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Abstract

Statement of the Problem

Distributed event-based systems [68] are an emerging research field in computer science. The
research area of distributed event-based systems is divided into different sub-areas like pub-
lish/subscribe systems, event stream processing, complex event processing, or wireless sensor
networks. These sub-areas focus on different aspects, yet the challenges in each area share many
commonalities. However, there exists no common system model to describe the different vari-
eties in this area, which makes it difficult to derive simulations for such a system since one needs
a special simulator for every system and scenario. This also affects the capabilities for moni-
toring and fault management, as the native code to deal with such issues is different for each of
these systems. The result of these circumstances are separate implementations for every system.

The goal of this work is to implement such a common model with respect to all major
derivations of the different kinds of event-based systems. The underlying domain model is kept
as generic as possible to support adaptability to new systems which might occur in the future.
On top of this model, possibilities for monitoring and simulating fault-tolerant behaviour are
implemented.

Expected Results

The final outcome of this work is a generic model for different kinds of distributed event-based
systems with a runnable monitoring and a simulation environment on top of that model, called
EventSim framework. The model synchronizes its state with a real-world application through
adaptors, where an example adaptor is generated for an illustrary example . The handling of
these adaptors is also done in a generic way, so that more adaptors can be written for different
systems. Since they are included in the corresponding real-world system, the framework itself is
not changed while adapting to a new system. This provides a generic way of simulating different
kinds of distributed event-based systems described in the previous section.

Therefore, a simulator is provided which enables the simulation of several scenarios using
different strategies. This simulation provides the possibility to test specified routing algorithms
and scaling strategies which can be applied on-the-fly.
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Methodology

The system model is based on the preliminary work presented in [44]. At first this domain
model gets transformed to a generic programming model. This model is implemented using
model-driven development (MDD) as described in [66]. Using MDD makes the model com-
pletely independent from current event-based systems, as it is directly generated from the do-
main model. On top of this, the tool layer is located with connections to the simulator and
injection possibilities for real-world adaptors.

The routing in this implementation is a simple forwarding from one event processing agent
(EPA) to another. This leaves complex routing algorithms open for future work. The scaling of
the model can be handled by different strategies.

The simulator is a standalone program which should provide some sample configurations
files for the initialization of the model. The simulation itself can afterwards change the state of
the model by applying different event manipulations or strategy changes.

Evaluation of the framework is done by simulating several scenarios on an example event-
based system with the help of the simulator. The connection to existing systems is tested using
the Storm framework [61].

State of the Art

There have been several approaches to create a generic model for event-based systems like in
[83] or [98]. The common patterns of event-based systems have been described in [27]. The
results of this previous work has been merged in [44] which is the foundation of the domain
model in this work. This works lists the different kinds of event-based systems which are the
basis for the domain model. The principle of adaptors is explained in [63], which additionally
explains the concepts of events, which was also done by the previous mentioned publications.

The model-driven engineering (MDE) approach using the Eclipse Modeling Framework
(EMF) has been described in [81] and [88]. MDE provides the possibility to derive software
program code out of given domain models with the use of domain-specific languages (DSL).
This work uses the basic features of the EMF which are described in the latter of these two
publications.

Topic Relevance

Distributed systems in general are a main part of the Software Engineering-discipline, which
has been growing over the last decade. The knowledge of these distributed systems is one of
the major requirements for a modern software engineer. Event-based systems are an emerging
research field in this area [33]. The innovation of this work is the introduction of a generic
simulation model which currently does not exist.



Kurzfassung

Problembeschreibung

Verteilte ereignisbasierte Systeme [68] sind ein aufstrebendes Forschungsfeld in den Computer-
wissenschaften. Dieses Forschungsfeld ist unterteilt in verschiedene Teilbereiche, wie Publish/-
Subscribe Systeme, Event Stream Verarbeitung, Complex Event Processing oder Sensornetze.
Diese Teilbereiche legen den Fokus auf verschiedene Aspekte, allerdings haben die Herausforde-
rungen durchwegs einige Gemeinsamkeiten. Es gibt allerdings kein gemeinsames Systemmodel
zur Beschreibung dieser verschiedenen Teilaspekte. Dieser Umstand erschwert die Implemen-
tierung von Simulationen für diese Systeme, da ein eigener Simulator für jedes System benötigt
wird. Dies betrifft auch den Bereich der Überwachung und der Fehlerbehandlung, da auch hier
jeweils ein system-eigener Code verwendet werden muss. Aus diesen Umständen folgt eine ei-
genständige Implementierung für jedes dieser Systeme.

Das Ziel dieser Arbeit ist die Implementierung eines solchen gemeinsamen Model, welches
auf die verschiedenen Besonderheiten von ereignisbasierten Systemen Rücksicht nimmt. Dazu
wird das zugrundeliegende Datenmodell so generisch wie möglich gehalten um das Hinzufügen
neuer Systeme zu erleichtern. Basierend auf diesem Modell, werden Möglichkeiten zur Über-
wachung und Simulation von fehlertolerantem Verhalten implementiert.

Erwartete Resultate

Das finale Resultat dieser Arbeit ist ein generisches Modell für verschiedene Typen von ver-
teilten ereignisbasierten Systemen mit einer lauffähigen Überwachungs- und Simulationsumge-
bung, EventSim Framework genannt. Dieses Modell synchronisiert sich mit einer realen Ap-
plikation mittels Adaptoren. Ein solcher Adaptor wird als Teil dieser Arbeit für ein Einfüh-
rungsbeispiel implementiert. Diese Adaptoren sind ebenfalls generisch implementiert, um das
Hinzufügen weiterer Adaptoren zu vereinfachen. Nachdem diese Adaptoren Teil der entspre-
chenden realen Applikation sind, muss das Framework selbst nicht verändert werden um eine
neue Applikation hinzuzufügen. Dies ermöglicht die Simulation verschiedener Typen von ver-
teilten ereignisbasierten Systemen.

Dafür wird eine Simulationskomponente entwickelt, welche die Simulation verschiedenar-
tiger Szenarien mithilfe unterschiedlicher Strategien ermöglicht. Diese Komponente ermöglicht
das Testen von verschiedenen Pfadalgorithmen und Skalierungsstrategien während der Laufzeit
des untersuchten Systems.
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Vorgangsweise

Das Model des Frameworks basiert auf der Arbeit von Hummer et al. [44]. Dieses Modell wird
in ein generisches Programmmodel transformiert, welches mittels Model-Driven Development
(MDD) erzeugt wird [66]. Dieses Verfahren macht das Modell unabhängig von spezifischen
Charakteristika heutiger ereignisbasierter Systeme, nachdem es direkt aus dem Datenmodell
erzeugt wird. Über dieser Schicht befindet sich eine Tool-Schicht, welche Verbindungen zum
Simulator und zu den Adaptoren für Echtsysteme bereitstellt.

Die Pfade in dieser Implementierung sind als simple Weiterleitung von einem Event Proces-
sing Agent (EPA) zu einem anderen zu verstehen. Somit können komplexe Pfadberechnungen
in zukünftigen Arbeiten behandelt werden. Die Skalierung des Modells kann über verschiedene
Strategien sichergestellt werden.

Die Simulationskomponente ist ein eigenständiges Programm, welches eine Standardkonfi-
guration für die Initialisierung des Standardmodells bereitstellt. Anschließend kann die Kompo-
nente den Status des Models direkt über verschiedene Manipulationen oder Strategieänderungen
beeinflussen.

Die Evaluierung des Frameworks erfolgt mittels verschieder Strategien, welche an einem ex-
emplarischen ereignisbasierten System durchgeführt werden. Die Anbindung an ein Echtsystem
wird über das Storm Framework [61] illustriert.

Stand der Forschung

Es gab schon mehrere Versuche, ein generisches Modell für ereignisbasierte Systeme zu be-
schreiben, wie in [83] oder [98]. Die gemeinsamen Muster von diesen Systemen sind in [27]
genannt worden. Die Erkenntnisse dieser Arbeiten wurden in [44] zusammengefasst. Diese Ar-
beit ist gleichzeitig auch die Basis, auf der das EventSim Framework erstellt wird. Das Konzept
der Adaptoren wurde in [63] erläutert, wo auch eine Erklärung des Begriffes ”Ereignis” erfolgt.

Der Model-Driven Engineering (MDE) Ansatz mittels des Eclipse Modeling Framework
(EMF) wurde in [81] und [88] erklärt. MDE ermöglicht die Generierung von Programmcode
aus Domain-Modellen mittels domain-spezifischer Sprachen (DSL). Diese Arbeit verwendet die
Basis-Funktionalität von EMF, welche in [88] beschrieben wird.

Relevanz des Themas

Verteilte Systeme sind ein großer Bestandteil des Bereichs Software Engineering, welcher im
letzten Jahrzehnt immer bedeutender geworden ist. Fähigkeiten in diesem Bereich sind eine der
Hauptanforderungen an einen modernen Software-Entwickler. Ereignisbasierte Systeme sind
ein wachsendes Forschungsfeld in diesem Bereich. Der innovative Beitrag dieser Arbeit ist ein
generisches Simuluationsmodell, welches in dieser Form derzeit nicht existiert.
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CHAPTER 1
Introduction

The goal of this chapter is to give a proper insight to the subject of distributed event-based
systems and outline the contributions gained within this thesis. After an introduction to the field
of event-based systems and underlying topics, the concrete problem and the methodological
approach are described. The problem tackled within this thesis is then motivated based on an
illustrative scenario. As a last step, the structure of the thesis is outlined with a brief outlook on
the content of the remaining chapters.

1.1 Motivation

Distributed event-based systems [68] are an emerging research field in computer science. The
research area of distributed event-based systems is divided into different sub-areas like publish/-
subscribe systems [30], event stream processing [10], complex event processing [18], or wireless
sensor networks [54]. The majority of these sub-areas focus on different aspects, yet the chal-
lenges in each area share many commonalities. These commonalities include attributes like
asynchronous communication, a notification mechanism and decoupled system components,
which are subsumed under the term ’event-driven communication paradigm’ [75]. Using this
paradigm, an event is the single unit of communication in these systems. These events can ei-
ther be created outside the system and brought into the system through interfaces or generated
from nodes within the system because of certain conditions. Higher level semantics are achieved
through composition or correlation of events.

Typical event-based systems have an architecture consisting of four layers [67]. The bottom
layer is the event generator, which is responsible for transferring facts to events. These facts can
be heterogeneous and include factors like services, business processes or sensors. Sources for
facts include service calls, changes in data and other exogenous triggers. The goal of the event
generator is to unify these facts to events which can be dealt with by the event-based system. On
top of these generators an event channel is established, with the responsiblity of transferring the
event to an event processing engine. This is the component where the business logic is located
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and incoming events are matched against certain predefined rules. If a certain rule triggers,
a specific action is performed, depending on the matched rule, e.g. a service invocation or
an event generation. The top layer is the downstream event-driven activity which is initiated
because of the event sent before and can, therefore, include the already mentioned actions like
event generation for subscribers.

There exist several kinds of event-based systems, which are illustrated in Figure 1.1.

Figure 1.1: Sub-Areas of event-based systems [44]

Event Stream Processing (ESP) [67] deals with event streams and queries performed against
these continous streams. This information can be used to monitor the real information flow in-
side a company and enable decision in real-time according to specific circumstances. Complex
Event Processing (CEP) [67] is concerned with complex streams, which are often put together
out of simple streams, and enables features like event patterns or analysis & prediction. A rel-
atively new field in this area are Wireless Sensor Networks (WSN) [77]. They specialise on
dynamic topologies, which are a basic requirement of cloud computing for example. Routing
is also a fundamental concept for these systems, since nodes are changing on a regular basis
and, therefore, routes have to adjust in a dynamic way. Event-Driven Business Process Manage-
ment (EDBPM) [91] is related to business processes as a whole and illustrates workflows out of
event logs. Additionally, these processes are then monitored to detect faults and react to them
immediately. Other technologies like message-oriented middleware [9] or tuple spaces [4] are
referred to as Event-Driven Interaction Paradigms in [44]. Most of these technologies deal with
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the passing of messages or event-driven programming in specific. The last field in the area, Pub-
lish/Subscribe Systems [30], combines elements of all other systems. There are two groups of
acting entities, producers and consumers. Events and content is produced by the producers and
consumed by the consumers, which enables a fast and efficient way of information forwarding.

A common challenge for all these systems is the implementation of a simulation model
which is capable of monitoring and fault detection. This is an important issue for fault tolerant
systems [24], because the simulation should be able of inserting fault states and check if the
system adapts to these circumstances in the right way. Such a system hides failures to the user
and operates normally. A key term in this area is ’Failure Masking’ [3]. The basic idea behind
it is redundancy, for one regarding the structure and also regarding the message passing of the
system.

There has been research in this area concerning specific kinds of distributed event based
systems, like in [25] for publish/subscribe systems. However there exists no common system
model to describe the different varieties in this area, which makes it difficult to derive generic
and reusable simulations for testing such systems. The reason for this lies in the fact that a
special simulator is required for every system and scenario. This also affects the capabilities for
monitoring and fault management [77], as the native code to deal with such issues is different
for each of these systems. The result of these circumstances are separate implementations for
every system.

1.2 Problem Formulation

Concerned with the different attributes of the specific kinds of distributed event-based systems,
the goal of this work is to implement a common model suitable for the different kinds of event-
based systems (see Figure 1.2). The underlying domain model is kept as generic as possible
to support adaptability to potential new ssytems which might be developed in the future. The
current state-of-the-art still lacks the possibility of running different fault scenarios on such a
generic model. Another usage is the monitoring of real systems, which should be able to give
information about the current status and also provide possibilities to send notifications if a faulty
state has been reached or if there is a high possibility to reach one in the near future because
of the current status. The problem in implementing such features are the different aspects of
distributed event-based systems concerning their architecture or behaviour.

The challenge of deriving such a model is best described by illustrating the differences be-
tween the sub-areas of event-based systems which has been done in [44] and is illustrated in
Figure 1.1.

The basic mechanism like producers and consumers are similar across all event-based sys-
tems, which is illustrated by the circle in the center of the figure. The names of these concepts
may be different in the sub-areas ( [44] contains a table describing the different terminology
for these concepts in the systems). However there are big differences in higher level logic like
contraints or monitoring.

These differences have their reason in the different usage scenarios of these systems, e.g.
Event stream processing (ESP) on one side deals with the handling of continous event data flows
over certain channels whereas service-oriented and event-driven business process management

3



Figure 1.2: Illustration of the problem formulation

(EDBPM) has its focus on the managing of complete business processes [96]. This example
shows the differences between these systems in a clear way.

On top of this model, simulations can be performed to ensure the fault-tolerance of the
underlying system. Using a generic model, like the one described in this work, makes it possible
to define generic simulation actions for different kinds of event-based system without the need
of adapting it to the specific aspects of them.

1.3 Illustrative example

To illustrate the problem adressed in this work, the example of a stock market trading platform
is used [31]. A simplified structure of such a market is illustrated in Figure 1.3. This illustra-
tion uses a sample workflow to illustrate the semantics of the example. The core concept of
this mechanism is the virtual trading platform consisting of two areas. The inner area is used
to generate quotations based on the offers submitted by customers. Since this is done using a
complex algorithm, the task is distributed over several servers. In contrast, the outer area is re-
sponsible for receiving events from the customers and sending notifications to them. This area
structure is used to divide the workload and separate the customer traffic from the inner logic of
the system. The customers, in this case financial institutions, also have applications running on
their machines to submit orders and receive notifications about issued orders. This system is a
mixture between different event-based system approaches, since the outgoing notification to the
customers is a publish/subscribe-like architecture, but the ingoing communication is a typical
case of a server-client architecture. Additionally, the traffic between the two areas in the virtual
trading platform can be seen as Peer-to-Peer (P2P) system.
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Figure 1.3: Illustration of a stock market system

One key aspect in such a high-risk system, regarding reliability, is fault-tolerance. The servers
in the virtual trading platform will most likely be replicated across the network to deal with
downtimes of servers. The problem here is that the monitoring of fault tolerance, if there is
any, will be modeled to match the aspects of this particular system. If the semantics of the
system change over time, the fault tolerance mechanism needs to be adapted with huge effort.
To overcome this issue, a robust generic model of the system needs to be generated to support
fault-tolerance and monitoring. This is the task of this work and for illustration purposes, the
example, presented here, will be used throughout the work to explain the different aspects of it.

