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Abstract

As Information and Communication Technology (ICT) networks and their complexity evolved,
so did the goals and the technical processes of attacks. Recent security incidents show that cur-
rent security mechanisms are often not sufficient to prohibit targeted attacks. If an attack on
a system is successful timely detection is critical to mitigate its impact. With the increasing
use of common Internet protocols in connection with Supervisory Control and Data Acquisition
(SCADA) systems, industrial networks are exposed to the same threats as corporate networks.
This work proposes a novel anomaly detection approach, based on the timely correlation and
analysis of log-files from various sources in a monitored network. The framework builds a sys-
tem model that describes the normal behaviour of the different components in the monitored
network. It does not rely on any information about syntax or semantics of the processed log-
lines. Instead, the model is generated based on the processed information and constantly evolves
while the system is monitoring the network. Using data from a controlled ICT network, this the-
sis shows that the generated model distinguishes meaningful subsets of log-files, and is able
to model complex implications between different network components. An evaluation based
on semi-synthetic log-data demonstrates the application of the approach in common ICT net-
works. Additionally, real-world data from a utility provider is used to demonstrate the system’s
application in the domain of SCADA systems.
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Kurzfassung

Mit der Entwicklung und dem verbreiteten Einsatz von Informations- und Kommunikations-
netzwerken stieg auch der Umfang und die Komplexität von Attacken in diesen Netzwerken.
Jüngste Vorfälle zeigen, dass aktuelle Sicherheitssysteme nicht ausreichen, um gezielte und gut
vorbereitete Angriffe zu verhindern. War eine Attacke erst erfolgreich, ist eine zeitnahe Erken-
nung wichtig um die Auswirkungen einzudämmen. Mit der verbreiteten Anwendung von Inter-
net Protokollen im Bereich von „Supervisory and Data Acquisistion“ (SCADA) Systemen sind
industrielle Netzwerke oft schon jetzt den selben Bedrohungen ausgesetzt wie herkömmliche,
vernetzte Systeme. Diese Arbeit präsentiert einen neuartigen Anomalieerkennungsansatz. Dieser
basiert auf der zeitlichen Korrelaion von Log-Datein verschiedener Systeme in einem überwach-
ten Netzwerk. Das System generiert ein Modell, welches das normale Verhalten verscheidener
Komponenten im überwachten System beschreibt. Dabei verlässt sich das System nicht auf vor-
definierte Regeln und benötigt auch kein Wissen über Syntax oder Semantik der Log-Zeilen,
die es verarbeiten muss. Stattdessen wird das Model auf Basis der verarbeiteten Zeilen erstellt
und fortlaufend weiterentwickelt, solange das Netzwerk überwacht wird. Ein vollständig kon-
trolliertes Netzwerk wird verwendet, um Testdaten zu generieren, die frei von Anomalien sind.
Anhand dieser Testdaten wird gezeigt, dass das generierte Model in der Lage ist, aussagekräftige
Teilmengen der verarbeiteten Zeilen zu unterscheiden. Diese Teilmengen werden weiters ver-
wendet, um zu zeigen, dass auch Implikationen zwischen Ereignissen verschiedener, verteilter
Komponenten erkannt werden. Basierend auf einem semi-synthetischen Datensatz, in dem An-
omalien eingebaut sind, wird die Anwendbarkeit des Ansatzes in herkömmlichen IT-Netzwerken
demonstriert. Weiters wird anhand eines Datensatzes aus dem Produktivsystem eines österrei-
chischen Energieanbieters die Eignung im SCADA Bereich gezeigt.
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CHAPTER 1
Introduction

1.1 Motivation

Global connectivity is the core principle of our information age. From an information provision
point of view, distances seem to shrink since information can be immediately accessed from
all over the world. We are used to, and highly dependent on, information and communication
services, but they increasingly motivate a certain criminal potential. As ICT networks and their
complexity have evolved in recent years, so have the goals and the technical progress of attacks.
The motivation for attacks has changed from immediate monetary gain to stealing proprietary
information or personal details [22].

Since the emergence of the first ICT networks significant effort went into securing critical
assets. Currently, one can choose from a variety of security solutions that target different attack
schemes at different levels in the network: Firewalls that filter the network traffic at border
crossings between sub-networks, scanners, checking binaries and executables for suspicious
behaviour or Intrusion Detection Systems (IDSs) that monitor events all over the network and
check them against predefined rules for anomalies. Additionally, most companies have various
guidelines and processes in place to decrease the chance of human failure.

However, recent attacks like Operation Aurora [14] or Operation Shady RAT [1] demonstrate
that the current security mechanisms are insufficient to prevent unique sophisticated and tailored
attacks, also known as Advanced Persistent Threats (APT). Furthermore, these advanced attacks
raise the question if it is even possible to prevent intrusions with reasonable certainty [1]. More
likely is a scenario where sophisticated attacks are accepted to some degree. A new systematic
approach is to know about an intrusion as fast as possible to start efficient countermeasures. IDSs
aim at detecting intrusions, but again recent events showed their insufficiency when it comes to
detecting APTs.

The goal of this thesis is to evaluate and improve a novel intrusion detection algorithm [19]
[18]. The algorithm aims at extending the functionality of existing IDSs to enable a timely
detection of novel attacks to a system, so the victim is able to address them in an effective way.
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1.2 Problem Statement

Timely detection of intrusions is one major goal when securing critical systems in the future. As
current security solutions are often not sufficient to prevent sophisticated and tailored attacks,
novel approaches are required. In modern ICT systems many unnoticed relationships between
different applications or components exist. Users that use the same passwords on multiple ser-
vices, or firewall rules that are evaluated prior to a webserver request are examples of obvious
relations. Looking at kernel level actions one can easily think of more subtle relationships be-
tween actions taken on different components in a network. We see many of these neglected
relationships as the weak spot abused by attackers to compromise systems. However, we argue
that it is not possible to exploit a system without violating some of these implicit implications
between events in a system. We further argue that significant violations of these implications
can be monitored and used to detect intrusions in a way that is hard – if not impossible – to
circumvent by an attacker.

This thesis presents a novel intrusion detection algorithm. It exploits system-inherent event
relationships gathered from log files of different sources in the network, in order to detect anoma-
lies and intrusions in the infrastructure. The following hypotheses will be evaluated during the
course of this work:

i It is possible to generate a meaningful system model that describes relationships between
distributed components in a network based on the log information that is generated at each
component. The generation process does not rely on pre-defined knowledge about syntax
and semantics of the processed log information.

ii This system model can be used to detect anomalous behaviour in the monitored network
promptly.

iii Detection works especially well in industrial networks due to the well defined communica-
tion channels and the well structured messages that are sent.

1.3 Methodology and Structure

The contributions of this thesis are as follows:

• A formal model definition of a novel anomaly detection approach based on log-line analy-
sis is given. The approach correlates events that are generated by detailed log-line analysis
without prior knowledge of syntax or semantics of the processed log-lines.

• An existing prototype implementation of basic concepts of the proposed approach is ex-
tended. New features that are implemented are:

– A balancing algorithm that ensures even distribution of extracted knowledge from
the input dataset over the log-lines of that set.

– Aging functionality that enables automatically generated information which is dep-
recated or invalid to be deleted again.
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– Statistical analysis of hypotheses that were generated to model normal system be-
haviour. This analysis fulfils two goals: first, it enables a decision whether a hypoth-
esis describes normal behaviour or not; second, it is used to detect anomalies in the
system behaviour based on the set of proven hypotheses (modelled as rules).

• A sophisticated evaluation of the extended prototype is performed. This evaluation in-
cludes the following aspects:

– After identifying the critical system parameters, optimal settings are discussed for
each of these parameters.

– A qualitative analysis is applied to evaluate the system model that is generated from
the processed input. This evaluation includes the coverage of the input file by the
model as well as the quality of the generated rules.

– An evaluation is performed about the ability of the approach to detect anomalies in
the system behaviour, resulting from authentic attack scenarios.

The remainder of this thesis is structured as follows: Section 2.1 provides details about SCADA
systems, as well as an overview of current research in SCADA security. In order to show the
broader applicability (in addition to Web-based systems) of the new approach, one focus of the
evaluation lies on the system’s applicability in the domain of Supervisory Control and Data Ac-
quisition (SCADA) systems. Section 2.2 gives an overview on state of the art anomaly detection
research, while Sect. 2.3 highlights current trends in the field of intrusion detection systems.
Section 2.4 closes the chapter with information about credible means of evaluation and data
acquisition.

Chapter 3 provides a formal definition of the novel anomaly detection approach. After an
introduction, Sect. 3.2 formalises the core functionality of the approach, while Sect. 3.3 denotes
the means of model extraction.

After the formal definition, Ch. 4 describes the prototype implementation in detail.
Ch. 5 describes the scenarios used to generate the datasets used in the evaluations. Valid

evaluation is far from trivial. Commonly accepted datasets are nearly impossible to get, and
reproducible test environments are similarly rare. In order to achieve a useful evaluation, we
introduce a method for semi-synthetic dataset generation in Sect. 5.1 before describing a sample
structure of a smart grid setup that isused for a proof of concept evaluation in the SCADA
domain.

Ch. 6 states the performed evaluations of the prototype.
After the presentation and discussion of the evaluation results, Ch. 7 gives a conclusion and

an outlook to finalise this thesis.
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CHAPTER 2
Related Work

2.1 SCADA Systems

2.1.1 Introduction

In industrial settings (e.g., power grid management), automation of substations is essential.
Three aspects have to be considered (see also [20]):

i Data Acquisition describes the task that collects all relevant data in the automated system.
This data is acquired from different types of sensors throughout the system and can contain
either analog or digital signals. The collected data can be used locally to fulfil monitoring
tasks or it can be transmitted to central databases for later use by operators or analysts.

ii Supervision happens through processes or personnel that monitor status and condition of the
different subsystems. Supervision happens based on the data acquired.

iii Control describes sending commands to different subsystems to manage their states.

A common approach to manage these aspects are supervisory control and data acquisition
(SCADA) systems. Figure 2.1 gives a schematic overview of a traditional SCADA system.
A critical infrastructure consists of a multitude of sensors and actuators. The data acquisition
collects the data of the sensors; the control sends commands to the actuators to influence the
state of a certain component in the system. A remote terminal unit (RTU) manages the distribu-
tion of messages between the process network and the different sensors and actuators. An RTU
can also preprocess data locally. Therefore local data can automatically be exploited to trigger
control commands. The process network collects data from different, geographically separated,
sites of the system. It is also used to distribute the control commands to the right subsystems. A
central system stores all data from different subsystems and provides the data for a controller or
analyst. A central control room gives the operators the possibility to monitor the system status
and trigger control commands.
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Figure 2.1: Overview of a traditional SCADA system.

2.1.2 Protocols

SCADA systems are not a novel approach to subsystem automation. Several protocols were
developed over the years. Kanabar [12] identifies the three most popular protocols, out of a
smart grid’s perspective, to be the following:

IEC 60870-5 is a protocol standard for telecontrol, especially between two substations. The
standard follows the Enhanced Performance Architecture (EPA) at ISO layer 3. It uses
asynchronous serial telecontrol channel interfaces and is suitable for multiple configura-
tions, e.g.,point-to-point or star. IEC 60870-5 defines:

• operating conditions

• electrical interfaces

5



• performance requirements

• data transmission protocols

DNP3 is a protocol developed in 1993 to achieve open and standard-based interoperability be-
tween:

• Remote Terminal Units (RTUs)

• Intelligent Electronic Devices (IEDs)

• Master Stations

It follows the EPA on OSI level 3 (similar to the IEC 60870-5 standard) and is also de-
signed for telecontrol applications.

IEC 61850-90-1 focuses on the station bus. In ten parts the standard series defines:

• general and functional requirements of the substation communication system

• an XML-based substation configuration language

• common data and service models

• mappings from different data objects into manufacturing message specification (MMS)

2.1.3 Security Considerations

Supervisory Control And Data Acquisition (SCADA) systems get more and more connected
to corporate networks and ultimately the Internet (see Fig. 2.2). This is done in the hope of
increasing productivity. But early security considerations in SCADA systems are not sufficient to
tackle the threats opposed by the Internet. Pires [15] gives an overview over the risks introduced
by the interconnection of SCADA networks and corporate networks.

Early security considerations resulted in concepts like [15]:

• using a common password for user authentication

• considering protocols secure due to being proprietary

• transferring data in plain text

Those concepts hardly seem sufficient for corporate IT networks connected to the Internet. On
the other hand existing security solutions for corporate IT systems like firewalls or intrusion de-
tection systems are not applicable to SCADA networks without further consideration. SCADA
networks have special demands. Firewall rules have to be adapted. Controllers and other em-
bedded devices force resource restrictions upon security solutions. Furthermore control systems
have a demand for 100 percent uptime and little room for latency [16]. All those constraints
make it hard to use common solutions like e.g. encryption protocols.

A lot of work has already been done considering security aspects of SCADA system given
the new context. Different security challenges in SCADA networks are pointed out by Igure [11]

6
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Figure 2.2: Overview of a traditional SCADA system that is connected to a corporate network.

including access control, firewalls and intrusion detection systems, protocol vulnerability as-
sessment, cryptography and key management, device and operating system security as well as
security management. Ten [24] proposes a framework to systematically evaluate vulnerabilities
of a SCADA system. Onada [16] presents Support Vector Machine and Support Vector Data
Description methods to classify events in the network. The authors point out, that common IDS
solutions in IT systems are using signature based approaches but the lack of recorded cyber-
attacks on SCADA systems makes those approaches hard to configure. Svendsen [21] gives an
overview on modelling and detecting anomalies in SCADA networks. The work focuses on the
fact that domain-specific knowledge can on one hand reduce error rates of anomaly detection
algorithms. On the other hand this knowledge makes it easier for attackers to mask their mali-
cious behaviour. Furthermore various approaches on anomaly detection and intrusion detection
systems in SCADA networks were presented. Examples can be found in [3, 4, 6–8, 10, 21]
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2.2 Anomaly Detection

Anomaly detection is an actively researched field in many domains. Chandola [9] identified the
application domains as intrusion detection, fraud detection, medical and public health anomaly
detection, image processing, anomaly detection in text data and anomaly detection in sensor
networks apart from other not so prominent domains. In each domain we find different problems
to solve, as well as different sets of data. In order to detect anomalies, a system has to use training
data to define a ground truth about what is to be considered normal behaviour of a system [9,30].
The training data will be analysed to establish a notion about normality further used to mark
patterns (also known as events or instances) in the data as normal or abnormal. Furthermore, it
is important to note that systems evolve i.e., systems have to periodically reconstruct their notion
of normality to adapt to this changes [30].

Chandola [9] distinguishes three kinds of anomalies.

Point Anomalies If a single event can be considered anomalous given the notion of normality
we call it point anomaly.

Contextual Anomalies An event can be considered anomalous in respect to a given context.
This contextual evaluation has to be encoded in the formulation of the problem. We can
then deduce an anomaly given the events’ behavioural attributes in its context. The same
attributes might not be considered anomalous in another context.

Collective Anomalies If a series of events is considered anomalous we call it collective anomaly.
Each event on its own in some other place in the stream might not be considered an
anomaly. But the collective relation between them makes them anomalous.

Thottan [25] describes two main categories of anomalies in ICT networks. The first category
describes anomalies due to system failures. The second category consists of security related
problems resulting in anomalies.

Various classifications of anomaly detection approaches were taken by [9, 25, 29, 30] just to
name a few. The broadest classification by Chandola [9] distinguishes six classes with various
subclasses from all of the before described domains:

Classification Based Anomaly Detection Techniques try to classify every data instance as ei-
ther normal or abnormal. Given a labelled training data set it generates a classifier later
used to generate a label for every instance. Depending on the provided labels we can
distinguish between multi-class (normal data has different labels) and one-class (either
normal or abnormal as label) techniques. The general assumption of this approach says
that it is possible to learn a classifier distinguishing between normal and abnormal data
instances. Following techniques fall in this category:

• Neural Networks-Based

• Bayesian Networks-Based

• Support Vector Machines-Based

• Rule-Based

8



Nearest Neighbour-Based Anomaly Detection Techniques work on the general assumption
that “normal data instances occur in dense neighbourhoods, while anomalies occur far
from their closest neighbours” [9]. A metric has to be found serving as distance or simi-
larity measure. This metric can then be used to generate an anomaly score for each data
instance by two different means:

• Using Distance to kth Nearest Neighbour: The anomaly score is the distance to its
kth nearest neighbour.

• Using Relative Density: The density of an instance’s neighbourhood works as anomaly
score where low density means that the instance is more likely an anomaly.

Clustering-Based Anomaly Detection Techniques try to generate clusters of similar data. The
assumption here is that anomalies do not belong to any cluster, are far from the centre of
the nearest cluster or occur only in a small cluster with low density while normal instances
are near to the centre of a dense cluster. Then again an anomaly score can be used together
with a threshold to identify anomalies.

Statistical Anomaly Detection Techniques assume the input data follows a stochastic model.
This model usually describes normal behaviour. For each instance a statistical inference
test decides if the data instance belongs to the model, hence is normal, or not. Two tech-
niques can be observed.

• Parametric Techniques generally assume to know the underlying distribution and
estimate its parameter from the training data.

• Non-Parametric Techniques do not assume to know the underlying distribution but
try to learn it from the training data.

Information Theoretic Anomaly Detection Techniques assume that anomalies can be detected
because they result in irregularities in the information content of the data set. Therefore,
these techniques try to generate a model of normality about the information in the data in
order to detect inconsistencies.

Spectral Anomaly Detection Techniques try to map the data space to a smaller subspace.
They assume that there exists a subspace where normal data and anomalies can easily
be identified and that there exists a transformation to get the data into this subspace.

Zhang [30] and Thottan [25] distinguish anomaly detection approaches with focus on ICT
networks. They come up with subsets of the already described approaches before with [30] using
anomaly detection using statistics, anomaly detection using classifier, anomaly detection using
machine learning and anomaly detection using finite state machines. Thottan [25] distinguishes
between rule-based approaches, finite state machines, pattern matching and statistical analysis.

Various challenges in anomaly detection are identified by [9]. The most prominent is of
course to identify a complete notion of normality. This is made even harder by the fact, that
there is only a fuzzy border between normal and abnormal behaviour. We further already men-
tioned the fact, that normal behaviour is evolving. When anomaly detection is used to detect

9



malicious activity it has to be pointed out, that an attacker disguises his actions by making them
look normal. In some cases it might be possible he tampers the testing data or the system. Con-
nected with the problem of getting a complete notion of normality is also the problem of getting
representative, labelled training data and to differentiate noise from actual anomalies [5].

The number of papers describing novel or optimised mechanisms of anomaly detection in
different contexts is far from countable and ever increasing. [13, 25, 28, 31, 32] are just some
examples to show the diversity in the approaches. A good overview on anomaly detection in the
domain of intrusion detection can be found in [29].

2.3 Intrusion Detection Systems

Nowadays various systems are in place in a corporate ICT network to ensure the three properties
confidentiality, availability and integrity known as the security triangle. Any action attempting
a violation of any of those properties can be seen as an intrusion [29]. Intrusion Detection
Systems (IDSs) aim at detecting those intrusions to take actions from triggering warnings to
actively preventing the attacker from causing further harm.

Literature as Yu [29] or Sabahi [17] classifies IDSs by different means. One way is to look
at the data sources analysed or the scope the IDS looks at. Here we can differ between host
based, network based and hybrid approaches. While host based approaches focus on the events
on one single host to detect suspicious behaviour, network based approaches look at parts of
networks and analyze the traffic and protocol data to detect intrusions [17, 29]. Sabahi [17]
further classifies Hybrid approaches that use host and network data simultaneously as well as
network behaviour analysis approaches monitoring traffic flows.

Another way to classify IDSs is to look at the types of intrusions they try to detect. We can
differentiate between misuse and anomaly intrusion detection [2, 17, 29]. Misuse detection sys-
tems try to detect intrusions by matching events in the monitored domain against defined security
policies. They can further be classified as signature based, rule based or based on state transi-
tions [17]. Anomaly intrusion detection detects deviations of the events in the monitored domain
from an as normal behaviour defined base line [29]. Here further differentiation can be taken be-
tween statistical based, distance based, rule based, profile based and model based methods [17].
Yu [29] has a different notion of differentiation regarding anomaly intrusion systems. Here the
categories are statistical techniques, machine learning techniques, neural network techniques,
data mining techniques and computer immunology techniques. Each category is supported by
various projects.

2.4 Testing and Credible Evaluation

As shown by studies over the year [26, 27], empirical evaluation does not get the attention it
deserves in research work in the field of computer science. This state did not change between
1995 and 2009 and there is no reason to assume a change in the years between 2009 and 2013.
This poses a threat to the research community in the field of computer science since the validity
and reliability of the studies have to be questioned [23]. The problematic condition can also be
observed in the field of anomaly detection and intrusion detection systems [23].
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But even given empirical evaluations, making meaning out of them or comparing different
evaluations is far from trivial. A survey about experimental practices in the field of anomaly-
based intrusion detection, taking 276 published studies in this area into account can be found
in [23]. They identify two main problems regarding significant and comparable evaluation.

Test Data

One big problem is the lack of normalised, labelled test data from productive networks. Labelled
data-sets can be found by the Defense Advanced Research Projects Agency (DARPA) from the
years 1998, 1999 and 20001. Another option is the knowledge and data mining (KDD) set
which is derived from the DARPA set from 1998 . Due to their age those data sets cannot
represent modern network traffic since network protocols and network topologies are constantly
changing [5]. Another source is the MAVI traffic archive providing packet dumps from different
measurement points. This lack of state-of-the-art test data results in researchers using data from
university networks which can’t be published due to privacy issues [5]. Of course it is then hard
to compare results. Synthetic test data introduces the problem of proving completeness of an
approach or its performance in a real-world set-up.

