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Abstract 

Multi-object tracking aims to estimate the time-dependent number and states of multiple 

objects from measurements provided by one or more sensors. Potential applications 

include surveillance, autonomous driving, indoor localization, robotics, and biomedical 

analytics. All these applications require accurate object state estimates computed by 

efficient and reliable multi-object tracking algorithms. The framework of labeled random 

finite sets (RF'Ss) provides a versatile mathematical tool for modeling the multi-object 

tracking problem and moreover enables track continuity, i.e., the consistent identification 

of objects over consecutive time steps. However, the practical application of many RFS- 

based multi-object tracking algorithms is limited by their high computational complexity. 

Therefore, to leverage the potential of labeled RFSs, there is a need for efficient yet 

accurate approximations and implementations. 

This thesis presents three contributions to the field of RFS-based multi-object track- 

ing. All of them involve a type of high-performing RFS-based multi-object tracking 

methods generically known as the labeled multi-Bernoulli (LMB) filter as well as the be- 

lief propagation (BP) algorithm for iterative Bayesian inference. First, we propose a new 

fast LMB filter that uses BP for probabilistic data association. The complexity of this fil- 

ter is significantly smaller than that of existing LMB filters and scales only linearly in the 

number of Bernoulli components and the number of measurements. This scaling behavior 

is due to a new fast BP-based algorithm for probabilistic data association. The use of this 

algorithm within the LMB filter is enabled by a new derivation of the original LMB filter. 

In this derivation, the generalized LMB posterior probability density function (PDF) is 

reformulated in terms of a joint object-measurement association distribution, which is 

approximated by the product of its marginals. The new LMB filter is then obtained 

by an approximate marginalization using the proposed BP-based algorithm. Contrary 

to traditional LMB filter implementations based on a ranked assignment algorithm or a 

Gibbs sampler, our BP-based LMB filter does not prune any association information in 

the update step, which results in an improved tracking performance. 

As a second contribution, we propose an efficient RFS-based algorithm for multi- 

object tracking, referred to as LMB/P filter, that exhibits an even better performance 

in challenging scenarios, e.g., in scenarios with a high number of objects and/or clut- 

ter measurements. The LMB/P filter is based on a new system model for tuples of 
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labeled/unlabeled state RFSs as well as a description of the multi-object state by the 

tuple of an LMBRFS, i.e., a labeled RFS, and a Poisson RFS, i.e., an unlabeled RF'S. 

The LMB/P filter tracks objects that are unlikely to exist within the less computationally 

demanding Poisson part and objects that are likely to exist within the more accurate but 

also more computationally demanding LMB part. Here, only if a quantity characterizing 

the plausibility of object existence is above a threshold, a new labeled Bernoulli com- 

ponent is created and the object is transferred from the Poisson part to the LMB part. 

Conversely, a labeled Bernoulli component is transferred back to the Poisson part if the 

corresponding existence probability falls below another threshold. The fact that unlikely 

objects are tracked within the less computationally demanding Poisson part combined 

with additional complexity-reducing approximations and modifications results in a low 

computational complexity of the LMB/P filter, especially in challenging scenarios. 

Finally, we propose a distributed multi-sensor LMB filter that uses the generalized 

covariance intersection (GCI) technique to fuse the local LMB posterior PDFs. A critical 

aspect of such filters is to correctly associate labeled Bernoulli components describing the 

same object at different sensors. Instead of using a hard association of labeled Bernoulli 

components, which is done in current state-of-the-art distributed GCI-based LMB filters, 

we propose a soft (probabilistic) label association scheme. To develop this scheme, we 

first derive a formulation of the fused multi-object PDF that involves a label association 

distribution. We then show that approximating the label association distribution by the 

product of its marginals results in a fused multi-object PDF that is again of LMB form. 

We finally obtain an eflicient implementation of the distributed LMB filter by using a 

BP-based algorithm for fast approximate marginalization and a Gaussian approximation 

of the spatial PDFs.
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Chapter 1 

Introduction 

Multi-object tracking refers to the problem of estimating the time-dependent number 

and states of multiple objects from measurements provided by one or several sensors. 

The problem is complicated by randomly disturbed object motion, objects coming in 

close proximity, noisy and cluttered sensor measurements, low signal-to-noise ratios, and 

a data association uncertainty. Here, data association uncertainty refers to the problem 

that it is a priori unknown which measurement was generated by which object, or by 

clutter. All these issues make multi-object tracking a challenging task. Multi-object 

tracking has a long history, and first solutions [Kalman, 1960] can be traced back to the 

1960s for aerospace surveillance applications [Vo et al., 2015]. Since then, the range of 

potential applications has expanded to a variety of areas, including further surveillance 

applications [Fortmann et al., 1983, Rasmussen and Hager, 2001, Lu et al., 2018, Gaglione 

et al., 2020], autonomous driving [Urmson et al., 2008, Patole et al., 2017, Levinson et al., 

2011], indoor localization [Witrisal et al., 2016, Bartoletti et al., 2014,Shen and Molisch, 

2014], robotics [Bullo et al., 2009, Hu et al., 2012, Ferri et al., 2017], and biomedical 

analytics [Adrian, 1991, Genovesio et al., 2006, Magka et al., 2014]. 

1.1 Multi-object Tracking 

The multi-object tracking problem can be modeled in the framework of sequential Bayesian 

estimation. More specifically, the random object states are estimated recursively over 

time, relying on a statistical modeling of the object evolution process and the sensor 

measurement process. The state of an object usually includes its position, velocity, and 

possibly further quantities such as its extent. A sensor can be any measuring device 

that senses its environment such as RADAR, SONAR, or LIDAR sensors, infrared sen- 

sors, and cameras. In this thesis, we only consider methods that use point measure- 

ments. Point measurements are obtained by pre-processing the raw sensor data in order 

to reduce data flow and computational complexity. For linear/Gaussian system mod- 

els and a Gaussian prior, the multi-object tracking problem without data association 
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2 CHAPTER 1. INTRODUCTION 

uncertainty can be solved in closed form. The resulting tracking algorithm is the well- 

known Kalman filter [Kalman, 1960, Anderson and Moore, 1979,Ho and Lee, 1964]. For 

nonlinear/non-Gaussian system models, computationally feasible approximations to the 

optimal Bayesian state estimator comprise the extended Kalman filter [Anderson and 

Moore, 1979], the unscented Kalman filter [Julier and Uhlmann, 2004], and the particle 

filter [Arulampalam et al., 2002]. 

The aforementioned algorithms are limited to problems with a known number of 

objects and without data association uncertainty, i.e., the correct association between 

objects and measurements is known. For the more realistic case with data association 

uncertainty, the state-of-the-art tracking approaches can be divided into “vector-type” 

and “set-type” algorithms. 

1.1.1 Vector-type Algorithms 

Vector-type filters model the multi-object state and measurements by random vectors. 

They are able to implicitly maintain track continuity (i.e., consistent identification of 

objects over consecutive time steps) by associating the object state estimates at the 

current time with the object state estimates at previous times. Vector-type algorithms 

can be further classified into methods based on the frameworks of probabilistic data 

association (PDA) and multiple hypothesis tracking (MHT). 

PDA methods aim to compute the minimum mean square error (MMSE) estimate 

for each single object state at each single time step. More precisely, the PDA filter [Bar- 

Shalom et al., 2011, Sec. 3.4| models the data association by a nuisance variable that is 

“marginalized out.” Whereas the PDA filter is able to track a single object under data 

association uncertainty, the joint PDA (JPDA) filter [Bar-Shalom, 1974| extends this 

principle to the tracking of multiple objects. The integrated PDA (IPDA) filter [Musicki 

et al., 1994] and the joint IPDA (JIDPA) filter [Musicki and Evans, 2004| extend the 

PDA filter and the JPDA filter, respectively, by modeling object existence as a Bernoulli 

random variable. All four filters model the kinematic object state as a Gaussian random 

variable, thus restricting them to linear/Gaussian system models. However, extensions 

to nonlinear/non-Gaussian system models are possible based on the principles of, e.g., 

the extended Kalman filter or the unscented Kalman filter, still assuming a Gaussian 

prior probability density function (PDF). Extensions based on particle representations of 

spatial PDFs, which do not require a Gaussian prior, were proposed in [Vermaak et al., 

2005]. To lower the computational complexity of the JPDA and JIPDA filters, an eflicient 

approximate belief propagation (BP) based algorithm for marginalization was proposed 

in [Williams and Lau, 2014]. Although the JPDA and JIPDA filters were proposed for 

a known number of objects, heuristic extensions allow them to be applied also when the 

number of objects is unknown. 

MHT methods are based on the maximum a posteriori (MAP) estimator. More pre- 

cisely, first the MAP estimator is used to find the most likely object-measurement as-
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sociation for a time window of a certain length [Reid, 1979]. Given this association, 

the MAP estimates of the object states are then calculated. Similar to traditional PDA 

methods, the kinematic object states are modeled by Gaussian PDFs. MHT can be 

formulated in two different forms, namely, hypothesis-oriented MHT [Reid, 1979, Cox 

and Hingorani, 1996] and track-oriented MHT [Kurien, 1990, Blackman, 2004, Morefield, 

1977, Pattipati et al., 1992]. The original hypothesis-oriented MHT methods propagate 

a predefined number of the most likely object-measurement hypotheses. Each of these 

hypotheses is parametrized by a weight representing its plausibility and a sequence of 

object state PDFs. An efficient implementation is based on the m-best assignment algo- 

rithm for selecting the m-best hypotheses [Cox and Hingorani, 1996]. The more efficient 

track-oriented MHT methods represent object-measurement associations in the form of 

a series of tree structures |Kurien, 1990]. Each tree represents the possible measurement 

association history of a single object. The most likely hypothesis is then found by choos- 

ing a leaf node for each single-object tree in such a way that no measurement is used by 

more than one object. An enumeration of hypotheses is avoided through combinatorial 

optimization techniques [Pattipati et al., 1992]. 

1.1.2 Set-type Algorithms 

A different approach underlies set-type algorithms. Here, the multi-object state and the 

measurements are modeled as random finite sets (RFSs) [Mahler, 2007b]. (An introduc- 

tion to RFSs will be provided in Chapter 2.) The probability hypothesis density (PHD) 

filter [Mahler, 2003, Vo et al., 2005, Vo and Ma, 2006] approximates the posterior PDF 

by a Poisson PDF such that the PHD corresponding to the Poisson PDF is matched to 

the PHD corresponding to the true posterior PDF. This Poisson approximation leads to 

a low computational complexity of the PHD filter but results in only moderate tracking 

performance in more challenging tracking scenarios. An improved tracking performance 

is exhibited by the cardinalized PHD (CPHD) filter [Mahler, 2007a|. There, the posterior 

PDF is approximated by an independent and identically distributed (IID) cluster PDF 

such that the PHD and the cardinality distribution corresponding to the IID cluster PDF 

match the PHD and cardinality distribution corresponding to the true posterior PDF. 

The improved tracking performance of the CPHD filter comes at the expense of a higher 

computational complexity. Both the PHD filter and the CPHD filter do not maintain 

track continuity. The PHD filter will be reviewed in Section 3.3. 

Another type of RFS filters is based on the multi-Bernoulli (MB) RFS. While the 

(single-) Bernoulli filter [Ristic et al., 2013] is only capable of tracking a single object, 

the so-called multi-target MB (MeMBer) filter [Mahler, 2007b, Sec. 17| is an extension 

to the tracking of multiple objects. In the MeMBer filter, the posterior PDF is approx- 

imated by an MB PDF by applying approximations to the posterior probability gener- 

ating functional (PGFL), which expresses the same information as the posterior PDF 

but in a different form. The inherent cardinality bias caused by the applied approxi-
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mations results in a rather poor tracking performance. However, an improved version, 

referred to as the cardinality-balanced MeMBer (CB-MeMBer) filter [Vo et al., 2009], 

compensates the cardinality bias and exhibits an improved tracking performance. An- 

other instance of this class of filters is the Poisson Multi-Bernoulli Mixture (PMBM) 

filter [Williams, 2015], which models the posterior PDF as a combination of a Poisson 

PDF and an MB mixture (MBM) PDF. If the Poisson part is neglected, the PMBM 

filter simplifies to the MBM filter [Xia et al., 2019|. The Poisson part in the PMBM 

filter can improve the detection of newly appearing objects at the cost of a higher com- 

putational complexity. Low-complexity approximations of the PMBM filter include the 

track-oriented marginal MB-Poisson (TOMB/P) filter [Williams, 2015, Kropfreiter et al., 

2016] and the measurement-oriented marginal MB-Poisson (MOMB/P) filter [Williams, 

2015], which are based on the approximation of an inherent object-measurement associa- 

tion distribution by the product of its marginals. A modification proposed in [Williams, 

2012] extends the conventional TOMB/P filter by recycling, which performs a trans- 

fer of Bernoulli components with a low existence probability to the Poisson part. All 

these set-based algorithms can be implemented using Gaussian PDFs, Gaussian mixture 

PDFs, or particle representations, thus making them suitable for both linear/Gaussian 

and nonlinear/non-Gaussian system models. With the exception of the (CB-)MeMBer 

filter and the MOMBJ/P filter, all algorithms mentioned in this paragraph can enable 

track continuity through the use of simple heuristic post-processing techniques. 

A further, more recent type of set-based algorithms relies on labeled RFSs [Mahler, 

2014, Vo and Vo, 2013, Vo et al., 2014]. The label explicitly models the identity of an 

object, thus enabling track continuity without any heuristic post-processing. Filters mod- 

eling the multi-object state by a labeled RFS are the labeled MB (LMB) filter [Reuter 

et al., 2014, Reuter et al., 2017] and the generalized LMB (GLMB) filter [Vo and Vo, 

2013, Vo et al., 2014, Vo et al., 2017|. The GLMB filter is an exact solution to the 

multi-object tracking problem, while the LMB filter is an approximation with reduced 

computational complexity. Efficient implementations of the GLMB filter and the LMB 

filter are based on the Gibbs sampler [Vo et al., 2017, Reuter et al., 2017]. 

An even more recent approach to multi-object tracking models the entire sequences 

of multi-object states as an RFS of trajectories [Garcia-Fernändez et al., 2020b, Garcia- 

Fernändez and Svensson, 2019, Xia et al., 2019, Granström et al., 2018]. Each trajec- 

tory is characterized by the initial time, the trajectory length, and a sequence of object 

states. Algorithms based on this approach include the trajectory PHD and CPHD fil- 

ters [Garcia-Fernändez and Svensson, 2019], the trajectory MBM filter [Garcia-Fernändez 

et al., 2020b], and the trajectory PMBM filter [Granström et al., 2018, Xia et al., 2019].
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1.2 Outline and Contribution 

In this thesis, we propose efficient LMB filtering algorithms for multi-object tracking. 

After a review of unlabeled and labeled RFSs in Chapter 2 and Bayesian RFS-based 

multi-object tracking in Chapter 3, we present in Chapter 4 an efficient LMB filter using 

BP for probabilistic data association. In Chapter 5, we augment the RFS description of 

the multi-object state used in Chapter 4 by a Poisson RFS, which yields a new descrip- 

tion of the multi-object state as a combination of a labeled RFS, i.e., an LMB RFS, and 

an unlabeled RFS, i.e., a Poisson RFS. Using this description, we develop a multi-object 

tracking algorithm that, especially in challenging scenarios, has an even lower computa- 

tional complexity than the LMB filter proposed in Chapter 4. In Chapter 6, we propose 

a distributed LMB filter for multi-sensor multi-object tracking based on the new concept 

of probabilistic label association. In the following, we provide a more detailed outline of 

the individual chapters of the thesis and a summary of the main contributions. 

e In Chapter 2, we review basic concepts of unlabeled and labeled RFSs [Mahler, 

2007b, Mahler, 2014|, which form the foundation of the following chapters. More 

precisely, we introduce the multi-object PDF, the PGFL, and the PHD as descrip- 

tions of the statistics of an unlabeled RFS [Mahler, 2007b]. We furthermore present 

the Poisson, Bernoulli, and MB RFSs as important types of unlabeled RFSs. Next, 

we introduce labeled RFSs [Vo and Vo, 2013, Vo et al., 2014, Mahler, 2014| and 

the multi-object PDF, the PGFL, and the PHD for the labeled RFS case. Then, 

we introduce the LMB, labeled MBM RFS, and GLMB RFSs as important types 

of labeled RFSs. Throughout the chapter, useful conversion relationships between 

multi-object PDF, PGFL, and PHD are presented for both unlabeled and labeled 

RFSs. 

e In Chapter 3, we review the Bayes multi-object filter for unlabeled and labeled 

RFSs [Mahler, 2007b, Mahler, 2014]. The Bayes multi-object filter recursively cal- 

culates the posterior multi-object PDF and consists of a prediction step and an 

update step. We furthermore present two common system models, each consist- 

ing of a state-transition model and a measurement model, that form the basis of 

many unlabeled and labeled RFS-based multi-object tracking algorithms. Three 

important RFS-based multi-object tracking algorithms, namely, the PHD filter, 

the TOMB/P filter, and the LMB filter, are finally discussed in detail. 

e In Chapter 4, we propose a new fast LMB filter whose complexity scales only lin- 

early in the number of Bernoulli components and the number of measurements. In 

addition to its low complexity, the proposed fast LMB filter can achieve improved 

tracking accuracy compared to other state-of-the-art tracking filters. The fast LMB 

filter is derived by reformulating the GLMB posterior PDF of the original LMB filter 

in terms of a joint object-measurement association distribution and approximating
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that distribution by the product of its marginals. A fast approximate marginaliza- 

tion is then achieved by an adaptation of a BP-based algorithm for probabilistic 

data association [Williams and Lau, 2014]. The proposed fast LMB filter also uses 

a novel efficient model for generating new Bernoulli components. After present- 

ing a complexity analysis, we conclude the chapter with a simulation experiment 

comparing the results obtained by the proposed LMB filter with those obtained by 

the Gibbs sampler-based LMB filter [Reuter et al., 2017] and the BP-based imple- 

mentation of the TOMB/P filter [Williams, 2015]. The results indicate that the 

proposed LMB filter significantly outperforms the Gibbs sampler-based LMB filter 

and performs similarly to the TOMB/P filter, but with a much lower computational 

complexity. Indeed, unlike our fast BP-based LMB filter, the Gibbs sampler-based 

LMB filter ignores valuable association information by pruning GLMB components, 

which results in a reduced tracking accuracy in more challenging tracking scenarios. 

In Chapter 5, we propose an RFS-based multi-object tracking method that im- 

proves on the fast LMB filter of Chapter 4 in challenging scenarios with, e.g., a 

high number of objects and/or clutter measurements. The proposed filter, termed 

LMB/P filter, combines the strengths of the LMB filter and the PHD filter in that it 

achieves track continuity and good tracking performance while requiring a relatively 

low computational complexity compared to other RFS-based tracking algorithms 

with track continuity. In the LMB/P filter, the multi-object state is modeled as a 

combination of an LMB RFS, i.e., a labeled RFS, and a Poisson RFS, i.e., an un- 

labeled RFS. We propose a new system model for labeled/unlabeled multi-object 

state RFSs and derive the prediction step and the exact update step based on 

this system model. An excellent accuracy-complexity compromise is achieved by 

a number of approximations and modifications of the exact update step, including 

the partitioning of label and measurement sets, the pruning of implausible object- 

measurement associations, and the transfer of certain unlabeled objects to labeled 

objects and vice versa. As a consequence of these approximations, objects that are 

likely to exist are tracked by the LMB RFS and objects that are unlikely to exist 

by the Poisson RFS. More specifically, only if a quantity characterizing the plausi- 

bility of object existence is above a predefined threshold, a new labeled Bernoulli 

component is generated based on the Poisson RFS, and the corresponding object is 

tracked within the more accurate but less efficient LMB part. Conversely, a labeled 

Bernoulli component is transferred to the Poisson RFS if its existence probability 

falls below another threshold. The fact that unlikely objects are tracked within 

the less computationally demanding Poisson part is the main reason for the low 

computational complexity of the LMB/P filter, especially in challenging scenarios 

with many objects and/or high clutter rates. We present simulation results demon- 

strating the advantages of the proposed LMB/P filter relative to the fast LMB
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filter of Chapter 4, the Gibbs sampler-based LMB filter [Reuter et al., 2017], and 

the BP-based TOMB/P filter using recycling [|Williams, 2012]. Similar to the fast 

LMB filter of Chapter 4, our implementation of the proposed LMB/P filter uses 

BP to compute approximate marginal association probabilities and does not per- 

form any pruning of GLMB components. This fact results in an improved tracking 

performance compared to the Gibbs sampler-based LMB filter. A comparison with 

the fast LMB filter and the BP-based TOMB/P filter with recycling shows that all 

three filters achieve a similar tracking accuracy while the proposed LMB/P filter 

has a significantly lower computational complexity than the fast LMB filter and the 

BP-based TOMB/P filter. The lower computational complexity is due to the fact 

that objects that are unlikely to exist are tracked within the less computationally 

demanding Poisson part of the filter. This is especially beneficial in scenarios with 

many objects and/or a high clutter rate, which tend to involve a high number of 

potentially existing objects. On the other hand, in scenarios with few objects and 

a low ore moderate clutter rate, the modeling of unlikely objects by a Poisson RFS 

may be unnecessarily complicated and result in an increased computational com- 

plexity. In such scenarios, the fast LMB filter proposed in Chapter 4 can achieve a 

lower computational complexity. 

e In Chapter 6, we propose a distributed multi-sensor LMB filter based on the con- 

cepts of probabilistic label association, generalized covariance intersection (GC), 

and BP. In distributed LMB filters based on GCI fusion, each sensor in a sensor 

network locally runs an LMB filter, e.g., the fast LMB filter of Chapter 4, and 

then fuses its local LMB posterior PDF with the local LMB posterior PDFs of its 

neighbors. A critical aspect of such filters is to correctly associate labeled Bernoulli 

components describing the same object at different sensors. Distributed LMB filters 

based on hard label association can result in a poor tracking performance, especially 

in more challenging tracking scenarios. We propose a GCI-based fusion method for 

LMB posterior PDFs that uses, for the first time, a soft (i.e., probabilistic) as- 

sociation of labeled Bernoulli components and thereby avoids a hard association. 

In the derivation of our distributed LMB filter, we first define a label association 

vector that describes the association of the labeled Bernoulli components of two 

sensors. Then, we perform GÜCI fusion of the two LMB posterior PDFs for a given 

association vector. However, since the correct label association is unknown, we 

model the label association vector by a random vector and derive the fused poste- 

rior PDF using soft label associations. It turns out that this PDF is no longer an 

LMB PDF but a GLMB PDF, which involves an inherent label association prob- 

ability mass function (PMF). Therefore, we next approximate the fused GLMB 

posterior PDF by an LMB PDF, which is achieved by approximating the label as- 

sociation PMF by the product of its marginals. An efficient two-sensor distributed
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LMB filter is finally obtained by incorporating a novel BP-based algorithm for fast 

approximate marginalization of the label association PMF and using a Gaussian 

approximation for the spatial PDFs involved in the LMB PDFs. Networkwide fu- 

sion with an arbitrary number of sensors is then obtained by iteratively applying 

the proposed pairwise fusion algorithm between each sensor and all its neighboring 

sensors. Our simulation results demonstrate that the proposed distributed LMB 

filter outperforms a state-of-the-art distributed LMB filter using hard label associ- 

ation [Li et al., 2019] and can perform close to the centralized multi-sensor LMB 

filter based on the iterated corrector approach [Reuter et al., 2014, Mahler, 2014]. 

In Chapter 7, we summarize our contributions and suggest possible directions of 

future research.



Chapter 2 

RFS Fundamentals 

A random finite set (RFS), also known as a finite point process [Daley and Vere-Jones, 

2002, Daley and Vere-Jones, 2007|, is a mathematical object that captures the uncer- 

tainty of both the number of set elements and the specific values of the set elements. 

It was first considered by Mahler [Goodman et al., 1997, Mahler, 2007b] for modeling 

object states and measurements in a Bayesian multi-object tracking context. Mahler’s 

“finite set statistics” (FISST) framework enables an elegant formulation of the Bayesian 

multi-object tracking problem and has facilitated the derivation of numerous novel multi- 

object tracking algorithms [Mahler, 2007b]. Initially, RFSs were considered as unlabeled 

quantities where all set elements are unordered and indistinguishable. As a consequence, 

multi-object tracking algorithms based on unlabeled RFSs are not able to model object 

identities and therefore do not support the estimation of entire object trajectories. This 

limitation was removed by Vo and Vo [Vo and Vo, 2013, Vo et al., 2014] with the in- 

troduction of labeled RFSs. Each element of a labeled RFS is augmented by a distinct 

identification variable referred to as a label. The concept of labeled RF'Ss led to a vari- 

ety of new and powerful multi-object tracking algorithms that are capable of estimating 

entire object trajectories.! 

The remainder of this chapter is structured as follows. Section 2.1 discusses some 

fundamentals of unlabeled RFSs, including the description of their statistics by means 

of the multi-object PDF, the PGFL, and the PHD. Furthermore, the Poisson, Bernoulli, 

and MB RFSs are presented. In Section 2.2, we discuss the concept of labeled RFSs and 

their statistical descriptions, and we finally present the LMB, LMBM, and GLMB RFSs. 

Throughout the chapter, we present important conversion relations between multi-object 

PDF, PGFL, and PHD for both unlabeled and labeled RF'Ss. 

  

! An alternative approach to RFS-based multi-object tracking that also enables the estimation of object 

trajectories is based on RFSs of trajectories [Garcia-Fernändez et al., 2020b, Svensson and Morelande, 

2014]. This approach tends to lead to a higher computational complexity and will not be considered in 

this work.
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2.1 Unlabeled RFS 

An unlabeled RFS X is a random variable whose realizations X are finite sets {w(l), un, 

2} of vectors 2) € R"=. Both the vectors x() and their number n = |X| (the cardinality 

of X) are random quantities. Thus, X consists of a random number n of random vectors 

x) ...,x(®. Furthermore, the elements x) of X are unordered, i.e., changing their order 

leaves the set X unchanged. While the conventional Riemann integral is not defined for 

sets, one can define the set integral of a real-valued set function g(X) as [Mahler, 2007b] 

=1 / KRX AL - / ad... Hard... de. 2.1) 
n=0 . nng 

Note that each term of the sum corresponds to one value of n=|X|. 

2.1.1 Statistics of Unlabeled RFS 

Adopting Mahler’s FISST framework [Mahler, 2007b], the statistics of an RFS X can be 

described by its multi-object PDF fx(X), briefly denoted f(X). For any given realization 

X ={zW, ... 2 with cardinality | X| = n, the multi-object PDF is given by 

F(X) = nlpn) fuleD, .. a), (2.2) 

Here, p(n) & Pr{|X| = n}, n € No, is denoted as cardinality distribution and is the 

PMF of the random cardinality n = |X|, and f,(z",...,2() is a PDF of the random 

vectors x(),...,x(”) that is invariant to a permutation of the arguments x”). Note that 

f(ß) = p(0). The multi-object PDF (2.2) integrates to one using the set integral (2.1), 

i.e., [ f(X)0X = 1. Moreover, the cardinality distribution can be obtained from the 

multi-object PDF according to 

o) = = [ Urd,.. 2 Ydrd...de. (2.3) 
n! Rrne 

The multi-object PDF of the union of two statistically independent RFSs, X and Y, is 

given by the FISST convolution according to [Mahler, 2007b, Sec. 11.5.3] 

FXUY) =) FY)F(X\Y). (2.4) 
YCX 

In addition to the multi-object PDF (2.2), the statistics of an RFS X can also be 

described by the probability generating functional (PGFL) [Mahler, 2007b]. It is defined 
A as the expectation of hX with hX £ [],cx h(x) and where h : R"= — [0,00) is any 

nonnegative vector function. Thus, we have 

Gx|h] & E{hX} = / WX F(X)6X = / |] r« (2.5) 
meX
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Note that [[,cxh(z) = 1 for X = 0. It can be easily verified that Gx[|1] = 1 by 

setting h(x) = 1 in (2.5). Let ö,w(2) & ö(&— x) denote the Dirac delta function 

at =), and define the functional derivative of Gx[h] in direction 6, as m erlhl = 

lim. 0 re Then, the multi-object PDF f(X) can be recovered from Gyx [A] 

with X = {z), ..., 2™} according to [Mahler, 2007b] 

5 . 5" 
F(X) = 55 Gxlh] Sal  ; (2.6) no de)... dam) o 

where in the last expression the functional derivative is applied iteratively. 

One important property of PGFLS is the following [Mahler, 2007b]: The PGFL of the 

union X = U;lex(fi of statistically independent RFS X, j € {1,...,J} is the product 

of the individual PGFLs Gy [h], i.e., 

J 

Gx[h] = II Gy [h]- (2.7) 

Another important property of PGFLs is the product rule of functional derivatives 

[Mahler, 2007b]: For J PGFLs Gy [h] with j € {1,...,J} of statistically independent 

RFSs XU) and a finite set Y, 

5 5Gywlh]  6Gunlh 

Wiw---wW;=Y 1 J 

where the sum is over all configurations of disjoint subsets Wı,...,W,; < Y such that 

U W; —= Y. Note that W, can also comprise the empty set, i.e., W; =. 

The probability hypothesis density (PHD) or intensity function Dx (x): R"”*— [0, ©) 

of an RFS X is a probability function defined on R"* and can be considered as a first 

order moment of X. It is defined in terms of the multi-object PDF according to 

Dx(a) £ E{ox(e)} = [ dx(a) F(X)0X. 

with 

0, X =0, 
> ORG) (2), X = {e, e az(”)}, 

where 6,0 (x) = 6(x- x) is the Dirac delta function at «() as defined previously. The 

PHD has the property that for any region & C R”*, the integral |, Dx(x=)dx yields the 

expected number of objects whose states are located in that region, i.e., 

Jöxte)aa = EIIXNS]} = / IXNS| FIX)SX. 
S
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The PHD can be obtained from the corresponding PGFL by [Mahler, 2007Db] 

Dx(z) = Era) Mn (2.9) 

Next, we will review three types of unlabeled RFSs that are important for RFS-based 

multi-object tracking. 

2.1.2 Poisson RFS 

We start our review with the Poisson RFS. The cardinality n = |X| of the Poisson RFS X 

is Poisson distributed with mean u, i.e., 

e Fu 
  pin) = ’ 

n! 

for nENo, where the parameter u is equal to both the mean and the variance of n. Given 

the cardinality n = n, the elements x) ...,x0% of X are independent and identically 

distributed (iid) according to aspatial PDF f(z), i.e., fn(@,...,29) = I]}_, fe) = 

llzcx f(&)-. Inserting into (2.2) yields for the multi-object PDF 

X) = e [ pf@) = e 2@ T A@), (2.10) 
zeX zeX 

where the product A(z) = uf(z) is the PHD of the Poisson RFS X. The PGFL is 

obtained by inserting (2.10) in (2.5), which yields [Mahler, 2007b] 

Gx|h] = er PU, (2.11) 

with A[h —1] £ [(h(z) — 1) A(x)dz. The Poisson RFS constitutes the basis of the PHD 

filter (cf. Section 3.3) and is also an essential component of the TOMB /P filter (cf. Section 

3.4). 

2.1.3 Bernoulli RFS 

Next, we review the Bernoulli RFS. The Bernoulli RFS X is characterized by a probability 

of existence r and a spatial PDF f(x). The Bernoulli RFS is empty with probability 1—r 

and contains one element x » f(x) with probability r. Hence, the multi-object PDF is 

given by 

1-r, X=ß, 

f(X) =qrfl®), X={z}, (2.12) 
0, otherwise. 

Inserting (2.12) in (2.5) yields for the PGFL
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Gx[h] = GB[h;r, f] 2 1—7 4 r f[h], (2.13) 

with f[h] & [h(&) f(z)de 

For later use, we note that a PGFL of the form Gx[h] = a+ [h(z)b(z)dx with a > 0, 

b(x) > 0, and [b(z)dz < x can be written as a weighted Bernoulli PGFL [Williams, 

2015], i.e., 

Gx[h] =a+ / h(z)b(z)dz = 8 GB [, fl, (2.14) 

with 8 = a + [b(z)de, r = [b(z)de/ß, and f(x) x)/ [b(a’)de’. Furthermore, 

the linear combination of a certain number of Bernoulli Ban is a Bernoulli pgfl, i.e., for 

weights ; satisfying 7; > O0 and > ,v; =1, we have 

Z%’GBer In; r®, g9] = GB [hs 7, £, (2.15) 

i 

where 

Dar), f@) =2 30 @), (2.16) 

The Bernoulli RFS is the foundation of the Bernoulli filter [Ristic et al., 2013], which is 

a method for tracking a single object in the presence of sensor noise, missed detections, 

clutter and measurement origin uncertainty. 

2.1.4 Multi-Bernoulli (MB) RFS 

AnMBRFS X is the union of a fixed number J of statistically independent Bernoulli RFSs 

XU, je{1,...,J} parametrized by J probabilities of existence r@) and J spatial PDFs 

fO(x), i.e. by the parameter set {(r®, 9) (z »r, cz with 7 {1,..., J}. Let PX) 

denote the multi-object PDF of Bernoulli component X) (cf. (2. 13). The multi-object 

PDF f(X) evaluated for a realization X = {x(),...,e”} of cardinality n < J (note 

that f(X)=0 for n>.J) can be represented as follows. Consider a mapping a that maps 

an index je 7 to an index a(j) € {0,...,n}. In our context, this means that n of the 

J Bernoulli component PDFs f)(X) are mapped to single-vector element sets {z(*())} 

and the other J —n Bernoulli component PDFs are mapped to empty sets. It is assumed 

that for jı, ja such that aljı),a(je) € {1,...,n}, jı # ja implies a(jı) Za(ja), i.e-, that 

two or more Bernoulli component PDFs are not mapped to ve same set elements. Let 

P.jn denote the set of all such mappings «a (there are |P, „| = FM u) of them). Then, the 

multi-object PDF evaluated for X=!x),..., x} is given by [Mahler, 2007b] 

J 

rn = PB) = Y0 T £9) (o), @17 
a€Psn j=1
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where n = |X| and X)) is given by 0 for a(j) = 0 and by [x{@)} for a(j) € 

{1,...,n}. The multi-object PDF can also be represented according to (2.2) in terms of 

a cardinality distribution p(n) and permutation-invariant vector PDFs f, (", ... (), 

More precisely, by inserting (2.17) into (2.3), we get 

Z H —7‘(]) H U) (2.18) 
Mn j:a(j)=0 J:alz’)>0 

and 

Mad,...,29) = > IJ ae). 

a€Pyn jia(f)>0 

In the following, we illustrate the evaluation of (2.17) for J= 3 Bernoulli components 

and a realization X of cardinality n = |X| =2, i.e., X = {x(), 22}. There are |P;,,| = 

|P3 2| = 6 different mappings « : {1,2,3} — {0, 1,2}. Representing each mapping in the 

form «(1,2,3) = (41,42, ¢3) with £; € {0,1,2}, the set of these mappings « is obtained as 

P32=1{(1,2,0), (1,0,2),(0,1,2), (2,1,0),(0,2,1),(2,0,1)}. Hence, (2.17) combined with 

(2.12) gives 

IX) = Ha), 
— ) fW )@ I EI) Ar) + VIII FI ad) AL ) 

+ rd Ed) Ar NIII EI) + VD a9) Ar r9 £ O (D) 

+ 1-7 III IE) + (1-7), g@ IE), 

(2.19) 

One can easily verify that this expression is invariant to a permutation of 2), x). The 

cardinality distribution evaluated for n=2 can be calculated by inserting (2.19) into (2.3) 

or by using (2.18), which yields in both cases 

Since an MB RFS is the union of J statistically independent Bernoulli RFSs, the MB 

PGEL is the product of the J corresponding Bernoulli PGFLs (cf. (2.7) and (2.13)) 

J 

Gx[h] = GXB[n] = [ GB[hs; 9, 9], (2.20) 
j=1 

where fU)[n] £ [h(z)fU)(x 

A comparison of the expression of the MB PGFL (2.20) with the expression of the 

MB multi-object PDF (2.17) (and also with example (2.19)) shows that the statistics of 

the MB RFS can be represented much simpler in PGFL form. Consequently, many MB- 

based multi-object tracking filters are derived by means of PGFLs instead of multi-object
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PDFs. The MB RFS is the foundation for the multi-target MB (MeMBer) filter [Mahler, 

2007b, Sec. 17] and of its improved version, the cardinality balanced MeMBer (CB- 

MeMBer) filter [Vo et al., 2009]. In addition, the MB RFS is also an essential component 

of the TOMB/P filter, along with the Poisson RFS (cf. Section 2.1.2). Since the MeMBer 

filter and the CB-MeMBer filter are of minor importance in this work, they will not be 

considered further. The TOMB/P filter will be reviewed in Section 3.4. 

