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Abstract

Dynamics of One-Dimensional Bose Gases in Time-Dependent
Traps

In the scope of this thesis, an experiment was prepared to reliably produce Bose-
Einstein condensates in an atom chip trap. In this setup, the dynamics and relaxation
processes within an ultracold cloud of 87Rb in a time-dependent trapping potential
were investigated. The system under scrutiny is a gas of interacting bosons in a highly
elongated magnetic trap created by wire structures on the atom chip. Such a trap allows
confining the gas to the motional ground state of the radial trapping potential, while
still accommodating axial excitations at temperatures between 10 to 200 nanokelvins,
constituting the one-dimensional realization of a Bose–Einstein condensate, called
”quasicondensate”. This scenario is described by the Lieb-Liniger model of weakly
interacting bosons in a one-dimensional geometry. Both the Lieb-Liniger model as
well as its effective low energy limit valid in the quasicondensate regime, the Luttinger
liquid model, can be mapped to models describing the dynamics of 1d spin chains in
solid state physics, which is why an understanding of their nonequilibrium dynamics is
of interest beyond the field of cold atom physics.

The trapping potential is manipulated according to various different protocols in order
to investigate the time evolution of excitations in the cloud. Specifically, a dynamical
scale invariance present in the system allowing the exact calculation of time-dependent
correlation functions, the feasibility of optimal control to engineer the cloud’s state
after a quench, as well as the 1d expansion of a quasicondensate are investigated.
Experimental data is compared to numerical simulations based on a stochastic nonlinear
Schrödinger equation and to analytical results.

The final part of the thesis describes the preparation of a new experiment combining an
atom chip with optical nanofibers to create a novel atom-photon interface.



Zusammenfassung

Dynamik von eindimensionalen Bose-Gasen in zeitabhängigen Fallen

Im Rahmen dieser Arbeit wurde ein Experiment zur Produktion von Bose-Einstein
Kondensaten in einer Atomchip-Falle vorbereitet. Damit erfolgten Untersuchungen zur
Dynamik sowie zu Relaxationsprozessen in einer ultrakalten Wolke von 87Rb–Atomen
in einem zeitabhängigen Fallenpotential. Lithographisch gefertigte Drahtstrukturen
auf dem Atomchip erlauben die Präparation eines Gases wechselwirkender Bosonen
in einer stark elongierten magnetischen Falle bei Temperaturen zwischen 10 und 200
Nanokelvin, sodass die Dynamik auf den transversalen Grundzustand des Fallenpo-
tentials beschränkt ist, während im axialen Potential viele Zustände besetzt werden
können. Dieses System ist die eindimensionale Version eines Bose–Einstein-Kondensats
und wird als ”Quasikondensat” bezeichnet, dessen theoretische Beschreibung durch
das Lieb-Liniger Modell wechselwirkender Bosonen in 1d gegeben ist. Sowohl das
Lieb-Liniger Modell als auch das Luttinger-Flüssigkeitsmodell, eine effektive Theorie
für den Quasikondensat–Zustand, können auf die Dynamik von eindimensionalen
Spin–Ketten abgebildet werden, wie sie in Problemstellungen der Festkörperphysik
vorkommen. Daher ist das Verständnis von Nichtgleichgewichts-Phänomenen in diesen
Modellen auch über das Feld der Physik kalter Atome hinaus von Interesse.

Das Fallenpotential kann im Rahmen unterschiedlicher Protokolle manipuliert werden,
um die anschließende Zeitentwicklung des Systems zu durchleuchten. Im Besonderen
wurde eine dynamische Symmetrie des Systems untersucht, die eine Berechnung
von zeitabhängigen Korrelationsfunktionen erlaubt. Basierend darauf wurde die
1d–Expansion eines Quasikondensats diskutiert, sowie eine Methode entwickelt
um die Zeitentwicklung nach einer schnellen Änderung des Fallenpotentials durch
Optimal-Control-Techniken zu steuern. Die experimentellen Ergebnisse wurden mit
analytischen Vorhersagen für die Form der zeitabhängigen Korrelationsfunkionen
verglichen. Darüber hinaus wurden numerische Simulationen basierend auf einer
stochastischen nichtlinearen Schrödingergleichung implementiert und durchgeführt,
welche die experimentellen Ergebnisse und das analytische Modell zusätzlich validierten.

Den abschließenden Teil der Arbeit stellt die Planung und Mitvorbereitung eines neuen
Experiments dar, das durch Integration von optischen Nanofasern auf einem Atomchip
eine neuartige Atom-Licht Schnittstelle demonstrieren soll.
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1. Introduction & Motivation

1.1. Motivation

Although physics branches out into many different directions, the last decades have
seen two frontiers that encompass much of the research effort taking place on a diverse
amount of topics. One of them is elementary particle physics and cosmology; the other
is the description of many-body quantum systems. For the former, the main challenge
is still finding a consistent fundamental theory. In contrast, the second frontier is much
about dealing with the vast complexity arising from systems that, in principle, can
be microscopically described by a known ”fundamental” theory - however, interactions
between the many constituents render it very hard to make predictions for observables
from said theory. For a long time, the main arena for the investigation of many-body
quantum systems was solid state physics. Yet, technical progress has added other areas
such as the behaviour of complex molecules in biological systems [1] or ultracold atomic
vapours.

Cold atoms. The advent of cold atom experiments and the production of degenerate
quantum gases from ultracold atomic vapours [2, 3, 4] has brought an intriguing new
angle on the problem. For once, physicists had the chance to engineer interacting many-
body quantum systems so that their theoretical description is tractable, or in such a
way that they resemble other known scenarios (for instance from solid state physics) but
offer to study formerly inaccessible observables, or to easily tune formerly inaccessible
parameters. Consequently, fundamental open questions regarding for instance the na-
ture of quantum phase transitions [5, 6] or the mechanisms behind thermalisation and
relaxation in quantum mechanical systems [7, 8, 9] can be tackled in experiments with
unprecedented control and flexibility.

1d Bose gases. An intriguing example is the 1d Bose gas. Initially devised as an
exactly solvable toy model by Lieb and Liniger in 1964 [10, 11], it is possible today to
create and manipulate this system with different experimental techniques [12]. While
optical lattice experiments allow to easily tune interactions to study the transition from
non-interacting ideal to strongly correlated systems [13], atom chip experiments allow to
create single to few of these gases that can be precisely investigated to yield correlation
functions [14, 15, 16, 17], encoding much of the information about the system’s many-
body state. The 1d Bose gas is unique in that its classical counterpart is integrable,
allowing the investigation of quantum mechanical relaxation processes in a system that
classically is not supposed to relax. Further, in the experiment the presence of the
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trapping potential [18, 19] allows to study the consequences of perturbations to the
ideal 1d case in the context of integrability [20]. In addition, it is possible to implement
efficient numerical simulations for comparison with both theory and experiment [21, 22,
23].

Non-equilibrium dynamics. Much has been learned about the equilibrium properties
of 1d Bose gases in recent years [12]. Consequently, it is a good time to focus on the
much less well-understood non-equilibrium dynamics: To which state does the system
relax after perturbing it? What are the timescales involved? The goal of this work is
to help elucidate these questions. Due to the well-known and controlled microscopic
physics, it is possible to study the emergence of universal effective field theories and
their limitations depending on the details of the system. Especially universal physics
considering dynamical properties rather than the equilibrium states is of interest in this
context.

Beyond cold atoms. This opens up ties to other branches of physics. In the case of the
1d Bose gas, the Lieb-Liniger-Hamiltonian can be mapped to that of a quantum Ising
spin chain [24], making some results directly applicable to certain solid-state systems.
While not topic of this thesis, adding coupling between two trapped Bose gases yields
a system described by a Sine-Gordon Hamiltonian, which, similarly, can be mapped to
the XY model [25]. On the other hand, the Gross-Pitaevskii Lagrangian dimensions can
be described in terms of different effective metrics [26], depending on its dimensionality,
making accessible several analogue-gravity models in experiment. A number of proposals
exists on how to draw parallels between the role of quantum and thermal fluctuations
in superfluids and in cosmological models [27, 28, 29].

1.2. Introduction

The aim of this thesis was to understand and control dynamics of cold 1d and quasi-
1d Bose gases in time dependent traps and magnetic guides on an atom chip. An
important tool towards this goal, thermometry for 1d quasicondensates based on density
correlations in time-of-flight expansion, has been developed in the course of previous
work within our group. This method is described in references [30, 15], and in detail
within Stephanie Manz’s thesis [31].

Preparing cold clouds. At the start of this thesis project, our setup allowed to prepare
atom clouds with temperatures in the order of a few 10 microkelvins. Much interesting
physics, however, like non-classical atom statistics, only becomes accessible at temper-
atures on the order of a few 10 nanokelvins, at which atoms undergo Bose-Einstein
condensation, or are even restricted to the quantum mechanical ground state along the
trap’s tightly confining axes. In order to reliably achieve such conditions, several changes
had to be implemented in the setup. With a stable laser system already in place, one of
the key improvements was exchanging the experiment control with an up-to-date system
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yielding higher time resolution and less electronic noise, while at the same time allowing
for much easier handling of input signal calibration, real-time data analysis, and auto-
mated parameter scans. Together with several other changes to reduce electrical noise
and stray light as well as an optimization of the experimental cycle, cooling of atoms
down to temperatures in the nanokelvin-regime and Bose-Einstein condensation have
been achieved.

Quasi-BEC dynamics in time-dependent trapping potentials. Wire structures on
our atom chip allow us to deform the trapping potential in a controlled way in order
to induce dynamics, or 1d expansion along a magnetic guide. Consequently, the goal
is to understand the dynamics of a quasi-1d superfluid in a time-dependent trap. For
the overall shape of the density profile, the evolution in a time-dependent trap has been
known since many years [32, 33]. Understanding the full many-body dynamics, or as an
intermediate step, the multimode-dynamics of phononic phase and density fluctuations
on top of a mean-field approximation, is a more difficult problem, up until recently
only discussed for special cases [34, 35]. Surprisingly, a similar approach based on a
dynamical symmetry of the underlying Hamiltonian can be extended to a full class of
systems governed by a many-body Schrödinger equation with repulsive inter-particle
interactions, allowing to solve the time-dependent equation with the help of a scaling
transformation [36]. This yields predictions for correlation functions and corresponding
observables, like the average coherence length in the system, that can be interpreted in
terms of an effective temperature. We test these predictions in experiments performing
a fast switch (”quench”) between well-characterized initial and final trap geometries,
and find good agreement between the scaling solution, numerical calculations and our
data.

Optimal Control of quasi-BEC dynamics. Our experiment is not limited to fast
quenches of the trap geometry or slow, adiabatic ramps. We can also implement much
more complicated time-dependences. This allows us to perform compression or de-
compression protocols for the trap on non-adiabatic timescales, while suppressing the
collective dynamics typical after a simple quench. Such ’shortcuts to adiabaticity’ have
recently been successfully implemented for 3d thermal clouds and 3d BECs [37]. Here,
we demonstrate a similar scheme based on optimal control for 1d quasicondensates. In
contrast to the 3d BEC, the limited phase-coherence allows us to directly probe the tem-
perature of the phonon ensemble in the 1d quasicondensate. Such measurements provide
evidence that the shortcut procedure does not induce excitations and is therefore indeed
adiabatic with respect to the full observable excitation spectrum, up to the cutoff given
by the finite optical resolution of our imaging system.

Cold atoms in a 1d magnetic guide. One of the tools available in the experiment is a
fluorescence detector based on the integration of optical fibres on the atom chip, which
has been employed for previous measurements on atoms in the microkelvin-regime as
documented in references [38, 39, 40, 41, 42]. To make use of this device, atoms need
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to propagate from the central chip region, where the preparation of the cloud takes
place, over a distance of 5.5 millimetres to the site where the fluorescence detector is
mounted. At nanokelvin temperatures, this transport differs significantly from what
has been observed in the microkelvin regime and poses several experimental challenges:
Preparing clouds with sizeable atom numbers at low temperatures usually yields suffi-
cient densities such that the propagation along the magnetic guide is not free, but rather
hydrodynamic. The cloud is much more sensitive to irregularities of the trapping poten-
tial, which can inhibit the propagation from the initial trap to the fluorescence detector.
Additionally, at low temperatures, it only takes a small number of photon scattering
events to drastically influence the motion of an atom in the detection region. We use the
results outlined above to characterize and engineer the transport to the detection site
and analyse the interaction of cold atoms with the detector. Finally, for sufficiently long
1d expansion times, the observation of effects beyond the model based on scale invari-
ance is predicted. Their discussion and prospects for future measurements are presented
in the later sections of this thesis.

1.3. Structure

Part I contains a brief introduction to the theory of 1d Bose gases and some numerical
methods suited to their simulation. A full treatment of these topics would be beyond
the scope of this work, hence these sections should merely serve as a basis for each
project’s more detailed presentation later on.

Much of the experiment has already been set-up before the start of this thesis.
Therefore, a presentation of the apparatus in part I focuses on the changes to the
machine implemented in the scope of this project to achieve BEC, as well as on some
experimental techniques relevant for later chapters.

Part II contains the measurement results and their analysis. It constitutes the core
part of this thesis. It is split into three self-contained but interconnected projects, each
presented within its own chapter.

Part III presents an outlook focusing on the ongoing construction of a new ex-
perimental setup, starting with a short overview, followed by the contributions made
in the scope of this thesis project. I conclude with a summary of the main results and
a short discussion of open questions and prospects for future experiments, with an
emphasis on the new setup in preparation.



Part I.

Basics





2. 1d Bose gases: Theoretical basics

”A theory is something nobody believes, except the person who made it.”

Albert Einstein, in a conversation with Hermann Mark

The central part of this thesis as presented in chapters 5 and 6 deals with the dynamics of
1d quasicondensates in time-dependent trapping potentials and the description of fluctu-
ations and coherence properties in the presence of such dynamics. While these chapters
contain a presentation of the corresponding theoretical models, the latter are based
on the detailed understanding of the equilibrium properties of trapped 1d Bose gases
that has been achieved during the last decades. The goal of this chapter is to present
a short overview of the physics involved and a compilation of important references,
with a focus on the topics relevant for the later parts of this thesis: The description
of phase fluctuations in terms of low-energy phononic excitations and corresponding
correlation functions, and the manifestation of characteristic density fluctuations in free
expansion providing observables that render these fluctuations experimentally accessible.

The chapter starts with a short discussion of Bose-Einstein condensation, bridging
the well-known textbook case of an ideal Bose gas in a three dimensional box in the
continuum limit to the experimental system at hand, a trapped 1d Bose gas with a
finite number of particles. This is followed by the introduction of interacting Bose gases
in terms of bosonic fields and corresponding correlation functions, a formalism that is
used throughout the rest of this chapter.

Section 2.2 continues with a discussion of the different regimes that exist for the trapped
interacting 1d Bose gas, followed by the core of this chapter, section 2.3, which puts fo-
cus on the 1d quasicondensate with weak interactions at finite temperature, as realized
in our experiments. It develops the description of thermal phase fluctuations in terms of
a universal Luttinger liquid model, containing a discussion of its limits and an outlook
on current research dealing with effects beyond this picture. In particular, section 2.4
contains an analysis of the 1d-3d crossover regime and the influence of experimentally
relevant 3d effects on the 1d physics presented in the previous sections. Finally, section
2.5 briefly summarizes the theory developed in reference [30] that is the basis of ther-
mometry based on density fluctuations, also called density ripples, emerging during the
free expansion of a phase-fluctuating quasicondensate.
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2.1. Introduction

The attempt to derive Planck’s radiation law [43, 44] purely on the grounds of the light
quanta hypothesis and statistical mechanics led to the publication of Satyendra Nath
Bose’s seminal article in 1924 [45], published with the help of Einstein, and in further con-
sequence to the realization that indistinguishable particles in quantum mechanics are not
correctly described by classical Maxwell-Boltzmann statistics [46, 47]. As discovered only
several years later, their statistical properties depend on spin [48, 49, 50, 51, 52]. Parti-
cles with integer spin, today called bosons, can accumulate and condense in the energetic
ground state under certain conditions, forming a novel state of matter. The possibility of
such a state was actually pointed out by Einstein already in [53]. Although the effects of
Bose-Einstein statistics are apparent in a variety of physical systems, most prominently
laser light, the experimental realization of a Bose-Einstein condensate (BEC) from a
cold bosonic vapour was not achieved until the mid nineties [2, 3, 4]. Today, such exper-
iments are a cornerstone of fundamental research in many-body quantum physics. The
following sections sketch the mechanism of Bose-Einstein condensation, with a focus on
the influence of dimensionality on the phenomenon.

2.1.1. Bose-Einstein condensation of the ideal gas

The textbook case to introduce BEC is the discussion of the ideal homogeneous Bose
gas in three dimensions [54, 47]. The average particle number in a grand-canonical
ensemble of bosons defined by a volume V , chemical potential µ and temperature T
with β = (kBT )−1 and Boltzmann’s constant kB is given by the sum over the average
occupation of each discrete momentum state k with corresponding energy eigenvalues
εk = ~2k2/(2m) as

〈N〉 =
∑
k

〈nk〉 =
∑
k

1

eβ(εk−µ) − 1
= 〈n0〉+

∑
k 6=0

〈nk〉 = 〈n0〉+ 〈nex〉 . (2.1)

Here, the ground state occupation number 〈n0〉 is considered separately from the excited
state occupations 〈nex〉 since its contribution otherwise vanishes in the continuum limit
taken below. It can be expressed as

〈n0〉 =
1

e−βµ − 1
=

z

1− z
≥ 0. (2.2)

The quantity z = eβµ is called fugacity. The chemical potential needs to fulfil µ <
0 to prevent negative occupation numbers, restricting the fugacity to values between
0 ≤ z < 1. To discuss the behaviour of the system in the ’quantum mechanical’ limit
T → 0, z → 1, the volume is considered to be an n-dimensional box with periodic
boundary conditions, and the continuum limit is taken, replacing the sum from equation
2.1 by the integral

〈N〉 =
z

1− z
+

∫
dεD (ε) 〈n (ε)〉. (2.3)
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Here, D (ε) = dΩ/dε represent the density of states that depends on the volume of a phase
space element Ω in this semi-classical approximation and therefore on the dimensionality
of the system. This quantity determines the fate of the system in the quantum limit, as
will be seen below.

BEC in 3 dimensions.

In a homogeneous three dimensional system, Ω can be expressed as

Ω =
1

~3

∫
d3r d3p =

4πV

~2

∫ ∞
0

dp p2 =
V

4π2

(
2m

~2

)3/2 ∫ ∞
0

dε
√
ε. (2.4)

Hence, the total occupation number in excited states 〈nex〉 can be written as

〈nex〉 =
V

4π2

(
2m

~2

)3/2 ∫ ∞
0

dε
√
ε

eβ(ε−µ) − 1
(2.5)

This integral can be solved analytically, yielding

〈nex〉 =
V

λ3
dB

· g3/2 (z) . (2.6)

Here, λdB =
√

2π~2/(mkBT ) denotes the thermal de Broglie wavelength and g3/2 (z) the
polylogarithm

g3/2 (z) =
∞∑
m=1

zm

m3/2
. (2.7)

This series only converges for |z| ≤ 1 and is bounded by Riemann’s zeta function:

g3/2 (1) =
∞∑
m=1

1

m3/2
= ζ (3/2) ≈ 2.612. (2.8)

This means that the excited states can only accommodate a finite number of particles.
Let us further assume a fixed average particle number 〈N〉 in the system. Upon
lowering the temperature, the total particle number can be kept constant by raising
µ. For µ → 0, however, the excited state population saturates, and equation 2.6
cannot account for the total particle content of the system any more. Consequently,
an increasing occupation needs to accumulate in the ground state, constituting the
phenomenon of Bose-Einstein condensation.

The critical temperature for the onset of this process can be defined at the point where
saturation is reached:

Tc =
2π~2

m

(
〈N〉

V ζ (3/2)

)
. (2.9)

Defining the average density n = 〈N〉 /V , this leads to the condition for the onset of
condensation:

nλ3
dB ≈ 2.612. (2.10)
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The left side of equation 2.10 is also called the phase space density of the system.

It is instructive to also touch upon BEC in a trap. A trapping potential modifies the
density of states. For the special case of an isotropic harmonic trap, for example, it is
given by

D (ε) =
1

2 (~ω)3 ε
2, (2.11)

and the critical temperature turns out to be

Tc =
~ω
kB

(
〈N〉
ζ (3)

)1/3

. (2.12)

with ζ (3) ≈ 1.212.

In the typical experimental case of an anisotropic trapping potential, it is useful to
adopt a local density approximation (LDA). Here, the chemical potential depends on the
position in the trap as µ(r) = µ − V (r), with a maximum value at the trap minimum.
In such a scenario, condensation sets in at the trap centre first, as the local phase
space density exceeds ζ (3/2) ≈ 2.612. While the condensation process and critical
temperature is described rather well by the non-interacting model as discussed above,
with interaction-induced shifts of TC measured to be in the order of a few percent [55],
the shape of the condensate and its dynamics is usually dominated by interactions. An
appropriate model to describe the ground state and dynamics of an interacting Bose gas
within a mean-field picture is presented in section 2.1.3.

BEC in one dimension.

As already mentioned, the density of states determines the behaviour of a bosonic gas
in the quantum limit. The general scaling with the dimensionality d of the system is
D (ε) ∝ ε

d−2
2 . For the already discussed 3d case, it is proportional to

√
ε, tending to

zero in the limit ε→ 0. In two dimensions it does not depend on energy at all, while in
one dimension it scales as 1/

√
ε, showing divergent behaviour in the limit ε → 0. In a

hand-waving picture, this means that there is an arbitrarily large number of low-energy
states at decreasing level spacing that can be populated, and that intuitively, one should
not expect condensation in the ground state. Indeed, the one-dimensional equivalent to
equation 2.6 reads

n1dλdB = g1/2(z) =
∞∑
m=1

zm

m1/2
, (2.13)

with the linear density n1d. This polylogarithm actually diverges in the limit |z| → 1,
and the excited state population is not bounded, in contrast to the 3d case. This
finding has its roots in the Mermin-Wagner-Hohenberg theorem1 [57, 56], stating that

1Actually, the argument goes back to previously unpublished work of N. Bogolyubov and is a conse-
quence of the Bogolyubov-k−2 theorem, as acknowledged in [56]. Sometimes also called Coleman-
theorem.
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spontaneous symmetry breaking at finite temperature in a system with short-range
interactions is prohibited.

However, as already demonstrated, the existence of a trap changes the density of states.
While a harmonic confinement in 1d leads D(ε) to be independent of ε, still prohibiting
condensation at finite temperature, it was found that this argument is only valid in the
continuum limit, while the discrete structure of levels in a system with a finite particle
number allows macroscopic occupation of the ground state [58], although not in terms of
a well-defined phase transition as in the 3d case, but as a smooth crossover, in accordance
with the experimental realization of such systems in [59] and later work. A discussion
of BEC of an ideal gas in various types of trapping potentials can be found in [60].

2.1.2. Bosonic fields and correlation functions

At this point, it is useful to introduce some notions used throughout the rest of the
chapter. It is convenient to describe many-body states in terms of field operators

Ψ̂† (r) =
∑
i

ψ∗i (r) â†i , Ψ̂ (r) =
∑
i

ψi (r) âi. (2.14)

They describe the creation or annihilation of a particle at position r. Here, âi and â†i
denote creation and annihilation operators for the single particle states defined by the
wave functions ψi(r). All operators fulfil bosonic commutation relations[

âi, â
†
j

]
= δij,

[
Ψ̂ (r) , Ψ̂† (r′)

]
= δ (r − r′) . (2.15)

In this notation, one can define several important quantities. The one-body reduced
density matrix ρ(1), equivalent with the first-order correlation function G(1), is given by

ρ(1) (r, r′) = G(1) (r, r′) =
〈

Ψ̂† (r) Ψ̂ (r′)
〉

(2.16)

It is a measure for the spatial coherence of the system. In particular, it can be used
to provide criteria for Bose-Einstein condensation. If one eigenvalue (λ0) of the density
matrix is in the order of the total particle number 〈N〉 while the other eigenvalues are
of order one, the system is called Bose-condensed, and the number of particles in the
condensate is given by 〈N〉 = λ0 [61]. Equivalently, one can consider the normalized
entity

g(1) (r, r′) =
G(1) (r, r′)√

G(1) (r, r)
√
G(1) (r′, r′)

, (2.17)

where
G(1) (r, r) =

〈
Ψ̂† (r) Ψ̂ (r)

〉
= n (r) (2.18)

is simply the local density. This function can take values between 1 and 0. If
g(1) (r, r′) > 0 for distances |r − r′| in the order of the whole extension of the cloud,
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the density matrix is said to feature a property called off-diagonal long range order,
implying coherence over the full cloud extension and the presence of a BEC. Note
that the criterion given above can also be applied to characterize quasicondensates
lacking coherence over the full sample size. In this case, the highest occupied mode,
characterized by the largest eigenvalue λ0 of ρ(1) is also called Penrose-Onsager mode
and represents the phase-coherent fraction of the gas.

Similarly, the second order correlation function

G(2) (r, r′) =
〈

Ψ̂† (r) Ψ̂† (r′) Ψ̂ (r) Ψ̂ (r′)
〉
, (2.19)

as well as its normalized version

g(2) (r, r′) =
G(2) (r, r′)

n (r)n (r′)
(2.20)

can be defined. They represent the joint probability to measure two particles at the
respective positions r and r′ and are of interest in the context of density ripple ther-
mometry as outlined in section 2.5. Reordering the field operators in this expression
allows to define a density correlation function.

2.1.3. Interacting Bose gases

In terms of the notation introduced in the previous section, we can now write down the
Hamiltonian of an interacting Bose gas in second quantization as

Ĥ =

∫
drΨ̂† (r) ĤspΨ̂ (r) +

1

2

∫
drdr′Ψ̂† (r) Ψ̂† (r′)Vint (r′ − r) Ψ̂ (r) Ψ̂ (r), (2.21)

where Ĥsp represents the single-particle Hamiltonian

Ĥsp = − ~2

2m
∆ + Vext(r), (2.22)

while Vext (r) and Vint (r′ − r) stand for the external trapping and interaction potentials
of two atoms at distance |r′ − r|.

To study the macroscopically occupied ground state of a BEC, it is a good approximation
to replace field operators Ψ̂ (r) , Ψ̂† (r) by a complex wave function Ψ (r) ,Ψ∗ (r). In
addition, BEC occurs in the low-temperature limit, translating into low average kinetic
energy per atom causing s-wave scattering to dominate the contribution from higher
partial waves, and the usually complicated interaction potential governing scattering
between two atoms can be replaced by a delta-function pseudopotential. Under these
conditions, interactions can be treated in terms of a mean-field description, and the
shape and time-evolution of the macroscopic wave function Ψ, taking the role of an
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order parameter for the BEC transition, are given by the Gross-Pitaevskii equation
(GPE) [62]:

i~
∂

∂t
Ψ (r, t) =

(
− ~2

2m
∆ + Vext (r, t) + g · |Ψ (r, t) |2

)
Ψ (r, t) . (2.23)

The coupling constant depends on the s-wave scattering length as, governing the inter-
action strength, as

g =
4π~2as
m

. (2.24)

In the limit of negligible interactions, the shape of Ψ (r, t) corresponds to the single-
particle ground state in the trap. For harmonic confinement, this is a Gaussian defined by
the oscillator lengths aiho =

√
~/(mωi), where ωi = (ωx, ωy, ωz) are the trap frequencies

along each direction of the parabolic potential. For a sizeable interaction term, the
behaviour of the ground state solution depends on the sign of as: If it is negative, there
is a critical particle number beyond which the solution is not stable and describes a
collapse of the condensate. For a positive scattering length, as is the case for 87Rb
in the absence of a Feshbach resonance, repulsive interactions will broaden the ground
state profile. Throughout this thesis, the discussion is focused on a gas with short-
range repulsive interactions. An important case is the limit where the interaction term
dominates. Separating the condensate wave function into

Ψ (r, t) = Ψ (r) e−i
µt
~ , (2.25)

substituting it into equation 2.23 and dropping the kinetic term yields

|Ψ (r) |2 =
1

g
(µ− Vext (r)) . (2.26)

This is called the Thomas-Fermi approximation, and the density takes the shape of the
potential.

So far, we have been concerned with the ground state profile. Note that the time-
dependent GPE 2.23 allows to describe collective excitations. Further, small fluctuations
around the ground state wave function Ψ + δΨ can be reintroduced and treated in
terms of a Bogolyubov transformation [63]. A very similar method to treat fluctuations
of a 1d quasicondensate is applied in section 2.3.

Finally, it is useful to introduce the hydrodynamic representation of the Gross-Pitaevskii
equation, which is utilized in the discussion of the finite-temperature scaling solution for
a 1d quasicondensate in chapter 5. One can separate the condensate wave function as

Ψ (r, t) =
√
n (r, t) · eiφ(r,t), (2.27)

where n(r, t) =: n and φ(r, t) represent density and phase, respectively. Substituting
this ansatz into equation 2.23 and making use of the relation between phase gradient
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and velocity field v := v(r, t) = (~/m)∇φ(r, t) yields the hydrodynamic equations:

∂n

∂t
+∇ (nv) = 0 (2.28)

m
∂v

∂t
+∇

(
Vext (r, t) + gn− ~2

2m
√
n

∆
√
n+

mv2

2

)
= 0 (2.29)

Here, 2.28 represents the continuity equation, while 2.29, neglecting the third term in
brackets on the r.h.s. denoting the quantum pressure, hence again introducing the
Thomas-Fermi approximation, reduces to the Euler equation for an ideal fluid.

2.2. The interacting Bose gas in 1d

Typically, 1d Bose gases are realized in a highly anisotropic cylindrical trap. Considering
harmonic confinement as in previous sections, the trap is characterized by radial and
axial trap frequencies ωr and ωa, with ωr >> ωa. The common 1d-condition is that both
thermal energy and chemical potential are small with respect to the radial level spacing,

kBT, µ� ~ωr (2.30)

with the result that the gas is restricted to the radial ground state of the trap, and all
dynamics takes place along the axial direction. In this scenario, the transverse direction
can be integrated out to arrive at a one-dimensional description, if an effective 1d-
coupling constant can be found, as discussed in [64]. For a typical atom chip trap
with radial trap frequencies ranging from 2π × 1 kHz to 2π × 4 kHz, the corresponding
oscillator lengths are between aho,r = (~/mωr)1/2 = 340 nm and 170 nm, while the 3d
scattering length is as ≈ 5 nm. In this case, the scattering properties keep their 3d
character and an effective 1d interaction constant results from averaging over the radial
density profile [65]:

g1d =
g

2πa2
ho,r

= 2~ωras (2.31)

with the 3d interaction constant g as defined in 2.24. With this, disregarding the axial
trapping potential for the moment, we can consider the following Hamiltonian:

Ĥ = − ~2

2m

∫
dzΨ̂† (z)

∂2

∂2z
Ψ̂ (z) +

g1d

2

∫
dzΨ̂† (z) Ψ̂† (z′) Ψ̂ (z) Ψ̂ (z′). (2.32)

This is the famed Lieb-Liniger Hamiltonian [10, 11] for an interacting 1d Bose gas in
second quantization. It is one of the few many-body systems where ground state prop-
erties and the excitation spectrum can be calculated exactly regardless of interaction
strength. Initially developed as a toy model, the experimental realization of 1d Bose
gases revived the interest in theoretical studies of this Hamiltonian. One important
question in this context is how to properly define integrability for quantum systems.
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The classical counterpart of the Lieb-Liniger Hamiltonian describes a homogeneous2

gas of particles confined to one spatial dimension. This system is integrable in the
classical sense so that one can construct as many conserved quantities as there are
degrees of freedom. For a quantum mechanical system, on the other hand, the notion of
integrability still lacks a meaningful definition. The Lieb-Liniger problem, for instance,
is mathematically ’integrable’ in that one can find an exact solution, but a physical
argument that connects to the definition of integrability in classical mechanics and
allows to classify different systems and to predict mathematical ’integrability’ still waits
to be found, despite ongoing efforts [9].

In addition, the Lieb-Liniger model can be mapped to the XXZ-Heisenberg spin chain in
the continuum limit, and shares a universal theory describing the low-lying elementary
excitations with many other one-dimensional systems realized in solid state physics,
from electrons in quantum wires formed by semiconductor heterostructures to carbon
nanotubes [66]. This is the Tomonaga-Luttinger liquid description, a variant of which
will be introduced in section 2.3.1. Comprehensive reviews on this topic can be found
in [24] and [12].

2.2.1. Phase diagram of the homogeneous 1d Bose gas

In the following, we will define several quantities that allow us to categorize the different
regimes encountered in the phase diagram of the 1d Bose gas, following references [67, 68,
69, 70, 71]. The characteristic length and energy scales associated with the interaction
constant are

lg =
~2

mg1d

, Eg =
mg2

1d

2~2
=

~2

2ml2g
(2.33)

In addition, one can define a dimensionless quantity characterizing the interaction
strength, the so-called Lieb-Liniger parameter:

γ =
mg1d

~2n1d

=
1

nlg
, (2.34)

where n1d denotes the linear density. It is connected with the pre-factor c of the inter-
action term in the first-quantized version of the Hamiltonian 2.32 as γ = c/n1d [11]. It
reveals a counter-intuitive peculiarity of the 1d Bose gas: In contrast to the 3d system,
the interaction strength increases with decreasing linear density n1d. Further, we can
define the degeneracy parameter, below which quantum effects start to become impor-
tant:

Td =
~2n2

1d

2mkB
=

Eg
kBγ2

. (2.35)

Finally, using Td, a dimensionless temperature can be expressed as

t =
T

γ2Td
. (2.36)

2Here, the term homogeneous as used in classical statistical mechanics denotes a system of particles
with identical masses.
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Figure 2.1.: Phase diagram of the 1d homogeneous Bose gas. The classical decoherent regime is
found for γ2t >> 1 (black line). At weak interactions, it borders on the quantum decoherent regime
(γ1/2 � γ2t � 1, blue and black line), where the blue line separates it from the quasicondensate
regime. For γ � 1 and γ2t � 1, the system enters the strongly interacting Tonks-Girardeau regime.
The grey-shaded region denotes the approximate parameter regime available to our experimental setup.

The two parameters γ and t can be used to construct the phase diagram of the homoge-
neous 1d Bose gas shown in figure 2.2.1. Based on the exact solution to the Lieb-Liniger
problem and a model presented in [72] allowing to calculate thermodynamical properties
at equilibrium, one finds several regimes distinguished by different excitation spectra,
correlation properties and overall physical behaviour as described in [67] and [68].

Classical decoherent gas. For T > Td the gas is non-degenerate and hence governed
by a classical Boltzmann distribution, and correspondingly, thermal correlations [73]:

g(2)(z) = 1 + g(1)(z) = 1 + exp

(
− z2

2πλdB

)
, (2.37)

where the characteristic length scale is governed by the thermal de Broglie wavelength
λdB and the relation between first and second order correlation functions follows for
Wick’s theorem [74] and a Gaussian state.

Quantum decoherent gas. The onset of quantum degeneracy is found for tempera-
tures below γ2t ≈ 1. In the regime marked by γ � 1 and γ−3/2 � t � γ−2, Bose-
enhancement leads to increased coherence resulting in a non-Gaussian first-order corre-
lation function [69, 70]

g(1)(z) = exp

(
− z
lφ

)
(2.38)

with a coherence length

lφ =
2

n1dγ2t
=
λ2
dBn

2π
. (2.39)



2.2 The interacting Bose gas in 1d 17

The second-order correlation function, which cannot be obtained as easily by the Wick
theorem as 2.37, is given by

g2(z) = 1 + exp

(
−2z

lφ

[
1− 4

γ3t2

(
1 +

2z

lφ

)])
(2.40)

.

Quasicondensate. In the limit of weak interactions and low temperature (γ � 1,
t � γ−3/2), the system forms a quasicondensate that shares many properties with the
3d BEC, such as suppressed density fluctuations, but long-range phase-coherence is
destroyed by pronounced phase fluctuations, as discussed in section 2.1.1. Since most
experiments presented in this thesis are performed in this regime, it will be described
in detail within section 2.3. With respect to the phase diagram, it is interesting to note
that the fluctuations dominating the coherence properties are thermal over much of the
parameter range, with quantum fluctuations starting to dominate only for temperatures
and linear densities kBT/g1dn1d . 0.1 [75].

Tonks-Girardeau gas. For γ > 1 at degeneracy, the system enters the strongly
interacting regime and forms a so-called Tonks-Girardeau gas [76]. In contrast to a
coherent BEC-like state, the system is best described in terms of repelling single-particle
wave packets mimicking in many respects fermionic behaviour, and in the limit of
γ → ∞ there exists an exact mapping to a system of free fermions by the so-called
Jordan-Wigner transformation. While in our experimental setup, this parameter regime
is out of reach for now, it is possible to create interaction strengths in the order of
1 < γ < 10 in optical lattices arranged to realize an ensemble of cylindrical tubes with
high radial confinement [77]. In addition, an atom chip experiment [16] also reported to
achieve interaction strengths of γ ≈ 1.5. This was made possible by creating a trap with
AC currents using a modulation frequency of 200 kHz to smoothen out corrugations
of the potential usually leading to fragmentation of the atom cloud for traps close to
the chip allowing sufficient radial confinement to achieve strong interactions. Such a
technique is feasible to introduce in future chips used in our experiment.

It is crucial to keep in mind that the different phases outlined above are not separated
by sharp transitions. As mentioned in section 2.1.1, there is no mechanism, such as the
saturation of the excited state population in 3d, that allows to define a clear BEC phase
transition for the 1d Bose gas. Rather, one finds a large crossover region between the
decoherent and quasicondensate regimes, where the condensation is usually induced by
interactions [78] rather than in terms of a two-step process of initial radial and subsequent
axial condensation that has been described for an ideal Bose gas in a trap [58]. Likewise,
there exists no sharp transition between the weakly and strongly interacting regimes
at γ = 1. Significant characteristic effects, for example sizeable deviations from the
Bogolyubov-like excitations as discussed below, appear only for γ � 1 [79]. Similarly,
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Figure 2.2.: Phase diagram of the trapped 1d gas at T = 0. N � α−1 separates the non-interacting
Gaussian and interaction-dominated Thomas-Fermi regime, while the red line (N � α2) marks the
transition to the strongly interacting Tonks-Girardeau regime. Note that for sufficiently high atom
numbers, the system is always found in the Thomas-Fermi regime.

the break-down of the self-similarity present during the hydrodynamic expansion of a
weakly interacting Bose gas, for instance, has its onset at γ well below unity [80].

Experimentally accessible parameter regime. The region of the phase diagram that
can be realized with the experimental setup discussed in this thesis is marked by the
grey-shaded area within figure 2.2.1, characterized by 10−3 < γ < 10−2 and tempera-
tures corresponding to 10 < T < 200 nK. The limitations on γ arise from the available
radial trap frequencies below ∼ 2 kHz and feasible atom numbers between a few hun-
dred and 30000 within a 1d geometry. The temperature is bounded from below by the
efficiency of evaporative cooling in 1d [81], and thus indirectly by the initial phase space
density after loading the chip trap. The upper limit is again given by the maximal ra-
dial trap frequencies. In terms of energy, a frequency of 1 kHz roughly corresponds to a
temperature of 50 nK. At temperatures significantly exceeding the radial trap frequen-
cies defining the transverse level spacing, the dynamics is not confined to 1d any more
and hence the 1d phase diagram loses its validity. In summary, these effects limit the
exploration of 1d physics in our setup mainly to quasicondensates and, potentially, the
quantum decoherent regime in future experiments with extremely dilute clouds.

2.2.2. Effect of the trap on the phase diagram

The characteristic length scale of an axial harmonic potential with trap frequency ωa is
the already introduced oscillator length aho =

√
~/(mωa). For most regions in the phase

diagram, correlation lengths are much smaller than this quantity, and the influence of
the trap can be included in terms of a local density approximation (LDA). As such,
the gas is treated as composed of slices, each of which obeys the same description as a
homogeneous gas with local density n1d(z) [68]. In this picture, the biggest influence of
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the trap is expected in the limit of low temperatures, where correlation lengths and aho
can become comparable.

As already noted above, the presence of a trapping potential alters the scaling of the
density of states, and thus allows to realize a BEC in the limit T → 0 at low interaction
strengths, warranting a mean-field description of the 1d gas. Similar to the 3d case, we
can write down a Gross-Pitaevskii equation

i~
∂

∂t
ψ (z, t) =

(
− ~2

2m

∂2

∂2
z

+
mω2

az
2

2
+ g1d · |ψ (z, t) |2

)
ψ (z, t) . (2.41)

At negligible interaction strength, 2.41 reduces to a Schrödinger equation, and the
density profile n(z) = |ψ(z)|2 is given by the single-particle ground state, hence a
Gaussian in the case of harmonic confinement.

To investigate the effect of interactions, it is useful to define the parameter [82]

α =
mg1daho

~2
. (2.42)

It can be interpreted as the ratio of aho and the interaction length introduced in equation
2.33. Together with the total particle number, it spans the phase diagram of the trapped
degenerate gas at T = 0 [71] as shown in figure 2.2.2. For N � α−1 and α � 1, the
system enters the Thomas-Fermi regime, and the density profile takes the shape of an
inverted parabola

n(z) = n0

(
1− z2

R2
TF

)
(2.43)

with the central density n0 and the Thomas-Fermi radius

RTF =

√
2g1dn0

mω2
a

(2.44)

Only for α � 1 and N � α2, the gas is in the Tonks-Girardeau regime. The profile is
parabolic as well, but with a different radius RTG =

√
2Naho.

With particle numbers exceeding N = 1000 and values of α ≈ 0.1, the experiments
performed in the course of this thesis fall deeply into the Thomas-Fermi regime.