Metrics

Two common metrics to assess intrusion detection methods are established [23]. Behaviour can
be classified as: 1) true-positives, describing attack instances detected as abnormal; 2) false-
positives as events that got incorrectly classified abnormal; 3) true-negatives which are correctly
ignored normal events; 4) false-negatives which are abnormal events classified as normal. Given
this classification the common metrics are:

Detection Rate: ratio between detected attacks and occurred attacks

False-Positive Rate: ratio between incorrectly as anomaly classified events and normal events.

Those two metrics are often displayed together in a receiver operator characteristic (ROC)
curve [23].

2.5 Summary

When the first industrial ICT networks came to existence they where isolated networks. There
was no need for sophisticated security mechanisms on the communication layers and therefore
most protocols do not inherently consider security issues. Due to modern trends, these networks
get connected to corporate networks and ultimately the Internet what exposes them to the same
threats common ICT infrastructures are exposed to.

IDSs aim at detecting violations regarding confidentiality, integrity or availability of a sys-
tem. If an violation (i.e., an intrusion) is detected, different actions – from issuing warnings to
actively preventing further harm – can be taken. IDSs can combine multiple intrusion detection

1 see http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
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methods. One method is anomaly detection which can further be classified by the analysed data
sources or by the way the data is analysed.

This thesis proposes a novel anomaly detection approach that aims at extending existing
IDSs. It is a hybrid IDS approach that analyses host based data from various components in a
network in order to make assumptions about relations between the components on the network
level. Therefore, the approach can be considered as an Information Theoretic Anomaly Detection
Technique. From the way the data sources are analysed and evaluated it is also a Statistical
Anomaly Detection Technique with a parametric characteristic.

12



CHAPTER 3
Model Definition

The following chapter gives a detailed model definition of the before mentioned anomaly detec-
tion approach. It gives a short introduction in Sect. 3.1 followed by a detailed formal definition
separated into two parts. Section 3.2 describes the core functionality of the approach while Sect.
3.3 defines algorithms to extract information used to build the system model.

3.1 Introduction

Most modern ICT components or services produce logging data to report events, internal state
changes, and committed actions. Log files are a valuable source to establish situational aware-
ness about the current status of ICT networks and to reproduce activities in the past; therefore
they are human-readable. For protocols and applications with high market share, parsers exist to
extract the key information from the lines. An anomaly detection system uses pre-defined rules
to evaluate the extracted information and to detect attacks or to visualise the general system sta-
tus to a human administrator. Section 2.3 gave an overview about the functionality and different
types of IDS systems. These systems exist and they are widely and successfully used. But this
approach brings two drawbacks:

i Pre-defined rules are often insufficient to detect unique or tailored attacks. Those rules are
commonly known and, given enough effort is invested, can be tricked by tampering with the
generated log lines.

ii For applications with low market share no sufficient parsers and rule sets are available1.
General checks about the severity of messages can only provide a limited compensation for
the lack of a sufficient rule set that encodes application specific operation sequences.
1One good example for such protocols and applications can be found in the SCADA domain as described in

Sect. 2.1
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Figure 3.1: Approach positioning.

System administrators need to tackle those inadequacies, in order to increase security. But a
system that is designed to replace all existing security mechanisms is no solution. Established
ICT security solutions fulfil their purpose reasonably well for common security threats. As mo-
tivated in Ch. 1 they just lack the capability to tackle unique, tailored attacks because of their
predictive structure.
As shown in Fig. 3.1 the proposed approach is therefore designed to extend common security
mechanisms – especially „packet-level“ IDS systems – to improve their results. It further in-
tegrates seamlessly into the administrator’s work-flow. Instead of replacing existing solutions
or of establishing an additional security system, the approach aims at acting as an additional
source for alerts in existing monitoring infrastructures. Similar to some existing mechanisms
the proposed approach exploits log files. However it does not rely on existing knowledge about
the syntax and the semantics of the lines. On the contrary, the system is constructing a model
while processing the input. The system’s model M is built by the following items (the model is
described in more detail in Sect. 3.2):
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Search-Patterns (P ): Patterns are random substrings of the processed lines. Patterns are used
to categorise information contained in a log-line.

Event Classes (C): Event classes classify log-lines using the set of known patterns. Each line
can be classified by multiple event classes.

Hypothesis (H): Hypotheses describe possible implications2 between log-lines based on their
classification.

Rules (R): A rule is a proven hypothesis. This proof is given if the implication that is described
by the hypothesis holds in a significant time of evaluations. The system evaluates rules
continuously to detect anomalous behaviour in the system.

This approach tackles both above mentioned shortcomings; it also provides additional benefits:

i The model is generated following the real relationships of components in the monitored
environment. The detected relationships involve expected relationships (e.g. firewall rules
being evaluated before a request is transmitted to a secured server) but are not limited to
those.

ii The rules in the model are automatically generated and unique for each monitored environ-
ment. A potential attacker cannot easily tailor an attack to prevent rules from failing; the
attack, after all, alters the system behaviour.

iii Syntax and semantics of the log lines are widely irrelevant, since the model is tailored to the
log input.

iv Sharing information about attacks with state actors, competitors or other third parties is often
forbidden by companies, although information sharing is a requirement to monitor critical
infrastructures on a national level. The reasons, to forbid information sharing, vary from
legal obligations (e.g. privacy issues) to fear of the loss of customer’s trust. As described
later, the proposed approach handles log data, once classified, in a way, that privacy is not
compromised. It is therefore possible, to transmit the abstract form of log-lines to a central
(e.g. state controlled) instance; additionally to analysing it locally.

Intrusion Detection Systems only fulfil monitoring tasks. Actions to emit detected anomalies
are not taken – humans still have to interpret a detected anomaly. Manual intervention is also
required to determine the actions to take, in order to prevent further harm to the monitored ICT
system.

Figure 3.2 provides a conceptional overview of the described approach’s functionality, as
first published partly in [19]. Using this visualisation, the approach is evaluated in two dimen-
sions. On a horizontal dimension, the Evaluation Stack (visualised by the squared elements on
the left side) is distinguished from the Refinement Branches (pictured by the elliptic elements on
the right side). The Evaluation Stack describes the tasks performed to prepare and analyse the
input and to detect anomalies. The approach performs all operations iteratively. The Refinement

2Implication in a logical sense as A→ B ≡ ¬A ∨B
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Branches on the other hand, are triggered by the Evaluation Stack’s elements; they evaluate and
optimise the system model continuously. Figure 3.2 shows that refinement works in two steps.
First, new knowledge is extracted from the currently processed line. Afterwards, the refinement
process evaluates the knowledge and deletes deprecated or redundant information. The updated
information is then available in the next iteration of the Evaluation Stack.

The system model M (see Equation 3.1) is defined as a tuple built from the sets of: known
search-patterns P, known event classes C, known hypothesis H and known rules R.

M = 〈P,C,H,R〉 (3.1)

3.2 Evaluation Stack

The Evaluation Stack performs tasks in sequential order. The tasks describe the general func-
tionality of the system regarding input analyses and anomaly deteection:
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3.2.1 Log-Event Extraction

A basic unit of logging information, e.g., one line for line-based logging, one binary log data
record or one XML-element, is called a log-atom La; an La consists of a series of single symbols
s (Eq. 3.2).

La = s1 . . . sn (3.2)

Further a log event Le (Eq. 3.3) is the association of a log-atom La with a timestamp t; Le

describes when La has been created.

Le = 〈La, t〉 (3.3)

The first task collects the logging information from various distributed sources in the moni-
tored network and emits them, one by one, to the next state in the Evaluation Stack. Assuming
a complete and correctly sorted stream, atoms are emitted individually and timely sorted to the
next task.

3.2.2 Fingerprint Generation

The next task vectorises each log-atom using P. A search pattern P (Eq. 3.4) is a substring (an
n-gram) of a log-atom La.

P = s1+i . . . sm+i, where 0 ≤ i and m+ i ≤ n (3.4)

The vectorisation process transforms a log-atom La into an n-dimensional pattern vector –
the so-called fingerprint ~F (Eq. 3.5). The information reported by La is encoded using the set
of currently existing search patterns P. The occurrence of each search pattern P , as a substring
in La, is encoded with a bit pi ∈ {0, 1} in ~F (see Tab. 3.1 for an example).

~F = p1 . . . pn, where pi ∈ {0, 1} (3.5)

Fingerprinting La reduces the amount of data the next steps need to process – and speeds
up the overall anomaly detection – significantly. As argued in Sect. 3.1, ~F can also be used
to transmit log-data for external analysis; privacy issues do not require special consideration.
Without P there is no way to extract sensitive data. Once La is vectorised, further analysis is
performed solely on ~F . Information encoded in La, that cannot be encoded by any combinations
of {∀P ∈ P}, is inevitably lost for further steps in the Evaluation Stack.

1 service-3.v3ls1316.d03.arc.local apache: 2227 169.254.0.3:80 "mantis-3.v3ls1316.d03.arc
.local" "mantis-3.v3ls1316.d03.arc.local" 169.254.0.2 - - [12/Feb/2014:13:30:16
+0000] "GET /mantis/login_page.php HTTP/1.1" 200 1343 "-" "Mozilla/5.0 (X11; Linux
i686) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.65 Safari/537.36"

Listing 3.1: Apache log excerpt from test environment.
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p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns P′: GET POST [12/Feb/2014:13:30:15 +0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n
Fingerprint: 1 0 1 1 1 0 1 1 0

Table 3.1: Example of a fingerprint. Consider the sample log-line in Lst. 3.1 from an Apache
server running Mantis3 in our test environment. This table shows an example set of patterns P′
and how a fingerprint of the line in Lst. 3.1 would look like.

3.2.3 Log-Atom Classification

Once an La is vectorised and ~F is generated the fingerprint (and therefore the underlying La)
gets classified. Log event classification is the process that determines CLa – the set of all event
classes C a log-atom La belongs to (see Eq. 3.6). One La can belong to a multitude of classes,
e.g., a log-atom might be an ‘incoming connection event’, an ‘ssh service event’ and an ‘IP-zone
X service event’ at the same time. Each event class, that La belongs to, encodes a specific type
of information that was originally encoded in La. Notice that La is classified, not Le because
the categorization is timestamp-independent.

CLa = {C|La ∈ C} (3.6)

A log-atom might also belong to no class at all. In this case La is discarded and not used
for further evaluation. Information encoded in La is lost, since it could not be mapped to any
existing event class C.

An event class C (Eq. 3.7) is defined as the combination of a mask ~Cm and a value ~Cv.

C =
〈
~Cm, ~Cv

〉
(3.7)

The event mask ~Cm acts as a filter and decides, what search patterns are considered relevant
for the classification in the respective class (see Eq. 3.8). The value ~Cv decides for all relevant
search patterns, if they are enforced on ~F or prohibited from being part of ~F , for La to be
classified as C (see Eq. 3.9). Note that ~Cv does only enforce or prohibit search patterns that are
considered relevant by ~Cm (see Tab. 3.2 for an example).

~Cm = p1 . . . pn where pi =

{
1 if P at i is relevant
0 if P at i is irrelevant

(3.8)

~Cv = p1 . . . pn where pi =

{
1 if P at i is enforced
0 if P at i is prohibited or irrelevant

(3.9)

Each generated fingerprint ~F is classified by C if the condition in Eq. 3.10 holds. One
fingerprint can be classified by one or more event classes.

~Cv = ~F ∧ ~Cm (3.10)
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p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns P′: GET POST [12/Feb/2014:13:30:15 +0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n
Fingerprint: 1 0 1 1 1 0 1 1 0
~Cm 1 0 1 0 0 1 1 0 0
~Cv 1 0 1 0 0 0 1 0 0

Table 3.2: Example of an event class that classifies the sample log-line in Lst. 3.1. While the
bold patterns are enforced by C (i.e., they have to occur in La for it to be classified by C), italic
patterns are prohibited by C (i.e., they must not occur in La for La to be classified by C). Other
patterns are considered irrelevant by C.

Example: After classifying La the approach generates an eventEC (Eq. 3.11) for every event
class C ∈ CLa . An event EC carries the information that a log-event Le at time t got classified
by C. These events are further investigated by the anomaly detection system.

EC = 〈t, C〉 (3.11)

The idea is, to apply a basic concept of human reasoning. When a human analyses log-
lines s/he scans each line and makes implications on the line’s meaning from the line’s content.
Consider again the sample log-line in Lst. 3.1 from an Apache server running Mantis in our test
environment.

One can understand certain aspects of the log-line, without detailed knowledge about an
Apache log-line’s syntax. One identifiable substring is apache: that tells us that this log was
printed by an Apache server. We can further identify a timestamp with substring [12/Feb/2014:13:30:16
+0000] or, given some knowledge about HTTP commands, identify GET as one of those. We
are able to extract a considerable amount of information without a lot of prior knowledge on
the syntax and the semantics. We know the triggering application as well as the time and the
request.

Of course, the substrings used in this basic sample are chosen intelligently and not com-
pletely random (as it is done by the system). But this simple sample is supposed to prove
something different: Replacing one of the substrings (e.g. GET with POST) changes the mean-
ing of the line fundamentally. This is the concept applied by classification. The meaning of the
line – „There was a GET-request on an apache server at time t“ – is inseparably connected with
the fact, that the substrings apache:, [12/Feb/2014:13:30:16 +0000] and GET can be found in
the respective line. On the other hand, those three substrings are insufficient to fully cover the
information encoded in the line. We know that something was requested. But we don’t know
what was requested, who requested it or from which server it was requested from.

The translation of the example above, into the formal structure of the approach, looks as
follows: An event class C has to encode the knowledge given by the three selected patterns from
above. Without loss of generality we can say, that P1 = GET and P7 = apache:. C encodes the
information carried by P1 and P7 if the following two conditions hold: Cm has to consider those
two patterns as relevant and Cv has to enforce them. In a more formal way that means: p1 and
p7 in ~Cm and ~Cv have to be 1 and pi = 0 for i /∈ {1, 7}. C can also encode more information.
Cm would have to consider more patterns as relevant (formal: ∃pi = 1 in ~Cm for i /∈ {1, 7}).
If pi is 1 in ~Cm but 0 in ~Cv the represented patterns are prohibited. C might then not classify
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p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns P′: GET POST [12/Feb/2014:13:30:15 +0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n
~Cm 1 0 0 0 0 1 1 1 0
~Cv 1 0 0 0 0 0 1 0 0

Table 3.3: Example of an event class that prohibits /mantis/login_page.php. The line in Lst. 3.1
is not classified by this event class C but all apache GET-requests on other pages are classified
by C.

p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns P′: GET POST [12/Feb/2014:13:30:15 +0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n
~Cm 1 0 0 0 0 1 1 1 0
~Cv 1 0 0 0 0 0 1 1 0

Table 3.4: Example of an event class that enforces /mantis/login_page.php. The line in Lst. 3.1
is classified by this event class C but only apache GET-requests on this pages are classified by
C.

GET-requests on a specific page (see Tab. 3.3 for an example). If pi is also 1 in ~Cv, a certain
page (e.g. /mantis/login_page.php) can be enforced on La, for La to be classified by C (see Tab.
3.4 for an example). In general a prohibited pattern carries less information than an enforced
one.

3.2.4 Rule Evaluation

The last task of the Evaluation Stack changes the focus from single log-events to the relations
between them. A hypothesis H (Eq. 3.12) is a non-validated correlation rule between events
of two different event classes. The relation→ is the logical consequence operator as specified
by the truth table in Tab. 3.5. Although defined by two event classes, a hypothesis is used
to evaluate the events that were triggered by the processed log-events. One evaluation of a
hypothesis is therefore written as the test if ECcond → ECimpl holds in tw.

Condition Implication Result

ECcond ECimpl true

ECcond ¬ECimpl false

¬ECcond ECimpl true

¬ECcond ¬ECimpl true

Table 3.5: Truth table of the→-relation.

The time window tw describes the time span (relative to t at which Le that triggered ECcond

occurred), in which the implication has to hold. The system automatically creates such corre-
lation hypotheses, and subsequently tests them, to learn about event dependencies (see later).
Notice that tw > 0 does not hold in general. Some hypothesis make assumptions about events
that have to have occurred before other events. tw is fixed at generation time of H .

H = 〈Ccond, Cimpl,→, tw〉 (3.12)
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The system evaluates the stream of events against the hypotheses in H continuously. This
evaluation process foresees one event queue Qi for every existing hypothesis Hi. All queues Qi

listen to events relevant to the respective hypothesis; they addECi |C=Ccond∨C=Cimpl
. A periodic

evaluation process acts on the entries in the respective Qi; its actions are described in Tab. 3.6.
The evaluation is performed until none of the described cases hold. Then there are no more
evaluations to be done in the current state. The rule is completely evaluated – until a new event
is received by Qi.

occurence evaluation result

E1 ∧ ¬E2 Given tw has passed the rule evaluates to false and a negative evaluation is stored. E1

will be deleted.
E1 ∧ E2 Given both events occurred within tw the rule evaluates to true and a positive evaluation

is stored. E1 and E2 will be deleted.
¬E1 All occurrences of E2 that lack an E1 are deleted without an evaluation result being

returned.

Table 3.6: Possible evaluation results of a hypothesis.

The result of an evaluation ofQi – one evaluation – is called e (see Eq. 3.13). One evaluation
stores the result res (true or false) of the evaluation, the hypothesis Hi with respect to which the
evaluation was performed and the position pos that e has in the stream of evaluations.

e = 〈res,H, pos〉 (3.13)

Every hypothesis Hi stores evaluations in a stream SHi (see Eq. 3.14). The position of an
evaluation is defined as its position in this stream; pos is incremented for all evaluations in SHi ,
whenever a new evaluation is stored. The most recent evaluation has always pos = 0.

SHi = {e | H = Hi} (3.14)

A slot Sl is a filter, that can be applied on evaluation streams. The operation size(Sl) returns
a natural number, specifying the size of the slot. Applying a slot on an evaluation stream returns
the newest size(Sl) evaluations in that stream (see Eq. 3.15). The system generates k slots at
initialization time with size(Sli) < size(Sli+1).

Sl(SH) = {e|e ∈ SH ∧ pos < size(Sli)} (3.15)

Example: Consider the event class described in Tab. 3.4 as C1 and the event class described
in Tab. 3.3 as C2. We can now construct a simple hypothesis as in Eq. 3.16. This hypothesis
would state that after an apache GET-request was issued on login_page.php there is also an
apache GET-request on another page within at most 10 seconds. Table 3.7 shows the status of
Q1 at different timestamps. Table 3.8 shows how different evaluation results affect the evalution
stream SH1 and how different slots access different evaluations.

H1 = 〈C1, C2,+10s〉 (3.16)
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Time Q1

10:30:40 〈10 : 30 : 35, C1〉
10:30:42 〈10 : 30 : 41, C2〉 〈10 : 30 : 35, C1〉
10:30:50 〈10 : 30 : 45, C1〉
10:30:57 〈10 : 30 : 57, C2〉 〈10 : 30 : 45, C1〉
10:30:59

Table 3.7: Sample status of the event queue Q1.

Slot 3 Buffer Sl3
Slot 2 Sl2
Slot 1 Sl1

10:30:40 1 1 0 1 1 1 1 1 1 1 1 1
10:30:50 1 1 1 0 1 1 1 1 1 1 1 1
10:30:59 0 1 1 1 0 1 1 1 1 1 1 1
pos 1 2 3 4 5 6 7 8 9 10 11 12

Table 3.8: Sample development of the evaluation stream SH1 . In this sample we assume three
slots (k = 3) with size(Sl1) = 2, size(Sl2) = 5 and size(Sl3) = 10.

Considering the position of evaluations as timely ordered, the evaluation’s results produce a
binary stream. The continuous evaluation process can then be interpreted as a Bernoulli process;
a discrete-time stochastic process that takes only two values. This Bernoulli process is used to
decide about the stability of a hypothesis; a stable hypothesis is transferred into a rule R. The
stability function in Eq. 3.17 implements a left-sided binomial test; isStable(H) analyses the
current evaluation stream against a pre-defined stochastic distribution. The distribution, against
which the stability test is performed, is described by a statistical hypothesis p04. A binomial
test evaluates, if a given sample supports a pre-defined distribution. B(i | p0, n) returns the
probability that i out of n evaluations are positive, given that p0 is the assumed chance of an
evaluation being positive. A significance level α is the threshold below which the tested sample
(and with it the evaluated hypothesis H) are refused5. Let further be {eHt } the set of evaluations
belonging to hypothesis H with res = true. The sample of evaluations, used for the stability
evaluation of H , is Slk(SH); the biggest slot defined.

isStable(H) =

|{eHt ∈Slk(SH)|∑
i=0

B(i|p0, size(Slk) ≥ α (3.17)

If isStable(H) evaluates to true the tested hypothesis H is considered a stable rule R and
becomes part of the set of rules R (see Eq. 3.18). Note that R ⊂ H.

R = {H | isStable(H)} (3.18)
4p0 in this case relates to a hypothesis about the statistical distribution of the sample and is not comparable to a

implication hypothesis as defined in Eq 3.12.
5n, H0 and α are part of the initial configuration and will be discussed in more detail in Sect. 6.1
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Rules are considered currently accepted hypotheses; they undergo the same periodical eval-
uations as all hypotheses. Additionally, their evaluation stream is analysed for anomalies. As
mentioned before, the stability function isStable(H) uses the biggest slot Slk to decide if a hy-
pothesis is part of R. Testing a rule R ∈ R for anomalies uses the same left-sided binomial test,
as proving stability does. Only the parameters change (see Eq. 3.20). Let {eRt ∈ Slk(SR)} be
the set of all positive evaluations, of a given rule, passing the filter applied by Slk. The test tries
to verify a statistical hypothesis6 p0, that is now given by the ratio of positive evaluations in Slk
to total evaluations in Slk (see Eq. 3.19). An anomaly significance αa specifies the threshold
below which a sample is considered anomalous. The anomaly analysis is performed for all slots
Sli with i < k.

p0 =
|{eRt ∈ Slk(SR)}|

size(Slk)
(3.19)

isAnomalous(R) =
k−1∨
j=0

|{eRt ∈Slj}|∑
i=0

B(i|p0, size(sj)) ≤ αa

 (3.20)

An anomaly A (see Eq. 3.21) is a highly significant deviation of the sample of evaluations
that is given by applying slot Slj on the stream of evaluations SR (i.e., Slj(SR)), with respect
to the expected distribution given by the evaluations in Slk(SH). A consists of a probability

p = 1 −
∑|{eRt ∈Slj}|

i=0 B(i|p0, size(Slj)), a rule R, on which the anomaly was detected, and a
time t, at which the anomaly was detected.

