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Abstract
The aim of this thesis is introducing higher order statistics into the claims reserving pro-
cess. After establishing the standard chain ladder model from [WM08], estimators for the
skewness and kurtosis of the reserve risk distribution are developed. The derivation of
these estimators is built on the work in [Mor12] and [Mor13]. The estimators are then
used in a model framework to simulate the whole reserve risk distribution, which allows
for the application of other statistics such as the Value at Risk.
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Chapter 1

Introduction

Claims reserving is one of the most important tasks for every non-life insurance company.
There are many different ways to tackle the claims reserving problem, with the most fam-
ous and probably most used one being the chain ladder model.
While this model was initially only an algorithm to get a best estimate for the reserves, the
introduction of stochastic models by Mack and later Wüthrich went one step further to
measure the volatility of these estimators. With the concept of the MSEP (mean squared
error of prediction) applied to the claims reserving model we now have a good sense of
the first two moments of the reserve risk distribution.
But knowing only these two moments leaves a lot to be desired since two distributions
can coincide in both but still bear wildly different risks, especially where the tails of the
distribution are concerned.
In the modern actuarial world, where these tails of the distributions gain more and more
importance (the measurement of the Value at Risk being the prime example) it is import-
ant to get finer measurements for the volatility of our data.
Building on two papers by Dal Moro we will find estimators for the skewness and the kur-
tosis of individual elements of the claims triangle and use them in a stochastic simulation
to simulate the ultimate claims.
In doing so we are not only able to estimate higher order statistics of the claims reserves
from the simulation but can also compute other key figures fo the reserve risk distribution,
such as the Value at Risk or the Expected Shortfall.
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Chapter 2

The stochastic model 1

2.1 General notation and the definition of the model

In this section we will design a stochastic model that allows us to describe the stochastic
claims reserving process in a formal way. It is taken from [WM08], where it is presented
as a theoretical foundation for the claims reserving problem. While this formalization is
not absolutely necessary for practical calculations, it still serves as a good mathematical
background for the following chapters.
We assume N ∈ N claims with accompanying T1, . . . , TN reporting dates, where Ti ≤
Ti+1, ∀i = 1, . . . , n. Each reporting date Ti initiates a time-series process (Ti,j)j≥0.
For i fixed but arbitrary, we define Ti = Ti,0 ≤ Ti,1 ≤ · · · ≤ Ti,Ni as the time points,
where an action for the i-th claim is observed. This can be anything, from a payment or
a new reserve estimation to any other new information concerning claim i. Ti,Ni denotes
the settlement date of the i-th claim. We set Ti,Ni+k =∞ für k ≥ 1.

In our stochastic model we have two stochastic processes associated with the time series
(Ti,j)j≥0. At each time point Ti,j we have:

Xi,j =

{
Payment at time Ti,j for the i-th claim
0, if there is no payment at time Ti,j

Ii,j =

{
new information at time Ti,j for the i-th claim
∅, if there is no new information at time Ti,j

For Ti,j =∞ we set Xi,j = 0 and Ii,j = ∅.

1This chapter follows [WM08].
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CHAPTER 2. THE STOCHASTIC MODEL 3

Now we can define the stochastic processes relevant for the claims reserving process.

• The payment process of the i-th claim:
Based on (Ti,j , Xi,j)j≥0 we define the cumulative payment process Ci(t) by

Ci(t) :=
∑

j∈{k;Ti,k≤t}

Xi,j (2.1)

where Ci(t) = 0 for t < Ti. The absolute claim amount is then given by

Ci(∞) := Ci(Ti,Ni) =

∞∑
j=0

Xi,j

The reserve for future payments for the i-th claim is calculated as

Ri(t) = Ci(∞)− Ci(t) =
∑

j∈{k;Ti,k>t}

Xi,j (2.2)

2.1.1 Remark. We note that Ri(t) is a random variable, which we will later try to pre-
dict from the data available at time t. One possible method is to use the conditional
expectation as an estimator. This estimator is called claims reserve for outstanding li-
abilities and its calculation (and measuring its volatility) will be the aim of the following
chapters.

• The information process of the i-th claim:
The information process is given by (Ti,j , Ii,j)j≥0.

• The settlement process of the i-th claim:
The settlement process is given by (Ti,j , Ii,j , Xi,j)j≥0.

We denote the aggregated processes of all claims by

C(t) =

N∑
i=1

Ci(t), and (2.3)

R(t) =

N∑
i=1

Ri(t) (2.4)

C(t) denotes all payments for the N claims up to time t and R(t) the sum of all future
payments at time t.
Now we will consider the reserving problem as an estimation problem. First we define an
information σ-algebra, which is generated by the settlement process.

FNt = σ({(Ti,j , Ii,j , Xi,j) : 1 ≤ i ≤ N, j ≥ 0, Ti,j ≤ t})

Quite often there is also external information, which has to be taken into account (for
example a-priori estimates of the responsible actuary, some sort of “expert judgement” or
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external economic indices like inflation and legislative changes). We combine these ex-
ternal factors into one filtration (Et)t≥0. The entire information available to the insurance
company at time t is then given by

Ft = σ(FNt × E)

Our estimation problem consists of estimating the conditional distribution

P[C(∞) ∈ ·|Ft].

To achieve this we will find estimators for the first four (central) moments of each cu-
mulative claim Ci(s) conditional on Fs−1 for each s ≥ 0. Then we will use a simulation
method to obtain an estimate for the conditional (on Ft) cumulative distribution function
for the ultimate claim. We define the first four conditional central moments as

µ
(1)
t (C(∞)|Ft) = E[C(∞)|Ft],

µ
(2)
t (C(∞)|Ft) = E[(C(∞)− µ(1)

t )2|Ft] = V[C(∞)|Ft],

µ
(3)
t (C(∞)|Ft) = E[(C(∞)− µ(1)

t )3|Ft],

µ
(4)
t (C(∞)|Ft) = E[(C(∞)− µ(1)

t )4|Ft].

2.1.2 Definition. The conditional skewness of a random variable is defined as

Skew (C(∞)|Ft) =
µ

(3)
t

σ3
t

=
µ

(3)
t(

µ
(2)
t

) 3
2

where σt =

√
µ

(2)
t is the standard deviation.

2.1.3 Definition. The conditional kurtosis of a random variable is defined as

Kurt (C(∞)|Ft) =
µ

(4)
t

σ4
t

=
µ

(4)
t(

µ
(2)
t

)2

where σt =

√
µ

(2)
t is again the standard deviation.

Before we will calculate the above estimators we will introduce the standard notation of
the claims reserving problem.

2.2 Notation of the claims reserving problem

Past claims and outstanding liabilities can be depicted in a so called claims triangle, which
applies the claims on a two-dimensional axis. See table 2.1 for an illustration.
The y-axis represents the accident years and the x-axis the development years. The most
recent accident year is denoted by I and the last development year by J . Therefore we
have i ∈ {0, . . . , I} and j ∈ {0, . . . , J}. We will denote the entries of the triangle matrix
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AY/DY 0 1 . . . j . . . J

0 C0,0 C0,1 . . . . . . . . . C0,J

1 C1,0 . .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

i ... . .
.

. .
.

...
... CI−1,1

I CI,0

Table 2.1: Claims triangle

Range Explanation
upper triangle observed data
lower triangle to be predicted

Table 2.2: Color table for table 2.1

by Xi,j . Possible interpretations for Xi,j can be found in table 2.3. Under standard
annotation we consider Xi,j as incremental data. An often used alternative is to use
cumulative data, which is then given by

Ci,j =

j∑
k=0

Xi,k

Incremental claims Cumulative claims
Xi,j incremental payments ⇔ Ci,j cumulative payments
Xi,j number of reported claims ⇔ Ci,j total number of reported claims
with AY i and DY j for AY i up to DY j
Xi,j change of reported claim amount ⇔ Ci,j claims incurred

Table 2.3: different interpretations for Xi,j and Ci,j

2.2.1 Stipulation. For ease of notation and interpretation we set Xi,j as incremental pay-
ments and Ci,j as cumulative payments for the rest of this paper. All results apply to all
other interpretations as well.

Typically the claims triangle is separated into two parts at time I. The upper triangle
(or trapezoid if I > J , which means that we have more accident years than development
years) contains observed values Xi,j , where i+ j ≤ I. On the contrary the lower triangle
is empty a priori and has to be filled with our estimates for the future values Xi,j , where
i+ j > I.
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Formally we have the following two sets

DI = {Xi,j : i+ j ≤ I, 0 ≤ i ≤ I, 0 ≤ j ≤ J} (2.5)
DcI = {Xi,j : i+ j > I, 0 ≤ i ≤ I, 0 ≤ j ≤ J} (2.6)

where DI is the set of observations (the upper triangle in table 2.1) and DcI the unknown
future set of data (the lower triangle in table 2.1) that has to be estimated from DI .
The accounting years are found on the diagonals i + j = k, k ≥ 0. The accompanying
incremental payments for accounting year k are then given by

Xk =
∑
i+j=k

Xi,j , k = 1, . . . , I.

They are situated on the (k + 1)-th diagonal of the development triangle.
Outstanding liabilities for the accident year i at time j are then calculated by

Ri,j =

J∑
k=j+1

Xi,k = Ci,J − Ci,j , i = 0, . . . , I.

AY/DY 0 1 . . . j . . . J

0 C0,0 C0,1 . . . . . . . . . C0,J

1 C1,0 . .
.

. .
.

. .
. C1,J−1 ĈCL1,J

...
... . .

.
. .
.

. .
.

. .
. ...

i ... . .
.

. .
.

. .
.

. .
. ...

...
... CI−1,1 ĈCLI−1,2 . .

.
. .
. ĈCLI−1,J

I CI,0 ĈCLI,1 . . . . . . ĈCLI,J−1 ĈCLI,J

Table 2.4: Claims triangle

Range Explanation
red diagonal current accounting year
upper triangle (incl. red diagonal) DI
lower triangle (excl. red diagonal) DcI

Table 2.5: Color table for table 2.4
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2.2.2 Model assumptions. We will assume for the rest of this paper that

I = J

and with that Xi,j = 0, ∀j > J .
This assumption has no impact on any results (which all also hold true in the general
case), but simplifies the notation in the following chapters.
Note that we will still use both I and J in the formulas and proofs to make the thought
process behind the derivation of the formulas clearer and to make it easier for the interested
reader to adapt the estimators and the simulation model introduced in chapter 5 for the
more general case, where I 6= J .



Chapter 3

The chain-ladder method 1

3.1 Framework

The chain ladder method is probably the most famous claims reserving method. Together
with the Bornhuetter-Ferguson method it is the most commonly used method in insurance
practice, as it is easy to implement and understand. Both methods can be seen solely as
an algorithm to arrive at an estimate for the claims reserves. But if we want more than
just a best estimate (say we want to quantify the volatility of our prediction), we need to
define an underlying stochastic model.
Hence in this chapter we will first define this model and then use that framework to
estimate the second moment of the claims reserving distribution. Thereupon we will
derive an estimator for the mean square error of prediction in section 3.3, which means
that we not only try to estimate the variance of the underlying process (Ci,j)i,j≥0 but
also of the estimators (ĈCLi,j )i,j∈DcI . The derivation of skewness and kurtosis estimators is
then the aim of chapter 4.

3.2 The stochastic model

There are many different ways to arrive at the chain ladder estimators. We want to follow
the distribution-free method presented in [WM08], which was first introduced by Thomas
Mack in [Mac93].
In the distribution-free method cumulative claims are linked together by so called devel-
opment factors. Our aim will be to estimate the ultimate claims amount Ci,J and with it
the outstanding claims reserve

Ri = Ci,J − Ci,I−i (3.1)

for i = 1, . . . , I (observe that R0 = 0 because of model assumptions 2.2.2).

1The structure and notation of this chapter follow [WM08], with the proofs being newly performed.

8



CHAPTER 3. THE CHAIN-LADDER METHOD 9

3.2.1 Model assumptions (distribution free chain ladder model).

• Cumulative claims Ci,j of different accident years i are independent. (3.2)

• There exist development factors f0, . . . , fJ−1 > 0, so that

∀ 0 ≤ i ≤ I and ∀ 1 ≤ j ≤ J we have
E [Ci,j |Ci,0, . . . , Ci,j−1] = E [Ci,j |Ci,j−1] = fj−1Ci,j−1. (3.3)

3.2.2 Remark.

• Model assumptions 3.2.1 describe the basic assumptions necessary to use the chain
ladder algorithm. These assumptions are sufficient to find an estimator for the condi-
tional expectation, but we will have to expand them step by step for the calculation
of the higher-order moments.

• Independence between claims of different accident years is a basic assumption of
nearly all claims reserving methods. Because of this assumption, effects stemming
from different accounting years should be eliminated from the underlying data.

• The factors fi have varying names in technical literature like development factors,
chain-ladder factors, link ratios and so forth. Our main goal will be to first estimate
these factors and then quantify their volatility.

Let DI = {Ci,j : i+ j ≤ I, 0 ≤ I, 0 ≤ j ≤ J} denote the set of observations at time I (see
(2.5)).

3.2.3 Lemma. Under model assumptions 3.2.1 we have

E [Ci,J |DI ] = E [Ci,J |Ci,I−i] = Ci,I−i fI−i · · · fJ−1 (3.4)

for i = 1, . . . , I.

Proof. The proof consists of an iterative application of (3.3) and the attributes of the
conditional expectation. Di is an increasing sequence of sets (i.e. Di ⊆ Dj , ∀i ≤ j),
which means that the sequence (σ (Di))0≤i≤I is an filtration and we can use the tower
property. It follows that

E [Ci,J |DI ] = E [E [Ci,J |DJ−1]|DI ]
(3.2)
= E [E [Ci,J |Ci,0, . . . , Ci,J−1]|DI ]

(3.3)
= E [E [Ci,J |Ci,J−1]|DI ]

(3.3)
= fJ−1 E [Ci,J−1|DI ]
= . . .

= fI−i · · · fJ−1 E [Ci,I−i|DI ]
(Ci,I−i⊆DI)

= fI−i · · · fJ−1 Ci,I−i

With the same argument we get E [Ci,J |DI ]
(3.2)+(3.3)

= E [Ci,J |Ci,I−i]. q
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With lemma 3.2.3 we get an algorithm to estimate the ultimate loss Ci,J of an accident
year, provided we know the development factors fi. The claims reserve for outstanding
liabilities is then calculated by

R̂i = E [Ri|DI ] = E [Ci,J |DI ]− Ci,I−i = Ci,I−i (fI−i · · · fJ−1 − 1) (3.5)

This estimator is generally called the best estimate for the claims reserve of accident year
i based on information DI .
In practice the development factors fj are unknown and therefore have to be estimated
from the data too.

3.2.4 Estimator (Development Factors). We will estimate the factors fj , j = 0, . . . , J−1
by (see lemma 3.2.6 for the reasoning behind this).

f̂j :=

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

=

I−j−1∑
i=0

Ci,j∑I−j−1
k=0 Ck,j

Ci,j+1

Ci,j
(3.6)

Observe that the chain ladder factors are a weighed average of the individual development
factors

Fi,j+1 :=
Ci,j+1

Ci,j
. (3.7)

3.2.5 Definition (Chain Ladder Estimator). For i = 1, . . . , I and j = I − i + 1, . . . , J
the chain ladder estimator for E [Ci,j |DI ] is then given by

ĈCLi,j := Ê [Ci,j |DI ] = Ci,I−i f̂I−i · · · f̂j−1 (3.8)

We will now define a new set of observations as

Bk := {Ci,j : i+ j ≤ I, 0 ≤ j ≤ k} ⊆ DI (3.9)

We have BJ = DI , the set of all observations at time I. Bk represents the set of information
up to development year k (see table 3.1).

3.2.6 Lemma. Under model assumptions 3.2.1 we have

(i) E
[
f̂j

∣∣∣Bj] = fj, i.e. f̂j is an unbiased estimator for fj given Bj,

(ii) E
[
f̂j

]
= fj, i.e. f̂j is an (unconditionally) unbiased estimator for fj,

(iii) E
[
f̂0 · · · f̂j

]
= E

[
f̂0

]
· · · E

[
f̂j

]
, j = 0, . . . , J − 1, i.e. the f̂j are uncorrelated,

(iv) E
[
ĈCLi,J

∣∣∣Ci,I−i] = E
[
Ci,J

∣∣∣DI], i.e. ĈCLi,J is an unbiased estimator for E
[
Ci,J

∣∣∣DI](
= E

[
Ci,J

∣∣∣Ci,I−i]) given Ci,I−i,

(v) E
[
ĈCLi,J

]
= E

[
Ci,J

]
, i.e. ĈCLi,J is an (unconditionally) unbiased estimator for E

[
Ci,J

]
.
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AY/DY 0 1 . . . k . . . . . . J

0 C0,0 C0,1 . . . C0,k . . . . .
. C0,J

1 C1,0 . .
.

. .
. ...

... C1,J−1

...
... . .

.
. .
. ... . .

.

i ... . .
.

. .
. Ci,k

...
... . .

.
. .
.

...
... CI−1,2

I CI,1

Table 3.1: Claims triangle with Bk in blue

Proof.

(i) Ci,j is measurable with respect to (w.r.t) Bj ∀i = 0, . . . , I − j − 1, which leads to

E
[
f̂j

∣∣∣Bj] = E

[∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

∣∣∣∣∣Bj
]

=

∑I−j−1
i=0 E [Ci,j+1|Bj ]∑I−j−1

i=0 Ci,j

(3.3)
=

∑I−j−1
i=0 Ci,j fj∑I−j−1
i=0 Ci,j

= fj

(ii) E
[
f̂j

]
= E

[
E
[
f̂j

∣∣∣Bj]] (i)
= fj

(iii) We know that f̂i is measurable w.r.t. Bj for i < j (∗). If we use the attributes of
the conditional expectation iteratively we get

E
[
f̂0 · · · f̂j

]
= E

[
E
[
f̂0 · · · f̂j

∣∣∣Bj]] (∗)
= E

[
f̂0 · · · f̂j−1E

[
f̂j

∣∣∣Bj]]
(i)
= E

[
f̂0 · · · f̂j−1

]
fj

(ii)
= E

[
f̂0 · · · f̂j−1

]
E
[
f̂j

]
= . . . = E

[
f̂0

]
· · · E

[
f̂j

]
(iv) With the same argument as in lemma 3.2.3 we have

E
[
ĈCLi,J

∣∣∣Ci,I−i] (3.8)
= E

[
Ci,I−i f̂I−i · · · f̂J−1

∣∣∣Ci,I−i]
= E

[
Ci,I−i f̂I−i · · · f̂J−2 E

[
f̂J−1

∣∣∣BJ−1

∣∣∣Ci,I−i]]
(i)
= fJ−1 E

[
ĈCLi,J−1

∣∣∣Ci,I−i]
= . . .

= Ci,I−i fI−i · · · fJ−1 = E [Ci,j |DI ]
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(v) E
[
ĈCLi,J

]
= E

[
E
[
ĈCLi,J

∣∣∣Ci,I−i]] (iv)
= E [Ci,J ]

q

3.2.7 Remark.

• We have shown the uncorrelatedness of the estimators f̂j , but it has to be emphasized
that this does not implicate independence of the factors. In fact it can be shown
that the squares of two consecutive estimators f̂j and f̂j+1 are negatively correlated
(for further information see [WM08]).

• Lemma 3.2.6 shows that our estimators f̂j are unbiased estimators of the develop-
ment factors and thereby justifies our choice in estimator 3.2.4. In [WM08] it is
further shown, that under certain conditions, the choice (3.6) fulfills an optimality
condition amongst all unbiased estimators.

3.3 Mean square error

In the previous section we have established best estimates for the claims reserves, but we
are also interested in their volatility. The aim of this chapter is to estimate the second
moment of these estimators by introducing the concept of the mean square error of predic-
tion. Building on this foundation we will then also calculate higher moments and estimate
the full reserve risk distribution in the subsequent chapters.

3.3.1 Definition (conditional MSEP). The conditional mean square error of prediction
of an estimator X̂ for X is defined by

msepX|D
(
X̂
)

= E
[(
X̂ −X

)2
∣∣∣∣D]

For a D measurable estimator X̂ we have

msepX|D
(
X̂
)

= V [X|D] +
(
X̂ − E [X|D]

)2

(3.10)

3.3.2 Remark. We can now interprete the two terms on the right hand side of eq. (3.10)
separately

• The first term is generally called conditional process variance (stochastic error) and
describes the volatility within the stochastic model. This means that this part
cannot be eliminated by further refinement of our estimator.

• The second term is the parameter estimation error. It reflects the uncertainty in
the estimation of the parameters and the estimation of the conditional expectation.
This factor should generally decrease as the number of observations increases, but
it should be noted that in many practical situations it remains positive and never
disappears entirely.
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• We can see our first problem here very clearly. To calculate the parameter estimation
error we would have to know the exact value of E [X|D], which we do not have (we
have estimated it by X̂). Therefore we cannot use a straightforward approach for
this calculation. One way to proceed is to study the possible fluctuations of X̂
around E [X|D].

We will now expand our model assumptions to be able to find estimators for the second
moment.

3.3.3 Model assumptions.

• Cumulative claims Ci,j of different accident years i are independent.