2.2.3. Excitation spectrum of the 1d Bose gas

The excitation spectrum of the homogeneous Bose gas can be calculated directly from
the exact solution of the Lieb-Liniger model [11]. One finds two branches, typically
labelled as type-I or ’particle’ excitations, and type-II or ’hole’ excitations, respectively,
with different dispersion relations. The latter are restricted to the strongly interacting
regime, while the former can be determined by application of the Bogolyubov theory
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[63, 83] to the 1d gas [84]. Here, excitations are treated as small fluctuations δψ around
the mean-field ground state ψ, in a basis of quasiparticles labelled by the momentum k.
The dispersion relation writes

εk =
√
Ek (Ek + 2µ), (2.45)

with the free particle dispersion relation Ek = ~2k2/2m and chemical potential
µ = g1dn0. At low energies it can be approximated as εk ≈ ck, and the excitations
correspond to phonons propagating at a speed of sound c = ~/

√
mµ. At high energies,

quasiparticles behave as free particles with a dispersion relation εk ≈ Ek + µ. The
crossover between these phonon- and particle-like regimes takes place at energies around
the chemical potential µ, corresponding to momenta in the order of the inverse healing
length ξ−1 = mc/~.

Much of the physics observed in experiment can be captured by models taking only
into account the low-energy phononic part of the spectrum, such as the Luttinger liquid
approach presented in the following section.

2.3. The 1d quasicondensate

As introduced in the previous section, a quasicondensate is an entity that is similar
to a BEC, but where long-range phase coherence is destroyed by excitations. While
quasicondensates are not restricted to 1d and have been realized in both 2d [85] and in
elongated 3d geometries [86], in a 1d geometry all dynamics is restricted to the axial
direction, allowing a simplified description.

2.3.1. Luttinger liquid model

Following reference [87], the starting point is a hydrodynamic approach [88] as introduced
in section 2.1.3 where we represent excitations in terms of density fluctuations δn̂(z) and
a spatially varying phase φ̂(z) on top of a mean-field in the Thomas-Fermi regime, relying
on a local density approximation to include an external harmonic trapping potential. The
fields δn̂(z) and φ̂(z) are conjugate quadratures that can be described by the Hamiltonian

Ĥ =
~

2π

∫
dz
[
vN (z) (πδn̂ (z))2 + vJ (z) (∂zφ̂ (z))2

]
=
∑
j

εj b̂
†
j b̂j, (2.46)

with the generalized velocities

vN(z) =
g1d

~π
, vJ(z) =

~π
2m

n(z) (2.47)

and the parabolic mean-field density profile with a radius RTF

n(z) = n0

(
1− z2

R2
TF

)
. (2.48)
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The generalized velocities are connected with the sound velocity c(z) and the so-called
Luttinger parameter as

c(z) =
√
vN(z)vJ(z), K(z) =

√
vJ(z)

vN(z)
. (2.49)

Both the sound velocity and the Luttinger parameter are local quantities due to the
inhomogeneity of the system.

The harmonic Hamiltonian 2.46 describes a Luttinger liquid in a trap, governed by 1d
versions of the hydrodynamic equations 2.29 and 2.28, neglecting the quantum pressure
term. Higher order contributions to the Hamiltonian that are not quadratic in δn̂(z)
or φ̂(z) are likewise neglected. Note that the physical a-priori assumption behind these
approximations is that density fluctuations are small.

We can expand δn̂(z) and φ̂(z) in a basis of uncoupled eigenfunctions [82]

δn̂ (z, t) =
∑
j≥1

√
εj

2~πvN (z)RTF

f̃j (z, t) b̂j +H.c. (2.50)

φ̂ (z, t) = −i
∑
j≥1

√
~πvN (z)

2εjRTF

f̃j (z, t) b̂†j +H.c. (2.51)

with separable basis functions

f̃j (z, t) = fj (z) exp

(
− i

~
εjt

)
. (2.52)

In the weakly interacting Thomas-Fermi regime, one can choose a basis of Legendre
polynomials Pj(z/RTF )

fj (z) =

√
j +

1

2
Pj

(
z

RTF

)
, (2.53)

and the energy spectrum is given by

εj = ~ωj =
~ωa√

2

√
j (j + 1). (2.54)

Since the Hamiltonian 2.46 is harmonic, there is no coupling between phase and density
fluctuations. Since the occupation number of each mode j is conserved, the only
dynamics that takes place after fixing the initial state is a rotation of each eigenstate
in the phase space spanned by the quadratures δn̂, φ̂ with frequency ωj.

Using the operators 2.50 and 2.51, it is possible to calculate the mean square fluctuations

〈δn̂2〉 and 〈δφ̂
2
〉 in the inhomogeneous system within this model. The corresponding

expressions can be found in reference [82]. At this point, we limit ourselves to the remark
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that the initial assumption of small density fluctuations is well justified for experimental
parameters, since they are found to approximately scale as T/TD. Since kBTD is usually
much larger than the radial energy level spacing ~ωr for a typical atom chip trap, T/TD
is always small (usually on the percent level) as soon as the 1d regime is entered.
Descriptions beyond the Luttinger limit have been presented in the form of a functional
integral approach including phase fluctuations exactly [89], and an extension of the
Bogolyubov theory to quasicondensates [84]. The former has also been extended to
accommodate an ab-initio treatment of phase fluctuations [90], and a comprehensive
review can be found in [47]. The latter faces some subtleties, mainly involving the
definition of the phase operator, and a detailed description of how to overcome these
problems is found in references [84] and [91].

2.3.2. Correlation functions

We proceed to derive an expression for the first order correlation function g(1) (z, z′) at
finite temperature from a Luttinger liquid model as introduced above, before shortly
commenting on density correlations in the quasicondensate regime.

First order correlation function

Neglecting density fluctuations, we can define a quasicondensate wave function analogous
to 2.27:

ψ(z, t) =
√
n(z)eiφ̂(z,t), (2.55)

and the first order correlation function as defined in equation 2.16 reduces to

g(1) (z, z′) ≈
√
n (z)n (z′)

〈
ei[φ̂(z)−φ̂(z′)]

〉
, (2.56)

which can be rewritten with the help of Wick’s theorem [74] as

g(1) (z, z′) ≈
√
n (z)n (z′)e

− 1
2

〈
[φ̂(z)−φ̂(z′)]

2
〉
, (2.57)

with the phase variance 〈[φ̂ (z) − φ̂ (z′)]2〉 = 〈δφ̂
2
〉. For simplicity, following reference

[71], this quantity will be calculated in the plane-wave basis of a homogeneous system,
which is a good approximation to the inhomogeneous model from section 2.3.1 in the
vicinity of the cloud centre. Expanding the phase operator as

φ̂(z) =
√

2
∑
k>0

[
φ̂ck cos(kz) + φ̂sk sin(kz)

]
, (2.58)

we have for the phase variance

1

2

〈[
φ̂ (z)− φ̂ (0)

]2
〉

=
∑
k>0

〈
φ̂2
ck

〉
(cos(kz)− 1)2 +

∑
k>0

〈
φ̂2
sk

〉
sin2(kz). (2.59)
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Assuming thermal equilibrium, the average energy stored in phase fluctuations for each
mode is given by the equipartition theorem and the amplitudes are given by [71]〈

φ̂2
k

〉
=

mkBT

n1d~2k2L
. (2.60)

Rearranging the sum and taking the continuum limit, we find

1

2

〈[
φ̂ (z)− φ̂ (0)

]2
〉

=
mkBT

n1d~2π

∞∫
0

dk
1− cos(kz)

k2
. (2.61)

Since

1

2π

∞∫
0

dk
1− cos(kz)

k2
=
z

4
, (2.62)

we find that the first order correlation function for a thermal state takes the form of an
exponential:

g(1) (z, 0) ≈ e
− mkBT

2~2n1d
z
. (2.63)

The characteristic scale of the exponential is called the thermal coherence length
λT = mkBT/2~2n1d and expresses the average extension of phase-coherent regions
within the quasicondensate. For typical experimental parameters, it is in the order
of a few to tens of microns, compared to Thomas-Fermi radii of roughly 200 µm.
Nevertheless, if the ratio kBT/µ becomes sufficiently small, λT can potentially grow to
exceed the system size, establishing a phase-coherent 1d BEC. Under such conditions,
however, the effect of quantum fluctuations offering a logarithmic contribution to the
exponent of g(1) (z, 0), as considered for instance in reference [92], needs to be taken
into account. For the experiments presented in this thesis, however, such a contri-
bution is negligible and an exponential coherence function offers an excellent description.

By the Wiener-Khinchin theorem3, one can identify the momentum distribution of the
gas as the power spectral density corresponding to the autocorrelation function g(1)(∆z)
via a Fourier transform:

n(k) = F
[
g(1) (z, 0)

]
(2.64)

Substituting the expression 2.63, one finds a Lorentzian shape [93, 94].

n(k) ≈ 1

2π

∫
d(∆z)g(1)(∆z)e−ik∆z =

1

π

λT
1 + λ2

Tk
2
. (2.65)

Second order correlation function

The in-situ non-local pair correlation function of the 1d Bose gas at finite temperature
across the full 1d phase diagram has been calculated in references [69] and [70], and

3Also called Wiener-Khinchin-Einstein theorem or Khinchin-Kolmogorov theorem.
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necessitates an approach beyond the Luttinger liquid description also for quasiconden-
sates. For distances below the healing length z < ξ, the main contribution comes from
particle-like Bogolyubov excitations, and the pair correlation function for a thermal
quasicondensate reads

g2(z, 0) = 1 +
T

2TDγ3/2
e−2z/ξ, (2.66)

decaying exponentially with the characteristic length scale ξ. At distances z > ξ,
phononic excitations dominate and lead to an antibunching contribution

g2(z, 0) −−→
z>ξ

1− πT 2

8T 2
Dγ

3/2
e−πTz/TDγξ. (2.67)

Picking z/ξ = 2 and a typical value of γ ≈ 5× 10−3, the maximum antibunching contri-
bution is found at 5 nK, with a deviation of 0.0005 from the Poissonian value g2(z, 0) = 1.
Together with required resolutions well below the healing length, a direct observation of
non-local pair correlations in an atom chip setup is, to say the least, extremely challeng-
ing. Local correlations, via measurement of in-situ density fluctuations, however, have
been investigated experimentally within [14, 95, 96].

2.4. The 1d-3d crossover regime

So far the only effect of the trap considered has been the axial potential. The radial
confinement was integrated out to only enter via the 1d interaction constant g1d = 2~aωr.
Here, the underlying assumption is that radially, we have a Gaussian ground state wave
function with a size given by the transverse harmonic oscillator length aho,r =

√
~/(mωr)

that is independent of the local density. While this is true deeply in the 1d regime,
defined by µ, kBT � ~ωr, many atom chip experiments are performed in a regime where
the transverse level spacing only slightly exceeds the chemical potential or temperature.
In the following, methods to take into account effects in the thus arising 1d-3d crossover
regime.

2.4.1. Thermal occupation of transverse states

If kBT exceeds the radial level spacing, this will lead to thermal population of radial
states. Assuming that the number of atoms in each state besides the ground state is low,
the excited state population will be incoherent, warranting a description in terms of a
set of ideal 1d Bose gases in each state. In this case, we can use an approach employed
in reference [97]. The total atom number in excited states is assumed to obey

nr(z;µ, T ) =
1

λdB

∞∑
j=1

(j + 1) g1/2 (z̃j), (2.68)

where g1/2(z̃) is the polylogarithm encountered already in section 2.1.1, and

z̃j = exp

(
µj(z)

kBT

)
(2.69)
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Figure 2.3.: Density dependence of the radial in-situ width of a quasi-1d condensate for a radial
trapping frequency of ωr = 2π × 2 kHz. Pink line: Equation 2.72. Blue dotted line: Results from a
radial GPE simulation, as in reference [98]. Red line: Results from a 3d GPE simulation.

is a fugacity for each level j defined by a chemical potential µj(z), which can be calculated
as

µj(z) = µ− V (z)− j~ωr − 2g1d

[〈
|ψ(z)|2

〉
+ nr(z)

]
. (2.70)

Here, the term in square brackets allows to incorporate a mean-field shift by the ground
state and overall excited state population, with the effect of pushing thermal atoms
away from the axial center of the trap. While the ground state mean-field shift is
usually sizeable, the excited state contribution can be neglected in good approximation
for kBT in the order of the radial level spacing.

This approach can be easily implemented numerically. Assuming a fixed overall atom
number N , one can start with ground state wave function of N atoms, calculate
nr(z;µ, T ), and then iteratively lower the ground state atom number and update mean-
field shifts until one arrives at [〈|ψ(z)|2〉+ nr(z)] = N . Note that we require µj(z) < 0
∀ z, otherwise the polylogarithm g1/2(z̃j) diverges. One finds that excited state popula-
tions are in the order of a few percent even at temperatures significantly exceeding the
radial level spacing. An example can be found in figure 2.4.2.

2.4.2. Interaction-induced swelling of the radial wave function

When interactions seize to be negligible for the radial profile, a density-dependent de-
formation from a Gaussian shape is expected to be observed. This process is coherent
in that it is contained in 3d GPE simulations of elongated trapped atom clouds, and
analogous to the transition from a non-interacting Gaussian to a Thomas-Fermi solution
for the axial density distribution that has been described in section 2.2.2. For exper-
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imental parameters as shown in figure 2.4.2, it actually starts to set in already at the
lowest densities µ � ~ωr. The effect is discussed in reference [65], and approximately
described by a spatially varying chemical potential

µ ≈ ~ωr
(√

1 + 4an1d − 1
)

(2.71)

as well as a ground state wave function that is assumed to be Gaussian, but with a
correspondingly scaling density-dependent width

σ2 = aho,r
√

1 + 2an1d. (2.72)

With increasing densities, this assumption is to gradually break down, however, as one
slowly crosses over from a 1d to an elongate 3d system. The scaling of the chemical
potential with linear density 2.71 together with the expected deviations from a Gaussian
wave function at high densities have been measured within reference [99].4 As outlined
in reference [98] and chapter 5, this transition goes hand in hand with a change of
axial breathing frequencies, in excellent agreement with the measurements presented in
section 5.2.3.

We can compare the predictions from reference [65] with results from both radial and 3d
Gross-Pitaevskii simulations for experimentally relevant parameters. Such a comparison
is shown in figure 2.4.2 for a radial trap frequency of 2 kHz, and demonstrates both the
validity of the model and its limitations at low and high densities, respectively.

The transverse swelling of the cloud due to a density-dependent chemical potential also
affects the density distribution. This effect can be easily accounted for numerically by
solving an adapted 1d GPE 2.41 containing the modified chemical potential 2.71:

i~
∂

∂t
ψ (z, t) =

[
− ~2

2m

∂2

∂2
z

+
mω2

az
2

2
+ ~ωr

(√
1 + 4aN |ψ(z)|2 − 1

)]
ψ (z, t) . (2.73)

with total atom number N . The resulting ground state density profile can also be
calculated according to [100]5:

n(z) =
α

16a

(
1− z2

R2

)[
α

(
1− z2

R2

)
+ 4

]
(2.74)

Here, the radius is defined by R =
√
αa2

ho,z/aho,r, and the parameter α is given by

α3 (α + 5)2 =

(
15Naaho,r
a2
ho,z

)2

. (2.75)

4Note that what is measured in this paper is the interaction energy released during expansion. The
comparison with the incorrect ground state width from reference [100] as presented in the paper is
in fact misleading.

5Note however, a missing prefactor of 1/4 as well as an incorrect result for the ground state radius in
reference [100].
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Figure 2.4.: Numerics in the 1d-3d crossover regime for a cloud of ≈ 15000 atoms at 75 nK in a trap
with frequencies ωa = 2π × 8 Hz and ωr = 2π × 1000 Hz. Red dashed line: Ground state density from
the modified 1d GPE 2.73. Blue dash-dotted line: Radial excited state population according to the
iterative solution of equation 2.68. Black line: Sum of the two contributions. Grey dotted line: Ground
state density calculated from the 1d GPE 2.41 for the same total atom number.

Note that numerically, density profiles including both the effect of interaction-induced
swelling of the ground state as well as an incoherent excitation of radial excited states can
be calculated. As an example, figure 2.4.2 shows the density profile obtained by solving
the Gross-Pitaevskii equation 2.73, including a thermal occupation for a temperature
of 75 nK at a total atom number of 15000 in a trap with radial and axial frequencies
of ωa = 2π × 8 Hz and ωr = 2π × 1000 Hz, respectively. The thermal excited state
population nr(z) amounts to approximately 7%. For comparison, the figure contains the
ground state profile for the same atomnumber, obtained by the regular 1d GPE 2.41.

2.5. Density correlations in free expansion

The temperature measurements in chapter 5 and 6 use a thermometry method based
on the analysis of density fluctuations in free expansion and has been developed and
implemented in references [30] and [15], respectively, and the thesis [31] provides a
detailed description. Here, the basic idea behind the method and the main results valid
for a homogeneous 1d quasicondensate in a thermal state are shortly reviewed as a basis
for later chapters.
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2.5.1. Density profile in free expansion

The typical initial state of interest is a 1d quasicondensate in the harmonic trap in the
radial ground state, and axially in the Thomas-Fermi regime as discussed in the previous
section. Hence, the initial density profile is axially parabolic, with a radius of order 100
µm, and radially Gaussian with a width defined by the radial oscillator length aho,r < 1
µm. After switching off the trap, the cloud expands both along the radial and axial
dimensions. Radially, the width scales as [101]

wr = aho,r

√
1 + (ωrtexp)

2, (2.76)

up to small corrections in the 1d-3d crossover regime discussed in section 2.4. The
expansion can be separated into a hydrodynamic stage, during which interaction energy
is converted into kinetic energy and momentum transfer between axial and radial
direction can take place, and a ballistic, non-interacting stage. The characteristic
timescale for this separation is given by the inverse trap frequency tr = (ωr/2π)−1.
During this timescale, axial fluctuations corresponding to a length scale of ∆z = ξµ/~ωr
[30], with the healing length ξ, are affected. For typical densities and trap frequencies in
our setup it holds that ∆z ≤ ξ, with the result that for phononic excitations and length
scales that are experimentally resolvable, the influence of the hydrodynamic stage on
axial fluctuations can be neglected and the expansion can be treated as purely ballistic.

Since the interaction energy is almost exclusively converted into radial motion, at exper-
imentally relevant expansion times of texp ≈ 10ms, the average mean-field axial density
profiles before and after expansion are in good approximation identical in the absence
of collective breathing excitations. Phase fluctuations, in the trapped cloud, give rise to
a local velocity field:

v(z, t) =
~
m
∇φ(z, t). (2.77)

In the absence of interactions during expansion, this velocity field propagates freely,
leading to characteristic correlations, also called density ripples, in the expanded profile.

2.5.2. Density correlations and thermometry

Since hydrodynamic effects and the transverse dynamics can be neglected, correlation
functions after expansion

g(2) (z1, z2; texp) =
ρ (z1, z2; z1, z2; texp)

n (z1; texp)n (z2; texp)
(2.78)

are related to the two-particle density matrix of the trapped system

ρ (z3, z4; z′3, z
′
4; 0) =

〈
Ψ̂† (z′3, 0) Ψ̂† (z′4, 0) Ψ̂ (z4, 0) Ψ̂ (z3, 0)

〉
(2.79)

by free propagators

G1(z − z′; texp) =

√
m

2π~itexp
exp

(
im (z − z′)2

2~texp

)
(2.80)
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by the general expression given in reference [30]:

ρ (z1, z2; z1, z2; texp) =

∫
dz3

∫
dz′3

∫
dz4

∫
dz′4

G1(z1 − z3; texp)G1(z2 − z4; texp)G∗1(z2 − z′4; texp)G∗1(z1 − z′3; texp)ρ (z3, z4; z′3, z
′
4; 0) (2.81)

In principle, this relation holds for arbitrary known in-situ density matrices. Reference
[30] contains the derivation of an analytical expression for g(2)(x; texp) in the for our
purposes relevant regime of a weakly interacting homogeneous 1d Bose gas. Using the
translation invariance in the homogeneous system, the permutation invariance of the
bosonic density matrix, the fact that the two particle-density matrix describing a phase-
fluctuating gas can be decomposed in terms of 1-body density matrices by the Wick
theorem and substituting the known expression for the thermal first-order correlation
function 2.63 as derived in section 2.3.2, an expression for the power spectrum of density
fluctuations in expansion is calculated as

〈|ρ(q)|2〉
n2

1dξ
≈ λT q − e−2~qtexp/mλT [λT q cos (~q2texp/m) + 2 sin (~q2texp/m)]

qξ (1 + λ2
T q

2)
, (2.82)

which is related to the second order correlation function by a Fourier transformation

〈
|ρ(q)|2

〉
= n2

1d

∞∫
∞

dz eiqz
[
g(2) (x; texp)− 1

]
(2.83)

Probing an approximately homogeneous region in the vicinity of the cloud centre with
known density n1d at a known expansion time texp, either 〈|ρ(q)|2〉 or g(2)(x; texp) can
be measured as described in section 4.6 and compared to expressions 2.82 or 2.83,
with the temperature as only left parameter. Note that this method constitutes a
direct measurement of the temperature of phononic excitations within the degenerate
system, as opposed to indirect temperature measurements based on the analysis of
thermal clouds surrounding the quasicondensate, where equilibrium between the two
components needs to be assumed.

Further, note that the method is valid throughout the quasicondensate regime, which is
bounded by

kBT

µ
� K

π
, (2.84)

where K represents the Luttinger parameter defined in section 2.3.1, which is not
very stringent considering values of K ≈ 50 for experimental parameters. Further,
the method is not tied strictly to the 1d regime, since low-energy excitations also be-
have one-dimensional throughout the 1d - elongated 3d crossover regime, as long as the
wavelengths of the considered modes is smaller than the radial oscillator length aho,r.
However, hydrodynamic effects during expansion may require a treatment beyond free
propagators [102, 86], significantly complicating the analysis.





3. Numerical techniques

”People think computers will keep them from making mistakes. They’re wrong.
With computers you make mistakes faster.”

Adam Osborne, PC pioneer and eponym for the Osborne effect.

Following early results based on the Hartree-Fock and Hartree-Fock-Bogolyubov
approach, a review of which can be found in reference [103], and extensions such as the
ZNG approach [104], a wealth of techniques to theoretically study both equilibrium
properties and dynamics in finite-temperature ultracold Bose gases using a representa-
tion based on classical fields has been developed, among them but not limited to the
stochastic Gross-Pitaevskii equation (SGPE) [105, 106, 107], the projected [108] and
stochastic projected GPE [109] and the truncated Wigner (tW) approach [110, 111].
Some of these c-field methods, as will be seen, even allow to mimic quantum mechanical
properties such as spontaneous scattering, although more sophisticated approaches are
available for a proper treatment of such effects [112].

The goal of this chapter is to present the basic idea behind these techniques, introduce
relevant literature and ’operationally’ present the methods used in the context of this
thesis, while a rigorous mathematical justification, or the derivation of these methods
from the underlying quantum field theory, is left to the references. After a short in-
troduction and overview, the Gross-Pitaevskii equation in 1 and 3 dimensions is briefly
discussed, before focusing on the stochastic GPE in 1 dimension, its implementation
within the context of this thesis and the calculation of important observables in this
framework. Finally, the sampling of phase fluctuations based on an Ornstein-Uhlenbeck
process as used for the thermometry scheme from section 4.6 is presented.

3.1. Introduction and Overview

In this section, we follow references [22] and [23], which provide comprehensive reviews
of the different c-field techniques available for the simulation of ultra-cold Bose gases,
while the latter also serves as a highly recommended pedagogical introduction to the
topic. At the heart of these models lies an effective Hamiltonian in second quantization,
written in terms of field operators:

Ĥeff =

∫
d3rΨ̂† (r, t) ĤspΨ̂ (r, t) +

geff
2

∫
d3rΨ̂† (r, t) Ψ̂† (r, t) Ψ̂ (r, t) Ψ̂ (r, t). (3.1)
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Here, the single-particle Hamiltonian is given by

Ĥsp = − ~2

2m
∆ + V0(r). (3.2)

The usual starting point to treat condensates is to separate the bosonic field operator
into two parts representing a condensate and non-condensed component

Ψ̂ (r, t) = φ0 (r, t) + δ̂(r, t) (3.3)

where φ0 (r, t) is treated as a classical object, while the non-condensed component
remains represented by an operator. Subsituting this ansatz into 3.1 yields a lengthy
Hamiltonian with various terms coupling the condensed and non-condensed components.
Depending on which terms are kept and neglected, one arrives at different effective
Hamiltonians defining limits with their respective validity range, like the Hartree-Fock
or Hartree-Fock-Bogolyubov limits, as summarized for instance in [103, 23], allowing a
self-consistent solution.

For quasicondensates, a separation like 3.3 is problematic, since one faces a situation
with many highly occupied modes. Therefore, we are looking to treat the system in a
picture where the field operator is represented in terms of an expansion

Ψ̂ (r, t) =
∑
n<nΛ

ânφn(r, t). (3.4)

Here, we have introduced a cut-off scale defined by the momentum:

~kΛ(r) ≈
√

2m (Emax − V0(r)), (3.5)

where Emax represents the corresponding maximum energy. By neglecting modes above
the cut-off, in other terms below a certain length scale, the field operator defined by 3.4
is coarse-grained. Such a cut-off is inevitable since any numerical representation involves
a discretisation of the problem at some scale.

Cut-off and effective coupling constant. In general, the effective coupling constant
depends on the choice of the cut-off [74]. With respect to the problem at hand, this
dependence is discussed in [111]. If the cut-off is taken far below the momentum scale
defined by the inverse scattering length a−1, this dependence can be neglected and the
effective coupling constant can be chosen as geff = 4πa~2/m as for the GPE [113]. Of
course, the cut-off should be taken high enough not to remove modes with a sizeable
population due to interaction or thermal energy, i.e. Emax > kBT, µ. Note that the
most simple way to provide a cut-off is via the resolution of the numerical grid such
that ~kΛ = 2π~/∆x. More refined methods involve an additional projector to split the
mode spectrum below Emax into an incoherent and c-field region to explicitly select not
only an energy scale but also a preferred basis for the projection, and allow to treat the
incoherent region by a quantum kinetic approach as summarized in [22].
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Equation of motion and c-field approximation. The Heisenberg equation for the field
operator Ψ̂ (r), for the moment neglecting the subtleties introduced by finite-size effects
on the definition of the δ function on a grid (see for instance [111, 22]), writes as

i~
∂Ψ̂(r, t)

∂t
=
[
Ĥsp + geff Ψ̂

† (r, t) Ψ̂ (r, t)
]

Ψ̂ (r, t) . (3.6)

Simply replacing the field operator by a single complex wave function Ψ(r) (see
for example [32]) yields the 3d GPE. In a sense, this introduces the most simple,
single-mode, c-field approach.

To include excitations in the treatment, the field operator can be approximated by a
multimode classical field

Ψ̂ (r, t) ≈ Ψ (r, t) =
∑
n<nΛ

anφn(r), t (3.7)

where an are given by c-numbers. The use of the representation 3.7 to solve equation
3.6 is the common denominator of all the different c-field techniques.

Truncated Wigner (tW) approach. Starting point is the von Neumann equation for
the time evolution of the system’s density operator

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
. (3.8)

By using the relation between density operator and the Wigner distribution as outlined
in [111] and [22], 3.8 can be mapped to a equation of motion of the Wigner distribu-
tion. While the reader is referred to the references for these steps, in this context it is
important that it is possible, by neglecting third-order derivatives, to map this equation
on a Liouville equation for the Wigner distribution without diffusion term, or equiva-
lently, on a ’stochastic’ partial differential equation for a single realization of the field
Ψ(r, t). Solving the former is then reduced to solving the latter for a sufficiently large
sets of different realizations of Ψ(r, t), with initial conditions sampled from the Wigner
distribution. This is the truncated Wigner approach, and the ’stochastic’ equation has
the same shape as the regular GPE:

i~
∂

∂t
Ψ(r, t) =

[
Hsp + g|Ψ(r, t)|2

]
Ψ(r, t) (3.9)

Originally, this approach goes back to work presented in [110]. Different methods
of sampling the Wigner distribution are presented in references [111] and [22]. A
straightforward way for a homogeneous Bose gas is to perform the c-field expansion 3.7
in terms of Bogolyubov modes obtained by solving the Bogoliubov-de Gennes equations,
ideally incorporating the external potential. For correctly sampled initial conditions, all
modes below the cut-off are occupied with on average half a particle of ’quantum’ noise.
This allows to mimic spontaneous scattering by the fact that all modes contain a weak
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seed for stimulated scattering. On the flip side, time evolution with the Gross-Pitaevskii
equation leads to thermalisation into a classical equilibrium state at higher temperature
than the initial state due to this excess noise [111]. Depending on the parameter range
and dimensionality of the system, this process limits the timescale of validity for the
simulations.

Classical field method and PGPE. Here, one also uses a decomposition of the form
3.7. Initial sates are not sampled from a Wigner function, but from some classical
distribution, and the propagation is performed with a GPE, as in the truncated Wigner
approach. Historically, this method has been used in the limit of large occupation
numbers for all modes (i.e. high temperature) [114], and for 3d systems, where fast
equilibration rates due to mode mixing render the method fairly independent of the
exact initial state. References [115] and [108, 116] constitute examples for this method.
The latter introduces the so-called projected GPE (PGPE). Here, the c-field is split into
a classical and incoherent region

Ψ (r, t) =
∑
n<nc

anφ
(c)
n (r, t) +

∑
nc<n<nΛ

anφ
(I)
n (r, t), (3.10)

and the time-evolution is performed with a GPE involving a projector onto the classical
region to ensure a well-defined cut-off.

Stochastic GPE and stochastic projected GPE (SPGPE). Stoof and co-workers
[105, 106] as well as Gardiner and co-workers [107, 109, 117] arrived independently
at very similar stochastic generalisations of the classical field approach. Reference
[107] presents a way to derive an evolution equation for the Wigner function including
second-order terms, that in the truncated Wigner approximation reduces to a Fokker-
Plank equation with diffusion term, and equivalently a stochastic differential equation
including noise terms. In its most general form, a numerical implementation has only
been realized recently [117]. A different approach promoted in reference [23] would
be an explicit coupling of a quantum Boltzmann equation to replace the noise and
damping terms in the SGPE, similar to the ZNG approach [104], where the former is
coupled to a single-mode BEC. Such an approach would allow to include quantum noise
and dynamics of the thermal component but has proven to be elusive so far.

The most simple, and so far most common approach consists of neglecting collisions
between incoherent and coherent region without particle exchange, and leads to Stoof’s
SPGE as presented in [118], or equivalently the simple-growth SGPE [22] which will be
introduced in section 3.3.
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3.2. Gross-Pitaevskii equation

There are many different options to solve partial differential equations numerically (for
examples from quantum optics, see [119]). In the following, simple ways to solve the
1d and 3d GPE are presented, serving as a basis for more sophisticated approaches if
necessary. For ways minimizing the error per time-step or maximizing computational
efficiency, for instance by higher order propagation methods, the reader is referred to
literature, where possible.

Gross-Pitaevskii equation

As introduced in section 2.2.2, the 1d GPE has the form:

i~
∂

∂t
ψ (z, t) =

(
− ~2

2m

∂2

∂2
z

+ V (z, t) + g1d · |ψ (z, t) |2
)
ψ (z, t) . (3.11)

The GPE lends itself to a solution by a split-operator method. A discretised forward
propagation is given by

ψ(x, t+ ∆t) = e−iH∆t/~ψ(x, t), (3.12)

where e−iH∆t/~ = U(∆t) is the time-evolution operator. The Hamiltonian of interest is
of the form

H = T (p) + V (z, t) + Vint(z, t), (3.13)

with Vint(z, t) = g1d · |ψ (z, t) |2. Here, T (p) is diagonal in the momentum basis, while
V (z, t) +Vint(z, t) is diagonal in the momentum basis. While this complicates the direct
calculation of 3.12, one can split the time evolution as follows,

ψ(z, t+ ∆t) = e−i∆t(V (z,t)+Vint(z,t))/2~

×F−1
[
e−i∆tT (p)/~F

[
e−i∆t(V (z,t)+Vint(z,t))/2~ψ(z, t)

]]
, (3.14)

alternating between propagation in position and momentum space for the potential and
kinetic operators, respectively, where F [ψ] denotes the Fourier transform. The reasoning
for the symmetrized splitting

U(∆t)→ UV (∆t/2)UT (∆t)UV (∆t/2) (3.15)

becomes clear when considering that T (p) and V (z) do not commute, and the decom-
position of H(z, p) is given by the Baker-Campbell-Hausdorff formula

eT eV = exp

(
T + V +

1

2
[T, V ] +

1

12
[T, [T, V ]] +

1

12
[[T, V ] , V ]

)
, (3.16)

with the result that the symmetrized version in principle yields an error of order O (∆t3),
while for the two-step splitting we have O (∆t2) [119]. However, this is only true when
disregarding the dependence of Vint on the wave function ψ(z, t). Taking it into account
yields an overall error of O (∆t2) for the symmetric splitting. Note that higher-order
methods for the GPE, among other types of equations, have been presented in reference
[120]. The time-dependence of the potential (or also the interaction constant g1d) is
realized by simply updating it at each time-step.
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Figure 3.1.: Dynamics of the transverse density profile calculated with a 3d GPE simulation during
and after excitation into the second excited state along x-direction by an optimal control pulse on the
trap position along the x-direction, similar to reference [121], but with shorter ramp times. (a) Carpet
plot of the density profile along the x-direction parallel to the chip surface. One can see the minimum
in the center characteristic for depletion of the ground state, and residual dynamics. (b) Carpet plot of
the density profile along the y-direction normal to the chip surface. The excitation of a breathing mode
is apparent. Parameters: 700 atoms, ωx/2π = 1.83 kHz, ωy/2π = 2.58 kHz, with a quartic contribution
identical to [121]. Grid: nx = ny = nz = 64 points, (rx, ry, rz) = (2, 2, 50) µm, dt ≈ 1 µs.

Ground state calculation. The ground state can be calculated from an arbitrary
initial state ψ0(z, t) by imaginary time evolution, performing the same steps as outlined
above but with ∆t → i∆t. Effectively, the time-evolution operator becomes real,
introducing losses depending on the local interaction and potential energy. Upon
renormalization of the wave function at each timestep and iteration, the minimal-energy
ground state profile is recovered. A good measure for convergence to the ground state
is the overlap 〈ψ(z, t), ψ(z, t+ ∆t)〉 between wave functions at different timesteps
converging against unity. In addition, subsequent real-time evolution in a stationary
trap at constant atom number should yield a stationary wave function.

Note that both imaginary and real-time propagation are implemented in the same way
for the quasi-1d GPE 2.73 presented in section 2.4. Proper choice of grid size and
resolution is usually not as critical as for the 3d GPE or the SGPE discussed in later
sections. Crosschecks for proper performance consist of tracking kinetic, interaction and
total energy throughout the time evolution, or the overlap between initial and final wave
function during real-time propagation in a static trapping potential at constant atom
number. Examples for the use of 1d and quasi-1d GPE simulations are found within
sections 2.4, to estimate the breathing dynamics in a time-dependent potential in section
5.2 and for the optimal control scheme presented in section 6.4.

3d Gross-Pitaevskii equation

For the 3d GPE 3.9, the same principles apply as for the 1d case. The only difference
is that calculations are more memory-intensive since all quantities live on a 3d grid. In
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the context of this thesis, a 3d GPE simulation has been used to calculate the scaling
of the trapped radial ground state width with the linear density n1d for comparison
with analytical results in section 2.4. Unrelated to the work presented in this thesis, 3d
simulations of a atom cloud in a radially anharmonic, anisotropic trap that is subject to
an optimal control pulse to transfer atoms from the radial ground state to the second
excited state have been performed for comparison with corresponding transverse 1d
simulations and experiment. Earlier experiments on this topic can be found in [121].
The goal was to identify whether a potential coupling between the transverse degrees of
freedom influence the dynamics. Figure 3.1 show results for an excitation sequence at
typical experimental parameters.

3.3. Stochastic Gross-Pitaevskii equation

In the context of this thesis, an easy-to-implement version of the SGPE as developed
by Stoof in [105, 106], and subject as well as tool for ongoing studies in the group of
Proukakis [114, 122, 123, 124, 125] in one dimension. It is equivalent to the so-called
’simple growth’ SGPE as studied in [107, 109, 22] is given by a Langevin equation of the
form

i~
∂ψ(z, t)

∂t
= (1− iγ) [HGP − µ]ψ(z, t) + η. (3.17)

Here, µ denotes the chemical potential, and HGP is given by the regular 1d Gross-
Pitaevskii Hamiltonian,

HGP = − ~2

2m

∂2

∂z2
+ V (z, t) + g1d|ψ|2. (3.18)

while γ and η are damping and noise coefficients that encode the coupling of the classical
field to a thermal bath with chemical potential µ and temperature T . Within this
approach, γ and η are related by a classical fluctuation-dissipation relation

〈η∗ (z, t) η (z′, t′)〉 = 2~kBTγδ (t− t′) δ (z − z′) . (3.19)

A detailed discussion of the damping term’s spatial dependence can be found in the thesis
[126], based on the results from reference [127]. As discussed in the same thesis however,
and in reference [22], the spatial dependence has little influence on an equilibrium state
generated by the SGPE [22]. Therefore, it is common to neglect it and choose a constant
bare rate

γ = γb = κ
4mkBT

π

(a
~

)2

. (3.20)

The pre-factor κ is not specified, whereas values of κ ≈ 3 have been reported to yield
good agreement with analytically calculated damping rates in different settings [22]. A
discussion of γ in the context of our experiments is found in the following section.
Note that dropping the noise-term yields the dissipative GPE that has been previously
used to study damping processes (see [23] and references therein).
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3.3.1. Why SGPE?

The starting point for most experiments is a quasicondensate in a thermal state, which is
experimentally generated by condensation from a 3d thermal cloud, where thermalisation
takes place at least as long as the surrounding cloud is present. Once fulfilling the 1d
conditions 2.30, the system is described by the integrable Hamiltonian 2.32, hosting a
large number of conserved quantities. Even in the presence of a harmonic trap, which
breaks the mathematical integrability of the Lieb-Liniger Hamiltonian, thermalization
times are expected to be long in terms of experimentally relevant time-scales.

Preparation of a thermal state. For c-field calculations in 3d systems, it is often
sufficient to provide initial fluctuations with the correct amount of energy, and rely on
intrinsic thermalisation to provide a thermal state, as discussed for the example of the
PGPE method in reference [23]. For the reasons stated above, this is not practicable for
1d systems. Having found that correlation functions used for thermometry as discussed
in section 2.5 and 4.6 are very sensitive to non-thermal initial states, it is therefore crucial
to avoid sizeable deviations from a thermal state for the initial conditions in simulations,
which requires picking the correct basis to populate with thermally distributed quasi-
particle excitations. While this is straightforward for the homogeneous system and the
corresponding plane-wave basis, a trapped gas necessitates solving the Bogolyubov-de
Gennes equations as proposed in [111, 22]. The SGPE, in constrast, intrinsically pro-
vides a correct thermal initial state by the simulated coupling to an external heat bath,
for arbitrary trapping potentials. As discussed within section 3.3.3, such a state can
then be propagated by a regular GPE-Hamiltonian just as in other c-field approaches.

Equilibrium state Taking into account the interaction of the c-field with the thermal
bath by the fluctuation-dissipation theorem 3.19 leads to a classical Rayleigh-Jeans
distribution. While in 1d, no ultraviolet divergence appears and the distribution is well
defined in the high-energy limit, there still exists a cut-off dependent difference to the
correct Bose-Einstein distribution. In contrast, sampling of the Wigner function as
performed in the truncated Wigner approach yields the correct Bose-Einstein distribu-
tion of initial excitations, as mentioned in section 3.1. This difference is most strongly
pronounced a scenario where a significant amount of atoms is distributed among many
modes with low occupation numbers per mode, but at temperatures below TD. Revisit-
ing the phase diagram of section 2.2.1, this happens as one crosses over to the decoherent
quantum regime. Within the quasicondensate regime, as will be seen in section 3.3.5,
most atoms are in modes with average population numbers per mode 〈nj〉 >> 1, and the
differences between Bose-Einstein and Rayleigh-Jeans distribution are usually negligible.

Accordingly, the SGPE accommodates only thermal population of modes, in contrast to
the truncated Wigner method. This is important when considering simulations where
scattering from the c-field into high-momentum modes k with Ek � kBT is important.
As mentioned in section 3.1, the quantum noise present in the tW initial state provides
a weak seed in each mode allowing to mimic spontaneous scattering, which will be
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suppressed for processes involving thermally unpopulated modes using an SGPE initial
state. On the other hand, the classical state is the correct equilibrium state with respect
to propagation with the GPE Hamiltonian. This means that exactly in scenarios where
the ’quantumness’ of the tW method is important, the effect of re-thermalisation into
a classical equilibrium state will be sizeable [111], so care has to be taken that the
time-scales in simulations, where this process becomes important, are not exceeded.

A detailed comparison between the SGPE as presented here, and a number-conserving
truncated Wigner approach can be found in reference [123].

3.3.2. Implementation

For the actual implementation, in principle the use of a split-operator method as pre-
sented in section 3.2 is thwarted by the additive noise term in equation 3.17. In 1d,
however, it is in good approximation possible to separate the time evolution of the dissi-
pative part of 3.17 from the subsequent addition of noise to the wave function. For the
dissipative time evolution step, note that there is no distinction between imaginary and
real time evolution. Rather, due to the prefactor (1− iγ) on the r.h.s. of equation 3.17,
the time evolution is promoted by

U (∆t) = e−(γ+i)∆t(HGP−µ)/~, (3.21)

and hence complex, which does not hinder a decomposition as performed in equation
3.14, though. The noise term can be implemented as

ψ(z, t) = ψ(z, t) +
R(z) + iR′(z)√

2

√
ηdt

~2dz
, (3.22)

with η = 2~kBTγ [126], and R(z),R′(z) denoting vectors containing Gaussian random
numbers.