2.2 Labeled RFS 

In an unlabeled RFS, as considered previously, the set elements are indistinguishable. 

Hence, the use of an unlabeled RFS in multi-object tracking application does not allow 

object identification without any further post-processing. This shortcoming is addressed 

by the introduction of a labeled RFS, where the label can be used to identify different 

objects. In the following, we discuss some basics of labeled RFSs and introduce important 

types of labeled RFS that are relevant to multi-object tracking and, in particular, to this 

thesis. 

In alabeled RFS X, each element is a tuple of the form (x,|) € R"*xL. Here, the label 

space L is a countable set; we define L, as the set of all possible sequences of n labels 

from L, i.e., L, 2 {1,12 ,...,19): 9 EL}. Furthermore, we will use the mapping 

£L:R"=-x L—L that returns the label of a given element, i.e., L(x,!) = I. By extension, 

L(X) denotes the set of all labels of X. Analogously to the unlabeled RFS case, a set 

integral of a real-valued function g(X‘) is defined as [Vo and Vo, 2013, Mahler, 2014] 

% % - 1 n n n /g(X)axé;:%a/Rm sl), (KON)... 

AW, I@))ELn 
(2.21) 

The set integral for labeled RFSs extends the set integral for unlabeled RFSs (cf. (2.1)) 

by the sum over all possible label sequences IL,, for each cardinality n. 

2.2.1 Statistics of Labeled RFS 

The statistics of a labeled RFS X can be described by its multi-object PDF f(X) [Vo 

and Vo, 2013, Vo et al., 2014, Mahler, 2014|. The multi-object PDF integrates to one, 

ie., [ f(X)6X = 1 using the set integral for labeled RFSs in (2.21). The unlabeled 

RFS X corresponding to X can be obtained by simply discarding the labels from X. The 

corresponding multi-object PDF can be calculated by marginalizing out the labels, i.e., 

for X — X, the multi-object PDF of X evaluated for the realization X = {x ,..., 2} 

is given by 

feW, 2y = Y (@), @)}, (2.22) 
(M, 1)Ly,
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Here, the sum is over all all possible label sequences L,. Note that operation (2.22) is 

also part of the set integral defined in (2.21). 

The PGFL of a labeled RFS X is defined sinilarly to the PGFL of an unlabeled 

RFS (cf. (2.5)) as the expectation of hX, where hX & = Il = h(x, 1) = IIıcı, R(x,!) with 

h: R”® x L—[0, 0). More precisely, we get [Mahler, 2014, p. 449] 

Gylh] 

éE{Bi}:/fifff(X)é ten) x, )) X)6X = / Iren x, )) 

(2.23) 

Similarly to the PGFL of an unlabeled RFS (cf. Section 2.1.1), it can be easily verified 

that Gy [1] = 1 by setting h(®,l) = 1 in (2.23). As was shown in [Mahler, 2014], the 

unlabeled PGFL Gx|h] (with argument h(z)) corresponding to the unlabeled RFS X 

obtained from X by discarding the labels, can be obtained from the labeled PGFL Gz[h] 

(with argument h(z,1)) by setting h(z,1) = h(x), i.e 

Gx[h] = Gzlh] ie.)=ne)‘ 

The PGFL of a labeled RFS and an unlabeled RFS (cf. Section 2.1.1) will be used to 

derive the RFS-based multi-object tracking algorithm proposed in Chapter 5. 

Families of labeled RFSs relevant to multi-object tracking include the labeled MB 

(LMB) RFS, the LMB mixture (LMBM) RFS, and the GLMB RFS, which will be re- 

viewed in the following. 

2.2.2 Labeled Multi-Bernoulli (LMB) RFS 

An LMBRFS X isan MBRFS (cf. Section 2.1.4) where for any realization X each single- 

vector set {2} corresponding to Bernoulli component XV) is augmented by a distinct label 

le L*. Adopting the labeling procedure of [Mahler, 2014|, the same label I! is assigned 

to each state realization x of a given Bernoulli RFS X (), Here, L*< L denotes the finite 

set of assigned labels. To simplify the notation, we index the Bernoulli RFSs directly by 

their labels 1, i.e., they are denoted X, [ € L* with corresponding existence probabilities 

r() and spatial distributions f((z) [Reuter et al., 2014]. The LMB RFS X is completely 

specified by the parameter set Ar O, f (l) )}ZGIL* 

The multi-object PDF ofthe LMB RFS X evaluated for a realization X = { (2), 1), 

., (29, 1@)} with cardinality n <J and label set L(X) = {IW...,109} is given by 

[Reuter et al., 2014] 

f(X) = fMBR) 2 AX) w(L(X)) [] 10O ). (2.24) 
(x,)eX
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Here, A(X) is referred to as “distinct label indicator” [Vo and Vo, 2013, Vo et al., 2014]; 

A(X) =1 if the labels of X are distinct and A(X) = 0 otherwise. Furthermore, the 

indicator function 1y+({) =1 if [ € L* and 1p-(I) = 0 otherwise. These two conditions 

guarantee that only realizations X = ! (eV, 1W),..., (x, 1))} that have distinct labels 

and are from the set L* have a nonzero probability mass, i.e., f{X) > 0. In amulti-object 

tracking context, this ensures that two different objects cannot be modeled by the same 

label (same identity). Finally, the weights are given by 

w(L) & (TIr-0r®) IT @), (2.25) 
le L VEL*\L 

for any LCL. 

The PGFL of the LMB RFS can be found by inserting (2.24) into (2.23), which 

yields [Mahler, 2014] 

Gz[h] = ren] & T &P [hsr®, fO) = 1—7O Hr FO], (2.26) 
lell* 

with fO[h] = [h(x,1) U (x)dz. Note that the LMB PGFL extends the MB PGFL (cf. 

(2.20)) in the sense that every Bernoulli PGFL is associated with one specific label. 

Furthermore, its PHD is given by [Mahler, 2014] 

Aal) =r! Ole). (2.27) 

As an example, we consider J= 3 Bernoulli components (and, hence, label set L* = 

1, 12, ı®}) and a realization X of cardinality n = |X| = 2, i.e,, X = {(eW, 1m), 

(29, 19)}. We obtain from (2.24) and (2.25) 

FR) rt IDEEN ad) ar). (2.28) 

Note the difference to (2.19): The introduction of labels reduces the six terms in (2.19) to 

just one term in (2.28). This is a consequence of the fact that the objects are now consis- 

tently identified by a distinct label, while objects are indistinguishable in the unlabeled 

case. 

2.2.3 Labeled Multi-Bernoulli Mixture (LMBM) RFS 

The LMBM RFS generalizes the LMB RFS in the sense that the multi-object PDF 

evaluated for a realization X = {(zV,1W),..., («9,1 ®)}, with cardinality n < |L*| 

and labels £(X), is a mixture of a finite number of LMB PDFs with identical label sets 

L*={1),..., 1 e, 

KO = Du RR), (2.29) 
beB
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Here, B C N, the wy, are positive normalized weights, i.e., >, swp = 1, fFMB(X) are LMB 

PDFs (cf. (2.24)) parametrized by sets of existence probabilities rlg) and spatial PDFs 

f Vz ). For cardinality n > |L*|, f(X)=0. Note that the LMBM RFS X is completely 

specified by |B| weights wy,, |B||L*]| existence probabilities ri and |B||L*| spatial PDFs 

X” (&). Its PGFL can be found by inserting (2.29) in (2.23), which yields [Mahler, 2014] 

= > wo ]] "Rn, 6), 
beB leL* 

with [rn] = [hi&,1) f!”(@)de. Furthermore, its PHD is given by [Mahler, 2014] 

-Ywn @) 
beB 

2.2.4 Generalized Labeled Multi-Bernoulli (GLMB) RFS 

The GLMB RFS is another extension of the LMB RFS. Its multi-object PDF evaluated 

for a realization X = (eV, 1ı®),..., (29, ı))}, with cardinality n < |L*| and labels 

L(X), is a mixture of a finite number of products of n spatial PDFs, i.e., 

KLER)) I] He). (2.30) 
beB ". EX 

with BCN and some weights w,(L(X). For cardinality n > |L*|, f(X)=0. Note that 

each spatial PDF I (&) in (2.30) is associated with a labeled state variable (z,!)E X. 

In contrast to the LMBM RFS, the weights w, depend on the labels of X, i.e.,on £(X), 

and also on the remaining labels in the label set L*, i.e., on L* \ L(X). The weights 

are normalized in that I „es rer) @s(L) = 1, where F(L*) is the power set of 

L*, i.e., the set of all subsets of L*. The GLMB RFS X is completely specified by 

|B||F(L*)| weights wy(L), and |B||L*| spatial PDFs f\”(z). The GLMB pdf can be 
rewritten according to [Vo and Vo, 2013, Vo et al., 2014] 

KL» wi » IT Pe: (2.31) 
beB LeF(L*) (:1: EX 

Here, öL(£L(X)) is one if L = L(X) and zero otherwise. This form is often referred to 

as 6-GLMB form. By inserting (2.30) or (2.31) into (2.23), the PGFL can be found 

as [Mahler, 2014] 

-% VD rel, 
beBLeEF(L*) leL 

with [Rh] = [h(a,1) f” (x)de. Furthermore, its PHD is given as [Mahler, 2014]



2.2. LABELED RFS 19 

=3 Y LOw(@) (). (2.32) 
beBLEF(L*) 

Finally, we review a close connection between the LMBM RFS and the GLMB RFS 

|Garcia-Fernändez et al., 2018]. In particular, any LMBM RFS can be formulated as a 

GLMB RFS. Indeed, let X be an LMBM RFS with existence probabilities ri, spatial 

PDFs |” (z), and weights w, with DEBCN and 1EL*. While the spatial PDFs f\) (=) 
remain unchanged in GLMB form, the weights w(L) of the GLMB RFS can be found 

() from w, and r, according to 

w(L) = "( II (1- ri) ) II: 

VEL*\L leL 

with b € B and Le F(lL*). Note that the statistical description in LMBM form requires 

IB|+2]B||L*| parameters (consisting of |B| weights w», |B| |L*| existence probabilities rl ) 

and |B| |L*| spatial PDFs), whereas the description in GLMB form requires |B||F(L*)| + 

IB|IL*| parameters (consisting of |B||F(L*)| weights w,(L) and |B||L*| spatial PDFs). 

Because the number of parameters in GLMB form scales exponentially in |L*| (since 

IF (L*)| = 2“), but only linearly in |IL*| in LMBM form, the description in LMBM form 

is more efficient for large |L*|.
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Chapter 3 

Bayesıan RFS-based Multi-object 

Tracking 

The aim of Bayesian RFS-based multi-object tracking is to infer the time-dependent 

number and states of multiple objects from measurements provided by one or several 

sensors. The Bayes-optimal method for RFS-based multi-object tracking is known as the 

multi-object Bayes filter. This method consists of a prediction step and an update step; 

it calculates the posterior PDF recursively in time, taking into account newly acquired 

sensor measurements at each time step. However, a direct implementation of the general 

multi-object Bayes filter is usually infeasible, since it requires, e.g., the computation of 

complicated set integrals. A common approach then is to first assume a particular RFS 

type for the multi-object state (equivalently, for the posterior PDF), such as the Poisson 

RFS (PDF) or the LMBRFS (PDF), and then perform prediction and update steps for 

this RFS type [Mahler, 2007b, Mahler, 2014|. 

For some RFS types, the multi-object state RFS obtained after applying prediction 

and update steps is of the same type. The multi-object PDFs corresponding to these 

RFS types are referred to as conjugate priors, and the resulting tracking algorithms are 

instances of the multi-object Bayes filter and are therefore referred to as Bayes-optimal. 

The RFS types that are preserved by the prediction and update steps of the multi- 

object Bayes filter include the MB mixture (MBM) RFS, the union of a Poisson RFS 

and an MBM RFS, and the GLMB RFS. The corresponding filters are referred to as 

the MBM filter [Xia et al., 2019, Garcia-Fernändez et al., 2018], the Poisson-MB mixture 

(PMBM) filter [Williams, 2015, Garcfa-Fernändez et al., 2018], and the GLMB filter [Vo 

and Vo, 2013, Vo et al., 2014, Mahler, 2014], respectively. However, all these filters are 

computationally demanding. 

On the other hand, for many types of RFS, the multi-object state RFS obtained 

after applying the prediction and update steps is of a different (and, in most cases, more 

complicated) type. Here, a common strategy is to approximate the posterior PDF by a 

PDF of a simpler type. This strategy can also be applied to conjugate prior posterior 

21
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PDFS, i.e., to posterior PDFs that are of the same type after the prediction and update 

steps, in order to reduce the computational complexity. Filters based on this approach 

include the PHD filter [Mahler, 2003, Mahler, 2007b, Challa et al., 2011], the TOMB/P 

filter [Williams, 2015, Williams, 2011, Kropfreiter et al., 2016], and the LMB filter [Reuter 

et al., 2014, Reuter et al., 2017]. 

The remainder of this chapter is structured as follows. In Section 3.1, we review the 

multi-object Bayes filter for unlabeled and labeled RFSs. Two common system models 

used in multi-object tracking are presented in Section 3.2. The PHD filter is reviewed in 

Section 3.3, the TOMB/P filter in Section 3.4, and the LMB filter in Section 3.5. 

3.1 The Multi-object Bayes Filter 

In Bayesian RFS-based multi-object tracking, object states and measurements are mod- 

eled by RFSs. More precisely, the multi-object state at time k is either modeled as 

an unlabeled RFS X; = {x'", ... x™)} with x, € R"= or as a labeled RFS X, = 
x, Wy, ..., (x I(NKDYY with (xg, 1) € R"®" x Li. Here, Li C L; is a finite set con- 

taining the labels of Kr; L;, is a countable set and is referred to as label space [Vo and 

Vo, 2013, Vo et al., 2014, Reuter et al., 2014]. Furthermore, the sensor measurements at 

time k are modeled as an unlabeled RFS Z,. = {z1D, un, ze} with z, € R"*. Here, n, 

is the dimension of the single-object state x; and n, of the measurement z;.. The ob- 

ject state x, typically consists of the object’s position, the object’s velocity and possible 

further parameters describing its extent, etc., whereas | is a label modeling the identity 

of the corresponding object. The measurement z, might consist of Cartesian or polar 

coordinates. Note that the cardinalities of X, or X, and Zx, l.e., Nk and M,, are random 

quantities as well. 

The aim of Bayesian RFS-based multi-object tracking is to estimate the number of 

objects and their respective states at all times k = 1,2,.... This task relies on the 

calculation of the posterior PDF f(X;|Z1:r), where Z1:r & (Z1,...,Zx) is the sequence 

of all acquired measurements up to time k, and is usually performed in a time-recursive 

manner. That is, the current posterior PDF f(X,|Zı:x) is computed from the previous 

posterior PDF f(X,_1|Z1:r-ı) using the current measurement set Z;.. 

This recursive calculation is performed in a two-step procedure consisting of a pre- 

diction step and an update step. In the prediction step, the previous posterior PDF 

f(Xg_1|Z1.5_1) is converted into a “predicted posterior PDF” f(X,|Z1.x-ı) according to 

f( Xk Z1:k-1) = /f(szan:—flZl:k:—l)(Ssz—l 

= /f(Xk:|Xk:—1)f(Xk:—1|Zl:k:—1)5Xk:—1a (3.1) 

where in the last step, it is assumed that the multi-object state at time k&, i.e., X, given
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the multi-object state at time k — 1, i.e., X;._1, is independent of all measurements up to 

time k — 1, i.e., Zy.;_1. Here, f(Xy|X;_1) is referred to as (multi-object) state-transition 

PDF and models the temporal evolution of the multi-object state from one time step to 

the next. Note that according to the prediction relation (3.1), the state is assumed to 

evolve according to a Markov process, i.e., X,, conditioned on X,_ı, is independent of 

all X, with k’=0,...,k—2 (in addition to Zı.x_ı)- Expression (3.1) is often referred to 

as Chapman-Kolmogorov equation [Mahler, 2007b, Bar-Shalom et al., 2011, Challa et al., 

2011]. 

In the update step, the predicted posterior PDF f(X,|Z1:x-ı) is converted into the 

current posterior PDF f(X7;|Z1.) according to 

(Zr, KrlZu:r-ı) 

Zu\Z1:r-ı) 

Zul) (KrlZur-ı) 

B &lZ1:-1) 

&rlZı:r) = 

  (3.2) 

where in the last step, it is assumed that the measurements at time k, i.e., Zx, given the 

multi-object state at time k, i.e., X, are independent of all measurements up to time 

k—1, i.e., Zı:£-ı- Here, f(Z.|X,) is referred to as (multi-object) likelihood function and 

models the statistical dependency of the measurements Z; on the mulit-object state X,.. 

Note that according to the update relation (3.2), the measurements Z;, conditioned on 

X, are assumed as independent of all object states X,, with X’ =0,...,k-1 (in addition 

to Zı:£-ı)- Note that expression (3.2) involves the current measurement set Z;.. 

The prediction step (cf. (3.1)) in combination with the update step (cf. (3.2)) is often 

designated as multi-object Bayes filter [Mahler, 2007b]. In the presentation above, the 

multi-object state X, is considered as an unlabeled RFS. However, the same formalism 

holds for labeled RFSs simply by replacing X, by the labeled state RFS X,. Next, we 

present two common system models used in RFS-based multi-object tracking. 

3.2 REFS-based System Models 

3.2.1 System Model for Unlabeled RFS-based Multi-object Tracking 

In the following, we present a common system model used in unlabeled multi-object 

tracking consisting of a state-transition model and a measurement model. Filters based 

on this model include the PHD filter [Mahler, 2003, Vo et al., 2005, Vo and Ma, 2006], the 

CPHD filter [Mahler, 2007a] and the TOMB/P filter [Williams, 2015]. The PHD filter 

and the TOMB/P filter will be reviewed in Section 3.3 and Section 3.4, respectively. 

Recap, that here the multi-object state and the measurements at time k are modeled by 

the unlabeled RFSs X, = x), . ,x,gNk)} and Z, = {z, e ze respectively. 

The transition of the multi-object state from time k - 1 to k, i.e., Xk_1 — X, is
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modeled as follows: An object with state x;._ı € Xr_ı at time k—1 survives with proba- 

bility ps(2;_ı) or dies with probability 1— ps(&;_1)- Ifthe object survives, its new state 

at time k is distributed according to the single-state transition PDF f(x;.|®;-ı). Thus, 

an object at time k that already existed at time k — 1 is modeled by a Bernoulli RFS 

Sk(2k-ı) with existence probability ps(&;_-ı) and spatial PDF f(z.|2x-ı) (cf. (2.12)). 

It is assumed that the states of different objects evolve independently, i.e., X; is con- 

ditionally independent, given &;-ı, of all the other x,. Hence, all objects at time k 

that already existed at time k — 1 are modeled by an MB RFS U, ‚ex,_,>k(&k-ı) 

with parameter set { (ps(&.-ı), F(zr.|ex-ı)) eek In addition, it is possible that 

new objects appear at time k. These objects are referred as newborn objects and are 

modeled by a Poisson RFS XP with mean parameter zip, spatial PDF fs(z;), and, 

thus, PHD Ag(&x) = up fs(z) [Mahler, 2007b, Williams, 2015]. Here, X} is assumed 

to be conditionally independent, given the previous multi-object state RFS X,.-ı, of 

Ur, € X Dkl&r-1)- Summarizing, the overall multi-object state at time k, given the 

previous multi-object state X7,._ı, is given by 

X. = ( U S.(a-ı)) U xB. 

Tp-1€Xk—1 

This model defines the state-transition PDF f(X,|X;-ı) used in the derivation of the 

prediction step of the PHD and TOMB/P filter. The prediction step of the PHD and 

TOMB/P filter will be reviewed in Section 3.3.1 and Section 3.4.1, respectively. 

The statistical dependency of the multi-object state on the measurement at time k, 

i.e., Zr — Xg, is modeled as follows: An object with state x, € X, is detected by the 

sensor with probability pp(x;) or is missed with probability 1 — ppn(z;). If it is de- 

tected, it generates a measurement z; according to the single-object likelihood function 

f(zk|xr), and if it is not detected, it generates no measurement. Accordingly, the mea- 

surement originated from an object with state x, is modeled as a Bernoulli RFS 9,(x:) 

with existence probability pp(x;) and spatial PDF f(z;|&;). It is assumed that each of 

these object-originated measurements z, is conditionally independent, given the respec- 

tive object state x., of all the other measurements z/, and all the other object states 

x). Thus, these measurements form the MB RFS | 

(pn(&e), F(zr|®r)) Ye, ¢ x,- In addition, measurements may also be originated by clut- 

2,cx,Ok(&r) with parameter set 

ter. Following [Mahler, 2007b, Williams, 2015], these clutter-originated measurements 

are modeled by the Poisson RFS ZE with mean parameter j1c, spatial PDF fco(zx), 

and, thus, corresponding PHD Ac(2,) = ucfc(zr)- Clutter-originated measurements 

are assumed conditionally independent, given X, of the object-originated measurements 

Ur,cx,Orl®r). The overall measurement RFS at time k, given the multi-object state 

Z, = ( U @k(a:k)) UZE. 
xrre X 

Xx, is given by
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This model defines the likelihood function f(Z,|X7) used in the derivation of the update 

step of the PHD and TOMBJ/P filter. The update step of the PHD and TOMB/P filter 

will be reviewed in Section 3.3.2 and Section 3.4.2, respectively. 

3.2.2 System Model for Labeled RFS-based Multi-object Tracking 

We now review a system model that is common in labeled RFS-based multi-object track- 

ing. Similarly to the model for unlabeled multi-object tracking presented in the previous 

section, it consists of a state-transition model and a measurement model. Filters that are 

based on this model include the LMB filter [Reuter et al., 2014] and the GLMB filter [Vo 

and Vo, 2013, Vo et al., 2014]. The LMB filter will be reviewed in Section 3.5. Recap 

that in labeled RFS-based multi-object tracking, the multi-object state is modeled by the 

labeled RFS X, = x, ID),..., (x, I(N))} and the measurements by the unlabeled 

RFS Z, = {z1), . zu}, 

The transition of the multi-object state from time k — 1 to time k, i.e., Xr_ı to X, 

is modeled as follows [Reuter et al., 2014, Mahler, 2014]: An object with state (xx-ı,|) € 

X,_ı survives with probability ps(2£-1,!) or dies with probability 1 - ps(zx-1,1). I 

it survives, its new state x; (without the label) is distributed according to the single- 

state transition PDF f(xz;|@;_1,!) and the label ! is preserved. Thus, an object at 

time k that already existed at time k — 1 is modeled by a Bernoulli RFS S.(2r_1;1) 

with existence probability ps(2;_1,!) and spatial PDF f(z,.\|®;_1,!). Note that the 

labels ! do not change over time that is why they are denoted rather as ! than !,. The 

states of different objects evolve independent!y, i.e., (X;,!) is conditionally independent, 

given (2;_1,1), of all other (x;,!’) with "#1. Accordingly, all objects at time k that 

already existed at time k — 1 are modeled by an LMB RFS Vier; ‚Srl&r-1,l) with 

parameters pster-1,D, Farlar-ı, D) trcuz , There may also be newborn objects. 

They are modeled by an LMB RFS xB, which is fully described by the parameter set 

Urs; IN (4) } B> Where rg’)k and f]gl)(a:k) are the existence probabilities and the 

spatial PDFs, respectively, of the newborn objects with labels JELE* C LP. Here, LP 

denotes the label space of newborn objects and is given by LE = {k} x N. The overall 

label space L;,. also evolves recursively according to L; = L;_ı U LE, where L;,_ı is the 

label space at time k—1. Here, L._ı and LE are disjoint, i.e., L£_ı NnLP — (), which entails 

that L}_, N LP* = 0. We furthermore assume that the newborn objects XB, given the 

previous multi-object state X%_ı, is independent of U, er; ‚Drlzk-ı, [). Summarizing, 

the overall multi-object state at time k, given the previous multi-object state X._1, is 

given by 

%=( U Sa.) URB (3.3) 
€L _, 

This model specifies the state-transition PDF f(X,|X,_ı) used in the derivation of the
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prediction step of the LMB filter. The prediction step of the LMB filter will be reviewed 

in Section 3.5.1. 

Next, we will present the statistical dependency of the multi-object state on the mea- 

surements at time k, i.e., Zy — Xgz. An object with state (x,,|) at time k is detected 

by the sensor with probability pp(x;,!), or missed with probability 1- pp(&x,1). If it is 

detected, it generates a measurement z; according to the single-state likelihood function 

fzr|&r,!) and if it is missed, it generates no measurement. Accordingly, the measure- 

ment originated by an object with state (2,1) is modeled by a Bernoulli RFS Ö,(&;, !) 

with existence probability pp(2x,!) and spatial PDF f(z;|xx,!). It is assumed that each 

object-originated measurement z, is conditionally independent, given the respective ob- 

ject state (x;,1), of all the other measurements z/, and all the other object states (x/,, 7). 

Hence, the object-originated measurements are modeled by an MB RFS! Urer; 9,(&, 1) 

with parameter set { (pn(&x, 1), f(z.]&x,)) There may also be clutter-originated herz 
measurements; they are modeled by the Poisson RFS zo parametrized by the mean pa- 

rameter co, the spatial PDF fc(z;) and, thus, the PHD Ac(2;) = ucfc(zr). This clutter 

model conforms the clutter model used in the unlabeled RFS-based system model of Sec- 

tion 3.2.1. It is assumed that ZF is conditionally independent of Urer; O, (ar, I), given 

the multi-object state X,. The overall measurement RFS, given the multi-object state 

X}, is given by 

Zi = U C:)k(a:k,l)> uze. (3.4) 
leL; 

The measurement model specifies the likelihood function f(Z;|X}) used in the derivation 

of the update step of the LMB filter. The update step of the LMB filter will be reviewed 

in Section 3.5.2. 

In the next three subsections, we review the PHD filter, the TOMB/P filter, and the 

LMB filter. 

3.3 The PHD Filter 

The PHD filter is a low complexity approximation of the multi-object Bayes filter (cf. 

Section 3.1) and models the multi-object state X, by a Poisson RFS. Thus, the posterior 

PDF at time k—1 is given by (cf. (2.10)) 

F&KrlZur) = e Ir der-ı IJ A2k-1); (3.5) 

  

"Note that Uler; Ö,(x2r,1) is an unlabeled RFS describing the statistics of the object-originated 

measurements and the label ! € L/ is purely used to index the Bernoulli RFSs Ö,. (xx, 1).
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where A(2;_1) is the posterior PHD at time k—1. A detailed derivation of the PHD filter 

can be found in, e.g., [Mahler, 2003, Mahler, 2007b, Challa et al., 2011]. In the following, 

we will review the prediction and update step of the PHD filter. 

3.3.1 Prediction Step of the PHD Filter 

The predicted posterior PDF f(X7|Z1:-ı) can be obtained by inserting the previous 

posterior PDF f(X,_1lZ1:r-ı) in (3.5) into the prediction relation (3.1). It turns out 

that the predicted posterior PDF is no longer of Poisson type, but can be approximated 

by the Poisson PDF f (X%|Z1:«-ı) |Mahler, 2003, Garcia-Fernändez and Vo, 2015]. Here, 

f (X%|Z1:£-1) is chosen such that its corresponding PHD is equal to the PHD corre- 

sponding to the exact predicted posterior PDF f(X%x|Z1:rk-ı).- As was shown in [Mahler, 

2003, Mahler, 2007b], this (approximated) predicted posterior PHD is given by 

Arie ı(@r) = Apr) + [Karla psta) Mar-ı)dar-ı. (3.6) 

Here, Ag(xy), f(xk|xr_1), and pg(xr_1) are the birth PHD, the single-object state tran- 

sition PDF, and the survival probability, respectively, introduced in Section 3.2.1, and 

A(@k—1) is the posterior PHD at time k& — 1. The derivation of the prediction step of the 

PHD filter relies on the state transition PDF f(X,|X7;-ı) defined by the state transition 

model of Section 3.2.1. A specific expression of f(X,|X,_-ı) can be found in, e.g., [Mahler, 

2007b]. Note that the prediction relation in (3.6) takes into account the birth/death of 

objects and the transition of survived objects from one time step to the next. The clas- 

sical PHD prediction step presented here can be extended to object spawning [Mahler, 

2003, Mahler, 2007b], where each object at time k — 1 is a possible source of multiple 

objects at time k. However, object spawning is not considered in this work. 

3.3.2 Update Step of the PHD Filter 

The current posterior PDF f(X7|Zı.,) can be determined by applying the update relation 

in (3.2) and replacing the exact predicted posterior PDF f(X7|Z1:k-ı) by its approxima- 

tion XrlZur-ı) of Section 3.3.1. Similarly to the predicted posterior PDF, the new 

posterior PDF f(X,|Z1.r) is no longer of Poisson type and it is hence approximated by 

the Poisson PDF Zur). Again, Xr]Zu:r) is chosen such that its corresponding 

PHD is equal to the PHD corresponding to the exact posterior PDF f(X,|Zı:r)-: As 

shown in [Mahler, 2003, Mahler, 2007b], the (approximated) posterior PHD at time k is 

given by 

Fzrler) pn (&r) Arıc-ı (er) 

Ac(zu) + S Fzrlar) pn (er) Arın-ı (ar )der 
(3.7) 

  Az) = (1- po(&r))Arın-ı(®r) + > 
z,@ Zr
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Here, pn (xx), f(zr|&,), and Ac(z;) are the detection probability, single-object likelihood 

function, and the clutter PHD, respectively, introduced in Section 3.2.1, and Ay ın-ı (x) is 

the predicted PHD in (3.6). The derivation of the update step of the PHD filter involves 

the likelihood function f(Z;|X,.) defined by the measurement model of Section 3.2.1. A 

specific expression of f(Z,|X7,) can be found in, e.g., [Mahler, 2007b]. Note that the 

update relation in (3.7) takes into account the detection/misdetection of objects, the 

noise corruption of detected objects, and clutter measurements. 

The PHD filter is now obtained by recursively computing the prediction and update 

relations (3.6) and (3.7), where the update step incorporates the currently acquired sen- 

sor measurements Z,. The filter equations (3.6) and (3.7) contain integrals; closed form 

solutions can only be obtained for linear/Gaussian state-transition PDFs f(z;|2«-ı); 

Gaussian birth models, linear/Gaussian likelihood functions f(z.|x,), and for a Gaus- 

sian mixture prior, i.e., the posterior PHD A(z;.) at time k = 0 is modeled by a Gaussian 

mixture PDF. These assumptions result in a Gaussian mixture implementation of the 

PHD filter [Vo and Ma, 2006]. For non-linear/non-Gaussian models a particle implemen- 

tation was proposed in [Vo et al., 2005]. 

The PHD filter provides a low complexity approximate solution to the multi-object 

tracking problem by recursively propagating the posterior PHD of a Poisson RFS over 

time. Recap from Section 2.1.1 that the PHD can generally be considered as first order 

moment of an RFS. Thus, the Poisson assumption in the PHD filter can equivalently 

be interpreted as first order moment approximation of an RFS of general type. While 

this first order moment approximation of f(X%|Z1:£) might be reasonable for some track- 

ing scenarios, in more challenging scenarios, f(X7|Zı:,) may also comprise higher order 

moments that are non-zero. Here, the first order moment approximation might ignore 

valuable object state information. Hence, the PHD filter performs rather poorly in chal- 

lenging scenarios with, e.g., a low detection probability and/or high clutter and/or a high 

number of objects [Mahler, 2003, Mahler, 2007b]. 

On the order hand, the PHD filter has very low computational requirements. In 

fact, the computational complexity scales according to O(N,.M-7.), i.e., linearly in the 

number of objects and linearly in the number of measurements. Since the PHD filter 

only propagates the first order moment of the posterior PDF f(X,|Z1.,), one might 

consider to improve the tracking performance by additionally propagating higher order 

moments of the posterior PDF. Although, it is theoretically possible to derive a filter 

that also considers, e.g., the second order moment, it was noted in [Mahler, 2007b] that 

a practical implementation of such a filter seems to be infeasible. However, performance 

can be improved by modeling the cardinality distribution by a general cardinality PMF 

p(n) rather than a Poisson PMF as in the PHD filter. This approach is pursued in 

the CPHD filter [Mahler, 2007a], which propagates the posterior cardinality distribution 

in addition to the posterior PHD. The CPHD filter was found to perform significantly 

better than the PHD filter, but at the expense of a higher computational complexity,
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which scales according to O(N,M?7)), i.e., linearly in the number of objects and cubically 

in the number of measurements. Recap that the PHD filter scales linearly in the number 

of objects and only linearly in the number of measurements. The CPHD filter will not 

be discussed further in this work. 

3.4 The TOMB/P Filter 

In this section, we review the TOMB/P filter introduced in [Williams, 2015, Williams, 

2011]. A detailed derivation can be found in [Williams, 2015]. The TOMB/P filter is 

another approximation of the multi-object Bayes filter described in Section 3.1. It models 

the multi-object state RFS X, by the union of a statistically independent MB RFS XP 

and a Poisson x, 1.e., X, = xD U xD, Thus, the posterior PDF f(X7,_1|Z1:x-ı) at time 

k—1 is given using the FISST convolution (2.4) as 

&K-ılzıaı)= I FTP R-\Y Zr); (3.8) 
YoXxR-ı 

where fY(X;_1) is the posterior PDF describing X}_, (note that X_, is independent of 

Zı:k_ı) and fP(X%_ı1]Z1:k-ı) is the posterior PDF describing xD. The Poisson PDF 

F'(X%-ı) is represented by the posterior PHD Au(z;_ı) (cf. Section 2.1.2) and the 

MB PDF fP(X,_1lZ1:k-ı) by Jk-ı Bernoulli components with existence probabilities 

Du and spatial PDFs I (z,_1), JE Ir-ı 2 {1,...,Jr-ı)} (cf. Section 2.1.4). Note 

that in the TOMB/P filter, the Poisson RFS models “undetected objects” and the MB 

RFS “detected objects”. Undetected objects are objects that exist but have not yet 

been detected, while detected objects have already been detected and thus have already 

generated at least one measurement. The modeling of undetected objects can facilitate 

the generation of new Bernoulli components [Williams, 2015]. 

In the following, we will review the prediction and update step of the TOMB/P 

filter [Williams, 2015]. The derivation is based on the same system model for unlabeled 

RFS as the derivation of the PHD filter, i.e., the system model presented in Section 3.2.1. 