• (Ci,j)j≥0 form a Markov chain. There exist factors f0, . . . , fJ−1 > 0 and variance
parameters σ2

0 , . . . , σ
2
J−1 > 0 such that

∀0 ≤ i ≤ I and ∀1 ≤ j ≤ J we have
E [Ci,j |Ci,j−1] = fj−1Ci,j−1, (3.11)

V [Ci,j |Ci,j−1] = σ2
j−1Ci,j−1. (3.12)

3.3.4 Estimator. We define the estimators for the σ2
j for 0 ≤ j ≤ J − 2 by

σ̂2
j =

1

I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2

(3.13)

3.3.5 Remark. Note that we do not have enough data to estimate σ̂J−1, which would only
be possible with the above formula if I > J . So a different approach has to be used to
estimate the last variance factor. We will choose the extrapolation introduced in [Mac93]
which states

σ̂2
J−1 = min

{(
σ̂2
J−2

)2
σ̂2
J−3

, σ̂2
J−3, σ̂

2
J−2

}
(3.14)

3.3.6 Lemma. Under model assumptions 3.3.3 we have

(i) E
[
σ̂2
j

∣∣Bj] = σ2
j , i.e. σ̂2

j is an unbiased estimator for σ2
j given Bj,

(ii) E
[
σ̂2
j

]
= σ2

j , i.e. σ̂2
j is an (unconditionally) unbiased estimator for σ2

j ,

Proof. (i) We have

E
[
σ̂2
j

∣∣Bj] = E

[
1

I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj
]

=
1

I − j − 1

I−j−1∑
i=0

Ci,jE

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj
]



CHAPTER 3. THE CHAIN-LADDER METHOD 14

hence we will calculate the conditional expectations in the sum for i = 0, . . . , I−j−1.
We have

E

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj

]
= E

[(
Ci,j+1

Ci,j
− fj −

(
f̂j − fj

))2
∣∣∣∣∣Bj

]

= E

[(
Ci,j+1

Ci,j
− fj

)2
∣∣∣∣∣Bj
]
− 2 E

[(
Ci,j+1

Ci,j
− fj

) (
f̂j − fj

)∣∣∣∣Bj

]
+ E

[(
f̂j − fj

)2∣∣∣∣Bj

]
We will now calculate each of these terms separately. Using model assumptions 3.3.3
we have

E

[(
Ci,j+1

Ci,j
− fj

)2
∣∣∣∣∣Bj
]

(3.11)
= V

[
Ci,j+1

Ci,j

∣∣∣∣Bj] (3.12)
=

σ2
j

Ci,j
(3.15)

The independence of different accident years yields

E
[(

Ci,j+1

Ci,j
− fj

) (
f̂j − fj

)∣∣∣∣Bj] = Cov

(
Ci,j+1

Ci,j
, f̂j

∣∣∣∣Bj)
(3.6)
= Cov

(
Ci,j+1

Ci,j
,

I−j−1∑
n=0

Cn,j∑I−j−1
k=0 Ck,j

Cn,j+1

Cn,j

∣∣∣∣∣Bj
)

=

I−j−1∑
n=0

Cov

(
Ci,j+1

Ci,j
,

Cn,j∑I−j−1
k=0 Ck,j

Cn,j+1

Cn,j

∣∣∣∣∣Bj
)

(3.2)
=

Ci,j∑I−j−1
k=0 Ck,j

Cov

(
Ci,j+1

Ci,j
,
Ci,j+1

Ci,j

∣∣∣∣Bj)
=

Ci,j∑I−j−1
k=0 Ck,j

V
[
Ci,j+1

Ci,j

∣∣∣∣Bj]
(3.15)

=
σ2
j∑I−j−1

k=0 Ck,j
(3.16)

where Cov denotes the covariance which is defined in eq. (5.6). For the last term
we have

E
[(
f̂j − fj

)2
∣∣∣∣Bj] = E

[(
f̂j − E

[
f̂j

])2
∣∣∣∣Bj]

= V
[
f̂j

∣∣∣Bj]
(3.6)
= V

[∑I−j−1
k=0 Ck,j+1∑I−j−1
k=0 Ck,j

∣∣∣∣∣Bj
]

=

(
1∑I−j−1

k=0 Ck,j

)2

V

[
I−j−1∑
k=0

Ck,j+1

∣∣∣∣∣Bj
]

(3.2)
=

(
1∑I−j−1

k=0 Ck,j

)2 I−j−1∑
k=0

V [Ck,j+1|Bj ]
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(3.12)
=

(
1∑I−j−1

k=0 Ck,j

)2

σ2
j

(
I−j−1∑
k=0

Ck,j

)

=
σ2
j∑I−j−1

k=0 Ck,j
(3.17)

Putting all of this together we have

E

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj
]

(3.15)+(3.16)+(3.17)
= σ2

j

(
1

Ci,j
− 1∑I−j−1

k=0 Ck,j

)
(3.18)

Thus we can conclude

E
[
σ̂2
j

∣∣Bj] =
1

I − j − 1

I−j−1∑
i=0

Ci,jE

[(
Ci,j+1

Ci,j
− f̂j

]2
∣∣∣∣∣Bj
]

(3.18)
=

1

I − j − 1

I−j−1∑
i=0

Ci,j σ
2
j

(
1

Ci,j
− 1∑I−j−1

k=0 Ck,j

)

=
σ2
j

I − j − 1

I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)

=
σ2
j

I − j − 1

(
I − j −

I−j−1∑
i=0

Ci,j∑I−j−1
k=0 Ck,j

)

=
σ2
j

I − j − 1

(
I − j −

∑I−j−1
i=0 Ci,j∑I−j−1
k=0 Ck,j

)

=
σ2
j

I − j − 1
(I − j − 1)

= σ2
j

(ii) Using item (i) and the tower property of the conditional expectation we have

E
[
σ̂2
j

]
= E

[
E
[
σ̂2
j

∣∣Bj]] = σ2
j .

q

From the above proof we can deduce the following equation

E
[
f̂2
j

∣∣∣Bj] = V
[
f̂2
j

∣∣∣Bj]+
(
E
[
f̂j

∣∣∣Bj])2 (3.17)
=

σ2
j∑I−j−1

i=0 Ci,j
+ f2

j (3.19)

We will need this equation later on in the derivation of the conditional estimation error
and the derivations of the skewness and kurtosis estimators.
Our aim for the rest of this chapter is now to find an estimator for the MSEP of ĈCLi,J ,
where i = 1, . . . , I.
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We have

msepCi,j |DI
(
ĈCLi,J

)
= E

[(
ĈCLi,J − Ci,J

)2
∣∣∣∣DI]

(3.10)
= V [Ci,J |DI ] +

(
ĈCLi,J − E [Ci,J |DI ]

)
(3.20)

for single accident years and

msep∑I
i=1 Ci,j |DI

(
I∑
i=1

ĈCLi,J

)
= E

( I∑
i=1

ĈCLi,J −
I∑
i=1

Ci,J

)2
∣∣∣∣∣∣DI
 (3.21)

for aggregated accident years.

3.3.1 Conditional Process Variance
3.3.7 Lemma. Under model assumptions 3.3.3 the conditional process variance for the
ultimate claim amount Ci,J of a single accident year i with i = 1, . . . , I, is given by

V [Ci,J |DI ] = (E [Ci,J |Ci,I−i])2
J−1∑
j=I−i

σ2
j

f2
j E [Ci,j |Ci,I−i]

(3.22)

Proof.

V [Ci,J |DI ] = V [Ci,J |Ci,I−i]
= E [V [Ci,J |Ci,J−1]|Ci,I−i] + V [E [Ci,J |Ci,J−1]|Ci,I−i]
= σ2

J−1 E [Ci,J−1|Ci,I−i] + f2
J−1 V [Ci,J−1|Ci,I−i]

= σ2
J−1 Ci,I−i

J−2∏
m=I−i

fm + f2
J−1 V [Ci,J−1|Ci,I−i] . (3.23)

We can now do the same procedure for V [Ci,J−1|Ci,I−i] to get

V [Ci,J−1|Ci,I−i] = σ2
J−2 Ci,I−i

J−3∏
m=I−i

fm + f2
J−2 V [Ci,J−2|Ci,I−i] .

Iterating this until we get V [Ci,I−i|Ci,I−i] (= 0) on the right hand side of the above
equation we get

V [Ci,J |DI ] = Ci,I−i

J−1∑
j=I−i

J−1∏
n=j+1

f2
n σ

2
j

j−1∏
m=I−i

fm

=

J−1∑
j=I−i

J−1∏
n=j+1

f2
n σ

2
jE [Ci,j |Ci,I−i]

= (E [Ci,J |Ci,I−i])2
J−1∑
j=I−i

σ2
j

f2
j E [Ci,j |Ci,I−i]

.

q
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3.3.8 Estimator. Our estimator for the conditional process variance is then

V̂ [Ci,J |DI ] = Ê
[
(Ci,J − E [Ci,J |DI ])2

∣∣∣DI]
(3.22)

=
(
ĈCLi,J

)2 J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉ

CL
i,j

. (3.24)

where for ease of notation in the formula ĈCLi,I−i := Ci,I−i.
We can also use eq. (3.23) to get the recursive formula

V̂ [Ci,j |DI ] = V̂ [Ci,j−1|DI ] f̂2
j−1 + σ̂2

j−1 Ĉ
CL
i,j−1,

∀j = I − i+ 1, . . . , J,

where V̂ [Ci,I−i|DI ] = 0 and again ĈCLi,I−i = Ci,I−i.

Under model assumptions 3.3.3 different accident years are independent, which leads to

V

[
I∑
i=1

Ci,J

∣∣∣∣∣DI
]

=

I∑
i=1

V [Ci,J |DI ] .

Therefore we estimate the conditional process variance for aggregated accident years by

V̂

[
I∑
i=1

Ci,J

∣∣∣∣∣DI
]

=

I∑
i=1

V̂ [Ci,J |DI ] .

3.3.2 The parameter estimation error for single accident years
To calculate the MSEP we now need to find an estimator for the second term of eq. (3.20).
This estimator will tell us about the accuracy of the chain ladder estimators f̂j . We begin
by calculating(

ĈCLi,J − E [Ci,J |DI ]
)2 (3.4)+(3.8)

= C2
i,I−i

(
f̂I−i · · · f̂J−1 − fI−i · · · fJ−1

)2

= C2
i,I−i

(
J−1∏
J=I−i

f̂2
j +

J−1∏
J=I−i

f2
j − 2

J−1∏
J=I−i

f̂j fj

)
(3.25)

Observe that while the factors f̂j are known at time I we do not know the factors fj , j =
0, . . . , J − 1 (that is why we had to estimate them in the first place), hence we cannot
compute eq. (3.25) directly. We will now use an analytic resampling approach, introduced
in [WM08]. In this approach we will analyse the extent to which the estimators f̂j fluctuate
around the true values fj .
We start by focusing on resampling the following products

f̂2
I−i · · · f̂2

J−1, i = 1, . . . , I (3.26)
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AY/DY 0 1 . . . I − i I − i+ 1 . . . J

0 C0,0 C0,1 . . . C0,I−i C0,I−i+1 . .
. C0,J

1 C1,0 . .
.

. .
. ...

... . .
.

...
... . .

.
. .
. ... . .

.

i ... . .
.

. .
. Ci,I−i

...
... . .

.
. .
.

...
... CI−1,2

I CI,1

Table 3.2: Claims triangle with DOI,i in green

First we again define a new subset of Di (see table 3.2 for a visualization)

DOI,i := {Ck,j ∈ DI : j > I − i} ⊆ DI . (3.27)

Observe that f̂j is Bj+1 measurable. We will now conditionally resample in DOI,i, which
formally means that we will sample under a different probability measure. For this we
will calculate the value of

E
[
f̂2
I−i

∣∣∣BI−i] E
[
f̂2
I−i+1

∣∣∣BI−i+1

]
· · · E

[
f̂2
J−1

∣∣∣BJ−1

]
(3.28)

This means we are averaging the factors f̂j at every position j = I − i, . . . , J − 1 on the
conditional structure. Note that eq. (3.28) depends on the observations in DOI,i, because
we have that DOI,i ∩ Bj 6= ∅ if j > I − i.
To formalize things we note that the estimated CL factors f̂j are in fact functions of
(Ck,j+1)k=0,...,I−j−1 and (Ck,j)k=0,...,I−j−1 so we can write

f̂j = f̂j ((Ck,j+1)k=0,...,I−j−1, (Ck,j)k=0,...,I−j−1) =

∑I−j−1
k=0 Ck,j+1∑I−j−1
k=0 Ck,j

According to model assumptions 3.3.3 (Ck,j)j≥0 is a Markov chain, so we can write its
probability distribution as

dPk(x0, . . . , xJ) = K
(k)
0 (dx0) K

(k)
1 (xo,dx1) K

(k)
2 (xo, x1,dx2) · · · K

(k)
J (xo, . . . , xJ−1dxJ)

= K
(k)
0 (dx0) K

(k)
1 (xo,dx1) K

(k)
2 (x1,dx2) · · · K

(k)
J (xJ−1dxJ)

In this resampling process we will now always keep the set of actual observations Ck,j fixed
and resample the next step in the time series. This means that, given DI , we consider the
following probability measures

dP∗k

(
(xk,j)k+j≤I

)
=

I−1∏
k=0

K
(k)
1 (Ck,0,dxk,1) · · · K

(k)
I−k (Ck,I−k−1,dxk,I−k)



CHAPTER 3. THE CHAIN-LADDER METHOD 19

for the resampling of
J−1∏
j=I−i

f̂j =

J−1∏
j=I−i

f̂j ((xk,j+1)k=0,...,I−j−1, (Ck,j)k=0,...,I−j−1) =

J−1∏
j=I−i

∑I−j−1
k=0 xk,j+1∑I−j−1
k=0 Ck,j

The values Ck,j serve as a fixed volume measure for the resampled values of xk,j+1.
3.3.9 Remark. [WM08] also introduces other approaches to tackle the resampling problem,
but we will only focus on this one as it leads to a closed analytical formula for the MSEP
of the reserves.
To accomplish the resampling of the CL factors f̂j we introduce a time series assumption
to our model. Our new stronger model assumptions can than be defined as follows
3.3.10 Model assumptions (time series model).

• Cumulative claims Ci,j of different accident years are independent

• There exist constants fj > 0, σj > 0 and random variables εi,j+1 such that

Ci,j+1 = fj Ci,j + σj
√
Ci,j εi,j+1 (3.29)

∀ i ∈ {0, . . . , I} , and ∀ j ∈ {0, . . . , J − 1}

where εi,j+1 are conditionally independent given B0, with E [εi,j+1|B0] = 0, E
[
ε2
i,j+1

∣∣B0

]
=

1 and P [Ci,j+1 > 0|B0] = 1 ∀i ∈ {0, . . . , I}, and ∀j ∈ {0, . . . , J − 1}.

3.3.11 Remark.

• We can see that eq. (3.29) defines an autoregressive process. We will use it in our
derivation of the estimation error.

• The random variables εi,j+1 are defined via the conditional probability measure
P[·|B0]. All subsequent calculations are then done under this probability measure.

• Observe that we have Ci,j+1 > 0 almost surely under P[·|B0] for our cumulative
claims. Note that a similar assumption also underlies model assumptions 3.3.3 to
make sense of the variance condition (eq. (3.12)).

• It can easily be verified that model assumptions 3.3.10 imply model assumptions 3.3.3.

We will now resample the observations for f̂I−i, . . . , f̂J−1, given the upper triangle DI .
To do this we generate a new set of observations C̃i,j+1, given DI , i = 0, . . . , I and
j = 0, . . . , J − 1 using the formula

C̃i,j+1 = fj Ci,j + σj
√
Ci,j ε̃i,j+1 (3.30)

with σj > 0 and ε̃i,j+1 being an independent and identically distributed copy of εi,j+1,
given B0.
Before we procede we define the following short notation

S
[k]

j =

k∑
i=0

Ci,j (3.31)

Now we can calculate our development factors under model assumptions 3.3.10.
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3.3.12 Estimator.

f̂∗j =

∑I−j−1
i=0 C̃i,j+1∑I−j−1
i=0 Ci,j

(3.30)
= fj +

σj

S
[I−j−1]

j

I−j−1∑
i=0

√
Ci,j ε̃i,j+1 (3.32)

We denote the probability measure of the resampled factors by P∗DI . With this we have

3.3.13 Lemma.

(i) the resampled estimates f̂∗I−i, . . . , f̂
∗
J−1 are independent w.r.t. to P∗DI ,

(ii) E∗DI
[
f̂∗j

]
= fj for j = 0, . . . , J − 1, and

(iii) E∗DI

[(
f̂∗j

)2
]

= f2
j +

σ2
j

S
[I−j−1]

j

for j = 0, . . . , J − 1.

Proof. (i) We have that the ε̃i,j are independent, given B0 ⊆ DI . From eq. (3.32) we
can see that the f̂∗j are real-valued functions of the ε̃i,j and deterministic variables,
which immediately implies that (i) holds true.

(ii) For j = 0, . . . , J − 1 we have

E∗DI
[
f̂∗j

]
= fj +

σj

S
[I−j−1]

j

I−j−1∑
i=0

√
Ci,j E∗DI [ε̃i,j+1] = fj ,

since E [εi,j+1|B0] = 0 (4).

(iii) For j = 0, . . . , J − 1 and using the conditional independence of ε̃i,j(◦) and
E
[
ε2
i,j+1

∣∣B0

]
= 1 (∗) we have

E∗DI

[(
f̂∗j

)2]
=

= f2
j + E∗DI

( σj

S
[I−j−1]

j

I−j−1∑
i=0

√
Ci,j ε̃i,j+1

)2
+ 2 E∗DI

[
fj σj

S
[I−j−1]

j

I−j−1∑
i=0

√
Ci,j ε̃i,j+1

]

= f2
j +

σ2
j(
S

[I−j−1]
j

)2 E∗DI

(I−j−1∑
i=0

√
Ci,j ε̃i,j+1

)2
+

2 fj σj

S
[I−j−1]

j

I−j−1∑
i=0

√
Ci,j E∗DI [ε̃i,j+1]

(4)
= f2

j +
σ2
j(
S

[I−j−1]
j

)2 V∗DI

[
I−j−1∑
i=0

√
Ci,j ε̃i,j+1

]

(◦)
= f2

j +
σ2
j(
S

[I−j−1]
j

)2 I−j−1∑
i=0

Ci,j V∗DI [ε̃i,j+1]

(∗)
= f2

j +
σ2
j(
S

[I−j−1]
j

)2 S
[I−j−1]

j
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= f2
j +

σ2
j

S
[I−j−1]

j

q

Using this and the fact that for independent random variables X1, . . . , Xn we have

V

 n∏
j=1

Xj

 =

n∏
j=1

E
[
X2
j

]
−

n∏
j=1

(E [Xj ])
2 (3.33)

we can resample the estimation error(
ĈCLi,J − E [Ci,J |DI ]

)2

= C2
i,I−i

(
f̂I−i · · · f̂J−1 − fI−i · · · fJ−1

)2

by calculating

C2
i,I−iE∗DI

[(
f̂∗I−i · · · f̂∗J−1 − fI−i · · · fJ−1

)2
]

=

= C2
i,I−iV∗DI

[
f̂∗I−i · · · f̂∗J−1

]
(3.33)

= C2
i,I−i

 J−1∏
j=I−i

E∗DI

[(
f̂∗j

)2
]
−

J−1∏
j=I−i

f2
j


= C2

i,I−i

 J−1∏
j=I−i

(
f2
j +

σ2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f2
j

 (3.34)

By replacing the unknown parameters by their estimates we can now define an estimator
for the conditional estimation error.

3.3.14 Estimator. We estimate the conditional estimation error for accident year i =
1, . . . , I by

V̂
[
ĈCLi,J

∣∣∣DI] = E∗DI
[(
ĈCLi,J − E [Ci,J |DI ]

)]
(3.34)

= C2
i,I−i

 J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j

 (3.35)

This equation can be rewritten in a recursive form. We obtain for j = I − i+ 1, . . . , J

V̂
[
ĈCLi,j

∣∣∣DI] = V̂
[
ĈCLi,j−1

∣∣∣DI] f̂2
j−1 + C2

i,I−i
σ̂2
j−1

S
[I−j−1]

j−1

j−2∏
m=I−i

(
f2
m +

σ̂2
m

S
[I−m−1]

m

)

= V̂
[
ĈCLi,j−1

∣∣∣DI] (f̂2
j−1 +

σ̂2
j−1

S
[I−j−1]

j−1

)
+ C2

i,I−i
σ̂2
j−1

S
[I−j−1]

j−1

j−2∏
m=I−i

f2
m

(3.36)
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3.3.15 Estimator (Mean square error of prediction for single accident years). Under
model assumptions 3.3.10 we have the following estimator for the conditional MSEP of
the ultimate claim for a single accident year i = 1, . . . , I

m̂sepCi,J |DI
(
ĈCLi,J

)
= E

[(
ĈCLi,J − Ci,J

)2
∣∣∣∣DI]

(3.20)+(3.24)+(3.35)
=

(
ĈCLi,J

)2 J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉ

CL
i,j

+ C2
i,I−i

 J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j


(3.37)

By observing
(
ĈCLi,J

)2

= C2
i,I−i

∏J−1
j=I−i f̂

2
j we can rewrite eq. (3.37) as

m̂sepCi,J |DI
(
ĈCLi,J

)
=
(
ĈCLi,J

)2

 J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉ

CL
i,j

+

J−1∏
j=I−i

(
1 +

σ̂2
j

S
[I−j−1]

j

)
− 1

 (3.38)

To get the Mack formula which we will need later on we do a linear approximation from
below. We have

J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j =

J−1∏
j=I−i

f̂2
j

(
1 +

σ̂2
j

f̂2
j S

[I−j−1]
j

)
−

J−1∏
j=I−i

f̂2
j

=

J−1∏
j=I−i

f̂2
j

J−1∏
j=I−i

(
1 +

σ̂2
j

f̂2
j S

[I−j−1]
j

)
−

J−1∏
j=I−i

f̂2
j

If we drop all cross products from
∏J−1
j=I−i

(
1 +

σ̂2
j

f̂2
j S

[I−j−1]
j

)
, which actually means devel-

oping the Taylor series around point a = 0, we have

J−1∏
j=I−i

(
1 +

σ̂2
j

f̂2
j S

[I−j−1]
j

)
≈ 1 +

J−1∑
j=I−i

σ̂2
j

f̂2
j S

[I−j−1]
j

(3.39)

So we can conclude that

C2
i,I−i

 J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j


≈ C2

i,I−i

 J−1∏
j=I−i

f̂2
j

1 +

J−1∑
j=I−i

σ̂2
j

f̂2
j S

[I−j−1]
j

− 1


= C2

i,I−i

J−1∏
j=I−i

f̂2
j

J−1∑
j=I−i

σ̂2
j

f̂2
j S

[I−j−1]
j

which leads us to the following estimator.
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3.3.16 Estimator (Mack Estimator for the MSEP of single accident years). Under model
assumptions 3.3.10 we have the following Mack estimator for the conditional MSEP of the
ultimate claim for a single accident year i = 1, . . . , I

̂̂msepCi,J |DI
(
ĈCLi,J

)
:=
(
ĈCLi,J

)2 J−1∑
j=I−i

σ̂2
j

f̂2
j

(
1

ĈCLi,j
+

1

S
[I−j−1]

j

)
(3.40)

3.3.17 Remark. Note that the ≈ in eq. (3.39) is in fact a ≥, so ̂̂msepCi,J |DI
(
ĈCLi,J

)
is a

lower bound of m̂sepCi,J |DI
(
ĈCLi,J

)
.