While for the 1d simulations performed in the course of this thesis, using a time-evolution
in this manner created equilibrium states at correct temperatures for all used observables,
implementations in 2d and 3d are expected to suffer from the approximate treatment of
the noise term, and a proper implementation as outlined in the appendix of thesis [126]
should be adopted.

Choice of grid parameters. For Stoof’s SGPE approach, the cut-off is not explicitly
defined in terms of a projector, but by the grid resolution. Due to the convergence of
the Rayleigh-Jeans distribution in the UV limit, the 1d SGPE is fairly insensitive to the
exact choice of the cutoff. However, following the analysis performed in [126], and the
physical picture that the noise and damping terms encode scattering of the c-field with
atoms from a thermal bath at temperature T , a reasonable choice is

Eg =

(
2π

∆x

)2 ~2

2m
= kBT, (3.23)



40 Numerical techniques

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

t (ms)

N
a
to

m

 

 

γ/γ
b
 = 62

γ/γ
b
 = 125

γ/γ
b
 = 250

γ/γ
b
 = 500

γ/γ
b
 = 1000

γ/γ
b
 = 2000

(a) Quasicondensate growth: real time

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

2000

4000

6000

8000

10000

12000

γ t

N
a
to

m

 

 

γ/γ
b
 = 62

γ/γ
b
 = 125

γ/γ
b
 = 250

γ/γ
b
 = 500

γ/γ
b
 = 1000

γ/γ
b
 = 2000

(b) Quasicondensate growth: rescaled time

Figure 3.2.: Quasi-BEC growth at different values of γ in units of the bare rate 3.20 at κ = 3, atom
number N ≈ 10000, temperature: T = 50 nK and trap frequencies of ωr = 2π× 1000 Hz, ωa = 2π× 12
Hz in (a) real time, (b) rescaled time units γ · t.

where Eg denotes the maximum energy corresponding to a grid with a resolution of ∆x,
which consequently is given by the thermal de Broglie wavelength

∆xΛ = λdB. (3.24)

The grid size L for a trapped system is simply chosen to accommodate the full atom
cloud on the grid, or in other words, so that the density at the edge of the grid is
vanishing. These choices are used for all the simulations presented within this thesis.

3.3.3. Choice of γ and growth of the quasi-BEC

Equation 3.17 does not take into account the full interaction between c-field and ther-
mal bath, neglecting scattering terms contained in the SPGPE [117]. Further, neither
is a full ab-initio calculation of γ for the interaction of a 1d quasicondensate with a
surrounding 3d thermal cloud available, nor a corresponding model taking into account
the dynamics of the thermal cloud. While one could possibly match γ by the prefactor
κ to experimentally observed damping rates, a cleaner approach consists of using the
SGPE only to provide an initial equilibrium state, while performing the subsequent time-
evolution of the c-field with the regular GPE Hamiltonian, without noise or damping.
Experimentally observed sources for damping can then be discriminated from the inter-
nal dynamics of the simulated c-field. For such an approach, which is dubbed SGPEeq
in the thesis [126] and which has been previously used for instance to study the dynam-
ics of condensate formation in atom chip traps [114], it is interesting to note that the
choice of the damping rate γ only determines the time-scale of equilibration, but not the
general growth dynamics or the resulting equilibrium state [126]. As a consequence, as
long as the goal is purely to prepare an equilibrium state, one is free to choose a value
of γ leading to equilibration within the shortest amount of computation time for any
given trapping geometry. To demonstrate this, figure 3.2 shows a comparison for the
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Figure 3.3.: Density profiles during time evolution of a single state generated by the SGPE. Parame-
ters: ωa = 12 Hz, ωr = 1000 Hz, N ≈ 10000, T = 50 nK.

quasi-BEC growth at different values of γ, given in units of the bare value 3.20 at κ = 3,
with an equilibrium atom number of N ≈ 10000, a temperature of T = 50 nK and trap
frequencies of ωr = 2π×1000 Hz and ωa = 2π×12 Hz. Plotting the atom number in the
quasi-BEC against real time yields the growth curves from figure 3.2(a), while rescaling
time with γ reveals the universal growth behaviour from figure 3.2(b). Temperature
measurements as presented in the next section yield the same results regardless of the
exact value of γ.

3.3.4. Time evolution and temperature

As stated in the previous section, initial states created by the SGPE are propagated
without damping or noise for the simulations performed in the context of this thesis,
analogous to other c-field methods. Figure 3.3 shows a carpet plot of in-situ density
profiles corresponding to a state propagated for 150 ms with the same parameters
as used for the growth-simulations presented in the previous section (ωa = 12 Hz,
ωr = 1000 Hz, N ≈ 10000, T = 50 nK).

To estimate the temperature, we employ two different methods. First, the thermometry
scheme used to analyse experimental data based on density correlations in free expansion
as presented in sections 2.5 and 4.6 can be employed. Performing time-evolution with a
free propagator for experimental free expansion times and convolution with the imaging
system’s point spread function yields density profiles that can be subjected to the same
analysis as experimental data. The results of such a procedure for a set of 240 different
realisations at identical parameters is shown in figure 3.4(a), plotting the temperature
against propagation time, where 0 denotes the point in time where the coupling to
the heat bath given by γ and η is removed. It shows that the temperature indeed
corresponds to the set value, and that it is stationary during propagation, apart from
small random fluctuations. The inset contains the density correlation functions of the
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Figure 3.4.: Temperature estimation for c-fields. (a) Results of density ripple thermometry over 150
ms of time evolution for a set of 240 independent realisations generated by the SGPE (blue line).
Inset: Corresponding density autocorrelation functions g(2)(∆z) of simulated profiles after 10 ms of
free expansion. Parameters: (ωa = 12 Hz, ωr = 1000 Hz, N ≈ 10000, T = 50 nK). (b) First order
autocorrelation function g1(z, 0), for a single point in time at otherwise identical parameters as in (a)
(blue dots), fitted by an exponential (red line) for comparison with the theory presented in section 2.3.2.
The temperatures estimated by both methods agree within fluctuations.

expanded profiles used to extract the temperature. Alternatively one can calculate
the first order correlation function g(1)(z = 0, z′) = g(1)(∆z) and compare it with the
analytical result for the homogeneous case 2.63, substituting an average density

n̄ =
1

2RTF

∫
|z|<RTF

dz n(z). (3.25)

A typical result of this method is shown in figure 3.4(b), comparing the averaged first
order correlation function obtained from 240 SGPE realizations with an exponential fit
for a single time-step, yielding a temperature consistent with density ripple thermometry
and the set temperature.

3.3.5. Density matrix and mode occupation

In addition to the first order correlation function g(1)(z = 0, z′) = g(1)(∆z), it is also
possible to extract the one-body reduced density matrix defined by equation 2.16

ρ(1) (z, z′) =
〈

Ψ̂† (z) Ψ̂ (z′)
〉

(3.26)

from a sufficiently large set of independent realisations of SGPE solutions at identical
parameters. Let us revisit the definition of the c-field as superposition of eigenmodes
given by equation 3.7, that writes for the 1d system under consideration:

Ψ (z, t) =
∑
n<nΛ

anφn(z, t). (3.27)
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Here, φn(z, t) denote a set of orbitals with constant occupation numbers, diagonalising
the classical representation of the field operator Ψ (z, t). Now consider an ensemble of
random realisations of fields ψrn(z, t) generated by the SGPE. Such a set can also be
considered as basis that can be used to construct Ψ (r, t). Considering an arbitrary
point in time, we can hence construct the instantaneous density matrix

ρ(1) (z, z′) =
〈

Ψ̂† (z) Ψ̂ (z′)
〉
≈ 〈Ψ∗ (z) Ψ (z′)〉 (3.28)

simply by writing Ψ (z) as a matrix containing all realisations ψrn(z) and substituting
into the r.h.s of equation 3.28. Diagonalising ρ(1) (z, z′) then yields its representation in
terms of the orbitals φn(z, t) and corresponding occupation numbers |an|2. According to
the Penrose-Onsager criterion introduced in section 2.1.2, the highest occupied orbital
can be identified as the phase-coherent condensate mode, and is in good approximation
given by [123]

nPO(z) = n(z)
√

2− g(2)(0, z)g(1)(0, z). (3.29)

with the total density profile n(z).

To obtain the quasicondensate fraction, one can rely on the definition of the component
of the field for which density fluctuations are suppressed, given in [128] and defined by

nqc =

√
2 〈|Ψ(z)|2〉2 − 〈|Ψ(z)|4〉, (3.30)

again adopting the definition of Ψ(z) in terms of the initial random realisations ψrn(z).
Note that this expression contains the Penrose-Onsager mode. The thermal fraction
simply corresponds to the residual atoms.

Figure 3.5 presents such a decomposition obtained from an ensemble of 1200 inde-
pendent realisations of SGPE solutions. Figure 3.5(a) contains the spatial distribution
of atoms in the Penrose-Onsager mode, in quasicondensate modes different from the
PO-mode, and the residual thermal fraction for a cloud of 10000 atoms at a temperature
of 100 nK in a trap characterised by ωa/2π = 10 Hz and ωr/2π = 1000 Hz. Even
though the thermal coherence length λT � RTF , as extracted by the analyses presented
in the previous section, is much smaller than the spatial extension of the cloud given by
the Thomas-Fermi radius, more than half of the atoms actually form a true condensate.
Most of the residual atoms occupy a comparably small number of modes forming
the quasicondensate fraction nqc − nPO, whereas only 3% can be considered as fully
incoherent atoms due to quantum depletion or sufficiently high kinetic energy.

Since sizeable deviations from a classical Rayleigh-Jeans distribution as discussed in
section 3.3.1 are only expected for the small decoherent component, SGPE states can
be considered an excellent approximation to experimentally created quasicondensates
in a typical atom chip trap.

For completeness, figure 3.5(b) shows the 10 highest occupied modes in the density
matrix decomposition of the same cloud as analysed in figure 3.5(a). Note that the
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Figure 3.5.: Eigenmodes and occupation numbers of the diagonalised simulated one-particle density
matrix 3.28 for 10000 atoms at a temperature of 100 nK in a trap characterised by ωa/2π = 10 Hz and
ωr/2π = 1000 Hz. (a) Spatial distribution of atoms in the Penrose-Onsager mode (black dashed), in
the quasicondensate component without Penrose-Onsager mode (red dot-dashed) and the decoherent
component (green dotted). The total density is given by the blue line. (b) Density distribution in
the 10 highest populated modes. The blue line again corresponds to the Penrose-Onsager mode. The
eigenbasis is well-described by a set of Legendre polynomials as used in section 2.3.1.

eigenmodes are described in good approximation by a basis of Legendre polynomials
as obtained in terms of the inhomogeneous Luttinger liquid description introduced in
section 2.3.1.

3.3.6. SGPE in the 1d-3d crossover regime

Section 2.4 introduced the modified GPE 2.73 to take into account broadening of the
radial ground state profile at high linear densities and its effect on the axial density
distribution. As presented in [124] and discussed in detail within the thesis [129], it is
straightforward to modify the SGPE 3.17 by introducing the modified interaction term
from equation 2.73 into the Hamiltonian 3.18:

H1d3d
GP = − ~2

2m

∂2

∂z2
+ V (z, t) + ~ωr

[√
1 + 4a|ψ|2 − 1

]
. (3.31)

As discussed within the references cited above, also thermal occupation of transverse
excited states can be included by the same method outlined in section 2.4. Due to
the already noted low expected atom number in radial excited states at typical exper-
imental parameters, they are neglected for the simulations performed in connection to
measurements presented within this thesis.

3.3.7. Applications

Within the context of this thesis, SGPE-based c-field simulations are used to validate
the extension of the density ripple thermometry method (see section 2.5) to breathing
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clouds, as presented in section 5.3.3. In addition, similar simulations are directly
compared with experimental data and an analytical model based on the dynamical
scale invariance of the 1d GPE in the Thomas-Fermi regime in section 5.3.3. Optimal
control ramps as demonstrated within chapter 6 are applied to initial states created by
the SGPE to investigate the adiabaticity of these ramps with respect to the excitation
spectrum in section 6.5. Finally, the SGPE is used to study the hydrodynamic
expansion of quasicondensates in 1d waveguides in 7.

Beyond the scope of this thesis, the approach presented here has been used to study
the effect of experimental imperfections on the observation of generalized Gibbs states
in coherently split 1d Bose gases [130], evaporative cooling in 1d [81], and the effect of
breathing on the analysis of data considering thermalisation in coherently split 1d Bose
gases beyond the dynamics predicted by the Luttinger liquid theory [131].

3.4. Phase diffusion & Ornstein Uhlenbeck process

Creating a single solution of the c-field approach presented in the previous section, such
as shown in figure 3.3, takes at the point of writing this thesis between a few seconds and
a minute, depending on temperature, and therefore grid resolution. Consequently, the
time needed for the generation of a set of O(100) realisations to provide enough statistics
for the calculation of correlation functions amounts to several minutes to hours. While
this is acceptable for many applications, it is prohibitive for fitting experimental data to
extract temperature information. To this end, a simpler and more efficient procedure can
be used. Exploiting the circumstance that for thermal excitations, the fluctuations of
the phase Φ(z) are Gaussian 1, the phase profile along z can be described by a stochastic
diffusion process first described by Ornstein and Uhlenbeck in 1930 in the context of
Brownian motion [132]. Basically, it describes a standard Wiener process with a mean-
reverting contribution, preventing long-time (or in our case long-distance) drifts from a
certain equilibrium state. A phase profile corresponding to this process can be generated
by an updating formula [133]

Φ(z + ∆z) = Φ(z) +

√
∆z

λT (z)
R, (3.32)

where R is given by a Gaussian random number. Starting with an arbitrary phase at
some point in the cloud, a set of O(100) realistic phase profiles can be created within
seconds or less. While density fluctuations are neglected in this approach, this is not
crucial if the goal is not to propagate the created states by a GPE, but only by free
evolution to create time-of-flight profiles, since the strongly suppressed in-situ density
fluctuations have little influence on density ripples in expansion. The mean-reverting
nature of the Ornstein-Uhlenbeck process prevents long-distance drifts from the average

1Note that this is consistent with the δ-correlated noise term in the fluctuation dissipation theorem
3.19.
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phase coherence length λT (z). However, this method allows to include the density
dependence in the case of inhomogeneous profiles, improving upon the homogeneous
result from section 2.3.1.

Just as the states generated by the c-field technique, time-of-flight density profiles created
by the updating formula can be convoluted with the PSF of the imaging system, so
that resulting autocorrelation functions g(2)(∆z; texp) can be directly compared with
experimental data and hence be used for fitting. More information about this method
can be found in [75], which also discusses its application to the case of tunnel-coupled
quasicondensates as investigated within our group.
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”An experiment is something everybody believes, except the person who made it.”

Albert Einstein, in a conversation with Hermann Mark

After introducing the main concepts of how to trap (4.1) and detect (4.2) ultracold
atomic clouds in a typical atom chip setup, this chapter provides a short description of
the experimental apparatus used to perform the measurements presented in chapters 5,
6 and 7. The final sections introduce some experimental techniques relevant to these
measurements, mainly the characterization of magnetic micro-traps on atom chips (4.5)
as well as thermometry of 1d quasi-condensates based on density correlations in free
expansion (4.6).

In the course of this thesis, Bose-Einstein condensation has been achieved with this
machine. Section 4.4 outlines the experimental sequence leading to condensation in
both a macroscopic magnetic trap and a chip trap, discussing the points that were
particularly crucial for these steps and presenting early characterisation measurements.

4.1. Magnetic micro-traps on atom chips

The appealingly simple concept of trapping neutral atoms with a single wire [134, 135]
and subsequent successful experimental demonstrations [136, 137] have soon led
to more advanced designs based on microstructured surfaces, so-called atom chips
[138, 139], allowing for high current densities and tight confinement. The realisation
of Bose-Einstein condensation in such traps [140, 141] established these devices as one
of the main design choices for atom traps. Much information about the fabrication of
atom chips as used for the experiments in our group can be found in references [142, 143].

Modern atom chips support wire structures with diameters of a few tens of microns
and allow to achieve the tight confinement that is needed to freeze out radial degrees
of freedom and realize a 1d system of ultracold atoms. Magnetic trapping with atom
chips is an established technique by now, and for detailed information on this topic, the
reader is referred to [144, 145, 146, 147, 141, 71]. This section briefly summarizes the
basics of magnetic trapping and the different types of traps commonly realized within
atom chip experiments.
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4.1.1. Magnetic traps

In the following, we consider the interaction of a neutral atom with an external magnetic
field. If the field is weak enough to cause a Zeeman shift that is small in comparison
with the hyperfine level splitting, F remains a good quantum number and the total
angular momentum of the atom is given by F̂ . The corresponding atom-field interaction
Hamiltonian reads:

Ĥint = −µ̂ ·B = gFµBF̂B, (4.1)

with the magnetic moment of the atom µ̂, the Landé-factor gF , Bohr-magneton µB and
a magnetic field B := B(r, t). If, further, the atom sees a magnetic field that changes
slowly compared to its Larmor frequency, Ḃ/|B| � γL, with γL = mFgFµB|B|/~, it
will stay in its magnetic sub-state characterized by the quantum number mF , while the
time-dependence of the field only causes an adiabatically varying linear Zeeman-shift.
In this case, the interaction Hamiltonian, reduces to

Ĥint = mFgFµB|B| = Vint. (4.2)

Depending on the sign of mF · gF , this quantity is minimized either in small or big
external fields. Wing’s theorem [148] states that the Maxwell equations don’t allow
the existence of a magnetic field maximum in a source-free region of space, in analogy
to Earnshaw’s theorem [149] for electrostatics. Hence, atoms can only be trapped in a
potential minimum, hence in states satisfying mF · gF > 0.

Many different technical implementations of magnetic traps have been introduced, as
listed in [101]. Most of them address a problem arising in the most simple trap design,
consisting of a quadrupole field with a potential minimum at B = 0, as created by a
pair of coils in anti-Helmholtz configuration. As apparent from the quantity Ḃ/|B|, for
|B| → 0 the adiabaticity condition is easily broken, and for B = 0, no quantization
axis is defined whatsoever. Hence, atoms in the vicinity of such a trap minimum can
undergo spin-flips into untrapped mF states [150]. While loss rates for temperatures
far from degeneracy are low, close to the BEC transition when most atoms accumulate
near the trap minimum, they become significant. Therefore, different solutions to ’plug’
such a hole in the trap have been proposed. One trap that is stable against Majorana
losses is the so-called Ioffe-Pritchard trap [151, 152]. It can be described by the field
configuration [153]

B = B0

 0
0
1

+B′

 x
−y
0

+
B′′

2

 −xz
−yz

z2 − 1
2

(x2 + y2)

 . (4.3)

Note that in close vicinity to the minimum, the confinement is always dominated by
the second order term of the potential’s Taylor expansion, and can be treated as being
harmonic. The most commonly used atom chip trap, characterised by a H or Z-shaped
wire configuration as shown below, is an example of a Ioffe-Pritchard trap.
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Figure 4.1.: Side-guide potentials for different bias fields. (a) Cut through a side-guide potential for a
rectangular wire with a width of 200 µm, a thickness of 2 µm, a current of I = 2 A, and external fields
Bx = 20 G and By = 0 G. (b) As (a), but (Bx, By) = (7.07, 7.07) G, displaying the minimum shifted
towards the edge of the wire structure.

4.1.2. Atom chip traps

A current flowing through a straight wire, in the following assumed along the z-direction
of the coordinate system, generates a magnetic field

Bw(r) =
µ0

2π

I

r
eφ, (4.4)

where φ and r denote polar coordinates in the plane perpendicular to the wire and µ0

the vacuum permeability. In addition, let us impose an additional homogeneous external
bias field Bb. This will create a region (r0, φ0), where Bw is exactly offset by the bias
field so that Bw(r0, φ0)+Bb(r0, φ0) = 0. An atom with magnetic moment µ in a low-
field seeking state, assuming the conditions discussed in section 4.1.1, sees a potential
V = gFmFµB|B| with a minimum at (r0, φ0), and hence, a trap. This configuration of
an infinitely extended thin wire and a homogeneous bias field is called a side-guide, and
the trap minimum is a line parallel to the wire at the distance

r0 =
µ0

2π

I

Bb

. (4.5)

Figure 4.1 shows a slice through a realistic side-guide-like potential of a rectangular
wire in the (r, φ)-, or, equivalently, the (x, y)-plane at an arbitrary axial coordinate z.
The wire has a width and thickness of δx = 200 µm and δy = 2 µm and is situated
at the upper edge of the plots. Colors show absolute field values |B| in Gauss, as
indicated by the colorbars. Figure 4.1(a) displays the commonly used case of bias
field oriented in parallel to the chip plane, in our case corresponding to the x-axis.
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In figure 4.1(b), the bias field is rotated to exhibit a finite y-component. This shifts
the trap minimum towards the edge of the wire. Such a configuration allows to
create traps with tight confinement in the vicinity of the edge regions of macroscopi-
cally big current carrying structures, which will be useful in a new experimental setup
built in our laboratory at the moment of writing this thesis, and introduced in chapter 8.

a) c)b)

Iwire
Bxwire

Bxext

Bzwire

Figure 4.2.: Common wire traps. (a) Z-trap. The central wire piece together with the offset field
Bx

ext creates a side-guide like potential. The two bent pieces acting as leads generate an inhomogeneous
field contribution along the axial (z)-direction, providing axial confinement and possible an offset (Ioffe)
field to lift the trap bottom from 0 to a finite value. (b) U-trap. Similar to Z-trap, but the counter-
propagating currents in the leads provide fields that cancel in the center, creating a field-zero at the
trap-bottom. (c) H-trap. As indicated, this trap can be provided by wires arranged in a multi-layer
structure. Depending on the current direction in the leads, it can act similar to both a Z-or U-trap.
Axial and radial confinement can be tuned independently.

As described so far, the side-guide lacks axial confinement and, as a trap, suffers from
Majorana losses for the reasons mentioned in section 4.1.1. The latter problem can
be cured by applying an additional bias field along the z-direction, while the former is
addressed by additional wire segments orientated perpendicular to the main trapping
wire. Examples of such traps can be found in figure 4.2. Especially the Z-trap (4.2a),
also containing a schematics of the contributing currents and fields), and H-shaped traps
(4.2c)) consisting of wire segments in different chip layers [154] are commonly used. For
the Z-trap, the fields generated by the collinear wire segments point along the same
direction and hence add up. This effect by itself lifts the trap minimum to a finite value,
which, depending on the spatial extension of the central wire and the currents involved,
can render the application of an external field along z redundant. In the case of the
macroscopic Z-trap used in the intermediate stages of a typical experimental cycle (see
sections 4.3.5 and 4.4), this effect can be so strong that it is advantageous to apply
a reverse field to increase the trap’s confinement [155]. In the chip trap used for the
experiments described in this thesis, on the other hand, the effect is not big enough to
prevent significant losses, necessitating an additional external field.
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4.2. Detection techniques

A number of detection schemes for ultracold atoms have been developed over the
years, and most of them are based on atom-light interaction [156]. Although several
interesting complementary methods based for instance on electron microscopy [157],
photo-ionization and detection by a channel-electron multiplier [158], and, most
notably, direct detection of metastable Helium on microchannel-plates [159] have been
implemented, optical imaging is well suited to most experiments for many reasons:
The typically used Alkali atoms feature quasi-closed transitions yielding high scattering
rates, suitable light-sources for detection are normally already necessary for laser cooling
and therefore come ’for free’, highly sensitive cameras and detectors for the usual
near-infrared wavelengths involved are readily available, and optical imaging can be
adapted to cover the full regime of atomic densities from dilute magneto-optical traps
to highly confined trapped Bose-Einstein condensates. An overview discussing the most
commonly used imaging methods based on absorption, fluorescence and phase-contrast
detection can be found in [101]. More recent methods enabled optical detection at the
single-atom level mediated by fluorescence [160, 161, 162, 121, 40, 163]. In addition,
highly sensitive detection methods based on exploiting the coupling to optical cavities
have been developed [164, 165, 166, 167, 168, 169].

In our experiment, absorption imaging in free expansion and a single-atom sensitive
fluorescence detector based on optical fibers integrated on an atom chip are available.

4.2.1. Absorption imaging

In the following, the basics of absorption imaging, as used to perform the measurements
presented in chapter 5 and 6 are briefly summarized. A comprehensive review on this
technique with a focus on atom chip experiments can be found in references [55] and
[170].

Figure 4.3 shows an illustration of absorption imaging. Illuminating an atom cloud with
a directed, short laser pulse of intensity I0, tuned to be in the vicinity of a suitable
optical transition, leads to photon scattering and attenuation of the transmitted laser
pulse as described by Beer-Lambert’s law:

It = I0e
−σnc(x,z). (4.6)

Here, σ denotes an effective scattering cross section depending on the used transition
and intensity, while nc(x, z) corresponds to the atomic density profile integrated along
the direction of transmission, in this case y. This column density is consequently given
by

nc(x, z) =

∫
dy n(x, y, z) = σ ln

(
I0 (x, z)

It(x, z)

)
. (4.7)

The transmitted intensity distribution It(x, z) is recorded by a camera. A realistic
detector with a finite pixel size given by an area Ap will measure a density np(xi, zj) in
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I0 It

z

Figure 4.3.: Basic scheme of absorption imaging. An incoming beam with an intensity profile I0
interacts with an atom cloud, and photons are resonantly scattered out of the incident beam into 4π,
attenuating it according to equation 4.6. The transmitted intensity profile is imaged by a suitable
detector.

each pixel i, and a total atom number

N =
Ap
M2

∑
p

np (xi, zi) , (4.8)

with the magnification M of the imaging system, with the result that Ap/M
2 cor-

responds to an effective pixel size in object space. M can be measured during
characterizing the imaging system with the help of suitable resolution targets before
integrating it within the experiment (see for example [170]). Additionally, structures
of known size on the chip can be used as a cross-check after integration, in addition to
position measurements of free-falling atom clouds at different fall times, as in [171].

The effective scattering cross section σ is harder to identify, as it depends on a variety
of experimental parameters. For the remainder of the discussion, we will consider 87Rb,
as used in our experiments. The most important properties of 87Rb are summarized
in appendix A. A well-defined value for the resonant scattering cross-section σ0 can be
provided for an atom in the |F = 2,mF = 2〉-state, a quantization axis defined by a mag-
netic field with a strength so that the Larmor frequency γL exceeds the coupling to the
light field, and σ+-polarized light resonant with the transition between |F = 2,mF = 2〉
and |F ′ = 3,mF = 3〉 in the limit of low intensities I0 < Isat. Disregarding losses to the
F = 1-manifold that are negligible for the number of O(100) scattered photons per atom
during imaging, this scenario constitutes an effective two-level system, and the resonant
scattering cross section reads

σ0 =
~ω0Γ

2Isat
=

3λ2

2π
(4.9)

with a wavelength λ, a saturation intensity

Isat =
~ω3

0Γ

12πc2
, (4.10)
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where ω0 = (E2 − E1)/~ is defined by the energy difference between ground and
excited state, and Γ = 1/τ by the lifetime of the transition τ = 26.24 ns. Substituting
numbers yields Isat = 1.699 mW

cm2 and a resonant cross section σ0 = 0.291 µm2 [172].
These values mark the maximum scattering rates that can be achieved on this transition.

In the experiment, after switching off the trapping fields, the mF -states are not well
defined. In a field-free environment, the imaging pulse defines an inherent quantization
axis, and ideally, after a few scattering events the rate for each atom converges against
σ0. However, already the presence of small stray fields can significantly reduce the
steady-state scattering rate [173]. Therefore, it is advantageous to apply a well defined
homogeneous offset field aligned to the imaging axis to replicate the ideal case discussed
above. Note that a magnetic field causes a differential Zeeman shift

∆m = (mF ′gF ′ −mFgF )
µB
~
B (4.11)

between the ground and excited states involved in the transition. Usually, trap
switch-off and offset field application will lead to a distribution of atoms among the
different mF states, and if the differential Zeeman shift ∆m exceeds the linewidth of
the laser, optical pumping to the correct |F = 2,mF = 2〉 ground state of the cycling
transition is suppressed, leading to a loss of signal.

Similarly, any source of detuning between imaging laser and atomic transition ∆ leads
to a reduction of the scattering rate given by

σ =
σ0

1 +
(

2∆
Γ

)2
+ I0

Isat

. (4.12)

Polarizations deviating from σ+ lead to a change both the effective scattering cross
section and the saturation intensity due to optical pumping between different mF -states
driven by the σ− and π-components.

The coil setup in our experiment makes the application of an offset field for regular
absorption pictures impractical (see section 4.3). Switching external fields between the
values needed for a trap and the offset field, respectively, induces current oscillations
for durations of several 10 ms. By optimal control techniques using the approach
presented in [174], however, these oscillations were suppressed for one specific switch-off
procedure, allowing to perform calibration measurements with a well-defined external
field of 1.5 G and σ+-polarization for a set of quasi-BECs in a trap with known trapping
frequencies. A comparison of measured and simulated density profiles was used as a
validation of the atom number calculated from the resonant scattering cross-section,
and further comparison with the usual imaging setup without offset field and linear
polarization allows to perform a calibration, finding σ/σ0 ≈ 0.5. This is consistent
with calculations presented in [173], with σ/σ0 ranging from 0.5 to 0.55 for the limiting
cases a quantization axis aligned parallel and normal to the imaging beam direction,



54 Experimental setup & techniques

respectively.

The duration of the imaging laser pulses in our experiment is typically between 50 and
80 µs. Two pictures are taken for each absorption image. They contain the transmitted
intensity distribution in the presence of atoms It(x, z), and without atoms It(x, z),
respectively. Since the imaging process is destructive due to momentum transfer
of photons to the atom cloud, and since gravity leads to atoms falling out of the
illuminated region, the second picture can be taken typically 5− 50 ms after the initial
one, depending on the size and density of the atom cloud. An additional constraint on
the minimum time between pictures might be imposed by the shift- or readout speed
of the camera. To correct for stray light, two background pictures taken without the
imaging beam at a later point of the experimental cycle can be subtracted from the
initial pictures, at the disadvantage of adding the corresponding additional camera
readout noise.

As mentioned, the discussion in this section is tailored to absorption imaging in the
limit of low intensities. As I0 approaches Isat, nonlinear effects and increased forward
scattering start to set in. An imaging method situated in this regime is presented in
reference [175].

4.2.2. Fiber-based fluorescence detection

Simply put, the difference between absorption and fluorescence detection is given by
the position of the detector. In the regime of validity of the Beer-Lambert law 4.6, the
intensity scattered out of the imaging beam as indicated in figure 4.3 is

If = I0 − It = I0

(
1− e−σnc(x,z)

)
. (4.13)

Assuming the same conditions as in the previous section, all statements about the scat-
tering rate σ carry over to fluorescence imaging. Nevertheless, one fundamental differ-
ence between the two methods is that in the limit of low atom numbers N , the minimal
number of atoms detectable with fluorescence detection at a given signal-to-noise ra-
tio scales favourably as compared to absorption detection [39]. Other differences are
of mostly technical nature: In fluorescence imaging, the detector is not illuminated by
the full detection beam, allowing high intensities to maximize the number of scattered
photons, while at the same time employing highly sensitive detectors, as for example
EMCCD cameras. Using the same intensities in an absorption imaging setup would lead
to the destruction of the detector. On the other hand, the detected photon intensity

IdetF = ηcollI0

(
1− e−σnc(x,z)

)
(4.14)

is suppressed by the collection efficiency ηcoll = Adet/4π given by the fraction of solid
angle the detector is covering, assuming isotropic scattering on average. Maximizing
ηcoll necessitates, in optical terms, a detector with a large numerical aperture which is
often hard to implement and has the added disadvantage of higher sensitivity to collect
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background photons from spurious light sources.

The use of an miniaturized, integrated fluorescence detector close to the atomic scatterers
provides an elegant solution to maximize the numerical aperture while minimizing the
background, and has been shown to allow single-atom sensitive detection [40, 42]. A
detailed presentation can be found in [39]. A short overview of the detection geometry
is presented in section 4.3.9. Within the scope of this thesis, the detection efficiency for
atom clouds close to degeneracy has been studied. The results are presented in chapter
7.

4.3. Experimental setup

The apparatus described here consists of over 60 devices coordinated by a central
experimental control system and many more passive optical, opto-mechanical and
electronic elements, and a full description involving each single device is beyond
the scope of this work. Therefore, the following section only provides an overview
discussing the most important components, concentrating on the status-quo as of
2012 and 2013, at the time when the measurements presented within this thesis
have been performed. Where it is useful, experimental parameters are included as
reference values. A focus lies on the modifications that have been applied in order
to prepare the machine for the routinely generation of degenerate Bose gases. Many
components have already been selected and installed during the first iteration of the
experiment at the university of Heidelberg, a detailed description of which can be
found in reference [38]. Other changes have been made during the reconstruction of the
machine after the group’s move to the Vienna labs and are documented in reference [39].

4.3.1. Overview

The goal of each experimental sequence is the trapping and manipulation of a bosonic
atom cloud that is in a cold thermal or Bose-condensed state in a magnetic micro-
trap. To achieve this, each experimental sequence needs to go through several stages,
necessitating specific working conditions and devices. In the following, an overview of the
most important devices and components is given, while the different stages to go through
to generate a 1d quasi-BEC in an atom chip trap are discussed in section 4.4. Figure 4.4
starts with a sketch outlining the structure of the experiment, containing the components
discussed below. Most of the setup is built on top of a pneumatically supported optical
table to decouple it from environmental mechanical shocks and vibration. Power supplies
and control electronics are stored below the table and on shelves above it, with the
exception of the laser control electronics that is housed within a separate rack besides
the table. Many devices are connected to a central experimental control, which itself is
linked to a dedicated computer with an interface to steer the experiment’s operation.
Two different PCs are connected to cameras and photon counters for the fiber detection
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Figure 4.4.: Sketch of the experiment’s basic structure. The different components discussed through-
out section 4.3 are sorted into categories belonging to the laser system, vacuum chamber setup, detection,
as well as data acquisition and control. All components, except the computers belonging to the latter
category are mounted on and around a single optical table in the laboratory.

setup, respectively.

4.3.2. The atom

Figure 4.5.: 87Rb D2
line: Level scheme.

The standard procedure to reach the temperatures necessary to
allow magnetic trapping of neutral atoms is laser cooling [176,
177] in a magneto-optical trap, which is also used in this setup.
While an increasing number of elements can be laser cooled as
of now [178, 179, 180], the choice in our experiment is 87Rb.
It is one of the most commonly used elements and isotopes in
cold atom experiments, partly due to the good availability of the
needed wavelengths in the vicinity of 780.24 nm for the D2 line
in terms of diode lasers and, more recently, frequency doubling
of high-power Telecom-wavelength sources [181]. Figure 4.3.2
shows the level scheme and the relevant transitions of the D2
line. The lasers used to drive these transitions in the different
stages of the experiment are discussed below (4.3.4). It was
mentioned in section 4.1.1 that an atom needs to be in a low-
field seeking state for magnetic trapping. For 87Rb, one can
choose between the |F = 2,mF = 1, 2〉 and |F = 1,mF = −1〉
states. For all the experiments presented in the chapters 5 and
6, the |F = 2,mF = 2〉 state has been used. It has the advantages of a higher confinement
by a factor

√
2 as compared to state |F = 1,mF = −1〉, and no need for repumping to

the F = 2 manifold for detection. For the demonstration of state selective detection
with the integrated fluorescence detector, the |F = 1,mF = −1〉 has been used. A very
recent measurement of the s-wave scattering lengths for the F = 1 and F = 2 states can
be found in [182], with previous results referenced therein.
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3 port cluster flange Figure 4.6: Vacuum chamber. Upper panel:
Side view. On the right side, the main cham-
ber is displayed. On top, the chip mounting at-
tached to a three-port cluster flange installed on
top of a reduction flange that is connected to the
upper orifice of the vacuum chamber. The clus-
ter flange features feedthroughs for electric con-
nections for chip wires and copper structures, as
well as Swagelok-feedthroughs for optical fibers.
On the left side, the 6-way cross connecting the
chamber to the installed vacuum pumps. Lower
panel: Top view. On the six-way cross, the valve
leading to the vacuum gauge is visible. The top
view of the chamber reveals the optical access an
beam paths. The axis pointing from north-west
to south-east, as labelled in the figure is used for
MOT beams, while the orthogonal axis (north-
east to south-west) is used for imaging. At the
north, south, east and west positions, two pairs
of identical coils. An additional coil is situated
at the top of the chamber, mounted around the
reduction flange. At the bottom of the cham-
ber, a big window is used for MOT beams and
additional optical access for imaging. Drawings
adapted from [38].

4.3.3. Vacuum chamber, atom source and coils

Since laser cooling is selective to the specific element and isotope chosen, it is necessary
to work with a good vacuum of at least p ≈ 10−8 to 10−9 mbar. Reaching lifetimes in
the order of many seconds, as needed to achieve BEC in a magnetic trap, enforces even
more stringent conditions, necessitating ultra-high vacuum (UHV) of p ≈ 10−11 mbar.
We achieve such pressures in a steel vacuum chamber, as outlined in figure 4.6 (detailed
drawings can be found in reference [38]). Pumping down is performed by a combination
of a turbo-molecular pump1 and heating of the vacuum chamber to at least 100◦C, while
an ion-getter pump2 keeps the pressure during regular operation with the additional use
of a titan-sublimation pump3 at regular intervals of a few weeks to months.

Source. As a Rubidium source, suitable alkali metal dispensers4 can be mounted within
UHV and allow the implementation of a closed, single-chamber experiment. The dis-
pensers contain a mixture of Rubidium chromate and a reducing agent on a Tungsten
wire. Upon heating the dispenser by applying a suitable current to the wire, usually
around 4 − 7A during regular operation, the reducing agent reacts with the chromate,
leading to the release of Rubidium by evaporation. For our experiments, pulsed opera-

1Pfeiffer Vacuum Gmbh, Asslar, Germany.
2VacIon Plus (55 l/s), Varian Inc. (now Agilent), Torino, Italy.
3Mini-Ti Ball, Varian Inc. (now Agilent), Torino, Italy.
4SAES Getters S.p.A., Milan, Italy
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tion of 12 to 16 seconds at the beginning of the experimental sequence, for a cycle time
between 30 and 35 seconds, has shown to yield both a sufficient number of atoms in the
MOT, and at the same time sufficiently low background pressure during the magnetic
trapping stages to guarantee long enough lifetimes. According to our experience, the
Rubidium stored in the dispensers under these conditions is sufficient to allow several
years of operation.

Coils. Two symmetric pairs of coils are mounted at the ’North’ / ’South’ and ’East’ /
’West’ positions as denoted in figure 4.6. An additional coil on top of the chamber creates
a field perpendicular to the chip. In contrast to other experiments within the group,
these coils are used to generate all external fields used throughout the experimental
cycle5. This is easily possible, since the mounting and chip is aligned at an angle of 45
degrees with respect to the coil axes in such a way that the direction of bias and Ioffe
fields can be reversed without having to change the direction of current within the coils.
This setup simplifies especially the copper-structure based magnetic trap (see section
4.4 that necessitates reversing the direction of the Ioffe field to improve confinement,
as discussed in 4.1.1. On the other hand, this setup also leads to the fact that the
small Ioffe field is generated by subtraction of two strong fields along the z-direction, if
at the same time a big transverse bias field is needed for a sizeable confinement. This
translates to significant current noise on the trap bottom. An additional pair of coils
along the Ioffe-direction, designed to create small fields, would alleviate this problem
and in addition allow current stabilization schemes that improve stability of the trap
bottom [183], while a similar additional pair of bias coils would facilitate applying a
suitable offset field for absorption imaging. Hence, implementing such coils is planned
for the next iteration of the experiment.

Periphery. Externally controlled power supplies are used to drive both the currents for
the Rubidium source6 as well as for the coils7. The latter need to be switched rapidly
at several points during the experimental cycle. Since this cannot be accomplished with
the power supplies themselves, resulting in current oscillations directly after switchoff,
external switches dissipating the power stored in the coils by Darlington transistors
built at the institute’s workshop are used. They also contain current sensors that are
used to monitor the proper operation of both switches and power supplies.

The power supplies used for the coils feature both a constant current (CC) and a con-
stant voltage (CV) mode. Connecting both current and voltage control channels to the
corresponding input plug of the power supply allows to freely switch between these oper-
ation modes by changing the corresponding signals in the experiment control. This can
be used to control the switch-on behaviour of the coils to allow short current rise times

5The exception is a set of big compensation coils around the whole setup running a constant current
to compensate for earth’s magnetic field.

6Kepco ATM 6-10M, Kepco Inc., N.Y., USA
7HP 6552A (now Agilent) / Agilent 6652A, Agilent Technologies, Santa Clara / CA, USA.
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Figure 4.7: 87Rb D2 line: Level scheme and
used transitions.

while suppressing subsequent current oscillations. Measurements performed within the
group show that the CV mode features less current noise than the CV mode. This sug-
gests that it is preferable to CC during the chip trap. However, since the coil resistance
can vary with temperature, the CV mode has been observed to current drifts without
proper external stabilisation as mentioned above. Therefore, in contrast to the sugges-
tions from noise measurements, the CC mode is preferable during the chip trap in our
experimental setup.

