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Abstract

In the classical collective risk theory the Cramér-Lundberg model is used to model the
surplus in a non-life insurance company. The Cramér-Lundberg inequality can be derived,
giving an upper bound for the probability of ruin dependent on the initial surplus. More-
over, the usage of a major result from renewal theory (the Key Renewal Theorem) shows
the probability of ruin to be asymptotically exponential as the initial surplus tends to in-
finity. However, ruin can only be avoided if the surplus increases to infinity.
The main goal in this Master thesis is to analyze a modified version that includes a dividend
barrier in order to prevent this behavior. In this new model ruin occurs with probability
one and it is interesting to know when. If the barrier tends to infinity, an asymptotic dis-
tribution for the time of ruin can be found. Depending on the barrier being attained or
not, ruin happens on different time scales. If the barrier is reached, the surplus process
performs a recurrent motion in the vicinity of the barrier and ruin takes place after a very
long exponentially distributed time. Otherwise, ruin occurs quite soon and the time of ruin
has the same distribution as in the classical model conditional on ruin occurring. As a next
step, the proportion of time the surplus is below some given level can be derived by using
some relations to queueing theory.
In case of exponentially distributed claims, the density of the time of ruin is found by
numerical inversion of its Laplace transform which can be calculated explicitly. Finally,
additional support for the found asymptotic formula is provided by a Monte Carlo simu-
lation of the surplus process with Erlang distributed claims.
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1
Introduction

The classical approach to model the surplus of a non-life insurance company goes back to
the work of the Swedish actuary Filip Lundberg (1903). In the 1930s Harald Cramér incor-
porated Lundberg’s work into the emerging theory of stochastic processes. The Cramér-
Lundberg model was found. Its basic idea is to model the claims in the surplus process of
an insurance as a compound Poisson process.
In 2000, Johan Irbäck published a paper considering a modified version of the classical
Cramér-Lundberg model that incorporates a dividend barrier in order to prevent the sur-
plus from tending to infinity [I]. The results are profound. This thesis is based on his
paper and should serve as an extension of his work by adding lots of important details. In
addition, an analysis of the classical Cramér-Lundberg model as well as an introduction to
queueing theory are included. Results from these areas are used within different proofs of
Irbäck’s work. The thesis concludes with an example. In case of exponential claims explicit
results can be derived, whereas for other distributions a Monte Carlo simulation should be
helpful to demonstrate Irbäck’s main result, i.e. an asymptotic law for the time of ruin.
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2
Classical ruin theory

This thesis starts off with a chapter about the classical ruin theory in finance and thus
is mainly dedicated to the Cramér-Lundberg model. Basically it follows the ideas of
H. U. Gerber in Chapter 2 (Stochastic processes) and Chapter 8 (Ruin theory: Part 1) of
his monograph about mathematical risk theory [G]. Additional sources are mentioned in
the respective case.

2.1. Counting processes and the compound Poisson process

Definition 2.1.1. A counting process is a continuous-time stochastic process {Nt}t≥0, with
N0 = 0, whose sample paths are step functions with jumps of size one.

Nt can be interpreted as number of times a certain event occurs between 0 and t. Such
a process may be described conveniently by a sequence of positive random variables
{Ik}k∈N called inter-arrival times and the corresponding arrival times

A0 := 0 and An :=
n

∑
k=1

Ik, n ∈N, (2.1)

enabling the representation

Nt := max(n ∈N0|An ≤ t), t ≥ 0. (2.2)

Note that {Nt}t≥0 is a càdlàg process by definition (right continuous with left limits). Let
Ht := {Ns|0 ≤ s ≤ t} = {Nt, A1, . . . , ANt} denote the history of the counting process
at time t. Assume, from now on, that for any time t and any history Ht the conditional
distribution of ANt+1 is absolutely continuous. Then

λ(t, Ht) := lim
ε↘0

P[Nt+ε − Nt = 1|Ht]

ε
(2.3)

is called the intensity of frequency at time t, given the history Ht. Intuitively, in the
infinitesimal time interval from (t, t + dt], either there will be a jump (with probability
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2. Classical ruin theory

λ(t, Ht)dt) or not (with probability 1− λ(t, Ht)dt).
For arbitrary time horizon h > 0, the law of total probability yields

P[Nt+h > Nt|Ht] =
∫ h

0
P[Nt+s = Nt|Ht]︸ ︷︷ ︸

no jumps before time t + s

· λ(t + s, Ht+s)︸ ︷︷ ︸
jump at time t + s

ds. (2.4)

The substitution P[Nt+h > Nt|Ht] = 1−P[Nt+h = Nt|Ht] leads to the following differential
equation for P[Nt+h = Nt|Ht]:

d P[Nt+s = Nt|Ht] = −P[Nt+s = Nt|Ht] · λ(t + s, Ht+s) ds, s > 0. (2.5)

Therefore

ln (P[Nt+h = Nt|Ht]) =
∫ h

0

d P[Nt+s = Nt|Ht]

P[Nt+s = Nt|Ht]
= −

∫ h

0
λ(t + s, Ht+s) ds. (2.6)

One ends up with the solution

P[Nt+h = Nt|Ht] = e−
∫ h

0 λ(t+s,Ht+s) ds. (2.7)

Example 2.1.2. Assume that λ(t, Ht) = λ > 0 depends neither on time nor on history. In
this case, formula 2.7 simplifies to

P[Nt+h = Nt] = e−λh. (2.8)

One can even show by induction the increments Nt+h − Nt, h > 0, t ≥ 0, to follow a
Poisson distribution Poi(λ):

P[Nt+h − Nt = k] =
(λh)k

k!
e−λh, k ∈N0. (2.9)

For this purpose, rewrite the left hand side using the law of total probability (k ∈N):

P[Nt+h − Nt = k] =
∫ h

0
P[Nt+s − Nt = k− 1]︸ ︷︷ ︸

k− 1 jumps before t + s

· λ︸︷︷︸
k-th jump

· P[Nt+h = Nt+s]︸ ︷︷ ︸
no more jumps until t + h

ds (2.10)

Applying the induction assumption together with formula 2.8 gives

P[Nt+h − Nt = k] =
∫ h

0

(λs)k−1

(k− 1)!
e−λs · λ · e−λ(h−s)ds =

(λh)k

k!
e−λh. (2.11)

Due to the Poisson distributed increments, a counting process with constant intensity λ

is called homogeneous Poisson process. Observe that this process has independent and
stationary increments. If, on the other hand, a counting process has these two properties,
it must have a constant intensity and therefore be a Poisson process. Hence, the Poisson
process is the only counting process that has independent and stationary increments.
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2.1. Counting processes and the compound Poisson process

Definition 2.1.3. A counting process {Nt}t≥0 is a homogeneous Poisson process with
intensity λ > 0 if

1. N0 = 0,

2. Nt has independent increments,

3. Nt − Ns ∼ Poi(λ(t− s)) ∀ 0 ≤ s < t.

The concept of Poisson processes can also be embedded in renewal theory in the following
way (Asmussen [A]).

Definition 2.1.4. If the inter-arrival times {Ik}k∈N are positive iid random variables with
common distribution P, then the arrival times process {An}n∈N is called a (pure) renewal
process. Moreover, {An}n∈N is called a delayed renewal process if instead of A0 = 0 a.s.
one has A0 = I0, where I0 is a.s. positive, independent of {Ik}k∈N but not necessarily
equally distributed. The An are called the renewals or the epochs of the renewal process.
The corresponding counting process {Nt}t≥0 is named (pure or delayed) renewal counting
process.

Consider a pure renewal counting process {Nt}t≥0, where p is the corresponding density of
the inter-arrival times Ik. Due to independence of the inter-arrival times, ANt summarizes
the past history Ht and thus the intensity λ simplifies to

λ(t, Ht) = lim
ε↘0

P[Nt+ε − Nt = 1|Ht]

ε
= lim

ε↘0

P[Nt+ε − Nt = 1|ANt ]

ε
= (2.12)

= lim
ε↘0

P[t− ANt < INt+1 ≤ t− ANt + ε | INt+1 > t− ANt ]

ε
= (2.13)

= lim
ε↘0

P(t− ANt + ε)− P(t− ANt)

ε(1− P(t− ANt))
=

p(t− ANt)

1− P(t− ANt)
. (2.14)

This means the intensity of frequency depends only on the time elapsed since the last ar-
rival.

In the special case where Ik ∼ Exp(λ), λ > 0, the intensity of frequency becomes

λ(t, Ht) =
p(t− ANt)

1− P(t− ANt)
=

λe−λ(t−ANt )

e−λ(t−ANt )
= λ, (2.15)

which means that the renewal counting process then is a homogeneous Poisson process.

Lemma 2.1.5. The renewals An, n ∈ N, of a renewal process with exponentially distributed
inter-arrival times are Gamma distributed. To be precisely,

An =
n

∑
k=1

Ik ∼ Gam(n, λ) and P[An ≤ x] = 1− e−λx
n−1

∑
k=0

(λx)k

k!
, for x ≥ 0. (2.16)
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2. Classical ruin theory

Proof.
Due to independence of the exponentially distributed inter-arrival times, the moment gen-
erating function of An is

MAn(z) =
n

∏
k=1

MIk(z) =
(

λ

λ− z

)n
, for z < λ, (2.17)

which uniquely determines the distribution of An to be Gam(n, λ). Since n is an integer
this is equivalent to an Erlang distribution, whose distribution function can be computed
easily by iterative partial integration of the Erlang/Gamma density:

P[An ≤ x] =
λn

(n− 1)!

∫ x

0
e−λyyn−1dy = (2.18)

=
λn

(n− 1)!

(
− 1

λ
e−λyyn−1

∣∣∣x
0
+

n− 1
λ

∫ x

0
e−λyyn−2dy

)
= (2.19)

= − (λx)n−1

(n− 1)!
e−λx − (λx)n−2

(n− 2)!
e−λx − . . .− (λx)2

2
e−λx + λ2

∫ x

0
e−λyydy = (2.20)

= 1− e−λx
n−1

∑
k=0

(λx)k

k!
(2.21)

�

Now, let {Nt}t≥0 be a counting process and {Cn}n∈N a sequence of iid random variables
with common distribution F that are independent of the counting process. Cn should
represent the size of the n-th jump. Then, the aggregate jumps process is defined as

St =
Nt

∑
n=1

Cn, t ≥ 0, (2.22)

with the understanding that St = 0 if Nt = 0.

In risk theory, St models the aggregate claims until time t, with Nt denoting the number of
claims until t and Cn the size of the n-th claim. The most popular choice for the counting
process (or claim number process) is a homogeneous Poisson process, yielding the follow-
ing important process.

Definition 2.1.6. An aggregate jumps process {St}t≥0 where the number of claims is mod-
eled as a Poisson process {Nt}t≥0 with intensity λ > 0 (expected number of claims per unit
of time) is called compound Poisson process.

Intuitively, in every time interval (t, t+ dt] there is either no claim (with probability 1−λdt)
or exactly one claim (with probability λdt). In the latter case the amount of the claim
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2.1. Counting processes and the compound Poisson process

is a random variable that is independent of anything else and distributed according to
distribution F. The corresponding distribution function of St is of the following form:

G(y, t) := P[St ≤ y] =
∞

∑
n=0

P[Nt = n] ·P[St ≤ y|Nt = n] = e−λt
∞

∑
n=0

(λt)n

n!
Fn?(y), (2.23)

where y ≥ 0 and Fn? represents the n-fold convolution defined by

Fn?(y) :=

{
1[0,∞)(y) if n = 0,∫
[0,y] F(y− z)F(n−1)?(dz) if n ∈N.

(2.24)

The moment generating function of a compound Poisson process St has the following form:

MSt(z) = E[ezSt ] = E[E[ezSt |Nt]] = E[MNt
C (z)] = (2.25)

= E[eNt ln MC(z)] = MNt(ln MC(z)) = eλt(MC(z)−1), (2.26)

where MC is the moment generating function of the claim sizes Cn and MNt the moment
generating function of the number of claims Nt, respectively.
Hence one derives the expectation and variance of a compound Poisson process:

E[St] = M′St
(0) = M′Nt

(ln MC(0))
M′C(0)
MC(0)

= E[Nt] ·E[Cn] = λtµ (2.27)

and

V[St] = M′′St
(0)−E[St]

2 = (2.28)

= M′′Nt
(0)M′C(0)

2 + M′Nt
(0)(M′′C(0)−M′C(0)

2)−E[St]
2 = (2.29)

= E[N2
t ] ·E[Cn]

2 + E[Nt] ·V[Cn]−E[Nt]
2 ·E[Cn]

2 = (2.30)
= E[Nt] ·V[Cn] + V[Nt] ·E[Cn]

2 = λtµ2 (2.31)

where µk :=
∫ ∞

0 ykdF(y), k ∈ N, is the k-th moment of the claim distribution and µ := µ1
denotes the expected size of a claim.

From the properties of the Poisson process it follows that the compound Poisson process
is a Lévy process, i.e. it has stationary and independent increments as well. In fact, the
increment St+h − St has a compound Poisson distribution with parameter λh and claim
distribution F. Moreover, the corresponding Lévy exponent is

g(z) := ln(MS1(z)) = λ(MC(z)− 1). (2.32)
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2. Classical ruin theory

2.2. Specification of the classical Cramér-Lundberg model

Consider an insurance company whose
surplus at time t ≥ 0 is modeled as the
following risk process (the superscript
c signals the classical form)

Xc
t := x + pt− St, (2.33)

where x > 0 is the initial surplus,
p > 0 is the premium income rate and
St denotes aggregate claims up to time
t. {St}t≥0 is modeled as a compound
Poisson process with intensity λ > 0
and distribution function F of claim
amounts. The concern here is the event
that ruin occurs, i.e. that the surplus
Xc

t becomes negative for some t.
Figure 2.1.: Sample path of the surplus pro-

cess {Xc
t}t≥0 in the classical Cramér-

Lundberg model
Definition 2.2.1. Let us define the time of ruin as

Tc
R := inf(t ≥ 0|Xc

t < 0). (2.34)

Then, the probability of ruin, with the understanding that Tc
R = ∞ if Xc

t > 0 for all t, is
denoted as

ψ(x) := P[Tc
R < ∞|Xc

0 = x], (2.35)

and the probability of ruin before time t as

ψ(x, t) := P[Tc
R < t|Xc

0 = x]. (2.36)

Similarly, U(x) := 1 − ψ(x) denotes the probability of ultimate survival, and
U(x, t) := 1− ψ(x, t) the probability of survival to time t.
Usually it is assumed that

p > λµ. (2.37)

This condition means that the premiums received per unit of time exceed the expected
claim payments per unit of time, i.e. the risk process has positive drift. Using the formula
for the expectation of a compound Poisson process in equation 2.27, one can find the
expectation of the surplus at time t:

E[Xc
t ] = x + pt−E[St] = x + (p− λµ)t (2.38)

According to the strong law of large numbers,

lim
t→∞

Xc
t

t
= p− λµ a.s. (2.39)
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2.3. The adjustment coefficient and the Cramér-Lundberg inequality

Thus the so-called safety loading (or security loading)

Λ :=
p

λµ
− 1 (2.40)

is assumed positive to ensure the ruin probability is less than one. In fact, this condition
guarantees that, for any sample path, the surplus drifts ultimately to infinity. But the main
question is whether it does this without ever becoming negative.

2.3. The adjustment coefficient and the Cramér-Lundberg

inequality

Theorem 2.3.1. The probability of survival to time t without initial surplus can be computed as

U(0, t) =
1
pt

∫ pt

0
G(y, t)dy, (2.41)

where G is the distribution function of St from 2.23.
The probability of ultimate survival (or ruin) without initial surplus depends only on the relative
security loading, but not on the specific form of the claim distribution. To be precisely,

U(0) =
Λ

1 + Λ
and ψ(0) =

1
1 + Λ

. (2.42)

Proof.
Let I denote an infinitesimal interval (x, x + dx), where x ≥ 0. Then, using continuous-
time versions of the duality principle and of a famous result from Dwass and Dinges (both
without proof here) yields

P[Xc
t ∈ I, Xc

u ≥ 0 for 0 ≤ u ≤ t] = P[Xc
t ∈ I, Xc

u < Xc
t for 0 ≤ u < t] =

x
pt

P[Xc
t ∈ I]. (2.43)

By integrating over x from 0 to pt and substituting St = pt−Xc
t and y = pt− x one derives

U(0, t) =
1
pt

∫ pt

0
xP[Xc

t ∈ I] =
1
pt

∫ pt

0
(pt− y)P[St ∈ (y, y + dy)] = (2.44)

=
1
pt

(
(pt− y)G(y, t)

∣∣∣pt

0
+
∫ pt

0
G(y, t)dy

)
=

1
pt

∫ pt

0
G(y, t)dy. (2.45)

Rewriting the above integral yields

U(0, t) =
1
pt

∫ pt

0
(1− (1− G(y, t)))dy = (2.46)

= 1− 1
pt

(∫ ∞

0
(1− G(y, t))dy−

∫ ∞

pt
(1− G(y, t))dy

)
= (2.47)

= 1− λµ

p
+

1
pt

∫ ∞

pt
(1− G(y, t))dy (2.48)

=
Λ

1 + Λ
+

1
pt

∫ ∞

pt
(1− G(y, t))dy. (2.49)
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2. Classical ruin theory

Using Chebyshev’s inequality and the explicit forms for expectation and variance of a
compound Poisson process in formulas 2.27 and 2.31, one finds an upper bound for the
integrand:

1− G(y, t) = P[St > y] ≤ P[|St − λtµ| ≥ y− λtµ] ≤ λtµ2

(y− λtµ)2 (2.50)

Substituting this inequality in equation 2.49 one obtains the estimate

U(0, t) ≤ Λ
1 + Λ

+
1
pt

∫ ∞

pt

λtµ2

(y− λtµ)2 dy =
Λ

1 + Λ
+

1
pt

λµ2

p− λµ
. (2.51)

This implies that in the limit, t→ ∞, the integral in formula 2.49 is 0 and hence

U(0) =
Λ

1 + Λ
. (2.52)

Furthermore

ψ(0) = 1−U(0) = 1− Λ
1 + Λ

=
1

1 + Λ
. (2.53)

�

Lemma 2.3.2. The probability of ruin ψ(x) fulfills the following double integral equation:

ψ(x) =
∫ ∞

0

∫ ∞

0
ψ(x + pt− y)λe−λtdt dF(y). (2.54)

Proof.
This proof is borrowed from F. Hubalek [H].
Introduce ψn(x), the probability that ruin occurs with or before the n-th claim, as

ψn(x) := P[Tc
R ≤ An|Xc

0 = x], n ∈N. (2.55)

For every x, ψn(x) is increasing in n with ψ(x) = limn→∞ ψn(x).
By distinguishing according to time and amount of the first claim (law of total probability)
and using the fact that Ik and Ck are all iid by definition, one computes:

ψn(x) = P[ min
k=1,...,n

Xc
Ak

< 0|Xc
0 = x] = (2.56)

= P[ min
k=1,...,n

Xc
I1+...+Ik

< 0|Xc
0 = x] = (2.57)

= P[ min
k=1,...,n

(x + p(I1 + . . . + Ik)− (C1 + . . . + Ck)) < 0] = (2.58)

=
∫ ∞

0

∫ ∞

0
P[ min

k=1,...,n
(x + p(I1 + . . . + Ik)− (C1 + . . . + Ck)) < 0| (2.59)

|I1 = t, C1 = y] · λe−λtdt dF(y) = (2.60)

=
∫ ∞

0

∫ ∞

0
P[ min

k=1,...,n−1
((x + pt− y) + p(I1 + . . . + Ik)− (2.61)

−(C1 + . . . + Ck)) < 0] · λe−λtdt dF(y) = (2.62)

=
∫ ∞

0

∫ ∞

0
ψn−1(x + pt− y)λe−λtdt dF(y) (2.63)
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2.3. The adjustment coefficient and the Cramér-Lundberg inequality

Now, letting n → ∞ and using Lebesgue’s monotone convergence theorem, one ends up
with the final result:

ψ(x) =
∫ ∞

0

∫ ∞

0
ψ(x + pt− y)λe−λtdt dF(y). (2.64)

�

Lemma 2.3.3. The double integral equation from Lemma 2.3.2. can be transformed into the fol-
lowing defective renewal equation for the probability of ruin ψ (renewal theory is discussed in
section 2.4):

ψ(x) =
λ

p

(∫ ∞

x
F̄(y)dy +

∫ x

0
ψ(x− y)F̄(y)dy

)
(2.65)

where F̄(y) := 1− F(y) is the tail distribution.

