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Kurzfassung

Das klauselbasierte Beweisformat DRAT ist der De-Facto-Standard, um Unerfüllbarkeits-
ergebnisse von SAT-Gleichungslösern zu verifizieren. DRAT-Beweise bestehen aus Lem-
mas, die Klauseln hinzufügen, und Klauseleliminierungen. Moderne DRAT-Beweisprüfer
ignorieren Eliminierungsinstruktionen von sogenannten Unit-Klauseln, was bedeutet,
dass sich die Semantik der Beweisprüfer von der DRAT-Spezifikation unterscheidet;
infolgedessen können sie manche, von SAT-Lösern verwendete Vereinfachungstechniken,
die Unit-Klauseln eliminieren unter Umständen nicht verifizieren. Moderne SAT-Löser
generieren Beweise die von diesen DRAT-Prüfern akzeptiert werden, jedoch bezüglich
der DRAT-Spezifikation inkorrekt sind, da sie Eliminierungsinstruktionen enthalten,
die nicht-redundante Informationen löschen. Wir schlagen Korrekturen für prämierte
SAT-Löser vor, wodurch diese in der Lage sind, Beweise ohne ebenjene kontraproduk-
tiven Eliminierungen zu generieren, die ergo im Sinne der Spezifikation korrekt sind.
Dennoch können Unit-Eliminierungen in Beweisen in Anbetracht der Verwendung von
fortgeschrittenen Vereinfachungstechniken wohl kaum ausgeschlossen werden, sofern der
Löseaufwand nicht darunter leiden soll. Die Durchführung von Unit-Eliminierungen in
Beweisprüfern kann viel Rechenzeit beanspruchen. Wir haben den ersten wettbewerbsfähi-
gen Prüfer implementiert, der Unit-Eliminierungen berücksichtigt and präsentieren unsere
Versuchsergebnisse, die darauf hindeuten, dass der Rechenaufwand für das Überprüfen
eines durchschnittlichen Beweises mit oder ohne Unit-Eliminierungen gleich ist. Weiters
führen wir das SICK-Format ein, das, vergleichsweise kleine und effizient überprüfbare
Gegenbeispiele zu DRAT-Beweisen beschreibt. Indem wir diese Gegenbeispiele mit einem
unabhängigen Programm überprüfen, stärken wir das Vertrauen in die Stichhaltigkeit
der Inkorrektheits-Ergebnisse. Außerdem kann diese Technik von Nutzen sein um Fehler
in (der Beweisgenerierung von) SAT-Lösern und Prüfern zu finden.
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Abstract

Clausal proof format DRAT is the de facto standard way to certify SAT solvers’ un-
satisfiability results. DRAT proofs consist of lemmas (clause introductions) and clause
deletions. State-of-the-art DRAT proof checkers ignore deletions of unit clauses, which
means that they are checking against a proof system that differs from the specification
of DRAT and they may not be able to verify inprocessing techniques that use unit
deletions. State-of-the-art SAT solvers produce proofs that are accepted by those DRAT
checkers, but are incorrect under the DRAT specification, because they contain spurious
deletions of unit clauses. We present patches for award-winning SAT solvers to produce
proofs without those deletions that are thus correct with respect to the specification.
However, handling unit deletions is still desirable, as they can be a byproduct of advanced
inprocessing techniques in a solver that is hard to avoid without extra costs. Performing
unit deletions in a proof checker can be computationally expensive. We implemented the
first competitive checker that honors unit deletions and provide experimental results sug-
gesting that, on average, checking costs are the same as when not applying unit deletions.
As it is also expensive to determine the incorrectness of a proof, we introduce the SICK
format which describes small and efficiently checkable certificates of the incorrectness
of a DRAT proof. By checking this independently, we are able to increase trust in our
incorrectness results. Additionally it can be useful when debugging solvers and checkers.
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CHAPTER 1
Introduction

Over the past decades, there has been significant progress in SAT solving technology.
At the same time, SAT solvers have had documented bugs [BB09] [BLB10]. To detect
incorrect results, there are checker programs that verify a solver’s result based on a
witness given by the solver. Satisfiability witnesses, or models can be checked in linear
time. Unsatisfiability witnesses, or proofs of unsatisfiability on the other hand can be
much more costly to check.

A SAT solver operates on a formula that acts as knowledge base. It contains constraints
that are called clauses. Starting from the input formula, clauses are added and deleted
during solving. In SAT competitions, solvers are required to give proofs of unsatisfiability
in the DRAT proof format [HJW14]. A DRAT proof is the trace of a solver run, containing
information on which clauses are added and deleted.

State-of-the-art proof checkers ignore deletions of some clauses called unit clauses [RB18].
As a result, the checkers are not faithful to the specification of DRAT proofs. The
original definition of the proof format is referred to as specified DRAT and the one that
is implemented by state-of-the-art checkers as operational DRAT [RB18]. The classes of
proofs verified by checkers of these two flavors of DRAT are incomparable.

Specified DRAT can be required to verify advanced inprocessing steps performed by
state-of-the-art solvers whose proofs contain unit clause deletions [RB18]: since the
correctness of the non-monotonic inferences relies not only on the presence, but also the
absence of clauses, it is crucial that deletions are honored. The proofs for inprocessing
techniques like XOR reasoning [PR16] and symmetry breaking [HJW15] are generated
by hard-coded routines; it would require additional reasoning to detect unit deletions.
Additionally, when a solver reuses a variable that only exists in clauses that have been
deleted, an operational checker might give an incorrect result due to these clauses.

Moving from operational DRAT to specified DRAT requires changes in some state-of-
the-art SAT solvers because their proofs can be incorrect under specified DRAT. To the
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1. Introduction

best of our knowledge, all of those solvers are based on MiniSat [ES03]. Their proofs
can be incorrect under specified DRAT because they may contain some deletions of unit
clauses. As we did not see a motivation for those deletions, we investigated how they
are being generated. We found that the solvers who emit the problematic deletions do
not undo inferences made using the deleted clauses, hence acting as if they had not been
deleted. Since operational DRAT ignores deletions of unit clauses, state-of-the-art proof
checkers interpreted it as if the clauses were not deleted, matching the solvers’ internal
behavior. Luckily, fixes appear to be simple and non-intrusive: we provide small patches
for award-winning solvers to make them generate proofs without counter-productive unit
deletions, eliminating the need to ignore them.

