE schemes with respect to 
AROME at midnight (a), and noontime (b) 

 

Table 5.15 summarizes the average RMSE for the different GNSS schemes at Midnight and noontime during the 

August period. By looking at Table 5. 14 and Table 5. 15, it becomes clear that the accuracy of the GNSS ZTD 

compared to the AROME ZTD is generally worse in the August period compared to the April period. This may 

return to the fact that the April period is less wet than the August period. Therefore, ZTD amounts are smaller in 

the April period and consequently less discrepancy with respect to the AROME ZTD. In addition, the quality of 

(a) (b) 
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the GNSS measurements and the AROME model also influences the estimated inconsistency between the GNSS 

ZTD and AROME ZTD. 

Table 5. 15. Mean RMSE over all stations for GRE, GR, and GE schemes during August, DoYs 233-244 of the year 

2019 

RMSE [meter] GRE GR GE 

Midnight 0.016 [0.008 0.041] 0.015 [0.007 0.033] 0.018 [0.009 0.057] 

Noontime 0.018 [0.005 0.037] 0.017 [0.005 0.033] 0.022 [0.009 0.043] 
 

 

As shown in Fig 5.22, the correlation between the GRE, GR, and GE schemes and AROME ZTD is higher than 96 

percent in August 2019. This confirms that GNSS ZTD for all schemes provides also consistent ZTDs in the August 

period. Thereby, all estimated ZTDs using different schemes for both experimental periods, namely April and 

August, could be employed to compute SWD (see Section 2.4) and then tropospheric tomography modelling. 

 

Fig 5. 22. Scatter plots of the GNSS-based ZTDs and AROME-based ZTD for DoYs 233-245 of the year 2019 

5.2.4 Analysis of different GNSS Constellation by Focusing on GALILEO in GNSS 

Tomography 

The accuracy of the reconstructed tomography profiles using different schemes was assessed by reference 

radiosonde observations taken at Vienna airport (RS11035) at midnight and noontime. According to Fig 5. 23 (a), 

the agreement between the GE scheme and the radiosonde profile in the April period is almost equivalent to the 

GRE scheme. Both schemes are slightly better than the GR scheme during midnight where the average RMSE for 

GRE, GE, and GR schemes are 3.15 ppm, 3.20 ppm, and 3.43 ppm, respectively. For noontime (see Fig 5. 23 (b)), 

the accuracy of the GR scheme (3.24 ppm) is approximately 5% better than the accuracy of GRE (3.43 ppm) and 

GE (3.30 ppm).  
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Fig 5. 23. RMSE of the reconstructed wet refractivity profile with respect to RS11035 in the April period for GRE, GR, 
and GE schemes at midnight (a), and noontime (b) 

 

Additionally, the performance of all investigated schemes on DoY 105 at midnight and DoY 107 at noontime are 

weak. Since the number of observations is almost similar in all schemes during the experimental period (see Fig 5. 

24), it could probably return to the accuracy of the SWDs, and the quality of the initial field (AROME model). 

Moreover, other factors like instability of the retrieved field and real differences in the sampled atmospheric 

conditions at different locations and times could be effective in this respect.  

 

Fig 5. 24. The number of rays in the tomography model in the April period at midnight for GRE, GR, and GE schemes 

 

In order to assess the quality of the initial field, the derived wet refractivity profiles from the AROME model and 

radiosonde measurements were compared. According to Fig 5. 25, the inconsistency between the AROME model 

and radiosonde in the target days, namely 105 and 107, are high, and consequently, it caused a large RMSE for 

these days. Therefore, the reconstructed tomography solution by means of the iterative techniques, here Landweber, 

is considerably affected by the initial field. 

(a) (b) 

(a) (b) 
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Fig 5. 25. RMSE of wet refractivity derived from AROME model compared to RS11035 over the April period 

 

Table 5. 16 presents the average MAE for height 2 km in the April period. According to this table, the average 

MAE derived using the GR scheme, are generally better than for the GRE and GE schemes. This means the derived 

profile using the GR scheme is slightly closer to the RS profile in lower layers in comparison to GRE and GE 

schemes.  

 

Table 5. 16. Average MAE [ppm] for height up to 2 km in GRE, GR, and GE schemes over the April period 

April Period  GRE GR GE 

Midnight 3.91 3.72 3.86 

Noontime 4.20 3.97 4.14 
 

The MAE for heights between 2 km to 6 km is summarized in Table 5. 17 during the experimental period. Based 

on the obtained results, the performance of GE is generally better for midnight and noontime in comparison to GRE 

and GR schemes. Nevertheless, there is no significant difference between various schemes to retrieve the 

tomography model. 

Table 5. 17. Average MAE [ppm] for height between 2-6 km in GRE, GR, and GE schemes over the April period 

April Period  GRE GR GE 

Midnight 2.13 2.86 1.95 

Noontime 2.65 2.52 2.34 
 

The retrieved wet refractivity profiles from different schemes have been compared to RS11035 in the August period 

as well. Fig 5. 26 demonstrates the discrepancy between the RS and reconstructed wet refractivity profiles using 

various schemes during the experimental period. As displayed in Fig 5. 26 (a), the agreement between all schemes 

is comparable for midnight, and the average RMSE is 4.01 ppm, 4.04 ppm, and 4.01 ppm for GRE, GR, and GE 

schemes, respectively. For noontime, the average RMSE for the GE scheme (4.94 ppm) is partly better than for 

GRE (5.09 ppm) and GR (5.32 ppm) as shown in Fig 5. 26 (b). Based on the obtained results, all schemes could 
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reconstruct the wet refractivity field using the tomography model with an average RMSE of about 6 ppm during 

the August period. 

 

Fig 5. 26. RMSE of the reconstructed wet refractivity profile with respect to RS11035 in the August period for GRE, 
GR, and GE schemes at midnight (a), and noontime (b) 

 

Table 5. 18 reports the average MAE in GRE, GR, and GE schemes for different periods. As stated in this table, 

the GE scheme shows slightly worse performance in comparison to GRE and GR schemes for lower layers during 

midnight. However, the MAE of the GE scheme is relatively better at noontime compared to the two other schemes. 
 

Table 5. 18. Average MAE [ppm] for height up to 2 km in GRE, GR, and GE schemes over the August period 

August Period (233-244) GRE GR GE 

Midnight 4.17 4.14 4.32 

Noontime 5.33 5.79 4.96 
 

For upper layers as shown in Table 5. 19, the average MAE of the GE scheme is comparable to the GR scheme and 

better than for the GRE scheme at midnight. Moreover, the performance of GRE and GR schemes is stronger 

compared to the GE scheme during noontime. 
 

Table 5. 19. Average MAE [ppm] for height 2-6 km in GRE, GR, and GE schemes over the August period 

August Period (233-244) GRE GR GE 

Midnight 4.06 3.89 3.76 

Noontime 4.53 4.56 4.96 
 

For the next step, the general impact of the investigated constellations on the retrieved wet refractivity field was 

assessed. To do so, the average correlation between the reconstructed wet refractivity with the RS profile was 

computed over the experimental periods, namely April and August. Based on the reported correlation in Table 5. 

20, all schemes provide a comparable correlation for both study periods. However, the correlation between the RS 

(a) (b) 
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wet refractivity profile and the tomography solution is slightly higher during the August period in comparison to 

the April period. This could return to the different sample length of study periods. Nevertheless, the reconstructed 

profiles using all constellation are considerably close to the RS profiles with a correlation of more than 95 %. Based 

on the obtained results, the third GNSS system had no significant impact on the accuracy of the tomography for 

this research because a sufficient number of rays could almost be provided using a combination of two GNSS 

constellations. However, having GNSS signals at different elevation angles should be considered as pre-

requirements to achieve an acceptable quality for the retrieved wet refractivity field in the area of interest. 

 

Table 5. 20. Average correlation coefficient [%] over two study periods between the retrieved wet refractivity profile 

and RS profile for GRE, GR, and GE schemes 

Corr [%] GRE GR GE 

Apr Period (100-109) 95.2 95.3 95.1 

Aug Period (233-244) 98.5 98.4 98.6 
 

5.3. COST Action: Investigation on the Topography Effects and Ray-Tracing 
Methods on the GNSS Tomography, and Pre-analysis of Tomography results using 
Spread 

In recent years, different ray-tracing methods have been developed in the GNSS or VLBI community to calculate 

slant tropospheric delays from NWM data (Hobiger et al., 2008;Hofmeister, 2016;Nafisi et al., 2012). In the GNSS 

tomography field, pioneering research by Haji Aghajany and Amerian (2017) applied 2D and 3D Eikonal ray-

tracing methods in water vapour tomography with initial testing of its impact on the reconstructed field. Möller and 

Landskron (2019) developed a mixed linear ray-tracing method to reconstruct the bended path which can be used 

for near-real-time applications. However, in these studies, the effect of the different coordinate types used in the 

straight-line strategy compared to the ray-tracing method were not investigated. In addition, the impact of the 

topography of the area of interest to design a tomography model was not evaluated. 

Furthermore, the quality of the reconstructed field is still one of the challenges in the GNSS tomography. Up to 

now, ground-based GNSS observations (e.g. (Möller, 2017)), radiosonde profiles (e.g. (Hanna et al., 2019)), and 

Numerical Weather Models (e.g. (Brenot et al., 2020)) have been used for assessing the accuracy of the 

reconstructed field.  

To study the above mentioned topics, at first, the tomography model configuration is introduced. Then, the weather 

conditions during the period of interest are described. Next, the effect of a straight-line (in ENU and UTM 

coordinates) ray-tracing method versus a 2D Eikonal method will be analysed. Moreover, the topography impact 

on the tomography modelling using different ray-tracing schemes is compared to radiosonde data in this section, 

as well. After that, the relation between spread of the resolution matrix and Std and Bias is investigated in order to 

propose a new tool to evaluate the accuracy of the reconstructed wet refractivity field. 
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5.3.1 Tomography Model Configuration 

As stated in Section 4.1.2, the investigated area covers the western part of the Czech Republic and south Germany 

with 72 GNSS stations. According to previous researches (Brenot et al., 2018;Hanna et al., 2019), the horizontal 

resolution of the tomography model is 50 km with an exponential model in the vertical direction (Manning, 

2013;Möller, 2017;Perler, 2011). Moreover, a time resolution of 1 hour was applied for this research. This should 

be also highlighted that 16 GNSS stations are located outside of the designed tomography model (see Fig 4. 3). 

5.3.2 Weather Conditions and Case Periods 

DoYs149–176 (29 May to 25 Jun) of year 2013 were selected as the period of interest due to the atmospheric 

process that caused the central European floods in June 2013 (Douša et al., 2016). Fig 5. 27 shows the mean ZWD 

variation over Jun 2013 and the associated accumulated rain for Prague synoptic station. This period covers highly 

dynamic weather. The amount of precipitation for DoYs 149-151 is 0 mm, 29 mm, and 14 mm, respectively (see 

Douša et al. (2016) for more details). Moreover, no GNSS-based ZWDs exist between DoYs 149-151 in the COST 

action dataset, and only synthetic SWDs (ray-traced) are available for this period. 

 

Fig 5. 27. Mean ZWD during the time of interest (red dots) plotted over daily precipitation (black bars) during the time 

of interest at Prague synoptic station (Douša et al., 2016;Adavi et al., 2020) 

 

Table 5. 21 details the study period chosen for evaluation of the Eikonal ray tracing and application of the spread. 

For evaluating the Eikonal ray-tracing as well as the topography impact on the quality of the tomography solution, 

the overall period DoY 160-176 was considered in the year 2013. On top, three different case studies are applied 

in order to investigate the significance of the spread as follows: 

1. Synthetic: DoY 149-165,  

2. Synthetic: DoY 160-165,  

3. GNSS: DoY 160-165. 

Here, the ‘synthetic dataset’ (provided by COST Action ES1206) is composed of ray-traced slant delays passing 

through the reference NWP field (here ALADIN model). The use of synthetic data could provide a reasonable 

judgment in comparison to the GNSS based slant delays. Thereby, two different datasets have been considered here 
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to assess the spread of the resolution matrix with and without GNSS data noises in the COST benchmark dataset 

to analyse the spread as discussed above. In addition, to provide the consistency between the 2nd and 3rd datasets, 

only GNSS observations have been selected which existed in the synthetic dataset as well. 
 

Table 5. 21. Study periods and underlying datasets for Eikonal and spread evaluation 

Goal of Analysis GNSS data Synthetic Data 

Eikonal+ Topo 160-176 - 

Spread  160-165 149-165 & 160-165 

 

5.3.3 Impact of Topography on the GNSS Tomography 

To analyse the effect of the topography in the area of tomographic modelling, two different schemes were used. In 

the first scheme, the tomography model was designed without topography information of the study region (black 

lines on the left and right panel in Fig 5. 28). In the second scheme, the tomography model was designed by 

considering topography information of the study area (Red dashed lines in the left and right panels in Fig 5. 28). 

 

Fig 5. 28. Designed tomography model without topography (black solid lines) and with topography (red dashed lines). 

Left cross-section along S-N direction and right cross-section along E-W direction (Adavi et al., 2020) 

The clear difference between the two models is depicted in Fig 5. 28. It influences the design matrix 𝑨, as the 

location of intersection points between signal and model faces are shifted. Therefore, it changes the distance that 

each signal travelled through the tomography model. As seen in Fig 5. 28, the difference between using topography 

(red) and not using topography (black), especially in the North-East part, reaches up to 800 m in height, which 

corresponds to 2 layers at the bottom part of the model. 

The consequence of the topography is visible also in Fig 5. 29, which shows that the number of rays passing through 

voxels in scheme#2 (with topography) is higher than in scheme#1 (without topography). Fig 5. 29 depicts a 

snapshot of one hour (23.30 h-00.30 h each investigated day). In general, the lowest layer is most affected, but 

satellite geometry can also cause a reasonable gain of intersected voxels in upper layers. Therefore, when the 

topography effect is accounted for, we can expect an increased number of 𝑑𝑛𝑚 elements in the matrix 𝑨. In fact, 

increasing the redundancy of observations in each voxel can lead to a better reconstruction of the parameter of 
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interest (due to lower condition number) in the desired voxel. The essential increase of rays in the topography 

scheme is caused by additional rays originating from GNSS stations outside the tomography volume. This affects 

especially voxels located in columns close to the borders of the tomography volume. Additionally, differences 

between the numbers of rays in the two schemes can also specifically relate to block stations located close to the 

model border. 

 

 

 

Fig 5. 29. The number of rays in each model layer (1 = bottom, 9 = top) within 1 hour (30 sec observation rate) 

5.3.4 Eikonal Ray-Tracing Method vs. Straight-Line Geometry 

Reference radiosonde observations were used to evaluate the effects of the topography and of the different ray-

tracing methods on the accuracy of the reconstructed field. For this purpose, the estimated wet refractivity profiles 

have been verified above the locations of radiosonde stations Meiningen (RS10548) and Kummersbruk (RS10771) 

(red dots in Fig 5. 30) against the corresponding wet refractivity profiles derived from the radiosonde observations 

at midnight and noontime each day. Therefore, four reference profiles for each day are available. Due to the 

topography, the heights of the voxel model differ for the locations of RS10548 and RS10771 by 318 meters and 

360 meters, respectively.  

To compare radiosonde and tomography profiles, all 9 vertical layers from the reconstructed wet refractivity are 

considered. Moreover, the RS position is assumed to be in the same location at the centres of Voxels. Then, the 

reconstructed field is interpolated using IDW (Inverse distance weighting) on the RS location in each layer. Fig 5. 

30 shows the agreement between the radiosonde profile and tomography wet refractivity profiles for one selected 

epoch over all profiles. In this figure, the model using topography is marked with red and the model without 

topography is marked with black. Each panel represents one processing approach:  Fig 5. 30 (a) ) Eikonal (see 

Section 3.2.3.2); Fig 5. 30 (b) ) Eikonal (N=1) ; Fig 5. 30 (c) ) Straight line with topocentric coordinates ; Fig 5. 30 
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(d) ) Straight line with UTM projection. In order to focus on the selected day with the lowest accuracy in the set 

DoY 164 (00h:00m UTC) was considered. Clearly using topography in the most precise approach (Fig 5. 30 (a)) 

is required as the model without topography is producing biased fields (up to -7 mm/km) below 8km. The impact 

of topography on the straight geometry (Eikonal (N=1), NEU and UTM) is less definitive, however, Fig 5. 30 (b) 

and Fig 5. 30 (c) show a positive impact of topography for the middle levels (2–8km).  

 

Fig 5. 30. Comparison of tomographic refractivity profiles (Nwtomo [ppm]) of different schemes to the profile derived 

from radiosonde data (Nwbase) DoY 164, at 00h:00m in UTC. Four types of parameterization: Eikonal, Eikonal (N=1), 

NEU, and UTM by considering topography information and without topography (Adavi et al., 2020) 

The overall RMSE for all days considered for station Meiningen (RS10548) at 00h00m in UTC (DoY 160 to DoY 

176) is summarised in Table 5. 22. Results for the same station at 12h00m UTC and station Kummersbruk 

(RS10771) for both midnight and noon are presented in the Appendix D. Clearly, the best-performing algorithm is 

based on the Eikonal model with topography information included. The overall RMSE for all selected dates is 1.3 

[mm/km], which is an improvement over the straight-line approach using UTM projection by 50%. The straight 

line solution produces results with errors 2.4 [mm/km] twice higher than the Eikonal approach with topography. A 

similar relation holds for the models without topography. The Eikonal solution is almost two times more accurate 

than the solution based on a straight line geometry (1.8 [mm/km] versus 3.4 [mm/km]). It is also worth to mention 

that using topography improves the Eikonal solution by 34%. A similar improvement is visible for other 

parametrisations (NEU and UTM). Moreover, by ignoring the bending effect in Eq. (3.23) (N=1), the impact of the 

spherical coordinate system on the tomography solution is visible. According to these results, choosing an 

appropriate coordinate system has a considerable effect on the reconstructed field, especially when considering 

large areas with some hundred quadratic kilometres. 