Proof.
Let us transform the double integral equation from Lemma 2.3.2.

ψ(z) =
∫ ∞

0

∫ ∞

0
ψ(z + pt− y)λe−λtdF(y) dt, (2.66)

with the understanding that ψ(z) = 1 for z < 0. Performing the change of variable
s = z + pt, this equation becomes

ψ(z) =
λ

p

∫ ∞

z
e−

λ
p (s−z)

∫ ∞

0
ψ(s− y)dF(y) ds. (2.67)

Taking the derivative, one obtains by using Leibniz’s rule

ψ′(z) =
λ

p
ψ(z)− λ

p

∫ ∞

0
ψ(z− y)dF(y) = (2.68)

=
λ

p

(
ψ(z)−

∫ z

0
ψ(z− y)dF(y)− F̄(z)

)
(2.69)

Integrating over z from 0 to x, one finds

ψ(x) = ψ(0) +
λ

p

(∫ x

0
ψ(z)dz−

∫ x

0

∫ z

0
ψ(z− y)dF(y) dz−

∫ x

0
F̄(z)dz

)
(2.70)

Now one uses the explicit expression for the probability of ruin without initial surplus from
Theorem 2.3.1. to calculate

ψ(0) =
1

1 + Λ
=

λµ

p
=

λ

p

∫ ∞

0
F̄(y)dy. (2.71)
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2. Classical ruin theory

Furthermore, one can simplify the middle term in equation 2.70 by changing the order of
integration, then integrating by parts and using Leibniz’s rule as follows.∫ x

0

∫ z

0
ψ(z− y)dF(y) dz =

∫ x

0

∫ x

y
ψ(z− y)dz dF(y) = (2.72)

=
∫ x

y
ψ(z− y)dz F(y)

∣∣∣x
y=0
− (2.73)

−
∫ x

0

∂

∂ y

(∫ x

y
ψ(z− y)dz

)
F(y)dy = (2.74)

=
∫ x

0

(∫ x

y
ψ‘(z− y)dz + ψ(0)

)
F(y)dy = (2.75)

=
∫ x

0
ψ(x− y)F(y)dy (2.76)

Finally one ends up with the proposed form for ψ(x):

ψ(x) =
λ

p

(∫ ∞

0
F̄(y)dy +

∫ x

0
ψ(z)dz−

∫ x

0
ψ(x− y)F(y)dy−

∫ x

0
F̄(z)dz

)
= (2.77)

=
λ

p

(∫ ∞

x
F̄(y)dy +

∫ x

0
ψ(x− y)F̄(y)dy

)
(2.78)

�

Example 2.3.4. Assume an exponential claim amout distribution Cn ∼ Exp(a), with a > 0,
and F(x) = 1− e−ax for x ≥ 0. Hence f (x) = ae−ax and µ = 1

a .
Let us consider again equation 2.69 for ψ′(x) and perform the substitution z = x− y:

ψ′(x) =
λ

p

(
ψ(x)−

∫ x

0
ψ(x− y)dF(y)− F̄(x)

)
(2.79)

⇐⇒ p
λ

ψ′(x) = ψ(x)−
∫ x

0
ψ(z) f (x− z)dz− F̄(x) (2.80)

⇐⇒ p
λ

ψ′(x) = ψ(x)− a
∫ x

0
ψ(z)e−a(x−z)dz− e−ax (2.81)

Differentiation according to Leibniz’s rule yields the equation

p
λ

ψ′′(x) = ψ′(x)− ψ(x) f (0)−
∫ x

0
ψ(z) f ′(x− z)dz + f (x) (2.82)

⇐⇒ p
λ

ψ′′(x) = ψ′(x)− aψ(x) + a2
∫ x

0
ψ(z)e−a(x−z)dz + ae−ax (2.83)

Thus if one multiplies equation 2.81 by a and adds to equation 2.83, one eliminates the
integral and obtains the following differential equation with constant coefficients:

p
λ

ψ′′(x) +
(

p
λµ
− 1
)

ψ′(x) = 0 (2.84)
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2.3. The adjustment coefficient and the Cramér-Lundberg inequality

The general solution of this equation is of the form

ψ(x) = c1er1x + c2er2x, (2.85)

where c1 and c2 are arbitrary constants, and r1 and r2 are the roots of the corresponding
characteristic equation:

p
λ

r2 +

(
p

λµ
− 1
)

r = 0 (2.86)

Thus

r1 = −λ

p

(
p

λµ
− 1
)
=

λ

p
− a = − 1

µ
· Λ

1 + Λ
=: −R and r2 = 0. (2.87)

Since ψ(x) → 0 for x → ∞ (which will actually be seen in Theorem 2.3.5.), it follows that
c2 = 0. c1 = ψ(0) = 1

1+Λ by Theorem 2.3.1., and finally

ψ(x) =
1

1 + Λ
· e−

Λ
1+Λ ·

x
µ =

1
1 + Λ

· e−Rx, x ≥ 0. (2.88)

Hence in case of exponential claim amounts, the probability of ruin is an exponential func-
tion of the initial surplus measured in mean claim amounts.

Theorem 2.3.5. Suppose there is a constant R > 0 such that the moment generating function
of the claim distribution MC(R) exists, i.e. E[eRCn ] < ∞, and R solves the Cramér-Lundberg
condition

λ + pR = λMC(R), (2.89)

then R is called the Cramér-Lundberg coefficient (or adjustment coefficient) and the Cramér-
Lundberg inequality holds:

ψ(x) ≤ e−Rx ∀x ≥ 0. (2.90)

Proof.
The Cramér-Lundberg inequality for ψn(x) can be shown by induction with respect to n:
First, ψ0(x) := P[Tc

R ≤ A0] = P[Tc
R = 0], the probability that ruin occurs immediately, is

zero and hence ψ0(x) ≤ e−Rx.
Next, use the double integral equation for ψn(x) from the proof of Lemma 2.3.2. together
with the induction assumption and the Cramér-Lundberg condition to derive:

ψn(x) =
∫ ∞

0

∫ ∞

0
ψn−1(x + pt− y)λe−λtdt dF(y) ≤ (2.91)

≤
∫ ∞

0

∫ ∞

0
e−R(x+pt−y)λe−λtdt dF(y) = (2.92)

=
λ MC(R)
λ + pR

e−Rx = e−Rx (2.93)

13



2. Classical ruin theory

Finally, letting n → ∞ and using the fact that ψ(x) = limn→∞ ψn(x), one finds the inequal-
ity to hold for ψ(x) as well. �

The Cramér-Lundberg inequality shows the probability of ruin to be exponentially decreas-
ing. Therefore, the probability of ruin gets small even with moderate values for the initial
surplus.

Remark: According to Willmot and Lin [WL], if the Cramér-Lundberg condition holds,
one can even find an improved Lundberg upper bound of the form

ψ(x) ≤ βe−Rx ∀x ≥ 0, (2.94)

where β is a constant, given by

1
β
= inf

0≤t<∞

∫ ∞
t eRydF(y)

eRt F̄(t)
, (2.95)

that satisfies 0 < β ≤ 1.

Example 2.3.6. Assume an exponential claim amout distribution Cn ∼ Exp(a), with a > 0,
and F(x) = 1− e−ax for x ≥ 0. Then the Cramér-Lundberg condition reduces to

λ + pR =
aλ

a− R
, with R < a. (2.96)

Solving the arising quadratic equation for R yields the nontrivial solution

R = a− λ

p
, (2.97)

which is positive under the usual assumption that p > λµ = λ
a . The arising R turns out to

be the same as in Example 2.3.4., where the following explicit solution was found:

ψ(x) =
1

1 + Λ
e−Rx ≤ e−Rx, x ≥ 0. (2.98)

A short calculation shows that, if the claim sizes are exponentially distributed, the im-
proved Lundberg inequality 2.94 is exact with β = 1

1+Λ :

1
β
= inf

0≤t<∞

∫ ∞
t eRydF(y)

eRt F̄(t)
= inf

0≤t<∞

a
∫ ∞

t e(R−a)ydy
e(R−a)t

=
a

a− R
=

p
λµ

= 1 + Λ (2.99)
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2.3. The adjustment coefficient and the Cramér-Lundberg inequality

Remark: Obviously, R = 0 is a trivial solution of the Cramér-Lundberg condition. The
left hand side of equation 2.89 is an affine function, whereas the right hand side is convex.
Moreover, the usual assumption that p > λµ implies that the derivative of the left side
exceeds the derivative of the right side at R = 0, and thus the adjustment coefficient exists
if MC(R) exists for all R > 0.
One can even show that the following two conditions are each sufficient for the existence
of the Cramér-Lundberg coefficient (Hubalek [H]):

1. MC(R) exists for 0 < R < Rmax and limR↗Rmax MC(R) = ∞.

2. There exists an R′ > 0 such that MC(R′) exists and λ + pR′ ≤ λMC(R′).

Theorem 2.3.7. The adjustment coefficient fulfills the following two inequalities.

1. Upper bound:

R < 2Λ
µ

µ2
(2.100)

2. Lower bound: Provided there is a constant k > 0 such that F(k) = 1 (claims higher than k
are not possible),

R >
1
k

ln(1 + Λ). (2.101)

Proof.
1. Dividing the Cramér-Lundberg condition 2.89 by λ and using the power series expansion
of eRy, one derives

1 + µR(1 + Λ) =
∫ ∞

0
eRydF(y) >

∫ ∞

0
(1 + Ry +

R2y2

2
)dF(y) = 1 + Rµ +

R2µ2

2
(2.102)

(2.103)

Therefore

R < 2Λ
µ

µ2
. (2.104)

2. The lower bound can be derived in the following way:

1 + µR(1 + Λ) =
∫ ∞

0
eRydF(y) ≤

∫ ∞

0

(y
k

eRk + (1− y
k
)
)

dF(y) = 1 +
µ

k
(eRk − 1) (2.105)

Thus

1 + Λ ≤ eRk − 1
Rk

< eRk, (2.106)

where the last inequality is best seen by comparing corresponding terms in the two power
series expansions. Finally

R >
1
k

ln(1 + Λ). (2.107)

�
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2. Classical ruin theory

2.4. Asymptotic formula for the probability of ruin

This section relies on some major results from renewal theory. Asmussens chapter about
renewal theory is used at many points [A].

Definition 2.4.1. Let Z, g and h be functions of a non-negative argument, h(y) ≥ 0 and∫ ∞
0 h(y)dy < ∞. Then, a renewal equation is defined as the following integral equation

Z(x) = g(x) +
∫ x

0
Z(x− y)h(y)dy = g(x) + Z ? h(x), x ≥ 0, (2.108)

where ? means the convolution integral. If g is bounded on finite intervals, equation 2.108
has a unique solution Z that is bounded on finite intervals as well (see Asmussen [A] for a
proof). Defining H(x) :=

∫ x
0 h(y)dy, the renewal equation is called

proper if H(∞) = 1,
defective if H(∞) < 1,
excessive if H(∞) > 1.

(2.109)

Note that in case H(∞) = 1, h is a probability density function and H the corresponding
cumulative distribution function.

Example 2.4.2. Consider the classical Cramér-Lundberg model. The ruin probability ψ

satisfies a renewal equation (see Lemma 2.3.3.) with

g(x) =
λ

p

∫ ∞

x
F̄(y)dy (2.110)

and

h(x) =
λ

p
F̄(x). (2.111)

Since by assumption H(∞) = λµ
p < 1, this renewal equation is defective.

Theorem 2.4.3. In the proper case, the unique solution of the renewal equation is given by

Z(t) = g(t) + g ? u(t), t ≥ 0, (2.112)

where u(t) := ∑∞
n=1 hn?(t).

Proof.
At first, it is shown that U(t) := ∑∞

n=1 Hn?(t) and u(t) satisfy renewal equations of the
proper type. For this purpose, consider∫ t

0
U(t− y)h(y)dy =

∞

∑
n=1

∫ t

0
Hn?(t− y)h(y)dy =

∞

∑
n=2

Hn?(t) = U(t)− H(t) (2.113)
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2.4. Asymptotic formula for the probability of ruin

and thus

U(t) = H(t) +
∫ t

0
U(t− y)h(y)dy, t ≥ 0. (2.114)

Upon differentiation,

u(t) = h(t) +
∫ t

0
u(t− y)h(y)dy, t ≥ 0. (2.115)

Using the relation u = h + u ? h, one can show that Z = g + g ? u satisfies the renewal
equation for Z:

Z ? h = (g + g ? u) ? h = g ? (h + u ? h) = g ? u = Z− g, (2.116)

which is equivalent to equation 2.108. �

In order to describe the asymptotic behavior of the solution Z to a renewal equation of
the proper type one can apply the so-called Key Renewal Theorem (following Asmussen
[A] and Resnick [R]). Before presenting the KRT, one needs the following two definitions.

Definition 2.4.4. A random variable X has a lattice distribution if there exist α ∈ R and
β > 0 such that

P[X ∈ {α + zβ : z ∈ Z}] = 1. (2.117)

The largest value of β for which the above equality holds is called the period (or span) of
the random variable X. X is called non-lattice if no such β exists. Note that in particular
all continuous random variables are non-lattice. Furthermore, if α = 0 X may also be called
arithmetic.

Definition 2.4.5. Suppose for a while that z : [0, ∞) → [0, ∞). Setting h > 0 and
Ih
n := (nh, (n + 1)h], n ∈N0, let for x ∈ Ih

n (see Figure 2.2)

z̄h(x) := sup
y∈Ih

n

z(y) and zh(x) := inf
y∈Ih

n

z(y). (2.118)

Then one calls z directly Riemann
integrable if

∫ ∞
0 z̄h(x)dx < ∞ for

some (and then all) h and as h → 0∫ ∞
0 (z̄h(x) − zh(x))dx → 0. If z can

attain also negative values, one calls
z directly Riemann integrable if both
z+ := max(z, 0) and z− := max(−z, 0)
are so.
For functions with compact support
this concept is the same as Riemann in-
tegrability. Since the criterion for direct Figure 2.2.: Illustration of functions z̄h and zh

Riemann integrability is quite technical, there are a few sufficient conditions found in the
literature, e.g.

17



2. Classical ruin theory

(i). z is non-negative, non-increasing and Riemann integrable.

(ii). z is monotone and absolutely integrable.

(iii). z is Riemann integrable and bounded by a directly Riemann integrable function.

Theorem 2.4.6. (Key Renewal Theorem): Let Z(t) be the solution to a renewal equation of the
proper type

Z(t) = g(t) +
∫ t

0
Z(t− x)dH(x), t ≥ 0, (2.119)

where H is a non-lattice distribution with mean µ :=
∫ ∞

0 xdH(x) > 0 and g(t) is directly Riemann
integrable. Then,

lim
t→∞

Z(t) =

{
1
µ

∫ ∞
0 g(y)dy if µ < ∞,

0 if µ = ∞.
(2.120)

Proof.
It is referred to Asmussen [A] or Resnick [R] for a detailed proof. �

The following theorem gives an asymptotic formula for the solution to a renewal equation
of defective or excessive type. For this purpose, note that two functions a(x) and b(x) are
called asymptotically equivalent if limx→∞

a(x)
b(x) = 1. Asymptotic equivalence is symboli-

cally denoted by a(x) ∼ b(x). However, this can be embedded in a more general setting
as well: A stronger approximation statement is the so-called little-o notation, where one
writes a(x) = b(x) + o(c(x)) if a(x) can be approximated by b(x) with an error e(x) getting
arbitrarily small compared to a function c(x) as x gets large, i.e. limx→∞

e(x)
c(x) = 0. Obvi-

ously, asymptotic equivalence can be written in little-o notation as a(x) = b(x) + o(b(x)).

Theorem 2.4.7. If the renewal equation is defective or excessive, g is sufficiently regular (such
that eRxg(x) is bounded on finite intervals as well as directly Riemann integrable or it fulfills one of
the sufficient conditions above) and

∫ ∞
0 yeRyh(y)dy < ∞, then the solution Z(x) is asymptotically

exponential:

Z(x) ∼ Ce−Rx, for x → ∞, (2.121)

with

C :=

∫ ∞
0 eRyg(y)dy∫ ∞

0 yeRyh(y)dy
(2.122)

and R being the solution of ∫ ∞

0
eRyh(y)dy = 1. (2.123)
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2.4. Asymptotic formula for the probability of ruin

Proof.
Note that R is positive if the renewal equation is defective and negative if it is excessive.
Moreover,

h̃(y) := eRyh(y), y ≥ 0, (2.124)

is a probability density function. Therefore, multiply equation 2.108 by eRx to obtain the
following proper renewal equation:

Z̃(x) = g̃(x) +
∫ x

0
Z̃(x− y)h̃(y)dy, x > 0, (2.125)

where

Z̃(x) := eRxZ(x) and g̃(x) := eRxg(x). (2.126)

Hence, one can apply the KRT to obtain

lim
x→∞

Z̃(x) =
1
µ̃

∫ ∞

0
g̃(y)dy =

∫ ∞
0 eRyg(y)dy∫ ∞

0 yeRyh(y)dy
= C. (2.127)

�

Corollary 2.4.8. (Cramér-Lundberg approximation):
If the Cramér-Lundberg condition is satisfied with adjustment coefficient R > 0 such that
g′(R) = λM′C(R) < ∞ (recall that g(z) = λ(MC(z) − 1) is the Lévy exponent of St), then
the probability of ruin is asymptotically exponential with rate −R:

ψ(x) ∼ Ce−Rx, for x→ ∞, (2.128)

where C is the constant

C :=
p− g′(0)
g′(R)− p

. (2.129)

Proof.
Recall that ψ(x) satisfies a defective renewal equation (see Lemma 2.3.3.), where g(x) and
h(x) were found in Example 2.4.2. Now, substitute the explicit form for h(x) from equation
2.111 into 2.123 to obtain the equation that defines the rate −R:

λ

p

∫ ∞

0
eRy F̄(y)dy = 1. (2.130)

Upon integration by parts one finds

1
R

eRy F̄(y)
∣∣∣∞
0
+

1
R

∫ ∞

0
eRydF(y) =

p
λ

. (2.131)
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2. Classical ruin theory

This is equivalent to

− 1
R
+

1
R

MC(R) =
p
λ
⇐⇒ λ + pR = λMC(R). (2.132)

Hence R satisfies the Cramér-Lundberg condition (pR = g(R)) and coincides with the
adjustment coefficient. According to Theorem 2.4.7., ψ(x) is asymptotically exponential

ψ(x) ∼ Ce−Rx, for x → ∞, (2.133)

which is the famous asymptotic formula for the probability of ruin. The constant C is
obtained by substituting 2.110 and 2.111 in 2.127:

C =

∫ ∞
0 eRy ∫ ∞

y F̄(x)dxdy∫ ∞
0 yeRy F̄(y)dy

(2.134)

The numerator can be simplified by changing the order of integration and using equation
2.130: ∫ ∞

0
eRy

∫ ∞

y
F̄(x)dxdy =

∫ ∞

0
F̄(x)

∫ x

0
eRydydx = (2.135)

=
1
R

∫ ∞

0
F̄(x)(eRx − 1)dx =

1
R

( p
λ
− µ

)
(2.136)

Since g′(0) = λµ the constant becomes

C =
p− g′(0)

λR
∫ ∞

0 yeRy F̄(y)dy
. (2.137)

Applying partial integration and using the Cramér-Lundberg condition yields the stated
version for the denominator:

λR
∫ ∞

0
yeRy F̄(y)dy =

(
λyeRy − λ

R
eRy
)

F̄(y)
∣∣∣∞
0
−
∫ ∞

0

(
λyeRy − λ

R
eRy
)

dF̄(y) = (2.138)

=
λ

R
+ λ

∫ ∞

0
yeRydF(y)− λ

R

∫ ∞

0
eRydF(y) = (2.139)

= λ
∫ ∞

0
yeRydF(y)− λ

R
(MC(R)− 1) = g′(R)− p > 0 (2.140)

Therefore the final expression for C can be written as

C =
p− g′(0)
g′(R)− p

. (2.141)

�

Note that ψ(x) is decreasing in x and its limit for x → ∞ is zero. Hence, the only way
to avoid ruin is that the initial surplus increases to infinity.
Moreover, the asymptotic formula for ψ is exact with C = β = 1

1+Λ when the claims are
exponentially distributed (see Example 2.3.4.).
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3
Queueing theory

In Section 4.3 the proportion of time the Cramér-Lundberg surplus process with a dividend
barrier is below some given level will be found. The derivation is based on relations to
queueing theory. This motivates the inclusion of a chapter summarizing some important
results from queueing theory. They can be found in Asmussen [A].

