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Kurzfassung

Eine konfluente Zeichnung eines Graphens ist eine Zeichnung, in welcher die Knoten
des Graphens als Punkte in der Ebene und die Kanten als glatte Pfade durch ein
planares System von Kreuzungen und Bögen dargestellt werden. Als außen-konfluente
Zeichnung werden jene konfluente Zeichnungen bezeichnet bei welchen alle Knoten auf der
Außenfläche liegen. Schlussendlich ist eine strikte außen-konfluente Zeichnung eine außen-
konfluente Zeichnung bei der es keine zwei unterschiedliche Pfade zwischen zwei Knoten
gibt und kein Knoten einen Pfad zu sich selbst aufweist. Eppstein et al.(2016) beschrieben
auf einem sehr abstrakten Level einen Algorithmus, welcher für einen gegebenen Graphen
zusammen mit einer Ordnung der Knoten feststellt ob dieser Graph mit dieser Ordnung
eine strikt außen-konfluente Zeichnung besitzt oder nicht. Bisher wurde dieser Algorithmus
jedoch noch nicht implementiert. Ein Teil meiner Arbeit ist die Implementierung dieses
Algorithmus sowie eine detailierte Beschreibung des Algorithmus. Mit der korrekten
Implementierung des Algorithmus war es uns dann möglich zu testen ob unterschiedliche
Graphklassen solche Zeichnungen besitzen oder nicht. Ein Ergebnis dieser Auswertung ist,
dass bipartite Permutationsgraphen nicht immer eine solche Zeichnung besitzen, obwohl
dies unsere Annahme war.
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Abstract

A confluent drawing is a drawing of a graph where vertices are presented as points in
the plane and edges as smooth paths through a planar system of junctions and arcs.
An outerconfluent drawing is a confluent drawing in which all vertices of the graph lie
on the boundary of the outer face of the drawing. Furthermore, a strict outerconfluent
drawing is an outerconfluent drawing with the additional constraint that there is no
self-loop between two vertices and that there exists at most one path between two vertices.
Eppstein et al.(2016) abstractly defined an algorithm for checking a given graph together
with a vertex order for a strict outerconfluent drawing. However, this algorithm has never
been implemented. As part of this thesis the algorithm was implemented and a detailed
description of each individual step is presented. With the correct implementation we
tried to find different classes of graphs which do or do not obtain strict outerconfluent
drawings. One of our results is that bipartite permutation graphs do not obtain strict
outerconfluent drawings although this was suspected in a recent paper by Förster et
al.(2019).

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Strict outerconfluent graph drawings . . . . . . . . . . . . . . . . . . . 6
2.3 Graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Description of the algorithm 11
3.1 Lookup table T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Lookup tables N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Discovery of the funnels . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Creation of the junction skeleton . . . . . . . . . . . . . . . . . . . . . 20
3.5 Creation of the canonical diagram . . . . . . . . . . . . . . . . . . . . 28

4 Implementation 35
4.1 Implementation process . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Problems during implementation . . . . . . . . . . . . . . . . . . . . . 40

5 Counterexample for bipartite permutation graphs 43

6 Conclusion 47

List of Figures 49

List of Algorithms 51

Bibliography 53

xv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

A graph consists of vertices, often representing certain objects, and edges connecting
vertices, representing relations between vertices. There exist different ways of representing
graphs such as adjacency matrices, sets of vertices and edges or vertices as points and
edges as curves in the plane (i.e. a graph drawing or node-link diagram). Encoding
information in a graph drawing as well as reading information from graph drawings is
part of our daily life. Every city plan, metro plan, social media network or even family
trees are depicted as graph drawings. Since we use graph drawings more often than we
might perceive, it is important that graph drawings are easy to understand while still
providing the necessary information. Frequently the understandability of graph drawings
was defined by different criteria. One of the most important of these criteria is that the
number of edge crossings should be as small as possible [PCJ97].

Minimizing the number of crossings is a NP-hard problem in many settings [Sch13].
Furthermore, for drawings in the plane, non-planar graphs cannot always be drawn
without crossings. Since dense graphs have many crossings the idea of edge bundling
techniques was born [HvW09]. The key idea of edge bundling techniques is to reduce
edge clutter by finding subsets of edges with similar trajectories and grouping them
into bundles. Examples of these edge bundling techniques are power graphs, metro-
style bundling, or confluent drawings [ZPYQ13][BRH+17]. So called confluent drawings,
introduced by Dickerson et al. in [DEGM05], allow to draw certain non-planar graphs in
a planar way. This is achieved by merging groups of edges into so called tracks (like train
tracks [HSS04]), such that crossing edges will turn into overlapping paths. The advantage
of confluent drawings against other edge bundeling techniques is, that confluent drawings
do not imply false neighours. A confluent drawing typically consists of vertices, arcs
and junctions. The Kuratowski minors K5 and K3,3 then can be drawn in a planar
way, as seen in Figure 1.1(a) and 1.1(b). It is important to mention that not every
non-planar graph has a confluent drawing. For computing confluent drawings Dickerson
et al. [DEGM05] described two heuristics (one for directed and one for undirected
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1. Introduction

(a) (b)

(c) (d)

Figure 1.1: (a) A confluent drawing of K5 (b) A confluent drawing of K3,3 (c) A strict
outerconfluent drawing of K5 (d) A strict outerconfluent drawing of K3,3

graphs) to check whether a graph has a confluent drawing or not. The main idea of the
heuristics is to replace cliques and bicliques by so called traffic circles, which can be seen
in Figure 1.1(a) and 1.1(b). They also showed that every graph of certain graph classes
(i.e. cographs, complements of trees) admit a confluent drawing. Bach et al. [BRH+17]
studied which of these edge bundling techniques is the easiest understandable for network
visualization, which tend to be huge graphs. The result was that the confluent drawing
style is easier to understand than the other techniques and therefore confluent drawings
are more desirable.

Furthermore, Hui et al. [HSS04] introduced tree-confluent graphs. In these closed curves
are not allowed. The traffic circle of K3,3 in Figure 1.1(b) for example has a closed curve.
Tree-confluent graphs therefore are a proper subset of confluent graphs. The concept
of tree-confluent drawing was later generalized by Eppstein et al. [EGM05] to so called
delta-confluent drawings. This was done by introducing a new type of junctions, so called
delta-junctions. In a delta junction three paths are incoming and each path has a track
to both other paths. Delta-confluent drawings consist of delta-junctions and so called
lambda-junctions, in which two paths are merging into one. The main result of their work
is, that distance-hereditary graphs coincide with the graphs that have delta-confluent
drawings.

In 2015 outerplanar strict confluent drawings were introduced by Eppstein et al. [EHL+16].
Here we call them strict outerconfluent drawings to conform with latest literature
[FGKN19]. An outerconfluent drawing is a confluent drawing in which the vertices are

2
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1.1. Contribution

placed on the boundary of a topological disk and all edges are drawn inside the disk. Strict
outerconfluent drawings are outerconfluent drawings but with only one path between
two adjacent vertices and each vertex is not adjacent to itself, which might make the
drawings easier understandable than general (outer)confluent drawings. In their work
Eppstein et al. [EHL+16] presented an algorithm for detecting whether a given graph
together with a vertex order has a strict outerconfluent drawing or not. If there exists
such a drawing the algorithm will return a data structure representing the drawing. Up
to this point the algorithm has only been described as a theoretical result and not been
implemented in any form. A correct implementation could not only be used to generate
drawings, but also serve as a useful tool to investigate the still open questions. One of
these questions is, if finding a strict outerconfluent drawing for a given graph is poly-time.
This might be the case if certain patterns in the vertex order lead to such an drawing.
Another open question is, which graph classes have or do not have such a drawing.

1.1 Contribution

In this thesis the algorithm sketched by Eppstein et al. is implemented. Since the
description of the algorithm in [EHL+16] is given on a high-level, most of the steps must
be refined. Therefore, each step of the refined algorithm will be described in more detail
and with additional pseudo code. This description will be independent of any technologies
and can be found in Chapter 3.

The implementation process used a test-driven approach, which can be applied since each
step of the algorithm is deterministic. The idea behind the implementation process and
why we consider that it led to a correct implementation of the algorithm, will also be
explained in this thesis. Considering that the implementation was written in Java, there
are some programming language specific features which were used for different steps.
Further information about the implementation process and implementation details can
be found in Chapter 4.

The last part of this thesis focuses on the evaluation of graph classes in context of
finding graph classes admitting a strict outerconfluent drawing or not. A graph class
is a set of graphs which fulfil certain properties. For example, the class of bipartite
permutation graphs have outerconfluent drawings, but it is unknown if they also have
strict outerconfluent drawings [FGKN19]. We present a counterexample for this and
other classes. The results of this evaluation can be found in Chapter 5.
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CHAPTER 2
Preliminaries

This chapter covers the basics of graphs, graph drawings and strict outerconfluent
drawings. Furthermore, the definitions of different important graph classes are given.

2.1 Graphs

A graph G = (V, E) consists of a set of vertices V and a set of edges E, where each
element in E is a tuple (u, v) of vertices u, v ∈ V . We say two vertices u, v ∈ V are
adjacent if there exists an edge (u, v) ∈ E. A graph is undirected if the existence of
an edge (u, v) implies the existence of an edge (v, u), and directed otherwise. We call
a graph simple if there are no edges (u, u) ∈ E, i.e. no self-loops are allowed. Unless
otherwise stated all graphs considered throughout this work are simple and undirected.
Let G = (V, E) be a graph, then a drawing of G in the Euclidean plane is a mapping
from vertices in V to points in the plane and from edges in E to simple curves in the
plane, such that a curve representing an edge has only its start- and end-point identified
with its vertices and no two curves cross in more than one interior point. A drawing of a
graph G is called plane if no two curves cross aside from their end-points. A face in a
plane drawing is an area surrounded by edges of G. The set of all faces is denoted by
F . We can identify a plane drawing by using Eulers formula, which defines the relation
between the number of edges, vertices and faces in the drawing as |V | − |E|+ |F | = 2. A
graph having a plane drawing is called planar.