DRAT proofs are designed to use minimal space per proof step but checking them is
computationally expensive. In theory, checking costs are comparable to solving costs
[HJW14]. Consider the problem of the Schur Number Five, where solving took just
over 14 CPU years whereas running the DRAT checker on the resulting proof took
20.5 CPU years [Heu18]. Clearly, it is essential for a proof checker to be as efficient as
possible to deal with such workloads. When considering switching to specified DRAT, it
is important to assess any additional costs. A checker for specified DRAT may incur an
overhead due to the need to honor unit deletions. There is an efficient algorithm to check
specified DRAT [RC18] that introduces several optimizations that are not necessary
for checking operational DRAT. Previous results suggest that the checking costs do
not change significantly. However, those results were based on a checker that was not
as efficient as state-of-the-art operational DRAT checkers. This motivates our central
research question:

Is it possible to check specified DRAT as efficiently as operational DRAT?

To answer this, we implemented a checker for specified DRAT with state-of-the-art
performance. Our experimental results suggest that specified and operational DRAT
are equally expensive to check on the average real-world instance. We also observe that
a high number of unit deletions may have a significant negative impact on checking
performance for specified DRAT.

The majority of solvers at SAT competitions are derived from MiniSat and produce
proofs that are incorrect under specified DRAT. For those incorrect proofs, our checker
outputs a small, efficiently checkable incorrectness certificate in the SICK format which
was originally developed along with the first checker for specified DRAT1 but has not
been published. The incorrectness certificate can be used to check the incorrectness of a
proof, independent of the checker, which helps developers in debugging proof-generation
and proof-checking algorithms. While checking operational DRAT efficiently is arguably
easier than checking specified DRAT, the straighforward semantics of specified DRAT
facilitates reasoning about a proof, e.g. it allows the definition of the SICK format to
be much simpler. We contribute an extension to the SICK format to support a slightly
different semantics of DRAT checking.

1https://github.com/arpj-rebola/rupee
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This thesis is organized as follows: In the next section we will introduce preliminary
knowledge about SAT solving, proofs of unsatisfiability and proof checking, including
the optimization challenges of specified DRAT checking. In Section 3 we propose how
to change MiniSat-based solvers to produce unambiguously correct proofs. Section
4 concerns the efficient implementation of our specified DRAT checker: after briefly
discussing other checkers we present our implementation and describe the SICK format for
certificates of proof incorrectness. Experimental results evaluating checker performance
are given in Section 5. Finally, we draw a conclusion in Section 6 and give outlook on
future work in the area of DRAT proof-checking in the last section.
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CHAPTER 2
Preliminaries

A literal is a propositional variable, like x, or the negation of a variable, denoted by x.
A clause is a disjunction of literals, usually denoted by juxtaposition of the disjuncts,
e.g. we write xyz for x ∨ y ∨ z.

An assignment is a finite, complement-free set of literals. All literals in an assignment
are considered to be satisfied by that assignment. Conversely, the complements of those
literals are falsified by the assignment. Other literals are unassigned.

A clause is satisfied by an assignment I if any literal in the clause is satisfied by I. SAT
solvers work on formulas in conjunctive normal form (CNF), conjunctions (or multisets)
of clauses.A formula in CNF is satisfied by I if each of its clauses is satisfied by I. An
assignment that satisfies a formula is called a model for that formula. A formula is
satisfiable if there exists a model for it. Two formulas F and G are satisfiability-equivalent
if F is satisfiable if and only G is satisfiable.

A unit clause with respect to some assignment contains only falsified literals except for a
single non-falsified unit literal.

Unit Propagation Let F be a CNF formula. We say that a literal l is implied
by unit propagation over F whenever there is a finite propagation sequence of clauses
(C1, . . . , Cn) ⊆ F such that for each 1 ≤ i ≤ n there is a literal li ∈ Ci with Ci \ {li} ⊆
{l1, . . . , li−1}. We call Ci the reason clause for li with respect to this propagation sequence.
Observe that every reason clause is a unit clause.

An assignment I is a unit propagation model (UP-model) of F when for each clause
C ∈ F , I either satisfies C or there are at least two literals in C that are unassigned in I

[RB18]. Formula F is UP-satisfiable if it has a UP-model. Otherwise — if complementary
literals are implied by unit propagation, or the formula contains the empty clause — it
is UP-unsatisfiable. If F is UP-satisfiable, its shared UP-model is the intersection of all
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2. Preliminaries

UP-models. It is the assignment consisting of all literals implied by unit propagation in F .
It is a subset of every model of F . Clause C is called a unique reason clause in formula
F if the shared UP-model of F \ {C} is strictly smaller than the shared UP-model of F .

2.1 SAT Solving

A SAT solver takes as input a formula and finds a model if the formula is satisfiable.
Otherwise, the solver provides a proof that the formula is unsatisfiable. While searching
for a model, a solver maintains an assignment that represents the shared UP-model of
the formula, along with the order in which the literals were assigned. We call this data
structure the trail. SAT solvers search through the space of all possible assignments.
They make assumptions, temporarily adding size-one clauses to the formula. This triggers
unit propagation, adding more literals to the trail. These literals are implied by unit
propagation in the formula plus the current assumptions. Only assignments that are a
superset of the trail are considered during search, which means that many assignments
are pruned from the search space. Additionally, solvers may use inprocessing techniques
to modify the formula without changing satisfiability. Once the trail falsifies a clause,
the (UP-)unsatisfiability of the formula plus assumptions is established. If there are
assumptions, some of them are undone (backtracking [MS99]) and the solver resumes
search. Otherwise, if there are no assumptions, the input formula is unsatisfiable.

Efficient Implementation of Unit Propagation To efficiently keep track of which
clauses can become unit, competitive solvers and checkers use the two-watched-literal
scheme [MMZ+01]. For each literal in the formula, it keeps a watchlist of clause references.
Clauses in the watchlist of some literal are said to be watched on that literal. Each
non-deleted clause is watched on two literals, which are also called its watches. Provided
that Invariant 1 from [RC18] is maintained, it suffices to look at the watches to determine
that a clause is not unit:

Invariant 1. If a clause is watched on two distinct literals l and k, and the current trail
I falsifies l, then I satisfies k.