3.1. Introducing the basic setting

The great diversity of queueing problems gives rise to an enormous variety of models
each with their specific features. For the description of a queue the following features are
relevant:

(i). The input or arrival process, i.e. the way in which the customers arrive to the queue.

(ii). The service facilities, i.e. the way in which the system handles a given input stream.

(iii). The queue discipline, i.e. the algorithm determining the order in which the cus-
tomers are served.

In this regard, Kendall’s notation system is widely used. It covers some simple and basic
queueing systems which have the following characteristics:

(i). Customers arrive one at a time according to a renewal process in discrete or contin-
uous time. That is, the intervals between successive arrivals of customers are i.i.d.
and governed by a distribution A on N or (0, ∞). Number the customers 0, 1, 2, ...
and assume for now, in accordance with Asmussen, that customer 0 arrives at time
0. This assumption can be dropped as well such that the queue starts empty. If Tn
denotes the interval between the arrival of customer n and n + 1, the {Tn}n∈N0 are
i.i.d. and the arrival time of customer n is An := ∑n−1

k=0 Tk for n ∈N.

(ii). The service times of different customers {Un}n∈N0 are i.i.d. as well and independent
of the inter-arrival process {Tn}n∈N0 . Denote the governing distribution (concentrated
on (0, ∞)) by B.
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3. Queueing theory

In Kendall’s notation, a queueing system of this type is denoted by a string of the type
A/B/s, where A refers to the form of the inter-arrival distribution, B to the form of the
service time distribution and s is the number of servers. The most common values for A
and B are as follows:

(i). M Exponential distribution (M = Markovian).

(ii). D Degenerate distribution at point d ∈ (0, ∞), frequently d = 1 (D = Deterministic).

(iii). Ek Erlang distribution with k stages.

(iv). Hk Hyperexponential distribution with k parallel channels.

(v). G General distribution.

The main types of queue disciplines are listed below. Note that this list is by no means
complete and does not cover all aspects.

(i). FCFS (First Come, First Served) The customers are served in the order of arrival.
Throughout the thesis, this is the discipline chosen.

(ii). LCFS (Last Come, First Served) After having completed a service the server turns to
the latest arrived customer.

(iii). SIRO (Service In Random Order) After having served a customer, the server picks
the next at random among the remaining ones.

(iv). PS (Processor Sharing) The customers share the server, i.e. when n customers are
present, the server devotes 1/n of his capacity to each.

(v). RR (Round Robin) Here the server works on the customers one at a time in a fixed
time quantum δ. A customer not having completed service within this time is put
back in the queue, and before he can retain service the other customers are each
allowed their quantum of δ (or less, if service is completed). As δ becomes infinitely
small, PS is obtained as a limiting case of RR.

In connection with a given queueing system, a great variety of stochastic processes and
functionals arise. The main ones that one shall study are the following three:

(i). Qt The queue length at time t, i.e. the number of customers currently in the system.

(ii). Wn The actual waiting time (or just waiting time) of customer n, i.e. the time from
arrival to the system until service starts.

(iii). Vt The workload in the system at time t, i.e. the total time the s servers have to
work to clear the system provided that no new customers arrive. In the case s = 1
of a single server, this is equivalent to the waiting time of a hypothetical customer
arriving just after t. For this reason Vt is also denoted the virtual waiting time at time
t for s = 1.
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3.1. Introducing the basic setting

Figure 3.1.: Example of a G/G/1 queue: (a) the input of service times {Un}n∈N0 and inter-
arrival times {Tn}n∈N0 , (b) the corresponding queue length process {Qt}t≥0
and (c) the virtual waiting time process {Vt}t≥0.

The following measure of performance of a queueing system is of universal interest.

Definition 3.1.1. The so-called traffic intensity ρ of a G/G/s - queue is defined as

ρ :=
E[Uk]

s ·E[Tk]
=

∫ ∞
0 x B(dx)

s
∫ ∞

0 x A(dx)
for k ∈N0. (3.1)

Suppose that for a very large amount of time t the system is working at full capacity, i.e.
that all servers are busy. Then by the law of large numbers there will be about t/E[Tk]
arrivals and a total of st/E[Uk] services. Thus ρ is about the ratio, i.e. when ρ > 1 the
number of arrivals exceeds the number of services so that one expects the queue to grow
indefinitely. In contrast, when ρ < 1 then eventually even a very long initial queue will be
cleared (in the sense that not all servers are busy; after that the queue may build up again,
but will be cleared up for the same reason, and so on, the system evolving in cycles). Thus
the behavior should be like transience when ρ > 1, and like recurrence when ρ < 1.

The notion of steady state is within the setting of Markov processes just what is usually
called stationarity: a Markov jump process is in steady state (or in equilibrium) if it is er-
godic and stationary.
On intuitive grounds, if the traffic intensity is less than 1, the capacity of the queueing
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system is sufficient to deal with the arriving workload. One expects the system to alternate
between being busy and idle, and that the initial conditions will be smoothed away by the
stochastic variation in the length of the cycles. Thus, under appropriate conditions there
should exist limiting distributions of Qt as well as Vt for t → ∞ and of Wn as n → ∞. In
order to study the characteristics of the queueing system one often restricts attention to a
steady-state version. This will be represented either by a governing probability distribution
Pe (e for equilibrium) or by denoting the random variable without index, referring to a ran-
dom variable having the limiting steady-state distribution. The motivation for studying the
steady-state versions comes from the following two points. Firstly, a queueing system will
frequently be operating for such long periods of time that the steady state is entered rather
early in that period. And secondly, the limiting distribution also describes the long-term
behavior in terms of time averages.

3.2. Regenerative processes

The classical definition of a stochastic process to be regenerative means in intuitive terms
that the process can be split into i.i.d. cycles. In case of the G/G/1 queue length process
the cycles are the time intervals separated by the instants Sn with a customer entering an
empty system. At each such instant the queue regenerates, i.e. starts completely from
scratch independently of the past. Different cycles are independent and all governed by
the same probability law. A similar statement holds for the workload.

Figure 3.2.: G/G/1 queue length process {Qt}t≥0 as an example for a regenerative process
with instants Sn.

However, one should use a slightly wider definition:

Definition 3.2.1. Assume {Xt}t∈T is a stochastic process with T = N0 or T = [0, ∞) and
state space E. Then, the process {Xt}t∈T is called (pure or delayed) regenerative if there
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3.2. Regenerative processes

exists a (pure or delayed) renewal process An = ∑n
k=0 Ik, n ∈ N0, such that the post-An

process

θAn X := (In+1, In+2, . . . , {XAn+t}t∈T), for n ∈N0, (3.2)

is independent of A0, . . . , An (or, equivalently, of I0, . . . , In) and its distribution does not
depend upon n. One calls {An}n∈N0 the embedded renewal process and refers to the An
as regeneration points. The k-th cycle is {XAk−1+t}0≤t≤Ik for k ∈N.

To a given delayed regenerative process, there clearly exists a zero-delayed one with a
unique propability law (e.g. {XA0+t}t∈T). Let P0 and E0 correspond to the zero-delayed
case and write I = I1 for the length of the first cycle having mean E0[I].

A trivial but noteworthy property is that the regenerative property is preserved under map-
pings (nothing like that is true for say a Markov process):

Proposition 3.2.2. If {Xt}t∈T is regenerative and ϕ : E → F any measurable mapping, then
{ϕ(Xt)}t∈T is regenerative with the same embedded renewal process.

The power of the concept of regenerative processes lies in the existence of a limiting distri-
bution under conditions that are very mild and usually easy to verify.

Theorem 3.2.3. Assume that a (possibly delayed) regenerative process {Xt}t∈T has metric state
space, right-continuous paths and non-lattice cycle length distribution F with finite mean. Then the
limiting distribution Pe exists and is given by

E[ f (X)] = Ee[ f (Xt)] =
1

E0[I]
E0

[∫ I

0
f (Xs)ds

]
. (3.3)

Proof.
It is immediately checked that

A→ 1
E0[I]

E0

[∫ I

0
1{Xs∈A}ds

]
, with A ∈ B(E), (3.4)

defines a probability measure. Hence by standard facts on weak convergence it is sufficient
to prove that E[ f (Xt)] → Ee[ f (Xt)] as t → ∞, whenever f is continuous with 0 ≤ f ≤ 1.
By defining

Z(t) := E0[ f (Xt)], g(t) := E0[ f (Xt)1{t<I}] and F∗0 (x) := P[I0 ≤ x] (3.5)

and conditioning on I0, it follows that

E[ f (Xt)] = E[ f (Xt)1{t<I0}] + E[ f (Xt)1{t≥I0}] = (3.6)

= E[ f (Xt)1{t<I0}] +
∫ t

0
E0[ f (Xt−x)]F∗0 (dx) (3.7)

= E[ f (Xt)1{t<I0}] +
∫ t

0
Z(t− x)F∗0 (dx). (3.8)
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3. Queueing theory

Similarly one finds

Z(t) = E0[ f (Xt)] = E0[ f (Xt)1{t<I}] + E0[ f (Xt)1{t≥I}] = (3.9)

= E0[ f (Xt)1{t<I}] +
∫ t

0
E0[ f (Xt−x)]F(dx) (3.10)

= g(t) +
∫ t

0
Z(t− x)F(dx). (3.11)

Hence letting t → ∞ in equation 3.8 one sees that it is even sufficient to show that
Z(t) → Ee[ f (Xt)]. Applying the key renewal theorem (Theorem 2.4.6.) to the above re-
newal equation for Z(t) with E0[I] < ∞ by assumption yields for t→ ∞

Z(t)→ 1
E0[I]

∫ ∞

0
g(s)ds =

1
E0[I]

∫ ∞

0
E0[ f (Xs)1{s<I}]ds =

1
E0[I]

E0

[∫ I

0
f (Xs)ds

]
. (3.12)

It remains to show that g is directly Riemann integrable by using the third sufficient
condition. g is Riemann integrable since it is bounded and continuous a.e. due to its
right-continuity. In particular, g(t) ≤ P0[I > t] = F̄(t) and F̄(t) is directly Riemann in-
tegrable by the first sufficient condition: It is non-negative, non-increasing and Riemann
integrable. �

3.3. Lindley processes

It is quite common that in a particular queueing model one or more of the processes of in-
terest may be related to a process that is Lindley or at least of a somewhat similar structure.

Definition 3.3.1. By a Lindley process, one understands a discrete time process of the
form

W0 = w, Wn+1 = (Wn + Xn)
+, n ∈N0, (3.13)

where w ≥ 0 and {Xn}n∈N0 are i.i.d. with common distribution F.

Example 3.3.2. Consider the G/G/1 queue with waiting time Wn of customer n. Say that
customer n arrives at time t and customer n + 1 at t + Tn. The residual work in the system
is Wn just before t, Wn +Un just after t and Wn+1 just before t + Tn. Since the residual work
decreases at a unit linear rate in between arrivals so long as it is positive,

Wn+1 = max(Wn + Un − Tn, 0). (3.14)

Hence 3.13 holds with Xn := Un − Tn and clearly the Xn are i.i.d. Therefore, the waiting
time process {Wn}n∈N0 in the G/G/1 queue is Lindley.
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3.3. Lindley processes

By defining the partial sums

S0 := 0, Sn :=
n−1

∑
k=0

Xk, n ∈N, (3.15)

the following relation between the paths of {Sn}n∈N0 and {Wn}n∈N0 can be derived.

Proposition 3.3.3. For n ∈N0 it holds that

Wn = max(W0 + Sn, Sn − S1, . . . , Sn − Sn−1, 0). (3.16)

Proof.
Both inequalities will be shown.
By comparing the definitions of Sn and Wn one immediately sees that the increments of
{Wn}n∈N0 are at least those of {Sn}n∈N0 so that

Wn −Wn−k ≥ Sn − Sn−k for k ∈ {0, . . . , n}. (3.17)

Letting k = n yields Wn ≥ W0 + Sn and using Wn−k ≥ 0 one has Wn ≥ Sn − Sn−k for all
k ∈ {0, . . . , n}. Thus, one has that

Wn ≥ max(W0 + Sn, Sn − S1, . . . , Sn − Sn−1, 0). (3.18)

For the converse, one shows that either Wn = W0 + Sn or Wn = Sn − Sn−k for some k. Ob-
viously, the first case occurs if W0 + Sk ≥ 0 for all k ∈ {0, . . . , n}. Otherwise, there exists an
l ∈ {0, . . . , n} where Wl = 0. Choosing k as the largest index l where Wl = 0, the definition
of Wn in equation 3.13 yields Wn = Sn − Sn−k. �

Figure 3.3.: Illustration of the relation between the paths of {Sn}n∈N0 and {Wn}n∈N0 .

Now define the partial maximum of the first n partial sums as

Mn := max
0≤k≤n

Sk, n ∈N0, (3.19)
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3. Queueing theory

with M := M∞ = max0≤k≤∞ Sk. Since the distribution of (Sn, Sn − S1, . . . , Sn − Sn−1, 0) is
the same as the distribution of (Sn, Sn−1, . . . , S1, S0 = 0) one gets the following corollary.

Corollary 3.3.4. It holds that

Wn
d
= max(W0 + Sn, Mn−1) (3.20)

and in particular, if W0 = 0, then

Wn
d
= Mn. (3.21)

Suppose now E[|Xn|] < ∞ and define µ := E[Xn] for all n.

Corollary 3.3.5. If µ < 0, then M < ∞ a.s. and Wn
d→ M (and in total variation) as n→ ∞.

Proof.
Due to the strong law of large numbers Sn/n a.s.→ µ and thus Sn

a.s.→ −∞. This implies in
particular M < ∞ a.s. Also W0 + Sn

a.s.→ −∞ and Mn ↗ M a.s. and in distribution. Thus

Wn
d
= max(W0 + Sn, Mn−1)

d
= Mn−1 eventually and Wn

d→ M follows. �

3.4. Reflected Lévy processes

In continuous time, the definition of a reflected version {Vt}t≥0 of a Lévy process {St}t≥0 is
less obvious than in discrete time. The definition used in Asmussen [A] is the continuous-
time analogue of Proposition 3.3.3., i.e.

Vt := (V0 + St) ∨ max
0≤s≤t

(St − Ss), t ≥ 0. (3.22)

Defining MT := sup0≤t≤T St for T ≥ 0 with M := M∞ = sup0≤t≤∞ St, Asmussen shows

Proposition 3.4.1. {Vt}t≥0 is a strong Markov process and

VT
d
= (V0 + ST) ∨MT for all T ≥ 0. (3.23)

Moreover, if µ < 0, then M < ∞ and VT → M in total variation as T → ∞.

Example 3.4.2. Consider a compound Poisson process with only positive jumps and a
negative drift

St :=
Nt

∑
k=1

Uk − t, t ≥ 0, (3.24)
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3.5. Steady-state properties of G/G/1

where {Nt}t≥0 is a Poisson process with intensity β and {Uk}k∈N0 are i.i.d. with com-
mon distribution B concentrated on (0, ∞) and independent of {Nt}t≥0. The reflection
then means that the downward drift at unit rate is cut off when Vt = 0. Thus, {Vt}t≥0
with V0 = U0 has the same upward jumps as {St}t≥0 and a downward drift at unit rate
in positive states so that one recognizes {Vt}t≥0 as the M/G/1 virtual waiting time process.

3.5. Steady-state properties of G/G/1

From now on consider the G/G/1 queue. Let µA = E[Tn] denote the inter-arrival mean
and µB = E[Un] the mean service time (both are assumed finite throughout). In addition,
denote the mean of Xn = Un − Tn by

µ := E[Xn] = µB − µA. (3.25)

Then the cases µ < 0, µ = 0 and µ > 0 correspond to ρ < 1, ρ = 1 and ρ > 1, since
ρ = µB/µA with this notation. Putting Example 3.3.2., Proposition 3.3.3. and Corollaries
3.3.4. as well as 3.3.5. together one has that

Proposition 3.5.1. The (actual) waiting time process {Wn}n∈N0 is a Lindley process generated by
{Sn}n∈N0 , i.e. Wn+1 = (Wn + Xn)+ for n ∈N0. In particular,

Wn = max(Sn, Sn − S1, . . . , Sn − Sn−1, 0) d
= Mn (3.26)

and if ρ < 1, then a limiting steady-state distribution exists and is given by

Pe[Wn ≤ x] = P[M ≤ x]. (3.27)

Now define σ(0) := 0, σ(1) := σ := inf{n ≥ 1 : Wn = 0} and for k ∈ N

σ(k + 1) := inf{n > σ(k) : Wn = 0}. Since W0 = 0 one may interpret σ as the num-
ber of customers served in the first busy period and σ(k) as the index of the customer
initiating the k-th busy cycle.

Proposition 3.5.2. The σ(k) are regeneration points for the waiting time process {Wn}n∈N0 . One
has σ < ∞ a.s. if and only if ρ ≤ 1, and E[σ] < ∞ if and only if ρ < 1. Hence for ρ ≤ 1,
{Wn}n∈N0 is regenerative with embedded renewal sequence {σ(k)}k∈N0 . Furthermore, σ = σ(1)
coincides with the entrance time of the partial sums {Sn}n∈N0 to (−∞, 0]

σ = τ− := inf{n ∈N : Sn ≤ 0}. (3.28)

One has that

Wn = Sn =
n−1

∑
k=0

(Uk − Tk), n = 0, . . . , σ− 1, (3.29)

−Sσ = −Sτ− = I, (3.30)
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3. Queueing theory

where I is the idle period corresponding to the first busy cycle.