3.3.3 MSEP for aggregated accident years
While model assumptions 3.3.10 state that different accident years are independent we
still have to take dependencies into account when aggregating the factors ĈCLi,j , since they
are estimated from the same set of data (f̂j and σ̂j do not depend on i). We start with
the case of two aggregated variables and compute for 0 ≤ i 6= k ≤ I

m̂sepCi,J+Ck,J |DI

(
ĈCLi,j + ĈCLk,j

)
= E

[(
ĈCLi,j + ĈCLk,j − (Ci,J + Ck,j)

)2
∣∣∣∣DI]

(3.10)
= V [Ci,J + Ck,j |DI ] +

(
ĈCLi,j + ĈCLk,j − E [Ci,J + Ck,j |DI ]

)2

Using the independence of different accident years the first term is simply

V [Ci,J + Ck,j |DI ] = V [Ci,J |DI ] + V [+Ck,j |DI ]

where we already have estimators for the individual terms. For the second term we get(
ĈCLi,j + ĈCLk,j − E [Ci,J + Ck,j |DI ]

)2

=
(
ĈCLi,j − E [Ci,J |DI ]

)2

+
(
ĈCLk,j − E [Ck,j |DI ]

)2

+ 2
(
ĈCLi,j − E [Ci,J |DI ]

)(
ĈCLk,j − E [Ck,j |DI ]

)
Combining these two equations yields

m̂sepCi,J+Ck,J |DI

(
ĈCLi,j + ĈCLk,j

)
= E

[(
ĈCLi,j − Ci,J

)2
∣∣∣∣DI]+ E

[(
ĈCLk,j − Ck,j

)2
∣∣∣∣DI]

+ 2
(
ĈCLi,j − E [Ci,J |DI ]

)(
ĈCLk,j − E [Ck,j |DI ]

)
= m̂sepCi,J |DI

(
ĈCLi,j

)
+ m̂sepCk,J |DI

(
+ĈCLk,j

)
+ 2

(
ĈCLi,j − E [Ci,J |DI ]

)(
ĈCLk,j − E [Ck,j |DI ]

)
We will now resample the development factors to get an analogous expression to eq. (3.34).
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Under P∗DI we resample the terms(
ĈCLi,J − E [Ci,J |DI ]

)(
ĈCLk,j − E [Ck,j |DI ]

)
= Ci,I−i

(
f̂I−i · · · f̂J−1 − fI−i · · · fJ−1

)
Ck,I−k

(
f̂I−k · · · f̂J−1 − fI−k · · · fJ−1

)
by calculating (without loss of generality we set i < k)

Ci,I−i Ck,I−k E∗DI

 J−1∏
j=I−i

f̂∗j −
J−1∏
j=I−i

fj

 J−1∏
j=I−k

f̂∗j −
J−1∏
j=I−k

fj


= Ci,I−i Ck,I−k E∗DI

[ J−1∏
j=I−i

f̂∗j

J−1∏
j=I−k

f̂∗j −
J−1∏
j=I−i

fj

J−1∏
j=I−k

f̂∗j

−
J−1∏
j=I−i

f̂∗j

J−1∏
j=I−k

fj +

J−1∏
j=I−i

fj

J−1∏
j=I−k

fj

]

= Ci,I−i Ck,I−k

[ I−i−1∏
j=I−k

E
[
f̂∗j

] J−1∏
j=I−i

E
[(
f̂∗j

)2
]
−

J−1∏
j=I−i

fj

J−1∏
j=I−k

E
[
f̂∗j

]

−
J−1∏
j=I−i

E
[
f̂∗j

] J−1∏
j=I−k

fj +

J−1∏
j=I−i

fj

J−1∏
j=I−k

fj

]

= Ci,I−i Ck,I−k

I−i−1∏
j=I−k

fj

[ J−1∏
j=I−i

E
[(
f̂∗j

)2
]
−

J−1∏
j=I−i

f2
j −

J−1∏
j=I−i

f2
j +

J−1∏
j=I−i

f2
j

]

= Ci,I−iE [Ck,I−i|DI ]

 J−1∏
j=I−i

(
f2
j +

σ2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f2
j

 (3.41)

Plugging in our estimators we get

3.3.18 Estimator (Mean square error of prediction for aggregated accident years). Under
model assumptions 3.3.10 we have the following estimator for the conditional MSEP of
the ultimate claim for aggregated accident years i = 1, . . . , I

m̂sep∑
i Ci,J |DI

(
I∑
i=1

ĈCLi,J

)
= E

( I∑
i=1

ĈCLi,J −
I∑
i=1

Ci,J

)2
∣∣∣∣∣∣DI


(3.41)
=

I∑
i=1

m̂sepCi,J |DI
(
ĈCLi,J

)

+ 2
∑

1≤i<k≤I

Ci,I−i Ĉ
CL
k,I−i

 J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j


(3.42)
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Analogously as in the derivation of eq. (3.39) we can do a linear approximation from below
to get the Mack Estimator presented in [Mac93].

3.3.19 Estimator (Mack MSEP for aggregated accident years). Under model assump-
tions 3.3.10 we have the following estimator for the conditional MSEP of the ultimate
claim for aggregated accident years i = 1, . . . , I

̂̂msep∑
i Ci,J |DI

(
I∑
i=1

ĈCLi,J

)
=

I∑
i=1

̂̂msepCi,J |DI
(
ĈCLi,J

)

+ 2
∑

1≤i<k≤I

ĈCLi,J ĈCLk,J

J−1∑
j=I−i

σ̂2
j

f̂2
j S

[I−j−1]
j

 (3.43)



Chapter 4

Estimation of skewness and
kurtosis 1

Having established estimators for the first two moments in the previous chapter we now
want to estimate the skewness and the kurtosis of our claim reserves. Therefore we will
first expand the model assumptions and then find an appropriate estimator. Higher-order
moments often give us a more intricate look at the distribution of our random variable.
Especially when it comes to the tails of the distribution (which are often needed for Value
at Risk calculations), we can find better distributional fits than with just the first two
moments.

4.1 Estimation of the Skewness

4.1.1 Definition (Conditional Skewness). Following the notation from chapter 2 we
define the conditional third moment of a random variable A, given B as

µ(3) (A|B) = E
[
(A− E [A|B])

3
∣∣∣B] (4.1)

Then the conditional skewness is given by

Skew (A|B) =
µ(3) (A|B)

(V [A|B])
3
2

(4.2)

Next we will expand our model assumptions to fit higher order moments.

4.1.2 Model assumptions.

• Cumulative claims Ci,j of different accident years i are independent.
1The structure and notation of this chapter follow [Mor12] and [Mor13], with the proofs being newly

performed and resulting in slightly different estimators.

26
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• (Ci,j)j≥0 form a Markov chain. There exist factors f0, . . . , fJ−1 > 0 and variance
parameters σ2

0 , . . . , σ
2
J−1 > 0 such that

∀ 0 ≤ i ≤ I and ∀ 1 ≤ j ≤ J we have
E [Ci,j |Ci,j−1] = fj−1Ci,j−1, (4.3)

V [Ci,j |Ci,j−1] = σ2
j−1Ci,j−1. (4.4)

• Skew (Ci,j+1|DI) depends on j but does not depend on i.

From the last point in model assumptions 4.1.2 we can deduce

∀ j ∈ {0, . . . , J − 1} ∃ γj ∀ i ∈ {0, . . . , I} :

γj = Skew (Ci,j+1|DI)

=
µ(3) (Ci,j+1|DI)
(V [Ci,j+1|DI ])

3
2

(4.4)
=

µ(3) (Ci,j+1|DI)(
σ2
j Ci,j

) 3
2

This can be rearranged to

µ(3) (Ci,j+1|DI) = γj
(
σ2
j Ci,j

) 3
2 , (4.5)

which means that the third moment of Ci,j+1 is proportional to (Ci,j)
3
2 .

We will now use the special form of the above equation to define a modification of the
skewness in which we will incorporate the variance factors σ2

j . From eq. (4.5) we have
that there exist factors γ∗j so that

µ(3) (Ci,j+1|DI) = γ∗j (Ci,j)
3
2 (4.6)

∀i = 0, . . . , I and ∀j = 0, . . . , I − 1

4.1.3 Remark. Note that

γj =
γ∗j(
σ2
j

) 3
2

, j = 0, . . . , J − 1 (4.7)

Before the next formula we want to generalize the short notation from eq. (3.31) to simplify
the notation in the proof.

4.1.4 Definition. We set

S
[k] [p]

j :=

k∑
i=0

Cpi,j (4.8)

and in accordance with eq. (3.31) we set

S
[k]

j = S
[k] [1]

j =

k∑
i=0

Ci,j (4.9)
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4.1.5 Estimator. We will estimate γ∗j for j = 0, . . . , J − 3 by

γ̂∗j =

I−j−1∑
i=0

C
3/2
i,j

(
Ci,j+1

Ci,j
− f̂j

)3

I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)3

+

∑I−j−1
k=0 C3

k,j −
(∑I−j−1

k=0 C
3/2

k,j

)2

(∑I−j−1
k=0 Ck,j

)3

(4.10)

4.1.6 Remark. Note that estimator 4.1.5 differs from the one given in [Mor12], which is

γ̂DM
j =

1

I − j −

(∑I−j−1
k=0 C

3/2

k,j

)2

(∑I−j−1
k=0 Ck,j

)3

I−j−1∑
i=0

C
3/2
i,j

(
Ci,j+1

Ci,j
− f̂j

)3

The form of eq. (4.10) results from the proof of lemma 4.1.7 and is very similar in form
to eq. (4.26). Therefore we will use estimator 4.1.5 from here on out.

4.1.7 Lemma. The estimator γ̂∗ is a conditionally (and unconditionally) unbiased es-
timator for γ∗, which means that

(i) E
[
γ̂∗j
∣∣Bj] = γ∗ for j = 0, . . . , J − 3

(ii) E
[
γ̂∗j
]

= γ∗ for j = 0, . . . , J − 3

where Bj = {Ci,k : i+ k ≤ I, 0 ≤ k ≤ j} ⊆ DI (see eq. (3.9)).

Proof. To simplify the notation we define

Ej [·] := E [·|Bj ] and Vj [·] := V [·|Bj ] (4.11)

which means that all of the expectations are taken on the conditional probability measures
P (·|Bj), where j = 0 . . . , J − 3.

(i) For j = 0, . . . , J − 3 arbitrary but fixed we start by calculating

Ej

[
I−j−1∑
i=0

C
3/2
i,j

(
Ci,j+1

Ci,j
− f̂j

)3
]

=

I−j−1∑
i=0

1

C
3/2

i,j

Ej
[
C3
i,j+1

]
︸ ︷︷ ︸

(a)

− 3

I−j−1∑
i=0

1√
Ci,j

Ej
[
f̂jC

2
i,j+1

]
︸ ︷︷ ︸

(b)

+ 3

I−j−1∑
i=0

√
Ci,jEj

[
f̂2
j Ci,j+1

]
︸ ︷︷ ︸

(c)

−
I−j−1∑
i=0

C
3/2

i,j Ej
[
f̂3
j

]
︸ ︷︷ ︸

(d)

We will now calculate each element of the above equation individually:
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(a) We have

γ∗j C
3/2

i,j

(4.6)
= µ(3) (Ci,j+1|DI)

= Ej
[
C3
i,j+1

]
− 3Ej

[
C2
i,j+1

]
Ej [Ci,j+1] + 3Ej [Ci,j+1]Ej [Ci,j+1]

2 − Ej [Ci,j+1]
3

= Ej
[
C3
i,j+1

]
− 3

(
Vj [Ci,j+1] + Ej [Ci,j+1]

2
)
Ej [Ci,j+1] + 2Ej [Ci,j+1]

3

(4.3)+(4.4)
= Ej

[
C3
i,j+1

]
− 3

(
σ2
jCi,j + f2

j C
2
i,j

)
fjCi,j + 2f3

j C
3
i,j

= Ej
[
C3
i,j+1

]
− 3fjσ

2
jC

2
i,j − f3

j C
3
i,j

which yields

(a) =

I−j−1∑
i=0

1

C
3/2

i,j

(
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

)
(4.12)

(b) By inserting the definition of f̂j and using the independence between different acci-
dent years (∗) we have

Ej

[
f̂jC

2
i,j+1

]
(3.6)
=

1∑I−j−1
k=0 Ck,j︸ ︷︷ ︸:=

L

Ej

I−j−1∑
k=0
k 6=i

Ck,j+1C
2
i,j+1 + C3

i,j+1


(∗)
= L

Ej

[
C2

i,j+1

] I−j−1∑
k=0
k 6=i

Ej [Ck,j+1] + Ej

[
C3

i,j+1

]
(4.12)+(4.3)+(4.4)

= L

(σ2
jCi,j + f2

j C
2
i,j

) I−j−1∑
k=0
k 6=i

(fjCk,j) + γ∗j C
3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j



= L

fjσ2
jCi,j

I−j−1∑
k=0
k 6=i

Ck,j + f3
j C

2
i,j

I−j−1∑
k=0
k 6=i

Ck,j + γ∗j C
3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j


= L

(
fjσ

2
jCi,j

I−j−1∑
k=0

Ck,j + f3
j C

2
i,j

I−j−1∑
k=0

Ck,j + γ∗j C
3/2

i,j + 2fjσ
2
jC

2
i,j

)
= fjσ

2
jCi,j + f3

j C
2
i,j + L

(
γ∗j C

3/2

i,j + 2fjσ
2
jC

2
i,j

)
so we have

(b) = 3

I−j−1∑
i=0

1√
Ci,j

(
fjσ

2
jCi,j + f3

j C
2
i,j +

γ∗j C
3/2

i,j∑I−j−1
k=0 Ck,j

+
2fjσ

2
jC

2
i,j∑I−j−1

k=0 Ck,j

)
(4.13)

(c) We again insert the definition of f̂j and use the independence between different
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accident years (∗) to get

Ej

[
f̂2
j Ci,j+1

]
(3.6)
=

1(∑I−j−1
k=0 Ck,j

)2
︸ ︷︷ ︸:=

M

Ej

(I−j−1∑
k=0

Ck,j+1

)2

Ci,j+1



=M Ej

[
Ci,j+1

(
I−j−1∑
k=0

C2
k,j+1 + 2

I−j−1∑
k=1

k−1∑
n=0

Ck,j+1 Cn,j+1

)]

=M Ej

[
C3

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1Ci,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0

(Ck,j+1 Cn,j+1 Ci,j+1)

+ 2

i−1∑
n=0

(
Cn,j+1 C

2
i,j+1

) ]

=M Ej

[
C3

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1Ci,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(Ck,j+1 Cn,j+1 Ci,j+1)

+ 2

i−1∑
n=0

(
Cn,j+1 C

2
i,j+1

)
+ 2

I−j−1∑
k=i+1

(
Ck,j+1 C

2
i,j+1

) ]

=M Ej

[
C3

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1Ci,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(Ck,j+1 Cn,j+1 Ci,j+1)

+ 2

I−j−1∑
k=0
k 6=i

(
Ck,j+1 C

2
i,j+1

) ]

(∗)
= M

(
Ej

[
C3

i,j+1

]
+

I−j−1∑
k=0
k 6=i

(
Ej

[
C2

k,j+1

]
Ej [Ci,j+1]

)

+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

(Ej [Ck,j+1]Ej [Cn,j+1]Ej [Ci,j+1])

+ 2

I−j−1∑
k=0
k 6=i

(
Ej [Ck,j+1]Ej

[
C2

i,j+1

]))

=M

(
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j + fjCi,j

I−j−1∑
k=0
k 6=i

(
σ2
jCk,j + f2

j C
2
k,j

)

+ 2f3
j

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

(Ck,j Cn,j Ci,j) + 2
(
σ2
jCi,j + f2

j C
2
i,j

)
fj

I−j−1∑
k=0
k 6=i

Ck,j

)

=M

(
γ∗j C

3/2

i,j + fjσ
2
jCi,j

(
3 Ci,j +

I−j−1∑
k=0
k 6=i

Ck,j + 2

I−j−1∑
k=0
k 6=i

Ck,j

)
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+ f3
j Ci,j

(
C2

i,j +

I−j−1∑
k=0
k 6=i

C2
k,j + 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

(Ck,j Cn,j) + Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

))

=M

(
γ∗j C

3/2

i,j + 3fjσ
2
jCi,j

I−j−1∑
k=0

Ck,j + f3
j Ci,j

(
I−j−1∑
k=0

C2
k,j + 2

I−j−1∑
k=1

k−1∑
n=0

(Ck,j Cn,j)

))

=M

γ∗j C3/2

i,j + 3fjσ
2
jCi,j

I−j−1∑
k=0

Ck,j + f3
j Ci,j

(
I−j−1∑
k=0

Ck,j

)2
which yields

(c) = 3

I−j−1∑
i=0

√
Ci,j(∑I−j−1

k=0 Ck,j

)2
γ∗j C3/2

i,j + 3fjσ
2
jCi,j

I−j−1∑
k=0

Ck,j + f3
j Ci,j

(
I−j−1∑
k=0

Ck,j

)2
(4.14)

(d) For the last element we will use eq. (3.19) which states

Ej
[
f̂2
j

∣∣∣Bj] =
σ2
j∑I−j−1

i=0 Ci,j
+ f2

j .