4.3.4. Laser system

Lines. In order to cool, trap and detect 87Rb, a number of lasers stabilized to operate
on specific transitions of the D2-line are necessary, as shown in figure 4.7. For cooling,
cyclic transitions between F = 2 and F ′ = 3 are utilized. The F ′ = 3 state can decay
to the F = 1 state that is dark with respect to the cooling light, with a branching
ratio of approximately 1/1000. Therefore, an additional repumping laser tuned to the
F = 1 < − > F ′ = 2 is necessary to return these atoms to the cyclic transition. These
lines are sufficient for the generation of a magneto-optical trap and optical molasses.
Switching on a magnetic trapping field provides a quantization axis and a distribution
of atoms among different mF states between −2 < mF < 2, and only the mF = 1, 2
states are trapped. To improve the transfer efficiency, an optical pumping laser on
the F = 2 ↔ F ′ = 2 transition, σ+-polarized with respect to the quantization axis
defined by the initial trapping field is used to accumulate most atoms in the trapped
|F = 2,mF = 2〉 state. Detection, again, operates on the cycling transition, as discussed
within section 4.2.

Structure. The basic structure of the laser setup has not been changed since the
initial rebuilding of the experiment after its move to Vienna. A detailed description
can be found in [39], while an overview is presented in figure 4.3.4. To generate all
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[39].

wavelengths in the vicinity of 720.24 nm needed to drive the transitions of the D2-line,
frequency stabilized diode lasers are used.

Lasers and frequency control. One so-called master laser is stabilized on the
F = 2 ↔ F ′ = 2, 3 crossover peak of a doppler-free saturation spectroscopy setup
by a frequency modulation (FM)-locking technique. It is a self-built external cavity
diode laser (EDCL) in Littrow configuration. A fraction of the output beam is
used as a reference for frequency offset (FO)-locking [184] both the cooling and the
imaging laser, while most of the power is directed towards an acusto-optical modulator,
acting as a switch and shifting the frequency by −133.3 MHz into resonance with
the F = 2 ↔ F ′ = 2 transition for optical pumping. The FO-lock for the cooling
and imaging lasers yields to a tunability on a range of 100 MHz without influencing
the beam direcation (as for a single-pass AOM setup) or the output power (as for a
double pass AOM setup). The imaging beam is split and directed to two different
single-pass AOMS providing a redshift of 80.7 MHz and 110.7 MHz, respectively. The
first AOM directs light for the time-of-flight imaging setup, the other to the fiber
detection. Depending on which is used, the FO lock is tuned to shift one of the two
beams in resonance with the F = 2 ↔ F ′ = 3 transition, accordingly. The use of
two AOMs at different frequencies reduces crosstalk and corresponding beating effects.
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The cooling laser consists at the point of writing this thesis, of a commercial ECDL8,
driven with control electronics manufactured in the institute’s electronic workshop to
allow the use of an FO lock, that seeds a tapered amplifier (TA) chip providing the
power necessary for the magneto-optical trap. The TA has been constructed in the
course of the thesis [39]. The output beam transmits a single-pass AOM applying a
red-shift of 92 MHz, while again the FO-lock can be used to tune the beam to an
overall redshift between 10 to 70 MHz from the F = 2 ↔ F ′ = 3 as used in the MOT
and molasses phases. The repumping laser is, similar to the master, stabilized by an
FM-lock to the F = 1 ↔ F ′ = 1, 2 crossover peak and shifted into resonance with the
F = 1↔ F ′ = 2 transition by a single-pass AOM. Initially a commercial ECDL9, it has
been replaced by a distributed feedback (DFB) diode laser. Such diodes do not rely on
external gratings for mode selection and stabilization, but feature an Bragg resonator
directly manufactured into the active region of the laser diode by spatially modulating
the refractive index. They have the advantage of mode-hop free operation, greatly
improving stability of the experiment since mode-hops induced by small temperature
changes on the laser table limited the time over which the rempumping laser, and thus
the experiment, could be stabilized in the previous setup. A detailed description of the
used locking techniques can be found in [185].

The overall output powers of the different lasers correspond to 15 mW of repumping
light, and a few mW of total imaging and optical pumping power at the vacuum cham-
ber. The cooler features seeding powers of up to 20 mW for the TA chip, which emits
approximately 900 mW of total optical power. Since the beam profile of TA chips is rect-
angular and modified by diffraction at the output surface, it is usually badly matched to
the input of a polarization-maintaining single-mode fiber that has to be used to transmit
the light to the vacuum chamber for best stability, leading to a maximum total power
of roughly 480 mW at the vacuum chamber.

Periphery. All laser power supplies together with temperature control and locking
electronics are mounted within a rack connected to a USV-backed up power line
that is reserved for low-noise equipment. The only externally controlled devices from
this rack are the VCOs to tune the frequency offset of the FO locks. The AOM
drivers10 are quite noisy and connected to a different power line. Here, the amplitude is
externally controlled, and digital TTL triggers to switch them can be applied, while the
frequency of all AOMs stays at a fixed value. As an interesting sidenote, it was found
that the intensity of light leaking through the AOMs varies depending on both TTL
level and set amplitude. Only using the digital trigger led to significant transmitted
residual intensities, while negligible leakage has been observed with both amplitude and
TTL switched down. In this configuration it was possible to create BECs without the
use of additional mechanical shutters, with the exception of the high-power cooling laser.

8Toptica DL PRO, TOPTICA Photonics AG, Munich, Germany.
9Toptica DL 100, TOPTICA Photonics AG, Munich, Germany.

10Lingam Wildsau, Innsbruck.
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Two different types of shutters are used. Within the laser box, small devices that do not
introduce significant mechanical vibrations are utilized as to adversely affect the stability
of the laser locks. They have small plastic blades that are prone to be burnt through at
even modest intensities, and also likely to get stuck if switched in rapid intervals. Since
they were a frequent error source, a replacement solution for the next iteration of the
experiment is highly recommended. For the repumper and MOT beams, big metal blade
shutters11 mounted outside the laser box were used. They induce significant mechanical
vibrations, but are unlikely to be damaged by even intense, focused beams. Care has to
be taken that proper mechanical insulation of the laser box and the table is guaranteed.

Future improvements. In its current iteration, the laser setup allows continuous run-
time of the experiments of a few days under ideal conditions. Further improvements
to be considered within the next iteration of the experiment encompass removing the
separate repumping laser altogether, and replacing it by a microwave modulation [cite
modulation papers] of a DFB-based cooling laser seeding a TA chip. Such a setup is
built and tested at the moment of writing this thesis. On the one hand, this allows to
shift the ratio between cooling and repumping light by the MW modulation amplitude.
This is useful, since at 15 mW of total repumping power, a total saturation of the atom
number in the magneto optical trap has still not been observed and higher powers would
be advantageous. In addition, one less laser means one less independent error source,
and the DFB diode would additionally improve stability as compared to the ECDL-laser
in the current configuration. Further, the master laser could be replaced by the commer-
cial model acting to seed the TA chip as of now. Using an FM lock with the electronics
shipped with the laser allows remote control of the lock-point, further reducing direct
intervention necessary to keep the apparatus running. Finally, a new fiber-coupled TA
has been ordered recently12, offering higher output powers of up to 2W, to replace the
ageing chip, offering additional power reserve and temperature stability.

4.3.5. Chip mounting & copper structures

Mounting. To allow time-of-flight imaging, the atom chip needs to be mounted upside
down in the vacuum chamber. Consequently, the chip mounting is attached to a three-
port cluster flange screwed to a reduction flange on the upper orifice, protruding into the
chamber from above. It consists mainly of a number of copper rods connecting current
feedthroughs at the flange to a set of copper structures and pins to connect the chip,
fixed within a Shapal13 plate with suitable recesses that allow precise positioning of both
the copper structures and the chip. This is important to guarantee correct alignment
of the copper structures with respect to the wires, and good thermal contact between
mounting and chip. Shapal, a composite sintered ceramic made of Aluminium Nitride

11Uniblitz Shutter Systems, Vincent Associates, Rochester, USA.
12Toptica BoosTA, TOPTICA Photonics AG, Munich, Germany.
13Tokuyama Corporation, Tokyo, Japan.
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Figure 4.9.: Chip mounting and copper structures. (a) Overview picture of the mounting attached
to the 3 port cluster flange. The copper rods providing the macroscopic wire structures with current,
copper block and Shapal stabilization plates are shown. (b) Close-up picture of the Shapal plate
accommodating copper structures and the chip. The connections to the copper wires are labelled as
explained in the text. Along the sides of the recess for the chip, the pins for bonding to the chip wires
are visible.

and Boron, is an ideal choice for this since it features good electrical isolation but at the
same time a high thermal conductivity14. The Boron admixture facilitates machining of
the otherwise hard and rigid ceramics. Additional Shapal pieces are used to stabilize the
copper rods at different positions. Figure 4.9a) shows the chip mounting attached to the
cluster flange before assemblage of the vacuum chamber, and 4.9a) contains a close-up
of the Shapal plate and the copper structures.

Copper structures. The copper structures need to support currents of up to 60 A,
driven by external power supplies15 without significant heating. Most important are the
copper plate centred within the mounting and connected via the rods labelled by H
within the figure, and the Z-shaped structure crossing it centrally, used to create the
inhomogeneous fields needed for the MOT and the subsequent macroscopic magnetic
trapping phase respectively (see section 4.4). An additional pair of copper wires is
present, labelled as I1 and I2 in figure 4.9. For the experiments presented within this
thesis, it has not been used. Great care has to be taken that the connection screws are
properly tightened, so that all connections are supported by as much surface as possible.
Point-like connections heat up significantly during operation, leading to evaporation of
attached pollutants and consequently to an increased background pressure, reducing

14Thermal conductivity: ∼ 100 W/(m·K); Volume resistivity: ∼ 1014 Ω·cm.
15Agilent 6551A, Agilent Technologies, Santa Clara, USA.
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lifetime. To prevent this, optionally the copper connections on the flange-end can be
water cooled, which was, however, not necessary in our setup.

Periphery. Two power supplies16 act as current sources for the copper structures. The
currents need to be switched on and off on the µs scale to allow reliable transfer from
MOT to magnetic trap and to chip trap. As for the coils, switching the power supplies
directly is not fast enough, and an external solution is necessary. For the major oper-
ation time throughout this thesis, the same high-power switches based on Darlington
transistors17 have been used as for the coils. However, due to the low resistance of the
copper structures, the power supplies are likely to produce current spikes during switch-
ing, with a chance to damage the Darlington transistors. This necessitated frequent
maintenance. Therefore, suitable high-power relays have been tested and used during
the later stages of the experiment. They have proven to withstand continual operation
under experimental conditions and are a cheap and reliable alternative.

4.3.6. Atom chip

Z

Z

G

U1

U1

U2

U2

G G

F

b)a)

Figure 4.10.: Atom chip. (a) Overview picture of the chip glued to the Shapal plate displayed in
figure 4.9(b), with attached bond wires and optical fibers. (b) Top view of the chip surface. The
colored overlays correspond to wire structures used within this thesis. Red: Central trapping wire.
Blue: Control wires used to tune the confinement. Pink: Magnetic guide wire allowing atoms to
propagate from the chip centre to the fluorescence detection region (green). The V-shaped patterns
in the lower part of the picture correspond to SU-8 holding structures for optical fibers. The upper
greyed-out part of the picture contains other fibre detectors described in [38] and not used within this
thesis.

The atom chip is the heart of the experiment. It is consists of a 2.5 cm × 3 cm big silicon
substrate with a thickness of typically 700 µm covered by a 2 µm thick Gold layer. The

16Built by the electronic workshop at Heidelberg University.
17Built by the electronic workshops at Heidelberg University and the ATI.
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function of the layer is twofold: On the one hand it acts as a highly reflective mirror
surface to reflect beams used in the U-MOT setup [186]. On the other hand, the surface
can be structured by lithographic techniques. More precisely, the silicon substrate is
coated by photo-resist. Exposing the resist with UV light in regions defined by a suitable
lithography mask and subsequent development results in a silicon layer with hardened
resist structures on top. Now, the Gold is applied by evaporation. Lift-off removes
the resist and the Gold on top, resulting in a silicon substrate with a structured Gold
surface. In this way, wire structures as presented in section 4.1.2 are created that allow
current densities in excess of 107 A/cm2. Further details about the fabrication process
of the chip used within this thesis can be found in [143, 38].

Wire structures and dimensions. An overview picture of the chip is found in figure
4.10a), wile the wire structures used in this thesis are outlined in 4.10b). The central
trapping wire used to prepare cold thermal clouds and quasi-BECs has a thickness of
200 µm and is labelled by the connections Z. The central wire piece spans a length
4.5 mm. Likewise, the U-shaped control wires, indicated in the figure by the labels U1

and U2 are 200 µm thick. In addition, the wire denoted as G constitutes the guide wire
that allows to transport atoms from the central chip region to the fluorescence detector
marked by F . This wire has a thickness of 50 µm, and the distance between the chip
centre and the detector amounts to 5.5 mm. Note that a second guide wire exists that
leads towards the greyed-out upper region of the chip. Here, additional detectors are
situated that have been characterized in [38]. At the start of this thesis, the second guide
wire has found not to conduct current at all, indicating some sort of damage rendering
it dysfunctional during some stage of the experiment’s move from Heidelberg to Vienna.
Hence, the additional detectors have not been used in the scope of this thesis.

Currents. Using the supported current densities of 107 A/cm2, these wire structures
are expected to withstand currents of 40 A and 10 A for a thickness of 2 µm and widths
of 200 µm and 50 µm, respectively. However, the thin bond wires connecting the chip
to the pins represent a more sensitive bottleneck. As to not evaporate them, 2 A of
continuously applied current are not exceeded during operation of the experiment. The
used power supplies to drive these currents have been developed within the electronics
workshops in Heidelberg and Vienna. To prevent electric noise generated by outside
sources to couple to the chip currents, a 10 V car battery is used as voltage source.

Fiber holding structurs. On top of the Gold surface, our chip supports holding struc-
tures for optical fibers, as apparent in figure 4.10. These structures are applied within
an additional fabrication step, consisting of spin-coating the chip with a layer of SU-818

photo-resist, and another step of UV-exposure and development. With SU-8, it is possi-
ble to build stable structures with a height in excess of 100 µm. By varying the process
parameters, it is possible to influence the shape, going from rectangular to slightly un-
dercut structures that can be used as funnels to precisely align and hold optical fibers.

18Microchem Corporation, Massachusetts, USA.
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To prevent any additional movement, the fibers are fixed with a vacuum-proof epoxy-
based glue. A detailed description of the SU-8 structures can be found in [38], while
in the scope of [187], the SU-8 fabrication steps have been reproduced within Vienna,
and details about the process are contained here. Note that in preparation of the exper-
iment’s next iteration, a modified process has been developed that allows to fabricate
even bigger SU-8 structures that can hold fibers with a diameter exceeding 125 µm. It
involves a multi-layer SU-8 fabrication and an additional thin SiO2 layer between Gold
and SU-8 to improve the adherence of the latter. A detailed description is expected to
be published in future and to be contained in Dominik Fischer’s Ph.D. thesis [188].

4.3.7. Evaporative cooling setup

Some information about the physics of forced RF cooling can be found in section
4.4. As an RF source, two frequency generators19 are used in our experiment. One
of them (labelled ’RF1’) is used to cover a frequency range from 0 to 20 MHz, the
other one (’RF2’) is restricted to 0 to 3 MHz. The reason is that we use an analog
signal between 0 and 5 V to control the frequency output of the RF generator. Since
internally, this voltage range is mapped to a finite number of frequency steps, a bigger
range corresponds to a lower resolution. This is disadvantageous in the final steps
towards condensation. Therefore, one generator is used to perform pre-cooling within
the copper-structure generated magnetic trap, while the final steps to condensation are
performed with the second generator.

In general, analog control yields a broader, more noisy output signal. A digital solution
with the current equipment is prohibited by the fact that in this mode the RF-generator
cannot be externally triggered properly, and all workarounds yield random delays
between trigger signals and response of the device in the order of a few to a few
tens of ms. An additional disadvantage is that the amplitude of the signal cannot be
controlled externally. At the moment we use two different amplitudes for precooling
and condensation, but a certain amount of power broadening in the order of tens to
a few hundreds of Hz cannot be prevented. Therefore, for the next iteration of the
experiment, an advanced RF source allowing full digital control of both frequency and
amplitude, that allows to reduce the latter during the final cooling steps, as well as
control over the phase, would constitute a big improvement. Such sources have started
to see use in other experiments within the group recently20.

The RF signal is fed by BNC cables to the H-like copper structure that can be seen in
figure 4.9 via externally triggered RF switches21. Since the exact field strength at the
position of the atom cloud is not known exactly, the amplitude is chosen to yield the
shortest cooling times to degeneracy.

19Agilent 33220A, Agilent Technologies, Santa Clara, USA.
20Tabor Electronics Ltd., Tel Hanan, Israel
21Mini-Circuits, N.Y., USA.
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Main imaging Overview imaging
Camera Andor iKon M Pixelfly QE
Magnification 5.62± 0.13 1.72± 0.02
Effective pixel size 2.32 µm 3.76 µm
Field of view 2.37× 2.37 mm2 5.23× 3.85 mm2

Diffraction limited resolution 5.22 µm -

Table 4.1.: Parameters of the main and overview absorption imaging systems.

4.3.8. Absorption imaging

A detailed presentation of the absorption imaging setup can be found in [171]. One
camera22 together with suitable optics is employed as an overview imaging with a field of
view sufficient to image the compressed MOT and the early stages of the copper-structure
based magnetic trap. A second camera23 is designed to yield high resolution images of
cold thermal clouds and quasi-BECs. The imaging optics has been designed and tested
in the course of the thesis [171]. Within the coordinate system introduced in 4.1.2, both
imaging systems observe atom clouds integrated along the x direction, transversely to
the weakly confined axis of the magnetic traps generated in the experiment. While much
of the system’s characterization has been performed prior to its integration within the
setup, proper focussing has to be accomplished with atoms as an imaging targes. Two
useful techniques employed, based on the shape of diffraction patterns from optically
dense clouds, the other using an MTF-induced effective cutoff on the spectrum of density
ripples in free expansion (see section 4.6) developed within the group [121] are found in
[170, 171]. Table 4.1 presents the most important parameters of both imaging systems
needed for the analysis of the data this thesis is based upon.

4.3.9. Fluorescence detector

The integrated fluorescence detector was the main tool to acquire the data analyzed
and presented in [39]. It is therefore thoroughly described within this reference. The
detector itself is best explained by means of the microscope picture shown in figure
4.11a). It consists of two optical fibers at an angle of 90 degrees with respect to
each other, and each at 45 degrees with respect to a guide wire that allows atoms to
propagate from the central chip trap to the detection region pictured. Both fibers have
a diameter of 125 µm and are held in place by SU-8 structures as described in section
4.3.6. The fibers enter the vacuum chamber through the upper 3 port cluster flange via
swagelok-feedthroughs housing teflon plugs that enclose the fibers. Upon tightening the
feedthroughs, the teflon plugs provide proper sealing to ensure UHV conditions without
damaging the fibers.

22Pixelfly QE, PCO AG, Kelheim, Germany.
23Andor iKon-M DU934N-BR-DD, Andor Technology PLC, Belfast, UK.
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Figure 4.11.: Flourescence detection. (a) Microscope picture of the integrated fluorescence detector.
Atoms propagate along the central guide wire, crossing a pair of orthogonally arranged fibres. A
tapered detection fibre delivers light with a total power of picowatts to nanowatts into the red-coloured
region, focussed centrally with respect to the guide wire. The blue-coloured cone indicates the region of
maximum probability to scatter photons into the core of a multimode collection fiber at the bottom end
of the pictures. The yellow-coloured overlap corresponds to the optimal detection region. (b) Sketch of
the overall detector setup. An attenuated beam is coupled to a fibre-Y setup splitting the path to both
an intensity stabilization setup and the vacuum chamber to deliver excitation light. Fluorescence light
from atoms is guided out of the chamber to an interference filter and a Hanbury-Brown Twiss setup of
a beam splitter and two SPCMs to resolve signals beyond the dead-time of the photodetectors.

Fibre detector. One of the fibers is single-mode and tapered24, delivering excitation
light at a distance of 62.5 µm from the chip surface, with a focus centred below the
guide wire. The beam waist in focus is 5 µm. The second fiber multimode, and collects
fluorescence light scattered into the fiber core. The region of maximum detection
efficiency is marked by the blue cone in figure 4.11a). Outside this cone, the detection
probability is not identically zero, but drops rapidly with the spatial distance of the
cone border. Most of the signal will be collected from a small intersection within
the detection cone that is illuminated by the light from the excitation fiber. This is
the yellow-coloured region in figure 4.11a). Each scatters a number of photons in the
detection region, the average of which depends on the effective scattering cross section
and an interaction time that is either given by the motional dynamics or by loss into
dark states (as for example the F = 1 state), a fraction of which is collected by the
multimode fiber.

Detection setup. The rest of the detection setup, situated outside the vacuum
chamber, can be divided into preparation of the excitation light, and collection of the
fluorescence and is schematically shown in figure 4.11b). A fraction of light from the
imaging laser passes an AOM and an attenuator before being coupled into a fiber-Y
50-50 beam splitter. One of the output ports leads to a set of fibre paddles to control
the polarization. Afterwards, this fibre piece is spliced the actual excitation fibre

24Nanoptics, Inc. Gainesville, USA.
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Figure 4.12.: Setup to guide additional light on the repumping (F = 1 < − > F ′ = 2) transition to
the excitation fiber, enabling detection of atoms in the F = 1 hyperfine state.

entering the vacuum chamber. The other output port leads to an amplified photo diode,
monitoring the transmitted power. The photo diode signal is used by a PID-regulator
to close the feedback loop to the amplitude control of the AOM driver in order to
stabilize the intensity to a fixed value. Note that the power needed to reach the
saturation intensity within the detection region amounts to 325 pW. Typical powers
used for experiments range between a fraction of this value up to a few nW.

The light collected by the multimode fibre is guided to an interference filter25 and from
there into a Hanbury-Brown Twiss (HBT) type setup consisting of a beam splitter and
two single photon counting modules (SPCM)26. This setup allows to investigate photon
correlations for time intervals below the SPCM dead time of approximately 50 ns and
has been used to validate single atom detection within the setup [41].

While for many fluorescence detection schemes, background light is a problem, the
miniaturized nature of the fibre detector leads to a negligible amount of background.
Measurements of the fraction of light detected as a function of the intensity coupled
into the excitation fibre in the absence of atoms scattering photons show a suppression
of 10−8, or only 30 counts per second for each nW of power emitted by the excitation
fibre[39]. Stray light at different wavelengths is suppressed even further due to the
interference filter in the detection setup.

Detection efficiency. The total photon detection efficiency Nph, is the product of the
collection-, all transmission-, as well as the SPCM detection probabilities within this
setup [39, 189]:

Nph = Rcoll · ff · fs · fg · fSPCM . (4.15)

Here, Rcoll = 0.019 denotes the photon collection ratio, ff = 0.96 corresponds to Fresnel
losses due to reflection at the multimode fiber tip, fs = 0.998 stems from losses at the

25Semrock, Inc. Illinois, Lake Forest / IL, USA.
26Perkin Elmer SPCM-AQR-12-FC, Perkin Elmer, Inc., Waltham / MA, USA.
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splice, fg = 0.84 summarizes all reflection losses within the HBT setup (fiber coupler
facets, filter transmission), and fSPCM = 0.564 denotes the SPCM detection efficiency.
With these numbers, the total photon detection efficiency amounts to Nph = 0.0086.
It is also possible to bypass the HBT and only use the interference filter at the out-
put. This slightly reduces the loss contribution of the filter gap fg, to yieldNph = 0.0091.

The total atom detection efficiency, on the other hand, depends on the number of scat-
tered photons per atom and is therefore influenced by a number of parameters like the
laser detuning, magnetic field gradient, polarization of the detection light or the mo-
tional dynamics of atoms in the detection region. A detailed analysis for thermal atoms
at temperatures exceeding O(10) µK is found in [39]. An analysis for temperatures in
the nK-regime is presented in the thesis [188], some aspects of which are discussed in
chapter 7.

State selective detection. As discussed so far, only atoms in the F = 2 hyperfine state
can be detected, while atoms trapped in the |F = 1,mF = −1〉 state are dark. Since the
F = 1 manifold does not offer a closed transition that our detection scheme is relying on,
a solution based on superimposing repumping light coupling to F = 1 < − > F ′ = 2,
while detecting on the closed F = 2 < − > F ′ = 3 transition. Such a scheme has been
demonstrated to achieve atom detection efficiencies comparable to the numbers measured
for atoms in the F = 2 state [42]. The simple setup to add repumping light is sketched
in figure 4.12. Assuming a mixture of atoms in F = 1 and F = 2, it is possible to count
the total atom number (imaging and repumper on), the F = 2 component (imaging
on, repumper off) or the F = 1 component (external imaging pulse to remove F = 2
component, imaging and repumper on for fibre detection). Detecting both components
independently within a single atom cloud, however, would necessitate an arrangement of
two detectors so that the first counts the F = 2 component, and the second the atoms
in F = 1.

4.3.10. Experiment control and data acquisition

The control and acquisition system is an often-times underestimated part of the
experimental apparatus. While each single component is crucial to the operation of
an experiment, after the initial setup of the hardware one is confronted with finding
an experimental sequence leading to the desired result, such as production of a BEC,
or a manipulation procedure transferring an atom cloud into a desired target state. In
essence, this is a big optimization problem over the parameter space defined by the input
of each controlled component. At the point of writing this thesis, 60 devices are subject
to the experiment control, each of which has to perform a certain temporal sequence of
action, amounting to over 1000 parameters. Of course, this is not a black box: knowledge
of the applied techniques and a certain experience considering how to choose physically
sensible parameters is important; nevertheless, many quantities still have to be found
by performing parameter scans and evaluating the results. Likewise, troubleshooting for
dysfunctional devices requires parameter scans and easy access to many different output
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Figure 4.13.: Left and middle panels: Screenshots of the experiment control software written in
Matlab and communicating with a real-time control system as described in the text. Each coloured line
corresponds to a device, different columns to timesteps throughout an experimental cycle. Right panel:
Acquisition software to store and pre-evaluate pictures and data from the experiment, also written in
Matlab.

signals, which have to be monitored and recorded. The amount of time needed to do
so greatly depends on the simplicity and ease of use of the control and real-time analysis.

In the early stages of this thesis, the initial LabView-based control has been exchanged
by a modular real-time system of type AdWin-Pro II27. A previous version of this
system has been in use within other experiments in our group before. The change
to the new system brought several advantages. From a technical point of view, the
main gain is a lower noise floor, an improved time resolution down to 9 µs, and a
higher number of both analog and digital output channels. A Matlab-based software
interface integrating control and real-time analysis that had been developed for another
experiment [190, 191] could be adapted. Screenshots from the software are shown
in figure 4.13. One of the main advantages is the comfortable calibration of control
voltages to physical units such as magnetic fields in Gauss. Another comfortable feature
is the online analysis, that can be easily set to log, store and automatically analyse and
plot different measurement observables. Both of these features save a big amount of
time when dealing with parameter scans in the process of optimization. Additionally,
an automatic parameter optimization scheme based on a genetic algorithm was refined
and adapted to this experiment [174, 192].

Beyond this, several features have been added over time. In hindsight, two have been
especially useful. One of them is the option to define an arbitrary time during the
experimental cycle and have a working imaging sequence determined and applied
automatically, including correct switching of all lasers, fields and RF sources. The
ability observe the atom cloud at any point during the cycle without having to perform
lengthy changes on the timing drastically reduced the time spent looking for errors and
faulty devices. The second feature was the implementation of a comfortable remote
control for the machine, allowing parameter scans over nights and weekends, and

27Jäger Computergesteuerte Messtechnik GmbH
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monitoring the operation remotely.

Technical details about the control-system and further information about the software
can be found in [174].
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4.4. Bose-Einstein condensation in an atom chip setup
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Figure 4.14.: Sketch
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tal cycle, illustrating
the different stages de-
scribed within this sec-
tion.

The basic structure of a typical experimental cycle can be roughly
parted into three stages: Magneto-optical trap, magnetic trap-
ping within a macroscopic trap generated by the copper structures
(4.3.5), and the chip trap. Figure 4.4 visualizes a typical experi-
mental cycle in terms of these stages. The total duration usually
ranges between 30 and 35 seconds. 16 to 20 seconds of this time is
consumed by the MOT phase, including loading and a short opti-
cal molasses phase, alone. Capturing the cloud in the macroscopic
magnetic trap and pre-cooling takes around 6 seconds, while cool-
ing to degeneracy in the chip trap needs 3 to 4 seconds. The rest
of the time is taken up by further manipulation of the cloud, or
propagation in the 1d magnetic guide towards the detection re-
gion. The following, the different stages of the experimental cycle
are briefly described, with emphasis on the points that have been
found to be crucial for the reliable generation of a BEC.

4.4.1. Laser cooling in a MOT.

As already introduced in section 4.3.4, the transition used for laser
cooling of 87 is the F = 2→ F ′ = 3 transition, while an additional
repumping laser on the F = 1→ F ′ = 2 line prevents the accumu-
lation of atoms in the dark F = 1 state. Using a setup involving
only a single vacuum chamber, one of the beam directions used for
a classical 6-beam arrangement is blocked, necessitating the use of
an U-MOT setup [186], where two beam pairs are mirrored on the
chip surface, instead.

Dispenser heating. Before the start of the actual laser cooling
stage, the Rubidium dispensers are heated by a current between 5
to 7 A for a time of 12 to 16 seconds. Note that these values can
vary between the different experiments within the group even for
identical dispensers, since the relation between current, pulse du-
ration and temperature depends strongly on the thermal contact
between the mount and dispensers, and on whether the mounting
is actively cooled. The fact that for longer cycle times the dis-
pensers have more time to cool down needs to be accounted for,
too. Therefore, optimization of the dispenser timing is rather empirical, and often the
last stepping stone to achieve BEC after a thorough optimization of the cycle’s later
stages.

MOT. After 10 seconds of dispenser heating, the lasers and fields for the magneto-
optical trap are switched on. The cooling laser is redshifted by 20 MHz with respect to
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resonance, and bias fields along the x and y direction of 10.8 and 7 G, respectively, as
well as a small field along the z-direction of 3.1 G are applied. Loading of the trap until
saturation usually takes 5 to 10 seconds. During the last 2.5 seconds of the MOT phase,
the dispensers are switched off so that they can suffiently cool down as to not cause an
increased background pressure of hot Rubidium during the following magnetic trapping
phase. The final 120 ms of the MOT phase are governed by a compression and shift
of the MOT position closer to the chip surface by ramping the fields to (Bx, By, Bz) =
(18.8, 7.8, 1.6) G, to guarantee good overlap with the magnetic trapping potential.

Molasses. After the MOT, fields are switched off and the detuning is increased to a
redshift of 50 MHz to employ polarisation gradient cooling in an optical molasses for
12 ms, yielding several 107 atoms at temperatures of T ≈ 15 µK. At this stage, precise
beam balance adjustment and compensation against stray fields is crucial. Ideally, the
molasses is clearly visible, without any shift of the center-of-mass position.

4.4.2. Transfer to the macroscopic magnetic trap.

While directly loading a micro-trap on an atom chip from the molasses is possible, the
mismatch between trap shape and cloud volume leads to large losses, heating and low
phase space density after transfer. Therefore, an intermediate magnetic trapping stage in
a macroscopic trap (see 4.1.1) is used. As described in section 4.1.1, the F = 2,mF = 2
hyperfine and Zeeman substates are used for magnetic trapping. As many atoms as
possible have to be collected in this state at the switch-on of the magnetic trap for an
efficient transfer from the molasses. Therefore, the following procedure is used:

1. At the end of the molasses phase, the cooling lasers are switched off.

2. One of the fields (in our case the North-South (NS) coil field (see 4.3.3)) is ramped
towards its set value for the magnetic trap to provide a quantization axis for optical
pumping.

3. To transfer most atoms to the trapped mF = 2 magnetic substate of the
F = 2 manifold, the optical pumping laser resonant with the |F = 2,mF = 2〉 →
|F ′ = 3,m′F = 3〉 transition, σ+-polarized with respect to the quantization axis de-
fined by NS coil field mentioned above, applies a pulse with a duration of a 750 µs
during switching on this field.

4. Only after optical pumping, the repumping laser is switched off. This ensures that
most atoms are transferred to the F = 2 hyperfine state.

5. Now, the other magnetic fields from the East-West (WO) coil pair and the central
Z-shaped copper structure are switched on.
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Optical pumping. The power, detuning and timing of the optical pumping pulse are
optimized to yield the maximum number of atoms in the magnetic trap. Without optical
pumping, the atoms in three of the 5 mF states are not trapped and lost from the trap.
Therefore, an additional factor of 2.5 to 3 in atom number is expected from optical
pumping. Sometimes, slightly higher gains can be seen, since atoms in the mF = 1
states see a trapping potential with weaker confinement, possibly not correctly mode-
matched to the molasses position.

Figure 4.15.: Currents for
switch-on of coils and Z-
structure during transfer from
the optical molasses to the
macroscopic magnetic trap.
Blue: NS-field. Red: WO-field.
Green: Z-structure.

Field switch-on. It is also of utmost importance
to provide a fast and smooth switch-on of the coils.
Switching by the power supply, relying on its internal
current regulation is usually slow. Therefore, a trick is
used. During the molasses phase, the external switches
between power supplies and coils are off, and the circuit
is open. For switch-on, the power-supplies are tuned into
CV mode, leading them to use the maximum available
power trying to establish a defined voltage. Then, the
circuit is closed, leading to a fast current- and therefore
field-rise time in the order of 5 ms. The disadvantage
of this method is an oscillatory behaviour of the current
after switch-on. This can be counteracted by properly
controlling the set current in CC mode after the switchoff.
The resulting ramps should exhibit only minimal residual
oscillations. A typical switch-on procedure is illustrated
in figure 4.4.2.

The initial Z-trap is governed by bias and Ioffe fields of Bx = 23 G and Bz = −15.5
G, respectively, as well as a current of IZ = 52 A in the Z-shaped copper structure.
This corresponds to trap frequencies of (ωx, ωy, ωz) = 2π × (31, 39, 16.3) Hz. A good
benchmark atom number in the magnetic trap directly after transfer ∼ 2 to 3 × 107

atoms. Compression leads to initial temperatures between 100 µK and 200 µK.

4.4.3. Evaporative cooling and trap compression.

To increase the cloud’s phase space density and to allow matching of the macroscopic
and chip traps for efficient transfer, forced radio-frequency evaporative cooling [193, 194]
is employed. Application of a RF-field with a frequency that corresponds to the ground
state Zeeman-splitting of atoms in a magnetic field couples the mF states, leading to
transfer atoms into untrapped states expelled from the trap. The Zeeman splitting of
each atom depends on its position in the trap. Only atoms with a high total energy
can probe regions far from the trap minimum, corresponding to high potential energy
and a certain Zeeman splitting. Applying an RF field coupling to these high energy
atoms will selectively remove them, and the remaining atoms can rethermalize at a
lower temperature. In a 3d Bose gas, this rethermalization is established after around
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Figure 4.16.: Sketch of the RF-cooling ramps as explained within the text. The blue line corresponds
to the first cooling stage within the macroscopic trap generated by copper structures below the chip.
The red line indicates the final cooling steps within the chip trap. Two different RF-generators are
employed to ensure optimal frequency range and resolution, although the final ramp piece within the
macroscopic trap can already be performed with the high-resolution source labelled ’RF2’ within the
text, especially to create a condensate in this trap. The gap corresponds to the stage of transferring
atoms between the macroscopic and chip traps.

4 collisions per atom [195].

For a perfect, otherwise loss-less system, the most efficient evaporation, in terms of the
energy change over the number of removed particles ∆Eth/∆n, is reached for a station-
ary RF-knife situated at the potential corresponding to the total system energy, and, as
such, diverging evaporation time. This corresponds to the most extreme case of a system
in a state where a single particle absorbs the total energy by a sequence of unlikely scat-
tering events [101]. In a real system, however, other loss processes such as background
gas collisions and 3-body recombination [196, 197, 198, 199] are always present and
there is a trade-off between these losses and forced evaporation that yields an ideal rate
for the frequency change dηRF/dt of the RF knife. To find this trade-off, the cooling
ramp is divided in several segments, and optimization is performed by scanning their
duration and the frequency of each support point. Note that this is a problem that lends
itself well to an automatic optimization based on an algorithm, as demonstrated in [192].

The experimental sequence during evaporation is as follows: Directly after loading the
macroscopic magnetic trap, the fields are held constant at their initial values for 100 ms
to allow for a short plain evaporation phase. Afterwards, the coil fields and Z-structure
current are ramped to values (Bx, By, Bz) = (53,−30, 0) and IZ = 60 A over a period of
6 seconds, while at the same time a three-stage evaporative cooling ramp is applied by
the RF source labelled ’RF1’ in section 4.3.7, covering a range of 20 MHz to 2 MHz, as
displayed by the blue line within figure 4.16. From here, two options are available: To
generate a BEC within the macroscopic trap, or to transfer atoms to the chip. Figure
4.16 shows the latter case.
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Figure 4.17.: Time-of-flight expansion of a 3d BEC generated in the macroscopic magnetic trap.
Different pictures correspond to expansion times 2 to 17 ms in steps of 1 ms. The pictures demonstrate
the inversion of aspect ratio during free expansion which is the typical ’smoking gun’ evidence for the
presence of a hydrodynamically expanding BEC, governed by an anisotropic momentum distribution in
accordance with Heisenberg’s uncertainty principle.

4.4.4. BEC in macroscopic trap.

The compressed macroscopic trap features trapping frequencies of (ωx, ωy, ωz) ≈
2π × (110, 115, 40) Hz and supports a cigar-shaped, elongated 3d BEC. To reach
degeneracy, RF1 is switched down by its external RF-switch, while RF2 is turned
on, continuing the ramp from 2 MHz down to 0.35 MHz over 1 to 2 seconds. The
transition to the condensed state is marked by a sharp increase of the central density,
and inversion of the profile’s aspect ratio during free expansion as expected for the
anisotropic momentum distribution in a hydrodynamic fluid, the iconic ’smoking gun’
signature for the realization of a BEC [2]. As a demonstration, figure 4.17 shows the
free expansion of a BEC from ≈ 3 × 104 atoms generated in the macroscopic trap, at
times between 2 and 17 ms after release, in steps of 1 ms. A thermal cloud, in contrast,
always shows a ballistic, isotropic expansion [101].

Depending on the final position of the RF-knife, the BEC can coexist with significant
residual fraction of atoms in thermal states. Due to the different densities and mo-
mentum distributions, this leads to clearly identifiable bimodal density profiles in free
expansion. Figure 4.18 shows such a profile integrated along the y-axis, together with a
Gaussian fit to the thermal fraction. Measuring its width for different expansion times
allows to estimate its temperature [101]. Assuming equilibrium between condensed and
thermal atoms, suggests to assign this temperature also to the BEC. This notion is not
completely unproblematic, though, with experimental results [200, 37] indicating that
the dynamics of thermal atoms and condensed fraction in a 3d geometry after inducing
collective excitations is uncoupled, without signs of thermalization over a timespan of
several tens of ms. More related to the content of this thesis, 1d quasi-BECs allow to
measure the temperature of both thermal and condensed fractions independently. Also



78 Experimental setup & techniques

0 100 200 300 400 500

0

200

400

600

800

1000

zl−laxisl(µm)

Li
ne

ar
ld

en
si

ty
l(

at
om

s/
µm

)

Integratedlprofile
Gaussianlfit

Figure 4.18.: Bimodal profile of a BEC and a surrounding thermal cloud. The plot is integrated
from the picture shown in the inset, taken at a time-of-flight of 12 ms. The profile features the typical
bimodal shape caused by the central parabolic density profile of a BEC and a surrounding Gaussian
thermal atom cloud at lower density. Fitting the width of the thermal component during expansion
allows thermometry of the system, given the assumption of thermal equilibrium as discussed in the text.

here, evidence for a lack of thermalization between the two subsystems on times exceed-
ing 800 ms has been found [31], suggesting that care has to be taken when applying the
notion of thermal equilibrium.

4.4.5. Transfer to the chip trap and quasi-BEC.

A good benchmark for efficient cooling in the chip trap has found to be an atom
number exceeding 2 × 105 at temperatures between 10 and 15 µK at the end of
evaporation in the macroscopic trap. To transfer atoms to the chip, source RF1 is
switched down, and the fields and currents in the Z-structure IZ and chip IC are
ramped within two steps from IZ = 60 A to IZ = 0 A, Bx = 53 G to Bx = 17
G, Bz = −30 G to BZ = 4 G, and IC = 0 A to IC = 2 A during a time of 400
ms. The transfer is usually lossless and doesn’t significantly change the temperature.
After this ramp, the trap is compressed over a time of 4.5 s by changing the fields to
(Bx, By) = (17, 3.3) G, and source RF2 performs the final evaporative cooling stages to a
frequency corresponding only a few kHZ above the trap bottom defined by the Ioffe field.