For an outerplanar drawing it holds that the vertices can be placed on the boundary of a
topological disk and all edges only pass through the inside of the disk. In other words
in an outerplanar drawing there is no vertex placed inside a face. For an outerplanar
drawing we have a ordering of vertices called π, representing the order of vertices along
the boundary of the disk in clockwise direction. Furthermore [a, b] is defined as the set
of all vertices from a to b in π, inclusive a and b.
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2. Preliminaries

2.2 Strict outerconfluent graph drawings

Canonical diagram A canonical diagram D = (N, J, Γ, F ) was defined by Eppstein
et al. in [EHL+16] as a set of outer nodes N , a set of points called junctions, a set of
smooth curves calles arcs Γ and a set of marked faces F . In D a so called trail is a
smooth curve from one outer node to another outer node following the arcs. Furthermore
a trail can pass along sharp corners of marked faces. Following additional constraints
also have to hold according to Eppstein et al. ([EHL+16] page 33):

1. Every arc is part of at least one trail.

2. Any two trails between the same two vertices must follow the same sequence of
arcs and faces.

3. Each marked face must have at least four angles, and all its angles must be sharp.

4. Each arc must have either sharp angles or vertices at both of its ends.

5. For each junction j with exactly two arcs in each direction, let f and f ′ be the two
faces with sharp angle are j. Then it is not allowed for f and f ′ to both be either
marked or a triangle.

The number of internal faces, junctions and arcs of a canonical diagram have an upper
bound according to Lemma 1.

Lemma 1 (Lemma 5 in [EHL+16]) Every outerplanar strict confluent drawing has
at most n− 2 internal face, 3n− 6 junctions, and 5n− 9 arc.

Following Lemma specifies the relation between canonical diagrams and strict outercon-
fluent drawings.

Theorem 1 (Theorem 3 in [EHL+16]) A graph G may be represented by a canonical
diagram if and only if it may be represented by an outerplanar strict confluent drawing.

Funnel Let j be a junction of the canonical diagram, then a funnel is a 4-tuple of
vertices (a, b, c, d) where a is the vertex reached by a path that leaves j in one direction
and goes as far clockwise as possible, b is the most counterclockwise vertex reachable in
the same direction as a, c is the most clockwise vertex reachable in the other direction,
and d is the most counterclockwise vertex reachable in the same direction as d. The
circular intervals of vertices [a, b] and [c, d] are called funnel intervals. A circular interval
[a, b] is separated if either (1) a and b are not adjacent in G or (2) there exists a funnel
f ′ with funnel intervals [a, e] and [f, b] where e, d ∈ [a, b]
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2.2. Strict outerconfluent graph drawings

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.1: (a) K6 (b) An arbitrary bipartite graph (c) K3,3 (d) W6 (e) An arbitrary
distance-hereditary graph (f) Petersen graph (g) Domino graph (h) Twisted Domino
drawing
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2. Preliminaries

2.3 Graph classes

Complete graphs In a complete graph for each vertex vi it holds that there exists
edges {(vi, vj)|∀j ∈ {1..n} \ {i}}. A complete graph with n vertices is denoted with Kn.
For complete graphs we already know, that they have strict outerconfluent drawings. In
Figure 2.1(a) a K6 can be seen.

Bipartite graphs In a bipartite graph the set of vertices V can be split into subsets
V1, V2 such that V = V1 ∪ V2 ∧ V1 ∩ V2 = ∅ such that there does not exist an edge (vi, vj)
such that (vi ∈ V1 ∧ vj ∈ V1)∨ (vi ∈ V2 ∧ vj ∈ V2). In Figure 2.1(b) an arbitrary bipartite
graph is depicted.

Complete bipartite graphs A complete bipartite graph is a bipartite graph in which
it also holds that for each vertex vi ∈ V1 there exist edges (vi, vj) such that ∀vj ∈ V2

and for each vertex vi ∈ V2 there exist edges (vi, vj) such that ∀vj ∈ V1. Km,n therefore
denotes a complete bipartite graph with m and n being the number of elements in each
set. For example K3,4 is a complete bipartite graph where |V1| = 3 and |V2| = 4. The
graph K3,3 for is one of the Kuratowski minors without an outerplanar drawing. For the
class of complete bipartite graphs we already know that they have strict outerconfluent
drawings. Figure 2.1(c) shows a K3,3.

Wheels A wheel is formed by first creating a cycle of n vertices and then adding one
vertex which is connected to each other vertex except itself. Wn denotes a wheel with a
cycle of size n. For wheels with n ≥ 4 it is known that they do not obtain an outerplanar
drawing. Wheels with n ≥ 5 do not obtain strict outerconfluent drawings. In Figure
2.1(d) the wheel W6 can be found.

Distance-hereditary graphs A distance-hereditary graph is a graph constructed
from a single vertex by applying a sequence of the following three operations:

Adding a pendant vertex: Add a new vertex u to the graph that is adjacent to exactly
one other vertex v of the graph.
Creating a false twin: For an existing vertex v add a new vertex u with exactly the same
neighbours as v.
Creating a true twin: For an existing v create add a false twin u and add (u, v).

All three operation are depicted in Figure 2.2. By construction we know that distance-
hereditary graphs admit strict outerconfluent drawings. In Figure 2.1(e) an arbitrary
distance-hereditary graph is shown.

Petersen graph The Petersen graph is the graph depicted in Figure 2.1(f). Since the
Petersen graph does not have a confluent drawing, we also know that the graph does not
have strict outerconfluent drawing.
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2.3. Graph classes

(a) (b) (c)

v v v

u u u

Figure 2.2: Operations of distance-hereditary graphs: (a) Adding a pendant vertex (b)
Creating a false twin (c) Creating a true twin

(a) (b)

Figure 2.3: (a) Construction of an interval graph (b) Construction of an unit-interval
graph

Domino graph The Domino graph is the graph pictured in Figure 2.1(g). We construct
this graph by creating two cycle of size four and merge two connected vertices of the one
cycle with two connected vertices of the other cycle.

Twisted Domino The Twisted Domino is a certain drawing of the Domino graph seen
in Figure 2.1(h).

Interval graph An interval graph is a graph, having an intersection model consisting
of intervals on a straight line. In other words we place intervals of different size on a line.
Then we represent each interval as vertex in the graph and if two intervals intersect we
create an edge between the corresponding vertices. We do not know whether interval
graph obtain strict outerconfluent drawing or not. An example of how a interval graph
can be constructed can be seen in Figure 2.3(a).

Unit-interval graph An unit-interval graph is an interval graph for which the intervals
all have the same size. Therefore unit-interval graphs are a subset of intervals graphs.
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2. Preliminaries

(a) (b)

Figure 2.4: (a) Construction of a permutation graph (b) Construction of a bipartite-
permutation graph

As for interval graphs we do not know if unit-interval graphs obtain strict outerconfluent
drawings. In Figure 2.3(b) the construction of an unit-interval graph is pictured.

Permutation graph A permutation graph is a graph, having an intersection model
consisting of straight lines between two parallels. In other word we create two parallels
and place the same number of nodes on both of the lines. We then create straight lines
between two nodes (one of each parallel). To construct the graph we create a vertex for
each straight line and an edge between two vertices if the corresponding lines intersect.
It is unknown whether permutation graphs have strict outerconfluent drawings or not.
In Figure 2.4(a) the construction of a permutation graph is shown.

Bipartite-permutation A bipartite-permutation graph is a permutation graph which
is also a bipartite graph. Hence bipartite-permutation graphs are a subset of permutation
graphs. Furthermore we do not know if this class obtains strict outerconfluent drawings.
Figure 2.4(b) show the creation of a bipartite-permutation graph.
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CHAPTER 3
Description of the algorithm

In this chapter we describe the algorithm in detail. First, a short description of the
algorithm is given and then for each individual step further details are given in a dedicated
subsection.

The algorithm gets a graph G with an ordered set of vertices as input. We assume the
vertices are placed on the boundary of a topological disk. Let π be the inferred clockwise
circular order of the vertices. Furthermore, assume that A is the adjacency matrix of G

with rows and columns ordered according to π. The output of the algorithm is a strict
outerconfluent drawing Γ, if it exists. If there is no strict outerconfluent drawing Γ for
the given graph, the algorithm returns FALSE.

Algorithm 3.1: SOC-Algorithm

Input: A graph G = (V, E), a vertex ordering π

Output: The strict-outerconfluent drawing Γ
1 T ← createTableT(G);
2 N� ← createClockwiseTableN(G);
3 N	 ← createCounterclockwiseTableN(G);
4 funnels ← findFunnels(G,N�,N	) ; /* might abort */

5 JS ← createJunctionSkeleton(G,funnels) ; /* might abort */

6 CD ← createCanonicalDiagram(JS,T ,G) ; /* might abort */

7 Γ← createSOCDrawing(CD);
8 return Γ

Algorithm 3.1 gives a short overview of the high-level steps of the algorithm. In Lines
1-3 data structures are computed, which are going to be used in later steps. Theses data
structures are used to query certain properties of the graph in constant time. Afterwards,
in Line 4 all funnels are found in the input graph. If the number of found funnels
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3. Description of the algorithm
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(c)

Figure 3.1: (a) Input graph GE (b) Canonical diagram DE of GE (c) Strict outerconfluent
drawing ΓE of GE

exceeds the upper bound in Lemma 1, the algorithm aborts at this step. Afterwards,
the algorithm creates the so called junction skeleton in Line 5. If the created junction
skeleton has no outerplanar drawing respecting π, the algorithm aborts. In Line 6 the
canonical diagram is created by adding edges to the junction skeleton and marking the
faces. If it is not possible to create a canonical diagram, the algorithm aborts at this step.
Finally, in Line 7 the canonical diagram is used to create a strict outerconfluent drawing.