Proof.
Since {Wn}n∈N0 is a Lindley process generated by {Sn}n∈N0 according to Proposition 3.5.1.,
one has

0 < Wn = Sn =
n−1

∑
k=0

(Uk − Tk), n = 0, . . . , σ− 1, (3.31)

0 = Wσ = (Sσ)
+. (3.32)

Therefore, Sσ ≤ 0 and σ = τ−.
The idle period I is the amount by which the last inter-arrival time exceeds the residual
work at the time of the last arrival in the cycle, yielding

I = Tσ−1 − (Wσ−1 + Uσ−1) = −(Sσ−1 + Uσ−1 − Tσ−1) = −Sσ = −Sτ− . (3.33)

It is clear that the σ(k) are regeneration points, and by general random walk results one
has finally

σ = τ− < ∞ a.s. ⇐⇒ µ ≤ 0 ⇐⇒ ρ ≤ 1 (3.34)

and

E[σ] = E[τ−] =
1
µ

E[Sτ− ] < ∞ ⇐⇒ µ < 0 ⇐⇒ ρ < 1. (3.35)

�

In continuous time, there is a regenerative structure for the workload {Vt}t≥0 similar to
the one for {Wn}n∈N0 in Proposition 3.5.2.: the instants with a customer entering an empty
queue are regeneration points. Letting C be the first such instant after t = 0 and recalling
that one starts with customer 0 having just arrived, it is seen that C is just the length of
the first busy cycle. Furthermore, C < ∞ a.s. is equivalent to σ < ∞ a.s., i.e. to ρ ≤ 1.
In fact, there is a close relation between σ, C and the first busy period G: since precisely
the customers 0, 1, . . . , σ− 1 are served in the first busy period, one has G = ∑σ−1

k=0 Uk and
the first busy cycle ends at the arrival C = ∑σ−1

k=0 Tk of customer σ. One checks immediately
that {σ ≤ n} is independent of Tn, Tn+1, . . . , Un, Un+1, . . . and hence Wald’s identity yields
the first part of

Proposition 3.5.3. Suppose ρ ≤ 1. Then the mean busy cycle is E[C] = µAE[σ], the mean busy
period is E[G] = µBE[σ] and the mean idle period is E[I] = E[C]−E[G] = −µE[σ]. Moreover
the cycle length C is non-lattice if and only if the inter-arrival distribution A is so.

For a proof of the second part of this proposition see Asmussen [A] for details.
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Note that the mean busy cycle can be expressed in terms of the mean idle period as

E[C] = µAE[σ] =
µA

µA − µB
E[I] =

1
1− ρ

E[I]. (3.36)

Corollary 3.5.4. Suppose ρ < 1 and that A is non-lattice. Then a limiting steady-state distribution
of the workload {Vt}t≥0 exists and is given by

E[ f (V)] =
1

E[C]
·E
[∫ C

0
f (Vs)ds

]
. (3.37)

Proof.
For ρ < 1 one has that E[σ] < ∞ by Proposition 3.5.2. Hence Proposition 3.5.3. ensures that
E[C] < ∞ and that the cycle length C is non-lattice. The basic limit theorem for regenera-
tive processes in Theorem 3.2.3. is applicable. �

As a first application of Corollary 3.5.4., note that the time spent by {Vt}t≥0 in state 0 in the
time interval [0, C) is just the idle period. Thus combining with Proposition 3.5.3., one gets

P[V = 0] =
1

E[C]
·E
[∫ C

0
1{Vs=0}ds

]
=

E[I]
E[C]

=
(µA − µB)E[σ]

µAE[σ]
= 1− ρ. (3.38)

Theorem 3.5.5. If ρ < 1, the steady-state workload V and the steady-state waiting time W in the
M/G/1 queue have the same distribution, i.e.

V d
= W. (3.39)

Proof.
The idea is to compare the maximum representations of the random variables W and V in
steady-state. Combining Corollary 3.3.5. with Example 3.3.2. and Proposition 3.4.1. with
Example 3.4.2. yields

W d
= max{0, U0 − T0, U0 + U1 − T0 − T1, . . .}, (3.40)

V d
= max

0≤t<∞
{S↑t − t}, (3.41)

with S↑t := ∑Nt
k=1 Uk for t ≥ 0. Then {S↑t − t}t≥0 increases only at the arrival times

An = ∑n−1
k=0 Tk, n ∈ N, so that the maximum is attained either at one of these times or

at time 0 where S↑0 = 0. Now just note that by sample path insection

S↑An
− An =

n

∑
k=1

Uk −
n−1

∑
k=0

Tk
d
=

n−1

∑
k=0

(Uk − Tk), for n ∈N, (3.42)

so that the two maxima above are equal. �
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4
Cramér-Lundberg with a dividend barrier

An advanced version of the classical Cramér-Lundberg model is obtained if the risk pro-
cess in between claims is allowed to vary deterministically but not necessarily linearly. For
example, if the surplus is invested at a certain interest rate or all earnings above a given
level are paid out as dividend.

In this chapter the ideas of J. Irbäck [I] are followed. He studied the Cramér-Lundberg
model including a dividend barrier. For this purpose, assume the risk process {Xt}t≥0 to
satisfy the storage equation

Xt = u +
∫ t

0
p(Xs) ds− St, (4.1)

where u > 0 is the initial surplus and St denotes aggregate claims up to time t. As usual
{St}t≥0 is modeled as a compound Poisson process with intensity λ > 0 and distribution
function F of claim amounts. But now, the premium income rate p(.) depends on the cur-
rent surplus.

Assuming there is a dividend barrier b > 0 at which a dividend at rate p > 0 is paid
out until the next claim, the premium income rate has the following form:

p(x) := p · 1{x≤b}, x ≥ 0. (4.2)

Thus the surplus process becomes

Xt := u + p
∫ t

0
1{Xs≤b} ds− St, t ≥ 0. (4.3)

In this modified model, ruin occurs with probability 1, but the question of interest is when
it does so. Also it is interesting to know the proportion of time the surplus is below some
given level. Figure 4.1 shows a typical sample path of the surplus process {Xt}t≥0 in this
model.
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4. Cramér-Lundberg with a dividend barrier

Figure 4.1.: Sample path of the surplus process {Xt}t≥0 in the Cramér-Lundberg model
with a dividend barrier

In this chapter a simple approximation formula for the distribution of the time of ruin
will be found (in case of a high barrier b). There are two cases that are distinguished
subsequently:

1. An initial surplus just below a high dividend barrier (Section 4.1)
The risk process will move towards the dividend barrier and visit it a large geometric
number of times before ruin. Ruin will occur after a very long exponentially dis-
tributed time.

2. An initial surplus much lower than a high dividend barrier (Section 4.2)
Either ruin will occur quite soon without visit to the dividend barrier or the risk pro-
cess will reach the dividend barrier and ruin occurs according to the same exponential
distribution as in the first case.

4.1. An initial surplus just below a high dividend barrier

Throughout this chapter assume that b is large and x very small in comparison (x � b).
Set the initial surplus to u = b− x, which is close to the high dividend barrier. Then the
risk process has the form

Xt = b− x + p
∫ t

0
1{Xs≤b} ds− St. (4.4)

As usual the compound Poisson process {St}t≥0 is defined by its moment generating func-
tion (recall that g(z) = λ(MC(z)− 1) is the Lévy exponent)

MSt(z) = etλ
∫ ∞

0 (ezx−1)F(dx) = etg(z). (4.5)
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4.1. An initial surplus just below a high dividend barrier

The time of ruin in this model is defined as

TR := inf{t ≥ 0|Xt < 0} (4.6)

and one wants to derive an asymptotic formula for its tail distribution

Pb−x[TR > t] := P[TR > t|X0 = b− x]. (4.7)

Furthermore the following two assumptions are useful to be made:

(i). The safety loading Λ is positive, i.e. p > λµ = g′(0).

(ii). The Cramér-Lundberg condition is satisfied for some R > 0 , i.e. ∃ R > 0 such that
g(R) = pR, and in addition g′(R) < ∞.

By Markov’s inequality, the second assumption implies for x ≥ 0

1− F(x) = P[Cn ≥ x] = P[eRCn ≥ eRx] ≤ (4.8)

≤ E[eRCn ]e−Rx = MC(R)e−Rx =

(
g(R)

λ
+ 1
)

e−Rx =

(
pR
λ

+ 1
)

e−Rx. (4.9)

This means the probability of a large claim is very small. At the start the risk process will,
with a very high probability, move towards the dividend barrier and perform a recurrent
motion in the vicinity of it. The path can be partitioned into excursions between successive
visits to the dividend barrier. Denote the time of the k-th visit to the dividend barrier by
Tk. Mathematically, Tk can be defined recursively as (T0 = 0)

Tk = inf{t > Tk−1|Xt = b, ∃ s ∈ (Tk−1, t) : Xs < b,@ s ∈ (Tk−1, t) : Xs < 0}, k ∈N. (4.10)

In addition, denote the number of completed excursions before ruin by

N := min((#Tk|Tk < TR)− 1, 0). (4.11)

Figure 4.2.: Typical sample path of the surplus process {Xt}t≥0 in the Cramér-Lundberg
model with dividend barrier in case of a large initial surplus b− x.
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4. Cramér-Lundberg with a dividend barrier

Since a compound Poisson process is strong Markov, the surplus process {Xt}t≥0 is strong
Markov as well, meaning for arbitrary stopping time τ w.r.t. the natural filtration
Ft := σ({Xs}0≤s≤t), t ≥ 0, it holds for any Borel set A a.s. on {τ < ∞} that

P[Xτ+t ∈ A|Fτ] = P[Xt ∈ A|X0 = Xτ], (4.12)

where Fτ is the stopping time σ-algebra. Intuitively, given the history Fτ, the process
evolves from then on as restarted at time 0 in state Xτ, depending on Fτ through Xτ

only. This implies the lengths of completed excursions are independent and identically
distributed:

Tk+1 − Tk = (4.13)
= inf(t > 0 : {XTk+t = b, ∃ s ∈ (0, t) : XTk+s < b,@ s ∈ (0, t) : XTk+s < 0}|XTk = b) = (4.14)
= inf(t > 0 : {Xt = b, ∃ s ∈ (0, t) : Xs < b,@ s ∈ (0, t) : Xs < 0}|X0 = b), (4.15)

where k ∈ {1, . . . , N}. Thus the time of ruin can be written as a random sum of independent
excursions

TR = T1 +
N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1). (4.16)

There is a small probability of ruin during each excursion

ρ := P[Tk+1 − Tk = ∞|Tk < ∞]. (4.17)

Conditional on the surplus process reaching the dividend barrier, the number of completed
excursions before ruin N has a geometric distribution

P[N = n|T1 < ∞] = P[Tn+1 < ∞, Tn+2 − Tn+1 = ∞|T1 < ∞] = (4.18)
= P[Tn+1 < ∞|T1 < ∞] ·P[Tn+2 − Tn+1 = ∞|Tn+1 < ∞] = (4.19)
= P[T2 − T1 < ∞, . . . , Tn+1 − Tn < ∞|T1 < ∞] · ρ = (4.20)
= P[T2 − T1 < ∞, . . . , Tn − Tn−1 < ∞|T1 < ∞] · (1− ρ) · ρ = (4.21)
= . . . = (1− ρ)n · ρ, n ∈N0. (4.22)

Since ρ is small, N will be rather large. To be precise, N has expected value 1−ρ
ρ . Thus the

law of large numbers yields that

N

∑
k=1

(Tk+1 − Tk)
d≈ Nm, (4.23)

where

m := E[Tk+1 − Tk|Tk+1 < ∞] (4.24)

is the expected length of a complete excursion. If T1 and TR− TN+1 are small in probability
compared with ∑N

k=1(Tk+1 − Tk), one has that

TR
d≈ Nm. (4.25)

36



4.1. An initial surplus just below a high dividend barrier

Now, by the limit representation of the exponential function, the distribution of the time of
ruin can be approximated by an exponential distribution with mean m

ρ :

Pb−x[TR > t] ≈ Pb−x[N >
t
m
] ≈ (1− ρ)b

t
m c ≈ e−

ρ
m t (4.26)

As opposed to the heuristic considerations above, the following theorem (it is the main
result in this section) will be proved rigorously. It does not only describe the asymptotic
distribution of the time of ruin, it also gives asymptotic formulas for the expected length
of a complete excursion and the probability of ruin during an excursion. Its proof is quite
extensive and will need a variety of lemmas in advance.

Theorem 4.1.1. (Asymptotic laws): The time of ruin TR has asymptotically an exponential dis-
tribution with expected value m

ρ , i.e.

Pb−x[TR > t] ∼ e−
ρ
m t as b→ ∞. (4.27)

The expected length of a complete excursion m satisfies

m ∼ 1
λ
+

µ

p− λµ
as b→ ∞, (4.28)

and for the probability of ruin during an excursion ρ one finds

ρ ∼ CpR
λ

e−Rb as b→ ∞, (4.29)

where R is the adjustment coefficient and C := p−g′(0)
g′(R)−p the constant in the Cramér-Lundberg

approximation (see Corollary 2.4.8.).

The proof of this theorem follows from the lemmas below.

First of all, let

ψ(b− x, b) := P[TR < T1|X0 = b− x] (4.30)

be the probability of ruin without visit to the dividend barrier (starting at u = b− x).

Lemma 4.1.2. The probability of ruin without visit to the dividend barrier can be computed from
the probability of ruin in the classical model (without dividend barrier) as

ψ(b− x, b) =
ψ(b− x)− ψ(b)

1− ψ(b)
. (4.31)

Moreover, when x is fixed

ψ(b− x, b) ∼ Ce−Rb(eRx − 1) as b→ ∞. (4.32)
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4. Cramér-Lundberg with a dividend barrier

Proof.
Let Tc

1 be the time of the first visit to level b of the classical risk process {Xc
t}t≥0 without

dividend barrier:

Tc
1 := inf{t ≥ 0|Xc

t ≥ b} (4.33)

Then Tc
1 < ∞ a.s. since the safety loading Λ is positive by assumption. By the strong

Markov property of {Xc
t}t≥0, it follows that

1− ψ(b− x) = P[Tc
R = ∞|Xc

0 = b− x] = (4.34)
= P[Tc

R = ∞|Tc
1 < Tc

R, Xc
0 = b− x] ·P[Tc

1 < Tc
R|Xc

0 = b− x] = (4.35)
= P[Tc

R = ∞|Tc
1 < Tc

R, Xc
Tc

1
= b, Xc

0 = b− x]P[Tc
1 < Tc

R|Xc
0 = b− x] = (4.36)

= P[Tc
R = ∞|Xc

0 = b] · (1−P[Tc
1 > Tc

R|Xc
0 = b− x]) = (4.37)

= P[Tc
R = ∞|Xc

0 = b] · (1−P[T1 > TR|X0 = b− x]) = (4.38)
= (1− ψ(b)) · (1− ψ(b− x, b)). (4.39)

Note that in the penultimate step it is used that the risk processes {Xc
t}t≥0 and {Xt}t≥0

evolve equally as long as the barrier b is not attained. Hence one finds the stated formula

ψ(b− x, b) =
ψ(b− x)− ψ(b)

1− ψ(b)
. (4.40)

In addition, applying the Cramér-Lundberg approximation (see Corollary 2.4.8.) yields

ψ(b− x, b) ∼ Ce−R(b−x) − Ce−Rb

1− Ce−Rb ∼ Ce−Rb(eRx − 1) as b→ ∞. (4.41)

�

Since b is chosen large and x rather small in comparison, the probability of hitting the
dividend barrier before ruin is almost equal to 1. The next step is to find an asymptotic law
for the probability of ruin during an excursion ρ, which is the parameter of the geometric
distribution for N.
Each complete excursion can be decomposed in two independent parts, a holding time at
the dividend barrier and a time from the risk process leaving the dividend barrier until
the next visit. Denote the holding time at the dividend barrier after the k-th visit by Yk.
Since the inter-arrival times of a Poisson process {Ii}i∈N are independent and exponentially
distributed with parameter λ and due to the memorylessness property of the exponential
distribution, the holding times Yk are exponentially distributed as well: For arbitrary y > 0,

P[Yk > y] = P[In(k)+1 > Tk −
n(k)

∑
i=1

Ii + y|In(k)+1 > Tk −
n(k)

∑
i=1

Ii] = P[In(k)+1 > y], (4.42)

where n(k) is the number of claims before the k-th visit to the dividend barrier.
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4.1. An initial surplus just below a high dividend barrier

Lemma 4.1.3. The probability of ruin during an excursion ρ satisfies

ρ ∼ CpR
λ

e−Rb as b→ ∞, (4.43)

where R is the adjustment coefficient and C := p−g′(0)
g′(R)−p the constant in the Cramér-Lundberg

approximation (see Corollary 2.4.8.).

Proof.
By conditioning on the size of the claim which brings the risk process away from the
dividend barrier after the k-th visit (law of total probability) and by the equivalence in
distribution of XTk+Yk+s|{XTk+Yk = b− x} and Xs|{X0 = b− x} for s ≥ 0 due to the strong
Markov property of {Xt}t≥0, one derives

ρ = P[Tk+1 − Tk = ∞|Tk < ∞] = (4.44)

=
∫ ∞

0
P[Tk+1 − Tk = ∞|Tk < ∞, XTk+Yk = b− x] F(dx) = (4.45)

=
∫ ∞

0
P[TR < T1|X0 = b− x] F(dx) =

∫ ∞

0
ψ(b− x, b) F(dx). (4.46)

Now, take a small ε > 0 and split the integral in the following way:

ρ =
∫ b(1−ε)

0
ψ(b− x, b) F(dx) +

∫ ∞

b(1−ε)
ψ(b− x, b) F(dx) (4.47)

In the first integral, one has for the surplus after the drop from the barrier b− x ∈ [ε · b , b].
Hence each initial surplus tends to infinity for b → ∞, which is why one can use the
asymptotic formula for ψ(b− x, b) from Lemma 4.1.2.:∫ b(1−ε)

0
ψ(b− x, b) F(dx) ∼ Ce−Rb

∫ b(1−ε)

0
(eRx − 1) F(dx) ∼ (4.48)

∼ Ce−Rb
∫ ∞

0
(eRx − 1) F(dx)︸ ︷︷ ︸
=MC(R)−1

=
CpR

λ
e−Rb as b→ ∞, (4.49)

where in the last step the Cramér-Lundberg condition is applied.
Next, one finds the following estimate for the second integral in equation 4.47:∫ ∞

b(1−ε)
ψ(b− x, b) F(dx) ≤

∫ ∞

b(1−ε)
F(dx) =

∫ ∞

b(1−ε)
e−Rx(1+2ε)eRx(1+2ε) F(dx) ≤ (4.50)

≤ e−Rb(1−ε)(1+2ε) ·MC(R(1 + 2ε)) (4.51)

Since ε is chosen small, MC(R(1 + 2ε)) ≈ pR
λ + 1 < ∞ and R(1− ε)(1 + 2ε) > R. Hence

the second integral will be very small compared with the first as b→ ∞:∫ ∞
b(1−ε) ψ(b− x, b)F(dx)

CpR
λ e−Rb

≤ λMC(R(1 + 2ε))

CpR
e−(R(1−ε)(1+2ε)−R)b −→ 0. (4.52)
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4. Cramér-Lundberg with a dividend barrier

Eventually it follows that

ρ ∼
∫ b(1−ε)

0
ψ(b− x, b) F(dx) ∼ CpR

λ
e−Rb as b→ ∞. (4.53)

�

The goal of the following three lemmas is to show the total length of completed excursions
∑N

k=1(Tk+1 − Tk) to be asymptotically exponential, which is finally achieved by finding its
Laplace transform. However, this requires some preparation.