A = 〈p,R, t〉 (3.21)

Example: Taking into account the last snapshot of SH1 in Tab. 3.8, we can calculate p0 by
counting the number of positive evaluations that are considered by Sl3 (|{eRt ∈ Slk(SR)}| = 9).
The size of Sl3 is 10 and the resulting p0 is then calculated based on Eq. 3.19 as 0.9.

Table 3.9 describes all possible values for Sl1 and Sl2 that can be calculated by Eq. 3.20.
Let’s assume that αa = 0.01. In this case:

isAnomalous(H1) = 0.19 ≤ 0.1 ∨ 0.08146 ≤ 0.1 = false

3.3 Refinement Branches

The analysis of system behaviour, as described in Sect. 3.2, is highly dependent on knowledge,
represented by the system modelM . Since the proposed system does not rely on any pre-defined
knowledge, M has to be built while analysing the input. A first step generates knowledge about
processed input; this generated knowledge buildsM . The lack of information about the meaning
of good (meaningful) knowledge, justifies the need to evaluate M and delete deprecated or

6Note that this statistical hypothesis is not comparable to an hypothesis H ∈ H. It describes the expected
probability that the next evaluation is positive and is tested by statistical means to decide if the different evaluations
still support this probability or if a significant change is measured (i.e., an anomaly is detected).
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|{eRt ∈ Slk(SR)}|: 0 1 2 3 4 5
Sl1 0.01 0.19 1

Sl2 1.0e−5 4.6e−4 8.56e−3 0.08146 0.40951 1

Table 3.9: This table describes the values of a Cumulative Distribution Function (CDF) based
on the slots from the last timeslot in Tab. 3.8. All possible values are calculated; the bold values
are the ones valid for the values in Tab. 3.8

.

redundant information. The following subsection will go into more detail about how knowledge
is generated and refined for search patterns P, event classes C, hypothesis H and rules R.

3.3.1 Search Pattern Refinement

Generation

Search patterns P (see Eq. 3.4 for a single search pattern) are created by the system based on
currently processed log-atoms La. Since search patterns are the only basis for vectorisation
of La, it is essential, that all log-atoms are matched by multiple search patterns. Only the
combination of search patterns matching La and search patterns not matching La gives meaning
to an event EC triggered after classifying Le. There is information encoded in the fact that @P
matchingLa. But information only gathered by the absence of search patterns has little entropy7.
It is therefore important to get a sufficient coverage of occurring log-events with search patterns.

To achieve this the system generates new patterns with Alg. 3.1. Patterns are generated for:

i an uncovered La (e.g., when new log sources are being connected).

ii a well-covered La (in order to refine the knowledge; happens less frequently).

Generation of new search patterns P is balanced by generating new patterns more frequently
for uncovered or weakly covered log-atoms.8. The system applies a simple but effective token
bucket algorithm. Processing an Le increases the number of tokens in a bucket. The system gen-
erates a new search pattern, if there are enough tokens in the bucket. An important configuration
parameter is the price of a pattern (baseCost). This algorithm is an easy way to overcome the
pattern balancing problem. The pattern balancing problem deals with the fact that rarely occur-
ring log-atoms are not properly indexed by the search patterns curently in P, while frequently
occurring log lines are indexed (i.e., covered with patterns) very well. But especially the rarely
occurring log-atoms are the most interesting ones; they represent exceptional events. To over-
come this problem, the generation of a search pattern from rare log-atoms is cheaper, i.e., less
tokens are withdrawn from the bucket when a search pattern for a rare log-atom is created. This
allows the creation of several patterns for one rare La. Buying a pattern for a well covered type
of log atom on the other hand is expensive, but still affordable from time to time. Not preventing

7Entropy describes how much new information is carried by the result of a random event.
8Coverage in this sense means the number of already collected search patterns matching an La
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the generation of search patterns for well covered log-atoms is important to be able to generate
more restrictive event classes. Too general event classes result in a high number of trivial rules
that cloud the system model.

Data: La, baseCost
Result: P

1 bucketSum++
2 matchingCount← sum_matching_search_patterns(La)
3 cost← baseCost ∗ 2matchingCount

4 if bucketSum ≥ cost then
5 candidate = get_random_substring()
6 if ∃P ≡ substring then
7 P ← substring
8 bucketSum = bucketSum - cost
9 end

10 end
Algorithm 3.1: Creation of a new search pattern P .

Example: Let’s assume baseCost = 10 and La is the log-line from Lst. 3.1. Lets fur-
ther assume that P′ is again given by the set of patterns used in Tab. 3.1. Based on ~FLa the
matchCount is 6 and the cost would be calculated as: baseCost = 10 + 26 = 74. So if
bucketSum ≥ 74 a new pattern will be generated on La. Otherwise no pattern gets generated.

Merging

Section 3.2 described that search patterns P are used to classify log-atoms La by event classes
C. Each La can be classified by multiple event classes and therefore triggers a multitude of
events E. These events are then used in hypotheses and rules to analyse implications between
event classes.

Generating a hypothesis H = 〈C1, C1,→, tw〉 is not useful. Evaluations of H are trivially
true, for every occurrence of EC1 ; H generates no information. But this H increases the com-
putational complexity. The hypothesis will become stable and statistical evaluations have to be
performed for every occurrence of EC1 .

Preventing this case is trivial; simply do not allow hypothesis to be implications between
between the same event class. But given the random nature of search patterns the situation is
more complex. Let’s assume two search patterns P1 and P2. Let’s further assume the relation in
Eq. 3.22 holds.

iff P1 ∈ La → P2 ∈ La, ∀La (3.22)

The system can generate two event classes C1 and C2. Let p1 be the bit in ~Cm and ~Cv stating
the relevance or enforcement of P1 and let p2 be the same for P2. Without loss of generality we
can generate C1 and C2 in a way that C1 is equivalent to C2 except for p1 and p2. While P1 is
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enforced in C1 it is irrelevant in C2. And while P2 is enforced in C2 it is irrelevant in C1. Given
this case Eq. 3.23 holds:

{E|E ∈ C1} ≡ {E|E ∈ C2} (3.23)

The information carried by C1 is exactly the same as the one carried by C2. From an infor-
mation theoretical point of few they are identical. But on implementation level they are not; they
are considering different search patterns. The correlation given in Eq. 3.22 is not known to the
system and cannot be exploited. Let’s assume a third event class C3 in our model. Let’s further
assume that there is a valid rule:

R1 = 〈C1, C3,→, tw〉 (3.24)

The system can also extract the following rules, and would accept them as stable rules:

R1 = 〈C2, C3,→, tw〉 (3.25)

R2 = 〈C1, C2,→, tw〉 (3.26)

R3 = 〈C2, C1,→, tw〉 (3.27)

These rules will not add any additional information to the model. But they will consume
computing power. Rule R2 will further trigger the same anomalies as rule R1. That will make it
harder for an administrator to monitor the system status. In a system status with a general set of
event classes C with size n one additional event class equivalent to an existing event class would
mean 2 ∗ n new potential hypotheses. One new event class increases the search space, in which
the system tries to identify rules, by 2 ∗ n. But in our case the increased space does not hold any
additional possibilities as the knowledge in M stays the same.

Given the assumptions made in the design of the system (namely no use of pre-defined
knowledge about the analysed dataset) it is not possible to formally decide which search patterns
should be generated or which search patterns should be combined in a new event class. Instead
the decision process is completely random.

To limit the risk of redundant event classes the system approximates the existence of the
case given in Eq. 3.22 between two search patterns. A merge candidate P ′ is a new search
pattern, that is created by merging two existing search patterns. Table 3.10 covers the conditions
to identify merge candidates. Note that merge candidates are only generated right after a new
search pattern is generated. Note further, that in every case given in Tab. 3.10 the existing search
pattern P and the new search pattern Pnew can switch roles.

Merging search patterns is a critical task. Existing search patterns are often already relevant
for event classes. Merging patterns can have second level effects on event classes – effects on
the information encoded in an event class. Proving that the condition in Eq. 3.22 holds would
ensure that a merge has no effects on the information encoded in the event classes. But this proof
is not possible without complete knowledge about syntax and semantics of the input data. The
system has to substitute this proof by approximation. Algorithm 3.3 defines this approximation.
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Description Formular
Log-Atom La = s1 . . . sn
Existing Pattern ∈ La P = so . . . sp with 1 < o < p < n

New Pattern generated from La Pnew = sq . . . sr with q < r

Case 1: The new pattern is a substring of an existing
pattern

Condititons: q > o ∧ r < p
Candidate: P ′ = P

Case 2: New pattern and existing pattern are over-
lapping

Condititons: o < q ≤ p ∧ r > p
Candidate: P ′ = so . . . sr

Case 3: New pattern can be found in La right next
to an existing pattern

Condititons: q = p+ 1
Candidate: P ′ = so . . . sr

Case 4: New pattern and existing pattern are just
separated by a space

Condititons: q = p+ 2 ∧ sp+1 = ’ ’
Candidate: P ′ = so . . . sr

Table 3.10: Definition of cases in which search patterns can get merged.

Given a specified threshold9 the system evaluates the number of times a substitution of P1 and
P2 by their merge candidate P ′ would be valid10. A merge is considered iff the condition in Eq.
3.28 holds:

P1 ∈ Le ↔ P2 ∈ Le , ∀Le with t < now (3.28)

The system further has to ensure that the proposed merge candidate is a valid substitution
(i.e.: would be generated again if the generation process was performed on the currentLe). If one
of these conditions fails at any time during the evaluation P1 and P2 will not get merged. This
is also the reason why it is sufficient to generate new merge candidates only with the generation
of new patterns (as seen in Tab. 3.10).

Algorithm 3.2 shows the generation process of new merge candidates. The method findMergeCandidate(P1,
P2) returns a new substring describing the possible merge candidate of P1 and P2.

Data: Pnew, {P |P ∈ La}
Result: {P ′}

1 foreach P ∈ La as Pknown do
2 P ′ ← findMergeCandidate(Pknown, Pnew)
3 if P ′ 6= null then
4 storeMergeCandidate(P ′,Pnew,Pknown)
5 end
6 end

Algorithm 3.2: Find merge candidates for new search pattern Pnew.

Algorithm 3.3 describes the evaluation process of a merge candidate P ′ before the merge
is performed. The duration of the evaluation is limited by the pre-set threshold ϑ. ϑ speci-

9This threshold is defined manually in the configuration file of the system
10The substitution is considered valid if both search patterns have the same merge candidate on the current Le as

on all Le before where they mached.
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fies the number of evaluations P ′ has to be proven a valid merge candidate before the system
performs the merge. Each merge candidate is a combination of exactly two search patterns.
getOtherPattern(P , P ′) is used, given one search pattern P and a merge candidate P ′, to re-
trieve the other search pattern used to generate P ′. The method increaseCounter(P ′) is used
to mark one positive evaluation of the merge candidate. If the counter reaches ϑ the merge is
performed. By removing a pattern we change the meaning of pi in all fingerprints ~F . This
change will be automatically adopted by new fingerprints and event classes. But it has to be
propagated to masks ( ~Cm) and values ( ~Cv) in all event classes in C. After a successful merge
the merge candidate P ′ will replace one of the two merged search patterns while the other one
will be deleted. Method updateEventClasses() performs this task. Table 3.11 shows the required
changes on ~Cm and ~Cv in each event class to mitigate second level effects (see Tab. 3.12 for an
example).

Data: La, ϑ
1 foreach P ∈ La do
2 foreach stored merge candidate of P as P ′ do
3 Po ← getOtherPattern(P ′, P )
4 if Po ∈ La then
5 if P ′ = findMergeCandidate(P , Po) then
6 increaseCounter(P ′)
7 if counter(P ′)≥ ϑ then
8 merge(P , Po)
9 updateEventClasses()

10 end
11 else
12 deleteMergeCandidate(P ′)
13 end
14 else
15 deleteMergeCandidate(P ′)
16 end
17 end
18 end

Algorithm 3.3: Evaluation of merge candidates for P ∈ La.

Aging

Search patterns represent the substrings of a line that are known to the system as part of M .
Because search pattern generation happens completely random not all generated search patterns
carry useful information. Figure 3.3 categorises different types of search patterns. Most infor-
mation is carried by reoccurring substrings:

Localisers can give information about source and destination of a logged event. They can be
used to identify involved parties.
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p1 p2 p′1 Description
~Cm 1 1 1 Both patterns are enforced. Since the merged pattern covers both C has to

enforce p′1 to classify the same log-atoms as before the merge.~Cv 1 1 1
~Cm 1 1 - This event class should get deleted. Since 3.22 holds: @La : ¬P1 ∈ La ∧P2 ∈

La.~Cv 0 1 -
~Cm 0 1 1 P1 is ignored. Since Eq. 3.22 holds P1 ∈ La has to hold anyway for La to be

in C.~Cv 0 1 1
~Cm 1 1 - This event class should get deleted since Eq. 3.22 holds: @La : P1 ∈ La ∧

¬P2 ∈ La.~Cv 1 0 -
~Cm 1 1 1 Both search patterns are prohibited. The same has to be true for there merged

successor.~Cv 0 0 0
~Cm 0 1 1 One search pattern is ignored, so the other search pattern determines the status

of the merged one.~Cv 0 0 0
~Cm 1 0 1 One search pattern is ignored, so the other search pattern determines the status

of the merged one.~Cv 1 0 1
~Cm 1 0 1 One search pattern is ignored, so the other search pattern determines the status

of the merged one.~Cv 0 0 0
~Cm 0 0 0 Both search patterns are ignored. The same has to be true for the merged search

pattern.~Cv 0 0 0

Table 3.11: Changes performed on event classes after pattern merge.

Keys are used to set information carried in a log-atom into a specific context (e.g., value = . . . ).

Values contain information about the action reported by a given log-event. These values can be
reoccurring (if they are part of an enumeration or a well defined set of possible values) or
infrequent if they represent measurement results from a sensor.

Search patterns carrying most information are substrings from those reoccurring cases. Figure
3.3 shows that not all substrings of log-information fit into reoccurring categories. Arbitrary
sequences, unique measurement values, punctuation marks or syntax dependent special charac-
ters provide less useful search patterns. Changes to the monitored system’s architecture can also
render certain search patterns useless.

Aging is a periodic process, that identifies and removes search patterns from P that have no
use for classifying log lines. This can have many reasons; two are tackled with aging:

i P reflects a unique substring from a previously processed log-event Le (e.g. a session ID).
It will not occur any more – or is at least extraordinary rare – in future log-events. P is
therefore useless for classification.

ii P reflects a substring that does not occur any more due to changes in the monitored system
(e.g. the network name of a server that was shut down).
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p1 p2 p3 p4 p5 p6 p7

Patterns P′: GET POST v3ls13 s1316.d0 ice-3.v3 apache: login_page.php

Old
~Cm 1 0 0 1 1 1 1
~Cv 1 0 0 1 0 1 0

Prep
~Cm 1 0 1 0 1 1 1
~Cv 1 0 1 0 0 1 0

Patterns P′′: GET POST v3ls1316.d0 ice-3.v3 apache: login_page.php

New
~Cm 1 0 1 1 1 1
~Cv 1 0 1 0 1 0

Table 3.12: Example of the effects of a pattern merge on an event class. The patterns P3 and
P4 can get merged, since they are overlapping parts of the general network name that is part
of every network address in our sample network. Before the merge P4 is enforced by C while
P3 is ignored. During the preparation phase it is ensured that C is not dependent on P4 any
more since it should get deleted. Instead P3 gets enforced and P4 is ignored. After the merge P′
transcended into P′′ after the old P4 was deleted. ~Cm and ~Cv are adapted accordingly.

Pattern

Periodical

Reoccuring

UniqueTimestamp

Localizers
Chunk

Values

Destination

Source

Application

Meassurements

Enumerations Keys

Date

Values

Session ID

Chunk

Figure 3.3: Mindmap about substring types.

Again – as in previous refinement steps – the system cannot prove behaviour of the input in the
future. Knowing that any search pattern fulfils (i) and (ii) is not possible and approximations
have to be applied.

The Monitored System Behaviour Period T is defined as the smallest time window, in which
every periodic task, in the monitored system, occurs at least once11. In a corporate environment
T will typically be set to one week. Given that there are daily and weekly backup processes, a

11This definition considers normal behaviour in the monitored system
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period of one day would be too short. The weekly backup process would not occur in all periods.
There can also be different workloads over the weekends than during week days, making a one
day period not optimal. A SCADA set-up allows a much shorter period. Given a 24/7 operation
mode and only non-periodic maintenance access, a period of one day is probably a good choice.

Given a certain period T , with respect to the monitored system, approximation is performed
as follows: a search pattern should age out (i.e. get deleted) iff Eq. 3.2912 and Eq. 3.30 hold:

@Le | (tnow − ρP ∗ T < tLe < tnow) ∧ P ∈ Le (3.29)

@C | ~Cm(i) = 1 with Pi being the aging candidate (3.30)

This approximation substitutes the proof, that a search pattern P is not occurring any more
in future log-events. In the condition in Eq. 3.29 T is used to ensure that search patterns,
that describe periodic log-events, do not get deleted during normal system behaviour. Search
patterns, that get deleted because of aging, further cannot be substituted by other search patterns,
carrying the same information. Second level effects on event classes, from deleting a search
pattern because of aging, cannot be prevented by the measures described in Tab. 3.10; Equation
3.10 cannot be applied. Second level effects on event classes can only be eliminated by the
condition in Eq. 3.30; ensuring that there are no event classes considering P as relevant. The
corresponding position in ~Cm and ~Cv can be deleted without effects on C.

3.3.2 Event Class Refinement

Generation

The system defines event classes C automatically using a similar token bucket algorithm13 as
the one used when generating search patterns. Each log-atom La is characterised by its corre-
sponding fingerprint ~F . Balancing event class generation is important because any log-event Le,
that cannot be classified by an event class C ∈ C, contains no information interpretable by the
system. Consequently Le will not be analysed by the system. The system ensures the following
two cases in order to balance event class generation:

i A new event class gets generated for every ~F |@ C∈C classifying ~F

ii New event classes might be generated for every ~F . Generation is less probable the more
existing event classes classify ~F .

One property of event classes is generality. Event classes carry information because they
classify a subset of the log-events described by the input. The entropy of an event EC , marking

12ρP is a global configuration parameter that specifies the number of periods a search pattern P is kept in P
without occurring in any Le

13Here, tokens (a kind of virtual credits) are generated over time and put into a basket. If there are enough tokens
in the bucket, a new class is generated and the required amount of tokens removed from the bucket.
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the classification of Le by C, is inverse proportional to the percentage of log-events in a finite
input set classifiable by C (see Eq. 3.31).

Entropy(EC) =
|{Le}|

|{Le | C classifies Le}| − 1
(3.31)

Trivial event classes, classifying all possible log-events, carry no information about a specific
log-event. An event class generation process has to ensure a certain level of entropy. Table 3.13
establishes three parameters used to ensure proper levels of entropy on newly generated event
classes.

µe Enforced search patterns: This parameter defines a minimum
of enforced bits in a new event class.

φe Percentage of matching search patterns that will be enforced:
This parameter defines a percentage of the search patterns match-
ing Le. This is then the number of search patterns that should be
enforced by a new event class.

φp Percentage of not matching search patterns that will be pro-
hibited: This parameter defines a percentage of the search pat-
terns not matching Le. This is then the number of search patterns
that should be prohibited by a new event class.

Table 3.13: Configuration parameters used to ensure entropy on newly generated event classes.

Algorithm 3.4 shows the class creation process. Each event class is generated based on
the fingerprint ~F of the currently processed log-event. The method numberOfClassifyi
ngEventClasses(~F) returns the number of event classes C ∈ C that already classify ~F .
Once the algorithm decided if a new event class can be generated based on ~F , and how many
search patterns have to be considered, enforced and prohibited, the methods enforceNRan
domPatterns(number_enforced_bits, ~Cm, ~Cv, ~F) and prohibitNRandomPattern
s(number_prohibited_bits, ~Cm, ~Cv, ~F) set the bits in ~Cm and ~Cv accordingly. Table 3.14
gives an example.

Aging

Event classes store information about the composition of log-atoms from search patterns P ∈
P. The set of known event classes C also represents the search space used for creating new
hypotheses in the search for rules. The monitored system can dynamically change. Certain
event classes might not be classifying any log-events any more because of intended changes in
the monitored system. These never triggered event classes increase the search space without
increasing the set of hypotheses. As described in Sect. 3.2, hypotheses are generated based
on the event classes classifying the currently processed log-events. Event classes that do not
classify any log-events cannot be used to generate meaningful hypotheses. The aging of event
classes is a periodic process on C that identifies and removes unused elements C ∈ C.
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Data: ~F , µe, φp, φe
Result: ~Cv, ~Cm

1 bucketSum++
2 matchingCount← numberOfClassifyingEventClasses(~F )
3 cost← baseCost+ (matchingCount ∗ balancingCost)
4 if bucketSum ≥ cost then
5 matching_bits ← {pi | pi ∈ ~F ∧ pi = 1}
6 number_enforced_bits← φe ∗ |matching_bits|
7 not_matching_bits ← {pi | pi ∈ ~F ∧ pi = 0}
8 number_prohibited_bits← φp ∗ |not_matching_bits|
9 if |matching_bits| < µe then

10 abort
11 end
12 if number_enforced_bits < µe then
13 number_enforced_bits← µe
14 end
15 enforceNRandomPatterns(number_enforced_bits, ~Cm, ~Cv, ~F )
16 prohibitNRandomPatterns(number_prohibited_bits, ~Cm, ~Cv, ~F )
17 end

Algorithm 3.4: Creation of a new class C.

p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns P′: GET POST [12/Feb/2014:13:30:15 +0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n
Fingerprint: 1 0 1 1 1 0 1 1 0
~Cm 1 1 0 0 0 0 1 1 0
~Cv 1 0 0 0 0 0 1 1 0

Table 3.14: Example of a newly generated event class based on µe = 2, phie = 0.5 and
phip = 0.3 and the fingerprint from Tab. 3.1.