In the following sections detailed information about each step in Algorithm 3.1 is given.
Throughout these sections an ongoing example is used to illustrate each step. The graph
for this example is called example graph GE and can be seen in Figure 3.1(a). The
canonical diagram DE as well as the strict outerconfluent drawing ΓE of GE can be seen
in Figure 3.1(b) and (c).
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3.1. Lookup table T

3.1 Lookup table T

Table T helps us counting the number of edges between two different intervals in constant
time. We need T in later steps to determine whether there are edges between two disjoint
intervals or not. Therefore we create table T in O(n2) time and then can query the
needed information in O(1) time.

Creation of T Table T is a summed area table for the adjacency matrix of the input
graph G. More formally, T (i, j) := |{(vi′ , vj′)|i′ ≤ i, j′ ≤ j, (vi′ , vj′) ∈ E}|. In Figure
3.2(a) the table lookup TE for our example graph GE (Figure 3.1 (a)) is displayed and in
Figure 3.2(b) the adjacency matrix AE of GE can be seen. The coloured values in TE

are the sum of the corresponding rectangle in the adjacency matrix AE .

It is also important to understand what the values of T represent. The value for T [i, j] is
the number of edges for which the source of the edge is between [0, i] and the target of
the edge is between [0, j]. In Figure 3.1(c) we give an example why the value for TE [8, 6]
is 20. The source interval [0, 8] is marked in darkblue and the target interval [0, 6] is
marked in lightblue. The darkred coloured edges are part of both intervals. These edges
need be counted twice, since both directions are considered. For the lightred edges it
holds that one vertex is part of the source interval and the opposite vertex is part of the
target interval, but not the other way around. Hence, these vertices will be counted once.
Since we have eight vertices marked darkred and four vertices marked lightred we get 8 *
2 + 4 * 1 = 20.

It remains to describe how table T can be calculated in an efficient way. The idea is to
iterate the adjacency matrix exactly one time in order to have a running time of O(n2).
This can be achieved by iterating over the rows of the A and building a sum of the
current row while iterating. The values of the current row are then the values of the
last row plus the sum of the current row up to this index. An exception is the first row,
where the values are just the current sum of the row. The detailed code for this method
is presented in Algorithm 3.2.

Usage of T As mentioned before T is used to determine the number of edges between
two disjoint intervals [a, b] and [c, d] in a graph G. There are three different cases which
are considered.

Case 1 Neither of the intervals contain both the first and the last index of the vertices.
If this is the case, we assume w.l.o.g. that the interval [a, b] is the first interval occurring
in the clockwise vertex order and interval [c, d] is the second interval. To calculate the
number of edges between [a, b] and [c, d] we take the number of vertices starting between
[0, b] and ending between [c, d]. Using table T this is equal to T [b, d]− T [b, c− 1]. From
this number we now have to subtract the number of vertices starting between [0, a− 1]
and ending between [c, d]. This number is just T [a− 1, d]− T [a− 1, c− 1].

Case 2 Now assume one if the intervals starts at the first vertex of the vertex ordering.
W.l.o.g. assume this is interval [a, b]. To get the number of edges between [a, b] and [c, d]
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3. Description of the algorithm

0 1 2 3 4 5 6 7 8 9

0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1
2 1 0 0 1 1 1 0 0 1 1
3 0 0 1 0 1 1 0 0 1 1
4 0 0 1 1 0 1 1 1 1 1
5 0 0 1 1 1 0 1 1 1 1
6 0 0 0 0 1 1 0 1 1 0
7 0 0 0 0 1 1 1 0 1 0
8 0 0 1 1 1 1 1 1 0 1
9 0 1 1 1 1 1 0 0 1 0

0 1 2 3 4 5 6 7 8 9

0 0 1 2 2 2 2 2 2 2 2

1 1 2 3 3 3 3 3 3 3 4
2 2 3 4 5 6 7 7 7 8 10
3 2 3 5 6 8 10 10 10 12 15
4 2 3 6 8 10 13 14 15 18 22
5 2 3 7 10 13 16 18 20 24 29
6 2 3 7 10 14 18 20 23 28 33
7 2 3 7 10 15 20 23 26 32 37
8 2 3 8 12 18 24 28 32 38 44
9 2 4 10 15 22 29 33 37 44 50

0

1

2

3

45

6

7

8

9

(a) (b)

(c)

Figure 3.2: (a) Table TE for graph GE (b) Creating TE by using the adjacency matrix of
graph G (c) Calculation of TE [8, 6]
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3.1. Lookup table T

Algorithm 3.2: createTableT(G)

Input: A graph G = (V, E), a vertex ordering π

Output: The lookup table T

1 n← numberOfVertices(G) ;
2 T ← int[n,n];
3 A← getAdjacencyMatrix(G) ;
4 for i← 0 to n− 1 do
5 for j ← 0 to n− 1 do
6 rowSum ← rowSum + A[i, j] ;
7 if i = 0 then
8 T [i][j]← rowSum;
9 else

10 T [i][j]← rowSum + T [i− 1][j];
11 end

12 end

13 end
14 return T

we calculate the number of edges starting between [0, b] ending between [c, d]. This can
be done by first accessing T [b, d] and then subtract T [b, c− 1] from it.

Case 3 For this case it holds that one of the intervals, includes the first as well as the
last vertex in the ordering π. W.l.o.g. assume [a, b] is this interval. In order to calculate
the number of edges between [a, b] and [c, d] we use Case 1 as well as Case 2. We split
interval [a, b] into the intervals [a, n− 1] (n being the number of vertices) and [0, b]. For
the number of edges between interval [0, b] and [c, d] we use Case 2 and between interval
[c, d] and [a, n − 1] we use Case 1. Adding both values results in the total number of
edges between those intervals.

Following functions f defines how T is used to calculate the number of edges between
two disjoint intervals. The order of the cases in the function is equal to the cases defined
above.

f([a, b], [c, d]) =



































































(T [b, d]− T [b, c− 1])

−(T [a− 1, d]− T [a− 1, c− 1]) 0 < a < b < c < d < n

(T [b, d]− T [b, c− 1]) 0 = a < b < c < d < n

(T [b, d]− T [b, c− 1])

+(T [d, n− 1]− T [d, a− 1])

−(T [c− 1, n− 1]− T [c− 1, a− 1]) 0 ≤ b < c < d < a < n
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3. Description of the algorithm

3.2 Lookup tables N

The lookup tables N� and N	 are data structure which will be used in later steps of the
algorithm. They are used to find the next neighbour of a vertex v clockwise/counter-
clockwise of a vertex w. Since this information is queried often in later steps, we want to
create the tables N� and N	 once in O(n2) time. Afterwards the information is accessed
in O(1) time.

Creation of N� The value of N�[v, w] is the index of vertex u such that u is adjacent
to v and there is no vertex u′ adjacent to v and inside the interval [w, u]. If v is the
same as w the value of the table is undefined, which does not matter since it is not used
later on. Since we assume, that each vertex of G has at least one neighbour, there are no
empty rows.

In Figure 3.3(a) the table N�

E for the graph GE (Figure 3.1(a)) can be found. Considering
the value of N�

E [5, 2] (marked in green) is 3. This means the next neighbour of vertex
5, clockwise of vertex 2, is vertex 3. In Figure 3.3(c) we can check that this is indeed
the case. In order to compute the value of N�[v, w] we could simply walk from vertex w

along the clockwise order until we find the first neighbour of v. Doing so for each ordered
pair of indices would be poly-time in the number of vertices, but would break our desired
running time bound of N(O2). Fortunately there is a way of calculating N� in N(O2).

We again calculate row after row and will access each row of the adjacency matrix at
most two times. This can be done by performing a counterclockwise scan over π. For
each row i we start at the next vertex counterclockwise of the vertex with index i. Then
we iterate through all vertices in counterclockwise order until N�[i, ·] except N�[i, i] has
values set. The index k is the index of last found neighbour of i. For each index j we
first set the value of N�[i, j] to k if k has been set yet. Then if j is also a neighbour of i

we set k to j.

In Algorithm 3.3 the detailed pseudo code for calculating table N� in an efficient way
is presented. There, we variable, called lastNeighbour, to save the last found neighbour
and we use another variable called firstIndexSet which simply holds the index of the first
value set for the current row. Given the pseudo code it is clear that this algorithm runs
in O(n2).

Creation of table N counterclockwise The value of N	[v, w] is the index of vertex
u such that u is adjacent to v and there is no vertex u′ adjacent to v and inside the
interval [u, w]. For N	 it also holds that if v is the same as w the value of the table
is undefined and if there is a vertex without a single neighbour the according row is
undefined.

The principles of calculating the values N	 are almost the same as for N�. In Figure
3.3(b) table N	 for the example graph G (Figure 3.1(a)) can be seen. The value of
N	[5, 2] (marked in red) is 9 which means that next neighbour of 5 counterclockwise of
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3.3. Discovery of the funnels

− 2 1 1 1 1 1 1 1 1
9 − 9 9 9 9 9 9 9 0
3 3 − 4 5 8 8 8 9 0
2 2 4 − 5 8 8 8 9 2
2 2 3 5 − 6 7 8 9 2
2 2 3 4 6 − 7 8 9 2
4 4 4 4 5 7 − 8 4 4
4 4 4 4 5 6 8 − 4 4
2 2 3 4 5 6 7 9 − 2
1 2 3 4 5 8 8 8 1 −

0

1

2

3

45

6

7

8

9

(a) (b)

(c)

− 2 1 2 2 2 2 2 2 2
9 − 0 0 0 0 0 0 0 0
9 0 − 0 3 4 5 5 5 8
9 9 9 − 2 4 5 5 5 8
9 9 9 2 − 3 5 6 7 8
9 9 9 2 3 − 4 6 7 8
8 8 8 8 8 4 − 5 7 8
8 8 8 8 8 4 5 − 6 8
9 9 9 2 3 4 5 6 − 7
8 8 1 2 3 4 5 5 5 −

Figure 3.3: (a) Table N� for graph G (b) Table N	 for graph G (c) Calculation of
N�[5, 2] and N	[5, 2]

2 should be 9. In Figure 3.3(c) it can be seen that this is the case. To create N	 we use
the same approach as for N� but this time we do a clockwise scan. The procedure is the
same, expect the direction we iterate trough the vertices. For the sake of completeness
the pseudo code for creating N	 can be found in Algorithm 3.4.