A clause that is not already satisfied can only become unit if one of its watches is falsified.
When literal l is assigned, it is sufficient to visit clauses in the watchlist of l to find new
unit clauses — that is clauses that became unit due to assigning l. For visited clauses
that are not unit, the watches may need to be changed to restore Invariant 1.

As an example, we perform unit propagation on formula F = {x, yxz, xy, xy}. Let the
first two literals in each clause be watched. So only y and x are watched in the second
clause. To change watches, we simply flip the order of the literals in the clause. Initially,
only the size-one clause x is unit. Two clauses are watched on x, so they need to be
inspected: Invariant 1 is violated in yxz, so the watches will be changed, making the
clause yzx. Additionally, xy is unit, which triggers propagation of y. Only yzx is watched
on y, which triggers propagation of z, but no clause is watched on z, so propagation ends
at this point. Clause xy is never visited during propagation because it is not watched
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2.2. Proofs of SAT Solvers’ Unsatisfiability Results

on any relevant literal. The fact that unrelated clauses do not need to be visited is the
central advantage of the two-watched literal scheme.

CDCL Predominant SAT solvers implement Conflict Driven Clause Learning (CDCL)
[SLM09] which is based on the following principle: whenever the formula plus assumptions
is UP-unsatisfiable, a subset of the assumptions is undone and a conflict clause is learned

— it is added to the formula to prevent the solver from revisiting those wrong assumptions.
As the number of clauses increases, so does memory usage, and the time spent on unit
propagation. Because of this, learned clauses are regularly deleted from the formula in
an unsatisfiability-preserving way if they are not considered useful.

2.2 Proofs of SAT Solvers’ Unsatisfiability Results

Redundancy Criteria A clause C is redundant in a formula F if F and F ∪ {C} are
satisfiability equivalent [HKB17]. There are various criteria of redundancy, with different
levels of expressivity and computational costs.

• RUP — a clause C is a reverse unit propagation (RUP) inference in formula F if
F ′ := F ∪ {l | l ∈ C} is UP-unsatisfiable [GN03]. To compute whether C is RUP,
the negated literals in C are added as assumptions and propagated to determine
whether the formula is UP-satisfiable. If after some propagation steps the trail is a
not a UP-model, C is RUP. A clause that is RUP in F is logical consequence of F

[Gel08].

• RAT — a clause C is a resolution asymmetric tautology (RAT) [JHB12] on some
literal l ∈ C with respect to formula F whenever for all clauses D ∈ F where l ∈ D,
the resolvent on l of C and D, which is (C \{l})∪ (D \{l}), is RUP in F . Clause D

is called a resolution candidate for C and l is called the pivot. Computing whether
a clause is RAT can be done with one RUP check for each resolution candidate. A
clause that is RAT in F is not necessarily a logical consequence of F , yet adding it
to F preserves satisfiability. RAT inference is non-monotonic: if C is RAT in F

then it may not be RAT in F ′ ⊇ F .

DRAT Proofs Proofs based on RUP alone are not expressive enough to simulate
all inprocessing techniques in state-of-the-art SAT solvers [HJW13b]. Because of this,
the more powerful criterion RAT is used today [Gel12] [HJW13b]. A DRAT proof
(delete resolution asymmetric tautology) [WHJ14] [Heu16] is a sequence of lemmas (clause
introductions) and deletions, which can be applied to a formula to simulate the clause
introductions, clause deletions and inprocessing steps that the solver performed. The
accumulated formula at each proof step is the result of applying all prior proof steps
to the input formula. Based on the accumulated formula, the checker can compute the
shared UP-model at each step to determine UP-satisfiability. Every lemma in a correct
DRAT proof is a RUP or RAT inference with respect to the accumulated formula. In
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2. Preliminaries

practice, most lemmas are RUP inferences, so a checker first tries to check RUP, and if
that fails, falls back to RAT.

In specified DRAT, checking is performed with respect to the accumulated formula, while
operational DRAT uses an adjusted accumulated formula that is computed the same way
as the accumulated formula except that deletions of clauses that are unit with respect to
the shared UP-model of the adjusted accumulated formula are ignored [RB18].

A proof solely consisting of clause introductions will result in the checker’s propagation
routines slowing down due to the huge number of clauses just like in a CDCL solver
that does not delete learned clauses. To counteract this, clause deletion information
has been added, making the proof-checking time comparable to solving time [HJW14]
[WHJ14]. While deletions were added as an optimization, they can also enable additional
inferences due to RAT being non-monotonic [PR17]. This means that ignoring deletions
may prevent RAT inferences which is why a proof that is correct under specified DRAT
may be incorrect under operational DRAT.

LRAT Proofs The runtime and memory usage of DRAT checkers can exceed the
ones of the solver that produced the proof [Heu18]. The resulting need for a DRAT
checker to be as efficient as possible requires mutable data structures that rely on pointer
indirection which are difficult to formally verify. The lack of a formally verified DRAT
checker is remedied by making the DRAT checker output an annotated proof in the
LRAT format [CHJ+17]. The LRAT proof can be checked by a formally verified checker
without unit propagation, making sure that the formula formula is indeed unsatisfiable
[HJKW17]. Most solvers can only generate DRAT proofs but DRAT checkers can be
used to produce an LRAT proof from a DRAT proof. The LRAT proof resembles DRAT,
but it includes clause hints to guide unit propagation: for each resolution candidate, the
resolvent is shown to be a RUP inference by giving a propagation sequence that shows
UP-unsatisfiability of the formula with the negated literals in the resolvent.

2.3 Proof Checking

We say that some tool verifies some property of an artifact when that artifact has this
property according to the semantics encoded in the tool. This is not to be confused
with formal verification; for state-of-the-art DRAT checkers, there is no proof that the
implementation corresponds to any formal specification.

The naïve way to verify that a proof is correct consists of performing each instruction in
the proof from the first to the last one, while checking each lemma. To check an inference,
the checker needs to compute the shared UP-model of the accumulated formula. This is
stored in the trail. Instead of recomputing the shared UP-model from scratch at each
proof step, the trail is modified incrementally: whenever a clause is added to the formula,
the propagation routine adds the missing literals to the trail. When a reason clause is
deleted, some literals may be removed.
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2.3. Proof Checking

Backwards Checking During search, SAT solvers cannot know which learned clauses
are useful in a proof, so they add all of them as lemmas. This means that many lemmas in
a proof might not be necessary. Backwards checking [HJW13a] avoids checking superfluous
lemmas by only checking core lemmas — lemmas that are part of the unsatisfiable core, an
unsatisfiable subset of an unsatisfiable formula. Initially, the clauses from the propagation
sequence that establishes UP-unsatisfiability of the formula is added to the core. Then
the proof is processed backwards; only core lemmas are checked. Every lemma that is
used in some propagation sequence to derive another lemma is added to the core as well.
Clauses and lemmas that are not in the core do not influence the unsatisfiability result
and are virtually dropped from the proof. Tools like DRAT-trim can output a trimmed
proof that only contains core lemmas.