1.4 Contributions

The final outcome of this work is a generic model for different kinds of distributed event-based
systems with a runnable monitoring and simulation environment on top of that model, which is
named the EventSim framework in the following. The contributions of this model are:

• Implementation of the model using model-driven engineering (MDE) tools

• Runtime support for changes to the model

• Synchronisation between the model and a real system

• A simulator to adapt and monitor event-based systems

• Different modules for monitoring and fault injection
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The system model used in this work is based on the preliminary work presented in [44]. This
model provides an abstraction for the structure of the different kinds of event-based systems and
additionally a fault taxonomony for this model is described in this paper. After adaption of this
model (since there are certain variables needed for simulation purposes), it gets transformed to
a generic programming model. This model is implemented using model-driven development
(MDD) as described in [66]. Using MDD makes the model completely independent from cur-
rent event-based systems, as it is directly generated from the domain model. This also ensures
that a 1:1 transformation from the model to the programming model is possible. The concrete
implementation used for deriving a programming model is described in [88].

The model synchronizes its state with a real-world application through adaptors, where an
example adaptor is generated for the Storm framework 1. The basic characteristics of software
adaptors is provided in [63] with a focus on events. The handling of these adaptors is also
done in a generic way, so that more adaptors can be written for different systems. Since they
are included in the corresponding real-world system, the simulation model itself is not changed
while adapting to a new system. This provides a generic way of simulating different kinds of
distributed event-based systems described in the previous section.

On top of this, the EventSim Tool component is located with connections to the simulator
and injection possibilities for real-world adaptors. The Tool component itself has no dependency
to the underlying model, which enables further adaptions to the model, which may eliminate
the need for creating tailor-made simulation solutions for each of these systems. It consists of
several standard modules, e.g. for routing [94] or topology [2]. This plugin-like architecture is
extendable and can, therefore, be adapted for future, yet unknown, systems.

Additionally, a Simulation component is provided, which enables the simulation of several
scenarios using different strategies. This simulator adds the possibility to test specified rout-
ing algorithms and scaling strategies, which can be applied on-the-fly. Another usage for the
simulator component is inserting predefined failure states into the model and investigate the cor-
responding model behaviour. On the other side, the simulator is also used to monitor a real-life
system and notify the system if certain conditions are met. The granularity of these notifications
can be chosen in a flexible way, from high-granularity to notifications for every event.

During development for this work, a testing platform is used to simulate various events and
actions in a real system. This platform is implemented using different scenarios, which can be
executed based on the given simulation target. An interface for events is provided, giving the
Simulation component or any other component the possibility to insert events into the running
system. At the end of the workflow, every model operation is communicated to the model.

An extra interface is developed for further use to change the underlying model and invoke a
simulation according to this model. This makes it possible to change the inner structure of the
model as a whole without the need of changing the simulation code considerablyf. These models
are also stored in a persistent way and saved with the relation to a specific real-life system, so
that further contributions can build their work on top of them.

Evaluation of the model is done by simulating several kinds of scenarios with the help of
the Simulation component and the testing platform. This includes the monitoring of the normal

1http://storm-project.net/
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system workflow, as well as transforming the model to a failure state. The connection to the
testing platform is tested using the Storm framework.

1.5 Structure of the Work

After this Introduction, Chapter 2 describes the current status and work that has been done
in areas related to this thesis. To that end, existing models derived for event-based systems are
compared and their possible benefits and drawbacks are discussed. Chapter 3 deals with existing
work in the sector of the different event-based systems and also papers describing the underlying
base of this thesis, especially the used data model.

A concrete description of the model and implementation methods is provided in Chapter 4.
The content of this chapter is a short description of the data model used in this work on one
side and the architecture of the different components on the other one. The interfaces going
out of the model are also described for further work in this sector. On basis of this architecture
description, Chapter 5 characterizes the concrete implementation of the different components
and which specific methods and patterns have been used for it.

At the end of the work, Chapter 6 analyzes the indicators received by performing simulations
on the model. This concludes in an analysis of the usefulness of the simulation process described
in this paper. Finally Chapter 7 concludes the work, summarizes the main findings, and points
to future research directions.
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CHAPTER 2
Background and State of the Art

This section deals with current work in the areas touched by this thesis. Particular areas of
interests are event processing as a whole (including a section about the popular event processing
language Esper), as well as the used programming paradigms like Model-Driven Engineering
(MDE) or Reflection. In the last section, the Storm framwork is described, which is used for
evaluation in this work.

2.1 Event Processing

Event Processing is a general term for all routines dealing with events. Since the term event can
be found in several research areas, event processing is not a term exlusively used in the field
of information systems [28]. An example for this is picking up the phone during a phone call,
where the phone call would be the respective event. This section, however, concentrates on event
processing in information systems.

An early example of event processing in information systems is the programming of a Graphical
User Interface (GUI). If the user clicks a certain button or submits a form, this can be transformed
to an event and the programmer handles it programmatically [28]. Events in general can have
their origin in the real world or can be created automatically, e.g., as reaction to another event.
The authors of [28] describe five different event processing applications and also note that a
specific system can also be a cross-application of these aspects:

Observation This event processing application has only a passive role. A given system is moni-
tored and if an exceptional behaviour occurs, an alert is issued to the user. Proper handling
of this behaviour is left to the user, which results in the event processing system acting
like a notification engine [76].

Information dissemination Systems in this sector deal with information forwarding. This does
not only mean that information is simply forwarded but it also has to be forwarded to the

9



right component at the right time. Additionally, the information can be forwarded to
different components in different ways, which leads to personalized information [29].

Dynamic operational behavior Basically, this term is a generalization for all systems, in which
the output is affected by the input events of the systems. As a result, the behaviour of
the respective systems is dynamic and cannot be predicted if one does not know about
upcoming input events [39].

Active diagnostics This can be seen as an enhancement to the Observation application. A
diagnosis of a failure is made based on symptoms received as event. In a fully automated
system, resolution of the problem is also done automatically. In other systems, the user is
informed about the root problem and, therefore, has better knowledge to fix it [71].

Predictive processing In contrast to the aforementioned applications, systems in this sector try
to prevent certain events from occuring at all. They analyze logs, where certain behaviour
has led to specific frauds and try to avoid those frauds to happen by dealing with this
behaviour before the event can happen. An example of this behaviour is the restriction in
some online communitys that you can only perform a search in a forum every five seconds.
This way the system tries to prevent itself from Denial-of-Service attacks [41].

In distributed systems, event processing is performed using Event Processing Networks (EPNs)
[84], which consists of several Event Processing Agents (EPAs) [26]. An EPN is dynamic,
meaning that EPAs can be inserted and removed at runtime. The different types of EPAs are
event sources, event processors and event viewers [72]. The interaction between these types
of events is illustrated in Figure 2.1. Between those EPAs, events are flowing in one or both
directions. Every EPA has an in and out side. So for a connection between two EPAs, the out
side of an EPA is connected with the in side of another EPA [57]. So the typical workflow for an
EPA is receiving an event, performing some operations and sending a new event to one or more
EPAs. However, the last part is optional because if a certain activity is finished, there will be no
new event. Additionally, a test (so called guard [57]) can be performed on the outgoing event
before it is finally put in the in side of the target EPA.

Esper

Esper [48] [12] is among the most poular event processing languages (EPL), which enables basic
and advanced processing features for events, described in this subsection. It has to be noted that
Esper is not used by the EventSim framework. This subsection is rather used to describe Esper
as an addition to the Eventsim framework. The exact differences and commonalities between
these two systems are presented in the following.

The basic concept of an EPL in general and Esper in particular is the reversed idea of a database.
While having data stored and queries running on top of them in the world of databases, Esper
enables the storage of queries and applying data on them. Another difference between these two
worlds is the time flow of these queries. Using databases, queries are executed at one point in
time with a specific amount of data stored in the database. In event processing, the queries are
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Figure 2.1: Different kinds of EPAs [72]

executed in a continuous way as real-time data (Esper can also handle historical data) comes
in. This enables real-time analysis of data and adding new queries on-the-fly for real-time data.
The results of the queries, however, can be stored in several formats like a database for further
analysis. Therefore, EPLs are designed in a flexible way regarding their use cases and can help
in different areas of interest.

Esper supports a rich set of event processing features, including the following:

• description of events using java objects, plain text or own event representation by a dy-
namic plugin architecture.

• continuous querying, including aggregations like min, max or sum and joins

• timing constraints, which includes rules on the sequential ordering, detection of missing
events and assuring that certain events are sent within a given timespan.

• processing models, either via listener or an pull-based iterator

• correlation of events by using attributes joining them together

• support of input and output adaptors for several formats like CSV, HTTP and database
binding.

• statements or queries can either be declared in textual format or using objects using the
statement object model of Esper.

Example use cases for Esper are financial services, monitoring frameworks and event driven
service-oriented architectures in general. The scenario can range from simple activities, like
monitoring event exchanges, to more complex activities, like monitoring missing events, to high
complex applications, combining all of the features provided by Esper.
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In combination with the EventSim framework, presented in this work, Esper can be used to pro-
vide an all-in-one solution for event processing and event monitoring. As a result, the EventSim
framework does not try to mimic the behaviour and features of Esper but rather complements it.
Esper is a good solution, if one is interested in monitoring events and their timing constraints.
On the other hand, it lacks support for monitoring the components handling these events. This
is the point, where the Eventsim framework steps in and contributes to this field of research.

2.2 Model-Driven Engineering

Model-Driven Engineering (MDE) [80] has its focus on the domain of the underlying system
and, therefore, provides an abstraction compared to traditional software development. The main
elements of this paradigm are models and metamodels [32]. In this context a model can be de-
fined as "a description of (part of) a systems written in a well-defined language. A well-defined
language is a language with well-defined form (syntax), and meaning (semantics), which is suit-
able for automated interpretation by a computer" [51]. Metamodels on the other hand are a
definifition for the corresponding models, so it can be seen as "model of a language of mod-
els" [32]. It is used to describe the elements of the model and is therefore one level above the
model. Additionally, there can also meta-metamodels, which are a description of metamodels,
and (potentially) infinitely many levels on top of them.

Model-Driven architecture (MDA) [49] is a set of standards for MDE, established by the Object
Management Group (OMG) [87]. On top of these standards, many technologies have been
developed. The technologies which are most relevant in the scope of this thesis are briefly
discussed in the following [65]:

The Meta Object Facility (MOF) This semiformal standard is used for writing metamodels
and models. The problem in this context is that an error in the metamodel is propagated
through the chain of models. Therefore, it is important to specify metamodels in a correct
way according to the standards. [73]

Mapping functions Mapping functions in MDA are used to transform one model into another
one. The advantage using this standardized mechanism is the capturing of expert knowl-
edge, which can afterwards be reused if the model is extended. This also benefits the
integration between models. [66]

Marking Models A mark can be seen as note on an element of the source model, which en-
ables a differentation between elements during the transformation between models. These
marks are not directly part of the source models because in some scenarios this approach
would lead to complex source models. On top of that a marking model is a description
for different types of marks. The combination of mapping functions and marks is called a
bridge and is, therefore, the structure between two levels of abstraction. [65]

Agile MDA Agile methods in software development are used to deliver small fractions of the
whole product to the customer in short development cycles of one or two weeks. Com-
bined with MDE it means that small runnable models are developed in each cycle. The
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Figure 2.2: Abstraction levels of the MOF [37]

result are executable models, which are written in an abstract language. This means on
one hand that the model is platform-independent and on the other hand that the customer
has a better feeling for the current status of the project since it is easier to understand the
abstract model than to understand code snippets. [64]

The core of the MDA is the standard used for describing the highest level of abstraction, i.e.,
the highest meta-model. Currently the common standards used in practice are MOF, Unified
Modeling Language (UML) [78] and Common Warehouse MetaModel (CWM) [62], which is
mainly used for data mining across databases. It has to be noted, though, that these three stan-
dards are not on the same abstraction level. These abstraction levels for MOF are illustrated in
Figure 2.2. MOF and UML are so called M3-models (or meta-metamodels), whereas CWM is
a M2-metamodel. On top of the modeling core, several middleware technologies can be placed
to build applications for several uses, like Finance or E-Commerce [42]. The technologies men-
tioned in Figure 2.2 are currently used and therefore subject to change in the future.

The transformation process between different levels of abstraction should match several require-
ments if it is used in practice. If these requirements are not fulfilled, traditional software devel-
opment methods seem the better choice for a project. Therefore, defining these transformations
is an important part of MDE. The basic requirements are [13]: reuse, composition, genericity,
customization and maintenance.
All of these aspects are pointed towards the goal to achieve a generic flexible transformation
mechanism, which can be reused and adapted in the future to match new needs. An example for
a transformation can be seen in Figure 2.3. The models in this example are written in the XML
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Figure 2.3: Example transformation using MDE [13]

Metadata Interchange (XMI) format [97], whereas the transformation model is written in the
Extensible Stylesheet Language Transformations (XSLT) format [50]. So to transform model
Ma to model Mb these concrete formats are used for communication between the models and
the transformation meta-model Mt.

The complete workflow of MDA contains a number of abstraction levels between the source-
and the destination-model. The number of hops is determined by the different problem domains
between the source- and destination-level. This work uses one metamodel, which is described
in Section 4.

2.3 Reflection in programming languages

Reflection is a term which describes the possibility of a programming language to examine and
perhaps manipulate its own behaviour and state. In terms of processes this would take part in the
reasoning process [86]. The idea of reflection basically folllows six different properties [86]:

Relation between reflective and non-reflective behaviour The reflective behaviour can be un-
derstood as description, whereas the non-reflective behaviour can be understood as reality.
So if one manipulates the description of a system, this has to have an effect on the reality
of this system in the future. Seeing it the other way round, a change of the reality now, has
to have an effect on the description in the future as well. The information flow between
those two systems has to be done in a balanced way, since full information flow would
make the system too complex in the end.

Theory This property ensures that reflection can only be done with the knowledge of the theory,
which describes the underlying system. Since reflection deals with the problem of self-
knowledge, the theories of the respective system have to be used for it. This has been part
of literature in the field of computer science and in other parts of science as well [19].

Naming The term reflection states out the fact that the idea behind it is to get an understanding
of the underlying state and behaviour of the system, which means that one basically needs
to take a step back from its own to have a perspective on every aspect of the system.
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Grade of control With the use of reflection, it is possible to have a more detailed control over
a system than otherwise. This provides the possibility to achieve simplicity and flexibility
at the same time. The first one can be achieved by using a strict and simple description of
the system, whereas the second concept can be done using reflection. This provides the
user the possibility of adjusting the system at runtime.

No complete detachment Although the concept of reflection provides the possibility to change
the state and behaviour of a certain system, it is not possible to get a complete separation
between the non-reflective and the reflective mode. Both modes share the same back-
ground and, therefore, every reflection process has its limitation.

Reflection as core part of the system Reflection cannot be built on top of a given system but
has to be built in the core of a system. This has its reason in the theory-relative approach
described before. If the system itself shall be manipulated, it is mandatory that reflection
is part of the system and not only an extension to the system.

In this work, Java Reflection is used mainly by the EventSim Tool component (discussed in
Section 4.1), because the underlying model code is completely unknown at compile time. This
means that all of the services attached to the model need to be programmed in a reflective man-
ner to support the generality of the model. Java provides metaobjects to access information
about the objects at runtime. The main objects for this task are Class and Method. Using these
metaobjects, one can change or access the state and behaviour of the objects currently loaded at
runtime.

2.4 Models@run.time

Dynamic and self-adaptive applications often need to change their underlying data models. In
modern applications, the need for this change occurs at runtime and not at design-time. Re-
search in this area is subsumed under the term Models@run.time [14]. The term ’model’ in this
context refers to a dynamic abstraction of the system and defines the structure and behavior of it.
Additionally, these models are implemented in a reflective manner to support the manipulation
of it during runtime [11]. According to Vogel et al. [95], models at runtime can be categorized
by their level of abstraction using the following categories, which are illustrated in Figure 2.4:

Implementation Models These models are directly coupled to the underlying programming
language and used to modify the system over time. Due to this connection, the abstraction
level of these models is low compared to the following ones.

Configuration and Architectural Models On a higher level of abstraction, these models de-
scribe the configuration and architecture of the underlying system and are, therefore,
platform-independent. Concrete use cases for them are monitoring or analysis of a system.

Context and Resource Models Using these models, one can determine the operational envi-
ronment of the system and, therefore, achieve knowledge about the situation of an entity.
This layer resides between the layers mentioned above, depending on the specific system.
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Figure 2.4: Different Categories of runtime models [95]

Configuration Space and Variability Models Compared to the configuration and architectural
models, these models are used to describe all possible configuration variants of the system,
rather than describing the concrete configuration in use right now.