Denote the Esscher transform of the physical measure P by P(z):

dP(z)

dP
= ezSt−tg(z), (4.54)

where Mz(t) := ezSt−tg(z) (the likelihood ratio process) can be recognized as Wald’s mar-
tingale. Let us check the martingale property of {Mz(t)}t≥0 w.r.t. the natural filtration
{Ft}t≥0 := {σ((Su)0≤u≤t)}t≥0. Using that {St}t≥0 is a Lévy process (independent and sta-
tionary increments) with Lévy exponent g, it holds for all 0 ≤ s ≤ t

E[Mz(t)|Fs] = E[ezSt−tg(z)|Fs] = ezSs−sg(z)E[ez(St−Ss)−(t−s)g(z)|Fs] = (4.55)
= ezSs−sg(z) E[ez(St−s)−(t−s)g(z)]︸ ︷︷ ︸

=1

= Mz(s). (4.56)

Under the new measure P(z), the moment generating function of St is given by

M(z)
St

(y) := E(z)[eySt ] = E[e(z+y)St−tg(z)] = (4.57)

= et(g(z+y)−g(z)) = etλ
∫ ∞

0 (eyx−1)ezxdF(x) = (4.58)

= e
tλMC(z)

∫ ∞
0 (eyx−1) ezx

MC(z) dF(x)
= etλ(z) ∫ ∞

0 (eyx−1)dF(z)(x), (4.59)

where λ(z) := λMC(z) = λ + g(z) is the intensity and F(z)(t) := 1
MC(z)

∫ t
0 ezxdF(x), t ≥ 0,

the distribution function of the claim amounts of {St}t≥0 under the new measure P(z).
Therefore {St}t≥0 is still a compound Poisson process.
The surplus process has the new drift p− g′(z)

E(z)[Xt] = b− x + pt−E(z)[St] = b− x + pt−M(z)′
St

(0) = b− x + t(p− g′(z)) (4.60)

and variance

V(z)[Xt] = M(z)′′
St

(0)−M(z)′
St

(0)2 = t2g′(z)2 + tg′′(z)− t2g′(z)2 = tg′′(z). (4.61)

Next, let Tf be the first passage time out from the interval (0,b), i.e. the stopping time

Tf := min(T1, TR) = inf(t ≥ 0|Xt /∈ (0, b)), (4.62)
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4.1. An initial surplus just below a high dividend barrier

which is finite a.s. w.r.t. P as well as P(z).
One would like to stop the likelihood ratio martingale {Mz(t)}t≥0 at time Tf . For a general
martingale {Mt}t≥0, the criteria for optional stopping at τ (i.e. E[Mτ] = E[M0]) usu-
ally involve uniform integrability of {Mt∧τ}t≥0 (i.e. supt≥0 E[|Mt∧τ| · 1{Mt∧τ>N}] → 0, as
N → ∞). For likelihood ratio martingales, a different sort of criterion is available:
In case of a change of measure to P̃ with the likelihood ratio process {Lt}t≥0, Asmussen
[A] finds for any stopping time τ and non-negative, Fτ-measureable W that

E[W · 1{τ<∞}] = Ẽ

[
W
Lτ
· 1{τ<∞}

]
. (4.63)

Corollary 4.1.4. If τ is an almost surely finite stopping time (i.e. P[τ < ∞] = 1), then

E[Lτ] = 1 ⇐⇒ P̃[τ < ∞] = 1. (4.64)

Proof.
Using Asmussen’s result from equation 4.63 with choice W = Lτ and that τ is a.s. finite
w.r.t. P, yields

E[Lτ] = P̃[τ < ∞]. (4.65)

�

Applying the above result to the Esscher transform P(z), Wald’s martingale {Mz(t)}t≥0 and
the first passage time Tf gives

1 = P(z)[Tf < ∞] = E[Mz(Tf )] = E[e
zSTf
−Tf g(z)

] = Eb−x[e
z(b−x−XTf

)−Tf (g(z)−pz)
], (4.66)

where the index b− x indicates that X0 = b− x.

Now, the function

f (z) := g(z)− pz, (4.67)

appearing in equation 4.66, is analyzed
(see Figure 4.3). It has the following
properties:

(i). f (z) is strictly convex.

(ii). f (0) = f (R) = 0.

(iii). f (z) takes its minimum at the
point zp satisfying g′(zp) = p.

Figure 4.3.: f (z) = g(z)− pz

These properties imply that, for any s > f (zp), the equation

g(z)− pz = s (4.68)
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4. Cramér-Lundberg with a dividend barrier

has two different roots z0(s) and z1(s), where z0(s) < z1(s). Hence relation 4.66 can be
written as

Eb−x[e
z0,1(s)(b−x−XTf

)−sTf ] = 1, for s > f (zp), (4.69)

which is the key to the remaining proofs in this section.

The next lemma gives the Laplace transform of the time to the first visit (or next visit) to
the dividend barrier from a predetermined level close to b.

Lemma 4.1.5. Conditional on the risk process reaching the dividend barrier, the Laplace transform
of the time to the first visit to the dividend barrier satisfies for s ≥ 0

Eb−x[e−sT1 |T1 < TR] ∼ Eb−x[e−sT11{T1<TR}] ∼ exz0(s) as b→ ∞, (4.70)

where z0(s) is the smallest root of equation 4.68.

Proof.
Equation 4.69 with the root z0(s) yields

1 = Eb−x[e
z0(s)(b−x−XTf

)−sTf ] = (4.71)

= e−xz0(s)Eb−x[e−sT11{T1<TR}] + ez0(s)(b−x)Eb−x[e
−z0(s)XTR−sTR1{TR<T1}]. (4.72)

Take s ≥ 0, then z0(s) ≤ 0 and −z0(s)XTR ≤ 0 on {TR < T1}. Hence

|Eb−x[e−sT11{T1<TR}]− exz0(s)| = ez0(s)bEb−x[e
−z0(s)XTR−sTR1{TR<T1}] ≤ (4.73)

≤ ez0(s)bPb−x[TR < T1]→ 0 as b→ ∞, (4.74)

where, by Lemma 4.1.2., Pb−x[TR < T1]→ 0 as b→ ∞. This matches the stated asymptotic
behavior

Eb−x[e−sT1 |T1 < TR] ∼ exz0(s) as b→ ∞. (4.75)

�

The following lemma finds the Laplace transform of the length of a complete excursion
conditional on ruin not occurring during this excursion. Moreover, an asymptotic law for
the expected length of a complete excursion is found.

Lemma 4.1.6. The Laplace transform of the length of a complete excursion satisfies for s ≥ 0

E[e−s(Tk+1−Tk)|Tk+1 < ∞] ∼ λ + g(z0(s))
λ + s

as b→ ∞, (4.76)

and the expected length of a complete excursion satisfies

m ∼ 1
λ
+

µ

p− λµ
as b→ ∞. (4.77)
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4.1. An initial surplus just below a high dividend barrier

Proof.
By independence of the two parts of an excursion and since the holding time at the barrier
Yk is independent of ruin occurring or not

E[e−s(Tk+1−Tk)|Tk+1 < ∞] = E[e−sYk ] ·E[e−s(Tk+1−Tk−Yk)|Tk+1 < ∞] = (4.78)

=
λ

λ + s
·
∫ b

0
E[e−s(Tk+1−Tk−Yk)|Tk+1 < ∞, XTk+Yk = b− x]dF(x) (4.79)

where the second step follows from the Laplace transform of an exponential distribution
as well as the law of iterated expectations conditioning on the size of the claim occurring
when the process is at the barrier. Next, using the equivalence in distribution

Tk+1 − Tk −Yk|{Tk+1 < ∞, XTk+Yk = b− x} d
= T1|{T1 < TR, X0 = b− x} (4.80)

one finds that

E[e−s(Tk+1−Tk)|Tk+1 < ∞] =
λ

λ + s

∫ b

0
Eb−x[e−sT1 |T1 < TR]dF(x). (4.81)

Applying the asymptotic law from Lemma 4.1.5., using that the probability of a large jump
is small by equations 4.8-4.9 (with z0(s) ≤ 0) and the definition of g yields

E[e−s(Tk+1−Tk)|Tk+1 < ∞] ∼ λ

λ + s

∫ ∞

0
exz0(s)dF(x) ∼ (4.82)

∼ λ + g(z0(s))
λ + s

as b→ ∞. (4.83)

For the second part of the proof, differentiate the Laplace transform and evaluate at 0:

m = E[Tk+1 − Tk|Tk+1 < ∞] = − d
ds

E[e−s(Tk+1−Tk)|Tk+1 < ∞]
∣∣∣
s=0
∼ (4.84)

∼ −g′(z0(s))z′0(s)(λ + s) + λ + g(z0(s))
(λ + s)2

∣∣∣
s=0
∼ (4.85)

∼ −g′(0)z′0(0)λ + λ + g(0)
λ2 ∼ 1

λ
− µz′0(0) as b→ ∞. (4.86)

The derivative of z0 at 0 is found by differentiation of s = g(z0(s))− pz0(s) w.r.t. s:

g′(z0(s))z′0(s)− pz′0(s) = 1 =⇒ z′0(0) =
1

g′(0)− p
=

1
λµ− p

(4.87)

Eventually, the expected length of a complete excursion has the asymptotic law

m ∼ 1
λ
+

µ

p− λµ
as b→ ∞. (4.88)

�
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4. Cramér-Lundberg with a dividend barrier

Recall the lengths of completed excursions Tk+1 − Tk, k ∈ {1, . . . , N}, are iid by the strong
Markov property. Moreover they are independent of the number of completed excursions
before ruin N, which in turn is geometrically distributed with parameter ρ given by Lemma
4.1.3. The next lemma yields the desired asymptotic result for the total length of completed
excursions.

Lemma 4.1.7. The Laplace transform of the total length of completed excursions satisfies for s ≥ 0

E[e−s ρ
m ∑N

k=1(Tk+1−Tk)] ∼ 1
1 + s

as b→ ∞, (4.89)

which means the total length of completed excursions is asymptotically exponential with expected
value m

ρ .

Proof.
The law of iterated expectations together with the independence of the lengths of
completed excursions Tk+1 − Tk, k ∈ {1, . . . , N}, implies

E[e−s ρ
m ∑N

k=1(Tk+1−Tk)] = E[E[e−s ρ
m (Tk+1−Tk)|Tk+1 < ∞]N]. (4.90)

Now, the Laplace transform of each complete excursion from Lemma 4.1.6. and the
generating function of N ∼ G(ρ)

gN(t) := E[tN] =
ρ

1− t(1− ρ)
, for t <

∣∣∣∣ 1
1− ρ

∣∣∣∣ , (4.91)

yield for b→ ∞

E[e−s ρ
m ∑N

k=1(Tk+1−Tk)] ∼ E

(λ + g(z0(
sρ
m ))

λ + sρ
m

)N
 =

ρ

1− λ+g(z0(
sρ
m ))

λ+
sρ
m

(1− ρ)
. (4.92)

A first-order Taylor approximation of g(z0(.)) about 0 gives a linear approximation for
sρ
m → 0 (recall that ρ→ 0 as b→ ∞ by Lemma 4.1.3.):

g(z0(
sρ

m
)) = g′(0)z′0(0)

sρ

m
+ R1(

sρ

m
) as b→ ∞, (4.93)

where the remainder term R1(
sρ
m ) ∈ o( sρ

m ) as b → ∞ and the little-o notation means

limb→∞
R1(

sρ
m )

sρ
m

= 0. This implies asymptotic equivalence:

g(z0(
sρ

m
)) ∼ g′(0)z′0(0)

sρ

m
= λµ · 1

λµ− p
· sρ

m
= − λµsρ

(p− λµ)m
as b→ ∞, (4.94)

where z′0(0) was found in equation 4.87. Hence for b→ ∞

E[e−s ρ
m ∑N

k=1(Tk+1−Tk)] ∼
λρ + sρ2

m

λ + sρ
m + ( λµsρ

(p−λµ)m − λ)(1− ρ)
= (4.95)

=
λ + sρ

m
s
m + λµs

(p−λµ)m −
λµsρ

(p−λµ)m + λ
∼ λ

s
m + λµs

(p−λµ)m + λ
(4.96)
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4.1. An initial surplus just below a high dividend barrier

where the last step follows since ρ→ 0 by Lemma 4.1.3. and m ∼ 1
λ + µ

p−λµ > 0 by Lemma
4.1.6. Finally, the stated asymptotic law arises:

E[e−s ρ
m ∑N

k=1(Tk+1−Tk)] ∼ λm

s + λµs
p−λµ + λm

∼ λm
sλm + λm

=
1

1 + s
as b→ ∞. (4.97)

�

The following two lemmas give exponential bounds for the time to the first visit T1
conditional on reaching the dividend barrier, the last holding time at the barrier YN+1
as well as the time from the risk process leaving the dividend barrier for the last time
until ruin TL := TR−TN+1−YN+1. The bounds are then used to show that the times T1 and
TR − TN+1 are small in probability compared with the sum of completed
excursions ∑N

k=1(Tk+1 − Tk) as b → ∞. Two of these bounds are given in terms of the
Legendre transform of g(z), defined by

h(x) := max
z

(xz− g(z)). (4.98)

Proposition 4.1.8. The Legendre transform
h has the following properties:

(i). h(x) is strictly convex,

(ii). h(x) ≥ 0 and h(g′(0)) = h(λµ) = 0,

(iii). t · h(p + 1
t ) ≥ R and strictly con-

vex for t > 0, with equality for
t̄ := 1

g′(R)−p .

Proof.
See Appendix A. �

Figure 4.4.: Legendre transform h(x).

Lemma 4.1.9. The time to the first visit to the dividend barrier T1 has the following bound.
If t > x

p−λµ then

Pb−x[T1 > t|T1 < TR] ≤
e−t·h(p− x

t )

1− ψ(b− x, b)
(4.99)

and h(p− x
t ) > 0. Moreover, h(p− x

t )↗ h(p) > 0 as t→ ∞, and thus T1 is small in probability
compared with the sum of completed excursions ∑N

k=1(Tk+1 − Tk) as b→ ∞.
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4. Cramér-Lundberg with a dividend barrier

Proof.
Recall that equation 4.69 with the root z0(s), where s > f (zp), can be written as

1 = e−xz0(s)Eb−x[e−sT11{T1<TR}]︸ ︷︷ ︸
≤1

+ez0(s)(b−x)Eb−x[e
−z0(s)XTR−sTR1{TR<T1}] (4.100)

since XT1 = b on {T1 < TR}. It follows that

Eb−x[e−sT11{T1<TR}] ≤ exz0(s). (4.101)

If one takes s < 0 such that 0 < z0(s) < zp (see Figure 4.3), then e−st < e−sT1 on {T1 > t}
and consequently

e−st ·Pb−x[{T1 > t} ∩ {T1 < TR}] ≤ exz0(s). (4.102)

Substituting s = g(z)− pz yields

Pb−x[{T1 > t} ∩ {T1 < TR}] ≤ e−t((p− x
t )z−g(z)). (4.103)

The exponent is optimized by the z-value satisfying g′(z) = p− x
t . Since g′(z) is strictly

increasing, the optimal z-value is positive for p − x
t > g′(0) = λµ, i.e. for t > x

p−λµ .
Using that the Legendre transform h(x) has its minimum value 0 at λµ and is positive for
x 6= λµ (second property) gives that h(p− x

t ) > h(λµ) = 0. Thus the optimized exponent
is negative:

−t max
z

(((p− x
t
)z− g(z)) = −t · h(p− x

t
) < 0, for t >

x
p− λµ

. (4.104)

Therefore, optimize inequality 4.103 for z and divide by P[T1 < TR] = 1− ψ(b− x, b) to
derive the stated exponential bound:

Pb−x[T1 > t|T1 < TR] ≤
e−t·h(p− x

t )

1− ψ(b− x, b)
, for t >

x
p− λµ

. (4.105)

Next, as t → ∞, the optimizing condition becomes g′(z) = p. It is solved by zp and
therefore

h(p− x
t
) = max

z
((p− x

t
)z− g(z)) ↗ pzp − g(zp) = h(p) > 0, as t→ ∞, (4.106)

which is positive since p > λµ.
Finally, for fixed ε > 0, set tε := mε

ρ . Since ρ → 0 by Lemma 4.1.3., tε → ∞ as b → ∞, and
thus

Pb−x

[
ρT1

m
> ε

∣∣∣T1 < TR

]
≤ e−tε·h(p− x

tε )

1− ψ(b− x, b)
−→ 0 as b→ ∞. (4.107)

Consequently T1 is small in probability compared with the sum of completed excursions
∑N

k=1(Tk+1 − Tk), which has expected length m
ρ as b→ ∞. �
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4.1. An initial surplus just below a high dividend barrier

Before the main theorem of this section finally can be proved, the following lemma shows
the time from the last visit to the dividend barrier until ruin TR − TN+1 to be small as well.
The exponential bound is found in a similar way as in the proof above.

Lemma 4.1.10. The time from the risk process leaving the dividend barrier for the last time until
ruin TL has the following asymptotic bound. If t > t̄ then, as b→ ∞,

P[TL > bt|TN+2 − TN+1 = ∞, TN+1 < ∞] .
λ

CpR

(
g(th(p + 1

t ))

λ
+ 1

)
e−b(th(p+ 1

t )−R) (4.108)

and t · h(p + 1
t ) > R. Hence, TL is small in probability compared to the sum of completed excur-

sions. Moreover, YN+1 is small as well, and therefore the time from the last visit to the dividend
barrier until ruin TR − TN+1 is small compared to the random sum ∑N

k=1(Tk+1 − Tk) as b→ ∞.

Proof.
Equation 4.69 with the root z1(s), where s > f (zp), can be written as

1 = Eb−x[e
z1(s)(b−x−XT1 )−sT11{T1<TR}] + Eb−x[e

z1(s)(b−x−XTR )−sTR1{TR<T1}]︸ ︷︷ ︸
≤1

. (4.109)

Since z1(s)XTR ≤ 0 on {TR < T1}, it follows that

Eb−x[e−sTR1{TR<T1}] ≤ Eb−x[e
−z1(s)XTR−sTR1{TR<T1}] ≤ e−(b−x)z1(s). (4.110)

If one takes s < 0 such that zp < z1(s) < R (see Figure 4.3), then e−s(b−x)t < e−sTR on
{TR > (b− x)t} and consequently

e−s(b−x)t ·Pb−x[{TR > (b− x)t} ∩ {TR < T1}] ≤ e−(b−x)z1(s). (4.111)

Substituting s = g(z)− pz yields

Pb−x[{TR > (b− x)t} ∩ {TR < T1}] ≤ e−(b−x)t((p+ 1
t )z−g(z)). (4.112)

The exponent is optimized by the z-value satisfying g′(z) = p + 1
t . Since g′(z) is strictly

increasing, the optimal z-value is smaller than R if g′(R) > p + 1
t , i.e. for t > 1

g′(R)−p = t̄.
By property (iii) of the Legendre transform h(x), one finds that

t max
z

((p +
1
t
)z− g(z)) = t · h(p +

1
t
) > R for t > t̄, (4.113)

and therefore the exponent −b(th(p + 1
t )− R) is negative.