 

 

 

(a) (b) (c) (d) 
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Table 5. 22. RMSE [mm/km] of wet refractivity profiles for different schemes for all days at epoch (00h: 00m in UTC) 

for RS10548, black boxes mark the rainy days and the red box marks the worst day shown in Fig 5. 30 (Adavi et al., 
2020) 

 

DoY 

 

Eikonal 

+Topo 

 

Eikonal 

(N=1) + 

Topo 

 

Straight line 

[UTM+Topo] 

 

Straight line 

[NEU+Topo] 

 

Eikonal 

 

Eikonal 

(N=1) 

 

Straight line 

[UTM] 

 

Straight line 

[NEU] 

160 1.380 2.018 2.172 2.628 1.990 2.354 2.741 3.271 

161 0.993 1.922 2.088 3.216 1.433 2.363 3.093 4.616 

162 0.837 1.893 2.287 2.686 1.498 2.371 2.986 3.109 

163 1.570 2.089 2.128 2.690 2.064 2.419 2.842 3.728 

164 2.563 2. 865 3.293 3.064 2.906 3.177 3.960 4.025 

165 0.754 1.275 1.197 1.650 1.014 2.034 2.466 2.819 

166 1.167 1.251 1.217 1.679 1.197 1.801 2.657 2.590 

167 2.076 2.204 2.405 2.746 2.263 2.973 2.976 3.979 

168 1.641 1.898 2.482 2.846 2.152 2.305 3.025 3.856 

169 1.009 1.968 2.763 3.471 2.124 2.646 3.566 4.168 

170 2.391 2.919 2.921 3.286 2.873 3.127 3.225 4.055 

171 1.491 1.942 2.100 2.250 1.945 2.211 2.656 2.995 

172 1.009 1.432 1.322 1.399 1.243 1.836 2.431 2.659 

173 0.885 1.212 1.224 1.398 1.173 1.618 2.634 2.789 

174 0.925 1.635 1.867 2.189 1.695 2.073 2.560 2.995 

175 0.839 1.372 1.380 1.872 1.060 1.568 1.699 2.341 

176 0.798 1.309 1.531 1.914 1.384 1.804 1.786 2.951 

MEAN 

[mm/km] 

1.313 1.836 2.022 2.411 1.766 2.275 2.783 3.350 

 

 

To investigate the inconsistency between various parameterization methods with respect to the height, the relative 

error was applied (Zhao et al., 2019). According to Table 5. 23, below the height level of 3 km the relative errors 

of the Eikonal ray-tracing method with considering topography are smaller against the other parameterization 

methods. Nevertheless, using this parameterization method in the upper layers does not have any considerable 

effect compared to Eikonal (N=1). In addition, applying topography in tomography modelling provides more 

reasonable reconstructed wet refractivity fields both in the upper and lower layers.   

Table 5. 23. Relative error regarding to the layers below and above 3 km for the four types of parameterization, Eikonal, 

Eikonal (N=1), NEU, and UTM (by considering topography information and without that) at hour 00h:00m UTC for 

RS10548 (Adavi et al., 2020) 

Height 
 
Eikonal 
+Topo 

 
Eikonal 

(N=1) + 
Topo 

 
Straight line 
[UTM+Topo] 

 
Straight line 
[NEU+Topo] 

 

Eikonal 

 
Eikonal 
(N=1) 

 
Straight 

line 
[UTM] 

 
Straight 

line 
[NEU] 

H<=3 km 0.044 0.073 0.076 0.093 0.071 0.091 0.104 0.138 

 H >  3 km 0.295 0.308 0.372 0.617 0.367 0.316 1.986 1.072 
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The statistical characteristics of the differences between the eight schemes and the radiosonde data are also 

presented by Fig 5. 31. Regarding the obtained box plots, the number of outliers in the Eikonal ray-tracing method 

is smaller than for other schemes. In this figure, 𝐼𝑄𝑅 is defined as the difference between the first and third quartiles 

(|𝑄1 − 𝑄3|) and shows the spread of data without outliers affect. Moreover, 𝑄2 approximately represents the bias of 

all errors. Therefore, according to the obtained 𝐼𝑄𝑅 and 𝑄2 in Fig 5.30, it can be concluded that the Eikonal + Topo 

scheme refractivity estimates are more close and the NEU scheme shows an increased dispersion compared to other 

schemes. 

 

Fig 5. 31. Box plots of refractivity differences between the four types of parameterization, Eikonal, Eikonal (N=1), NEU, 
and UTM (by considering topography information and without) at location of RS10548 ( 00.00h UTC and 12.00h UTC) 

(Adavi et al., 2020) 

Interestingly, Fig 5. 32 shows the dispersion of the reconstructed field (Tomo 𝑵𝒘) relative to the radiosonde profile 

(RS 𝑵𝒘) in different schemes at hour 00h:00m and hour 12h:00m in the investigated period. As shown in this 

figure, it becomes clear that the reconstructed wet refractivity field by Eikonal + Topo is more consistent with the 

RS wet refractivity in comparison to other parameterization methods.  
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Fig 5. 32. Scatter plots of four types of parameterization, Eikonal, Eikonal (N=1), NEU, and UTM by considering 
topography information and without at location RS10548 (Adavi et al., 2020) 

5.3.5 Spread as a Proxy for GNSS Tomography 

As explained in Section 3.5.2, the spread of the resolution matrix can be employed to measure the quality of the estimated 

parameters, here wet refractivity. Therefore, to investigate the efficiency of the spread as an indicator for the model accuracy, 

the correlation between Std, Bias, and the spread were calculated for the tomography model designed for the COST Action 

network (see Section 4.1.2). For this purpose, two different schemes have been defined as follows: 

● Loose Constraints (LC): Damping coefficient 0.1 (𝛿𝑚 = 0.1) refer to Eq. (3.57) and Eq. (3.59) 

● Tight Constraints (TC): Damping coefficient 0.9  (𝛿𝑚 = 0.9) refer to Eq. (3.57) and Eq. (3.59) 

Therefore, the correlation between the spread of the resolution matrix and the other statistical parameters could be calculated 

according to the following diagram (see Fig 5. 33). 

(a) (b) 

(c) (d) 
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Fig 5. 33. The flow diagram of the correlation computation  (Adavi et al., 2022b) 

In the following, first, the accuracy of the reconstructed tomography profiles is investigated for both synthetic and 

GNSS datasets over the experimental periods. Next, the correlation between spreads (Mich and BGH) and statistical 

parameters (Std and Bias) are obtained to assess the spread as a quality indicator for GNSS tropospheric 

tomography. 

5.3.5.1 Validation of Tomography Solution using NWM and RS data 

In the GNSS dataset, the reference values for the tomography derived refractivity were calculated from the 

Kummersbruk (RS10771) and Meiningen (RS10548) radiosonde station meteo profiles gathered at hours 00:00 

and 12:00 UTC each day. For the synthetic dataset, the reference wet refractivity profiles were computed from the 

NWM model at the radiosonde locations over the experimental periods. This returns to the fact that the SWDs 

derived from the NWM model and not GNSS measurements. Thereby, the retrieved wet refractivity field cannot 

reflect the real physical condition observed using the radiosonde. In consequence, an acceptable tomography 

solution by means of the synthetic dataset has a minimum discrepancy with the wet refractivity extracted from the 

NWM model. Fig 5. 34 shows the reconstructed wet refractivity profile, the wet refractivity derived from RS10771, 

and the NWM wet refractivity profile for two random days at midnight. According to this figure, the discrepancy 

between the synthetic tomography solution and the NWM profile is quite small. For the GNSS dataset, the 

inconsistency between the recovered tomography wet refractivity field and the RS profile is small but visible. 
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Fig 5. 34. Comparison of the retrieved wet refractivity profiles from the synthetic and GNSS dataset to the reference 
profiles derived from NWM and radiosonde data on DoYs (a) 161, (b) 165 at Midnight for RS10771 (Adavi et al., 2022b) 

Table 5. 24 presents the average values of RMSE, Std, and Bias over all experimental periods. According to the 

obtained results, the retrieved tomography profiles using the synthetic dataset are generally underestimating the 

wet refractivity derived from the NWM model (ALADIN). In contrast, the reconstructed wet refractivity using the 

GNSS dataset is overestimated with respect to the wet refractivity obtained by the RS measurements. Moreover, 

due to the absence of GNSS observation errors, the quality of the reconstructed wet refractivity solution using the 

synthetic observations is better than for the GNSS observations. 

Table 5. 24. Average RMSE, Std, and Bias with respect to the RS wet refractivity profiles for the real dataset and NWM 

wet refractivity profiles for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) 

 RMSE [ppm] Std [ppm] Bias [ppm] 

Synthetic_149_165 [Ref:NWM] 1.52 0.82 -1.15 

Synthetic_160_165 [Ref:NWM] 1.75 1.07 -1.18 

GNSS_160_165 [Ref:RS] 3.87 3.51 0.34 
 

Following the same procedure for the location of RS10548, similar performance graphs can be obtained. Fig 5. 35 

illustrates the retrieved wet refractivity profile performance compared to the reference profiles for two selected 

days (DoYs 162 and 164) at midnight. According to this figure, the agreement between the tomography solution 

using synthetic data and NWM data on DoY 162 is better than for DoY 164. However, in general, the estimated 

wet refractivity field using the synthetic dataset is behaving like the NWM profiles. For the GNSS dataset, the 

discrepancy between the tomography solution and the RS profile is smaller in the upper layers in comparison to 

the lower layers. 

(a) (b) 
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Fig 5. 35. Comparison of the retrieved wet refractivity profiles obtained from the synthetic and GNSS datasets with 

respect to the reference profiles derived from NWM and radiosonde data on DoYs (a) 162, (b) 164 at Midnight for 
RS10548 (Adavi et al., 2022b) 

In addition, Table 5. 25 gives the statistical results when comparing the tomography solutions and the reference 

profiles over the experimental period for both synthetic and GNSS datasets. According to the obtained results, the 

reconstructed profiles underestimate wet refractivity in all datasets and periods with respect to the corresponding 

reference profiles. Moreover, similar to RS10771, the performance of the estimated tomography profiles based on 

the synthetic dataset is better than for the GNSS dataset. 

Table 5. 25. Average RMSE, Std, and Bias with respect to the RS wet refractivity profiles for the real dataset and NWM 
wet refractivity profiles for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) 

 RMSE [ppm] Std [ppm] Bias [ppm] 

Synthetic_149_165 [Ref:NWM] 1.84 0.87 -1.19 

Synthetic_160_165 [Ref:NWM] 1.89 1.17 -0.77 

GNSS_160_165 [Ref:RS] 3.62 3.46 -0.27 
 

5.3.5.2 Correlation Analysis of Spread of Resolution Matrix 

In order to analyse the correlation between spread and two statistical parameters, namely Std and Bias, first, the 

summation of the spread of voxels crossed by the radiosonde profiles was computed. Then, to gain a better 

interpretation of the dependency between statistical parameters and the spread, all values were normalised by the 

following formula, and afterwards the differences between those values were considered. 

                                                               𝑋𝑛 = (𝑋 − 𝑋𝑚𝑖𝑛) (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄                                                                                    (5.1) 

(a) (b) 
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whereby 𝑋 and  𝑋𝑛 are the original value and the normalized value, respectively. Finally, Pearson correlation has 

been utilised to compute the correlation coefficient between statistical parameters (Std and Bias) and spread. 

Fig 5. 36 shows the difference between spreads, namely BGH (Section 3.5.2, Eq. (3.61)) and Mich (Section 3.5.2, 

Eq. (3.62)), and Std for three different time spans of the synthetic and real dataset at RS10771. It can be seen from 

Fig 5. 36, that the difference between BGH spread and Std is smaller than for the Mich spread. Therefore, the time 

series of BGH spread follows more closely the Std variations compared to the Mich spread. 

 

Fig 5. 36. Differences between spread and Std for RS10771. The left column shows the solution by applying tight 

constraints on the a priori field, whereas the right column shows loose constraints (Adavi et al., 2022b) 

To better interpret Fig 5. 36, Table 5. 26 gives the correlation between spread and Std time series for the different 

schemes and datasets. We must consider that small BGH spread and large Mich spread point to a well-resolved wet 

refractivity field due to their specification (Section 3.5.2, Eq. (3.61) and Eq. (3.62)). Therefore, the computed 

correlation for BGH and Mich spreads are positive and negative, respectively. For the synthetic dataset, the negative 

correlation of the Mich spread in the long period is higher than for the short period. However, inspecting the results 

gained with the GNSS dataset, the correlation of the Mich spread is almost comparable to the synthetic dataset. 

According to the obtained results, the BGH spread shows a considerable positive correlation in all datasets. 

Altogether, both spread types show a promising correlation (about 0.5- 0.7) with the Std of the recovered wet 

refractivity for almost all investigated periods. However, applying LC on the a priori field results in a better match 

between spread and Std in comparison to TC. Consequently, the selection of  𝑪𝒎 significantly affects the obtained 

results. 

 

 (a.1) (a.2) 

(b.1) (b.2) 

 (c.1)  (c.2) 
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Table 5. 26. Correlation of spread and Std with respect to the radiosonde for the real dataset and NWM wet refractivity 

profiles for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) 

 BGH_LC BGH_ TC Mich_ LC Mich_ TC 

Synthetic_149_165 0.69 0.54 -0.62 -0.41 

Synthetic_160_165 0.67 0.51 -0.44 -0.14 

GNSS_160_165 0.55 0.47 -0.63 -0.49 
 

In Table 5. 27, the correlation between the Bias of the recovered refractivity field and the spread is given. According 

to these results, the correlation of BGH spread with the Bias (see Section 3.5.1, Eq. (3.50)) is highest in all datasets. 

However, as the Bias can be positive or negative, the correlation just reflects the tendency for a considerable 

absolute spread to a large bias. Moreover, the correlation of Mich spread shows reasonable large numbers between 

-0.6 to -0.4 for the GNSS dataset and synthetic dataset (149-165). In addition, compared to TC, LC provides higher 

coherency with the spread based on the obtained correlation. 

Table 5. 27. Correlation of spread and Bias with respect to the radiosonde for the real dataset and NWM wet refractivity 
profiles for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) 

 BGH_LC BGH_ TC Mich_ LC Mich_ TC 

Synthetic_149_165 0.71 0.57 -0.61 -0.63 

Synthetic_160_165 0.73 0.44 -0.41 -0.37 

GNSS_160_165 -0.53 -0.50 0.49 0.26 
 

The same analysis has been performed for radiosonde location RS10548. Fig 5. 37 shows the differences between 

spread and the corresponding Std. According to that, the overall match between BGH spread and Std in the synthetic 

schemes is slightly better in comparison to Mich spread, which is consistent with the results obtained for radiosonde 

location RS10771 results.  
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Fig 5. 37. Differences between spread and Std for RS10548. The left column of graphs shows the solution by applying 

tight constraints on the a priori field, whereas the right column shows loose constraints (Adavi et al., 2022b) 

Table 5. 28 presents the correlation between Std and the spread. Based on the obtained correlations, the general 

performance of the BGH spread is almost similar to Mich spread. Both spreads have a correlation of up to 0.8 with 

respect to the Std for the synthetic dataset (Ref: NMW wet refractivity). TC schemes show similar performance in 

comparison to LC schemes. For the GNSS data set (Ref: RS wet refractivity), the correlation between the Mich 

spread and the Std reaches to -0.70. However, the smallest correlation is obtained with the BGH spread and the Std 

of this dataset. The improved coherence of Mich spread with Std at this RS location is caused by the fact that the 

investigated model column pertains to boundary voxels of the model area. 

Table 5. 28. Correlation of spread and Std with respect to the radiosonde for the real dataset and NWM wet refractivity 
profiles for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) 

 BGH_LC BGH_ TC Mich_ LC Mich_ TC 

Synthetic_149_165 0.49 0.54 -0.56 -0.51 

Synthetic_160_165 0.81 0.79 -0.68 -0.77 

GNSS_160_165 -0.28 -0.17 -0.43 -0.70 
 

As shown in Table 5. 29, the correlation between refractivity biases and BGH spread is not considerable for the 

RS10548 location. Nevertheless, Mich spread shows a reasonable correlation with the Bias. Nonetheless, it cannot 

demonstrate a clear judgment about the behaviour of the Bias against the spread. This is due to the fact that the 

Bias of the tomography model depends on the different factors such as systematic errors in the GNSS dataset, 

meteorological measurements and NWM model. 

 

 

(a.1) (a.2) 

(b.1) (b.2) 

(c.1) (c.2) 
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Table 5. 29. Correlation of spread and Bias with respect to the radiosonde for the real dataset and NWM wet refractivity 
profiles for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) 

 BGH_LC BGH_ TC Mich_ LC Mich_ TC 

Synthetic_149_165 0.07 0.15 -0.57 -0.45 

Synthetic_160_165 0.27 0.26 -0.28 -0.37 

GNSS_160_165 -0.15 -0.16 0.72 0.73 
 

In order to achieve a better interpretation of the obtained results, the absolute differences between Spread and Std 

of the studied time series could be compared. The smaller difference shows high similarity, whereas the larger 

difference indicates low similarity between time series. Therefore, the average of accumulated differences between 

spread and Std were computed. Fig 5. 38 presents the comparison of the average accumulated differences during 

the periods of interest for the locations of RS10771 (hatched bars) and RS10548 (non-hatched bars). According to 

this figure, by applying loose constraints, spread provides an acceptable characterisation of the accuracy of the 

tomography model in most cases. In addition, BGH spread has a higher consistency with the variations of Std in 

comparison to Mich spread. Consequently, BGH spread calculated with loose constraints on the a priori refractivity 

field is the recommended quantity to predict the accuracy of the retrieved tomography field. 

 

 

Fig 5. 38. The accumulated absolute difference between spread and Std for RS10771 (hatched bars) and RS 10548 (non-

hatched bars), for Michelini spread (Mich) and Backus-Gilbert (BGH) for GNSS (GNSS) and synthetic datasets for all 

experimental periods from DoYs 149 to DoY 165 (syn) and DoYs 160-165 (syn, GNSS) (Adavi et al., 2022b) 

According to the obtained results, the spread of the resolution matrix showed a strong correlation (up to 0.81 for 

synthetic and 0.70 for real observations) with the Std of the reconstructed wet refractivity. However, there was no 

clear picture depending on the applied spread computation models with the Bias of the retrieved tomography 

solution which can return to the systematic effects in the GNSS dataset such as pressure meteorological 

measurements or the quality of the NWM model over the experimental period. 
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5.4. CORS Network: GOES-R as an Initial Field for GNSS tomography 

The tomography model suffers in terms of solution uniqueness as propagated signals do not pass through some of 

the model elements. Therefore, horizontal and/or vertical constraints and additional data sources should be used to 

avoid the singularity of the estimated wet refractivity field. In this section, the combination of the wet refractivity 

map computed from the GOES-16 sounder with the GNSS tomography is investigated to attain a unique solution. 

Therefore, a 3D tomography model has been defined over a regional area covered by the CORS Network (see 

Section 4.1.3 in Chapter 4) to analyse the efficiency of the proposed dataset. For this purpose, two different schemes 

have been considered to achieve the feasibility of the estimated 3D wet refractivity images using GOES-16 (see 

Fig 5. 39). 

 

Fig 5. 39. Two Schemes to analyse the impact of GOES-16 as an initial field on the tomography solution 

In this part, first, the configuration of the tomography model for the CORS network is identified. Then, the weather 

condition and GOES-R events during the period of interest are described. Finally, the tomography solution is 

reconstructed using the Landweber method by applying GOES-16 and ERA5 schemes. 