Figure 4.19a) shows a picture of a quasi-1d BEC of ≈ 14000 atoms after 10 ms of free
expansion from a trap with a confinement governed by ωa ≈ 2π × 8 Hz and ωr ≈ 2π ×
1000 Hz. The cloud clearly features density fluctuations along the longitudinal z-axis,
characteristic for a quasicondensate with phase fluctuations impeding coherence over the
full extension of the system (see section 2.3). These density fluctuations are random,
forming a different pattern in each realisation, and averaging over many shots yields a
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Figure 4.19.: Quasi-1d BECs at different distances from the chip surface. (a) Quasicondensate of ≈
14000 atoms after a free expansion of 10 ms from a trap characterized by the frequencies ωa ≈ 2π × 8
Hz and ωr ≈ 2π × 1000 Hz, at an external bias field of Bx = 26 G. The distance of the trapped cloud
from the chip exceeds 120 µm, and the density profile is in good approximation parabolic, indicating a
harmonic trap an negligible influence of wire corrugations. (b) Quasicondensate of ≈ 10000 atoms after
a free expansion of 10 ms from a trap at an external bias field of Bx = 35 G. Due to the influence of
corrugations, the potential is split into two wells filled by independent quasicondensates.

smooth profile that for experimental parameters is governed by the shape of the trapping
potential. Any irregularities that don’t vanish with averaging hint at corrugations of
the trap wire causing an irregular potential, an effect that becomes more pronounced
for smaller distances between trap and surface. The influence of such corrugations is
apparent in all of the group’s experiments at the time of writing the thesis [201, 183],
and the chip presented here is no exception. The parameters listed in the previous
paragraph result in a distance between chip surface and trap minimum exceeding 120
µm. In contrast, 4.19b) depicts a cloud released from a trap with a bias field Bx = 35 G
and otherwise identical parameters, the minimum situated less than 100 µm away from
the surface. As an effect of wire corrugations, the potential splits into two distinct wells.
For any experiment depending crucially on a harmonic trapping potential or good control
over the trap shape, the influence of corrugations has to be avoided, putting a limit on
the minimal distance, and as a consequence on the possible confinement in such a chip
trap. Note, however, that it is possible to implement time-orbiting potentials (TOP
traps) [183], or even more sophisticated schemes to smooth the potentials based on fast
modulation of trap current and external bias fields [202, 203] to alleviate this problem.
Such methods either require RF-dressing techniques or a specialized chip design and
have therefore not been used in the scope of this thesis.

4.5. Trap characterization

In traps where the effects of wire corrugations can be avoided, and if there are no
RF dressing techniques used to explicitly introduce anharmonic contributions to the
potential, chip traps are in good approximation of Ioffe-Pritchard type (see 4.1.1),
and the confinement around the potential minimum is described by axial and radial
trap frequencies ωa and ωr. To measure them, a straightforward method consists of
introducing dipole oscillations of a cloud, since the dipole oscillation frequency along



80 Experimental setup & techniques

0 100 200 300 400 500 600
538

540

542

544

546

548

550

552

554

Holding Time [ms]

D
is

p
la

c
e

m
e

n
t 

[µ
m

]

 

 

a⋅sin(2π f⋅ x + c) + d

f = 3.18 Hz

(a) Trap frequency measurement, axial direction.

0 1 2 3 4 5 6
60

65

70

75

80

85

90

95

100

Holding Time [ms]

D
is

p
la

c
e

m
e

n
t 

[µ
m

]

 

 

[a⋅ sin(2π f⋅ x + c)]⋅ exp(−d*x) + e

f = 1113 Hz

(b) Trap frequency measurement, radial direction.

Figure 4.20.: Dipole oscillations of quasicondensates for trap frequency determination. (a) Axial
dipole oscillation induced by an axial shift of the trap via a small current in the guide wire. Errorbars
correspond to the standard deviation from 5 pictures at identical parameters. (b) Radial dipole oscil-
lation induced by a transverse shift of the trap via a current step for the central trapping wire. As in
(a), errorbars are given by the standard deviation from a 5-shot average.

each trap axis equals the corresponding trap frequencies for both thermal clouds and
quasicondensates. The excitation is performed by a displacement of the trap. Along the
radial direction, the easiest way to accomplish this is condensation within a potential
differing from the final trap by a fraction of 1% of the total current, in the order of a
few mA. Upon realization of a quasi-BEC in a stationary state, the current is rapidly
changed to the final value, causing the cloud to ’slosh’ normal to the chip surface (the
y-direction in the coordinate system used throughout this chapter.). Depending on the
point in time of a subsequent trap switch-off, the momentum of this collective sloshing
motion will point either against or into the direction of gravity, shifting the position of
the expanded cloud as detected by absorption imaging. Such a measurement for the
trap where the first condensates in our setup have been produced is shown in figure
4.20(b), yielding a value of ωr = 2π × 1113± 4 Hz.

To shift the trapping potential along the axial direction, one of the L-shaped guide
wires featured on our chip can be used in a similar manner, keeping a current of roughly
0.1 mA during condensation, and ramping it down over 10 ms thereafter, fast enough
to introduce axial sloshing but adiabatic with respect to the radial degrees of freedom.
Figure 4.20(a) contains a measurement of the axial frequency corresponding the same
trap as investigated in figure 4.20(b). The frequency is measured to be 3.18± 0.08 Hz.

An alternative method to measure radial trap frequencies is parametric heating. Here,
the current used to generate the trapping potential is modulated in the expected trap
frequency range. At resonance, this leads to parametric excitation of atoms and a sharp
increase of losses that can easily be detected. An example for the use of this technique
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Figure 4.21.: Free expansion of a quas-1d BEC containing ' 13000 atoms from a trap characterized
by ωr ≈ 2π ·1000 Hz and ωa ≈ 2π ·8 Hz. Upper panels show pictures of single atom clouds at expansion
times between 2 and 10 ms, while lower panels contain corresponding density profiles integrated along
the transverse direction. Both demonstrate the formation of an interference pattern caused by phase
fluctuations within the trapped system.

in an atom chip experiment can be found in [31].

4.6. Temperature measurement based on density ripples

Thermometry of 1d quasi-BECs based on density correlations in free expansion as
developed in reference [30] (see also section 2.5) and experimentally demonstrated in
[15] is comprehensively described in the thesis [31]. Since this technique is central to
the work presented here, this section discusses its implementation for the data analysis
throughout chapters 5 and 6. In addition, a fast and robust way to estimate the
temperature without explicitly fitting autocorrelation functions is outlined.

4.6.1. Basics

While it is possible to create a phase-coherent true BEC in one dimension in a trap at a
finite number of particles, as discussed in section 2.3.2, the necessary conditions are hard
to achieve in experiment. At realistic temperatures in an atom chip trap, remaining
low-energy phononic excitations cause fluctuations that prevent phase coherence over
the full extension of the system, forming a quasicondensate, as introduced in section 2.3.
Section 2.5 discussed how in free expansion, phase gradients present in the cloud lead to
the formation of interference patterns, and hence density fluctuations. As an example,
figure 4.21 shows pictures and corresponding density profiles for the free expansion of
a quasi-1d BEC of approximately 13000 atoms from a trap with ωr ≈ 2π · 1000 Hz
and ωa ≈ 2π · 8 Hz. At the smallest expansion time of 2 ms, the density profile is still
smooth on the scales resolved by our imaging optics. Only later, density fluctuations
arise and become increasingly pronounced for longer expansion times. In contrast,
for even later times of order ω−1

a , these interference patterns would disappear, the
expanded profile corresponding to the axial in-situ momentum distribution. As such, the
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observed interference patterns can be interpreted in analogy to near-field diffraction [31].

Section 2.5 discussed how the spectrum of phase fluctuations in the trapped system is
governed by temperature through the first order correlation function, establishing a ther-
mometry method that gives direct information about the phonon occupation numbers
within the condensate, as opposed to indirect thermometry via thermal ’wings’, requir-
ing the assumption of equilibrium between condensed and non-condensed components
of the cloud. In the following, the experimental implementation of this thermometry
method is presented.

4.6.2. Implementation

Measurement principle. In the experiment, the temperature measurements work as
follows. After preparation of the condensate, the trap is switched off, and the atom
cloud undergoes a free expansion of 10 ms, sufficient for the formation of sizeable density
fluctuations. This process is repeated at identical parameters to collect a set of O(100)
pictures. Each of this pictures is summed along the transverse y-direction to yield an
integrated linear density profile n(z). The averaged normalized autocorrelation function
g2 (z − z′) for this dataset is calculated as

g2 (z − z′) =

〈∫
dz′n (z′)n (z + z′)

〉
i∫

dz′ 〈n (z′)〉i 〈n (z + z′)〉i
, (4.16)

with 〈. . . 〉i denoting the average over a set of pictures, each with index i. For the
experimental case of images with a discrete density nm in each pixel m, this reduces to

g2 (∆z = (zn+1 − zn)) =

〈
N−m−1∑
n=0

nn+mnn

〉
i

N−m−1∑
n=0

〈nn+m〉i 〈nm〉i
, (4.17)

where N stands for the total number of pixels contributing to each profile. The blue
circles in figure 4.22(b) correspond to such an autocorrelation calculated from a dataset
of 250 pictures.

Finite-size model and imaging resolution. To estimate the temperature, the mea-
sured averaged autocorrelation function can be compared with the analytical result from
equation 2.83. However, since this expression is strictly valid only for a homogeneous
system, the model based on a parabolic density profile and stochastically generated
phase fluctuations by an Ornstein-Uhlenbeck process from section 3.4 is used to take
into account finite-size effects. Further, it is important to regard the finite resolution of
our imaging system. For diffraction limited optics, point spread function (PSF) is given
by a corresponding Airy-function [204], that is however well approximated by a Gaussian
with a certain HWHM σPSF . The theoretical value from the Rayleigh-criterion deter-
mines a lower limit for the spatial separation that can be achieved. It can be validated
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Figure 4.22.: Autocorrelation functions of density fluctuations in time of flight for thermometry. (a)
Comparison of simulated g2-functions for 10 ms expansion time, T = 70 nK, n0 = 200 atoms per micron
and R0 = 140 µm for different PSFs as denoted in the legend. (b) Example: Comparison of simulated
and measured g2-functions for a dataset with T = 68 nK. Blue circles correspond to an average of 250
shots.

by independent measurements of the modulation transfer function on resolution targets
[204, 170, 171]. Note that the transverse size of the expanded cloud might exceed the
depth of focus of the imaging system, introducing another limit for the effective PSF
width. Therefore, an additional independent estimation via the MTF-induced cut-off on
the observed spectrum of density fluctuations needs to be performed [121], preferably on
each dataset. For this, the presented analysis relies on the method outlined in [205]. Ac-
cording to these analyses, the PSF of our imaging system ranges between σPSF ≈ 4±0.1
µm to σPSF ≈ 4.5± 0.12 µm, depending on the cloud’s position in the field of view and
diameter along the imaging axis. Convolution of the simulated expanded density profiles
with the Gaussian PSF yields the final calculated autocorrelation, as given by the red
line for the example shown in figure 4.22(b). For comparison, simulated autocorrelation
functions at different PSF widths are plotted in figure 4.22(a).

Fitting based on the finite size model. It is instructive to briefly discuss some qual-
itative properties of this function. The position of the minimum at a given PSF is
determined by the expansion time. This is clear in the treatment of the interference
as near-field diffraction on a randomly spaced target, leading to Talbot-conditions for
different frequency components at corresponding times of flight [15]. The height of the
central peak is proportional to temperature, as apparent from equation 2.83, and can be
used for thermometry as in reference [15]. However, a common error source was found
to stem from the normalization of g2-function. Here, slight shifts in the centre of mass
position, residual shape oscillations of the cloud and shot-to-shot atom number fluctua-
tions lead to offsets on the y-axis or overall slopes on the function. To minimize these
spurious influences, a region of interest containing the cloud is defined on each picture
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Figure 4.23.: The g2 function contrast and thermometry. (a) Thermal coherence length λT (see
equation 4.18) at the cloud center and contrast Cg2 as defined within the text, resulting from an Ornstein
- Uhlenbeck simulation for peak densities and cloud radii ranging from 30 < n1d < 300 atoms/µm and
30 < RTF < 300 µm, respectively, plotted against the preset temperature, taking into account an
experimental point spread function with a radius of σ = 4.5 µm. (b) Plotting the coherence lengths for
all parameters as shown in the upper panel of (a) against the corresponding inverse g2 contrast C−1g2 ,
a linear functional relationship is revealed, allowing a temperature calibration independent of cloud
radius or density by a fit that is depicted together with confidence limits (red curve and grey area).

and shifted to centre the peak of the density distribution determined by fits along each
axis. In addition, post-selection to minimize atom number fluctuations can be applied.
Still, residual offsets render the peak value of the g2(∆x) to be a rather unreliable tem-
perature measure. The best results are gained from a comparison of measurements with
a set of pre-calculated autocorrelation functions for measured densities, cloud widths
and a temperature range between 30 and 200 nK in terms of a least-squares fit of the
full g2-function, taking into account possible residual shifts along the y-axis. The correct
temperature minimizes the χ2-value of the fit. This analysis is very similar to what is
presented in the thesis [201].

Temperature estimation from the g2-function contrast. For datasets encompassing
a large parameter range, fits based on the numerical calculation of phase distributions
are time-consuming. To improve performance, on the one hand a fully vectorized ver-
sion of the updating formula 3.32 has been implemented. On the other hand, a stable
temperature measure that doesn’t rely on explicit fitting has been found in terms of the
contrast of the g2-function Cg2 = g2(∆z = 0) − min(g2(∆z)) that by construction is
insensitive to offsets on the g2-function. The prefactor of expression 2.82, determining
this contrast, only depends on the thermal phase coherence length λT via a linear rela-
tionship Cg2 ∝ λ−1

T . The exact proportionality depends on the PSF, but was found to be
universal with respect to the density or the cloud radius also for the finite-size problem
as presented in figure 4.23. Comparing the contrast of simulated g2-functions with the
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thermal phase coherence length in the trap center

λT =
2~n0

mTkB
, (4.18)

where n0 represents the cloud’s peak linear density, for an experimental PSF width of
σPSF = 4.5 µm, yields the proportionality

λT =
0.2711

Cg2

− 3.56, (4.19)

with λT given in microns. Using this calibration to calculate temperatures from the
contrast Cg2 of simulation runs covering a range of densities between 25 and 250 atoms
per micron and cloud radii from 30 to 300 µm yields the results shown in figure 4.24.
Data points are plotted against the set temperatures for the OU-algorithm used to
generate the phase profiles. Errorbars correspond to the standard deviation across all
densities and radii at a given set temperature, while the black dotted line represents unity
slope. For better visibility, the inset shows Tfit−Tset. The results indicate no significant
dependence on any parameter except temperature. In practice, this calibration is used
to estimate the approximate temperature of the cloud, allowing to narrow down the
range covered by the full fitting procedure.
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Figure 4.24.: Temperature and g2-contrast: Simulation results. Temperature estimated from Cg2

by the calibration 4.19 and 4.18 from profiles generated by an Ornstein-Uhlenbeck process. Red circles
correspond to an average over results Tfit for peak densities ranging from 25 < n1d < 250 atoms per
micron as well as Thomas-Fermi radii between 30 µm and 300 µm. Errorbars correspond to standard
deviations corresponding to the averages, while the black dotted line indicates unity slope, representing
the expected results Tset. For better visibility of the absolute uncertainty, the inset shows Tfit − Tset.
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Uncertainty. Residual relative fit errors are contributed by experimental shot-to-shot
temperature variations, fluctuations in the cloud shape, the fit uncertainty as well as the
temperature spread of the stochastic model. The standard deviation of the latter is in the
order of 1 %, and the resulting error on the mean temperature can be suppressed to a level
of ≈ 10−4 by averaging over a number of 500 simulated phase distributions. To estimate
the relative error contributed by the other factors, a bootstrapping-based resampling
method [206, 207] is used. Instead of calculating the average autocorrelation function
from a dataset once, a number of O(100) picture subsets are generated by random
drawing with replacement. The standard deviation of the resulting temperatures for
each subset is an estimator for the RMS spread of the measurement, if the temperature
distribution is Gaussian. For the measurements presented in this thesis, a number 150
subsets is used unless stated otherwise, and errorbars on temperatures are a result of
the bootstrapping method. The uncertainty on the effective PSF radius in the order of
3 % introduces the main systematic contribution to the absolute measurement error of
∼ 10%.



Part II.

Physics





5. Quasi-BEC dynamics in
time-dependent trapping potentials

This chapter discusses the behaviour of phononic excitations in breathing 1d quasi-
condensates. A dynamical symmetry of the underlying Hamiltonian allows to derive
a scaling solution, predicting the time-dependence of correlation functions for a given
initial state. The results of this theory are compared to temperature measurements for
different initial conditions, and to numerical simulations.

5.1. Introduction

As discussed in chapter 2, a 1d quasi-BEC behaves in many respects as an ideal fluid
that can be described in terms of hydrodynamics, similar to the corresponding 3d
system. In such a picture, low-lying collective excitations of the mean-field density
profile are well understood since many years [98]. In contrast to a 3d BEC, however,
fluctuations destroy the long-range order of the system. These fluctuations can be
understood in terms of phononic excitations, with a thermal occupation number
distribution if the system is in an equilibrium state. These modes are well-defined in
terms of the Luttinger liquid model of a trapped system presented in chapter ??. This
model, however, has been developed for static density profiles and does not capture
the description of phononic excitations in the presence of collective dynamics of the
mean-field density a priori.

As outlined in sections 2.5 and 4.6, the loss of phase coherence due to phononic
excitations leads to characteristic interference patterns (”density ripples”) emerging
during free 3d expansion. For a thermal state in a static cloud, we can calculate the
shape of the spectrum, or equivalently the average autocorrelation function of these
interference patterns. A comparison between predicted and measured correlations
allows us to extract the temperature associated with the phonon ensemble.

The aim of this section is to understand how these phononic excitations affect -
and, more importantly, are affected by - low-lying collective modes. In particular, the
quadrupole oscillation, also called ”breathing” in the literature, is studied. Its frequency
has been calculated throughout the phase diagram of the 1d Bose gas [98], and it
can be excited easily in our experimental setup without introducing other collective
modes. Finally, since the breathing mode consists of a repeated compression and
decompression of the cloud, an understanding of phononic excitations for this case lays
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the ground for rapid adiabatic compression and decompression schemes presented in
chapter 6 as well as the description of a continuous 1d expansion of a quasicondensate
- a scenario presented in chapter 7 and which is interesting for many proposals to
use cold atoms as a toy model for effects in cosmology [208, 27, 28, 29, 26, 209, 210, 211].

Section 5.2 introduces the concept of a scaling transformation to describe the time depen-
dent ground state wave function of the corresponding Gross-Pitaevskii equation (GPE)
that can be used to describe a system in the presence of breathing, before presenting
the experimental protocol used to induce the mode in a controlled manner together with
several necessary characterization measurements. The second section generalizes these
results and presents a solution for the corresponding many-body dynamics that has been
found recently. We use this approach to derive the rescaled phase correlation function
for a quasi-1d Bose gas in the Thomas-Fermi regime, considering an initially thermal
state within a Luttinger liquid description. The rescaled function can be expressed in
terms of a temperature that changes adiabatically with the spatial extension of the sys-
tem. This temperature is an observable that can be measured in our experiments, and
we present a comparison of theory, data and numerical calculations.

5.2. Trap quench: Breathing dynamics

Any collective dynamics can be considered as an answer of the system to a non-adiabatic
change of an external parameter, also called ’quench’ in the field of many-body quantum
physics. In this section, a model of the breathing dynamics resulting of a trap quench
with respect to the axial confinement in terms of a scaling solution to the time dependent
GPE is presented. A discussion of the experimental scheme, the trap geometry and
technical constraints is given, followed by a characterization of the breathing mode
induced by our protocol.

5.2.1. Gross-Pitaevskii equation with time-dependent external
potential

In order to describe the low-lying collective excitations of a BEC, fluctuations can be
neglected and a mean-field description in terms of a Gross-Pitaevskii equation is suffi-
cient:

i~
∂Ψ0

∂t
= − ~2

2m
∆Ψ0 +

mω2
a(t)z

2

2
Ψ0 + Ū |Ψ0|2 Ψ0, (5.1)

with the mean-field wave function depending on time and spatial coordinates as

Ψ0 = Ψ0 (r, t) .

This equation is explicitly time-dependent by the trap frequency ωa(t). Under certain
conditions discussed below, this equation can be solved exactly, as demonstrated in
[32, 33]. In the following, this solution is discussed, using the notation adopted in [32],
with emphasis on the Thomas-Fermi limit, as outlined in [212].
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Scaling solution for the mean-field Hamiltonian

The goal is to find a scaling transformation acting on the wave function ψ0 that keeps
the form of the GPE intact, but yields a Hamiltonian that does not explicitly depend on
time, but only implicitly due to rescaled distances and times ρ(r, t) = r/b(t), τ(t) with
a scaling parameter b(t). Indeed, such a transformation exists and has the form

Ψ0(r, t) =
1

b(t)d/2
χ0 (ρ, τ) eiΦ(r,t) (5.2)

with d denoting the spatial dimension of the system, and a phase

Φ(r, t) =
mr2

2~
ḃ(t)

b(t)
.

Substituting the ansatz (5.2) into equation (5.1) yields:

i~
∂χ0

∂t

[
dτ

dt
b2(t)

]
= − ~2

2m
∆ρχ0 +

m

2

[(
ω2
a(t) +

b̈(t)

b(t)

)
b4(t)

]
ρ2χ0 +

Ū

b(t)d−2
|χ0|2 χ0 (5.3)

To recover the form of the initial GPE (5.1), the expressions in square brackets, as well
as the b(t)-dependence in the interaction term need to vanish. Note that for d = 2, this
dependence vanishes identically. This case has been discussed in detail in [34] and is an
instance of a hidden dynamical SU(1,1) symmetry, the existence of which is the reason
behind the applicability of a scaling solution as outlined here [36]. It is present in many
interesting systems, among them the quantum mechanical harmonic oscillator [213].

Turning to our case of d = 1, the interaction term scales as Ūb(t). Here, the following
options exist to restore the symmetry:

� Ū = 0, i.e. the noninteracting case.

� Ūb(t) = const, which implies tuning interactions via the scattering length or the
radial trap frequency.

� Ūb(t) → ∞, the Tonks-Gireardeau gas in the hard-core limit. For this system,
a scaling approach has been used in [35] to construct an exact solution for the
time-dependent many-body problem.

� Vanishing kinetic term, as valid deeply in the Thomas Fermi-regime. This is
the usual scenario for quasi-1d BECs in atom chip experiments, and the regime
investigated in this thesis.

In the 1d Thomas-Fermi approximation, the transformed equation reduces to:

i~
∂χ0

∂t

[
dτ

dt
b(t)

]
=
m

2

[(
ω2
a(t) +

b̈(t)

b(t)

)
b3(t)

]
ρ2χ0 + Ū |χ0|2 χ0 (5.4)
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This implies the following conditions fixing τ(t) and the relation between ω(t) and b(t):

τ(t) =

∫ t

0

dt′

b(t′)

b̈(t) + ω2
a(t)b(t) =

ω2
0

b2(t)
, (5.5)

the latter being a variant of the Ermakov equation [214, 215]. In the new variables τ
and ρ, the problem is reduced to finding an initial state Ψ̄0 (z, 0) that is a solution of the
GPE with constant frequency ωa (0), and solving equation 5.5 to find the correct scaling
b (t). Then, the solution at any time t reads

Ψ0(r, t) =
1√
b(t)

Ψ̄0

(
r

b(t)
, 0

)
exp

(
imz2

2~
ḃ(t)

b(t)
− iµτ(t)

)
. (5.6)

For the density profile, this ansatz predicts the well-known self-similar time-evolution

n (z, t) =
1

b
n̄
(z
b
, 0
)
.

For a parabolic profile in a harmonic trap, this becomes

n (z, t) =
( n̄0

b

)(
1− z2

R2
0b

2

)
Θ

(
1− z

R0b

)
, (5.7)

where the scale parameter can be defined as

b(t) =
R(t)

R0

, (5.8)

with n̄0, R0 and R(t) denoting the initial peak density, Thomas-Fermi radius and
the time-dependent cloud radius, respectively. Given knowledge of the trap-frequency
behaviour ωa(t) in the experiment, this constitutes a full description of the breathing
dynamics.

Modified Ermakov equation for time-dependent interactions

Equation 5.5 has been derived with a time-independent interaction constant Ū = g1d =
2a~ωr in mind, where a denotes the 3d scattering length of 87Rb as defined in appendix A.
As will be discussed in section 5.2.2, however, ωr is coupled to ωa in our experiment, and
therefore time-dependent. Expressing ω0 = ωa(0) in terms of the initial Thomas-Fermi
radius

R0 =

√
2g1dn̄0

mω2
0

,
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Figure 5.1: Modified scaling equa-
tion compared to GPE simulations.
The in situ scale parameter b =
R(t)/R0 calculated from a GPE simu-
lation (red dots) and equation 5.9 (red
dotted line) is plotted against time for
a ramp with duration τ = 10 ms be-
tween an initial trap characterized by
ωa = 13.5 Hz and ωr = 630 Hz and a
final trap at ωa = 8 Hz and ωr = 990
Hz. Purple dots and straight line rep-
resent results from the GPE simula-
tion and equation 5.9, respectively, for
the scale parameter in free expansion
btof = b+ texpḃ

one can substitute

ω0 =

√
4~aωr (t) n̄0

mR2
0

=:
√
k0ωr (t)

into equation 5.5 to arrive at

b̈(t) + ω2
a(t)b(t) =

k0ωr (t)

b2(t)
. (5.9)

To check whether this equation describes the correct scaling of the density profile, it
can be compared with a 1d GPE simulation. Figure 5.1 shows the results for such a
comparison of the scale parameter b(t) in situ and after free expansion,

btof (t, texp) = b (t) + texpḃ (t) ,

respectively, yielding excellent agreement and demonstrating the validity of the modified
scaling equation.

5.2.2. Experimental scheme

The basic protocol for the measurements discussed in this chapter is as follows: First, a
quasi-1d BEC in the Thomas-Fermi regime at thermal equilibrium is prepared, in a trap
with well defined axial and transverse confinement. Then, we change the confinement
in a controlled way to induce a breathing oscillation or 1d expansion. We let the cloud
evolve for a time t, then switch off the trap and probe the cloud’s density profile after
a free expansion time ttof by standard absorption imaging techniques as discussed in
chapter 4.

Chip layout and constraints

As shown in chapter 4, axial and transverse confinement of an atom chip trap as
well as the position of the trap minimum are governed by the spatial dimensions and
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shape of the used wire structures, the direction and magnitude of the currents in these
wires, and the direction and magnitude of external bias fields. Any rapid change of
these parameters will cause deformation and (or) displacement of the trap and induce
collective excitations. For our measurements, we only want to excite an axial breathing
mode. This places several constraints on our protocol: The axial trap minimum needs
to stay at a fixed position. Additionally, the transverse trap minimum and confinement
must be either constant, or any change needs to be slow compared to the time scale
associated with the radial trap frequency (ωr/2π)−1 to prevent the introduction of
transverse dynamics.

Further, in order to use the model presented in the next subsection, we want to ensure a
harmonic potential along all directions. For a regular Z-shaped wire trap, the transverse
potential is always harmonic and isotropic1, characterized by a radial trap frequency ωr.
Also, the axial potential is in general not harmonic throughout the parameter range.
Additionally, wire corrugations can lead to irregularities in the current flow for small
distances between trap minimum and chip surface, deforming the axial potential.
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Figure 5.2.: Time dependent potentials on an atom chip. (a) The current ratio between a central
Z-shaped wire and two U-shaped control wires allows us to precisely tune the trap geometry. For
a symmetric current flow, the trap minimum is positioned below the center of the Z-wire, with the
long trap axis aligned to the horizontal direction. (b) 2d cut through the trapping potentials for
IZ = 2A, IU = 0A and (c) IZ = 1.5A, IU = 1A at a constant external bias field of B = 26G, respectively.
(d,e) Cuts through the radial trap minimum of the same potentials to show the axial trap deformation.

To accommodate for these constraints, we use a combination of currents through a Z-
shaped trap wire and two U-shaped control wires, as shown in figure 5.2a. The potential
landscape generated by such a configuration is very flexible, allows the implementation of
harmonic axial traps governed by an axial trap frequency ωa, and can be calculated in a

1Note that RF-dressing techniques realized in other atom chip experiments allow to introduce both
anharmonicity and anisotropy of the transverse potential
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straightforward way by numerically solving the Biot-Savart equation for rectangular wire
pieces and adding up the contributions. Figure 5.2b-e show cuts through the calculated
3d potential in the xz-plane, and along the z-direction respectively for two different
current combinations. In a symmetric configuration, running identical currents through
both control wires, the axial trap minimum stays always at a fixed central position.
At distances between trap minimum and chip bigger than ∼80 µm, wire corrugations,
which become visible as deviations from a parabolic density profile of the condensate,
can be neglected and the calculations give an excellent description of our trap geometry.

In order to prevent radial excitations, the effect of changes in the wire currents on the
trap position and confinement could be counteracted by adjusting the external bias fields
accordingly. However, this is impractical in our setup since these fields are produced by
macroscopic coils, and fast changes in the set current lead to an oscillatory behaviour
of the field. While this effect can be cancelled by a suitably designed control pulse,
as shown in chapter 4, the minimum time scale for pulses that we have achieved is on
the order of 7 ms. For linear current ramps of such a duration, the radial dynamics
was shown to be adiabatic, while for the optimal control ramps presented in chapter 6,
we would need a much higher time resolution. Therefore, external fields are kept fixed
throughout our experiments.

IZ (A) IU (A) BB (G) BI (G) ωa (Hz×2π) ωr (Hz×2π)
Initial trap 1.5 1 26 0.89 12.1± 0.25 630± 6
Final trap 2 0.3 26 0.89 8.23± 0.12 989± 5

Table 5.1.: External parameters and measured frequencies corresponding to the initial and final traps
used throughout section 5.2 and 5.3.

Trap frequency calibration

Taking all discussed effects into account, we pick two trap configurations and now turn
to their characterization in the experiment. For each trap, we prepare a quasi-BEC,
measure the radial and axial trap frequencies by inducing a ’sloshing’ dipole oscillation
as outlined in chapter 4 and track the center-of-mass position of the cloud. Table 5.1
shows parameters and the results of trap frequency measurements for an initial and final
trap as used for throughout section 5.2.

5.2.3. Characterization of the breathing mode

So far we have discussed how to induce the breathing mode, and the trap geometry.
Here, the mode is characterized, taking into account heating of atoms in chip traps, and
the impact of deviations from the 1d-description given section 5.2.1 arising in the 1d/3d
crossover regime.
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Breathing and RF Shield

Figure 5.3 shows the time evolution of an atom cloud after inducing a breathing
mode by a linear ramp between the initial and final trap currents given in table 5.1.
The first column shows density profiles as well as axial and radial cloud extensions
for the dynamics after switching off evaporative cooling. This dataset demonstrates
depletion of the condensate and build-up of a thermal cloud due to heating processes
that dominates the dynamics after 200 ms of evolution time. Heating of 1d Bose
gases in a chip trap, as the inverse process of evaporative cooling in 1d investigated
in our group at the time of writing this thesis [81], is not completely understood yet.
Different effects contribute, including atom loss due to collisions with background
gas atoms, 3-body recombination [196, 197, 198, 199], direct heating of atoms in
the ground state due to fluctuations of the magnetic trapping fields, [31, 216] and
heating of thermal atoms in transverse excited states of the trap and their back-action
on the quasicondensate by two-body collisions. Especially the interaction between
condensate and thermal atoms lacks a theoretical description, and numerical tools to
deal with these processes in a satisfactory way have only started to emerge recently [117].

For our measurements, it is important to approach the ideal case of a closed system as
good as possible. One option is the application of a radio-frequency field (”RF shield”)
to remove hot thermal atoms, preventing secondary collisions and ensuing additional
heating. The middle and right columns in figure 5.3 show data for RF shields at
frequencies of 1.16 MHz and 1.06 MHz, corresponding to a distance in frequency of
150 and 10 kHz with respect to the chemical potential. For these values, we don’t
expect direct evaporative cooling of the quasicondensate fraction. At 1.16 MHz (middle
column), the axial breathing mode is still visible beyond 200 ms of evolution time, but
the transverse ground state dynamics is hidden by the thermal component at late times
(see also references [59] and [99]). At 1.06 MHz, the breathing mode survives over the
full 400 ms of evolution time, with some residual damping.

In order to minimize the influence of thermal atoms without risking direct evaporative
cooling of the condensate, all measurements are thus performed with an RF shield at
10 kHz distance from the chemical potential, and the evolution time is restricted to
the first 200 ms after the trap quench. The overall atom loss rate during this period is
discussed in section 5.3 on the basis of the datasets used for temperature measurements
on breathing clouds.
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Figure 5.3.: Breathing mode and RF knife. The left, middle and right columns correspond to data
taken for no RF shield, an RF shield at 1.16 MHz, and an RF shield at 1.06 MHz, respectively. The
upper panels show density profiles for the time evolution of a cloud after the quench. Each profile is
integrated from a single picture taken after an evolution time ranging between 0 and 400 ms in steps of
3 ms, and after 10 ms of free expansion. The middle panels depict the axial Thomas-Fermi radius from
fits to these density profiles over time, whereas the lower panels show the RMS width of Gaussian fits
to density profiles integrated along the axial direction. Results are discussed in the main text.
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Figure 5.4.: Example of a breathing
mode induced by a trap quench during
a time τ = 12.5 ms and a fit as given
in equation 5.10.

To characterize the breathing dynamics in our exper-
iment, 11 datasets similar to the ones shown in figure
5.3 are analysed. Figure 5.2.3 shows the Thomas-
Fermi radius, determined from a fit to each profile
as described in section 2.4, plotted against time for a
quench of duration τ =12.5 ms as an example. The
time evolution of the radius during breathing r(t) is
of the form

r (t) = ae−λt sin (ft+ c) + d (5.10)

with a, f , λ, c and d denoting amplitude, frequency,
damping rate, phase shift and an offset given by the
average cloud radius, respectively.
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Figure 5.5.: (a) The quantity Naar/l
2
a governing the breathing frequency shift in the 1d-3d crossover

regime as discussed in [98] for the typical accessible parameter range in atom chip traps ranging from
500 to 15000 atoms, and radial trap frequencies fr = 500 to 4000 Hz. (b) Comparison of the breathing
mode induced by a quench from ωa = 2π × (12) Hz and ωr = 2π × (630) Hz to ωa = 2π × (8) Hz and
ωr = 2π × (990) Hz and 16000 atoms (Naar/l

2
a ≈ 2) in a time τ = 10 ms, numerically calculated by a

regular time-dependent 1d-GPE (blue) and a 1d GPE modified by a correction to the interaction term
derived for the 1d/3d crossover regime [65, 100]. The observed frequency (ωb/ωa)2 ∼ 2.6 is consistent
with an estimation based on the results calculated in [98] for our parameters, as discussed in the main
text.

Frequency. For a weakly interacting 1d Bose gas, the breathing frequency should uni-
versally follow the relation ωb/ωa =

√
3 [217], consistent with the scaling equation 5.5,

that only predicts small deviations from this value for large breathing amplitudes. In
the 1d-3d crossover regime however, as discussed in reference [98], the ratio ωb/ωa is
expected to interpolate smoothly between the 1d limit of ωb/ωa =

√
3 and the elongated

3d regime characterized by ωb/ωa =
√

2.5, over a broad range of the parameter Nalr/l
2
a,

where lr and la denote the radial and axial harmonic oscillator lengths

lr =
√

~/mωr,

la =
√

~/mωa.

Section 2.4 discussed how the equilibrium density distribution of trapped atoms is af-
fected in the 1d-3d crossover regime, and that this effect can be described in terms
of a modified interaction term in the GP equation. This modification also affects the
breathing dynamics. While, as outlined in the following, the self-similar time evolution
of the density distribution is conserved in good approximation, the breathing frequency
is shifted significantly with respect to the ideal 1d limit.
Figure 5.5(a) plots this parameter for atom numbers and radial trap frequencies that
are accessible in our setup and shows it to range between 0.04 and 3.3, where, according
to [98], deviations from the 1d limit are expected. As an example, figure 5.5(b) shows
simulated breathing modes induced by a quench for typical experimental parameters
as defined in the figure caption, where the time evolution is calculated with a 1d and
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Figure 5.6.: Breathing amplitude and frequency plotted against quench time τ . Error bars correspond
to 95 % confidence intervals of fits as shown in figure 5.2.3. The theoretical calculations (red lines) are
based on numerically solving a 1d GPE with modified interaction term to account for deviations from
the 1d regime.

modified interaction term, respectively, illustrating the frequency shift with (ωb/ωa)
2 ∼

2.6 for the quasi-1d case, consistent with what is expected from reference [98].

Amplitude and cloud shape. As frequencies, amplitudes follow the scaling equation
5.5 in the 1d-limit, while deviations in the 1d/3d crossover regime are covered by a
modified GP equation. One might suspect that the shape of the density profile is also
distorted during time-evolution, breaking self-similarity. In order to estimate the influ-
ence of this effect, one can compare the maximum difference in local density between
simulated and rescaled initial profiles as given by equation 5.8. For the parameters used
in figure 5.5(b), a maximum difference of <4% is found. Note that for simulations in the
1d limit, where the scaling solution is exact, the residual numerical difference amounts
to 0.7%.

Results. Figure 5.2.3 summarizes amplitudes and frequencies extracted from data
taken for different quench times between 2.5 and 100 ms, comparing them to quasi-1d
GPE simulations as presented in this section, including the effect of a 10 ms time-of-flight
expansion. For this parameter range, both frequencies and amplitudes are well described
by our mean-field model without any free parameters. To account for damping, resort-
ing to fits is still necessary and yields a characteristic time scale of τb = 500 ± 56 ms,
averaged over all 11 datasets.
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5.3. Excitation dynamics

5.3.1. Scaling solution for the many-body Hamiltonian

In the previous section, we have discussed the dynamics of the mean-field wave function
in the presence of a time-dependent external potential in terms of a scaling solution.
However, a similar ansatz can be invoked to gain a scaling transformation that solves a
time-dependent many-body Schrödinger equation:

∂ψ(x1, . . . ,xN ; t)

∂t
= H(t)ψ(x1, . . . ,xN ; t). (5.11)

Here, ψ denotes a wave function which depends on the spatial coordinates xi of each
trapped particle. A special case found to be amenable for a scaling solution is the Tonks-
Girardeau gas at infinite interaction strength, as discussed in reference [35]. Another
instance for the application of a scaling solution is a Fermi-gas at unitarity [218]. An
extension of this method to provide a general formalism covering a large class of systems
is presented in reference [36]. The corresponding Hamiltonian is given by:

H(t) =
1

2m(t)

N∑
i=1

∆(D)
xi
− µ(t)N + λ(t)

N∑
i=1

xi +
m(t)ω2

a(t)

2

N∑
i=1

x2
i +

∑
i 6=j

V (xi − xj; t).

(5.12)
Here, m(t), µ(t) and λ(t) denote a time-dependent mass, chemical potential and linear
potential, respectively, while ωa(t) represents the time-dependent axial trap frequency
as in previous sections. The scaling solution is given by

ψ(x1, . . . ,xN ; t) =
1

RN(t)
Φ(y1, . . . ,yN ; τ) exp

(
i
[
F (t)φ̃(x2

i ,xi, t)
])
, (5.13)

where the coordinates [y1, . . . ,yN ] are given by a scale transformation
yi = (xi/L(t) + S(t)) at a spatial dimension of the system N .

The interaction potential needs to be homogeneous to order α

V (λx) = λαV (x) ,

where α is defined by the dimensionality and type of the interaction potential. This
condition is fulfilled by a large class of interaction potentials [36], including our case
of repulsive s-wave interactions V (x) ∝ δ(x). Additionally, there is a number of
time-dependent parameters in the Hamiltonian, such as the mass m(t) and chemical
potential µ(t) and corresponding constraints that are discussed in detail within refer-
ence [36]. When fulfilled, the Schrödinger equation for the transformed wave function
Φ(y1, . . . ,yN ; τ) is time-independent, and solving the dynamics reduces to defining
the initial many-body wave function ψ(x1, . . . ,xN ; t). While this is a daunting task
by itself, reference [36] shows how to exploit the form of the transformation 5.13 to
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relate time-dependent and initial-state correlation functions which can, in many cases,
be described in terms of experimental observables. The authors demonstrate this by
calculating the momentum distribution of a weakly interacting Bose gas with tunable
interactions.

In the following, we will cast the many-body problem into a description that fits our
system, a weakly-interacting Bose gas in the Thomas-Fermi regime. The many-body
wave function is described in terms of a set of eigenmodes and corresponding quasi-
particle occupation numbers, and rescaled first- and second order correlation functions
for the case of an initial thermal state are derived. We will show how an approximate
scaling solution holds in the Thomas-Fermi regime for a stationary 1d-interaction
constant, and constraints for the validity of these solutions are discussed.

5.3.2. Scaling approach in the Thomas-Fermi regime

We start with the hydrodynamic representation of the 1d Gross-Pitaevskii equation,
neglecting quantum pressure:

∂v

∂t
+ v

∂

∂z
v +

1

m

∂

∂z
V (z, t) = −g1d

m

∂

∂z
n (5.14)

∂

∂t
n+

∂

∂z
(nv) = 0. (5.15)

Here, n := n(z, t) and v := v(z, t) denote the density and velocity profiles along the
longitudinal axis, with an external harmonic potential V (z, t) = mω2

az
2/2 and 1d in-

teraction constant g1d = 2~ωra. In the Thomas-Fermi regime, the ground state density
profile is parabolic and exhibits self-similar scaling [32, 80] described by

n(z, t) =
(n0

b

)(
1− z2

R2
0b

2

)
Θ

(
1− |z|

R0b

)
. (5.16)

As in the previous section, b(t) = R(t)/R0, R0 and n0 represent the scale factor, initial
Thomas-Fermi radius and peak density, respectively. In this framework, excitations
enter as density and velocity fluctuations δn := δn(z, t) and δv := δv(z, t) on top of the
mean field n, v. Their dynamics can be described by linearized equations

∂

∂t
δv +

ḃ

b
δv +

ḃ

b
z
∂

∂z
δv = − g

m

∂

∂z
δn (5.17)

∂

∂t
δn+

ḃ

b
δn+

ḃ

b
z
∂

∂z
δn = −n0

1

b

∂

∂z

[(
1− z2

R2
0b

2

)
δv

]
, (5.18)

where expression 5.16 has already been substituted for n(z, t).
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Similar to the discussion of the equilibrium problem in reference [82], an ansatz of
rescaled Eigenmodes can be defined:

δn =
1

b

∞∑
l=1

Pl (z̃)Al cos ηl (5.19)

δv = −
√

1

b

∞∑
l=1

g

mR0ωl(0)

d

dz̃
Pl (z̃)Al sin ηl, (5.20)

with the Legendre polynomials Pl(z̃), interaction constant g, initial Thomas-Fermi radius
R0, rescaled coordinates z̃ = z/R = z/(R0b), and time-dependent amplitudes Al sin ηl
and Al cos ηl, where ηl denotes the frequency of the oscillation between the quadratures
of the mode with index l. The spectrum at t = 0 is given by [82]

ωl (0) =
ωa√

2

√
l (l + 1) =

c0

R0

√
l (l + 1), (5.21)

with the initial sound velocity c0. For t > 0, it scales as

ωl(t) = ωl(0)b−3/2,

due to the time-dependence of the sound velocity c(t) = c0/
√
b and RadiusR(t) = R0b(t).