Additionally we will use the fact that for independent random variables X1, . . . , Xn

with expected value of zero and each with finite first three moments we have

Ej

( n∑
i=1

Xi

)3
 =

n∑
i=1

Ej
[
X3
i

]
(4.15)

This follows from the fact that all cross products contain a factor of the form
Ej [Xi] (= 0) and are therefore zero.
We use this theorem on the centralized random variables Ci,j+1−Ej [Ci,j+1] to prove

Ej
[(
f̂j − Ej

[
f̂j

])3
]

(4.3)
= Ej

(∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

− Ej

[∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

])3
=

1(∑I−j−1
i=0 Ci,j

)3Ej

(I−j−1∑
i=0

Ci,j+1 −
I−j−1∑
i=0

Ej [Ci,j+1]

)3
=

1(∑I−j−1
i=0 Ci,j

)3Ej

(I−j−1∑
i=0

Ci,j+1 − Ej [Ci,j+1]

)3
(4.15)

=
1(∑I−j−1

i=0 Ci,j

)3

I−j−1∑
i=0

Ej
[
(Ci,j+1 − Ej [Ci,j+1])

3
]

(4.6)
=

γ∗(∑I−j−1
i=0 Ci,j

)3

I−j−1∑
i=0

C
3/2

i,j (4.16)
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Using all of the above we have

Ej
[
f̂3
j

]
= Ej

[(
f̂j − Ej

[
f̂j

])3
]

+ 3Ej
[
f̂2
j

]
Ej
[
f̂j

]
− 3Ej

[
f̂j

]
Ej
[
f̂j

]2
+ Ej

[
f̂j

]3
= Ej

[(
f̂j − Ej

[
f̂j

])3
]

+ 3Ej
[
f̂2
j

]
Ej
[
f̂j

]
− 2Ej

[
f̂j

]3
(4.16)+(3.19)

=
γ∗(∑I−j−1

i=0 Ci,j

)3

I−j−1∑
i=0

C
3/2

i,j + 3

(
σ2
j∑I−j−1

i=0 Ci,j
+ f2

j

)
fj − 2f3

j

=
γ∗(∑I−j−1

i=0 Ci,j

)3

I−j−1∑
i=0

C
3/2

i,j + 3
fjσ

2
j∑I−j−1

i=0 Ci,j
+ f3

j

which yields

(d) =

I−j−1∑
i=0

C
3/2

i,j

 γ∗(∑I−j−1
k=0 Ck,j

)3

I−j−1∑
k=0

C
3/2

k,j + 3
fjσ

2
j∑I−j−1

k=0 Ck,j
+ f3

j

 (4.17)

Putting everything together we have

Ej

[
I−j−1∑
i=0

C
3/2
i,j

(
Ci,j+1

Ci,j
− f̂j

)3
]

= (a)− (b) + (c)− (d)

=

I−j−1∑
i=0

 1

C
3/2

i,j

(
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

)

− 3√
Ci,j

(
fjσ

2
jCi,j + f3

j C
2
i,j +

γ∗j C
3/2

i,j

S
[I−j−1]

j

+
2fjσ

2
jC

2
i,j

S
[I−j−1]

j

)

+
3
√
Ci,j(
S

[I−j−1]
j

)2

(
γ∗j C

3/2

i,j + 3fjσ
2
jCi,j S

[I−j−1]
j + f3

j Ci,j

(
S

[I−j−1]
j

)2
)

− C
3/2

i,j

 γ∗j(
S

[I−j−1]
j

)3

I−j−1∑
k=0

C
3/2

k,j + 3
fjσ

2
j

S
[I−j−1]

j

+ f3
j




=

I−j−1∑
i=0

γ∗j + 3fjσ
2
j

√
Ci,j + f3

j C
3/2

i,j

− 3

(
fjσ

2
j

√
Ci,j + f3

j C
3/2

i,j +
γ∗j Ci,j

S
[I−j−1]

j

+
2fjσ

2
jC

3/2

i,j

S
[I−j−1]

j

)
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+
3(
S

[I−j−1]
j

)2

(
γ∗j C

2
i,j + 3fjσ

2
jC

3/2

i,j S
[I−j−1]

j

)
+ 3f3

j C
3/2

i,j

− C
3/2

i,j

 γ∗j(
S

[I−j−1]
j

)3

I−j−1∑
k=0

C
3/2

k,j + 3
fjσ

2
j

S
[I−j−1]

j

+ f3
j




=

I−j−1∑
i=0

γ∗j

1− 3 Ci,j

S
[I−j−1]

j

+
3 C2

i,j(
S

[I−j−1]
j

)2 −
C

3/2

i,j(
S

[I−j−1]
j

)3

I−j−1∑
k=0

C
3/2

k,j


= γ∗j

I − j − 3 + 3

∑I−j−1
i=0 C2

i,j(
S

[I−j−1]
j

)2 −

(∑I−j−1
k=0 C

3/2

k,j

)2

(
S

[I−j−1]
j

)3


= γ∗j

I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)3

+

∑I−j−1
k=0 C3

k,j −
(∑I−j−1

k=0 C
3/2

k,j

)2

(∑I−j−1
k=0 Ck,j

)3


which proves Ej

[
γ̂∗j
∣∣Bj] = γ∗j and where we used the following equation for the last

equality
I−j−1∑
i=0

(
1− Ci,j

S
[I−j−1]

j

)3

= I − j − 3 + 3

∑I−j−1
i=0 C2

i,j(
S

[I−j−1]
j

)2 −
∑I−j−1
k=0 C3

k,j(
S

[I−j−1]
j

)3

(ii) Using (i) we have E
[
γ̂∗j
]

= E
[
E
[
γ̂∗j
∣∣Bj]] = γ∗ for j = 0, . . . , J − 3.

q

4.1.8 Estimator (Skewness estimator). By inserting our estimators into eq. (4.7) we can
estimate the skewness of development year j + 1 by

γ̂j =
γ̂∗j(
σ̂2
j

) 3
2

, ∀j = 0, . . . , J − 3 (4.18)

Because the estimation is unstable if there are too few data points (which for the estimation
of the skewness is normally the case for the last two development years), we make the
simplification to estimate γ̂J−1 and γ̂J−2 by

γ̂J−1 = γ̂J−2 = 0,

which assumes an underlying normal distribution. In the case of more accident years than
development years, i.e. I > J , it is possible to use eq. (4.18) for j ≥ J − 2, because the
proof of lemma 4.1.7 is not dependent on j < J − 2. For each step that I is greater than
J we can estimate one more factor γ̂j with eq. (4.18).

4.1.9 Remark. Note that while our estimators γ̂∗j and σ̂2
j are unbiased, this does not have

to be the case for γ̂j .
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4.2 Estimation of the Kurtosis

In this section we will cover the same steps as in the previous one but now we will adapt
them to the estimation of the kurtosis of a distribution.

4.2.1 Definition (Conditional Kurtosis). Following the notation from chapter 2 we define
the conditional fourth moment of a random variable A given B as

µ(4) (A|B) = E
[
(A− E [A|B])

4
∣∣∣B] (4.19)

The conditional kurtosis, as defined by Karl Pearson, is then given by

Kurt (A|B) =
µ(4) (A|B)(
µ(2) (A|B)

)2 =
µ(4) (A|B)

(V [A|B])
2 (4.20)

Next we will once more expand the model assumptions to allow us to find an estimator
for the kurtosis.

4.2.2 Model assumptions.

• Cumulative claims Ci,j of different accident years i are independent.

• (Ci,j)j≥0 form a Markov chain. There exist factors f0, . . . , fJ−1 > 0 and variance
parameters σ2

0 , . . . , σ
2
J−1 > 0 such that

∀0 ≤ i ≤ I and ∀1 ≤ j ≤ J we have

E [Ci,j |Ci,j−1] = fj−1Ci,j−1, (4.21)

V [Ci,j |Ci,j−1] = σ2
j−1Ci,j−1. (4.22)

• Skew (Ci,j+1|DI) depends on j but does not depend on i.

• Kurt (Ci,j+1|DI) depends on j but does not depend on i.

Again we can use the last point to conclude

∀ j ∈ {0, . . . , J − 1} ∃ κj ∀ i ∈ {0, . . . , I} :

κj = Kurt (Ci,j+1|DI)

=
µ(4) (A|B)

(V [A|B])
2

(4.22)
=

µ(4) (A|B)(
σ2
j Ci,j

)2
This can be rearranged to

µ(4) (Ci,j+1|DI) = κj
(
σ2
j Ci,j

)2
, (4.23)
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which means that the fourth moment of Ci,j+1 is proportional to (Ci,j)
2.

To find an estimator for the kurtosis we will now go the same way as in the last sec-
tion. First we use eq. (4.23) to define a modification of the kurtosis, appropriate for this
particular case. We deduce that there exist factors κ∗j so that

µ(4) (Ci,j+1|DI) = κ∗j (Ci,j)
2 (4.24)

∀i = 0, . . . , I and ∀j = 0, . . . , I − 1

4.2.3 Remark. Note that

κj =
κ∗j(
σ2
j

)2 (4.25)

We will have to work a bit differently than in section 4.1 because we do not have an
expression for

E
[(
σ̂2
j

)2∣∣∣Bj] = V
[
σ̂2
j

∣∣Bj]+
(
E
[
σ̂2
j

∣∣Bj])2
Trying to calculate V

[
σ̂2
j

∣∣Bj] becomes tricky very fast, because terms of the form

V

[
I−j.1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj
]

arise. Because the inner terms are not (proven to be) uncorrelated we cannot interchange
the sum and the variance and thus cannot proceed as in eq. (3.17). For this reason we
first have to assume to know the parameters σj for j = 0, . . . , J − 1 and will then define
our estimator in estimator 4.2.7

4.2.4 Estimator. We estimate κ∗j for j = 0, . . . , J − 4 by

κ̂∗j =

I−j−1∑
i=0

C2
i,j

(
Ci,j+1

Ci,j
− f̂j

)4

I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)4

+

(∑I−j−1
i=0 C2

i,j

)2
−
∑I−j−1

i=0 C4
i,j(∑I−j−1

i=0 Ci,j

)4

− 3
(
σ2
j

)2

2− 6

I−j−1∑
i=0

C2
i,j(

I−j−1∑
i=0

Ci,j

)2 + 4

I−j−1∑
i=0

C3
i,j(

I−j−1∑
i=0

Ci,j

)3 + 2

I−j−1∑
i=0

C2
i,j

I−j−1∑
k=1

k−1∑
n=0

Ck,jCn,j(
I−j−1∑
i=0

Ci,j

)4


I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)4

+

(∑I−j−1
i=0 C2

i,j

)2
−
∑I−j−1

i=0 C4
i,j(∑I−j−1

i=0 Ci,j

)4
(4.26)



CHAPTER 4. ESTIMATION OF SKEWNESS AND KURTOSIS 36

4.2.5 Remark. Note that estimator 4.2.4 differs from the one given in [Mor13], which is

κ̂DM
j =

I−j−1∑
i=0

C2
i,j

(
Ci,j+1

Ci,j
− f̂j

)4

− 3
(
σ̂2
j

)22− 6

∑I−j−1
i=0 C2

i,j(∑I−j−1
i=0 Ci,j

)2 + 4

∑I−j−1
i=0 C3

i,j(∑I−j−1
i=0 Ci,j

)3


I−j−1∑
i=0

(
1− Ci,j∑I−j−1

k=0 Ck,j

)4

+

(∑I−j−1
i=0 C2

i,j

)2
−
∑I−j−1

i=0 C4
i,j(∑I−j−1

i=0 Ci,j

)4
The form of eq. (4.26) results from the proof of lemma 4.2.6 below and we will therefore
use estimator 4.1.5 from here on out.

4.2.6 Lemma. The estimator κ̂∗ is a conditionally (and unconditionally) unbiased es-
timator for κ∗, which means that

(i) E
[
κ̂∗j
∣∣DI] = κ∗ for j = 0, . . . , J − 4

(ii) E
[
κ̂∗j
]

= κ∗ for j = 0, . . . , J − 4

Proof. We will again use the short notations Ej and Vj which are defined as (see eq. (4.11))

Ej [·] := E [·|Bj ] and Vj [·] := V [·|Bj ]

(i) For j = 0, . . . , J − 4 arbitrary but fixed we start by calculating

Ej

[
I−j−1∑
i=0

C2
i,j

(
Ci,j+1

Ci,j
− f̂j

)4
]

=

I−j−1∑
i=0

1

C2
i,j

Ej
[
C4
i,j+1

]
︸ ︷︷ ︸:=

(a)

− 4

I−j−1∑
i=0

1

Ci,j
Ej
[
C3
i,j+1f̂j

]
︸ ︷︷ ︸:=

(b)

+ 6

I−j−1∑
i=0

Ej
[
C2
i,j+1f̂

2
j

]
︸ ︷︷ ︸:=

(c)

− 4

I−j−1∑
i=0

Ci,jEj
[
Ci,j+1f̂

3
j

]
︸ ︷︷ ︸:=

(d)

+

I−j−1∑
i=0

C2
i,jEj

[
f̂4
j

]
︸ ︷︷ ︸:=

(e)

We will now calculate each element of the above equation individually:

(a) Using part (a) of the proof of lemma 4.1.7 we have

κ∗j C
2
i,j

(4.24)
= µ(4) (Ci,j+1|DI)

= Ej

[
C4

i,j+1

]
− 4Ej

[
C3

i,j+1

]
Ej [Ci,j+1] + 6Ej

[
C2

i,j+1

]
Ej [Ci,j+1]

2 − 3Ej [Ci,j+1]
4

= Ej

[
C4

i,j+1

]
− 4

(
γ∗jC

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

)
fjCi,j

+ 6
(
σ2
jCi,j + f2

j C
2
i,j

)
f2
j C

2
i,j − 3f4

j C
4
i,j

= Ej

[
C4

i,j+1

]
− 4γ∗j fjC

5/2
i,j − 12f2

j σ
2
jC

3
i,j − 4f4

j C
4
i,j + 6f2

j σ
2
jC

3
i,j + 6f4

j C
4
i,j − 3f4

j C
4
i,j

= Ej

[
C4

i,j+1

]
− 4γ∗j fjC

5/2
i,j − 6f2

j σ
2
jC

3
i,j − f4

j C
4
i,j
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which yields

(a) =

I−j−1∑
i=0

1

C2
i,j

(
κ∗jC

2
i,j + 4γ∗j fjC

5/2
i,j + 6f2

j σ
2
jC

3
i,j + f4

j C
4
i,j

)

=

I−j−1∑
i=0

(
κ∗j + 4γ∗j fj

√
Ci,j + 6f2

j σ
2
jCi,j + f4

j C
2
i,j

)
(4.27)

(b) By inserting the definition of f̂j and using the independence between different acci-
dent years (∗) we have

Ej
[
f̂jC

3
i,j+1

]
(3.6)
=

1∑I−j−1
k=0 Ck,j︸ ︷︷ ︸:=

L

Ej

I−j−1∑
k=0
k 6=i

Ck,j+1C
3
i,j+1 + C4

i,j+1


(∗)
= L

Ej
[
C3
i,j+1

] I−j−1∑
k=0
k 6=i

Ej [Ck,j+1] + Ej
[
C4
i,j+1

]
(4.27)

= L

((
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

) I−j−1∑
k=0
k 6=i

(fjCk,j)

+ κ∗jC
2
i,j + 4γ∗j fjC

5/2
i,j + 6f2

j σ
2
jC

3
i,j + f4

j C
4
i,j

)

= L

(
γ∗j fjC

3/2

i,j

I−j−1∑
k=0

Ck,j + 3f2
j σ

2
jC

2
i,j

I−j−1∑
k=0

Ck,j + f4
j C

3
i,j

I−j−1∑
k=0

Ck,j

+ κ∗jC
2
i,j + 3γ∗j fjC

5/2
i,j + 3f2

j σ
2
jC

3
i,j

)

= γ∗j fjC
3/2

i,j + 3f2
j σ

2
jC

2
i,j + f4

j C
3
i,j + L

(
κ∗jC

2
i,j + 3γ∗j fjC

5/2
i,j + 3f2

j σ
2
jC

3
i,j

)

We conclude

(b) =

I−j−1∑
i=0

4

Ci,j

(
γ∗j fjC

3/2

i,j + 3f2
j σ

2
jC

2
i,j + f4

j C
3
i,j +

κ∗jC
2
i,j + 3γ∗j fjC

5/2
i,j + 3f2

j σ
2
jC

3
i,j∑I−j−1

k=0 Ck,j

)

=

I−j−1∑
i=0

4

(
γ∗j fj

√
Ci,j + 3f2

j σ
2
jCi,j + f4

j C
2
i,j +

κ∗jCi,j + 3γ∗j fjC
3/2
i,j + 3f2

j σ
2
jC

2
i,j∑I−j−1

k=0 Ck,j

)
(4.28)
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(c) Analogously to above we have

Ej

[
C2

i,j+1f̂
2
j

]
(3.6)
=

1(∑I−j−1
k=0 Ck,j

)2
︸ ︷︷ ︸:=

M

Ej

(I−j−1∑
k=0

Ck,j+1

)2

C2
i,j+1



=M Ej

[
C2

i,j+1

(
I−j−1∑
k=0

C2
k,j+1 + 2

I−j−1∑
k=1

k−1∑
n=0

Ck,j+1 Cn,j+1

)]

=M Ej

[
C4

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1C
2
i,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0

(
Ck,j+1 Cn,j+1 C

2
i,j+1

)

+ 2

i−1∑
n=0

(
Cn,j+1 C

3
i,j+1

) ]

=M Ej

[
C4

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1C
2
i,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(
Ck,j+1 Cn,j+1 C

2
i,j+1

)

+ 2

i−1∑
n=0

(
Cn,j+1 C

3
i,j+1

)
+ 2

I−j−1∑
k=i+1

(
Ck,j+1 C

3
i,j+1

) ]

=M Ej

[
C4

i,j+1 +

I−j−1∑
k=0
k 6=i

(
C2

k,j+1C
2
i,j+1

)
+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(
Ck,j+1 Cn,j+1 C

2
i,j+1

)

+ 2

I−j−1∑
k=0
k 6=i

(
Ck,j+1 C

3
i,j+1

) ]

(∗)
= M

[
Ej

[
C4

i,j+1

]
+

I−j−1∑
k=0
k 6=i

(
Ej

[
C2

k,j+1

]
Ej

[
C2

i,j+1

])

+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

(
Ej [Ck,j+1]Ej [Cn,j+1]Ej

[
C2

i,j+1

])

+ 2

I−j−1∑
k=0
k 6=i

(
Ej [Ck,j+1]Ej

[
C3

i,j+1

]) ]

=M

[
κ∗jC

2
i,j + 4γ∗j fjC

5/2
i,j + 6f2

j σ
2
jC

3
i,j + f4

j C
4
i,j

+
(
σ2
jCi,j + f2

j C
2
i,j

) I−j−1∑
k=0
k 6=i

(
σ2
jCk,j + f2

j C
2
k,j

)

+ 2
(
σ2
jCi,j + f2

j C
2
i,j

)
f2
j

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(Ck,jCn,j)
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+ 2
(
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

)
fj

I−j−1∑
k=0
k 6=i

Ck,j

]

=M

[
κ∗jC

2
i,j + γ∗j

4fjC
5/2
i,j + 2C

3/2

i,j fj

I−j−1∑
k=0
k 6=i

Ck,j

+
(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j



+ f4
j C

2
i,j

C2
i,j +

I−j−1∑
k=0
k 6=i

C2
k,j + 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

(Ck,jCn,j) + 2Ci,j

I−j−1∑
k=0
k 6=i

Ck,j


+ f2

j σ
2
jCi,j

(
6C2

i,j +

I−j−1∑
k=0
k 6=i

C2
k,j + Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

+ 2

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

(Ck,jCn,j) + 6Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

)
c

]

=M

[
κ∗jC

2
i,j + γ∗j

(
2fjC

5/2
i,j + 2C

3/2

i,j fj

I−j−1∑
k=0

Ck,j

)

+ f4
j C

2
i,j

(
I−j−1∑
k=0

C2
k,j + 2

I−j−1∑
k=1

k−1∑
n=0

(Ck,jCn,j)

)
+
(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j



+ f2
j σ

2
jCi,j

5C2
i,j +

I−j−1∑
k=0

C2
k,j + 2

I−j−1∑
k=1

k−1∑
n=0

(Ck,jCn,j) + 5Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

]

=M

[
κ∗jC

2
i,j + γ∗j

(
2fjC

5/2
i,j + 2fjC

3/2

i,j

I−j−1∑
k=0

Ck,j

)
+ f4

j C
2
i,j

(
I−j−1∑
k=0

Ck,j

)2

+
(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

+ f2
j σ

2
jCi,j

(
I−j−1∑
k=0

Ck,j

)2
+ 5f2

j σ
2
jC

2
i,j

I−j−1∑
k=0

Ck,j

]

which yields

(c) = 6

I−j−1∑
i=0

[
κ∗jC

2
i,j(
S

[I−j−1]
j

)2 +
2γ∗j fjC

5/2
i,j(
S

[I−j−1]
j

)2 +
2γ∗j fjC

3/2

i,j

S
[I−j−1]

j

+
5f2
j σ

2
jC

2
i,j

S
[I−j−1]

j

+ f4
j C

2
i,j + f2

j σ
2
jCi,j +

(
σ2
j

)2
Ci,j

∑I−j−1
k=0
k 6=i

Ck,j(
S

[I−j−1]
j

)2

]
(4.29)
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(d) For the next element we will use the results from the proof of lemma 4.1.7. We have

Ej

[
Ci,j+1f̂

3
j

]
(3.6)
=

1(∑I−j−1
k=0 Ck,j

)3
︸ ︷︷ ︸:=

Z

Ej

Ci,j+1

(
I−j−1∑
k=0

Ck,j+1

)3


= Z Ej

[
Ci,j+1

( I−j−1∑
k=0

C3
k,j+1 + 3

I−j−1∑
k=0

I−j−1∑
n=0
n6=k

C2
k,j+1 Cn,j+1

+ 6

I−j−1∑
k=2

k−1∑
n=1

n−1∑
m=0

Ck,j+1 Cn,j+1 Cm,j+1

)]

= Z Ej

[
C4

i,j+1 +

I−j−1∑
k=0
k 6=i

C3
k,j+1Ci,j+1 + 3

I−j−1∑
n=0
n 6=i

C3
i,j+1 Cn,j+1 + 3

I−j−1∑
k=0
k 6=i

C2
k,j+1 C

2
i,j+1

+ 3

I−j−1∑
k=0
k 6=i

I−j−1∑
n=0
n 6=k
n6=i

C2
k,j+1 Cn,j+1 Ci,j+1 + 6

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

C2
i,j+1 Ck,j+1 Cn,j+1

+ 6

I−j−1∑
k=2
k 6=i

k−1∑
n=1
n 6=i

n−1∑
m=0
m 6=i

Ck,j+1 Cn,j+1 Cm,j+1 Ci,j+1

]

(∗)
= Z

[
Ej

[
C4

i,j+1

]
+

I−j−1∑
k=0
k 6=i

Ej

[
C3

k,j+1

]
Ej [Ci,j+1] + 3

I−j−1∑
n=0
n 6=i

Ej

[
C3

i,j+1

]
Ej [Cn,j+1]

+ 3

I−j−1∑
k=0
k 6=i

Ej

[
C2

k,j+1

]
Ej

[
C2

i,j+1

]

+ 3

I−j−1∑
k=0
k 6=i

I−j−1∑
n=0
n 6=k
n 6=i

Ej

[
C2

k,j+1

]
Ej [Cn,j+1]Ej [Ci,j+1]

+ 6

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

Ej

[
C2

i,j+1

]
Ej [Ck,j+1]Ej [Cn,j+1]

+ 6

I−j−1∑
k=2
k 6=i

k−1∑
n=1
n 6=i

n−1∑
m=0
m 6=i

Ej [Ck,j+1]Ej [Cn,j+1]Ej [Cm,j+1]Ej [Ci,j+1]

]

= Z

[
κ∗jC

2
i,j + 4γ∗j fjC

5/2
i,j + 6f2

j σ
2
jC

3
i,j + f4

j C
4
i,j

+ fjCi,j

I−j−1∑
k=0
k 6=i

(
γ∗j C

3/2

k,j + 3fjσ
2
jC

2
k,j + f3

j C
3
k,j

)
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+ 3
(
γ∗j C

3/2

i,j + 3fjσ
2
jC

2
i,j + f3

j C
3
i,j

) I−j−1∑
n=0
n 6=i

fjCn,j

+ 3
(
σ2
jCi,j + f2

j C
2
i,j

) I−j−1∑
k=0
k 6=i

(
σ2
jCk,j + f2

j C
2
k,j

)