Rules, Strategies, Constraints, Requirements and Goals This is the highest abstraction layer,
which is able to describe every of the above mentioned models and would reside on the
relevant layer of the respective model.

The models used in this work are located between the implementation and the configuration
layer because they are platform-dependent at the current stage but can be used for analyzing and
monitoring the system.

2.5 An eventing platform - Storm

In this section, background information on the Storm framework is provided, which is utilized
as evaluation platform for the approach developed within this thesis. Storm 1 is a distributed
realtime computation system and can, therefore, be used as example of an event-based system.
The version used in this work is Storm 0.8.3-wip3 (as of August 2013). In the following, the
characteristics of Storm (regarding architecture and fault tolerance) are highlighted to understand
why this framework was chosen.

Architecture

The application code in Storm is packed in a topology, which is composed of Spouts and Bolts
[61]. Topologies can either be created in a distributed way, where tasks are distributed across
the nodes of a cluster, or in a local mode, where the nodes are simulated with threads. These are
the components used for communication. Spouts are the source of a topology and usually use
an external medium to transfer events into it. This medium can have every possible format, e.g.
a webservice, like the Twitter API, or a file on the local hard disk. Since this external source is
theoretically of an infinite amount, topologies in Storm are running until they are killed. These

1http://storm-project.net/
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spouts are usually located at the beginning of a topology, whereas bolts are used for every other
communication and computation.

Messages sent from a spout can either be reliable or unreliable. The case of reliable messages
is explained in the last subsection of this section. If messages are unreliable, there is no fault
tolerance regarding message sending. Since Storm is normally used in a distributed parallel way,
every component can have multiple specific nodes, which are handling its payload. The amount
of parallelism for every component can be specified via configuration values and is described in
detail in the next subsection.

The communication between spouts and bolts is done using streams. These streams are used
to transport tuples, which are an abstraction of any serializable object. The flow of communi-
cation between the nodes of the topology can be defined via stream groupings, with the most
important being:

Shuffle grouping Using this grouping is the standard method for achieving a high grade of
parallelism since the tuples are equally distributed across the nodes of the bolt.

Fields grouping The stream is partitioned by a specific field of the value. All tuples with the
same value for this field are emitted to the same node.

All grouping Streams are replicated across all nodes of the cluster, which leads to high redun-
dancy but no parallelism.

Global grouping This is similar to the Fields grouping approach with the difference that every
tuple of a given stream is emitted to the same node. This is for example used by batch
jobs, where one node has to know every event.

Direct grouping This is a special mechanism provided by Storm, where the event producer
decides the receiving node.

Every component can have either multiple input or output streams, except spouts, which only
have output streams. Because of this flexibility, there is the support for several processing pat-
terns [60]:

Joining Multiple data streams can be joined together to a joined stream. The concrete imple-
mentation of this join (e.g. different tuples put on one field or one field per kind of tuple)
is left to the developer.

Batching In high-performance systems, tuples can be saved in one component and collected
for a batch call. This can for example be used in a database management system, where
every event triggers an update and these updates are done in a batch job. The tuples are
acknowleged at the time of processing. For reliability, multi-anchoring is used, which is
described in the subsection about fault tolerance. The drawback of this method is the lack
of parallelism because all of these tuples must be located on the same node.

Caching Some applications use a cache on the nodes to minimize computation time. Storm
provides the possibility to assign all values of a field to a specific node. This reduces the
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amount of caches throughout the system and optimizes the cache of this node. Otherwise
every node of this component would have a cache with some values, which is not an
optimal approach regarding performance.

Staged processing If the use case is to get the five highest order amounts in an order manage-
ment system, this is normally done by saving every order in a node and calculating it on
this node. Storm provides the possibility to calculate this for every node, which received
orders, and have one node collecting these calculated amounts and determining the highest
amounts of the whole system.

Environment

Storm uses Zookeeper 2 as coordination server [45]. It is a service, which provides multiple
functionalities for a cloud like naming, maintaining configuration information and providing
distributed synchronization. The architecture of Storm is a mixture of a Client-Server and Peer-
to-Peer (P2P) system. The main node is called Nimbus. This node keeps the information about
topologies and the different Supervisor nodes, on which the worker processes are started. The
communication between these nodes is done through the cluster managed by Zookeeper. Re-
sponsibilites of the Nimbus node are monitoring topologies, rebalancing topologies and telling
supervisor nodes to start a new worker process if necessary. A supervisor node is started on
every physical machine used as a worker. This node is used to directly start and kill worker
processes on the machine. Monitoring of the cloud can be done by using a provided Web-GUI
or by connecting to the system using Thrift 3.

Storm itself has multiple abstraction levels for the components of a topology, called worker,
executor and task. The concept is explained in the following, using an example illustrated in
Figure 2.5. This example has three components, one spout and two bolts. The number of
workers is set to two, which can be changed for every topology. Each of these workers is a Java
process using its own JVM. The parallelism hint specifies the number of initial executors per
component. Dividing the total amount of parallelism by the amount of worker processes leads
to the number of executors per worker process. An executor is a thread inside the corresponding
worker process. Tasks are used for the actual data processing. If not specified otherwise, one
task is initialized per executor. In this example, the amount of tasks for the blue bolt was set to
four. Since the blue bolt uses two executors, every executor has two tasks. The green bolt in this
scenario only has one executor, which is normally used if every event workflow must go through
the same thread.

Fault Tolerance

Since the Nimbus and Supervisor nodes are basically decoupled, killing one of them does not
kill the entire system. If the Nimbus node is killed, topologies can not be removed or added
and there is no rebalancing of the topology any more. The computation, however, is running

2http://http://zookeeper.apache.org/
3http://thrift.apache.org/
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Figure 2.5: Example of a Storm topology

like before the node was killed. The same thing applies for a Supervisor node: new working
processes can not be started on this machine any more but the old processes are running like
before. Killing a worker process does not affect the topology at all, since a new worker process
is started as soon as the change is recognized.

Regarding tuples, they can be reliable and unreliable, as mentioned before. If a tuple is set
to be reliable, a tuple tree is created for it. Every new tuple has a random 64bit ID, which is
generated by the spout [59]. If a bolt emits a new tuple based on a received one, the old ID
is copied onto the new tuple. This makes it possible, to track a tuple throughout its lifecycle.
Every bolt is responsible for acknowledging a tuple after it was processed. This ack-message is
sent to the relevant source component including the information about new tuples based on the
old one. The acking-mechanism is an automatic communication in the Storm framework apart
from the application-specific one. In case, a tuple is not acked in a given interval (which can be
set by the user), it is replayed by the first component in the tuple tree, which did not receive an
ack-message. New tuples can be based on one tuple, but also on multiple tuples. This can be
used if tuples are joined together. This mechanism leads to a prevention of data-loss for several
failures [59]:

The processing task dies In this case, the spout tuples with the respective ID from the root of
the tuple trees are replayed.

Acker task dies This damages the Storm fault tolerance mechanism directly. As a result, every
tuple, which was kept track of, is replayed.
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Spout dies This is the responsibility of the external medium, the Spout is receiving events from.
In an optimal scenario, this medium should recognize the failure and buffer the new events
until the spout is back.

Putting this information together leads to the choice of Storm as the primary evaluated frame-
work used in this work. It is used to validate the simulation actions described in Chapter 4 based
on an evaluation scenario, the results of the evaluation are presented in Chapter 6. In future
work, other frameworks can also be used with the EventSim framework to compare the results
between different event processing systems.
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CHAPTER 3
Related Work

This section deals with background areas of this work. Therefore, the research field of Model-
Based Testing is analyzed, as well as different ways of fault handling, like injection or detection,
and monitoring/adaption of systems at runtime. The motivation for this work can be seen on the
fact that there are solutions to each of these problems, but there is no framework combining these
fields to gain a model-based simulation and monitoring environment for event-based systems.

3.1 Model-Based Testing

Models are not only used for the development of software, as presented in section 2.2, but can
also be used to test a given system. The system, which is tested, is then called system under test
(SUT) [74]. Test cases are input/output combinations of a test model which equal the respective
parameters of the SUT. The model is built using the requirements of the system, which are the
output of requirements engineering. Since the model is an abstraction of the SUT, it must be
simpler than the SUT. If this is not the case, then this approach will be inefficient compared to
normal testing. On the other side, the model must have enough information included to make
meaningful tests for the system. [90].

Model-Based Testing is done as part of the integration- or system-test phase [70], because
the focus of such a test is not the implementation, but rather the system as a whole [5]. The
model describes the major transactions in the system and does not evaluate the code basis used
for it. Model-based testing techniques can be based on various types of models, for instance
finite state machines (FSM) [20]. A FSM describes states and the transitions between them.
Every transition has an input event (describing the reason for the transition) and a target state.
There can also be multiple outgoing or ingoing transitions from or to a state. A model test,
described as test script, consists of several test primitives which can be of one of these types [5]:

Setup of test environment Sometimes the system must be in a specific state to test a given
behavior. Additionally, some actions can have multiple outputs and therefore the test
environment is adjusted in a way to accomplish a deterministic path through the system.
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Figure 3.1: Model-based testing [90]

Test stimulus A stimulus is used to start a workflow in the system and can be seen as external
event.

Verification This can be done using several methods. The most used are text comparison (in
the console or a GUI) or checking the return value of a function. In some cases there is no
need for such a check since a given stimulus would not get accepted by the system if the
method before was not successful.

Reporting & Logging After a test run, the results can be reported and logged using a normal
output, some predefined loggers or interfaces to an automated test system.

The workflow of model-based testing is illustrated in Figure 3.1. First the model is built using
the given requirements. These are also used to define the criteria for the test suite, which can
be made towards different goals, like coverage or fault detection. Using these criteria, test case
specifications are described in a formal way.
These specifications combined with the model are used to derive a test suite, which is written as
script. The communication with the SUT is done using one or more adaptors and a predefined
environment for the test case. The result of the comparison between the output of the model
and the SUT is called verdict. The state of it can be pass, fail or inconclusive. The last state is
chosen if the result of the comparison cannot be determined at the time of testing.
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3.2 Fault Tolerance

In computer science three main terms are used if a software did not work as expected. The
definition by Avizienis and Laprie [7] is still used today: A system failure occurs when the
delivered service deviates from the specified service, where the service specification is an agreed
description of the expected service. The failure occurred because the system was erroneous:
an error is that part of the system state which is liable to lead to failure. The cause in its
phenomenological sense of an error is a fault. An error is thus the manifestation of a fault in
the system, and a failure is the effect of an error on the service.

Therefore, a fault tolerant system is able to prevent faults from causing failures [1]. It has
two components [82]: fault detection (described in the next subsection) and fault repair. Fault
repair is very system-specific and thus there exists no general approach for it. Testing of a fault-
tolerant system can be done using fault injection, which is also described in the following. The
last subsection deals with the specific field of fault tolerance in event based systems.

Fault Detection

Venkatasubramanian et al. [93] described ten characteristics of a fault detection/diagnosis sys-
tem: Quick detection and diagnosis, Isolability (distinguish between multiple faults), Robust-
ness, Novelty identifiability (decide if the system is working as expected), Classification error
estimate, Adaptability, Explanation facility (explanation of the cause), Modeling requirements
(minimal modeling effort), Storage and computational requirements and Multiple fault identifi-
ability.

The methods used for fault detection can be divided into model-based (quantitative and qualita-
tive) and process history-based [93]. Model-based methods can be used with a-priori knowledge
of the process and its underlying structure. In this case, the knowledge is expressed in a quanti-
tative (e.g. mathematical functions) or qualitative (e.g. descriptions of the relationship between
process units) way. Unknown parameters are estimated using direct mathematical functions or
iterative procedures. The observation itself can be state- or output-based [46]. The concrete
observer component depends on the goal of the detection and the system itself.

Process history-based methods are used if there is no a-priori knowledge about the model,
but a large amount of historical data from previous process runs. These methods can also be
divided into quantitative (e.g. statistical analysis) and qualitative (e.g. expert systems) measure-
ments [93]. On an higher level, neural networks can also be used, which are able to learn and
understand the system as more logs are provided [92]. Additionally, hybrid methods can be used
to combine the benefits of two or more approaches.

Fault Injection

Fault injection is used for two major goals: Validation and design aid [6]. Regarding validation,
one aspect deals with the validation of the concrete system and building test sets to find faults
during development. On the other side, fault injection is also used to detect the dependability
of the system at the operational phase. Laprie [53] introduces two goals in this context, which
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are also part of the validation phase: fault removal and fault forecasting. Fault removal is done
to minimize the amount of faults using verification and fault forecasting estimates future faults
through evaluation.

The design aid goal is touched in early development phases and used to enhance the devel-
opment process by establishing feedback loops out of negative results from fault injection [6].
Additionally, fault injection in the design phase can be used to build fault dictionaries [15]. These
fault dictionaries can afterwards be used in the diagnosis mechanism, like the fault taxonomy
described by Hummer et al. in [44].

Hsueh et al. [43] describe three different methods of fault injection. Simulation-based fault
injection is used to measure the effectiveness of fault-tolerant systems, as well as the depend-
ability of it [35]. Therefore, accurate input parameters of the system have to be estimated. Using
prototype-based fault injection leads to a better understanding of the system, as bottlenecks of
the dependability graph can be identified. For this, a prototype or operational version of the
system is used [6]. As a last method, measurement-based analysis can be performed if a high
amount of real data is available [43]. These historical data are then injected into the system to
analyze fault handling and to measure the performance of the system under workload.

Software faults can either be injected at compile-time or runtime [43]. If the fault is injected
at compile-time, it can be seen as permanent fault, since it is part of the program, as long as
the current compiled version is used. These faults can easily be inserted if one has access to
the sourcecode, because it only requires a modification of the source- or assembly-code. On
the other side, using only this phase does not allow for a dynamic injection of faults. Runtime
injection uses different triggers. A time-based trigger is used for injecting faults at a given time,
which leads to unpredictive behavior, as the injection is not based on the current state of the
program [36]. Another trigger is exception-based and inserts the fault based on an occurred
event. This leads to a more predictive behavior than a time-based trigger. As a last option, code
insertion mechanism can be part of the program, which allow the insertion of faults at runtime.
This is similar to the insertion using exceptions with the difference that the fault can be inserted
at any time using this method. The approaches mentioned in the last paragraphs can also be
combined to get a mixture out of compile-time and runtime injected faults. Such a mixture is
also used in this work.

Fault Tolerance in Event Based Systems

Fault tolerance in distributed systems generally is defined with the following characteristics [34]:
availability, reliability, safety and maintainability. As described by Bruning et al. [17], faults in
distributed systems can have its origin in hardware, software, network or operator issues. How-
ever, the specific nature of event-based systems, given that they are distributed, requires a special
taxonomy of faults. Taxonomies, like those presented in [58] or [17], can be used for an event-
based system, but do not pay attention to the characteristics of it. Hummer et al. [44] described
a fault taxonomy for event-based systems, which is illustrated in Figure 3.2.

The fault classes in this illustration are based on [8], which introduces 16 classes. Faults can
occur either at development time or at runtime. The level of abstraction can either be low
(platform-level) or high (business-logic level). It can have its origin from inside the system
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Figure 3.2: Fault taxonomy for event based systems [44]

or be injected from an external source. A fault can be persistent in time or exist for a given
amount of time (transient). As with every system, the fault can be hardware- or software-based.
The reason for the fault can either be a human mistake or natural. As an extension to this class,
faults can either be described as accidental or based on incompetence.

The faults can also be attached to the different kinds of event processing systems, which have
been described in Section 1.1 and illustrated in Figure 1.1. The combination of event processing
systems and faults is also described in [44].

Based on the work done by Hummer et al. [44], this work uses a modified version of the
data model described by them and uses some of the illustrated fault types for testing purposes.
The exact fault types in use, are flexible in the framework and can be adapted in the future. This
concept is described in Chapter 4.

3.3 Runtime Monitoring and Adaptation

Runtime monitoring is used in the simulation part of this work to examine the behaviour of a
SUT. In the literature, there are several requirements to runtime monitoring and adaptation based
on the results of monitoring. In the following, current approaches adressing this issue and the
approach of this work are discussed in more detail. A monitor of a distributed system needs to
handle several issues [47]:

Time of fault detection The system should be able to detect faults in a minimal time after it
happened

Number of messages Monitoring of events in an event-based system has to be done using extra
messages because they can occur on different nodes of the system. The amount of these
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extra messages needs to be small.