An event class gets deleted if the conditions in Eq. 3.32 and in Eq. 3.33 hold:

@Le | (tnow − ρC ∗ T < tLe < tnow) ∧ C classifies Le (3.32)

@H ∈ H | C relevant for H (3.33)

The concept is similar to the concept of the aging process on P. Hypotheses depend on certain
event classes. The condition in Eq. 3.33 ensures that the aging process only deletes event
classes without dependent hypotheses. Event classes with dependent hypotheses, cannot be
deleted without deleting the dependent hypotheses too. There is no way to find a substitution for
C without possibly altering the information encoded in a hypothesis. Furthermore hypotheses
model relations between event classes. The lack of log-events being classified by an event class
C does not automatically mean that C is deprecated. Anomalous behaviour would also result
in missing log-events. The aging process therefore has to take H into account. Given that the
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condition in Eq. 3.33 holds, the condition in Eq. 3.32 specifies the threshold for deleting an
event class. The system uses the already introduced period T to ensure that periodic tasks occur
at least once before deleting an event class. The constant configuration parameter ρC specifies
the accuracy of the approximation.

If both conditions hold, the system assumes that there will not be a log-event in the future that
can be classified by C and C will be deleted. If this assumption was wrong the dynamic genera-
tion process can potentially generate a new event class C ′ that classifies {Le | C classifies Le}.

3.3.3 Hypothesis and Rule Refinement

Generation

The system generates hypotheses based on CLa (see Eq. 3.6) – the set of event classes that
classify the currently processed log-atom. Algorithm 3.5 describes the process in detail. HD

is the set of hypotheses that were discarded by the aging process. The generation process ap-
plies the same bucket algorithm as the one used for balancing the generation of search patterns
and the generation of event classes, for balancing the generation of hypotheses. The algorithm
increases the bucket count for every processed log-atom and ensures that the cost for a new hy-
pothesis, calculated based on the current log-event, can be served by the bucket. The method
getRendomElement(Set) returns a random element from the supplied set. Method getRandom-
TimeWindow() returns a random time window tw that is enforced on the implication encoded in
Hnew.

The evaluation of hypotheses is the most time consuming task performed by the system. The
system is therefore designed to prohibit the re-generation of:

i hypotheses that are currently in H

ii hypotheses that can be substituted by a hypothesis that is currently in H

iii hypotheses that were already discarded by the aging process (as well as substitutes of those)

Table 3.15 and Tab. 3.16 describe the conditions under which a generation ofHnew is prohibited.
These are also the conditions tested by the method isSubstitutedBy(Hnew, Hold).

Stability

The periodic generation process only generates hypotheses and cannot extend the set of rules
directly. The set of rules R is a subset of the set of hypotheses H. A hypothesis is considered to
be a rule if isStable(H) (see Eq. 3.17) evaluates to true. Figure 3.4 visualises the Probability
Density Function (PDF) of some sample binomial distributions. While n defines the size of
the sample, p specifies the probability of one evaluation of H to be true. Figure 3.5 shows the
Cumulative Distribution Function (CDF) for the same distributions. A PDF states the probability
for every number of positive elements in the sample; a CDF shows the probability for every
number of positive elements in the sample, that at least that many elements are positive. The
CDF is used to determine the threshold of the hypothesis’ stability. Figure 3.6 shows how the
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Data: CLa , C, H, HD

Result: Hnew

1 bucketSum++
2 matchingCount← |CLa |
3 cost← baseCost+ (matchingCount ∗ balancingCost)
4 if bucketSum ≥ cost then
5 C1 ← getRandomElement(CLa)
6 C2 ← getRandomElement(C)
7 tw ← getRandomTimeWindow()
8 Hnew ← 〈C1, C2,→, tw〉
9 foreach Hold ∈ H ∪HD do

10 if isSubstitutedBy(Hnew, Hold) then
11 abort
12 end
13 end
14 bucketSum = bucketSum− cost
15 end

Algorithm 3.5: Creation of a new hypothesis H .

Hold ∈ H Hnew Description
〈C1, C2,→, t1〉 〈C1, C2,→, t1〉 H already contains the exact same hypothesis. Gen-

erating a new hypothesis encoding the same infor-
mation does not extend the model.

〈C1, C2,→, t1〉 〈C1, C2,→, t2〉 Hnew is a more generic hypothesis than the existing
Hold. As long as the aging process does not decline
Hold a more generic rule does not extend the model.

〈C1, C2,→,−t1〉 〈C1, C2,→,−t1〉 H already contains the exact same hypothesis. Gen-
erating a new hypothesis encoding the same infor-
mation does not extend the model.

〈C1, C2,→,−t1〉 〈C1, C2,→,−t2〉 Hnew is a more generic hypothesis than the existing
Hold. As long as the aging process does not decline
Hold a more generic rule does not extend the model.

Table 3.15: Conditions prohibiting generation of Hnew based on H. Note that: 0 < t1 < t2.

stability evaluation uses the significance value α to define the stability threshold. Equation 3.34
shows the formula to calculate a PDF; Equation 3.35 shows the calculation of a CDF.

PDF (x) =

(
n

x

)
px(1− p)n−x (3.34)

CDF (x) =

x∑
k=0

((
n

k

)
pk(1− p)n−k

)
(3.35)
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Figure 3.4: Samples of Probability Distribution Functions with n = 10 000.
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Figure 3.5: Samples of Cumulative Probability Functions with n = 10 000.
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Hold ∈ HD Hnew Description
〈C1, C2,→, t1〉 〈C1, C2,→, t1〉 HD already contains the exact same hypothesis.

This hypothesis got already declined by the aging
process. Evaluating the same hypothesis again will
have the same result.

〈C1, C2,→,−t1〉 〈C1, C2,→,−t1〉 HD already contains the exact same hypothesis.
This hypothesis got already declined by the aging
process. Evaluating the same hypothesis again will
have the same result.

Table 3.16: Conditions prohibiting generation of Hnew based on HD. Note that: 0 < t1 < t2.
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Figure 3.6: Calculations of Stability Threshold given α = 0.03 and n = 100.

An analysis of Fig. 3.4 and Fig. 3.5 also shows, that the expected value (µ = n ∗ p) moves
to the right, as p increases. This movement also results in denser probability distributions. The
probability of µ is increasing with an increasing value of p. Setting p = 1 would result in an
extreme situation described by Eq. 3.36.

PDF (x) =

{
1 if x = n

0 else
(3.36)

Equation 3.17 describes – and Fig. 3.6 visualises – how stability of a hypothesis is evaluated.
But the evaluation of stability of a hypothesis is only performed once a reliable number of
evaluations e (see Eq. 3.13) can be found in SH (see Eq. 3.14). Some input has to be processed
before stability of a hypothesis can be decided. The stability evaluation is performed on Slk(SH)
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(see Eq. 3.15). The use of statistical means every time stability gets evaluated – in contrast to just
calculating a fixed threshold once, for a sample set of size(Slk) – makes it possible to decide
on stability, even if |SH | << size(Slk). Therefore, the decision can be made shorter after the
generation of a new hypothesis.

Aging

The aging process for hypotheses is again a periodic process, that checks that one of two con-
ditions holds before deleting a hypothesis. The condition described by Eq. 3.37 states, that the
aging process deletes unstable hypotheses. Hypotheses are also deleted if they cannot be eval-
uated over a long time period. The lack of evaluations means, that the processed input triggers
no condition events. The behaviour described by the rule is therefore not represented in the
processed log-files. The event class, that describes the condition events, does not classify any
log-atoms and should have been deleted by the event class aging process beforeH got generated
(see Eq. 3.32). But now that H ∈ H the condition in Eq. 3.33 prohibits the deletion of the
condition event class. H can never be evaluated, and therefore it has to be deleted by the aging
process. Equation 3.38 describes this condition. The aging process again uses the period T as
estimation and a constant parameter ρH ≥ 1 as a multiplier to ensure the occurrence of periodic
log-events before deletion. The function time(e) returns the timestamp of a given evaluation e.
As described in Eq. 3.14 e0 is the newest evaluation in any SH .

isStable(H) = false (3.37)

time(e0 ∈ SH) < now − ρH ∗ T (3.38)

In contrast to the aging processes for search patterns and event classes, the aging process of
hypotheses is applied if any of the before mentioned conditions holds. There are no atoms in
M that H depends on. Equation 3.37 also shows, that aging can only be applied on hypotheses,
never on rules since {@R ∈ R | isStable(R) = false}.
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CHAPTER 4
Implementation

This chapter describes the concrete prototype implementation of the approach described in Ch.
3. After a short introduction in Sect. 4.1 follows a description of the configurable parameters
in Sect. 4.2. Section 4.3 gives a detailed insight into the implementation of different core
functionalities such as atom generation or hypotheses evaluation.

4.1 Introduction

The system described in the previous chapter (see Ch. 3) is implemented as a prototype using the
Java1 programming language. Figure 4.1 shows the already known conceptual overview of the
system, as well as the implementing Java class for every task. Not all functionalities of a specific
task described in Sect. 3.1 are implemented solely in this class. For example: The decision, if
two patterns should get merged or not, is taken in cais.atomhandler.balancer.Patt
ernBalancer. The handling of the effects of the deletion of a pattern on event classes (see
Tab. 3.10), is only triggered by the PatternBalancer class but it is realised in the cais.a
tomhandler.balancer.EventClassificationBalancer.

The Java classes in Fig. 4.1 control the correct workflow of the system. The tasks are
performed strictly sequential. A Publish-Subscribe Pattern2 enables the classes that control a
task to register for updates about new log-events at their predecessor. The two Java interfaces c
ais.atomhandler.listener.IAtomListener and cais.atomhandler.liste
ner.IAtomSource implement the described Publish-Subscribe Pattern (see Fig. 4.2).

1Java is a popular, object-oriented programming language. See http://www.java.com/ for details.
2 In this pattern, entities acting as publishers send information to all registered subscribers. Two interfaces

are required: The publisher provides an interface for entities to register and unregister as subscribers. Whenever the
publisher has information to transmit, it sends this information to all currently registered subscribers. The subscribers
therefore have to provide a unified interface to receive the information from the publisher.
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Log-Event Extraction

Fingerprint Generation

Fingerprint Classification

Rule Evaluation

Pattern Extraction 
& Merging

Pattern Aging

Event Class 
Generation

Event Class Aging

Hypothesis 
Generation

Hypothesis 
Validation

CorrelationChannelSource

EventClassificationChannelSource

AtomFingerprintChannelSource

FileLogAtomSource

PatternBalancer PatternAging

EventClassBalancer EventClassAging

CorrelationRuleBalancer ImplicationCorrelationRule

Figure 4.1: Conceptual overview including implementing Java classes.

Figure 4.2: Interfaces for the publish-subscribe pattern.

4.1.1 Execution Flow

The execution order of the tasks in the Refinement Branches is not ensured by the implementa-
tion. All tasks in a Refinement Branch are registered directly at the triggering task of the Evalu-
ation Stack. The uncertainty in the execution order does not alter the algorithm results, since the
execution order is irrelevant as long as all tasks are performed for one log-event, before the next
log-event gets processed.

The information submitted by classes implementing the IAtomSource interface is wrapped
in cais.atom.LineFingerprintAtom. Figure 4.3 shows the general structure of this
class. The information encoded in the different fields is as follows:

data: Object This field stores the fingerprint ~F of the current log-event. ~F is implemented as
an array of integer values. Each bit of every integer encodes the match (1) or mismatch
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Figure 4.3: Class diagram of LogFingerprintAtom.java.

(0) of one pattern on the wrapped log-line.

timestamp: long The timestamp that was extracted from the log-line in the first task of the
Evaluation Stack.

message: byte[ ] The line (excluding the timestamp that was extracted) that is wrapped by the
object.

patternMatchesAt: HashMap<Pattern, int> This HashMap stores, for every search pattern
P that matches the line, the position of the search pattern in the respective line. The case
that one pattern can occur multiple times in one log-line is omitted. The system considers
the first occurrence.

triggeredEvents: List<Event> This list stores all eventsE that were triggered by the currently
processed log-event.

During runtime of the system, these fields are continuously filled when the respective infor-
mation is available. Figure 4.4 shows the general information flow in the system (from bottom to
top with respect to the Evaluation Stack). At every level the box visualising LineFingerpr
intAtom.java shows, what fields are set at this level and what fields are used. Furthermore,
tilted boxes indicate the fields used by classes implementing or managing refinement tasks. The
bent arrows encode this information flow. The straight arrows describe the general execution
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data (fingerprint): int[]

patternMatchesAt: HashMap

timestamp: Long

message: byte[]

patternMatchesAt: HashMap

timestamp: Long

message: byte[]

timestamp: Long

FileLogAtomSource.java

AtomFingerprintChannelSource.java

EventClassificationChannelSource.java

CorrelationChannelSource.java

PatternBalancer.java

PatternAgingComponent.java

EventClassificationBalancer.java

EventClassAgingComponent.java

EventClassificationBalancer.java

triggeredEvents: List<Event>

data (fingerprint): int[]

patternMatchesAt: HashMap

message: byte[]

message: byte[]

timestamp: Long

data (fingerprint): int[]

triggeredEvents: List<Event>

Figure 4.4: Flow diagram of general components picturing the use of LineFingerprintAtom at
all stages.

flow. The order, in which the next tasks are called, is not fixed before runtime. Every straight
arrow indicates one call of receiveAtom(GenericAtom) that passes one LineFinger
printAtom object, encoding the log-event that is currently processed by the system.

4.1.2 Atoms

As seen in Sect. 3 the system highly relies on the quality of the information in the system model
M . An atom is a search pattern, an event class, a hypothesis, an event or an anomaly. Figure 4.5
shows the class structure of the main atoms: search patterns P (cais.atom.Pattern), event
classes C (cais.atom.EventClass) and hypotheses H (cais.rule.ImplicationC
orrelationRule). Some general functionality, that each atom has to provide, is extracted
into abstract classes and interfaces for maintenance reasons. Each atom is a cais.atom.Abs
tractUpdatableObject. This abstract class ensures a unique id over all atoms. Each atom
is further a cais.atom.AbstractAgingObject, providing functionality to manage the
aging conditions directly at the atom itself. The implementation further handles events EC and
anomalies as separate classes in the atom package. The cais.atom.Event class describes
events; the cais.atom.Anomaly class describes anomalies. They do not belong to the same
inheritance tree as patterns, event classes and hypotheses (see Fig. 4.5) because they are neither
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Figure 4.5: Class structure of atoms building M .

subject to any aging functionality nor managed by any registry. Instead events and anomalies
are managed by the hypotheses they belong to.

4.1.3 Package Structure

The complete package structure is visualised by Fig. 4.6. The following list gives a short
overview about the purpose of each package:

cais The root package contains the main class cais.FingerPrintDemo and hosts all other
packages.

cais.atom The atom package hosts all classes that represent atoms or provide functionality for
these atoms.

cais.atomhandler This package houses all classes that perform tasks on atoms. These can
either be tasks from the Evaluation Stack or tasks from the Refinement Branches. The
following subpackages cluster different types of tasks by the stage at which they are per-
formed at.

cais.atomhandler.source This package contains the interface description for Publishers as well
as all classes acting solely as Publishers.

cais.atomhandler.listener This package contains the Subscriber’s interface.
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cais.atomhandler.registries Registries are classes that are instantiated only once during run-
time of the system (so called Singleton classes). They act as a in-code database for differ-
ent types of atoms. Registries handle generation, deletion and maintenance of the respec-
tive atoms and provide access to the stored atoms by different means.

cais.atomhandler.intermediate A class is considered an intermediate, if it implements the I
AtomListener interface as well as the IAtomSource interface. These classes are
Subscriber as well as Publisher.

cais.atomhandler.balancer Classes in this package manage atom generation.

cais.atomhandler.aging Classes in this package manage aging of atoms.

cais.configuration This package contains utilities handling global configurations.

cais.rule This package contains all classes implementing the functionality of hypotheses and
rules.

cais.rule.util This package contains all classes that are utilised to implement rule functionality.

cais.util This package contains global utility classes.

cais.db All classes in this package are used to persist knowledge generated by the system in an
SQL-database.

4.2 Parameters

During runtime, the proposed system extracts information from log-lines and analyses the input
at the same time using this information. To achieve this, the system requires some pre-defined
parameters. These parameters define thresholds, initialization values or settings from external
tools (e.g. credentials for database access). The choice of these parameters is critical but most
of the parameters do not depend on the architecture of the monitored system. One goal of
the system is small configuration effort at set-up time. The default values of the parameters
will mostly be sufficient, but parametrization gives the freedom to adapt the system to more
complex needs. Table 4.1 gives an overview on the existing parameters and their functionality.
The most critical parameter in this configuration is the Monitored System Behaviour Period T .
The implementation does not use the timestamps of processed log-lines to measure the time
passed. Decisions involving time (e.g. aging or set-up phases) are taken based on the number
of processed log-lines3. The system measures T by counting the number of log-lines processed.
The number of lines that occur in one period is a fixed value in the current implementation.
Future version can adapt this number dynamically at runtime.

3An exception to this rule is the evaluation of hypotheses based on the events relevant for H . This decision is
based on the exact time of a log-event.
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Figure 4.6: Package structure of the prototype implementation.
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The approximation of time by the number of processed lines, makes the algorithm more
syntax independent. The system is also more resistant to network delays: events that arrive with
a delay do not cause the „system clock“ to run backwards.
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Database Configuration
cais.database Enables persistent storage of the generated model

M . The possible values are true or false.
cais.database.* Possible parameters are: driver, url, username and

password. They are used to define location and type
of a database as well as the credentials to access it.

General Configuration
cais.logLinesPerPeriod The number of lines that are used to approximate

one period T .
PatternBalancer Configuration:
cais.atomhandler.balancer.PatternBalancer.*
baseCost Fixed price for a new search pattern P in the token

balancing algorithm.
patternCreationAttempts A new search pattern P is only generated, if P /∈M .

If a randomly chosen substring is already part of the
model it is not generated again. This parameter de-
fines how often the system tries to find a new pattern
on a line.

minPatternLength The minimum length of a substring building a search
pattern.

maxPatternLength The maximum length of a substring building a
search pattern.

EventClassificationBalancer Configuration:
cais.atomhandler.balancer.EventClassificationBalancer.*
baseCost Fixed price for every new event class according to

the balancing algorithm (see Alg. 3.4).
triggeredEventCost Variable price for every new event class according to

the balancing algorithm (see Alg. 3.4).
prohibitedBitsPercentage Every event class is generated based on a log-line’s

fingerprint ~F . A certain number of all patterns that
cannot be found on La is prohibited in the event
class. The prohibited patterns are randomly se-
lected. This parameter specifies the percentage of all
patterns that are not matching La that are selected.
(see φp in Alg. 3.4).

minEnforcedBitsPerMask The number of search patterns that have to be en-
forced by an event class for the event class to be
generated (see µe in Alg. 3.4).
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enforcedBitsPercentage A certain number of all patterns that are found on La

is enforced in the event class. The enforced patterns
are randomly selected. This parameter specifies the
percentage of all patterns that are matching La that
are selected (see φe in Alg. 3.4).

classCreationAttempts Number of times the system tries to randomly gen-
erate a new event class that is not yet part of C.

CorrelationRuleBalancer Configuration:
cais.atomhandler.balancer.CorrelationRuleBalancer.*
baseCost Fixed price for every new hypothesis according to

the balancing algorithm (see Alg. 3.5).
existingHypothesisCost Variable price for every new hypothesis according to

the balancing algorithm (see Alg. 3.4).
createAttempts Every hypothesis is generated based on the event

classes classifying the current log-event Le as well
as the set of all known event classes C. This param-
eter defines how often the system tries to randomly
define a new hypothesis on one line.

Aging Configuration:
cais.atomhandler.aging.*
numberOfInitialPeriods Once a search pattern or an event class is generated,

this parameter defines the number of periods T it
does not age out although no event class or hypoth-
esis depend on it.

numberOfPeriodsForUnusedP
attern

Number of periods T a search pattern does not age
out, without depending event class (see ρP in Eq.
3.29).

numberOfPeriodsForUnusedE
ventclass

Number of periods T an event class does not age out,
without depending hypothesis (see ρC in Eq. 3.32).

numberOfPeriodsForUnevalu
atedRule

Number of periods a hypothesis does not age out, if
it is not considered stable and no new evaluations are
triggered (see ρH in Eq. 3.38).

Table 4.1: Configuration parameters in the prototype implementation.
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Figure 4.7: Class diagram and call overview of PatternRegistry.

4.3 Core Functionalities

4.3.1 Registries

The system model M (see Eq. 3.1) is managed by so called registries. Each registry manages
one subset (P, C or H) of M4. They act as internal databases providing CRUD5 operations for
the atoms. The following figures show the registry classes as well as an overview of the calls
made to the specific methods provided: Figure 4.7 depicts the PatternRegistry, Fig. 4.8
depicts the EventClassRegistry and Fig. 4.9 depicts the CorrelationRuleRegist
ry.

In general, the respective balancing components, aging components and channel sources
access the registries most frequently.

Balancing-components generate new information based on the LineAtomFingerprint
encoding the current log-event. This generation process requires information about the existing
atoms, because duplicated atoms are prohibited. Additionally, after generating a new atom, this
atom requires to be registered at the respective registry. Only after this registration the new atom
is considered part of the system model M .