5.4.1 Tomography Model Configuration 

The model space resolution matrix (𝑹𝒎) has been applied in order to select the optimum size for the horizontal 

dimension of the model elements (see Section 3.2.2 for more details). For this purpose, six different horizontal 

resolution matrices have been analysed from 20 km to 70 with the step size 10 km above the area of interest. Fig 

5. 40 shows the schematic view of the designed voxels with a horizontal resolution of 20 km. The shaded elements 

in this figure indicate voxels, which are not crossed by GNSS signals. According to Fig 5. 40, the number of empty 

voxels, especially in the first layers, is huge. Therefore the tomography model should be tightly constrained to 

achieve a unique solution. Hence, the reconstructed wet refractivity mostly captures the constraints rather than the 

real condition of the troposphere.   
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Fig 5. 40. Designed tomography model with the step size of 20 km above the CORS GNSS network 

In addition, voxels should not be too large due to the constant amount of wet refractivity in each element for the 

intended tomography window. Therefore, 60 km has been selected as an optimum horizontal voxel size. This is 

due to the resolution matrix of the tomography model with 60 km horizontal resolution is more close to the identity 

in comparison to other options. Fig 5. 41 illustrates the designed tomography model over the CORS GNSS network. 

 

Fig 5. 41. Designed Tomography Model above the CORS GNSS network 

Moreover, the exponential model has been applied to design the vertical layers of the tomography model. In 

addition, a temporal resolution of 1 hour has been chosen to assure that the wet refractivity amount can be assumed 

as constant. Fig 5. 42 demonstrates the configuration of the designed tomography model in the CORS network. 
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Fig 5. 42. Tomography model configuration in the CORS network 

5.4.2 GOES-R events and Weather Condition on the Study Period  

In order to achieve a better judgment about the performance of GOES-16 data in the tomography solution, four 

different months from July to October 2019 have been considered. Table 5. 25 summarizes the studied months with 

their days of interest in the CORS case study (see Section 4.1.3). 

Table 5. 30. The studied months with their intended days in the CORS network 

Month DoY 

July 193-194 

August 214-217 

September 259-260 

October 281-283 
 

The weather condition during the experimental period are displayed in Fig 5. 43 where the variation of relative 

humidity was measured by the radiosonde station and total precipitation was derived using the ERA5 model. 

According to the variation of these parameters, the period of interest contains both, wet and dry days, which is 

beneficial for the tomography study.  

  

Fig 5. 43. Variations of relative humidity up to 4 km height (a) and average of total precipitation within the whole area 
(b) during the time of interest 

To achieve a reasonable initial field, the density of the GOES-16 events, which report temperature and relative 

humidity products, should be looked upon. Fig 5. 44 presents the distribution of the GOES-16 events within the 
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area of interest for two different days at midnight and noontime. According to this figure, the density of the GOES-

16 profiles is acceptable. However, interpolation and extrapolation should be applied since there are some gaps in 

the dataset. Here, the natural neighbour interpolation method has been employed to produce missing humidity and 

temperature values in the area of interest (Ledoux and Gold, 2005).  

 

Fig 5. 44. GOES-16 events in the area of interest 

5.4.3 Analysis of GOES-R as an a priori Field on the Tropospheric Tomography 

To analyse the accuracy of the reconstructed wet refractivity by applying GOES-16 as an a priori field, data of the 

radiosonde station located at Wilmington (RS72426) has been used at midnight and noontime. Fig 5. 45 shows the 

reconstructed wet refractivity profile derived from scheme#1 and scheme#2 in comparison to the radiosonde 

profiles at midnight for two different days. Based on this figure, the performance of GOES-16 on DoY 259 is 

superior to the ERA5 scheme almost in all vertical levels. However, the behaviour of the retrieved profiles using 

GOES-16 as a priori field on DoY 193 is almost the same as for the ERA5 scheme in the lower layers, but for upper 

layers, this scheme shows a better agreement with the RS profile.  
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Fig 5. 45. The comparison of reconstructed tomography profiles by GEOS-16 and ERA5 to the RS72426 profiles at 

midnight for DoYs 193 and 259 

Fig 5. 46 displays the RMSE of the retrieved tomography solution using different schemes on 11 days for midnight. 

The average RMSE for the GOES and ERA schemes is about 5.58 ppm and 6.81 ppm at midnight. Therefore, the 

consistency between the GOES scheme and RS profile is generally better than for the ERA5 scheme. However, the 

performance of the GOES scheme is not the same on all days, and this may return to the accuracy of the GOES's 

products for different hours and weather conditions.   

 

Fig 5. 46. RMSE of the reconstructed wet refractivity profile with respect to RS72426 in the period of interest at 

midnight 

Moreover, the dispersion of the two different schemes relative to the RS72426 profiles during the study period at 

midnight is presented in Fig 5. 47. As illustrated in this figure, the GOES scheme is slightly better than the ERA5 
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scheme because the slope of the corresponding least-squares line is nearly close to 1:1. This demonstrates the 

positive impact of GOES-16 as an initial field on the tomography solution. 

 

Fig 5. 47. Scatter plots of two schemes, GOES-16 and ERA5 at midnight for RS72426 

The same analysis has been performed for noontime. Fig 5. 48 represents the RMSE of schemes with respect to 

RS72426. According to the obtained results, the average RMSE for the GOES scheme is about 3.64 ppm and about 

6.26 ppm for the ERA5 scheme. Therefore, the accuracy of the tomography solution has been increased by about 

58% when applying the GOES dataset as an initial field. 

 

Fig 5. 48. RMSE of the reconstructed wet refractivity profile with respect to RS72426 in the period of interest at 

noontime 
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Fig 5. 49 shows the dispersion of GOES and ERA5 schemes relative to the RS72426 profiles during the study 

period at noontime. As shown in this figure, the spreading of the GOES scheme is generally smaller than for the 

ERA5 scheme in noontime as well. This proves the positive effect of GOES-16 on the quality of the retrieved field. 

 

Fig 5. 49. Scatter plots of two schemes, GOES-16 and ERA5 at noontime for RS72426 

In addition, the MAE of the reconstructed profiles in respect to RS72426 have been calculated in order to see the 

impact of GOES-16 on different vertical layers. As reported in Table 5. 31, the GOES scheme has superior 

performance for the lower layers, especially in the noontime. For upper layers, the discrepancy between the 

retrieved tomography profiles from GOES and ERA5 schemes and the RS profile is almost identical at both epochs. 

Table 5. 31. Average MAE regarding the height of the layers below and above 6 km for different temporal resolution 

at midnight and noontime 

        Time 
Height   

Midnight Noontime 

GOES-16 ERA5 GOES-16 ERA5 

Up to 2 km 7.58 9.54 4.51 8.13 

Height 2 km to 6 km 2.58 3.43 2.08 3.29 
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Chapter 6 

6 Conclusion and Outlook 

GNSS tropospheric tomography is one of the applications of GNSS, which attracts more and more interest in the 

field of meteorology. This method can reconstruct the water vapour of the atmosphere, which considerably affects 

weather forecasting and early warning systems of severe weather. GNSS tomography is an all-weather remote 

sensing technique to capture the spatiotemporal behaviour of atmospheric water vapour using the standing 

infrastructure of GNSS satellites and networks. In this method, traditionally, a regular spaced 3D grid stretches 

from the GNSS network to the effective height of the troposphere in the area of interest. Then, the wet refractivity 

in these voxels is reconstructed using the SWD observations in the desired tomography domain by means of the 

discrete inverse concept. Nevertheless, the quality of the reconstructed profile highly depends on different factors 

like observation distribution, inversion technique, regularization methods, initial field, and used constraints in the 

model. In consequence, the main focus in this dissertation was committed to some of these factors to retrieve an 

appropriate wet refractivity field. In the following, the key findings from this analysis, which have been investigated 

throughout the various experiment, will be summarized. 

Two different strategy schemes as well as different iterative regularization methods and the TV technique have 

been employed in order to analyse the potential of using the single frequency (SF) observations in comparison of 

the dual frequency (DF) observations. The results showed that the NWM AROME ZTD correlate with GNSS DF 

ZTD and SF ZTD on average at 97% and 66%, correspondingly. Analyzing RMSE of the estimated ZTDs using 

SF and DF observations showed that the DF scheme provides better results (avg. RMSE 0.019 meter) in comparison 

to the SF scheme (avg. RMSE 0.075 meter). Furthermore, the Bias of SF ZTD was slightly larger during noontime 

which can be explained by the daily solar radiation and consequential complexity to describe the ionospheric delay 

with SEID. Moreover, there might also be artifacts from model deficiencies e.g., satellite clocks in PPP processing. 

As expected a successful integer fixing of the ambiguities improves the results and leads to a much more accurate 

estimation of the ZTD. The accuracy of retrieved refractivity fields using various regularization methods in SF and 

DF schemes were assessed by RS observations. According to the obtained results, the performance of ART 

techniques (ART, MART, and Landweber) by applying the AROME model as an initial field was comparable for 

both SF and DF schemes. In addition, the accuracy of the reconstructed wet refractivity field using the TV method 

and ART techniques + TV for SF schemes was almost as good as for the DF scheme. Moreover, the correlation 

between retrieved wet refractivity and RS wet refractivity for all regularization techniques in SF and DF schemes 

was almost higher than 95%. However, a considerable MAE and Bias for ART+ AROM and ART+ TV in the SF 

scheme has been detected during noontime. This study showed that entering ZTDs calculated from SF data instead 

of DF data yields to a degradation of the RMSE of the reconstructed profiles between 10%-40% over all 

investigated regularization techniques. In the presence of a reasonable initial field, an acceptable reconstruction of 

the wet refractivity at the level of 4-7 ppm with respect to radiosonde profiles could be achieved, but also TV+ 

Landweber and TV+ MART techniques can retrieve wet refractivity profiles at the 6-8 ppm-level. In future studies, 

PPP AR (Ambiguity Resolution) techniques have to be further investigated to improve ZTD estimates derived from 
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DF or even SF data. Moreover, the tomography approach based on the TV regularization method should be 

investigated in more extended periods and under different weather conditions to prove the potential of this method 

for reconstructing the wet refractivity field without using any initial field.  

In the further step, the application of the TV method in different temporal resolutions was investigated in order to 

assess the near-real tomography solution without any initial field. According to the gained results, the accuracy of 

the retrieved wet refractivity field in all tomography windows using the TV method at noontime improved almost 

30% compared to midnight. In addition, the correlation between the tomography solution and RS profiles for all 

temporal resolutions was higher than 95%. Moreover, the inconsistency between the reconstructed wet refractivity 

field and the reference profile was less than 8.5 ppm at midnight and 5.6 ppm at noontime for lower layers. For 

upper layers, the discrepancy between the tomography solution and the reference solution was maximally about 7 

ppm and 6 ppm at midnight and noontime, respectively. Further investigations were also performed to compare the 

estimated tomography solutions using the TV method with the Landweber technique. Based on the obtained results, 

the accuracy of the retrieved field using the Landweber method was generally better than for the TV technique at 

midnight. At noontime, the performance of retrieving wet refractivity by the TV method, especially for spans longer 

than 40 minutes, was comparable to the Landweber technique or even better. Therefore, reconstructing the 

tomography model using the TV method is advantageous in case of no access to a reliable initial field even for a 

short tomography window if the condition number of the design matrix is not very large and also the amount of 

water vapour in the troposphere is considerable high. However, it should be noted that considering the short 

tomography window is not always applicable due to various weather conditions during a day. Therefore, further 

investigations are encouraged to assess the plausibility of the TV method in other case studies located in different 

climate zones and over further time periods. Furthermore, assessing the TV method in comparison to other 

regularization techniques, which are independent of an initial field, may provide a better judgment about the quality 

of the retrieved wet refractivity field using this method. 

The next important study was to investigate the effect of straight-line methods versus ray tracing methods for 

computing the length of a ray within a model element. To the author' best knowledge, this is a first attempt to 

reconstruct the wet refractivity field using 2D Eikonal raytracing method, which is a balance between accuracy of 

3D Eikonal raytracing and simplicity and processing speed of straight-line. Moreover, the accuracy of the ray-

tracing method when neglecting the bending effect was investigated. In addition, the effect of accounting the 

topography in the tomography model was investigated. The results showed that defining topography in the 

tomography model had a considerable impact in the lower layers on the reconstructed wet refractivity field. 

Moreover, applying the Eikonal ray-tracing method led to an improved accuracy of the estimated wet refractivity 

field compared to straight-line schemes (up to 84%). In the shown test case (volume of about 250 km × 320 km 

×10 km) the straight-line strategy performs much better in a UTM coordinate system than in a NEU coordinate 

system. Nevertheless, further investigation encompassing areas different in size are encouraged to achieve a general 

interpretation of the studied parameterization method. 

Further attention was then given to the validation of the tomography solution as well as to predict a model accuracy. 

For this purpose, the spread of the resolution matrix was investigated as a new approach. Two spread definitions, 

denoted Michelini (Mich) and Backus-Gilbert (BGH), were used in order to analyse the correlation with posterior 
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calculated stochastic quantities like Std and Bias. Due to the impact of the observation covariance matrix as well 

as the quality of the initial field, the damped least-squares method was applied to calculate a reasonable resolution 

matrix. This is due to the key responsibility of the resolution matrix in spread computations. For the first 

implementation, only 𝑪𝒐𝒃𝒔 was considered as a diagonal matrix because calculating the full-populated 

measurements covariance matrix is quite challenging. However, this could be improved in the future by applying 

the turbulence theory to estimate off-diagonal elements of the covariance observation matrix. Besides, the a priori 

covariance matrix of the unknown parameters was defined by considering low and high damping coefficients, 

called LC and TC, respectively. Nevertheless, introducing the ‘real accuracy’ of the wet refractivity model extracted 

from the NWM would lead to more realistic results. This can be achieved if the standard deviation of temperature, 

pressure, and water vapour pressure fields of the NWM is accessible. To investigate the success percentage of 

spread as a proxy for the GNSS tomography, the correlation coefficient between these values and statistical 

measures, Std and Bias, were calculated over the experimental period for the synthetic and real datasets. According 

to the obtained results, the correlation between spread and Std was considerable. However, the Bias showed 

different behaviour with respect to spread which can return to the systematic errors in the GNSS dataset, 

meteorological measurements and the quality of the NWM model over the experimental period. In addition, LC 

shows a generally higher correlation in comparison to TC. Moreover, the absolute differences of BGH spread with 

respect to Std are generally smaller than for Mich spread. Hence, it can be concluded that applying BGH spread 

with LC weighting is the promising method to investigate the accuracy of a tomography model. Nevertheless, it 

should be noted that to achieve acceptable results, calculating a realistic prior covariance matrix of unknowns is 

required. In consequence, this work confirms the high correlation of the spread (up to 0.81 for synthetic and 0.70 

for GNSS data) with the Std of the retrieved refractivity field. Therefore, this parameter could be used in future as 

an a priori quality index for the tomography solution to analyse the performance of the tomography model before 

the reconstruction process, especially for the Near Real-Time (NRT) applications. In addition, this factor can be 

employed to recheck the reconstructed tomography solution to assure the quality of all parts of the model, which 

is essential for now-casting and forecasting applications. Nevertheless, further case studies are encouraged to assess 

the performance of spread. 

Further, the impact of the GALILEO constellation on GNSS tomography was investigated in two different periods 

covering April (dry period) and August (wet period) 2019. According to the obtained results, the RMSE of GE 

ZTD compared to AROME ZTD was about 0.012 meters in the dry period. However, this number increased to 

0.020 meters in the wet period which may return to the larger amount of ZTD in this period or the quality of the 

AROME model. In addition, there was a high correlation, more than 96%, between AROME ZTD and GNSS ZTD 

for all schemes (GRE, GR, and GE). The accuracy of the reconstructed wet refractivity profile using different 

constellation schemes with respect to RS11035 for both experimental periods was almost comparable. Based on 

the obtained results, all schemes could reconstruct the wet refractivity field with an accuracy between 1.8-8.9 ppm 

and 0.8-8.3 during the April and August periods. The computed correlation between various schemes (GRE, GR, 

GE) and the RS profile was also more than 95% which confirmed all combinations of satellite constellations could 

provide a wet refractivity profile close to the RS profile. Thereby, the third GNSS system had no significant impact 

on the accuracy of the tomography for this research, because a sufficient number of rays was almost provided using 
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a combination of two GNSS satellites. However, having GNSS signals at different elevation angles should be 

considered as pre-requirements to achieve an acceptable quality for the retrieved wet refractivity field in the area 

of interest. Nevertheless, the current study only certified in a small area, and therefore further research in different 

area is encouraged to evaluate the obtained results. In addition, the estimated ZTD using different constellations 

completely depends on the ambiguity fixing resolution step and a high ambiguity fixing rate leads us to more 

accurate tropospheric delays. Finally, defining the vertical constraint like radio occultation and radiosonde in future 

studies could be helpful in terms of enhancing the accuracy of the results, specifically in the lower layers of the 

model. 

Finally, the impact of derived wet refractivity maps from GOES-R as an initial field in the retrieved tomography 

solution was examined. Based on the attained results, the RMSE of the reconstructed wet refractivity with respect 

to the radiosonde measurements was about 5.58 ppm at midnight and 3.64 ppm at noontime. On average GOES-R 

data could improve the RMSE of the tomography model by 15-43 % during the period of interest in comparison to 

using ERA5 as an initial field. Moreover, according to the obtained MAE, applying GOES-R as an initial field 

could enhance the tomography MAE for lower layers by 15-35 % compared to ERA5 model as an a priori field. 

Nevertheless, further studies to apply the collocation technique to interpolate the meteorological measurements of 

GOES-R to a denser grid could increase the impact of this geostationary satellite for the reconstructed tomography 

field.   

First and foremost, the idea of using the spread of the resolution matrix as an a priori quality index for the 

tomography solution can hopefully be used to evaluate the reconstructed field or to recheck the quality of the 

retrieved tomography solution. In terms of the parameterization method, considering the orography of the study 

area for designing the tomography model can lead to a better quality for the retrieved wet refractivity field. In 

addition, 2D Eikonal raytracing, the fast and simplified version of the 3D Eikonal, can expectantly estimate an 

accurate tomography solution. Moreover, the SF observations can be successfully used as an acceptable input for 

the GNSS tropospheric tomography in the presence of a reliable a priori field. According to the finding of this 

work, the TV method is recommended to the GNSS tomography community in case of no reliable initial field, 

especially during noontime. The TV method estimates the tomography solution, which is comparable with other 

regularization techniques associated with an a priori field. 