Due to the fact that {TR > bt} ⊆ {TR > (b− x)t}, it follows that

Pb−x[{TR > bt} ∩ {TR < T1}] ≤ e−(b−x)t·h(p+ 1
t ) for t > t̄. (4.114)
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4. Cramér-Lundberg with a dividend barrier

By conditioning on the size of the claim which brings the risk process away from the
dividend barrier for the last time (law of total probability) and by the equivalence in
distribution of XTN+1+YN+1+s|{XTN+1+YN+1 = b − x} and Xs|{X0 = b − x} for s ≥ 0 due
to the strong Markov property of {Xt}t≥0, one derives for t > t̄

P[{TL > bt} ∩ {TN+2 − TN+1 = ∞}|TN+1 < ∞] = (4.115)

=
∫ b

0
P[{TL > bt} ∩ {TN+2 − TN+1 = ∞}|TN+1 < ∞, XTN+1+YN+1 = b− x] dF(x) = (4.116)

=
∫ b

0
P[{TR > bt} ∩ {TR < T1}|X0 = b− x] dF(x) ≤

∫ b

0
e−(b−x)t·h(p+ 1

t ) dF(x) ≤ (4.117)

≤ e−bt·h(p+ 1
t )
∫ ∞

0
ext·h(p+ 1

t ) dF(x) = e−bt·h(p+ 1
t )

(
g(t · h(p + 1

t ))

λ
+ 1

)
. (4.118)

Dividing by the probability of ruin during an excursion, which is asymptotically given as
ρ ∼ CpR

λ e−Rb as b → ∞ (see Lemma 4.1.3.), one ends up with the stated asymptotic bound
for b→ ∞:

P[TL > bt|TN+2 − TN+1 = ∞, TN+1 < ∞] .
λ

CpR

(
g(th(p + 1

t ))

λ
+ 1

)
e−b(th(p+ 1

t )−R) (4.119)

For fixed t > t̄ and ε > 0, as b→ ∞ eventually{
ρTL

m
> ε

}
⊆ {TL > bt} (4.120)

since one has εm
ρ > bt for high enough b. Thus TL can be shown to be small in probability

compared to the expected length of the sum of completed excursions:

P

[
ρTL

m
> ε

∣∣∣TN+2 − TN+1 = ∞, TN+1 < ∞
]
. (4.121)

.
λ

CpR

(
g(t · h(p + 1

t ))

λ
+ 1

)
e−b(t·h(p+ 1

t )−R) −→ 0 as b→ ∞. (4.122)

The second part of the last excursion TR− TN+1 (beside TL) is the holding time at the barrier
YN+1. One finds an exponential bound for YN+1 by applying Markov’s inequality:

P

[
ρYN+1

m
> ε

]
≤ ρ

εmλ
∼ CpR

εmλ2 · e
−Rb −→ 0 as b→ ∞. (4.123)

This means YN+1 is small in probability compared to the expected length of the sum of
completed excursions as well. Consequently the total last excursion TR − TN+1 is small in
this sense. �
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4.2. An initial surplus much lower than a high dividend barrier

Finally, putting all lemmas in this section together, one finds an exponential distribution
for the time of ruin TR as stated in Theorem 4.1.1.

Proof of Theorem 4.1.1.
It is shown that

Pb−x[TR > t] = Pb−x[TR > t|TR < T1] ·Pb−x[TR < T1]︸ ︷︷ ︸
→ 0

+ (4.124)

+Pb−x

[
T1 +

N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1) > t
∣∣∣T1 < TR

]
·Pb−x[T1 < TR]︸ ︷︷ ︸

→ 1

∼ (4.125)

∼ Pb−x

[
T1 +

N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1) > t
∣∣∣T1 < TR

]
∼ (4.126)

∼ Pb−x

[
N

∑
k=1

(Tk+1 − Tk) > t
∣∣∣T1 < TR

]
∼ e−

tρ
m as b→ ∞. (4.127)

Moreover, Lemma 4.1.6. and Lemma 4.1.3. give the asymptotic laws for m and ρ. �

4.2. An initial surplus much lower than a high dividend

barrier

Now, set the initial surplus to u = x > 0, which is much lower than a high dividend barrier
(x � b). Then the risk process has the form

Xt = x + p
∫ t

0
1{Xs≤b} ds− St, for t ≥ 0. (4.128)

As usual, one wants to derive an asymptotic formula for the distribution of the time of ruin

Px[TR > t] := P[TR > t|X0 = x]. (4.129)

It will be shown that the probability of ruin without visit to the dividend barrier ψ(x, b)
is no longer negligible as b → ∞. Also, if the risk process visits the dividend barrier
(T1 < TR), ruin will occur after the same very long exponentially distributed time as in
Section 4.1. These two cases are illustrated in Figure 4.5.
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4. Cramér-Lundberg with a dividend barrier

Figure 4.5.: Typical sample paths for the two cases of the surplus process {Xt}t≥0 in the
Cramér-Lundberg model with a dividend barrier and a small initial surplus.

The following theorem formulates the two possible behaviors of the surplus process in a
mathematical way.

Theorem 4.2.1. As b→ ∞, the time of ruin has the following asymptotic distribution

TR
d−→
{

Exp( ρ
m ) with probability 1− ψ(x),

Tc
R|{Tc

R < ∞} with probability ψ(x).
(4.130)

At this point the following is interesting to mention. It can be shown that Tc
R|{Tc

R < ∞}
is asymptotically normal as x → ∞ with mean x

g′(R)−p = xt̄ and variance xg′′(R)
(g′(R)−p)3 . For a

detailed proof the interested reader is referred to Appendix B.

The proof of the above theorem will follow from the lemmas below.

Lemma 4.2.2. The probability of ruin without visit to the dividend barrier satisfies

ψ(x, b) ∼ ψ(x) as b→ ∞. (4.131)

Proof.
Lemma 4.1.2. together with the Cramér-Lundberg approximation (see Corollary 2.4.8.)
yields

ψ(x, b) =
ψ(x)− ψ(b)

1− ψ(b)
∼ ψ(x)− Ce−Rb

1− Ce−Rb ∼ ψ(x) as b→ ∞. (4.132)

�
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4.2. An initial surplus much lower than a high dividend barrier

The next lemma gives a relation between the time of ruin without visit to the dividend
barrier and the time of ruin in the classical Cramér-Lundberg model.

Lemma 4.2.3. Conditional on ruin occurring before the first visit to the barrier, the time of ruin
TR is asymptotically equal to the time of ruin Tc

R in the classical model given that ruin occurs, i.e.

Px[TR ≤ t|TR < T1] ∼ Px[Tc
R ≤ t|Tc

R < ∞] f or t ≥ 0 as b→ ∞. (4.133)

Proof.
Since by Lemma 4.2.2. for s > 0

Ex[e−sTR |TR < T1] =
Ex[e−sTR1{TR<T1}]

ψ(x, b)
∼

Ex[e−sTR1{TR<T1}]

ψ(x)
!∼ (4.134)

!∼ Ex[e−sTc
R ]

ψ(x)
= Ex[e−sTc

R |Tc
R < ∞], as b→ ∞, (4.135)

it is sufficient to show asymptotic equivalence of the following Laplace transforms

Ex[e−sTR1{TR<T1}]
!∼ Ex[e−sTc

R ] as b→ ∞. (4.136)

For this purpose, consider

Ex[e−sTc
R ] = Ex[e−sTc

R1{Tc
R<Tc

1}] + Ex[e−sTc
R1{Tc

1<Tc
R}] = (4.137)

= Ex[e−sTR1{TR<T1}] + Ex[e−s(Tc
1+(Tc

R−Tc
1))1{Tc

1<Tc
R}]. (4.138)

By the strong Markov property of the surplus process {Xc
t}t≥0, the random variables Tc

1
and Tc

R − Tc
1 are independent on {Tc

1 < Tc
R} and the distribution of Tc

R − Tc
1 |{Xc

Tc
1
= b} is

the same as of Tc
R|{Xc

0 = b}. Hence

Ex[e−sTc
R ] = Ex[e−sTR1{TR<T1}] + Ex[e−sT11{T1<TR}] ·Eb[e−sTc

R ]. (4.139)

Since XT1 = b on {T1 < TR} it follows from equation 4.69 with the root z0(s) and X0 = x
that

Ex[e−sT11{T1<TR}] ≤ ez0(s)(b−x). (4.140)

Take s > 0 such that the above exponent is negative because of z0(s) < 0. Therefore,

Ex[e−sT11{T1<TR}] ·Eb[e−sTc
R ]︸ ︷︷ ︸

≤1

≤ ez0(s)(b−x) −→ 0 as b→ ∞ (4.141)

and consequently

Ex[e−sTc
R ] ∼ Ex[e−sTR1{TR<T1}] as b→ ∞. (4.142)

�
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4. Cramér-Lundberg with a dividend barrier

Before the proof for Theorem 4.2.1. can finally be given, one needs one more lemma
showing the time to the first visit T1 is also small in probability compared with the sum
∑N

k=1(Tk+1 − Tk) in case of a small initial surplus x.

Lemma 4.2.4. Conditional on the risk process reaching the dividend barrier, the time to the first
visit T1|{X0 = x} has the following bound. If t > 1

p−λµ then

Px[T1 > (b− x)t|T1 < TR] ≤
e−(b−x)t·h(p− 1

t )

1− ψ(x, b)
(4.143)

and h(p− 1
t ) > 0. This implies that T1|{X0 = x} is small in probability compared with the sum of

completed excursions ∑N
k=1(Tk+1 − Tk) as b→ ∞.

Proof.
Changing the initial value from b − x to x in the proof of Lemma 4.1.9. yields that
h(p− 1

t ) > 0 and the exponential bound has the form

Px[T1 > (b− x)t|T1 < TR] ≤
e−(b−x)t·h(p− 1

t )

1− ψ(x, b)
for t >

1
p− λµ

. (4.144)

Finally, for fixed ε > 0, set tε := mε
ρ(b−x) such that tε → ∞ as b→ ∞ and thus

Px

[
ρT1

m
> ε

∣∣∣T1 < TR

]
≤ e−

mε
ρ ·h(p− 1

tε )

1− ψ(x, b)
−→ 0 as b→ ∞. (4.145)

Consequently, T1|{X0 = x} is small in probability compared with the sum of completed
excursions ∑N

k=1(Tk+1 − Tk), which has expected length m
ρ as b→ ∞. �

Proof of Theorem 4.2.1.
Independent of the initial surplus, the time from the last visit to the dividend barrier until
ruin TR − TN+1 is also small compared to the random sum ∑N

k=1(Tk+1 − Tk) as b → ∞ (see
Lemma 4.1.10.). Therefore by Lemma 4.1.7.

Px[TR > t|T1 < TR] = Px

[
T1 +

N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1) > t
∣∣∣T1 < TR

]
∼ (4.146)

∼ Px

[
N

∑
k=1

(Tk+1 − Tk) > t
∣∣∣T1 < TR

]
∼ e−

tρ
m as b→ ∞. (4.147)

In summary, it is shown with the last three lemmas that

Px[TR > t] = Px[TR > t|T1 < TR] · (1− ψ(x, b)) + Px[TR > t|TR < T1] · ψ(x, b) ∼ (4.148)

∼ e−
tρ
m · (1− ψ(x)) + Px[Tc

R > t|Tc
R < ∞] · ψ(x) as b→ ∞. (4.149)

�
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4.2. An initial surplus much lower than a high dividend barrier

The next lemma gives an exponential bound for the time of ruin Tc
R in the classical model.

Lemma 4.2.5. Conditional on ruin occurring, the time of ruin Tc
R in the classical model has the

following bound for t ≥ 0:

Px[Tc
R > xt|Tc

R < ∞] ≤ 1
ψ(x)

·
(

e−xt·h(p+ 1
t )1{t>t̄} + e−xR1{t≤t̄}

)
(4.150)

Moreover t · h(p + 1
t ) > R.

Note that for t = 0 the Cramér-Lundberg inequality ψ(x) ≤ e−xR arises.

Proof.
The proof is similar to the first part of the proof for Lemma 4.1.10. Moreover, A. Martin-Löf
[M] uses the same procedure to find a related result.
Since the time of ruin in the classical model Tc

R is not finite a.s. due to the positive drift of
the surplus process, one performs a change of measure to the Esscher transform P(z) such
that it has a negative drift (g′(z) > p) under the new measure. Then, Asmussen’s formula
from equation 4.63 becomes

Ex[e
zSTc

R
−Tc

Rg(z)
1{Tc

R<∞}] = E(z)[1{Tc
R<∞}] = P(z)[Tc

R < ∞] = 1. (4.151)

Take s < 0 such that zp < z1(s) < R implying g′(z1(s)) > g′(zp) = p as well as
g(z1(s)) < pz1(s) due to f (z1(s)) < 0.
Since STc

R
≥ x + pTc

R one has

Ex[exz1(s)−sTc
R1{Tc

R<∞}] ≤ 1 (4.152)

and further

e−sxtP[{Tc
R > xt} ∩ {Tc

R < ∞}] ≤ Ex[e−sTc
R1{xt<Tc

R<∞}] ≤ e−xz1(s). (4.153)

Substituting s = g(z)− pz yields

P[{Tc
R > xt} ∩ {Tc

R < ∞}] ≤ e−xt((p+ 1
t )z−g(z)). (4.154)

The exponent is optimized for g′(z) = p + 1
t . Since g′ is strictly increasing, the optimal

value for z1 is smaller than R if g′(R) > p + 1
t , i.e. for t > t̄. By property (iii) of the

Legendre transform h(x), one finds that

t max
z

((p +
1
t
)z− g(z)) = t · h(p +

1
t
) > R for t > t̄. (4.155)

Writing the optimized exponent in terms of the Legendre transform and dividing by the
probability of ruin ψ(x) gives the desired result in case of t > t̄:

Px[Tc
R > xt|Tc

R < ∞] ≤ e−xt·h(p+ 1
t )

ψ(x)
(4.156)

53



4. Cramér-Lundberg with a dividend barrier

If t ≤ t̄ one can choose z = R (g′(R) > p guarantees a negative drift under the new
measure P(R)) such that the above procedure simplifies (s = 0). One has

Ex[exR1{Tc
R<∞}] ≤ 1, (4.157)

which implies for {xt < Tc
R < ∞} ⊆ {Tc

R < ∞} the stated exponential bound

P[{Tc
R > xt} ∩ {Tc

R < ∞}] ≤ e−xR. (4.158)

�

A consequence of the above Lemma is the following. In case of an initial surplus much
lower than a high dividend barrier ruin occurs on different time scales depending on
whether the process reaches the dividend barrier or not. Since the barrier b is chosen high,
m
ρ will be high too and therefore

Px

[
ρTc

R
m

> t
∣∣∣Tc

R < ∞
]
≈ 0. (4.159)

4.3. The proportion of time the surplus is below a given level

If the risk process reaches the high dividend barrier, then the time of ruin will be very long.
In this section the proportion of time to ruin where the surplus is below some given level
is found. Some results from queuing theory are used to derive the final asymptotic result.
For this purpose, one needs the relation of the following theorem.

Consider an M/G/1 queue with arrival rate λ > 0 (equal to the intensity of the compound
Poisson process in the surplus process) and service times distributed according to the claim
distribution F. Let {Vt}t≥0 be the virtual waiting time at time t starting at V0 = 0 (recall
that Vt is the time to clear the system at time t).

Theorem 4.3.1. Assume for simplicity the premium income rate p is equal to 1. Then, the
probability of ruin in the classical model is equivalent to the probability of the virtual waiting time
in steady state V exceeding the initial surplus:

ψ(x) = P[V > x] (4.160)
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4.3. The proportion of time the surplus is below a given level

Proof.
The given proof is similar to the procedure of Asmussen and Schock Petersen [ASP].
The key is the following coupling of the virtual waiting time {Vt}0≤t≤T with the surplus
process {Xc

t}0≤t≤T in finite time. Assume that claims occur at times
0 < t1 < t2 < . . . < tN with claim amounts C1, C2, . . . , CN. Let the arrivals in the M/G/1
queue occur at times 0 < T − tN < . . . < T − t2 < T − t1 < T with corresponding service
times CN, . . . , C2, C1.

Figure 4.6.: Sample paths of the surplus process {Xc
t}0≤t≤T (solid line) and the time-

reversed virtual waiting time process {VT−t}0≤t≤T of the corresponding
M/G/1 queue (dotted line), where either ruin does occur (l.h.s.) or not (r.h.s.)

Now one can show the equivalence in finite time:

{Tc
R ≤ T} = {VT− > x} a.s., (4.161)

where VT is replaced by its limit from the left VT− := lims↗T Vs. Note that the probability
of an arrival at T is 0 a.s.
Suppose VT− > x. Then

V(T−t1)− = VT−t1 − C1 = VT− + t1p− C1 > x + t1p− C1 = Xc
t1

(4.162)

If V(T−t1)− > 0 repeat the above argument to get V(T−t2)− > Xc
t2

, and so on. Hence for tk
where V(T−tk)− = 0 (such a k exists since in any case V(T−tN)− = 0) one finds that

0 = V(T−tk)− > Xc
tk

. (4.163)

Indeed it holds that Tc
R ≤ T.

Now, suppose that VT− ≤ x. Then

V(T−t1)− = VT−t1 − C1 = VT− + t1p− C1 ≤ x + t1p− C1 = Xc
t1

(4.164)

Repeating the above argument gives V(T−t2)− ≤ Xc
t2

. Thus, proceeding iteratively yields

0 ≤ V(T−tk)− ≤ Xc
tk
∀ k ∈ {1, . . . , N}. (4.165)
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4. Cramér-Lundberg with a dividend barrier

Since ruin can only occur at times of claims, one ends up with Tc
R > T.

Therefore it holds that

ψ(x, T) = P[VT > x] for T > 0. (4.166)

The intensity of the queue is

ρ = λµ =
1

1 + Λ
< 1 (4.167)

since the safety loading Λ is assumed positive. Thus, according to Corollary 3.5.4. a limiting
steady-state distribution V := limT→∞ VT exists and finally one has

ψ(x) = P[V > x]. (4.168)

�

Now, some useful results from queueing theory are recalled. For a premium rate not
necessarily equal to 1, the positive safety loading in the risk process Λ = p/(λµ)− 1 > 0
corresponds to a traffic intensity ρ = λµ/p < 1 in the queueing process. Therefore, the
virtual waiting time process is a regenerative process and by Corollary 3.5.4. a limiting
steady-state distribution of the virtual waiting time process exists with distribution (x ≥ 0)

P[V > x] =
1

E[C]
·E
[∫ C

0
1{Vs>x}ds

]
, (4.169)

where C is the length of a busy cycle. By the forgetfulness property of the exponential
distribution, the expected length of the idle period is

E[I] =
1
λ

(4.170)

and thus equation 3.36 gives the expected length of a busy cycle:

E[C] = E[I] · 1
1− ρ

=
1
λ
· 1

1− λµ
p

=
1
λ
· p

p− λµ
=

1
λ
+

µ

p− λµ
(4.171)

Next, consider a reflected version of the virtual waiting time process about the dividend
barrier b

Rt := b−Vt, t ≥ 0. (4.172)
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4.3. The proportion of time the surplus is below a given level

Figure 4.7.: Typical sample path of the reflected virtual waiting time process {Rt}t≥0.

This process behaves in almost the same way as the risk process at the dividend barrier.
The main differences are that the risk process has a slope in between jumps not equal to 1
and it is terminated at ruin. The problem with unequal slope in between jumps is easily
overcome by a time transformation. The process {Xt/p}t≥0 has a slope in between jumps
equal to 1 and the same safety loading as the original process {Xt}t≥0 (the new premium
income rate is 1, however, the new intensity is λ/p). The problem with termination is
considered in the proof of the next theorem.

Since one would like to have an asymptotic law for the proportion of time the surplus
is below some given level, define the amount of time the risk process is less than b-x
before ruin as

T<(b−x) :=
∫ TR

0
1{Xs<b−x}ds, for x ∈ [0, b). (4.173)

Theorem 4.3.2. Conditional on the risk process reaching the dividend barrier, the proportion
of time the surplus is less than b− x satisfies for b→ ∞

T<(b−x)

TR

p−→
{

ψ(x) if x ∈ (0, b),
λµ
p if x = 0.