3.3 Discovery of the funnels

After creating data structures T, N� and N	 for G, the next step is to find all funnels of
the graph. For every funnel we are going to create a junction which will be part of the
canonical diagram and, consequently, the strict outerconfluent drawing. Furthermore,
there will not be any further junctions than those which are created for the funnels in
this step. Hence, the number of funnels found in this steps is the number of junctions in
the final strict outerconfluent drawing. This step might abort (i.e. return FALSE) since
the number of junctions in a strict outerconfluent is bounded by Lemma 1 and if the
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3. Description of the algorithm

Algorithm 3.3: createClockwiseTableN(G)

Input: A graph G = (V, E), a vertex ordering π

Output: The table N�

1 n← numberOfVertices(G) ;
2 N� ← int[n,n];
3 A← getAdjacencyMatrix(G) ;
4 for i← 0 to n− 1 do
5 lastNeighbour ← −1;
6 firstIndexSet ← −1;
7 j ← i− 1;
8 while firstIndexSet 6= j mod n do
9 if not j mod n = i then

10 if lastNeighbour 6= -1 then
11 if firstIndexSet -1 then
12 firstIndexSet ← j;
13 end
14 N�[i, j]← lastNeighbour ;

15 end
16 if A[i, j] =1 then
17 lastNeighbour ← (j mod n);
18 end

19 end
20 j ← j − 1;

21 end

22 end
23 return N�

number of funnels we find is larger than this bound no strict outerconfluent drawing is
possible for G with the given ordering of the vertices.

Calculating funnels To find the funnels we need to go through all separated intervals
in the graph. For each separated interval [a, b], vertex c is defined as the next neighbour
of a that is counterclockwise of b, and vertex d is defined as the next neighbour of b that
is clockwise of a. In order for these four vertices to form a funnel, following conditions
must hold (see Eppstein et al. [EHL+16] page no. 40): (1) c is a neighbour of b, (2) d is
a neighbour of a, (3) a is the next neighbour of c that is counterclockwise of b and (4) b

is the next neighbour of d that is clockwise of c.

Since one possible condition for being a separated interval [a, b] is that there exists a
funnel f = (c, d, e, f) inside [a, b], we iterate over all possible interval sizes. First we
check all intervals with size 1 and then increase the size by one and check again all
intervals of this size. We repeat this until we checked all intervals up to size of n− 1 and
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3.3. Discovery of the funnels

Algorithm 3.4: createCounterclockwiseTableN(G)

Input: A graph G = (V, E) with ordered vertices
Output: The table N	

1 n← numberOfVertices(G) ;
2 N� ← int[n,n];
3 A← getAdjacencyMatrix(G) ;
4 for i← 0 to n− 1 do
5 lastNeighbour ← −1;
6 firstIndexSet ← −1;
7 j ← i− 1;
8 while firstIndexSet 6= j mod n do
9 if not j mod n = i then

10 if lastNeighbour 6= -1 then
11 if firstIndexSet -1 then
12 firstIndexSet ← j;
13 end
14 N�[i, j]← lastNeighbour ;

15 end
16 if A[i, j] =1 then
17 lastNeighbour ← (j mod n);
18 end

19 end
20 j ← j + 1;

21 end

22 end
23 return N	

as a result all funnels are found. In Figure 3.4(a) all funnels GE can be seen, namely
f1 = (0, 9, 2, 1)(red), f2 = (2, 9, 8, 3)(yellow) and f3 = (3, 6, 5, 4)(green). Looking at
funnel f2, explicitly shown in Figure 3.4(b), we see that funnel f1 is inside the interval
[a, b] of funnel f2. Without funnel f1 this interval would not be separated since there
exists a vertex between a and b.

Algorithm 3.5 presents the pseudo code for finding all funnels in a given graph G. We
use the look up tables N	 and N� computed for G. As mentioned earlier we iterate the
interval size from 1 to n− 1 and for each interval size we check each possible interval of
this size. For each interval [a, b] we first find c (next neighbour of a counterclockwise of
b) and d (next neighbour of b clockwise of a) by using N	 and N�. Then we check if
the interval [a, b] is separated and if this is not the case we skip to the next interval. If
the interval is separated we check conditions (1)-(4), defined earlier, which can be done
in constant time using N	 and N�. If all the conditions are fulfilled we add the funnel
to our set of funnels F . Before returning all found funnels, we check if the number of
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3. Description of the algorithm
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(a) (b)

a

b

d

c

Figure 3.4: (a) Funnels of graph GE (b) Funnel f1 being inside funnel intervals of funnel
f2

funnels exceed the upper bound for junctions. If this is the case we return FALSE, which
also will abort the base algorithm(Algorithm 3.1).

3.4 Creation of the junction skeleton

In this step we create the so called junction skeleton S. The junction skeleton contains
all vertices and junctions as well as a subset of the edges of the canonical diagram. After
the creation of the junction skeleton we check whether it has an outerplanar embedding
respecting the given vertex order or not. We can do this in this step, since every following
step of the algorithm only add uncrossed edges. If the junction skeleton has no such
embedding the algorithm returns FALSE.

Building funnel trees Before building the junction skeleton we create a data structure
called funnel tree Tv for each vertex v. All funnel trees will be stored in a map M with
vertex vi as key and funnel tree Tvi

as value. The funnel tree of a vertex represents
the position of all funnels, whose funnel intervals include this vertex. The funnel tree
therefore is an ordered tree with each node, except the root, having a funnel as label.
The label of the root is denoted by ∅. The funnel tree stores clockwise order of edges per
vertex as well as which junctions are needed to be connected.

To create the funnel tree Tv, we first gather all funnels where one of the funnel intervals
starts or ends at this vertex. Each funnel f has two intervals i1 = [a, b] and i2 = [c, d].
We first start by using the root as current root, and recursively apply different rules. In
the following case distinction we always consider the interval not containing the vertex
v when talking about an interval. The examples used for each case are not part of the
example graph GE , since the funnel trees of GE are rather simple.
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3.4. Creation of the junction skeleton

Algorithm 3.5: findFunnels(G,N�,N	)

Input: A graph G = (V, E) with ordered vertices, Table N�, Table N	

Output: Set of funnels
1 n← numberOfVertices(G) ;
2 funnels← Set<Funnel>;
3 A← getAdjacencyMatrix(G);
4 for intervalSize← 1 to n− 1 do
5 for a← 0 to n− 1 do
6 b← (a− intervalSize) mod n;
7 c← N	[a][b];
8 d← N�[b][a];
9 if not isSeperatedInterval(a,b,funnels) or c = d then

10 continue;
11 end
12 if A[b][c] = 1 and A[a][d] = 1 and N	[c][d] = a and N�[d][c] = b then
13 funnels.add(createFunnel(a,b,c,d));
14 end

15 end

16 end
17 if size(funnels) > 3 ∗ n− 6 then
18 abort;
19 end
20 return funnels

Case 1 Case 2 Case 3

∅ ∅ ∅

c1 cn c1 cn

fnfn fn

Case 4

∅

c1 ci

fn

ck cn

Case 5

∅

c1 cn

fn

ci

Case 4

∅

c1 ci

fn

ck cn

ci+1 ck−1

... ...

...

..................

Figure 3.5: Cases 1-6 of inserting a new funnel fn into an existing tree
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3. Description of the algorithm

Case 1 The current root has no children yet. If this is the case the new node be will set
as the only child of the current root. See Figure 3.5(Case 1) for an example.

Case 2 The interval of the new funnel is clockwise between v and the first child of the
current root. In this case the new node will be set as the first child of the root. In Figure
3.5(Case 2) the root has children c1 to cn. Assume that the interval of the new funnel fn.
is between v and the interval of c1s funnel. Therefore we add the new node to the left of
c1.

Case 3 The interval of the new funnel is clockwise between last child of the current root
and v. In this case the new node will be added on the last place to the list of children.
In Figure 3.5(Case 3) the root has children c1 to cn. Assume that the interval of the new
funnel fn is between the interval of cns funnel and v. According to this rule we add the
new node right of cn.

Case 4 The interval of the new funnel is clockwise between two children of the current
root. In this case the new node is placed between those two children. In Figure 3.5(Case
4) we assume that the interval of the new funnel fn is between the intervals of two
children ci and ck. In this case the new node is added between ci and ck.

Case 5 The interval of the new funnel is inside one child of the current root. In this
case the corresponding child will be set as the current root and the case distinction will
be evaluated again with the new current root. Assume the root of the tree in Figure
3.5(Case 5) has one child ci whose interval includes the interval of the new funnel fn.
Consequently, we take ci as new root and evaluate this subtree again. Since ci has not
further children, we apply Case 1 and add the new node as child of ci.

Case 6 The interval of the new funnel has a non-empty set of children of the current
root inside it. In this case the set of children will be replaced by the new node and the
new node has the set as his children now. In Figure 3.5(Case 6) we assume that the
interval of the new funnel fn includes the children ci+1 to ck−1 of the root. Therefore, all
children between ci+1 and ck−1 will be set as children of our new node and the new node
is placed between ci and ck.