3.4.1 Prediction Step of the TOMB/P Filter 

The predicted posterior PDF f(X7|Z1:-ı) can be obtained by inserting the previous 

posterior PDF f(Xx-ılZı:«-ı) (cf. (3.8)) into the prediction relation (3.1). It turns 

out that the predicted posterior PDF f(X,|Z1::-ı) preserves the convolutional form of 

(3.8), i.e., it can be decomposed again into a PDF Fr ı KrlZu:r-ı) describing detected 

objects and a PDF fa . 1(X}) describing undetected objects [|Williams, 2015]. Moreover, 

Fr KrlZı:r-ı) is again an MB PDF and Far KR) is again a Poisson PDF. 

More precisely, the predicted posterior PHD of undetected objects AL, „_ı(%x) char-
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acterizing fa „1 (Xx) is calculated according to 

Arie ı (ER) = Ag(tk) + | Harlm-drstr)Aulm-der-ı. (3.9) 

Here, Ag(z;), f(@x|&x_ı) and ps(&;_ı) are the birth PHD, the single-object state tran- 

sition PDF, and the survival probability introduced in Section 3.2.1, respectively, and 

Au (2x1) is the posterior PHD of undetected objects at time k—1. Furthermore, the pa- 

rameters kn and Sen), j € J«-ı characterizing Far ı KrlZı:r-ı) are calculated 

according to 

DM _,.) 5) d 3.10 Telk-1 21 ps(er-ı) F (2k-1) Tk-15 ( . ) 

[fax.ler-ı)ps(er-ı) PP (2r-ı)der-ı 

Sps(y_y) fO(z),_)de),_, 
  fun (@R) - (3.11) 

where Du and FÜ)(z;_ı) are the existence probabilities and spatial pfds at time k -1, 

respectively. Here, the number of Bernoulli components J;_ı is not changed by the pre- 

diction step. Thus, no new Bernoulli components are generated in the prediction step. 

Object birth is modeled by the birth PHD Ag(zx;.) entering the Poisson part via expres- 

sion (3.9). The derivation of the prediction step here is based on the state transition PDF 

f(Xg|Xx—1) defined by the state transition model of Section 3.2.1. Note that the predic- 

tion relation of the undetected object component (3.9) is equal to the prediction relation 

of the PHD filter (3.6) and the prediction relations of the detected object component 

(3.10) and (3.11) are equal to those in the conventional MB filter (MeMBer filter) [Vo 

et al., 2009]. 

3.4.2 Update Step of the TOMB/P Filter 

The current posterior PDF f(X7|Zı:;;) can be determined by inserting the predicted 

posterior pdf f(X7|Z1:k-ı) into the update relation (3.2). Although xU and xD are still 

independent, conditioned on Zj.g, i.e., the convolutional form of (3.8) is preserved, the 

posterior PDF is not of Poisson/MB form anymore [Williams, 2015]. In fact, the posterior 

PDF fV(X,) is again a Poisson PDF, whose PHD Au(z;) is calculated according to 

Au(@r) = (1 poler)) Ay ı(®R): (3.12) 

Here, pp(&.) is the detection probability introduced in Section 3.2.1 and A, (er) is 

the predicted posterior PHD of undetected objects (cf. (3.9)). Note that the update step 

of the undetected object component in (3.12) does not include any measurements, i.e., 

Au(x;) represents previously undetected objects that remain undetected after applying 

the update step at time k. 

However, the posterior PDF fP(X,.|Z1:r) is no longer of MB form but of MBM form.
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An expression of fP(X,.|Z1:,) can be obtained by first introducing the (random) object- 

measurement association vector a. = [a == al/w]T with J£k = Jk-ı + Mr [Williams, 

2015]. Here, a0) € {0,..., My} for j € Jp—1 and a,gj) €{0,1} for j e {Jp—1 + 1,..., Ji}. 

We call an association a, admissible if at most one measurement is associated to the 

same object and no measurement is associated to more than one object. All admissible 

associations are collected in the association alphabet A,. Using a;,., the posterior PDF of 

detected objects can be written as 

Plz) > Pla) fa (Xr) 
areAr 

‚a‘ ai =Y plan) Y HfU J(xODy, (3.13) 
ap €A a€Pr ny, =1 

where p(a,) is the probability of association a,, nk = Kl) and f2P(X,) is an MB 

PDF (cf. (2.17)) consisting of the Bernoulli PDFs par’ IX), uhere in turn, the 

Gar) and the spatial Bernoulli PDFs are parametrized by the existence probabilities r; 

PDFs f (j’“g))(a:k). We refer to the Bernoulli components with index j € J,_ı as legacy 

Bernoulli components and to those with index j € {Jk-ı + 1,...,J£} as new Bernoulli 

components. Note that fP(X;|Z1.x) is an MBM PDF with one mixture component for 

each admissible object-measurement association vector a, € A, and the weight of the 

mixture component is given by the corresponding association probability p(a;.). The 

association PMF p(a;.) is given up to a normalization constant by 

p(a;) X il ge k ), ar € Ar. (3.14) 

Here, the 3, Gar) are referred to as association weights. The calculation of the association 

Gar) ‚ the existence probabilities „ai x) ‚and spatial PDFs fÜ ay (er) will be 

discussed in the following. 

weights 3, 

For the legacy Bernoulli components, i.e, for j € {1,...,Jk-ı}, the association 

weights, existence probabilities, and spatial PDFs are given for al = me Mı & 

{1,..., My} by 

m) _ 2 FE” a) oe I ed (3.15) 

£ (2" k) po () £ () 

ff(zk: )‘wk)pD(wk)f(flz ) () day, 

  FI) (2) = (3.17) 

Here, (3.16) indicates that the object x; described by the Bernoulli component with
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index j exists and its state is distributed according to the spatial PDF FÜ") (z;.) in 

(3.17). The likelihood of this event is quantified by the association weight Ba in 

(3.15). Furthermore, for al ) =0 

  

VO =1 / (1- polen) Fin (an) der, (3.18) 

50) _ Fa Same) a ar)der 3.19) 
k . . 9 . 

L—ri tr SU Polar) fil (@) da) 

. 1= po (k) Fif_y (@) 39 (z.) = klk—1 (3.20)   

Sa-m@)) A er, 

Here, (3.19) is the probability that the object x; described by the Bernoulli component 

with index j exists. Note that ra) 

does not exist and ri) 

= (0) would indicate that the corresponding object 

= 1 would indicate that the object exists but did not generate 

a measurement. If the object exists, its state x; is distributed according to FU" (x) in 

(3.20). The likelihood of these two events (object nonexistence and object existence and 
BI) i misdetection) is quantified by the association weight n (3.18). There are also new 

Bernoulli components indexed by j € {Jg _ı+1,..., Ja}. Werecall that here ad) € {0,1}. 
3) _ 

  

  

For a,’ =1, we have 

re) + [ 1 ee ende 820) 

m _ Fe eu) mten Abe Kay)dan 
Ty cz) + [F(=0 PDA @z, (3.22) 

= o) () My (er) (3.23) 
JF(" |2) po (@) NS, (al) der, 

where the measurement index m is determined as m = j — Jy_1 with j € {Jp_1 + 

., Jr}. Here, U Y —0in (3.22) would indicate that the measurement z; originated 

from clutter. On the other hand, ro) — 1 would indicate that the measurement z;. 

originated from an previously undetected object x;; its state is distributed according to 

f4P(zr) in (3.23). The likelihood of these two events (originated by clutter or by an 

undetected object) is quantified by the association weight al in (3.21). Finally, for 

a) ) 0, the association weights are B% 0) _ U0 _ g, 

and the spatial PDFs fU:0(x;) are not defined because r,gj’o) = 0 indicates that the 

corresponding object does not exist. Note that the derivation of the exact update step 

= 1, the existence probabilities are r;; 

here is based on the likelihood function f(Z,|X7) defined by the measurement model of 

Section 3.2.1.



3.4. THE TOMB/P FILTER 33 

The TOMB/P filter approximates the posterior MBM PDF fP(X;|Z1:x) in (3.13) by 

an MB PDF. This is achieved by first rewriting p(a,) in (3.14) in terms of the extended 

association alphabet A, that includes also inadmissible ob ject-measurement associations 

a, (i.e., a measurement may be associated with no object or with more than one object). 

In fact, for a, € Ar, p(ax) is equal to (3.14) and for A,\ Ar, plax) = 0. Next, the 

association PMF p(a;) is approximated by the product of its marginals. That is, 

Jk [ 

plap) = ] (a), ac Ay, (3.24) 
j=1 

with 

p(a?) 2> plan), (3.25) 
nad) 

k 

where the summation is over all ad) with je 7,\4{j} where I, = {1,...,J;}. The 

complexity of this summation is exponential in J, and Mr»; however, accurate approx- 

imations of p(a;; Y )) can be efficiently calculated by using the belief propagation scheme 

of [Williams and Lau, 2014, Williams, 2015]. Substituting A, for A, in (3.13) and using 

(3.24) yields 

P|lZur) s > (Ir) > il E ‚a9) (XD) 

5 ii > Sp (a) ER) 
aePy,n, J=1 a =0 

Q 

Jr 
_ > IJ Pa), (3.26) 

where in the last step, the identity >, 1. I Pla) = = H Z = p(a a) was used. 

Because IX) 2 yo B pa) KEN (xD) is a Bernoulli PDF, fP (X, |Zı.r) 

is approximated by an MB PDF (cf. (2.17)), consisting of Jk = Jk-ı + Mx Bernoulli 

components. 

The approximate posterior MB PDF fP(X;|Z1:£) in (3.26) is characterized by the ex- 

istence probabilities rd ) and spatial pdfs f@)(&.), which are given for the legacy Bernoulli 

components, i.e., for JE {1,...,Jk-ı}, by 

M, 
Dad) er 

a =0 

a) 

(3.27)
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M, ) . 1 . a9) 19) 

Fa) = a, (3.28) 
Do Op 

and for the new Bernoulli components, i.e, for JE {J_ı +1,..., Je}, by 

ri) = p(a,gj) =1) N, (3.29) 

(a) = (an). (3.30) 
. G 

In (3.27) and (3.28), the parameters r,(j’ ¢ and f(J’“g))(a:k) are given by (3.16), (3.17) 

and by (3.19), (3.20), respectively, and in (3.29) and (3.30), r,gj’l) and FU) (x) are given 

by (3.22) and (3.23), respectively; p(a )) are the marginal association probabilities given 

by (3.25). 

The TOMB/P filter is now obtained by first applying the prediction step by com- 

puting the predicted posterior PHD of the undetected objects A, ._ı(®x) via (3.9) and, 

for the detected objects, the predicted existence probabilities kn via (3.10) and the 

predicted spatial PDFs Fir (ER) via (3.11). The update step consists of calculating 

the posterior PHD of undetected objects Au(z;) via (3.12) and updating the detected 

object component as follows: first, the association weights, existence probabilities, and 

spatial PDFs are computed according to (3.15) - (3.23). Next, the marginal association 

probabilities are calculated according to (3.25). Note that an efficient (approximate) 

marginalization is enabled by the BP-based algorithm proposed in [Williams and Lau, 

2014, Williams, 2015]. Finally, the updated existence probabilities r( and spatial PDFs 
F (z;) are determined according to (3.27) - (3.30). An implementation of the TOMB/P 

filter for linear/Gaussian system models based on the representation of spatial distribu- 

tions by Gaussian PDFs and/or Gaussian mixture PDFs was proposed in [Williams, 2015]. 

An extension to nonlinear/non-Gaussian system models using particle representations of 

spatial distributions was presented in [Kropfreiter et al., 2016|]. 

The complexity of the TOMB/P filter is determined by the computation of the 

marginal association probabilities in (3.25), which is exponential in both the number 

of Bernoulli components J; and the number of measurements M. However, an efficient 

approximate computation is enabled by BP-based algorithm [Williams, 2015]. With this 

modification, the complexity scaling of the TOMB/P filter can be lowered to O(IJ,M7), 

i.e., the complexity scales linearly in the number of BP iterations /, the number of 

Bernoulli components J;, and the number of measurements M;. 

Since in each update step, M, new Bernoulli components are generated, the number of 

Bernoulli components increases linearly with M7 over time. To reduce the complexity, a 

common strategy is to prune (discard) Bernoulli components with an existence probability 

below some defined threshold Yp. However, the pruning can result in a reduced tracking 

accuracy. A remedy was proposed in [Williams, 2012], where Bernoulli components with
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a low existence probability are not pruned but instead transferred to the Poisson RF'S. 

This transfer is referred to as recycling and the corresponding filter as TOMB/P with 

recycling (TOMB/P-R) filter. It was shown in [Williams, 2012] that the TOMB/P-R 

filter achieves a better tracking accuracy/complexity compromise than the conventional 

TOMBJ/P filter. 

The TOMB/P filters presented here solely rely on unlabeled RFSs. Therefore, track 

continuity is theoretically impossible. However, trajectories can be formed by applying 

a simple, heuristic post-processing step. In addition, a label-augmented version of the 

TOMB/P filter was proposed in [Meyer et al., 2018] that avoids the post-processing step. 

3.5 The LMB Filter 

The LMB filter is an approximation of the (labeled) multi-object Bayes filter (cf. Section 

3.1). In the LMB filter, the multi-object state at time k is modeled by an LMB RFS X 

(cf. Section 2.2.2). Thus, the posterior PDF at time k —1 is given by (cf. 2.24) 

F&Xr-1lZı:r-1) = AlXr-ı) w(L(Xr-ı)) IJ I (DD (). (3.31) 

(mk—lal)eXk—l 

Recap that A(Xk_l) —1 if the labels of X,_; are distinct and A(Xk_l) —() otherwise, 

and I; ,(D =1ifl e L} , and 1LZ_1<Z) =0 otherwise. Here, the label set L7 | C Ly 

comprises the labels corresponding to X;_ı and is a subset of the underlying label space 

L£-ı (cf. Section 3.2.2). Furthermore, f)(z;_1), 1 < Li_, denote the posterior spatial 

PDFs at time k—1 and the weights w(L) are given according to (2.25) by 

w(L) & (I 11,0.) IJ (1-rl,), (3.32) 
leLl relly | \L 

for any L< L;_ı. Here, Du | € .7 _, denote the posterior existence probabilities at 

time k—1. By inserting (3.32) into (3.31), the LMB posterior PDF can be equivalently 

written as 

F&Xr-1lZı:k-ı) 

al Te) TE 1.0. 639 
rely \L (@_1,0)EXp_1 

Note that f()N(k_1|Z1:k_1) is fully parametrized by {(7‘1521,f(l)(wk—l))}lemz_l- In the 

following, we review the prediction step and update step of the LMB filter [Reuter et al., 

2014].
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3.5.1 Prediction Step of the LMB Filter 

In the prediction step, the previous posterior PDF f (Xr-1lZı:k-ı) is converted into 

the predicted posterior PDF f (X »|Z1:£-1) according to (3.1). More precisely, as shown 

in [Reuter et al., 2014], the prediction step preserves the LMB form of f(X,._1|Z1:x-ı) 

without applying any approximation. Hence, the predicted posterior PDF f(X4|Z1.4—1) 

is an LMB pdf and parametrized by the existence probabilities Plk-ı and spatial PDFs 

IR): le L}_,, i.e, by the LMB parameter set rk Sun l@r)) herz: Here, 

Ly =Ly ;U LE* is the label set corresponding to the predicted posterior LMB PDF 

f()N(k|Z1:k_1). It is the union of the sets IL; ; and LP* containing the labels of the 

survived objects and the newborn objects, respectively (cf. Section 3.2.2). The existence 

probabilities and spatial PDFS can be found for lE L};,_, as [Reuter et al., 2014] 

ko = N ps (&k-1, fm (2 ı)daer1; (3.34) 

[fexler-ı, 
D)ps(&k_1; NO

 (ar )der-ı 

Srst&,_,dFY(&,_,)de
),_. 

  

! fiihy () = (3.35) 

Here, f(z;,|&;_1,!) and ps(#;_ı,1) are the single-object state transition PDF and the 

survival probability introduced in Section 3.2.2, respectively, and N and f)(x;_ı) are 

the posterior existence probabilities and spatial PDFs at time k — 1. Furthermore, for 

le LP*, we have 
l l 

Pk = Tb (3.36) 
l l 

iy (k) = Ih (an), (3.37) 

where the existence probabilities rg, and spatial PDFs IN (&x) were introduced in Sec- 

tion 3.2.2. Hence, the LMB filter generates new Bernoulli components according to the 

underlying LMB birth model described in Section 3.2.2. Note that the prediction rela- 

tions of the survived objects in (3.34) and (3.35) are equal to the prediction relations 

of the detected objects in the TOMB/P filter (cf. (3.10) and (3.11)), with the extension 

that the labels allow object identification over time. The derivation of the prediction 

step ofthe LMB filter relies on the state transition PDF f(X,|X,_ı) defined by the state 

transition model described in Section 3.2.2. An expression of f(X,|X,_ı) can be found 

in [Mahler, 2014|]. 

3.5.2 Update Step of the LMB Filter 

The update step of the LMB filter converts the predicted posterior PDF f (X k| Z1:6-1) 

into the current posterior PDF f(X,|Z1:x). However, after applying the update step, the 

posterior PDF is no longer of LMB form but of GLBM form (cf. Section 2.2.4). To describe 

the posterior GLMB PDF, an object-measurement mapping is introduced first [Reuter
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et al., 2014|. More precisely, the mapping 9, is defined as 0, : L — {0,1,..., My} 

with Le F(L}), where F(Li.) is the power set of L}, i.e., the set of all subsets of LL;. 

Here, 0;(l) = m € My with My = {1,..., My} indicates that object state (xz,!) is 

associated with measurement m and 6,(l) = 0 indicates that it is not associated with 

any measurement. Let ©, denote the set of all mappings 9, that describe admissible 

associations, i.e., at most one measurement is associated to the same labeled object and 

no measurement is associated to more than one labeled object. Note that this definition of 

admissibility is similar to that one in the TOMB/P filter, where it is phrased in terms of 

an association vector associating (unlabeled) detected objects instead of labeled objects. 

Using #,, the posterior GLMB PDF f(X,|Zı.x) can be expressed as (cf. (2.31)) 

KlZu) = AK), Luc) II Fra): (3.38) 
LEF(L;) Or€Or (1) € X}, 

Recap that 67(£(X})) is one if L = £(X}) and zero otherwise. Further, the weights 

wF:%k) are given up to a normalization constant by 

wu) o I ler, X ) Ir. nl OD), (3.39) 

VELE\L leL 

for Le F(L}). Here, the weights w'"Pk) are normalized, i.e. ‚ LLEF(L; +) I9,eO, wir) — 

(I) 
1, rak-ı 
and the factors nk) are given by 

is the predicted existence probabilities computed according to (3.34) and (3.36), 

(l,m) S- mar, D) I, (ar)dar, m =10 

M =~ = (3.40) 

J 1@k, D po (@5, 1) A ander /Aclzh"), m e M. 

Here, pp(&x,1), fer), and Ac(z m), are the detection probability, the single- 

object likelihood function, and the clutter PHD, respectively, defined in Section 3.2.2, 

and Fun (@%) is the predicted spatial PDF computed according to (3.35) and (3.37). 

Next, the spatial PDFs f"")(x;) in (3.38) are given for m = 0 by 

(1- pn(&x;1)) Fur (@R) 
9 (ar) = 

S (1=po (@} D) fih, () da 
(3.41)   

and for me M, by 

  - = (3.42) 

Son z\ x, I) pn (&/,, EHE aaa
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Note that (3.41) is the spatial PDF describing the case that the object with state (x, ) 

generated no measurement (misdetection) and (3.42) that it generated measurement m € 

Mu. In fact, the two relations coincide with the spatial PDFs for detected objects (3.20) 

and (3.17) in the TOMB/P filter, with the extension that here the labels allow object 

identification over time. T'he derivation of the exact update step of the LMB filter relies 

on the likelihood function f(Z;|X;) defined by the measurement model described in 

Section 3.2.2. A specific expression of f(Z,|X;) can be found in [Mahler, 2014]. 

In the LMB filter [Reuter et al., 2014], the posterior GLMB PDF f(Xx|Zı.x) in (3.38) 

is approximated by an LMB PDF such that the PHD corresponding to the exact posterior 

PDF (cf. (2.32)) matches the PHD corresponding to an LMB PDF (cf. (2.27)). This leads 

to a update relation for the existence probabilities 

r) = _ Z Z 1, wi), (3.43) 
Le F(L}) 0,€©L 

and for the spatial PDFs 

O () (l) ud D) (g, (3.44) 
on LeF(L:) 0,€OL 

for JEL};. Here, 1;(l) is1iflEL and O0 otherwise. 

The LMB filter is now obtained by first performing a prediction step in which the pre- 

dicted existence probabihies ko are computed according to (3.34) and (3.36) and the 

predicted spatial PDFs fh uk ‚(@x) according to (3.35) and (3.37) for ! € L}. Note that this 

involves both the prediction of already existing (legacy) Bernoulli components (represent- 

ing survived objects with labels ! € L};_,) and the generation of new Bernoulli components 

(representing newborn objects with labels 1 € L?*). Then, the update step is executed by 

first computing the weights w("*) in (3.39) and the spatial PDFs fr W)(2,) in (3.41) 

and (3.42), and then computing the updated existence probabilities vr) and spatial PDFs 

f" (xx) according to (3.43) and (3.44). The LMB filter can be implemented for both lin- 

ear/Gaussian system models using Gaussian or Gaussian mixture representations of the 

spatial PDFs and nonlinear/non-Gaussian system models using particle representations 

of the spatial PDFs [Reuter et al., 2014]. 

The complexity of the final update equations in (3.43) and (3.44) scales exponentially 

in the number of Bernoulli components |L};| and the number of measurements M,. By 

reducing the number of summation terms by means of a k-shortest path algorithm [Epp- 

stein, 1998] and a ranked assignment algorithm |Jonker and A, 1987], a complexity of 

O(KC°) with C = max{|lL}|, M,} can be obtained [Vo et al., 2014]. Here, K denotes the 

number of highest weights of the ranked assignment algorithm. The complexity can be 

further reduced by using a Gibbs sampler-based approach to reduce the number of sum- 

mation terms [Reuter et al., 2017]. This leads to a complexity of O(P|L}|?M;), where P
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is the number of samples used in the Gibbs sampler and, as before, |L};| and M, are the 

numbers of Bernoulli components and measurements, respectively. An LMB filter with 

only linear complexity will be proposed in Chapter 4.
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Chapter 4 

A Fast LMB Filter Using Belief 

Propagation for Probabilistic Data 

Association 

In this chapter, we propose a new LMB filter with low complexity yet excellent tracking 

accuracy. The derivation of the new LMB filter is based on a new derivation of the original 

LMB filter. More precisely, the GLMB posterior PDF arising in the original LMB filter 

is reformulated in terms of a joint object-measurement association PMF, and an LMB 

approximation to the GLMB posterior PDF is obtained by approximating this association 

PMF by the product of its marginals. Because an exact marginalization is only feasible 

for simple problems with a low number of Bernoulli components and measurements, 

we perform an eflicient approximate marginalization by using a BP-based computation. 

The resulting BP-based LMB filter possesses a complexity scaling that is only linear 

in the number of Bernoulli components and the number of measurements (assuming a 

fixed number of BP iterations). Contrary to conventional LMB filter implementations 

using a ranked assignment algorithm or the Gibbs sampler, our BP-based LMB filter 

avoids the pruning of GLMB components in the update step. This preserves valuable 

association information that would otherwise be discarded. Since association information 

is especially helpful in more challenging tracking scenarios, the proposed LMB filter 

performs particularly well in scenarios with, e.g., a low detection probability. 

The remainder of this chapter is structured as follows. In Section 4.1, we present 

a new derivation of the original LMB filter. A fast BP-based algorithm for computing 

approximate marginal object-measurement association probabilities is proposed in Sec- 

tion 4.2. In Section 4.3, we present the new fast LMB filter, including a scheme for the 

generation of new Bernoulli components, and we provide a complexity analysis. Finally, 

in Section 4.4, we present simulation results analyzing the accuracy of the BP-based 

marginalization and demonstrating the advantages of the proposed fast LMB filter com- 

41
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pared to state-of-the-art multi-object tracking methods. 

4.1 A New Derivation of the LMB Filter 

In the following, we present a new derivation of the original LMB filter of [Reuter et al., 

2014]. More precisely, we first show that the LMB filter can be derived by reformulating 

the GLMB posterior PDF in (3.38) in terms of a joint object-measurement association 

PMF and approximating this PMF by the product of its marginals. Note that a similar 

approach is used in the TOMB/P filter in order to approximate the (unlabeled) MBM 

posterior PDF by an MB PDF (cf. Section 3.4.2). 

Recap from Section 3.5.2 that in the LMB filter, the GLMB posterior PDF is given 

according to (3.38) as 

&Klz) AK) IL ut Pic) II fra); (4.1) 
LE F(Li) Or<Or (erl)EXr 

where L}. is the set of labels underlying Xy, F (L7) is the power set, i.e., the set of all 

subsets, of L}, 0, and ©, are the association mapping and the set of all admissible 

association mappings with respect to the label set L, respectively, w(4-%) are the weights 

given by (3.39), and f%W)(z2,) are the spatial PDFs given by (3.41) and (3.42). We 
can now rewrite the posterior PDF (4.1) as 

&xlZı:r) = » % ERROR) IJ 1L (1 (1) fEO ) (g5, (4.2) 

er@fi(x ) (a l)EX% 

In (4.1), the factor ö,(£L(X,)) with L € F(L}) ensures that the labels of the realiza- 

tion Xy, i.e., 1 E L(Xr), are from the set L,; this is now equivalently expressed by 

Ile. x,tu;(l). Next, instead of using the mapping 6, to describe the object-mea- 

surement associations [Reuter et al., 2014, Reuter et al., 2017|, we now introduce the fully 

equivalent association vector C; and the corresponding association alphabet C,.. The 

description in terms of association vectors can be leveraged to derive the LMB filter 

alternatively in terms of marginal association probabilities. In fact, we define the associ- 

() _ =m & My 

indicates that object state (x, !) is associated with measurement m, ce )= 0 indicates that 

ation vector c. with elements c € {-1,0,...,Mx}, where lEL}. Here, c,. 

it is not associated with any measurement (misdetection), and = )= _1 indicates that it 

does not exist, i.e., (g, 1) & Xs. Let C; denote the set of admissible association vectors 

ci. Just as an admissible mapping 6, in Section 3.5.2, an admissible association vector 

C, assigns at most one measurement to the same object and no measurement to more 

than one object. We can now rewrite the GLMB PDF (4.2) in terms of the association 

vector C; a8
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RZ) = AK) I. el Ko) wer TI Ir; Fran). (4.3) 
crEClk (a, )EXr 

Here, o(c.,Xr) =1 for all c, with ci) = —1 for I € L\ £(Xy) and ci € {0,..., M} 

for 1 € £(X},), and (cy, Xi) = 0 otherwise; this factor reduces the sum over all c; € C; 

in (4.3) to the sum over all corresponding mappings 0, € © cry, a (4.2). Hence, both 

expressions are equivalent. Furthermore, the weights w., in (4.3) can be expressed up to 

a normalization factor as (cf. (3.39)) 

1, 
We, X IJ BL ) cr € Cy, (4.4) 

lEL; 

where the association weights am) are defined as 

m m) a nn ), me{0,..., M} 

k 
(1) 

leere: 

(4,5) 
m= —1, 

with 7™ given by (3.40). Finally, £ (2;,) in (4.3) equals f"'%®)(2,) in (3.41) and 

(3.42) (with 9,.(l) replaced by ec) because [=D (z2,;) does not occur in (4.3) (recall that 

ci — —1 implies (x,,1) € X,). In contrast to the weights w("P*) in (4.1), the weights 

w,, do not depend on the label set L(X7.). They are normalized in that Ver,cc, ll: 

Expressions (3.43) and (3.44) can now be reformulated in terms of c, as 

! 
r,g) = > We, ; (4.6) 

c ech) 

0 1 (ed) Far) = > wo rar); (4.7) 
T ) Ck El, 

where a = {ck eC: Cg) €{0,..., Mk}} This reformulation is possible because ri) in 

(3.43) and f(x) in (3.44) contain only terms involving w'"%*) with L such that lEL; 

this can be equivalently expressed via c, by removing all c,. with ci —= —1 from C;., which 

results in C D 

With this reformulation, we can interpret the weights w., as the PMF of the associ- 

ation vector c;. More precisely, we define the PMF of c,. as 

Wer, Ck € Cr 

p(cr) £ ’ (4.8) 
0, otherwise.
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We can then rewrite (4.3) as 

F(Xel Zrw) = AXe) D plc Kr) plc) [I] 1; d F" ar), (4.9) 
er MIR cr, 

with My = {-1,0,..., Mpx}. Note that Ver ec, in (4.3) can be replaced by Dıc alt P 

since p(cg) =0 for ¢ € el il \Cx. Next, we approximate the joint association PMF pley) 

by the product of its marginals, i.e., 

= od), ne mii!, (4.10) 
lel; 

where 

p@)) = > Pl): (4.11) 
“leMlL =t 

() (Here, c;! denotes the vector cj with the I*! component, i.e., c;’, removed.) Inserting 

(4.10) into (4.9) yields 

f(Xk;|Z1]€) ~~ A(Xk > IJ ‚e)) # (CK, X+) IJ 1,;(l ()f® ‚ ka) 

Ly 
K EM, K] "EL, (er l)EXr 

! L I . . 
Next, splitting ar (c\ )) as (Treunenplk )) Tecsspl&): using the iden- 

tity Dıc =) Dem. > (LD _ oy and evaluating ¢(cy, X;) leads to 
Ck k 

Mr 

Klzı) AK) [ Ple’=-1) TI u; I rl) Fer) (a). 
U €LINL(Xy) (2) EX; D=0 

(4.12) 

Comparing expression (4.12) with (3.33), we conclude that the above approximation of 

F(X+|Zı.x) is an LMB PDF with existence probabilities 

My, 

r,(f) =1- p(c)= —1) = > p(e) (4.13) 

M=0 

and spatial PDFs 

(0 

(en) m Sl FR Kar). (4.14) 
Do 

Finally, we show that (4.13) and (4.14) are identical to (3.43) and (3.44), respectively. 

Inserting (4.11) into (4.13), we obtain
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My, 

= > > p(ck) = > Wer; 
(0 o' =0 cptemy ! rec," 

where the last expression follows because p(c;) equals w., for c,€C, and 0 otherwise. 

Thus, (4.13) is identical to (4.6) and, hence, to (3.43). Similarly, it can be verified that 

(4.14) is identical to (4.7) and, hence, to (3.44). This shows that our LMB approximation 

(4.12) of the GLMB posterior PDF f(X7|Zı.x) in (3.38) and (4.1) is equivalent to the 

LMB approximation underlying the original LMB filter [Reuter et al., 2014|]. 

4.2 Fast BP-based Probabilistic Data Association 

In the following section, we briefly review the general framework of factor graphs and 

BP [Kschischang et al., 2001] (Section 4.2.1) and derive a fast BP-based algorithm for 

computing approximations of the marginal association probabilities p(c) (Sections 4.2.2 

and 4.2.3), which forms the basis for the fast BP-based LMB filter proposed in the next 

section. 

4.2.1 Review of Belief Propagation 

Consider J discrete random variables c;, j=1,...,J. We want to calculate the marginal 

PMFSs p(c;) from the joint PMF p(c) with ce = [cı:--cy]!. However, often a direct 

marginalization is computationally infeasible. 

Using BP (or, equivalently, the sum-product algorithm [Kschischang et al., 2001]), 

the marginalizations yielding the PMFs p(c;), j=1,...,J can be efficiently performed 

(at least approximately) if p(c) factorizes according to 

Q 

p(e) x IJ 1y (D). (4.15) 
qg=1 

Here, each argument c(® comprises certain variables c;. The factorization (4.15) can be 

represented by a factor graph, in which each variable c; is represented by a variable node, 

each factor ıb,(-) is represented by a factor node, and variable node “c;” and factor node 

“bg are adjacent, i.e., connected by an edge, if the variable c; is an argument of the 

factor ı,(-), i.e., part of c(®, Figure 4.1 considers the case where c = [cı ca]" and shows 

the factor graph representing the factorization 

p(e) & Ybılcı)alcı, c2)%a3(c2)- 

BP is a message passing algorithm where each node in the factor graph passes messages 
? to the adjacent nodes. More specifically, consider a variable node “c;” and an adjacent 

factor node “by”, i.e., the variable c; is part of the argument ca of dale®). Then, the
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Figure 4.1: Factor graph representing the factorization of the PMF p(c) o %1 (c1)¥a(c1, e2)¥s(ca), 
with e = [cı ca]!. Variable nodes are depicted as circles and factor nodes as squares. 

message passed from factor node “%g” to variable node “5” is given by 

Vale) II ren, (4.16) 
ei EIG} 

where 7 denotes the neighborhood set of factor node “%g”, i.e., the set of indices j of 

all variable nodes “¢;” that are adjacent to factor node “%g”, Dr; denotes summation 

with respect to all variables ey, 7° € Jg except &, and 7%) (ey) is the message 

passed from variable node “cz” to factor node “%g” (to be explained presently). For 

example, the message passed from factor node “%2” to variable node “e2” in Figure 4.1 

is 6 R>2)() = ,, Yalcı,ca)n > )(cı). The message 7(>*)(c;) passed from 
variable node “¢;” to factor node “%g” is given by the product of the messages passed to 

variable node “¢;” from all adjacent factor nodes except “%g”, i.e., 

7o) = TI Hr), (4.17) 
de2;\a} 

where the neighborhood set ©, comprises the set of indices q of all factor nodes “%g” 

that are adjacent to variable node “e;”. For example, in Figure 4.1, the message passed 

from variable node “c2” to factor node “3” is 7°) (ca) = 62>@)(c5). This message 

passing process is started at variable nodes with only one edge, which pass a constant 

message, and/or factor nodes with only one edge, which pass the corresponding factor. 

We note that BP can also be applied problems with continuous random variables; the 

only difference is that in (4.16) the sum is replaced with an integration operator. 

When all messages have been passed as described above, then for each variable node 

“cj”, a belief Ö(e;) is computed as the product of all incoming messages (passed from all 

adjacent factor nodes) followed by a normalization, i.e, 35 D(e;)=1. For example, in 

Figure 4.1, 

d(e) & HR) (en) HR) (co). 

If the factor graph is a tree, then the obtained belief f(¢;) is exactly equal to the marginal 
PMF p(e;). On the other hand, if the factor graph contains cycles (loops), BP is usu- 

ally applied in an iterative manner, and the beliefs #(c;) are only approximations of the 

respective marginal PMFs p(e;). In these iterative “loopy BP” schemes, there is no canon-
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ical order in which the messages should be calculated, and different orders may lead to 

different beliefs. 

4.2.2 BP-based Computation of the Marginal Association Probabilities 

We now derive a fast BP-based algorithm for calculating approximations of the marginal 

association probabilities p(c ( )) [ €L} involved in the update relations (4.13) and (4.14). 

This algorithm is a variant! of the BP scheme for probabilistic data association proposed 

in [Williams and Lau, 2014]. We recall that according to (4.8) c, € Mi and, further, 

that p(c;) = we, for c,€C, and p(c;) = 0 otherwise. Using (4.4), we can then express 

the joint association PMF p(c;) as 

1,c® - |L% 
plex) < ¥U(ey) H 615; ), EM) el (4.18) 

lEL* 

where V(c;) is defined as Y(c,)=1 if c„€C, and V(c,) = 0 otherwise, and enforces 

the validity of (4.8). Without V(c,), equation (4.18) would describe the probability 

of “independent” single-object associations, and in the resulting algorithm, each object 

would be tracked without taking into account the presence of other objects. This would 

produce track losses when objects are in close proximity. 