+ 3

I−j−1∑
k=0
k 6=i

I−j−1∑
n=0
n 6=k
n6=i

(
σ2
jCk,j + f2

j C
2
k,j

)
f2
j Cn,jCi,j

+ 6
(
σ2
jCi,j + f2

j C
2
i,j

) I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

f2
j Ck,jCn,j

+ 6f4
j Ci,j

I−j−1∑
k=2
k 6=i

k−1∑
n=1
n 6=i

n−1∑
m=0
m 6=i

Ck,jCm,jCm,j

]

= Z

[
κ∗jC

2
i,j + γ∗j fj

4C
5/2
i,j + Ci,j

I−j−1∑
k=0
k 6=i

C
3/2

k,j + 3C
3/2

i,j

I−j−1∑
k=0
k 6=i

Ck,j


+ 3

(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j + f2
j σ

2
jCi,j

(
6C2

i,j + 6

I−j−1∑
k=0
k 6=i

C2
k,j + 12Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

+ 6

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n 6=i

Ck,jCn,j + 3

I−j−1∑
k=0
k 6=i

I−j−1∑
n=0
n 6=k
n6=i

Ck,jCn,j

)

+ f4
j Ci,j

(
C3

i,j +

I−j−1∑
k=0
k 6=i

C3
k,j + 3C2

i,j

I−j−1∑
k=0
k 6=i

Ck,j

+ 3Ci,j

I−j−1∑
k=0
k 6=i

C2
k,j + 3

I−j−1∑
k=0
k 6=i

I−j−1∑
n=0
n 6=k
n 6=i

C2
k,jCn,j

+ 6Ci,j

I−j−1∑
k=1
k 6=i

k−1∑
n=0
n6=i

Ck,jCn,j + 6

I−j−1∑
k=2
k 6=i

k−1∑
n=1
n 6=i

n−1∑
m=0
m 6=i

Ck,jCm,jCm,j

)]

= Z

[
κ∗jC

2
i,j + γ∗j fj

(
Ci,j

I−j−1∑
k=0

C
3/2

k,j + 3C
3/2

i,j

I−j−1∑
k=0

Ck,j

)

+ 3
(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j + f2
j σ

2
jCi,j

(
6

I−j−1∑
k=0

C2
k,j + 12

I−j−1∑
k=1

k−1∑
n=0

Ck,jCn,j

)
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+ f4
j Ci,j

( I−j−1∑
k=0

C3
k,j + 3

I−j−1∑
k=0

I−j−1∑
n=0
n 6=k

C2
k,jCn,j + 6

I−j−1∑
k=2

k−1∑
n=1

n−1∑
m=0

Ck,jCm,jCm,j

)]

= Z

[
κ∗jC

2
i,j + γ∗j fj

(
Ci,j

I−j−1∑
k=0

C
3/2

k,j + 3C
3/2

i,j

I−j−1∑
k=0

Ck,j

)
+ 3

(
σ2
j

)2
Ci,j

I−j−1∑
k=0
k 6=i

Ck,j

+ 6f2
j σ

2
jCi,j

( I−j−1∑
k=0

Ck,j

)2

+ f4
j Ci,j

( I−j−1∑
k=0

Ck,j

)3
]

We conclude

(d) = 4

I−j−1∑
i=0

Ci,j

 κ∗jC
2
i,j(
S

[I−j−1]
j

)3 +
γ∗j fj

(
Ci,j

∑I−j−1
k=0 C

3/2

k,j + 3C
3/2

i,j

∑I−j−1
k=0 Ck,j

)
(

S
[I−j−1]

j

)3

+

3
(
σ2
j

)2
Ci,j

∑I−j−1
k=0
k 6=i

Ck,j(
S

[I−j−1]
j

)3 +
6f2
j σ

2
jCi,j

S
[I−j−1]

j

+ f4
j Ci,j



= 4

I−j−1∑
i=0

 κ∗jC
3
i,j(
S

[I−j−1]
j

)3 +
γ∗j fj

(
C2
i,j

∑I−j−1
k=0 C

3/2

k,j + 3C
5/2
i,j

∑I−j−1
k=0 Ck,j

)
(

S
[I−j−1]

j

)3

+

3
(
σ2
j

)2
C2
i,j

∑I−j−1
k=0
k 6=i

Ck,j(
S

[I−j−1]
j

)3 +
6f2
j σ

2
jC

2
i,j

S
[I−j−1]

j

+ f4
j C

2
i,j


(4.30)

(e) For the last element we will use eqs. (3.19) and (4.17) which state

Ej
[
f̂2
j

∣∣∣Bj] =
σ2
j∑I−j−1

i=0 Ci,j
+ f2

j ,

Ej
[
f̂3
j

∣∣∣Bj] =
γ∗(∑I−j−1

i=0 Ci,j

)3

I−j−1∑
i=0

C
3/2

i,j + 3
fjσ

2
j∑I−j−1

i=0 Ci,j
+ f3

j .

Additionally we will use the fact that for independent random variables X1, . . . , Xn

with expected value of zero and each with finite first four moments we have

Ej

( n∑
i=1

Xi

)4
 =

n∑
i=1

Ej
[
X4
i

]
+ 6

n∑
i=2

i−1∑
j=1

Ej
[
X2
i

]
Ej
[
X2
j

]
(4.31)

This follows from the fact that all other cross products contain a factor of the form
Ej [Xi] (= 0) and are therefore zero.
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We use this theorem on the centralized random variables Ci,j+1−Ej [Ci,j+1] to prove

Ej

[(
f̂j − Ej

[
f̂j
])4] (4.21)

= Ej

[(∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

− Ej

[∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

])4]

=
1(∑I−j−1

i=0 Ci,j

)4Ej

(I−j−1∑
i=0

Ci,j+1 −
I−j−1∑
i=0

Ej [Ci,j+1]

)4
=

1(∑I−j−1
i=0 Ci,j

)4Ej

(I−j−1∑
i=0

Ci,j+1 − Ej [Ci,j+1]

)4
(4.31)
=

1(∑I−j−1
i=0 Ci,j

)4( I−j−1∑
i=0

Ej

[
(Ci,j+1 − Ej [Ci,j+1])

4]

+ 6

I−j−1∑
i=1

i−1∑
n=0

Vj [Ci,j+1]Vj [Cn,j+1]

)
(4.24)
=

1(∑I−j−1
i=0 Ci,j

)4(κ∗ I−j−1∑
i=0

C2
i,j + 6

(
σ2
j

)2 I−j−1∑
i=1

i−1∑
n=0

Ci,jCn,j

)
(4.32)

Using all of the above we have

Ej

[
f̂4
j

]
= Ej

[(
f̂j − Ej

[
f̂j
])4]

+ 4Ej

[
f̂3
j

]
Ej

[
f̂j
]
− 6Ej

[
f̂2
j

]
Ej

[
f̂j
]2

+ 3Ej

[
f̂j
]4

= κ∗
∑I−j−1

i=0 C2
i,j(∑I−j−1

i=0 Ci,j

)4 + 4fj

γ∗ ∑I−j−1
i=0 C

3/2

i,j(∑I−j−1
i=0 Ci,j

)3 + 3
fjσ

2
j∑I−j−1

i=0 Ci,j

+ f3
j


+ 6
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σ2
j
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∑i−1
n=0 Ci,jCn,j(∑I−j−1

i=0 Ci,j

)4 − 6f2
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σ2
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i=0 Ci,j
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+ 3f4

j
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i=0 Ci,j

)4 + 4fjγ
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i=0 C
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j σ
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j∑I−j−1

i=0 Ci,j
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σ2
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(e) =

I−j−1∑
i=0

C2
i,j

(
κ∗
∑I−j−1
k=0 C2

k,j(
S

[I−j−1]
j
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S
[I−j−1]

j
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(
σ2
j
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∑k−1
n=0 Ck,jCn,j(
S

[I−j−1]
j

)4

) (4.33)
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Putting everything together nearly all terms cancel each other out and we have

Ej

[
I−j−1∑
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C2
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Ci,j
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√
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)
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where we used the following equation for the last equality
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and which shows that
Ej
[
κ̂∗j
∣∣Bj] = κ∗.

(ii) Using (i) we have E
[
κ̂∗j
]

= E
[
E
[
κ̂∗j
∣∣Bj]] = κ∗ for j = 0, . . . , J − 4.

q
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4.2.7 Estimator (Kurtosis estimator). By inserting our estimators into eqs. (4.25) and (4.26)
we can estimate the kurtosis of development year j + 1 by
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
(4.34)

for j = 0, . . . , J − 4.
Because the estimation is unstable if there are too few data points (which for the estimation
of the kurtosis is normally the case for the last three development years), we make the
simplified approach of estimating κ̂J−1, κ̂J−2 and κ̂J−3 by

κ̂J−1 = κ̂J−2 = κ̂J−3 = 3

This assumes an underlying normal distribution.
In the case of more accident years than development years, i.e. I > J , it is possible to use
eq. (4.34) for j ≥ J − 3, because the proof of lemma 4.2.6 is not dependent on j < J − 3.
For each step that I is greater than J we can estimate one more factor κ̂j with eq. (4.34).

4.2.8 Remark. Note that while our estimators κ̂∗j and σ̂2
j are unbiased, this does not have

to be the case for κ̂j .

4.3 Skewness and kurtosis of the prediction error

Looking at our estimators for skewness and kurtosis from the previous sections we observe
that we do not have any estimators for the last development year J , which is why we use a
simplified normal distribution approach. This stems from the fact that we only have one
observation so it is not possible to quantify the volatility of the individual development
factors Fi,j+1 (see eq. (3.7)).
This means that we cannot estimate the higher-order moments of the ultimate claims and
with that of the outstanding reserves. Additionally we do not have any estimators on
the higher order moments of the prediction error, which would be desirable since we do
not know the real values fj and σj for J = 0, . . . , J − 1 used in the estimators. Ideally
we would want something like the MSEP but for the third and fourth moment. However
trying to calculate this directly, one runs into analytical problems quickly.
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For this reason we will go another route and use a simulation approach to estimate the
distribution of the ultimate claims. This lets us then use empirical statistics to estimate
higher moments and also other functions like the quantile of the distribution. We can even
make histograms and compare them with fitted density curves of often used distributions
to compare the shape of the probability density. We will expand on this approach in the
next section.



Chapter 5

The simulation process 1

The goal is now to predict the distribution of the ultimate claims Ci,J , or equivalently of
the reserves Ri, where i = 1, . . . , I. Following the last chapter we will use a stochastic
model to estimate the distribution of the ultimate claims.
In our stochastic model we will simulate the unknown cumulative claims Ci,j for i+ j > I
by sampling them from a given distribution using moment matching and our estimators
for the first four moments. This way we will then have the full triangle of the cumulative
claims, where the lower half was simulated according to our model. We can then compute
statistics like the 99% quantile from the results of the simulation.
The idea behind this is that if the simulation number is high enough to get stable results,
the moments for each single ĈSimi,j should follow our estimated moments, no matter which
distribution is used. This holds true because we used moment matching to estimate the
parameters for the distribution.
Let N be the number of simulations used. After running the simulation we will have N
simulated results for each ultimate claim Ci,J , with i = 1, . . . , I. We can then use them
to get a measure of the volatility of the end reserves. We will discuss this in more detail
in section 5.2, but first we define the model specifications.

5.1 The model

If we want to use the MSEP calculations from section 3.3 in conjunction with the skew-
ness and kurtosis estimators from chapter 4 we need to integrate the respective model
assumptions into one combined assumption.
The following assumptions are our final expansion of the chain ladder model and will be
used for the simulation models described in sections 5.2, 5.4 and 6.4.

1The simulation model is based on the model introduced in [Mor12] and expanded upon in [Mor13].
It is adapted slightly to fit the Wüthrich model.

48
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5.1.1 Model assumptions (Simulation Model).

• Cumulative claims Ci,j of different accident years are independent

• There exist constants fj > 0, σj > 0, γj ∈ R, ζj > 0 and random variables εi,j+1

such that

Ci,j+1 = fj Ci,j + σj
√
Ci,j εi,j+1 (5.1)

∀ i ∈ {0, . . . , I} , and ∀ j ∈ {0, . . . , J − 1}

where εi,j+1 are conditionally independent given B0, with E [εi,j+1|B0] = 0,
E
[
ε2
i,j+1

∣∣B0

]
= 1, E

[
ε3
i,j+1

∣∣B0

]
= γj , E

[
ε4
i,j+1

∣∣B0

]
= κj and

P [Ci,j+1 > 0|B0] = 1 ∀i ∈ {0, . . . , I}, and ∀j ∈ {0, . . . , J − 1}.

Model assumptions 5.1.1 imply model assumptions 3.3.10 and the assumptions on the
higher-order moments of the εi,j+1 do not interfere with the MSEP calculations since
only the first two moments are needed there, so all results still apply. For the skewness
and kurtosis estimators we observe that eq. (5.1) yields

E
[
(Ci,j+1 − E [Ci,j+1|DI ])3

∣∣∣DI

]
=
(
σ2
jCi,j

) 3
2 E
[
ε3
i,j+1

∣∣DI

]
=
(
σ2
jCi,j

) 3
2 γj

Similarly we conclude

E
[
(Ci,j+1 − E [Ci,j+1|DI ])4

∣∣∣DI

]
=
(
σ2
jCi,j

) 4
2 E
[
ε4
i,j+1

∣∣DI

]
=
(
σ2
jCi,j

) 3
2 κj

Comparing these equations to eqs. (4.5) and (4.23) we can conclude that model assump-
tions 5.1.1 imply model assumptions 4.2.2 and that we can use the estimators from
chapter 4.

We will denote the cumulative values simulated by our model by ĈSimi,j , (i, j) ∈ DcI . We
can interpret them in two different ways, which influences the type of variance estimator
we use in the simulation.

• First we can interprete the ĈSimi,j as realizations of the cumulative values Ci,j . Then we
set

V
[
ĈSimi,j

∣∣∣DI] = Ĉi,j−1 σ̂j−1,

for j = 1, . . . , J and i = I − j + 1, . . . , I and where for ease of notation

Ĉi,j =

{
Ci,j 0 ≤ i ≤ I − j, j = 0, . . . , J

ĈSimi,j I − j < i ≤ I, j = 1, . . . , J
(5.2)

The problem with this approach is that it does not take the estimation error, arising
from not knowing the real values fj and sj , into account.
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• This is why we will use the second apprach from now on, where we interprete the
ĈSimi,j as realizations of the estimated chain ladder values ĈCLi,j . As an estimator for
the variance we derive a single step form of the MSEP estimator from section 3.3.
Generalizing eq. (3.37) we have (see also eq. (5.11))

m̂sepCi,j |DI
(
ĈCLi,j

)
= E

[(
ĈCLi,j − Ci,j

)2
∣∣∣∣DI]

=
(
ĈCLi,j

)2
j−1∑

m=I−i

σ̂2
m

f̂2
m ĈCLi,j

+ C2
i,I−i

(
j−1∏

m=I−i

(
f̂2
m +

σ̂2
m

S
[I−m−1]

m

)
−

j−1∏
m=I−i

f̂2
m

)

for j = 1, . . . , J and i = I − j + 1, . . . , I.
The estimator m̂sepCi,j |DI for ĈCLi,j takes the prediction error at each timestep j =
I − i + 1, . . . , j into account. In our simulation model we simulate the claims triangle
column after column so at step j all values Ĉ·,j−1 are known. So for the variance
expression we only use a single step form of the above equation. First we define

EI,j = {Ci,k : i+ k ≤ I, 0 ≤ i ≤ I, 0 ≤ k ≤ J} ∪ {Ĉi,k : 0 ≤ i ≤ I, 0 ≤ k ≤ J}, (5.3)

which is visualized in table 5.1.

AY/DY 0 1 . . . j − 1 j . . . . . . J

0 C0,0 C0,1 . . . . . . C0,j . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

. .
.

I − j ... . .
.

. .
.

. .
. CI−j,j

I − j+ 1 ... . .
.

. .
. CI−j+,j−1 ĈSimI−j+1,j

...
... . .

.
. .
.

. .
. ...

...
... CI−1,1 . .

.
. .
. ...

I CI,0 ĈSimI,1 . . . ĈSimI,j−1 ĈSimI,j

Table 5.1: EI,j−1 in green

For the values on the second diagonal we have

m̂sepCI−j+1,j |DI

(
ĈCLI−j+1,j

)
= E

[(
ĈCLI−j+1,j − CI−j+1,j

)2
∣∣∣∣DI]

=
(
ĈCLI−j+1,j

)2 σ̂2
j−1

f̂2
j−1 CI−j+1,j−1

+ (CI−j+1,j−1)
2

(
f̂2
j−1 +

σ̂2
j−1

S
[I−j]

j−1

− f̂2
j−1

)
(3.3)
= (CI−j+1,j−1)

2 σ̂2
j−1

CI−j+1,j−1
+ (CI−j+1,j−1)

2 σ̂2
j−1

S
[I−j]

j−1
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= CI−j+1,j−1 σ̂
2
j−1 + (CI−j+1,j−1)

2 σ̂2
j−1

S
[I−j]

j−1

= CI−j+1,j−1 σ̂
2
j−1

(
1 +

CI−j+1,j−1

S
[I−j]

j−1

)

Based on this equation we define the following estimator for the variance of the ĈSimi,j

V
[
ĈSimi,j

∣∣∣EI,j−1

]
= m̂sepCi,j |EI,j−1

(
ĈCLi,j

)
:= Ci,j−1 σ̂

2
j−1

(
1 +

Ci,j−1∑I−j
k=0 Ck,j−1

)
(5.4)

for j = 1, . . . , J and i = I − j + 1, . . . , I. From here on forth we will use this expression
as the estimator of the variance to match the chain ladder MSEP in the overall result.

5.1.2 Remark. Note that we do not have estimators for the skewness and the kurtosis of
the chain ladder estimators ĈCLi,j so we will take the estimators γj and κj , j = 1, . . . , J ,
from the original time series process Ci,j .

5.2 The simulation algorithm

We will now go through the simulation process step for step. See table 5.2 for the color
scheme used in this chapter.

Color Explanation
blue deterministic data
red data to be simulated at current step
green already simulated data

Table 5.2: Color table for this chapter

1. The first step of the simulation process is computing the values

f̂j , σ̂j , γ̂j , κ̂j for j = 0, . . . , J − 1.

Our claims triangle at this point looks like table 5.3.

We will now simulate each development year j = 1, . . . , J to fill up the claims tri-
angle. For each development year j we have constant skewness and kurtosis (see
model assumptions 4.2.2), which are given by the estimators γ̂j−1 and κ̂j−1. The
expected value and the variance differ for each accident year i and depend also on
the realizations at step j − 1.
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AY/DY 0 1 . . . k . . . . . . J

0 C0,0 C0,1 . . . C0,k . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

i ... . .
.

. .
. Ci,k

...
... . .

.
. .
.

...
... CI−1,1

I CI,0

Table 5.3: Simulation step 1

So this means that at each step j = 1, . . . , J we have

E
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 f̂j−1,

V
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 σ̂

2
j−1

(
1 +

Ci,j−1∑I−j
k=0 Ck,j−1

)
,

Skew
(
ĈSimi,j

∣∣∣EI,j−1

)
= γ̂j−1,

Kurt
(
ĈSimi,j

∣∣∣EI,j−1

)
= κ̂j−1,

for i = I − j + 1, . . . , I and where the Ĉi,j are defined as in eq. (5.2) and the
EI,j−1 as in eq. (5.3). With these equations we can now simulate the whole triangle
development year after development year.

2. This means that in the second step we simulate CI,2 by computing its mean, variance,
skewness and kurtosis and then sampling from a fitted distribution (for more specifics
on the sampling see section 5.4 and section 6.4). This leaves us with table 5.4.

3. At step k we have table 5.5. Note that we do not sample each ĈSimm,k , where m =
i + 1, . . . , I, individually but together, because of implicit correlations in the chain
ladder model, which we will discuss in section 5.3.

4. At the last point of our simulation we have table 5.6, where

R̂i = Ĉi,J − Ĉi,I−i for i = 1, . . . , I.

5. Now we can compute the total reserve by taking

T̂R =

I∑
i=1

R̂i (5.5)
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AY/DY 0 1 . . . k . . . . . . J

0 C0,0 C0,1 . . . C0,k . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

i ... . .
.

. .
. Ci,k

...
... . .

.
. .
.

...
... CI−1,1

I CI,0 ĈSimI,1

Table 5.4: Simulation step 2

AY/DY 0 1 . . . k . . . . . . J

0 C0,0 C0,1 . . . C0,k . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

i ... . .
.

. .
. Ci,k

...
... . .

.
. .
. ĈSimi+1,k

...
... CI−1,1 . .

. ...

I CI,0 ĈSimI,1 . . . ĈSimI,k

Table 5.5: Simulation step k

For comparison purposes we also define T̂R
CL

:=
∑I
i=1 R̂

CL
i as the total chain ladder

reserve.
If we repeat this simulation process N times we get N different reserves. Since we used
moment matching to simulate the data we have

E
[
T̂R

]
= E

[
I∑
i=1

R̂i

]

= E

[
I∑
i=1

(
Ĉi,J − Ĉi,I−i

)]

=

I∑
i=1

(
E
[
ĈSimi,J

]
− Ci,I−i

)
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=

I∑
i=1

(
E
[
ĈCLi,J

]
− Ci,I−i

)
= E

[
T̂R

CL]
So our outstanding reserves (and with it the total reserve) have the same expectation as
the standard chain ladder estimator. Now we can use empirical estimators on our T̂R
to also compute higher moments or other statistics like a quantile (making Value at Risk
calculations possible).

AY/DY 0 1 . . . k . . . J R̂

0 C0,0 C0,1 . . . C0,k . .
. C0,J 0

1 C1,0 . .
.

. .
.

. .
. C1,J−1 ĈSim1,J R̂1

...
... . .