Algorithm 3.6 shows the pseudo code for how a new funnel is inserted into an existing
tree. This recursive algorithm is then used by Algorithm 3.7 whose purpose is to gather
all funnels for a vertex and insert them into the tree one after another. In order to achieve
this we create a map which has the vertices vi as keys and the set of funnels fi as values.
This is achieved by iterating through each found funnel (a, b, c, d) and adding the funnel
to the sets fa, fb, fc and fd . After creating this map we take the map value of each
vertex vi and start inserting one funnel after another to the funnel tree of this vertex.
Finally we have the funnel tree map M we want for creating the junction skeleton S.

Creating the junction skeleton With M , we finally create the junction skeleton S.
Recall that S consists of all vertices and junctions, and a subset of edges of the canonical
diagram. The idea is to iterate through each of the funnel trees in M adding the needed
edges according to the funnel trees.
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3.4. Creation of the junction skeleton

0

1

2

3

45

6

7

8

9 0

1

2

3

45

6

7

8

9

0

1

3

45

6

7

8

9

2

(a) (b)

(c)

Figure 3.6: (a)Edges added while traversing through the funnel tree of vertex 9 (b)Edges
added while traversing through the funnel tree of vertex 2 (c)Overlaying all added edges,
resulting in the junction skeleton
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3. Description of the algorithm

Algorithm 3.6: insertFunnelIntoTree(i,funnel,funnelTree)

Input: Index i of the vertex the funnel tree belongs to, Funnel funnel to insert
into the tree, a node of the funneltree funnelTreeNode

Output: Funneltree with inserted funnel
1 children ← funnelTreeNode.getChildren();
2 if size(children)=0 then
3 children.add(new FunnelTreeNode(funnel));
4 return

5 end
6 included ← ∅;
7 funnelInterval ← funnel.getFunnel().getIntervalWithout(i);
8 foreach child in children do
9 childInterval ← child.getFunnel().getIntervalWithout(i);

10 if childInterval.includes(funnelInterval) then
11 insertFunnelIntoTree(i, funnel, child);
12 return

13 else if funnelInterval.includes(childInterval) then
14 included.add(child);
15 else if childInterval.isClockwise(i, funnel)) then
16 if size(included)>0 then
17 children.replace(included, new FunnelTreeNode(funnel, included));
18 else
19 children.addBefore(children, new FunnelTreeNode(funnel));
20 end
21 return

22 end

In a first step we create an empty graph and add all vertices of the original graph to it.
Next for each vertex vi we consider M [vi] and iterate through it using the depth-first
search algorithm. When we reach one node ti in the funnel tree we create a junction ji

for the funnel fi labelled to the node, if this has not be done yet. Otherwise, we want
to get ji from our junction skeleton and add an edge between the ji to the junction of
the parent node of ti. If the parent node of ti is the root node, the edge will be created
between vi and ji. The pseudo code for creating S for G is split into two parts. The setup
algorithm, which introduces the data structure and adds all vertices, starts traversing
through the trees is Algorithm 3.8. This algorithm also has the planarity check in it,
which will be explained later in this section. Algorithm 3.9 implements the traversal
through one tree and adds the necessary edges.

For GE we exemplify this for vertices 9 and 2 in Figure 3.6(a) and (b). Going through all
funnel trees, we get the junction skeleton seen in Figure 3.6(c). As shown in the figure,
the junctions skeleton contains all vertices although some might not have appeared in
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3.4. Creation of the junction skeleton

Algorithm 3.7: createFunnelTrees(G,funnels)

Input: A graph G = (V, E) with ordered vertices, Set of Funnels funnels
Output: Map of Node to Funneltree

1 n← numberOfVertices(G) ;
2 funnelTreeMap← Map[int,FunnelTreeNode];
3 funnelMap← Map[int,Set[Funnel]];
4 foreach funnel in funnels do
5 funnelMap.get(funnel.getA()).add(funnel);
6 funnelMap.get(funnel.getB()).add(funnel);
7 funnelMap.get(funnel.getC()).add(funnel);
8 funnelMap.get(funnel.getD()).add(funnel);

9 end
10 for i← 0 to n− 1 do
11 foreach funnel in funnelMap.get(i) do
12 funnelTreeMap.set(i,insertFunnelIntoTree(i,funnel, funnelTreeMap.get(i)));
13 end

14 end
15 return funnelTreeMap

Algorithm 3.8: createJunctionSkeleton(G,funnels)

Input: A graph G = (V, E) with ordered vertices, Set of Funnels funnels
Output: Junction skeleton junctionSkeleton

1 junctionSkeleton ← new JunctionSkeleton() ;
2 junctionSkeleton.setVertices(G.getVertices());
3 n← numberOfVertices(G) ;
4 funnelTreeMap ← createFunnelTrees(G,funnels);
5 for i← 0 to n− 1 do
6 foreach child in funnelTreeMap.get(i).getChildren do
7 handleFunnelTreeNode(i,child,junctionSkeleton);
8 end

9 end
10 if not hasPlanarEmbedding(junctionSkeleton) then
11 abort;
12 end
13 return junctionSkeleton
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3. Description of the algorithm

Algorithm 3.9: handleFunnelTreeNode(sourceNode,G,JS

Input: Vertex in G we are coming from, node funnelTreeNode of the funnel
tree, Junction skeleton JS

1 junction ← JS.getOrCreateJunction(funnelTreeNode.getFunnel());
2 if not JS.hasEdge(junction, sourceNode) then
3 JS.createEdge(junction, soureNode);
4 end
5 foreach child in funnelTreeNode.getChildren do
6 handleFunnelTreeNode(junction,child,JS);
7 end

one of the funnel interval endpoints. We also can see that there exactly three junction
(marked in blue), one for each funnel, which are also the junctions of the canonical
diagram.

Since basically any data structure for an embedded planar graph works when storing the
junction skeleton, we will not suggest a certain one. However, we need to assure that the
junction skeleton has enough information such that a planar embedding test can be done.
Therefore we need to prepare the data structure for this test during the creation. We
stored the rotation system for each vertex and junction.

Checking the planarity Since we will not add anything ontop on S in later steps,
such that the drawing would lose the property of having a planar embedding respecting
π, we will perform a planarity check at this point. If S has no planar embedding, the
algorithm will return FALSE. Since we use Euler’s formula to determine whether it has a
planar embedding or not, we have to calculate the number of faces. As mentioned in the
step before, we stored a rotation system for each vertex and junction. With this rotation
system we can compute the number of faces, by using the graph as a double connected
edge list.

At this point, the junction skeleton S might not be a connected graph. In order to create
the double connected edge list of S, we want to have a connected graph. Therefore, we
add a so called outer cycle (Definition 1) O to S, resulting in a new graph SO. We need
to assure that SO has a planar embedding if and only if S also has a planar embedding.

Definition 1 (Outer Cycle) An outer cycle O for a junction skeleton S is the graph
containing all outer vertices V of S and the set of edges between every two consecutive
vertices vi and vi+1 in the vertex order π. More formally O = (VO, EO), where VO :=
VS , EO := {(vi, vi+1) | vi ∈ VO ∧ 0 ≤ i < n− 1} ∪ {(vn−1, v0)}

Lemma 2 The graph SO created from S has a planar embedding respecting π, if and
only if S has a planar embedding respecting π.
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3.4. Creation of the junction skeleton

Proof. Let S be a junction skeleton and SO created as above. We place all vertices
corresponding to outer vertices of S on the boundary of a topological disk and, to junction
on the inside of the disk. Therefore all edges of S have either one vertex on the boundary
and the other vertex on the inside or both vertices on the inside. If S has a planar
embedding then there are no two edges crossing each other. Each edge of O can be
placed on the boundary of the topological disk. We also know that the edges of O can
not intersect each other, since each edge does only go from one vertex on the boundary
to the next vertex on the boundary.

Furthermore, the edges of S are placed such that they only intersect with the boundary
of the topological disk at vertices. This means that the edges of S and the the edges
of the O only meet each other at the vertices. Therefore SO has no crossing and has a
planar embedding.

If S has no planar embedding then for any drawing, there exist two edges e1 and e2

crossing each other. When creating SO we only add additional edges, which can not
remove the non-planar structure in S. Therefore, e1 and e2 are still crossing and SO has
no planar embedding. �

Lemma 3 SO is connected.

Proof. Observe that the subgraph of SO induced by the outer vertices is a connected
cycle. Hence, if all the junctions vertices are connected to at least one outer vertex SO

is connected. In the construction of S, each junction is part of a funnel tree and each
funnel tree has an outer vertex as its root. �

After creating SO we want to calculate the number of faces of SO. Therefore we first
create a list L of directed edges. For each undirected edge e = (v1, v2) we create two
directed edges e1 = (v1, v2) and e2 = (v2, v1) and add them to L. After creating L we
iterate through the edges in L. For every edge e = (v1, v2) we start at vertex v2 and get
the next neighbour v3 of v2 counterclockwise of v1. We delete (v2, v3) from L. Then, we
again search for the the next neighbour v4 of v3 counterclockwise of v2. We afterwards
remove (v3, v4) from L. We continue these two steps until we reach v1 again. When
reaching the starting vertex v1 we increase the number of faces by one. When doing this
until L is empty, the result is the number of faces of SO. Finally we have to check if
Euler’s formula is fulfilled or not. The pseudo code for the planarity check is described
in Algorithm 3.10.