Backwards checking can be implemented using two passes over the proof: a forward
pass that merely performs unit propagation after applying each proof step [RC18] until
UP-unsatisfiability is established, and a backward pass that checks lemmas as required.
The forward pass enables the checker to record the state of the trail at each proof step
and efficiently restore it during the backward pass. If there are no deletions of unique
reason clauses, the shared UP-model grows monotonically, and the trail can be restored
by simply truncating it.

Here is an example for backwards checking: let F = {xyz, xyz, xy, xy, xy, xz} be an
unsatisfiable formula with a proof consisting of two lemmas (add xy, add x). In the
forward pass both lemmas are applied, then the accumulated formula is UP-unsatisifiable.
To show UP-unsatisfiability, assume we propagate clauses x, xy and xy which are added
to the core. Then backwards checking can start: first we check lemma x because it is in
the core: it is RUP in F ∪{xy} since F ∪{xy}∪{x} is UP-unsatisfiable. We show this by
propagating the clauses xy, xyz and xyz, which are then added to the core. Subsequently
we can skip checking lemma xy because it is not in the core; it is virtually deleted from
the proof.

Core-first Unit Propagation To keep the core small and reduce checking costs,
core-first unit propagation was introduced [HJW13a]. It works by doing unit propagation
in two alternating phases:

1. Propagate exhaustively using clauses already in the core.
2. If there is some non-core unit clause with an unassigned unit literal, add this literal

to the trail and go to step 1, which will propagate this literal while only considering
core clauses. Otherwise, terminate.

This results in a minimum of clauses being added to the core because whenever UP-
unsatisfiability can be shown without adding a new clause to the core, this will be done
by core-first unit propagation. This generally makes checking faster because the number
of visited clauses while propagating decreases on average.
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2. Preliminaries

Consider the same example as above but assume we do check lemma xy, even though it is
not in the core. To show that xy is RUP in F we show that F ∪{x, y} is UP-unsatisfiable.
This can be done by propagating clauses xyz and xz. However, xz is not in the core, so
core-first propagation will use xyz instead.

Reason Deletions Under operational DRAT, unit deletions are ignored. Only proofs
with unique reason deletions have different semantics under specified and operational
DRAT, because only those deletions alter the shared UP-model. State-of-the-art DRAT
checkers do not implement a way to detect unique reason deletions, but they can emit
a warning whenever a unit clause is deleted. To detect unique reason deletions, it is
necessary check whether a reason deletion alters the shared UP-model, which is only
implemented in specified DRAT checkers. A reason is a a clause that was used in some
propagation sequence to compute a literal l in the trail. When a unique reason clause
is deleted, l is no longer implied by unit propagation and needs to be removed from
the trail. This means that it is not possible anymore to revert this modification of the
trail in the backward pass by truncating the trail. Instead, for each reason deletion, the
removed literals are recorded by the checker, along with their positions in the trail and
their reasons. This information can be used in the backward pass to restore the state of
the trail to be exactly the same as in the forward pass for each proof step, which is what
the algorithm from [RC18] does along other non-trivial routines to maintain the watch
invariants.

Reason Deletions in Inprocessing Steps Some inprocessing techniques introduce
or delete variables [RB18]. A deletion of a variable means that both of its literals are
deleted from all clauses. A deletion of literal l from a clause C is modelled in the proof by
first adding C \ {l} and subsequently deleting C. Under operational DRAT, the deletion
of C is not performed if C is a unit. This may cause a misinterpretation of the proof if
the variable l is later reused by being introduced by another inprocessing step.

Inprocessing steps for XOR reasoning [PR16] and symmetry breaking [HJW15] are
supported by proof fragments generated by hard-coded routines [RB18]. It may not
be easy or efficient for such routines to produce proof fragments any without reason
deletions. Under operational DRAT the deleted reason clauses would linger, thus the
proof is checked in a different way than intended.
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CHAPTER 3
A Tiny Tweak to Proof

Generation in MiniSat-based

SAT Solvers

Some state-of-the-art solvers produce proofs with deletions of unique reason clauses.
A significant fraction of their proofs are incorrect under specified DRAT. Since these
solvers act as if reason clauses were not deleted we propose patches to avoid deletions
of reason clauses, matching the solver’s internal behavior. For the fragment of proofs
without unique reason deletions, operational and specified DRAT coincide because the
accumulated formula and the adjusted accumulated formula coincide, hence these proofs
can be checked with a checker of either flavor.

Out of the solvers submitted to the main track of the 2018 SAT competition, the ones
based on MiniSat and CryptoMiniSat produce proofs with deletions of unique reasons
while, to the best of our knowledge, others do not.

Let us explain how DRUPMiniSat1 emits unique reason deletions. This solver performs
simplification of the formula when there are no assumptions (decision-level zero), so the
trail is equivalent to the shared UP-model of the formula without assumptions. The
literals that are in the trail at this point will never be unassigned by DRUPMiniSat.

One step in the simplification phase is the method Solver::removeSatisfied, which
for each clause C that is satisfied by the shared UP-model, removes C from the clause
database and emits a deletion of C to the DRAT proof output. Such a clause C remains
satisfied indefinitely for the rest of the search because it is already satisfied by some
literal that will never be unassigned as stated above. For example, consider the formula

1The original patch to MiniSat to produce DRUP/DRAT proofs on which other solvers’ proof
generation procedures seem to be based. See https://www.cs.utexas.edu/~marijn/drup/
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3. A Tiny Tweak to Proof Generation in MINISAT-based SAT Solvers

F = {x, xy}. The shared UP-model is {x} and clause x is the reason for literal x. Because
both clauses are satisifed by the shared UP-model, the solver would remove them and
add deletions of x and xy to the proof.