Substituting this ansatz into the equations 5.17 and 5.18 yields the set of equations:

η̇l = ωl (t)−
1

2

ḃ

b
sin ηl cos ηl (5.22)

Ȧl
Al

= −1

2

ḃ

b
sin2 ηl. (5.23)

This equation system is still coupled. Indeed, a similar derivation put forward in
reference [29] yields a set of decoupled equations only for suitable tuning of the
interaction constant g1d(t) = g1d(0)b(t), identical to the case of exact scale invari-
ance of GPE for the mean-field dynamics. Such a tuning is also assumed in reference [36].

Nevertheless, this ansatz yields decoupling of modes in good approximation also for
the TF regime discussed here. Since the characteristic inverse time scale of the
breathing mode (ḃ/b)max = ωa/2 is small compared to the characteristic frequencies
ωl (0) of the phonon modes with l > 2, these expressions reduce to η̇l ' ωl (t) and
Al ' Al (0) (R0/R)1/4, and the phonon modes are expected to scale adiabatically. Under
adiabaticity conditions, the initial number of phonons in a thermal state

Nl(t) =
1

exp ~ωl(t)
kBT (t)

− 1
= Nl(0) (5.24)

is conserved, resulting in
ωl (t)

T (t)
=
ωl (0)

T (0)
, (5.25)
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which leads to the temperature scaling:

T (t) = T (0) b−3/2. (5.26)

The density correlations in free expansion that our thermometry scheme relies on are
governed by the coherence function. For a thermal state with homogeneous density, as
realized in the vicinity of the cloud center, it has the form [82, 71]:

g(1)(z, 0) ' n (z, 0) exp

(
− mkBTz

2n(z, 0)~2

)
, (5.27)

where n(z, 0) denotes the density at time t = 0 and kB the Boltzmann constant. Based
on our model, it is expected to scale as

g̃(1)(z, t) ' n (z, 0)

b
exp

(
−
√

1

b

mkBT (0) z

2n (z, 0)~2

)
. (5.28)

This expression can also be obtained directly from the scaling solution, based on the
derivation for the equilibrium system provided in reference [84]. We can express phase
fluctuations in terms of velocity fluctuations by the relation

δφl (z, t) = R

√
1

b

m

~

∫ z̃

0

dz̃′δṽ (z̃′)Al sin ηl

with

δṽ =
g

mR0ωl(0)

d

dz̃
Pl (z̃)

and Al ' Al (0) (R0/R)1/4. Therefore, the relation between initial and time-dependent
modes δφl reads

δφl (z, t) = b1/4δφl (z/b, 0)
sin ηl (t)

sin ηl (0)
. (5.29)

The time-dependent one-body reduced density matrix can be expressed as

ρ (z, z′, t) =
√
n (z)n (z′) exp

[
−1

2

〈
δφ2

zz′

〉
+
imḃ

2~b

(
z2 − z′2

)]
(5.30)

with 〈
δφ2

zz′

〉
=
〈

[δφ (z, t)− δφ (z′, t)]
2
〉
.

Using δφ =
∑

l φl, we can write the density matrix (5.30) in terms of the modes (5.29).
Substituting and following the steps in reference [84], we find that near the cloud center,
where the density is practically uniform and we can use trigonometric approximations
for the Legendre polynomials Pl [219],

ρ (z, z′, t) '
√
n (z)n (z′)

b
exp

[
−|z − z

′|√
bλT

+
imḃ

2~b

(
z2 − z′2

)]
(5.31)
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Figure 5.7.: Illustration of the measurement timing discussed in section 5.3.3.

with a coherence length λT = 2n(z)~2

mkBT (0)
. This corresponds to a transformation of a form

ρ (z, z′, t) =
1

b
ρ

(
z√
b
,
z′√
b
, t

)
exp

[
−iF (t)

(
z2 − z′2

)]
, (5.32)

as predicted in reference [36], with the difference that the spatial coordinates scale with
b−1/2 instead of b−1. This difference is attributed to the Thomas-Fermi regime at constant
1d coupling strength, again as opposed to a suitable tuning of interactions imposed in
reference [36], where the scaling solution is valid for initial states at arbitrary interaction
strengths. Since our thermometry method, as discussed in section 4.6, is based on density
correlations in time of flight that are derived from a second order correlation function
expressed in terms of ρ(z, z′, t) [30], our measurements are not sensitive to the imaginary
part of the exponent, yielding the observation of a temperature scaling given in equations
(5.26) and (5.28). This point is also discussed in detail within section 4.6.

5.3.3. Temperature measurements in breathing clouds

In the following, three different datasets, labeled S1, S2 and S3, are discussed. For all
datasets, initial and final traps are characterized by the same external parameters as
given in section 5.2.2. Each set contains absorption images of atom clouds corresponding
to evolution times t′ between t = 0 ms and t = 200 ms in intervals ∆t = 10 or 20
ms, with a certain number of repetitions at identical parameters, depending on the
respective set. Here, t = 0 marks the point in time directly before the quench ramp. At
each of these time steps, the trap is switched off, and an image is taken after texp = 10
ms of free time-of-flight expansion. The timing of the measurement is illustrated in
figure 5.7. The datasets differ in quench duration τ , atom number and time resolution
as stated in table 5.2, and the available statistics given by the number of repetitions at
identical parameters.
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τ (ms) Atom number Time resolution (ms) Repetitions
S1 10 16000 ± 1000 20 330
S2 10 11000 ± 1000 10 200
S3 30 16000 ± 1000 20 330

Table 5.2.: Overview of the three different datasets analyzed to probe the temperature scaling in a
breathing cloud. The uncertainty of the atom number corresponds to the standard deviation within
each set.

Scale parameter

To compare temperature measurements with the derived scaling law, knowledge of
the in-situ scale parameter b(t, texp = 0) is necessary. In-situ-imaging in our setup is
restricted by wire bonding structures at the chip edges, as shown in chapter 4. However,
the excellent agreement of our breathing measurements presented in section 5.2.3 with
parameter-free calculations allows to infer this quantity from the scale parameter in
time-of-flight b(t, texp) to high accuracy. An assessment of possible additional distortions
of our measurements due to hydrodynamic effects in the initial time-of-flight expansion
phase, as well as the amount and influence of thermal atoms in transverse excited
states, is given at the end of section 5.3.3.

Overall, 10600 pictures contribute to these measurements. At a cycle time of 30 s
for each picture, the measurement time amounts to over 88 hours spread over three
weeks, with set S2 taken several weeks after S1 and S3. To account for possible small
environmentally caused drifts of the trap geometry between the different datasets at
identical wire currents and bias fields, we fit the axial cloud radii measured for each
dataset with simulation results as described in section 5.2.3. For this fit, we allow the
initial and final axial trap frequencies ω0

a, ω
f
a to deviate from the values measured in

5.2.2. Figure 5.8 presents the results of these fits.

Temperature analysis for breathing clouds

Thermometry on breathing clouds relies on the same scheme as presented in section
4.6. After switching off the trap, phase fluctuations lead to the emergence of an
interference pattern in the density profile that can be observed by imaging the cloud
in free expansion. Calculating the autocorrelation function of each density profile,
averaging and normalizing yields second-order correlation functions g2(∆z, t′, texp).
Given a single-particle coherence function of the form 5.31, the breathing is expected
to enter as a rescaling of the thermal coherence length λT (t′) =

√
bλT (t = 0) and an

additional quadratic phase factor, as summarized in equation 5.32. For the description
of second-order correlations within the trap, this phase factor cancels out. While the
experiment also detects only second-order correlations, this phase becomes apparent as
a quadratic velocity field leading to defocusing or partial focusing in free expansion, as
sketched in figure 5.9.
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Figure 5.8.: Axial breathing for the datasets used for the datasets (a) S1, (b) S2 and (c) S3. Blue
circles represent data. Errorbars are given by the standard deviation of the measured scale parameter
for 330 (a and c), or 200 (b) repetitions at identical parameters, respectively. The solid red line shows
a fit using the GPE as described in section 5.2.3.
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Figure 5.9.: (a) Stationary and (b) breathing clouds during free expansion.

Such a velocity field can be easily integrated in our temperature analysis. Using the
knowledge of the in-situ scale parameter b and the corresponding velocity ḃ from the
measurements presented in the previous paragraph, we can define

Ψ(z, t) = ψ(z, t) exp

(
im

4~
ḃ

b

(
z2 − z′2

))
. (5.33)

Here, ψ(z, t) is a wave function characterized by the total atom number, the radius bR0

with the stationary Thomas-Fermi radius R0, and phase fluctuations generated by an
Ornstein-Uhlenbeck (OU) process for a certain temperature, as described in section 3.4,
while the exponential expresses the velocity field governed by ḃ/b. Free expansion of
the wave function Ψ yields correspondingly focused or defocused density profiles.

To shed light on how this (de-)focusing affects the shape of the autocorrelation function
after free expansion, figure 5.10(a) presents a comparison of preset temperatures used
in the Ornstein-Uhlenbeck algorithm and corresponding results of an analysis of the
simulated density profiles after 10 ms of free expansion, based on the assumption that
the temperature can be defined as

T =
2~n0

mλTkB
=

2~nTOF0

mλTOFT kB
. (5.34)

Here, nTOF0 and λTOFT denote the peak density and an effective coherence length in
free expansion, respectively. Under this assumption, the velocity field does not affect
the temperature measurement beyond changing the peak density n0, and we use the
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Figure 5.10.: (a) Test of simple OU temperature analysis for breathing clouds. The black line cor-
responds to preset temperatures fed to an Ornstein-Uhlenbeck algorithm to simulate a trapped wave
function with phase fluctuations. Red circles represent analysis results based on autocorrelation func-
tions of density profiles generated from the same wave functions, incorporating breathing by an overall
phase factor as given in equation 5.33. Temperatures result from formula 5.34, where λTOF

T is propor-
tional to the inverse contrast of the autocorrelation function 1/Cg2 , Cg2 = g2(∆z = 0) −min(g2(∆z).
The proportionality is identical to the calibration given in section 4.6 for the case of a stationary atom
cloud. (b) Comparison of OU and quadratic velocity field with SGPE simulations. Black line: preset
temperatures as in (a). Red circles: Simple OU analysis as in (a). Blue circles: temperatures from an
SGPE simulation with an initial set temperature of 100 nK. Autocorrelation functions from the SGPE
simulation are subject to the same analysis as the red set. A stationary stage between t = −50 ms and
t = 0 ms to ensure the preparation of an equilibrium state by the SGPE evolution is included.

same linear relationship between the contrast of the autocorrelation and the inverse
coherence length that has been determined in section 4.6, which only depends on
the point spread function of the imaging system. The comparison shown in figure
5.10(a) uses parameters b(t) and ḃ(t) as determined from dataset S1 and temperatures
corresponding to the theoretical scaling T = T0b

−3/2, and shows excellent agreement
between analysis and preset temperatures.

However, this simple description has to break down for certain combinations of b and
ḃ. For an infinite time-of-flight, the expansion maps the momentum distribution of
the trapped system onto the density profile, yielding a Lorentzian shape [93, 94], as
discussed in section 2.3.2. The same can be achieved at finite expansion times by
focusing of the condensate [220, 97, 221]. As already pointed out, partial focusing is
exactly what happens during the inward directed breathing phase. As a consequence,
especially during this phase, the breathing is expected to violate the assumption of
short expansion times that guarantees the observation of mainly a density profile, as
opposed to a convolution between in-situ density- and momentum distribution. To
stress this point, figure 5.11 repeats the comparison from figure 5.10(a) and 5.10(b) for
a wider variety of values for ḃ, crossing the focusing conditions for the set expansion
time of 10 ms, at constant preset temperature.
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Figure 5.11.: Temperature measurements and focusing condition. (a) Temperature estimated from the

OU analysis plotted against ḃ for a free expansion time of texp = 10 ms. The plot shows the breakdown
of the thermometry method around the focusing condition, marked by the grey shaded area, while for
the rest of the parameter range, only small deviations from the preset temperature are observed. The
green shaded area denotes the range covered by breathing experiments presented in this thesis. (b)
Simulated time-of-flight density profiles, showing the focussing condition to be fulfilled for ḃ ≈ −100,
coinciding with the breakdown of the thermometry method.

Nevertheless, for the parameters relevant to our temperature measurements, even equa-
tion 5.34 together with the g2-contrast calibration for the stationary case as presented
in section 4.6 already represents a thermometry method with an accuracy that is better
than our overall measurement uncertainty. This is of course under the assumption that
5.33 correctly captures the phase field in the presence of breathing. To further test
this assumption, we compare our thermometry with simulations based on a SGPE (see
section 3.17). Here, the breathing is induced directly by a change of the axial trap in
the simulation, and the intitial temperature is a preset parameter. Figure 5.10(b) shows
the result of a comparison between the OU-based model and the results of the SGPE
simulation. The agreement indicates that equation 5.33 yields a good representation of
the density profile in free expansion within our parameter range.

Results

Based on the findings of the previous section, an analysis of the datasets S1, S2 and S3
can be performed. Figure 5.12 shows a comparison between measured and simulated au-
tocorrelation functions from dataset S1 for an evolution time of t′ = 20 ms. Data points
correspond to the average measured autocorrelation function calculated from pictures
as shown in the inset, while errorbars are given by the standard deviation estimated by
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Figure 5.12.: Example for the autocorrelation analysis from dataset S1, at an evolution time of t′ = 20
ms. Blue circles represent data, while errorbars show the standard deviation estimated by bootstrapping.
The red line is the result of our temperature fit based on an Ornstein-Uhlenbeck simulation, with a best
fit of T = 62 nK.

the bootstrapping method presented in section 4.6. The red line is calculated from a
wave function where phase fluctuations are prepared by an Ornstein-Uhlenbeck process,
taking into account breathing by equation 5.33, 10 ms of free expansion and the finite
resolution of our imaging system, as described in section 4.6. The only parameter to
be varied is the preset temperature T for the OU-algorithm, with a best fit for T = 62 nK.

The same analysis is performed for each evolution time t′. To illustrate the results,
figure 5.3.3 shows contour plots of measured average and corresponding simulated
autocorrelation functions for dataset S1.

Fitting the temperature for each subset and plotting it against the evolution time t′ al-
lows for a comparison with the scaling model developed in section 5.3.2. Figure 5.14(a)
shows the time evolution of the measured temperature for dataset S2. While an oscil-
latory behaviour is apparent, the data also exhibits an overall rise in temperature over
time. This is attributed to heating processes, as mentioned in section 5.2.3. While para-
metric heating processes have been observed in RF-dressed potentials in the presence of
a pronounced anharmonicity in the transverse trapping potential at low atom numbers
[31, 216], heating in atom chip traps usually leads to a linear increase in temperature
within the system over time. To incorporate the influence of heating into our analysis,
a general temperature scaling T (t) = T0b(t)

εsc is considered. The model presented in
section 5.3.2 predicts εsc = -3/2, but for the purpose of this analysis, it is left as a free
parameter. The mentioned temperature scaling solves the equation

Ṫ

T
= εsc

ḃ

b
(5.35)

An additional linear temperature increase can be represented by adding a constant term:

Ṫ = εsc
ḃ

b
T + αT0. (5.36)
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Figure 5.13.: Contour plots comparing simulated (upper panel) and measured (lower panel) average
autocorrelation functions for dataset S1.

This equation is solved by

T = T0h(t)bεsc , (5.37)

where h(t) is given by

h(t) = 1 + α

∫ t

0

dt′b(t′)−εsc . (5.38)

Note that in the stationary case of a constant b = 1, this reduces to h(t) = 1 + αt, such
that α corresponds to the regular heating rate in units of the initial temperature.

The black line in figure 5.14(a) corresponds to a least squares fit to equation 5.37, with
parameters εsc and α. Figure 5.14(b) shows the corresponding χ2-value of the fit plotted
against the values of the two parameters. Best fitting is achieved in a region between
0.2 < α < 0.3 nK/ms, and around εsc ∝ −1.6, compatible to the theoretical prediction.
The values for the fit in 5.14(a) are εsc = −1.7 and α = 0.26 nK/ms.

In the following, our data is compared with the theoretical prediction εsc = −3/2.
Figure 5.15 contains the temperature measurements from all three datasets, plotted
against time, together with fits of the form 5.37, where the scaling exponent is
fixed to εsc = −3/2 such that the linear heating rate is the only free parameter. In
addition, the figure plots the same data, corrected for the heating rate determined
for each dataset, compared to the theoretical prediction in the absence of heating
T (t) = T0b

−3/2. Overall, we find good agreement between the data and the model con-
sisting of a linear heating process and the theoretically predicted scaling for each dataset.
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Figure 5.14.: Estimation of heating rate and scaling exponent. (a) Measured temperature values
from dataset S2 (red squares) with errorbars corresponding to the standard deviation for each subset
estimated by bootstrapping. The black line represents a fit of the form 5.37, with both the heating rate
α and the scaling exponent εsc as free parameters. (b) Goodness of the fit shown in (a), represented
by the mean square deviation χ2 in arbitrary units, plotted against αT0 and εsc. The best values
correspond to εsc = −1.7 and αT0 = 0.26 nK/ms, with the theoretical prediction εsc = −1.5 situated
in an area yielding good agreement with the data.

The predicted scaling is universal in a sense that there is no dependence on other
quantities characterizing the system, as density, absolute extent of the atom cloud or
temperature or the details of the quench inducing the breathing. To illustrate this for
our results, figure 5.16 combines the data from all three sets in a plot of the temperature
normalised to each respective T0 over the scale parameter b. For comparison, the inset
contains the same plot, but in absolute units for each dataset. Note that datasets S1
and S3, while covering a similar range of temperatures and cloud radii, correspond to
different quench times. The normalised data collapses onto a single region distributed
around the prediction of the scaling model. In addition, the plot contains a power law
fit of the combined data, yielding a scaling exponent of εsc = 1.4 ± 0.2, again in good
agreement with the prediction.

As an additional cross-check for our results, classical field simulations based around the
SGPEeq-method described in section 3.17 have been performed. After preparation of a
set of thermal initial states by the SGPE, in this case 120 realisations with a temperature
of 100 nK, each of these states is propagated with a time-dependent GPE. We use the
same trap parameters as in our experiment, and include both the 10 ms of free expansion
time and our finite imaging resolution to yield density profiles that can be analysed in
the same way as the data from experiment. In addition, the simulation allows the direct
calculation of the time-dependent in-situ coherence functions defined in equation 5.27
as an independent thermometry method. The results of these simulations is included in
figure 5.16, and show excellent agreement with the scaling model.
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Figure 5.15.: Temperature plotted against evolution time during a breathing oscillation.. (a) Quench
time τ = 10 ms, ∼16000 atoms. Red squares: Temperatures measured from density correlations in free
expansion. Dashed line: scaling law taking into account linear heating as shown in the legend, fitted
for a heating rate of α · T (0) ≈ 0.54 nK/ms. Blue circles: Temperatures corrected for heating rate.
Line: scaling law T (t) = T (0) · b−3/2 as discussed in the main text. Error bars represent one standard
deviation estimated by a bootstrapping technique. (b) Quench time τ = 10 ms, ∼11000 atoms, heating
rate α · T (0) ≈ 0.28 nK/ms. (c) Quench time τ = 30 ms, ∼16000 atoms, heating rate α · T (0) ≈ 0.54
nK/ms.
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Discussion

Overall, good agreement is found between data and both the scaling model as well
as the numerical simulations, as long as the heating is properly corrected for. While
the presented results suggest that heating leads to an additional linear increase in
temperature that does not affect the scaling exponent, an independent validation
of this conjecture is called for in future measurements. To achieve this, either a
full understanding of heating in atom chip traps, or measurements where heating is
negligible, are necessary. As already briefly mentioned in the beginning of section
5.2.3, many different effects contribute to heating, some of which are already under
study within our group. In [31], it was found that heating of thermal atoms and a
1d condensate, in this case with low atom numbers, happens at different rates, in
contrast to the assumption of thermal equilibrium between the two subsystems. On
the other hand, in reference [201] thermalization processes in a 1d system are studied
that are either intrinsic within a beyond-Luttinger liquid description, or mediated by
interactions between atoms in radial excited states. Such measurements could lead
to models for the interaction between ground state and radially excited atoms, which
would be an important step towards a full understanding of heating in quasi-1d BECs.

As for the experimental reduction of heating, several options are available. On the
one hand, measurements as presented within this chapter could be performed in an
experiment with RF-dressed potentials, which have been observed to exhibit significantly
smaller heating rates compared with static chip traps as used for our measurements.
Further, interactions with radially excited atoms have shown to be suppressed when
operating sufficiently far in the 1d regime [31, 131]. Novel atom chips that allow higher
radial trap frequencies without compromising control over the axial potential due to wire
corrugations could address this issue. The chip used in the new setup under construction,
as described in section 8, could already allow to achieve this goal.

5.4. Summary

In this chapter, the excitation spectrum of a 1d quasicondensate in the presence of
collective breathing dynamics has been analysed. Based on a Luttinger liquid model
with a time-dependent set of basis functions, an adiabatic rescaling of initial eigenmodes
has been identified for a self-similar time evolution of the overall density profile. This
leads to a prediction for the scaling of the density matrix and the coherence function
g(1)(z, z′, t), in close correspondence to the predictions of reference [36]. For an initially
thermal state, the temperature corresponding to phononic excitations scales with the
spatial extension b = R(t)/R0 of the cloud as T (t) = T0 · b−3/2. This prediction has been
compared to measurements and to numerical simulations based on the c-field approach
presented in chapter 3. Both the scaling model as well as the numerical simulations
have been found to agree well with measurements at different initial conditions, if
heating in the atom chip trap is accounted for.
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On the one hand, the results presented in this chapter constitute the first direct
experimental demonstration of the presence of such a scaling law for the excitation
spectrum of the 1d Bose gas. On the other hand, these results provide a means to
perform thermometry in the presence of collective excitations, which is of significant
practical importance for other measurements with atom chip experiments, where
the excitation of collective excitations cannot be avoided. Note that the valid-
ity of the results presented here is not limited to thermal states. If correlations in
the initial states are known, the time evolution can be calculated from the scaling model.

From our model, adiabaticity follows only approximately in the limit of low expansion
speeds Ṙ/R(t) and moderate scale factors. The consequences arising from the break-
down of adiabaticity, as expected for the 1d expansion of a 1d condensate to sufficiently
large scale factors, will be discussed in chapter 7.



6. Optimal control on quasi-BEC
dynamics

This chapter presents the implementation of shortcuts to adiabaticity for the expansion
or compression of 1d quasicondensates by optimal control on the external trapping po-
tential and temperature measurements on the initial and final states, providing evidence
that adiabaticity holds not only for the external dynamics, but also for the phononic
excitation spectrum.

6.1. Introduction

In chapter 5, the breathing dynamics of a quasi-1d BEC after a quench of the
trapping potential was studied and found to agree very closely with the predictions of
the time-dependent Gross-Pitaevskii equation, or, equivalently, of a suitable scaling
solution. Naturally, the question arises whether this agreement can be used to control
the dynamics in a more sophisticated way than just altering the breathing amplitude
by the quench duration. A control problem that is interesting from different angles is
to speed up an adiabatic state change.

In quantum mechanics, adiabaticity is defined by vanishing transition probabilities be-
tween the instantaneous eigenstates of an underlying Hamiltonian. According to the
adiabatic theorem [223, 224, 225], this implies either a time-independent Hamiltonian,
or a time-dependence that is sufficiently slow. More explicitly, considering a system in
an instantaneous eigenstate ψn(t) of a Hamiltonian Ĥ(t), it has to hold that〈

ψm(t)
∣∣∣ ddtĤ ∣∣∣ψn(t)

〉
En − Em

� 1, (6.1)

with En and Em denoting the energy eigenvalues corresponding to the states ψn(t) and
ψm(t), or, equivalently, that any change of the Hamiltonian happens on a timescale
τ � ~/∆E. In this case, the system stays in the eigenstate ψn(t) throughout the
time evolution, only possibly picking up dynamical and geometrical phases. In the
context of the previous chapter, the time-dependence of the Hamiltonian is given by
the external trapping potential, and adiabaticity corresponds to changing the trap
without inducing collective excitations in the process. Especially with respect to the
longitudinal axis, characterized by trap frequencies in the order of a few Hz, many
operations are not adiabatic. Splitting of atom clouds, for instance, as performed
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routinely in our group, happens on much shorter time-scales and thus induces collective
excitations, a suppression of which would facilitate many measurement and analysis
schemes. As such, the speed-up of adiabatic processes or tools to control or stop
collective excitations constitutes a valuable experimental tool.

An example from quantum information physics, where adiabatic processes are of
interest, is adiabatic quantum computation [226, 227]. The starting point of an
operation is the known ground state of a precisely initializable Hamiltonian. Tuning a
set of control parameters, this state is made to evolve to the unknown ground state of a
desired complex target Hamiltonian. For the system to always stay in the instantaneous
ground state, adiabaticity throughout the operation is necessary, limiting the possible
speed. However, in an experimental setting, decoherence usually gives an upper limit
for the allowed duration of a coherent operation. Thus, methods to speed up adiabatic
control problems would be a valuable tool in this field.

Interestingly, the scaling symmetry of the Gross-Pitaevskii equation provides a method
to manipulate the trap without inducing collective excitations of a BEC. The rescaled
equation 5.3, together with the two constraints in form of an Ermakov-equation as 5.5
and the definition of a rescaled time constitute a time-independent problem. Under
these conditions, adiabatic processes involving the external potential as control field
can in principle be performed arbitrarily fast, and the corresponding time-dependence
of the trap can be directly calculated from the Ermakov-equation. This scheme,
dubbed shortcut to adiabaticity for BEC dynamics, has been devised in [212, 228], and
experimentally implemented in [229, 200, 37].

For our system, a direct implementation is hindered by the fact that in our experiment,
axial and transverse trap frequencies are coupled and cannot be tuned independently.
For such a case, other methods, such as counter-diabatic driving, recently presented in
[230], may be used to analytically derive a control ramp. The approach taken in this
thesis revolves around a stochastic scheme based on the solution of the time-dependent
Gross-Pitaevskii equation to calculate suitably parametrised control ramps, and a
genetic algorithm that performs a minimization of the breathing amplitude by searching
the parameter space for an optimum.

In the previous chapter, it was found that a scaling solution can not only be used to
describe the ground state dynamics of a BEC, but also to calculate full time-dependent
correlation functions of the system. Specifically, it was established that the scaling leads
to an adiabaticity condition for the occupation numbers of phonon modes with respect
to expansion or compression of the system. This carries over to shortcuts, with the
consequence that an STA for the expansion of a quasi-1d BEC by construction is both
an implementation of a quantum dynamical microscope for correlations, as proposed in
[231], and of fast frictionless cooling [232].

In the following, the stochastic scheme used to implement shortcuts to adiabaticity for
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Figure 6.1.: Sketch of the optimal control scheme. (a) The 1d GPE in a time-dependent external
potential is solved to evaluate a cost function that is represented by the breathing amplitude induced
by a set of suitably parametrized control ramps changing the trap parameters. The parameters and
the cost function value are fed to a genetic algorithm that, based on the results, generates a new set of
ramps to be evaluated by the GPE simulation. Iterating this process leads to convergence against a set
of ramps in a certain region of the paramter space, ideally in close vicinity to an optimum corresponding
to vanishing breathing amplitude. (b) Steps preformed by the genetic algorithm during each iteration.

the expansion or compression of a quasi-1d BEC is presented, and the implementation in
the experiment is discussed. A comparison between data and simulation results is given,
and temperature measurements of the cloud during the process are presented. Although
heating prevents the direct verification of fast frictionless cooling, the measurements
indicate that the heating rates during shortcuts and during a subsequent hold time are
identical, suggesting that the STA does not introduce additional excitations.

The chapter ends with a short outlook on the possibilities of engineering non-equilibrium
states with the help of the presented control scheme.

6.2. Control Scheme

The control scheme used for the work presented in this chapter is briefly sketched in
figure 6.1(a) and 6.1(b). Numerically solving the time-dependent 1d Gross-Pitaevskii
equation allows to calculate the dynamics of an initially stationary atom cloud after
a set of suitably parametrised control ramps that change the axial and radial trap
frequencies ωa(t) and ωr(t), taking into account the experimental constraints outlined
in section 5.2.2. The ramp parameters and the cost function, in our case the resulting
breathing amplitude, are passed to a real coded genetic algorithm (RCGA), that
iteratively performs an evaluation of the cost function and generates new ramp param-
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eters that are fed to the GPE simulation, ideally minimizing the breathing amplitude
within several tens of iterations. The RCGA used here has been developed to achieve
closed-loop optimization within an experimental setting [174]. A very similar optimal
control scheme that has been proposed more recently is the Chopped Random Basis
(CRAB)-method [233], demonstrated experimentally in [234]. Both methods rely on a
stochastic optimization algorithm - here a GA, in the case of CRAB a Nelder-Mead
simplex method. The advantage of the CRAB method is a parametrization of the
control ramps in the frequency domain. Estimating the minimal number of Fourier
components necessary to encode a certain control ramp, it usually works on the smallest
possible search space, minimizing the runtime. Our implementation foregoes this step
in favour of an easy portability of the calculated results to the experiment control.

In the following, only a brief discussion of some important concepts of stochastic opti-
mization as well as the methods used is given, while the reader is referred to reference
[191] and references therein for a detailed description regarding the implementation, and
to [192] for additional experimental results and benchmarks.

Choice of algorithm

It can be questioned whether a genetic algorithm is a sensible choice. In this context it is
interesting to consider the so-called no-free-lunch theorems for search and optimization
[235, 236]. They state that, averaged over all possible optimization problems which can
be defined on a finite search space, the performance of each algorithm is identical. To
be more precise, let P (dm|f,m, a) be the conditional probability of finding a particular
set of states dm by iterating a search algorithm a1 m times on a cost function f . Given
both a finite problem space and finite space of objective function values, [236] shows
that for any two chosen algorithms a1 and a2 it holds that∑

f

P (dm|f,m, a1) =
∑
f

P (dm|f,m, a2) . (6.2)

This means that in principle, an algorithm has to be chosen to match the optimization
problem at hand. A smooth search space without any local optima, for instance, lends
itself to a simple gradient search while in a noisy problem space with one delta-spiked
optimum, it is hard to do better than random search. However, in reality not all cost
functions f are equally likely, and most problems will be situated between these extreme
cases.

Interestingly, studies on quantum control problems carried out within the last decade
have shown the search space of such problems to feature a universally simple structure
[237, 238]. According to these studies, no local optima exist for unconstrained quantum
control problems. If there are several optima, they all yield the same objective function
value and are equally optimal. Recent years have already seen experimental efforts
to confirm this conjecture [239]. Still, for many realistic quantum control problems,
constraints on the control fields that reintroduce local extrema cannot be avoided. In
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addition, for closed-loop operation in an experiment, noise influences the performance
of simple deterministic search methods. Stochastic optimization algorithms [240] have
proven to operate well in complex and noisy problem spaces, however at the expense of
guaranteed convergence to the global optimum.

There are many stochastic optimization algorithms to choose from. However, they
all rely on both exploration and exploitation of the parameter space. The former
is achieved by introducing randomness, while the latter is based on estimating and
following gradients. The main differentiator is whether the algorithm is local or global,
thus probing a limited region or sampling different parts of the search space within one
iteration.

Out of these methods, a real coded genetic algorithm has been chosen due to the exten-
sive literature on the subject and the ease of implementation. By assigning probabilities
to the random elements of the algorithm, it is possible to tune the ratio of gradient esti-
mation and random search to adapt it to specific optimization problems. A comparison
of RCGAs with other optimization methods can be found in [241].

Implementation

The control ramp for the axial trap frequency ωa is parametrized in terms of piecewise
cubic splines

fi(t) = ci0 + ci1t+ ci2t
2 + ci3t

3, (6.3)

uniquely defined by support points pi connecting the pieces fi(t) and the constraints
of matched first derivatives between the pieces, and vanishing first derivatives
f ′(0) = f ′(τ) = 0 at the end points of the ramp at t = 0 and t = τ , connect-
ing to segments of constant frequency, for example ωa(t < 0) = 2π × 11.5 Hz and
ωa(t > τ) = 2π×7.5 Hz for a decompression ramp. A set of support points pi constitutes
a state vector corresponding to a single ramp. An example for the parametrization
is given in figure 6.2. Here, the ”state vector” consists of 4 points. The advantage
of this representation is a technical one: The experimental control system, described
in section 4.3.10, directly supports the output of cubic splines and needs only the
polynomial coefficients c0,1,2,3 to identically reproduce the calculated control ramps via
its analogue output channels, controlling the power supply for the currents through the
chip structures.

In contrast to traditional genetic algorithms, an RCGA works directly on the search
space spanned by such a state vector. For the example shown in figure 6.2, this space
is of dimension d = 4. At the beginning of a typical optimization run, an initial set of
Np = 24 states Sj = {pi}, is randomly chosen, the GPE simulation is performed for the
corresponding ramps, and the resulting breathing amplitudes are determined. This set
constitutes the first generation of states, and Np is usually called the population number.
Afterwards, the algorithm will go through the steps outlined in figure 6.1(b).
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Figure 6.2.: Parametrisation of the control ramp. In experiment and corresponding simulations
presented within this chapter, initial and final states characterized by axial trap frequencies ωa(0) =
2π×11.5 Hz and omegaa(τ) = 2π×7 Hz at a ramp duration of τ = 30 ms are used. The ramp segment
connecting these values is defined by a set of d+ 1 piecewise cubic splines of form 6.3 that are uniquely
fixed by d support points and boundary conditions on the derivatives of the spline segments.

Fitness assignment. The ranked states Sj, j ∈ {1...Np} are assigned a ranking-based
fitness value, independent of the absolute value of the objective function (the breathing
amplitude) that is given by

F (Sj) =
2

Np

(
1− j − 1

Np − 1

)
(6.4)

Such a ranking-based assignment has been observed to be less prone to premature con-
vergence against local optima than a fitness assignment proportional to the objective
function value for most test problems under consideration [241].

Selection. Generating a new population of states relies on two mechanisms: recombi-
nation and mutation. The selection of states for recombination based on their fitness
value is performed by a variant of Roulette selection, called stochastic universal sampling
(SUS) [242, 243]. Considering a mapping of each state’s fitness value to a correspondingly
long line section with a total length given by the sum of fitness values, SUS corresponds
to a set of npt equidistant pointers distributed equally along the line with a random offset
to select npt states for recombination. For the population size of Np = 24 as used here, 12
parent states are selected. Compared to standard Roulette selection, SUS promotes the
inclusion of states with low corresponding objective function value, promoting diversity
and hence counteracting premature convergence against local optima.

Recombination Recombination constitutes the gradient search component of the al-
gorithm. If there is an exploitable gradient towards an optimum present within the
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problem, the two selected parent states span a parameter subspace that is on average
more optimal than a randomly chosen region. If an optimum is within this subspace,
interpolating between these states provides better states. Here, we use intermediary
recombination in the form of a BLX-α blend crossover method [241]. The new (child)

state vCi , with variable index i ∈ 1, ..., d is generated by the parent states v
P1,2

i as

vCi = vP1
i ai + vP2

i (1− ai) , (6.5)

where ai is picked randomly by a uniform distribution from the interval [−α/2, 1 + α/2]
for each variable. The subspace under consideration forms a hypercuboid with a volume
of

V C
PS = (1 + α)

d∏
i=1

li, (6.6)

where li denotes the distance between the vector components v
P1,2

i . To conserve the
volume under interpolation [244, 241], a value of α = 0.5 is chosen. 23 new states are
created by recombination of the 12 parent states. In order not to lose already found
good states, the best state from the previous generation is preserved, a practice called
elitism in literature.

Mutation Mutation corresponds to a random change of the state vector components vi.
In our case, this is expressed by a non-uniform distribution of mutation steps favouring
small deviations from the initial value [245, 246]:

vmuti = vi + si · rDi · 2−uκm (6.7)

with the mutated and source states vmuti and vi, random sign si, the mutation range r
and the definition domain Di. The random number u is uniformly distributed in the
interval [−1, 1] and κm is called mutation precision, defining a lower limit of 1

2

−κm for
the mutation step size. From runs on test problems, with population sizes between 20
and 30, a choice of κm = 10, r = 0.2 and a mutation rate of 10 percent has given the
best convergence rates.

6.3. Characterization measurements

Before turning to the simulation of realistic ramps, it is necessary to exactly know the
relation between the chip currents and trap parameters. To simplify the control problem,
for the following simulations and experiments only the current in the U-shaped control
wires IU is subject to variation, while the current in the central Z-shaped structure
is kept at a constant value of IZ = 1.5A. This is in contrast to the measurements
presented in the previous chapter, where both IZ and IU are varied in the course of a
ramp.
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A change of IU tunes both the axial and radial trap frequencies ωa and ωr. Figure 6.3(a)
shows the relation between IU and fa = ωa/(2π) extracted from measurements based on
axial sloshing of the atom cloud as described in section 4.5 that is used as a calibration
for the experiment. With exception of the highest axial trap frequencies in the region
around fa = 15 Hz, the relation is linear to good precision. Figure 6.3(b) presents the
results of corresponding transverse sloshing measurements to estimate the radial trap
frequency ωr. Here, also the data is well described by a linear fit. The coupling of trap
frequencies as determined by this measurement is taken into account for the 1d GPE
simulations presented below. Note that for axial trap frequencies ωa < 2π× 7 Hz, slight
deviations of the equilibrium density profile from a parabolic shape appear, hinting at
anharmonicity of the trap due to the effect of wire corrugations deforming the potential.
Therefore most measurements are performed in the range 2π × 7 < ωa < 2π × 13 Hz.
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Figure 6.3.: Trap frequency calibration. (a) Current through the control wire IU over measured
axial trap frequency fa = ωa/(2π). The linear relation extracted from these measurements is used as
a calibration between IU set in the experimental control and ωa as calculated by the optimal control
scheme. (b) Radial trap frequency fr = ωr/(2π) plotted against fa. The linear relation recovered
for the observed parameter range is taken into account in the 1d-GPE simulation that is part of the
optimisation scheme.

6.4. Simulation results

Based on the trap frequency calibrations presented in section 6.3, the time-dependent
1d GPE

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂z2
+
mωa (t)2 z2

2
Ψ + 2~ωr (t) a|Ψ|2Ψ, (6.8)

with scattering length a, 87Rb-mass m and mean-field wave function Ψ := Ψ(z, t)
depending on time and the axial coordinate z can be solved for realistic trap frequencies
ωa(t) and ωr(t). As a reference and for comparison with corresponding measurements,
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Figure 6.4.: Simulated breathing after linear trap frequency ramps. (a) Axial (upper panel) and radial
(lower panel) trap frequency during the simulated time evolution in the course of an axial decompression
or from ωa(0) = 2π×11.5 Hz to ωa(τ) = 2π×7 Hz and (c) for the inverse compression process. (b), (d):
Corresponding time evolution of the scale parameter (upper panels) and density profiles (lower panels).

figure 6.4 presents results from a simulation of a simple linear trap frequency ramp for a
cloud with 10000 atoms. The simulations are performed with a grid size of 1000 points
on a spatial interval of 400 µm. The ground state in the initial trap defined by ωa(0)
and ωr(0) is found by imaginary time evolution of an arbitrary initial state, as described
in chapter 3. In this case, a flat profile with a linear density of n = 100/µm is used.
The subsequent dynamics is calculated by real time evolution in the time-dependent
external potential.

Figure 6.4(a) contains the time-dependence of the axial and radial trap frequencies. In
this example, an axial decompression from ωa(0) = 2π×11.5 Hz and ωr(0) = 2π×764 Hz
to ωa(τ) = 2π× 7 Hz and ωr(τ) = 2π× 1262 Hz is considered, with a ramp time τ = 30
ms. The resulting dynamics, tracked for a period of 100 ms, are shown in figure 6.4(b).



126 Optimal control on quasi-BEC dynamics

In the lower panel, a carpet plot of density profiles against axial coordinates and time
is depicted. Correspondingly, the upper panel contains a plot of the scale parameter
b(t) = R(t)/R0 versus time. The breathing amplitude, used as a cost function Fc for the
optimal control sequence, can be simply defined as

Fc = max {R(t)} −min {R(t)}, (6.9)

with t > τ , if at least one breathing period is tracked by the simulation.

Similarly, the inverse problem of an axial compression of a cloud initially prepared in a
trap with ωa(0) = 2π × 7 Hz and ωr(0) = 2π × 1262 Hz to ωa(τ) = 2π × 11.5 Hz and
ωr(τ) = 2π × 764 Hz can be analysed. The results are summarized in figure 6.4(c) and
6.4(d). Consistent with the breathing measurements and corresponding simulations
presented in chapter 5, the linear ramps with a duration of 30 ms induce significant
breathing. Even for ramp durations exceeding 100 ms, residual breathing in the order
of 10% of the cloud radius has been observed. This is expected, considering that the
adiabatic limit should be reached roughly in the limit marked by τ � 1/fa ≈ 150 ms
for fa = 7 Hz.