Following [Williams and Lau, 2014], we introduce the alternative measurement-object 

association vector b; with elements be, m € My, where bU) — = | € L} indicates that 

measurement m is associated with object state (2;.,!) and m O indicates that measure- 

ment m is not associated with any object state. We can reformulate the joint association 

PMF p(c;) in terms of both c;. and b;.. Indeed, analogously to (4.18), we can express the 

joint association PMF p(cx,b;.) as 

1,c\ p(er, 54) & Wer, dr) ]] 5° - (4.19) 
lelly 

Here, analogously to (4.18), the admissibility of the association vectors c, and bj. is 

enforced by the indicator function 

U(er b) = [ Is. (e b, (4.20) 
lelly m=1 

where \I!lm(c(l), 6) — 0) if either ci — m and Du £ 1 or cg) £ m and b,gm) — |, and 

U, (c,(f), b(m)) —] otherwise. 

In this reformulation, it should be noted that the vector b,. does not carry any addi- 
  

!The algorithm in [Williams and Lau, 2014] is not suited in this context because it presupposes that 

the number of objects is known. The related algorithm in [Williams, 2015] used to compute approximate 

association probabilities in the TOMB/P filter is not suited either because it combines the association 

weights for object nonexistence, Be, and those for a missed detection, a, into common association 

weights (cf. (3.18)) and also includes association weights for objects that are detected for the first time 
(cf. (3.21)).
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Yıı 

  

Um 

Figure 4.2: Factor graph representing the factorization (4.19), (4.20). The following short nota- 

tions are used: BE Bl), 2 b2 b W,m& Unm(cl 80), M& My, and J=|Lf|, 
with 7210) and m’&cl®), Hore, I) ELz={1®,...,19}. 

tional association information compared to the vector ©. However, as discussed in |Meyer 

et al., 2018] and [Williams and Lau, 2014], the redundant formulation of the joint associa- 

tion PMF using cx and bg in parallel, as given by (4.19) and (4.20) 

for BP-based probabilistic data association. On a more general le 

enables a fast method 

  

the introduction of 

  

additional random variables that are redundant in that they deterministically depend on 

existing random variables (such as bg, which deterministically depends on ex) is a com- 

mon means of expanding factor graphs [Kschischang et al., 2001]. In many cases, using 

  

BP on the expanded graph is more computationally efficient than using BP on the origi- 

nal graph. In our case, the introduction of the redundant association vector br results in 

the expression (4.20) of the admissibility constraint, which has the important property 

that it completely factorizes into individual components indexed by (l,m) € Lk x Mk. 

Based on this complete factorization, we next derive a fast algorithm for probabilistic 

data association. We want to emphazise again that the derivation is analogous to that 

in [Williams and Lau, 2014], where approximate marginal association probabilities are 

calculated for a slightly different association problem. 

The factorization (4.19), ( 

  

et al., 2001] shown in Figure 4.2. Then, still following [Williams and Lau, 2014], ap- 

proximations of the marginal association PMFS p(e) and p(b{™) can be obtained via 

.20) can be represented by the factor graph [Kschischang 

iterative BP message passing.? At message passing iteration i € {1,..., T}, first a mes- 
(0] 

sage I Ver) (cd) is passed from each variable node “e®> to the adjacent factor node 
. i (D) 

“Um (CD, 5E)> in Figure 4.2. We now write ve md cO) for Em), 
i 0 

  

, for the message passed from factor node “Ty (e, 5™)" to the adjacent variable 

?We note that, as studied in [Williams and Lau, 2010], approximations of the p(cf’) can also be 
caleulated by running the BP algorithm on a factor graph containing only the variable nodes “cf’” and 
factor nodes representing the admissibility constraint factor ¥(ck). However, these approxims 
inferior to those obtained by running the BP algorithm on the factor graph of Figure 4.2 [Williams and 
Lau, 2010] 

  

         ons are
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[47 ec )» node at message passing iteration i—1. According to (4.17), we obtain 

le! ww m l 1l,c) E-1W, od, (1 gl "Ti L (Y. (4.21) 

zn 

Then, a message gel, na >) is passed from each factor node “U, „,(c), () b(m))” 

the adjacent variable node “b(m)” We now write C[Z](‘I]z mom) (1) for gel, mob") (0). 

According to (4.16), this message is given by 

0 C[z](\lfl mm) (19) = 5 Um (N um) (D), (4.22) 

V=1 

Inserting (4.21) in (4.22) results in 

k 
(W m m m L,c m „er 1](v ‚m! I) no (ze), _ Bw 2urm (O5) TE), (4.23) 

P-_1 ml 

Ck m’#m 

for EL) and me Mı,. In a similar manner, we obtain the following expression of the 
Mmod D) (cl () b(m))n 

[47 ec Im. 

message v that is passed from factor node “V; to the adjacent 

variable node 

; m m i‘If/m m m ED ee) I), (420) 
Be {or uLz el i} 

for [ €L and m € M. 

4.2.3 Efficient Formulation 

Still following [Williams and Lau, 2014], the vector-valued messages (4.23) and (4.24) 

(vector-valued in the sense that there is one message value for each value of Du or ce) 

can be simplified to scalar ones. Because of the admissibility constraint expressed by 

Ym(cı 0 b(m)), each message comprises actually only two different values. Indeed, for 
ee, we have 

k,l,m? | (V) m—m 

GO =0 e 
Ck;’l’ma bk; Fl, 

k 

where 

1," ) 17 l m 11— ‚m! ? 

mh Ir m), (4.25) 
m/=1 
m'#£m
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Mk 
i Lely Bl wood, (1 

lm = 5 3% red): (4.26) 
A g mi=1 

k D m’#m 
. zm 

and similarly, for vum), we have 

[1] () _ 
[(1(T1m—1) (1) Vedms Gk =M 

Vi (a) = il 0 
Yımı KM, 

where 

i Yon m) 
Vlm = = II Ga ), (4.27) 

VeL;\{1} 

? [{1(Y 7, —>m) m 

]/IE:]llm: > I «+ BD). (4.28) 

Be torurz)\gn FeLkM 

We next normalize the messages according to C, PL mm) (0.9) £¢ ,LZ Mm) (09) / ln 
and a AND Dy I which yields 

au [l/ (m) 
(Um m) („m Sk ım/ Sklm? b, =1 CH( Lm— )(b( )) | m) (4.29) 

1, b. Al, 

and 
[l/ (I) . Ve od Vi tms G =M 

D}B](wz,m%z)(cg)) { klom/ Ykl k;) (4.30) 

1, c\ m. 

Let us consider ae, mom) (0) for De ”)_]. Inserting (4.25) and (4.26) into (4.29) 

yields 

  

l,m „er 1](w md 

Bu Ta (m) 
aa, mm) () _ m'#m 

ge ) E10, „u D) 
BT le) 

. mim c, im 

E-1](W,, de D) _ Dem (ec) 1], 
Substituting v, Ve lm: the above expression becomes 

  

l,m 7 1](w m’) 

zii ) A ul a ) iVm om m'#£m 
N = . 4.31 

C <) Mr al cl Ip" Zn (¥, m’_>l)( ]({:)) ) 
m/=1 = 

don 
m’#m
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in ICW,, (I) 
Finally, using the fact that according to (4.30), ¥ c„) =1 for ci # m, 

expression (4.31) simplifies to 

Q ‚m) 
  A (4.32) 
gt =D gl Vi gez [i—1](7, dm) 

m’£m 

We also recall from (4.29) that mom) (0.9) —1 for DIL. 

Analogously, by inserting (4.27) and (4.28) into (4.30), we obtain for pl av Ka D) 

with a) = =m 

_klU, m 1 1 
a b )( ) = (U nm) (4.33) 

1 + Vreriti Gr an) 

  

Furthermore, lm (ec) —1 for et m. Finally, after introducing the shorthands 
ulm) A 5}8](@1,m—>M)<l) [7]](m—1) A m) 

and v,. ‚ the two equations (4.32) and 

(4.33) become 

  

  

(1,m) 
autom) _ — R m! di m! 3 (4.34) 

m’#m 

pltm =1 _ ! (4.35) 
ill!’ —m) ’ ’ 

1+ Zl’e[h*\{l} CH( - 

for l EL), and M. The recursion established by these two equations is initialized by 
„mon; 

After the final iteration © = /, approximations of the marginal association PMFs 
[47 ec )» p(e D), le L} are provided by the beliefs at the respective variable nodes in Fig- 

ure 4.2. More precisely, the belief f(c D) is obtained as the product of all the incoming 

messages at variable node “ er 

(cf. Section 4.2.1). Thus, 

in Figure 4.2 and normalizaion of the resulting function 

My, 
I l,m „rw m’) 

(cl =m) x 8" (m), m Vi 
m/'=1 

()= 
M; M; 

Lm „uw ml) S —m) o 5 >( Hv}f}fmu> Y0 
m’=1 m/’'=1 

[](¥ s — 1) Ir) m) Yj. 1m» we obtain further for me My. Substituting v, 

M, 
‚m N, mal 

x Be TT o e =20 (). (4.36) 
m’—1l
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Ulm) Since by (4.30) 7, (m)=1 for all m’# m, expression (4.36) simplifies to 

(I,m) 
k ’ =) o a lm) (m), me 11, e ooy Mkj} 

m e {—1,0} 

These expressions still need to be normalized, which amounts to division by DW 2 

Be + a + S M Blgl’m)fl[l](‘l’lvm_”)(m). Finally, using the shorthand VILI](m_)l) = 
_IWı,m . 
v, (m), we obtain 

BD, me{-1,0} rd 
dl’ =m) = (4.37) 

gl =0 Dl e {1, My}, 

Similarly, the belief p(b(m)) (to be used in Section 4.3) is obtained after the final iteration 

v =1 as the normalized product of all the incoming messages at variable node pn in 

Figure 4.2. A analogous derivation to the one above leads to 

n 1/F™, I=0 
BL =1) = (4.38) 

om), lEeL+, 

with Fi) 214+ 1er; © MUS) This fast BP-based approximate calculation of the 

p(c) according to (4.34), (4.35), and (4.37) constitutes the basis of the fast BP-based 

LMB filter proposed in next section. 

4.3 The Proposed Fast LMB Filter 

In the following, we propose a scheme for generating new Bernoulli components using 

the approximate marginal association probabilities and the set of measurements acquired 

at the previous time step. We furthermore present a summary of the resulting fast BP- 

based LMB filter and conclude the section with a brief complexity analysis of our proposed 

algorithm compared to two state-of-the-art LMB filter implementations. 

We start by presenting a scheme for generating new Bernoulli components using the 

set of previous measurements Z;_ı. Recap that in the prediction step of the LMB filter 

(cf. Section 3.5.1), the existence probabilities and spatial pdfs of the Bernoulli components 

() f(l) representing newborn objects, i.e., {(rg); )} ep, Are computed according to 

(3.36) and (3.37), respectively. We now present a scheme for choosing ILP*, rg, and 

( Dar) using the previous set of measurements Z;_ı. Note that in the prediction step, 

the current set of measurements Z,, is not available yet. The belief 5(6) = 0) computed 

in (4.38) is an approximation of the probability that the measurement with index m € 

Myj_ı was not originated by an object modeled by any Bernoulli component. Hence, if
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P (b,g”f)lz 0) is high, it is very likely that the corresponding measurement zu") originated 

either from clutter or from a newborn object that is not yet modeled by any Bernoulli 

component. It is therefore reasonable to generate a new Bernoulli component for all those 

measurements that have a high 56") = ()) value. We collect all measurement indices 

me Mı-ı with 56”) = 0) > new in the set MAW, where new is a threshold between 

zero and one. We now define the label set of newborn objects LE* as the set of all tuples 

{(k,m)} with k being the current time step and m € M%°Y. Note that the number of 
| new newly generated Bernoulli components |LF*| = „| is determined by the choice of 

new. Next, we define the existence probabilities of newborn objects as 

5(b"™) =0 a 2RO ) (430) 
k—1 

for 1 = (k,m) € LP*. Consequently, rg)k is equal to the expected number of newborn 

objects up (cf. Section 3.2.1), divided by the total number of newly generated Bernoulli 

components |M#°% |, and weighted by (6) = 0), which is the (approximate) probability 

that the measurement with index m is not generated by an object already modeled by 

a Bernoulli component and thus already tracked by the LMB filter; this value is upper- 

bounded by one. Finally, the spatial PDFs of newborn objects are chosen according to 

Var) = Far; 2"), (4.40) 

where | = (k,m) € LB* and m € M. Here, f(z4;2.”)) is a spatial PDF that is 
parametrized by the measurement zu"): its exact definition strongly depends on the 

underlying tracking problem. A specific choice of f(x;; ZU") for the tracking scenario 

considered in Section 4.4 will be presented there. 

The proposed fast LMB filter, termed BP-LMB filter, is finally obtained by execut- 

ing a prediction step, where the predicted existence probabilities and spatial PDFs are 

computed according to (3.34) and (3.35) for le L}_, and new Bernoulli components are 

generated according (4.39) and (4.40). Next, the association weights a) are computed 

according to (4.5) and the spatial PDFs f(""")(z;.) for m = 0 according to (3.41) and for 

m € M,. according to (3.42). Then, the BP algorithm for probabilistic data association is 

used to compute approximations of the marginal association probabilities by iteratively 

ulm) ulm>D according to (4.35) for i=1,...,I. 

After the final iteration i = I, the approximate marginal association probabilities d(c) 
(I) 
k 

computing according to (4.34) and v 

are computed according to (4.37) and then the updated existence probabilities r,.’ and 

spatial PDFs f(x.) are determined according to (4.13) and (4.14), respectively. Finally, 

objects described by a high existence probability are declared to exist, estimates of their 

corresponding states are computed, and Bernoulli components with a low existence prob- 

ability are pruned. It should be emphasized that the proposed BP-LMB filter is different 

from the LMB filters in [Reuter et al., 2014, Reuter et al., 2017] because the underlying
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BP-based approximation is different from the approximations employed in [Reuter et al., 

2014] and [Reuter et al., 2017|. A summary of the proposed BP-LMB filter is presented 

in Table 4.1. 

Next, we analyze the complexity of our proposed BP-LMB filter and two state-of- 

the-art LMB filters. The original LMB filter implementation in [Reuter et al., 2014] uses 

a k-shortest path algorithm and a ranked assignment algorithm and has a complexity 

scaling of O(KC®), where K is the number of highest weights in the ranked assignment 

algorithm and C' = max{|L;|, My} [Vo et al., 2014|. Recap that |L}| is the number 

of Bernoulli components and M/, is the number of measurements. The cubic scaling 

behavior was improved by the Gibbs sampler-based LMB filter proposed in [Reuter et al., 

2017]. This filter achieves a scaling of O(P|L}|”M;.), where P is the number of samples 

used in the Gibbs sampler. By contrast, the complexity of our proposed LMB filter is 

O(I|L.|M;), where I is the number of BP iterations. The linear scaling in |L.| improves 

on the quadratic scaling exhibited by the Gibbs sampler-based LMB filter. The second 

difference is that P is replaced by /. A typical value of I is 20. As we will demonstrate 

in Section 4.4.3, for scenarios with a rather high clutter rate and/or a large number of 

objects, P has to be chosen much higher than 20 in order for the tracking performance 

of the Gibbs sampler-based LMB filter to be similar to that of our BP-LMB filter. Some 

algorithmic aspects affecting the complexity and performance of the BP-based and Gibbs 

sampler-based LMB filters are discussed in Section 4.4.3. 

4.4 Numerical Study 

In the following section, we present a simulation study in which we analyze the perfor- 

mance of the proposed fast BP-LMB filter. More precisely, in Section 4.4.1, we describe 

the underlying simulation scenario. A comparison of the exact and the approximate 

marginal association probabilities used in the BP-LMB filter is provided in Section 4.4.2. 

Finally, tracking results obtained by the proposed BP-LMB filter compared to those ob- 

tained by several state-of-the-art RFS-based tracking filters are reported in Section 4.4.3. 

4.4.1 Simulation Setup 

For evaluating the performance of the proposed BP-LMB filter, we consider a two- 

dimensional (2D) tracking scenario [Meyer et al., 2017|, where a sensor is located at 

p = [p1 p2]* = [0 150)”. The sensor has a measurement range of 300 and the region of in- 

terest (ROI) corresponds to the sensor’s field of view, i.e., the circular disk determined by 

the sensor’s measurement range. We consider two different parameter settings PS1 and 

PS2. Ten (PS1) or twenty (PS2) objects appear before k=30 and disappear after k=140. 

The object states x,. consist of position and velocity, i.e., x. = [X1,k X2,k X1.k xx]. They 

evolve according to the nearly constant velocity motion model |Bar-Shalom et al., 2002, 

Sec. 6.3.2]
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Table 4.1: Proposed fast BP-LMB filter algorithm—recursion at time k£ > 1 
  

Input: Previous existence probabilities Ewa and previous spatial PDFs f)(&,_ı) for le Li_,; 

measurements = form € M, and 2") for m € M}%°“; approximate marginal association 

probabilities 0% ”) for me Ma. 

Output: Existence probabilities ri and spatial PDFs f)(x;.) for le Li; approximate marginal 

association probabilities 08 ”)) for me MR; object state estimates ;0 for JELP. 

Operations: 

Step 1 - Prediction Step: 

(1) Rk—1 and the predicted spatial 1.1) ForleL};_,, calculate the predicted existence probabilities r 

PDFs fk|k_1(xk) according to (3.34) and (3.35). 

1.2) if k =1, LB*=0; else: 
(1) Determine LP* according to Section 4.3 and 7y 

(4.40), respectively, using z;_ı and 5") for m e MR. 

„ and N (ar) according to (4.39) and 

1.3) Determine L} —LZ; JULP* and dar T k— Fk (@ )) her; a8 ri) . fin 1 4) her; 

! * 
U{( k:|k; 17 |l<; 1 in )}ZE]LB* with Fk arg), and Fu ® %*) 2,0 (2) for lEeL® . 

—1 

Step 2 — Update Step: 

2.1) For [€Lj, calculate the association weights a) according to (4.5) and the spatial PDFs 

Fr) (2x) for m = 0 according to (3.41) and for m € Mı, according to (3.42). 

(Im) [{](m—1) [0} (m—1) _ according to (4.34) and v} 2.2) Initialize v,, =1, then 1terat1vely calculate ¢!’ . 
according to (4.35) for i=1,...,1. 

2.3) For le Li, and m € {0} UM, determine the approximate marginal association probabilities 

dl) and according to (4.37), and for m e MW, (bi )= 0) according to (4.38). 

2.4) For m € My), compute the approximate marginal association probabilities 5 = 0) 
according to (4.38) and determine MW according to Section 4.3. 

2.5) For le L};, compute the updated existence probabilities ri and spatial PDFs f(x) 

according to (4.13) and (4.14), respectively. 

Step 3 - Object Detection, State Estimation, Pruning: 

3.1) Consider an object with le L}; to exist (to be detected) if ri is larger than a threshold 

yp. For each detected object, calculate a state estimate as £;. = f Cr f (ar)dar; 

3.2) Prune (i.e., remove) the Bernoulli components le L}. with Hp; 

Initialization at time k=0: (9, (zo) here 
0 
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Figure 4.3: Example of true trajectories for parameter setting PS1 (blue lines; starting points 

indicated by blue crosses), as well as of trajectories estimated by the proposed BP-LMB filter 

(red lines) and measurements acquired at time k= 100 (green dots). The black circle indicates 
the sensor position. 

x, = Axı_ı+ Wu;, 

where A € R?*X* and W € R**2 are chosen as in [Bar-Shalom et al., 2002] and u, > 

N (0, 02L) with o2 = 0.01 is an iid sequence of 2D Gaussian random vectors. We employ 

the trajectory generation scheme of [Meyer et al., 2017], according to which all objects 

move toward the point (0,0), come close to each other there around time k = 60, and 

separate again afterwards. A detailed description of this trajectory generation scheme 

can be found in |Meyer et al., 2017|, and a realization of the object trajectories is shown 

in Figure 4.3. The sensor is characterized by the nonlinear range-bearing measurement 

model 

zZ. = [o(xr.) or)" + Ve. (4.41) 

Here, p(xx) = ||x,— p||, where x, & [xı,x x2,«]" denotes the position of an object, and 

olx.) & tan (): Furthermore, v;. is iid Gaussian measurement noise with inde- 

pendent components and component standard deviations o,—=2 and o,= 1°. The clutter 

PDF fc(zx) is uniform (in polar coordinates) on the ROI, and the mean parameter uc is 

10 (PS1) or 50 (PS2). Objects are detected by the sensor with probability pn (&;,1) = 0.5. 

We study the performance of the proposed BP-LMB filter in comparison to the Gibbs 

sampler-based LMB filter [Reuter et al., 2017] (briefly termed Gibbs-LMB filter) and 

the fast BP-based version of the label-augmented TOMB/P filter [Meyer et al., 2018, 

Williams, 2015, Williams and Lau, 2014] (briefly termed BP-TOMB/P filter). Al filters 

use particle implementations [Reuter et al., 2014, Kropfreiter et al., 2016]. They represent 

the spatial PDF of each Bernoulli component by 1000 particles, prune components with 

an existence probability below yp = 10%, declare an object as detected if its existence 

probability exceeds yp = 0.5, and use ps(2;_1,1) = ps(xr_1) = 0.99 and pp(zr,!) = 

pp(ze) = 0.5. With regard to the newborn objects, the BP-LMB filter employs the 

Bernoulli generation scheme proposed in Section 4.3 with up = 0.1 and spatial PDFs
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(cf. (4.40)) given by 

Var) x [Harz Fer-leu 2a) liinndar)der-ı. (4.42) 

for [ € LE*. Here, f(2x.-1]%1,«-1; 22,x-ı) is the likelihood function corresponding to our 

measurement model (4.41) and fv(ä1,r-1; £&2,«-ı) is the PDF of independent, zero-mean, 

Gaussian random variables Xı,.-ı, X2,«-ı with variance 0.25. By constrast, the Gibbs- 

LMB filter generates a new Bernoulli component for each measurement observed at the 

preceding time k—-1; the existence probability of that Bernoulli component is initialized 

as up/Mkr-ı with up = 0.1 and the spatial PDFs are also initialized according to (4.42). 

The number P of samples used by the Gibbs sampler in the Gibbs-LMB filter is 100 

or 1000; the resulting Gibbs-LMB filters are referred to as Gibbs-LMB-100 and Gibbs- 

LMB-1000, respectively. In the BP-TOMB/P filter (cf. Section 3.4), the PHD of newborn 

objects Ag(x.) = up f(x.) has mean parameter up = 0.3 and its spatial PDF fg (z;.) is 

uniform on the ROI; furthermore, the posterior PHD of undetected objects is chosen as a 

k-dependent constant on the ROI and initialized as Au(&o) = us fu(®o) with us = 0.01 

and uniform fu(xo). Recap, that the BP-TOMB/P filter generates a new Bernoulli 

component for each measurement at time k (cf. (3.29) and (3.30)). The BP-LMB and 

BP-TOMB/P filters use 7 = 20 BP iterations to calculate the approximate marginal 

probabilities. 

4.4.2 Comparison of Exact and Approximate Marginal Association 

Probabilities 

Next, we experimentally examine the accuracy of the approximate marginal association 

probabilities by comparing the exact marginal association probabilities p(cg)) calculated 

according to (4.11) and used in the original LMB filter (cf. Section 4.1) with the approx- 

imate marginal probabilities fi(cg):m) calculated according to (4.34), (4.35), and (4.37) 

and used in the proposed BP-LMB filter. For this comparison, we use a setup compris- 

ing seven Bernoulli components and five measurements. It was obtained by running the 

BP-LMB filter on the scenario described in the previous section and by extracting the 

sensor measurements and Bernoulli components arising in the BP-LMB filter after the 

prediction step at time k = 60. Thus, the Bernoulli components are parametrized by 

kn Fk ®e)) er; with label set L; = {1®,... 19}, where k = 60. Further- 
k 

(5 
more, the measurements are given by Zgo = (2), e zu}. The simulation parameters 

and the parameters used in the BP-LMB filter were chosen as described in Section 4.4.1, 

except that the number of objects and the mean number of clutter measurements were 

both set to five. This was done because the calculation of the exact marginal probabilities 

of the LMB filter [Reuter et al., 2014| becomes infeasible for higher numbers of objects 

and clutter. However, the scenario is still challenging as the objects are in close proximity
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p(c = m) ö(c =m) for /=1 B(c = m) for /=2 ö(c = m) for /=5 

-1 0.5126 0.3637 0.5015 0.5126 

0 0.0928 0.0659 0.0908 0.0928 

1 1.87x10° 0.007 2.67 x 107° 1.87 x 1075 

2 0 0 0 0 

3 6.20x10-1? 2.77x10° 1.67 x 10-10 6.20 x 10-12 

4 0.3945 0.5633 0.4077 0.3945 

5 209x10 1.6x 10-7 2.04 x 106 2.08 x 1076       

™ 
Table 4.2: Comparison of the exact marginal probabilities p(ch ) and the approximate marginal 

™ 
probabilities nen ) for 1, 2, and 5 BP iterations. 

around time k=60. 
(1 (1 

Table 4.2 shows p(cg )) and fi(cg )) at time k=60, for three different values of the 
. . ~ (1) . (1) 

number I of BP iterations. One can see that p(cy, ') deviates from p(cy, ') for I=1 
_ ra N: (19) and, somewhat less, for I=2. However, for I=5, D(ago ') is effectively equal to p(cg ). 

We observed a similar behavior for the remaining label values [ = (2 . 1M and also 

for other times k. This shows that the approximate marginal association probabilities 

calculated by the proposed BP-LMB filter converge to the true association probabilities 

within a few BP iterations. However, if the association problem is more difficult, involving 

more (close) objects and clutter measurements, the BP algorithm needs a larger number 

of iterations to converge. This is the reason why we set I = 20 for our simulations in 

Section 4.4.1. 

4.4.3 Analysis of Tracking Accuracy and Computational Complexity 

In the following, we present the simulation results for the scenario described in Section 

4.4.1. The example shown in Figure 4.3 suggests that the proposed BP-LMB filter has 

excellent detection and estimation performance. For a quantitative evaluation of the 

average performance of the three filters, we use the Euclidean distance-based optimal 

subpattern assignment (OSPA) metric with cutoff parameter c = 20 and order p =1 

[Schuhmacher et al., 2008]. The OSPA metric penalizes both a deviation between the 

estimated and true numbers of objects and deviations between the estimated and true 

object states [Schuhmacher et al., 2008]. 

Figure 4.4 shows the mean OSPA (MOSPA) error (averaged over 1000 simulation 

runs) versus time k for PS1 (10 objects, uc = 10) and PS2 (20 objects, uc = 50). For 

PS1, the BP-LMB, BP-TOMB/P, and Gibbs-LMB-1000 filters perform best and almost 

identically, closely followed by the Gibbs-LMB-100 filter. For the more challenging setting 

PS2, the BP-LMB and BP-TOMB/P filters perform best and almost identically, whereas 

both Gibbs-LMB filters perform substantially worse: already the Gibbs-LMB-1000 filter 

has a significantly larger MOSPA error during a long time interval, and the Gibbs-LMB-
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Figure 4.4: MOSPA error versus time for (a) PS1 and (b) PS2. 

100 filter has an even larger MOSPA error at almost all times. If the number of samples 

is increased beyond 1000 (not shown in Figure 5.6), the MOSPA error of the Gibbs-LMB 

filter decreases, but this comes at the cost of a higher complexity. 

The performance difference between the BP-LMB filter and the Gibbs-LMB filter for 

PS2 can be explained as follows. The Gibbs-LMB filter reduces complexity by pruning 

GLMB components with low weights in (3.38). As a consequence, the summations in the 

update equations (3.43) and (3.44) are performed only over the remaining (non-pruned) 

components. The pruning performed by the Gibbs-LMB filter can be equivalently formu- 

lated in terms of the association vector c,, introduced in Section 4.1. In this formulation, 

the pruning is based on drawing samples €; from the PMF p(c;), where each €, corre- 

sponds to one GLMB component. After sampling, all GLMB components that do not 

correspond to a sample C, are pruned. In PS2, the large numbers of objects and clutter 

measurements lead to a large number of relevant GLMB components with significant PMF 

values. As a consequence, if the number of samples is small, some of the relevant GLMB 

components are necessarily pruned, which means that relevant association information is 

ignored by the Gibbs-LMB filter. This results in a reduced tracking performance of the 

Gibbs-LMB filter in PS2. By contrast, in the BP-LMB filter, the approximate calcula- 

tion of the marginal association probabilities is not based on any pruning of components 

(irrespectively of their weights). 

We conclude from Figure 4.4 that for both PS1 and PS2, the proposed BP-LMB filter 

performs better than or similarly to the other filters. An interesting observation is the 

similarity of performance relative to the BP-TOMB/P filter. Indeed, a deeper analysis 

shows that despite the differences in the underlying state and system models, the BP- 

LMB and BP-TOMB/P filters are quite similar algorithmically. The BP-TOMB/P filter 

differs from the BP-LMB filter mainly in that it models undetected objects by a Poisson 

RFS. The modeling of undetected objects can facilitate the generation of new Bernoulli 

components resulting in improved tracking performance [Williams, 2015]. However, it 

did not show any performance improvements over our proposed Bernoulli generation
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Filter Total runtime AP runtime 

BP-LMB (proposed) 0.4435s 2.2810"s 
Gibbs-LMB-100 0.4888s 2.9810 °s 

BP-TOMB/P 0.8189s 3.48 10” "s 

Gibbs-LMB-1000 1.7318s 3.5610 *s     
Table 4.3: Total runtime and AP runtime for PS2. 

scheme of Section 4.3, but resulted in a higher computational complexity in the considered 

scenarios. As we will show in Chapter 5, the use of the Poisson RFS can be extended 

from the modeling of undetected objects to the modeling of “unlikely” objects which are 

objects that are unlikely to exist. This extension is achieved by a flexible transfer of 

Bernoulli components between the Poisson and the LMB RFS. The modeling of unlikely 

objects can lead to a large reduction in computational complexity in challenging scenarios 

with a large number of objects and/or high clutter rate. 

Table 4.3 lists the average runtimes of the different filters per time (k) step, referred to 

as “total runtimes,” as well as the average runtimes used for calculating one approximate 

marginal association probability, referred to as “AP runtimes.” The approximate marginal 

association probabilities are given by dl m) in (4.37) for the proposed BP-LMB filter 

and similarly for the BP-TOMB/P filter, and analogous quantities are computed by the 

Gibbs-LMB filter using the Gibbs sampling algorithm. The runtimes were obtained for 

PS2, using a MATLAB implementation on an Intel quad-core i7-6600U CPU. The results 

for the total runtimes show that the proposed BP-LMB filter is here less complex than 

the BP-TOMBj/P filter and the Gibbs-LMB-100 filter, and significantly less complex 

than the Gibbs-LMB-1000 filter. Furthermore, the AP runtimes of the BP-LMB and 

BP-TOMB/P filters are significantly lower than those of the Gibbs-LMB filter. Finally, 

as may be expected, the total and AP runtimes of the Gibbs-LMB filter increase with 

the number of Gibbs samples. 

The observed lower runtimes of the BP-LMB filter compared to the Gibbs-LMB-1000 

filter reflect also the linear scaling behavior ofthe BP algorithm compared to the quadratic 

scaling behavior of the Gibbs sampler-based calculation (cf. Section 4.3). On the other 

hand, the Gibbs-LMB filter employs a smaller number of Bernoulli components than the 

BP-LMB filter; this is a consequence of the reduction of the number of summation terms 

in (3.43) and (3.44) caused by the Gibbs sampling. However, this effect is counteracted by 

the fact that the complexity of the Gibbs-LMB filter scales quadratically in the number 

of Bernoulli components. This, together with the fact that the number P of samples 

used by the Gibbs sampler is considerably larger than the number / of BP iterations, 

causes the Gibbs-LMB filter to be more complex than the BP-LMB filter. Finally, the 

higher runtime of the BP-TOMB/P filter results from additional operations related to an 

explicit modeling of undetected objects and a different strategy for generating Bernoulli 

components.
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The proposed BP-LMB filter achieves an excellent tracking accuracy/complexity com- 

promise for the considered tracking scenarios. However, in scenarios with many objects 

and/or a high clutter rate, the sensor generates a large number of measurements. The 

large number of measurements results in a large number of newly generated Bernoulli 

components according to the scheme proposed in Section 4.3, which in turn results in a 

high computational complexity. In the next chapter, we augment the LMB state RFS by 

a Poisson RFS. The Poisson RFS will be used to track objects that are unlikely to exist 

and the LMB RFS to track objects that are likely to exist. The tracking of some part of 

the multi-object state within the less computationally demanding Poisson part, results 

in a reduced computational complexity, especially in scenarios of a high clutter rate.
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Chapter 5 

An Efficient LMB /Poisson Filter 

In this chapter, we propose an RFS-based multi-object tracking method with track con- 

tinuity that improves on the fast LMB filter of Chapter 4. The proposed method com- 

bines the strengths of the LMB filter (cf. Section 3.5 and Chapter 4) and the PHD filter 

(cf. Section 3.3) in that it achieves track continuity and good tracking performance while 

requiring a relatively low computational complexity. In our method, the multi-object 

state is modeled as a combination of an LMB RFS, i.e., a labeled RFS, and a Poisson 

RFS, i.e., an unlabeled RFS. After proposing a system model for labeled/unlabeled multi- 

object state RFSs, we derive the exact prediction and update steps for this system model. 

Then, we apply several approximations and modifications including the partitioning of 

label and measurement sets, the pruning of implausible object-measurement associations, 

and the transfer of certain unlabeled objects to labeled objects and vice versa. 

The resulting algorithm, referred to as LMB/P filter, achieves an excellent compromise 

between tracking accuracy and computational complexity. This is due to the fact that the 

LMB/P filter uses the LMB RFS to track objects that are likely to exist and the Poisson 

RFS to track objects that are unlikely to exist. More specifically, only if a quantity 

characterizing the plausibility of object existence is above a predefined threshold, the 

LMB/P filter generates a new labeled Bernoulli component based on the Poisson RFS, 

and the corresponding object is tracked within the more accurate but less efficient LMB 

part. Conversely, the LMB/P filter transfers labeled Bernoulli components to the Poisson 

RFS if the corresponding existence probability falls below another threshold. 

In scenarios with many objects and/or a high clutter rate, LMB filters have to gen- 

erate and maintain a large number of Bernoulli components in order to ensure satis- 

factory tracking performance. Since the proposed LMB/P filter tracks potential objects 

within the less computationally demanding Poisson part until their existence is sufliciently 

plausible, the LMB/P filter achieves a low complexity and a good accuracy/complexity 

compromise in challenging scenarios. This advantage is demonstrated by simulation ex- 

periments comparing the performance and complexity of the proposed filter to those of 

two state-of-the-art filters and the BP-LMB filter of Chapter 4. On the other hand, in 

63
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scenarios with few objects and a low or moderate clutter rate, the modeling of unlikely 

objects by a Poisson RFS may be unnecessarily complicated and result in an increased 

computational complexity. In such scenarios, the fast LMB filter proposed in Chapter 4 

can achieve a lower computational complexity. 

