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Abstract

Calculation of two-particle vertex functions is a fundamental ingredient
for both postprocessing of results obtained by dynamical mean field the-
ory (DMFT) as well as for diagrammatic extension of DMFT. The former
allows for comparison with several state-of-the art scattering experiments
beyond photoemission, like neutron, X-ray or electron-energy loss spectro-
scopies. As for the latter an efficient and precise calculation of irreducible
two-particle vertex functions is a mandatory step for including spatial cor-
relations on all length scales by means of the Dynamical Vertex Approxima-
tion. Hitherto, the considerable computational effort necessary for calcula-
tion of two-particle quantities has been one of the major limiting factors for
both applications. This thesis aims to overcome these limitations by break-
ing the calculation down into two parts - (i) a full numerical calculation of
the two-particle irreducible vertex functions in a low-frequency sector and
(ii) a replacement of the irreducible vertex functions in the high-frequency
sector with their corresponding asymptotic analytical expressions.

In the first part of this thesis, the theoretical framework for the calcula-
tion of two-particle quantities in the context of contemporary many-body
quantum mechanics is illustrated. In chapter 3, the analytical expressions
of the two-particle irreducible vertex functions in the high-frequency asymp-
totic regime are being calculated for all transferred bosonic frequencies and
all channels. Following a previous work by Jan Kuneš (PRB, 2011) the
downfolding terms, which are needed for the correction of the irreducible
vertex functions calculated on a drastically truncated frequency space, have
been derived. The numerical results for the high-frequency irreducible vertex
functions and the irreducible vertex functions, calculated by means of the
downfolding approach are given in chapter 4. Finally, conclusions are drawn
and an outlook for future algorithmic improvements is given in chapter 5.
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Kurzfassung

Die Berechnung von Zwei-Teilchen Vertex Funktionen ist ein wichtiger Schritt
beim Auswerten von Ergebnissen aus Berechnungen mittels der dynamischen
Molekularfeldtheorie (DMFT) auf Basis von Bethe-Salpeter Gleichungen,
sowie für diagrammatische Erweiterungen der DMFT. Erstere ermöglichen
direkte Vergleiche mit Ergebnissen aus Streuexperimenten wie Neutronen-,
Röntgen- oder Elektronenenergieverlustspektroskopie (EELS), wohingegen
letztere die Berechnung von nicht-lokalen Korrelationen, welche in DMFT
nicht berücksichtigt werden, ermöglicht. Die Hauptschwierigkeit bei der
Berechnung von Zwei-Teilchen Größen ist jedoch der beträchtliche numerische
Aufwand. Die vorliegende Diplomarbeit versucht dieses Problem zu umge-
hen, indem - (i) die irreduziblen Vertex Funktionen auf einem sehr beschränk-
ten, niedrigen Frequenzintervall numerisch berechnet werden und (ii) an-
schließend im restlichen Frequenzbereich die irreduziblen Vertex Funktionen
durch ihre korrespondierenden asymptotischen Ausdrücke ersetzt werden.

Im ersten Teil dieser Arbeit werden zuerst die quantenfeldtheoretischen
Methoden zur Berechnung von Zwei-Teilchen Größen beschrieben. In Kapi-
tel 3 werden die analytischen Ausdrücke für die Zwei-Teilchen irreduziblen
Vertex Funktionen für alle bosonischen Frequenzen und in allen Kanälen
im asymptotischen Bereich berechnet. Anschließend werden, auf der Ar-
beit von Jan Kuneš (PRB, 2011) aufbauend, Downfolding-Terme abgeleitet
und berechnet welche die, bei der Berechnung der Vertex Funktionen im
niedrigen Frequenzintervall, entstandenen Fehler korrigieren. In Kapitel 4
werden die numerischen Ergebnisse für die irreduziblen Vertex Funktionen
im asymptotischen Bereich sowie jene, durch ein Downfolding-Verfahren
berechneten irreduziblen Vertex Funktionen im niedrigen Frequenzbereich
dargestellt und analysiert. Zusammenfassend werden in Kapitel 5 Schlussfol-
gerungen aus den Ergebnissen, sowie Möglichkeiten zur weiteren Verbesserung
der entwickelten Methode aufgezeigt.
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1 Introduction

In solid state physics, if one neglects relativistic effects, one easily can write
down a ”theory of everything” described by a Schrödinger’s equation for the
many-body system

H|ψ >= i~
∂

∂t
|ψ > (1)

with H,ψ being the (time-independent) many-body Hamiltonian and the
many-body wave function respectively:

H(r1, ..., rn) = −
n∑
i=1

~2∇2
i

2mi
+

n∑
i=1

Ui +
1
2

n∑
i 6=j

Uij (2)

ψ := ψ(r1, ...; rn, t) (3)

where n is the number of particles. These are completely general expressions,
since Ui and Uij might be any one and two-particle potential. In the case of
solid state theory, Ui is the screened Coulomb potential of the atomic nuclei
and Uij the electron-electron interaction. In spite of the formal simplicity of
this equation, its exact solution is only possible for a very few, simple cases.
For systems where n ≤ 2, equation (2) can be solved analytically. This is for
example the case when calculating the energy levels of the hydrogen atom.
For n ≤ 10 one can at least solve (2) numerically. But in solid state physics,
where n ≈ 1023, a numerical exact solution for (2) is evidently impossible.
Therefore, reasonable approximations have to be performed to make this
problem treatable, without the loss of the relevant physical information. For
the investigation of the electronic structure of many-body systems in solid
state physics, e.g., one of the most successful theories of the last fifty years is
the density functional theory (DFT) [1,2]. With this theory, the properties
of a many-electron system can be determined by using functionals of the spa-
tially dependent electronic density. The very successful applications of DFT-
based methods, as well as their flexibility to treat ab-initio quite complicate
systems, has made these approaches the ”standard” treatment in condensed
matter. For these reasons, several numerical packages of high-reliability are
developed around the world, two of which, among the most famous, here
in Vienna (WIEN2k [3–5], VASP [6–9]). However, it is known that there
are important classes of systems which cannot be treated even with the
most advanced DFT-algorithms. One of the most important classes, where
DFT delivers inaccurate or even wrong results, are the strongly correlated
materials. These are systems, where the electron-electron interaction can-
not be neglected (or considered too rudimentarily) anymore. On the other
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hand, electron-electron interactions are responsible (or assumed to be) for a
number of astonishing effects in solid state systems, e.g. the Mott-Hubbard
metal-insulator transition (MIT) in the vanadates [10], the colossal magne-
toresistance of the manganites [11], the high-temperature superconductivity
of cuprates [12] and (possibly) of iron pnictides [13]. In order to describe
such systems using computational methods, one has to include explicitly the
electronic correlation. Different approaches and approximations have been
developed at this scope within existing theories, e.g. LDA + U [14, 15] for
density functional theory. However, instead of making substantial approx-
imations for the electron-electron interaction (i.e., the Uij term in Eq. 2)
within DFT, many-body physicists have focused on the solution of model
systems, which include the main physical aspects of the real system which
are being investigated. For correlated systems, a widely used model is the
Hubbard model [16], which in its simplest formulations, e.g. for a simple
bond case on a cubic lattice reads:

Ĥ = −t
∑
<ij>σ

(c†iσcjσ + c†jσciσ) + U
∑
iσσ
′

c†iσc
†
iσ′
ciσ′ ciσ (4)

Here, t is the hopping parameter for adjacent sites (< ij >) and U the
onsite Coulomb interaction. One of the advantages of using such a sim-
pler modelization is the direct applicability of field-theoretical methods. In
this respect, a major step forward in handling strongly correlated systems
numerically has been achieved by the development of the Dynamical Mean
Field Theory (DMFT) [17, 18]. DMFT becomes exact in the limit of high
spatial dimensions (d→∞) and already accounts for a large (local) part of
electronic correlations. The key element of this method consists in mapping
the (in general) intractable many-body lattice problem to a many-body lo-
cal problem (impurity-model), which can be solved using various impurity
solvers. The main approximation made in ordinary DMFT schemes is to as-
sume the lattice self-energy to be a momentum-independent (local) quantity,
which is evidently vigorously true only for d = ∞. Employing DMFT, it
has been possible for the first time, to describe most of the radical changes
upon going from a metal to a Mott insulator correctly. Beside the great
success of this theory, there exist non-local correlation phenomena, e.g. in
low-dimensional systems or in the proximity of (quantum) phase transi-
tions, where DMFT is no longer applicable. There has been recent progress
beyond DMFT through cluster extensions [19–22]. However, correlations
included within cluster approaches are necessarily short-range in nature due
to numerical limitations of the cluster size. A complementary route is pro-
vided by the diagrammatic extensions of DMFT, such as the dual-fermion
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method [23, 24], one-particle irreducible approach [25], DMF 2RG [26] or
the Dynamical Vertex Approximation (DΓA) proposed by Toschi, Katanin
and Held in 2007 [27,28]. All these diagrammatic extensions require the cal-
culation of the local two-particle vertex function of DMFT as preliminary
step. In the particular case of DΓA, instead of assuming the self-energy to
be local, one assumes the locality at an higher level of the diagrammatics,
i.e., for the fully irreducible two-particle vertex, and consider all (local or
nonlocal) self-energy diagrams that can be constructed from this vertex, e.g.
by means of Bethe-Salpeter or Parquet equations. Therefore, it is clear that
an efficient and precise calculation of the irreducible two-particle vertex is
a mandatory step for the successful diagrammatic extension of DMFT by
means of the Dynamical Vertex Approximation.