Last but not least, there are still some open questions that undoubtedly throw light on the author to enhance the 

quality of the obtained results and, in consequence, GNSS tropospheric tomography. Therefore, the further research 

plan include as follows: 

 Assessing the quality of the tomography solution using the covariance matrix 

 Defining a formula for the spread which can directly estimate Std of the retrieved solution 

 Applying GEOS-R profiles as direct observations to the tomography model 

 Finding a method to define a dynamic tomography temporal resolution, perhaps by utilizing tropospheric 

horizontal gradients. 
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Appendices 

Appendix A  
Gradient Components of the Refractivity in a Spherical Coordinate System 

In order to derive the gradients of the refractivity field with respect to a spherical coordinate system, it is necessary 

to define an osculating sphere of radius as follows (Millman and Parker, 1979): 

                                                                                 𝑅 = 𝑎 √1−𝑒1−𝑒2  sin𝜑2                                                                              (A.1) 

Then, the refractivity 𝑛𝑘(𝑟, 𝜆, 𝜃) at layer 𝑘 can be computed through the NWM grid by applying the bilinear 

interpolation method (Hobiger et al., 2008): 

                          𝑛𝑘 = (1 − 𝜉) (1 − 𝜂) 𝑛𝑖,𝑗,𝑘 +  𝜉 (1 − 𝜂) 𝑛𝑖+1,𝑗,𝑘 + 𝜉 𝜂 𝑛𝑖+1,𝑗+1,𝑘 + (1 − 𝜉) 𝜂 𝑛𝑖,𝑗+1,𝑘                          (A.2) 

where 

                                                                                      𝜉 = (𝜆−𝜆𝑖)(𝜆𝑖+1−𝜆𝑖)                                                                                      (A.3) 

                                                                                     𝜂 =  (𝜃−𝜃𝑖)(𝜃𝑖+1−𝜃𝑖)                                                                                      (A.4) 

In order to compute the refractivity between layers 𝑘 and 𝑘 + 1 and by the assumption of exponentially decreasing 

of refractivity, we have (Hobiger et al., 2008): 

                                                                         𝑛(𝑟, 𝜆, 𝜃) = 1 + (𝑛𝑘(𝜆, 𝜃) − 1) 𝑒𝑥𝑝(𝐶(𝑟 − 𝑅𝑘))                              (A.5) 

with  𝐶 = log (𝑛𝑘+1(𝜆,𝜃)−1𝑛𝑘(𝜆,𝜃)−1 ) 𝑅𝑘+1 − 𝑅𝑘⁄  . 

Now, the partial derivatives of  refractivity could be computed as follows (Hobiger et al., 2008): 

 

                                                                              𝜕𝑛(𝑟,𝜆,𝜃)𝜕𝑟 = (𝑛𝑘(𝜆, 𝜃) − 1) 𝐶 𝑒𝑥𝑝(𝐶(𝑟 − 𝑅𝑘))                                         (A.6) 

                                                                              𝜕𝑛𝑘𝜕𝜆 = (1−𝜉) (𝑛𝑖+1,𝑗,𝑘−𝑛𝑖,𝑗,𝑘)+ 𝜉 (𝑛𝑖+1,𝑗+1,𝑘−𝑛𝑖,𝑗+1,𝑘)𝜆𝑖+1−𝜆𝑖                                           (A.7) 

                                                                              𝜕𝑛𝑘𝜕𝜃 = (1−𝜂) (𝑛𝑖,𝑗+1,𝑘−𝑛𝑖,𝑗,𝑘)+ 𝜂 (𝑛𝑖+1,𝑗+1,𝑘−𝑛𝑖+1,𝑗,𝑘)𝜃𝑖+1−𝜃𝑖                                           (A.8) 

By defining  𝑀𝑘(𝑟, 𝜆, 𝜃) = (𝑟 − 𝑅𝑘 𝑅𝑘+1 − 𝑅𝑘⁄ )  (𝑒𝑥𝑝(𝐶 (𝑟 − 𝑅𝑘)) 𝑛𝑘(𝜆, 𝜃) − 1⁄ ), Eq. (A.7) and Eq. (A.8) could be given 

as below:  

𝜕𝑛(𝑟,𝜆,𝜃)𝜕𝜆 = 𝜕𝑛𝑘𝜕𝜆  𝑒𝑥𝑝(𝐶 (𝑟 − 𝑅𝑘)) +  𝑀𝑘(𝑟, 𝜆, 𝜃) ((𝑛𝑘(𝜆, 𝜃) − 1) 𝜕𝑛𝑘+1𝜕𝜆 − (𝑛𝑘+1(𝜆, 𝜃) − 1) 𝜕𝑛𝑘𝜕𝜆  )                                    (A.9) 

 

𝜕𝑛(𝑟,𝜆,𝜃)𝜕𝜃 = 𝜕𝑛𝑘𝜕𝜃  𝑒𝑥𝑝(𝐶 (𝑟 − 𝑅𝑘)) +  𝑀𝑘(𝑟, 𝜆, 𝜃) ((𝑛𝑘(𝜆, 𝜃) − 1) 𝜕𝑛𝑘+1𝜕𝜃 − (𝑛𝑘+1(𝜆, 𝜃) − 1) 𝜕𝑛𝑘𝜕𝜃  )                                  (A.10) 
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Appendix B  
Supplementing Tables denoting the Accuracy of the reconstructed Wet refractivity Profiles using 
different Regularization Techniques on Basis of Single and dual frequency observations 

 

Table B. 1. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (SF scheme, epoch 00:00 

UTC, location: profile of RS11035 launch) 

DoY Lndw+Arom MART+ Arom ART+ Arom TV Lndw+TV MART+TV ART+TV 

232 4.92 3.14 2.97 7.05 6.37 8.45 4.54 

233 4.30 4.86 4.97 7.76 4.01 7.53 7.86 

234 4.53 3.30 2.58 6.19 4.75 9.99 3.72 

235 3.86 5.27 7.11 8.64 8.52 16.35 13.48 

236 2.41 3.77 5.95 9.73 9.89 11.86 8.24 

237 7.09 3.60 4.24 6.42 6.59 11.40 4.88 

238 3.94 2.87 3.74 9.67 7.86 11.19 10.13 

239 7.90 3.49 3.69 13.63 13.94 9.31 5.80 

240 2.13 6.57 2.98 9.93 9.84 8.35 3.01 

241 4.62 2.89 2.52 10.05 11.23 2.39 2.37 

242 3.93 2.88 3.60 9.21 6.40 8.33 6.79 

243 3.47 3.67 3.29 8.13 8.12 7.52 5.29 

244 2.62 4.21 1.95 5.18 5.19 5.78 3.51 

245 7.35 5.79 6.60 7.62 7.79 6.73 5.90 

Mean 4.51 4.02 4.01 8.52 7.89 8.94 6.11 
 

 

Table B. 2. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (DF scheme, epoch 00:00 

UTC, location: profile of RS11035 launch) 

DoY Lndw+Arom MART+ Arom ART+ Arom TV Lndw+TV MART+TV ART+TV 

232 3.18 1.90 2.05 3.37 3.42 4.04 2.78 

233 4.43 2.32 2.66 6.54 6.44 4.50 4.00 

234 3.96 2.54 2.12 4.82 4.35 2.66 2.11 

235 2.92 2.26 2.19 8.64 8.72 6.48 4.46 

236 2.23 2.86 2.96 7.19 6.99 4.39 3.21 

237 7.37 4.57 4.77 6.92 6.91 7.75 5.11 

238 3.84 2.96 3.68 9.74 9.22 7.66 7.48 

239 7.74 3.81 3.75 8.64 8.43 9.74 6.07 

240 2.56 1.33 2.66 11.84 11.87 9.20 4.69 

241 4.75 4.46 4.87 10.87 10.87 8.02 6.80 

242 3.65 3.73 5.00 8.46 10.23 8.95 7.08 

243 3.46 1.51 3.03 9.66 9.57 4.50 4.70 

244 2.64 2.39 1.83 7.29 7.31 5.16 4.41 

245 4.54 4.37 4.93 5.39 5.41 6.05 5.15 

Mean 4.09 2.93 3.32 7.81 7.84 6.37 4.86 
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Table B. 3. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (SF scheme, epoch 12:00 

UTC, location: profile of RS11035 launch) 

DoY Lndw+Arom MART+ Arom ART+ Arom TV Lndw+TV MART+TV ART+TV 

232 9.36 6.20 7.01 10.44 9.61 6.40 5.67 

233 9.07 6.33 6.68 7.40 6.10 8.95 4.91 

234 9.00 8.12 6.58 6.69 7.39 6.74 7.59 

235 4.08 5.98 9.12 5.79 5.62 7.68 7.68 

236 4.51 2.74 11.22 8.38 8.24 2.05 12.38 

237 5.10 2.76 8.37 7.01 7.55 4.70 8.78 

238 8.80 6.15 8.08 10.87 11.25 7.10 10.59 

239 8.35 6.23 4.43 8.60 7.39 3.66 4.43 

240 7.93 5.37 18.17 14.75 15.66 9.26 18.77 

241 6.40 7.32 5.49 6.24 6.23 6.61 3.21 

242 3.76 1.95 9.66 6.36 7.01 8.47 8.85 

243 4.52 3.41 19.38 7.08 6.87 5.91 17.78 

244 9.35 7.93 8.60 5.54 6.72 4.52 7.04 

245 4.41 4.71 8.33 10.03 9.27 6.59 8.25 

Mean 6.76 5.37 9.37 8.23 8.24 6.33 8.99 
 

 

Table B. 4. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (DF scheme, epoch 12:00 

UTC, location: profile of RS11035 launch) 

DoY Lndw+ Arom MART+ Arom ART+ Arom TV Lndw+TV MART+TV ART+TV 

232 4.13 3.95 2.93 5.87 5.86 5.09 3.71 

233 6.90 5.77 6.88 9.67 9.48 8.26 6.23 

234 8.74 4.58 3.73 9.32 8.08 6.01 4.84 

235 4.09 6.56 8.25 11.28 11.31 10.17 9.16 

236 4.76 2.20 3.18 7.87 8.00 4.61 3.94 

237 4.35 2.45 3.64 8.15 8.30 8.10 6.51 

238 7.83 5.56 6.91 6.94 6.89 8.60 7.73 

239 10.46 8.42 7.46 10.02 9.93 11.60 6.68 

240 5.30 2.65 2.50 5.71 5.49 4.48 3.42 

241 6.13 6.72 4.93 2.57 2.18 4.15 4.60 

242 3.48 1.71 2.95 3.70 3.78 5.09 3.51 

243 3.61 1.58 2.45 6.68 6.61 5.71 2.26 

244 9.56 8.24 6.41 4.51 4.59 6.24 4.59 

245 3.87 3.49 3.52 3.64 3.74 6.13 3.39 

Mean 5.94 4.56 4.69 6.85 6.73 6.73 5.04 
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Appendix C 
Supplementing Tables denoting the Accuracy of the reconstructed Wet refractivity Profiles in 
different temporal resolutions using TV and Landweber techniques 

 

Table C. 1. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using TV technique 

at hour 00:00 UTC for RS11035 

Time-Res 

DOY 
10 20 30 40 50 60 

232 1.94 3.52 4.88 3.67 3.40 3.62 

233 6.88 6.65 7.83 6.04 7.78 6.00 

234 6.41 5.51 4.55 4.30 3.48 3.61 

235 5.57 7.19 7.79 7.48 5.06 3.31 

236 7.02 7.83 5.00 4.27 5.24 4.40 

237 6.68 6.76 7.57 7.12 6.98 6.75 

238 5.95 5.19 5.30 4.28 4.99 5.21 

239 5.39 9.32 6.96 6.06 6.05 4.76 

240 5.65 5.52 5.71 5.81 5.84 6.48 

241 5.53 4.50 5.22 4.73 6.18 6.09 

242 7.28 12.39 13.31 12.54 12.30 9.56 

243 8.98 14.10 15.07 6.84 7.03 4.96 

244 13.57 13.30 10.06 6.64 5.84 4.64 

245 8.02 7.44 7.60 5.91 5.13 4.80 

Mean 6.78 7.80 7.63 6.12 6.09 5.30 
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Table C. 2. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using Landweber 

technique at hour 00:00 UTC for RS11035 

Time-Res 

DOY 
10 20 30 40 50 60 

232 2.92 2.67 3.07 2.78 2.96 3.02 

233 4.18 4.15 4.39 3.76 3.68 3.49 

234 4.21 4.05 3.57 3.17 3.60 4.02 

235 3.04 3.49 3.33 3.12 2.89 2.87 

236 2.00 2.57 2.53 2.44 2.40 2.30 

237 7.11 5.99 6.41 6.90 6.76 6.71 

238 3.50 3.70 3.74 3.78 3.82 3.84 

239 7.74 7.82 7.76 7.74 7.73 7.74 

240 2.96 2.27 2.12 2.14 2.21 2.28 

241 5.36 4.35 4.06 4.12 4.37 4.72 

242 3.42 3.62 3.66 3.63 3.62 3.57 

243 3.46 3.47 3.44 3.38 3.18 2.88 

244 2.62 2.61 2.59 2.59 2.58 2.61 

245 5.46 4.81 4.89 4.66 4.77 4.52 

Mean 4.14 3.97 3.97 3.87 3.90 3.90 
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Table C. 3.RMSE of the wet refractivity field for different temporal resolutions during the entire study period using TV technique 

at hour 12:00 UTC for RS11035 

Time-Res 

DOY 
10 20 30 40 50 60 

232 4.82 3.64 3.00 4.83 3.90 3.57 

233 2.84 2.62 5.52 6.18 4.77 4.45 

234 4.11 4.10 6.62 6.95 6.25 5.37 

235 7.39 8.93 11.31 7.93 5.52 5.08 

236 5.60 8.02 4.53 4.09 3.77 3.45 

237 7.25 6.67 6.58 6.21 6.97 6.12 

238 6.47 7.92 6.07 6.38 6.61 6.64 

239 6.79 7.66 7.06 6.48 5.64 5.83 

240 7.85 5.91 7.94 7.08 7.03 6.86 

241 7.26 3.39 4.30 3.85 3.29 3.08 

242 3.93 4.51 4.23 3.81 3.42 3.28 

243 6.85 5.44 5.48 5.30 5.50 5.63 

244 4.19 2.96 4.39 3.70 2.81 4.43 

245 4.79 4.83 4.27 4.26 4.20 3.65 

Mean 5.72 5.47 5.81 5.50 4.98 4.82 
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Table C. 4. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using Landweber 

technique at hour 12:00 UTC for RS11035 

Time-Res 

DOY 
10 20 30 40 50 60 

232 5.19 5.38 6.00 5.83 4.28 5.13 

233 4.10 4.67 4.87 4.82 4.77 4.69 

234 6.87 7.52 8.46 8.58 7.40 7.24 

235 5.67 5.66 5.63 5.60 5.57 5.56 

236 3.33 3.38 3.33 3.31 3.48 3.30 

237 11.40 11.72 11.70 11.04 10.49 10.37 

238 9.17 9.18 9.10 8.67 8.76 8.73 

239 10.15 9.97 9.43 8.97 8.66 8.01 

240 3.08 3.14 4.19 4.30 4.17 4.01 

241 7.50 7.12 7.29 7.20 6.45 6.34 

242 3.40 4.33 3.46 3.84 4.31 4.50 

243 4.49 3.93 4.15 4.50 4.46 4.21 

244 7.95 7.72 7.39 7.02 6.86 6.79 

245 3.38 3.47 3.24 3.14 3.03 2.99 

Mean 6.12 6.23 6.30 6.20 5.91 5.85 
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Appendix D  
Supplementing Tables denoting the Accuracy of the reconstructed Wet refractivity Profiles using 
different ray-tracing methods with and without Considering Topography in the Tomography 

Model 

 

Table D. 1.  RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (12H: 00M in UTC) 

for RS10548 

      

DoY 
Eikonal 

+Topo 

Eikonal 

(N=1) + 

Topo 

Straight line 

[UTM+Topo] 

Straight line 

[NEU+Topo] 
Eikonal 

Eikonal 

(N=1) 

Straight line 

[UTM] 

Straight line 

[NEU] 

160 1.045 1.996 2.009 2.585 1.658 2.017 2.780 3.282 

161 1.097 1.728 2.127 2.364 1.648 2.034 2.672 2.658 

162 0.952 1.874 1.969 2.317 1.358 1.894 2.505 2.948 

163 1.610 2.066 2.616 2.812 1.975 2.619 2.978 3.113 

164 2.075 2.409 2.767 3.185 2.489 2.784 3.156 3.528 

165 1.604 2.097 2.158 2.529 2.045 2.185 2.507 2.936 

166 1.206 1.957 2.001 2.353 1.598 2.237 2.580 2.709 

167 2.439 2.865 3.268 3.821 2.620 2.808 3.750 3.908 

168 2.478 2.638 2.993 3.301 2.868 3.254 3.442 3.595 

169 2.796 3.140 3.292 3.750 3.196 3.433 3.778 3.999 

170 2.697 2.885 3.504 3.643 3.177 3.578 3.834 4.109 

171 1.924 2.302 2.749 3.135 2.219 2.886 3.020 3.467 

172 1.674 1.984 2.065 2.108 1.826 2.011 2.149 2.308 

173 1.096 1.731 1.916 2.291 1.483 2.219 2.440 2.664 

174 2.540 2.957 3.943 4.646 3.137 3.984 4.385 4.996 

175 1.971 2.512 2.550 2.769 2.305 2.504 2.724 3.008 

176 1.765 2.004 2.096 2.101 2.089 2.186 2.303 2.527 

MEAN [ppm] 1.822 2.302 2.589 2.924 2.217 2.626 3.000 3.279 
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Table D. 2.RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (00H: 00M in UTC) 

for RS10771 

     

DoY 
Eikonal 

+Topo 

Eikonal 

(N=1) + 

Topo 

Straight line 

[UTM+Topo] 

Straight line 

[NEU+Topo] 
Eikonal 

Eikonal 

(N=1) 

Straight line 

[UTM] 

Straight line 

[NEU] 

160 1.722 1.822 2.232 2.435 2.080 2.380 2.712 2.939 

161 1.960 2.413 2.599 2.990 2.333 2.816 3.039 3.272 

162 1.148 1.696 1.934 2.222 1.685 1.852 2.355 2.858 

163 2.539 2.812 3.186 3.200 2.975 3.090 3.363 3.696 

164 2.131 2.839 3.222 3.595 2.586 2.928 3.672 3.904 

165 1.439 2.007 2.093 2.648 1.700 2.193 2.892 2.920 

166 2.307 2.692 3.180 3.240 2.518 2.812 3.743 3.887 

167 2.378 2.847 3.691 3.990 2.767 2.974 3.809 4.321 

168 2.366 2.646 3.307 3.544 2.679 2.902 3.539 3.845 

169 2.578 2.828 3.016 3.108 2.973 3.073 3.328 3.659 

170 1.442 2.002 2.122 2.459 1.864 2.307 2.658 2.744 

171 2.464 2.763 3.194 3.659 2.976 3.468 3.520 4.503 

172 1.138 1.950 1.996 2.037 1.803 2.132 2.189 2.604 

173 1.417 1.765 1.824 1.953 1.693 2.011 2.417 2.562 

174 1.481 1.820 1.959 2.153 1.715 2.104 2.233 2.567 

175 1.273 1.726 1.803 1.903 1.757 2.079 2.224 2.321 

176 1.333 1.688 1.933 2.131 1.798 1.822 2.374 2.548 

MEAN [ppm] 1.830 2.254 2.546 2.780 2.229 2.526 2.945 3.244 
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Table D. 3. RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (12H: 00M in UTC) 

for RS10771 

 

  