The remainder of this chapter is structured as follows. In Section 5.1, we present the 

system model underlying the LMB/P filter. The prediction step and the exact update 

step are derived in Sections 5.2 and 5.3, respectively. In Sections 5.4 and 5.5, we present 

the approximations introduced in the update step of the proposed LMB/P filter. A 

summary of the LMB/P filter algorithm is provided in Section 5.6. Finally, a simulation 

study assessing the performance of the proposed algorithm in comparison to the fast LMB 

filter of Chapter 4 and two state-of-the art filters is presented in Section 5.7. 

5.1 System Model 

In this section, we describe the system model underlying the proposed LMB/P filter. We 

present the state-transition model in Section 5.1.1, the measurement model in Section 

5.1.2, and the multi-object state model in Section 5.1.3. 

In general, we model the multi-object state at time k—1 by the tuple (X._1,Xk-ı), 

where X,_ı isa labeled RFS (cf. Section 2.2) and X,_, an unlabeled RFS (cf. Section 2.1), 

respectively. The elements of X,_ı are random tuples of the form (x;_1,|) € R™ x Ly 4, 

while the elements of X;_; are random vectors x;_; € R"=. Here, x;._ı describes the kine- 

matic part of the state and typically consists of the object’s position, the object’s velocity 

and possibly further parameters and | is the label that models the object’s identity. The 

finite set L;_, < L;-ı contains the labels corresponding to Xı, which is a subset of the 

label space L;_ı = {1,...,k-1}xN. Each label lEL;._ı is a tuple of the form I= (k/, v), 

where ke {1,...,k—1} represents the object’s time of birth and v € N distinguishes 

objects born at the same time. We next present the state-transition model underlying 

the LMB/P filter. 

5.1.1 State-transition Model 

The state-transition of object state Kr, Xr_ı) to object state (Xr,Xr) can be de- 

scribed by the (multi-object) state-transition pdf X X | Xk-; Xk_ı). We assume 

that X, and X, evolve independently in the sense that X, and X, are independent given 

(Xr_1; Xk-1)- Thus, the joint state-transition PDF can be decomposed according to 

X; XrlXk-1; Xk-1) = Krk; Kr) KrlXr-ı; X%-1); by further assuming that 

KK, Kr) = Fr Xi) and FIX, Xr-ı) = FXe X), ie., that the 

labeled objects at time k are independent of the unlabeled objects at time k—1 and that 

the unlabeled objects at time k are independent of the labeled objects at time k — 1, we 

get X X |Xr-1; Xkı) = f(Xk|Xk_1)f(Xk|Xk_1). Alternatively, the state-transition
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statistics can be described by the joint “state-transition PGFL,” which is defined as! 

Gyx,.x.[RhlXk-ı, Xk-ı] £ // R (X, Xl X1, Xioo1) 0 X1 0 X, (5.1) 

By inserting (X, X Xk-1, Xk-1) = F(Xe|Xp—1) f(Xk]| Xg—1) into (5.1), we get 

G5 [P B X1, X 1] = Cx, [hlXr-ılCx,[AlXk-ı]; (5.2) 

with 

Gy, [h Xy 1] é/iLka(XHXk—DCSXk, (5.3) 

Gx.[klXr-ı] 2 / RR F(X X 1) 0 X (5.4) 

Next, we will develop expressions for (5.3) and (5.4). 

At time k —1, an object with labeled state (x;_1;|) EX,_ı either survives with prob- 

ability ps(&;_1,!) or dies with probability 1—- ps(&;_1,1). If it survives, its new state x7. 

(without the label I) is distributed according to the transition PDF f(z;|xx-ı,!), and the 

label is preserved. We assume that the states of different objects evolve independent]y, 

i.e., (X, |) is conditionally independent, given (2;_1,1), of all the other (x/,) € X, and 

of all the x/,€ X,. Due to these assumptions, the multi-object state of the labeled objects 

at time k, given Xj_ı, is described by an LMB RFS (cf. Section 2.2.2) 

X, = U Sl&ı_1,1), (5.5) 
lely 4 

where S (x;_1,1) is a labeled Bernoulli RFS parametrized by the existence probability 

ps(&£-ı,l) and the spatial PDF f(zx|&x-ı,!)-. The LMB RFS X,, given X;_ı, is thus 

fully characterized by { (ps(&x-1,1), f(@x|®«-ı,1)) The state-transition model hıeuz, 

(5.5) defines the state-transition PDF of labeled objects f(X,|X,_-ı) and, thus, also the 

corresponding state-transition PGFL of labeled objects Gy, [h|X}_1] in (5.3), which is of 

LMB type and given by 

Gy, [hlX%-ı] = IJ GB [hyps(zp—1,1), f (- |2h—1,1)], (5.6) 
lEL;_, 

where A[hles-ı.] 2 (har, f(er.ler-ı,1)der. 

Furthermore, at time k—1, an unlabeled object with state x;_ı € X,_ı either survives 

with probability? ps(2z;_ı) or dies with probability 1- ps(&;_ı). If it survives, its new 

  

"This mixed labeled/unlabeled integral is defined as an iterated integral, e.g., 

f (J RR FR, Ku |Zu) EX) hX*öX,, using first (2.1) for the inner integral and then (2.21) for 

the outer integral. 
*With an abuse of notation, ps(-) is used to denote both the survival probability of labeled objects 

(with argument (xz;-ı,!)) and of unlabeled objects (with argument x;-ı). A similar remark applies to 
the detection probability pn(-) considered in Section 5.1.2.



66 CHAPTER 5. AN EFFICIENT LMB/POISSON FILTER 

state x, is distributed according to the transition PDF f(x;|®,-ı). We assume that 

the states of different unlabeled objects evolve independent!ly, i.e., x; is conditionally 

independent, given z;-ı, of all the other x,€ X, and ofall (x,,') € X,. Accordingly, the 

multi-object state of the survived unlabeled objects at time k, given X,_ı, is modeled as 

an MB RFS (cf. Section 2.14) X; =U,, ‚ex, ‚Sk(&x-ı), where S.(2x_1) is a Bernoulli 

RFS with existence probability ps(&._ı) and spatial PDF f(z;.|2;-ı)- The MB RFS X 

is thus fully characterized by { (ps(&.-1), F(zx.|ex-ı)) } 
Tp_1€Xgp_1 

There may also be newborn unlabeled objects.” Their multi-object state is modeled 

by a Poisson RFS X? with mean parameter zig and spatial PDF fs(&;) and, hence, PHD 

Ag(zr) = up fB(tr) (cf. Section 2.1.2). We furthermore assume that the newborn objects 

xB are conditionally independent, given Xx_1, of the survived objects x. The entirety 

of unlabeled objects at time k, given X7,._1, is modeled by the RFS 

Xi = XpUXE = U sk(wk1)> UXg. (5.7) 
T 1€ X1 

The state-transition model (5.7) defines the state-transition PDF of unlabeled objects 

f&X|X%-1) and, thus, also the corresponding state-transition PGFL of unlabeled objects 

Gx, [h| Xk_1] in (5.4). Given our model assumptions described above, it follows that X7 

and X? in (5.7) are conditionally independent given X,_1; thus, the PGFL Gx,[h|Xx-ı] 

factorizes according to (2.7) as 

Gx.[kl&x-ı] = GxsIhlAx-ıl Gxelhl. (5.8) 

According to our model, Gxs [hlX,._ı] is of MB type (cf. (2.20)), i.e., 

Geha = I] @GP [hips(me—r), f(|lzn)], (5.9) 
Tp_1€Xk_1 

with f[hlex-ı] & [h(®r) Fern ı)der, and GyxB [h] is of Poisson type (cf. (2.11)), i.e., 

Gyal[h] = el, (5.10) 

with AB[h 1] & (har) -1)Ap(zr)dex. Next, we describe the measurement model 

underlying the proposed LMB/P filter. 

  

®In our system model, newborn objects may not be labeled objects. As we will explain in Section 

9.3, there do exist “new” labeled objects, which are previously unlabeled objects that are augmented by 

a new distinct label and thereby are transferred from the unlabeled RFS to the labeled RFS. Thus, this 

creation of new labeled objects is not modeled by a birth process as in the LMB filter [Reuter et al., 

2014]; it is considered as part of the tracking algorithm, rather than of the system model.
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5.1.2 Measurement Model 

(1) (Mr) At time k, a sensor produces My measurements z;’,...,z; ", which are modeled as 

an (unlabeled) RFS Z; = [zi, zur }a, The measurements may originate from a 

labeled object, an unlabeled object, or clutter. The statistics of the measurements can 

be described by the likelihood function f(Z;|X%, X) or, equivalently, by the “likelihood 

PGFL,” which is defined as 

Gz,|9lXr, Xr] 2 (a szukX5Z (5.11) 

In the following, we develop an expression for (5.11). 

A labeled object with state (x.,|) EX, is detected (i.e., it generates a measurement) 

with probability pn(z;,!) or is missed (i.e., it does not generate a measurement) with 

probability 1- pn(&x, 1). In the first case, the object generates exactly one measurement 

z,, which is distributed according to the single-object likelihood function f(zx|x&x,!). We 

assume that z; is conditionally independent, given (z;,1), of all the other zj € Z;, all the 

other (x},!’)EX;, and all the x, € X,. Accordingly, the measurements originating from 

labeled objects, given X,., are modeled by an MB ZI = Uırcız; ‚Klar, l), where OL (x, !) 

is a Bernoulli RFS with existence probability pn (xx, !) and spatial PDF f(zx|xx,!). Thus, 

Z1 is characterized by the parameter set { (pn(zx, 1), f(zi lex; !)) hie; , 

An unlabeled object with state x, € X. is detected with probability pp (x) or is missed 

with probability 1—- pn (&;). In the first case, it generates exactly one measurement Z;, 

which is distributed according to the single-object likelihood function f(z;|2.). We 

assume that z; is conditionally independent, given x;, of all the other z, € Z;, all the 

other X, € X, and all the (x/,")€X,;. Thus, the measurements originating from unlabeled 

objects, given X}, are modeled by an MB RFS ZY = Uz, ex, ©! (x;), where ©! (z;.) is 

a Bernoulli RFS with existence probability pn(®;) and spatial PDF f(zx|xx). Thus, ZU 

is characterized by the parameter set {(pp(zx), f(zkl®k))},, ¢y, - 

Finally, the clutter-originated measurements are modeled by a Poisson RFS zo with 

mean parameter uc and spatial PDF fc(z;) and, hence, PHD Ac(2x) = uc fc(zr)- We 

furthermore assume that the clutter-orginated measurements are conditionally indepen- 

dent, given (X,, X), of the measurements originated by labeled and unlabeled objects, 

i.e., of ZE and ZU. The overall measurement RFS at time k, given the multi-object state 

(X, X), is 

Z, = Zu uzE - U e};(mk,z)> U U e}gm)) UZE. (5.12) 
lEL;_] tr EX 

  

“The measurement model describes the statistical dependency of the random (unobserved) measure- 

ments on the multiobject state. Accordingly, at this point, the measurements are considered random 

and thus denoted as Z; = zZ ern, z(" N, However, in the context of the proposed tracking algorithm 
(see Sections 5.1.3-5.6), the measurements will be considered as deterministic (observed) and will thus 

be denoted as Z, = [z|,...,zi""}.
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The measurement model (5.12) defines the multi-object likelihood function f(Z.| Xy, X)) 

and, thus, also the likelilhood PGFL Gz, [g]Xr, X] in (5.11). Due to our model assump- 

tions described above, the measurements zb, zu, and zo are conditionally independent 

given (X,,Xx). Thus, Gz, 9] Xr, X] factorizes according to 

Gz, [ol Xu. Xu] = GzulolXu] GzulalXul Gzelo]. (5.13) 

Here, Gzı [9] X] and Gzu 9X] are both of MB type, i.e., 

Gzu[gl Kr] = IJ Per! 9; pn (&r;,1), ft \2%,2)], (5.14) 

lelly 

Gzulgl Xe] = 1] &® g;po (), £(:lzi)] (5.15) 
rei, 

where f[gler, 1] & [o(zr) F(zrler, )dzr and floler] = [g(zr) f(zuler)dzr- Further, 

Gze [g] is of Poisson type, i.e., 

Gzelg] = bl, (5.16) 

where AC[g 1] & [(g(zx) -1)Ac(zr)dzx- Next, we will specify the model of the multi- 

object state. 

5.1.3 Multi-object State Model 

In a Bayesian sequential inference framework, the fundamental quantity to be calculated 

recursively is the joint posterior multi-object PDF of X, and X;, i.e., X, KrlZu:r), 

with Zur & (Zı,...,Zx). We assume that at time k—1, X,_ı and X,_ı are conditionally 

independent given Z1.£_-1, So that 

Fr, Kk-1lZ1:1) = FKklZırı) FXe-ılZı:r-1): (5.17) 

Alternatively, we can describe the posterior statistics in form of the joint posterior PGFL, 

which is defined at time k—1 as 

CR hlZux-il  [/ HR p Xt f(X 1, X ılZu:k-ı) 6X 16 X 1: (5.18) 

Inserting (5.17) into (5.18) yields 

Cx,_ x, [R hlZır-ı] = Gy, ,[RlZu:-1]l @x,_. [hlZı-ıl. (5.19) 

where 

g, 1[h|Zlkz 1] = /th L (Xe—1] Z1k1) 0 X k1, (5.20) 

Gx,_.[RlZur-ı] = er "F&Xx-ılZur-1) 9 AR-ı- (5.21)
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The posterior PGFLs ka_l[MZl:k_l] and Gx,_,|h|Z1.k—1] are defined as follows. We 

model X;_; as an LMB RFS consisting of |L; ,| labeled Bernoulli RFSs with existence 

probabilities Du and spatial PDFs fV(x,_1), le L;_,. Here, L}_, < L«-ı is the set 

of labels underlying the LMB state RFS X,_ı. Thus, according to (2.26), the posterior 

PGFL of the labeled objects at time k—1 is 

1 rri l l Gx ‚AlZı-ıl= ]] rlkr 2. (5.22) 
lEeL,;_, 

where ® IR) — [h(a4_1,1) f(@x-ı)d®x_ı. Note that each Bernoulli component in 

(5.22) represents a potentially existing object. Furthermore, we model X,_ı as a Poisson 

RFS with PHD A(&;_ı). Thus, according to (2.11), the posterior PGFL of the unlabeled 

objects at time k—1 is given by 

x, ,[RlZurı] = er PH, (5.23) 

with Ar-ılk -1] = [(k(ax-1) - V)Aar-ı)dac-ı- 

The labeled state RFS, i.e, the LMB RFS X,._ı, allows the corresponding objects to be 

distinguished, whereas the objects modeled by the unlabeled state RFS, i.e., the Poisson 

RFS X,_ı, are indistinguishable. On the other hand, the Poisson RFS is parametrized 

by a single function, i.e., its PHD, and it enables a much more efficient representation 

and processing of a large number of potentially existing objects. Therefore, we will model 

objects that are likely to exist by the computationally more demanding LMB part and 

objects that are unlikely to exist by the computationally less demanding Poisson part. 

The LMB part guarantees track continuity and thereby allows the consistent tracking of 

distinguishable objects over consecutive time steps. 

5.2 Prediction Step 

The proposed LMB/P filter propagates the posterior multi-object PDF f (X%, XrlZ1:rk), 

equivalently the posterior PGFL G%, x, [h, h|Zı.r], from one time step to the next. This 

propagation consists of a prediction step and an update step. 

We start with the derivation of the prediction step, which converts the previous 

posterior PGFL Gx, x, hlZur-ıl in (5.18), into the predicted posterior PGFL 

Gx.X, [h, klZı:s-ı]. It is defined according to 

Gg,.x,.[hlZux-ıl 2 | [are XrlZı:-1)06XR 6X, (5.24) 

where f (X % Xk|Z1:k-ı) is the predicted posterior multi-object PDF. This conversion is 

based on the multi-object state-transition model described in Section 5.1.1. The deriva- 

tion of the prediction step is similar to that in [|Williams, 2015] but extends it from an 

unlabeled object state to a labeled/unlabeled object state.
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Recap that the prediction step is given by the Chapman-Kolmogorov equation ac- 

cording to (3.1) as 

X KrlZu:r_ı) = FR KR Ki) FR K-ılZi Nö: 

(5.25) 
Here, expression (5.25) extends (3.1) from PDFs describing unlabeled RFSs to PDFs 

describing tuples of labeled/unlabeled RFSs. Inserting (5.25) into (5.24) and grouping 

terms, yields 

OX,.x, [h, h|Zı:r-ıl 

- [I [ra u Door) zur 

= | 6x.x. HR Kl Fr K-ılZiaRr-10K-, (5.26) 

where we have used the definition of the state-transition PGFL Gy, X, Ih, hIX k-1: Xk-ı] 

in (5.1). Further using (5.2) and (5.17) yields 

x [onls&-lzan%- 

After introducing the short notations 

Gy [hlZux-ıl = [es MR zus (5.27) 

Gx,[hlZur-ı] & [on K-lZu6X-. (5.28) 

expression (5.26) becomes 

Gs, x, [h Bl Z1k-1] = Gg [ Zrk-1] Ex,[hlZixr-il. (5.29) 

Analogously to the previous joint posterior PGFL (5.19), the predicted joint posterior 

PGFL (5.29) factorizes into a labeled and an unlabeled part. Hence, the prediction 

step can be performed separately for the labeled and unlabeled objects. This is a direct 

consequence of the model assumptions (5.17) and (5.2). Next, we derive expressions of 

the predicted posterior pgfl of labeled objects Gy, [rlZ1:k_ı] in (5.27) and the predicted 

posterior pgfl of unlabeled objects Gx,[h|Z1:x-ı] in (5.28) based on the state-transition 

model proposed in Section 5.1.1.
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5.2.1 Expression of the Predicted Posterior PGFL of Labeled 

Objects Gy, AlZur-ı] 

We now derive a specific expression of Gy, IhlZı:_ı] in (5.29) by first inserting (5.6) into 

(5.27), which yields 

Gy, [rl Zu] = K IJ Per thps(er-ı,l), fl 2.0] F&r-ılZur-1)dXr-ı 
IELi_, 

= Gy, [ Z1k-1]. (5.30) 

Here, we have used the definition of the PGFL of a labeled RFS in (2.23) and introduced 

the short notation 

W(zg, 1) 2 GP[hsps(zp-1,1), (- |2h-1,1)] 

= 1 ps(@rr,]) + ps(@ir, ) / B ) f (g1, 1) day. 

The PGFL ka_l[fiflZl:k_l] in (5.30) is the previous posterior PGFL of labeled objects 

(5.20) but with h(z;_1, 1) replaced ” h’(&x,1). Since, according to (5.22), G, [klZı:-ıl 

)}, eu: ‚ the predicted posterior PGFL 

of labeled objects (5.30) can be rewritten according to @. 26) as 

is an LMB pgfl parametrized by { ( ri) © F"(&r-ı) 

Gy, [h|Z:: :k— 1] = ]J 1— (l) 1 + ri) 1 h(&.-1, l) gm (2 1ı)daer-ı . 

€Ly, 

Note that the same expression appears in the derivation of the LMB filter [Reuter et al., 

2014]. There it was shown that it corresponds to an LMB pgfl and can thus be rewritten 

according to 

{ { 7 { G [ Zira) = ] 1—r§€|>k Fr ‚| ar. fin (an)dan 
lelly 4 

riz. [ 

- H GBe Br Furl) (5.31) 

lelly 4 

with the existence probabilities and spatial PDFs given by 

  

ei. 1 =, [ost (21, (ar-ı)dar-ı, (5.32) 

! Ferlar-ı,Dps(&r-1, ) F" (ar ı)der- Sun ‚(z k) = J ( | 1 ) ( 1 ) ( 1) 1 (5.33) 

Sps&,_,DF(@,_)dz)_ı 

for JEL}_,. Here, ps(&;-ı,!) and f(®x|&x-ı,!) are the survival probability and state- 

transition PDF, respectively, introduced in Section 5.1.1, and ri) ) ‚and f)(&;_ı) are the
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posterior existence probabilities and posterior spatial PDFs, respectively, describing the 

labeled objects at time k — 1 (cf. (5.22)). Note that the relations (5.32) and (5.33) are 

equal to the prediction relations in the LMB filter (cf. (3.34) and (3.35)). 

5.2.2 Expression of the Predicted Posterior PGFL of Unlabeled 

Objects Gx,[h|Zıx- 1] 

Next, we derive a specific expression of the PGFL Gx,|IhlZı:r-ı] in (5.28). We therefore 

insert (5.8)-(5.10) into (5.28), which yields 

Gx,|klZı:r-ıl 

= ( IJ GP In, ps(@r-1), fClzu-n]) AR FOX, ]Zua)6XR_ı 
Tr_1€Xp_1 

= x, [Zur er. (5.34) 

Here, we have used the definition of the PGFL of an unlabeled RFS (2.5) and introduced 

the short notation 

W (xi) & G Ih; ps (2.-1), FÜ: |ex-ı)] 

— 1~ ps(@i1) + ps(@i_i) / Hau) farleı)deı. 

The PGFL Gx,_, [R’|Z1:x-ı] in (5.34) is the previous posterior PGFL of unlabeled objects 

(5.21) but with h(z;-ı) replaced by h’(z;.). Note that Gx,_, [h|Z1:«-ı] is of Poisson type 

according to (5.23) parametrized by the posterior PHD A(z;_1). Hence, the predicted 

posterior PGFL of unlabeled objects in (5.34) can be rewritten as 

Gx,[hlZi:r-ı] = M-t W AN =) (5.35) 

where A\g_1[h/ —1] = [(h’(&x) - DAlzx-ı)daer. An analysis of (5.35) shows that it is 

equal to the predicted posterior PGFL in the PHD filter [Mahler, 2003]. Since (5.35) 

is no longer of Poisson type, we approximate it as in the PHD filter by a Poisson RFS 

whose PHD equals the PHD corresponding to Gx, [h|Z1:x-ı]- This yields [Mahler, 2003] 

Gx, [B| Zyp— 1] ~ sl (5.36) 

where Arık-ılRr—1] = (her) - 1))\k|k_1(a:k)da:k with 

)\k:|k:—1<wk:) = )\B(wk;) +/f(wk|wk_1)ps(wk_1))\(a:k_l)dwk_l. (5.37) 

Here, ps (2-1), f(x 1), and Ag(x;.) are the survival probability, the state-transition 

PDF, and the birth PHD, respectively, introduced in Section 5.1.1, and A(z2._ı) is the
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posterior PHD of unlabeled objects at time k — 1 (cf. (5.23)). Expression (5.37) equals 

the prediction relation of the PHD filter (cf. (3.6)). 

Note that the labeled state RFS, i.e, the LMB RFS X,._ı, allows the corresponding 

objects to be distinguished, whereas the objects modeled by the unlabeled state RFS, 

i.e., the Poisson RFS X;,_ı, are indistinguishable. On the other hand, the Poisson RFS is 

parametrized by a single function, i.e., its PHD, and it enables a much more efficient rep- 

resentation and processing of a large number of potentially existing objects. Therefore, 

we aim to model objects that are likely to exist by the computationally more demanding 

LMB part and objects that are rather unlikely to exist by the computationally less de- 

manding Poisson part. The LMB part moreover guarantees track continuity and thereby 

allows the consistent tracking of distinguishable objects over consecutive time steps. 

We conclude that when applying approximation (5.36), the prediction step preserves 

the LMB-Poisson form of the previous posterior PGFL Gx.,x. ,[RhlZır-ıl- Sum- 

marizing, the prediction step of the proposed LMB/P filter now consists of comput- 

ing the predicted posterior existence probabilities lk-ı and the predicted spatial PDFs 

Fur (@R) according to (5.32) and (5.33), respectively, for the labeled objects and the 

predicted posterior PHD Az. -ı (2x) according to (5.37) for the unlabeled objects. 

5.3 Exact Update Step 

In the update step, the predicted posterior PGFL Gy Ih, hlZı:r_ı] is converted into 

the current posterior PGFL Gy, x, [h, h|Z1:r], which is defined as 

Gx x, [hs hlZu] = [kn KW ERLSK. (5.38) 

Here, X XrlZu:r) is the posterior PDF at time k. This conversion is based on the 

measurement model described in Section 5.1.2 and involves the current measurement set 

Zr. It turns out that the posterior PGFL Gy, x, Ih, hlZ1:x] factors according to 

G, x, [Pl Z1a) = G x, hlZır] Cx.[Al, (5.39) 

where Gg( x [h, h|Z1:x] is a joint labeled/unlabeled PGFL and Gx, [h] is a solely unlabeled 
ks Nk 

PGFL. The factor Gg( x [h, h] represents objects — either likely to exist or not — that 
ks Nk 

generated a measurement in the current or a previous update step, while the factor 

Gx, [h] represents objects that are unlikely to exist and did not generate a measurement 

in the current update step. Hence, we call x, [h, h] the pgfl of detected objects and 

Gx,|h] the pgfl of undetected objects. 

The derivation of the exact update step is an extension of that in [Williams, 2015] 

from an unlabeled to a labeled/unlabeled case. Similar results, but without derivation 

and in terms of multi-object PDFs, were reported in [Meyer et al., 2018]. We emphasize
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that the update step of the proposed LMB/P filter is different in that it involves several 

modifications and approximations, to be described in Section 5.4 and Section 5.5. In the 

following subsections, we derive (5.39), i.e., we first show that Gy, x, [h, h|Zı:x] factorizes 

in Rx, Ih, hlZ1:.x] and Gx, [h], and we then derive specific expressions of these PGFLs. 

5.3.1 Expression of the Posterior PGFL Gy, x,[h, h|Zu:x] 

Analogously to the prediction step, we now derive the update step using PGFLs. In 

addition to PGFLs GIh] (which satisfy G]1] =1 (cf. Section 2.1.1 and Section 2.2.1)), we 

will also use conventional functionals F[h] (for which F[1] #1 in general) in the following. 

A functional is defined equivalently to a PGFL (cf. (2.5) and (2.23)) with the difference 

that the function f(X) in (2.5) and f(X) in (2.23) is a general set function and not a valid 

multi-object PDF, i.e., the function does not necessarily integrate to one ( [ F(X)6X # 1 

and [ f(X)0X #1). 

We start by formulating the update step of the multi-object Bayes filter in (3.2) in 

terms of jointly labeled/unlabeled multi-object PDFs, i.e., 

zZ, X, Xr|lZ1:k-1) 
  

  

X, XrlZır) = 5.40 F ) = T ) (5:40) 
By inserting (5.40) into (5.38), we get for the posterior PGFL 

- hr Kr F(Zu, Xu, XulZun-ı) 6XR EX, 
Gy x, % hlZu:r] = J (5.41) 

Zr Z1:-1) 

Note that Z, is considered deterministic here and represents the actual measurements 

generated by the sensor. Thus, f(Zx, Xr, Xr|Z1:r_ı) is only a function of X, and X, and 

not of Z, and consequently Gx.x, Ih, hlZ1..] is also only a PGFL with respect to X, and 

X, and not with respect to Z,. Note that the denominator of (5.41) is only a normalization 

factor (since Z,, is observed and deterministic) that ensures that Gy, x, [h, hIZı:x] is a valid 

PGFL, i.e., G[1] =1. Next, we define the functional given by the numerator of (5.41) 

according to 

Fx, x, [hy hlZue] = / / hÄRHÄR F (Zu, Xu, Kl Zun-ı) 6XR 6X. (5.42) 

We further note that the denominator of (5.41) can be computed from (5.42) by setting 

h=landh=1, i.e., 

f(ZxlZ1:x-ı) = Ira Xu 0%5X 

= Rx, x, [hhlZın] (5.43) 
  h=1,h=1' 

After replacing the numerator and the denominator of (5.41) by (5.42) and (5.43), re-
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spectively, we get for the joint posterior PGFL of labeled and unlabeled objects 

Fy, [, hl Z14] 

Fa, x, hlZı: 
  Cx x, hlZur] = (5.44) 

| una 

Note that (5.44) constitutes the update step of the multi-object Bayes filter for la- 

beled/unlabeled state RFSs in PGFL form. A similar result for purely unlabeled RFS 

was presented in [Mahler, 2007b]. Next, we derive an expression of IF, x, [h, hlZı.x] in 

(5.44). 

5.3.2 Expression of Fy x, [h, h| Zy.4] 

We start by introducing the joint functional of measurements Z;., labeled objects X, and 

unlabeled objects X, according to 

EZ REXr [9; h, hlZur-ıl £ /// ngBthXk (Zr, Xp, XrlZu:-1)6ZR KK 6X, (5.45) 

where, contrary to (5.42), the measurements Z, are considered as random. From this 

expression, the functional Fy [h, h|Z1.4] in (5.42) can be obtained according to (2.6) 

  

as 

= oF; 5 [9; h,hlZı:k-ı] 

F% X [hahlzlk] = Er" 7 g=0 5; (5.46) 
kıf\k 0Z, ) 

7! =27, 

where 37 = W. Note that here Fy x, [h, h|Z1.4] is computed by first tak- 

ww... zur) and then setting g = 0. ing the functional derivative with respect to z 

As a result of these two operations, the measurement-related part of the joint PGFL 

FF) .x, g, h, hlZ1:r-ı] is transformed into the “multi-object PDF domain”. Finally, in- 

serting (conditioning on) the observed measurements Zj, we obtain Iy [h, hlZı:r]. 

Next, we develop a specific expression of the functional Fy %X, g, B,h|Z1:k_1] in 

(5.45) based on the measurement model proposed in Section 5.1.2. We first use the factor- 

ization f(Zy, Xk;, XxlZı:k-ı) = f(ZulXk; Xk, Zl:kz—l)f<)~(k:7 Xx|Zı:k-ı) and the assump- 

tion that the current measurements Z; are conditionally independent of all measurements 

up to time k-1, Z1:k 1, given the current object state (Xr, X), 1-e., FZulXr, X, Z1:k-1) 

— f(Zu|X%,X%) (cf. Section 3.1). This leads to (cf. (5.45)) 

"zu 9 hl Zu] = Il» hr hr F(Zu | X, Kr) PX, XrlZu:r-ı) 6 Zu 6X 6X 

= [Rn GzlolRe Kl Klin VL 6X, 

where we have used the definition of the likelihood PGFL in (5.11), i.e., Gz, [9] Xr, X] 2 

[ g% f(Zy| Xy, Xx)0Zy,. Using next factorizations (5.13) and (5.17), we obtain
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Fy s, x, 19,0 hlZu:-ı] = </ X Gz%[glffk] F&r|Zu:r-ı) 5x) 

X </ hXk ng[g|Xk;]f(Xk;|lekz—1)5Xk:) ng[g]. 

  

(5.47) 

After introducing the short notations 

F, 3,9 hlZu-ıl & * Gzu gl Kr] FKrlZur-ı) 8X, (5.48) 

F7,x,[9; hlZu:x-ıl = (/ hr Gzylol&i KılZuu-) 6%) Gzelgl, (5.49) 

expression (5.47) can be rewritten according to 

F.X 19, h, h|Zu:r-ıl — FR. 9, hlZu-ıl F7,.x, 9, h|Zı:r-ıl . (5.50) 

Finally, inserting (5.50) into (5.46) yields 

5 s 
I .x,R hlZu:r] = 57 Iy 5. 19,0 Z1k—1) Fz, x, 19, Bl Z1:6-1] ) |g=0 - (5.51) 

7] =7, 

In the next subsection, we take the functional derivatives occurring in (5.51). 

5.3.3 Functional Derivatives of Iy, x, Ih, h|Zy.x] 

In the following, we will develop specific expressions of the functionals F7, x, 9, AlZur-ı] 

and F7,x,.[9; klZı:r-ı] defined in (5.48) and (5.49), respectively, based on the measure- 

ment model proposed in Section 5.1.2. For this purpose, we insert Gyr [g|Xx] in (5.14) 

into (5.48) and use hir — ler: , h(z;,1), which yields 

Fy, 3,9 hlZux-ı] -/( 11 B(wk,l)GBer[g;pD(wk,l),f(-\mk,z)])f(Xk|ZLk_1)5Xk. 
lEL}_, 

(5.52) 

By furthermore introducing the short notation 

W' (xg, 1) & hau, 1) CP" [g; po (2, 1), FC er. 1)]; (5.53) 

and using the definition of the PGFL of labeled RFS in (2.23), expression (5.52) can be 

rewritten as 

F7,3,9 RlZır-ıl = Ca, [kl Zir-1l- (5.54)
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Note that Gy, [h”|Z1:k_ı] here is the predicted posterior LMB PGFL of labeled objects 

n (5.31), but where h(z;,1) is replaced by h”(x;,,1), and (5.54) can thus be rewritten as 

7 r I { 

Fy s lo:hZieal = II ri Fri (5.55) 
leL;_, 

Analogously, we insert Gzu [9] X] in (5.15) into (5.49) and use h%* = llz,cx, R(&x) 

which yields 

F7,x,|9; RlZı:r- 1] 

— K 11 h(mk)GBer[g;pD(wk),f(-lwk)])f(Xk;|Z1:k:—1)5Xk: Gzelsl. (5.56) 
zr EX% 

Next, we introduce the short notation 

h" (2x) & h(ar) GO [g; po (@), f(|2e)] (5.57) 

and use the definition of the PGFL of unlabeled objects in (2.5) to rewrite expression 

(5.56) according to 

sz,xk [9; hlZu«-ıl = Gx, [A| Z1:x-ı] Gze [g] . (5.58) 

Note that Gx,[h”|Z1:r-ı] here is the predicted posterior Poisson PGFL of unlabeled 

objects in (5.36), but where h(z;) is replaced by h”(z;.), Gze [g] is the PGFL given by 

(5.16), and (5.58) can thus be rewritten as 

F7..X, [9; h|Z1:r-ı] = erki-alTHARTo< 1] . (5.59) 

Finally, inserting ” and (5.59) into (5.51) leads to 

x, x, RhlZur] = al IJ GBern”; kr d Kal) nl) 

S   

Next, we apply the product rule of functional derivatives (cf. (2.8)) to (5.60), which yields 

(analogous to [Williams, 2015]) 

Fy, x, [, hl Zy4] 

scher Ih”: 7 " 

-> (I ee) 77 
dz' ) d.cD, “leL* 0z meMa k k—1 2% k 

SeArir-ıla"—1] +0 [g-1] 
    

  
g 
Zi, = 2% 

(5.61) 

where we have introduced the index vector d;. of length |L};_,| with entries dD =me
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{0} UM; forleL;_, (recap that M, = {1,...,Mx}). Here, the set Dy comprises all 

those vectors d;., whose nonzero entries are different. An interpretation of d;. and dı) in 

the context of object-measurement associations will be given in Section 8.3.7. Further, 

Ma, < Mı comprises all (nonzero) measurement indices that are not involved in the 

index vector d;.. Next, we will take the functional derivatives of GB [a”; Pk Fun] 

Ar” -1]+AR [9-1] (m) and e with respect to 2, 7/, m € M. 

We first consider the functionals GB*[h”; Fk IN ‚| in (5.61) and rewrite them by 

using (2.13) and (5.53) according to 

r I { I { 7 Mr Sun) = E- Pak + rk / har (1 - polen.) 

+ po(z, 1) / g9(zx) Fler, Ddzx) fin (@r)der. (5.62) 

Let AU) [h] denote the functional derivative GP [h"; Filk- uf Sun ‚|/62 (m) ‚mef{0ru 

My. We get 

Ab) n] = Fk ‚| Hau Dootan, Del Ian. fi ble—1 (@) AT, (5.63) 

for m € My. Note that for m = 0, the functional derivative operation is not applied. 

Hence, we have 

T I ! 
(S(l’o) [h] GBe [h//, Igil)k? 1? Sun ı); (5.64) 

with GB [hei Fun] given by (5.62). 