In MiniSat, reason clauses are called locked. The method Solver::removeSatisfied
also deletes locked clauses, however, the literals propagated because of such a locked
clause will not be unassigned. This suggests that the locked clause is implicitly kept in
the formula, even though it is deleted. State-of-the-art DRAT checkers ignore deletions
of unit clauses, which means that they do not unassign any literals when deleting
clauses, matching DRUPMiniSat's internal (but not external) behavior. In above
example, after deleting both clauses from F , the unique reason clause for literal x is
gone. Therefore the shared UP-model does not contain literal x anymore.

We have proposed2 two possible changes to make DRUPMiniSat produce proofs that do
not require ignoring unit deletions when checking.

1. Do not remove locked clauses during simplification. In our example, this would
mean that x is not deleted, so the shared UP-model stays the same.

2. Before removing a locked clause C, emit its unit literal l ∈ C as a introduction
of size-one clause l in the DRAT proof. Suggested by Mate Soos3, this option is
also preferred by the authors of mergesat4 and varisat5. Additionally, this is
implemented in CaDiCaL's preprocessor. This does not influence the correctness
of future inferences because C and l are logically equivalent with respect to the
shared UP-model — they will behave identically for all future inferences since the
literals in assignment at decision-level zero will never be unassigned. In our example
this means that another instance of x is added in the proof, before one x is deleted,
which preserves the formula.

We provide patches implementing these for MiniSat version 2.2 (1. 6 and 2.7), and
the winner of the main track of the 2018 SAT competition (1.8 and 2.9). Both patches
are arguably very simple and we do not expect any significant impact in terms of solver
runtime, memory usage or proof size: the additional clauses will not be added to the
watchlists and do therefore not slow down propagation. There can be at most one locked
clause per variable, so their memory usage is small. The proof will be larger only with
the second variant by adding at most one unit clause addition per variable, which is

2https://groups.google.com/d/msg/minisat/8AXELMFPzPY/8K8Tq-WVBQAJ
3https://github.com/msoos/cryptominisat/issues/554#issuecomment-496292652
4https://github.com/conp-solutions/mergesat/pull/22/
5https://github.com/jix/varisat/pull/66/
6https://github.com/krobelus/minisat/commit/keep-locked-clauses/
7https://github.com/krobelus/minisat/commit/add-unit-before-deleting-locked-clause/
8https://github.com/krobelus/MapleLCMDistChronoBT/commit/keep-locked-clauses/
9https://github.com/krobelus/MapleLCMDistChronoBT/commit/add-unit-before-deleting-locked-

clause/
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tiny compared to the rest of a typical proof. The patches can be easily adapted to other
DRUPMiniSat-based solvers.
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CHAPTER 4
A Complete and Efficient DRAT

Proof Checker

We have implemented a checker to compare the costs of checking specified and operation
DRAT. Additionally an efficient checker for specified DRAT can be useful to verify solvers’
inprocessing steps that contain unit deletions. In this section, we discuss our checker
implementation after introducing existing checkers. Finally we describe the format for
SICK witnesses, which can be produced by our checker to verify proof incorrectness.

4.1 Existing Checkers

We heavily draw upon existing checkers. In fact, our implementation contains no
algorithmic novelties but merely combines the ideas present in existing checkers.

DRAT-trim The seminal reference implementation; Marijn Heule’s DRAT-trim can
produce a trimmed proof in the DRAT or LRAT format. We mimic1 their way of
producing LRAT proofs and ensure that all our proofs are verified by a formally verified
checker. This gives us confidence in the correctness of our implementation and allows
for a comparison of our checker with DRAT-trim since both have the same input and
output formats.

DRAT-trim pioneered deletions, backwards checking and core-first propagation. Addi-
tionally it employs an optimization which we also use: during RAT checks, resolution
candidates that are not in the core are ignored, because the proof can be rewritten to
delete them immediately before the current lemma. Here is why this is sound: let l be
the pivot literal and D a non-core clause that is a resolution candidate, so l ∈ D. During
the backwards pass, a RAT check is performed using l as pivot. Since D is not in the

1See the function sortSize() in DRAT-trim.
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4. A Complete and Efficient DRAT Proof Checker

core, it was never used in a later inference since we are checking lemmas from last to
first. By ignoring D as RAT candidate it is virtually removed from the proof. This is
sound, that is, a correct RAT inference on pivot l does not depend on the clause D,
so it can be freely removed. This is the case because in the RAT check, the resolution
candidate becomes unit after propagating the reverse literals in resolvent, so unit literal l

is satisfied, or rather l is falsified. This makes D a tautology which will never be used to
derive a conflict and thus make an inference2.

GRAT Toolchain More recently, Peter Lammich has published the GRAT toolchain
[Lam17b]. Given a DRAT proof, they first produce a GRAT proof which is similar to
LRAT with the gratgen tool, which outperforms DRAT-trim [Lam17a]. Subsequently,
the formally verified gratchk can be used to check the GRAT proof, guaranteeing that
the original formula is indeed unsatisfiable. We also implement GRAT generation in our
tool. However, the gratchk tool ignores unit deletions, so GRAT proofs are only useful
for operational DRAT as of now.

Here are two of their optimizations:

• Separate watchlists for core and non-core clauses3. This speeds up core-first unit
propagation, so we use it in our implementation. The clauses in the core are
kept in different watchlists than non-core clauses. Since most time is spent in
propagation, this can give a significant speed-up to core-first propagation. Without
separate watchlists, core-first propagation traverses the same watchlists twice, first
in core-mode and then in non-core-mode. For each visited clause they check if it is
in the core and propagate if that matches the current mode. This boils down to
to a branch instruction which can be moved outside the loop by partitioning the
watchlists into core and non-core clauses.

• Resolution candidate caching / RAT run heuristic [Lam17a]: DRAT proofs tend to
contain sequences of RAT lemmas with the same pivot, in which case they only
compute the list of RAT candidates once per sequence and reuse it for all lemmas
with the same pivot. We did not implement that since we do not have benchmarks
with a significant number of RAT introductions compared to the number of RUP
introductions.

Among state-of-the-art DRAT checkers, gratgen is arguably the easiest to understand
— even though it can do a parallel checking — so we advise interested readers to study
that.