DoY 
Eikonal 

+Topo 

Eikonal 

(N=1) + 

Topo 

Straight line 

[UTM+Topo] 

Straight line 

[NEU+Topo] 
Eikonal 

Eikonal 

(N=1) 

Straight line 

[UTM] 

Straight line 

[NEU] 

160 1.504 1.819 2.031 2.517 1.962 2.282 2.410 2.969 

161 1.410 1.598 2.121 2.227 1.975 2.212 2.670 2.808 

162 1.590 1.801 1.960 2.163 1.790 2.136 2.522 2.671 

163 1.985 2.360 2.497 2.814 2.313 2.524 2.729 3.056 

164 1.985 2.467 2.760 3.134 2.561 3.158 3.343 3.525 

165 1.299 2.260 2.505 2.691 1.956 2.553 2.774 2.995 

166 2.596 2.740 3.062 3.567 2.951 3.017 3.756 3.888 

167 2.680 3.066 3.427 3.694 3.226 3.408 4.292 4.504 

168 2.874 3.217 3.495 3.853 3.472 3.625 3.922 4.339 

169 1.645 1.942 2.266 2.531 2.146 2.333 2.569 2.904 

170 2.102 2.413 2.740 2.882 2.663 2.887 3.026 3.206 

171 2.913 3.438 3.864 3.987 3.562 3.823 4.149 4.223 

172 1.648 1.908 2.004 2.145 1.723 1.946 2.374 2.576 

173 1.787 2.255 2.340 2.522 2.280 2.970 3.003 3.095 

174 2.015 2.664 2.706 3.323 2.639 2.826 3.031 3.700 

175 1.561 2.035 2.416 2.495 2.061 2.697 2.717 2.773 

176 2.264 2.680 2.927 2.953 2.754 2.972 3.445 3.773 

MEAN [ppm] 1.992 2.392 2.654 2.912 2.473 2.786 3.102 3.353 
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Acronyms 
ART Algebraic Reconstruction Technique 

CDDIS Crustal Dynamics Data Information System 

CNES Centre National d’Etudes Spatiales 

DD Double Difference 

DF Dual Frequency 

DOY Day of Year 

ECEF Earth-Centered, Earth-Fixed 

ECMWF European Centre for Medium-Range Forecast 

EPOSA Echzeit Positionierung Austria 

ERA5 ECMWF Re-Analysis Version 5 

ERA-Interim ECMWF Re-Analysis product 

EVN Energie Versorgung Niederösterreich 

GIM Global Ionosphere Model 

GMF Global Mapping Function 

GNSS Global Navigation Satellite Systems 

GPT3 Global Pressure Temperature 3 

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema 

GPS Global Positioning System 

GEOS-R Geostationary Operational Environmental Satellite-R Series 

IDW Inverse Distance Weighting 

GID Gaussian Inverse Distance 

IF LC Ionosphere-Free Linear Combination 

IFK Fredholm integral of the first kind 

IGS International GNSS Service 

ITRF International Terrestrial Reference Frame 

MAE Mean Absolute Error 
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MART Multiplicative ART 

MRI Magnetic Resonance Imaging 

NRT Near-Real Time 

NWM Numerical Weather Model 

PPP Precise Pointe Positioning 

RINEX Receiver Independent Exchange Format 

RMSE Root Mean Square 

RE Relative Error 

RO Radio Occultation  

RTK Real-Time Kinematic 

SEID Satellite-Specific Epoch-Differenced Ionospheric Delay Model 

SF Single-Frequency 

SHD Slant Hydrostatic Delay 

STD Slant Total Delay 

Std Standard deviation 

SWD Slant Wet Delay 

TV Total Variation 

VMF Vienna Mapping Function 

ZHD Zenith Hydrostatic Delay 

ZTD Zenith Total Delay 

ZWD Zenith Wet Delay 

 

  



 

121 
 

List of Tables  

Table 2. 1.  Key characteristics of different techniques and instrument to measure the water vapour (table adapted from 

(Champollion et al., 2005;Heublein, 2019;Sá, 2018) ................................................................................................................. 8 

Table 2. 2. Input parameters for NMF, IMF and VMF mapping functions .............................................................................. 15 

Table 2. 1.  Key characteristics of different techniques and instrument to measure the water vapour (table adapted from 

(Champollion et al., 2005;Heublein, 2019;Sá, 2018) ................................................................................................................. 8 

Table 2. 2. Input parameters for NMF, IMF and VMF mapping functions .............................................................................. 15 

Table 3. 1. Different options to set a type of the intended parameter in the Hamiltonian Formalism (Cerveny, 2005;Nafisi et 

al., 2012) ................................................................................................................................................................................... 28 

Table 3. 2. Various regularization methods to reconstruct the wet refractivity field in this research (Adavi et al., 2022a) ..... 33 

Table 4. 1. Applied dataset and time period in the GNSS network of the COST Action ......................................................... 44 

Table 4. 2. Radiosonde stations in different campaigns ........................................................................................................... 48 

Table 4. 3. Coverage Regions of ABI products (Carlomusto, 2019) ........................................................................................ 49 

Table 4. 4. LVM and LVT profiles performance requirements ................................................................................................ 50 

Table 4. 5. Well-known NWM models with their main characteristics .................................................................................... 52 

Table 4. 6. Applied numerical weather models in different campaigns .................................................................................... 53 

Table 5. 1. Bernese GNSS processing settings ......................................................................................................................... 59 

Table 5. 2. Mean RMSE over all stations with respect to AROME ZTDs for SF and DF schemes during the period of interest 

(Adavi et al., 2022a) ................................................................................................................................................................. 61 

Table 5. 3. Mean Bias over all stations for SF and DF schemes during the period of interest (Adavi et al., 2022a)................ 61 

Table 5. 4. Mean Correlation over all stations for SF and DF schemes during the period of interest (Adavi et al., 2022a)..... 63 

Table 5. 5. Daily RMSE of AROME meteorological profiles in comparison to RS measurements (Adavi et al., 2022a) ....... 63 

Table 5. 6. The slope of the least-square line for all regularization methods in SF and DF schemes (Adavi et al., 2022a) ..... 67 

Table 5. 7. Correlation Coefficient [%] between the reconstructed wet refractivity profile and RS profile using different 

regularization methods for SF and DF schemes during the period of interest (Adavi et al., 2022a) ........................................ 67 

Table 5. 8. Average RMSE [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035 (Adavi 

et al., 2022a) ............................................................................................................................................................................. 67 

Table 5. 9. Average Bias [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035(Adavi et 

al., 2022a) ................................................................................................................................................................................. 68 

Table 5. 10. Average RMSE, Std, and Bias over the experimental period for all different temporal resolutions (epoch 00:00 

UTC, location: RS11035) (Adavi and Weber, 2022)................................................................................................................ 72 

Table 5. 11. Average RMSE, Std, and Bias over the experimental period for all different temporal resolutions (epoch 12:00 

UTC, location: RS11035) (Adavi and Weber, 2022)................................................................................................................ 72 

Table 5. 12. Average correlation coefficient [%] over the entire study period between the retrieved wet refractivity profile and 

RS profile for different temporal resolution (Adavi and Weber, 2022) .................................................................................... 73 

Table 5. 13. Average Std for different Schemes in ZTD outputs (TRP file) of Bernese GNSS software ................................ 76 

Table 5. 14. Mean RMSE over all stations for GRE, GR, and GE schemes during April, DoYs 100-109 of the year 2019 ... 77 

Table 5. 15. Mean RMSE over all stations for GRE, GR, and GE schemes during August, DoYs 233-244 of the year 2019 79 

Table 5. 16. Average MAE [ppm] for height up to 2 km in GRE, GR, and GE schemes over the April period ...................... 81 

Table 5. 17. Average MAE [ppm] for height between 2-6 km in GRE, GR, and GE schemes over the April period .............. 81 

Table 5. 18. Average MAE [ppm] for height up to 2 km in GRE, GR, and GE schemes over the August period ................... 82 

Table 5. 19. Average MAE [ppm] for height 2-6 km in GRE, GR, and GE schemes over the August period ......................... 82 



 

122 
 

Table 5. 20. Average correlation coefficient [%] over two study periods between the retrieved wet refractivity profile and RS 

profile for GRE, GR, and GE schemes ..................................................................................................................................... 83 

Table 5. 21. Study periods and underlying datasets for Eikonal and spread evaluation ........................................................... 85 

Table 5. 22. RMSE [mm/km] of wet refractivity profiles for different schemes for all days at epoch (00h: 00m in UTC) for 

RS10548, black boxes mark the rainy days and the red box marks the worst day shown in Fig 5. 30 (Adavi et al., 2020) ..... 88 

Table 5. 23. Relative error regarding to the layers below and above 3 km for the four types of parameterization, Eikonal, 

Eikonal (N=1), NEU, and UTM (by considering topography information and without that) at hour 00h:00m UTC for RS10548 

(Adavi et al., 2020) ................................................................................................................................................................... 88 

Table 5. 24. Average RMSE, Std, and Bias with respect to the RS wet refractivity profiles for the real dataset and NWM wet 

refractivity profiles for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) .......... 92 

Table 5. 25. Average RMSE, Std, and Bias with respect to the RS wet refractivity profiles for the real dataset and NWM wet 

refractivity profiles for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) .......... 93 

Table 5. 26. Correlation of spread and Std with respect to the radiosonde for the real dataset and NWM wet refractivity profiles 

for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) .......................................... 95 

Table 5. 27. Correlation of spread and Bias with respect to the radiosonde for the real dataset and NWM wet refractivity 

profiles for the synthetic dataset over the experimental period at RS10771 location (Adavi et al., 2022b) ............................. 95 

Table 5. 28. Correlation of spread and Std with respect to the radiosonde for the real dataset and NWM wet refractivity profiles 

for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) .......................................... 96 

Table 5. 29. Correlation of spread and Bias with respect to the radiosonde for the real dataset and NWM wet refractivity 

profiles for the synthetic dataset over the experimental period at RS10548 location (Adavi et al., 2022b) ............................. 97 

Table 5. 30. The studied months with their intended days in the CORS network .................................................................. 100 

Table 5. 31. Average MAE regarding the height of the layers below and above 6 km for different temporal resolution at 

midnight and noontime ........................................................................................................................................................... 104 

Table B. 1. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (SF scheme, epoch 

00:00 UTC, location: profile of RS11035 launch) .................................................................................................................. 110 

Table B. 2. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (DF scheme, epoch 

00:00 UTC, location: profile of RS11035 launch) .................................................................................................................. 110 

Table B. 3. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (SF scheme, epoch 

12:00 UTC, location: profile of RS11035 launch) .................................................................................................................. 111 

Table B. 4. RMSE [ppm] of reconstructed wet refractivity profiles for different regularization schemes (DF scheme, epoch 

12:00 UTC, location: profile of RS11035 launch) .................................................................................................................. 111 

Table C. 1. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using TV 

technique at hour 00:00 UTC for RS11035 ............................................................................................................................ 112 

Table C. 2. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using Landweber 

technique at hour 00:00 UTC for RS11035 ............................................................................................................................ 113 

Table C. 3.RMSE of the wet refractivity field for different temporal resolutions during the entire study period using TV 

technique at hour 12:00 UTC for RS11035 ............................................................................................................................ 114 

Table C. 4. RMSE of the wet refractivity field for different temporal resolutions during the entire study period using Landweber 

technique at hour 12:00 UTC for RS11035 ............................................................................................................................ 115 

Table D. 1.  RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (12H: 00M 

in UTC) for RS10548 ............................................................................................................................................................. 116 

Table D. 2.RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (00H: 00M in 

UTC) for RS10771 ................................................................................................................................................................. 117 



 

123 
 

Table D. 3. RMSE [mm/km] of wet refractivity profile for different schemes during the time of interest at epoch (12H: 00M 

in UTC) for RS10771 ............................................................................................................................................................. 118 

 

  



 

124 
 

Table of Figures  
Fig 2. 1. Typical atmospheric temperature profile of the earth, taken from (Talkshop, 2014) ................................................... 5 

Fig 2. 2.  Profiles of temperature T (a) , partial water vapour pressure e (b) and air pressure (c) on August 24th, 2019 at 00:00 

UTC for RS11035 located at the Vienna airport ........................................................................................................................ 7 

Fig 2. 3. Water cycle of the water vapour (Guerova, 2003) ....................................................................................................... 7 

Fig 2. 4. GNSS signal Propagation through the atmosphere ...................................................................................................... 9 

Fig 2. 5. Profiles of hydrostatic refractivity (a) and wet refractivity (b) on August 24th, 2019 at 00:00 UTC for RS11035 located 

at the Vienna airport ................................................................................................................................................................. 10 

Fig 2. 6. Tropospheric layers of refractivity N1 and  N2 tilted by the angle β, where β is the small angle between the geometric 

zenith direction and tropospheric normal direction .................................................................................................................. 13 

Fig 2. 7. Map ZTD to STD at the specific elevation angle ....................................................................................................... 14 

Fig 3. 1. Design of Tomography Model ................................................................................................................................... 22 

Fig 3. 2. Principle of the GNSS Tomography, ray path within the discretized wet troposphere above the GNSS network ..... 23 

Fig 3. 3. Schematic representation of the tomography model (a) and voxel numbering within the first layer of the tomography 

model (b) .................................................................................................................................................................................. 24 

Fig 3. 4. Schematic representation of voxel faces and intersection points of ray path on it ..................................................... 26 

Fig 3. 5. Geometric illustration of bended path trajectory in tomography model ..................................................................... 27 

Fig 3. 6. Three different scenarios for the parameters of the tomography model, (a) overdetermined, (b) underdetermined, and 

(c) mixed-determined ............................................................................................................................................................... 30 

Fig 3. 7. Singular values of the tomography model for 144 voxels .......................................................................................... 32 

Fig 3. 8. An example of an iterative algorithm applied to a system of two equations (Figure adopted from Aster et al. (2005))

 .................................................................................................................................................................................................. 34 

Fig 3. 9. An example of the model resolution matrix with different resolving for the model parameters ................................ 38 

Fig 4. 1. GNSS network of the EPOSA in the eastern part of Austria (Adavi et al., 2022a) .................................................... 42 

Fig 4. 2. GNSS network of the EVN in the lower part of Austria ............................................................................................ 43 

Fig 4. 3. GNSS network of the COST Action in the central Europe ........................................................................................ 44 

Fig 4. 4. The area of interest in the CORS network .................................................................................................................. 45 

Fig 4. 5. Distribution of TAWES stations in Austria ................................................................................................................ 46 

Fig 4. 6. Time series of relative humidity RH (a), Temperature T, and air pressure P on DoY 243 in year 2017 located at 48.11°, 13.67°, 660.92 m  in the TAWES network ................................................................................................................. 47 

Fig 4. 7. Radiosonde ascending a few minutes after launch (TWV, 2022) .............................................................................. 48 

Fig 4. 8. Geographical coverage area of the GOES-16 and GOES-17 (eoPortal Directory, 2022) .......................................... 49 

Fig 4. 9. Legacy vertical profile of relative humidity RH (a), Temperature T of GOES16 on August 1, 2019 ........................ 50 

Fig 4. 10. Surface temperature, pressure levels and wind at (a) 00:00 UTC, and (b) 06:00 UTC ............................................ 52 

Fig 5. 1. The tomography model for the horizontal resolutions of (a) 40 km, (b) 50 km, (c) 60 km and (d) 70 km (Adavi and 

Weber, 2019) ............................................................................................................................................................................ 56 

Fig 5. 2. Building L2 observations used in goGPS software (Scheme 1) (Adavi et al., 2022a) ............................................... 57 

Fig 5. 3. Flowchart of tropospheric parameter estimation using the Bernese GNSS software (Scheme 2) (Adavi et al., 2022a)

 .................................................................................................................................................................................................. 58 

Fig 5. 4. Variations of relative humidity up to 4 km height (a) and average of total precipitation within the whole area (b) 

during the time of interest (Adavi et al., 2022a) ....................................................................................................................... 59 



 

125 
 

Fig 5. 5. Average RMSE of ZTD difference at 00:00 UTC (a) and 12:00 UTC (b) determined for days 232–245 for single-

frequency and dual-frequency observations with respect to AROME (Adavi et al., 2022a) .................................................... 60 

Fig 5. 6. Time series of average ZTD using SF and DF schemes for GRAZ and TRAI stations at midnight (a) and noontime 

(b) (Adavi et al., 2022a) ............................................................................................................................................................ 62 

Fig 5. 7. Difference of T (left) and RH (right) of the AROME model in comparison to radiosonde (RS) observations on DoY 

235 at midnight (hour 00:00 UTC) at RS11035 location (Adavi et al., 2022a) ........................................................................ 63 

Fig 5. 8. Studied schemes on basis of SF and DF observations (Adavi et al., 2022a) .............................................................. 64 

Fig 5. 9. MAE of the reconstructed wet refractivity profiles for heights up to 2 km at 00:00 UTC (a), 2 km to 6 km at 00:00 

UTC (b), up to 2 km at 12:00 UTC (c), and 2 to 6 km at 12:00 UTC (d) at RS11035 location (Adavi et al., 2022a) .............. 65 

Fig 5. 10. Comparison of reconstructed wet refractivity of DF schemes (left panel) and SF schemes (right panel) to RS11035 

wet refractivity during the period of interest (Adavi et al., 2022a) ........................................................................................... 66 

Fig 5. 11. Main strategy of studying the feasibility of the TV method for the near real-time reconstruction (Adavi and Weber, 

2022) ......................................................................................................................................................................................... 69 

Fig 5. 12. Comparison of tomographic refractivity profiles of different tomography windows to the profile calculated from 

RS11035 data at midnight (a), and noontime (b) for DoYs 232, 237, and 244 (Adavi and Weber, 2022) ............................... 70 

Fig 5. 13. Average MAE of the reconstructed wet refractivity field for heights up to 2 km, and 2 to 6 km at midnight and 

noontime at RS11035 location (Adavi and Weber, 2022) ........................................................................................................ 71 

Fig 5. 14. Average RMSE over the entire study period for TV and Landweber methods at midnight and noontime (Adavi and 

Weber, 2022) ............................................................................................................................................................................ 73 

Fig 5. 15. Different Schemes to analyse the impact of GALILEO on the tomography solution .............................................. 74 

Fig 5. 16. Designed Tomography Model for the EVN network ............................................................................................... 75 

Fig 5. 17. Tomography configuration in the EVN network ...................................................................................................... 75 

Fig 5. 18. Variations of relative humidity up to 4 km height (a) and average of total precipitation within the whole area (b) 

during the study period ............................................................................................................................................................. 76 

Fig 5. 19. Average RMSE of ZTD values determined for days 100-109 for GRE, GR, and GE schemes with respect to AROME 

at midnight (a), and noontime (b) ............................................................................................................................................. 77 

Fig 5. 20.  Scatter plots of the GNSS-based ZTDs and AROME-based ZTD for DoYs 100-109 of the year 2019 ................. 78 