In the following, the results for the optimized ramps found by the optimal control
sequence for the same initial and final trap frequencies as considered above are discussed.
Figure 6.5(a) shows the optimized ramps generated by the algorithm, and figure 6.5(b)
summarizes the results for the decompression problem within the same time τ = 30
ms and an atom number of 10000 as used for the linear ramps shown above. The
optimization has been performed for a fixed population size of Np = 24 states and 4
support points, resulting in 5 spline segments. The ramp found by the GA performs
excellently and suppresses the residual breathing amplitude down to a level of 0.5 µm
or 6 � of the cloud radius R in the final potential.

Similar results are achieved for the inverse problem of an axial compression. Again
considering the same initial and final trap frequencies of ωa(0) = 2π× 7 Hz and ωr(0) =
2π× 1262 Hz as well as ωa(τ) = 2π× 11.5 Hz and ωr(τ) = 2π× 764 Hz as for the linear
ramp shown previously, the optimal control approach achieves excellent suppression of
breathing. The absolute residual breathing amplitude is, as in the above case ≈ 0.6 µm,
in this case corresponding to 1.2 % of the cloud radius. For this optimization run, the
same population size of Np = 24 states, but in contrast to the decompression example, 5
support points and 6 spline segments have been used. The generated ramps are depicted
in figure 6.5(c), while the breathing dynamics is shown in figure 6.5(d).
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Figure 6.5.: Simulated breathing after optimized trap frequency ramps. (a) Axial (upper panel)
and radial (lower panel) trap frequency during the simulated time evolution in the course of an axial
decompression or from ωa(0) = 2π × 11.5 Hz to ωa(τ) = 2π × 7 Hz and (c) for the inverse compression
process. (b), (d): Corresponding time evolution of the scale parameter (upper panels) and density
profiles (lower panels).
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Figure 6.6.: Convergence of the RCGA for the optimization runs resulting in the control ramps shown
in figure 6.5. (a) Average breathing amplitudes and corresponding standard deviation (errorbars) within
each generation of Np = 24 states, each representing a decompression ramp. The dimensionality of the
search space is given by the number of support points d = 4. (b) Average breathing amplitudes and
standard deviation within each generation of 24 states, each representing a decompression ramp. In
this case, d = 5. The onset of convergence is seen around generation 15 (a) and 30 (b), respectively.

Convergence and runtime

To characterize the convergence towards a good control ramp, the average fitness
of each population’s states and the corresponding spread can be tracked. Since the
optimization relies on stochastic elements, the number of iterations needed to converge
towards an acceptable solution varies between different optimization runs. For the
stated control problem, the algorithm has been found to typically converge towards a
solution within 10 to 30 generations. The population size of Np = 24 has been chosen
due to the observed behaviour in several test runs and is consistent with previous tests
of the algorithm on toy models, as presented in [192]. For smaller population sizes,
premature convergence towards a suboptimal state is likely. Larger population sizes, on
the other hand, extend the average runtime.

The absolute runtime obviously depends on the computational resources available. The
optimization runs discussed within this chapter have been performed on a workstation
computer1 using Matlab, allowing us to parallelize the problem to 12 processor cores.
An optimization run from start to convergence in this configuration has a typical
duration of 30 minutes. Running multiple runs (up to 3 without significant slowdown)
within different Matlab sessions on the same machine can effectively cut this duration
down to 10 to 15 minutes. While this is short enough to perform test runs to roughly
evaluate the performance, acquiring sufficient statistics for a quantitative evaluation
and tuning of algorithm parameters to improve performance would already require

14×AMD Opteron 6272 CPUs, 256 GB RAM.
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exceedingly large computation times.

Figures 6.6(a) and 6.6(b) show the convergence towards the optimized control ramps
discussed within this chapter in terms of the average breathing amplitudes achieved
across all 24 states within each generation, while error bars are given by the correspond-
ing standard deviation. Note that for the compression problem, the dimensionality of
the control space is 5 in contrast to 4 as for the decompression problem, consistent with
a longer convergence time.

Note that all the simulations shown within this chapter so far have been performed
before studying the scaling equations discussed in the previous chapter. Of course, for
this particular control problem, replacing the GPE simulation by a numerical solution
of the modified scaling equation 5.9 is much faster. In order to study the minimal
achievable ramp times that still allow the suppression of the breathing dynamics in
the following section, this approach is taken. On the other hand, the GPE allows to
include modifications to the interaction term and the generalization to control problems
for which scaling solutions do not hold, especially anharmonicity in the axial trapping
potential that often cannot be avoided. Therefore, the optimal control scheme including
the GPE is the more interesting tool for future applications within the group.

6.5. Measurement results

The goal of the work presented in this chapter is the demonstration of optimal control
within an experimental setting. On the one hand, the experiment is subject to external
perturbations leading to shot-to-shot fluctuations of the atom numbers, drifts of the
trap parameters, imperfections of the axial trapping potential and similar disturbances.
On the other hand, experimentally trapped atom clouds differ from simulations due
to deviations from pure 1d physics, finite temperature and interaction with thermal
atoms. Fortunately, simulations indicate that the control ramps are robust with respect
to changes in atom number in the order of a factor 2. Additionally, the comparisons
between simulated and measured breathing dynamics for the simple ramps presented
in the previous chapter show good agreement and indicate that finite temperature has
little effect on collective excitations within our parameter range. Additionally, small
deviations can be accounted for by small adaptations of the experimental control fields.
Since the same GA is implemented within the experimental control, also closed-loop
adaption is feasible in our setup.

Nevertheless, it is interesting to observe that no adaptions were necessary to recover
the results presented in figure 6.7. It shows the measured cloud radii after a short
time-of-flight expansion phase of 5 ms throughout an axial decompression (figure 6.7(a))
and compression (figure 6.7(b)). The radii are determined by parabolic fits to imaged
density profiles as shown in figure 6.8(b) and 6.8(d). Each data point corresponds to
an average over 5 shots at identical parameters. Errorbars indicate the corresponding
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Figure 6.7.: Measured cloud width for shortcuts and linear ramps. (a) Time evolution of the Thomas-
Fermi radius for an optimal axial decompression (red circles and line) from ω0

a = 2π × 11.5 Hz, ω0
r =

2π × 764 Hz to ωf
a = 2π × 7 Hz, ωf

r = 2π × 1262 Hz compared with the Thomas-Fermi radius for a
corresponding linear ramp (blue squares and dashed line). Errorbars represent the standard deviation
of 5 shots at identical parameters. (b) Time evolution fo the Thomas-Fermi radii for an optimal axial
compression (red circles and line) and a corresponding linear ramp (blue squares and dashed line). The
compression process is inverse to the decompression, changing ω0

a = 2π × 7 Hz, ω0
r = 2π × 1262 Hz to

ωf
a = 2π × 11.5 Hz, ωf

r = 2π × 764 Hz.

standard deviation.

The dynamics are triggered by the same control ramps as presented in section 6.3 based
on the characterization measurements for the trap frequency calibration discussed
above. For comparison, figure 6.7 shows the radius of a breathing cloud after linear
ramps between the same initial and final trap configurations, in analogy to the
simulation results depicted in figure 6.4. For both protocols, the optimized ramps lead
to an excellent suppression of the breathing dynamics. Figure 6.8 contains an additional
comparison between measured density profiles and simulation results for the breathing
dynamics after decompression by a linear ramp, shown in figure 6.8(a) and 6.8(b) as
well as after an optimized ramp in figure 6.8(c) and 6.8(d), underlining the excellent
agreement between the calculated and measured mean-field dynamics.

Of course, in the light of the results presented in the previous chapter, it is interesting to
track the temperature of the phonon ensemble throughout the shortcut. For a stationary
cloud in thermal equilibrium, as outlined in section 5.3.2, the phonon spectrum is given
by [82]

ωl =
ωa√

2

√
l (l + 1), (6.10)

with mode index l, depending only on the axial trap frequency ωa. For an adiabatic
state change within time τ , as discussed in the previous chapter, it holds that
T (0)/T (τ) = ωl(0)/ωl(τ), and consequently T (0)/T (τ) = ωa(0)/ωa(τ). If the shortcut
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Figure 6.8.: Comparison of simulated and measured density profiles for linear axial decompression.
(a), (c): Simulation results for the linear and optimal decompression, as in figures 6.4 and 6.5. (b), (d):
Imaged density profiles from the dataset evaluated in figure 6.7(a), averaged over 5 shots at identical
experimental parameters.

is adiabatic not only with respect to the mean-field dynamics, but also the whole
phononic excitation spectrum, as suggested by the scaling model developed in the
previous chapter, the measured temperature ratio between initial and final state should
behave as argued.

As a first check of this conjecture, an additional dataset for the decompression shortcut
ramp has been recorded. Sets of 250 pictures at identical parameters for the times t = 0
ms (before the shortcut ramp), t = τ (directly after the shortcut ramp) and after a hold
time t = τ + 30ms have been taken. The statistics and a free expansion time of 10 ms
allow to apply density ripple thermometry as used in chapter 5 and described in section
4.6. All measured density profiles are depicted in figure 6.9(a), while the respective
averaged profiles together with parabolic fits are shown in figure 6.9(b).
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Figure 6.9.: Density profiles from the dataset used for the temperature measurements discussed in the
text and shown in 6.5. (a) Carpet plots of all density profiles involved in the temperature estimation
for t = 0 ms (before the shortcut, upper panel), t = 30 ms (directly after the shortcut, middle panel)
and t = 60 ms (after an additional hold time of 30 ms, lower panel). (b) Averaged density profiles at
t = 0 ms (blue circles), t = 30 ms (red circles) and t = 60 ms (green circles), compared to parabolic
fits at t = 0 ms (dashed black line) and t = 60 ms (black line). The parameters and ramp are identical
to those used for simulations and measurements for the axial decompression as presented previously in
this chapter.

Analysing density correlations, we find an initial temperature of 109 ± 6 nK as well as
78± 4 nK and 102± 5 nK directly after the shortcut and after the additional hold time
of 30 ms, respectively. These results are summarized within figure 6.5. Clearly, heat-
ing is observed and prevents the direct verification of an adiabatic temperature change.
However, correcting for an experimental heating rate of 0.5 nK/ms yields temperatures
of 62 nK after the shortcut and 63 nK after the 30 ms hold time, in close agreement
with the adiabatic prediction of 65 nK for our trap geometry. The fact that the temper-
atures before and after the shortcut are related according to the adiabatic prediction,
if corrected for a regular experimental heating rate that leaves the temperature sta-
tionary during the hold time after the shortcut, at least suggests that the ramp itself
provides a negligible contribution to the overall heating rate in the system. To illustrate
this argument, figure 6.5 also contains the mentioned corrected temperature values. In
addition to these measurements, the figure features a plot of numerical results for the
temperature evolution from simulations based on stochastic initial conditions generated
by a SGPE and subsequent evolution with a GPE in a time-dependent potential, subject
to the shortcut ramp. The numerical results are in close agreement with the adiabatic
prediction, and also the heating-corrected temperature measurements.

Of course, a clear demonstration of fast frictionless adiabatic cooling in a 1d quasi-BEC
requires at least more temperature measurements throughout shortcuts between different
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Figure 6.10.: Time evolution of the temperature in the course of a decompression STA. Red circles
represent the measured temperature values for the dataset shown in figure 6.5. Green crosses correspond
to temperatures corrected for an experimental heating rate of 0.5 nK/ms, comparable to what has been
determined for the measurements presented in chapter 5. The black line shows results from numerical
simulations based on the SGPEeq-method, averaged over a set of 480 stochastic initial conditions, and
evolved for the shortcut ramp employed in the measurements. Both the corrected temperatures as well
as the numerical results are in close agreement with the adiabatic prediction discussed in the main text.

ramps, and ideally to probe a system with negligible heating rates in the future.

6.6. Summary

Summarizing, an optimal control approach for the mean-field dynamics of a 1d BEC
based on the combination of a stochastic optimization algorithm and numerical simu-
lations of the Gross-Pitaevskii equation has been presented in this chapter. Simulation
results show that the control scheme allows to suppress the breathing dynamics
typically induced by a fast change of the trap geometry, implementing a shortcut to
adiabaticity. Further, it has been demonstrated that the control ramps obtained by the
algorithm allow the suppression of breathing dynamics in a corresponding experimental
implementation with quasi-1d BECs without any additional adaptations needed. The
results hold in the presence of environmental perturbations present in the experiment,
finite temperature, and deviations from the pure 1d model adopted in the numerics. The
presented approach is expected to be useful as a tool to control the external dynamics
of quasi-1d BECs within other atom chip experiments, for instance the investigation of
Josephson physics [247], interferometry based on double well traps [248] or even optimal
control experiments performed on the transverse state of the atom cloud [216], which
also induce axial collective excitations.

It has been shown that quasi-1d BECs, allowing direct thermometry on the phononic
excitations within the condensed atom ensemble, allow to probe the temperature
throughout an optimal control sequence. Making use of this feature, the temperature
measurements during a shortcut to adiabaticity for the axial expansion of a 1d quasi-
BEC have been presented. While experimental heating prevents a direct verification
of fast frictionless cooling, the results suggest that the shortcut ramp itself does not
induce additional excitations, consistent with a constant heating rate during and after
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the control ramp. However, further measurements that provide a real proof of fast
frictionless cooling in the future are called for.

It is interesting to consider whether the approach could be used within a closed-loop
implementation directly on the experiment. In this context, it is important to consider
the expected runtime in such a setting. The total number of cost function evaluations
until convergence - the number of GPE simulations to estimate the breathing amplitude
- amounts to ≈ 360 for decompression and ≈ 720 for compression. For a reliable
experimental estimation of the breathing over a period of 100 ms to 200 ms, an
average number of 10 data points per ramp is assumed. This results in 3600 or 7200
experimental runs, respectively, without taking into account additional statistics. In
our experiment, with a cycle time of 30 seconds, this translates to a runtime of 30
or 60 hours per optimization, respectively. This is a challenging duration for a single
optimization run, but feasible.

Another interesting question is whether the optimal control approach could be used on
stochastic simulations that allow investigating finite temperature dynamics. Relying on
quantities that can be calculated from a single stochastic field, or by averaging over a
few realizations, the expected runtime is similar to the T = 0 case. Many observables
require averaging over O(100) realizations however. In this case, extrapolating from the
performance of the SGPE model presented in chapter 3 and used throughout this thesis,
within its current implementation, an optimization run is estimated to take roughly 24
hours. Such optimal control studies on finite temperature simulations could open up
interesting experiments, as using optimal control to create specific non-thermal states
with tailored phononic occupation number distributions as initial conditions for the
study of relaxation processes within a 1d Bose gas. So far, only very specific initial
states can be created experimentally [205].



7. Cold atoms in a magnetic guide

”We have a habit in writing articles published in scientific journals to
make the work as finished as possible, to cover up all the tracks, to not
worry about the blind alleys or describe how you had the wrong idea first,
and so on. So there isn’t any place to publish, in a dignified manner,
what you actually did in order to get to do the work.”

Richard P. Feynman, Nobel Lecture, 1996

The studies presented in chapters 5 and 6 were triggered by the investigation of ultracold
atoms propagating in a 1d magnetic guide towards the integrated fluorescence detector
presented in section 4.3.9. The goal of this chapter is to give a brief presentation of
early studies on this topic, constituting a precursor to and additional motivation for the
detailed analysis of quasi-1d BECs in time-dependent trapping potentials as presented
in the chapters 5 and 6.

While recent measurements with the integrated fluorescence detector will mainly be
subject of the thesis [188], the final part of this chapter summarizes some results
considering the optimal parameters for the detection of ultracold atoms at temperatures
below 1 µK. The main goal is to present an analysis of the kinematics of cold atoms in
the detection region based on a numerical simulation contributed in the course of this
thesis, and possible implications for the scattering properties and the estimation of the
detection efficiency.

As such, this chapter is supposed to link the main results from this thesis to previous
experiments on fluoresecence detection of non-degenerate thermal atoms [39] and the
follow-up work which will be part of the thesis [188], and also to comment on loose ends
and questions to be investigated within the next iteration of the experiment that is in
the process of being set up, as summarized within chapter 8.

7.1. Introduction

Previous measurements (see the thesis [39] as well as [42] and references therein)
performed with the experiment presented in chapter 4 focused on the properties of the
integrated fluorescence detector outlined in section 4.3.9. Naturally, it is interesting to
study the feasibility of using the fluorescence detector as a tool to investigate clouds
at the temperatures necessary to reach degeneracy, as realized within the scope of this
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thesis.

Figure 7.1(b) sketches the geometry considered within this chapter: An atom cloud is
prepared in a trap formed by external fields and the current IZ through the Z-shaped
wire structure in the centre of the chip. By subsequently ramping down IZ while
increasing the current IG through the L-shaped wire structure marked in figure 7.1(b),
the atom cloud is transferred into a tube-like potential, ideally able to freely propagate
towards the detection region, with an axial confinement only present at the far end
from the fluorescence detector’s point of view. Note that to achieve optimal detection
efficiency, the minimum of the tube-like potential needs to match the distance from the
excitation fibre tip, as depicted in figure 4.11, to the chip surface. This distance is given
by the fibre radius of 62.5 µm.

In the following, the transport of atom clouds with temperatures in the nanokelvin-
regime along such a guide potential is discussed. The first section concentrates on
the initial hydrodynamic propagation stage of a quasi-BEC. Note that the results
presented as such do not allow to draw a full picture of the system; the questions
raised in the course of this project lead to the investigation of quasi-BEC dynamics in a
time-dependent trapping potential as presented in chapter 5. While, in this framework,
the short-time expansion dynamics of a quasi-BEC in a homogeneous 1d potential is
expected to be captured faithfully, the asymmetric shape of the guide wire complicates
a clean experimental investigation of the expansion, leaving this project to the next
iteration of the setup as presented within chapter 8. There, the axial confinement can
be switched off symmetrically, allowing a description in terms of a scaling model as
presented within section 5.3. Further, the scale invariance of the system is expected to
be broken by sufficiently long expansion times even in a symmetric arrangement, with a
potentially observable signature that is discussed in the framework of c-field simulations
within section 7.3.

The second part of this chapter, section 7.4, examines the fluorescence detection of
cold guided atoms. At low temperatures, the dependence of the signal strength on
the properties of the detection light field is observed to deviate from the behaviour
found at temperatures exceeding T � O(1) µK in reference [39]. Using a classical
approximation to the dynamics of atoms in the vicinity of the detection region, an
attempt to understand these deviations is presented, with possible implications for the
design of a next generation fluorescence detector.

Beyond these contributions in the scope of the presented thesis, much work including
additional experiments considering pulsed detection, the implementation of repulsive
and attractive dipole potentials provided by the detection fibre and an analysis of the
arrival time signal corresponding to a propagating quasi-BEC’s density profile in terms
of a Wigner function description, together with a discussion of the possible detection of
flow correlations, will be contained in the thesis [188].
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Figure 7.1.: Arrival time signal for hot atoms (≥ 20 µK) and geometry of the transport. a) Comparison
of an average arrival time signal (blue) with the 1d Boltzmann velocity distribution 7.1 (green line) and
a fit based on the distribution 7.1 taking into account the contribution of atoms reflected by the closed
end of the potential as denoted by the red path within panel b). b) Geometry of the transport: Atoms
initially trapped by a current IZ and external fields through the central Z-shaped wire structure are
transferred into the magnetic guide potential given by the current IG through the L-shaped guide wire,
connecting the central chip region to the fluorescence detector. Figure adapted from [39].

7.2. Transport of quasi-BECs in a magnetic guide

Atom clouds with temperatures in the order of ≥ 20 µK have been observed to propagate
smoothly along the guide potential. At such temperatures, the fluorescence signal is well-
explained by ballistic propagation according to a 1d-Boltzmann velocity distribution,

f1d(v) =

√
m

2πkBT
exp−

(
mv2

2kBT

)
(7.1)

plus a small additional contribution to correct for atoms with an initial velocity pointing
away from the detector, reflected at the confined end of the guide potential. A detailed
analysis of such arrival time signals from the fluorescence detector can be found in
reference [39], while figure 7.1 serves as a demonstration.

In section 4.4.5, it was already noted that with decreasing distance of the trap minimum
to the chip surface, corrugations in the potential can appear caused by irregularities
of the current flow through the chip wires. These corrugations have little influence
on the propagation of atoms with kinetic energies exceeding the ’waviness’ of the
potential Ek � ∆Epot. As shown in figure 4.19, the waviness can be in the order
of the chemical potential of a quasi-BEC with µ << a few ~ωr for sufficiently small
distances of the chip. Since interactions yield the dominant energy scale in the system,
the expansion of such a cloud in a guide potential with corresponding waviness is
expected to be influenced by the corrugations. Unfortunately, at the target distance
of 62.5 µm between trap minimum and chip, this effect has observed to be sizeable
in our experiment. To observe smooth propagation of a quasi-BEC along the full
extension of the guide, distances between chip and trap minimum below ∼ 100 µm
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Figure 7.2.: Transport of a quasicondensate from ∼ 12000 atoms in a magnetic guide as discussed in
the main text.

are to be avoided. Under these conditions, dynamics as shown in figure 7.2 can be
observed. Here, a cloud of ≈ 12000 atoms is transferred from a trap with confinement
characterized by ωr, ωa ≈ 2π × (1400, 5) Hz into a guide potential with a radial trap
frequency of ωGr ≈ 2π × 1600 Hz within a timescale of 20 ms and imaged at intervals of
20 ms, each after an additional 10 ms of free expansion time. The first picture shows a
quasicondensate within the initial trapping potential. After a subsequent compression
phase that is not apparent in simple GPE descriptions of the process and is attributed
to imperfections of the potential, the cloud proceeds to propagate and expand along
the guide wire.

Figure 7.3 summarizes the time evolution of the average density profile. Figure 7.3(a)
contains raw profiles (upper panel) and Gaussian fits (lower panel) to extract the RMS
radius as a measure of the cloud with. The fit results are plotted in figure 7.3(b) and
reveal an approximately linear expansion after the compression phase with a velocity
of ≈ 4.2 mm/s, which roughly corresponds to twice the initial sound velocity c0 ≈ 2.2
mm/s. Revisiting the scaling equation 5.5 for a 1d quasicondensate in the Thomas-Fermi
regime introduced in section 5.2, with vanishing axial trap frequency ωa(t) = 0,

b̈(t) =

√
2g1dn0

mR0

1

b2(t)
, (7.2)
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(a) Propagation: Density profiles.
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Figure 7.3.: Characterization of quasicondensate propagation in the magnetic guide. (a) Integrated
density profiles from the dataset shown in figure 7.2 (upper panel) and Gaussian fits to these profiles
(lower panel). (b) RMS radii corresponding to the Gaussian fits from (a), and linear fit to extract an
expansion velocity of v ≈ 4.2 mm/s.

one finds with b(t) = R(t)/R0 and the initial Thomas-Fermi radius R0 =
√

2g1dn0/mω2
0

as well as the sound velocity c0 =
√
g1dn0/m the relationship

R̈(t) =
2c2

0R0

R(t)
, (7.3)

yielding for the expansion speed

˙R(t) = 2c0

√
1− R0

R(t)
, (7.4)

which, in the limit R� R0 indeed converges to twice the sound velocity. The physically
intuitive picture behind this circumstance is that, after sufficient time, the initial inter-
action energy, with c0 being the characteristic velocity, should largely be transferred into
kinetic energy. Hence, this basic result is expected to hold even if the asymmetry of the
experimental setting breaks the validity of the scaling equation.

The axial propagation velocity induced by the change of the trapping potential and
release of the cloud into the guide can also be deduced from the fits shown in figure
7.3(b), amounting to vp ≈ 13.3 mm/s.

The propagating cloud can be tracked by absorption imaging to make sure that no other
defects in the trapping potential inhibit propagation towards the detection region. Since
the atomic cloud eventually needs to pass the fibre detector at a distance of 62.5 µm
from the chip surface, a second ramp reduces the guide wire current IG after ≈ 250 ms of
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Figure 7.4.: Atom cloud passing the detection region. Upper panel: Absorption image of an atom
cloud passing the detector in the absence of excitation light, after 600 ms of propagation and 7 ms of
free expansion time. Lower panel: Picture for parameters identical as used to obtain the image shown
in the upper panel, but in the presence of excitation light. Centre panel: Arrival time signals from the
atom cloud depicted in the upper panel (red line) and the lower panel (blue line).

propagation time at constant external bias field with a ramp time of 50 ms from IG = 1
A to IG = 0.65 A, and from ωGr = 2π×1600 Hz to ωGr = 2π×2200 Hz. Fortunately, this
second ramp does not disrupt the propagation, and atom clouds with sufficient initial
density can be observed to pass the detection region. An example is given in figure 7.4.
The central panel contains two arrival time signals from the fluorescence detector. The
red signal corresponds to the upper panel, which shows an atom cloud passing through
the detection region without any light coupled to the excitation fibre and, hence, no
fluorescence. After switching off the trap at the time coinciding with the 600 ms mark
in the arrival time plot and a free expansion time and 7 ms, the upper picture has been
taken. In contrast, the blue signal denotes an atom cloud entering the detection region
with the excitation light turned on, showing an increasing fluorescence rate until the
switch-off time, after which the picture from the lower panel has been taken. Again,
a free expansion time of 7 ms has been used. It is apparent from the image that the
part of the cloud having entered the detection region has been removed from the trap
by resonant scattering. Datasets like this show that it is possible to guide an initially
degenerate atom cloud over a distance of 5.5 mm towards the fluorescence detector, and
identify the corresponding arrival time signal.
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7.3. Excitation spectrum of 1d-expanding quasi-BECs

Before turning to a further analysis of arrival time signals corresponding to ultracold
atoms transported towards the integrated fibre detector as outlined within the previ-
ous section, here we discuss the excitation spectrum of a 1d quasicondensate during
1d expansion of an initial harmonically trapped cloud after switching off the axial con-
finement in an ideal symmetric setting. Such an experiment is expected to be realized
within the next iteration of the experiment. Above, we already found an expression
that allows to describe the density profile during expansion making use of the scaling
equation 5.5. Hence, the time-evolution is self-similar, conserving the initial parabolic
shape of a harmonically trapped cloud. Density and velocity fluctuations can then be
described by the same linearised hydrodynamic equations 5.17 and 5.18 as used for the
trapped system, since the external potential does not enter here and all modes scale with
the spatial extension of the cloud via a well-defined scale parameter b = R(t)/R0 with
the time-dependent and initial Thomas-Fermi radii R(t) and R0, respectively, and one
can use the exact same line of arguments as in section 5.3.2 to find an approximately
adiabatic scaling of both the spectrum and temperature ωl ∝ T ∝ b−3/2.

C-field approach: Temperature. Just as for the breathing dynamics from chapter 5,
the time-evolution of the temperature can be investigated with the help of the SGPE-
based c-field simulation introduced in chapter 3. The results for a corresponding simu-
lation run for an initial cloud of ∼ 16500 atoms at a temperature of T = 100 nK within
a harmonic potential characterized by the trap frequencies ωa, ωr = 2π × (12, 1000) Hz,
where the axial potential is removed within a ramp of 1 ms duration and the hydrody-
namic expansion is observed for a time span of 100 ms, are displayed in figure 7.5. To
confirm an initial equilibrium state, the confinement is kept for 100 ms of GPE evolution
after the SGPE stage, before initiating the expansion. Figure 7.5(a) plots temperature
values obtained by density ripple thermometry (see sections 2.5 and 4.6) against time,
in comparison with the adiabatic scaling law and finds excellent agreement. Displaying
the same data as a function of the scale parameter yields figure 7.5(b).

Scaling basis and adiabaticity. However, adiabaticity in the chosen basis of rescaled
eigenmodes was not an exact result of the model derived in section 5.3, but only holds
if the expansion speed 7.4 is bounded by

Ṙ

R
=
√

2ωa(0)
R0

R

√
1− R0

R
� ωl(t) = ωl(0)

(
R0

R

)3/2

, (7.5)

with R := R(t) and the already encountered spectrum

ωl(0) =
ωa√

2

√
l(l + 1). (7.6)

The the expansion speed is always limited from above by (Ṙ/R)max ≈
√

2ωa(0)R0/R =
2c0/R for R� R0, as already noted in chapter 5. However, for the breathing dynamics,
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Figure 7.5.: Temperature of a 1d-expanding quasicondensate in c-field simulations. 100 realizations
of clouds of on average ∼ 16500 atoms are prepared at a temperature of T = 100 nK within a harmonic
potential characterized by the trap frequencies ωa, ωr = 2π × (12, 1000) Hz(a). To validate an initial
equilibrium state, GPE propagation without any parameter change is performed for 100 ms, after
which the axial potential is ramped down on a timescale of 1 ms to allow 1d expansion for a time span
of 100 ms. (a) Temperatures measured by density ripple thermometry plotted against time (purple)
compared with the scaling formula T (t) = T0 · b−3/2 (red line). (b) Temperatures plotted against the
scale parameter b = R(t)/R0 (purple), again compared to the scaling formula (red line).

also R does not exceed values of 2 × R0 to 3 × R0, whereas for the expanding cloud,
R can grow to arbitrary values. Substituting (Ṙ/R)max and 7.6 into equation 7.5, one
finds that (Ṙ/R)� ωl(t) only holds for

R� R0 l(l + 1). (7.7)

This means that as the expansion process proceeds, more and more modes fall outside
the adiabaticity criterion and mode mixing and corresponding changes of the occupation
number distribution is expected to be observed in the rescaled basis.

Breakdown of adiabaticity and quasiparticle creation. Interestingly, during the
work on this project we found that this scenario has already been discussed in reference
[29] from a completely different viewpoint. There, the authors discuss several scenarios
where the action of velocity fluctuations in degenerate quantum gases can be mapped to
Friedmann-Robertson-Walker and de Sitter metrics to create analogue gravity scenarios,
as pioneered Unruh’s initial proposal [249]. While a detailed discussion of this mapping
is beyond the scope of this thesis, the similarity of the description used by the authors
of reference [29] to our approach as presented in section 5.3 warrants some comments.
In particular, reference [29] considers parallels between the creation of quasiparticle
excitations in expanding ultracold Bose and Fermi gases and ”cosmological” particle
production in the early universe. To this end, a general scaling approach extremely
similar to our description in section 5.3 is used, and the case of an expanding 1d
quasi-BEC is even covered explicitly. Specifically, the authors recover the exact scale
invariance discussed in reference [36] if interactions are tuned as g1d → g1d/b(t) in the
form of an exact adiabaticity criterion in the basis of rescaled eigenmodes, while the
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Figure 7.6.: Density matrix decompositions from c-field simulations of 1d expanding quasicondensates.
Parameters: ∼ 16500 atoms, T = 100 nK, trap frequencies: ωa, ωr = 2π × (12, 1000) Hz(a). (a)
Occupation numbers in the Penrose-Onsager mode (black), quasicondensate modes (red) and decoherent
modes (blue) for an expansion where exact scale invariance is guaranteed by tuning the 1d interaction
constant as g1d(t) = g1d(0)/b. (b) As (a), but with constant g1d given by the radial trap frequency of
ωr = 2π × 1000 Hz.

approximate scenario in the Thomas-Fermi limit as discussed above yields the creation
of thermally distributed quasiparticle excitations in the scaling basis.

Since the instantaneous density matrix decomposition presented in section 3.3.5 yields a
set of eigenmodes corresponding to the rescaled initial basis from the analytical approach,
it is instructive to compare occupation numbers of these eigenstates for the expansion
at stationary interaction constant (in the following called ’Thomas-Fermi scaling’) with
the exact case involving tuning of interactions. The results of such a comparison in the
c-field approach are found in figure 7.6(b) and 7.6(a), respectively, both showing the
decomposition into Penrose-Onsager mode, quasicondensate and incoherent fraction as
functions of the scale parameter during expansion for identical parameters as used in
figure 7.5 with the exception of a lower set temperature of 50 nK. Apart from some initial
dynamics directly after switching off the axial potential (possibly inducing additional
excitations, constituting some form of quench), the distribution of atoms among the
different fractions is stationary for tuned interactions g1d(t) → g1d(0)/b(t) to conserve
the exact scale invariance. In contrast, significant depletion of the Penrose-Onsager
mode and correspondingly increasing occupation numbers in quasiparticle modes are
observed for the Thomas-Fermi scaling, qualitatively in accordance with the predictions
from reference [29] and our own observation that adiabaticity in the scaling basis is
expected to break down in the limit R� R0.
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Observer dependence of the excitation spectrum and prospects for experiments.
In references [28] and [27], the same authors raise interesting points about the observer
dependence of measured quasiparticle occupation numbers, and draw analogies to
the observer dependence of the black-body radiation spectrum in relativistic settings
[250, 251, 249, 252]. In this context, it would be interesting to exploit a device like the
fibre-based fluorescence detector as local observer, in contrast to global measurements
performed with imaging methods. Further, reference [210] discussed signatures in
the non-local phase and density correlation functions expected as a result of the
quasiparticle creation process.

Both the exact implementation of such local measurements as well as studies concerning
the feasibility of measuring predicted signatures on non-local correlation functions
are left for future projects on the new experimental setup. Note, however, that the
population of the Penrose-Onsager mode, defined as 3.29, is a well-defined quantity
in terms of measurable correlation functions and can conceivably be detected by a
combination of techniques to measure density fluctuations as used for instance in
reference [16] and the analysis of phase fluctuations by the methods discussed within
this thesis. Tuning the radial trap frequency over a factor of b = 2 to b = 4, either
to satisfy or further violate the exact scale invariance during expansion by a factor
b is realistic in atom chip experiments and is expected to yield an observable effect
according to the results shown in figure 7.6.

Finally, let it be noted that it is not even necessary to explicitly induce an expansion
process. Writing the Thomas-Fermi radius as

R0 =

√
4~an0

m

√
ωr
ωa

, (7.8)

one can immediately observe that, also in accordance with the scaling equation 5.9,
keeping the ratio

√
ωr(t)/ωa(t) constant keeps the cloud at a stationary radius R0 while

still changing the spectrum ωl = (ωa/
√

2)
√
l(l + 1), allowing to perform similar exper-

iments at stationary radius. This facilitates measurements where the time scale of the
confinement change is varied, and connects naturally to quenches of the transverse con-
finement, leading to deviations from an adiabatic temperature change characterized by
T (t)/T0 = ωl(t)/ωl(0).

Exact scaling and temperature. Note for completeness that the correct Ermakov
equation for the exactly scale invariant Hamiltonian writes

b̈(t) + ω2
a(t)b(t) =

ω2
0

b3(t)
, (7.9)

as can easily be recovered following the steps outlined in section 5.2.1 from equation
5.3 with d = 1 and an interaction constant Ū → Ū/b(t). Since this tuned interaction
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Figure 7.7.: Momentum distribution during the 1d expansion of quasicondensates from the c-field
simulations yielding the results presented in figure 7.6(b).

constant changes the scaling of the sound velocity, the spectrum then scales as

ωl(t) =
c(t)

R(t)

√
l(l + 1) = ωl(0)b−2, (7.10)

yielding also a different temperature scaling T (t) = T (0)b−2. While not explicitly demon-
strated here, this scaling can also be validated by analysing the temperature correspond-
ing to the simulated c-fields used for figure 7.6(a).

Momentum distribution of 1d expanding quasi-BECs. According to the Wiener-
Khinchin theorem already invoked in section 2.3.2 for the homogeneous gas in thermal
equilibrium, the time evolution of the momentum distribution is given by the Fourier
transform of the rescaled density matrix or first order correlation function. The case of
exact scaling is discussed in detail, also backed up by numerical results, in reference [36]
and shows fast convergence against a stationary parabolic distribution. In the Thomas-
Fermi limit, for moderate expansion times we can use the expression 5.31 deduced in
chapter 5, repeated here for the sake of completeness:

ρ (z, z′, t) '
√
n (z)n (z′)

b
exp

[
−|z − z

′|√
bλT

+
imḃ

2~b

(
z2 − z′2

)]
. (7.11)

Similar to the results presented in [36], the parabolic term is expected to quickly dom-
inate the shape of the momentum distribution during expansion. To demonstrate this,
figures 7.7(a) and 7.7(b) show a carpet plot of the numerically calculated momentum dis-
tributions obtained from the simulation results also used to create figure 7.6(b), as well
as a comparison of initial and final states, respectively. Note that due to the breakdown
of adiabaticity discussed above, deviations from equation 7.11 are expected to arise for
long expansion times, yielding another possible observable for future experiments.
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Beyond the quasi-BEC regime. The expansion of a quasicondensate at constant 1d
coupling parameter g1d leads to decreasing density and thus to increasing interaction
strength, parametrized by the Lieb-Liniger parameter γ defined by expression 2.34.
Naturally, quasicondensate theory must break down as one approaches γ ≈ 1. Sev-
eral theoretical studies have been performed on this dynamical fermionization of the
1d gas and its influence on the shape of the density profile [253, 80], and correlation
functions [254, 255], showing rich behaviour in the transition regime marked by γ ≈ 1,
connecting between the two by themselves scale-invariant Thomas-Fermi and Tonks-
Girardeau regimes. Current experiments with initial states at γ ≈ 10−3 are far from
this transition regime even for scale parameters around b ≈ 10. However, in principle
it is conceivable to combine low-density initial states and single-atom sensitive imaging
techniques to probe the physics of the transition region in future experiments.
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7.4. Fluorescence detection of cold atoms

Summary of previous results. Fluorescence detection of atoms at temperatures of
order O(10) µK with the detection setup outlined in section 4.3.9 and depicted in 4.11
has been analysed in great detail within the theses [38] and [39]. In summary, using the
F = 2 → F ′ = 3 transition, optimal detection efficiency was found at total excitation
light powers around 1 nW, corresponding to roughly 3 times the saturation power,
yielding ∼ 120 scattered and on average ∼ 1.08 detected photons per atom, with an
1/e interaction time of tint = 12± 1 µs.

The optimal detection laser detuning to reach these conditions was determined by spec-
troscopy measurements. Since the atoms are radially trapped within a magnetic poten-
tial, they are subject to a position-dependent Zeeman shift, leading to a corresponding
splitting visible on the spectroscopy data, as presented within figure 7.8. Due to the
geometry of the detector, the atoms are likely to see a light field containing π, σ+ and
σ−-components with respect to the local quantization axis. Depending on the local Zee-
man shift, the detuning of the light field from the zero-field resonance, as well on the
unknown output polarization of the excitation fibre and the Doppler shift of a moving
atom, either of these polarisation components can be resonant. Depending on the total
detuning, atoms are likely to exhibit higher scattering rates for either of the circular com-
ponents, leading to optical pumping into the mF = ±2 states and subsequent driving of
the closed closed |2, 2〉 ↔ |3, 3〉 or |2,−2〉 ↔ |3,−3〉 transitions, respectively, with the
possible additional scattering of π polarized light. In total, this yields the spectroscopy
data depicted in figure 7.8. The efficiency of the optical pumping depending on light
intensity, detuning and relative intensity of the different polarization components has
been estimated by Monte Carlo simulations in reference [38].
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Figure 7.8.: Spectroscopy of the |2,mF 〉 → |3,m′F 〉, showing the number of detected counts per
second of arrival time signals from atoms at temperatures of ∼ 50 µK normalized to the maximum
count numbers, plotted against Laser detuning and power. The guide potential was characterized by a
bias field of Bb = 19.9 G, a guide currrent IG = 0.627 A and an external field defining the trap bottom
of BI = 4.4 G. The data clearly demonstrates a two-peaked structure caused by Zeeman splitting of the
ground and excited hyperfine states, and corresponding resonance shifts between different polarization
components in the excitation light field. Figure adapted from thesis [38].

At low intensities, the |2,−2〉 ↔ |3,−3〉 was found to yield comparably less signal, which
was attributed to low efficiency of the optical pumping process from the |2, 2〉 to the
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Figure 7.9.: Zeeman splitting and polarization-dependent driving of transitions. (a) Sketch of the
resonance conditions for different polarization components in the presence of a magnetic field for the
|2,mF 〉 → |3,m′F 〉 transition of the 87Rb D2-line. (b) Two fluorescence signals at different detunings of
+5 MHz (blue line) and -25 MHz (red line) with respect to the zero-field resonance, demonstrating the
difference in signal strength discussed within the main text.

|2,−2〉 ground states in the presence of sizeable local magnetic fields and corresponding
differential Zeeman shifts in the F = 2 and F ′ = 3 hyperfine states. Therefore, it
was concluded that this situation is best avoided, and scattering on the other closed
transition is to be maximized.

Spectroscopy for cold atoms. For ultracold atoms, different behaviour is observed.
Figure 7.9(b) contains two single-shot arrival time signals from initial atom clouds close
to degeneracy. The blue line corresponds to data taken with a blue detuning of +5
MHz with respect to the zero-field transition, chosen to maximize scattering on the
closed |2, 2〉 ↔ |3, 3〉 transition, given a trap bottom of 3.3 G and an external Bias
field of 26 G, yielding an overall trap depth of 23 G. Temperatures are below 1 µK.
The initial peak that can be attributed to cold atoms guided towards the detection
region visible on absorption images as discussed in the previous section, however, is
only pronounced when using light at −25 MHz, far red detuned and expected to drive
the |2,−2〉 ↔ |3,−3〉 transition.