2http://www21.in.tum.de/~lammich/grat/gratgen-doc/Unmarked_RAT_Candidates.html
3http://www21.in.tum.de/~lammich/grat/gratgen-doc/Core_First_Unit_Propagation.html
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4.2. Checker Implementation

rupee This is the original implementation4 of the first efficient algorithm to honor
unique reason deletions. We use the same algorithm. During our research we found one
issue in the implementation which was fixed5.

In previous experiments, rupee was an order of magnitude slower than DRAT-trim

[RC18]. We believe that this overhead is primarily not a consequence of algorithmic
differences but of implementation details such as missing optimizations in the parser and
the lack of function inlining. Additionally, rupee does not use core-first unit propagation
while the other checkers do.

4.2 Checker Implementation

Our checker is called rate which may stand for “rate ain’t trustworthy either”.
It is a MIT-licensed clausal proof checker that aims to be user-friendly, easy-
to-understand and efficient. Source code and documentation can be found at
https://github.com/krobelus/rate/.

To facilitate adoption, rate is a drop-in replacement for a subset of DRAT-trim’s
functionality — the unsatisfiability check with core extraction — with the important
difference that it checks specified DRAT by default. When a proof is verified, rate
can output core lemmas as DIMACS, LRAT or GRAT. Otherwise, the rejection of a
proof can be supported by a SICK certificate of incorrectness. The representation of
the input DRAT proof — binary or textual – is automatically detected the same way
as DRAT-trim. Additionally, compressed input files (Gzip, Zstandard, Bzip2, XZ, LZ4)
are transparently uncompressed.

We provide two options that alter the semantics of the checker:

1. Unit deletions can be skipped with the flag -d. This makes rate check operational
DRAT instead of specified DRAT.

2. If the flag --assume-pivot-is-first is given, the pivot must be the first
literal in a RAT lemma, otherwise the proof will be rejected.

Among other metrics, rate can output the number of reason deletions and unique reason
deletions6. Other checkers cannot provide the latter. This might be useful to validate
that a proof contains no unique reason deletion, since most solvers do not use advanced
inprocessing techniques requiring unique reason deletions and thus probably do not need
to use them.

4https://github.com/arpj-rebola/rupee
5https://github.com/arpj-rebola/rupee/compare/b00351cbd3173d329ea183e08c3283c6d86d18a1..b

00351cbd3173d329ea183e08c3283c6d86d18a1~~~
6The metric for the number of unique reason deletions is called reason deletions shrinking

trail in the output of rate.
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4. A Complete and Efficient DRAT Proof Checker

As other state-of-the-art checkers, rate deviates from the specification of DRAT [Heu16]
where that is convenient or necessary for competitive performance. For example, it fails
when given 230 or more clauses. Like other checkers, rate accepts proofs that do not
contain the empty clause. Due to backwards checking many lemmas are skipped, so
proofs with incorrect lemmas may be accepted as well. We allow proofs that are missing a
zero-terminator in their last proof step because some solvers in the 2018 SAT competition
did not always write that zero.

The checker is extensible to other clausal proof formats, for example we support the
proof format, DPR (delete propagation redundancy) [HKB17] which supersedes DRAT.

To automatically minimize inputs that expose bugs in our checker we have developed
a set of scripts to delta-debug CNF and DRAT instances. Consider that we had proof
instances of several gigabytes that provoked crashes in rate. Using a combination of
binary search and deletion of random lines we were usually able to minimize interesting
instances to mere kilobytes. One important tool do do binary search in proofs is our
apply-proof, which takes a formula and a clausal proof and applies a given number of
proof steps, outputting the accumulated formula as well as the rest of the proof.

We chose the modern systems programming language Rust7 for our implementation
because of its feature parity with C in the domain of SAT solving. Among the respondents
of the 2019 Stack Overflow Developer Survey8 it is the most loved programming language
and Rust developers have the highest contribution rate to open source projects. Based
on our experience, we believe that it is a viable alternative to C or C++ for SAT solving,
assuming people are willing to learn the language. The first Rust-based solver to take
part in competitions, varisat9, is a great example of this. They use a library10 to avoid
writing a lot of boilerplate code necessary to satisfy Rust’s borrow checker.

Rust aims to avoid any undefined behavior. For example, buffer overflows are prevented
by performing runtime bounds checks upon array access. While for most programs those
bounds checks have negligible impact on performance (branch prediction can handle
them seamlessly), we disable bounds checking by default in most routines, which gave
speedups of around 15% in preliminary tests. Furthermore, our checker implementation
contains a variety of cheap runtime assertions, including checks for arithmetic overflows
and narrowing conversions that cause a change of value.

4.3 The SICK Format

For DRAT proofs that are verified by rate, it can produce an LRAT proof containing
core lemmas. The formally verified LRAT checker can be used to certify that the LRAT
proof is a correct proof of unsatisfiability, which suggests that the original DRAT proof

7https://www.rust-lang.org/
8https://insights.stackoverflow.com/survey/2019
9https://github.com/jix/varisat/

10https://jix.one/introducing-partial_ref/
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4.3. The SICK Format

is correct as well. However, many proofs are rejected by our checker for specified DRAT.
To trust those results, we want to independently verify the incorrectness of such proofs.

A DRAT proof is incorrect if any of its lemmas is not a RUP or RAT inference. To
show that a lemma C is not RUP in the accumulated formula F , it suffices to show
that F ∪ {l | l ∈ C} is UP-satisfiable. On top of that, to show that C is not RAT, it
suffices to show that any resolvent with C is not RUP. For example, consider formula
F = {xy, xy, xy} and lemma xy which is neither RUP nor RAT. To refute RUP for
lemma xy we find a UP-model of F ∪ {xy}, for example ∅ or {xy}. To refute RAT for
xy on pivot x we check that some resolvent on x is not RUP. The first resolvent yy is
a tautology and thus trivially RUP but the second resolvent y is not: F ∪ {y} has a
UP-model {xy}. The same thing can be shown for the resolvents on the other pivot y.

Since our checker already computes the shared UP-model for each RUP check, we can
output that for an incorrect inference and check the inference with an independent tool.
This tool can be much simpler than the checker because it does not need to implement
unit propagation. This is useful because unit propagation with watchlists is non-trivial to
implement correctly for specified DRAT. A bug in a watchlist implementation typically
provokes problems when it causes some clause to not be watched when it is unit which
means that the propagation may be incomplete. If so, the shared UP-model computed
by the checker is smaller than the actual shared UP-model. This can be detected easily
by looking for a clause that is unit but not satisifed. On the other hand, if the checker’s
shared UP-model is bigger than the actual shared UP-model, that would be a bug that
is not easily be detected by such a tool. However, a proof is never incorrectly rejected
because the computed shared UP-model is too large, since a larger model increases the
likelihood of finding a conflict.