Fig 5. 21. Average RMSE of ZTD values determined for days 233-244 for GRE, GR, and GE schemes with respect to AROME 

at midnight (a), and noontime (b) ............................................................................................................................................. 78 

Fig 5. 22. Scatter plots of the GNSS-based ZTDs and AROME-based ZTD for DoYs 233-245 of the year 2019 .................. 79 

Fig 5. 23. RMSE of the reconstructed wet refractivity profile with respect to RS11035 in the April period for GRE, GR, and 

GE schemes at midnight (a), and noontime (b) ........................................................................................................................ 80 

Fig 5. 24. The number of rays in the tomography model in the April period at midnight for GRE, GR, and GE schemes ..... 80 

Fig 5. 25. RMSE of wet refractivity derived from AROME model compared to RS11035 over the April period ................... 81 

Fig 5. 26. RMSE of the reconstructed wet refractivity profile with respect to RS11035 in the August period for GRE, GR, and 

GE schemes at midnight (a), and noontime (b) ........................................................................................................................ 82 

Fig 5. 27. Mean ZWD during the time of interest (red dots) plotted over daily precipitation (black bars) during the time of 

interest at Prague synoptic station (Douša et al., 2016;Adavi et al., 2020) ............................................................................... 84 

Fig 5. 28. Designed tomography model without topography (black solid lines) and with topography (red dashed lines). Left 

cross-section along S-N direction and right cross-section along E-W direction (Adavi et al., 2020) ....................................... 85 

Fig 5. 29. The number of rays in each model layer (1 = bottom, 9 = top) within 1 hour (30 sec observation rate).................. 86 



 

126 
 

Fig 5. 30. Comparison of tomographic refractivity profiles (Nwtomo [ppm]) of different schemes to the profile derived from 

radiosonde data (Nwbase) DoY 164, at 00h:00m in UTC. Four types of parameterization: Eikonal, Eikonal (N=1), NEU, and 

UTM by considering topography information and without topography (Adavi et al., 2020) ................................................... 87 

Fig 5. 31. Box plots of refractivity differences between the four types of parameterization, Eikonal, Eikonal (N=1), NEU, and 

UTM (by considering topography information and without) at location of RS10548 ( 00.00h UTC and 12.00h UTC) (Adavi et 

al., 2020) ................................................................................................................................................................................... 89 

Fig 5. 32. Scatter plots of four types of parameterization, Eikonal, Eikonal (N=1), NEU, and UTM by considering topography 

information and without at location RS10548 (Adavi et al., 2020) .......................................................................................... 90 

Fig 5. 33. The flow diagram of the correlation computation  (Adavi et al., 2022b) ................................................................. 91 

Fig 5. 34. Comparison of the retrieved wet refractivity profiles from the synthetic and GNSS dataset to the reference profiles 

derived from NWM and radiosonde data on DoYs (a) 161, (b) 165 at Midnight for RS10771 (Adavi et al., 2022b) ............. 92 

Fig 5. 35. Comparison of the retrieved wet refractivity profiles obtained from the synthetic and GNSS datasets with respect to 

the reference profiles derived from NWM and radiosonde data on DoYs (a) 162, (b) 164 at Midnight for RS10548 (Adavi et 

al., 2022b) ................................................................................................................................................................................. 93 

Fig 5. 36. Differences between spread and Std for RS10771. The left column shows the solution by applying tight constraints 

on the a priori field, whereas the right column shows loose constraints (Adavi et al., 2022b) ................................................. 94 

Fig 5. 37. Differences between spread and Std for RS10548. The left column of graphs shows the solution by applying tight 

constraints on the a priori field, whereas the right column shows loose constraints (Adavi et al., 2022b) .............................. 96 

Fig 5. 38. The accumulated absolute difference between spread and Std for RS10771 (hatched bars) and RS 10548 (non-

hatched bars), for Michelini spread (Mich) and Backus-Gilbert (BGH) for GNSS (GNSS) and synthetic datasets for all 

experimental periods from DoYs 149 to DoY 165 (syn) and DoYs 160-165 (syn, GNSS) (Adavi et al., 2022b) ................... 97 

Fig 5. 39. Two Schemes to analyse the impact of GOES-16 as an initial field on the tomography solution ............................ 98 

Fig 5. 40. Designed tomography model with the step size of 20 km above the CORS GNSS network ................................... 99 

Fig 5. 41. Designed Tomography Model above the CORS GNSS network ............................................................................. 99 

Fig 5. 42. Tomography model configuration in the CORS network ....................................................................................... 100 

Fig 5. 43. Variations of relative humidity up to 4 km height (a) and average of total precipitation within the whole area (b) 

during the time of interest ....................................................................................................................................................... 100 

Fig 5. 44. GOES-16 events in the area of interest .................................................................................................................. 101 

Fig 5. 45. The comparison of reconstructed tomography profiles by GEOS-16 and ERA5 to the RS72426 profiles at midnight 

for DoYs 193 and 259 ............................................................................................................................................................ 102 

Fig 5. 46. RMSE of the reconstructed wet refractivity profile with respect to RS72426 in the period of interest at midnight

 ................................................................................................................................................................................................ 102 

Fig 5. 47. Scatter plots of two schemes, GOES-16 and ERA5 at midnight for RS72426 ...................................................... 103 

Fig 5. 48. RMSE of the reconstructed wet refractivity profile with respect to RS72426 in the period of interest at noontime

 ................................................................................................................................................................................................ 103 

Fig 5. 49. Scatter plots of two schemes, GOES-16 and ERA5 at noontime for RS72426 ...................................................... 104 

 

 
 
 
 
 

 



 

127 
 

 

Bibliography 
Adavi, Z., and Mashhadi-Hossainali, M.: 4D-Tomographic Reconstruction of the Tropospheric Wet Refractivity Using the 

Concept of Virtual Reference Station, Case Study: North West of Iran, Meteoroloy and Atmospheric Physics, 125, 

10.1007/s00703-014-0342-4, 2014. 

Adavi, Z., and Mashhadi-Hossainali, M.: 4D-tomographic reconstruction of water vapor using the hybrid regularization 

technique with application to the North West of Iran, Advances in Space Research, 55, 1845–1854, 10.1016/j.asr.2015.01.025, 

2015. 

Adavi, Z., and Weber, R.: Evaluation of Virtual Reference Station Constraints for GNSS Tropospheric Tomography in Austria 

Region, Advances in Geosciences, 50, 39-48, 10.5194/adgeo-50-39-2019, 2019. 

Adavi, Z., Rohm, W., and Weber, R.: Analyzing Different Parameterization Methods in GNSS Tomography Using the COST 

Benchmark Dataset, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6155-6163, 

0.1109/JSTARS.2020.3027909, 2020. 

Adavi, Z., and Weber, R.: Application of the Total Variation Method in near real-time GNSS Tropospheric Tomography [under 

review], International Association of Geodesy Symposia, 2022. 

Adavi, Z., Weber, R., and Glaner, M. F.: Assessment of regularization techniques in GNSS tropospheric tomography based on 

single- and dual-frequency observations, GPS Solutions, 26, https://doi.org/10.1007/s10291-021-01202-2, 2022a. 

Adavi, Z., Weber, R., and Rohm, W.: Pre-analysis of GNSS tomography Solution using the concept of Spread of Model 

Resolution Matrix, Journal of Geodesy, 10.1007/s00190-022-01620-1, 2022b. 

Aichinger-Rosenberger, M.: Tropospheric delay parameters derived from GNSS-tracking data of a fast-moving fleet of trains, 

PhD. Dissertation, Department of Geodesy and Geoinformation, TU Wien, 187 pp., 2021. 

Al-Shaery, A., Lim, S., and Rizos, C.: Investigation of Different Interpolation Models Used in Network-RTK for the Virtual 

Reference Station Technique, Journal of Global Positioning Systems, 10, 136-148, 10.5081/jgps.10.2.136, 2011. 

Alkhalifah, T., and Fomel, S.: Implementing the fast marching Eikonal solver: Spherical versus Cartesian coordinates, 

Geophys. Prospect., 49, 165–178, 2001. 

Alves, D. B. M., Sapucci, L. F., Marques, H. A., de Souza, E. M., Gouveia, T. A. F., and Magário, J. A.: Using a regional 

numerical weather prediction model for GNSS positioning over Brazil, GPS Solutions, 20, 677–685 

https://doi.org/10.1007/s10291-015-0477-x, 2016. 

Andrisaniand, A., and Francesco, V.: Humidity Profiles Retrieved From GNSS Radio Occultations by a Non-negative Residual 

Constrained Least Square Error Method Frontiers in Earth Science  8, 10.3389/feart.2020.00320 2020. 

Aster, R., Borchers, B., and Thurber, C.: Parameter Estimation and Inverse Problems, International Geophysics Series, edited 

by: DMOWSKA, R., HOLTON, J. R., and ROSSBY, H. T., Elsevier Academic Press., 316 pp., 2005. 

Bai, Z.: Near-Real-Time GPS Sensing of Atmospheric Water Vapour, PhD. Dissertation, Built Environment and Engineering, 

Queensland University of Technology, 169 pp., 2004. 

Bastin, S., Champollion, C., Bock, O., Drobinski, P., and Masson, F.: Diurnal cycle of water vapor as documented by a dense 

GPS network in a coastal area during ESCOMPTE IOP2, Journal of Applied Meteorology and Climatology, 46, 167-182, 

2007. 

Bender, M., and Raabe, A.: Preconditions to ground based GPS water vapour tomography, Ann. Geophys, 25, 1727-1734, 

2007. 

Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H.-G., Raabe, A., and Tetzlaff, G.: Development of a GNSS water 

vapour tomography system using algebraic reconstruction techniques, Advances in Space Research, 47, 1704-1720, 

10.1016/j.asr.2010.05.034, 2011. 

https://doi.org/10.1007/s10291-021-01202-2
https://doi.org/10.1007/s10291-015-0477-x


 

128 
 

Benevides, P., Nico, G., Catalão, J., and Miranda, P. M. A.: Inclusion of high resolution MODIS maps on a 3D tropospheric 

water vapor GPS tomography model, SPIE 9640, Remote Sensing of Clouds and the Atmosphere XX, 96400R, Toulouse, 

France, 2015a. 

Benevides, P., Nico, G., Catalão, J., and Miranda, P. M. A.: Merging SAR interferometry and GPS tomography for high-

resolution mapping of 3D tropospheric water vapour, IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), Milan, 2015b. 

Bevis, M., Businger, S., Herring, T., Rocken, C., R.A., A., and Ware, R. H.: GPS meteorology: remote sensing of atmospheric 

water vapor using the Global Positioning System, Journal of Geophysical Research, 97 (D14), 15787–15801, 1992. 

Bi, Y., Mao, J., and Li, C.: Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS, Advances 

in Atmospheric Sciences, 23, 551-560, 2006. 

Bock, O., Tarniewicz, J., Thom, C., and Pelon, J.: Effect of small-scale atmospheric inhomogeneity on positioning accuracy 

with GPS, Geophysical Research Letters, 28, 2289-2292, 10.1029/2000GL011985, 2001. 

Böhm, J., and Schuh, H.: Vienna Mapping Functions in VLBI analyses, Geophysical Research Letters, 

10.1029/2003GL018984, 2004a. 

Böhm, J., and Schuh, H.: Vienna Mapping Functions in VLBI analyses, Geophys Res Lett, 10.1029/2003GL018984, 2004b. 

Böhm, J., Niell, A. E., Tregoning, P., and Schuh, H.: Global Mapping Function (GMF): A new empirical mapping function 

based on numerical weather model data, Geophysical Research Letters, 33, 10.1029/2005GL02554, 2006a. 

Böhm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis 

data, Geophysical Research Letters, 111, 10.1029/2005JB003629, 2006b. 

Born, M., and Wolf, E.: Principles of Optics, edited by: 7th, Cambridge Univ. Press, New York., 1999. 

Braun, J. J., and Rocken, C.: Water vapor tomography within the planetary boundary layer using GPS, International Workshop 

on GPS Meteorology, Tsukuba, Japan, 2003, 3-09-01-04,  

Braun, J. J., Rocken, C., and Liljegren, J.: Comparisons of line-of-sight water vapor observations using the global positioning 

system and a pointing microwave radiometer, Journal of Atmospheric and Oceanic Technology, 20, 606-612, 2003. 

Braun, J. J.: Remote Sensing of Atmospheric Water Vapor with the Global Positioning System, PhD. Dissertation, Department 

of Aerospace Engineering Sciences, University of Colorado, 137 pp., 2004. 

Brenot, H., Walpersdorf, A., Reverdy, M., van Baelen, J., Ducrocq, V., Champollion, C., Masson, F., Doerflinger, E., Collard, 

P., and Giroux, P.: A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological 

observatory Cévennes-Vivarais (southeastern France), Atmospheric Measurement Techniques, 7, 553-578, 10.5194/amt-7-

553-2014, 2014. 

Brenot, H., Rohm, W., Kačmařík, M., Möller, G., Sá, A., Tondaś, D., Rapant, L., Biondi, R., Manning, T., and Champollion, 

C.: Cross-validation of GPS tomography models and methodological improvements using CORS network, Atmospheric 

Measurement Techniques Discussions, 2018, 1-42, 10.5194/amt-2018-292, 2018. 

Brenot, H., Rohm, W., Kačmařík, M. M., G., Sá, A., Tondaś, D., Rapant, L., Biondi, R., Manning, T., and Champollion, C.: 

Cross-Comparison and Methodological Improvement in GPS Tomography, Remote Sensing, 12, 2020. 

Cai, G., Chen, B. M., and Lee, T. H.: Unmanned Rotorcraft Systems, Springer, 2011. 

Carlomusto, M.: GOES-R Series Product Definition and User's Guide (PUG), Volume 5: Level 2 + Products, GOES-R/Code 

416, 726, 2019. 

Cerveny, V.: Seismic Ray Theory, Cambridge Univ. Press,New York., 713 pp., 2005. 

Champollion, C.: GPS Tomography of Tropospheric Water Vapour Measurements - Application to Intense Precipitations 

Quantification de la vapeur d'eau troposphérique par GPS (modèles 2D et tomographies GPS) - Application aux précipitations 

intenses, PhD. Dissertation, Université Montpellier II - Sciences et Techniques du Languedoc, 2005. 



 

129 
 

Champollion, C., Masson, F., Bouin, M. N., Walpersdorf, A., Doerflinger, E., Bock, O., and van Baelen, J.: GPS water vapour 

tomography: preliminary results from the ESCOMPTE field experiment, Atmospheric Research, 74, 253-274, 

10.1016/j.atmosres.2004.04.003, 2005. 

Champollion, C., Flamant, C., Bock, O., Masson, F., Turner, D. D., and Weckwerth, T.: Mesoscale GPS tomography applied 

to the 12 June 2002 convective initiation event of IHOP_2002, Quarterly of the Royal Meteorology Society 135, 645-662, 

10.1002/qj.386, 2009, 2009. 

Chen, B., and Liu, Z.: Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical 

weather model, Journal of Geodesy, 88, 691–703, 10.1007/s00190-014-0715-y, 2014. 

Chen, G., and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, Geophysical 

Research, 102, 20489-20502, 10.1029/97JB01739 1997. 

Collins, S., James, R., Ray, P., Chen, K., Angie Lassman, A., & Brownlee, J.: Grids in Numerical Weather and Climate Models, 

Climate Change and Regional/Local Responses, edited by: Zhang, Y., and Ray, P., IntechOpen, London, 2013. 

CORS https://geodesy.noaa.gov/CORS/standard1.shtml, access: 2022-01-24, 2022. 

Cros, B., Durand, P., Cachier, H., Drobinsk, P., Fréjafon, E., Kottmeier, C., Perros, P. E., Peuch, V.-H., Ponche, J.-L., Robin, 

D., Saïd, F., Toupance, G., and Wortham, H.: The ESCOMPTE program: an Overview., Atmospheric Research, 69, 241-279, 

2004. 

Dach, R., Lutz, S., Walser, P., and Fridez, P.: Bernese GNSS Software Version 5.2, Astronomical Institute, University of Bern, 

2015. 

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, E. E., and Elgered, G.: Geodesy by radio interferometry: effects of 

atmospheric modeling errors on estimates of baseline length, Radio Science, 20, 1593–1607, 1985. 

Davis, J. L., Elgered, G., Niell, A. E., and Kuehn, C. E.: Ground-based measurements of the gradients in the 'wet' radio 

refractivity of air, Radio Science, 28, 1003-1018, 1993. 

Defrise, M., Vanhove, C., and Liu, X.: An algorithm for total variation regularization in high-dimensional linear problems, 

Inverse Problems, 27, 065002, 10.1088/0266-5611/27/6/065002, 2011. 

Deng, Z., Bender, M., Dick, G., Ge, M., Wickert, J., Ramatschi, M., and Zou, X.: Retrieving tropospheric delays from GPS 

networks densified with single frequency receivers, Geophysical Research Letters, 36, 10.1029/2009gl040018., 2009. 

Dick, G., Gendt, G., and Reigber, C.: First experience with near real-time water vapor estimation in a German GPS network, 

Journal of Atmospheric and Solar-Terrestrial Physics, 63, 1295-1304, 2001. 

Ding, N., Zhang, S., and Zhang, Q.: New parameterized model for GPS water vapor tomography, Annales Geophysicae, 35, 

311-323, 10.5194/angeo-35-311-2017, 2017. 

Dodson, A. H., Shardlow, P. J., Hubbard, L. C. M., Elgered, G., and Jarlemark, P. O. J.: Wet tropospheric effects on precise 

relative GPS height determination, Journal of Geodesy, 70, 188-202, 10.1007/bf00873700, 1996. 

Douša, J.: Evaluation of tropospheric parameters estimated in various routine GPS analysis, Physics and Chemistry of the 

Earth, 29, 167-175, 2004. 

Douša, J., Dick, G., Kačmařík, M., Brožková, R., Zus, F., Brenot, H., Stoycheva, A., Möller, G., and Kaplon, J.: Benchmark 

campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models 

and products, Atmospheric Measurement Techniques, 9, 2989-3008, 2016. 

Dowling, T. E., and Showman, A. P.: CHAPTER 9 - Earth as a Planet: Atmosphere and Oceans, in: Encyclopedia of the Solar 

System (Second Edition), edited by: McFadden, L.-A., Weissman, P. R., and Johnson, T. V., Academic Press, San Diego, 169-

188, 2007. 

Elfving, T., Nikazad, T., and Hansen, P. C.: Semi- Convergence and Relaxation Parameters for a Class of SIRT Alogorithms, 

Electronic Transactions on Numerical Analysis, 37, 321-336, 2010. 

https://geodesy.noaa.gov/CORS/standard1.shtml


 

130 
 

Elfving, T., Hansen, P. C., and Nikazad, T.: Semi-Convergence and relaxation parameters for projected SIRT algorithms, 

Journal on Scientific Computing, 34, A2000-A2017, 2012. 