Let us also emphasize here that the calculation of irreducible vertex func-
tions is also very important in the context of realistic applications of DMFT.
In fact, local two-particle response functions are also sometimes calculated
in DMFT. However, the computation of non-local (two-particle) response
functions is a more difficult venture. This is because nonlocal dynamic cor-
relation functions of DMFT have to be calculated by means of the Bethe-
Salpeter equations [29], if not using the alternative path recently proposed
in [30], and hence also require the local irreducible vertex functions of
DMFT. Such additional postprocessing effort would be highly rewarding in
that, e.g., calculation of the dynamical susceptibilities allow for comparison
with state-of-the art scattering experiments like neutron, x-ray or electron
loss spectroscopies.

Hence, the calculations of two-particle vertex functions is a fundamental in-
gredient for both, postprocessing of DMFT results as well as diagrammatic
extension of DMFT. Hitherto, the significant computational effort neces-
sary for calculation of two-particle quantities has been one of the major
limiting factors of the above mentioned procedures. Since one has (for time-
independent Hamiltonians) to calculate the two-particle irreducible vertex
functions in a 3D-frequency space, one usually has to restrict oneself to a low
number of frequencies (throughout this thesis, numerical calculation of two-
particle irreducible vertex functions has been performed on a maximum fre-
quency space of 320 fermionic frequencies + 320 bosonic frequencies). In or-
der to perform calculation of two-particle quantities (e.g. irreducible vertex
functions) in larger frequency space within a reasonable time, other strate-
gies than brute-force numerical inversion of the related equations (Bethe-
Salpeter equations see Chap.2 and Chap.3) have to be considered [31, 32].
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In my thesis, I have followed a very promising strategy for calculation of
two-particle irreducible vertex functions by means of dividing the frequency
space in a low-frequency sector, where one still has to perform the numerical
inversion of the regarding Bethe-Salpeter equations, and a high-frequency
sector, where I have derived analytical expressions for the irreducible vertex
functions in an asymptotical high-frequency form. Employing the down-
folding scheme introduced by Jan Kuneš [33], I have used this asymptotical
irreducible vertex functions in all channels and for all bosonic frequencies
to calculate a correction term, which compensate for the error caused by
the truncation of the numerical inversion on a low frequency range (e.g. 40
fermionic frequencies). In order to give a rather self-consistent explanation
of this method, I have organized my thesis as follows:

In chapter 2, I have discussed the physical and mathematical importance
of the calculation of two-particle quantities and explained the theoretical
methods which I have used throughout my work. In the subsequent chap-
ter, Chap.3, I have computed the analytical expressions of the two-particle
irreducible vertex functions in the high-frequency asymptotic regime and
derived the correction terms, which are needed for the correction of the irre-
ducible vertex functions in all channels calculated on a drastically truncated
frequency space. The last chapter (Chap.4) is devoted to the presentation
of my numerical results. In particular, since the numerical analysis of the
two-particle vertex function is rather new in the literature in the very first
part of the chapter, I have analyzed the relation of the main frequency
structure of the different vertices with the physics of the Mott-Hubbard
transition. In the main part of Chap.4, I have focused on the comparison
of the numerical ”exact” irreducible vertex functions with the asymptotical
high frequency vertex functions and the truncated vertex functions. This
way, I could demonstrate the strength of the herein developed downfolding
procedure. At the same time I have also addressed limitations and possible
strategies for an improvement of the methodology. Finally in Chap.5 I have
briefly summarized the main results of this work as well as the perspectives
for future developments.
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2 Many-Body Green’s functions

In this chapter, I will give an overview about quantum field theo-
retical methods beyond the standard one-particle level. I will first
emphasize the importance of two-particle vertex functions within
the framework of the dynamical mean field theory (DMFT) and
as crucial input for diagrammatic extensions of DMFT. The sec-
ond part is dedicated to the basic definitions of two-particle ver-
tex functions and will provide us with the necessary tools for a
derivation of the analytic expressions of the vertex functions in
the asymptotic high-frequency regime.