Aging-components handle the deletion of invalid or deprecated atoms. In order to make the
decision if an atom should be deleted, the aging component has to keep track about dependencies
on the atom in question and on the atom’s internal status. Since the atoms are managed by the
registry, the aging component simply requests the required information. If an atom has to be
deleted the deletion process is triggered at the registry. That way a common knowledge of M
over all components of the system is guaranteed.

Channel-sources manage the general workflow in the system. They manage the tasks de-
scribed by the Evaluation Stack. They also get the required information directly from the reg-

4Since the set of rules in the system model R is a subset of the set of hypotheses H it is not managed by a separate
registry. Instead H and R are handled by the same registry.

5CRUD is an acronym describing general database operations: Create, Read, Update and Delete
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Figure 4.8: Class diagram and call overview of EventClassRegistry.

Figure 4.9: Class diagram and call overview of CorrelationRuleRegistry.

istries.
Although registries are used mainly by the components responsible for atoms they are avail-

able throughout the system and can be accessed by all components. One example can be seen in
Fig. 4.8: The PatternRegistry accesses the EventClassRegistry in order to trigger
the changes that have to be performed on ~Cv and ~Cm after a pattern got deleted or two patterns
got merged (see Tab. 3.11).

4.3.2 Balancing Components

Balancing components handle the generation of atoms in M . There are three balancing com-
ponents: one for search patterns P, one for event classes C and one for hypotheses H. Figure
4.10 shows a class diagram of the PatternBalancer. The information about the currently
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Figure 4.10: Class diagram showing the interactions triggered by the PatternBalancer.

processed log-line is retrieved from the LineFingerprintAtom. If the balancer decides to
generate a new pattern it is registered at the PatternRegistry. The PatternRegistry
is also used to get information about the current status of P. The PatternBalancer further
handles the merging of patterns. Therefore the PatternBalancer counts the lines in which
two patterns have the same valid merge candidate. The verification that a merge is possible fails,
if any line occurs, where the merge candidate can not be verified. If a merge is performed, the E
ventClassificationBalancer handles the effects on the event classes (see Tab. 3.11).

Figure 4.11 shows a sequence diagram of the search pattern generation process. If the Patt
ernBalancer has enough tokens to generate a new pattern it first generates a candidate. The
balancer then checks the candidate already exists in P. If the candidate does exist already the P
atternBalancer generates a new candidate and performs the check again. New candidates
are generated for a certain number of times. If the PatternBalancer cannot find a new
candidate it aborts the generation. If the pattern candidate does not exist yet, the PatternBa
lancer generates a new search pattern notifies the registry. Additionally the balancer checks
every new pattern against all old patterns in P that match the current log-line, to find a new merge
candidate. If a merge candidate is found it is initialised and gets evaluated in future log-lines.

Figure 4.12 shows a sequence diagram of the algorithm that handles the effects of pattern
merges on event classes. It adapts ~Cm and ~Cv depending on the cases given in Tab. 3.11. These
changes also influence the dependencies on different patterns involved in the merge.

For reasons of completeness Fig. 4.13 shows the class diagram of the EventClassific
ationBalancer while Fig. 4.14 shows the class diagram of the CorrelationRuleBala
ncer.
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[requiredTokens <= currentTokens]

opt

opt

loop
[tries < PATTERN_CREATION_ATTEMPTS]

break

[else]

[registry.patternExists(pat)]

[newPattern != null]

MonitorFactory :
MonitorFactory

patternMatchesAt :
HashMap<Long,Integer>yy

registry :
PatternRegistry

logger :
java.util.logging.Logger

pattern :
java.lang.String

System :
System

random :
java.util.Random

fpAtom :
LineFingerprintAtom

: PatternBalancer

1.10: put(newPattern.getId(), index)

1.9: indexOf(new String(newPattern.getPattern()))

1.8: initNewMergeCounters(patternMatchesAt : java.util.HashMap = patternMatchesAt, patUnderEvaluation : Pattern = newPattern, patPos : int = patPos, message : byte[] = fpAtom.message) : void

1.7: registerNewPattern(pattern : byte[] = pat) : Pattern

1.6: fine("Adding pattern \"" + new String(pat) + "\"")

1.5: trim()

1.4:

1.3: arraycopy(message, patPos, pat, 0, patLength)

1.2: nextInt(message.length - patLength)

1.1: getPatternMatchesAt() : java.util.HashMap

1: receiveAtom(atom : GenericAtom) : void

1.11:

Figure 4.11: Sequence diagram showing the balancing algorithm on the sample of patterns.

4.3.3 Aging Components

Not all generated atoms are useful to the system. Invalid or deprecated atoms should get deleted
automatically as soon as a deletion is possible without affecting other atoms. Aging components
fulfil the task of cleaning up the system model M . Figure 4.15 shows a class diagram of the
aging components. The diagram also shows how registries and aging components affect each
other. The aging components just manage the internal state of the atoms that reflects if an atom
should be deleted. The actual deletion process is triggered. Deletion is then performed by the
registry if all conditions hold.

Note that deletion of atoms can not only be triggered by the aging component. One example
would be the merging of two search patterns. In that case one pattern will be extended and the
other one will be deleted. This procedure is valid, since the extended pattern substitutes the
deprecated one.

Figure 4.16 gives an overview about the method calls involved in the periodic aging process,
using the example of event class aging. For every processed log-line, a loop over all event classes
in C checks, if a certain event class is part of a hypothesis. This check is passed if the condition
in Eq. 3.33 holds. A score is used to count the number of times that the described check fails.
This score measures the number of lines that can be processed before C gets deleted, given that
C is not used during this time span. Whenever the score is reduced, the registry is triggered to
check all deletion conditions (see Eq. 3.32 and Eq. 3.33). The registry is also the component
that performs the actual deletion.

A very similar sequence of operations can be observed in the pattern aging component. This
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alt

loop

alt

opt

[for each registry.getKnownEventClasses()]

[storeToDB]

[else]

[!ec.patternIsRelevant(obsolete)]

[ec.patternIsRelevant(obsolete) && !ec.patternIsRelevant(updated)]

[ec.patternIsRequired(obsolete) && !ec.patternIsRelevant(updated)]

: VisualizationEventClassDTO

patternAgingComponent : PatternAgingComponentec : EventClass: EventClassificationBalancer

1.9:

1.8: updateEventClass(id : long = ec.getId(), maskString : String = ec.getMaskString(), valueString : String = ec.getValueString()) : void

1.7:

1.6: updateDependency(pos : int = obsolete, increase : boolean = false) : void

1.5: ignorePattern(cPos : int = obsolete) : void

1.4: updateDependency(pos : int = updated, increase : boolean = true) : void

1.3: forbidPattern(cPos : int = updated) : void

1.2: updateDependency(pos : int = updated, increase : boolean = true) : void

1.1: ensurePattern(cPos : int = updated) : void

1: handlePatternMergeInEventClasses(updated : int, obsolete : int) : void

Figure 4.12: Sequence diagram showing the handling of merge effects by the
EventClassificationBalancer.
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Figure 4.13: Class diagram showing the interactions triggered by the
EventClassificationBalancer.

Figure 4.14: Class diagram showing the interactions triggered by the
CorrelationRuleBalancer.
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Figure 4.15: Class diagram showing the interactions between aging components and registries.

alt

loop

opt

[eventClass.isDeletable()]

[storeToDB]

opt

[else]

[ec.isInUse()]

[for each registry.getKnownEventClasses()]

eventClassDTO : IEventClassDTO: PatternAgingComponentreg : java.util.concurrent.ConcurrentHashMapregistry : EventClassRegistryec : EventClass: EventClassAgingComponent

1.3.3: deleteEventClass(c : EventClass = eventClass) : void

1.3.2: unregisterEventClass(ec : EventClass = eventClass) : void

1.3.1: remove(eventClass.getId())

1.4:

1.3: checkAndDelete(eventClass : EventClass = ec) : void

1.2: setScore(score : double = ec.getScore() - 1.0) : void

1.1: setScore(score : double = USED_EVENTCLASS_SCORE) : void

1: receiveAtom(atom : cais.atom.GenericAtom) : void

Figure 4.16: Sequence diagram visualising aging on the sample of event classes.
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sequence is not explicitly shown here for simplicity reasons.

4.3.4 Hypothesis Evaluation

In the current implementation, hypotheses and rules can only be distinguished by their internal
state of stability. The RuleStabilityEnum describes the possible stability states. The
possible states are:

STABLE The CorrelationRule is ∈ R.

UNSTABLE The CorrelationRule will be deleted.

UNDECIDABLE There are not enough evaluations of the CorrelationRule yet to decide
about the stability. The CorrelationRule will be further evaluated and is considered
∈ H\R

Every CorrelationRule stores its evaluations in various slots (see Eq. 3.15). The
number and the size of these slots are given at start-up time (see Tab. 4.1) and they are generated
by a SlotFactory for every newly generated hypothesis. Figure 4.17 shows a class diagram
of the SlotFactory as well as the types of slots. Every new evaluation of the hypothesis is
pushed to all slots. As described in Sect. 3.3 the last and biggest slots have a special meaning.
It is used to describe the distribution that is assumed for the hypothesis. It is important, that
evaluations that indicate an anomaly are not considered by this last slot. It therefore buffers
elements before considering them. If there is an anomaly detected in the smaller slots, the
buffered evaluations are dropped. Therefore, the distribution of positive and negative evaluations
in the last slot is only updated with evaluations from stable phases.

Slots also store, if their evaluations contain an anomaly. Since every slot can detect an
anomaly it probable that the same anomaly is detected several several times by different slots.
This is prohibited by ensuring that a rule can only detect a new anomaly, if all slots were anomaly
free before. Otherwise the already detected anomaly is considered ongoing.

Figure 4.18 shows a class diagram visualising the relationships between CorrelationR
ules and the IRuleStatisticsCalculators. Statistical evaluations over the slots are
performed by the IRuleStatisticsCalculator implementation. This involves checks
on the stability status of the hypothesis as well as checks about anomalies on rules.

The implementation has no aging component for rules. This functionality is implemented
at two different locations in the code. The CorrelationRuleChannelSource handles
aging due to a lack of evaluations (see Eq. 3.38). Figure 4.19 shows the call sequence in this
case. All rules get evaluated, if new relevant events for a rule got triggered by the current line.
If a hypothesis is unstable and no evaluations can be performed over a long period of time, the
hypothesis is considered invalid and gets deleted.

Figure 4.20 shows a sequence diagram of the evaluateRule() method. In this method
all events, that were not yet processed, get analysed and the rule evaluations get pushed into
the slots. After storing the statistical analysis results into a persistent database (if this feature is
activated), the method evaluates the stability of the rule. Hypotheses are not further considered,
while unstable rules get deleted (see Eq. 3.37). For stable rules the method checks, if any slot
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Figure 4.17: Class diagram showing slot types and the SlotFactory.

Figure 4.18: Class diagram showing the relation between CorrelationRules and the sta-
tistical utility class IRuleStatisticsCalculator.

turned anomalous after the last evaluation. If none was anomalous before, the method triggers an
anomaly and stores it into the database. Otherwise the status does not change and the evaluation
is finished.

4.3.5 Persistent Storage

The prototype implementation provides a persistent storage utility. A PostgreSQL6 database
can be used to store the system model as well as statistical measurements of the hypotheses
generated by the system. This persistent storage acts as an interface for external applications
such as visualization tools or evaluation scripts (see Ch. 6). Figure 4.21 shows an Entity-
Relationship diagram, visualizing the database used to store the happenings in the system. The

6PostgreSQL is an open source, object-relational database system. See http://www.postgresql.org/ for more
details.

57



loop

alt

[for each rules]

[rule.isStable() == RuleStabilityEnum.UNDECIDABLE && rule.increaseInstableTime() <= 0]

[rule.toEvaluate()]

rule : CorrelationRuleregistry : CorrelationRuleRegistry: CorrelationChannelSource

1.5:

1.4: checkAndDelete(rule : CorrelationRule = rule) : void

1.3: setScore(score : double = 0.0) : void

1.2: evaluateRule() : void

1.1: getKnownCorrelationRules() : java.util.Collection

1: receiveAtom(atom : GenericAtom) : void

Figure 4.19: Sequence diagram visualizing rule aging in the
CorrelationRuleChannelSource.

current implementation of the persistent storage utility does not support various numbers of
slots. If persistent storage is activated, the number of slots used to statistically evaluate rules is
fixed to four (one being the StabilitySlot).

The use of persistent storage is not mandatory. Anomalies can also be extracted by looking
into the log-files produced by the system.
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id integer(10)

mask varchar(500)

value varchar(500)

creation_time timestamp

deletion_time timestamp

last_line varchar(500)

eventclass

id integer(10)

pattern varchar(200)

creation_time timestamp

deletion_time timestamp

pattern

id integer(10)

ruleid integer(10)

time_stamp timestamp

probability double(10)

anomaly

id integer(10)

ruleid integer(10)

time_stamp timestamp

is_active_at_timestamp bit

anomaly_probability_short double(10)

anomaly_prob_middle double(10)

anomaly_prob_long double(10)

positive_probability double(10)

rule_statistics

id integer(10)

creation_time timestamp

deletion_time timestamp

implication_window_start integer(10)

implication_window_end integer(10)

condition_type integer(10)

implied_type integer(10)

rule

Figure 4.21: Entity relationship diagram of the database used to store the system model and
measurement values.
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CHAPTER 5
Test Environments

This chapter describes the different test environments. The datasets that are generated by the
described environments are then used in Ch. 6 for detailed evaluations of the prototype imple-
mentation from Ch. 4.

5.1 ICT Environment

5.1.1 Data Generation Approach

A accurate evaluation relies highly on the quality of the data-set used to evaluate a system. Table
5.1 lists requirements for test data. A datageneration approach has to make tradeoffs, since not
all of these requirements can be fulfilled in an optimal way at the same time.

Especially in the early evaluation stages, datasets from productive systems are hardly usable.
The complexity is naturally very high and it is hardly possible to analyse these datasets prior to
evaluation. But without an analysis of the dataset, an evaluation is not possible; the evaluator
would not know what to look for. One solution to this problem can be the use of publicly
available, annotated datasets (see Sect 2.4), but such datasets are hard to come by and often
have limitations of their own. The usage of private datasets on the othe hand, hampers the
credibility Often such datasets cannot be published due to privacy and security reasons, what
makes the results non-reproducible. Completely synthetic datasets have a reduced complexity
and are generated based on information about controlled environments. They seem good choices
for early evaluations but they can only provide a very simplified view on system behaviour. It is
hard to generate realistic datasets with different complexity, solely by synthetic means.

The approach taken in this thesis is semi-synthetic; a hybrid approach between synthetic data
generation and collection of productive log-data: A virtual ICT network is stimulated by virtual
users. These virtual users are implemented by scripts and are executed on separated virtual
machines. They simulate realistic user behaviour in terms of service interaction properties. The
data for later evaluation is recorded from real systems in the virtual setting. The result is very
similar to data generated by a similar productive setting but without possible noise coming from
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data property explanation

large size Scale and amount of the generated data is comparable
to data generated by productive networks.

realistic The data is comparable to data generated by produc-
tive networks in terms of distribution, variability, ran-
dom noise, complexity etc.

analysable Either the input is completely controlled or the data is
completely annotated. Otherwise the results of the sys-
tem under test cannot be verified.

easy to generate Data for different test setups can be generated in a time
efficient way.

easy to adapt Coverage of various test conditions and purposes has to
be achievable.

configurable complexity Data with different complexity can be generated to
cover basic scenario tests as well as detailed evalua-
tions.

extensible generation The generated data can adapt to new trends in the mon-
itored systems.

Table 5.1: Required data properties.

data origin advantage disadvantage

synthetic easy to (re-)produce, has de-
sired properties, no unknown
properties

no realistic ‘noise’
mostly simplified situations

real realistic test basis bad scalability (user input,
varying scenarios), privacy
issues, attack on own system
required

semi-synthetic more realistic than synthetic
data, easier to produce than real
data

simplified and biased if an in-
sufficient synthetic user model
is applied

Table 5.2: Test data origins and their pros and cons.

malicious users or users with erroneous behaviour. Table 5.2 gives a brief overview of the three
possible types of test data generation.

Figure 5.1 illustrates of the implemented test-data generator. It operates in a distributed
virtual set-up on three different layers.
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Figure 5.1: Overview of the semi-synthetic log-file generation approach.

Logging Layer

On the bottom layer, log-lines from various sources in the Infrastructure Layer get aggregated.
A remote syslog-daemon1, on a virtual machine, collects all log-events from registered systems.
A Timestamp Verification and Correction Unit then checks the lines, before they are redirected
into one central log-file. The Timestamp Verification and Correction Unit checks the log-events
for correct timely order and reorders the lines if needed. The overall result of the data generator
is one central log-file that contains all log-events, from all registered components in the Infras-
tructure Layer, in a timely sorted manner. The evaluation is performed on this recorded log-file.
That way, evaluation results are reproducible and a more time effective evaluation is possible.

1Syslog is a standardised protocol for log message transmission defined in RFC 5424. See
http://tools.ietf.org/html/rfc5424 for more details.
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Infrastructure Layer

To generate realistic data, the Infrastructure Layer contains a virtual ICT network. For the
evaluations in Ch. 6, the network consists of four services that are wrapped in one virtual
machine. A reverse-proxy makes these services available; a firewall filters all access coming
over the reverse-proxy. The following components build the network infrastructure:

Mantis Instances: One or more Mantis2 instances get deployed on an Apache Webserver3 and
allow multiple users to manage bugs and tickets that are persistently stored in a MySQL4

database. Mantis further sends notifications about assignments via the mail server to the
mail addresses provided by the users. Different test scenarios use a different number of
Mantis instances. The complexity of the generated data can be increased by increasing
the number of instances as well as by increasing the number of virtual users.

MySQL Database: This database server is used by all deployed Mantis instances. Separated
databases are used for different Mantis instances but they are all based on one database
server.

Mail Server: The mail server is used by all Mantis instances to notify the users about assign-
ments of tasks or newly generated tickets. Similar to the database server, the mail server
is used by all deployed Mantis instances simultaneously.

This network could be arbitrarily extended by additional services. For our evaluations the
complexity of the described layout is sufficient.

Virtual Users Layer

On the top layer a configurable number of virtual users are deployed that simulate user interac-
tion with a virtual network. Selenium5, a browser automation tool, simulates the virtual users
based on a Selenium script. Every virtual user repeatedly executes various use cases; in random
order and for a given time. Between the actions in the browser, realistic timeouts are inserted to
simulate realistic speed of user actions. Each use-case has a certain probability to be executed
once a user finished its last use-case. This ensures that actions, that are performed by real users
more frequently, are also performed more frequently by the virtual users. Figure 5.2 shows a
flow diagram of a virtual user’s behaviour. Figure 5.3 refines the diagram by specifying the
Update Bug Report subprocess.

2Mantis is a web-based, open source issue tracking system. See http://www.mantisbt.org/ for more details
3The Apache HTTP Server is an open source HTTP server. See http://httpd.apache.org/ for more details.
4MySQL is an open source, relational database management system. See http://www.mysql.com/ for more

details.
5Selenium is a web browser automation tool. Originally developed for web application testing, its functionality

is not limited to that. See http://docs.seleniumhq.org/ for more details.
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Figure 5.3: Flow diagram of the Update Bug Report process from the flow diagram in Fig. 5.2.

5.1.2 Data Generation Approach Evaluation

The behaviour of virtual users is based on an analysis of user behaviour in a productive Mantis
system over 3 months. Figure 5.2 describes the results of this evaluation by denoting the proba-
bility of each branch at every decision point in the diagram. The diagram gives an overview of
average user behaviour. Of course these probabilities might vary depending on the user’s role
in the team (e.g. developer, software tester, project manager, etc.). Based on the results of this
analysis the virtual user decides its next actions.

The evaluation of the semi-synthetic approach was performed with 5 and 25 virtual users.
Each case was performed 5 times in order to reach an averaging effect. This is important since
the approach is non-deterministic. Each run recorded 15 minutes of log-data. Table 5.3 shows
the number of lines generated by the different components in the network. The database server
generates well over 90% of all log-lines. This has two reasons:

i Each request to the webserver triggers multiple SQL commands in the backend. The fact
that virtual users only interact directly with the webserver, automatically results in a higher
number of database log-lines.

ii The log-output produced by MySQL for one SQL command is split over multiple log-lines
(see Lst. 5.1). A post-processor could be used to parse and merge the SQL commands into
one line. But this would alter the original output and the approach would lose its general
applicability.

1 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#01158177 Query#011
SELECT DISTINCT p.id, p.name, ph.parent_id

2 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
FROM mantis_project_table p
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5 users 25 users
Log Source min. max. min. max.

Web Server 926 1029 3063 4308
Database 72150 78589 240889 305068
Reverse proxy 916 1018 3022 4217
Total log lines 74072 80521 247231 313593
avg.lines/minute 4938 5368 16482 20906

Table 5.3: Log data production performance during a 15 minutes run.

3 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
LEFT JOIN mantis_project_hierarchy_table ph

4 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
ON ph.child_id = p.id

5 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
WHERE p.enabled = 1 AND

6 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
#011 ph.parent_id IS NOT NULL

7 Feb 12 13:30:16 database-0.v3ls1316.d03.arc.local mysql-normal #011#011#011#011#011
ORDER BY p.name

Listing 5.1: MySQL log excerpt from test environment.

Quality Analysis

Real Mantis Usage Reference Data set. To rate the types and the frequency of virtual user
actions, the log-file of a Web server, running a Mantis instance used by real users in a software
development team6, was analysed. The analysed log-file contained the actions of 25 users over
the time period of one working day. The file contained a total of 492 832 (Apache) web server
requests composed of 291 different types. The distribution of the total number of requests among
the different types is strongly exponential: the 10 most often issued request types account for half
of all requests (approximately 250 000). Half of the request types, on the other hand, occurred
less than 30 times.