In Figure 3.7 the junction skeleton with outer cycle SOE
of the graph GE is shown. The

red edges are the outer cycle OE we added. Furthermore all faces were calculated as
described before, which can be seen by the sketched cycle we discovered for each face.
GE has 11 faces, 13 vertices and 22 edges, and therefore satisfies Euler’s formula 13 - 22
+ 11 = 2.
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3. Description of the algorithm

1
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11

Figure 3.7: SOE
with all found faces

3.5 Creation of the canonical diagram

So far we have created the junction skeleton S, containing all vertices and junctions of
the canonical diagram D and a subset of the edges. Reaching this point we know that
the junction skeleton S has a planar embedding respecting the vertex order π. At this
point we need to add the remaining edges to the junction skeleton and mark certain faces.
This will result in a graph which might be a canonical diagram for the input graph. This
is tested by checking if exactly the edges of the original graph are represented by paths.
Furthermore, there might be multiple paths between different vertices in this graph. So
we also need to be sure that the graph is strict. If one of these conditions is violated the
algorithm returns FALSE.

Create the canonical diagram In order to create the canonical diagram D from G,
we first create a copy of the junction skeleton S. Then we add an outer cycle O to the
junction skeleton as described in the section before. Afterwards we add the edges of the
outer cycle which are in the original graph and not represented in the junction skeleton.
Next we get all faces, expect the outer face, of SO and handle each face separately.

For each face f we want to insert the missing edges that have to pass through this face.
To find all these edges we take each node in the face and check which nodes in the face,
expect itself and its neighbours, need to be connected to this node. If two nodes need to
be connected inside the face, it means that there is a path in the original graph which
has not be included yet. We usually distinguish between four cases that might appear:
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3.5. Creation of the canonical diagram

Algorithm 3.10: hasPlanarEmbedding(G,funnels)

Input: Junction Skeleton junctionSkeleton

Output: TRUE/FALSE if it has a/no planar
1 edgeList ← new List();
2 jsWithCycle ← junctionSkeleton.addOuterCycle();
3 faceCount ← 0 ;
4 foreach edge in jsWithCycle do
5 edgeList.add(edge.getSource(), edge.getTarget());
6 edgeList.add(edge.getTarget(), edge.getSource());

7 end
8 foreach edge in edgeList do
9 currentVertex ← edge.getSource();

10 lastVertex ← edge.getTarget();
11 while edge.getSource() != currentVertex do
12 newCurrentVertex ←

currentVertex.getCounterClockwiseVertex(lastVertex);
13 lastVertex ← currentVertex;
14 currentVertex ← newCurrentVertex;
15 edgelist.remove(lastVertex, currentVertex);

16 end
17 faceCount ← faceCount + 1;

18 end
19 if jsWithCycle.getVertexCount() - jsWithCycle.getEdgeCount() + faceCount = 2

then
20 return True
21 end
22 return False

Case 1 If both nodes represent vertices of the junction skeleton, then we use the adjacency
matrix of G to determine whether there is an edge between those vertices or not.

Case 2 In this case one of the nodes is a vertex S and the other one is a junction in S,
having one side into the face. That means we have to check whether there is an edge
between the vertex and the other side of the junction (the side not inside the face). This
interval goes from the most counter-clockwise to the most clockwise path leaving the
other side of the junction. We use the lookup table T to calculate the number of edges
needed between those intervals. If the number is greater than zero, an edge is needed.

Case 3 Both nodes are junctions of the junction skeleton, having one side facing towards
the face. If this is the case we calculate the number of vertices between the junction
sides, not facing the considered face, by using lookup table T . If this number is greater
then zero, there has to be an edge between both junctions.
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3. Description of the algorithm
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Figure 3.8: (a)SOE
of graph GE (b)Face f = (j2, 3, j3, 6, 7, 8) with one uncrossed and

four crossed edges (c)DE of GE with two marked faces

Case 4 One of the nodes is a junction of the junction skeleton with no side towards
the face. In this case there can not be an edge between the junction and the other
vertex/junction. Therefore it can be skipped.

After having found all needed edges for one face f , we need to divide the set of needed
edges into the set of uncrossed edges Eu and crossed edges Ec. This can be done by
checking for each needed edge if it is crossed by any other needed edge inside the face or
not. First all uncrossed edges will be added to the canonical diagram. Each uncrossed
edge divides f into different subfaces f1...fn. For each subface fi we want to determine
whether it contains a crossed edge or not. If it contains a crossed edge and fi is a face
of the canonical diagram, we set fi in our canonical diagram as a marked face. If the
face contains crossed edges and is not face of the canonical diagram, we abort at this
step, since theses edges will cross. The pseudo code for this procedure can be found in
Algorithm 3.11. These steps will result in a possible canonical diagram, since we now
also need to prove that the canonical diagram is strict and represents the original graph.
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3.5. Creation of the canonical diagram

Algorithm 3.11: createCanonicalDiagram(junctionSkeleton, T ,G)

Input: A graph G = (V, E) with ordered vertices, Junction skeleton
junctionSkeleton, Lookup table T

Output: Canonical Diagram canonicalDiagram

1 canonicalDiagram ← junctionSkeleton;
2 junctionSkeleton ←junctionSkeleton.addOuterCycle();
3 canonicalDiagram.addNeedeEdgeOnOuterCycle(G, junctionSkeleton);
4 faces ← junctionSkeleton.getFaces();
5 faces.removeOuterFace();
6 foreach face in faces do
7 neededEdges ← getNeededEdges(face, junctionSkeleton, G. T );
8 uncrossedEdges ← getUncrossedEgdes(neededEdges);
9 crossedEdges ← getCrossedEgdes(neededEdges);

10 canonicalDiagram.addEdges(uncrossedEdges);
11 subFaces ← canonicalDiagram.getFacesInside(face);
12 foreach subFace in subFaces do
13 if subface.hasCrossedEdges(crossedEdges) then
14 if canonicalDiagram.hasFace(subface) then
15 canonicalDiagram.addMarkedFace(subFace);
16 else
17 return false;
18 end

19 end

20 end

21 end
22 if not isCorrectCanonicalDiagram(canonicalDiagram, G) then
23 return false;
24 end
25 return canonicalDiagram

In Figure 3.8(a) the junction skeleton with the added outer cycle SOE
(marked in red) of

graph G can be seen. The blue points represent the junctions j1, j2 and j3, which we added
in the step before. We now consider the largest face f with the nodes (j2, 3, j3, 6, 7, 8) seen
in Figure 3.8(b). In this face we have five needed edges (8, j3), (8, 6), (7, j3), (j2, j3), (8, 3)
which we split into one uncrossed edge (red) (8, j3) and four crossed edges (green)
(8, 6), (7, j3), (j2, j3), (8, 3),. The uncrossed edge now splits the face into two faces, f1

with nodes (j2, 2, j3, 8) and f2 with nodes (j3, 6, 7, 8). Since both faces f1 and f2 are also
faces of the canonical diagram and contain crossed edges, they are marked faces of the
canonical diagram. Doing this for all faces of SOE

, we get the possible canonical diagram
seen in Figure 3.8(c). In this figure the new edges created in this step are marked in red,
where as the marked faces are marked in blue.
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3. Description of the algorithm

Verification of the possible canonical diagram In the last step we created a
possible canonical diagram for the input graph G. We now need to check that this
possible canonical diagram is strict and contains the same paths as the original graph.

In order to check both conditions we use a modified depth-first search algorithm. For
each vertex v of the canonical diagram we first find all other vertices which have a path
between them in D. If this collection of vertices has duplicated entries or includes v we
return FALSE, since this violates the strictness. Next, we verify that this collection is
equal to the vertices reachable in the original graph. If this is not the case we return
FALSE at this step, since the canonical diagram is not representing the original graph.

First we need to modify our canonical diagram in order to make it easier to compute the
collection of reachable vertices. For all marked faces, we create edges between all nodes
in that face. To get the collection of all reachable vertices of one vertex, we perform a
modified depth first search. When we reach a junction we only propagate to the other
side of the junction (the one we did not come from) and if we reach a outer vertex we
add this vertex to the collection and do propagate further. It is also important, that
junctions will not be added to the collection, as they are not part of the original graph.

Algorithm 3.12: isCorrectCanonicalDiagram(canonicalDiagram, G)

Input: A graph G = (V, E) with ordered vertices, Canonical Diagram
canonicalDiagram

Output: True if the canonical diagram represents graph G, False otherwise
1 canonicalDiagram.replaceMarkedFacesByEdges();
2 n← numberOfVertices(G) ;
3 for i← 0 to n− 1 do
4 reachableVerticesCD ← canonicalDiagram.getReachableVertices(i);
5 if reachableVerticesCD.hasDuplicates or reachableVerticesCD.contains(i)

then
6 return false
7 end
8 reachableVerticesOG ← G.getReachableVertices(i);
9 if not reachableVerticesOG = reachableVerticesCD then

10 return false
11 end

12 end
13 return true

In Figure 3.9(a) the canonical diagram of graph GE together with the reachable vertices
of 0 (red marked) and 4 (blue marked) is depicted. At this point recall that it is possible
to move along paths of marked faces although the angles are sharp. Therefore the paths
of vertex 4 to 7, 9 and 2 go along marked faces. In Figure 3.9(b) the corresponding
edges of the original graph are shown. It can be seen that vertex 4/0 can reach the same
vertices in the canonical diagram as well as in the original graph.
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3.5. Creation of the canonical diagram
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Figure 3.9: (a)Reachable vertices of vertex 4 and 0 in DE (b)Reachable vertices of vertex
4 and 0 in GE
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CHAPTER 4
Implementation

In this chapter the implementation of the algorithm is described. First we explain what
our implementation process looked like and then we give implementation specific details.

4.1 Implementation process

This section explains how the implementation of the algorithm described in chapter 3
was done. Since the algorithm is quite complex and has a lot of steps, it was necessary
to be certain that all possible steps are developed correctly. To achieve this Test-Driven-
Development was used, which means that for each step in the algorithm different tests
were written before implementation was started. The main advantages of this approach
is that we are able to constantly test all steps when modifying our implementation. This
means that errors in existing code are found faster. It also assures that the implementation
of new steps do not affect the implementation of already finished steps, since the tests
show this immediately. In order to use Test-Driven-Development the algorithm needs to
be deterministic. Furthermore, we need a huge test set including all possible cases per
step.