Granularity of clocks and timer Since different nodes in a distributed system can have differ-
ent local times, there needs to be a method of synchronizing the time. This ensures that
the time of an event is the same for all nodes.

Resource management Since monitoring is not part of the system itself, it must not harm the
timing constraints of the system and allocate too many resources away from the system.

Based on MDE, presented in Section 2.2, monitoring can also be combined with models, result-
ing in the term model-driven monitoring [40]. The model used for monitoring is not the same as
the functional model used during development, but a subset of it with all specifications relevant
for monitoring. The lifecycle of the model is checked throughout the complete workflow of the
system and, afterwards, validated using the specification of the system. This ensures that the
overhead of monitoring is small since only a subset of the functional model is needed. In this
work, only the functional model is used for monitoring, since it is rather small and leads to no
significant overhead.

Depending on the results of runtime monitoring, runtime adaptation needs to be done if the envi-
ronment of the system has changed or faults have been detected. In modern distributed systems,
adaptation is achieved through dynamic insertion, removal or manipulation of components [69].
This requires a component-based software design as described in [38]. In a component-based
system, every component executes a subset of the workflow, hides its implementation details
from the other components and therefore follows the principle of separation of concern [89].
The components communicate with each other using well-defined interfaces. There exist sev-
eral requirements, which need to be fulfilled for dynamic recomposition [69]:

• The system must provide compositions for the different states of the system.

• The replaceable component must have the same interfaces as the replacing component.

• The pre- and postcondition of all methods of these interfaces need to be the same.

• A persistent state of the old component must be transformable to a persistent state of the
new component.

• If a component is removed, it must be replaced or all dependent components are removed.

• If a component is added, every component, it depends on, has to be present or added
alongside the new component.

• A new component must be able to continue the work of the component, it replaces.

• The integrity of the communication between components must not be harmed by the re-
composition.
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The model used in this work meets all these requirements and can, therefore, be used for recom-
position of its components if the underlying framework supports it. In the evaluation part of this
work (see Chapter 6) recomposition is used to deal with different faults injected into the system.

Since the requirements in the context of runtime monitoring and adaptation are strict (e.g.
concerning granularity and monitoring overhead) and the spectrum of EBSs is widespread, there
exist a wide variety of approaches in this area. In the following, different aspects of these ap-
proaches are highlighted.

Sankar et al. presented a monitoring approach, which is built on top of a formal description
of the underlying program [79]. This approach can be used for programs, completely different
in their characteristics, because of its generic nature. The checking routine of their approach
is implemented using checkpoints, a time where certain checks are performed and the program
is stopped if a failure occurs. This is a convenient approach, when dealing with sequential
programs, but cannot be applied to event-based systems. Another important aspect is the generic
approach of their paper, which is not necessary for the domain of event-based system. This leads
to more complexity regarding the formal definition of the program.

The monitoring of timing constraints in distributed systems was discussed in [47]. It is used
to state constraints about the time frame an event needs to navigate through a chain of nodes.
The constraints are always stated in regard of events. This way, the workflow of different events,
as well as maximum time frames for specific actions can be stated. On the other side, constraints
for components (e.g. a minimum amount of redundancy) cannot be specified using this system.
Therefore, this system can only be used as partial solution if the validation of the SUT should
also cover other aspects than timing constraints.

Similar to these approaches, there has been made much research work regarding the appli-
cation logic or specific attributes of an event-based distributed system (e.g. [22], [85] or [55]).
The common aspect of all these worflows is that they are specific to a certain problem: either
timing, application concerns or the validity of the node structure. This thesis seeks to unify these
different aspects of EBSs and proposes an integrated solution covering the different aspects of
them.
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CHAPTER 4
Solution Design and Architecture

This chapter explains the characteristics and features of the EventSim framework, which was
developed as goal of this work. As a first step, the architecture as a whole and the communication
between components in it are presented. Afterwards, the metamodel for event-based systems
used in this work is described, followed by an explanation of the different components of the
system. The subsequent sections deal with the different aspects of the simulation workflow of
the framework and how the interaction between the Tool and Simulation component works. In a
concluding section, the necessary steps to add a new platform are described.

4.1 Architectural Overview

The architecture of the system is illustrated in Figure 4.1. This is an overview over the whole
EventSim framework, a more detailed view is explained in Section 5.1. According to this illus-
tration, the main components of the system are the following:

Modeling Component This component is the interface accessed by system developers, which
have the goal of modifying their event-based system for usage with the EventSim frame-
work. It provides a graphical user interface for the Model Generation component but has
no own logic attached to it. Since it is not part of the core of the EventSim framework,
this component is subject to future work. For testing purposes and users with experience
in the relevant modeling technology, this component is not necessary.

Model Generation The underlying model of the whole EventSim framework is a metamodel
for event-based systems. For this work, the metamodel described in Section 4.2 is used.
The system developers, however, are free in their decision to change this metamodel or
even create a new metamodel from scratch. This component provides the possibilities
for these routines, as well as access to a storage system, where different metamodels
can be stored for different systems and different versions of these systems. Additionally,
this component is responsible for creating the metamodel code out of a given metamodel
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created by it. This code is then used in conjunction with the specific platform code to test
event-based systems. Concluding, the metamodel, created or edited using this component,
is the code base used by all subsequent components. All of the features of this component
can be accessed using the Modeling Component because of provided service interfaces.

EventSim Tool This component is used for storage and partly for testing. It consists out of two
subcomponents: the ModelStorage Service and the SystemStorage Service. The Model-
Storage Service provides the possibility to create, update and remove persisted models
created by the Model Generation component. In its current version, a file storage is used
for this. The SystemStorage Service on the other hand is used for the concrete model
of an event-based system at runtime. It also provides different operations for persistence
with the difference being that this model is kept in runtime memory, because of perfor-
mance reasons. Additionally, this service notifies registered components about changes
in specific systems. This mechanism is used by the Simulation component to keep track
of changes regarding the observed event-based system. Every component, which has an
service endpoint, can register itself for notifications about state changes. Another impor-
tant feature for simulation is the heartbeat mechanism, described in Section 4.5. It is used
to recognize inactive components. Since this component is under heavy load if different
systems are monitored at the same time, it can be replicated, using a cloud, in the future.
This distributional approach is possible for the relevant data backends of the services, or
for the services as a whole.

Simulation Although the name of the component only refers to the simulation part, it is used
for simulation and monitoring. The current state of the system under investigation is
monitored using a notification mechanism. Manipulation of the system is done using
standardized actions for every system-under-test (SUT) and optional actions specific to
the relevant system. Current implemented actions are described in Section 4.3. The Sim-
ulation component registers itself at the EventSim Tool component to receive information
about ongoing changes concerning the SUT. An additional part of this component is a
graphical user interface (GUI), which provides access to every collected information and
the different actions defined for a specific system. The concrete user interface of the sim-
ulation is adaptable for every system if necessary. If no specific GUI is necessary for a
new platform, the standardized GUI can be used without the need to change anything.

Platform In practice, this can be any event-based system, which uses the other components of
the system (especially the metamodel generated by the Model Generation component) and
their respective interfaces. Every change in the event-based system and every new event
is communicated to the SystemStorage Service. So the internal states of the platform and
the persisted state in the SystemStorage Service for this system are the same throughout
the lifecycle of the system. Additionally, actions can be performed on the platform by
the Simulation component. For this work, a test platform is implemented, which provides
common features of an event-based system to test and benchmark the EventSim frame-
work. The test platform, used in this work, is designed using Storm, which was presented
in Chapter 2. For simulation purposes, it receives events from the Simulation component.

30



Figure 4.1: Architecture of the EventSim framework

Regarding the stock market example, presented in Section 1.3, the platform is the code
base of the virtual trading platform, which is deployed on the relevant servers.

To understand the commmunication flow between the components, Figure 4.2 illustrates the
required steps to integrate a new platform. Therefore, the stock market example, presented in
Section 1.3, is used for clarification of the individual steps. The steps follow the same sequential
ordering as the components in Figure 4.1:

Metamodel and code generation The metamodel is modeled using the ModelingComponent.
For experienced users, the ModelingComponent can also be skipped to write the relevant
metamodel directly using the underlying modeling language. However, using the Mod-
elingComponent is the more generic approach since the underlying technology is subject
to change. In Step 1.1, code artifacts are generated, using this metamodel, by the Mod-
elGeneration component. The ModelStorage Service can be used to persist metamodels
or load existing metamodels and edit them. As a result of the whole step, the location of
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the packaged classes is returned to the user. Currently, the packaged code is transferred
to a server and can be downloaded using a simple HTTP download. This package can
directly be used in the platform to connect it with the rest of the framework and allow the
usage of it for simulation purposes. Specifically this means that components of the SUT
described by a certain element of the metamodel must be inherited from this element. In
future versions of the framework, the delivery of the code package can be adjusted to the
specific needs of the platform developers. However, it is important that all components of
the framework and the relevant platform use the same version of the package. Regarding
the stock market example, this step can be skipped, because the metamodel, presented in
Section 4.2, is sufficient to fulfill the needs of this example.

Adaptation to metamodel The new platform needs adaption to be compatible to the Tool com-
ponent. Components of the platform have to be connected to the generated classes and the
simulation has to be notified whenever there is a change in the system components. This
means that the Tool component has to be notified about every noticed change in the ele-
ment of the system, as well as all node-like components of the platform have to implement
the heartbeat-mechanism 4.5. There is no need of an additional adaptation except these
described routines. The main components for adaptation in the stock market example are
the traffic servers, as well as the computation servers and the events between them. These
elements must be defined as children of the respective classes in the metamodel.

Implementation of connectors and actions The simulation GUI is implemented in a generic
way and only needs adaptation regarding information retrieval if the platform does not
support the sending of notifications or heartbeat-messages. In these cases, it has to be
specified how the components and nodes for a specific event based system are retrieved.
This information is used for two purposes: On one side the relevant systems of a specific
kind can be displayed for choosing in the simulation GUI and on the other side, the list of
components is automatically refreshed in the GUI if the SUT allows to retrieve currently
active components. If the user has the need for platform specific simulation actions, these
are also implemented in this step. Currently, only general actions are implemented. The
implementation of connectors and actions for the stock market example depends on the
architecture of the example and the specific needs for simulation.

Adapt and start the platform After the adaptation is done, the platform is started. If the simu-
lation is running during start-up time, the notification happens automatically as soon as an
action is triggered on the SystemStorage Service. The Simulation component has to sub-
scribe to specific notifications at the SystemStorage Service to receive them afterwards.
This is done dynamically at runtime. The notification interface is public and, therefore,
every component can subscribe to them, not only the Simulation component. As soon as
the platform is started, a mechanism for sending heartbeat messages for every component
also needs to be started to avoid inconsistent states for the Simulation component. As for
the stock market example, the traffic servers and computation servers need to be extended
in a way that they are able to send heartbeat messages. Additionally every creation of such
a server and the sending and perhaps the receival of an event must be communicated to
the Tool component by the relevant server.
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4: start platform

SystemStorageService

4.1: notify about changes

4.1.1 notify

5: start action

5.1: action response

Figure 4.2: Adding a new system within the EventSim framework

Sart the simulation If everything else is running, the simulation can be started as well. Apart
from the notification and monitoring part, specific actions can be performed. Some of
these actions are continuous, whereas other actions can be seen as triggers. In the case of
a continuous action, the action can be stoppped at any time. The actions can be started in
a parallel way, which leads to the possibility of combining them for complex scenarios.
Such complex scenarios can, however, also be accomplished by calling simple actions in
the scope of complex actions. Already implemented actions are described in Section 4.3.
Since the simulation component is not directly connected to the platform, there are no
additional adaptations necessary for the stock market example.

4.2 Metamodel for fault tolerance testing

The metamodel, used for fault tolerance testing in this work, is an adaptation of the metamodel
presented in [44]. Some of the constructs of it were removed, since they are not needed for
simulation purposes and would lead to an overload of information. On the other side, some
attributes were added to the components because of simulation purposes. The new metamodel
is illustrated in 4.3.

The core element of the metamodel is the SimpleEvent. Every event has the attributes source,
destination and time, which is the timestamp of creation. In the stock market example, events
are used for communication between the consumer and traffic servers, traffic servers and com-
putation servers and every other communication between servers. If other attributes are needed
in specific systems, they can be specified using the class Property. This class describes values of

33



SimpleEvent
-source: String
-destination: String
-time: Date

ComplexEvent

composedOf
*

*

Type
-name: String

instanceOf

*

Property
-value: Object

payload

*

type * Correlation
-condition: String

includes

*

* ProcessInstance

isolatedBy

*

*

Buffer
-size: Long

stores

*

*
Operator

-function: String

mapsFrom

*

*

mapsTo

*

*

Subscription
-filter: String
-notifyTo: Endpoint
-expiry: Date

matches

*

*

EPA

owns

*

executes

*

*

EPN

ProcessDefinition

uses

*

minedFrom XOR transformedInto

Dependency

manages

*

from

*

*
to

*

*

Machine

isOn

*

*

State

has*
*

Endpoint
-address: String
-host: String
-port: String

<<Interface>>

Subscription
<<Interface>>

Notification

UtilityService

*

<<Interface>>

Publication

Channel

connects

*

*

Figure 4.3: Class diagram of the metamodel

a certain Type. Events can also have a type, but this is not mandatory. This mechanism would be
used in cases, where events may get filtered in the application code because of their nature. In
the stock market example, the type could, for example, be used to differentiate between events
coming from a consumer or sent to a consumer and events between servers. Events can also be
part of another event. Such a composed event is called ComplexEvent. Events can correlate with
each other, which is described by the condition of the class Correlation. Correlation is used to
join different events with similar properties and filter them out from the other events. This can
be used for higher level processing of events and is not used in the current state of the simluation.

On the other side of the diagram, an event processing network (EPN) is described. An EPN can
be seen as encapsulated network, consisting of an unspecified number of worker nodes. In the
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case of the stock market example, the virtual trading platform can be seen as EPN as a whole,
or the two layers can be defined as EPNs. However, since there is also communication between
traffic servers and computation servers, one EPN for the whole virtual trading platform would
be the right choice for this example. This EPN can logically be transformed into a ProcessDefi-
nition or mined from it. This process definiton is used to create new ProcessInstances. An EPN
uses several services, e.g. for storage and access management, which are subsumed unter the
term UtilityService. Every EPN can consist of several event processing agents (EPA). An EPA is
the logical unit of computation or worker node, which can be deployed on several Machines. The
two EPAs in the stock market example are the traffic server and the computation server. EPAs
can be dependent from one another, regarding the flow of communication or the logic of compu-
tation. Additionally, an EPA has an internal State, displaying the current status of the EPA. Each
EPA in its basic variant has two Buffers: an input and an output buffer. The metamodel, how-
ever, is modeled in a way that supports a flexible number of buffers if applications need them.
The input buffer stores an incoming event, uses the function of the corresponding Operator to
perform computations on this event and, afterwards, submit it to the output buffer. At this stage,
an additional function may be executed, before the event is transmitted to its destination. In
simple scenarios it may be accurate to only implement one of these functions and leave the other
functions empty to increase understandibility of the model. In a minimal scenario, only the two
buffers and one functions as a transition point between these buffers is needed. The function
for traffic servers in the stock market example would be a data format transformation, which
transforms the sent data from the consumer to the right format for the computation servers and
vice versa.

EPAs can be either producers, consumers or both, as presented in [44]. This is, however, not
illustrated in the class diagram, since multiple inheritance is not supported in Java (which is used
as programing language in this work). The common super class for both types is the Endpoint,
which has the attributes address, host and port. This differentation is made for cases, where
the address is not only built out of host and port. It has to be noted, that these three attributes
(and especially the address) are used for distinction between different endpoints in the Tool and
Simulation component. To support the behaviour of producers and consumers, the interfaces
ISubscription (for producers) and INotification (for consumers) are used. In case of a producer,
the EPA manages Subscriptions for the consumers. A subscription is characterized by a filter for
events, the notification target (a specific consumer) and an expiration date for the subscription.
Each consumer in the stock market example has subscriptions to every relevant stock informa-
tion. The main class for communication is the Channel, which connects endpoints. A channel
can connect two or more endpoints, depending on the system under test. There can also be more
channels leading from one endpoint to another. Such a channel can be anything from the logical
representation of a physical unit to a given service endpoint or just a collection of objects. The
channel between servers of the same kind in the stock market example is the logical abstraction
of a simple network connections, whereas for communication between servers of the two layers,
a firewall is used in addition, which leads to another logical abstraction of the channel. The
channel for communication from and to consumers is a web service.
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To sum it up, this metamodel is capable of describing every kind of event-based system illus-
trated in Section 2.5. It also supports platforms, with several of these systems at once. For
example, the stock market example uses publish-subscribe for consumer notifications and P2P
communication between the individual servers. Both of these systems can be described with the
metamodel presented here. However, using the Modeling component in combination with the
Model Generation component makes it convenient to adapt it specifically to a given system if a
new kind of event-based system appears in the future. It has to be noted that the testing platform
used in this work does not use every single aspect of this metamodel but these aspects are kept
in the metamodel to enable further work on this framework.