Elgered, G., Davis, J. L., Herring, T. A., and Shapiro, I. I.: Geodesy by Radio Interferometry: Water Vapour Radiometry for 

Estimation of the Wet Delay, Journal of Geophysical Research, 10.1029/90JB00834, 1991, 1991. 

Elósegui, P., Ruis, A., Davis, J. L., Ruffini, G., Keihm, S. J., Bürki, B., and Kruse, L. P.: An experiment for estimation of the 

spatial and temporal variations of water vapor using GPS data, Physics and Chemistry of the Earth, 23, 125-130, 

https://doi.org/10.1016/S0079-1946(97)00254-1, 1998. 

eo Sharing Earth Observation Resources: https://directory.eoportal.org/web/eoportal/satellite-missions/g/goes-r, access: 2022-

01-24, 2022. 

Fleagle, R. G., and Businger, J. A.: An Introduction to Atmospheric Physics, edited by: ed., n., Academic Press, 1980. 

Flores, A.: Atmospheric Tomography Using Satellite Radio Signals, PhD. Dissertation, de Teoria del Senyal i Comunicacions, 

Politècnica de Catalunya, Barcelona, 1999. 

Flores, A., Gradinarsky, L. P., El´osegui, P., Elgered, G., Davis, J. L., and Rius, A.: Sensing atmospheric structure: 

Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory, Earth Planets Space, 52, 

941-945, 2000a. 

Flores, A., Ruffini, G., and Rius, A.: 4D Tropospheric Tomography using GPS Slant Wet Delays, Annales Geophysicae, 18, 

223-234, 10.1007/s00585-000-0223-7, 2000b. 

Gegout, P., Oberlé, P., Desjardins, C., Moyard, J., and Brunet, P.-M.: Ray-Tracing of GNSS Signal Through the Atmosphere 

Powered by CUDA, HMPP and GPUs Technologies, IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 7, 1592-1602, 10.1109/JSTARS.2013.2272600, 2014. 

Ghafari Razin, M.-R., and Voosoghi, B.: Estimation of tropospheric wet refractivity using tomography method and artifcial 

neural networks in Iranian case study, GPS Solutions, 24, https://doi.org/10.1007/s10291-020-00979-y, 2020. 

Ghoddousi-Fard, R.: Modelling tropospheric gradients and parameters from NWP models, PhD. Dissertation, Department of 

Geodesy and Geomatics Engineering, University of New Brunswick, 244 pp., 2009. 

Golub, G. H., and Matt, U.: Generalized Cross-Validation for Large Scale Problems, 1996. 

Gordon, R., Bender, R., and Herman, G. T.: Algebraic Reconstraction Techniques (ART) for Three-dimensional Electron 

microscopy and X-ray Photography, Journal of Theoretical Biology 29, 471-481, 1970. 

Gordon, R.: A Tutorial on ART (Algebraic Reconstruction Techniques), IEEE Transactions on Nuclean Science, NS-21, 1974. 

Gradinarsky, L., and Jarlemark, P.: Ground-based GPS tomography of water vapour: Analysis of simulated and real data, 

Journal of the Meteorological Society of Japan, 82, 551-560, 2004. 

Grewal, M. S., Weill, R. L., and Andrews, A. P.: Global Positioning Systems, Inertial Navigation, and Integration, edited by: 

2nd, Wiley, 2007. 

Guerova, G.: Application of GPS derived water vapour for Numerical Weather Prediction in Switzerland, PhD. Dissertation, 

Institute of Applied Physics, University of Bern, 2003. 

Guo, J., Yang, F., Shi, J., and Xu, C.: An Optimal Weighting Method of Global Positioning System (GPS) Troposphere 

Tomography, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP, 1 - 8, 

10.1109/JSTARS.2016.2546316, 2016. 

Haase, J., Ge, M., Vedel, H., and Calais, E.: Accuracy and Variability of GPS Tropospheric Dealy Measurements of Water 

Vapor in the Western Mediterranean, Journal of Applied Meteorology, 42, 1547-1568, 2003. 

Haji Aghajany, S., and Amerian, Y.: Three dimensional ray tracing technique for tropospheric water vapor tomography using 

GPS measurements, Journal of Atmospheric and Solar-Terrestrial Physics 164, 81-88, 

https://doi.org/10.1016/j.jastp.2017.08.003, 2017. 

https://doi.org/10.1016/S0079-1946(97)00254-1
https://directory.eoportal.org/web/eoportal/satellite-missions/g/goes-r
https://doi.org/10.1007/s10291-020-00979-y
https://doi.org/10.1016/j.jastp.2017.08.003


 

131 
 

Haji Aghajany, S., Amerian, Y., and Verhagen, S.: B-spline function-based approach for GPS tropospheric tomography, GPS 

Solutions, 24, 2020. 

Hall, C. M., Hansen, G., Sigernes, F., and Kuyeng Ruiz, K. M.: Tropopause height at 78&deg; N 16&deg; E: average seasonal 

variation 2007–2010, Atmospheric Chemistry and Physics, 11, 5485-5490, 10.5194/acp-11-5485-2011, 2011. 

Hanna, N., Trzcina, E., Möller, G., Rohm, W., and Weber, R.: Assimilation of GNSS tomography products into WRF using 

radio occultation data assimilation operator, Atmospheric Measurement Techniques Discussions, 2019, 1-32, 10.5194/amt-

2018-419, 2019. 

Hansen, P. C.: Rank-Deficient and Discrete ILL-Posed Problems:Numerical Aspect of Linear Inversion., edited by: SIAM, 

Philadelphia, 264 pp., 1998. 

Herrera, A. M., Suhandri, H. F., Realini, E., Reguzzoni, M., and De Lacy, M. C.: goGPS: Open-Source MATLAB Software, 

GPS Solutions, 20, 595–603, https://doi.org/10.1007/s10291-015-0469-x, 2016. 

Herring, T. A.: Modeling atmospheric delays in the analysis of space geodetic data, Refraction of transatmospheric signals in 

geodesy, 157-164, 1992. 

Herschke, P. M.: Modeling and extrapolation of path delays in GPS signals, MSc. Dissertation, Department of Physics, 

ETH,Swiss Federal Institute of Technology, 2002. 

Heublein, M.: GNSS and InSAR based water vapor tomography: A Compressive Sensing solution, PhD. Dissertation, Institute 

of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Germany., 134 pp., 2019. 

Hirahara, K.: Local GPS tropospheric tomography, Earth Planets Space, 52, 935-939, 2000. 

Hobiger, T., Ichikawa, R., Koyama, Y., and Kondo, T.: Fast and accurate ray-tracing algorithms for real-time space geodetic 

applications using numerical weather models, Journal of Geophysical Research, 113, 10.1029/2008JD010503, 2008. 

Hofmeister, A.: Determination of path delays in the atmosphere for geodetic VLBI by means of ray-tracing, PhD. Dissertation, 

Department of Geodesy and Geoinformation, Technical university of Vienna Vienna, 309 pp., 2016. 

Hopfield, H. S.: Two-quartic tropospheric refi·activity profile for correcting satellite data, Journal of Geophysical Research, 

74, 4487-4499, 1969. 

Hopfield, H. S.: Tropospheric effect on electromagnetically measured range: Prediction from surface weather data, Radio 

Science, 6, 357-367, 1971. 

Hopfield, H. S.: Tropospheric refraction effects on satellite range measurements, APL Technical Digest, 11, 11-21, 1972. 

Hoyle, V. A.: Data Assimilation for 4-D Wet Refractivity Modelling in a Regional GPS Network, MSc. Dissertation, 

Department of Geomatics Engineering, Calgary,Alberta,Canada., 190 pp., 2005. 

Hurter, F., Geiger, A., Perler, D., and Rothacher, M.: GNSS water vapor monitoring in the Swiss Alps, IEEE International 

Geoscience and Remote Sensing Symposium, 2012, 1972-1975,  

Ifadis, I. M.: The excess propagation path of radio waves: Study of the influence of the atmospheric parameters on its elevation 

dependence, Survey Review, 31, 289-298, 1992. 

Jaberi Shafei, M., and Mashhadi-Hossainali, M.: Application of the GPS reflected signals in tomographic reconstruction of 

the wet refractivity in Italy, Journal of Atmospheric and Solar-Terrestrial Physics, 207, 

https://doi.org/10.1016/j.jastp.2020.105348, 2020. 

Jang, J., and Hong, S. Y.: Comparison of nonhydrostatic and hydrostatic dynamical cores in two regional models using the 

spectral and finite difference methods: dry atmosphere simulation, Meteorol. Atmos.Phys., 128, 229–245, 

https://doi.org/10.1007/s00703-015-0412-2, 2016. 

Jensen, T. L., Jørgensen, J. H., Hansen, P. C., and Jensen, S. H.: Implementation of an optimal first-order method for strongly 

convex total variation regularization, BIT Numerical Mathematics, 52, 329-356, https://doi.org/10.1007/s10543-011-0359-8, 

2012. 

https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.1016/j.jastp.2020.105348
https://doi.org/10.1007/s00703-015-0412-2
https://doi.org/10.1007/s10543-011-0359-8


 

132 
 

Jia, R., Yu, X., Xing, J., Ning , Y., and Sun, H.: An improved method using adaptive smoothing for GNSS tomographic 

imaging of ionosphere, PLoS ONE, 15, https://doi.org/10.1371/journal.pone.0250613, 2021. 

Jones, J., Guerova, G., Dousa, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., and Pacione, R.: COST Action ES1206: 

GNSS4SWEC-Advanced GNSS Tropospheric Products for Severe Weather Events and Climate, in: EGU General Assembly 

Conference Abstracts, 2018. 

Kačmařík, M., and Rapant, L.: New GNSS tomography of the atmosphere method – proposal and testing, Geoinformatics FCE 

CTU, 12, 63-76, https://doi.org/10.14311/gi.9.6, 2012. 

Kak, A. C., and Slaney, M.: Principles of Computerized Tomographic Imaging, The Institute of Electrical and Electronics 

Engineers, New York., 1999. 

Kaltenbacher, B., Neubauer, A., and Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems, 2008. 

Karl, W. C.: Regularization in Image Restoration and Reconstruction, in: Handbook of Image and Video Processing, 2nd ed., 

edited by: Bovik, A. L., New York, NY, USA: Elsevier, 183-202, 2005. 

Kleijer, F.: Troposphere Modeling and Filtering for Precise GPS Leveling, PhD. Dissertation, TU Delft, 278 pp., 2004. 

Krietemeyer, A., Ten Veldhuis, M.-c., Van der Marel, H., Realini, E., and Van de Giesen, N.: Potential of Cost-Efficient Single 

Frequency GNSS Receivers for Water Vapor Monitoring, Remote Sensing, 10, 10.3390/rs10091493, 2018. 

Kunitsyn, V. E., and Tereshchenko, E. D.: Ionospheric Tomography, Springer, Berlin, 2003. 

Landskron, D.: Modeling tropospheric delays for space geodetic techniques, PhD. Dissertation, Department of Geodesy and 

Geoinformation, TU Wien, 188 pp., 2017. 

Landskron, D., and Böhm, J.: VMF3/GPT3: refined discrete and empirical troposphere mapping functions, Journal of Geodesy, 

92, 349-360, 10.1007/s00190-017-1066-2, 2018. 

Landweber, L.: An iteration formula for Fredholm integral equations of the first kind, American Journal of Mathematics, 73, 

615–624, 1951. 

Ledoux, H., and Gold, C.: An Efficient Natural Neighbour Interpolation Algorithm for Geoscientific Modelling, in: 

Developments in Spatial Data Handling, Springer, Berlin/Heidelberg, Germany, 97-108, 2005. 

Lee, J. K., Kamalabadi, F., and Makela, J. J.: Localized three-dimensional ionospheric tomography with GPS ground receiver 

measurements, Radio Science, 42, 10.1029/2006RS003543, 2007. 

Li, C.: An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and 

Compressive Sensing, MSc. Dissertation, Rice University, 2009. 

Lohvithee, M.: Iterative Reconstruction Technique for Cone-beam Computed Tomography with Limited Data, Ph.D. 

Dissertation, Department of Electrical and Electronic Engineering, University of Bath, 2019. 

Lutgens, F. K., Tarbuck , E. J., and Herman, R. L.: The Atmosphere – An Introduction to Meteorology, Prentice-Hall, 

Englewood Cliffs, New Jersey, edited by: Edition, F., Pearson, New York, 1912 pp., 2018. 

Lutz, S. M.: High-resolution GPS tomography in view of hydrological hazard assessment, PhD. Dissertation, ETH Zurich, 219 

pp., 2008. 

Maercklin, N.: Seismic structure of the Arava Fault, Dead Sea Transform, PhD, Potsdam : Deutsches GeoForschungsZentrum 

GFZ, 142 pp., 2004. 

Manning, T., Zhang, K., Rohm, W., Choy, S., and Hurter, F.: Detecting Severe Weather using GPS Tomography: An 

Australian Case Study, Journal of Global Positioning Systems, 11, 58-70, 10.5081/jgps.11.1.58, 2012. 

Manning, T.: Sensing the dynamics of severe weather using 4D GPS Tomography in the Australian region, PhD. Dissertation, 

School of Mathematical and Geospatial Sciences College of Science, Engineering and Health, Royal Melbourne Institute of 

Technology (RMIT) University, 2013. 

Marini, J. W.: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, 7, 223-231, 1972. 

https://doi.org/10.1371/journal.pone.0250613
https://doi.org/10.14311/gi.9.6


 

133 
 

Meindl, M., Schaer, S., Hugentobler, U., and Beutler, G.: Tropospheric gradient estimation at code: Results from global 

solutions, Journal of the Meteorological Society of Japan, 82, 331–338, 2004. 

Mendes, V. B.: Modeling the Neutral Atmosphere Propagation Delay in Radiometric Space Techniques, PhD. Dissertation, 

Department of Geodesy and Geomatics Engineering, University of New Brunswick, 1999. 

Michelini, A., and McEvilly, T.: Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and 

hypocenters using cubic B-splines parameterization, Bulletin of the Seismological Society of America, 81, 524-552, 1991. 

Miller, C. R., and Routh, P. S.: Resolution analysis of geophysical images: Comparison between point spread function and 

region of data influence measures, Geophys. Prospect., 55, 835–852, 10.1111/j.1365-2478.2007.00640.x, 2007. 

Millman, R. S., and Parker, G. D.: Elements of Differential Geome-try, Prentice-Hall, Upper Saddle River, N. J, 1979. 

Möller, G.: Reconstruction of 3D wet refractivity fields in the lower atmosphere along bended GNSS signal paths, PhD. 

Dissertation, TU Wien, 2017. 

Möller, G., and Landskron, D.: Atmospheric bending effects in GNSS tomography, Atmospheric Measurement Techniques, 

12, 23-34, 10.5194/amt-12-23-2019, 2019. 

Moore, D. S., Notz, W. I., and Fligner, M. A.: The Basic Practice of Statistics, edited by: Edition, t., 2013. 

ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS): 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview, access: 2022-02-09 2022. 

Nafisi, V., Madzak, M., Böhm, J., Ardalan, A. A., and Schuh, H.: Ray-traced tropospheric delays in VLBI analysis, Radio 

Science, 47, 1-17, 10.1029/2011RS004918, 2012. 

Natterer, F.: The Mathematics of Computerized Tomography, Wiley, New York, 245 pp., 1986. 

Niell, A. E.: Global mapping functions for the atmosphere delay at radio wavelengths, Geophysical Research, 101, 3227-3246, 

1996. 

Niell, A. E.: Preliminary evaluation of atmospheric mapping functions based on numerical weather models, Phys. Chem. Earth, 

26, 475-480, 2001. 

Niell, A. E.: The IMF mapping functions, International Workshop on GPS Meteorology, Tsukuba, Japan, January 14–17, 2003. 

Nikazad, T.: The Use of Landweber Algorithm in Image Reconstruction, PhD. Dissertation, Department of Mathematics, 

Linköpings University, Sweden, 2007. 

Nilsson, T., Gradinarsky, L., and Elgered, G.: GPS Tomography Using Phase Observations. In Geoscience and Remote 

Sensing Symposium, IGARSS'04, 2004. 

Nilsson, T., and Gradinarsky, L.: Water vapor tomography using GPS phase observations: simulation results, IEEE 

Transactions on Geoscience and Remote Sensing, 44, 2927–2941, 10.1109/TGRS.2006.877755, 2006. 

Nilsson, T., Gradinarsky, L. P., and Elgered, G.: Water vapour tomography using GPS phase observations: Results from the 

ESCOMPTE experiment, TELLUS, 59A, 674-682, 10.1111/j.1600-0870.2007.00247.x 2007. 

Nilsson, T., Böhm, J., Wijaya, D. D., Tresch, A., Nafisi, V., and Schuh, H.: Path Delays in the Neutral Atmosphere, in: 

Atmospheric Effects in Space Geodesy, edited by: Böhm, J., and Schuh, H., Springer Berlin Heidelberg, Berlin, Heidelberg, 

73-136, 2013. 

NOAA/ESRL Radiosonde Database: https://ruc.noaa.gov/raobs/, access: 2022-01-24, 2022. 

Noguchi, W., Yoshihara, T., Tsuda, T., and Hirahara, K.: Time-Height Distribution of Water Vapor Derived by Moving Cell 

Tomography During Tsukuba GPS Campaigns, Journal of the Meteorological Society of Japan, 82, 561-568, 2004. 

Norquist, D. C., and Chang, S. S.: Diagnosis and Correction of Systematic Humidity Error in a Global Numerical Weather 

Prediction Model, Monthly Weather Review, 122, 2442-2460, 1994. 

Notarpietro, R., Cucca, M., Gabella, M., Venuti, G., and Perona , G.: Tomographic reconstruction of wet and total refractivity 

fields from GNSS receiver networks, Advanced in Space Research, 47, 898–912, 2011. 

National Weather Service, Radiosondes: https://www.weather.gov/jetstream/radiosondes, access: 2022-01-24, 2022. 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://ruc.noaa.gov/raobs/
https://www.weather.gov/jetstream/radiosondes


 

134 
 

Park, K.-D., Lee, H.-C., Kim, M.-S., Kim, Y.-G., Seo, S. W., and Park, J.: Accuracy Comparison of GPT and SBAS 

Troposphere Models for GNSS Data Processing, Journal of Positioning, Navigation, and Timing, 7, 183-188, 

https://doi.org/10.11003/JPNT.2018.7.3.183, 2018. 

Perler, D.: Water vapour tomography using global navigation satellite systems, PhD. Dissertation, ETH Zurich, Switzerland, 

2011. 

Perler, D., Geiger, A., and Hurter, F.: 4D GPS water vapor tomography: new parameterized approaches, Journal of Geodesy, 

85, 539-550, 10.1007/s00190-011-0454-2, 2011. 

Persson, M., Bone, D., and Elmqvist, H.: Total variation norm for three-dimensional iterative reconstruction in limited view 

angle tomography, Physics in Medicine and Biology 46, 53 - 866, 2001. 