Next, we consider the functional eArık-ıla’-UHARIG-1] in (5.61). By using Ark ı la” — 

1] = [(h’(z.) - 1)Arın-ı (Er)dek, AD Ig-1] = [(g(z2) -1)Ac(zr)dzr, and furthermore 

(2.13) and (5.57), we get 

Arıkılh” — 1] + A lg - 1] = / (Hau) (1 - pD(ZBk;) —I—pD(CBk) /g(zk)f(zk|wk) dzk) — 1) 

x Ari ı(Er)der + / (9(2x) — 1) )\C(zk)dzk. 

  Let Ax,[h] denote I] „en, ; 5 eAnk-ılh" UNE, which can be found as 
2k 

Ax,[h] = [al A, [Rl I] AIR: (5.65) 
meMa, 

Here, the functionals Fx,[h], Fx,[h] and A®[A] are given by 

Fx, [hl A Shan) A-pper))-1) Arır-ı(@r)der (5.66) 

Fx, [hl 2 es )-1)Arın-ı (ar )der + [(g(zR)-1)Ac(zr)dz
;
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AR 2 Ag(z™) + / har) Arınılar)pn(@r) (2 |er)der,  (5.67) 

respectively, with h(az,) & h(zx)(pn(zr) [ g(zr) F(zrlar)dzr). We are now ready to 

insert the obtained results into (5.61). 

5.3.4 Final Expression of Fy x, [h, h| Zy.4] 

We insert expressions (5.63), (5.64), and (5.65) into (5.61), which yields 

Pax lienlzu- (TEAM) Ruin TI Am 
d.€D; lEeL;_, meMa,   g=0 

Next, we set g(z;) = 0, which leads to 

Filz D ( Ta) II Am) Ru, 
d,.EeD; lEL;_, me Ma, 

where AU R] is given for me M, by IND in (5.63) and for m=0 by 

x > l | 7 | AO) [hl =1- TIE:|)I<:—1 + ko / h(zx, (1 — pD(ZBk;, l))flg|3<:—1<wk) dr... (5.68) 

Since the functional Fx,[R] is independent of d,., Fx, x, [h, h|Z1.1] can be grouped accord- 

ing to 

Fy, x, hlZun] = F% x, RhlZu] Fr. [h], (5.69) 

with 

FR „,[R hlZun] = > < I1 A(z,dfijnm) I] am. (5.70) 

d,eD; “leL;_, meMa, 

Finally, to obtain the posterior PGFL Gy, x, [h, h|Zı.x], the functional Fg o x, [h, h| Z1.4] 

has to be normalized according to (5.44). Since it is composed of two separate function- 

als (cf. (5.69)), the normalization can be performed separately for each functional. More 

precisely, inserting (5.69) into (5.44) yields 

  

  

  

Fi , [h,hlZunl F 
7 _ X Xt : X [h] 

X, ALkl =1 p=1 = %k Lkl|p=1 

After introducing the short notations 

FL o [h,h|Z1.4) ~ X5 X ’ : 

G;“(k’xk [h7 hlzlik] £ Dk ; (5.72) 

  
FL hlZunll ann
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IX, [hl Gx,[hlZu] S 2 —7— a mul. 
(5.73) 

expression (5.71) becomes (5.39). In the next two subsections, we develop specific ex- 

pressions of Rx, [h, h]Z1:r] and Gx,[hlZ1.x] by performing the normalizations according 

to (5.72) and (5.73), respectively. Note that the factor x, [h, h] represents objects - 

either likely to exist or not — that generated a measurement in the current or a previous 

update step, while the factor Gx,|h| represents objects that are unlikely to exist and did 

not generate a measurement in the current update step. Hence, we call Rx, Ih, h] the 

PGFL of detected objects and Gx,|h| the PGFL of undetected objects. 

5.3.5 Expression of the PGFL of Detected Objects G5, x, [h, hl 

We start with the normalization of FR X, [h, h|Z1.] in (5.70) according to (5.72). We 

notice that the functionals A" [A] (cf. (5.63) with AU R] = A(l’dg))[fi] and (5.68)) 

and AU[R] (cf. (5.67)) in (5.70) can be represented as weighted Bernoulli PGFLs by using 

identity (2.14). More precisely, AC")[h] can be rewritten as BT Be, m], 

where for lEL}_, and me M,, (cf. (5.63)), the parameters are given by 

  

  

  

a mE ed 672) 

po (ar, f (2" |@e,1) £y (@) 
FA (tx) = (m) ) ) (5.76) 

Spo@,D f (2@, 1) fop (ar) ARE, 

and for lEL;_, and m =0 (cf. (5.68)) by 

Kerl [Oomtend) led 6 
I I 

(1,0) _ TIE:|)I<:—1 f(1_pD(wknl))f/g|1)<;—1(wk)dwk 5 78 
Ty = 0 (0 / (1) / r’ (5.78) 

=71 T Thfa J (1=pp(=}, 1)) fk:|k:—1<wk:)dwk: 

1= pp (@, 1)) Fip_y (@) FI a) = | ) inc (5.79) 
So, D) Au (@) day, 

Analogously, the functionals A”) [h] can be represented as BU) GBer[n; Pe, 1, where 

forme Ma, < Mk (cf. (5.70)), the parameters are given by 

u = )\c(zzgm)) + [roten sel” ar) Aelk—1 (k) Ay, (5.80)
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Fm) _ Soo(@e) (2" k) A1 (k) dacy | (5.81) 

Mo(z") + [po(@)) £ (=" @}) M (@))der 
Fo (a) = pn(ar) f(z\” k) Arın-ı (®«) (5.82) 

Soap FR a) Ann () dr 
Expression (5.70) now reads: 

Fy x, hlZun] 

1,dl! . LAy „(a m riy . —(m) z(m = % (I A e s 00) TT e emenr ) 
dp€Dy lELL_] meMa, 

‚d = 3wl Gr hl hl (5.83) 
d,EeD; 

Here, we have introduced the (unnormalized) weights w,, according to 

0 

w@(Hfimv II &”, (5.84) 
€Ly _, 

and the LMB PGFL (cf. (2.26)) and the MB PGFL (cf. (2.20)) according to 

(0 ) 
Gr di. DE IJ abe hir, (l, di, ) Kdk , (5.85) 

lEeL;_ 1 

GNE [n =TT e [nsr™ 7). (5.86) 
me Ma, 

To finally obtain a, X, [h, h| Z1.1] according to (5.72), we first have to compute the de- 

nominator B £ F>’~(k X, Ih, h|Zı:r| ai. which can be found as 

2 u 5 (IR) TI” 5.87) 
di €Dy di. €Dy ZGLZ 1 meMa, 

Here, we have used (5.84). Inserting (5.83) and (5.87) into (5.72), we get after some 

reformulation 

Zu h= D wa Gh che, [A (5.88) 
d, ED; 

where we have defined the (normalized) weights wa, as 

(I) 0 (5.89) 
leLi_, meMa,
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An interpretation of the posterior PGFL of detected objects in (5.88) in terms of object- 

measurement associations will be presented in Section 5.3.7. In the next subsection, we 

compute Gx,[h]|Z1:x] according to (5.73). 

5.3.6 Expression of the PGFL of Undetected Objects Gy, |h] 

We continue with the normalization of Fx,[h] (cf. (5.66)) in (5.69) according to (5.73). 

More precisely, by setting h = 1 in (5.66), we get for the normalization factor 

Ba [Rl|,n, = een eeden, (5.90) 

Inserting (5.66) and (5.90) into (5.73) yields 

.J (ken)lı-pnter))-1) Arın-ı(ar)der 
Gx,[hl = e SpD(er)Arın-ı (ar )der 
  

— ef(h(mk)_l) (1_pD(mk)))\k|k_1(mk)dmk 

with Alk 1] = [(h(ar) - 1)A(@r)da;, and where the posterior PHD of undetected 

objects A(z;.) is given according to 

Az) = (1- pp(&r)) Arık-ı(®R)- (5.92) 

Note that Gx,[h] in (5.91) is a Poisson PGFL with PHD (5.92). In the next subsection, 

we will discuss some important facts about the derived exact update step. 

5.3.7 Discussion of Results 

In the following, we summarize the results obtained after applying the update step to 

the predicted posterior PGFL in (5.29). As we showed, the updated posterior PGFL 

Gy x, [h, h] is a product of a joint labeled/unlabeled PGFL x, [h, h] representing 

objects that already generated a measurement in the current or a previous update step 

and an unlabeled PGFL Gx,|h| that did not generate a measurement in the current time 

step k. More precisely, the labeled/unlabeled PGFL is given by (5.88) according to 

7 LMB,d;. [7] MB Gy x bl = Y waCı; R GRE, [h]. 
deDk 

Thus, a X, [h,h] is a mixture of PGFLs, each of which is the product of an LMB 

LMB.dy 17 PGFL G,; [h] (cf. (5.85)) and an MB PGFL a, [h] (cf. (5.86)). There are |D;| 

mixture components, where each component is indexed by a vector d.€D;. The vector 

d,. allows for an interesting interpretation in terms of object-measurement associations, 

which is why d;. will be referred to as (object-measurement) association vector in what
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follows. More precisely, each dı. € D,,. corresponds to an admissible object-measurement 

association. We call an association hypothesis d,, admissible if all the nonzero entries dı) 

are different, which implies that at most one measurement is assigned to the same labeled 

object and no measurement is assigned to more than one labeled object. In fact, dD e My, 

describes the case where the labeled object with state (x;,!) generates measurement zu") 

and dd = 0 the case where the object does not generate any measurement. The set 

Ma, = Mi» comprises all measurement indices that are not associated with any labeled 

object and are thus generated either by an unlabeled object or by clutter. The statistics 

of each labeled object is described by a labeled Bernoulli component (cf. (5.85)) and the 

statistics of each unlabeled object by a (unlabeled) Bernoulli component (cf. (5.86)). The 

likelihood of each object-measurement association is quantified by the weight in (5.89). 

Furthermore, the likelihood of the event that the labeled object with state (x;,!) generated 

measurement m € Mi, is quantified by the association weight ae in (5.74) and of the 

event that it did not generate a measurement by a) in (5.77). In the first case, the 

object is described by a labeled Bernoulli component, whose existence probability lo) in 

(5.75) indicates that the object exists and its state is distributed according to f)(z;.) in 

(5.76). In the second case, the object is also described by a labeled Bernoulli component. 

Here, the object existence is uncertain and quantified by the existence probability ri) 

in (5.78). Note that ri) = 0 would indicate that the labeled object with state (x;,1) 

does not exist and rl) =1 would indicate that the object exists but did not generate a 

measurement. If the object exists, its state (x;,1) is distributed according to f'" (x) in 

(5.79). Finally, the likelihood of the event that the measurement with index me Ma, is 

either originated by an unlabeled object or by clutter is quantified by a in (5.80). The 

statistics of the object associated with this measurement is described by an (unlabeled) 

Bernoulli component. Object existence is modeled by Fe) in (5.81). Here, Pe) =1 

would indicate that measurement zu") originated from an unlabeled object; its state x; 

is distributed according to f")(x;) in (5.82). On the other hand, ) = 0 would indicate 

that zu") originates from clutter. 

The unlabeled PGFL Gx,[h] is given by (5.91) according to 

Gx,[h]l = er 

where the posterior PHD X(zx;.) is given by (5.92). Here, Gx,[h| models all objects that 

did not give rise to a measurement at time step k. 

5.4 Update Step: First Approximation Stage 

The proposed LMB/P filter is now obtained by two successive approximations of the 

exact update step presented above, which result in a significant reduction of complexity. 

The first approximation stage results in a transformation of certain unlabeled objects
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into labeled objects. More concretely, to reduce the complexity of data association, we 

first cluster the LMB-MB mixture pgfl Gg(k’xk [h, h] in (5.88) into C LMB-MB mixture 

PGFLs. Then we transfer unlabeled objects that were previously unlikely to exist but 

satisfy a suitable threshold criterion to the labeled object part, which means that they 

are now considered as objects that are likely to exist. 

5.4.1 Partitioning of Label and Measurement Sets 

The clustering of GR, X, [h, h] is based on a partitioning of the label set L¥_, and of the 

measurement set M,={1,..., Mx}. More precisely, we partition the label set L; , into 

C EN disjoint subsets, i.e., 

L;_, = UL). (5.93) 
ceC 

where C = {1,...,C}, and we partition the measurement index set My = {1,..., M} 

into C +1 disjoint subsets, i.e., 

My = U mi) UMS. (5.94) 
ceC 

Each measurement index subset M,gc) C Mi is associated with a corresponding label 

subset LI, C L};_,, whereas the residual measurement index subset MI® = My, \ 

Uecec M is not associated with any label set. More specifically, the partitionings (5.93) 

and (5.94) are chosen such that for any cE€ C, the association (described by dD) of 

an object with state (x;,!), I € L9, with a measurement with index m is plausible 

for m € MI and implausible for m € Mm with € # c. Here, the plausibility of 

an association is quantified by the association weight am) in (5.74). An algorithm for 

constructing the partitionings (5.93) and (5.94) is presented in the appendix of the thesis. 

This algorithm uses a nonnegative threshold yc that determines LI, MN, and MI”. 

The above-described partitionings of L)_, and M, are illustrated in Figures 5.1 

and 5.2, respectively. The proposed overall partitioning scheme is similar in spirit to 

the classical gating procedure used, e.g., in the JPDA filter [Bar-Shalom et al., 2011]. 

However, it is different in that it considers also the (non)existence of objects, it uses 

the association weights a) as plausibility measures, it does not rely on any Gaussian 

assumptions, and it collects all the residual measurement indices in M7”. 

5.4.2 Pruning 

According to our partitioning scheme, only the associations between objects with labeled 

state (xg,l), [ € L,({;C_)l and measurements with index m € /\/l,(f) are plausible. Thus, by 

pruning all the implausible association hypotheses d,. € D,. that associate some object 

label le LI, with some measurement index me Mı\ MN, we obtain a more efficient 

representation of the relevant association information with fewer association hypotheses.
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Figure 5.1: Some label sets involved in the approximations described in Sections 5.4 and 5.5. 

Let Dj" CD; denote the set of the remaining (nonpruned) association hypotheses dx. 

Note that our pruning does not include missed detections (described by d = 0), i.e., 
. BT, . . 

association vectors de with dO) =0, lELS:)l are part of Dj". Therefore, each dk € Dj" 

associates each object label 1 € 10, with some measurement index me {0} U MO. 

The pruning yields the following approximation of G, x.[h» h] in (5.88): 

Ars D ach G, In. (5. 
dyeDiem " 

Xk X 

Here, the weights @q, are given by vnsson (5.89) but with By, replaced by By £ 

degpkan (Hley /3(' 4 )) Imema, er . This ensures that Ya, eppn Day = 1 and, 

thus, that (5.96) remains a valid PGFL. Furthermore, the LMB PGFL Gy“ [A] an 
the MB PGFL N, [h] are given by (5.85) and (5.86), respectively. Using Ihe fact that 

the Bernoulli component factors A, [R] with m € Mi C Ma, appear in each one of 

the summation terms in (5.95), we obtain 

[Rn] = eXi-In) I @, a CN, s (B (5.96) Kr w55 May\ 
Keen 

Here, the MB PGFLs GXp«[h] and GYL, „gs [R] are given by (5.86) with Ma, replaced 
by M and Mg\ M, respectively. 

As a consequence of the pruning, all objects with labels [€ L{?, i.e., corresponding 
to cluster ¢, are now associated only with measurements of the same cluster ¢, m €



86 CHAPTER 5. AN EFFICIENT LMB/POISSON FILTER 

{0} U /\/l,(f), and not with any other measurements m € M, \ /\/l,(f). This implies that 

each entry d(l) of d, € D*™ associates labels [ € IL(C) 7, of cluster c only with measurements 

m € {0} U me ©) of cluster c. Therefore, the association vector d; (of dimension |L}_ . 

can be split into C subvectors d( e ({0} U MM) Den , c€C of lower dimensions |IL ‚| 

Here, for each c€EC, the entry dia) of a with [ € Lo, is defined similarly to 1 

in Section 5.3.5 as die) 2 me M if the labeled object with state (x;,!) generates 

measurement zu") and die) 2 0 ifit does not generate a measurement. The admissible 

association vectors di) (where admissibility was defined in Section 5.3.5) are collected in 

the association alphabet D\". We can now factor the weights as 

wa, = || Wach (5.97) 
ceC 

where (cf. (5.89)) 

(e, 

wa = | T 5 ” II #". (5.98) 
leL!?, me Mo 

c (1,d) 
with B\ = Laden) (co, By ) IIlmem " a m) Here, Mo < C /\/l( 2 comprises 

all measurement indices m € M that are not associated with any labeled object via 

de D\ and, thus, originate from an unlabeled object or from clutter. In particular, 

M 4= () indicates that all measurement indices m € M\ are associated with an object 
k 

with label le L{”,. Furthermore, we have (cf. (5.85) and (5.86)) 

(ec) 
GIMB de, - 1 ‚di, nl, (5.99) 

ceC - 

Ce |h = || ol (5.100) 
ceC 

with 

LMB,d\® - r (1a ” 1,de) Gy e II "ir, DR, 
- le]LEf_)l 

EM [A] A IJ abe [h; 7; Zu 9] ) 

T mG./\/ld(c) 

k 

Using the factorizations (5.97), (5.99), and (5.100) as well as the identity deepzem = 

ng)eDg) de)epl(f), we can rewrite the approximation (5.96) in terms of d,, as 

x, [hl Cie[h] 1] G“1n, nl, (5.101) 
ceC 

where
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Figure 5.2: Some measurement index sets involved in the approximations described in Sections 

5.4 and 5.5. 

- (o) - 
con % wol AN? „M- (5.102) 

den) * k=1 dr 

We note that G([h, h] and EX [h] represent clustered objects and nonelustered 

objects, respectively, which, in both cases, may be likely or unlikely to exist. So far, 

we approximated ur h] in (5.88) by expression (5.101), which is the product of 

the © LMB-MB mixture PGFLs GOfR, h] in (5.102) and the MB PGFL GBI As 

visualized in Figure 5.3, this is the first stage in a series of PGFL approximations or 

modifications that are used in the development of the proposed LMB/P filter. Next, we 

will develop approximations of G(%[h, h] and GR. [A]. 

5.4.3 Approximation of the PGFL of Clustered Objects GO[h, h] 

We approximate the PGFL of clustered objects, GO[h, h], by an LMBM PGFL. To this 
end, we recall from Section 5.4.2 that the MB PGFL GYP [A] involved in Gfh, h] in 

a { 
(5.102) corresponds to measurements me M( that originate from an unlabeled object 
or from clutter. We want to transfer unlabeled objects that are very likely to exist, or 

more specifically, (unlabeled) Bernoulli components GE" [h; rl”), 59], me M 10 with 
7) > Ar, to the labeled RFS part. Here, #”) is given by (5.81) and Mr is a positive 
threshold. This transfer is motivated by the fact that the labeled RFS part guarantees 

track continuity and, in addition, after further modifications to be described in Section 

5.5, achieves a higher tracking accuracy than the unlabeled RFS part. The transfer is ac- 

complished by formally replacing the measurement index m arising in GBer [n; #”), 59] 
by the label I = (k,m). Let L collect the labels of the transferred Bernoulli components 
(cf. also Figure 5.1). We note that a higher threshold ¥ tends to imply a smaller number 

of transferred Bernoulli components, |L(®"]. Furthermor 
ponents GPer[h; rl”), FE] (with 7™ 
to exist, we prune them. This is done by setting h=1 because GPer [1; ), 5] =1. 

ince the other Bernoulli com-        

  

< Nr), mE Mo model objects that are unlikely 
5
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Figure 5.3: Some PGFLs involved in the approximations deseribed in Sections 5.4 and 5.5.
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With these modifications, G(®[h, h] in (5.102) is replaced by (cf. Figure 5.3) 

Ar LMB,d/() - 
GO I wyoGlow" [, (5.103) 

/(C)GD/(C) 

with the LMB PGFL 

LMBd'(C r ) (1,4) 
a KG T (5.104) 

ZGLE:)tOt 

Here, the label set L,(f)mt is given as (see Figure 5.1) 

Lit 2 Le) uno (5.105) 

where L9, N Li _ 

D\ < ({0} um x fo, uk "| are defined as follows: for lEL9,, da) is equal 

to die) (as defined in Section 5.4.2), and for 1eL", di“ ") is Lifthe labeled object with 

state (x,,) generates measurement 2" m) 

Next, the association alphabet D, () C ao € D( ©) collects all the admissible association 

vectors di“ ) (we recall that admissibility was defined in Section 5.3.5). The LMB PGFL 
1(c) 

ar * [A] in (5.103) comprise Bernoulli PGFLs for [ € L9, and for [ € Li. In the 
k 

(0. Furthermore, the entries di“ ) of the association vector di) € 

and 0 if it does not generate a measurement. 

first case, the parameters r,(f ™) and f,g m) (2) of these Bernoulli components (cf. (5.85)) 

are given for m € M by (5.75) and (5.76), respectively and for m= 0 by (5.78) and 

(5.79), respectively. In the second case, i.e., = (k, m) € LI, the parameters rl and 

Fl” (x) are given for by ) in (5.81) and f De: x) in (5.82), respectively; furthermore 

v0) = (0 whereas f,gl’o)(a:k) is not defined since the object does not exist. Finally, the 

weights w 4/ are given by (cf. (5.98)) 

(1,4) m Ware = ( IJ Br IJ PN 2 (5.106) 

By len (tet meM o) 

where M aa CM a9 comprises all measurement indices me M a that are ni associated 
d,. 

with any ob ject label LEeLi*, For leL“ , the association wein 2 are given for 

m € /\/l,(f) by (5.74) and for m = 0 by (5.77), and for [ € LI, the al ) are given for m = 

1 by (5.80) and for m = 0 by 1. Furthermore, the a are given by (5.80). The normal- 
on Ko)... DOWN (Ldy o) (m) ization constant B, is given by B, = den!) (I, ge (otot By, ) IIlne Mo P - 

k 

To summarize, we approximated the PGFL of clustered objects G(9[A, h] in (5.102), 

which is an LMB-MB mixture PGFL, by the LMBM PGFL G([A] in (5.103). This 

approximation involved the transfer of unlabeled Bernoulli components to the labeled 

RFS part. Finally, replacing in (5.101) G(®[h, h] with G[R], we obtain
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hl Giee[h] ]]e "m: (5.107) 
ceC 

5.4.4 Approximation of the PGFL of Nonclustered Objects GM Kıres [R] 

Next, we consider the MB PGFL G} Mies [h] of nonclustered objects in (5.107). We recall 

from Section 5.4.2 that 

Neal = I] &P [mr™, 1], 
me MI 

Similarly to the measurements m&.M (. involved in EM ‚[h] in (5.102), the measure- 
d c de 

ments me M7°°® involved in Gitres |h] originate from an unlabeled ob ject or from clutter. 

Analogously to Section 5.4.3, we transfer objects that are likely to exist to the labeled 

RFS part, and thus we formally replace the measurement index m in each Bernoulli com- 

ponent GBer [n, 7"), FI], me MI® of GM MBs[h] with Fl) > 4, by the label 1= (k,m). 
These labels are collected in the M L. er (see Figure 5.1), and the corresponding mea- 

surement indices are collected in the set MC M!® (see Figure 5.2). The remaining 

measurement indices are collected in the set M/ = M!® \ M)°" (again see Figure 5.2). 

As before, a higher threshold yr tends to imply a smaller number of transferred Bernoulli 

components, |L;*"|. Using these modification, Giftres [Ih] is approximated according to 

(see Figure 5.3) 

Gitres[h] = ul CH v[R], (5.108) 

where the PGFLs are defined as 

eh TI rl: PD], (5.109) 
res,tr le‘ 

with [ = (k, m) and GMB (h] = Te M GPe[n; Pe 9]; here the existence probabilities 

and spatial PDFs are given by (5.81) and (5.82), respectively. Inserting (5.108) into 

(5.107) yields ] 
x, hlZur]) = G vente (1] GA 1] ]Je®m. (5.110) 

ceC 

Finally, inserting approximation (5.110) into (5.39) and grouping terms, we obtain (again 

see Figure 5.3) 

Gx,x,[R hlZia] © C% [Al C%.IAl:; (5.111) 

with the labeled part 

G%, [rl = Gpeselhl [LER] (5.112) 
ceC 

and the unlabeled part 

Gy, [h] £ G [h] Gx, [h]. (5.113)
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Here, Gx,[h] is the Poisson PGFL given by (5.91) and (5.92). Note that Gy, [h] is an 

MB-Poisson PGFL representing unlabeled objects, which are objects that are unlikely 

to exist. 

In summary, in the first approximation stage, the exact joint posterior PGFL 

Gy, [m hlZu] = x [h,h]Gx,[h] in (5.39) is approximated by GL, [7]G%,[R] in 

(5.111). Here, G% „ is the PGFL of a labeled RFS, more precisely, the product of 

the LMB PGFL Ga [A] and the LMBM PGFLs GfR], c=1,...,C. Furthermore, 

Gx,[hl is the PGFL of an unlabeled RFS, more specifically, the product of the MB PGFL 

EM [r] and the Poisson PGFL Gx,|h]. The overall effect of the first approximation stage 

is on the one hand (i) to reduce the overall complexity (via the clustering and pruning 

described in Section 5.4.1 and Section 5.4.2, respectively) and on the other hand (ii) to 

transfer the part of the unlabeled RFS representing likely unlabeled objects to the la- 

beled RFS (see Sections 5.4.3 and 5.4.4). As a result of this transfer, some objects that 

were previously modeled as unlabeled objects are now considered as labeled objects. This 

transfer can be viewed as the creation of “new” labeled objects. Note that this creation is 

an inherent part of our tracking algorithm, and not due to a birth process in our system 

model (cf. Section 5.1.1). 

5.5 Update Step: Second Approximation Stage 

In the second approximation stage, we approximate a [7] in (5.111) and (5.112), which is 

the product of an LMB PGFL and C LMBM PGEFIs, by an LMB PGFL. Furthermore, we 

modify G%, [R] in (5.111) and (5.113), which is the product of an MB PGFL and a Poisson 

PGFL. This modification consists of first combining G%, |h] with the “unlikely” legacy 

Bernoulli components of the LMB PGFL approximating a [r] and then approximating 

the resulting PGFL by a Poisson PGFL. 

5.5.1 Labeled Objects 

We first approximate the PGFL of labeled objects, ag, [h], by an LMB pgfl, and then 

we transfer labeled objects that are unlikely to exist to the unlabeled RFS part. This 

transfer is known as recycling Me 2012]. 

According to (5.112), G,, „= Lee, B.[Rl IL.cc C®[R]. To approximate G4 [h] by an 

LMB PGFL, we first note that the Ka of LMB PGEEs is again an LMB PGFL, and 

that Gran [A] is already an LMB PGFL. Therefore, we now approximate the LMBM 

PGFLs G(C) [h], ¢ € C by LMB PGFLs. For this, we start from expression (5.103) and 

exploit the fact that the weights w (), die 2; in (5.106) satisfy >, dep Wyre) = 1. 
k k k k 

Thus, we are able to formally interpret them as the PMF of the random association vector 

de, i.e., we set
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/(c) /(C) . wo, dp €D, 

pa) % (5.114) 
0, otherwise. 

Expression (5.103) can then be rewritten as 

g )\ LMB.d'(® -~ 
GO = > p(d )G e A. (5.115) 

4@ ep * 

Here, the summation over the larger set 15,(;) (i.e., larger than D;{;(C) in (5.103)) is possible 

because p(d,/{;(c)) — (0) for di) € D\ \ D/9. Note that D\ also includes inadmissible 

associations. 

Following the approach taken in [Williams, 2015] and our proposed fast LMB filter of 

Chapter 4, we now approximate p(d,, (e )) by the product of the marginal PMFs p(d/“ 2), 

i.e., 

p(d,/{:(c)) R~ H p(d,/{:(c’l)), d,/{;(c)ef),gc). (5.116) 
ZGLE:)tOt 

Here, 

D o)~ (c)leg p(d,/{:(c)), le LI, 
(a) A d,' €D, o o (5.117) 

Zd;(C)Nlefi]iC)tr p(d,”), TEL, 

(recall that L,(f)mt = LI, U LI), where ana! denotes the vector da without entry 
~ (ce) _ e)tr 

ae, and the summation sets are defined as Des 2 ({0} U MI) ll fo, yyllk “1 

and Di - ({0} um x 10, yuzmI-ı, We note that an efficient and scalable 

approximate implementation of the marginalization in (5.117) is provided by the belief 

propagation algorithm proposed in [Williams, 2015]. Inserting approximation (5.116) in 

(5.115) and using (5.104) yields the following approximation of G([R]: 

GO LS TI var fr ED 
a,‘ eD( a 

Using I ,o.no0 = den @D ne (e) d, eD d,. "e{0}UM Ly c e |L +1 
RT n EAOMy, dr 1D e {0} UM) dh rl 'et01} 

x) (e) (e)tr and [], ot = ]I,., (0 I]; (otr, this becomes FO g Dero N le‘ jeL‘9, Ale‘ 
k 3 

~ - 1(c,l) 1(c,l) 

1eL[9, a Detorum!? 
cl r 1,dj(® 1) ld/(c 1) 

x IJ >» (a ) GBe [h ( ) pe . 

let a
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Using (2.15), this can be written as the LMB PGFL 

¢h = [ &®[hr 1], (5.118) 
le (tot 

where, according to (2.16), ri) and f)(x;) are given for leL, by 

] c 1a) 

ri) — > p(di‘ Ir R ), (5.119) 

da, Deto}uml? 

1 c 1a (cl) 

O == > () D g, (5.120) 
ka deruml) 

and for IE L{" py 
1(e,ly rd = plan N, (5.121) 

1(e,ly —1) 

(ar) = Fr Vz). (5.122) 

‚ale _ e\tr 

(To obtain (5.121) and (5.122), we used the fact that ri =0 _ 0 for ¢ IL,({; )t, as 

mentioned in Section 5.4.3.) Note that (5.119)-(5.122) are the update equations for 

the labeled objects; more specifically, (5.119) and (5.120) are the update equations for 

the legacy Bernoulli components and (5.121) and (5.122) are the update equations for 

the transferred Bernoulli components. Analogously to Section 4.1, it can furthermore be 

shown that our LMB approximation of the LMBM PGFLs— which is based on interpreting 

the weights w a/o 38 the joint association PMF p(d/”) and approximating that PMF 

by the product of its marginals—is fully equivalent to the LMB approximation of the 

LMBM PGFEs that is obtained by matching the PHD of an LMB PGFL to that of the 

corresponding LMBM PGFEL. 

Let 1‘ 9'es C L,({;C_)l collect the labels [ € L,({;C_)l of those legacy Bernoulli components that 

are “likely” in the sense that their existence probability r,g) in (5.119) satisfies r,gl) > Yıegı 

where ‘Yıeg 18 another positive threshold. The total label set of all “likely” legacy Bernoulli 

components and transferred Bernoulli components is then given by (see Figure 5.1) 

= ( URL) U, (5.123) 
ceC 

where L**" was introduced in Section 5.4.4. The LMB pgfl corresponding to L} is now 

given by 
% B ef ri), () cz rl = |” „| (5.124) 

leL; 

see Figure 5.3), which equals the product of the LMB pgfl Grass 3.[R] involved in (5.112 g
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and the C' LMB pgfls obtained by restricting the LMB pgfls in (5.118) to the label sets 

L,&C)leg, for all ¢ € C. This is our final approximation of the labeled object part, i.e., of 

the PGFL a [h] in (5.112). That is, we have 

G [h] =~ Gy [h]. 

The “unlikely” legacy Bernoulli components correspond to the labels [ € LI, with 

r) < eg, or equivalently to [ € (unl = L,({:C_)l \L,(f)leg. Instead of discarding them, as 

is done, e.g., in the LMB filter [Reuter et al., 2014], we transfer them to the unlabeled 

RFS part. As a consequence, these unlikely objects are still being tracked but with a 

smaller computational cost. A higher threshold Yıeg tends to imply that fewer Bernoulli 

components remain in the labeled RFS part and more are transferred to the unlabeled 

RFS part. We note that the Bernoulli components transferred to the unlabeled RFS part 

comprise only Zegacy Bernoulli components and do not include Bernoulli components that 

were previously transferred from the unlabeled RFS part to the labeled RFS part. This is 

due to the fact that the corresponding label sets LI, and Li are disjoint (cf. (5.105)) 

and, thus, Bernoulli components that were transferred from the unlabeled RFS part to 

the labeled RFS part are not transferred back in the current time step. 

5.5.2 Unlabeled Objects 

We proceed by representing unlabeled and currently labeled objects that are unlikely 

to exist by a Poisson RFS. Compared to our previous use of an LMB RFS to represent 

objects that are likely to exist, using a Poisson RFS reduces the computational complexity 

at the expense of a decreased tracking accuracy and the loss of track continuity for the 

respective objects. 

According to our discussion above, the labeled PGFL comprising all the unlikely 

legacy Bernoulli components is (cf. Figure 5.3) 

Eee I] ler Al, (5.125) 
Le Lunl 

with (see Figure 5.1) 

Lyt 2 | i (5.126) 
ceC 

We now combine the labeled (LMB) PGFL ar [}] with the unlabeled PGFL Gy, [h] in 
k 

(5.113) by defining 

een [h,h] & Cha [hlC% [hl (5.127) unl 
L%; 

We recall that Gy, [h] is the product of an MB PGFL and a Poisson PGFL (cf. (5.113), 

and it represents unlabeled objects that are unlikely to exist. Thus, the LMB-MB- 

Poisson PGFL , [h, h] represents both the labeled and unlabeled objects that are
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unlikely to exist. 

In order to further reduce the complexity of the update step, we next approximate 

[h, h] by a Poisson PGFL, i.e. (cf. Figure 5.3) 

Rh] x, & M, (5.128) 

To find the PHD X* (x), we first “unlabel” the LMB PGFL of (5.125). This results in the 

MB PGFL CYAN] & Tem GP [h; rD, f(P], wherein Ie Linl is used solely to index 
the Bernoulli components, and not as the label of a labeled state (x,,!) inan LMBRFS. 

Through this unlabeling, the mixed labeled/unlabeled PGFL a. [h, h] in (5.127) is 

converted into the unlabeled (MB-Poisson) PGFL 

ax, [n] = Gyuulh]Cx,[h]. 

The PHD X*(&;) is now chosen as the PHD corresponding to CK hl. That is, invoking 

(2.9), we set A*(a;) = SG [h]/öwr|,_,. Using (5.113), (5.91), and (5.92), this can be 

shown to yield 

ar) =), a) + > I) + (1-po(zr))Arır-ı(®e), (5.129) 
le Lunl me My, 

where r,(f) and f)(x,) are given by (5.119) and (5.120), respectively, m) and F”)(z;) 

are given by (5.81) and (5.82), respectively, and Ayır-ı(®x) is given by (5.37). The first 

term in (5.129), rer ri) (xx), corresponds to originally labeled objects that are 

unlikely ot exist—either because the objects already disappeared or because no measure- 

ment was associated with them for some time. The second term, Ye M, Pe) 9 (zer), 

corresponds to measurements that are not likely to originate from any labeled objects. 

The third term, (1- PD(&r))Arık-ı (Er), corresponds to unlabeled objects that are un- 

detected. The Poisson PGFL G\%, [h] defined in (5.128) is our final approximation of the 

unlabeled object part. 