4.3 Simulation actions

Simulation actions are used in this work for the purpose of simulating exceptional situations
and injecting faults into the target platform (SUT). Therefore, they introduce different flaws into
the SUT, which are investigated regarding the behaviour of the SUT following the injection.
Simulation actions are of a dynamic nature. They can either be synchronous or asynchronous,
have a short or long duration and can have a multiple set of options. These options can be tex-
tual, numeric or boolean values. Additionally, every action can have selected worker nodes, for
which the relevant action is triggered. The actions are connected to the rest of the simulation
component, which means, that they always have access to the current status of the system as
retrieved by the notification and heartbeat mechanism. There are five actions currently imple-
mented, which are described in the following. These actions can be used for every different
event-based system and are of generic nature. However, as noted before in this work, there is
also the possibility to create new actions only for a specific platform.

Additional Traffic

Targeting one worker of the investigated platform with additional data is used to identify po-
tential scaling problems. The additional data will probably lead to scaling problems for every
platform, but the amount of additional data for which these problems occur may be different for
each of these systems. So one way to see this action is as a benchmark test comparing different
platforms. Another problem for systems can be the treatment of this additional data. Some sys-
tems may only run into performance issues, whereas other systems may compute wrong results
because of the unexpected data. Therefore, this action can be used for multiple purposes. On one
side, every additional traffic, which is not parseable by the system, can harm the functionality of
it if the system cannot handle this data. The much worse case happens, if the additional data for
some reason is parsebale by the platform and may lead to wrong computations. The other option
is to emit such a big amount of data, so that the system has performance problems handling it.
To accomplish this test, a worker node is selected, which is the data recipient, and the amount of
data, sent to this worker, is specified. This routine is illustrated in Figure 4.4. In future versions
this may also be applied to several workers of worker groups at once. In the stock market ex-
ample, this action is useful for both layers. Regarding the connection layer, it is critical to see,
how the performance of the individual traffic servers is affected by this additional traffic. The
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Figure 4.4: ”Additional Traffic” action

Figure 4.5: ”Event emitting” action

computation servers of the core layer, however, are highly critical regarding the correctness of
their computation results. This illustrates, how this action can be used for multiple purposes at
once.

Event Emitting

In its current version, the test platform, presented in Chapter 6, is receiving events from the net-
work. This action is responsible for sending events to the platform for testing purposes. Since it
is technically done over a network socket, the respective port can be specified. Additionally, the
rate of events can be set. The respective communication flow is illustrated in Figure 4.5. This
illustration shows that the components receive the events by polling them from the simulation
service. This is also used for performance testing, such as the “Additional traffic“ action pre-
sented before. The data sent by this action has a predefined format which may be overriden for
new platforms as they occur. In real-world scenarios, this action can also be used to see how the
platform reacts if there is a certain peak of received events and how this affects performance of
the whole platform. Regarding the stock market example, this action is used in its connection
layer, since most of the events are emitted by the consumers, which can be simulated using this
action.
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Figure 4.6: ”Event interception” action

Event Interception

The EventSim Tool component provides the possibility to prevent events from getting sent from
one node to another. This is accomplished at the point, the event is added in the Tool component
by the sending node with the relevant service call. The Tool component answers the call with
a predefined value to tell the node not to send the event (see Figure 4.6 for an illustration of
this workflow). The corresponding simulation action takes two parameters: the worker node,
for which the sending of events is intercepted, and the amount of events from this worker node,
which are intercepted. This action, however, also needs little code modifications in the tested
platform, because it should react in the right way if the Tool component tells the sending worker
to cancel the event sending. In the stock market example, this action can be used in several ways.
On one side, the fault-tolerance of the SUT is monitored by evaluating if the SUT recognizes the
failed event and tries to send it again. Another use case is the blocking of events from one node
at all. This could lead to wrong transactions at the market because of missing asks.

Kill Event Source

Killing the event source can lead to possible deadlocks of other components in a system. Fur-
thermore, it is important to evaluate, how the system reacts in terms of resource handling. Since
there will be no computation in the system under the assumption that the event source is taken
out for a long time, there should be no high consumption of resources on the indiviual worker
nodes. On the other side, the system itself should react in a fast way and restart the event source
in a way that the computation time is not increased in real-time systems. One may also dis-
tinguish between the killing of one instance of an event source or every event source of the
platform. In the first case, a reliable platform should work with no harm as every component is
redundant. Concerning the latter case, it is interesting to see, how long it takes for the platform to
start the event sources and get back to a normal working state. Event sources are detected by the
Simulation component (if possible, otherwise they can be entered via the GUI) and, afterwards,
one instance of the event source is killed directly, as illustrated in Figure 4.7. The event sources
in the stock market example are the consumers on one hand and the computation servers on the
other hand, in the case of an external event on the market. Since consumers can only be killed in
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Figure 4.7: ”Kill Event Source” action

Figure 4.8: ”Kill Worker” action

a testing scenario with stubbed consumers, the most likely scenario is to kill computation servers
in a scenario, where there are many external events in the market.

Kill Worker

In contrast to the action ”Kill Event Source”, this action is used to kill any worker node of an
event-based system. The difference is that the simulation can target the action at the bottleneck
of the system to see, how the performance reacts. These bottlenecks can be identified using the
validation mechanism, explained in Section 4.4. Similar to the action before, the reactivation
time of the worker node can also be measured. Again, it will be interesting for any platform
to see, how long it takes for the given worker group to be up and running again at a normal
state. The workflow on the side of the simulation is a bit simplified compared to the ”Kill Event
Source” action, which can be seen in Figure 4.8. As for the stock market example, this action can
either be used to kill traffic servers or computation servers. The goal of the simulation depends
on the kind of server, which was killed. Killing traffic servers can lead to performance issues
rather quickly, whereas killing computation servers can lead to performance issues in the case
of high load.
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4.4 Validation of Platform Behaviour

The purpose of validation is to assert that the target platform reacts properly in response to the
applied simulation actions and ensures that constraints of the application logic are still met.
The EventSim framework allows to define custom assertions over the system state, which are
continuously evaluated throughout the simulation. If any of the assertions is violated during
execution of the simulation, a corresponding error message is reported to the user. Validation
in the EventSim framework is performed by annotating relevant classes and using a Scripting
Language to describe constraints. As part of this work, Groovy [52] is used to describe these
constraints. Using this language, it is possible to describe constraints for every workflow, which
can be described by the attributes of the relevant class. Additionally, constraints can also be de-
scribed regarding the current running instances of a class. Therefore, the variable _componentIn-
stances is injected into the script, which describes the number of currently running instances of
the evaluated class. Fields of the evaluated component are also injected into the script for usage
in the query. This is especially useful when it comes to redundancy checks of the components.
The validation mechanism allows for constraint checks regarding the structure of the platform,
as well as checks regarding the application logic of the platform.

Validation is triggered automatically by the Simulation component as soon as a connection to a
platform is established. Every class used in a platform can have certain constraints attached to
it. An example of such a query, which highlights the different features of the query language, is
illustrated in Listing 4.1.

_componentInstances >= 1 && _componentInstances <= 3 &&
parameterCache.size() >= 0 && parameterCache.size() <= 1 &&
receivedEvents >= sentEvents

Listing 4.1: Example of a query

As described via the constraint examples for the stock market example, constraints could be
defined for structural aspects on one side. These constraints deal with redundancy and reliability
of the servers. On the other side, constraints dealing with application logic can be defined.
These constraints are most useful for the computation server because they encapsulate most of
the business logic of this platform.

4.5 Heartbeat mechanism

Every worker node is responsible for sending an alive-message to the EventSim Tool compo-
nent on a constant basis (the exact frequency for these messages can be configured) [21]. These
messages only contain the name and adressing information for this specific component and are
used to check the status of the saved components. If a worker node did not send such a mes-
sage within a certain amount of time (the tolerance for the sending of heartbeat-messages is also
configurable), it is removed from the persisted state in the EventSim Tool component. In such a
case, the subscribed components of the Tool component (mostly the Simulation component) will
be informed about the removal of the element. Additionally, this mechanism is used for simula-
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tion because otherwise it would not be possible to provide the EventSim Simulation component
with the current state of active components.

The choice of frequency for this messages can be chosen by the platform developers, where
both extreme variants have an advantage and a disadvantage. A high frequency leads to a more
reliable information about the current state of the application but also increases the amount of
network traffic by a huge amount if there are many worker nodes active. Using a lower frequency
on the other hand reduces the network traffic but also leads to a more unreliable information
about the current state of the nodes, since inactive nodes are recognized rather slowly. The
best choice is most likely a mix between these extreme variants, where the real values depend
on the likeliness of change in the investigated platform. The adapted components in the stock
market example are the traffic servers and computation servers. These two concepts have to
be extended with the functionality of sending heartbeat-messages. In this example, sending
heartbeat messages over a central component has two disadvantages. First of all, there is no
component, which knows every server of the platform. This means that it would require a lot
of development time just for the sending of heartbeat messages. The second disadvantage is
that such a component would affect the dynamic nature of the platform in a way, that the inner
concept of a cloud-like structure would be dismissed by this central component.

4.6 Notification mechanism

As mentioned in Section 4.1, the ModelStorage component keeps track of the current state of
an event based system and the actions modifying it. This implies the actions of the system, as
well as the current state of it. As a result, every interaction between two system nodes has to
be communicated to the ModelStorage component. In addition, the creation and removal of a
system component has to be communicated. Afterwards, the information is forwarded to the
Simulation component, which handles it, depending on the current configuration of it. This
communication workflow is illustrated in Figure 4.9.

During the simulation phase, the Simulation component sends events to the event emitter of
the SUT. As a result, a new event is sent to another node of this system. At the time, the other
node receives this event, it has to notify the ModelStorage service about the retrieval of this
event. As a last step of this workflow, the Simulation component is also notified by the Model-
Storage service. This behaviour allows monitoring of the events by the Simulation component.
This is the most common workflow for monitoring events in the system.

For this workflow to work in a correct way, the SUT and the simulation component have to fulfill
the following requirements:

Connecting The SUT has to be connected with the used metamodel for testing. In this work,
every component used for event computation and sending needs to be specified as EPA for
the simulation to work in a correct way. In the stock market example, traffic servers and
computation servers are affected by this adaptation. The other components of the system,
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Figure 4.9: Notification mechanism

like events being sent from consumers to servers, vice versa and between servers, have to
be inherited from the relevant element of the metamodel as well.

Registering The Simulation component has to register itself at the ModelStorage service. As
a result, the ModelStorage service knows that it has to notify the Simulation component
about changes. This registration can be done for specific actions, like creation or removal
of a component, or for every action. In future versions, these notifications may also be
filtered according to filters composed out of the attributes of the relevant element. There
is no need for adaptation for platforms, like the stock market example.

Communicating As a final step, the system components have to tell the ModelStorage about ev-
ery change, e.g. the event receival or the removal of an event. Furthermore, every creation
of a new system component and the manipulation/removal of such a component has to
be communicated. By definition of the ModelStorage, this notification is then forwarded
to the subscribers of this notification. This affects both, the traffic and the computation
servers in the stock market example, since these two components are responsible for event
creation.

For complete coverage, adding and removing of a node must also be communicated to the
Tool component. This is not always possible, because it happens on a layer not controlled by the
platform code. Nodes are typically managed on the event-based system hosting the platform, so
the platform itself probably does not recognize adding and removing of a node. To deal with this
issue, the Simulation component also recognizes new system components if they arise as part of
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another notification. Removing of a node cannot be handled with the notification mechanism,
but is dealt with using the heartbeat mechanism (Section 4.5).

4.7 Adding a new platform

The steps, applied when adapting an event based system for use with this framework, have par-
tially been described in the last sections of this chapter. This section gives a clear sequential list
of tasks, a platform owner has to accomplish before the respective system can be used together
with the framework, developed in this work. As with the sections before, the list is illustrated
with the stock market example, described in Section 1.3, to support the understandibility of these
steps.

1. Generating a metamodel for the system: Either the metamodel, provided by this work,
is used or a new metamodel is created, which can describe the new system. For small
adaptations, the best way is to adapt the metamodel of this work. In the case of the stock
market example, the metamodel developed in this work, is sufficient for usage. If the
platform developer knows that the simulation needs do not change over the near future,
the metamodel could also be simplified, leaving only the relevant classes for simulation in
it.

2. Code generation: The code for the new metamodel has to be generated and connected
to the new system. Therefore, the code base is deployed with the platform code, which
encapsulates the code base as part of the platform code. Regarding the stock market
example, the code base is put on every machine, a traffic server or computation server is
running on.

3. Connecting the classes: Connect the classes from the new system with the classes from
the generated code by inheriting from them. Connecting in this case means, that the
platform code needs to be inherited from the relevant classes of the code base. Traffic
servers and computation servers of the stock market example are directly inherited from
the class EPA to define them as worker nodes. This also means that the attributes for
EPAs like host, port and address have to be set in a right way to ensure that the simulation
workflow works as expected.

4. Add notification calls and heartbeat: Every method in the components of the system,
which can manipulate events, has to make a notification call to the ModelStorage. Ad-
ditionally, every such component is responsible for sending heartbeats via the supplied
interface to the EventSim Tool component. This can either be done by each component
individually or from a central point in the platform, depending on the structure of the
platform.

5. Annotate the event producers and consumers: The components used for testing need
to be annotated according to their desired behaviour. This ensures correct functionality
of the validation. Before annotation, the constraints for every of these components has to
be defined. These constraints must be written in a way that makes them transformable to
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the query language prestend in Section 4.4. All of these steps are necessary for both, the
traffic servers and the computation servers in the stock market example, which should be
checked against constraints.

6. Start the system: If every previous step is done, the new system can be started and, addi-
tionally, the simulation component is started. This automatically triggers registration for
notifications at the Tool component. Afterwards, simulation actions can be performed on
this platform and the lifecycle of components in it is monitored. For the stock market ex-
ample, this means that the platform is started as normal, with the differene that the adapted
version now automatically sends heartbeat messages and notifications to the Tool compo-
nent. In a next step, actions like killing certain traffic servers to monitor the performance
following this change can be performed.
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CHAPTER 5
Implementation

This section is used to describe the implementation details of the EventSim framework. There-
fore, every component of the framework is described, as well as the communication between
them.

5.1 The EventSim Framework

Architecture

The component architecture of the EventSim framework is illustrated in Figure 5.1. The frame-
work itself consists out of three components, each of them using a Jetty server to deploy the
services. Since the EventSim Tool component supports the persisting of models (via the Mod-
elStorage service) and systems (via the SystemStorageService), this component also has two
in-memory storage mechanism attached to it. Both of these storage systems are currently im-
plemented as in-memory data structures for performance reasons. In future versions, they can
be extended with persistent database support, in order to cope with high amounts of model data
which cannot be handled entirely in-memory. The communication between the components is
implemented using service calls, as described in Chapter 4. As far as upscaling is concerned, the
EventSim Simulation and the EventSim ModelGeneration component can be replicated without
requiring additional measures. If the EventSim Tool component is replicated in the future, the
data storage part of it will be moved to a separate component to simplify the process of repli-
cation. Additionally, synchronisation can be a difficult challenge regarding the EventSim Tool
component, since it is the the only stateful component of the framework.

The whole EventSim framework produces five artifacts, used in the components described above,
except the eventsim-platform artifact, which is the test platform used for evaluating the frame-
work. These five artifacts and their dependencies with each other are illustrated in Figure 5.2.
The common concepts of the framework, like service interfaces and core classes, are defined in
the eventsim-common artifact. However, since the service interfaces use the abstract element
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Figure 5.1: Deployment diagram of the EventSim framework

ModelElement, generated in the eventsim-model artifact, it has a dependency to this artifact.
The eventsim-tool artifact requires the same class from the eventsim-model artifact and addi-
tionally the pojos and service interfaces of the eventsim-common artifact. Both, the eventsim-
platform and the eventsim-simulation artifact, need the service interfaces as well. The eventsim-
simulation additionally needs the platform classes used in the relevant platform. In a real-world
scenario, these classes need to be injected into the simulation project.