Semi-Synthetic Data Set. The dataset generated by the semi-synthetic approach with 25
virtual users over 15 minutes contains between 3 063 and 4308 web server requests depending
on the run. The dataset distinguishes 88 types of web server requests. The missing request types
in, comparison to the real dataset, can be explained by the fact, that not all options available
to a user are really implemented in the virtual user script. The exponential distribution of the
request types throughout the real dataset suggests, that support of the most common operations
is sufficient for a credible dataset. The semi-synthetic approach could generate much more web
server requests in the same time, but it has the goal to achieve normal user behaviour. Therefore
waiting times are inserted between opening a page and submitting a formular. Furthermore there
are cases where a normal user opens a page, but waits several minutes before interacting. If those
real-world cases are not an issue for the system that should be evaluated, the waiting times can
also be reduced or removed to achieve a faster generation of web server requests.

6This was an anonymised, Ausstrian Institute of Technologs (AIT) internal dataset
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Figure 5.4: Distribution of user requests extracted from a data set from a real produc-
tive environment compared to request occurring in the simulation environment with virtual
users. Notice: some user actions are not implemented in the virtual user model (e.g.,
GET/plugin_file.php). Moreover, the two outliers result from the fact that the simu-
lated user does not use cookies to keep logged-in and does not use bookmarks to go to specific
views directly, thus requests GET/view_all_bug_page.php much more frequently.

Comparison. Figure 5.4 shows the relative request rate of the most common request types
for the real dataset as well as for the semi-synthetically generated dataset. Already the simple
implementation that supports only 88 out of 291 request types achieves a realistic load on the
system. A 100% accuracy is not realistic since neither the real user nor the virtual user scripts act
deterministic. The goal of the semi-synthetic approach is to create realistic load and background
noise on the system. When an attack is then injected into the system, the complexity to detect
the attack is similar to the complexity in a real system.

Two significant outliers have to be considered separately. The request of view_all_b
ug_page.php is the starting point for all actions the virtual user performs. It is therefore
called much more frequently than in a real system (users might use direct links or bookmarks).
Furthermore virtual users do not use cookies to keep logged in. The login page is also requested
significantly more often.

5.1.3 Datasets

The following evaluations in Ch. 6 use three datasets that were generated with the semi-synthetic
setting described in Sect. 5.1.1. The first two datasets were recorded on a clean system. They
will be used in the further evaluations of system parameters and performance when generating
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2U8h 4U12h
Recorded Time 8 Hours 12 Hours 30 Minutes
Simulated Users 2 4
Mantis Instances 1 2

Table 5.4: Differences between recorded datasets.

the system model M . During the generation of the third dataset different anomalies got injected
in the system at different timestamps during recording. It will be used to analyse the system’s
performance in detecting anomalies. The following sections will describe the datasets in more
detail.

Clean Datasets

Two datasets were recorded on a clean system. An evaluation of the generated system model
requires a clean dataset. Anomalies in these datasets would lead to biased results because the
effects of anomalies on the extracted figures cannot be calculated at this evaluation stage. Addi-
tionally, a solid evaluation has to show that the analysed results are not over-fitting the analysed
dataset. The choice of two different datasets gives the evaluator the means to prove consistent
results over various systems. Table 5.4 shows the differences between the two datasets.

One can see that dataset 4U12h is in all aspects more complex than dataset 2U8h. Not only
the recording time, but also the number of simulated users and the number of simulated Mantis
instances (all operating on one database server) is higher.

Anomalous Dataset

An additional dataset was recorded while anomalies were injected in the monitored system at
different time periods. The configurations of the monitored system were equal to the ones taken
when recording dataset 4U12h. It contains 12 hours and 30 minutes of log information. During
that time 4 virtual users used two different Mantis instances that operated on one database server.
The dataset consists of two main parts:

i Training Phase: The first 7 hours of the dataset are recorded on a clean system. In this first
phase no anomalies are injected. The data are used by the algorithm to build a clean system
model M .

ii Attack Phase: After the Training Phase, two types of anomalies are injected several times
in different time slots. One time slot is 30 minutes long and for each type of anomaly, four
different slots are generated. Figure 5.5 shows a timeline of the anomalous phase.

Two different types of anomalies are injected in this dataset:

A1 At each injection point in a time slot A1 in Fig. 5.5 a malicious script dumps all databases
on the central database server. This dump is not performed remotely but directly on the

69



07:00 - 07:30

A1.1

07:00

08:00 - 08:30

A1.3

08:30 - 09:00

A1.4

07:30

07:40 08:00

A1.2

07:30 - 08:00

08:10

08:20

08:30

08:35

08:40

08:45

09:00 - 10:00

Break

11:30 - 12:00

A2.4

A2.2

10:30 - 11:00
10:00 - 10:30

A2.1

11:00 - 11:30

A2.3

10:00 - 10:00

10:30 - 10:31

11:00 - 11:02

11:30 - 11:34

12:00 - 12:30

Break

Figure 5.5: Timeline of the Anomalous Phase in the anomalous dataset

host of the database server. After dumping the database, the script uses the mail server to
send the dump files to an external network.

A2 At each injection point in a time slot A2 in Fig. 5.5, a malicious script disables the logging
facility on the central database server, for a certain time period. This might be done in
order to hide the attacker’s tracks while tampering the database. In contrast to the first
type of anomalous time slots, the simulated attacker increases the number of anomalies
in the monitored system by extending the time span the logging facility gets turned off,
rather than performing the attack more often. The time periods, in which logging is turned
off, range from 30 seconds to 4 minutes; each time slot doubles the anomalous time span
of the previous one.

The described injections are representative. Especially when talking about advanced per-
sistent threats, the attack is often coming from inside the network. Sophisticated attacks often
happened beforehand to enumerate and footprint various users. The actual harm is then done
silently when extracting further sensitive information. Disabling or tampering logging facilities
in order to cover up malicious actions is also a common approach.

5.2 SCADA Environment

One dataset is provided by an Austrian utility provider’s SCADA infrastructure. The original
dataset was recorded during one hour on a branch of a real network infrastructure from the
utility provider’s SCADA system that is coupled to the corporate LAN. The same dataset was
already used in a previous evaluation of an early version of the approach in [19]. The monitored
infrastructure consists of:

1. A firewall that records and filters incoming connections.

2. A switch that forwards traffic to and from the SCADA system.

3. A SCADA system that issues switching commands and provides measurement values on
request.
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Listing 5.2 provides two excerpts from the set of firewall logs in the dataset. The first line in
the listing describes the semantics of the different fields. Notice that some information had to be
removed or obfuscated due to confidentiality reasons. The firewall accepts and drops requests
from the corporate LAN (and therefore also from the outside world).

1 "Number" "Date" "Time" "Interface" "Origin" "Type" "Action" "Service" "Source Port" "
Source" "Destination" "Protocol" "Rule" "Rule Name" "Current Rule Number" "User" "
Information" "Product" "Source Machine Name" "Source User Name"

2 "5487639" "6May2013" "10:59:58" "eth3.842" "mntfwp33" "Log" "Accept" "ntp-udp" "ntp-udp
" "[removed-url].at" "[removed-url].at" "udp" "834" "--> RemoteNet to Sub" "834-
MNT_ON_PX_RN_Global" "" "service_id: ntp-udp" "VPN-1 Power/UTM" "" ""

3 "5515746" "6May2013" "11:02:22" "eth4.1151" "mntfwp33" "Log" "Accept" "cust-tcp
-3505-3506-iec104" "52094" "[removed-url].at" "[removed-url].at" "tcp" "839" "-->
remnet IEC 104 to VX" "839-MNT_ON_PX_RN_Global" "" "service_id: cust-tcp
-3505-3506-iec104" "VPN-1 Power/UTM" "" ""

Listing 5.2: Firewall log (excerpt from 221 lines).

Listing 5.3 shows two sample SCADA logs. Both lines store that measurement values from
the system under supervision by the SCADA system got transferred to the requester. The transfer
uses a connection that was previously established via the firewall.

1 Tele000592/06.05.2013 11:01:20,12/In /Source=4123/Len=21 Measured float/36 Cause=3()
Number=1 Common=27/16 floating point Info/Obje=12/17/66 Val=5.97 QDS=0x00 Date/
Time=06.05.2013/11:01:20,042 - IV=0 DST=1

2 Tele000593/06.05.2013 11:01:21,17/In /Source=4123/Len=21 Measured float/36 Cause=3()
Number=1 Common=27/16 floating point Info/Obje=12/15/66 Val=99.65 QDS=0x00 Date/
Time=06.05.2013/11:01:20,780 - IV=0 DST=1

Listing 5.3: SCADA log (excerpt from 2854 lines).

The log level of the switch is at a too restrictive level to produce log-events that are useful to
the evaluation. The switch only logs complete failures e.g, if it is shut down.

Limitations. The monitored systems do not generate a high amount of log-events while they
are in a normal state. The collected log file contains a total of 3 478 log-lines that are collected
during one hour. This number of log-lines is not sufficient for an evaluation of the proposed
approach. In order to achieve a reasonable number of lines, the existing hour is duplicated and
the log-file is extended to represent recordings of 10 hours of recorded data. This duplication
results in a highly periodic dataset. But given the very stable nature of the log-lines the approach
is applicable.

The resulting dataset contains 30 310 log-lines and simulates recordings of 10 hours.

Injected Anomalies

Three anomalous datasets are generated from the basic SCADA dataset. Due to the limitations
of the dataset, we generate one separate file for every injected anomaly.

Anomalous Firewall Activity. The first injected anomaly consists of two lines that indicate
connection attempts from the corporate LAN that were accepted by the firewall. In a time range
of about 10 seconds after the connections were accepted, no measurement values are sent by the
SCADA system.

This anomaly can either describe a malicious component in the corporate LAN that tampers
with the SCADA system in an unexpected way. But it could also mean that the SCADA system
is not responsive.
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Invalid Values. During one minute all values that are transmitted by any sensor are 0.0 instead
of the really measured values. All measurement points appear in the log-files and only the results
are altered.

Like in the previous anomalies the reason can be an attacker who tampers, disables or over-
loads one sensor or it can be a sensor failure.
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CHAPTER 6
Evaluation

The following chapter discusses the evaluation of the approach, performed on the dataset de-
scribed in Ch. 5. A detailed evaluation of the model generation is given in Sect. 6.1 - 6.3. The
evaluation starts with finding a solid setting of the configurable system parameters (see Sect.
4.2) in Sect. 6.1. Section 6.2 discusses the quality of the generated search patterns and event
classes based on the input sets. Event classes are further evaluated regarding clusters of lines
found in the input sets, which are also used in Sect. 6.3 to analyse the quality and expressiveness
of rules.

Section 6.4 and Sect 6.5 discuss the core functionality of the system: the ability to detect
meaningful anomalies. This is done in two application domains: Section 6.4 discusses the
system’s performance in the information system domain; Sect. 6.5 discusses the performance in
the domain of SCADA systems.

6.1 Parameter Evaluation

As a first step this chapter evaluates the different parameters in the prototype implementation.
One goal is to define a stable configuration of the system. Another goal is to get a practical
impression about the influences different parameters have on the system model M and on the
results produced by the system. Prior to the detailed evaluation a Monitored System Behaviour
Period T has to be defined (see Sect 4.2). For the given datasets, a period of 20 minutes is
chosen. Although the datasets are based on an ICT infrastructure, the recorded setting did not
contain any backup facilities or periodic tasks except the simulated user input. Based on the
evaluation of the data generation approach (see Sect. 5.1.1), the actions of the simulated users
reach a request distribution, similar to a productive setting after 15 minutes. Since the 2U8h
dataset does only record a virtual system that is stimulated by two users, the period is extended
with a buffer of 5 minutes, to be sure that the request distribution is comparable to the one in a
real system.

The system parameters can be divided into three categories:
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i Utility parameters that do not influence the direct result of the system. Examples are the
parameters defining how the system can access the database to persist execution results.

ii Input independent parameters that have an optimal setting which is not influenced by the
structure and complexity of the analysed dataset.

iii Input dependent parameters that have a different optimal setting depending on the structure
and size of the analysed dataset.

Several qualitative and quantitative evaluation steps preceded the following categorization of
parameters. Table 6.1 shows all parameters categorised as independent of the analysed input file;
Table 6.2 shows all parameters with an optimal setting that depends on the analysed network.
The following evaluation will focus on the settings of dependent parameters. Starting with a base
configuration, each parameter is altered separately to analyse its effects on the resulting system
model. Table 6.1 and Tab. 6.2 state the values of each parameter in the base configuration. This
base configuration was determined in preceding iterations of evaluations of the same type. We
do not go into detail about earlier iterations at this point. The results of the approach highly rely
on a reasonable setting for all parameters. In early iterations several parameters were not chosen
in a valid range which resulted in biased evaluation results. It was only possible after multiple
iterations to get to a state where trends for each parameter could be detected. Additionally listing
or visualising all iterations would exceed the scope of this chapter.

Starting from the described base configuration all parameters in Tab. 6.2 get changed to
various values separately. This evaluation is performed on both clean datasets from Sect. 5.1.3
(namely 2U8h and 4U12h) in order to prohibit results that overfit one dataset. The figures ex-
tracted at the end of the execution can be seen as one arbitrary state of the system model during
a continuing analysis. Higher absolute numbers in the results generated with the 4U12h dataset,
compared to the 2U8h dataset are a result of the increased complexity of the recorded infrastruc-
ture rather than a result of a longer recording time. Each evaluation run will be evaluated based
on six metrics:

Number of Patterns: Describes the number of search patterns in M (also: |P|), at the end of
the execution.

Number of Event Classes: Describes the number of event classes in M (also: |C|), at the end
of the execution.

Number of Rules: Describes the number of rules in M (also: |R|), at the end of the execution.

% of Rules in H: Describes the ratio between stable rules R and undecidable hypotheses H\R
in M (also |R|

|(H\R)| ).

Number of Anomalous Rules: The number of rules R that detected any anomaly during the
execution.1

1This is the only metric that is not completely independent of the execution time. A longer execution time would
result in a higher number of anomalous rules since the chance of false positives increases if the analysed timespan
increases. This fact is not considered, since this metric describes a total number and not a ratio depending on the
time.

74



PatternBalancer Configuration:
cais.atomhandler.balancer.PatternBalancer.*
Parameter Setting Description
minPatternLength 3 The selection of search patterns is not based

on separators (such as spaces or punctua-
tion marks) but performed completely ran-
dom. Therefore the length of the search pat-
terns is considered independent of the input
structure.

maxPatternLength 12

EventClassificationBalancer Configuration:
cais.atomhandler.balancer.EventClassificationBalancer.*
Parameter Setting Description
minEnforcedBitsPerMask 3 The minimum of enforced bits is set to pro-

hibit event classes that are too generic from
being generated. The generality of an event
class is input independent.

classCreationAttempts 2 Additional generation tries are just there to
prevent the chance that an existing event class
gets chosen again and is prevented from being
generated.

Aging Configuration:
cais.atomhandler.aging.*
Parameter Setting Description
numberOfInitialPeriods 3 These aging parameters are all based on the

chosen period. The choice of the period is the
input dependent choice; the number of peri-
ods waited, before aging is enforced, is inde-
pendent of the input.

numberOfPeriodsForUnuse
dPattern

3

numberOfPeriodsForUnuse
dEventclass

3

numberOfPeriodsForUneva
luatedRule

3

Table 6.1: Parameters with optimal settings, independent of the input dataset.
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General Configuration
Parameter Setting
cais.logLinesPerPeriod 30 000
PatternBalancer Configuration:
cais.atomhandler.balancer.PatternBalancer.*
Parameter Setting
baseCost 1
EventClassificationBalancer Configuration:
cais.atomhandler.balancer.EventClassificationBalancer.*
Parameter Setting
baseCost 1
triggeredEventCost 30
prohibitedBitsPercentage 50%
enforcedBitsPercentage 40%
CorrelationRuleBalancer Configuration:
cais.atomhandler.balancer.CorrelationRuleBalancer.*
Parameter Setting
baseCost 30
existingHypothesisCost 300

Table 6.2: Parameters with different optimal settings that depend on complexity and structure of
the analysed network as well as the duration of the analysis.

False Positive Rate: Every rule is evaluated multiple times, during the runtime of the algorithm.
Since we know that we are operating on a clean dataset, we expect no anomalies to be
detected. We define a false positive as an evaluation of a rule that results: (i) in the rule
entering an anomalous state, or (ii) in extending the anomalous state a rule is currently
in. Thus not every negative evaluation of a rule is considered a false positive. This would
be wrong since the system is designed to accept unique negative evaluations as accepted
input. At the same time it would be wrong to consider every detected anomaly as a false
positive. The problem here lies in the definition of true negatives. The only way to define
true negatives is as: Every evaluation of a rule, that did not trigger an anomaly. This leads
to the above definition of false positives.

Based on these metrics the effects of each parameter on the system are analysed. In the following
graphs the red line always describes the results produced by using the base configuration; the
other lines describe results produced by altering the parameter under evaluation. The possible
values for the various cost-parameters are not randomly chosen but set as a fraction of the period
T . The lowest possible value is 1 which is considered independent of T . The other values are
T ∗ 1E−3 and T ∗ 1E−2.
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6.1.1 Single Parameter Evaluation

Event Class Base Cost. The first parameter evaluated is the base cost of a new event class.
In the base configuration the value is set to 1. That way, the algorithm is able to generate an
event class whenever a log-event is not yet covered by any event class. Otherwise such log-
events cannot be considered by the rule evaluations. This would mean, that the algorithm is
blind regarding these log-events.
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Figure 6.1: Radar plots when changing base cost for generating a new event class.

Looking at the metrics visualised in Fig. 6.1 we can see that an increased base cost for event
classes results in a trend towards a lower false positive rate. Note that there is no significant
impact on the Number of Event Classes. The evaluation of the event classes performed in Sect.
6.2 will show that all log-lines are well covered by event classes. The main cost for a new event
class that gets generated, is a result of the balancing cost of the event classes. Increasing the
base cost of event classes only shifts the point at which C is saturated, to a later point during
execution. We can further see, that the value, measured for the False Positive Rate with a base
cost of 30 in the 2U8h dataset, seems to be over-fitted. A trend towards 0 cannot be supported
by the 4U12h dataset. Changing the value of the event class base cost to 30 is one change we
should remember for further evaluations.

Event Class Balancing Cost. The next parameter that gets evaluated is the balancing cost for
a new event class. The base configuration sets a value of 30 since the number of event classes
defines the size of the search space for new rules. It is therefore important to have a sufficient
number of event classes so that meaningful rules get generated. At the same time it is important
that the generation of event classes is not too excessive. A search space that is too big would
result in rules describing the same relations by slightly different means. It also makes it harder
to find the hypotheses that have the potential to get stable. Figure 6.2 shows the results of the
evaluation.
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Figure 6.2: Radar plots when changing balancing cost when generating a new event class.

As expected there is an indirect proportional relation between the value set for the balancing
cost of event classes and the Number of Event Classes. A second trend that can be shown is, that
the number of event classes does not affect the number of patterns. An effect could have been
expected due to the aging condition in Eq. 3.33. This relation is not supported by the data. The
balancing cost of event classes further has significant effects on all metrics regarding rules, but
no real trend can be extracted. A change of the balancing cost from 30 to 1 could get evaluated
further, since a trend towards a higher number of rules can be shown.

Rule Base Cost. The same cost parameters from event classes are also evaluated for hypothe-
ses. First we evaluate the hypotheses base cost. The base configuration sets a value of 30 for
the hypotheses base cost. Hypotheses are the central resource to analyze the monitored system
in order to detect anomalies. But they are also the most „expensive“ atoms to generate. A lower
base cost might result in multiple hypotheses being generated, for event classes that describe
the same class of lines, if these lines occur very frequently. On the other hand the hypotheses
base cost should be kept in a reasonable range, so every event class is considered by hypotheses.
Figure 6.3 shows the results of the evaluations.

As seen before when analysing the base cost of event classes, the hypotheses base cost has
limited effect on the Number of Rules. There is a small trend towards a decreasing number of
rules with an increasing base cost, but it is not significant. The trend towards a higher false
positive rate that is suggested by Fig. 6.3b is not supported by Fig. 6.3a. Other effects are very
limited.

Hypotheses Balancing Cost. The hypotheses balancing cost parameter is probably the most
influential parameter on all metrics regarding rules. This includes metrics that describe the
internal system model, as well as metrics that describe the final output (i.e. detected anomalies).
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Figure 6.3: Radar plots when changing the hypothesis base cost.

The base configuration is very restrictive and fixes the hypothesis balancing cost at the highest
value: 300. Figure 6.4 shows the results of the evaluations.
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Figure 6.4: Radar plots when changing hypotheses balancing cost.

Two trends are very obvious: First there is again a strong indirect proportional relation
between the hypotheses balancing cost and the Number of Rules. This is interesting, because the
parameter can only directly influence the number of generated hypotheses but not the number of
hypotheses that get stable. The second trend is that as the Number of Anomalous Rules increases,
so does the Number of Rules. Both trends result in two observations: The first observation
is that a better coverage of the search space, at the cost of less effective balancing, does not
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increase the relative number of discovered information (i.e. the percentage of rules R
H ) The

second observation is that, as the number of rules increases, so does the number of rules that
turn anomalous. Both observations lead to the conclusion that increased search space coverage,
at the cost of less effective balancing, does not generate genuine new information, but only
reproduces information already part of the system model M .

Enforced Pattern Percentage. Generality of event classes is highly dependent on the per-
centage of possible search patterns that are enforced in a newly generated event class. Possible
search patterns are all patterns that match the log-line that is used to generate the new event
class. In the base configuration this value is set to 50%. This is a reasonable trade off between
specificity of the new event class and the chance of a later generated event class to find another
unique set of enforced patterns. Figure 6.5 shows the results of the evaluations.
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Figure 6.5: Radar plots when changing the percentage of enforced patterns in a new event class.