.
. .
.

. .
.

. .
. ...

...

i ... . .
.

. .
. Ci,k . .

. ... R̂i
...

... . .
.

. .
. ĈSimi+1,k . .

. ...
...

...
... CI−1,1 . .

. ... . .
. ...

...

I CI,0 ĈSimI,1 . . . ĈSimI,k . . . ĈSimI,J R̂J

Table 5.6: Simulation step J

5.2.1 Remark. It must be emphasized that while it is true that for the first four moments
of the ultimate claims the type of distribution used to simulate the ĈSimi,j is not of any
importance (because of the use of moment matching) the same cannot be said for other
measures (like higher moments or even the whole empirical distribution function), as the
type of distribution used does influence these results.

We will now discuss two different ways to realize the above simulation model. The first
one was introduced in [Mor12] (and further enhanced in [Mor13]) and uses the Generalized
Pareto distribution (see appendix A.1.3) as the underlying distribution. One big short-
coming of this method is that since GPD only has three parameters we have to decide
which moments we want to fit the parameters to. For this reason we will then introduce
the Pearson System in section 6.1 and use this set of distributions in section 6.4 for a
simulation model incorporating all four of our moment estimators.

5.3 Correlation

According to model assumptions 4.2.2 claims of different accident years i are independent
of each other. While this holds true for the known claims Ci,j we do have a dependency
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structure for our estimators ĈCLi,j . This can be attributed to the fact that their estimation
depends on the same set of data for each development year j (the factors f̂j do not depend
on i).
If follows that we cannot simulate each ĈCLi,j independently but instead have to take
the dependency structure into account and simulate each column of the claims triangle
together. We will follow Dal Moro’s idea in [Mor12] to use the formula of the MSEP for
aggregated accident years to compute the linear correlation matrix. But instead of Mack’s
formula we will use the Wüthrich formula presented in estimator 3.3.18.
This approach will be explained in detail in section 5.3.2, but first we make some general
definitions.

5.3.1 General definitions
5.3.1 Definition. Let X1, . . . , Xn be n random variables. We define for i, k = 1, . . . , n

σXi :=
√
V [Xi],

as the standard deviation of the variable Xi,

Cov (Xi, Xk) := E [(Xi − E [Xi]) (Xk − E [Xk])] (5.6)

as the covariance between two variables and

Corr (Xi, Xk) :=
Cov (Xi, Xk)

σXiσXk

as the linear correlation between the random variables Xi and Xk.
The linear correlation matrix ρ is then the n× n matrix with the entries

ρi,k = Corr (Xi, Xk) .

The aim will now be to estimate the correlation matrices for each column j = 2, . . . , J of
the claims triangle (at time 1 we only simulate one value, hence we need no correlation
matrix). This means that at each point j we have to estimate the correlation for the red
area in table 5.7.
Observe that at each step j = 2, . . . , J we have to correlate the set of random variables{

ĈCLI−j+1,j , . . . , Ĉ
CL
I,j

}
which has j entries.

5.3.2 Definition (Chain Ladder Correlation Matrices). The above means we are search-
ing for J − 1 matrices ρ〈j〉, where j = 2, . . . , J with the properties

• ρ〈j〉 ∈ [0, 1]
j×j

• For each i, k = 1, . . . , j we have

ρ
〈j〉
i,k = Corr

(
ĈCLI−j+i,j , Ĉ

CL
I−j+k,j

)
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AY/DY 0 1 . . . j . . . . . . J

0 C0,0 C0,1 . . . C0,j . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

I − j ... . .
.

. .
. CI−j,j

...
... . .

.
. .
. ĈCLI−j+1,j

...
... CI−1,1

...

I CI,0 ĈCLI,j

Table 5.7: Simulation step j

To make the notation a little easier we make an index shift and define the proxy variables
r
〈j〉
i,k where

r
〈j〉
i,k = Corr

(
ĈCLi,j , Ĉ

CL
k,j

) (
= ρ
〈j〉
i−I+j,k−I+j

)
(5.7)

for j = 2, . . . , J and i, k = I − j + 1, . . . , I.

5.3.2 The estimation method
Now that we have all the formalizations we can start with the estimation.
First note that the variance of the sum of n correlated random variables Xi, where i =
1, . . . , n is given by

V

(
n∑
i=1

Xi

)
=

n∑
i=1

V(Xi) + 2
∑

1≤i<k≤n

Cov (Xi, Xk)

=

n∑
i=1

V(Xi) + 2
∑

1≤i<k≤n

ρ (Xi, Xk)σXiσXk (5.8)

If we take another look at eq. (3.21) we have

m̂sep∑
i Ci,J |DI

(
I∑
i=1

ĈCLi,J

)
=

I∑
i=1

m̂sepCi,J |DI
(
ĈCLi,J

)

+ 2
∑

1≤i<k≤I

Ci,I−i Ĉ
CL
k,I−i

 J−1∏
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−

J−1∏
j=I−i

f̂2
j

 .

(5.9)
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If we compare eqs. (5.8) and (5.9) we can observe that they are of similar form. If we
identify the MSEP with the variance of our factors ĈCLi,J we can compare the coefficients
of the sums to get linear correlation estimators (for now only for time J). It follows that

r̂
〈J〉
i,k =

Ci,I−i Ĉ
CL
k,I−i

(∏J−1
j=I−i

(
f̂2
j +

σ̂2
j

S
[I−j−1]

j

)
−
∏J−1
j=I−i f̂

2
j

)
√
m̂sepCi,J |DI m̂sepCk,J |DI

(5.10)

We now have an estimator for the correlation matrix r〈J〉 at time J . To get r〈j〉 for
j < J we simply have to generalize eq. (5.9) for every time-point j. This can easily be
done because of the multiplicative structure of the chain ladder method. Thus we have
(remember that we assume I = J)

m̂sepCi,j |DI
(
ĈCLi,j

)
= E

[(
ĈCLi,j − Ci,j

)2
∣∣∣∣DI]

=
(
ĈCLi,j

)2
j−1∑

m=I−i

σ̂2
m

f̂2
m ĈCLi,j

+ C2
i,I−i

(
j−1∏

m=I−i

(
f̂2
m +

σ̂2
m

S
[I−m−1]

m

)
−

j−1∏
m=I−i

f̂2
m

)
(5.11)

for i = I − j + 1, . . . , I and

m̂sep∑
i Ci,j |DI

 I∑
i=I−j+1

ĈCLi,j

 =

I∑
i=I−j+1

m̂sepCi,j |DI
(
ĈCLi,j

)

+ 2
∑

I−j+1≤i<k≤I

Ci,I−i Ĉ
CL
k,I−i

(
j−1∏

m=I−i

(
f̂2
m +

σ̂2
m

S
[I−m−1]

m

)
−

j−1∏
m=I−i

f̂2
m

)
. (5.12)

Similar to above we conclude

5.3.3 Estimator (Correlation Estimator).

r̂
〈j〉
i,k =

Ci,I−i Ĉ
CL
k,I−i

(∏j−1
m=I−i

(
f̂2
m +

σ̂2
m

S
[I−m−1]

m

)
−
∏j−1
m=I−i f̂

2
m

)
√
m̂sepCi,j |DI m̂sepCk,j |DI

(5.13)

Substituting back according to eq. (5.7) yields the estimators of the matrices ρ〈j〉.

5.3.4 Estimator. For j = 2, . . . , J we estimate the entries of the correlation matrix ρ̂〈j〉
by

ρ̂
〈j〉
i,k = r̂

〈j〉
I−j+i,I−j+k, (5.14)

where i, k = 1, . . . , j.

Having estimated the correlation matrices ρ〈j〉 for j = 2, . . . , J we will use them to sample
correlated variables in our simulation process. We accomplish this by using a Gaussian
copula in combination with inversion sampling (see appendix A.2.1 and definition A.2.7).
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5.4 The GPD simulation

In this section we will introduce the GPD approach presented in [Mor13]. We follow the
general algorithm presented in section 5.2 and use the generalized Pareto distribution to
sample the ĈSimi,j . Since this distribution only has three parameters it is not possible to
use all our estimated moments for moment-matching. In [Mor13] it is suggested to use
the first two moments in any case and then choose which of the third or fourth moment
to use for the last equation.
For our samples we will fit the simulation to the skewness estimator, for different ap-
proaches consult the original paper.
5.4.1 Remark. In the original paper two models are introduced. One where the data is fit-
ted to a generalized Pareto distribution and one where it is fitted to a generalized extreme
value distribution. We will only discuss the first one here, since both implementations
follow the same structure. For further information consult [Mor12] or [Mor13].
The simulation follows the algorithm presented in section 5.2 but we will discuss in detail
what happens at each step j = 1, . . . , J . As a reminder at step j we have the situation of
table 5.8.

AY/DY 0 1 . . . j . . . . . . J

0 C0,0 C0,1 . . . C0,j . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

I − j ... . .
.

. .
. CI−j,j

...
... . .

.
. .
. ĈSimI−j+1,j

...
... CI−1,1 . .

. ...

I CI,0 ĈSimI,1 . . . ĈSimI,j

Table 5.8: Simulation step j

At step j all parameters f̂j , σ̂j and γ̂j , as well as the set EI,j−1 (see eq. (5.3)) are known.
So we can calculate the three moments of the ĈSimi,j (the kurtosis is not needed here). We
have

E
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 f̂j−1

V
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 σ̂

2
j−1

(
1 +

Ci,j−1∑I−j
k=0 Ck,j−1

)
,

Skew
(
ĈSimi,j

∣∣∣EI,j−1

)
= γ̂j−1,
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for j = 1, . . . , J and i = I − j + 1, . . . , I.
We will leave out the conditional expectation from the following formulas as to not overload
the notation, but remember that all calculations are done on the conditional probability
measure P(·|EI,j−1). In this model we suppose that ĈSimi,j ∼ GPD(µi,j ; si,j ; ξj). We use
the method of moments to estimate the parameters from the above equations. We have

E
[
ĈSimi,j

]
= Ĉi,j−1 f̂j−1

!
= µi,j +

si,j
1− ξj

, (5.15a)

V
[
ĈSimi,j

]
= Ĉi,j−1 σ̂

2
j−1

(
1 +

Ci,j−1∑I−j
k=0 Ck,j−1

)
!
=

s2
i,j

(1− ξj)(1− 2ξj)
, (5.15b)

Skew
(
ĈSimi,j

)
= γ̂j−1

!
=

2(1 + ξj)
√

1− 2ξj

1− 3ξj
. (5.15c)

We can then use eqs. (5.15a) to (5.15c) to calculate the parameters µi,j , si,j and ξj . Then
we use inversion sampling to sample the random variable ĈSimi,j . If Ui,j is a sample from
a uniform distribution on (0, 1) we have that

ĈSimi,j = µi,j +
si,j

(
U
−ξj
i,j − 1

)
ξj

(5.16)

is a sample from a random variable X ∼ GPD(µi,j ; si,j ; ξj). To sample the variable Ui,j
for i = I − j + 1, . . . , I we follow a similar route as described in section 5.3. To estimate
the correlation matrix ρ〈j〉 Dal Moro uses the same coefficient comparison but with the
Mack formula for the MSEP instead of our approach with the Wüthrich formula. We will
state only the results here. Dal Moro estimates the correlation for each development year
j = 1, . . . , J and i = I − j + 1, . . . , I with

Ĉorr
(
ĈSimi,j , ĈSimk,j

)
:=

ĈSimi,j ĈSimk,j

j−1∑
m=I−i

σ̂2
m

f̂2
m

∑I−m−1
n=0 Cn,m√

̂̂msepCi,j |DI
(
ĈCLi,j

) √
̂̂msepCi,j |DI

(
ĈCLi,j

)
where

̂̂msepCi,j |DI
(
ĈCLi,j

)
=
(
ĈCLi,j

)2
j−1∑
k=I−i

σ̂2
k

f̂2
k

(
1

ĈCLi,k
+

1∑I−k−1
n=0 Cn,k

)
.

We then use a Gaussian copula to sample the uniformly distributed random numbers
{UI−j+1,j , . . . , UI,j} and use eq. (5.16) to calculate the set

{
ĈSimI−j+1,j , . . . , Ĉ

Sim
I,j

}
.



Chapter 6

Simulation with four moments

In this chapter we will define a set of distributions called the Pearson system, named after
the English mathematician Karl Pearson. One reason this system is a natural fit for our
simulation is that we have assumed constant skewness and kurtosis for each development
year j, j = 1, . . . , J (see model assumptions 4.2.2). This fits naturally with the way the
Pearson coefficients are computed. In the Pearson system one can use the skewness and
kurtosis of a random variable to identify the type of Pearson distribution (see table 6.1).
Since both are constant for one development year j we have one type of distribution per
development year. The resulting variables then get shifted with the expected value and
the variance,which are also dependent on the accident year i = 1, . . . , I, to match all four
moments (cf. section 6.3).

6.1 The Pearson System 1

The Pearson system is a system of distributions, where for every member the probability
density function (pdf) f(x) satisfies the differential equation

1

f

df

dx
= − a+ x

c0 + c1x+ c2x2
(6.1)

This means that the shape of the distribution depends on the parameters a, c0, c1, and c2.
We have that

• df
dx = 0 when x = −a or when f ≡ 0

• f is finite when −a is not a root of c0 + c1x+ c2x
2 = 0

Since we are not just looking for any functions f : R→ R but for probability distribution
functions we have the extra conditions that

f(x) ≥ 0, ∀x ∈ R (6.2)
1This derivation of the Pearson system is taken from [JKB94a]

60
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and
∞∫
−∞

f(x) dx = 1. (6.3)

From this we can deduce that limx→∞ f(x) = 0 and that limx→∞
df
dx = 0. Pearson

classifies the distributions that solve eq. (6.1) into different types depending on the values
a, c0, c1, and c2. The solutions of eq. (6.1) depend on the nature of the roots of

c0 + c1x+ c2x
2 = 0. (6.4)

We will now look at the different possible ranges of the above parameters to classify the
distribution into different types.

6.1.1 Pearson Type 0 - the normal distribution
If c1 = c2 = 0 then eq. (6.1) simplifies itself to

d log f(x)

dx
= −a+ x

c0

which is solved by

f(x) = K exp

(
− (x+ a)2

2c0

)
where K is the constant chosen so that f fulfills eq. (6.3). It also follows that c0 > 0
and that K =

√
2πc0. This means that our distribution is a normal distribution with

expected value −a and variance c0. For further details on the normal distribution see
appendix A.1.1.
For the derivation of the other types we will suppose that the origin of the scale of X
has been chosen so that E[X] = 0. This assumption does not limit our derivations since
each random variable (with finite expectation) can be shifted, so that its shifted expected
value is zero.

6.1.2 Pearson Type 1 (akin to the beta distribution)
Let the roots of eq. (6.4) be denoted by a1 and a2. We say that f is of type 1 if

a1, a2 ∈ R and a1 < 0 < a2

This means that
c0 + c1x+ c2x

2 = −c2(x− a1)(a2 − x)

and we can rewrite eq. (6.1) to

1

f

df

dx
= − a+ x

(x− a1)(a2 − x)

The solution of which is

f(x) = K (x− a1)
m1 (a2 − x)

m2 (6.5)
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with

m1 =
a+ a1

c2(a2 − a1)

m2 = − a+ a2

c2(a2 − a1)

To satisfy eq. (6.2) we limit the range of the variable x to a1 < x < a2 so that both
x − a1 and a2 − x are positive. Equation (6.5) represents a proper pdf if m1,m2 > −1
and corresponds to a generalized form of the beta distribution (see appendix A.1.4).

6.1.3 Pearson Type 2 (akin to the symmetrical beta distribution)
The second type is now just a special case of the first one. We say that f is of type 2 if
f follows the form (6.5) with m1 = m2, which corresponds to a symmetrical generalized
beta distribution.

6.1.4 Pearson Type 3 (akin to the gamma distribution)
Type 3 corresponds to the case c2 = 0 (and c1 6= 0). Then eq. (6.1) transforms to

d log f(x)

dx
= − a+ x

c0 + c1x
= − 1

c1
−

a− c0
c1

c0 + c1x
,

which is solved by

f(x) = K (c0 + c1x)
m

exp

(
−x
c1

)
, (6.6)

where

m =
c0
c1
− a
c1

.

For the range of x we set the boundaries{
x > − c0c1 if c1 > 0,

x < − c0c1 if c1 < 0.

Type 3 corresponds to a gamma distribution, which is defined in appendix A.1.5.

6.1.5 Pearson Type 4
The type 4 distribution which does not correspond to any standard distribution denotes
the case where eq. (6.4) does not have any real roots. We use the identity

c0 + c1x+ c2x
2 = C0 + c2 (x+ C1)

2

with C0 = c0 − 1
4
c21
c2

and C1 = 1
2
c1
c2
. Then we can write eq. (6.1) as

d log f(x)

dx
= −− (x+ C1)− (a− C1)

C0 + c2 (x+ C1)
2
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From this we can conclude that

f(x) = K
[
C0 + c2 (x+ C1)

2
]− 1

2c2
exp

−a− C1√
c2C0

tan−1

x+ C1√
C0

c2

 (6.7)

6.1.6 Pearson Type 5 (akin to the inverse gamma location-scale
distribution)

For this type we consider the case where c0 + c1x+ c2x
2 is a perfect square, which means

that c21 = 4c0c2. Then we can rewrite eq. (6.1) to

d log f(x)

dx
= − x+ a

c2 (x+ C1)
2

= − 1

c2 (x+ C1)
− a− C1

c2 (x+ C1)
2

which leads to the solution

f(x) = K (x+ C1)
− 1
c2 exp

(
a− C1

c2 (x+ C1)

)
(6.8)

For the range of x we set the boundaries{
x > −C1 if a−C1

c2
< 0,

x < −C1 if a−C1

c2
> 0.

If a = C1 and |c2| < 1 then we have the special case

f(x) = K (x+ C1)
− 1
c2 .

Equation (6.8) corresponds to an inverse gamma location-scale distribution (observe that if
we denote byX the random variable with pdf f then (X+C1)−1 has a type 3 distribution).

6.1.7 Pearson Type 6 (akin to the F location-scale distribution)
Type 6 corresponds to the case where the roots of eq. (6.4) are real and of the same sign.
If both of them are negative, which means that we can write without loss of generality
that a1 < a2 < 0, we can do the same analysis as we did for Type 1 (see eq. (6.5) to end
at

f(x) = K (x− a1)
m1 (x− a2)

m2 (6.9)

where again

m1 =
a+ a1

c2(a2 − a1)
,

m2 = − a+ a2

c2(a2 − a1)
.

We have x > a2 as the expected value is greater than a2. For eq. (6.9) to represent a pdf
we also need that m2 < −1 and m1 +m2 < 0.
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6.1.8 Pearson Type 7 (akin to the Student’s t location-scale dis-
tribution)

Lastly type 7 corresponds to the case where c1 = a = 0, and c2 > 0. This transforms
eq. (6.1) to

d log f(x)

dx
= − x

c0 + c2x2

which leads to
f(x) = K

(
c0 + c2x

2
)− 1

2c2 . (6.10)

An important distribution belonging to this family is the Student’s t distribution (see
appendix A.1.7). We can derive eq. (6.10) by a multiplicative transformation from a t
distribution with degrees of freedom 1

c2
− 1.

6.2 Identifying the types according to the moments 2

The Pearson system is well-suited for our simulation model because the parameters
a, c0, c1, and c2 can be expressed in terms of the moments of the distribution. We be-
gin by making some notational definitions. Let X be a random variable and denote its
moments by µr := µr(X) = E[Xr]. Similarly we denote the centralized moments by
µ′r := µ′r(X) = E [(X − E[X])

r
]. Additionally we define

β1 := [Skew(X)]
2 (6.11)

β2 := Kurt(X) (6.12)

We start our calculations by multiplying both sides of eq. (6.1) with xr and rewriting it
to

xr
(
c0 + c1x+ c2x

2
) df(x)

dx
+ xr (a+ x) f(x) = 0 (6.13)

By assuming that
xrf(x)

x→±∞−−−−−→ 0 for r ≤ 5

and integrating both sides of eq. (6.13) from −∞ to +∞ we obtain

− rc0µ′r−1 + [− (r + 1) c1 + a]µ′r + [− (r + 2) c2 + 1]µ′r+1 = 0 (6.14)

First we note that µ′0 = 1 and that (in this context) µ′−1 = 1. By then putting r =
0, 1, 2, 3 in eq. (6.14) we obtain four linear equation for our arguments a, c0, c1, and c2
with coefficients that are functions of µ′1, µ′2, µ′3 and µ′4. We can shift the variable X so
that its expected value is zero, which leads to µ′1 = 0 and µ′r = µr for r ≥ 2. Then we
arrive at the following formulas to calculate the coefficients from the moments

c0 =
4β2 − 3β1

10β2 − 12β1 − 18
µ2 (6.15)

2following [JKB94a]
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a = c1 =

√
β1(β2 + 3)

10β2 − 12β1 − 18

√
µ2 (6.16)

c2 =
2µ4µ2 − 3µ2

3 − 6µ2
2

10µ4µ2 − 12µ2
3 − 18µ3

2

=
2β2 − 3β1 − 6

10β2 − 12β1 − 18
(6.17)

We can use eqs. (6.15) to (6.17) to calculate the Pearson coefficients (and identify the
type) given the moments of a random variable.
Most importantly for our simulation, it is now possible to classify the different types
depending only on the skewness and kurtosis of the underlying random variable. For this
we first define

κ =
1

4

c21
c0c2

=
1

4

β1(β2 + 3)2

(4β2 − 3β1)(2β2 − 3β1 − 6)

and then classify each type in table 6.1.