5.2 Model Generation

The metamodel for the supported event-based systems of the EventSim framework are gener-
ated using the concept of MDE, explained in Section 2.2. In particular, the Eclipse Modeling
Framework (EMF) [88] is used. The metamodel can consist of every element defined in the
meta-metamodel illustrated in Figure 5.3. This is an adapted version of the Unified Modeling
Standard (UML), which features the necessary aspects to model any metamodel for an event-
based system. The main element of the model is a System. Every System can consist out of
multiple of these constructs:
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Figure 5.2: Artifacts developed in the EventSim framework

Implementation This describes the implementation of an Interface with a Class. Interfaces and
classes are defined via their name, classes can, additionally, be marked as abstract. An
implementation is created for every interface and encapsulates every class implementing
this interface in it.

Association An association is the relationship between two Roles. A role is an enriched version
of a class, in particular it has a class attached to it, like some other attributes, specifying
the behaviour of the role. In addition to a name-property, this element also specifies if
the role is part of a containment or navigable. The latter is used at the process of code
generation, the first one is currently only used as design aspect. Every role is connected
to a certain class. Additionally the role has a defined Multiplicity with an lower- and
upperbound property. The association can also have an additional class property, which
represents an association class.

Generalization A Generalization is used to describe an inheritance structure. As with the im-
plementations described above, a generalization is described once for every superclass.
So one generalization contains every subclass of this superclass.

Every Class consists out of multiple Attributes, which are described by its name and its DataType.
The datatypes are only a set of types, which are currently used in the system, and can be adapted
for further usage. The value of ENDPOINTCLASS is mapped to the datatype <? extends End-
point>, as this is a workaround datatype for the currently used metamodel. Enumerations can
also be described with this model, having a name and containing multiple Literals with a certain
value. Classes, Interfaces and Enumerations are subelements of the element Type, which is used
to describe the elements of a system.
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Figure 5.3: Meta-meta model used to describe Metamodels

The model generation is divided into the following phases (the first four phases refer to the
same working routine but are handled as different phases, since they are adressed in a different
way in the metamodel):

Generating stand-alone classes In this step, every class is generated, which is not part of in-
heritance or implementing an interface. Creation of a class is a straight-forward process.
Every attribute described in the metamodel is declared a field of this class, as well as as-
sociations to other classes, if the relevant role is navigable. This procedure is also applied
to the next three steps.

Generating sub-classes Every class, which has a superclass other than ModelElement, meaning
that it was defined as part of an inheritance, is generated.

Generating classes implementing interfaces Classes, which are part of an interface in the
metamodel, are created. However, only the classes of an Implementation-construct are
created in this step, not the interfaces.

Generating super-classes The parent classes of the classes, handled within in the second phase,
are generated. The distinction between these two phases is just made out of logical rea-
sons, since treatment of this classes could perhaps be divided in future versions.
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Generating interfaces The defined interfaces are generated

Generating enumerations Enumerations defined in the metamodel are generated here.

Creating the base class ModelElement This class is used as a parent class for all classes de-
fined in the specified metamodel. It has only one attribute, wich is the ID of the element
used for storing it to the database. The important part of this class is the description of the
used classes to support marshalling in the web services. Therefore, this part of the class is
of dynamic nature. However, this part is generated automatically, based on the elements
in the metamodel. A stub of this class is illustrated in Listing 5.1.

Although the sequential order of these steps is not particularly consistent (e.g. interfaces are
created after the classes referring to them), this does not mean that the process itself is incon-
sistent, since the compilation-process of this classes is invoked as soon as all classes, interfaces
and enumerations are generated.

@XmlSeeAlso({Type.class, Property.class, [...]})
@XmlJavaTypeAdapter(ModelElement.Adapter.class)
@XmlType(name = "modelElement")
public abstract class ModelElement implements Serializable,
Cloneable {

[...]

@XmlAttribute
//getter and setter for id

public static class Adapter
extends XmlAdapter<Object, Object> {

public static Util util = new Util();
private static Map<String, Class<?>> MAPPING =
new HashMap<String, Class<?>>();

static {
MAPPING.put("type", Type.class);
MAPPING.put("property", Property.class);
//additional mappings

}

public Object unmarshal(Object v) {
try {
if (v instanceof Element) {

Element e = (Element) v;
Class<?> clazz = MAPPING.get(e.getLocalName());
if (clazz != null) {
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return util.xml.toJaxbObject(clazz, e);
}

}
} catch (Exception e) {
System.err.println("Unable to unmarshal");

}
return v;

}

public Object marshal(Object v) {
return v;
}

}

//clone method
}

Listing 5.1: Stub of the ModelElement class

As a result of the model generation part, a JAR-file containing all compiled class-files is returned.
In the current version of the framework, this file is transferred to a given server, where it can be
downloaded using a simple HTTP-GET request. New platforms just need to declare this jar-
package as dependency to be able to connect the platform-specific classes with the elements of
the metamodel.

5.3 Model & System Storage

The storage of runtime models is provided via a service named SystemStorageService, whereas
the ModelStorageService of the implementation deals with the metamodels used to generate
code.
Storing the objects for each runtime model generates a lot of data, if all the objects are saved
with their respective object tree, meaning all the children and siblings element of it. This is the
key aspect of the storage feature in this implementation, which has the benefit of storing only the
minimum amount of data necessary to provide the same information as with storing all the data.
The concrete solution uses two lists at runtime. One is used as a helper list and keeps track of
every object with its class and ID saved in the system. This object only has its own data stored
in it, as well as objects already in the system at runtime. Referenced objects of a such an object
(either childs, parents or siblings) have only the respective ID stored in it. This means that there
is an object for every referenced object, but this object is only stored with its ID to link it to the
concrete object in the list. Therefore, the parameters of the service methods only use objects
with references to other objects and not object trees as a whole. The concrete objects, which are
referenced by this object, are loaded from this list. The other list contains the current innercon-
nected element trees of the runtime model. On a business point of view, this is a snapshot of the
SUT. To clarify the process, a sample setup of an event is illustrated in Listing 5.2 and in Figure
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5.4, which shows the state of the lists after each of the timestamps specified in Listing 5.2. To
sum it up, the complete information of the elements is only saved in the snapshot list, as well
as in the latest elements of the helper list. This means that some data is saved redundant, which
is on purpose since it provides a significant better performance than in a scenario with every set
of data only saved once. Recursive functions are used in a frequent way in this system, but this
would be far more extreme if there is no redundant data in the system at all.

51



Figure 5.4: Storing an event using the EventSim Tool component

Type aType = new Type();
aType.setName("A");

Integer typeId = addElement(aType); //service call (t=1)

Property prop = new Property();
prop.setType(new Type(typeId));
prop.setValue("prop");

Integer propId = addElement(prop); //service call (t=2)

Event evt = new SimpleEvent();
evt.setDestination("dest");
evt.addProperty(propId);

addElement(evt); //service call (t=3)

Listing 5.2: Creating an event
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A drawback of this approach is the additional code needed on the platform-side as can be seen
in this example. This drawback, however, does not compare to the benefit provided by the
resource-usage of this approach. Additionally, this example shows that the solution is scaling
on a constant basis. The snapshot list is increasing by just the element added to the system and
the list of old elements is increased with the object of the passed element (meaning the object
including its primitive attributes, but without references to other objects). As a conclusion, every
additional element passed to the service leads to two additional elements in the service.

Other operations, like the removal or editing of an existing system component, also use these
two lists. Contrary to the adding of an element, elements with child elements can also be di-
rectly removed, since the element is decoupled from the snapshot list. Regarding the list of old
elements, the removed element and all of its child are removed from that list if it has no connec-
tions to existing elements. This mechanism supports a full flexibility of the framework and also
provides a basis for further adaptation.

The heartbeat mechanism, described in Section 4.5, saves the individual timestamps in the el-
ements from the old list. This is done out of performance reasons, since traversing the actual
snapshot list could take a while in a complex scenario, whereas getting the element from the list
of old elements is done with the same performance, irrelevant of the size of the saved data.

5.4 Simulation

The simulation component of the EventSim framework is the part of the framework, where the
other parts are combined and the benefit for platform developers is directly visible. On one side
it is used to monitor the SUT, on the other side it can be used to execute certain simulation
actions, e.g. introduce faulty data into the SUT, and evaluate how the system reacts to it. The
component itself consists out of of the monitoring engine, which uses the notification mecha-
nism, see Section 4.6, of the EventSim tool component combined with the heartbeat mechanism,
see Section 4.5 (which is not directly visible to the Simulation component), the query engine for
constraint checks and a graphical user interface.

Workflow

The main concept behind the simulation component is loose-coupling, which results in the bene-
fit of simplified adaptation in future versions as well as an easier approach to divide development
time, since there are no strict dependencies between the different constructs and so they can be
developed independent from each other. This can be seen on different aspects:

Actions Actions are implemented as classes and are loaded at startup of the Simulation compo-
nent. The only constraint is that they are located in a specific package. There exists one
package for general actions (applicable to every event-based system) and one package per
event-based system for specific actions. Currently, there are only general actions avail-
able, since specific actions are not needed for testing purposes. The implementation of
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these actions is the same, irrelevant if they are general or specific. The actions themselves
are completely independent of one another. However, it is also possible to call simple
actions in the context of complex actions. This has the drawback, that dependencies be-
tween actions are put into the system, which are not supposed to exist. A better, but also
more complex, approach would be to provide interfaces (either as service or locally) in
the simple action, so that the complex action does not call it directly. The system of action
execution in the Simulation component provides the possibility for both approaches and
leaves it up to the platform developer, how actions interact if this behaviour is needed.

User interface The details of the user interface approach are described in Subsection 5.4. Basi-
cally the user interface is decoupled from the business logic used for accessing attributes
of the SUT. Furthermore, different user interfaces for different devices and SUTs can be
defined by adapting a class or creating a new one after a predefined scheme. There exists
one general user interface, which can be applied to every known event-based system and
extended to the individual needs of the platform developers if necessary. The actions are
also loosely-coupled to the user interface, since there is no knowledge of any action at the
initialization of the user interface. The actions are retrieved dynamically at the startup of
the user interface. This enables the adaptation of the user interface without any knowl-
edge of yet implemented actions, which can be helpful if the development of the SUT is
distributed or one developer should not have complete knowledge over the system.

Notification & heartbeat messages This is done using a web service. Therefore, basically ev-
ery component is able to notify the Simulation component. Using it, makes it possible to
use the simulation from outside the EventSim framework as well. Additionally, there is
no fixed dependency to existing SUTs, which makes it easy to add a new one because no
additional code is necessary regarding notification of the simulation component. The Sim-
ulation component itself requires either a working notification or heartbeat mechanism to
keep track of changes in the SUT.

Regarding the workflow itself, the notification mechanism is started as soon, as the connection
to an event-based system is established. After that, the notification mechanism is running until
the connection to this system is closed. The same concept is true for validation of the system.
During establishing the connection to a specific system, the current status of this system (re-
garding its running components) is loaded from the Tool component. This is accomplished with
the heartbeat messages, which give the Tool component the necessary information about the
current status of the platform. Every action is executed in an own thread, which enables the
parallel execution of them. This way, one could combine two or more actions to achieve one
goal. Furthermore, it provides complete independence of the execution time of different actions.
However, the execution of many simulation goals can lead to performance issues, depending on
the individual architecture of the machine, the EventSim simulation component is running. As a
result, the Simulation component could be replicated over the network, as suggested in Section
4.1.
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Validation

As described in the section 4.4, the check functions are described in an interface. Additionally,
the level of the check (either VARIABLE, CLASS or MAP) is directly annotated over the respec-
tive check method. In its current implementation, the levels VARIABLE and MAP are treated the
same way, since this difference was introduced for further adaptability of the validation process.
A snippet of the interface is illustrated in Listing 5.3. The function checkQuery is executing the
query and is called from within the Simulation component. The other functions are the relevant
mapping functions to the query functions presented in Section 4.4.

public boolean checkQuery() throws CheckException;

@LevelOfCheck(level = CheckLevels.CLASS)
public boolean minimumInstances(Object... params)

throws CheckException;

@LevelOfCheck(level = CheckLevels.VARIABLE)
public boolean greaterThan(Object... params)

throws CheckException;

@LevelOfCheck(level = CheckLevels.MAP)
public boolean minimumSize(Object... params)

throws CheckException;

Listing 5.3: Interface of the query checker

The right choice of the check level is important, since it is relevant for the resolution of the
query method. An implementation of this interface is implemented as part of the EventSim
Simulation component. For an adaptation of the interface, e.g. adding a new check method, it
is sufficient to add a new method to the interface and the implementation. The arguments of the
individual check methods are all of variable length, since the matching to the correct number
and type of arguments is done in the individual method (in particular the mapping is done in
a private method but the method is called from within the individual check method with the
expected parameter types). This routine takes the parameters supplied to the method and tries to
match it to the needed types for this method, which provides a generic approach to the problem
of querying information of the underlying classes and guarantees the further adaptability of the
mechanism. As already discussed in Section 4.4, every method, dealing with the information of
currently active elements in the platform or with specific fields of the relevant class, is possible
for checking. A combination of these two aspects is also possible, e.g. there must be a minimum
amount of instances of a certain class, where the amount of instances is defined in a field of this
class.
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User Interface

The user interface of the Simulation component can be divided into at least two layers. Everyone
of this layers, however, can be divided into more layers to achieve clearer code if necessary. The
basic layers are:

Graphic Layer This layer describes the user interface itself, meaning the graphical components
and how they are used. In this version, a GUI implemented using Java Swing [56] is used
to interact with the user. Using this layer approach, however, it is possible to change
the user interface completely and adapt it to the needs of the users, without touching
the business logic functions of the user interface. Handling and displaying of simulation
actions (described in Section 4.3) is also described on this layer, since it is generic for
every event-based system. As the user interface itself is independent from the concrete
SUT, this layer only needs to be adapted once for every different user interface and not
for every SUT. For small changes in the user interface, the inheritance structure can be
expanded to prevent duplicate code.

Business Logic Layer The logic of the user interface, which is specific to a certain event-based
system, is described in this layer. This layer is defined for every SUT, so there is one
implementation of it per SUT. Regarding similar SUTs, which only differ in minor aspects,
one implementation can be done in a generic way for all of them. As part of this work, one
implementation of this layer was developed, which should provide basic functionalities for
every known event-based system.

The GUI, implemented in this work, is illustrated in Figure 5.5. It consists out of four areas.
At the top of the view, the connection to a specific system can be established. Therefore, the
platform and version of the relevant system are specified and submitted to the EventSim Tool
component to retrieve the right information. This information is retrieved over a service call to
the Tool component, which queries the list of active systems for the relevant information. The
next sections in the center of the interface are used to execute actions on the whole system or
specific workers. Therefore, actions can be chosen with the action list. These actions are loaded
dynamically, based on the implemented general actions and the actions implemented for the
currently active SUT. Next to this component, the option area for the chosen action is displayed,
as well as a button to start and stop the relevant action. The option are configurable for every
action and, therefore, the option area can look different for every action. Currently, the supported
options are textual options (visualized using a textbox), boolean options (visualized using a
radiobutton) and numeric options (visualized using a slider). At the right side of the application,
the different worker nodes are displayed in a component list (displaying the different kinds of
components) and a worker list (displaying the concrete workers for every component). The
bottom of the window contains a logging area, which records notifications from the EventSim
Tool component and messages regarding actions. In the current version, error messages are also
communicated in this area.
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Figure 5.5: Mockup of the implemented simulation GUI

5.5 Testing platform

Since the testing platform, developed in combination with the EventSim framework, is mainly
used for evaluation purposes, the application logic of it is described in 6. This section, however,
deals with the implementation of the notification- and heartbeat mechanism, which is a best-
practice description for connecting an platform to the EventSim framework.

As soon as a worker node of the platform is created, an instance of the class HeartbeatSender is
created. This is a simple thread, which sends heartbeat-messages at a constant rate (depending
on a configuration value). It has the following parameters, which allow the EventSim Tool
component to identify the sender of the heartbeat messages: platform, version, id, name, host and
port. The HeartbeatSender checks the state of its creating component before sending messages
to ensure consistency. This way, it is ensured that the information the EventSim Tool component
has about the state of the platform is nearly real-time.