To put this effect under closer scrutiny, a spectroscopy varying power and detuning of
the detection laser for atom clouds at T < 1 µK has been performed. The results are
summarized in figure 7.10 and show that the total count number behaves similar to
the results presented in the previous paragraph, with a minimum around the zero-field
resonance and rising count numbers for both red and blue detuning. Figure 7.10(a)
shows the peak count numbers as a measure for the contribution of the initial part of
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(a) (b)

Figure 7.10.: Spectroscopy of the |2,mF 〉 → |3,m′F 〉 transition for ultracold atoms. (a) Peak count
numbers of arrival time distributions as shown in figure 7.9(b), corresponding to atom clouds with initial
temperatures T ≤ 1 µK verified to pass the detection region by absorption imaging (see section 7.2).
(b) Total counts of arrival time signals plotted against Laser detuning and power, similar to figure 7.8.

the arrival time signal that can actually be linked to a cold atom cloud passing the
detector by absorption imaging, as presented previously in this chapter. It reveals that
the peak is almost completely absent at blue detuning regardless of excitation power.

Simulation of atoms in the detection region. To better understand this behavior, a
numerical simulation employing Monte Carlo methods to study the dynamics of single
atoms in the vicinity of the detection region has been implemented. It considers the
atoms as classical objects propagating individually along the magnetic potential formed
by the guide wire, depending on their initial position and velocity. The motion is calcu-
lated by simply updating the velocity of each atom at each time step dt in the harmonic
external potential

v(r, t) = v(r, t− dt)− ∇Vext(r)

m
dt (7.12)

The interaction with the light field is modelled by the well-known expression of the total
photon scattering rate of a two-level system (see e.g. [177]),

γ(δ(r, t), I(r)) =
Γ

2

I(r)/Isat

1 +
(

2∆(r,t)
Γ

)2

+ I(r)
Isat

, (7.13)
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with the natural line width Γ ≈ 2π × 6 MHz, a detuning ∆(r, t) and the saturation
intensity for circularly polarized light

Isat =
~ω0Γ

12πc2
. (7.14)

Here, c denotes the vacuum speed of light, and ω0 the frequency corresponding to the
87Rb D2-line as given in [172]. Here, the intensity I is given as a Gaussian distribution
on a numerical grid, defined by a beam waist of w = 2.5 µm, and for simplicity assumed
to be axially homogeneous within its cross section with the volume considered for calcu-
lations, which is a cube of 603 µm3. The detuning is composed from contributions due
to the local Zeeman shift, a possible detuning of the excitation laser frequency, and the
Doppler shift of each atom,

∆(r, t) = ∆m(r) + ∆L −∆D(t), (7.15)

with ∆m(r) = µBB(r)/h for the σ+ transition and ∆m = −µBB(r)/3h for the σ−
transition, respectively, and ∆D(t) = −vL(t)ω0/2πc with the atom’s velocity component
along the light field vL(t). Note that the π transition is disregarded for the simulations
presented in this section to isolate the dynamics induced by scattering on the closed
transitions. Assuming photon scattering to be a Poisson process, the probability to
scatter a photon in the time interval dt is given by

p1(dt) = γ(δ(r, t) · dt | p1(dt)� 1, (7.16)

allowing to compare a random number against this probability for each atom at each
time step if it is made sure that p1(dt) is small enough. Upon scattering, the atom picks
up a velocity vr = 5.8845 mm/s [172] per photon along the direction of the light field
v̂L, plus an additional recoil from emission into a random direction.

While with this, all ingredients to model scattering on the σ+ transition are available,
in order to describe the σ− transition one needs to include optical pumping by
repopulation of each atom’s mF state according to the transition probabilities for
the F = 2 ↔ F ′ = 3 transitions as defined by the dipole matrix elements given in
reference [172] upon each scattering event. Depending on the resulting mF -state of the
atom, the confinement in the magnetic potential changes, and becomes repulsive for
negative values and hence crucially changing the atom trajectories, as will be seen below.

Finally, to model detection, one can roll a random number against the detection efficiency
Nph as defined in equation 4.15 for each scattered photon, taking into account the spatial
dependence of the collection efficiency Rcoll of the multimode fibre as indicated in figure
4.11 and discussed in the thesis [38].

Simulation results. With these steps, the trajectory of single independent atoms in
the vicinity of the detection region as well as photon scattering and detection can be
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Figure 7.11.: Kinematics of atoms in the detection region. The plots show cuts through the magnetic
guide potential, aligned along the diagonal, and the scattering rate (aligned along the horizontal x axis)
due to a Gaussian excitation light field. The cuts lie in the x − z plane at a distance y = 62.5 µm
from the chip surface. Superimposed are trajectories (white dots) of single atoms, simulated by the
Monte Carlo simulation presented within this section, projected onto this plane for different initial axial
velocities in the potential as denoted within the images.

simulated. Figure 7.12 shows slices through the grid considered for a typical simulation
run along the x-z direction, with the y-coordinate chosen in the plane defined by the
center of the excitation fiber, and minimum of the guide potential. Here, the detec-
tion beam, marked by the red region in the pictures, is aligned along the x-direction,
while the axis of the guide is lying in the x-z diagonal. Superimposed in white are
projections of typical single-atom trajectories with an initial axial velocity of 10 mm/s
at σ+ (7.12(d)) and σ− (7.12(c)) detection, as well as 40 mm/s at σ+ (7.12(b)) and σ−
(7.12(a)) detection. These velocities are chosen, since they correspond to the average
axial propagation speed of atom clouds close to degeneracy, as discussed in section 7.2
and the velocity of fast atoms from a 1d Boltzmann distribution 7.1, respectively. While
for both velocities, using the σ− transition, the atom trajectory crosses the detection
beam, for σ+ polarization scattering events take place only at the edge of the detection
beam. For sufficient initial velocities, atoms still propagate deep enough into the light
field in such a way that their dynamics is eventually dominated by scattering; for low
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Figure 7.12.: Total number of scattered and detected photons from the Monte Carlo simulation for
atoms with different initial axial velocities. (a) Number of scattered photons at the σ+ transition (means
in blue, medians in cyan), and the σ− transition (means in red, medians in purple), respectively. To
correct for the influence of outliers, median values are provided in addition to means and standard
errors from 6000 trajectories at identical parameters, each. (b) Average number of detected photons
per atom for the σ+ (red) and the σ− transitions, respectively, from the same simulation yielding the
scattered photon numbers shown in (a).

velocities, however, the combination of a few scattering events in the low-intensity tail
of the light field and the confining potential lead to a reflection of the atom. Slow atoms
interacting with σ+ light, on the other hand, are optically pumped into untrapped states
and subsequently pushed into the light field by the magnetic potential, increasing the
number of scattering events.

To quantify these intuitive results, figures 7.12(a) and 7.12(b) contain statistics from
6000 individual trajectories for the number of scattered and detected events at different
axial velocities between 10 mm/s and 50 mm/s, considering both σ+ and σ− light, at a
total power of 1 nW (3 × Psat), as used in most experiments, providing evidence for the
advantage of using the σ− polarization for the detection of slow atoms, while providing
realistic values for both scattered and detected photons numbers for fast atoms corre-
sponding to the µK regime, although slightly underestimating the number of scattered
photons compared to the measurements presented in reference [39].

Simulation versus reality. Of course, care has to be taken when comparing such a
simple model to the experiment. On the one hand, atoms always see all polarization
components present with different relative intensities depending on the local quan-
tization axis in the experiment, affecting the efficiency of optical pumping for a low
number of overall scattered photons. Further, atoms clouds in the µK regime have been
measured to feature radial diameters in the order of 20 µm. Atoms at such distances
from the trap centre are expected to feature significantly different dynamics in the
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detection region. Specifically, pumping such atoms into untrapped states is observed
in corresponding simulations to decrease the interaction time with the light field, as
intuitively expected, and therefore the signal strength on the σ− transition relative to
σ+ polarized light.

In addition, while the interpretation offered for the measurements shown in figure 7.10
seems satisfactory with respect to the behaviour of cold atoms, the nature of the signal
tails, apparently interacting more efficiently with σ+ polarized light is an open question.
Within the presented picture, it might be concluded that it consists of axially slow
atoms with radial kinetic energies consistent with temperatures in the order of a few µK.
The origin of such atoms, however, remains unclear and calls for future measurements
characterizing the role of heating or residual corrugations in the guide potential during
expansion.

7.5. Summary

The first part of this chapter presented some early results considering the propagation
of atoms in a magnetic guide potential. It showed that it is crucial to perform such
measurements at sufficiently far distances from the chip surface to minimize the effect
of potential corrugations. Experience from different experiments across the group
has shown that regardless of chip wire diameter, distances exceeding roughly 100 µm
between chip and potential minimum are comparatively safe from corrugations for single
surface layer atom chip designs. With respect to integrated fluorescence detection,
the next iteration of this experiment as presented in chapter 8 is planned to include
detectors where the excitation fibre tip is situated at ∼ 100 µm distance from the chip
surface as opposed to 62.5 µm within the previous setup, so that smooth propagation
without intermediate current ramps complicating measurements is guaranteed.

With respect to the physics of 1d expansion, numerical results and a comparison with
proposals to implement analogue gravity scenarios have been presented, opening up
the opportunity to contribute experiments to this fascinating emerging field. Even
disregarding these analogies, studying quasiparticle distributions with both global
and local detection methods in expanding 1d quasicondensates could also contribute
new insight into the non-equilibrium dynamics of this and similar systems that go
beyond what can be calculated in terms of the exact solution from the Lieb-Liniger
model. This is especially the case, if the transition regime to the strongly interacting
Tonks-Girardeau state can be reached, where characteristic effects like deviations from
the self-similar expansion are expected to set in already at values around γ ≈ 0.1.

The final section outlined the velocity dependence of arrival time distributions in the
limit of ultracold atom clouds with radial diameters in the order of merely ∼ 1 µm.
These results have entered the design for the next iteration of the fluorescence detector
as presented in thesis [188], prompting the use of an arrangement where the excitation



154 Cold atoms in a magnetic guide

light is not directed against, but rather along the propagation axis of atoms in the guide
to minimize the influence of the magnetic trap on the trajectory of scattering atoms.



Part III.

Outlook & Conclusion





8. Towards a novel light-matter
interface

”Everything starts somewhere, although many physicists disagree.”

Terry Pratchett

In parallel to the measurements presented in previous sections, a new experimental
apparatus has been planned, prepared and partially set up during the final stage of this
thesis. While the main part of this work will be contained in the two theses [188, 256]
and within future publications, this chapter shortly summarizes the underlying ideas
before presenting the next generation atom chip, with a focus on the layout of its wire
structures and possible trap geometries. Finally, the stage of the project at the time of
writing this thesis and the corresponding experimental apparatus is shortly outlined.

8.1. Overview

The goal of the experiment’s next iteration is to integrate an optical nanofiber-based
cavity on an atom chip. Optical fibers tapered to and shaped at sub-wavelength
diameters have emerged as a powerful tool for the detection and manipulation of
cold dilute atomic gases in recent years. Following the first experiments focusing on
detection [257], neutral atom traps based on a combination of blue and red detuned
light fields to form stable optical dipole traps for neutral atoms [258, 259] have soon
been presented, as well as whispering gallery mode resonators [260] which recently have
been demonstrated to allow strong coupling to single atoms [261, 262].

Another type of cavity can be realized by machining Bragg gratings into an optical fiber
with the help of laser writing techniques, forming a Fabry-Pérot-type resonator [263].
Such a device is well-suited for integration within an atom chip setup, as will be seen in
the following.

Fabry-Pérot resonator. The basis for this device is an optical single mode fiber1, into
which two Bragg mirrors are laser written2 at a distance of ∼ 2 cm to form a cavity with
a center frequency at a suitable transition of the atom that is chosen to be coupled to the
resonator. In our case, this is 87Rb at a wavelength of λ ∼ 780.24 nm. In the course of

1Thorlabs SM600, Thorlabs Inc., Newton, New Jersey, USA
2Laser writing is performed at the Leibnitz insitute of photonic technology, Jena, Germany
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FSR (GHz) Finesse λ0 (nm) ∆λ (nm) R1 (%) R2 (%)
3.8 100 780.27 0.12 94.9 98.0

Table 8.1.: Parameters of the fiber Bragg resonator selected for first experiments. FSR denotes the
free spectral range, λ0 and ∆λ the center wavelength and stop band of the resonator, and R1 and R2
the reflectivities of the two Bragg mirrors, respectively.

this project, several resonators of this type have been tested, a thorough characterization
of which will be found in future theses [188, 256] and publications. The parameters of
the sample that has been selected for the first set of experiments are summarized in
table 8.1.

Light propagation through a tapered nanofiber . The creation and the properties
of fibers pulled to form tapers with diameters smaller than optical wavelengths is
reviewed in detail within reference [264]. Their most important property considering
our experiment is that at sub-wavelength diameters, light is not confined to propagate
within the fiber core, but a significant fraction of the intensity is guided outside the
fiber in the form of an evanescent field. To maximize this evanescent component, the
fiber diameter should be given by d ≤ λ/2 ≈ 400 nm for a given optical wavelength of
λ = 780.24 nm, with the field affecting distances of up to λ/2 from the fiber surface.
Atoms in this region can couple to the optical field and are subject to dipole forces,
resonant scattering with an enhanced probability to scatter into the fiber mode via the
Purcell effect [265] or dispersive interaction [266].

While, similarly, coupling of atoms to guided light fields can also be accomplished in
hollow-core photonic crystal fibers (PCF) [267], with the advantage that atoms can be
placed in the region of maximum intensity, thus enhancing coupling strength, the latter
approach suffers from poor coupling efficiency between PCF and other fibers or optical
waveguides needed to extract the light from the experimental setup. Nanofibers, on
the other hand, can achieve transmissions through the tapered region of close to 99%
of the input intensity [264], and the ends can simply be spliced to single-mode fiber of
the same type yielding an almost loss-less setup throughout. Coupling efficiency, on the
other hand, can be improved by the use of a Fabry-Pérot resonator as discussed in the
previous paragraph, rendering this approach ideal to create an atom-photon interface.

Nanofiber cavity on a chip: Schematics. While experiments coupling atoms to
nanofibers already have been performed [259], these setups neither use Fabry-Pérot
resonators to enhance coupling at the time of writing this thesis, nor an external trap
to provide a cold gas at high phase space density, instead of relying on magneto-optical
traps or optical dipole traps applied via the nanofiber. The trap geometries provided by
an atom chip are ideally suited to produce elongated clouds at high phase space density
to couple to the optical nanofiber field, opening up a number of novel experiments. The
basic scheme of such a setup is found in figure 8.1. The waist of the nanofiber is posi-
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5 cm 50 µm

Atom chip surface

5 mm

Figure 8.1.: Sketch of combined nano-fiber cavity atom chip setup presented in this section. A
nanofiber is prepared with suitable Bragg mirrors to form a cavity with parameters similar to what is
given in table 8.2. The fiber is then pulled to form a taper diameter of λ/2 ≈ 400 nm and mounted at
a distance of 100 µm between central taper and the surface of an atom chip that allows independent
trapping of ultracold atoms at high phase space densities. Such a setup allows a high amount of control
on both the light field as well as the atoms, which can be placed in the evanescent intensity distribution
of light propagating along the fibre coupling them to the light field, while the cavity allows for an
enhancement of interactions.

tioned at a distance of ∼ 100 µm from the surface of the atom chip. After pulling, the
distance between the Bragg mirrors amounts to 5 cm, while the elongation of the taper
is 5 mm. As discussed in section 4.1.2, atoms can be trapped at distances between a few
tens to hundreds of µm in atom chip traps. At degeneracy, the radial width of the cloud
corresponds in good approximation to the transverse harmonic oscillator width, which
is usually below 1 µm for realistic trap frequencies. This allows the precise positioning
of an ultracold atom cloud with respect to the waist of the nanofiber and allows a wide
variety of different trapping geometries. To prevent surface adsorption of atoms on the
nanofiber, a blue-detuned dipole potential can be combined with a magnetic trap. Al-
ternatively, the atom chip can be used as a source for a regular fiber-based dipole trap as
presented in reference [259], or potentially to implement a novel proposal to trap atoms
that can be found in reference [268]. Note that in the experiment, the fiber is externally
mounted on a pair of shear piezos allowing to tune and lock the cavity.

Prospects for experiments. The main goal is to achieve strong coupling between
atoms and photons in the evanescent field of the nanofiber. As a first step, it will
be instructive to reproduce experiments to create electromagnetically induced trans-
parency (EIT) and slow light within this system. For a comprehensive review on the
topic, see [269]. This will be the starting point for similar experiments with the goal
of deterministic storage of single photons within the atom cloud and subsequent retrieval.

If sufficient coupling strengths can be realized within the experiment, interacting
atom-photon polariton states can be created, allowing to use the atom cloud to mediate
effective photon-photon interactions. Experiments along this line would open up the
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(a) New chip: Surface (b) New chip: Flipside

Figure 8.2.: Sketch of the structures on the new atom chip as discussed in the main text. (a) Chip
surface, with wire structures applied by evaporation. (b) Flip side of the chip, with wire structures
applied via electroplating.

possibility to implement gate operations on photonic states, allowing to test novel
options for quantum computation with photonic qubits, which is otherwise restricted
to linear operations and projective measurements [270].

In the limit of many photons and strong interactions, according to the proposal [271] it
is possible to create a strongly interacting polariton gas, where the interaction strength
can be controlled by the detuning of two Raman lasers involved in a 4-level EIT-like
scheme.

8.2. The nanofiber atom chip

The next generation atom chip involves several changes to the currently used designs,
both with respect to the wire layout, as well as to the fabrication procedure. As dis-
cussed within section 4.3.6, the previously used chip consists of a single 2 micron thick
structured gold layer on top of a silicon substrate, which is connected to external current
feedthroughs by sets of bonding wires. Only few specialised wire structures with widths
between 50 µm and 200 µm are electrically connected. The macroscopic magnetic trap
and MOT rely on a set of suitably shaped copper structures beneath the chip. (see
section 4.3.5).

Notes considering the fabrication. The next generation chip will again feature a single
metal layer on the surface of a silicon substrate. In contrast to a gold layer, however, a 2
to 3 micron thick copper layer covered with a thin gold layer to provide reflectivity and a
30 nm thick SiO2 coating will be applied. The latter has been used in another experiment
within the group (see [201]) to prevent surface adsorption of Rubidium. Here, the main
reason is to provide better adsorption of a double layer SU-8 structure which will be
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used to support the next iteration of a fiber-based fluorescence detector, necessitating
two layers to provide precise positioning of both a single-mode tapered excitation fiber of
125 µm diameter, as well as high-numerical aperture polymer fiber with a total diameter
of 500 µm. This fiber detector, which has been briefly mentioned in section 7, will be
explained in depth within the thesis [188]. The wires are not connected by bonding, but
contacted to copper pads on the chip mounting with electrically conductive epoxy-based
glue 3. Surface wires are fed through the substrate via plated through-holes to contact
pads on the flip-side of the chip.

Surface wire structures. As depicted in figure 8.2(a), and in contrast to previous
designs, all structures form straight wires across the surface, with widths of 50 µm,
1600 µm and 4400 µm. The latter, together with the central 1600 µm wire are used
to form a current-carrying plate for the magneto-optical trap stage, and support
currents up to 15 A each. Together with two 5 mm plates on the flip-side, they
replace the U-shaped copper structure used for the MOT within the previous setup
as described in section 4.3.5. Similarly, the central 1600 µm wire can be used to
create a macroscopic magnetic trap, together with both the 2 mm and 5 mm wide
wires on the flip-side to provide axial confinement, with the parameters given in table 8.2.

The three 50 µm wires mark three distinct regions designed to produce the confinement
needed to enter the 1d regime. Along the central wire, the nanofiber cavity is positioned
as shown in the schematics 8.1. The other two 50 µm wires are planned to be used
for the novel implementations of fiber-based fluorescence detectors and a test-setup for
non-fiber-based optical waveguide structures, respectively. The wires are designed to
support up to 4 A of current, allowing trap frequencies exceeding 4 kHz at a distance
of 100 microns from the chip. Further tests need to confirm these current limits, however.

Flip-side wire structures. The flip-side of the substrate shown in figure 8.2(b) features
50 µm thick copper wires that are applied by electroplating, with widths between 1000
µm and 5000 µm, oriented orthogonally to the surface wires. They are used to create
a U-shaped current flow for the MOT, and can generally be applied to provide axial
confinement for both macroscopic and 1d microtraps.

8.2.1. Magnetic trap geometries.

Macroscopic trap. It is crucial to transfer as many atoms as possible from the MOT
to the initial macroscopic magnetic trap to ensure sufficient phase space density for
evaporative cooling to degeneracy. Heating due to limited mode-matching between MOT
and magnetic trap necessitates sufficiently high trap depths to prevent sizeable losses
by plain evaporation. Since the overall currents supported by the chip wires on the
surface are smaller than what can be provided by the copper structures used up to

3Epotek EK2000, Epoxy Technology Inc., Billerica, Massachusetts, USA
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Bbias BIoffe I (1.6 mm) I (2 / 5 mm)
17 G -5 G 15 A 15 A

Depth X Depth Y Depth Z
15 G 19 G 15 G

dB/dx dB/dy dB/dz ωx/2π ωy/2π ωz/2π
70 G/cm 100 G/cm 40 G/cm 80 Hz 90 Hz 15 Hz

Table 8.2.: Possible configuration for a macroscopic magnetic trap produced via the double layer chip
to be implemented within the new experiment. The first table contains the external fields as well as the
currents through the central 1.6 mm wire and through both 2 mm and 5 mm wires on the flip-side of the
chip. Second table: Trap depths along each spatial axis. Third table: Gradients and trap frequencies
along each axis.

now, calculations have been performed to ascertain whether the new design is feasible
to provide suitable trap geometries. A set of parameters that is similar to the initial
configuration used in our old setup has been found by calculations based on finite-size
solutions for the magnetic field produced by rectangular wires [145], and can be found
in table 8.2. While the trap depth is slightly lower than in the current setup (15 G
vs. 22 G), gradients and trap frequencies around the center are similar, and together
with the option to produce more elongated MOT geometries by tuning the current flow
through the chip surface accordingly, similar transfer efficiencies as in the current setup
are expected.

Wire edge traps. Sufficiently strong bias fields By perpendicular to the chip surface
can be used to rotate the minimum of a magnetic trap produced by a macroscopic wire
towards its edges, as mentioned within section 4.1.2. By this means, the edges of the
1600 µm wires can be used to create 1d microtraps with high radial confinement. This
circumstance will be used by positioning a regular tapered nanofiber without Bragg
gratings in the vicinity of the centre-near edge of the main 1600 µm wire for various
measurements not necessitating a cavity. Note that the macroscopic trap can as such be
deformed into a 1d trap without any transfer of atoms between different wire structures.

On-chip bias fields. The vicinity of the 50 µm wires to other current carrying struc-
tures, together with the option to provide an axial Ioffe-component, defining the trap
bottom, by the wires on the flip-side of the chip allows to test traps where all fields are
provided by currents from the chip. This is advantageous, since external magnetic fields
seem to be one of the major sources of noise4 leading to heating in our setup.

RF dressed traps. While experiments involving RF-induced splitting of atom clouds
are not planned within this experiment, applying RF fields to wires in the vicinity of
the used trapping wire can still be used to dress the potential, for example to create
anharmonic and anisotropic traps needed to generate twin-beam states [216], which

4This is based on the experience that heating rates in RF dressed traps where the trap bottom is
defined by the RF field rather than external magnetic fields are observed to be lower than in static
traps in other experiments.
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Figure 8.3.: Test setup built into the experiment at the time of writing this thesis. An unstructured
gold mirror on top of an H-like copper structure allows for the creation of a chip MOT [139] as used
within the finalized setup, while three tapered nanofibers, at this point without cavities, are mounted
on a Macor structure attached to the chip mount, glued on top of two shear piezos which will allow to
tune the cavity length in the next implementation with integrated Bragg mirrors. This test setup will
allow to characterize the coupling of atoms from a 87Rb MOT to the nanofibres.

would be interesting to investigate with a pair of fiber-based fluorescence detectors,
which are planned to be integrated [188].

8.3. Current state of the project and outlook

At the time of writing this thesis, the vacuum chamber and coil setup as described in
chapter 4 are already dismantled. In their place there is the new vacuum chamber5

containing three nanofibers without Bragg mirrors, attached to a Macor mounting
structure which is positioning the fiber waists at a distance of 3 mm to a gold mirror
acting as place-holder for the final atom chip. The mounting with mirror and fibers is
shown in figure 8.3. The vacuum chamber is pumped down to a pressure around 10−9

mbar and surrounded by new coils. At the moment, the lasers and optics are identical to
what is presented in chapter 4. In this setup, a MOT is used to test the detection of 87Rb
atoms in the vicinity of the nanofiber. The next step will involve replacing the fibers
by the first set of fiber cavities and demonstrate cavity-enhanced coupling to 87Rb atoms.

First tests considering the maximally achievable currents on a sample chip with wire
structures identical to those discussed in the previous section, have already been per-
formed and resulted in supported currents of up to 15 A for the 4.4 mm and 2 mm wires
without any signs of damage, as designed. However, practical issues with the mounting
led to a redesign of some parts. The mounted test chip is shown in figure 8.4(b), while
figure 8.4(a) contains a drawing of the device for comparison. In parallel to the mea-
surements on the preliminary MOT setup, the new version of the chip mounting will

5Kimball Physics Inc., Wilton, New Hampshire, USA
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(a) Chip and mounting: drawing. (b) Chip and mounting: first test setup.

Figure 8.4.: Test setup with functioning chip. (a) Drawing of the chip mounting attached to flange,
drawn and provided by Michael Trupke. (b) Test setup involving the mounting depicted in (a), with a
test chip containing a set of electroplated copper wires before assembly in a vacuum chamber for the
purpose of testing maximum currents through wires and feedthroughs.

be constructed and, upon successful completion of further tests, integrated within the
experiment as soon as possible.

Naturally, there are several technical challenges to overcome on the way to the finalized
setup, most prominently a strong temperature dependence of the cavity resonance,
and the influence of optically active mechanical modes of the nanofiber on the cavity
properties [272]. In addition, further work on the laser setup is necessary to prepare
EIT measurements, and a reliable cavity locking scheme needs to be implemented.

Nevertheless, nanofibers and nanofiber cavities on an atom chip constitute a rich system
that promises to enable a plethora of interesting experiments, both from the technolog-
ical point of view of photon storage and from the implementation of nonlinear photonic
quantum gates, to the investigation of strongly correlated polariton systems, combined
with the unique option to directly perform correlation measurements on the transmitted
photonic signal to analyse the polaritonic state in the trap. The different technologi-
cal pieces for such an experiment have all been realized independently already, and a
combination with currently available techniques seems feasible.



9. Conclusion

We have found it of paramount importance that in order to progress we
must recognize our ignorance and leave room for doubt. Scientific knowl-
edge is a body of statements of varying degrees of certainty — some most
unsure, some nearly sure, but none absolutely certain.

Richard P. Feynman, The Value of Science, 1955

Recent years have seen the experimental realization of increasingly complex scenar-
ios, such as multi-component spinor gases [273], experiments with mixtures of different
atomic species with tunable interactions by means of Feshbach resonances [274], or, as a
recent addition to the toolbox of ultracold atom physics, degenerate Lanthanide gases,
featuring extremely rich collisional properties and long-range interactions due to their
exotic electronic configurations [275, 276, 277]. While the one-dimensional Bose gas with
short-range interactions, in contrast, is arguably one of the most well-understood quan-
tum many-body systems, it is perhaps symptomatic for fundamental research that the
investigation of this comparatively simple system keeps raising deep questions concerning
the compatibility of concepts from classical statistical physics such as ergodicity, integra-
bility or thermalization with quantum mechanics [278, 12, 279]. While the equilibrium
properties of the 1d Bose gas have been studied extensively since the first experimental
realization in 2001 [59], studies of non-equilibrium physics and relaxation processes, both
theoretically and experimentally, have started to be conducted only recently.

Excitation spectrum of quasicondensates in time-dependent trapping potentials.
Within this thesis, a very specific kind of non-equilibrium dynamics induced by a time-
dependence of the harmonic external trapping potential has been investigated. Previous
experiments in our group [205, 280] observed the relaxation of a non-equilibrium state
towards a non-thermal steady state, in excellent agreement with a Luttinger liquid
description for the quasicondensate. The spectrum of quasiparticle modes in these
experiments is determined by the spatial extension and the local density of the cloud,
and is considered to be static throughout the dynamics. In contrast, breathing yields a
time-dependent set of eigenmodes. Still, the scaling symmetry of the Hamiltonian, as
discussed in chapter 5 guarantees adiabaticity and hence constant occupation numbers
within the rescaled basis. On the one hand, this is an interesting result on its own,
providing a dynamical extension to the regular Luttinger liquid description of a trapped
quasicondensate. On the other hand, this allows, in first approximation, to separate
the dynamics due to collective oscillations from relaxation processes within the cloud
which is helpful for measurements where it is difficult to suppress the axial breathing
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dynamics, such as several RF induced splitting protocols. Finally, the results from this
thesis provide a means to determine the temperature of quasicondensates in the presence
of collective excitations, constituting an extension to the density ripple thermometry
method introduced for static clouds in references [30, 15, 31]. Note that a scale-invariant
adiabatic breathing is, in this connection, also validated as a technique for condensate
focussing [220, 97] to access the momentum distribution of a quasicondensate.

Of course both the Luttinger liquid description as well as the scale invariance in the
Thomas-Fermi regime are approximations, and precise measurements considering the
long-time dynamics of the system are expected to uncover experimental signatures from
physics beyond these models. A route to investigate the effects of breaking the scale
invariance is provided by studying the 1d expansion of quasicondensates as proposed in
chapter 7. In principle, such measurements will be possible within the next iteration
of the experimental setup introduced in chapter 8. However, in order to observe the
depletion of the Penrose-Onsager mode, experimental means to determine the local
second order correlation function g(2)(∆x = 0) will be necessary, either in terms of an
improved integrated fluorescence detector or an in-situ absorption imaging system with
sufficient resolution. Finally, significant deviations from the physics discussed within this
thesis are expected in the vicinity to the crossover into the strongly interacting regime,
for Lieb-Liniger parameters of γ ≥ 0.1, providing a significant experimental challenge.

Shortcuts to adiabaticity and optimal control. The ability to manipulate the
external trapping potential while suppressing spurious collective excitations is a
powerful tool for future experiments. Especially, further studies with quasicondensates
in double well potentials are expected to benefit from protocols that allow RF-splitting
or recombining while controlling collective excitations.

The inverse approach, using optimal control to create specific non-equilibrium states,
has already been used successfully within our group to engineer the radial state of
the gas [216]. It would be interesting to apply such an approach in order to engineer
the axial momentum distribution, replacing the GPE in the feedback loop by a c-field
model. The closest existing experiments along this line involve a modulation of the
radial confinement to create pairwise counterpropagating Bogolyubov-excitations with
a momentum determined by the modulation frequency [281]. However, this approach
has not been conclusive with respect to the excitation of modes deep in the phononic
(low-energy) part of the Bogolyubov spectrum. Preparation of a sizeable occupation in
a small band of phonon modes and studying momentum- and temperature-dependent
decay rates would yield valuable information about extensions to the Luttinger liquid
model allowing for phonon-phonon coupling processes.

Quasicondensates and integrated fibres. While the first experiments in the new
setup will most probably focus on EIT and subsequently photon-storage and readout
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within an optical molasses, the finalized apparatus is planned to produce condensates
and quasicondensates to be coupled to the evanescent field propagating along the
nanofibre. In chapter 8, it was already mentioned that the far-reaching goal is the
creation of a polaritonic quantum fluid with tunable interactions. However, from the
viewpoint of quasicondensate physics adopted so far, one could also think of using the
fibre to employ a 1d lattice perturbing the otherwise harmonic axial trapping potential
and study the effect on relaxation processes in the cloud, or even introduce a means
to apply Bragg pulses for momentum transfer or spectroscopy. The efficiency of such a
scheme in the combined potential, however, is certainly a question open to future studies.

Finally, the next generation chip is planned to provide means to create stationary qua-
sicondensates at the detection region, together with wire structures to move the cloud
in the vicinity of this site in a controlled way. Using dipole potentials, as already tested
and documented in reference [188], or resonant scattering, such a geometry will allow de-
tection, but also to create localized defects in the density profile, providing an additional
tool to manipulate the atom cloud and study relaxation processes.

Quasicondensates, solids and cosmology? Common characteristics of superficially
different systems are one of the driving forces behind the explanatory power of modern
science. While one obviously should not expect to capture the full complexity of
high-TC superconductors, not to speak of the early universe, within simple cold-atom
systems (”Don’t eat the menu!”), this is in fact not even a useful goal. After all, this
complexity, at the moment, surpasses our ability to develop a satisfactory physical
description. Rather, turning to a simpler system that might capture at least some
aspects of the difficult one has often helped to isolate the important concepts, with
the story of Feynman’s infamous ”wobbling plate” leading him down the path towards
QED as an illustrative example [282].

Going beyond mere analogies, the idea to isolate useful common characteristics of
different physical systems is known under the nowadays often-used term ”universality”.
In many cases, one can disregard the microscopic structure of a certain physical
system, since the process at hand is dominated by excitations corresponding to length
scales exceeding the microscopic ones. The map between the behaviour of low-energy
excitations in quasicondensates and spin chains provided by the same Luttinger liquid
description, as an example, has already been commented on previously in this thesis.
Most prominently, however, universality is established by the diverging correlation
length in the vicinity of continuous phase transitions [54], allowing a classification of
different systems according to their critical exponents.

Much effort has been invested in recent years to develop a similar picture for the
non-equilibrium dynamics of many-body quantum systems. In the context of cold atom
physics, universal and stable power-law distributions in momentum space are predicted
to arise during the relaxation of ultracold Bose gases far from equilibrium, with connec-
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tions to the creation and decay of topological defects [283] and, hence, the concept of
superfluid turbulence1. The stability of these power-law distributions led to the concept
of ”non-thermal fixed points”, similar to the fixed points encountered in equilibrium
phase transitions. This description has also been applied to the one-dimensional Bose
gas after an interaction quench [285].

By such mechanisms, the hope to uncover universal physics in the non-equilibrium
dynamics of ultracold atoms, with predictive power for other, more complex systems, is
arguably not misplaced, and other results, such as the recent experimental observation
of Sakharov oscillations as known from cosmology in a 2d Bose gas [286] further
strengthen this argument. In this sense, experiments as proposed within this section
could yield valuable results with respect to the universality of decay processes from
different non-equilibrium states prepared in 1d Bose gases.

The experimental observation of non-thermal fixed points would certainly point towards
an interesting future, where cold atom experiments could indeed act not only as ”wob-
bling plate”, but to deduce general scaling laws that can be transferred to the non-
equilibrium dynamics of other incarnations of many-body quantum systems - hence,
advancing the frontier.

1Note that also this concept can be traced back to Feynman [284].
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”At that subtle moment when man glances backward over his life, Sisyphus returning toward
his rock, in that slight pivoting he contemplates that series of unrelated actions which become
his fate, created by him; [...] A blind man eager to see who knows that the night has no end,
he is still on the go. The rock is still rolling. [...] But Sisyphus teaches the higher fidelity
that negates the gods and raises rocks. This universe henceforth without a master seems to
him neither sterile nor futile. Each atom of that stone, each mineral flake of that night filled
mountain, in itself forms a world. The struggle itself toward the heights is enough to fill a
man’s heart. One must imagine Sisyphus happy.”

Albert Camus





Part IV.

Appendices





A. Nature constants

A.1. General constants

Symbol Value Unit

Planck constant h 6.62606957(29)× 10−34 J s

Vacuum speed of light c 299792458 m s-1

Boltzmann constant kB 1.3806488(13)× 10−23 J K-1

Bohr magneton µB 927.400968(20)× 10−26 J T-1

Atomic mass unit amu 1.660538921(73)× 10−27 kg

Bohr radius a0 0.52917721092(17)× 10−10 m

Earth standard gravity g0 9.80665× 10−10 m s-2

Table A.1.: General nature constants according to [287], except earth standard gravity which is taken
from [288].

A.2. 87Rb D2 line

Symbol Value Unit

Nuclear spin I 3/2

Mass m 86.909180520(15) amu

D2-line wavelength (vacuum) λD2 780.241209686(13) nm

Natural line width (FWHM) Γ 2π × 6.0666(18) MHz

Recoil velocity vr 5.8845 mm s-1

Doppler temperature TDP 145.57 µK

Table A.2.: Properties of 87Rb and the D2 line according to [172].



B. Numerics: Odds and ends

B.1. Picking random points on a sphere

For the Monte Carlo simulation presented in chapter 7, to properly take into account
uniform scattering of photons it is necessary to generate vectors pointing to uniformly
distributed surface elements on the unit sphere. To this end, as outlined for instance in
reference [289], one can either use Cartesian coordinates and create the vector

vR =
1√

r2
x + r2

y + r2
z

 rx
ry
rz

 , (B.1)

where rx, ry and rz are standard Gaussian random numbers. Alternatively, using spher-
ical coordinates where the solid angle is given by dΩ = sinφ dθ dφ, one can use

θ = 2πrθ (B.2)

φ = arccos (2rφ − 1). (B.3)

Here, rθ and rφ denote uniform random numbers on the interval [0, 1].

B.2. GPGPU with Matlab

The abbreviation GPGPU stands for General Purpose computation on Graphics Pro-
cessing Unit. Using graphics cards can significantly speed up calculations relying heavily
on point-wise matrix operations, fourier transforms, or in general easily parallelizable
code. Hence, split-operator methods as presented in chapter 3.2 lends itself very well to
gain speed-ups of a factor O(10) over the CPU. At the moment, there are two interfaces
available to use the GPU for calculations. OpenCL is an open standard supported by
all suppliers, while CUDA is a set of libraries for NVidia graphics cards. The latter is
directly supported by Matlab and Mathematica, rendering it very easy to port existing
code into GPU - ready versions. Initializing the graphics card, performing a point-wise
matrix multiplication between two predefined matrices A and B, and reading out the
result with Matlab and a CUDA - enabled GPU is as simple as

gpuDevice(1) % initialize GPU

gA = gpuArray(A); gB = gpuArray(B); % push A, B to GPU as gA, gB

gC = gA.*gB; % matrix operation as usual

C = gather(gC); % pull gC to RAM as C

In a similar manner, many Matlab operations directly work with GPU variables.
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[121] Bücker, R., Perrin, A., Manz, S., Betz, T., Koller, C., Plisson, T., Rottmann,
J., Schumm, T. & Schmiedmayer, J. Single-particle-sensitive imaging of freely
propagating ultracold atoms. New J. Phys. 11, 103039 (2009).

[122] Cockburn, S. P., Nistazakis, H. E., Horikis, T. P., Kevrekidis, P. G., Proukakis,
N. P. & Frantzeskakis, D. J. Matter-Wave Dark Solitons: Stochastic versus Ana-
lytical Results. Phys. Rev. Lett. 104, 174101 (2010).

[123] Cockburn, S. P., Negretti, A., Proukakis, N. P., Henkel, C., Introduction, I. &
Wigner, A. T. A comparison between microscopic methods for finite temperature
Bose gases. Phys. Rev. A 83, 1–35 (2011).

[124] Cockburn, S. P., Gallucci, D. & Proukakis, N. P. Quantitative study of quasi-one-
dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation.
Phys. Rev. A 84, 023613 (2011).

[125] Wright, T. M., Proukakis, N. P. & Davis, M. J. Many-body physics in the classical-
field description of a degenerate Bose gas. Phys. Rev. A 84, 023608 (2011).

[126] Cockburn, S. P. Bose Gases In and Out of Equilibrium within the Stochastic
Gross-Pitaevskii Equation. Ph.D. thesis, Newcastle University (2010).

[127] Gardiner, C. W., Lee, M. D., Ballagh, R. J., Davis, M. J. & Zoller, P. Quantum
Kinetic Theory of Condensate Growth: Comparison of Experiment and Theory.
Phys. Rev. Lett. 81, 5266–5269 (1998).

[128] Prokof’ev, N., Ruebenacker, O. & Svistunov, B. Critical Point of a Weakly Inter-
acting Two-Dimensional Bose Gas. Phys. Rev. Lett. 87, 270402 (2001).



188 Bibliography

[129] Galluci, D. Ab Initio Modelling of Quasi-one-dimensional Bose Gase Experiments
via the Stochastic Gross-Pitaevskii Equation. Ph.D. thesis, Newcastle University
(2013).

[130] Langen, T., Erne, S., Rauer, B., Schweigler, T., Kuhnert, M., Rohringer, W.,
Gasenzer, T. & Schmiedmayer, J. Experimental observation of a generalized Gibbs
ensemble. Prep. (2014).

[131] Kuhnert, M., Langen, T., Rauer, B., Adu Smith, D., Geiger, R. & Schmiedmayer,
J. Thermalization of a coherently split Bose gas. Prep. (2014).

[132] Uhlenbeck, G. E. & Ornstein, L. S. On the Theory of the Brownian Motion. Phys.
Rev. 36, 823–841 (1930).

[133] Gillespie, D. T. Exact numerical simulation of the Ornstein-Uhlenbeck process
and its integral. Phys. Rev. E 54, 2084–2091 (1996).

[134] Schmiedmayer, J. Guiding and trapping a neutral atom on a wire. Phys. Rev. A
52, R13—-R16 (1995).

[135] Weinstein, J. D. & Libbrecht, K. G. Microscopic magnetic traps for neutral atoms.
Phys. Rev. A 52, 4004–4009 (1995).

[136] Denschlag, J., Cassettari, D., Chenet, A., Schneider, S. & Schmiedmayer, J. A
neutral atom and a wire: towards mesoscopic atom optics. Appl. Phys. B 69,
291–301 (1999).

[137] Denschlag, J., Cassettari, D. & Schmiedmayer, J. Guiding Neutral Atoms with a
Wire. Phys. Rev. Lett. 82, 2014–2017 (1999).
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[259] Vetsch, E., Reitz, D., Sagué, G., Schmidt, R., Dawkins, S. T. & Rauschenbeutel,
A. Optical interface created by laser-cooled atoms trapped in the evanescent field
surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).
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