Although we want our test set to cover all possible cases, we can not assure that we
included them all. There might be some edge cases which are not considered or do not
seem to be problematic. To prevent faults caused by missing edge cases in our tests
set, we exhaustively test the finished implementation against certain graph classes. For
these graph classes we already knew that every, one or no order has strict outer confluent
drawing. Therefore we created all possible graphs of this class up to a certain number
of vertices and tested each of them. Since we got the expected results for each of these
graph classes, we are confident that our implementation is correct.

Type of test We use different kind of tests to verify our implementation. Each kind
of test is automated and has a different purpose. At the end of the implementation all
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4. Implementation

tests must pass.

Unit tests Unit tests ensure that a module of the implementation is correct. In our
application unit tests are used to verify a step of the algorithm. Therefore we have a set
of unit tests for each step of the algorithm.

Integration tests Although all unit tests of the modules pass it can happen that the usage
of different modules might fail. Integration tests prevent this, since they test whether
combining different components works or not. Therefore integration tests test the whole
system.

Exhaustive testing Since our unit tests can not cover all possible cases, we still want to be
confident that our implementation is correct. Therefore we will test all possible graphs of
certain graph classes up to a certain number of vertices. If the algorithm behaves correct
for all instances this tests stage passes.

Process in details The implementation process is split into several tasks. A flow
diagram showing the different tasks and their dependencies can be seen in Figure 4.1.
We will now give a detailed description for this process.

First we want to understand each step of the algorithm in every detail. This is necessary
since the algorithm is quite complex and the original description was vague.

Afterwards we create a test set. This set defines inputs and the expected output for each
of the steps. The set contains arbitrary graphs as well as edge cases. Such an edge case
is for example a graph which numbers of funnels is larger than the bound of Lemma 1.
We use this test set to implement our tests.

In this step we write our automated unit and integration tests. Therefore we use the
tests set created in the step before. After writing these tests, all of them should fail, since
we did not implement any step yet. Since all our tests fails, we change the current state
of our implementation. We change our implementation until all unit and integration
tests pass.

After all unit and integration tests pass we start our exhaustive testing. If the algorithm
does not behave like expected for a certain graph, we investigate why this is the case.
Doing this we find out why our algorithm behaves incorrectly. Since we know the reason
of failure we can add a unit test to our tests, testing this graph. Then we again start
changing our implementation until all tests pass.

Graph classes for exhaustive testing We use different graph classes from whose
we already know if they have a strict outer confluent drawing or not. There are three
different kinds of graph classes. For the first kind it holds that each order πi of the
vertices has a strict outerconfluent drawing. To test theses classes we a created graph of
this class and checked all possible n! vertex orderings. If one πi does not lead to a strict
outer confluent drawing the test fails. A candidate of this class are complete graph, since
each vertex ordering is isomorphic to the others.
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4.1. Implementation process

Implementation undone

Implementation done

Understand each step Create test set

Create unit and 

integration tests

Integrarion and unit 

tests pass?

Change implementation

no

yes

Exhaustive testing 

successfull?
no Add unit tests

yes

Figure 4.1: The used implementation process
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4. Implementation

The second kind are graph classes having at least one vertex ordering πi leading to a
strict outer confluent drawing. To test these graph classes we go through all possible
vertex orders until we find one positive instance. If there was no vertex order leading
to a strict outer confluent drawing, then the test fails. The class of complete bipartite
graphs is a representative for this this kind.

Last there are graph classes which do not have strict outerconfluent drawings. Therefore
there exists no π leading to a drawing Γ. To test these classes of graphs if all vertex
orderings πi do not lead to a strict outer confluent drawing. However, if one vertex order
leads to a strict outer confluent, then the test fails. We already know that class of wheels
has this property.

In the following table all tested graph classes and there classification is shown:

All vertex orders At least one vertex order No vertex order

Complete graphs Complete bipartite graphs Wheels
Distance-hereditary graphs Petersen Graph

Outerplanar graphs

4.2 Implementation details

The implementation is done by using Java 11 together with JUnit 5 as testing library.
The implementation expects the graph either as GraphML format or a text file with the
ordered adjacency matrix as input. To define the vertex order when using a GraphML as
input, we added a attribute to the node tag called position. The value of the position
attribute is unique and has to be between 0 and n−1. If this is not the case the algorithm
aborts with an error. The following XML code shows the input for K3,3 with a correct
vertex ordering. For sake of space we removed the attributes defining the source of the
language in the graphml node.

<?xml version=’ 1 .0 ’ encoding=’ utf−8 ’ ?>
<graphml>

<graph edgede f au l t=" und i rec ted ">
<node id=" 0 " p o s i t i o n=" 5 " />
<node id=" 1 " p o s i t i o n=" 0 " />
<node id=" 2 " p o s i t i o n=" 4 " />
<node id=" 3 " p o s i t i o n=" 1 " />
<node id=" 4 " p o s i t i o n=" 3 " />
<node id=" 5 " p o s i t i o n=" 2 " />
<edge source=" 0 " t a r g e t=" 1 " />
<edge source=" 0 " t a r g e t=" 3 " />
<edge source=" 0 " t a r g e t=" 5 " />
<edge source=" 1 " t a r g e t=" 2 " />
<edge source=" 1 " t a r g e t=" 4 " />
<edge source=" 2 " t a r g e t=" 3 " />
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4.2. Implementation details

<edge source=" 2 " t a r g e t=" 5 " />
<edge source=" 3 " t a r g e t=" 4 " />
<edge source=" 4 " t a r g e t=" 5 " />

</graph>
</graphml>

If the graph has a strict outerconfluent drawing the algorithm returns a JSON file con-
taining the data structure representing the canonical diagram. Otherwise, the algorithm
prints a message saying that the graph has no strict outerconfluent drawing. The JSON
file contains all vertices, edges, junctions and marked faces of the canonical diagram. For
vertices and junctions the rotation system is also part of the output. Following JSON file
shows the output for the test graph GE .

{ " nodes " : [
{ " index " : 0 , " r o t a t i o n " : [ 1 0 ] } ,
{ " index " : 1 , " r o t a t i o n " : [ 1 0 ] } ,
{ " index " : 2 , " r o t a t i o n " : [ 1 1 , 1 0 ] } ,
{ " index " : 3 , " r o t a t i o n " : [ 1 2 , 1 1 ] } ,
{ " index " : 4 , " r o t a t i o n " : [ 1 2 , 5 ] } ,
{ " index " : 5 , " r o t a t i o n " : [ 1 2 , 4 ] } ,
{ " index " : 6 , " r o t a t i o n " : [ 1 2 , 7 ] } ,
{ " index " : 7 , " r o t a t i o n " : [ 6 , 8 ] } ,
{ " index " : 8 , " r o t a t i o n " : [ 1 1 , 1 2 , 7 ] } ,
{ " index " : 9 , " r o t a t i o n " : [ 1 0 , 1 1 ] } ] ,

" j u n c t i o n s " : [
{ " index " : 10 , " r o t a t i o n " : [ 0 , 1 , 2 , 9 ] ,

" s i d e1 " : [ 0 , 9 ] , " s i d e2 " : [ 1 , 2 ] } ,
{ " index " : 11 , " r o t a t i o n " : [ 2 , 3 , 8 , 9 ] ,

" s i d e1 " : [ 2 , 9 ] , " s i d e2 " : [ 3 , 8 ] } ,
{ " index " : 12 , " r o t a t i o n " : [ 3 , 4 , 5 , 6 , 8 ] ,

" s i d e1 " : [ 3 , 6 , 8 ] , " s i d e2 " : [ 4 , 5 ] } ] ,
" markedFaces " : [

{ " nodes " : [ 6 , 7 , 8 , 1 2 ] } ,
{ " nodes " : [ 8 , 1 1 , 3 , 1 2 ] } ]

}

Components We split the implementation of the algorithm into different components.
For each step of the algorithm we created one component. Each component contains an
interface as specification of the expected behaviour as well as several classes realising
this specification. Each component, representing a step which might fail, has its own
exception. This helps us identifying in which steps the algorithm returns FALSE. One
advantage of this approach is that we can easily change the implementation of one step
by just implement another implementation for the defined interface. Another advantage
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4. Implementation

is that we structure the code which helps when adding or changing code. As mentioned
earlier we defined tests for each step of the algorithm. We have a test class for each
component, performing unit tests for this component. If all unit tests for this component
pass we know that the step represented by this component is correctly implemented.

Graph data structure As mentioned earlier every data structure for embedded planar
graphs can represent the canonical diagram. However, we decided to use our own data
structure which only contains the needed information. Since we developed the algorithm
using Java, our data structure is object oriented. We use this data structure to represent
the input graph, the junction skeleton as well as the canonical diagram. In Figure 4.2
the UML class diagram for our graph data structure is plotted.

A graph object has a list of edges, nodes (outer vertices) and junctions. Each of these
objects (edges, nodes, junctions) cannot exist without a graph object. Therefore they are
created by using public methods of the graph object. The attribute id of a node object
is unique and identifies one node. A node furthermore can have a rotation, which has
a list of neighbour nodes. A node does not always need a rotation because, we do not
store the rotation for the input graph. A junction is a node with additional two sets of
nodes representing the two sides of the junction. Since each side of the junction has at
least two nodes, the cardinality is set to 2..n. An edge is an object with two nodes as
references and cannot exist if the two nodes do not exist.

A canonical diagram is a graph but also contains a set of faces. A face is am object that
has a list of nodes, representing the clockwise order of nodes in the face. This list has at
least four nodes, since a marked face has at least four vertices.