The evaluations show no significant trends when this parameter is altered. A small, but not
significant, trend towards a higher number of event classes can be found when increasing the
percentage of enforced patterns. Otherwise the metrics stay more or less stable through out the
different evaluations. It is a sufficient trade off to fix the percentage of enforced patterns at 50%
but more specificity of event classes does not hamper the results.

Prohibited Pattern Percentage. Generality of event classes also depends on the percentage
of patterns that are not matching the log-line used to generate the event class and are therefore
prohibited. The base configuration sets a value of 40% for this parameter. It is infeasible to
qualitatively analyse the effects of prohibited patterns on the class of lines described by the
event class. It would include an analysis of all lines that are matched by the event class, only
considering the enforced patterns. A high number of prohibited patterns might result in too

80



specific event classes. On the other hand, are prohibited patterns one mean to identify subclasses
of the set of lines classified by enforced patterns. Figure 6.6 shows the results of the evaluations.
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Figure 6.6: Radar plots when changing the percentage of prohibited patterns in a new event
class.

Clean trends are again hard to extract, but a choice of 30% of prohibited patterns seems
optimal with respect to the Number of Anomalous Rules in combination with the False Positive
Rate. A trend regarding changes in the number of event classes cannot be supported by both
datasets.

Stability Significance. The stability significance defines the significance of the stability test
of hypotheses. It ensures that only highly reliable hypotheses get stable. The base configuration
defines a significance value of 0.1. The evaluation should decide how a more restrictive approach
affects the results.

The choice of the significance does neither influence the number of rules nor does it affect
the percentage of hypotheses that get stable. This is a clean indication that a significance of 0.1,
as chosen by the base configuration, is sufficient to restrict the stability decision.

6.1.2 Combined Parameter Evaluation

After evaluating each parameter separately, an optimal setting can be generated. Therefore, the
combined configuration contains deviations from the base configuration regarding four different
parameters:

i The base cost for event classes is increased from 1 to 30. The expectation is to see a decrease
in the False Positive Ratio and in the Number of Anomalous Rules.
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Figure 6.7: Radar plots when changing the significance of the stability check for hypotheses.

ii The base cost of hypotheses is decreased from 30 to 1. The expectation is an increase in
the Number of Rules that is not caused by multiple rules describing the same relationships
(which would be the result if the hypotheses balancing cost would be adapted instead).

iii The percentage of enforced patterns is increased from 50% to 60%. The expectation is that
more specific event classes are generated and that this results in a higherNumber of Event
Classes. Additionally we expect a lower False Positive Rate as well as a lower Number of
Anomalous Rules.

iv The percentage of the prohibited patterns is decreased from 40% to 30%. The expectation is
that a lower Number of Anomalous Rules, as well as a lower False Positive Rate, is generated.
Additionally we expect that the Number of Event Classes does not decrease significantly.

Figure 6.8 shows the evaluated parameters, that fulfil most of the expectations we had from
the combined configuration file. Statistical outliers, in configurations where only one parameter
was adapted, can be removed by the combination of different changes. Figure 6.9 compares the
combined configuration to the base configuration. The trend towards a lower Number of Anoma-
lous Rules can be shown as well as the trend towards a lower False Positive Rate. Additionally
the system model does not lose any quality. Further evaluations will now use this combined
setting.

6.2 Event Class Evaluation

The evaluations in the previous section resulted in a near-optimal configuration for the approach.
In order to evaluate the generated system model by qualitative means, this section gives a de-
tailed look on the event classes that are generated on the 4U12h dataset. Two different evalua-
tions are performed: Section 6.2.1 evaluates the coverage of the lines in the input set by event
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Figure 6.8: Comparison of the combined configuration with the different single parameter adap-
tions.
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Figure 6.9: Comparison of the combined configuration with the base configuration.

classes. The result will show that the generated event classes build a meaningful system model.
Section 6.2.2 on the other hand performs a cluster based evaluation of the event classes. The
results of this evaluation will be used later to evaluate the quality of rules.

6.2.1 Line Based Event Class Evaluation

The anomaly detection approach uses event classes to classify incoming log-events. If a line
can be classified by an event class, an event is triggered that can further be analysed by the set
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Figure 6.10: Cumulative distribution of event classes clustered by the percentage of lines in the
dataset, that are classified by the event class.

of rules in R. Following this approach, event classes have to categorise a subset of all possible
incoming log-lines. It is important that the classification of a log-event by an event class C has a
certain entropy (see Eq. 3.31). An event class that matches only one line in the whole processed
dataset is as useless as an event class that matches all log-lines in the respective dataset.

Figure 6.10 shows a distribution of event classes, distinguished by the percentage of all lines
in the processed input file that are classified by the respective event class. Each event class
belongs to one of these line coverage clusters. This also means that there exists no event class in
C that does not classify any line. The number of lines that an average event class in one cluster
classifies, grows exponentially between two adjacent coverage clusters.

About 40% of the event classes in the system model can be considered highly specific; on
average they classify not more than every thousandth line. About 15% of the event classes are
even more specific and classify only every ten-thousandth log-line on average. 25% of the event
classes can still be considered specific, because they match not more than 1% of all log-lines in
the analysed dataset. Only about 8% of event classes have to be considered very generic. They
match more than 10% of all lines in the dataset and could be considered trivial (but not useless
as discussed in Sect. 6.4).

General statistics about log-line coverage by event classes are given in Tab. 6.3. These val-
ues show that the algorithm manages to generate a model that covers the log-input completely.
This is not trivial, as aging might cause event classes, that solely classify a rarely occurring type
of log-lines, to be deleted. On average, each log-line is covered by multiple event classes. Be-
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Number of log-lines that are not classified by any event class: 0
Average number of event classes that classify one line: 12.79
Median number of event classes that classify one line: 13

Maximum number of event classes that classify one line: 17

Table 6.3: Log-line coverage statistics.

cause the average and the median are close to the maximum it is indisputable that the prototype
produces a sufficient event class coverage of the log-line in the datasets.

6.2.2 Cluster Based Event Class Evaluation

Event classes describe a class of lines based on search patterns. An event class mask ~Cm and an
event class value ~Cv describe each event class and define a set of enforced, and a set of prohibited
patterns (see Ch. 3 for more details). It is possible that different event classes describe a very
similar set of lines. This is not problematic for the system functionality, but an evaluation of the
quality of C has to evaluate the degree of similarity between different event classes. One way to
define the degree of similarity is to generate a dependency tree that describes, if the set of lines
classified by one event class C1 is a subset of the set of lines classified by another event class
C2. In that case C1 would be a subclass of C2.

The generation of a dependency tree based solely on the information of the event classes
is not possible, because of the differentiation of enforced and prohibited patterns. A pattern
P might not be prohibited in C1 but it is prohibited in C2 while C1 is otherwise a subclass of
C2. P would prohibit the relation although, it might have no effect on the set of lines that are
classified by C1, given the context of the monitored system. This is the fact if P is not related
to the set of lines described by C1. It is therefore not possible to generate a valid dependency
tree, solely based on the information encoded in the event classes because this information lacks
knowledge about the system context. Instead slct2 – a command line tool that derives clusters of
log-lines from a given log-file – is used, to cluster the log-lines in the 4U12h dataset. Based on
these clusters, a tree can easily be generated that shows sub-cluster relationships. If it is further
possible to relate event classes to clusters, the cluster tree will substitute the event class tree.

Figure 6.11 shows a limited view of the tree that is generated from the clusters of the 4U12h
dataset. The clusters are generated based on words3. Each ’*’ in the description is a place holder
for one word. A ’*’ that occurs at the end of the descriptor can also substitute multiple words.

Event classes and clusters are not equivalent. Further, there is no distinct mapping between
one event class and exactly one cluster but there are two schemas that can be used to generate
an n-to-m mapping between event classes and clusters:

Descriptor Based: In this case, a fingerprint is generated for the descriptor of the cluster. Each
event class that classifies the cluster descriptor is considered to describe the cluster. This

2The Simple Log Clustering Tool is a command line base tool that analyses log-files in order to derive clusters of
log-lines. See http://ristov.users.sourceforge.net/slct/ for more details.

3A word in this case is a substring that is delimited from the rest of the string by space characters or special
punctuation marks
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root

1 — v3ls1316.d03.arc.local *: * *

1.1 — v3ls1316.d03.arc.local exim[*]: 1WD* <= * * * *

1.1.1 — v3ls1316.d03.arc.local exim[*]: 1WD* <= admin@mantis-*.v3ls1316.d03.arc.local
H=(mantis-*.v3ls1316.d03.arc.local) [127.0.*.1] P=esmtp S=* id=*.v3ls1316.d03.arc.local

1.2 — v3ls1316.d03.arc.local exim[*]: 1WD* => * * * *

1.2.1 — v3ls1316.d03.arc.local exim[*]: 1WD* => *@ait.ac.at
<*@ait.ac.at> R=route smtprelay T=transport smtp H=123.123.249.160
[123.123.249.160] X=TLS1.0:RSA AES 128 CBC SHA1:16
DN=”C=AT,ST=Vienna,L=Vienna,O=AIT,OU=IT,CN=mail.arc.local”

1.3 — v3ls1316.d03.arc.local exim[*]: 1WD* Completed

1.4 — reverse-proxy.v3ls1316.d03.arc.local apache: 1963 169.254.0.2:80 ”service-
3.v3ls1316.d03.arc.local” ”service-3.v3ls1316.d03.arc.local” 172.20.120.41 - - [20/Mar/2014:*
+0000] ”GET * HTTP/1.1” 200 * ”http://service-3.v3ls1316.d03.arc.local/mantis/*”
”Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/29.0.1547.65 Safari/537.36

1.5 — service-4.v3ls1316.d03.arc.local apache: 2094 169.254.0.4:80 ”mantis-
4.v3ls1316.d03.arc.local” ”mantis-4.v3ls1316.d03.arc.local” 169.254.0.2 - - [20/Mar/2014:*
+0000] ”GET * HTTP/1.1” 200 * * ”Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/29.0.1547.65 Safari/537.36

1.6 — v3ls1316.d03.arc.local kernel: [*] iptables:DROP-ERROR IN=eth0 OUT= * * *
LEN=* TOS=0x00 * * ID=0 * * *

...

2 — database-0.v3ls1316.d03.arc.local mysql-normal *

2.1 — database-0.v3ls1316.d03.arc.local mysql-normal #011#011* Query#011SELECT *
FROM mantis email table WHERE email id=*

2.2 — database-0.v3ls1316.d03.arc.local mysql-normal #011#011* Query#011SELECT
email id FROM mantis email table ORDER BY email id DESC

...

Figure 6.11: Sample of the cluster tree spanned by the clusters of the 4U12h dataset.
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Figure 6.12: Number of event classes that are considered to be related to the generated clusters
based on the two metrics.

approach has various limitations. The place holders cannot be expanded to all possible
words. It cannot be proven that an enforced pattern cannot be found in every possible
word for a place holder with respect to the dataset. At the same time a prohibited pattern
could be found in the possible words that would forbid a relation. This approach can be
too restrictive.

Line Based: For every cluster, we extract the set of lines from the dataset that are matched by
the cluster. If an event class can match at least one line in the set of matched lines a
relation between the cluster and the event class is assumed. This schema is more generic
than the Descriptor Based approach.

Figure 6.12 shows, how many event classes relate to each cluster that was generated from the
4U12h dataset. It shows that well over 90% of the clusters match less than 25 event classes. The
assumption that the Descriptor Based schema is more restrictive can be proven. The assumption
holds especially for very generic event classes. While the descriptor cannot match all for these
event classes, the Line Based metric returns relations with well over 200 clusters.

Figure 6.13 shows for every event class in C, how many clusters are related to it. The
differences between the two schemas are much more prominent than in Fig. 6.12. While the
restrictive Descriptor Based schema reults in multiple event classes without relating cluster, the
use of the Line Based approach gives a reasonable distribution of relations. About half of all
event classes are related to less than 10 clusters. About 80% of the event classes are related to
less than 50 clusters.
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Figure 6.13: Number of clusters related to event classes in C based on two schemas.

The generated relations are not optimal because event classes and clusters are not intrinsi-
cally comparable. But in order to generate a hierarchy between event classes and to analyse
the meaning of different rules on the other hand, the generated mappings are sufficient. The
evaluations of rules in Sect. 6.3 are performed on the cluster tree that is generated from the
4U12h dataset. The evaluation process extends every cluster in the cluster tree with related
event classes. It uses the Line Based schema to detect relations.

6.3 Rule Evaluation

Rules built the top level of the system model. In contrast to search patterns and event classes,
which describe the meaning of single log-events, rules describe the relations between log-events
of different types. Rules therefore model the normal behaviour of the system; they add a time
component to the system model. A stable model has to be able to detect timely relations between
log-events from different systems in the monitored network, as well as relations between events
in one system. This section evaluates the set of rules generated when processing the 4U12h
dataset with the combined parameter setting.

Section 5.1.1 describes that about 90% of the lines in the 4U12h dataset are produced by
the database. The reasons for this are described in the referenced section and we will not go
into more detail at this point but this distribution is important for the set of generated rules.
Section 6.2 showed that the balancing algorithms in place are sufficient to achieve an even dis-
tribution of event classes over the processed log-lines. This section evaluates the question, if the
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same balancing algorithms are also sufficient to generate an even distribution of rules over the
components in the monitored network.

As seen in Sect. 6.2.2, when spanning the cluster tree, the dataset distinguishes two main
parts:

i Log-lines that are produced by the database.

ii Log lines that are not produced by the database.

Category (ii) can further be divided into several sub-trees describing the log-lines generated
by different systems in the network (e.g., the mail server). This section uses the cluster tree
generated in Sect. 6.2.2, to classify rules by the system events that are connected by one rule.
Therefore, every event class is assigned to exactly one cluster. Since there is no unique mapping
between event classes and clusters, the most specific parent cluster, that is common to all clusters
matched by the event class, is selected.

Using this mapping between event classes and clusters, each rule can now be seen to connect
exactly two clusters; it can be described by a path in the cluster tree. This description is used
to evaluate the quality of rules. The turnover-node is the most generic node (i.e., the node with
the lowest distance to the root node) in the path described by a rule. It has a special meaning,
because it can be used to identify the systems that are connected by the rule. If the turnover
node of a rule is the root node, the rule connects any non-database service with the database
or vice-versa. Using this schema Fig. 6.14 shows the distribution of rules by their turnover
nodes. The first thing to note is that only three turnover nodes are distinguished. This is mainly
caused by the line-based schema applied when mapping event classes to clusters. As shown in
Fig. 6.13 every event class matches at least 5 clusters. The utilisation of the described method
to generate a mapping from one event class to exactly one cluster, results in event classes that
get mapped to very generic clusters. The figure shows that an even distribution of rules is
achieved. As expected, the biggest number of rules connects components with the database or
vice-versa. As expected, the balancing algorithms are able to keep the number of rules, that
connect database internal log-events to a reasonable number so they do not flood the system
model. The relatively high number of rules that connect different non-database services, can be
explained by the less uniform structure of log-lines produced by different services, compared to
the structure of database internal log-lines.

With the end of this section the evaluation of the system model is completed. We showed that
the algorithms of the approach are sufficient to generate an extensive and balanced system model.
We further proved hypothesis (i) from Sect. 1.2. The evaluations of the anomaly detection
capabilities in Sect. 6.4 and Sect. 6.5 are based on this system model.

6.4 Anomaly Detection in common ICT networks

This section covers the evaluation of the anomaly detection capabilities of the prototype imple-
mentation, based on the anomalous dataset described in Sect. 5.1.3. After a short introduction
into the used metrics, the evaluation will be split into two parts; one for each type of anomaly
that was injected.
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Figure 6.14: Distribution of rules classified by turnover nodes.

6.4.1 Metrics

False Positive Rate. The false positive rate describes the ratio between the number of events
that were considered positives (in our case the number of detected anomalies) out of the number
of events that should have been negatives (in our case events where no anomaly is expected).
The denominator of Equation 6.1 is therefore the sum of false positives and true negatives (i.e.,
the number of events correctly considered normal).

FPR =
FP

FP + TN
(6.1)

In order to calculate this rate a definition of false positives and true negatives regarding the
system under evaluation is required. We define them as follows:

False Positive: Every evaluation of a rule that either: (i) results in an anomaly being detected by
the rule, or (ii) extends the anomalous state of the rule, if the rule should not be anomalous,
is considered a false positive.

True Negative: Every evaluation of a rule that does not fulfil the conditions of a false positive,
given that the system is in a normal state at the time of the evaluation, is considered a true
negative.

A definition of false positives as the number of anomalies that were detected incorrectly would
seem better suited at first sight. But when we use this definition, the calculation of a false positive
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rate is not possible any more, due to the lack of an equivalent definition for true negatives.
Therefore calculation of the false positive rate needs to be based on single evaluations of rules.

For the proposed definitions, it is not possible to calculate the false positive rate in an anoma-
lous slot. Instead for every anomalous time slot that is evaluated we calculate the false positive
rate in the same time slot but in the clean 4U12h dataset. Since complexity, number of stimulat-
ing virtual users and recording time are equal, the results are comparable. Although the actions
of the virtual users are highly random, the evaluation does not rely on single actions of certain
users but on the random noise that is generated by their interactions.

True Positive Rate. The true positive rate is the ratio between the number of events that were
correctly classified as positives and the number of events that should have been classified as
positives. Equation 6.2 shows the ratio. The denominator is the sum of the already described
true positives and the false negatives (i.e., events that should have been considered anomalous
but were not).

TPR =
TP

TP + FN
(6.2)

Regarding the proposed system under evaluation true positives and false negatives are defined
as follows:

True Positive: Given a time range ∆t in which a rule should detect an anomaly, all evaluations
of the rule in that time range are considered true positives, if there is at least one evalu-
ation that either: (i) results in an anomaly being detected by the rule, or (ii) extends the
anomalous state of the rule, and the cause of this state is related to the anomaly in the
monitored system.

False Negative: Given the same time range ∆t in which a rule should detect an anomaly, all
evaluations of the rule are considered false negatives, if they cannot be considered true
positives by its definition.

6.4.2 Illegal Database Dump

The first anomaly type that gets injected, is an illegal dump of all databases on the database
server in the network. This evaluation considers four different time slots of 30 minutes. Each
timeslot contains one more injected anomaly than the previous one (see also Sect. 5.1.3).

In order to calculate the TPR for every anomalous slot, we identify a set of rules which
should trigger anomalies due to the injections. Two examples of these rules are analysed below.

Rule 849. The following rule describes the relation between a SHOW TABLES database com-
mand and a database connect request. The time frame in which this implication has to hold is
-10 seconds. This means that at most 10 seconds before a SHOW TABLES command is logged,
a connection to the database has to has happened. Table 6.4 shows the enforced and prohibited
patterns for the condition as well as for the implied event. The last lines matched by these events
are the following:
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Figure 6.15: Overview of the slot stabilities in rule 849 during the injection slot A1.1.

Condition Event: database-0.v3ls1316.d03.arc.localmysql-normal#011#
01133179Query#011SHOW TABLES

Implied Event: database-0.v3ls1316.d03.arc.localmysql-normal#011#0
1133179Connect#011mantis_user_4@service-4.v3ls1316.d03.arc.
localon

This rule has to be considered very relevant for detecting the injected anomalies. During
a database dump, the SHOW TABLES command is executed multiple times. In contrast to
the regular system behaviour, all of these commands are only preceded by a single connect
statement. The Mantis instances on the other hand, reconnect for every new user request. Thus
every database dump should trigger an anomaly in rule 849.

Figure 6.15 shows the stability development of the rule’s slots, before and during injection
A1.1. The orange line in the smallest slot indicates the anomaly threshold. Only if the certainty
for an anomaly is above this threshold, an anomaly gets triggered. The red area marks the
duration of the injection; the time stamp, at which an anomaly is detected (exactly two seconds
after the injection finished), is marked by the green line.

Figure 6.15 shows that there were some false evaluations prior to the injection, but they were
not significant enough to be considered an anomaly. The anomaly probability only exceeds the
threshold right after the injection is finished and an anomaly is detected. The anomaly is only
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Rule 849: -10sec
Condition Event Class Implied Event Class

Enforced Prohibited Enforced Prohibited
normal #011#011 ocal rsys rvi gin_t
Query#01 0204 arc.local mysql-normal 4.0
arc.local mysql-normal 9c:25:67:0 database-0.v3ls1316. tus_
y#011SH 4.0 v3ls1316.d03.arc.local setta
database-0.v3ls1316. tus_ [10/
v3ls1316.d03.arc.local ROM ma ff:ff:ff:ff

ntis_p t-minimal
setta mber n
im[ b77
rvi ng//dat
tis-4. ef49e
exim[ l exim
t-minimal like Gecko
b77 ix monitori
ng//dat f:ff:
] [client b3385
f:ff: l: [120
al) [127 0 Complet
ind /va ON b
0001jB-6p C n/projax/so
im[66 6J
n/projax/so
.local k
k0-Ow Compl
run-part
106
nit DB#0
BY b.id
]:
OR
Comp
1WY4Ud-000
apache: 210
_3@s

Table 6.4: Detailed description of Rule 849.
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detected by the short-term slot. It is not significant enough to trigger an anomaly in the middle-
or long-term slot, but the effects on the anomaly probability are clearly visible.