5.6 The Proposed LMB/P Filter 

The core of the proposed LMB/P filter algorithm is the approximate update step de- 

veloped in Section 5.4 and Section 5.5, which transforms the predicted posterior PGFL 

Gy.x, Ih, hlZu:rı] = a, [h]Gx, [hl in (5.29) into the following approximation of the new 

posterior PGFL Gy, x,[h, hlZı:] in (5-39): 

Gy, x [ hlZun] = C% [hl Cx,[hl. 

This is the product of the LMB PGFL G} [h], which is given by (5.124), (5.109) and 

(5.119)-(5.122), and the Poisson PGFL G5 [Rh], which is given by (5.128) and (5.129). The
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update relations are (5.119)-(5.122) for the LMB parameters (existence probabilities and 

spatial PDFs) and (5.129) for the Poisson parameter (PHD). Note that in the approximate 

update step, implausible object-measurement associations are pruned. Furthermore, a 

part of the unlabeled RFS is transferred to the labeled RFS and a part of the labeled 

RFS is transferred to the unlabeled RFS. These transfers are controlled by the thresholds 

YC, Ver, And Yıeg- 
The proposed LMB/P filter algorithm is finally obtained by cascading the prediction 

step (Section 5.2) and the approximate update step (Sections 5.4 and 5.5), and by adding 

a detection-estimation step. Since the unlabeled RFS part represents objects that are 

unlikely to exist, object detection and state estimation are based solely on the labeled 

RFS part. An object with label lE L}, is detected—i.e., declared to exist —if its existence 

probability r) is larger than a positive detection threshold %n; the label /! is then included 

in the set LP C L;. Subsequently, for each detected object I! € LP, an MMSE state 

estimate is calculated according to 

&) = /wkf(l)(a:k)dwk. (5.130) 

Table 5.1 summarizes the proposed LMB/P filter algorithm. 

5.7 Numerical Study 

In the following, we analyze the performance of the proposed LMB/P filter by means 

of simulation experiments. More precisely, in Section 5.7.1, we describe the underlying 

simulation scenario, and, in Section 5.7.2, we present the obtained tracking results of the 

LMB/P filter compared to those obtained by several state-of-the-art RFS-based tracking 

filters. 

5.7.1 Simulation Setup 

We evaluate the performance of the proposed LMB/P filter in two two-dimensional (2D) 

tracking scenarios, termed TS1 and TS2. In TS1, ten objects appear at randomly chosen 

positions in the region of interest (ROI) before time k=40 and disappear after k= 150. 

In TS2, 20 objects appear before k = 100 and disappear after k = 140; they conform to 

the object generation scheme of [Meyer et al., 2017], according to which all objects move 

toward the point (0,0) and simultaneously come in close proximity around that point at 

k=120. The object states consist of 2D position and velocity, i.e, x = |x1,x X2,k X1,k xx]. 

They evolve according to the nearly constant velocity motion model, i.e., x. = Ax,_ı + 

Wu;, where A e RX? and W e R?*? are chosen as in [Bar-Shalom et al., 2002, Sec. 6.3.2] 

and u; is an iid sequence of 2D zero-mean Gaussian random vectors with independent 

components and component variance o2 = 10°*. The sensor is located at position p =
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Table 5.1: Proposed LMB/P filter algorithm—recursion at time k£ > 1 
  

Input: Previous existence probabilities r(') and previous spatial PDFs f"(&,_ı) for le Li_;; 

previous PHD X(z;,_-ı) (in practice, this is replaced by the previously calculated approximation 
(m) A*(2;-1)); measurements z,. for me M,. 

Output: Existence probabilities r,(f) and spatial PDFs f()(x;) for | € L}; approximate PHD 

A* (2%); object state estimates 2 for leLP. 

Operations: 

Step 1 - Prediction: 

1.1) ForleL};_,, calculate the predicted existence probabilities ko and the predicted spatial 

PDFs f}il|3<;—1($k) according to (5.32) and (5.33), respectively. 

1.2) Calculate the predicted posterior PHD Azj-ı(2;) according to (5.37). 

Step 2 - Preparations for Update: 

2.1) For [ € L} _,, calculate the association weights Be existence probabilities m, and 

spatial PDFs f(”)(x,) according to (5.74)—(5.76) (for m € M;,) and (5.77)-(5.79) (for 
m=0). 

2.2) For m € My, calculate 8™, 7™, and f{"™ (x,) according to (5.80)-(5.82). 

2.3) Partition the label set L; , and the measurement index set M, as described in Section 

5.4.1. This yields L', and M\” for c €C as well as Mi. 

2.4) Determine Lit for c € C as described in Section 5.4.3, and L}°%" (corresponding to 

MI) and M'/, as described in Section 5.4.4. 

Step 3 - Update for Labeled Objects: 

3.1) For cE€C, calculate the weights w., according to (5.106) and the joint association pmf 
k 

p(dj‘”) according to (5.114). 

3.2) For ceC and le LI" -L9 UL", calculate the marginal association PMF p(dj(“”) 

according to (5.117). (An efficient BP algorithm for computing p(a,“) is presented 
in [Williams, 2015].) 

3.3) For c € C, calculate the updated existence probabilities ri) and spatial PDFs f)(z;.) 

according to (5.119) and (5.120) (for le L(”,) and (5.121) and (5.122) (for le L{®"). 

3.4) For c € C, determine L{”'® and L{®"" as described in Section 5.5.1 and Section 5.5.2, 
respectively. 

3.5) Determine L}; according to (5.123) and LY®! according to (5.126). 

Step 4 - Update for Unlabeled Objects: Calculate the approximate updated posterior PHD X* (x) 

according to (5.129). 

Step 5 - Object Detection and State Estimation: 

5.1) Determine LP as described in Section 5. 

5.2) ForleLP, calculate an object state estimate 2 according to (5.130). 

Initialization at time k=0: L5;=®9, Ao(&o). 
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[p1 p2]T = [0 —50]T and has a measurement range of 300. The ROI is equal to the disk 

determined by the sensor’s measurement range. 

The object-originated measurements conform to the nonlinear range-bearing model 

z, = [p(xs) 9x)" + vi. Here, p(xx) = |x,- pl||, where x|, = [xır xa,«]" is the 
ie) 

X1,k—P1 

measurement noise with independent components and component standard deviations 

object position, and 6(x;) = tan1( Furthermore, v; is 2D white Gaussian 

o, = 2 and og = 1°. The detection probability of the sensor is modeled as pp(xx) = 

PD,max exp(-||a7,||?/450°) [Reuter et al., 2014] with pn,max = 0.7 for TS1 and pp max = 0.5 

for TS2. Thus, the detection probability has its maximum of 0.7 for TS1 and 0.5 for TS2 

at the ROI center and decreases towards the ROI border, where it is 0.45 for TS1 and 

0.32 for TS2. The clutter PDF fc(z;) is uniform (in polar coordinates) on the ROI with 

mean parameter uc=100 for TS1 and uc=150 for TS2. Note that T'S2 is similar to the 

simulation scenario analyzed in Section 4.4 with the main exceptions of a state-dependent 

detection probability and a higher clutter rate (100 and 150 compared to 10 and 50). This 

makes T'S2 even more challenging than the scenario in Section 4.4. 

We compare the performance of particle implementations of the proposed LMB/P 

filter, the LMB filter [Reuter et al., 2017], the fast LMB filter proposed in Chapter 

4, and a version of the TOMB/P filter [Williams, 2015, Kropfreiter et al., 2016] that 

performs recycling of Bernoulli components as proposed in [Williams, 2012]. We remark 

that our performance comparison does not consider algorithms with a significantly higher 

complexity, such as the GLMB filter [Vo and Vo, 2013, Vo et al., 2014] or the trajectory- 

based filters proposed in [Garcfa-Fernändez et al., 2020b, Granström et al., 2018, Xia et al., 

2019,Garcia-Fernändez and Svensson, 2019]. Note also that the latter filters use Gaussian 

representations of spatial distributions and thus presuppose a linear-Gaussian system 

model, which is incompatible with our nonlinear measurement model. Our performance 

comparison uses 1000 Monte Carlo runs for each experiment. The object trajectories for 

both TS1 and TS2 are randomly generated for each run according to the state-transition 

model described above. 

The proposed LMB/P filter and the TOMB/P filter use the belief propagation (BP) 

algorithm of [Williams, 2015] to calculate approximations of the marginal association 

probabilities (cf. Eq. (5.117) and Steps 3.1 and 3.2 in Table 5.1), and the fast LMB 

filter of Chapter 4 uses the BP algorithm described in Section 4.2. We will therefore 

refer to these filters as BP-LMB/P, BP-TOMB/P, and BP-LMB, respectively. The LMB 

filter of [Reuter et al., 2017| is based on the Gibbs sampler and will be referred to as 

Gibbs-LMB. BP-LMB/P and BP-TOMB/P use 5000 particles to represent, respectively, 

the posterior PHD of unlabeled objects and the posterior PHD of undetected objects. 

Another 5000 particles are used by BP-LMB/P and BP-TOMB/P to represent newborn 

unlabeled objects and newborn undetected objects, respectively, but the resulting 10000 

particles are reduced to 5000 particles after the update step. All filters represent the 

spatial PDF of each Bernoulli component by 1000 particles. BP-LMB/P, BP-LMB, and
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Figure 5.4: MOSPA error of BP-LMB/P versus time for TS1 using parameter settings PS1 
through PS4 (defined in the text). 

BP-TOMB/P use 20 BP iterations to calculate the approximate marginal probabilities. 

The Gibbs sampler in Gibbs-LMB uses 100 samples for TS1 and 1000 samples for T'S2. 

AN filters declare an object as detected if the existence probability of the corresponding 

Bernoulli component exceeds yp =0.5, and when this is the case, they calculate a sample 

mean approximation of (5.130) from the particle representation of the corresponding 

spatial PDF. 

The birth statistics of all filters are established using the previous measurements zu) 

m € Mk-ı. More precisely, BP-LMB/P and BP-TOMB/P choose their birth PDF as a 

mixture of the PDFs 

A) (24) x [Karla el" laınıs ana F(&1,-ı 2,x-ı)der-ı; 

for me Mı_ı. Gibbs-LMB creates a new Bernoulli component for each measurement 

2™ m € My_y, with spatial PDF ff (2,) = fl” (@%) and BP-LMB uses the 
Bernoulli generation scheme proposed in Section 4.3 with the spatial PDFs N) 

in (4.40) being equal to Kar). The mean number of newborn objects is ug = 0.1 for 

all filters. In BP-LMB/P and BP-TOMB/P, the mean number of, respectively, unlabeled 

objects and undetected objects is initialized as 0.01. 

5.7.2 Sımulation Results 

In Figure 5.4, we study the performance of BP-LMB/P for TS1, using four different 

choices of the thresholds Yır, Yc, and Yıeg- The figure displays the Euclidean distance 

based mean optimal subpattern assignment (MOSPA) metric with cutoff parameter c=20 

and order p= 2 [Schuhmacher et al., 2008] versus time k. Each curve shows a specific 

threshold parameter setting (PS) and was obtained by averaging over 1000 Monte Carlo 

runs. The PSs are defined by the values of Yr, Yc, and Yıeg specified in Table 5.2; in 

particular, PS2 uses a higher value of Yıeg, PS3 a higher value of Yc, and PS4 a higher 

value of ;.
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Ver YC Yleg 

PS1 10”? 10-10 1072 
PS2 10”? 10710 10-1 

PS3 1072 10” 1072 
PS4 10-1 10710 1072 

  

      

Table 5.2: Threshold parameter settings (PSs) used for TS1. 

  
Vtr YC Yleg P YT 

TSı 1072 10-19 102 1073 103 

TS2 1073 10-10 107° 107* 10% 

  

      
Table 5.3: Thresholds Yr, Yc, and Yıeg used by BP-LMB/P, yp used by BP-LMB and Gibbs- 

LMB, and yr used by BP-TOMB/P. 

One can see in Figure 5.4 that the lowest MOSPA curve is achieved for PS1, i.e., for 

the lowest threshold values. However, a further reduction of the thresholds would not 

decrease the MOSPA curves further but would result in a higher filter runtime. If Yıeg iS 

increased (as in PS2), then according to Section 5.5.1, there tend to be more Bernoulli 

components ! such that r) falls below Yıeg, and which are hence transferred from the 

LMB part to the Poisson part. In challenging scenarios, such as low pp(x.) and/or high 

clutter, it can then happen that Bernoulli components are transferred to the Poisson part 

even though the corresponding objects exist, and this will generally reduce the tracking 

performance. If yc is increased (as in PS3), then according to Section 5.4.1, this generally 

results in a larger number of subsets LI, which may imply that some labeled objects are 

no longer correctly associated with the measurements and thus the tracking performance 

is again reduced. Finally, if %r is increased (as in PS4), then according to Sections 5.4.3 

and 5.4.4, fewer Bernoulli components are transferred to the labeled RFS part, which 

may again result in a poorer tracking performance. 

Therefore, for TS1, we will hereafter use the thresholds of PS1. These thresholds are 

shown again in Table 5.3, along with the thresholds used in TS2. In fact, for the more 

challenging TS2, we observed that the thresholds in Table 5.3 resulted in a better MOSPA 

performance; in particular, we use smaller values of Yr and Yıeg- Table 5.3 furthermore 

shows the threshold Yp used by BP-LMB and Gibbs-LMB for pruning Bernoulli compo- 

nents and the threshold Yr used by BP-TOMB/P for transferring Bernoulli components 

of the multi-Bernoulli part of the posterior state RFS to the Poisson part. 

Figure 5.5 shows an example of the estimated object trajectories obtained with BP- 

LMB/P for TS1 and for TS2, along with the true trajectories. One can see that the 

estimated trajectories closely match the true trajectories in both scenarios. 

Figure 5.6 compares the MOSPA performance of BP-LMB/P, Gibbs-LMB, BP-LMB, 

and BP-TOMB/P for TS1 and TS2. It is seen that for TS1, the performance of BP- 

LMB/P is almost identical to that of BP-LMB and BP-TOMB/P whereas the perfor-
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Figure 5.5: Example of the true object trajectories (represented by blue lines, starting positions 

indicated by blue crosses) for (a) TS1 and (b) TS2, as well as the corresponding estimates 
obtained with the proposed BP-LMB/P filter (represented by red lines). The position of the 
sensor is indicated by a black eirele. The green eireles show the measurements of the sensor at 

time k=100 within the region [-150, 150] x [-150, 150]. 
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Figure 5.6: MOSPA error of the four filters versus time k for (a) TS1 and (b) TS2. 

mance of Gibbs-LMB is noticeably poorer. For TS2, the results are similar except that 

the performance gap of Gibbs-LMB is much larger. This performance gap is due to the 

fact that Gibbs-LMB ignores relevant association information (cf. Section 4.4.3). The 

amount of relevant association information taken into account by Gibbs-LMB grows with 

the number of samples used in the Gibbs sampler, but this comes at the cost of a higher 

computational complexity. In challenging scenarios such as TS2, more association infor- 

mation is required to obtain good results; this explains the larger performance gap of 

Gibbs-LMB in that case (even though for TS2, our Gibbs-LMB implementation used ten 

times more samples than for TS1). Overall, these results also demonstrate the excellent 

performance of the BP algorithm used by BP-LMB/P, BP-LMB, and BP-TOMB/P to 

compute the marginal association probabilities. 

In Figure 5.7, we compare BP-LMB/P, Gibbs-LMB, BP-LMB, and BP-TOMB/P 

for TS2, using instead of the MOSPA metrie the trajectory metrie proposed in [Garcia-
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Figure 5.7: Trajectory error of the four filters versus k for TS2. 

Fernandez et al., 2020a] with cutoff parameter c=20, order p=2, and switching penalty 

y=2. This metric can be decomposed into a“location error” (the location error of detected 

objects), a “false error” (caused by “false objects”), a “missed error” (caused by “missed 

objects”), and a “switching error.” Here, false objects are detected objects that do not 

correspond to any object within the ground truth, whereas missed objects are objects 

within the ground truth that do not correspond to any detected object. Differently 

from the OSPA metric, the trajectory metric also takes into account the switching error 

caused by track switches, i.e., when a detected object is associated with different objects 

within the ground truth at different times. According to Figure 5.7, the trajectory metric 

performance of BP-LMB/P is slightly better than that of BP-LMB and BP-TOMB/P and 

significantly better than that of Gibbs-LMB. These results agree with our MOSPA results 

in Figure 5.6 (note the different y-axis scales used in the two figures). In addition, they 

show that BP-LMB/P also succeeds in estimating object trajectories, not just individual 

object states. 

The four error components of the trajectory metric for TS2—i.e., location error, false 

error, missed error, and switching error—are shown individually in Figure 5.8. Whereas 

for each error component the results of BP-TOMB/P, BP-LMB, and BP-LMB/P are 

quite similar, those of Gibbs-LMB are partly very different. This can be explained by 

the fact that Gibbs-LMB ignores valuable association information and thus detects some 

of the objects only with a delay or not at all. As a consequence, the number of missed 

objects is rather large, which leads to a significantly higher missed error (Figure 5.8(c)). 

Furthermore, the smaller number of detected objects (compared to the other three filters) 

in turn implies a smaller number of false objects (Figure 5.8(b)) and also lower location 

and switching errors (Figures 5.8(a) and 5.8(d)). 

It can also be seen that for all filters, the missed error shown in Figure 5.8(c) is 

much larger than the other error components (note the widely different y-axis scale used 

in Figure 5.8(c) compared to the other parts of Figure 5.8). Thus, the missed error 

dominates the overall trajectory metric, which explains why Figure 5.8(c) is similar to 

Figure 5.7. Furthermore, the high missed error of Gibbs-LMB (compared to the other
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Figure 5.8: Individual components of the trajectory metric of the four filters versus k for TS2: 

(a) location error, (b) false error, (c) missed error, and (d) switching error. 

three filters) is not compensated by the fact that the other error components are lower. 

The other three filters, i.e., BP-TOMB/P, BP-LMB, and BP-LMB/P, exhibit a similar 

performance, with BP-LMB/P performing best. The latter fact can be attributed to the 

proposed transfer scheme between the Poisson part and the LMB part. Indeed, these 

simulation results suggest that our transfer scheme, with an appropriate choice of the 

thresholds Yr, Yeg, and Yc, can result in performance advantages compared to both BP- 

LMB (using a pruning of Bernoulli components) and BP-TOMB/P (using a recycling of 

Bernoulli components). These advantages come in addition to the lower filter runtimes 

obtained with BP-LMB/P, as reported presently. 

Table 5.4 lists the average runtime per time (k) step required by MATLAB imple- 

mentations of the various filters on an Intel quad core i7-6600U CPU. Also shown is the 

average number of Bernoulli components per time step employed by each filter. Again, 

these numbers were obtained by averaging over 1000 Monte Carlo runs. One can see that 

BP-LMB/P achieves the lowest runtimes of all filters; furthermore, it employs the lowest 

numbers of Bernoulli components of all filters except Gibbs-LMB. We note that, as is 

demonstrated by Figure 5.6, this low complexity of BP-LMB/P does not come at the
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Filter RT-TS1 RT-TS2 NBC-TS1 NBC-TS2 

BP-LMB/P (proposed) 1.33s  5.05s 15.21 162.82 
Gibbs-LMB 5.128 7.945 9.69 34.23 

BP-LMB 9.908  21.68s 34.15 861.96 

BP-TOMB/P 10.665 16.09s 63.33 521.93       

Table 5.4: Measured complexity of the four filters for TS1 and TS2. RT-TS1 and RT-TS2 

designate the average runtime per time step, and NBC-TS1 and NBC-TS2 designate the average 

number of Bernoulli components per time step. 

cost of a poorer MOSPA performance. Also, while Gibbs-LMB employs fewer Bernoulli 

components (especially for TS2), its MOSPA performance for TS2 is significantly poorer. 

We can conclude from the results in Figures 5.6-5.8 and Table 5.4 that BP-LMB/P 

offers a superior performance/complexity compromise relative to the other filters. It has 

a significantly better performance than Gibbs-LMB (especially for TS2) and also a lower 

runtime. When compared to BP-LMB and BP-TOMB/P, the runtime of BP-LMB/P is 

much lower while its performance is almost identical. The low runtime of BP-LMB/P is 

a direct consequence of the fact that objects of highly unlikely existence are modeled by 

the Poisson RFS. The performance advantage of BP-LMB/P over Gibbs-LMB is mainly 

due to the fact that BP-LMB/P takes into account more association information. Gibbs- 

LMB ignores relevant association information, which allows it to employ fewer Bernoulli 

components but also results in a poorer performance. For challenging scenarios with a 

high number of (closely spaced) objects and/or a low detection probability and/or strong 

clutter, the number of samples used by the Gibbs sampler must be increased significantly 

to obtain an acceptable MOSPA performance, and this entails a higher complexity. 

In this chapter, we proposed an eflicient RFS-based multi-object tracking algorithm 

based on the modeling of the multi-object state by an LMB/Poisson tuple. While the 

presented algorithm achieves an excellent performance/complexity compromise, tracking 

performance can be improved by the use of multiple sensors. In the next chapter, we 

present a new eflicient yet high-performing RFS-based distributed multi-sensor multi- 

object tracking algorithm.



Chapter 6 

A Distributed LMB Filter Using 

Probabiılıstic Label Association 

In this chapter, we propose a distributed multi-sensor LMB filter that is based on the 

concepts and methodologies of probabilistic label association, generalized covariance in- 

tersection (GCI), and belief propagation (BP). Current state-of-the-art distributed LMB 

filters use hard label associations, which can result in poor tracking performance, espe- 

cially in more challenging tracking scenarios. By contrast, the proposed distributed LMB 

filter uses a novel GCI-based fusion method for LMB multi-object PDFs that avoids a 

hard association of the labeled Bernoulli components of neighboring sensors and instead 

uses a soft (i.e., probabilistic) association. In our approach, label association probabilities 

are computed and used in the fusion of the multi-object PDFs. 

To develop this probabilistic association scheme, we first derive the fused posterior 

PDF, which is no longer of LMB form but of GLMB form and involves an inherent 

label association PMF. We then show that approximating this label association PMF by 

the product of its marginals leads to a fused posterior PDF that is again of LMB type. 

Next, inspired by [Williams and Lau, 2014| and the BP algorithm used in our fast LMB 

filter in Section 4.2, we propose a BP algorithm for fast approximate marginalization of 

the label association PMF. Moreover, to reduce both the communication requirements 

and the computational complexity of the distributed LMB filter, we develop a practical 

implementation of the fusion relations in which the local spatial PDFs are approximated 

by Gaussian PDFs. Our simulation results demonstrate that the proposed distributed 

LMB filter using soft label associations significantly outperforms a state-of-the-art LMB 

filter using hard label associations [Li et al., 2019] and can perform close to the centralized 

multi-sensor LMB filter based on the iterated-corrector approach [Reuter et al., 2014, 

Mahler, 2014|. 

The remainder of this chapter is organized as follows. Section 6.1 presents the basic 

framework of pairwise (two-sensor) LMB fusion with hard label association. Section 6.2 

develops a novel formulation of pairwise fusion using probabilistic label association. Sec- 

105
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tion 6.3 presents a fast approximate algorithm for probabilistic label association based on 

BP and proposes an efficient Gaussian implementation. Section 6.4 extends the pairwise 

fusion algorithm to distributed networkwide fusion in a decentralized sensor network. 

Section 6.5 demonstrates the performance of the proposed distributed LMB filter using 

probabilistic label association. 

6.1 Pairwise LMB Fusion with Label Association 

For distributed fusion of statistical information in sensor networks, most distributed 

RFS-based tracking methods use the generalized covariance intersection (GCI) tech- 

nique [Clark et al., 2010], also known as exponential mixture density [Uney et al., 2013] 

and Kullback-Leibler average [Battistelli et al., 2015]. GCI is a suboptimal technique 

that fuses the local posterior PDFs of neighboring sensors. GUI fusion of LMB posterior 

PDFS is challenging because it is a priori unknown which labeled Bernoulli component 

of one sensor (representing an object) corresponds to which labeled Bernoulli component 

of another sensor. Current state-of-the-art distributed LMB filters are based on hard 

label associations [Fantacci et al., 2018,Li et al., 2019]. More precisely, in [Fantacci et al., 

2018], it is assumed that all the local posterior PDFs are defined on the same set of labels, 

and Bernoulli components with identical labels are matched. However, this assumption 

is rarely satisfied in practice. In [Li et al., 2019], the labeled Bernoulli components of 

different sensors are matched by minimizing a “label inconsistency indicator.” However, 

in more challenging scenarios, this can still result in a significant percentage of incorrect 

matching events and, thus, in a poor tracking performance. 

We now start our elaboration of the probabilistic distributed LMB filter by considering 

“pairwise fusion” for two sensors with sensor index s € {1,2}. The sequences of measure- 

ments observed by these sensors up to a current time k will be denoted as zU) and ze) 

respectively. Furthermore, each sensor runs a local LMB filter, e.g., the proposed fast 

LMB filter of Chapter 4, based on its own measurement sequence. Note that the local 

LMB filters are not restricted to the measurement model of Section 3.2.2 and may rely 

on other models [Reuter et al., 2014, Beard et al., 2016]. The LMB posterior multi-object 

PDFs of the two sensors at time k, are denoted as 124) and zZ), and are 

given according to (3.31) for se {1,2} as 

Kl) = AKKU LK) [T 100 £ @) (6.1) 
(zu, )EXy 

Recap that A(X;) = 1 if the labels of X, are distinct and A(X}) = 0 otherwise, and 

Le()=11if1 € L,(j)* and 1,(9+(2) = 0 otherwise. The weights w®) (L) are given 
k k 

according to (3.32) as
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„O8 (Tel) II 0. (62) 
leL VELC’*\L 

for any L C L,(j). Here, L,(j)* C L,(j) is the label set involved in the local posterior PDF 

f (zZ), which is a subset of the label set L'”. Different to previous sections, we 

now model the label by the tuple = (s,k’, m), which in addition to the time of object 

birth k’ and the measurement index ın also takes into account the sensor index s. Since 

the label now additionally contains the sensor index s, the underlying label sets iD» 

and 1»* as well as the overall label sets 1.) and 1” are trivially different because s in 

l=(s, k’, m) is different for the two sensors. However, 1* and 1»* are usually different 

even when some other label indexing is used. For example, they are typically different 

when the local LMB filters employ measurement-driven birth models and/or different 

strategies for pruning Bernoulli components [Buonviri et al., 2019]. Note that the local 

LMB posterior PDFs f(X .12)) and f(X .12)) are fully characterized by the parameter 

sets ri HE) hen and Urks, 2 (Er) Freuen respectively. 

6.1.1 Pairwise LMB Fusion 

Let us now consider “pairwise fusion” for our two sensor case, i.e., fusion of the two LMB 

posterior PDFs 72) and 20) into a fused posterior PDF flzH). zent. 

The GCI fusion rule is given by [Fantacci et al., 2018] according to 

r/V 1 > w S —w 

f<Xk|ZS,2,Z§32>:D—k(f<Xk|ZfiZ>> RZ) (6.3) 

with Dy 2 | (f()N(k|Zl(:1,2))w(f(XHZf,z))l_wd)N(k (here, [- 30X is the set integral defined 

in (2.21)) and some fixed w € [0, 1]. It was shown in [Fantacci et al., 2018] that if the label 

sets are equal, i.e., L(,:)*:L(IS)*, then f(f(flZfllz, ze) is again an LMB PDF. However, 

even in that case, it is likely that some objects are described by Bernoulli components 

with different labels in the local LMB filters at the two sensors, and thus GCI fusion 

according to (6.3) involves the matching of Bernoulli components describing different 

objects. More precisely, suppose temporarily that 1* = L(,?)* =: [} and consider some 

label JEL}. The corresponding spatial PDF f)(x;) belonging to the fused LMB PDF 

f (K]z0), ze) is calculated from the spatial PDFs f(x) and FD (2) belonging to 

&%|2)) and 122), respectively, as [Fantacci et al., 2018] 

() w/ el) 1-w 

f(z ) = (fi (2x)) {R (2;)) — 

' San. ( MICA) ( Ni) de’ 
  

  

! The tilde notation indicates the fact that f(Xr|Z DD Z 2) is generally different from the true posterior 

PDF f(Xı Zu, Zu).
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However, if fl(l)(wk) describes a different object than (ar), then the fused spatial 

PDF f")(xz;) does not describe any single object, and its meaning in the fused LMB 

PDF f (20), 22) is unclear. A similar statement can be made about the fused 

existence probability Fi [Fantacci et al., 2018]. The matching of Bernoulli components 

describing different objects will generally cause f(X zZ), ze) to be very different from 

f(X k|Z£1k):, ze), and in turn reduce the performance of the distributed LMB filter. 

6.1.2 Label Association 

In the following, we consider the practically relevant case where (consistently with our 

label representation I=(s, k’, m)) all the elements of 1) are different from all the elements 

of 1”, and thus also all the elements of L* are different from all the elements of 

L»*, In that case, lzÜ), ze) in (6.3) is zero for any given X,, because in the 

expression (6.1) of 20) and 20), 1,(»(l) or 1,(»»(l) or both will be zero 

for alle L(X,). Let us, for example, adopt the viewpoint of sensor 1. Let us further 

consider only realizations X, with labels | € £(X}), L(X,) € LID*, Note that other 

realizations X, with labels IE” are irrelevant anyway because they imply f(X ZU). 

This implies that 11n»(1) =1 for all [ € L(kl)* and thus 124) is not zero for all 

realizations with labels L(X,) < iD", However, 112-2) — 0 for all I € £L(X}), so that 

f()N(k|Z§2,2) =0 and thus we still obtain f(f(flZfllz, ze) —(. 

We can resolve this issue as follows: when evaluating f(X 122), we first map the 

labels | € £(X}) C L(,:)* to some labels I’ € L* so that 1, 2.(I') = 1. We can now 

describe such a label mapping by a label association vector u, = [ug(l)) . u,gl(l))]T of 

length I = |L(,:)*| and with entries ul) eL”* for all le”. For any le", ul) eL”* 

indicates that the object with state (x,,!) tracked at sensor 1 is associated with the 

object with state (x, u) tracked at sensor 2. For a one-to-one mapping, we require 

that different labels at sensor 1 are associated with different labels at sensor 2, which 

means that all entries u‘) of u, have to be different; this will be referred to as an 

admissible label association in analogy to an admissible object-measurement association 

in Chapters 4 and 5. The set of all admissible association vectors u; will be denoted as 

U,. Using u;, we now modify the GCI fusion rule (6.3) according to 

  
au ~ 1 ~ w (U 1-w Fe Kl Zun 2) ° a ARE) (6) 

k 

. U = w (u l-w - ~(u 1 with DS (FRZU) (RYIZE))) "5X... Here, KA Ka u ,..., 
(2, ul } for any realization X, = Ka 19), (a, y}, That is, the la- 

bel mapping defined by u; changes each object label I@) € L(X ) © LV* into a label 

u Der, for j=1,...,n. Note that now, in the expression (6.1) of 2) and 

az), we have, respectively, 110-2) =1 and 1L(,f)*(ul(<:l)) =1 for all I € £(Xy),
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and thus fr) (X Klzu), Z wi is no longer zero in general. 

More specifically, using the fact that f(X,|Z 2 and f (Xu]Z° (2) )) are both given by 

the LMB expression (cf. (6.1)) and that 1,(1.(l) = 1,0 (u) = =1 for all I € £(X}), the 
k 

fused PDF in (6.4) becomes 

Fo (X 20, 23 « A(Xk>(w<1><,c<xk>))“< 11 (f”(:ck))”) 
(mk,l)GXk 

AK UL)" ]I (a) (65) 
NER" 

with (cf. (6.2)) 

DIL 1% ( I ) M "), (6.6) 
1€ L(Xy) rerlM\£(Xy) 

~ (u l l eye Io) II ad (6) 
lEL(K"P) VeLdd\L&“r) 

Moreover, because u, is an admissible label association vector, A(X ur)) is equal to 

A(Xx). Hence, we can rewrite (6.5) as 

Fo) (X 288 ZI) AK) UP LEKI)) WILKE)“ 

x IT Pay)“, 
(2) EXr 

or, more compactly, 

- (1) 
Flw) (X Zi), ze) = A(X ) wa, (£ H ea) (ar), (6.8) 

1 eXy 

with the spatial PDFs 

‚ul 1 l w u 1-w a) — (17 (@) (5" () (69) 
pr) 

and the weights w„,(£L(X7)), which are given by up to a normalization constant as 

wu, (L(Xr)) x WIE) de)“ TI De, (6.10) 

le L(X}) 

L0 D us 
where D\“ R IA fan N) ( \ k )(a:k))l dx. Here, the fused posterior PDF (6.8) 

constitutes the final fusion result for a given determinist label association vector ur.
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6.2 Probabilistic Label Association 

For an LMB fusion leading to good performance of the resulting distributed LMB filter, 

the label mapping introduced above should be such that each mapped label of sensor 1 

equals the specific label of sensor 2 that describes the same object. Because the label 

association vector u; defining this “correct” mapping is unknown, we hereafter model u; 

as a random vector u, and perform an implicit (soft, probabilistic) estimation of u.. We 

refer to this approach as probabilistic label association, by analogy to probabilistic data 

association used, e.g., in the fast LMB filter proposed in Chapter 4 to probabilistically 

associate measurements with objects. 

6.2.1 Label Association Distribution 

L _ _(My T 
Let us define the extended label association vector @, = [ü, '---%, | of length 

I = ID" | (equal to the length of u.) with entries a € 1»* Uf0} for le Lu”, Here, 

al) € 119 indicates (as before) that the object with state (x;,!) tracked at sensor 1 is 

associated with the object with state (x,,ü a tracked at sensor 2, and al )= 0 indicates 

that an object with label I does not exist (i.e., (x,!) ¢ X;) according to the tracking 

performed at sensor 1. Note that the latter case also implies that no object with state 

(2,1) is associated with any object tracked at sensor 2. We denote by U; the set of all 

admissible extended association vectors %;., i.e., of all vectors %,. whose nonzero entries 

al are different. Furthermore, for any L< LID*, we define y(ü;,,L) to be 1 for all 

Jdmissible u, such that a e L* for lE L and al =0 for | € L%)*\L, and to 

be 0 otherwise. Then, using the definitions of w„,(£L(Xx)) in (6.10) and, in turn, of 

wD(£(X})) in (6.6) and w® (L£(X ")) in (6.7), it can be shown that Eq. (6.8) can be 
rewritten in terms of u; as 

FR ZEN, ZED = AK) el CK) wur [[ en. (611) 
(zu )EXx 

Here, the weights w.„, are given up to a normalization constant by 

We) Lg 
Wa, & IJ By . Uy €Uy, (6.12) 

le]L(kl)* 

with the “label association weights” 

  

u, 1—w l,fl(l) 

(TIE:)J (r (ur ) D, h) a er 
aD ) 

]E:l’ k ) A (1- a Ye 
(6.13) 

(17", il =0,
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where pe = fon. ( N)“ ( a) azy. Furthermore, the spatial PDFs 

fe) (xy) in (6.11) are given by (6.9) with ul) replaced by a. (Note that f(x.) 

does not occur in (6.11) because al — 0 implies (a2, 1) ¢ X,..) Differently from the weights 

Wu,(L(Xx)) in our earlier expression (6.8), the weights w., do not depend on £(Xy); 

however, the factor p(üx, L(Xx)) ensures that (6.11) is still equivalent to (6.8). 