Proof incorrectness certificates have been proposed in [RB18]. The format we use is
called SICK. It was originally developed for rupee. A certificate in our SICK format
can be used by our tool sick-check to verify incorrectness of the proof without doing
any unit propagation. Furthermore, the incorrectness certificate is tiny compared to the
formula. We have fixed some bugs in our checker that were exposed by sick-check.
The SICK file format is using TOML11 syntax; see Figure 4.1 for a grammar. An example
application of a SICK certificate is shown in Figure 4.2. The first two columns show a
satisfiable formula with two binary clauses in DIMACS format and an incorrect DRAT
proof for this formula. The proof consists of two lemmas, a size-one clause, and the
empty clause. The third column shows the corresponding SICK certificate, stating that
the RUP and RAT checks failed for the first lemma in the proof.

Explanation

• proof_step specifies the proof step that failed (by offset in the proof, starting
at one for the first proof step). For the remainder of this section, let the lemma

11https://github.com/toml-lang/toml
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4. A Complete and Efficient DRAT Proof Checker

SICK := ProofFormat [ProofStep] NaturalModel Witness*
ProofFormat := proof_format = FormatSpec
FormatSpec := ("DRAT-arbitrary-pivot" | "DRAT-pivot-is-first-literal")

ProofStep := proof_step = Integer
NaturalModel := natural_model = ListOfLiterals

Witness := [[witness]] FailingClause FailingModel Pivot
FailingClause := failing_clause = ListOfLiterals
FailingModel := failing_model = ListOfLiterals

Pivot := pivot = Literal
ListOfLiterals := [ (Literal ,)* ]

Figure 4.1: The grammar of a SICK certificate

Formula Proof SICK Certificate

p cnf 2 2 1 0 proof_format = "DRAT-arbitrary-pivot"

-1 -2 0 0 proof_step = 1

-1 2 0 natural_model = [-1, ]

[[witness]]

failing_clause = [-2, -1, ]

failing_model = [2, ]

pivot = 1

Figure 4.2: Example SICK certificate for an incorrect proof

denote the clause that is introduced by the referenced proof step. For a textual
proof that has each proof step on a separate line, this corresponds to the line
number of the introduction instruction that failed. If proof_step is omitted,
it means that the proof does not add enough clauses to make the accumulated
formula UP-unsatisifiable.

• proof_format describes the proof format to use. We added the distinction
between these two formats because it was not clear which one should be used
exclusively.

– DRAT-arbitrary-pivot: DRAT checking where the pivot can be any
literal in the lemma. This requires one witness (counter-example) for each
possible pivot in the lemma. The pivot has to be specified for each witness.

– DRAT-pivot-is-first-literal: Similar, but there is only one witness.
The pivot needs to be the first literal in the lemma.

Not all current solvers put the pivot as first literal of a RAT lemma, therefore in
practise DRAT-arbitrary-pivot is usually desired. New proof formats such as
PR however require specifying the witness explicitly.
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4.3. The SICK Format

• natural_model gives the shared UP-model before checking this proof step. If
proof_step is omitted, this is the shared UP-model after applying all proof steps.

Each witness is a counter-example to some inference and comprises the following elements:

• failing-clause: A clause in the formula, which is a resolution candidate for
the lemma. This means that the RUP check failed for the resolvent on the pivot
literal of the lemma and the failing clause.

• failing-model: The literals that were added to the natural model (trail) when
performing the failed inference check.

• pivot: This specifies the pivot literal.

If the lemma is the empty clause, no witness is necessary, since the empty clause cannot
be RAT. Additionally, if the proof_step is omitted, no witness is necessary either.

Semantics Our tool sick-check verifies SICK certificates that fulfill below proper-
ties.

Let F be the accumulated formula up to and excluding the lemma.

1. The proof contains the proof_step (if present).
2. The given natural_model is a UP-model of F .
3. For each witness, consisting of failing_clause, failing_model and pivot.

1. The failing_clause is in F .
2. The union of natural_model and failing_model is a UP-model of

F ∪ {l | l ∈ r} where r is the resolvent on pivot of the lemma and the
failing_clause.

4. If the format is DRAT-arbitrary-pivot, the lemma is equal to the set of the
pivots in the given witnesses.

A SICK certificate can only be produced by checker of specified DRAT, because to
compute the accumulated formula in an operational checker, one would need to do unit
propagation which is avoided by design in the SICK checker. This is a potential benefit
of a specified checker: the accumulated formula at each proof step can be computed
without unit propagation.

Contribution Our contribution to the SICK format consists of the design of the new
syntax that takes into account the variants of DRAT with a fixed or an arbitrary pivot.
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CHAPTER 5
Experimental Evaluation

Here we present a performance evaluation of our checker. Technical details are available1.
We analyze four checkers:

1. rate
2. rate-d (the flag -d means “skip unit deletions”)
3. DRAT-trim
4. gratgen

Only rate checks specified DRAT, the other three implement operational DRAT.

Experimental Setting Each individual benchmark consists of a SAT problem instance
and a solver to produce a proof for this instance. For each benchmark, we run the solvers
with the same limits as in the SAT competition — a maximum of 5000 seconds CPU time
and 24 GB memory, both imposed by runlim2. Then we run the checkers on the resulting
proof using a time limit of 20000 seconds, as in the competition. For rate, rate-d
and DRAT-trim, we did ensure that the LRAT proof is verified by the verfied checker
lrat-43 in preliminary runs. However, we do not generate LRAT (or GRAT) proofs for
the final measurements because based on preliminary experiments we do not expect any
interesting differences stemming from LRAT proof output routines. For proofs rejected
by rate, we run sick-check, to double-check that the proof is incorrect under to the
semantics of specified DRAT. For the final evaluation we also disabled assertions and
logging in rate and rate-d which seems to give small speedups.