We always use private attributes for the data and define public methods for operating on
this data. This should prevent a wrong usage of the data structure.

4.3 Problems during implementation

Graph data structure Deciding how our data structure representing the input graph,
junctions skeleton and canonical diagram should look like was not trivial. We wanted to
have a data structure capable to represent all necessary attributes of the classes as well
as have all needed operation on this data but also to be as compact as possible. First we
tried to use an already existing third party library called yFiles. At the first glance it
seemed to be ideal for our usage, but when starting implementing we pretty soon found
the limitations of this library. We hoped that the library is able to store the rotation
system and perform a planarity check for the graph, but unfortunately this was not the
case. Another problem using the library was that the classes used in this library did
not have implemented the equals and hashcode methods. These methods are used to
perform an equality check of two different objects and are used to perform the unit and
integration tests. Since the effort to fix this problems would have been pretty high we
then decided to implement our own data structure as described earlier this chapter.
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4.3. Problems during implementation

GraphGraph

+createNode():Node

+createEdge(Node node1, Node node2): 

Edge

+createJunction():Junction

+getNodeByIndex(int): Node

+getOuterNodes():Set<Node>

+getEdges():Set<Edge>

+getJunctions():Set<Junction>

EdgeEdge

+getNode1():Node

+getNode2():Node

+setNode1(Node);void

+setNode2(Node):void

NodeNode

#id:int

+getIndex():int

+setIndex(int):void

+getRotation():Rotation

+setRotation(rotation):void

JunctionJunction

+addNodeToSide1(Node):void

+addNodeToSide2(Node):void

+getSide1():List<Node>

+getSide2():List<Node>

RotationRotation

+getOrder():List<Node>

+addNodeAfterNode(Node,Node):void

1

1

-node1

-node2

0..n-outerNodes

1

-edges 0..n

1

0..n

0..n

-junctions

1

0..n

-side1 -side22..n 2..n

0..n 0..n-rotation0..1

1

-order

{ordered}

1..n

0..n

FaceFace

+getNodes():List<Node>

Canonical DiagramCanonical Diagram

+getMarkedFaces():Set<Face> -markedFaces

0..n

-nodes

{ordered}

0..n

3..n

Figure 4.2: Class Diagram for our graph datastructure
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4. Implementation

Object references We used objects to represent our input graph, junctions skeleton
and canonical diagram. In some steps of the algorithm we for example have to add edges
to the junction skeleton while still storing the junction skeleton as it was before. The
problem in this case was that we could not simply clone the object representing the
junction skeleton, since the objects of vertices, edges and junctions would have been the
same as in original junction skeleton object. When we then add a new edge to the copied
junction skeleton, the rotation of the vertices would change in both junction skeleton
object, resulting in a wrong junction skeleton. To prevent this from happening we needed
to create a so called deep copy. Therefore we create a new vertex, junction, rotation and
edge object for each corresponding exiting object in our junction skeleton object.
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CHAPTER 5
Counterexample for bipartite

permutation graphs

In this section we show that not all bipartite permutation graphs have strict outerconfluent
drawings.

In [FGKN19] it was left as an open question if all bipartite permutation graphs admit a
strict outerconfluent drawing. Our first intuition was that bipartite permutation graphs
have strict outerconfluent drawings.

However, using the implementation of the algorithm we tested all possible vertex orderings
for bipartite permutation graphs, which might not have an strict outerconfluent drawing,
up to the size of 12 vertices. As a control program we wrote a python script which
generated all bipartite permutations graphs for a specific number of vertices. Then the
program calls the SOC-Algorithm implementation with a specific vertex ordering. If one
graph has no vertex ordering that results in a strict outer confluent drawing we have a
counter example. During this evaluation we a also measured the running time of our
SOC-Algorithm implementation. Each call of the algorithm finished in less than one
second, even if the input graph has 20 vertices. Therefore we think that the performance
of our implementation is quite good. All our experiments were run on a standard desktop
computer with an eight core Intel i7-6700 CPU clocked at 3.4GHz and 16GB RAM,
running Archlinux with a current Linux kernel. Doing this experiments we found a
counterexample for bipartite permutation graphs.

In the following theorem we will show that not every bipartite permutation graph admits
a strict outerconfluent drawing by presenting a counterexample (graph P ) which is shown
in Figure 5.1(a). In Figure 5.1(b) it is depicted that P is indeed a bipartite graph and in
5.1(c) the permutation creating this graph is pictured. It remains to prove that P can
not have a strict outerconfluent drawing.
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5. Counterexample for bipartite permutation graphs

0

1

2

3

45

6

7

8 1

2

3

45

6

7

8

0

(a) (b)

3 5 4 7 6 1 2 0 8

4 6 2 3 0 5 8 7 1

(c)

Figure 5.1: (a) Graph P (b) Drawing of P showing that P is bipartite (c) Permutation
which generates P

Theorem 2 There is a bipartite permutation graph that does not admit a strict outer-
confluent drawing.

Proof. First we consider drawings of the Domino graph, since graph P has Domino
graphs as subgraphs. We want to know which vertex orders of the domino graph lead
to an strict outerconfluent drawing. The Domino graph can be split into two cycles of
length four. In Figure 5.2(a) the first cycle is marked in red and violet, the second cycle
is marked in blue and violet. There can not be a strict outerconfluent drawing of P where
a blue edge crosses a red edge. However the red and blue edges can cross the violet edge.
Furthermore, all the vertices need to be on the boundary of an topological disk. Keeping
this in mind the only valid drawings in terms of the crossing patterns are those seen in
Figure 5.2(a)(b)(c) and the Twisted Domino. The Twisted Domino however has no strict
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D1 D2

D3 D4

D5 D6

D1

D3

D5

D2

D4

D6

D2

D4

D6

D1

D3

D5

(a) (b) (c)

Figure 5.2: (a) Graph D (b)(c) Drawings of D

outerconfluent drawing and the graph drawing in Figure 5.2(b) and (c) are isomorphic.
Hence, the drawings in Figure 5.2(a)(b) and the drawings isomorphic to them, are the
only valid vertex orders for the Domino graph.

Now graph P has two Domino graphs as subgraphs where only one vertex is different,
namely vertex 5 and 7. The subgraph consisting of both Domino graphs is called S

and can be seen in Figure 5.3(a). The Domino subgraphs therefore are induced by the
vertices (0, 1, 2, 3, 5, 6) and (0, 1, 2, 3, 6, 7). Now there are two non-isomorphic vertex
orders πP1

= (1, 2, 3, 6, 5, 7, 0) and πP2
= (1, 2, 6, 3, 5, 7, 0) we can use to draw S.

Not twisting. In the first case we do not twist one of the side of the Domino graphs,
pictured in Figure 5.3(a). Therefore we look at the strict outerconfluent drawing created
by S in this vertex order. This drawing can be seen in Figure 5.3(b). It remains to
add the vertices 4 and 8 to that drawing, which should result in a strict outerconfluent
drawing. However there is no position in the vertex order to add 4 or 8 such that it
would result in a strict outerconfluent drawing.

Twisting one end. In this case we twist one of the sides of the Domino graphs.
The resulting vertex order can be seen in Figure 5.3(c). We again look at the strict
outerconfluent drawing of S with this vertex order, which is depicted in Figure 5.3(d).
Now we can place the vertex 4 such that a strict outerconfluent drawing can be created.
The vertex 8 however can still not be placed in the vertex order such that a strict
outerconfluent drawing exists.

Hence, it is impossible to add the vertices 4 and 8 to a vertex order, resulting in a
strict outerconfluent drawing, for the structure S. Therefore, P can not have a strict
outerconfluent drawing. �

However, graph P has a outerconfluent drawing when twisting both sides of the domino
graphs in structure S. The outerconfluent drawing of P is pictured in Figure 5.3(f). This
drawing is not strict, since there are multiple paths between the vertices 2 and 7 as well
as 2 and 5.
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5. Counterexample for bipartite permutation graphs
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Figure 5.3: (a)Substructure S of P with vertex order πP1
(b)Strict outerconfluent drawing

of S with vertex order πP1
(c)Substructure S of P with vertex order πP2

(d)Strict
outerconfluent drawing of S with vertex order πP2

(e)Substructure S of P with vertex
order πP3

(f)Outerconfluent drawing of P
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CHAPTER 6
Conclusion

In this thesis we implemented the algorithm to generate strict outerconfluent drawings
from a given graph and vertex order described by Eppstein et al.[EHL+16]. We also gave
a detailed explanation for each step supported by an ongoing example. We have also
provided further insights into the development process as well as the implementation.
Last but not least we evaluated different graph classes to find classes which do or do
not obtain strict outerconfluent drawings. During this evaluation we found out that
bipartite-permutation graphs do not obtain strict outerconfluent drawings. Therefore
bipartite as well as permutation graphs do also not obtain these drawings.

Although we did a lot of work on the topic of strict outerconfluent drawings there are
still some open problems. The most interesting question if the time needed to detect
whether a given graph has a strict outerconfluent drawing or not is in polynomial time.
One approach could be to find certain substructures in the graph which forbid or permit
such a drawing.

Another open questions is if there are other graph classes like those we mentioned that
do not or do admit strict outerconfluent drawings. We hope that our implementation
helps further research towards this question, since it can for example be used for finding
counterexamples.

Furthermore, it would be interesting to analyse the implementation itself and identify
ways to improve its theoretical and practical running time. Since the original description
of the algorithm was quite abstract it could be the case that certain steps were not
implemented as efficient as it could be. Therefore a analysis of the running time of the
whole implementation would be a good next step in this direction.

Last but not least it would be desirable to also create an actual drawing. This might not
be a trivial step, since suitable curves must be identified and drawn. A simpler first step
would be to use the circle packing approach by Eppstein et al. [EHL+16] or to draw the
planar junction network.
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