Just as u;., we hereafter consider &, as random (denoted ü,). Our probabilistic label 

association method is based on the idea of interpreting the weights w,,, in (6.11) and 

(6.12) as the probability distribution (PMF) of ü,. More precisely, we define the PMF of 

U. 38 

Wa; ’ Ur < Z/_{k: ’ 
plag) = (6.14) 

0, otherwise, 

for all ü, € (LD* u {op!Ek I. We can then rewrite (6.11) as 

u ~ ~ (1) 

X, url zin. 212) = Alu) plür, LK) plür) I te): (6.15) 
(zu EXr 

In fact, it can be verified that integrating/summing the right-hand side of (6.15) with 

respect to X, and ü; yields 1. Accordingly, expression (6.15) defines the joint PDF/PMF 

of the random variables X, and ü,, whereas fe X |zN), ze) in (6.11) is the PDF of 

the random variable X,, parametrized by the nonrandom variable «,.. We can furthermore 

write the joint PDF/PMF of X, and ü; as f(X,%, 121), 20)) = (X für, ZU}, 24) 
x p(a,|Z0), ze), with the conditional fused posterior PDF 

2 - _ 8 e 
Fran, ZU, zZ) = AK) plan eK) TI 1% (@), (6.16) 

(2) EX; 

and Pü.lZ), ze) given by the label association PMF Plz), zZ) in (6.14). Fol- 

lowing this interpretation, we can obtain the unconditional fused posterior PDF, to be 

denoted FÜlzU), ze), as 

Rz), zZ) =» F&rlür, zu), zZ) oa). 
ur, EU, 

Here, we can extend the summation set U to (1° U fonlkı, because by (6.14) there 

is p(uy) =0 for uy € (L(,?)* U fon" \U;. We thus obtain, using (6.16), 

FRUlZIN. ZI) = AK) Too ine) ri) TI Fe). 
(+ ; 

üre (Li, ufon™e | RD X 
(6.17)
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6.2.2 LMB Approximation 

The PDF f(X,|ZU), zZ) in (6.17) is no longer of LMB form (2.24); instead, it is the 
PDF ofa GLMBRES (cf. 2.30). Therefore, we approximate it by an LMB PDF as follows. 

Following the approach used in the fast LMB filter in Section 4.2, we approximate the 

label association PMF p(%,) by the product of its marginals, i.e., 

pl) = T] ra), ür e a®* ufop. (6.18) 
leıl))* 

where 

_fl _ 

plal)) = 3 p(iag). 
figle(L(Z)*U{O})m(l)fl—l 

Here, u;" denotes the vector u; with the Ith entry, a, removed. Inserting (6.18) into 

(6.17) yields an approximation F&|z9), ze) zz). ze) that is given by 

FORZIN, 22) 

= A(Xy) 3 so<uk,£<Xk>>< Hp<u§j’>>> IT . 
ap e @D ufop™ e (er) EX 

Next, splitting [] (a) as (II (a) Terz plal), usin ; pP 8 rend» P k reLdNc&)P k lEL(Xr)P kJ) g 

SI. We) (1) ‚and evaluating ¢(ug, £( X)), we obtain 
Ly | u, EL, ur @ 

k s € L) : 

f(XuZS;E,Zf?;Z)Am( II a0) IT Fade. 
rel M\ L(Xy) (er DEXr u) eLl?* 

(6.19) 

Comparing this expression with? (6.1), one can easily verify that f (X ZU), zZ) is an 

LMB PDF parametrized by { (ri), (@x))},.,n-, with existence probabilities 
k 

= pa) (6.20) 
u) eı‘?* 

and spatial PDFs 
1 Nt O 

@) =5 > Pi) an), (6.21) 
T ) 1 (2)* 

k Uy, GILk 

  

’Note that, differently from (6.1), expression (6.19) does not include the factor 1« (l). This is 
k 

because in (6.19), L(Xr) < 11” and thus always 1 ). (/) =1, whereas in (2.24), L(X,)CLr. 
k
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where le 1*, Expressions (6.20) and (6.21) complete the formulation of our proposed 

pairwise LMB fusion scheme using soft \probabilisti) label association. The input to this 

fusion scheme are the parameter sets Ur) v f(l) (zk)) }ZG]L(U* and rl), Fr (z1)) }ZGL@)*, 
k ’ k 

and the output is the fused Bernoulli parameter set {(r © 9 (ar))} je)», with ri) 
k 

given by (6.20) and f(x.) given by (6.21). Here, p(ü w) in (6.20), (6.21) is calculated 

by marginalizing p(%;) in (6.14), and IR) (&,) in (6.21) is given by (6.9). 

In a practical implementation, Bernoulli components ! € Li" that do not have a 

plausible association with any Bernoulli component I’ € 19° at sensor 2 can be excluded 

from the fusion procedure. The plausibility of an association can be measured by pi) = 

Sax. (Fı D (g ) ( él,)(wk))l_w dzj. Thus, we do not fuse Bernoulli components [ € ng)* 

such that Din )< ~p for all I’ € iii(,f)*, with a positive threshold Yr. 

6.3 _ Efficient Implementation 

In the following section, we establish an eflicient implementation of our pairwise LMB 

fusion algorithm. More specifically, in Section 6.3.1, we propose a BP algorithm for 

fast approximate marginalization of the label association PMF and, in Section 6.3.2, 

we present an eflicient implementation based on the modeling of the spatial PDFs by 

Gaussians. 

6.3.1 Fast BP-Based Algorithm 

We now present a fast algorithm for approximate marginalization of p(&,). This algorithm 

is inspired by the BP-based algorithm for probabilistic data association used in the fast 

LMB filter (cf. Sections 4.2.2 and 4.2.3), which is in turn based on the BP-based algorithm 

in [Williams and Lau, 2014]. 

Inserting (6.12) into (6.14), we can express the association pmf p(ü;.) as 

par) x wa) TI"), wear up, (6.22) 
1e1l)* 

where W () = 1 if 4 € U and V(ü,) = 0 otherwise. By analogy to Section 4.2.2, 

we introduce the alternative label association vector v; = |v u . yet of length 

J = |L®*| and with entries N € L(l)* U {0} for [ € L(Q)*. Here, the entry vg) € L(l)* 

indicates that the object with state (xx,l) tracked at sensor 2 is associated with the 

object with state (xg, v ()) tracked at sensor 1, and v() 0 indicates that an object with 

label ! does not exist according to the tracking performed at sensor 2. The latter case also 

implies that no object with state (x;,,!) is associated with any object tracked at sensor 

1. Thus, v; is a description of the label associations that is analogous to u, but “viewed
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Ya 

  

Yy 

Figure 6.1: Factor graph representing the factorization of p(üx, vu) in (6.23), (0.24). Variable 
1, ‚al nodes are depicted as circles and factor nodes as squares. The shorthands Br & Bl"), @ 2 20, 

wol), dw & dr (in,vr), =D], and JE] are used. 

from the other sensor.” We can reformulate p(üx) in (6.22) in terms of üx and vr as 

P(ü,v;) x Wlüy,vr) ]] BT o ) (6.23) 
1) ey 

JON (2) for @ € (L2 U{0) and or € (LD* U {OpERI, with the admissibility constraint 
factor V(üx, vr) € {0,1} given by 

%a,v)= ]J] [ vw@® o). (6.24) 
e e @e le ver) 

Here, u ah ) = 0 if either u() " and vy O £ 1o u,(:)% I and u,(:l) =1, and 

v, ‚(a S )) 1 otherwise. 

The above reformulation of p(@x) in terms of @k and v allows us to devise an efficient 

algorithm for calculating accurate approximations of the marginal association probabil- 

ities p(a”). The factorization (6.23), (6.24) is represented by the factor graph [Kschis- 
chang et al., 2001] is shown in Figure 6.1 and equals the factor graph in Figure 4.2 used in 

the fast LMB filter of Section 4.2.2. Moreover, it can be shown that a derivation similar 

to that in the fast LMB filter presented in Sections 4.2.2 and 4.2.3 results in an efficient 

message passing procedure analogous to that one performed by the fast LMB filter. More 

  

precisely, in BP iteration p € Aurr ‚P}, a message [R is passed from variable node 

«a0» via factor node “dr r(a®, vl ey to variable node “ul”, and a message vl, is 
«ud» Ks passed from variable node ‘ via factor node “dal De Ir to variable node “@, 

These messages are given Bw 

ge 

> ) — Ta) BI’ (6.25) 

BE Dat bey PR ! Ze
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  [pl 1 
Vel = ; (6.26) 

1+ ZAGL(;)*\{Z} ar 

for all le L* and I/ € L?*. The recursion established by these two equations is ini- 

tialized for p=0 by vl, _,; = 1. After the final iteration p = P, approximations to the 

marginal association probabilities pa), LE {V* are provided by the beliefs pa) at 
OF 
k the respective variable nodes “u,” in Figure 6.1, which are given by 

LYy [P 2) x 
\ ro/Cı Ve, un (6.27) 

PB, ’ /Cl, I'=0. 

1,0 LA) [P Here, C; = EN HI, a h vior 

6.3.2 Gaussian Implementation 

For a reduction of communication and computation requirements, we next assume Gaus- 

sian models for the spatial PDFs of the local LMB RFSs, i.e., 

Da) = Nasa Ei), IL", 

Da) Na, EN), TEL". 

Accordingly, the local LMB parameter sets are now given by Ur, u 2} - 

for s € {1,2}. In what follows, we will present the resulting expressions of f a) (ey), 

a), and f(x), where le”. 

We recall that the spatial PDF f al) (2,,) is calculated from (x) and & 

via (6.9). As was shown in [Battistelli et al., 2013], if f(x.) and er) 
aD . . . 

as assumed above, then f(:% )(z;.) is also Gaussian, i.e., 

u) 
623) 

(2.) are Gaussian 

ad 1,0) Lu 
fa Ka) N (u ), S0, (6.28) 

(1,.®) u). 
with mean vector gs, and covariance matrix %,, given by 

L) Lu) D-1,,( am)-ı (a 
EN (Es), (6.29) 

(1,0% D-1 a1, -1 5 = (we HE). (6.30) 

a w 
It can furthermore be shown that the normalization factor D,gl’ ¢ = San: ( N)



116 CHAPTER 6. A DISTRIBUTED LMB FILTER 

x ( a)“ dx occurring in (6.13) is given by 

  

    

   
  

Kar) _ ü, Q) a 1 1 TA) 

Here, 

2 s (1) 2 (a) 
o det (%) (al) det (175 2,5 ') 

Tk T (1) W k - (a) 1-w 
(det (2r&}))) (det(272,.%3 )) 

with det(-) being the determinant operator, and N (ui; u ) In) +75 es ) de- 

notes the positive number obtained by evaluating the Gaussian PDF N (&. K u,guk ) ı 24 
20 

fiE,&Q’f )) at ¢, = Hu). An expression of the label association weight al i) 

obtained by inserting (6.31) into (6.13). 

Finally, according to (6.21) and (6.28), the fused spatial PDF f)(x;) is a linear 

combination of the PDFs f (ah) (z;.). Because of (6.28), it is actually a Gaussian mixture 

is then 

PDF. We next approximate this Gaussian mixture PDF by the Gaussian PDF, i.e., we 

consider a Gaussian approximation 

Pad = NEE), 1, 
whose mean vector A and covariance matrix Da are taken to be equal to those of 

F®(z;). Using (6.21) and (6.28), one obtains [Malladi and Speyer, 1997] 

_(1 1 _ l,u DT, (6.32) 
"RD en 

_ (1 1 1, Lad) _M ud) _q a N) (639 
r x E gl el 

for [ € L(,j)*. Here, r(l) is given by (6.20), (_(l)) is the marginal label association 
ad 

probability (cf. (6.18)), and „eh x) and z ) are given by (6.29) and (6.30), re- 

spectively. Within this Gaussian approximation, the fused Bernoulli parameter set is 

Ur, a, 5) Heide We note that in the final algorithm (cf. Section 6.4), p(ü Dis 

approximated by the belief p(ü ( )) (6.27).
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6.4 The Proposed Distributed LMB Filter 

In the formulation of our pairwise fusion method, we used sensor s=1 as a “reference 

sensor” for fusing the posterior PDFs of sensors s = 1 and s = 2. As a consequence, 

the fused quantities ri), p(ü ), a, 3, and f"(z;) are defined for I € 1LD*, i.e., 

the underlying label set is 1LD* . In a distributed implementation, each sensor se {1,2} 

runs its own instance of the pairwise fusion method, using its own label set 119* as the 

reference label set. This implies that the fused LMB parameter sets calculated at the two 

sensors will be different. Let U, a, >) } e denote the fused LMB parameter 

set calculated at sensor s € {1,2}; this should not be confused with the original local 

LMB parameter set {(r,(f)s, p,,(f)s, ) %) heul - 

The proposed fusion algorithm (still considering pairwise fusion) is now obtained 

by replacing in (6.20), (6.32), and (6.33) the marginal association PMFs p(ü D by the 

beliefs p(u u given by (6.27). The fused LMB parameter set of sensor se {1,2} using 

this additional approximation will be denoted by er, i,: )} Ice" Note that 

calculation of this fused LMB parameter set at sensor s presupposes that the original local 

LMB parameter set of the respective other sensor is available at sensor s. This means 

that each sensor s has to transmit its local LMB parameter set Krb), u,2\ „U Jh en 

to its fusion partner. 

So far, we considered the pairwise fusion of the local LMB parameter sets of two 

sensors. This pairwise fusion can be used to achieve networkwide fusion in a connected 

network of S > 2 sensors s € {1,...,5} via the following iterative procedure consisting 

of i =1,...,I iterations [Battistelli et al., 2013]. Let N, < {1,...,S}\{s} denote the 

set of “neighbors” of sensor s, i.e., the set of sensors with which sensor s is able to 

communicate. In the first iteration, i.e, © = 1, each sensor s transmits its local LMB 

parameter set Ur u, 1) } je) to its neighbors s’ € N,. Then, each sensor s 

performs pairwise fusion sequentially “(recursively) with each of the LMB parameter sets 

it received from its neighbors, in an arbitrary order. That is, the local LMB parameter 

set is fused with that of an arbitrary sensor s’€ N,, the LMB parameter set resulting 

from this pairwise fusion is fused with that of an arbitrary sensor s’e N,\{s’}, etc. Let 

A 
denote the LMB parameter set resulting from this sequence of |N,| successive pairwise 

} Ll —the superscript “1” indicates the first, i.e, i = 1, iteration— 

fusion steps. In the second iteration, the sequence of |N,| pairwise fusion steps is repeated 

but with { (Mi, Da a, zu ) } jun substituted for the original local LMB parameter set 

{(ri A Er) 
original local LMB parameter sets; this requires another round of parameter transmissions 

} Ic and the fusion results of the other sensors substituted for their 

between neighboring sensors. An analogous sequence of |N,| pairwise fusions is performed 

at each sensor also in each of the subsequent / — 1 iteration. The proposed networkwide 

fusion algorithm is summarized in Table 6.1. 

As an alternative to this recursive algorithm, a gossip algorithm [Dimakis et al., 2010]



118 CHAPTER 6. A DISTRIBUTED LMB FILTER 

  

Table 6.1: Proposed distributed LMB filter algorithm with soft label association—recursion at 

time k >1 and at sensor se {l,...,$} 
  

Input: LMB parameter set Url) . ,u,(f)s, o ") }1epo- of sensor s. 
k 

Output: Fused LMB parameter set Un, A, =) hen*- 
’ k 

Operations: 

(L) „(N 5 5 (0 
1) Initialize GH s ‚Äh s 9 )}ZEL(S)* — Ur) 3? mw 3? >) hen 

Execute the following steps for alli=1,...,/ iterations: 

2) Receive LMB parameter sets UM, ), [L,(f o1 Z))} 

N;. 

jerl* from all neighboring sensors s’ € 
k 

3) Perform pairwise LMB fusion of sensor s with all neighboring sensors s® € N! = N, 
according to: 

e Select LMB fusion sets as Url) ul „> ku)hien- = = {(Tkl;),fikl;),f] “))}lefl 3. and 

{(r l(<:27:“]<; 2, 2 )}ZE]L(Q)* = {(7 TED) with s’ randomly chosen from 
N!. 

l l l 
Perform pairwise fusion of Url) 1 u‘ 2, hen and Urn) 9 nn. 2 =) hen 

according to: 

e 
e For [ € L(l)*, calculate the label association weights al k) 

a 
ing (6. 31) and mean “ ©) and covariance 2“ *”) parametrizing the spatial PDFs 

par (xx) according to (6.29) and (6.30), respectively. 

according to (6.13) us- 

e Forle LD*, calculate the approximate marginal association probabilities Dal) accord- 

ing to (6.27) by iteratively computing Go? _,„ according to (6.25) and vr l, _,; according 
to (6.26) for p = 1, ..., P. 

e For | ¢ L(kl)*, calculate the fused existence probability r,(f) according to (6.20) and the 

fused mean al and Covariance >> according to (6.32) and (6.33), respectively, with 

pa) replaced Dal). 

R "from N, set { (709, 0, _ (0 a0 4 e Remove s’ from set (a s hen = Ur. ,B 25 )hrendes and go 

back to the first bullet point unless N’ = . 

4) Transmit Ua, > ’j))}lefls)* to all neighboring sensors s’ € N, and go back to 
k 

point 2) unless i = 1. 

 



6.5. NUMERICAL STUDY 119 

may be used. In each iteration of the gossip algorithm, the current LMB parameter sets 

of randomly chosen pairs of communicating sensors are fused. This is initialized by the 

original local LMB parameter sets. 

6.5 Numerical Study 

In the following, we present a simulation study analyzing the performance of the proposed 

distributed LMB filter. More precisely, we describe the underlying simulation scenario in 

Section 6.5.1 and present the obtained results in Section 6.5.2. 

6.5.1 Simulation Setup 

We consider two simulation scenarios, briefly referred to as SC1 and SC2, which are 

inspired by [Fantacci et al., 2018] and the simulations conducted in Section 5.7. In both 

scenarios, the region of interest (ROT) is [-150, 150] x |-150, 150]. We simulated ten (SC1) 

and twenty (SC2) objects during 200 time steps. The object trajectories were randomly 

chosen in each simulation run. The objects appear at various times before time step 40 

(SC1) or 90 (SC2) and at randomly chosen positions in the area [50,50] x [-50, 50], 

and they disappear at various times after time step 150. The object states consist of two- 

dimensional position and velocity, i.e., xk = [Xk.1 Xk.2 Xk.ı %«.2]7. They evolve according 

to the nearly constant velocity motion model [Bar-Shalom et al., 2002, Sec. 6.3.2] 

x, = Axı_ı+ Wu;, 

where A ¢ R*** and W € R**2 are chosen as in [Bar-Shalom et al., 2002] and u; 

N (0,02L) with o2= 10° is an iid sequence of 2D Gaussian random vectors. A realiza- 

tion of the object trajectories for SC1 is shown in Figure 6.2(a). 

There are two sensors in SC1 and five in SC2. The sensor positions are p!!) = [-50 0]" 

and p® =[50 0]T and, in SC2, additionally p®) = [0 0]T, p!® = [0 50]", and pP) = [0 — 

50|". The communication links between the sensors are shown in Figure 6.2. The object- 

generated measurements conform to the nonlinear range-bearing measurement model 

T 
zu = |p(xk) d(xe)] + vr- 

Here, p(x,) = ||x,, — p'*)||, where x, & [xx xx2]T denotes the (o)bject position and p®) = 

Sam). Furthermore, v;, is iid 
Xk,1P1ı 

Gaussian measurement noise with independent entries with standard deviations o, = 2 

[p\) pi T the position of sensor s, and d(z;) & tan ( 

and o, = 1°. The detection probability is chosen as 0.7 on the entire ROI. The clutter 

measurements are distributed uniformly on the ROI (in polar coordinates), with mean 

number equal to 10 (SC1) or 50 (SC2). 

We consider a distributed LMB filter, briefly referred to as S-DLMB, that employs 

the proposed fusion algorithm with probabilistic (soft) label association using the BP and
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Figure 6.2: (a) Example of the object trajectories (represented by blue lines, starting positions 

indicated by blue crosses) in simulation scenario SC1, as well as the corresponding estimates 
obtained with the proposed S-DLMB filter (represented by red lines). The positions of the two 
sensors are indicated by black eircles. The green bullets show the measurements of the second 

sensor at time k=100. (b) Sensors and communication links in simulation scenario SC2. 

Gaussian approximations described in Sections 6.3.1 and 6.3.2, respectively. For SC2 (five 

sensors), S-DLMB uses the iterative networkwise extension of the algorithm (described 

in Section 6.4) with five fusion iterations. We compare the performance of S-DLMB with 

that of the distributed LMB filter proposed in [Li et al., 2019], which uses GCI fusion with 

a hard label association algorithm and will be referred to as H-DLMB.? Furthermore, we 

also consider a centralized multisensor LMB filter, referred to as CLMB, that is based on 

2014]. CLMB and the local 

LMB filters involved in S-DLMB and H-DLMB use a particle implementation of the fast 

LMB filter proposed in Chapter 4. In all filters, each spatial PDF is represented by 500 

the iterated-corrector scheme [Reuter et al., 2014, Mahler 
  

particles, and Bernoulli components with an existence probability below 10”° are pruned 

after each filter update step. In S-DLMB and H-DLMB, the particle representation of 

each spatial PDF is further approximated by a Gaussian PDF after each filter update 

step, with the Gaussian parameters given by the sample mean and sample covariance of 

the particles. Then, S-DLMB executes the fusion algorithm described in Section 6.3.2 and 

H-DLMB the fusion algorithm described in [Li et al., 2019]. The fusion parameter w is 

0.5 in both cases. After the fusion step, 500 particles are drawn from the fused Gaussian 

PDF, and the local LMB filters execute the next filtering step. The threshold Yp used 

in S-DLMB as described in Section 6.2.2, and also used in a similar way in H-DLMB,       

®We do not show the results of the distributed LMB filter proposed in [Fantacei et al., 2018], because 
the LMB fusion performed by that filter uses the same label set for all the sensors, i.e., LO)" =LL; for 
all s, and always matches Bernoulli components with equal labels. This is not compatible with our label 
indexing system, which always describes an object by different labels at different sensors. However, we 
note that with any other label indexing system, too, there is a high probability that an object is described 
by different labels at different sensors. This will generally result in a poor tracking performance of filters 
matching Bernoulli components with equal labels 
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Figure 6.3: MOSPA error versus time k for (a) SC1 and (b) SC2. 

  

  

Filter SC1 SC2 
S-DLMB (proposed) 0.1072s 2.2554s 
H-DLMB 0.0470s 0.668258 

CLMB 0.0186s 0.4428s     
  

Table 6.2: Measured average runtime per time step. 

102°. The remaining simulation parameters equal those in Section 4.4.1. 

6.5.2 Simulation Results 

Figure 6.2(a) shows an example of the realization of the true object trajectories for SC1. 

Also shown are the corresponding estimated trajectories obtained with S-DLMB at the 

second sensor (with position p?) = [50 0]T); those obtained at the first sensor are similar. 

One can see that the estimated trajectories closely match the true trajectories. 

For a quantitative assessment and comparison of the performance of the three fil- 

ters, we computed the mean Euclidean distance based optimal subpattern assignment 

(MOSPA) metric [Schuhmacher et al., 2008] with cutoff parameter c = 20, order p=2, 

and averaging over 1000 simulation runs and all the sensors. Figure 6.3 shows the re- 

sults for SC1 and SC2. The peaks in Figure 6.3 correspond to object appearance and 

disappearance; note that several objects can appear or disappear at the same time. It 

is seen that S-DLMB almost always significantly outperforms H-DLMB; furthermore, 

it performs similarly to CLMB in SC1 and poorer than CLMB in 5C2. These results 

show that the proposed soft label association fusion is a significant improvement over 

the hard label association fusion employed by H-DLMB, and the resulting LMB filter 

performance can come close to the performance of the centralized LMB filter based on 

the iterated-corrector approach. 

Table 6.2 shows the average runtime per time (k) step of MATLAB implementations 

of S-DLMB, H-DLMB, and CLMB executed on an Intel quad core i7-6600U CPU. One 

can see that S-DLMB has the highest complexity, followed by H-DLMB and CLMB.
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However, we note that the lower complexity of H-DLMB (compared to S-DLMB) comes 

at the cost of a significantly poorer MOSPA performance. 

The communication requirements of S-DLMB and H-DLMB are generally similar. 

Indeed, for both S-DLMB and H-DLMB, in each fusion iteration, each local LMB filter 

broadcasts to its neighbors one set of Gaussian parameters per Bernoulli component.



Chapter 7 

Conclusion 

This thesis proposed three high-performing and efficient random finite set (RFS) based 

methods for multi-object tracking. A cornerstone of these methods is the labeled multi- 

Bernoulli (LMB) RFS, which is an instance of a labeled RFS. The LMB RFS inherently 

provides track continuity, i.e., the consistent association of the state estimates correspond- 

ing to the same object over consecutive time steps. Furthermore, the proposed methods 

use the framework of belief propagation (BP) for efficient probabilistic data association or 

label association. This methodological approach is shown experimentally to result in an 

attractive tracking accuracy/complexity compromise. In the following, the contributions 

of this thesis will be reviewed in more detail. 

7.1 Summary of Contributions 

Our first contribution was a new fast LMB filter using BP for probabilistic data associa- 

tion. The derivation of this filter was based on a new derivation of the original LMB filter 

in which the posterior GLMB PDF is formulated in terms of a joint object-measurement 

association PMF. We showed that the approximation of this PMF by the product of its 

marginals leads to an approximate posterior PDF that is again of LMB form. We then 

developed a BP-based algorithm for fast marginalization. The resulting fast LMB filter 

has a computational complexity that scales only linearly in the number of Bernoulli com- 

ponents and in the number of measurements. We also proposed an efficient scheme for 

generating Bernoulli components using the approximate marginal association probabili- 

ties provided by the BP algorithm. Finally, we presented a complexity analysis for the 

proposed fast LMB filter algorithm as well as numerical results demonstrating its excel- 

lent tracking performance in comparison to the Gibbs sampler-based LMB filter [Reuter 

et al., 2017| and the BP-based TOMB/P filter [Williams, 2015]. The Gibbs sampler- 

based LMB filter discards valuable association information through a pruning of GLMB 

components. This can lead to a reduced tracking performance in challenging scenarios, 

e.g., scenarios with many closely spaced objects and/or a low detection probability. By 
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contrast, the proposed BP-based LMB filter does not rely on a pruning of GLMB com- 

ponents. The BP-based TOMB/P filter [Williams, 2015] models undetected objects by 

a Poisson RFS. In the considered scenarios, this resulted in an increased computational 

complexity but did not improve the tracking performance. 

A second contribution of this thesis was an RFS-based tracking algorithm, referred to 

as LMB/P filter, that improves on the fast LMB filter of Chapter 4 in scenarios with a 

high number of objects and/or clutter measurements. In the LMB/P filter, for the first 

time, the multi-object state is modeled as the tuple of an LMB RFS and a Poisson RF'S, 

i.e., as the combination of alabeled and an unlabeled RFS. After proposing a new general 

system model for tuples of labeled/unlabeled RFSs, we derived the prediction step and 

the exact update step for the LMB/Poisson tuple state model. Next, we applied several 

approximations and modifications to the exact update step, including the partitioning 

of label and measurement sets, the pruning of implausible object-measurement associa- 

tions, and the transfer of certain unlabeled objects to labeled objects and vice versa. As 

a result, the LMB/P filter uses the LMB RFS to track objects that are likely to exist 

and the Poisson RFS to track objects that are unlikely to exist. The latter fact leads to 

a large complexity reduction, especially in challenging scenarios with a high number of 

objects and/or clutter measurements. Our experimental results for a challenging simu- 

lation scenario with a high number of clutter measurements demonstrated the excellent 

performance and low complexity of the LMB/P filter. More precisely, in comparison 

to the fast BP-based LMB filter of Chapter 5, the BP-based TOMB/P filter with recy- 

cling [|Williams, 2012], and the Gibbs sampler-based LMB filter [Reuter et al., 2017], the 

BP-based implementation of the LMB/P filter achieved the lowest computational com- 

plexity, while the tracking accuracy was comparable to that of the fast BP-based LMB 

filter of Chapter 5 and the BP-based TOMB/P filter with recycling and significantly 

better than that of the Gibbs sampler-based LMB filter. 

Finally, we proposed a distributed multi-sensor LMB filtering algorithm based on 

probabilistic label association, generalized covariance intersection (GCI), and BP. The 

proposed algorithm uses a soft (i.e., probabilistic) association of Bernoulli components 

and thereby improves on current state-of-the-art distributed LMB filters, which are based 

on hard label association. Especially in challenging scenarios, hard label association may 

associate “wrong” Bernoulli components of neighboring sensors and thus may lead to a 

poor tracking performance. We first derived the fused posterior PDF for the two-sensor 

case using GCI-based fusion with hard label association. Here, the label association was 

described by a label association vector that associates the labeled Bernoulli components 

of one sensor with those of the other sensor. Then, the fused posterior PDF based on 

soft label association was derived by modeling the association vector by a random vec- 

tor. This PDF was found to no longer be an LMB PDF but a GLMB PDF involving 

an inherent label association PMF. We then showed that the approximation of the label 

association PMF by the product of its marginals results in an approximated posterior



7.2. FUTURE RESEARCH 125 

PDF that is again of LMB form. Inspired by the algorithm in [Williams and Lau, 2014] 

and the BP algorithm for probabilistic data association used in our fast LMB filter in 

Chapter 4, we proposed a BP-based algorithm for fast approximate marginalization of 

the label association PMF. We also developed a practical implementation of our fusion 

algorithm with reduced computational complexity and communication requirements by 

using Gaussian approximations of the spatial PDFs involved in the local LMB poste- 

rior PDFs. Finally, we obtained a networkwide fusion algorithm by iteratively applying 

the proposed two-sensor fusion scheme between each sensor and all its neighboring sen- 

sors. Simulation experiments demonstrated the excellent performance of the proposed 

distributed LMB filter. More specifically, we observed that our method significantly out- 

performs a state-of-the-art distributed LMB filter using hard label association [Li et al., 

2019] and performs similarly to the centralized multi-sensor LMB filter based on the 

iterated-corrector approach. 

7.2 Future Research 

The development of efficient and high-performing RFS-based multi-object tracking algo- 

rithms is an area of active research. In the following, we suggest some possible extensions 

of our work. 

e The fast LMB filter proposed in Chapter 4 constitutes a single-sensor solution to 

the multi-object tracking problem and can be extended to the multi-sensor case. 

A trivial and computationally simple multi-sensor extension would be given by the 

iterated-corrector approach, in which the update step is executed for each sensor 

measurement separately and sequentially. An update step that uses all the sensor 

measurements jointly can be expected to lead to a higher tracking accuracy but 

would require the solution of a multi-dimensional association problem. We conjec- 

ture that the BP approach to probabilistic data association described in Section 

4.2 can be extended to the multi-sensor case. A similar multi-sensor extension can 

also be envisioned for the single-sensor multi-object tracking algorithm proposed in 

Chapter 5. 

e T'he distributed GCI-based LMB filter proposed in Chapter 6 is based on the fu- 

sion of two LMB posterior PDFs using probabilistic label association. On the other 

hand, the efficient multi-object tracking method proposed in Chapter 5 employs 

an LMB/Poisson posterior PDF. It would be interesting to derive a distributed 

LMB/Poisson multi-object tracking method by applying the GCI fusion technique 

combined with BP-based probabilistic label association to two LMB/Poisson pos- 

terior PDFs. 

e While the GÜOI fusion rule corresponds to the geometric average of the involved
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local posterior PDFs [Uney et al., 2013], another fusion rule corresponds to the 

arithmetic average of the local posterior PDFs [Li et al., 2020]. Current state-of- 

the-art distributed LMB filters based on the arithmetic average fusion rule use a 

hard label association scheme [Gao et al., 2020]. We can combine our concept of 

soft label association proposed in Chapter 6 with the arithmetic average fusion rule 

in order to derive a distributed LMB filter using arithmetic average fusion with soft 

label association.



Appendix 

In Table 7.1, we present an algorithm for constructing the partitionings (5.93) and (5.94). 

This algorithm is further explained in the following. In Step 1, the sets M (1) € M, 

comprise the indices of all those measurements whose association with the object with 

state (x,,!) is plausible. (Note that the Mj,(l) for different [ €L} , are not necessarily 

disjoint.) Then, after an initialization step in Step 2, we perform the iterative procedure 

constituted by Step 3, which generates label subsets LI, CL; {,ced{l,...,C} and 

corresponding measurement index subsets /\/l,(f) C My, ce{l,...,C}. 

The generation of these subsets is done such that for each ce {1,...,C}, the asso- 

ciation of an object state (x,,!), lE L9, with a measurement index m is plausible for 

m € /\/l,(f) and implausible for m € Mm with  # c. This is achieved by doing the 

following for each II) € L;_,: In Step 3.1, we determine the subset C’ of those indices 

ce{1,...,C} for which the measurement index subsets MM! C My, have some elements 

in common with M, (11)), i.e., with the measurement indices corresponding to object 

state (x,,1@)); this expresses the fact that the association between object state (xj, 1)) 

and some measurement indices from U.ce Mi) is plausible. If none of the MN has an 

element in common with M,(IV)), i.e., if the association between object state (x, 19)) 

with any measurement index m € U.c 1... Me is implausible, then C’ is empty. In 

that case, C is incremented by 1, and a new label subset and a new measurement index 

subset are created as 1. — {19} and Me) — M,(1V)), respectively (see Step 3.2). 

Otherwise, i.e., if |C’| > 1, we merge all the label subsets 1) with dl’ € C’ as well as 

the considered label I@) into one common label subset LI, and we merge all the corre- 

sponding measurement index subsets MI), c'’eC’ as well as M,(I@)) into one common 

measurement index subset MI (see Step 3.2, first bullet item). Here, the index c is 

picked arbitrarily from C’. Next, we perform a reindexing such that the index values in 

c"= ({1,...,C}\C’)U fc} become 1,2,...,|C”|. Furthermore, we update C as C = |C”|, 

so that the new set of subset indices is given by {1,...,C'} (see Step 3.2, second and 

third bullet items). Subsequently, Steps 3.1 and 3.2 are repeated for the next / G) € Ly 4 

(if available). 

The final number © of subsets LI, ce {1,...,C} is determined by this iterative 

procedure. Finally, in Step 4, the measurement indices m € Mi, that are not part of 

any subset MI are collected in M7°*. We note that a larger threshold Yc used in the 
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Table 7.1: Algorithm for constructing the partitionings (5.93) and (5.94) 

  

Input: Label set L}_,={1®,... ‚I(%k-ıl)}; measurement index set My; threshold Jc. 

Output: Number of subsets C', label subsets 9 , ce{l,...,C}; measurement index subsets 

MI, ee{l,...,C} and Mi. 
Operations: 

1) For each lEL};_,, determine M,(l) C Mı as the subset of all measurement indices m € M, 

for which 8. > Ye. 

2) Initialization: Set C'=1, L{" = {I®M}, and MM = M, (D). 

3) Iteration: For j =2,...,|L}_,|, do the following: 

3.1) Determine C’ < {1,...,C} as the set of all ce {1,...,C} for which MIN M, (10)) 0. 

3.2) If C' = (), then increment C' by one and set LI” = {1U)} and Mm = M (19)); else do 
the following: 

e Select an arbitrary ¢ € C’ and set L,(fll = {10} U Use) and M = M, (1Y) U 

UC’EC’MIE:C ) 

e Set C’= ({1,...,C}\C") U {¢} and C = [c"]. 
e Perform a reindexing whereby the indices contained in C” are replaced by the new 

indices 1,2,...,C. 

4) Set MS = M\ U, M. 

  

definition of the sets My (1) in Step 1 tends to result in smaller subsets M,{(l), LI, 

and MN, a larger residual set M1°°, a larger number C of subsets LI, and MN, and 

a higher probability of C’ being empty.
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