The notification mechanism on the other side does not need extra implementation on the side
of the platform. The only significant change is that the platform needs to inform the EventSim
Tool component about every change in its elements, e.g. creation of a worker node or sending
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an event. This involves small changes in every component of the platform, but these changes
have to be made only because of adapting to the code base, generated with the EventSim Model
Generation component.
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CHAPTER 6
Evaluation

This section provides an experimental evaluation and a critical reflection of the EventSim frame-
work and its subcomponents. Therefore, an example eventing application is introduced in the
first Section, which is used in the subsequent sections. The following sections deal with the per-
formance of the framework in normal state and the fault injection & detection used to evaluate
the fault-tolerance of event-based systems. In the last section, the open issues of the current state
of the framework are discussed.

6.1 Eventing example: Correlation indices based on stock market
prices

The eventing scenario used for evaluation, is a distributed calculation of correlation indices based
on stock market prices. The formula used for correlation is the population Pearson correlation
coefficient [16]. This formula is used to describe the correlation between two variables, where
a value of +1 means perfect positive correlation and -1 means perfect negative correlation. Ba-
sically, it is defined as the covariance of the two input variables divided by the product of their
standard deviations:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

In this scenario, a special distribution of this formula is used to calculate to correlation for
two stock market prices of different currencies. The transformed system is illustrated in Figure
6.1. The text on the labeled arrows describe the information sent by the event source, which it
received beforehand from another node. Each of the illustrated nodes has a different task:

Receiver This node is responsible for retrieving pairs of stock market prices (Xt,Yt) and submit
them to its successors for calculation.

XStdDev Calculates the standard deviation for X (
√∑n

i=1(Xi − X̄)2). Previous values for X
are kept in memory to enhance performance.
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YCurrency Transforms the stock market price of Y to the local currency, since it will be trans-
mitted to the system in a foreign currency.

YStdDev Calculates the standard deviation for Y (
√∑n

i=1(Yi − Ȳ )2). Previous values for Y
are kept in memory to enhance performance.

DevProd Product of the two standard deviations and, therefore, the denominator of the correla-
tion coefficient.

Dev Calculates the standard deviations and the product of them directly to ensure correctness
of the previous result. This component is only used in a test scenario and will be removed
in a production environment. In this scenario, it is used to cover more paths and make the
system more complex.

Compare Compares the result from component DevProd and Dev and transmits the denomina-
tor to component Corr if they match.

DBRec Receives previous stock market prices from the DB to calculate the covariance in the
next step. The DB is kept in-memory to support enhanced measurement of the perfor-
mance of the EventSim framework, see Section 6.2.

Cov Calculates the covariance (nominator of the formula), which is
∑n

i=1(Xi − X̄)(Yi − Ȳ ).

Corr Puts nominator and denominator together to get the correlation coefficient.

Output This component is only used to output the result to necessary recipients.

As seen in the illustration, this system features nodes sending events to multiple other nodes
and nodes receiving events from multiple other nodes. These aspects are used for different
simulation actions and provide a good abstraction of a real-world system. The system has one
entry point for external events, the node Receiver, which receives pairs of stock market prices
(Xt,Yt). This entry point is also used for the simulation to inject events into the system. The
standard configuration used for this system is:

Machines There are three machines active for development. This configuration value can be
changed each time the system is deployed to the Storm framework. One of the machines
hosts the zookeeper instance, as well as the Storm nimbus. The other two machines have
one supervisor each and the allocated workers. Considering characteristics, the machines
have 5 GB RAM and 3 Virtual CPUs.

Deployments The event source Receiver is only deployed once to prevent inconsistent states
of the application. The nodes ComCov, Denom and Corr are also only deployed once
because they are only processing events if they received two correlated events of two
different types. Every other node is deployed twice using the current configuration. This
setting can also be changed at the time of deployment to the Storm framework. The
number of workers is set to 4. An exemplary deployment of the different components is
illustrated in Figure 6.2. It has to be noted, however, that this deployment can change
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Figure 6.1: Event-based system used for evaluation

every time the topology is started, since Storm assigns the worker in a random way. This
also illustrated that targeting one component of the system also affects other components
running on this worker node. These side effects are part of the evaluation scenario and do
not affect real world systems, where every component is isolated in one worker node.

Timing constraints Heartbeat messages are sent every 30 seconds by the worker nodes, whereas
activity-checks for these nodes are performed every 60 seconds by the Tool component.
This ensures that the network is not overloaded with these messages but information is
almost real-time. Validation checks are also performed every 60 seconds.

The terms used in the following tables describe the following metrices:

SL - Succesful lifecycles This describes the number of completed lifecycles, which lead to the
computation of the right correlation index on node Output. In a working environment, this
number should be as high as the number of events emitted.

FL - Failed lifecycles This describes the number of failed lifecycles (e.g. because of lost events),
which lead to no computation of the right correlation index on node Output. In a working
environment, this number should be zero. Reasons for a failed lifecycle can be the loss of
events over the network or bugs in the single nodes.

LAEL - Lowest average execution latency (ms) Execution latency describes the amount of
time it takes from the moment, an event arrives, until the method processing it finishes
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Figure 6.2: Exemplary deployment of the scenario

its work. The lowest average execution latency is the average execution latency of the
component with the lowest execution latency in the system, which is listed in parentheses.
It has to be noted, that the component Output is not eligible for this metric since it does
not communicate with the Tool component and has, therefore, clearly the lowest execution
latency.

HAEL - Highest average execution latency (ms) This metric describes the component with
the highest average execution latency. For evaluation purposes, this node can then be
regarded as the most critical node for the platform in terms of performance.

ART - Approximated runtime This is the time elapsed from sending the first event until the
last events have been processed. In all the following experiments, this time can be twice
the time of the experiment (a limit used for evaluation, in reality the ART can be of any
value). The other statistical values are detected either when all events have been processed
or the maximum allowed value for the runtime has been reached.

6.2 Performance of the EventSim framework

Using the base configuration, described in Section 6.1, the performance of the framework is
monitored, focusing on different aspects. For this evaluation, events are emitted from within
the Simulation component to test the performance in a normal state. This section deals with the
monitoring part of the EventSim framework, since there are no simulation actions performed
during the lifecycle of the system. It serves as a reference for the following sections, where
different faults are introduced into the system and the behaviour of it is evaluated. Therefore,
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different rates for event sending were set and the results are documented in Table 6.1. To eval-
uate the performance aspect of the EventSim framework, the same experiments without using
the EventSim framework are illustrated in Table 6.2. It is clearly shown that the overhead of
the EventSim framework is significant and the business-logic of the scenario is kept simple and,
therefore, not performance-critical. The performance-critical part of the EventSim framework
are the service calls, which are performed for every outgoing connection of a worker node.
Therefore, components with two outgoing connections have worse performance values in com-
bination with the EventSim framework compared to the values without the use of the EventSim
framework. Additionally, components with two ingoing connections, like component Corr only
perform calculations on every second call (in the relevant first call, the correlating event is stored
in the cache), so the performance values are better in average. For the following explanations,
the results from Table 6.1 are used.

Events/min Minutes SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 100 0 4.144 (Corr) 21.149 (YCurrency) 60
100 5 500 0 2.938 (Corr) 14.493 (YCurrency) 300
100 10 1000 0 1.994 (Corr) 9.862 (YCurrency) 600
500 1 500 0 2.418 (Corr) 11.353 (YCurrency) 60
500 5 2500 0 1.705 (Corr) 8.273 (YCurrency) 300
500 10 5000 0 1.562 (Corr) 7.446 (YCurrency) 600
5000 1 5000 0 3.353 (ComCov) 13.166 (YCurrency) 85
5000 5 25000 0 3.211 (ComCov) 20.853 (YCurrency) 420
5000 10 50000 0 3.243 (ComCov) 24.282 (YCurrency) 870

Table 6.1: Performance evaluation of the scenario

Events/min Minutes SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 100 0 0.978 (Corr) 3.720 (DBRec) 60
100 5 500 0 0.551 (Corr) 2.848 (DBRec) 300
100 10 1000 0 0.453 (Corr) 2.141 (DBRec) 600
500 1 500 0 0.655 (Corr) 2.747 (DBRec) 60
500 5 2500 0 0.291 (Corr) 1.542 (DBRec) 300
500 10 5000 0 0.247 (Corr) 1.300 (DBRec) 600
5000 1 5000 0 0.261 (ComCov) 1.248 (DBRec) 60
5000 5 25000 0 0.182 (ComCov) 0.889 (DBRec) 300
5000 10 50000 0 0.193 (ComCov) 0.853 (DBRec) 600

Table 6.2: Performance evaluation of the scenario without the EventSim framework

The timing diagrams for the lowest and highest event-rate (each running 10 minutes) are
illustrated in Figure 6.3. This diagram shows the amount of events received by the component
Output every second during the simulation time, where the red dotted line on the right side
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represents the the ten minute mark. So everything after this line is received with a delay. The
exact results can be interpreted in different ways:

• The rate of 5000 events/min was chosen for the table because this was the lowest amount
(in steps of thousand events/min), which lead to a significant delay of worfklows. This
can be seen in the last column, where the runtime of all the events is significantly higher
than the runtime in the runs with a lower event rate. Additionally, Figure 6.3 shows that
at a low event-rate, the events are received at a constant rate visualizing that the load can
easily be handled by the framework. The problem with the high event-rate in this case is
not the performance of the individual nodes themselves but that there is only one entry
node Receiver. In the case of 5000 events/min, the next event comes in, when the current
one is executed. This can be seen in Figure 6.3, where the remaining events are put into
the system by Receiver at the end. This load can be handled by the other nodes but the
entry node was not made redundant as part of the configuration.

• For the first two event rates, the values for LAEL and HAEL is decreasing with the runtime
of the simulation. This can be explained with caching, as the first requests are taking
longer and this effect is normalized after time, depending on the events produced during
simulation time. For the highest event-rate, the HAEL of YCurrency is increasing with the
runtime. This can be explained by the high throughput of events, which can be seen at the
right end of the second diagram in Figure 6.3.

• The components with the LAEL and HAEL are the same for nearly every experiment, with
the exception of ComCov, having the LAEL with the highest event-rate. This circumstance
can be explained by the fact that at the end of the simulation, events are executed more
frequently, which as more effect on nodes, which are nearer to the event source. The effect
of this high-frequency is partially absorbed for ComCov by its preceeding nodes. It has
to be noted, however, that the values for Corr and ComCov are much alike throughout the
experiment for every event-rate and duration.

6.3 Fault Injection & Detection

This section is used to apply the actions, described in Section 4.3, to the scenario and evaluate
the reaction of the metrices to them. Therefore, the values, detected in Section 6.2, are used
as reference and checked regarding their relevance for detecting critical nodes and paths. The
action ”Event Emitting” is not part of this section, since it is the basis of the whole evaluation
process and used as part of every other action. For all of the subsequent actions, the lowest and
highest event-rate from Section 6.2 are used with a runtime of 10 minutes. Events on individual
nodes (in this section every action with the exception of ”Interrupt events”) also effect other
nodes running on the same host and port. This is due to the fact, that not every node of the
platform runs on its individual host and port because of resource reasons. As the runtime of the
experiments is 10 minutes, this effect should balance itself over the experiment.

64



Figure 6.3: Performance analysis for different event rates

Additional Traffic

Additional traffic can be used to introduce unexpected effects into the platform. For evaluation
purposes, additional data is sent to the nodes with the lowest and highest average execution
latency. In case of redundant nodes, one of the nodes is selected at random. The rate of sending
this traffic is changed during the experiment to detect the impact of this additional data. The
amount of data is 10KB, since much higher data amounts would lead to performance issues for
the simulation. The results are illustrated in Table 6.3 for component YCurrency and in 6.4 for
component Corr/ComCov, which had the highest and lowest latency in the fault-free scenario.
A big difference, compared to the results from the normal test, is the existence of failed lifecy-
cles. Those can be explained by the fact that some of the events can not be handled when sending
additional traffic. This effect increases with the amount of events sent per minute, because the
additional traffic affects more events, when more events are sent as a whole. The number of
failed lifecycles is smaller, when the component with the LAEL is targeted compared with the

65



E/min Rate (sec) SL FL LAEL (ms) HAEL (ms) ART (sec)
100 60 964 36 2.577 (Corr) 13.580 (YCurreny) 600
100 30 736 264 3.174 (Corr) 20.148 (YCurreny) 600
5000 60 14,772 35,228 2.463 (ComCov) 28.506 (YCurreny) 600
5000 30 14,616 35,384 2.413 (ComCov) 16.131 (YCurreny) 600

Table 6.3: Introduction of additional traffic to component with highest average execution latency
(HAEL)

E/min Rate (sec) SL FL LAEL (ms) HAEL (ms) ART (sec)
100 60 947 53 2.467 (Corr) 13.248 (YCurrency) 600
100 30 796 204 3.075 (Corr) 14.439 (YCurrency) 600
5000 60 32,895 17,105 3.136 (ComCov) 24.810 (YCurrency) 720
5000 30 18,547 31,453 4.089 (ComCov) 14.517 (YCurrency) 600

Table 6.4: Introduction of additional traffic to component with lowest average execution latency
(HAEL)

effects of targeting the component with the HAEL. This confirms the results of the monitoring
values illustrated in Table 6.1.
The values for latency themselves are also particularly higher for the simulations run during this
action than for the normal test. This effect, however, is not as dramatic as the effect to the lifecy-
cles. A possible explanation can be the fact that there are less events handled by each component
(because of the failing lifecycles) and, therefore, the load on the components is not as high as in
the normal scenario. This explanation is also supported by the comparison of the two tables for
this action. In case of sending the traffic to component YCurrency, the LAEL is smaller than in
the other scenario with the side-fact, that the number of succesful lifecycles is also smaller. This
is not true for the HAEL, which can be explained with the relatively early occuring of YCurrency
in the lifecycle. Therefore, lost events have less effect on this component. The action in the first
case is also targeted at component YCurrency, which can affect its latency.
The rate of sending the additional traffic has an interesting effect on the other values. Opposed
to the expected behaviour, the performance is better, if the additional traffic is sent in a more
frequent way. This can perhaps be explained by characteristics of the Storm framework, since
the ART is also longer in these cases. It can be assumed that Storm is able to deal with more
frequent shutdowns (sending the additional traffic sometimes leads to the shutdown of a Storm
node) in a better way and keeps the events buffered. This would also explain the longer ART.
It has to be noted, however, that these results are not optimal regarding their significance, since
targeting one component may also have effects on other components, since several components
are deployed on one Storm node. If enough hardware capacities are available, however, the op-
timal scenario would be to put every component on an individual node. This would ensure that
the triggered actions only affect the relevant nodes.

To sum it up, this part of the evaluation illustrated that the monitoring part of the EventSim
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Simulation component can be useful in identifying critical nodes of a lifecycle. The action
itself can afterwards be used to measure the importance of individual nodes and how the risk of
failing lifecycles is spread among the different components. In an optimal distributed platform,
every component should be replicated in a way that the effect of sending additional traffic to
components should be nearly the same for all components.

Event interception

This action is used to interrupt the communication between two specific components. It can be
used to evaluate how a system handles missing events and how components are influenced by
such a fault. In this section, it is used to intercept the path between component YStdDev and
component Denom. This is interesting, since component Denom needs the correlating events
from Receiver and YStdDev to compute its own result. However, since Denom is not actively
waiting for the events (instead it is looking the correlating event up, if a certain event arrives),
timing should not be affected by this interception. For the test runs, a variable percentage (P) of
the totally sent events are intercepted after five minutes. This timestamp was not varied during
the simulation and is chosen without specific intention, since this would not directly affect the
outcome of this evaluation. The results of this simulation are illustrated in Table 6.5.

Events/min P SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 990 10 2.209 (Corr) 11.513 (YCurrency) 600
100 5 950 50 2.177 (Corr) 11.522 (YCurrency) 600
100 10 900 100 2.114 (Corr) 11.705 (YCurrency) 600
5000 1 49,500 500 3.092 (ComCov) 19.515 (YCurrency) 870
5000 5 47,500 2,500 3.215 (ComCov) 20.700 (YCurrency) 860
5000 10 45,000 5,000 3.123 (ComCov) 19.677 (YCurrency) 800

Table 6.5: Test results when intercepting the route between YStdDev and Denom

The number of affected events is the same as the number of interrupted events. This is an in-
dication that the platform itself is capable of dealing with those interrupted events in the right
way and that there are no side-effects. Additionally, it shows that the simulation action has no
side-effects and only does what it should. The latency values are a bit smaller compared to the
normal performance analysis but are not really affected by the number of interrupted events.
This seems logical, as the components ComCov and YCurrency are not directly affected by the
interruption (since they are placed on another path of the system) and component Corr does not
have a high load at all.