Type Conditions on β1 and β2

0 β1 = 0 ∧ β2 = 3

1 κ < 0

2 β1 = 0 ∧ β2 < 3

3 2β2 − 3β1 − 6 = 0

4 0 < κ < 1

5 κ = 1

6 κ > 1

7 β1 = 0 ∧ β2 > 3

Table 6.1: Pearson classification

6.3 Generating correlated samples from the Pearson
system in Matlab

Before we continue with the simulation model of the claims triangle, we will take a look
at the technical implementation used to create the outputs in chapter 7.
In the sampling process a modified version of the Matlab built-in pearsrnd 3 function
was used. This function generates random samples from the Pearson system given the
expected value, the standard deviation, the skewness and the kurtosis of the underlying
random variable.
To compute the Pearson coefficients and identify the type, pearsrnd proceeds similarly to
section 6.2, including the identification of the types after table 6.1. One very useful trait

3The pearsrnd function is part of the Statistics Toolbox 8.1
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of the Pearson system which will help us in the sampling process is that all Pearson types
except type 4 can be seen as transformations of standard distributions (see table 6.2).

Type Associated distribution
0 Normal distribution
1 Four-parameter beta
2 Symmetric four-parameter beta
3 Three-parameter gamma
4 Not related to any standard distribution
5 Inverse gamma location-scale
6 F location-scale
7 Student’s t location-scale

Table 6.2: Pearson distributions

Before we state the algorithms to create Pearson samples we delve into the theory behind
them. Our goal is to create samples from a random variable X given the expected value
(denoted by µ), the standard deviation (denoted by σ), the skewness (denoted by γ) and
the kurtosis (denoted by κ).
First define the random variable ε by

ε =
X − µ
σ

. (6.18)

This means that

E [ε] = 0,

V [ε] = 1,

Skew (ε) = Skew (X) = γ,

Kurt (ε) = Kurt (X) = κ.

Observe that both ε and X have the same Pearson type since only the skewness and
kurtosis are used in the identification (see table 6.1). This means we can sample ε and
transform the output according to eq. (6.18) to get samples of X.
6.3.1 Algorithm (Pearson sampling - basic version). To create a uncorrelated Pearson
sample we have
Input: The expected value (denoted by µ), the standard deviation (denoted by σ), the
skewness (denoted by γ) and the kurtosis (denoted by κ) of a random variable X and the
number of simulations N . The desired output is a sample vector

(
X̂1, . . . , X̂N

)
.

1. First calculate β1 = (γ)
2, β2 = κ and the parameters a, c0, c1, and c2 to identify the

Pearson type of ε.

2. Then calculate the roots a1 and a2 of eq. (6.4).

3. Afterwards calculate the necessary parameters (m1,m2 or C1), sample from the
associated distribution (in our case with the related built-in function) and transform
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the output accordingly. If Pearson type 4 is identified, a rejection algorithm is
implemented to sample from the distribution.
At this step we get n samples (ε̂1, . . . , ε̂N ) of ε.

4. In a final step we transform the random vector (ε̂1, . . . , ε̂N ) by setting

X̂i = σε̂i + µ,

for i = 1, . . . , N .

Output: The output is then a random vector (X̂1, . . . , X̂N ) sampled from a random
variable matching all input moments of X.

6.3.2 Remark.

• Reorganizing eq. (6.18) to
X = µ+ σε

and comparing that to eq. (5.1) we can see that this way of sampling is perfectly in
line with model assumptions 5.1.1.

• For further information on which transformations to use to relate each Pearson
type with their associated distribution consult [MI75], the Matlab documentation
or [Dev86]. [MI75] is the most detailed (in terms of sampling) of those and gives
algorithms to sample from each type of the Pearson system.

For the sampling of correlated variables some steps have to be modified. In contrast to
the above all correlated random variables have to be sampled together (otherwise there
would be no correlation). The new algorithm takes the linear correlation matrix ρ as
an extra input. It is also tailored to the special case that skewness and kurtosis of all
random variables are the same (which is the case in our simulation model - cf. model
assumptions 5.1.1).
In addition to the above it should also be stated that (let M be the number of random
variables) the Pearson parameters a, c0, c1, and c2 do not depend on j = 1, . . . ,M since
for the εj all four input parameters are the same (cf. eqs. (6.15) to (6.17)).

6.3.3 Algorithm (Pearson sampling - expanded version). To create correlated Pearson
samples for the random variables (X1, . . . , XM ) we have
Input: The number of simulations N , the expected values (denoted by µj), the standard
deviations (denoted by σj), the skewness and kurtosis (denoted by γ and κ respectively
and both not dependent on j) of M random variables Xj , j = 1, . . . ,M . Additionally we
have the linear correlation matrix ρ, where

ρi,j = Corr (Xi, Xj)

as an extra input. The desired output is N samples of each of the Xj .

1. After calculating β1, β2 and the parameters a, c0, c1, and c2, identify the Pearson
type (which is the same for all εj and with that all Xj)..

2. Then calculate the roots a1 and a2 of eq. (6.4).
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3. In the expanded version the sampling is done a bit differently from the base version
(except for Pearson type 4 where correlation is not implemented and the standard
built-in function from above is used). After calculating the necessary parameters
the sampling is done by using a gaussian copula and the algorithm presented in
appendix A.2.2. This means that for each i = 1, . . . , N we follow the following
procedure:

(a) First we use ρ to sample from a uniform distribution via a gaussian copula
approach (see appendix A.2.1). This yields a vector (U1, . . . , UM ), where Ui ∼
U(0, 1) and Corr (Ui, Uj) ≈ ρi,j , i, j = 1, . . . ,M .

(b) Then we use the inversion method (see definition A.2.7) to get samples from
our associated distribution (with its cdf denoted by Fj), which we will then
transform accordingly to fit the Pearson type. We will denote the transforma-
tion function by hFj . It is dependent on the Pearson type and its relation to
its associated distribution Fj (cf. remark 6.3.2).
That means we receive a sample (ε̂1, . . . , ε̂M ) where for i = 1, . . . ,M we have
that

ε̂i = hj
(
F−1
j (Ui)

)
.

(c) If we do this N times (in fact computationally we can do it all at once) we have
N sets of vectors

(
ε̂
〈n〉
1 , . . . , ε̂

〈n〉
M

)
(n = 1 . . . , N).

4. In a final step we transform the sample vectors
(
ε̂
〈n〉
1 , . . . , ε̂

〈n〉
M

)
by setting

X̂
〈n〉
j = σj ε̂

〈n〉
j + µj .

for n = 1, . . . , N and j = 1, . . . ,M .

Output: The output consists of N sample vectors
(
X̂
〈n〉
1 , . . . , X̂

〈n〉
M

)
, where n = 1, . . . , N ,

sampled from random variables matching all input moments of each Xj and where each
sample vector is generated using the input correlation matrix .

6.4 Simulation with the Pearson system

We will now go through the simulation step by step .

1. The first step of the simulation process is computing the values

f̂j , σ̂j , γ̂j , and κ̂j

for j = 0, . . . , J − 1.

2. Then we simulate the missing cumulative claims for each development year j =
1, . . . , J to fill up the claims triangle. For each development year j we have constant
skewness and kurtosis (see model assumptions 4.2.2), which are given by the estim-
ators γ̂j−1 and κ̂j−1. The expected value and the variance differ for each accident
year i.
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So this means that at each step j = 1, . . . , J we have

E
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 f̂j−1

:=ai,j ,

V
[
ĈSimi,j

∣∣∣EI,j−1

]
= Ĉi,j−1 σ̂

2
j−1

(
1 +

Ci,j−1∑I−j
k=0 Ck,j−1

)

:=bi,j ,

Skew
(
ĈSimi,j

∣∣∣EI,j−1

)
= γ̂j−1

:=cj ,

Kurt
(
ĈSimi,j

∣∣∣EI,j−1

)
= κ̂j−1

:=dj ,

for i = I − j + 1, . . . , I and where for ease of notation

Ĉi,j =

{
Ci,j 0 ≤ i ≤ I − j, j = 0, . . . , J

ĈSimi,j I − j < i ≤ I, j = 1, . . . , J

and EI,j−1 as in eq. (5.3). Now we can use cj and dj to calculate the Pearson
parameters β1 and β2 (see eqs. (6.11) and (6.12)). With these we identify the
Pearson type and its associated distribution.

3. The claims triangle at step j looks like table 6.3. Our aim is to simulate the random
variables

(
ĈSimI−j+1,j , . . . , Ĉ

Sim
I,j

)
. For this we input the parameters ai,j , bi,j , cj , dj and

the linear correlation matrix ρ̂〈j〉 into algorithm 6.3.3 which identifies the Pearson
type and creates the samples. The output is then N sets of vectors

(
X̂
〈n〉
1 , . . . , X̂

〈n〉
j

)
(n = 1 . . . , N) which we combine into one sample matrix Θ〈j〉 by setting

Θ
〈j〉
k,n = X̂

〈n〉
k ∀ k = 1, . . . , j and n = 1, . . . , N

The matrix Θ〈j〉 is a matrix of random variables with entries Θ
〈j〉
k,n, where k = 1, . . . , j

and n = 1, . . . , N and where each column Θ
〈j〉
·,n is a sample from

(
ĈSimI−j+1,j , . . . , Ĉ

Sim
I,j

)
.

This means that if we fix the simulation number n we have

Ĉ
〈n〉 Sim

I−j+i,j = Θ
〈j〉
i,n (6.19)

for each j = 1, . . . , J , i = 1, . . . , j and n = 1, . . . , N .

4. For the ultimate claims this gives us N simulations of the values ĈSimi,J , i = 1, . . . , I.
If we want to compute a statistic of them we can do this directly with the simulated
values saved in Θ

〈J〉
i,n . As a first example we want to show the computation of the

best estimate reserves. We have

Ê
[
Ĉi,J

]
=

1

N

N∑
n=1

Θ
〈J〉
i,n

and with that we can also calculate

Ê
[
R̂i

]
= Ê

[
Ĉi,J

]
− Ci,I−i for i = 1, . . . , I.
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AY/DY 0 1 . . . j . . . . . . J

0 C0,0 C0,1 . . . C0,j . . . . .
. C0,J

1 C1,0 . .
.

. .
.

. .
.

. .
. C1,J−1

...
... . .

.
. .
.

. .
.

. .
.

I − j ... . .
.

. .
. CI−j,j

...
... . .

.
. .
. ĈSimI−j+1,j

...
... CI−1,1 . .

. ...

I CI,0 ĈSimI,1 . . . ĈSimI,j

Table 6.3: Simulation step j

For ease of notation we will introduce another matrix. We will call it the reserve
matrix Ψ〈J〉 and define it by

Ψ
〈J〉
i,n = Θ

〈J〉
i,n − Ci,I−i,

for i = 1, . . . , I and n = 1, . . . , N.

Each column of the matrix Ψ〈J〉 represents one simulation of the outstanding reserve
for each accident year i.

6.5 Statistical Estimators

6.5.1 Estimator (Sample Estimators). We will now define the statistics used in chapter 7
to showcase the simulation. We have

Ê
[
R̂i

]
=

1

N

N∑
n=1

Ψ
〈J〉
i,n , (6.20)

V̂
[
R̂i

]
=

1

N − 1

N∑
n=1

(
Ψ
〈J〉
i,n − Ê

[
R̂i

])2

, (6.21)

Ŝtd
(
R̂i

)
=

√
V̂
[
R̂i

]
, (6.22)

Ŝkew
(
R̂i

)
=

√
N (N − 1)

N − 2

1
N

∑N
n=1

(
Ψ
〈J〉
i,n − Ê

[
R̂i

])3

(√
1
N

∑N
n=1

(
Ψ
〈J〉
i,n − Ê

[
R̂i

])2
)3 , (6.23)
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ktmpi =

1
N

∑N
n=1

(
Ψ
〈J〉
i,n − Ê

[
R̂i

])4

(
1
N

∑N
n=1

(
Ψ
〈J〉
i,n − Ê

[
R̂i

])2
)3 ,

K̂urt
(
R̂i

)
=

N − 1

(N − 2) (N − 3)

(
(N + 1) ktmpi − 3 (N − 1)

)
+ 3, (6.24)

for i = 1, . . . , I.

These are the bias corrected empirical estimators used by Matlab. Additionally we will
calculate the Value at Risk of the outstanding reserve.

6.5.2 Definition (Value at Risk). The Value at Risk at significance level α of a random
variable X with cumulative distribution function FX is defined as

VaRα (X) = inf {q ∈ R : FX (q) ≥ α} (6.25)

6.5.3 Remark. The VaRα is in fact just the α-quantile of the distribution FX .

Since we do not have an analytical expression of the cdf FX we will use a quantile estimator
to calculate the Value at Risk of our sample.

6.5.4 Algorithm (Matlab quantile function). The Matlab function quantile works the fol-
lowing way

(i) Let x be an n-element vector of samples from the random variable X. Then let y
be the sorted vector of x.

(ii) The sorted values y then correspond to the (0.5/n) , (1.5/n) , . . . , ( (n− 0.5)/n) sample
quantiles of X.We now have three different scenarios.

If 0.5/n ≤ p ≤ (n− 0.5)/n:

(a) If there exists an i ∈ {0, 1, . . . , n− 1} such that

p = (n− 0.5− i)/n

then quantile(x, p) = y(n− i).
(b) Otherwise there exists a j ∈ {0, 1, . . . , n− 1} such that

(n− 0.5− (j + 1))/n < p < (n− 0.5− j)/n

In this case quantile uses linear interpolation between the above values. We
have

quantile(x, p) = y(n−(j+1))+[p− (n− 0.5− (j + 1))/n] [y(n− j)− y(n− (j + 1))]
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Else:

(c) For the quantiles corresponding to probabilities outside of the above range,
quantile assigns the minimum or maximum values of X. This means that

quantile(x, p) =

{
y(1) if p < 0.5/n

y(n) if p > (n− 0.5)/n.

6.5.5 Estimator (VaR Estimator). With the above definition of the function quantile
we then have

V̂aRα

(
R̂i

)
= quantile

(
Ψ
〈J〉
i,· , α

)
(6.26)

6.5.6 Remark. The sampling process described in this section and in algorithm 6.3.3 can
be interpreted in two different ways.
We can see algorithm 6.3.3 as a means to simulate the cumulative claims ĈSimi,j . In this
case the variables εk are only temporary variables used in the simulation process.
However we can also take eq. (5.1) from model assumptions 5.1.1 as the basis of our
simulation. We have assumed that

Ci,j+1 = fj Ci,j + σj
√
Ci,j εi,j+1

∀ i ∈ {0, . . . , I} , and ∀ j ∈ {0, . . . , J − 1}

This means that we can also simulate the εi,j+1 and then calculate ĈSimi,j+1 from them. We
have

εi,j+1 =
Ci,j+1 − fj Ci,j

σj
√
Ci,j

=
Ci,j+1 − E [Ci,j+1|DI ]√

V [Ci,j+1|DI ]

Comparing this to eq. (6.18) we can see that for a fixed j ∈ {0, . . . , J − 1} we can interpret
the εk (k = 1, . . . , j + 1) from algorithm 6.3.3 as samples of the εi,j+1 (i = I − j, . . . , I)
and conclude that both interpretations yield the same result.
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Examples

We will now utilize both methods from the previous sections on different claims triangles
and compare the results against each other. Additionally we will also compare the results
to the standard chain ladder estimator and the MSEP estimator introduced in [WM08].

7.1 Application of the simulation

For each of the following triangles we will first calculate all parameters and then run the
simulation models described in sections 5.4 and 6.4. The results of this run will then be
displayed in a table and interpreted subsequently. Additionally a histogram of the total
reserve is shown, featuring overlaid density curves of standard distribution functions.
The normal, lognormal and gamma distributions used below are fitted to the chain ladder
estimators via moment matching. The generalized extreme value distribution, which is
also displayed in the figure, is fitted to the data generated by the simulation via the
maximum likelihood method.
The simulation was realized in Matlab R2012b with the Statistics Toolbox 8.1 installed
and the number of simulations set to one million. A special thanks has to go to Nico
Schlömer for creating and sharing his Matlab script matlab2tikz, which was used in the
creation of the output histograms 1.
To get an idea about the duration of one simulation table 7.1 depicts the average runtime
per triangle for different simulation numbers. The second column denotes the time the
Pearson simulation from section 6.4 took, while the third column denotes the runtime
of both simulations (Pearson and GPD) plus the runtime for the creation of the output
tables and figures.

1It can be downloaded from the Matlab file exchange - see http://www.mathworks.com/
matlabcentral/fileexchange/22022-matlab2tikz
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Nr. of simulations Pearson sim. Whole sim.
10,000 1.39 3.06
100,000 8.40 11.82
1,000,000 77.96 101.58

Table 7.1: Mean runtimes of simulation models in seconds

7.1.1 Example 1: Wüthrich Triangle
The first claims triangle is taken from [WM08]. It is given by fig. 7.1.

AY/DY 0 1 2 3 4 5 6 7 8 9
0 5,946,975 9,668,212 10,563,929 10,771,690 10,978,394 11,040,518 11,106,331 11,121,181 11,132,310 11,148,124
1 6,346,756 9,593,162 10,316,383 10,468,180 10,536,004 10,572,608 10,625,360 10,636,546 10,648,192
2 6,269,090 9,245,313 10,092,366 10,355,134 10,507,837 10,573,282 10,626,827 10,635,751
3 5,863,015 8,546,239 9,268,771 9,459,424 9,592,399 9,680,740 9,724,068
4 5,778,885 8,524,114 9,178,009 9,451,404 9,681,692 9,786,916
5 6,184,793 9,013,132 9,585,897 9,830,796 9,935,753
6 5,600,184 8,493,391 9,056,505 9,282,022
7 5,288,066 7,728,169 8,256,211
8 5,290,793 7,648,729
9 5,675,568
f̂j 1.4925 1.0778 1.0229 1.0148 1.007 1.0051 1.0011 1.001 1.0014
σ̂j 135.253 33.8029 15.7596 19.8467 9.3362 2.0011 0.8232 0.2196 0.0586
γ̂j 2.0465 0.2386 -0.5048 0.2291 0.2806 0.8868 0.383 0 0
κ̂j 5.2748 1.1998 1.9027 1.6792 0.9745 1.3181 3 3 3

Figure 7.1: Example 1: Wüthrich Triangle

A summary of the key figures can be found in fig. 7.2 while fig. 7.3 depicts a histogram
based on the simulation of the total reserve in comparison to fitted standard density
curves. As can be seen from the output, non of the standard distributions offer a good
fit to this distribution. The bimodal look of the histogram can probably be attributed
to most columns having Pearson type 1, which is akin to the beta distribution and has
bimodal properties when the parameters are low.
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Pearson Simulation Chain Ladder Estimators GPD Sim.

E
[
R̂i

] √
V
[
R̂i

]
V̂aR99%

(
R̂i

)
R̂CLi

√
m̂sepRi|DI V̂aR99%

(
R̂GPDi

)
1 15,126.54 270.46 15,756.56 15,126.29 267.51 15,580.26
2 26,258.40 918.07 28,394.48 26,257.45 915.24 27,999.92
3 34,543.18 3,063.16 42,312.91 34,538.47 3,058.74 41,371.50
4 85,303.14 7,626.96 102,341.29 85,301.62 7,628.15 105,991.36
5 156,473.23 33,340.02 211,659.83 156,494.25 33,341.22 226,987.61
6 286,217.67 73,443.48 436,572.98 286,121.02 73,466.90 448,429.77
7 449,045.30 85,383.18 633,065.90 449,166.98 85,398.21 636,457.12
8 1,043,246.40 134,181.85 1,331,729.34 1,043,242.44 134,336.55 1,349,585.88
9 3,950,621.30 410,783.86 5,146,276.79 3,950,815.25 410,817.59 5,377,532.99

Total 6,046,835.15 452,739.29 7,368,874.51 6,047,063.77 462,960.58 7,522,123.05

Figure 7.2: Example 1: Summary

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

·106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−6

Total Reserve

D
en
si
ty

simulated data
fitted normal
fitted lognormal
fitted gamma
fitted GEV

Figure 7.3: Example 1: Simulation Output
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7.1.2 Example 2: Mack Triangle
The next triangle can be found in [Mac93] and is depicted in fig. 7.4.

AY/DY 0 1 2 3 4 5 6 7 8 9
0 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
1 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085
2 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315
3 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268
4 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
5 396,132 1,333,217 2,180,715 2,985,752 3,691,712
6 440,832 1,288,463 2,419,861 3,483,130
7 359,480 1,421,128 2,864,498
8 376,686 1,363,294
9 344,014
f̂j 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177
σ̂j 400.3503 194.2598 204.8541 123.2189 117.1807 90.4753 21.1333 33.8728 21.1333
γ̂j 0.1961 0.3229 1.0196 -0.7557 0.8008 -0.0641 -1.948 0 0
κ̂j 1.7958 1.6328 2.559 1.4845 1.6243 -0.3701 3 3 3

Figure 7.4: Example 2: Mack Triangle

A summary of the key figures can be found in fig. 7.5 while fig. 7.6 depicts a histogram
based on the simulation of the total reserve in comparison to fitted standard density
curves. From the numbers it seems that this is a very regular triangle, where each of the
distributions offers a reasonable fit.

Pearson Simulation Chain Ladder Estimators GPD Sim.