Priego, E., Jones, J., Porres, M., and Seco, A.: Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish 

Mediterranean area, Geomatics, Natural Hazards and Risk, 8, 282-294, 10.1080/19475705.2016.1201150, 2017. 

Pu, Z., and Kalnay, E.: Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation, in: 

Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., and 

Schaake, J., Springer, Berlin, Heidelberg. , 2019. 

Radon, J.: On the determination of functions from their integral values along certain manifolds, IEEE Transactions on Medical 

Imaging, 5, 170-176, 1986. 

Rius, A., Ruffini, G., and Cucurull, L.: Improving the vertical resolution of ionospheric tomography with GPS occultations, 

Geophys Res Lett, 24, 2291–2294, 1997. 

Rocken, C., van Hove, T., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, T., and Businger, S.: GPS/STORM: GPS 

sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology (12, 468–478, 1995. 

Rohm, W., and Bosy, J.: Local tomography troposphere model over mountains area, Atmospheric Research, 93, 777-783, 

10.1016/j.atmosres.2009.03.013, 2009. 

Rohm, W., and Bosy, J.: The verification of GNSS tropospheric tomography model in a mountainous area, Advances in Space 

Research, 47, 1721-1730, 10.1016/j.asr.2010.04.017, 2011. 

Rohm, W., Zhang, K., and Bosy, J.: Unconstrained, robust Kalman filtering for GNSS troposphere tomography, Atmos. Meas. 

Tech. , 6, 9133-9162, 10.5194/amtd-6-9133-2013, 2013. 

Rothacher, M., Schaer, S., Beutler, G., Schlüter, W., and Hase, H. O.: Phase Center Variations of GPS Antennas Derived From 

GPS Observations of Specially Designed Calibration Campaigns, Supplement to EOS, American Geophysical Union,1996 

Spring Meeting,May 20-24, 77, G11A-16, 1996. 

Rudin, L. I., Osher, S., and Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear 

Phenomena, 60, 259-268, https://doi.org/10.1016/0167-2789(92)90242-F, 1992. 

Rüeger, J.: Refractive index formulae for electronic distance measurements with radio and millimetre waves, Unisurv Report, 

109, 758-766, 2002. 

Sá, A.: Tomographic determination of the spatial distribution of Water Vapour using GNSS observations for real-time 

applications, PhD. Dissertation, Geodesy and Cartography, Wroclaw University of Environmental and Life Sciences, 174 pp., 

2018. 

Saastamoinen, J.: Contributions to the theory of atmospheric refraction.Part II: refraction corrections in satellite geodesy, 

Bulletin Géodésique, 107, 13-34, 1973. 

Schmit, T. J., Gunshor, M. M., Paul Menzel, W., Gurka, J., Li, J., and Bachmeier, S.: Introducing the next‐generation advanced 

baseline imager (ABI) on GOES‐R, Bulletin of the American Meteorological Society, 86, 1079–1096, 

https://doi.org/10.1175/BAMS‐86‐8‐1079, 2005. 

https://doi.org/10.11003/JPNT.2018.7.3.183
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1175/BAMS


 

135 
 

Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., and Lebair, W. J.: A closer look at the ABI on the 

GOES‐R series, Bulletin of the American Meteorological Society, 98, 681-968, https://doi.org/10.1175/BAMS‐D‐15‐00230.1, 

2017. 

Schmit, T. J., Lindstrom, S. S., Gerth, J. J., and Gunshor, M. M.: Applications of the 16 spectral bands on the Advanced 

Baseline Imager (ABI), Journal of Operational Meteorology, 6, 33-46, https://doi.org/10.15191/nwajom.2018.0604, 2018. 

Schmit, T. J., Li, J., Lee, S. J., Li, Z., Dworak, R., Lee, Y. K., Bowlan, M., Gerth, J., Martin, G. D., Straka, W., Baggett,  K. 

C., and Cronce, L.: Legacy atmospheric profiles and derived products from GOES‐16: Validation and applications, Earth and 

Space Science, 6, 1730– 1748, https://doi.org/10.1029/2019EA000729, 2019. 

Schüler, T.: On Ground-Based GPS Tropospheric Delay Estimation, Ph.D. Dissertation, Bauingenieur-und 

Vermessungswesen, Studiengang Geodäsie und Geoinformation, der Bundeswehr München, 2001. 

Schüler, T., Posfay, A., Hein, G. W., and Biberger, R.: A global analysis of the mean atmospheric temperature for GPS water 

vapor estimation. C5: atmospheric effects,IONGPS., 14th International Technical Meeting of Satellite Division of the Institute 

of Navigation, Salt Lake City, Utah, 2001,  

Seeber, G.: Satellite Geodesy, de Gruyter, Berlin., 1993. 

Seko, H., Shimada, S., Nakamura , H., and Kato, T.: Three-dimensional distribution of water vapor estimated from tropospheric 

delay of GPS data in a mesoscale precipitation system of the baiu front, Earth Planets Space, 52, 927–933, 2000. 

Shangguan, M., Bender, M., Wickert, J., and Raabe, A.: Validation of GNSS Water Vapour Tomography with Radiosonde 

Data, Geodätische Woche Nürnberg, 2011,  

Shangguan, M.: Analysis and derivation of the spatial and temporal distribution of water vapor from GNSS observations, Ph.D. 

Dissertation, TU Berlin, 121 pp., 2014. 

Sibson, R.: A vector identity for the Dirichlet tesselation, in: MathematicalProceedings of the Cambridge Philosophical 

Society, 151-155, 1980. 

Sidky, E. Y., Kao, C. M., and Pan, X.: Accurate image reconstruction from few-views and limited-angle data in divergent-

beam CT, Journal of X-Ray Science and Technology, 14, 119-139, 2006. 

Siegfried, M. R.: Inversion of Extremely Ill-Conditioned Matrices in Floating-Point, Japan Journal of Industrial and Applied 

Mathematics, 26, 249-277, 10.1007/BF03186534, 2009. 

Skone, S. H.: ENGO 633 Atmospheric Effects on Satellite Navigation Systems, Winter term course notes, Geomatics 

Engineering Department, University of Calgary, 2003. 

Snay, R. A.-., and Soler, T.: Continuously Operating Reference Station (CORS): History, Applications, and Future 

Enhancements, Journal of Surveying Engineering 134, 95-104, 10.1061/(ASCE)0733-9453(2008)134:4(95), 2008. 

Song, S., Zhu, W., Ding, J., and Peng, J.: 3D water-vapor tomography with Shanghai GPS network to improve forecasted 

moisture field, Chinese Science Bulletin, 51, 607-614, 2006. 

Scripps Orbit and Permanent Array Center / California Spatial Reference Center: http://sopac-csrc.ucsd.edu/index.php/data-

download/, access: 2022-01-24, 2022. 

Stahel, K., Moore, R. D., Floyer, J. A., Asplin, M. G., and McKendry, I. G.: Comparison of approaches for spatial interpolation 

of daily air temperature in a large region with complex topography and highly variable station density, Agricultural and Forest 

Meteorology, 13, 10.1016/j.agrformet, 2006. 

Stensrud, D. J.: Parameterization schemes: Keys to understanding numerical weather prediction models, Cambridge University 

Press, 2009. 

Stolle, C., Schluter, S., and Heise, M.: A GPS based three-dimensional ionospheric imaging tool: process and assessment, 

Advanced in Space Research, 38, 2313–2317, 10.1016/j.asr.2006.05.016, 2006. 

Subbarao, P. M. V., Munshi, P., and Muralidhar, K.: Performance of iterative tomographic algorithms applied to non-

destructive evaluation with limited data, NDT&E international, 30, 359-370, 10.1016/S0963-8695(97)00005-4, 1997. 

https://doi.org/10.1175/BAMS
https://doi.org/10.15191/nwajom.2018.0604
https://doi.org/10.1029/2019EA000729
http://sopac-csrc.ucsd.edu/index.php/data-download/
http://sopac-csrc.ucsd.edu/index.php/data-download/


 

136 
 

The so called ‘Effective Height of Emission’ vs the Actual Height of Emission – which is more informative?: 

https://tallbloke.wordpress.com/2014/07/13/the-so-called-effective-height-of-emission-vs-the-actual-height-of-emission-

which-is-more-informative/comment-page-1/, access: 2021-10-20, 2014. 

Tang, J., Nett, B. E., and Chen, G.-H.: Performance comparison between total variation (TV)-based compressed sensing and 

statistical iterative reconstruction algorithms, Physics in medicine and biology, 54, 5781-5804, 10.1088/0031-9155/54/19/008, 

2009. 

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, ix + 339 pp., 2005. 

Tarniewicz, J., Bock, O., Pelon, J., and Thom, C.: Raman lidar for external GPS path delay calibration devoted to high accuracy 

height determination, Physics and Chemistry of the Earth, Parts A/B/C, 27, 329-333, http://dx.doi.org/10.1016/S1474-

7065(02)00008-6, 2002. 

Toomey, D. R., and Foulger, G. R.: TomographiIcn versiono f LocalE arthquakDe ata Fromt he Hengill-GrensdaluCr entralV 

olcano Complex,I celand, Journal of Geophysical Research, 9, 17,497-417,510, 1989. 

Treuhaft, R. N., and Lanyi, G. E.: The effect of the dynamic wet troposphere on radio interferometric measurements, Radio 

Science, 22, 251-265, 1987. 

Troller, M.: GPS based determination of the integrated and spatially distributed water vapor in the troposphere, PhD. 

Dissertation, Geodätisch-geophysikalische Arbeiten in der Schweiz.Swiss Geodetic Commission, ETH Zurich, 2004. 

Turk, F. J., Padullés, R., Ao, C. O., Juárez, M. d. l. T., Wang, K.-N., Franklin, G. W., Lowe, S. T., Hristova-Veleva, S. M., 

Fetzer, E. J., Cardellach, E., Kuo, Y.-H., and Neelin, J. D.: Benefits of a Closely-Spaced Satellite Constellation of Atmospheric 

Polarimetric Radio Occultation Measurements, Remote Sensing, 11, https://doi.org/10.3390/rs11202399, 2019. 

Turonova, B.: Simultaneous Algebraic Reconstruction Technique for Electron Tomography using OpenCL, MSc. Dissertation, 

Saarland University, 78 pp., 2011. 

14-Tage Wettervorhersage: https://14-tage-wettervorhersage.de/news/thema/140926/, 2022. 

Upper Air Observations: http://weather.uwyo.edu/upperair/, access: 2022-01-24, 2022. 

Van Baelen, J., Reverdy, M., Tridon, F., Labbouz, L., Dick, G., Bender, M., and Hagen, M.: On the relationship between water 

vapour field evolution and precipitation systems lifecycle, Quarterly of the Royal Meteorology Society, 137, 204-223, 

10.1002/qj.785, 2011, 2011. 

Vienna Mapping Functions Open Access Data: https://vmf.geo.tuwien.ac.at/, access: 2022-01-24, 2022. 

Vogel, C. R., and Oman, M. E.: Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 227–238, 

10.1137/0917016, 1996. 

Wallace, J. M., and Hobbs, P. V.: Atmospheric science: an introductory survey, Academic Press, 2006. 

Wang, Y., Ding, N., Zhang, Y., Li, L., Yang, X., and Zhao, Q.: A New Approach of the Global Navigation Satellite System 

Tomography for Any Size of GNSS Network, Remote Sensing, 12, 617, 2020. 

Wickert, J., Beyerle, G., Hajj, G. A., Schwieger, V., and Reigber, C.: GPS radio occultation with CHAMP: Atmospheric 

profiling utilizing the space-based single difference technique, Geophys. Res. Lett., 29, 28.21_28.24, 

https://doi.org/10.1029/2001GL013982, 2002. 

Wickert, J., Arras, C., Brack, A., Dick, G., Kepkar, A., Männel, B., Nguyen Thai, C., Oluwadare, T. S., Schmidt, T., Zus, F., 

and Schuh, H.: Ground and Space based GNSS for Space Weather Monitoring at GFZ: Overview and Recent Results, Abstract 

Book, IAG 2021 - Scientific Assembly of the International Association (Online from Beijing, China 2021), 2021. 

Wong, D. W. S.: Interpolation: Inverse-Distance Weighting, in: International Encyclopedia of Geography: People, the Earth, 

Environment and Technology, 2017. 

Wu, L.: A Parameter Choice Method for Tikhonov Regularization ENTA Kent State University, 6, 22, 2003. 

Xia, P., Cai, C., and Liu, Z.: GNSS troposphere tomography based on two-step reconstructions using GPS observations and 

COSMIC profiles, Annales Geophysicae, 31, 1805-1815, 10.5194/angeo-31-1805-2013, 2013. 

https://tallbloke.wordpress.com/2014/07/13/the-so-called-effective-height-of-emission-vs-the-actual-height-of-emission-which-is-more-informative/comment-page-1/
https://tallbloke.wordpress.com/2014/07/13/the-so-called-effective-height-of-emission-vs-the-actual-height-of-emission-which-is-more-informative/comment-page-1/
http://dx.doi.org/10.1016/S1474-7065(02)00008-6
http://dx.doi.org/10.1016/S1474-7065(02)00008-6
https://doi.org/10.3390/rs11202399
https://14-tage-wettervorhersage.de/news/thema/140926/
http://weather.uwyo.edu/upperair/
https://vmf.geo.tuwien.ac.at/
https://doi.org/10.1029/2001GL013982


 

137 
 

Xiaoying, W., Ziqiang, D., Enhong, Z., Fuyang, K. E., Yunchang, C., and Lianchun, S.: Tropospheric wet refractivity 

tomography using multiplicative algebraic reconstruction technique, Advances in Geosciences, 53, 156–162, 2014a. 

Xiaoying, W., Ziqiang, D., Enhong, Z., Fuyang, K. E., Yunchang, C., and Lianchun, S.: Tropospheric wet refractivity 

tomography using multiplicative algebraic reconstruction technique, Advances in Space Research, 53, 156–162, 2014b. 

Yang, F., Guo, J., Shi, J., Zhou, L., Xu, Y., and Chen, M.: A Method to Improve the Distribution of Observations in GNSS 

Water Vapor Tomography, Sensors (Basel), 18, 2526, 10.3390/s18082526, 2018. 

Yang, L., Hill, C., and Moore, T.: Numerical weather modeling-based slant tropospheric delay estimation and its enhancement 

by GNSS data, Geo-spatial Information Science 16, https://doi.org/10.1080/10095020.2013.817107, 2013. 

Yao, Y., and Zhao, Q.: A novel, optimized approach of voxel division for water vapor tomography, Meteorology and 

Atmospheric Physics, 1-14, 10.1007/s00703-016-0450-4, 2016. 

Yao, Y., Zhao, Q. Z., and Zhang, B.: A method to improve the utilization of GNSS observation for water vapor tomography, 

Annales Geophysicae, 34, 143–152, 10.5194/angeo-34-143-2016, 2016. 

Yao, Y., Xiin, L., and Zhao, Q.: A new tropospheric tomography model combining the pixel-based and function-based models, 

Annales Geophysicae, 37, 89-100, 10.5194/angeo-2018-34, 2019. 

Yu, F., and Wu, X.: Radiometric Calibration Accuracy of GOES Sounder Infrared Channels, IEEE Transactions on Geoscience 

and Remote Sensing, 1187 - 1199, 10.1109/TGRS.2012.2219625, 2012. 

Yuan, P., Yin, X., Möller, G., and Hansjörg, K.: A global uncertainty model for GNSS integrated water vapor derived from 

ERA5, GPT3 and co-located meteorological sensors, Remote Sensing of Environment, 2020. 

Zhang, B., Fan, Q., Yao, Y., Xu, C., and Li, X.: An Improved Tomography Approach Based on Adaptive Smoothing and 

Ground Meteorological Observations, Remote Sens., 9, 2017. 

Zhang, D., Guo, J., Fang, T., Wei, N., Mei, W., Zhou, L., Yang, F., and Zhao, Y.: TMF: A GNSS Tropospheric Mapping 

Function for the Asymmetrical Neutral Atmosphere, Remote Sens., 13, https://doi.org/10.3390/rs13132568, 2021. 

Zhang, J.: Investigations into the Estimation of Residual Tropospheric Delays in a GPS Network, Msc. Dissertation, 

Department of Geomatics Engineering, Calgary, 185 pp., 1999. 

Zhao, Q., Yao, Y., Cao, X., Zhou, F., and Xia, P.: An Optimal Tropospheric Tomography Method Based on the Multi-GNSS 

Observations, Remote Sens., 10, 2018. 

Zhao, Q., Zhang, K., Yao, Y., and Li, X.: A new troposphere tomography algorithm with a truncation factor model (TFM) for 

GNSS networks, GPS Solutions, 23, 64, 10.1007/s10291-019-0855-x, 2019. 

Zhao, Q., Yao, W., Yao, Y., and Li, X.: An improved GNSS tropospheric tomography method with the GPT2w model, GPS 

Solutions, 24, https://doi.org/10.1007/s10291-020-0974-4, 2020. 

Zus, F., Douša, J., Kačmařík, M., Václavovic, P., Balidakis, K., Dick, G., and Wickert, J.: Improving GNSS Zenith Wet Delay 

Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm 

Season, Remote Sensing, 11, 674, 2019. 

 

 

 

 

 

 

https://doi.org/10.1080/10095020.2013.817107
https://doi.org/10.3390/rs13132568
https://doi.org/10.1007/s10291-020-0974-4


 

 
 

Curriculum Vitae 

Zohreh Adavi 

Email zohreh.adavi@tuwien.ac.at, zohre.adavi@gmail.com  

Sex Female Nationality Iranian  

ORCID: 0000-0003-3059-8456 

 

ACADEMIC EDUCATION   

WORK EXPERIENCE   

MEMBERSHIP   

 

10/2019-Present PhD Student  

TU Wien, Department of Geodesy and Geoinformation 

 

10/2012-10/2014 Master of Science in Geodesy (Score: A+)  

Khajeh Nasir Toosi University of Technology, Tehran (Iran) 

The title of Thesis:  Local 4D Tomographic Modelling of Water Vapour in North-West of 

Iran 

 

09/2008-09/2012 Bachelor of Science in Geoinformatics Engineering (Score: A+)  

Khajeh Nasir Toosi University of Technology, Tehran (Iran) 

05/2018-Present Project Assistant 

  TU Wien, Department of Geodesy and Geoinformation 

  

01/2015-12/2017 Lecturer of  Least Square, Physical Geodesy, Micro Geodesy, Geodetic, Geodesy 

Islamic Azad University ( South Tehran Branch) 

 

09/2016-05/2017 Lecturer of Surveying Engineering 

K. N. Toosi University of Technology, Faculty of Civil Engineering 

 

10/2014-05/2015 Teacher Assistant of Geodesy, Least square and Surveying Engineering. 

K. N. Toosi University of Technology, Faculty of Geodesy and Geomatics  

09/2016-Present Member of IAG Working Group- GNSS Tomography 

mailto:zohreh.adavi@tuwien.ac.at
mailto:zohre.adavi@gmail.com