This action is very useful for fetching information about the performance and the importance of
a certain path in a platform. Since the number of interrupted events can be chosen freely, it can
also be used for load testing if one path of a platform is nearly disabled at all. It has to be noted
that during these tests the automatic resending, which is part of the normal Storm configuration,
was turned off to see the direct effects of the simulation action. In combination with the action
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”Kill worker”, this action can be used to detect the fault tolerance of an event-based system
regarding its reliabilty (”How does the platform deal with lost messages?”) and its availability
(”How fast does the platform recognize shutdown events and react to it properly?”).

Kill event source

Killing the event source (Receiver in the evaluation platform) can lead to bottlenecks at the be-
ginning of the lifecycle, which can afterwards lead to lost events and missing lifecycles as a
whole. The experiments performed using this action are illustrated in Table 6.6. The table fea-
tures two new fields: The number of kill-signals sent to the event source (K) and the number of
lost events (LE). Evaluating the platform is done by killing the event source in different frequen-
cies.

Events/min K SL LE LAEL (ms) HAEL (ms) ART (sec)
100 1 923 77 2.411 (Corr) 12.229 (YCurrency) 600
100 2 835 165 2.413 (Corr) 12.504 (YCurrency) 600
100 4 689 311 2.593 (Corr) 13.563 (YCurrency) 600
5000 1 40,861 9,139 3.559 (ComCov) 22.448 (YCurrency) 760
5000 2 37,745 12,255 3.186 (ComCov) 18.764 (YCurrency) 690
5000 4 14,859 35,1410 2.729 (ComCov) 14.225 (YCurrency) 620

Table 6.6: Test results when killing the event source

Regarding successful lifecycles, it is clearly shown in the results that the amount is smaller if
the event source is killed more often. This effect is higher, the more events are produced in one
minute. On the other side, there are no failing lifecycles throughout the whole experiment, since
the action only affects the beginning of the lifecycle.

The latency values are increasing with every additional killing for the low event rate. On the
contrary, with the high event rate the effect is vice versa. Looking at the number of succesful
lifecycles for this test runs explains this effect, e.g. if the event source is killed four times, the
number of succesful lifecycles is nearly a third of the number of succesful lifecycles in the sce-
nario with one event source killing. This leads to a reduced load for the nodes of the platform.
The same effect is visible for the ART of the test runs, which is decreasing with every additional
killing. For an easier understand of the workflow during such a lifecycle, the timing diagram for
the last test run is illustrated in Figure 6.4. The breaks after each kill-attempt is approximately
30 seconds, which is also enlarged by the configuration of Storm, which could be optimized
for such failing scenarios. Such an optimization, however, would also lead to increased traffic
volumes in the system. A similar effect to the action ”Additional traffic” is visible, where more
events are computed at the end because the event source is the bottleneck and computation of
events is faster at the time all events passed the event source.

This action can be used for real-world applications to investigate how the platform deals with
killing its event source and how fast the recovery process is performed. Additionally, the num-
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Figure 6.4: Timing diagram in case of killing the event source

ber of lost events because of the unexpected shutdown can be checked. In such a real-world
application, the event source would be replicated but this also leads to issues regarding timing
and synchronization, depending on the business logic of the platform.

Kill worker

This action is similar to the action ”Kill event source”, with the exception that in this case every
worker can be forced to shutdown. For evaluation purposes, several tests are made throughout
this section to investigate different aspects of the platform.

In a first step, component Corr is shutdown with the same frequencies and test setup as the event
source in action ”Kill event source”. Following the results of the normal performance evalua-
tion, this should not have a huge impact since this component is not performance-critical. On the
other side, it is not made redundant, so there will be failing events during the lifecycle. Storm
is able to start a new instance of a crashed node but this takes some time, which leads to failing
lifecycles. The results for this test are illustrated in Table 6.7.

Events/min K SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 938 62 3.019 (ComCov) 13.085 (YCurrency) 600
100 2 965 35 3.232 (ComCov) 15.878 (YCurrency) 600
100 4 926 73 3.028 (ComCov) 13.805 (YCurrency) 600
5000 1 47,276 2,724 3.192 (ComCov) 20.360 (YCurrency) 900
5000 2 39,304 11,696 2.644 (ComCov) 19.523 (YCurrency) 700
5000 4 26,753 23,247 2.330 (ComCov) 15.487 (YCurrency) 630

Table 6.7: Test results when killing component Corr

The results seem logical, as the amount of successful lifecycles is decreasing with the amount of
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kill attempts. The only exception in the first two test runs can be explained by the fact that not
only the component Corr is killed but every component deployed on the specific node. This has
of course more impact, the less events are sent. It has to be mentioned that component ComCov
now has the lowest latency for all test runs, which seems also logical, as component Corr was
killed during the tests. The ART is also decreasing with kill attempts, resulting out of the also
decreasing amount of successful lifecycles.

The next test runs are performed by killing component YCurrency. This component is chosen
because it seems to be the most performance-critical. On the other hand, it is replicated, in con-
trast to component Corr. Since these two facts are compensatory, it is interesting to compare
the measured values with the values from the test run with component Corr. The test values
themselves are illustrated in Table 6.8.

Events/min K SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 954 46 3.196 (ComCov) 16.894 (YCurrency) 600
100 2 620 380 2.734 (ComCov) 21.900 (YCurrency) 600
100 4 484 516 3.088 (ComCov) 28.681 (YCurrency) 600
5000 1 34,079 15,921 3.161 (ComCov) 21.996 (XCalc) 800
5000 2 28,497 22,503 2.555 (ComCov) 23.173 (YCurrency) 690
5000 4 17,886 32,114 2.447 (ComCov) 25,620 (YCurrency) 660

Table 6.8: Test results when killing component YCurrency

As for the results of this test run, they are very similar to the results of the previous test run.
As one would guess, since component YCurrency is critical to the functional correctness of the
scenario, the number of successful lifecycles is lower than in the previous test. The ART for the
test runs is also a bit smaller than in the previous test, since the nodes had less load to handle.
An interesting difference to the previous test is component XCalc being the component with the
highest latency in one test run. In the other test runs with 5000 events per minute, component
XCalc had almost the same latency as component YCurrency. The explanation for this behaviour
is the fact that component YCurrency does not handle as many events as component XCalc in
this scenario, because component YCurrency is frequently killed.

The last test of this section deals with final event receiver, component Output.As it is only used
for the output of the result and not for computation, the number of succesful events should not
be affected to the same extent as by killing of other components. Some lifecycles, however, will
still not succeed, as the component is killed during event transmitting. The results are illustrated
in Table 6.9.

The comparison with the action ”Kill event source” reveals that for a low number of kill-
attempts, the number of successful lifecycles is higher by targeting the event source instead
of the event target Output. The contrary effect is seen for a high number of kill-attempts. This
seems logical as killing the event source on a frequent basis harms the performance of com-
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Events/min K SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 946 54 2.802 (Corr) 15.145 (YCurrency) 600
100 2 561 439 2.737 (Corr) 14.281 (YCurrency) 600
100 4 511 489 3.044 (Corr) 14.425 (YCurrency) 600
5000 1 37,988 12,012 3.911 (ComCov) 18.803 (YCurrency) 870
5000 2 32,911 17,089 2.601 (ComCov) 19.845 (YCurrency) 680
5000 4 27,683 23,317 3.953 (ComCov) 17.366 (YCurrency) 700

Table 6.9: Test results when killing component Output

putation, whereas killing the event target harms only the final event receival, depending on the
number of events coming in during the recovery phase of the component. Additionally, compo-
nent Output is replicated, whereas the event source has a single instance.

This action can be used to identify bottlenecks of the platform, as well as performance-
critical components. It also showed that the monitoring information, retrieved in Section 6.2,
is valid because the performance is stressed more when targeting a performance-critical com-
ponent. This section also showed that the action is more useful, when less components are
deployed on one node, since it takes down the entire node and not only the component, which is
targeted.

To sum it up, different actions can be used to inject faults into the SUT. In addition to the
monitoring of system data, this fault-injection is used to identify critical components or paths of
the system and adapt to changing conditions at runtime. These faults are also detected by the
EventSim framework, which makes it convenient to adapt to them in real-time. As a conclusion,
the EventSim framework is used to monitor regular system behaviour, detect faults and inject
faults on purpose for information or learning reasons.

6.4 Benefits and using the simulation data

As shown in this Chapter, the EventSim framework has several benefits to support different
EBSs:

• The number of currently active nodes is constantly monitored and notifications about
changes in the node structure are automatically received.

• Validation of the system, as described in Section 4.4, is done periodically and irregular
states are communicated to the user of the EventSim Simulation component.

• Using fault-injection, critical paths and components of the SUT are identified regarding
different aspects. This information can afterwards be used to adapt the SUT or at least
pay attention to these aspects in future versions of the SUT if adaption is not suitable. An
example for this usage is shown in the following.
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• These faults are also detected in real-time using the fault-detection mechanism of the
EventSim framework, which uses the same backend as the normal monitoring mechanism.

In the following, a concrete configuration adaptation based on the results of fault-injection is de-
scribed. Section 4.3 showed that component YCurrency is the most critical component in terms
of latency. As said in Subsection 6.3, killing one component also affects other components in a
scenario with only four nodes. Therefore, another series of tests is used to perform tests in an
environment with four nodes but the additional constraint that component YCurrency is always
executed in a separate process. Such a constraint can be configured in Storm if the underlying
business logic requires such a behaviour. This constraint harms the flexibility of the whole sys-
tem, so it should only be used if necessary and for critical components. The results of this test
are illustrated in Table 6.10.

Events/min K SL FL LAEL (ms) HAEL (ms) ART (sec)
100 1 943 57 2.922 (Corr) 13.954 (YCurrency) 600
100 2 991 9 3.069 (Corr) 14.309 (YCurrency) 600
100 4 855 145 3.060 (Corr) 14.429 (YCurrency) 600
5000 1 48,181 1,819 3.804 (Corr) 13.777 (YCurrency) 810
5000 2 46,208 3,792 3.760 (Corr) 14.864 (YCurrency) 770
5000 4 44,941 5,059 4.746 (ComCov) 13.555 (YCurrency) 780

Table 6.10: Test results when killing component YCurrency with adapted setup

The results show a big difference compared to the previous results (see Table 6.8), since the
number of successful lifecycles is significantly higher. Additionally, the latency values (regard-
ing the highest latency) are smaller than before, which seems logical as only smaller parts of
the platform are targeted compared with the action executed in Subsection 6.3 and illustrated
in Table 6.8.This example shows that the data collected during monitoring after fault injection
can effectively be used to target specific aspects of the system to enhance performance or fault-
tolerance.

6.5 Open issues of the current implementation

As the evaluation in the previous section showed, the EventSim framework can be used for fault
injection and detection in its current state. It is capable of showing critical paths or components
in an EBS. However, there exist open issues, which can be adressed in the future:

• An issue, which occured during several simulation actions, is the granularity of the SUT.
If every worker node only hosts one component, the simulation action can be applied in an
optimal way and the effects are as expected. In the configuration used for evaluation, every
worker node hosted multiple differenct components. Therefore, every action against one
component also affected other components on this node, since the components can only
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be targeted by their hostname and port on the worker node. To deal with this effect, more
specific simulation actions for every SUT are needed, which can be implemented using
the EventSim framework. However, this would not suit the general approach implemented
by the framework and should only be done as a workaround. Testing real world systems
should not be affected by these circumstance, since, in such a scenario, each worker node
normally hosts one component or at least hosts its components on different ports.

• The communication with the EventSim Tool component is reduced to sending notifica-
tions about EPAs and events during the simulation test runs. Information like properties
and buffers are not communicated to the service, since this would affect the runtime of the
simulation significantly. This results out of the fact that each of these classes is submitted
via a separate web service call, which culminates in a long request time. A workaround
for this behaviour would be to submit the entire object tree as a whole but this could also
bring update policy problems with it if parts of the object tree are updated. Therefore,
this approach was chosen out of simplicity and since it is sufficient for basic simulation
purposes.
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CHAPTER 7
Summary and Conclusion

This section provides a summary to the work done in this thesis. At the beginning, the prob-
lem formulation is shortly explained again. Afterwards, the solution presented in this work is
summarized, followed by a discussion of future work based on this thesis.

7.1 The Problem revisited

A good fault-monitor for EBS is able to model, monitor and provide possibilities for fault de-
tection and injection. In addition, it should be implemented as generic as possible to support all
known types of EBSs.

As mentioned in Chapter 1, there exist multiple types of different event-based systems
(EBSs) in computer science today. In the context of these systems, fault-tolerance is an im-
portant issue, since most of the systems are critical and should not crash under exceptional
situations (e.g. load bursts) or in the presence of faults. Based on this paradigm, there has been
much research in the field of fault-tolerant EBSs but most of these approaches focused on a
specific type of EBS.

The reason for the specialization of research in this area are key differences between different
types of EBSs regarding their architecture or communication flow. This makes it hard to develop
a common model for all of them and keeping the specific features in mind at the same time. In
addition to the problem of model creation for these systems, monitoring is also beneficial for
fault-tolerance. This involves monitoring of the normal workflow, as well as fault detection.
In this context, the reaction of the system-under-test (SUT) needs to be measured in addition
to normal monitoring. This is an important performance indicator of an EBS. A fault-monitor
should also be able to inject faults in the SUT, which target different areas of it. On one side,
specific nodes can be targeted, and on the other side, injections targeting specific paths of the
system can also be used to detect critical parts of the system. The main challenge in this field
also comes from the differences between the types of EBSs.
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7.2 A Solution approach - The EventSim framework

The components implemented in this work are summarized under the term EventSim Frame-
work. The different parts of this framework adress the problem of monitoring a fault-tolerant
EBS and simulate the handling of faults.

Modeling of the SUT is done using a generic metamodel for the different types of EBSs.
If necessary, this metamodel can also be adapted or rewritten. Every other component of the
EventSim framework uses the model generated with Metamodel Management component. The
current state of the model, as well as different versions of the metamodel, are saved using the
Tool component of this framework. Fault detection and injection of the SUT are implemented in
the Simulation component. The adaption to a new system requires little effort, which makes the
framework extensible for future use and adaption. This is also true for the currently implemented
simulation actions, which are designed in a generic way.

Additionally, a testing platform was developed as part of this work, which is used for evalua-
tion purposes. The results, presented in Chapter 6, suggest that the monitoring of events works as
expected and detected weaknesses of the SUT are more critical, when it comes to fault injection,
than other parts of the SUT. The evaluation revealed several aspects regarding simulation. The
load information of event sending components was clearly shown with full information about
critical nodes and paths. Additionally, the simulation actions are more effective, when targeting
detected critical parts of the system. This showed that the information gained from monitoring
is valid. The actions also revealed aspects of the system code and configuration, which can be
optimized regarding performance. All in all, it has been shown that the simulation of an event-
based system can be done in real time. On top of that, fault detection and injection mechanisms
provided useful information about critical parts of the system.

7.3 Future work

As for model generation, the Modeling component is a task for future work, which was shortly
presented in Section 4.1. It is used to develop new metamodels or adapt existing metamodels
using a Graphical User Interface (GUI).

Open issues regarding evaluation of an SUT have been presented in Section 6.5. The gran-
ularity of the SUT is not changeable for some real-world systems but the different simulation
actions can be optimized to target only the node, which should be attacked, and produce no
side-effects. The persisted data can also be optimized in future versions of the framework, since
the current implementation is optimized with the focus on performance but can get complex as
the SUT grows. A possible solution for this problem is persisting objects using a small data
format directly in the memory of the Tool component. Another enhancement to this component
is the possibility to make it redundant and, therefore, have a shared memory used by the single
instances.

Regarding the Simulation component, future work can deal with the extensibility of simu-
lation actions. The currently implemented actions are designed in a generic way but target the
specific component directly. A more generic way would be to handle these actions over the Tool
component. On the other side, this would lead to tighter coupling of these two components, so
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the optimal way for generic actions can be discussed. Another aspect, which is subject to future
work, focuses on the visualization of simulation results. Currently, they are illustrated in a tex-
tual way but future versions of the framework can visualize them graphically or use historical
data for statistics. Additionally, the service calls to the EventSim framework can be injected
using Aspect Oriented Programming (AOP) [23] in the future. Currently, they are called as part
of the business logic.
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