E
[
R̂i

] √
V
[
R̂i

]
V̂aR99%

(
R̂i

)
R̂CLi

√
m̂sepRi|DI V̂aR99%

(
R̂GPDi

)
1 94,702.93 85,408.35 293,298.54 94,633.81 75,535.04 222,820.83
2 469,576.68 126,500.24 766,267.54 469,511.29 121,700.12 725,990.37
3 709,713.31 127,151.05 993,012.65 709,637.82 133,550.98 987,533.95
4 984,690.66 261,476.32 1,473,709.82 984,888.64 261,412.47 1,520,655.97
5 1,419,403.27 411,042.26 2,353,664.47 1,419,459.46 411,027.80 2,475,222.83
6 2,177,406.23 557,738.56 3,408,171.04 2,177,640.62 558,355.88 3,510,842.65
7 3,918,819.33 874,928.43 6,245,350.39 3,920,301.01 875,429.58 6,288,008.20
8 4,278,631.24 972,439.81 6,839,308.64 4,278,972.26 971,385.37 6,858,733.77
9 4,626,061.88 1,365,121.40 8,133,420.81 4,625,810.69 1,363,384.66 8,140,636.09

Total 18,679,005.54 2,173,908.23 24,085,707.70 18,680,855.61 2,447,618.31 24,498,884.79

Figure 7.5: Example 2: Summary
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Figure 7.6: Example 2: Simulation Output
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7.1.3 Example 3: Dal Moro Triangle
This triangle is taken from [Mor13]. It is given by fig. 7.7.

AY/DY 0 1 2 3 4 5 6 7 8 9
0 10,798 11,313 15,110 15,163 14,232 14,063 12,050 12,163 11,624 12,942
1 11,595 13,743 15,143 15,253 14,999 15,468 12,907 13,086 13,122
2 11,724 13,621 15,401 14,577 14,932 15,052 13,156 12,847
3 11,820 13,666 14,915 14,269 14,933 15,263 13,016
4 11,746 13,352 14,998 14,456 14,915 15,042
5 11,641 13,182 14,858 14,721 14,788
6 11,557 13,186 14,811 14,898
7 11,552 13,159 14,887
8 11,525 13,061
9 11,522
f̂j 1.1378 1.1416 0.982 1.0041 1.0118 0.8543 0.9996 0.9801 1.1134
σ̂j 3.9568 8.4241 3.1661 4.7823 1.976 2.008 2.3229 3.7369 2.3229
γ̂j -1.7175 2.6942 -0.3731 -0.9838 -0.4009 -0.0872 -1.5418 0 0
κ̂j 5.318 6.8202 0.787 2.0494 1.4971 1.2178 3 3 3

Figure 7.7: Example 3: Dal Moro Triangle

A summary of the key figures can be found in fig. 7.8 while fig. 7.9 depicts a histogram
based on the simulation of the total reserve in comparison to fitted standard density
curves. In this case we can see one of the major shortcomings of using a distribution like
the lognormal or the gamma distribution. Since they cannot take negative values into
account they are very bad fits for triangles where there are a lot of regresses.

Pearson Simulation Chain Ladder Estimators GPD Sim.

E
[
R̂i

] √
V
[
R̂i

]
V̂aR99%

(
R̂i

)
R̂CLi

√
m̂sepRi|DI V̂aR99%

(
R̂GPDi

)
1 1,488.23 453.06 2,540.15 1,487.85 388.25 2,146.75
2 1,172.13 792.71 3,049.27 1,171.72 690.74 2,623.90
3 1,180.31 793.63 2,996.01 1,180.80 773.18 2,808.48
4 -1,026.07 808.94 828.92 -1,025.14 823.27 775.24
5 -844.76 824.88 1,047.82 -844.54 856.26 1,057.70
6 -794.43 1,028.11 1,436.55 -793.65 1,048.07 1,471.49
7 -1,045.39 1,085.55 1,340.88 -1,047.39 1,106.83 1,388.41
8 800.59 1,449.33 5,254.27 800.58 1,458.81 5,034.94
9 2,389.95 1,527.24 6,979.04 2,391.25 1,537.31 6,749.34

Total 3,320.56 3,945.01 12,829.78 3,321.48 4,889.25 13,827.66

Figure 7.8: Example 3: Summary
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7.1.4 Example 4: Product Liability Triangle
This triangle is also taken from [Mor13] and it is given by fig. 7.10.

AY/DY 0 1 2 3 4 5 6 7 8 9
0 199 246 360 404 401 321 328 340 332 342
1 1,312 1,181 1,347 1,390 1,511 1,686 1,860 1,689 1,680
2 493 700 817 740 912 903 897 902
3 391 487 1,472 1,640 611 593 597
4 586 741 1,251 1,509 1,864 2,040
5 892 1,285 1,556 1,720 1,828
6 654 1,644 2,060 2,270
7 379 906 1,255
8 705 950
9 384
f̂j 1.4507 1.4072 1.0914 0.9627 1.046 1.0511 0.9501 0.9916 1.0301
σ̂j 13.809 14.849 2.9171 12.4593 3.2492 1.7349 2.0616 0.3062 0.0455
γ̂j 1.0925 2.5375 -0.8514 -1.8146 -1.1706 0.3586 0.3009 0 0
κ̂j 3.1839 6.1203 2.881 3.5381 1.3946 0.7722 3 3 3

Figure 7.10: Example 4: Product Liability Triangle

A summary of the key figures can be found in fig. 7.11 while fig. 7.12 depicts a histogram
based on the simulation of the total reserve in comparison to fitted standard density curves.
Similarly to Example 3 the lognormal distribution offers a very bad fit because some of
the reserves are very low, or even negative in the case of accident year 3. Additionally the
total reserve seems to be negatively skewed, which means that even the normal distribution
overestimates the right side of the tail (cf. fig. 7.13).

Pearson Simulation Chain Ladder Estimators GPD Sim.

E
[
R̂i

] √
V
[
R̂i

]
V̂aR99%

(
R̂i

)
R̂CLi

√
m̂sepRi|DI V̂aR99%

(
R̂GPDi

)
1 50.61 4.66 61.42 50.60 4.59 58.39
2 19.38 11.70 46.66 19.38 11.68 41.02
3 -17.57 56.89 125.66 -17.61 56.88 102.33
4 41.13 160.27 439.00 40.98 160.35 427.76
5 122.60 225.05 592.09 122.59 224.78 596.54
6 62.06 768.90 957.99 61.92 767.40 1,055.10
7 151.53 579.46 886.71 152.06 577.27 955.28
8 549.12 816.31 3,001.36 548.85 811.08 3,025.75
9 513.74 731.78 3,168.94 494.92 746.51 2,926.51

Total 1,492.60 1,588.91 5,344.89 1,473.70 1,786.39 5,523.79

Figure 7.11: Example 4: Summary
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Figure 7.12: Example 4: Simulation Output

7.1.5 Comparing the methods
In fig. 7.13 we compare the different methods on the basis of the 99% Value at Risk. As
can be seen in the table it seems like there can be no one distribution which fits all claims
triangles. Especially the factor of negative reserves plays an important role in the choice
of the distribution.
The normal, lognormal and gamma distribution are chosen because they are the most
popular distributions used to estimate the claims reserve distribution in today’s insurance
practice. All three of them can be fitted to two moments. This is not true for the
generalized extreme value distribution, which has three parameters and was therefore
omitted from this comparison. The parameter estimation was done via moment matching
and using the chain ladder best estimate and MSEP developed in chapter 3.
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Example: Pearson Simulation GPD Sim. fitted Normal fitted Lognormal fitted Gamma
1 7,368,874.51 7,522,123.05 7,124,071.13 7,202,979.24 7,175,890.75
2 24,085,707.70 24,498,884.79 24,374,867.27 25,090,696.54 24,841,480.35
3 12,829.78 13,827.66 14,695.59 22,685.67 23,025.05
4 5,344.89 5,523.79 5,629.45 8,564.42 8,282.12

Figure 7.13: VaRα of total reserve with α = 99%

Figures 7.14 and 7.15 compare the skewness and kurtosis of the above distributions. As
predicted the Pearson and the GPD model result in a similar skewness for the total
reserves. This does not hold true for the kurtosis, since the GPD model was not fitted to
the kurtosis estimators. The fitted distributions offer varying results, in which especially
the skewness and the kurtosis of the lognormal and gamma distribution for examples 3 and
4 stand out. These very high values can be explained by the fact that both distributions
have origin zero and are therefore not suitable for these claims triangles.

Example: Pearson Simulation GPD Sim. fitted Normal fitted Lognormal fitted Gamma
1 1.2864 1.2687 0 0.2301 0.1531
2 0.2395 0.2486 0 0.3953 0.262
3 0.0976 0.0964 0 7.6056 2.944
4 -0.1062 -0.0393 0 5.4177 2.4244

Figure 7.14: Skewness of total reserve

Example: Pearson Simulation GPD Sim. fitted Normal fitted Lognormal fitted Gamma
1 4.2242 6.3493 3 3.0943 3.0352
2 2.9897 3.0433 3 3.2791 3.103
3 3.0668 3.03 3 191.1785 16.0009
4 3.5123 3.7607 3 82.5934 11.8163

Figure 7.15: Kurtosis of total reserve

Overall the simulation model seems to give a good impression of the shape of the reserve
risk distribution and can help in finding better estimators and distributional fits in the
claims reserving process.



Appendix A

Mathematical Background

A.1 Distributions 1

A.1.1 The Normal Distribution

A random variable X is said to be normally distributed, i.e. X ∼ N (µ, σ2), if it has the
probability density function (pdf)

f(x) =
1√
2π

exp

(
−1

2

(
x− µ
σ

)2
)

We have

E [X] = µ,

V [X] = σ2,

Skew (X) = 0,

Kurt (X) = 3.

A.1.2 The Lognormal Distribution
We say a random variable X is lognormally distributed if Z = log(X) is normally distrib-
uted. We denote X ∼ logN (µ, σ) and for the pdf it follows that

f(x) =
1

x
√

2πσ
exp

(
−1

2

[log (x)− µ]
2

σ2

)

For the moments we have
E [Xr] = exp

(
rµ+

1

2
r2σ2

)
1definitions and results taken from [JKB94a] and [JKB94b]

83
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which leads to

E [X] = exp

(
µ+

1

2
σ2

)
,

V [X] = exp
(
2µ+ σ2

) (
exp

(
σ2
)
− 1
)
,

Skew (X) =
√

exp (σ2)− 1
(
exp

(
σ2
)

+ 2
)
,

Kurt (X) = exp
(
4σ2
)

+ 2 exp
(
3σ2
)

+ 3 exp
(
2σ2
)
− 3.

A.1.3 Generalized Pareto Distribution 2

There are many different forms of the Pareto distribution. We will use a form conform
with [Mor13] to be able to use the moment estimators from the paper.
We say a random variable X follows a generalized Pareto distribution (X ∼ GPD(µ, s, ξ))
if it has the cumulative distribution function

F (x) = 1−
(

1 +
ξ (x− µ)

s

)−1/ξ

for x > µ ∈ R, s > 0 and ξ ∈ R. For the moments we have

E [X] = µ+
s

1− ξ
,

V [X] =
s2

(1− ξ)(1− 2ξ)
,

Skew (X) =
2(1 + ξ)

√
1− 2ξ

1− 3ξ
,

Kurt (X) =
3
(
3− 5ξ − 4ξ3

)
1− 7ξ + 12ξ2

.

A.1.4 Beta Distribution
We say a random variable X follows a beta distribution, noted X ∼ Beta(p, q), if its pdf
is of the form

f(x) =
B(p, q)

x

p−1

(1− x)
q−1

, 0 ≤ x ≤ 1

where B(p, q) is the beta function B(p, q) =
∫ 1

0
tp−1(1− t)q−1dt. For more information on

the beta function see for example [AS65]. We have

E [X] =
p

p+ q
,

V [X] =
pq

(p+ q)
2

(p+ q + 1)
,

Skew (X) =
2(q − p)

√
p−1 + q−1 + (pq)−1

p+ q + 2
,

2to match [Mor13] the definition is taken from [EKM03]
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Kurt (X) =
3 (p+ q + 1)

[
2(p+ q)2 + pq(p+ q − 6)

]
pq(p+ q + 2)(p+ q + 3)

.

A.1.5 Gamma Distribution
A random variable Y follows a generalized gamma distribution, noted Y ∼ gGam (α, β, γ)
if its distribution function is

fY (x) =
(x− γ)

α−1
exp

(
−x−γβ

)
βαΓ(α)

where α, β > 0 and x > γ and where Γ(α) is the gamma function Γ(α) =
∫∞

0
tα−1e−tdt.

For more information on the gamma function see for example [AS65]. For the standard
form of the the distribution we set γ = 0 and then have X ∼ Gam (α, β) with the pdf

fX(x) =
xα−1 exp

(
− x
β

)
βαΓ(α)

, α, β > 0.

We then have

E [X] = αβ,

V [X] = αβ2,

Skew (X) =
2√
α
,

Kurt (X) = 3 +
6

α
.

A.1.6 F Distribution
If X1, X2 are independent chi-square variables with degrees of freedom ν1 and ν2, i.e.
Xi ∼ χ2

νi for I = 1, 2, then the distribution of

X =

(
X1

ν1

)(
X2

ν2

)−1

is the F distribution with ν1, ν2 degrees of freedom. Its pdf is given by

f(x) =

(
ν1

ν2

)ν1/2
B

(
1

2
ν1,

1

2
ν2

) x(ν1/2)−1(
1 +

ν1

ν2
x

) (ν1 + ν2)/2
, x > 0.

Its moments are given by

E [X] =
ν2

ν2 − 2
, ν2 > 2,
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V [X] =
2ν2

2 (ν1 + ν2 − 2)

ν1 (ν2 − 2)
2

(ν2 − 4)
, ν2 > 4,

Skew (X) =

√
8 (ν2 − 4)

(ν1 + ν2 − 2) ν1

2ν1 + ν2 − 2

ν2 − 6
, ν2 > 6,

Kurt (X) =
3
[
ν2 − 4 + 1

2 (ν2 − 6) [Skew (X)]
2
]

ν2 − 8
, ν2 > 8.

A.1.1 Remark. For the definition of the chi-square distribution consult [JKB94a].

A.1.7 Student’s t Distribution

Let U ∼ U(0, 1) and V ∼ χ2
ν then we have that

X = U

√
ν

V

follows a student t distribution with ν degrees of freedom. It has the pdf

f(x) =
Γ
(

1
2 (ν + 1)

)
√
πν Γ

(
1
2ν
) 1(

1 + x2

ν

) ν+1
2

All odd moments of X are zero. We have

E [X] = 0,

V [X] =
ν

ν − 2
, ν ≥ 2,

Skew (X) = 0,

Kurt (X) =
3 (ν − 2)

ν − 4
, ν ≥ 4.

A.1.8 Uniform Distribution on [0, 1]

A random variable X follows a uniform distribution on the interval [0, 1], noted X ∼
U(0, 1) if its distribution function is

f(x) = 1[0,1]

where 1[0,1] is the indicator function on [0, 1]. We have

E [X] =
1

2
,

V [X] =
1

12
,

Skew (X) = 0,

Kurt (X) =
9

5
.
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A.2 Correlation

A.2.1 Copula 3

Copulas are used in mathematical statistics to describe dependencies between random
variables. In general it is not possible to determine the cumulative distribution function
(cdf) F of a d dimensional random vector X from just its margin Fi, i = 1, . . . , d. They
have to be coupled in some way, which is where copulas come into place. First some
general definitions:

A.2.1 Definition. Let X = (X1, . . . , Xd) be a d-dimensional random vector defined on
a probability space (Ω,F ,P). Its properties are defined by its cumulative distribution
function

F (x1, . . . , xd) := P [X1 ≤ x1, . . . , Xd ≤ xd] , x1, . . . , xd ∈ R.

Then for i = 1, . . . , d the distribution functions Fi of Xi are called the marginal distribu-
tions of F and can be calculated from F via

Fi(xi) = lim
x1,...,xi−1,xi+1,...,xd→∞

F (x1, . . . , xd),

which is sometimes also written as

Fi(xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

A.2.2 Definition (Copula).

• A function C : [0, 1]d → [0, 1] is called a (d-dimensional) copula, if there is a probab-
ility space (Ω,F ,P) supporting a random vector (U1, . . . , Ud) such that Uk ∼ U(0, 1)
(the uniform distribution) for all k = 1, . . . , d and

C (u1, . . . , Ud) = P [U1 ≤ u1, . . . , Ud ≤ ud] , u1, . . . , ud ∈ R

• On a probability space (Ω,F ,P) let (U1, . . . , Ud) be a random vector on [0, 1]d whose
joint distribution function (restricted to [0, 1]d) is a copula C : [0, 1]d → [0, 1]. For
i = 2, . . . , d and indices 1 ≤ ji < . . . < ji ≤ d the notation Cj1,...,ji : [0, 1]i → [0, 1] is
introduced for the joint distribution function of the random subvector (Uj1 , . . . , Uji).
It is itself a copula and called an i-margin of C.

A.2.3 Remark. Note that for a random vector (U1, . . . , Ud) ∈ [0, 1]d the values of its cdf
on Rd \ [0, 1]d are completely determined by its values on [0, 1]d. For this reason copulas
are only defined on the d-dimensional unit cube.

The theoretical foundation for the use of copulas is given by the Sklar’s Theorem. In short
it states that it is always possible to decouple a multivariate probability distribution into
its marginal distributions and a copula. Conversely it is possible to build a multivariate
probability distribution by combining given margins with a copula. These two elements
are then often easier to handle than the law of the joint probability distribution.

3following [MS12]
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A.2.4 Theorem (Sklar’s Theorem). Let F be a d-dimensional distribution function
with margins F1, . . . , Fd. Then there exists a d-dimensional copula C such that for all
(x1, . . . , xd) ∈ Rd it holds that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (A.1)

If F1, . . . , Fd are continuous then C is unique. Conversely if C is a d-dimensional cop-
ula and F1, . . . , Fd are univariate distribution functions then the function F defined via
eq. (A.1) is a d-dimensional distribution function.

Let us now define the copula that we will use in our simulation

A.2.5 Definition (The Gaussian copula). On a probability space (Ω,F ,P) let (X1, . . . , Xd)
be a normally distributed random vector with joint distribution function

F (x1, . . . , xd) =

∫
×di=1(−∞,xi]

(2π)−
d
2 det(Σ)−

1
2 exp

(
−1

2
(s− µ)Σ−1(s− µ)ᵀ

)
ds

for a symmetric, positive-definite matrix Σ and a mean vector µ = (µ1, . . . , µd) ∈ Rd,
s := (s1, . . . , sd) and det(Σ) is the determinant of Σ. Denoting by σ2

1 := Σ11, . . . , σ
2
d :=

Σdd > 0 the diagonal entries of Σ, the marginal law Fi of Xi is a normal distribution with
mean µi and variance σi, I = 1, . . . , d. The copula CGaussΣ of (X1, . . . , Xd) is called the
Gaussian copula and is given by

CGaussΣ (u1, . . . , ud) := F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
. (A.2)

Lastly we will state a general theorem that will help us in the next subsection.

A.2.6 Theorem. Let X be a random variable with a continuous cdf FX . Then we have

• The random variable Y := FX(X) is uniformly distributed, i.e. Y ∼ U(0, 1).

• Let U ∼ U(0, 1), then Z := F−1
X (U) follows the same distribution as X.

For the proof of this theorem we refer to [MS12] (where the more general case of a non
continuous cdf FX is treated too). The second point of Theorem A.2.6 is the basis for an
often used algorithm to create pseudo random samples named inversion sampling.

A.2.7 Definition (Inversion Sampling). The inversion sampling method lets us generate
random samples of a random variable X which follows a cumulative distribution function
FX . It requires a method to generate uniform samples.
To sample from a given random variable X via inversion sampling we have to follow these
steps

1. Create a sample u from a uniform distribution on the intervall [0, 1]

2. Use the (generalized) inverse function F−1
X on u to get the value x = F−1

X (u). We
have that

FX(x) = FX
(
F−1
X (u)

)
= u

3. Then x can be taken as a random number drawn from the distribution given by FX .
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A.2.2 Generation of random variables with the Gaussian copula
One of the practical applications of the above is, that it is possible to generate pseudo
random samples of a multivariate probability distribution with given marginals and a
copula.
We use the following algorithm to generate correlated random variables:

A.2.8 Algorithm.
Inputs: A set of correlated risks (X1, . . . , Xn) with marginal cumulative distribution
Functions Fi, i = 1, . . . , n and a linear correlation matrix ρ ∈ [0, 1]n×n.

1. If ρ is positive definite the Choleski decomposition is used to find a matrix C such
that ρ = CᵀC. In the case that ρ is only positive semidefinite calculate the spectral
decomposition of ρ, i.e. ρ = UΛUᵀ, where Λ = diag(λ1, . . . , λn) is the diagonal
matrix consisting of the eigenvalues λ1, . . . , λn of ρ and U is an orthogonal matrix,
and set C := Λ

1
2Uᵀ.

2. Generate n standard normal variables Y = (Y1, . . . , Yn).

3. Set Z = YC.

4. Set ui = Φ(Zi) for i = 1, . . . , n, where Φ is the cdf of the standard normal distribu-
tion.

5. Set X̂i = F−1
i (ui).

Output: The vector (X̂1, . . . , X̂n) forms a sample from a multivariate distribution which
was generated using the correlations (ρij)i,j=1,...,n and marginals Fi, i = 1, . . . , n.

A.2.9 Remark. Notes to some of the steps

• Item 2 can be achieved multiple ways. We will use the built-in Matlab functions
for the creation of normal random variables. Generally the most used form is the
Box-Muller transformation method (see for example [Dev86]).

• Items 3 and 4 represent the copula part of the algorithm and generate a sample
vectorU = (u1, . . . , un), where each ui is a sample of a uniformly distributed random
variable Ui ∼ U(0, 1), i = 1, . . . , n (cf. Theorem A.2.6) generated by using the input
correlation ρ.

• Note that the linear correlation of the output is not exactly matching the input
correlation but is only an approximation. The application of the normal cumulative
distribution function in item 4 and the inverse cdf in item 5 lead to distortions.

• Item 5 is the inversion method and yields an output as described (cf. defini-
tion A.2.7).
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