(4.174)

Proof.
Recall that conditional on the risk process reaching the dividend barrier, one can write

TR = T1 +
N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1). (4.175)
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4. Cramér-Lundberg with a dividend barrier

Thus the amount of time the risk process is less than b− x can be written as

T<(b−x) =
∫ T1

0
1{Xs<b−x}ds +

N

∑
k=1

∫ Tk+1

Tk

1{Xs<b−x}ds +
∫ TR

TN+1

1{Xs<b−x}ds. (4.176)

Remember that the times T1 and TR− TN+1 are small in probability compared with the very
long time ∑N

k=1(Tk+1− Tk) and in the same way, since the number of excursions will be very
large, the first and the last integral in equation 4.176 are small in probability compared with
the sum of integrals. Using the weak law of large numbers for N → ∞

1
N

N

∑
k=1

∫ Tk+1

Tk

1{Xs<b−x}ds
p−→ E

[∫ Tk+1

Tk

1{Xs<b−x}ds|Tk+1 < ∞
]

(4.177)

it follows that

T<(b−x)

TR

p−→
E[
∫ Tk+1

Tk
1{Xs<b−x}ds|Tk+1 < ∞]

E[Tk+1 − Tk|Tk+1 < ∞]
= (4.178)

=

1
p ·E[

∫ pTk+1
pTk

1{X t
p
<b−x}dt|Tk+1 < ∞]

E[Tk+1 − Tk|Tk+1 < ∞]
as b→ ∞. (4.179)

Now, consider the virtual waiting time process {Vt}t≥0 of an M/G/1 queue with µA = p
λ

and µB = µ (such that ρ = λµ
p ) with expected cycle length

E[C] =
1
λ
p
+

µ

1− λ
p µ

= p ·
(

1
λ
+

µ

p− λµ

)
. (4.180)

Due to the asymptotic law for the expected length of a complete excursion from Lemma
4.1.6.

E[Tk+1 − Tk|Tk+1 < ∞] ∼ 1
λ
+

µ

p− λµ
as b→ ∞, (4.181)

and since the probability of ruin during each excursion is very small by Lemma 4.1.3., one
has for x ∈ (0, b) as b→ ∞

T<(b−x)

TR

p−→
E[
∫ C

0 1{Rs<b−x}ds]
E[C]

=
E[
∫ C

0 1{Vs>x}ds]
E[C]

= P[V > x] = ψ(x). (4.182)

Note that the last equation uses formulas 4.172 and 4.169 as well as Theorem 4.3.1.

Finally only the case x = 0 is missing. Recall that the expected holding time at the barrier
is 1

λ due to the exponentially distributed inter-arrival times. Therefore,

T<b
TR

p−→
E[
∫ Tk+1

Tk
1{Xs<b}ds|Tk+1 < ∞]

E[Tk+1 − Tk|Tk+1 < ∞]
∼

µ
p−λµ

1
λ + µ

p−λµ

=
λµ

p
as b→ ∞. (4.183)

�
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5
An example: Exponentially distributed claims

In this chapter the approximation formula for the time of ruin TR is illustrated (compare
Theorem 4.2.1.). Recall, as b→ ∞, the time of ruin has the following asymptotic distribution

TR
d−→
{

Exp( ρ
m ) with probability 1− ψ(x),

Tc
R|{Tc

R < ∞} with probability ψ(x),
(5.1)

and ruin occurs on different time scales depending on whether the risk process visits the
dividend barrier or not. One would like to find the density in either of these cases. For
exponentially distributed claims this can be done by calculating the Laplace transform of
the time of ruin and infer the density by numerical inversion.

To this end, suppose that the claims are exponentially distributed with expected size 1, i.e.
Cn ∼ Exp(1), and that the Poisson parameter λ = 1. Then the safety loading is Λ = p− 1,
which is assumed to be positive. Recall Example 2.3.4. where the following solution for
the probability of ruin in case of exponentially distributed claims in the classical Cramér-
Lundberg model was found:

ψ(x) =
1

1 + Λ
· e−Rx =

1
p
· e−

p−1
p x, x ≥ 0. (5.2)

Then, by Lemma 4.1.2. , the probability of ruin without visit to the dividend barrier is given
by

ψ(x, b) =
ψ(x)− ψ(b)

1− ψ(b)
=

e−
p−1

p x − e−
p−1

p b

p− e−
p−1

p b
, x ∈ [0, b], (5.3)

and the probability of ruin during an excursion is obtained by integration with respect to
the claim distribution:
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5. An example: Exponentially distributed claims

ρ =
∫ ∞

0
ψ(b− x, b) dF(x) =

∫ b

0

e−
p−1

p (b−x) − e−
p−1

p b

p− e−
p−1

p b
· e−x dx + F̄(b) = (5.4)

=
e−

p−1
p b

p− e−
p−1

p b
·
(∫ b

0
e−

1
p x dx + e−b − 1

)
+ e−b = (5.5)

=
e−

p−1
p b · (−pe−

1
p b
+ p + e−b − 1) + e−b · (p− e−

p−1
p b

)

p− e−
p−1

p b
= (5.6)

=
(p− 1) · e−

p−1
p b

p− e−
p−1

p b
∼ p− 1

p
e−

p−1
p b as b→ ∞. (5.7)

Now, consider formula 4.69 and take s such that z0,1(s) < 1 (such an s exists since
z0,1(s) ≤ R = p−1

p < 1 for s ≤ 0):

1 = Ex[e
z0,1(s)(x−XTf

)−sTf ] = (5.8)

= ez0,1(s)(x−b)Ex[e−sT11{T1<TR}] + ez0,1(s)xEx[e−z0,1(s)XTR−sTR1{TR<T1}] = (5.9)

= ez0,1(s)(x−b) Ex[e−sT11{T1<TR}]︸ ︷︷ ︸
=:A

+
ez0,1(s)x

1− z0,1(s)
·Ex[e−sTR1{TR<T1}]︸ ︷︷ ︸

=:B

, (5.10)

where TR and XTR are independent on the set {TR < T1} due to the exponential claim
distribution (see Prabhu [P] for a proof) and, by the forgetfulness property, the deficit −XTR

is also exponentially distributed with expected value 1. The derived system of equations{
ez0(x−b) · A + ez0x

1−z0
· B = 1

ez1(x−b) · A + ez1x

1−z1
· B = 1

(5.11)

can be solved in the following way. Calculate A from the first equation and substitute it in
the second:

A =

(
1− ez0x

1− z0
· B
)
· e−z0(x−b) (5.12)

=⇒ 1 = e(z1−z0)(x−b) ·
(

1− ez0x

1− z0
· B
)
+

ez1x

1− z1
· B (5.13)

=⇒ 1− e(z1−z0)(x−b) = B · ez1x
(

1
1− z1

− 1
1− z0

e(z0−z1)b
)

(5.14)

=⇒ Ex[e−sTR1{TR<T1}] =
(1− z0(s))(1− z1(s))e−xz1(s)(1− e(b−x)(z0(s)−z1(s)))

1− z0(s)− (1− z1(s))eb(z0(s)−z1(s))
(5.15)
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Substituting the solution for B in equation 5.12 gives

A =

(
1− (1− z1)ex(z0−z1)(1− e(b−x)(z0−z1))

1− z0 − (1− z1)eb(z0−z1)

)
· e(b−x)z0 = (5.16)

=
(1− z0)e(b−x)z0 − (1− z1)(eb(z0−z1) + ex(z0−z1) − eb(z0−z1)) · e(b−x)z0

1− z0 − (1− z1)eb(z0−z1)
(5.17)

=⇒ Ex[e−sT11{T1<TR}] =
(1− z0(s))e(b−x)z0(s) − (1− z1(s))ebz0(s)−xz1(s)

1− z0(s)− (1− z1(s))eb(z0(s)−z1(s))
, (5.18)

where z0,1(s) are the roots of the equation

s = g(z)− pz = MC(z)− 1− pz =
1

1− z
− 1− pz, with z < 1. (5.19)

The arising quadratic equation can be solved using the quadratic formula:

z2 +
1 + s− p

p
z− s

p
= 0 =⇒ z0,1(s) = −

1 + s− p
2p

±
√
(1 + s− p)2 + 4ps

2p
(5.20)

Finally, the density of TR|{TR < T1} is obtained by numerical inversion of the derived
Laplace transform

Ex[e−sTR |TR < T1] =
(1− z0(s))(1− z1(s))e−xz1(s)(1− e(b−x)(z0(s)−z1(s)))

(1− z0(s)− (1− z1(s))eb(z0(s)−z1(s))) · ψ(x, b)
(5.21)

and plotted in Figure 5.1 for different premium income rates p and dividend barriers b.

In order to show that this density does indeed converge to the density of the time of ruin
in the classical model, the Laplace transform of Tc

R|{Tc
R < ∞} is found in addition. The

method is similar, however, a lot simpler. Consider formula 4.151 and take s again such
that z0,1(s) < 1:

1 = Ex[e
zSTc

R
−Tc

Rg(z)
1{Tc

R<∞}] = exzEx[e
−zXTc

R
−sTc

R1{Tc
R<∞}] =

exz

1− z
Ex[e−sTc

R1{Tc
R<∞}] (5.22)

Therefore, the Laplace transform of Tc
R|{Tc

R < ∞} is found as

Ex[e−sTc
R |Tc

R < ∞] =
1− z1(s)

ψ(x) · exz1(s)
. (5.23)

The density of Tc
R|{Tc

R < ∞}, which is obtained by numerical inversion as well, is also plot-
ted in Figure 5.1. The figure shows nicely that the distribution of TR|{TR < T1} converges
to the distribution of Tc

R|{Tc
R < ∞} as b→ ∞.
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5. An example: Exponentially distributed claims

Figure 5.1.: Density of TR|{TR < T1} with initial surplus 50, p = 1.01 (l.h.s.) and p = 1.04
(r.h.s.) and b ∈ {52, 55, 60, 70, 80, 100, 120, 150, 200, 250, 300, 400, 600, 800, 1200}.
The line color depends on the height of the barrier (yellow for low and red
for high values of b respectively). The black curve represents the density of
Tc

R|{Tc
R < ∞} with same parameters.

Remember that Tc
R|{Tc

R < ∞} is asymptotically normal distributed with mean µc := x
g′(R)−p

and variance σ2
c := xg′′(R)

(g′(R)−p)3 as x → ∞ (see Appendix B for a detailed proof). In case of
exponentially distributed claims of expected size 1 and a Poisson parameter equal to 1, one
finds with R = p−1

p that

g′(R) =
1

(1− R)2 = p2 as well as g′′(R) =
2

(1− R)3 = 2p3 (5.24)

and consequently

µc =
x

p(p− 1)
and σ2

c =
2x

(p− 1)3 . (5.25)

The Laplace transform of Tc
R−µc
σc
|{Tc

R < ∞} is

Ex[e−s
Tc

R−µc
σc |Tc

R < ∞] = es µc
σc

1− z1(
s
σc
)

ψ(x) · exz1(
s

σc )
. (5.26)

The density is plotted in Figure 5.2 for different values of x. The asymptotic normality of
Tc

R|{Tc
R < ∞} for x → ∞ is clearly visible, however, x needs to get really high.
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Figure 5.2.: Density of Tc
R−µc
σc
|{Tc

R < ∞} for p = 1.01 (l.h.s.) and p = 1.04 (r.h.s.) with initial
surplus x ∈ {300, 500, 700, 1000, 1500, 3000, 7000, 10000, 15000}. The line color
depends on the height of the initial surplus (yellow for low and red for high
values of x respectively). The black curve represents an N(0, 1) - distribution.

In addition, by putting the initial surplus on another scale (x = 5000), one sees that
the limiting distribution of TR|{TR < T1} for b → ∞ can be approximated by a normal
distribution with mean µc and variance σ2

c too (Figure 5.3).

Now, consider the case where the risk process visits the dividend barrier. Then, the Laplace
transform of TR|{T1 < TR} can be derived by splitting the time of ruin in three independent
parts:

TR = T1 +
N

∑
k=1

(Tk+1 − Tk) + (TR − TN+1) (5.27)

In equation 5.18 it is already found that

Ex[e−sT1 |T1 < TR] =
(1− z0(s))e(b−x)z0(s) − (1− z1(s))ebz0(s)−xz1(s)

β(1− ψ(x, b))
, (5.28)

where the denominator is abbreviated as β := 1 − z0(s) − (1 − z1(s))e−bα with
α := z1(s)− z0(s).
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5. An example: Exponentially distributed claims

Figure 5.3.: Density of TR|{TR < T1} with initial surplus x = 5000, p = 1.01 (l.h.s.) and
p = 1.04 (r.h.s.) and b ∈ {5010, 5050, 5100, 5200, 5500, 6000, 7000}. The line color
depends on the height of the barrier (yellow for low and red for high values of
b respectively). The black curve represents a N(µc, σ2

c ) - distribution.

Recall the first part of the proof for Lemma 4.1.6. With λ = 1 one has

E[e−s(Tk+1−Tk)|Tk+1 < ∞] = E[e−sYk ] ·E[e−s(Tk+1−Tk−Yk)|Tk+1 < ∞] = (5.29)

=

∫ b
0 Eb−x[e−sT11{T1<TR}] · e

−xdx
(1− ρ)(1 + s)

. (5.30)

The numerator can be calculated as

1
β

∫ b

0
(1− z0(s))e−x(1−z0(s)) − (1− z1(s))e−bαe−x(1−z1(s))dx = (5.31)

=
1
β

(
−
[
e−x(1−z0(s))

]b

0
+ e−bα

[
e−x(1−z1(s))

]b

0

)
=

1− e−bα

β
. (5.32)

Therefore, the length of a complete excursion has the Laplace transform

E[e−s(Tk+1−Tk)|Tk+1 < ∞] =
1− e−bα

β(1− ρ)(1 + s)
. (5.33)

The random variable N has a geometric distribution with generating function

E[tN] =
ρ

1− (1− ρ)t
for t <

1
1− ρ

(5.34)
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and thus the Laplace transform of the total length of completed excursions is by indepen-
dence

E[e−s ∑N
k=1(Tk+1−Tk)] =

ρ

1− (1− ρ)E[e−s(Tk+1−Tk)|Tk+1 < ∞]
= (5.35)

=
βρ(1 + s)

β(1 + s)− 1 + e−bα
=

βρ(1 + s)
βs− z0(s) + z1(s)e−bα

. (5.36)

The Laplace transform of the time from the last visit to the barrier until ruin is found
similarly as for the total length of an excursion:

E[e−s(TR−TN+1)|TN+2 = ∞] =
1
ρ
·E[e−sYN+1 ] ·E[e−s(TR−TN+1−YN+1)1{TN+2=∞}] = (5.37)

=

∫ b
0 Eb−x[e−sTR1{TR<T1}] · e

−xdx + e−b

ρ(1 + s)
(5.38)

The integral in the numerator can be solved explicitly:

1
β

∫ b

0
(1− z0(s))(1− z1(s))e−(b−x)z1(s)(1− ex(z0(s)−z1(s)))e−xdx + e−b = (5.39)

=
e−bz1(s)

β
·
(
− (1− z0(s))e−x(1−z1(s))

∣∣∣b
0
+ (1− z1(s))e−x(1−z0(s))

∣∣∣b
0
+ (5.40)

+ (1− z0(s))e−b(1−z1(s)) − (1− z1(s))e−b(1−z0(s))
)
=

αe−bz1(s)

β
(5.41)

Hence the Laplace transform of the time from the last visit to the barrier until ruin is

E[e−s(TR−TN+1)|TN+2 = ∞] =
αe−bz1(s)

βρ(1 + s)
. (5.42)

Since

1− ψ(x, b) = 1− e−
p−1

p x − e−
p−1

p b

p− e−
p−1

p b
=

p− e−
p−1

p x

p− e−
p−1

p b
, (5.43)

multiplying equations 5.28, 5.36 and 5.42 yields

E[e−sTR |T1 < TR] =
α((1− z0(s))e−bα−xz0(s) − (1− z1(s))e−bα−xz1(s))(p− e−

p−1
p b

)

β(βs− z0(s) + z1(s)e−bα)(p− e−
p−1

p x
)

. (5.44)

It is interesting to plot the conditional density of ρTR
m |{T1 < TR}, which is the reason why

m needs to be calculated as well. For this purpose, differentiate the Laplace transform of
the length of a complete excursion and evaluate at 0.
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5. An example: Exponentially distributed claims

m = E[Tk+1 − Tk|Tk+1 < ∞] = − d
ds

E[e−s(Tk+1−Tk)|Tk+1 < ∞]
∣∣∣

s=0
= (5.45)

= − d
ds

(
1− eb(z0(s)−z1(s))

(1− z0(s)− (1− z1(s))eb(z0(s)−z1(s)))(1− ρ)(1 + s)

) ∣∣∣
s=0

(5.46)

Using that z0(0) = 0 and z1(0) = R = p−1
p as well as

z′0(0) = −
1

p− 1
and z′1(0) =

1
p(p− 1)

, (5.47)

one derives

m =
−b( 1

p−1 +
1

p(p−1))e
−b p−1

p (1− 1
p e−b p−1

p ) + (1− e−b p−1
p ) · (1− 1

p e−b p−1
p )

(1− ρ)(1− 1
p e−b p−1

p )2
+ (5.48)

+

(1− e−b p−1
p ) ·

(
1

p−1 +
1

p(p−1) e−b p−1
p + 1

p e−b p−1
p · b( 1

p−1 +
1

p(p−1))

)
(1− ρ)(1− 1

p e−b p−1
p )2

. (5.49)

Next, use that

1− ρ = 1− (p− 1) · e−
p−1

p b

p− e−
p−1

p b
=

p(1− e−
p−1

p b
)

p− e−
p−1

p b
(5.50)

and simplify further

m = 1 +
b(p+1)
p(p−1)(

1
p − 1)e−b p−1

p + 1
p(p−1)(p + e−b p−1

p )(1− e−b p−1
p )

(1− e−b p−1
p )(1− 1

p e−b p−1
p )

= (5.51)

= 1 +
−b(p + 1)(p− 1)e−b p−1

p + (p2 + pe−b p−1
p )(1− e−b p−1

p )

p(p− 1)(p− e−b p−1
p )(1− e−b p−1

p )
= (5.52)

= 1 +
p2 − (p− 1)(bp + b + p)e−b p−1

p − pe−2b p−1
p

p(p− 1)(p− e−b p−1
p )(1− e−b p−1

p )
∼ p

p− 1
as b→ ∞. (5.53)

Finally, the density of ρTR
m |{T1 < TR} is obtained by numerical inversion of the derived

Laplace transform and plotted in Figure 5.4 for different values of the premium income
rate p and the level b of the dividend barrier. One sees clearly that TR|{T1 < TR} has
asymptotically an Exp( ρ

m ) - distribution as b→ ∞.
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Figure 5.4.: Density of ρTR
m |{T1 < TR} with initial surplus 50, p = 1.01 (l.h.s.) and p = 1.04

(r.h.s.) and b ∈ {60, 80, 100, 150, 200, 300, 400, 600, 800}. The line color de-
pends on the height of the barrier (yellow for low and red for high values
of b respectively).

The above example demonstrates the derived asymptotic law for the time of ruin in case of
exponentially distributed claims. Nevertheless, calculations are quite extensive even in this
basic case. If one would like to provide additional support for the asymptotic formula of
TR for other claim distributions as well, a Monte Carlo simulation should be preferable.

For this purpose, consider Erlang distributed claims Cn with shape parameter n ∈ N

and scale parameter β = 1/α = 1/n such that the expected size is 1. Recall from Lemma
2.1.5. that an Erlang(n, α) distribution corresponds to a sum of n independent exponen-
tially distributed random variables with mean α. Hence one has exponential claims as
special case if n = 1. Its density is of the form

f (x) =
αn

(n− 1)!
xn−1e−αx, x ≥ 0, (5.54)

and the corresponding moment generating function is

MC(x) =
(

α

α− x

)n
, for x < α. (5.55)

Now, let the Poisson parameter be λ = 1 and x = b, meaning that the surplus process starts
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5. An example: Exponentially distributed claims

at the dividend barrier. Recall that by Theorem 4.1.1.

m ∼ 1
λ
+

µ

p− λµ
as b→ ∞ (5.56)

and

ρ ∼ CpR
λ

e−Rb as b→ ∞. (5.57)

The constant from the Cramér-Lundberg approximation is

C =
p− g′(0)
g′(R)− p

=
p− n

α
nαn

(α−R)n+1 − p
. (5.58)

If one takes the Erlang parameters to be n = 2 and α = 2 the Cramér-Lundberg condition

1 + pR = MC(R) =
(

α

α− R

)n
(5.59)

has the solution

R =
4p− 1−

√
8p + 1

2p
. (5.60)

One can use p
p−1 as approximation for m, and for ρ one has CpRe−Rb in case of an

Erlang(2, 2) distribution or p−1
p e−

p−1
p b in case of an Exp(1) distribution.