Rule 286. The following rule describes the fact that a database event is always followed by
a firewall entry within 10 seconds. This rule is not optimal since it does not show a relation
enforced by the system behaviour. Instead the described relationship is caused by the regular
input from various users. It is not enforced by the system that a firewall log-event follows a
database request. But it is normal in the monitored system because virtual users act in bursts
of actions. It is rarely the case that a user only sends one single request. Instead multiple
consecutive requests can be expected. There are also time ranges where no users interact with
the system. The behaviour that the database server answers requests while, in the same time
range, no user acts is considered abnormal. But exactly this system behaviour is triggered by the
injected database dump if it occurs in a time window of low user activity. Table 6.5 describes
the rule in more detail. Additionally the last lines matched by the condition event class and the
implied event class were as follows:

Condition Event: database-0.v3ls1316.d03.arc.localmysql-normal#011#
01133179Query#011UPDATE mantis_user_table

Implied Event: v3ls1316.d03.arc.localkernel: [165361.740449] iptab
les:ACCEPT-INFO IN=lo OUT= MAC=00:00:00:00:00:00:00:00:00:0
0:00:00:08:00 SRC=169.254.0.4 DST=169.254.1.0 LEN=60 TOS=0x
00 PREC=0x00 TTL=64 ID=19898 DF PROTO=TCP SPT=52372 DPT=330
6 SEQ=1271940985 ACK=0 WINDOW=43690 RES=0x00 SYN URGP=0 OPT
(0204FFD70402080A02760AC30000000001030306)

Figure 6.16 shows the stability development of the rule’s slots, before and during injection
slot A1.1.

As expected the rule possesses limited stability. We can see that various failed evaluations
prior to the injection set the middle-term slot into a somewhat anomalous stage, but the evalu-
ations are not considered anomalous enough to be an anomaly. The anomaly probability in the
short-term slot only exceeds the threshold at 9:30:25 (exactly two seconds after the injection is
finished) and triggers an anomaly.

Overall Performance

After we decided on the set of rules that are considered relevant for detecting the injected anoma-
lies, the FPR and the TPR for each anomalous time slot in the dataset can be calculated. Figure
6.17 shows the results in a scatter diagram. The metrics were calculated with the combined con-
figuration and with the base configuration, to evaluate the effects that the performed parameter
changes have on the results.

The injected anomalies are detected in every timeslot, but the detection rates of different
rules are not very constant. Only about 40% of the rules in the identified rule set detected the
anomaly timely with the combined configuration. But the approach did not perform constantly
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Rule 286: +10sec
Condition Event Class Implied Event Class

Enforced Prohibited Enforced Prohibited
normal #011#011 n/projax/so =0x00 TT ocal rsys
Query#01 ocal rsys =TCP SPT 2226 ACK
arc.local mysql-normal ernel: [119 URGP=0 database-0.v3ls1316.
database-0.v3ls1316. W=43690 RE v3ls1316.d03.arc.local y#011SH
v3ls1316.d03.arc.local 6 Query# 0204 9c:25:67:0

3a: arc.local mysql-normal
62c5 setta
[10/ 8 +0000]
rvi rvi
exim[ _smtp
WY2hl-0 exim[
it#01 it#01
t-minimal normal #011#011
b77 cal exim[5
ng//dat t-minimal
ef49e b77
l exim al) [127
] [client ind /va
ix monitori 0001jB-6p C
l: [120 bles:D
ON b 0001kM-7o

DST=22

Table 6.5: Detailed description of Rule 286.

with either configuration. With each configuration it had difficulties to detect the anomalies in
one of the anomalous slots. Overall, the base configuration had a higher detection rate (i.e., true
positive rate) on average. But it has to be noted that the combined configuration was designed
to reduce the false positive rate of the system. This tendency can be seen in the results and it is
one reason for the lower true positive rate. The results in detecting the injected anomalies are
not optimal but show that every anomaly was detected by at least one of the expected rules.

6.4.3 Database Logging Disabled

The second type of anomaly that is injected in the anomalous dataset is a time period where
the logging functionality of the database server gets disabled. Four anomalous time slots get
evaluated. The duration of each slot is 30 minutes and the duration of the injection differs. The
injection times are: 30 seconds, 1 minute, 2 minutes and 4 minutes. As in the previous case,
a set of rules is selected which are expected to detect the injected anomaly. Two examples are
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Figure 6.16: Overview of the slot stabilities in rule 286 during the injection slot A1.1.

given below.

Rule 708. This rule describes the fact that a firewall log-event is followed by a database con-
nect event. This is a highly relevant rule that describes a very stable system behaviour: Every
user request is handled by the firewall before it is passed on to the web-server. The web-server
on the other hand queries the requested data from the database. If something turns off the log-
ging facilities on the database server, an anomaly should be immediately detected by this rule.
Table 6.6 gives more details about the rule while the last classified lines by the condition event
class and the implied event class are as follows:

Condition Event: v3ls1316.d03.arc.local kernel: [165361.682603] ipt
ables:ACCEPT-INFO IN=eth0 OUT= MAC=00:50:56:9c:25:67:02:01
:f4:01:00:30:08:00 SRC=172.20.120.49 DST=169.254.0.2 LEN=60
TOS=0x00 PREC=0x20 TTL=59 ID=26264 DF PROTO=TCP SPT=57999 D
PT=80 SEQ=1135473877 ACK=0 WINDOW=14600 RES=0x00 SYN URGP=0
OPT (020405B40402080A012C924D0000000001030306)

Implied Event: database-0.v3ls1316.d03.arc.localmysql-normal #011#0
1133179 Connect#011mantis_user_4@service-4.v3ls1316.d03.arc
.local on
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Figure 6.17: ROC scatter for the time slots containing injected database dumps calculated with
the base configuration as well as the combined configuration.

Figure 6.18 shows the stability development of the rule’s slots, before and during the injec-
tion of anomalies of the second type.

The rule and its slots behave exactly as expected. The time before the injection starts is
completely regular. Only the long-term slot measured some disturbances which seem to be late
effects of the anomalies injected in slot A1.4. But the rule is on a good way to a completely
stable status. Exactly when the first anomaly starts, all three slots exceed the anomaly threshold.
Already the first anomaly is significant enough for the long-term slot to turn anomalous. It
further cannot get stable again until the next injection hits. The anomaly probabilities in the
short-term and in the middle-term slots show, how the size of the different slots affect their
sensibility towards anomalies. Since the long-term slot does not get into a normal state any
more, no new anomalies can be triggered for the second, third and fourth injection. Anyway, the
effects in the short- and middle-term slots confirm that every single injection would have been
discovered by the rule.

Rule 804. This rule describes that every web-server request (it does not matter if it is recorded
by the firewall or by the web-server directly) is followed by a database query. The motivation
to put this rule into the rule set is similar to the motivation for rule 708. Table 6.7 shows de-
tailed information about the rule and the last lines classified by the condition event class and the
implied event class are as follows:

Condition Event: v3ls1316.d03.arc.local kernel: [165361.682603] ip
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Rule 708: +1sec
Condition Event Class Implied Event Class

Enforced Prohibited Enforced Prohibited
T=1 8014]: rvi gin_t
=TCP SPT ernel: [119 arc.local mysql-normal 4.0
9c:25:67:0 2226 ACK database-0.v3ls1316. tus_
v3ls1316.d03.arc.local database-0.v3ls1316. v3ls1316.d03.arc.local setta
INFO y#011SH [10/

antis/view ff:ff:ff:ff
ROM ma t-minimal
62c5 mber n
Query#01 b77
ntis_p ng//dat
.30 ef49e
8 +0000] l exim
ff:ff:ff:ff like Gecko
WY2hl-0 ix monitori
normal #011#011 f:ff:
ocal chec b3385
like Gecko l: [120
] [client 0 Complet
l: [120 ON b
0001jB-6p C n/projax/so
im[66 6J
bles:D
ON b
run-part
106
WHER
.v3ls131
0111571
]:
OR
iptables:D
(r

Table 6.6: Detailed description of Rule 708.
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Figure 6.18: Overview of the slot stabilities in rule 708 during all four injection slots of the
second anomaly type.

tables:ACCEPT-INFO IN=eth0 OUT= MAC=00:50:56:9c:25:67:02:01
:f4:01:00:30:08:00 SRC=172.20.120.49 DST=169.254.0.2 LEN=60
TOS=0x00 PREC=0x20 TTL=59 ID=26264 DF PROTO=TCP SPT=57999 D
PT=80 SEQ=1135473877 ACK=0 WINDOW=14600 RES=0x00 SYN URGP=0
OPT (020405B40402080A012C924D0000000001030306)

Implied Event: database-0.v3ls1316.d03.arc.local mysql-normal #011
#01133179 Query#011UPDATE mantis_user_table

Figure 6.19 shows the stability development of the rule’s slots, before and during the injec-
tions of anomalies of the second type.

This rule proves even more stable than rule 708. Even the negative evaluations that where
considered a false positive in rule 708 at 13:00:01 are not significant enough and the short-term
slot probability does not exceed the threshold. The other results are similar to the results of rule
708. A stable detection rate can be derived from the collected data.

Overall Performance

After the selection of a set of rules that has to detect the injected anomaly, we calculate the false
positive rate and the true positive rate of the evaluated time slots. Figure 6.20 shows the familiar
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Rule 804: +1sec
Condition Event Class Implied Event Class

Enforced Prohibited Enforced Prohibited
T=1 0:1 Query#01 0204
.local k W=43690 RE arc.local mysql-normal antis/view
URGP=0 gin_t database-0.v3ls1316. 4.0
v3ls1316.d03.arc.local antis/view v3ls1316.d03.arc.local tus_
INFO tus_ ntis_p

arc.local mysql-normal .0.4.
ROM ma bug_page.p
ntis_p =0x00 TT
=0x00 TT _smtp
8 +0000] ff:ff:ff:ff
_smtp tis-4.
cal exim[5 cal exim[5
mber n mber n
ocal chec b77
ng//dat ng//dat
0 Complet ef49e
n/projax/so 0001jB-6p C
6J 6J
k0-Ow Compl k0-Ow Compl
tis-3. tis-3.
0001kM-7o
xim[
AND
106
nit DB#0

Table 6.7: Detailed description of Rule 804.
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Figure 6.19: Overview of the slot stabilities in rule 804 during all injections of anomalies of the
second anomaly type.

ROC scatter. It shows that the prototype implementation performs much better on the second
anomaly type. There is a stable true positive rate above 80% with a reasonable false positive
rate of around 3% using the combined dataset. Not all rules in R that we identified as rules that
should detect the anomalies were constantly able to do so, but about 80% were. In the analysed
slots the combined configuration also shows more stable results than the base configuration. The
trend towards the lower false positive rate is again supported by the extracted data.

6.4.4 Conclusion

The detection capability of the prototype implementation regarding two types of anomalies was
analysed in different time slots with different injection rates. The prototype detected all inserted
anomalies but injected database dumps were not detected consequently by a single rule. Given
the defined set of rules, every injected dump is detected by about 40% of the rules in the set.
This guarantees detection of the injected anomalies, but a relatively high false positive rate of
3% clouds the results.

Tampering with logging capabilities on the other hand, was detected at a very stable rate.
It was possible to prove the detection of every injected anomaly by one single rule. Also the
results of the ROC metric looked very promising.
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Figure 6.20: ROC scatter for the time slots containing time slots with disabled database logging.
The values are calculated with the base configuration as well as the combined configuration.

The discussed results support the assumption that the proposed anomaly detection approach
can be used to detect the effects of abnormal requests in a system or network. Not all of these ab-
normal requests have to be caused by an advanced persistent threat but it was shown that typical
anomalies can be detected timely, based on a stable system model. The results further support
hypothesis (ii) from Sect. 1.2. All injected anomalies where detected while the anomalous
behaviour was still ongoing.

6.5 Anomaly Detection in SCADA networks

Section 6.4 showed stable results of the prototype implementation regarding its abilities to detect
different types of anomalies in common ICT networks. But it also showed the limitations of the
proposed approach regarding the stable detection of anomalies that only manifest in an increased
output of otherwise normal log-events.

This section will evaluate the possibilities to apply the proposed approach in the domain
of SCADA systems. The events triggered in a SCADA system are highly structured and well
defined. Therefore the limitations of the approach carry less weight while its strengths are more
prominent (namely syntax-independent applicability without high configuration effort).

This evaluation is based on the SCADA dataset discussed in Sect. 5.2. Due to the limitations
of the dataset we first have to adapt the configurations used. The main reason for the changes is
that we have to adapt the period T in our configurations. In our ICT datasets a period of 30 000
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General Configuration
Parameter Setting
cais.logLinesPerPeriod 1 000
EventClassificationBalancer Configuration:
cais.atomhandler.balancer.EventClassificationBalancer.*
Parameter Setting
baseCost 1
triggeredEventCost 10
CorrelationRuleBalancer Configuration:
cais.atomhandler.balancer.CorrelationRuleBalancer.*
Parameter Setting
baseCost 1
existingHypothesisCost 100
Anomaly Threshold:
cais.IRuleStatisticsCalculator.*
Parameter Setting
AnomalySignificanceLevel 0.05

Table 6.8: Parameters that are changed for the SCADA evaluation

lines was defined. Now with the SCADA dataset, the whole dataset consists of 30 000 lines.
We reduced the period T to 1 000 which corresponds to the same 20 minute interval we chose
in the ICT evaluation. Table 6.8 shows the needed parameter changes. Despite the parameters
that were defined depending on T we also changed the anomaly probability threshold from
previously very restrictive 0.0001 to 0.05. The rules in this very controlled dataset do not have
enough evaluations to exceed the original threshold.

6.5.1 Basic Evaluation

Figure 6.21 shows the basic metrics generated from the model that the prototype generated from
the anomaly-free SCADA dataset. We see that the size of the model is significantly smaller than
the models generated from the more excessive datasets from the ICT network. The trends on the
other hand, are very similar to the ones in the ICT models. The figure shows that the system is
able to generate a stable system model for the SCADA dataset.

6.5.2 Anomalous Firewall Activity

The first anomalous dataset that gets evaluated includes two injected connections that were ac-
cepted by the database. In the same time range (from the time the connections are established
until 10 seconds afterwards) no measurement points get sent to the requester. An analysis of the
system model results in a set of two rules that should detect the anomaly. Both rules state that
every accepted database connection is followed by the transmission of measurement values back
to the requester. The detailed rule information and their evaluation results are shown below.
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Figure 6.21: General model metrics generated from the anomaly free SCADA dataset.

Rule 163 The last lines4 classified by the condition event class and the implied event class are
given by Lst. 6.1 and Lst. 6.2.

1 "eth4.321" "lamfdp33" "Log" "Accept" "ntp-udp" "ntp-udp" "[url-
removed].at" "[url-removed].at" "udp" "836" "--> Netz-PN-Fernwirk
to NZ" "345-LAG_ON_PN_CN_Global" "" "service_id: ntp-udp" "VPN-1
Power/UTM" "" ""

Listing 6.1: Last condition event of rule 163.

1 ,76/In /Qelle=4123/Len= 21 Measured float/36 Cause=3()
Number=1 Common=28/17 floating point Info/Obje=11/122/091
Val= 130.36 QDS=0x00 Date/Time=06.05.2013/19:59:59,744 - IV= 0
DST= 1

Listing 6.2: Last implied event of rule 163.

4Notice that the lines are again obfuscated
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(c) Long term slot (last 125 rule evaluations)

Figure 6.22: Overview of the slot stabilities in rule 163 during the injection of anomalous firewall
connections.

Figure 6.22 shows the anomaly probabilities in all slots of the rule during the whole time
range in which the rule is stable. The figure shows that the rule is completely stable up to the
time of the injection. The anomaly is detected by the rule, but it is not significant enough to set
the middle-term slot in an anomalous state.

Rule 169 The last lines classified by the condition event class and the implied event class are
given by Lst. 6.3 and Lst. 6.4.

1 "eth4.321" "lamfdp33" "Log" "Accept" "ntp-udp" "ntp-udp" "[url-
removed].at" "[url-removed].at" "udp" "836" "--> Netz-PN-Fernwirk
to NZ" "345-LAG_ON_PN_CN_Global" "" "service_id: ntp-udp" "VPN-1
Power/UTM" "" ""

Listing 6.3: Last condition event of rule 169.

1 ,76/In /Qelle=4123/Len= 21 Measured float/36 Cause=3()
Number=1 Common=28/17 floating point Info/Obje=11/123/22
Val= 130.36 QDS=0x00 Date/Time=06.05.2013/19:59:59,744 - IV= 0
DST= 1

Listing 6.4: Last implied event of rule 169.
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Figure 6.23: Overview of the slot stabilities in rule 169 during the injection of anomalous firewall
connections.

Figure 6.23 shows the anomaly probabilities in all slots of the rule during the whole time
range in which the rule is stable. Similar to rule 163, the events are considered completely nor-
mal up to the injection of the anomalous connections. In contrast to rule 163, here the anomaly
is considered much more significant and also the middle-term slot reaches an abnormal state.

Conclusion. The prototype implementation was able to detect all injected anomalies with all
rules that were expected to detect the injections. At this point we do not show a ROC scatter
diagram. The true positive rate in this dataset is 1 while the false positive rate is nearly 0 (see Fig.
6.21). The figure would not show new information. Instead we can conclude that the suggested
approach performs very well in the limited SCADA dataset. A solid prove of hypothesis (iii)
in Sect. 1.2 is not given by the results. The limitations of the evaluated dataset prohibit a
more detailed investigation. But the conducted experiment rather supports than contradicts the
hypothesis.

6.5.3 Invalid Values

The second anomalous dataset that was generated from the SCADA dataset included altered
measurement values in a time period of one minute. All transmitted measurement values were
0.0. During analysing the system model it was not possible to identify any rule that is able
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to detect the injected anomaly. It is therefore not possible to visualise any results about the
anomaly. This example is included to show the limitations of the approach. As discussed in
Sect. 3.3.1 the set of patterns describes the basic knowledge the system has about the system.
If we compare the situation with the altered result values with Fig. 3.3 the values have to be
classified as unique or at least very infrequent substrings. It is highly unlikely (and also not
intended by the described approach) to include such patterns in the model. They cannot be used
to monitor relations between different system events. The monitoring of correct functionality
of one system has to be performed by additional tools that are able to intelligently interpret the
measured data.

It seems to be a limitation at first that the prototype cannot detect the injected anomaly. But it
would only mean redundant information. The goal of SCADA systems is to monitor and control
industrial systems. The monitoring of measurement values is a core functionality of the SCADA
application. To detect the changed values as anomaly would be redundant information for an
suervisor.
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CHAPTER 7
Conclusion

Section 7.1 summarises the main contributions of this thesis. Section 7.2 describes the key
findings that were concluded during the course of this work. Finally, Sect. 7.3 gives an outlook
on how the proposed approach can be extended and improved in the future.

7.1 Summary

In this thesis a novel anomaly detection approach that utilises log-lines produced by various
systems and components in ICT networks has been resented. After reviewing the current state
of the art, we concluded that preventive security mechanisms and signature-based detection
methods are insufficient to handle novel, targeted and persistent threats. The novel approach was
first defined formally. This definition started by positioning the approach in common security
settings before we split the actual approach into two parts. First, the definition of the core
functionality was given and we stated how different parts of the automatically generated system
model are used to detect anomalies. The second part defined how the system model is built.
Three types of atoms were defined that build the system model: search patterns, event classes
and hypotheses. After the formal definition, we presented a prototype implementation of the
approach before we evaluated it with different aspects. To generate testdata for the evaluation
in a common ICT network, we proposed and evaluated a semi-synthetic testdata generation
approach. Two clean datasets were generated using this generator. We started with an evaluation
of the system’s parameters before we evaluated the quality of the generated event classes and
rules.

Finally, different types of anomalies were injected into different datasets, and the detection
capabilities of the prototype were evaluated. We performed the evaluation of the anomaly detec-
tion capabilities in two domains. At first we evaluated two types of anomalies in a common ICT
network. Afterwards we evaluated the approach with a dataset from a SCADA system in a real
industrial ICT infrastructure.
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7.2 Key Findings

Based on the conducted evaluations we can split the results into two parts. First, we can con-
clude that the proposed approach is able to extract a system model from the combination of
log-information that is collected from distributed systems and nodes in a network without prior
knowledge about syntax and semantics of the log-lines (see hypothesis (i) in Sect. 1.2). The
extracted system model can be used to detect and distinguish different meaningful subsets of
log-lines (by the means of event classes), and further contains complex information about impli-
cations (so-called rules) between different log-events. Single rules often describe implications
between events from different components or systems in the network. The set of rules is there-
fore sufficient to describe the most important relations between different components in the
network.

Using this automatically generated and continuously evolving system model, the proposed
approach is able to detect meaningful anomalies in the monitored system (see hypothesis (ii) in
Sect. 1.2). The detection rate of different types of anomalies varies depending on the complexity
of the dataset as well as on the effects of the anomalies on the generated log-lines. In very struc-
tured and well defined SCADA systems, even small anomalies can be discovered with a very
high accuracy (see hypothesis (iii) in Sect. 1.2), but due to the limitations of the dataset these
results have to undergo further evaluation. In more complex networks, a reoccurring anomaly
might not be detected consequently by a single rule. Only by combining multiple rules in the
model, the approach is able to detect the evaluated anomaly reliably. Although this behaviour
is sufficient to detect most anomalies, it causes a high workload on the administrator when per-
forming a root-cause analysis.

7.3 Future Work

The goal of this work was to implement and evaluate a novel anomaly detection approach. The
results of the prototype that uses balancing methods and a simple statistical evaluation model
look very promising. Future work should develop a more intelligent approach for the generation
of event classes. The lack of information about similarities of event classes results in redundant
hypotheses that choke the system model. However, a more intelligent approach for the gener-
ation of hypotheses is not possible without knowledge about relations or a hierarchy between
event classes. Given an event class hierarchy, an improved algorithm for the generation of hy-
potheses should be developed. One approach would be an algorithm that generates all possible
rules in a limited subtree of similar event classes and only allows the most meaningful or most
stable hypothesis to become a rule.

Another potential direction is the improvement of the statistics model behind hypothesis and
rule evaluations. The results show that only a set of rules can detect more complex anomalies
with sufficient certainty. It is therefore not optimal to detect anomalies based only on single
rules. Instead, a more complex model should be developed that considers dependent, instead of
independent, events (as is done by simple binomial tests).

This work has established a stable implementation of the proposed approach. Therefore, it
forms the basis for further development and research around the proposed algorithms. A lot of
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new research questions opened up during the course of this project, such as those discussed here.
Their solutions can significantly extend and improve the results achieved by this work.
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