1https://github.com/krobelus/rate-experiments
2http://fmv.jku.at/runlim/
3https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat
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5. Experimental Evaluation

We performed all experiments on a machine with two AMD Opteron 6272 CPUs with
16 cores each and 220 GB main memory running Linux version 4.9.189. We used GNU
parallel [Tan18] to run 32 jobs simultaneously. Such a high load slows down the solvers
and checkers, likely due to increased memory pressure. Based on preliminary experiments
we expect that the checkers are affected equally so we assume that a comparison between
the checkers is fair.

Benchmark Selection We take from the 2018 SAT competition4 both the SAT in-
stances and the solvers from the main track, excluding benchmarks that are not interesting
for our purpose of evaluating rate's performance. We consider only unsatisfiable in-
stances where the solver does not time out, and where the resulting proof is not rejected
by rate. The latter condition ensures a fair comparison in terms of checker performance:
when rate rejects a proof it terminates as soon as an incorrect instruction is encountered
in the backward pass. This means that it has verified only a fraction of the proof while
other checkers would verify the entire proof. Hence it is not useful for benchmarking
checker performance to include proofs that are rejected under specified DRAT.

Starting from the benchmarks where — according to the competition results5 — the
solver successfully produced a proof of unsatisfiability, here is how many benchmarks
were removed by the criteria mentioned above:

All benchmarks 3653
where the solver does not time out 3605

from which rate rejects the proof 2762
from which rate rejects the proof due to an overflow 1
selected benchmarks 842

from which rate verifies the proof 839
from which rate times out 2
from which rate runs out of memory 1

5.1 Comparison of Checkers

We present performance data as reported by runlim — time in seconds and memory
usage in megabytes (220 bytes).

On an individual instance, two checkers can exhibit different performance because of
different propagation orders and, as a result, different clauses being added to the core.
Instead we compare the distribution of the checkers’ performance. The distribution has
a long tail of instances where the checkers’ performance is similar. In Figure 5.1 we show
only the head of that distribution where some differences emerge. We conclude that
gratgen is a bit faster, and DRAT-trim is slower than rate. As expected, rate, and

4http://sat2018.forsyte.tuwien.ac.at/
5http://sat2018.forsyte.tuwien.ac.at/results/main.csv
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5.2. Overhead of Reason Deletions

rate -d show roughly the same distribution of runtimes. Because DRAT-trim and
rate use almost the same data structures they use roughly the same amount of memory,
while gratgen needs a bit more.

For a more detailled view, we compare each checker to rate-d on individual instances
in Figure 5.2: we see that rate and rate-d behave alike on most instances; gratgen
is faster than rate-d on most instances, and rate-d is faster than DRAT-trim on
most instances.

5.2 Overhead of Reason Deletions

Handling reason deletions may require extra time and memory. Figure @fig:correlation-
reason-deletions shows the number of reason deletions and the overhead of rate compared
to rate-d — among our benchmarks runtime at most doubles. Currently, rate incurs
these extra costs also for proofs that contain no unique reason deletions (where unit
deletions could simply be ignored altogether) — these instances are shown with red
markers.
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5. Experimental Evaluation
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Figure 5.1: Cactus plot showing the distribution of checkers’ runtime and memory usage.
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5.2. Overhead of Reason Deletions
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Figure 5.2: Cross plot comparing the runtime and memory usage of rate -d with the
other checkers. Each marker represents a proof instance.
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5. Experimental Evaluation
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Figure 5.3: The number of reason deletions compared to the runtime and memory
overhead of checking specified DRAT over operational DRAT.
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CHAPTER 6
Conclusion

State-of-the-art SAT solvers produce proofs with deletions of unique reason clauses.
These proofs are often incorrect under specified DRAT. Under operational DRAT they
are correct because those deletions will effectively be removed from the proof. In Section
3 we have explained how DRUPMiniSat-based solvers produce proofs with unique reason
deletions that render them incorrect under specified DRAT, and we have proposed patches
to avoid those deletions, removing the need to ignore deletions to verify their proofs.

As we explained at the end of Section 2, specified DRAT is necessary to verify solvers’
inprocessing steps that employ deletions of unique reason clauses [RB18]. Our research
question was whether specified DRAT can be checked as efficiently as operational DRAT.
Previous work has yielded an efficient algorithm but no competitive checker. We have
implemented the first checker delivering state-of-the-art performance while supporting
both specified and operational DRAT. We provide experimental results suggesting that
that the cost for specified DRAT is, on average, the same but a high number of reason
deletions may make it significantly more costly.

The two-watched literal scheme is difficult to implement correctly, and the optimizations
from [RC18] to check specified DRAT efficiently further complicate that. Our checker
implementation is able to output LRAT and GRAT certificates that can be verified by
a formally verified checker, giving some confidence that rate gave the right answer.
However, many proofs are rejected by rate. We needed a way to trust those incorrectness
results. We extended the previously unpublished SICK format for proof incorrectness
certificates and implemented a tool, sick-check that verifies those certificates, inde-
pendent of rate. Since sick-check merely computes the accumulated formula up to
the failed proof step and then checks that step without doing any propagation it is much
simpler than a DRAT checker. These certificates can be used to detect bugs in checkers
(we did find some in rate) and pinpoint bugs in solvers.
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CHAPTER 7
Future Work

If specified DRAT were to be adopted, it might be beneficial to implement a way to
perform deletions of non-unique reasons more efficiently than rate does. These deletions
do not alter the shared UP-model but rate assumes they do and does more work than
necessary, which sometimes even doubles the runtime for our benchmarks, as we showed
in Figure @fig:correlation-reason-deletions. An optimization could consist of an efficiently
computable criterion to determine if some reason clause is unique. A simple criterion is
as follows: if a reason clause for some literal l is deleted, check if unit clause l is in the
formula. If it is, then the deleted reason is not unique and the shared UP-model will
definitely not change. This criterion might be sufficient for the proofs produced by the
second variant of the patches from section 3.

State-of-the-art DRAT checkers are heavily optimized for speed but they keep the entire
input proof and the resulting LRAT proof in memory. If the available memory is at
premium, some changes could be made to do backwards checking in an online fashion,
processing one proof step at a time. Similarly, an LRAT proof line could be written to
disk immediately after checking the corresponding lemma, with some postprocessing to
fix the clause IDs.

It might be possible to forego DRAT completely and directly generate LRAT in a solver
which is already supported by varisat. This removes the need for a complex checker
at the cost of a larger proof artifact.
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