Figure 5.6 shows the histogram of 1000 simulated times of ruin scaled by the approxima-
tion for ρ/m in case of λ = 1, µ = 1, p = 1.02, Erlang(2, 2) claims and different levels
for the dividend barrier b. Moreover, the surplus process starts at the barrier (x = b). It
is clearly visible that for increasing dividend barrier the histogram looks more and more
like the density of an Exp(1) distribution. The same holds true for Exp(1) claims, see
Figure 5.5.
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Figure 5.5.: Histograms of ρ
m TR with

Exp(1) claims, p = 1.02 and
b ∈ {50, 100, 200}. The black
curves represent the Exp(1) -
density.

Figure 5.6.: Histograms of ρ
m TR with

Erlang(2, 2) claims, p = 1.02
and b ∈ {50, 100, 200}. The
black curves represent the
Exp(1) - density.
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A
Appendix: Properties of the Legendre transform

Proposition A.1.1. The Legendre transform of g(z), defined by

h(x) := max
z

(xz− g(z)), (A.1)

has the following properties:

(i). h(x) is strictly convex,

(ii). h(x) ≥ 0 and h(g′(0)) = h(λµ) = 0,

(iii). H(t) := t · h(p + 1
t ) ≥ R and strictly convex for t > 0, with equality for t̄ = 1

g′(R)−p .

Proof.
This is a slightly modified version of the proof given by A. Martin-Löf [M].
g(z) is supposed to be finite in some maximal open interval Dg containing positive z-values.
In Dg g(z) is infinitely differentiable and convex with g(0) = 0.
The Legendre transform of g(z) is determined parametrically by the equations{

h(x) = xz− g(z),
x = g′(z) for z ∈ Dg.

(A.2)

(i). Since g′′(z) = λ
∫ ∞

0 y2ezydF(y) > 0, g′(z) is strictly increasing and thus g′ is a bijective
function from Dg to some open interval Dh. Because of h′(x) = z, it follows that h′ is the
inverse of g′ with h′ : Dh −→ Dg and

h′′(x) =
dz
dx

=
1

g′′(z)
> 0. (A.3)

This means h(x) is strictly convex and infinitely differentiable in Dh.

(ii). In order to find the minimum of h, look at the optimizing condition h′(x) = z !
= 0,

which is solved for x = g′(0) = λµ. Therefore, the minimum value is h(λµ) = 0− g(0) = 0
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and one has that h(x) ≥ 0 with h(λµ) = 0.

(iii). Differentiating the function

H(t) = t · h
(

p +
1
t

)
= t(pz− g(z)) + z, with g′(z) = p +

1
t

, (A.4)

according to the product rule yields

H′(t) = pz− g(z) + t
(

p · dz
dt
− g′(z) · dz

dt

)
+

dz
dt

= (A.5)

= pz− g(z) + (t · (p− g′(z)) + 1)︸ ︷︷ ︸
=0

·dz
dt

= pz− g(z). (A.6)

Differentiating one more time gives

H′′(t) = (p− g′(z)) · dz
dt

= −1
t
· dz

dt
. (A.7)

The derivative of z w.r.t. t is found from the representation z = h′(p + 1
t ):

dz
dt

= h′′
(

p +
1
t

)
·
(
− 1

t2

)
= − 1

t2g′′(z)
. (A.8)

The final form for the second derivative is

H′′(t) =
1

t3g′′(z)
> 0 for t > 0, (A.9)

which says that H(t) = t · h(p + 1
t ) is strictly convex for t > 0.

The minimizer of H(t) is found by the optimizing condition H′(t) = pz− g(z) !
= 0. Accord-

ing to the Cramér-Lundberg equality (g(R) = pR) that is assumed to hold, this condition
is solved by the adjustment coefficient R. Hence, the optimizing value for t is t̄ = 1

g′(R)−p .
It leads to the minimum value

H(t̄) =
h(g′(R))
g′(R)− p

=
Rg′(R)− g(R)

g′(R)− p
= R. (A.10)

In summary, one has H(t) := t · h(p + 1
t ) ≥ R and strictly convex for t > 0, with equality

for t̄ = 1
g′(R)−p . �
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B
Appendix: Asymptotic normality of the time of ruin

It will be shown, conditional on ruin occurring, the time of ruin in the classical Cramér-
Lundberg model is asymptotically normal distributed with mean µc := x

g′(R)−p and

variance σ2
c := xg′′(R)

(g′(R)−p)3 as the initial surplus tends to infinity.

The concept is borrowed from S. Asmussen [A], and thus the usual notation gets slighly
adjusted at this point. Write the surplus process in the following way:

Xc
t := x + pt− St = x + pt−

Nt

∑
n=1

Cn =: x− Rt, t ≥ 0. (B.1)

The process {Rt}t≥0 represents the amount of initial surplus used up to time t. Ruin
occurs if the used amount of surplus exceeds the initial surplus:

Tc
R = inf(t ≥ 0|Xc

t < 0) = inf(t ≥ 0|Rt > x). (B.2)

Moreover, let B(x) := RTc
R
− x be the overshoot of used surplus above the initial level at

time of ruin.

Theorem B.1.1. Assume that g′(R) < ∞ as well as g′′(R) < ∞ and that the overshoot B(x)
converges in distribution as x → ∞, say to B(∞) (actually one can even show that g′(R) < ∞ is
sufficient for this convergence). Then, for every T > 0

P[Tc
R ≤ T|{Tc

R < ∞}] ∼ Φ
(

T − µc

σc

)
, as x → ∞, (B.3)

where Φ denotes the cumulative distribution function of the N(0, 1) distribution.

The proof rests on two lemmas.
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Lemma B.1.2. As the initial surplus x → ∞, it holds under the Esscher transform P(R) that:

(i). Tc
R

x
P(R)
−→ 1

g′(R)−p

(ii). E(R)
[

Tc
R

x

]
−→ 1

g′(R)−p

(iii). Tc
R is P(R)- asymptotically normal with mean µc and variance σ2

c .

Proof.
(i). Equations 4.60 and 4.61 say that

E(R)[Rt] = t(g′(R)− p) and V(R)[Rt] = tg′′(R). (B.4)

By the strong law of large numbers

R̄t :=
Rt

t
a.s.−→ g′(R)− p, as t→ ∞, (B.5)

and by the central limit theorem

Zt :=
Rt − t(g′(R)− p)

(tg′′(R))
1
2

D−→ N(0, 1), as t→ ∞. (B.6)

Now, substitute t = Tc
R and write as above RTc

R
= x + B(x). Since Tc

R −→ ∞ and

B(x) D−→ B(∞), it follows that B(x)
Tc

R

P(R)
−→ 0, as x → ∞. Hence R̄Tc

R
:=

RTc
R

Tc
R

P(R)
−→ g′(R) − p

implies

x
Tc

R
=

RTc
R
− B(x)
Tc

R

P(R)
−→ g′(R)− p, as x → ∞. (B.7)

(ii). The stated asymptotic law follows if one can show

lim sup
x→∞

E(R)
[

Tc
R

x

]
≤ 1

g′(R)− p
≤ lim inf

x→∞
E(R)

[
Tc

R
x

]
. (B.8)

Since Tc
R

x , x > 0, are non-negative random variables that converge in probability to 1
g′(R)−p

by property (i), the second inequality follows directly by Fatou’s lemma.
The proof of the first inequality is more demanding. Recall the definition of {Rt}t≥0:

Rt =
Nt

∑
n=1

Cn − pt, t ≥ 0. (B.9)

The idea in this proof is to define a modified version of the used amount of surplus with
limited claim sizes

R̃t :=
Nt

∑
n=1

C̃n − pt =
Nt

∑
n=1

(Cn ∧m)− pt, t ≥ 0, (B.10)

where m > 0 is the maximum amount of a single claim. Clearly, R̃t ≤ Rt a.s. and

T̃c
R := inf(t ≥ 0|R̃t > x) ≥ Tc

R. (B.11)
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From the moment generating function of {St}t≥0 under the measure P(R) in equation 4.59 it
is found that {St}t≥0 is again compound Poisson, where the Poisson process {N(R)

t }t≥0 has
intensity λ(R) = λ + g(R) and the claim distribution has the form
F(R)(t) := 1

MC(R)

∫ t
0 eRxdF(x), t ≥ 0. Therefore,

µ̃(R) := E(R)[C̃n]↗ E(R)[Cn] =

∫ ∞
0 xeRxdF(x)

MC(R)
=

g′(R)
λ + g(R)

=: µ(R), as m→ ∞. (B.12)

Next, one has that

E(R)[R̃T̃c
R
] = E(R)[N(R)

T̃c
R
] ·E(R)[C̃n]− p ·E(R)[T̃c

R] = (B.13)

= ((λ + g(R))µ̃(R) − p) ·E(R)[T̃c
R] (B.14)

and

R̃T̃c
R
= R̃T̃c

R−
+ C̃

N(R)
T̃c

R

≤ x + m a.s. (B.15)

Eventually the first inequality in B.8 is found:

lim sup
x→∞

E(R)
[

Tc
R

x

]
≤ lim sup

x→∞
E(R)

[
T̃c

R
x

]
= (B.16)

= lim sup
x→∞

E(R)

[
R̃T̃c

R

((λ + g(R))µ̃(R) − p) · x

]
≤ (B.17)

≤ 1
(λ + g(R))µ̃(R) − p

−→ 1
g′(R)− p

, as m→ ∞. (B.18)

(iii). Since Tc
R

x
P(R)
−→ 1

g′(R)−p as x → ∞ by (i), one can apply Anscombe’s theorem to get a
stopped version of the central limit theorem in B.6:

ZTc
R
=

RTc
R
− Tc

R(g′(R)− p)

(Tc
R · g′′(R))

1
2

D−→ N(0, 1), as x → ∞. (B.19)

Because of B(x)

(Tc
R)

1
2

P(R)
−→ 0, as x → ∞, one ends up with

ZTc
R

D∼
x− Tc

R(g′(R)− p)

(Tc
R · g′′(R))

1
2

D∼
Tc

R

(
x

Tc
R

) 3
2 − x

(
Tc

R
x

) 1
2
(g′(R)− p)

(x · g′′(R))
1
2

D∼
Tc

R −
x

g′(R)−p(
x·g′′(R)

(g′(R)−p)3

) 1
2

. (B.20)

�
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B. Appendix: Asymptotic normality of the time of ruin

Lemma B.1.3. The overshoot B(x) and the time of ruin Tc
R are P(R)- asymptotically independent

as x → ∞. That is, for f , g bounded and continuous

E(R)
[

f (B(x)) · g
(

Tc
R − µc

σc

)]
−→ E(R)[ f (B(∞))] ·E[g(Z)], as x → ∞, (B.21)

where Z is standard normal.

Proof.
In equation B.21 one can replace Tc

R(x) (x indicating the level to be attained) by Tc
R(x′),

where x′ := x− x
1
4 , since

E(R)[Tc
R(x)− Tc

R(x′)] = E(R)[(Tc
R(x)− Tc

R(x′))︸ ︷︷ ︸
=0

1
{B(x′)>x

1
4 }
] + (B.22)

+ E(R)[(Tc
R(x)− Tc

R(x′))1
{B(x′)≤x

1
4 }
] = (B.23)

= E(R)[(Tc
R(x− RTc

R(x′))1{B(x′)≤x
1
4 }
] = (B.24)

= E(R)[Tc
R(x

1
4 − B(x′))1

{B(x′)≤x
1
4 }
] ≤ (B.25)

≤ E(R)[Tc
R(x

1
4 )] = O(x

1
4 ), (B.26)

where the asymptotic law follows from property (ii) in Lemma B.1.2. Due to the law of total
expectation

E(R)
[

f (B(x)) · g
(

Tc
R(x′)− µc

σc

)]
= E(R)

[
E(R)[ f (B(x)) | FTc

R(x′)] · g
(

Tc
R(x′)− µc

σc

)]
(B.27)

and furthermore

E(R)[ f (B(x))|FTc
R(x′)] = E(R)[ f (B(x

1
4 − B(x′))]1

{B(x′)≤x
1
4 }

(B.28)

+ f (B(x′)− x
1
4 )1
{B(x′)>x

1
4 }

(B.29)

P(R)
−→ E(R)[ f (B(∞)], as x → ∞, (B.30)

using that x
1
4 − B(x′) P(R)

−→ ∞ as follows from B(x′) D−→ B(∞). Since Tc
R is P(R)- asymptoti-

cally normal by property (iii) in Lemma B.1.2.

E(R)
[

f (B(x)) · g
(

Tc
R(x′)− µc

σc

)]
∼ E(R)[ f (B(∞)] ·E(R)

[
g
(

Tc
R(x′)− µc

σc

)]
∼ (B.31)

∼ E(R)[ f (B(∞))] ·E(R)[g(Z)], as x → ∞, (B.32)

where Z is an N(0, 1) distributed random variable.
�
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Finally, the two lemmas above enable to give a proof that, conditional on ruin occurring, the
time of ruin in the classical Cramér-Lundberg model is asymptotically normal distributed.

Proof of Theorem B.1.1.
Applying the change of measure to the Esscher transform P(R) yields

P[Tc
R ≤ T] = E(R)[e

−R(x−XTc
R
)+Tc

R(g(R)−pR)
1{Tc

R≤T}] = (B.33)

= E(R)[e
−R·RTc

R1{Tc
R≤T}] = (B.34)

= e−Rx ·E(R)[e−R·B(x)1
{ Tc

R−µc
σc ≤ T−µc

σc }
] ∼ (B.35)

∼ e−Rx ·E(R)[e−R·B(∞)] ·Φ
(

T − µc

σc

)
, as x → ∞, (B.36)

where the asymptotic law follows from Lemma B.1.3..
The same change of measure yields the Cramér-Lundberg approximation for the
probability of ruin in the classical model, where this time the constant is expressed in
terms of the overshoot (Tc

R is a.s. finite under the new measure P(R)):

P[Tc
R < ∞] = E(R)[e

−R·RTc
R ] = e−Rx ·E(R)[e−R·B(x)] ∼ Ce−Rx, as x → ∞, (B.37)

with C := E(R)[e−R·B(∞)]. The convergence of E(R)[e−R·B(x)] relies on the assumption

B(u) P(R)
−→ B(∞) as well as the boundedness and continuity of the function e−Rx for x > 0.

Finally

P[Tc
R ≤ T|{Tc

R < ∞}] =
P[Tc

R ≤ T]
ψ(x)

∼ Φ
(

T − µc

σc

)
, as x → ∞. (B.38)
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C
Appendix: Matlab code for the Monte Carlo simulation

The below code was run with MATLAB R2012b provided by The MathWorks (2012) on a
MacBook Pro Retina (13 inch, early 2013) with OS X Mavericks.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Author: Martin Pleischl
3 % Master Thesis for the MSc in Financial and Actuarial Mathematics
4 % Vienna University of Technology, 2014.
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % Monte Carlo Simulation of the time to ruin in the Cramer−Lundberg model
9 % with a high dividend barrier (Exponential or Erlang claims)

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11

12 clear all, close all;
13

14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % Parameter Input
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17

18 scale=1000; %timescale (discrete time steps of size 1/scale)
19 Sims=1000; %number of simulated paths
20

21 p=1.02; %dividend rate
22

23 lambda=1; %Poisson parameter
24

25 mu=1; %mean claim size
26

27 %shape parameter
28 %n=1; %Exp(1) claims
29 n=2; %Erlang(2,2) claims
30

31 %scale parameter
32 beta=mu/n;
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C. Appendix: Matlab code for the Monte Carlo simulation

33

34 B=[50,100,200]; %dividend barriers
35

36

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 % Calculating m, R and C
39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40

41 %asymptotic law for the expected size of a complete excursion
42 m=1/lambda+mu/(p−lambda*mu);
43

44 %Cramer−Lundberg coefficient
45 %R=1/mu−lambda/p; %Exp(1) claims
46 R=(4*p−1−sqrt(8*p+1))/(2*p); %Erlang(2,2) claims
47

48 %constant in the Cramer−Lundberg approximation
49 %C=lambda*mu/p; %Exp(1) claims
50 C=(p−1)/((2/(2−R))ˆ3−p); %Erlang(2,2) claims
51

52

53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % Allocations
55 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56

57 %allocation of the approximate probabilities of ruin during an excursion
58 rho=zeros(length(B));
59

60 %allocation of the simulated time to ruin
61 TR=zeros(length(B),Sims);
62

63

64 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 % Loop over different barriers
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67

68 for i=1:length(B)
69

70 b=B(i); %choose barrier
71

72 %calculate approximate probability of ruin during an excursion
73 rho(i)=C*p*R/lambda*exp(−R*b);
74

75 %print size of barrier
76 fprintf('\nDividend barrier: %d\n', b);
77

78

79 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 % Simulation
81 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82

83 for j=1:Sims
84

80



85 %print number of iteration
86 fprintf('Iteration: %d/%d\n', j, Sims);
87

88 %start at barrier
89 X1=b;
90

91 %simulate time of first claim
92 T=exprnd(scale/lambda);
93

94 %simulate size of first claim
95 C=gamrnd(n,beta);
96

97 t=1; %number of time step
98

99 %simulate as long as the surplus is positive
100 while X1>0
101

102 %surplus is below the barrier
103 if b−X1>p/scale
104

105 %next claim does not occur
106 if t<T
107 %premium rate is added
108 X2=X1+p/scale;
109

110 %next claim occurs
111 else
112 %premium rate is added, claim size subtracted
113 X2=X1+p/scale−C;
114

115 %simulate size of next claim
116 C=gamrnd(n,beta);
117

118 %simulate inter−arrival time of next claim
119 I=exprnd(scale/lambda);
120

121 %add to time of last claim
122 T=T+I;
123 end
124

125 %surplus is at the barrier
126 else
127 %next claim does not occur
128 if t<T
129 %surplus stays at the barrier
130 X2=b;
131

132 %next claim occurs
133 else
134 %claim size is subtracted
135 X2=b−C;
136
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137 %simulate size of next claim
138 C=gamrnd(n,beta);
139

140 %simulate inter−arrival time of next claim
141 I=exprnd(scale/lambda);
142

143 %add to time of last claim
144 T=T+I;
145 end
146 end
147

148 %preparing next time step
149 t=t+1;
150 X1=X2;
151 end
152

153 %calculate the simulated time of ruin
154 TR(i,j)=t/scale;
155 end
156

157

158 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
159 % Post−processing (plotting)
160 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
161

162 figure
163 binsize = 0.2;
164 Tmax=6;
165

166 %plotting an Exp(1) density for comparison
167 xvalues=0:0.01:Tmax;
168 exp pdf = exppdf(xvalues,1);
169 plot(xvalues,exp pdf,'LineWidth',1.4,'Color','k')
170 hold on;
171

172 %plotting histogram of rho/m*TR
173 [counts,TRx] = hist(rho(i)*TR(i,:)/m,binsize/2:binsize:Tmax);
174 norm = counts/Sims/binsize;
175 bar(TRx,norm,'blue');
176 set(gca,'FontSize',16);
177 set(gcf,'color','w');
178

179 hold off;
180 end
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