2.1 Beyond two-point functions

Applying quantum field theoretical methods to condensed matter systems
is usually done on a one particle level [34–36], i.e., one deals with so called
two-point functions, e.g., the one-particle Green’s function. Since the one-
particle Green’s function already contains important information about the
physics of a correlated system (or model) such as the electronic density
of states, or the spectral function, calculation of the one-particle Green’s
function has been hitherto one of the major tasks of computational ma-
terial science. For example DMFT [17, 18, 37], which has become one of
the most successful theories in describing strongly correlated electron sys-
tems, has been typically applied for calculation of the one-particle Green’s
function (and of course of the related self energy). In principle, also two-
particle quantities can be calculated within DMFT [18]. This is usually
done for the easiest cases of the optical and thermal conductivity, where
vertex corrections are more easily neglected [18,38,39]. General calculation
of spectral properties at the two-particle level is mostly restricted to local
susceptibilities only. However, extending computational methods beyond
the one-particle level is still of great interest for several reasons, e.g.,

• calculation of ~q dependent susceptibilities χ(~q, ω) allow for compari-
son to a much broader set of the experimental data than only pho-
toemission, such as from inelastic neutron, Raman- or electron loss
spectroscopy;

• monitoring of the divergencies of static susceptibilities as function of
external control parameters (temperature, pressure, magnetic field,
etc.) and the reciprocal lattice vector allows for an investigation of
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the (quantum) phase transitions and an unbiased determination of
the order parameters;

• two-particle vertex functions are the basic ingredients for diagram-
matic extension of DMFT, such as the dynamical vertex approxima-
tion (DΓA) [27,28], the dual fermion approach (DF ) [23,24], the one-
particle irreducible approach (1PI) [25] and the most recentDMF 2RG
[26] approach.

Since the aim of this work is the calculation of (the asymptotic behavior
of) two-particle vertex functions, we will consider the n = 2 case only, i.e.,
the diagrammatic approach at the two-particle (4-point functions) level. Al-
though we will keep the basic ideas of one-particle quantum field theory (e.g.
partial summation, summation over Matsubara frequencies, etc.), as we will
se, one has to be careful when transferring the conventional ”diagrammatic
recipes” beyond two-point functions.

Our starting point for the derivation of the most fundamental relations at
the two-particle level will be the Hubbard model [16] on a simple cubic
lattice

ĤHubbard = −t
∑
<ij>σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ (5)

with next nearest neighbor hopping amplitude (t) and local Coulomb inter-
action U. Since, for the moment, we are interested in purely local quantities
at the DMFT level, we will drop the lattice index i and keep the spin in-
dex only. Then, the most fundamental quantity for the two-particle level is
the generalized two-particle susceptibility χ. It describes the propagation
of two electrons added/removed into the system. Following the notation of
Ref. [40], the definition is given as follows:

χσ1σ2σ3σ4(τ1τ2τ3τ4) :=< T (ĉ†σ1
(τ1)ĉσ2(τ2)ĉ†σ3

(τ3)ĉσ4(τ4)) >

− < T (ĉ†σ1
ĉσ2) >< T (ĉ†σ3

ĉσ4) > .
(6)

As we are dealing with a time-independent Hamiltonian, we can further sim-
plify this expression to a function depending only on three times (τ1,τ2,τ3,τ4 =
0). By employing a Fourier transformation, one ends up with an 3-frequency
function, which will be our main object for all further considerations:

χ(νσ, (ν
′
+ ω)σ

′
; (ν + ω)σ, ν

′
σ
′
) =

∫ β

0
dτ1dτ2dτ3χσσ′ (τ1, τ2, τ3)e−iντ1

ei(ν+ω)τ2e−i(ν
′
+ω)τ3 := χνν

′
ω

σσ′

(7)
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This function can be represented diagrammatically as in Fig. 1: As one

χνν ′ω
σσ′ =

Gσ(ν + ω)

−−βδνν ′δσσ′

Gσ(ν)

Gσ(ν + ω) Gσ′(ν ′ + ω)

F νν ′ω
σσ′

Gσ(ν) Gσ′(ν ′)

Figure 1: Generalized susceptibility in particle hole notation

can see from its diagrammatic representation, the generalized susceptibilty
can be split up into two separate parts, a disconnected and a connected
one. Since the disconnected part comes from the two separate one particle
propagations we can rewrite analytically the generalized susceptibility as:

χνν
′
ω

σσ′
= χνν

′
ω

0 δσσ′ −Gσ(ν)Gσ(ν + ω)F νν
′
ω

σσ′
Gσ′ (ν

′
)Gσ′ (ν

′
+ ω) (8)

with
χνν

′
ω

0 = −βGσ(ν)Gσ(ν + ω)δνν′ . (9)

Due to this separation, the interpretation of the function F is straightfor-
ward. F contains all connected two particle diagrams. This includes all
diagrams, which are not separated into two parts and, technically speaking,
are defined 1-particle irreducible (1PI). We recall here, that also in the one-
particle case, one can do such a separation. The main ingredients there, are
the full Green’s function G, a non-interacting Green’s function G0 and a self
energy part Σ. However, in the two-particle case, the concept of irreducibil-

G G0 G0 G0 G0 G0 G0

ΣH ΣH ΣH

Figure 2: Illustration of the concept of reducibility/irreducibility at the
one particle level. The given example is a diagrammatic representation of
the Hartree approximation. The right-most diagram of the picture can be
separated (red line) by cutting one bare Green’s function line

ity is more complex, since to split a 2P-connected diagram in two parts one
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should cut at least two lines. From here, one can formally introduce the
concept of 2P reducibility or irreducibility (2PI) of a diagram. Evidently, at
the 2P-level, there are different ways how to realize this separation [41].

For instance, when looking at a generic connected two particle-diagram,
we have two incoming and two outgoing legs. One possible way of cutting

F

3

4

2

1

Figure 3: Generic 4-point function F

such a diagram, is by separating (1,2) from (3,4) by cutting two internal
Green’s function lines. A very basic example for such a diagram would be

F

3

4

2

1

Figure 4: Vertex function vertical cut

a two-particle bubble diagram of second order. Similarly, as in the one par-
ticle case, where we were able to find an equation of motion including the
summation of irreducible diagrams, i.e. Dyson’s equation, we can perform

8



ν
′
+ ω, σ

′

ν
′
, σ

′

ν + ω, σ

ν, σ ν1, σ1

ν1 + ω, σ1

Figure 5: Bubble diagram

a geometric resummation also for the two-particle case, which is known as
the Bethe-Salpeter equation [29] As mentioned before, the separation of di-

= +F Γi Γi F

.

Figure 6: Diagrammatic representation of the Bethe-Salpeter equation. Γi
is the vertex function, irreducible in channel i (described below); F is the
full vertex function;

agrams, and hence the concept of irreducibility in the two-particle case is
not unique:

For instance, we can also cut F in a ”horizontal” way by separating (1,4)
from (2,3). A basic example for such a diagram would be also a two-particle
bubble diagram, but now vertically arranged. Moreover, there exists also a
third option for cutting, namely (1,4) from (2,3), which is not shown here.
Aiming at a more rigorous definition for such separation procedures, we in-
troduce below the concept of irreducibility for general two-particle diagrams
in a more formal way:

”A two-particle irreducible diagram is a two-particle diagram,
which can not be separated by cutting two internal Green’s func-
tion lines”

However, based on our previous considerations this definition of irreducibil-
ity at the 2P-level will be always connected to the ”type” of separation. We
usually refer to these three possible ways of separation with name of ”chan-

9



F

3

4

2

1

Figure 7: Vertex function with a horizontal cut

ν + ω ↑ ν
′
+ ω ↓

ν1 ↑ [ν1 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

Figure 8: Vertical bubble-diagram

nels” [41]. Considering our generic 4-point function, a separation (1,2) from
(3,4) is defined as ”longitudinal particle-hole channel”, whereas (1,4)
from (2,3) defines the ”vertical particle-hole channel”. As we will see
later (see chapter 2.2) these two channels are linked together via a special
symmetry relation. The third channel, (1,3) from (2,4) is somehow different,
since it includes diagrams which consist particle particle propagation only
and is therefore defined as ”particle-particle channel”. To summarize
the concept of irreducibility at the 2P-level, we recall that every connected
diagram of F can be classified either:

• fully irreducible → diagrams, which cannot be split up into two
parts by cutting two internal Green’s function lines
or as

10



F

3

4

2

1

Figure 9: Generic 4-point function F

• reducible (in a given channel)→ diagrams, which can be split up into
two parts by cutting two internal Green’s function lines (according to
the given channel)

There are no diagrams which are reducible in 2 channels [40]. Such classifi-
cations correspond essentially to the parquet equations [41–43].

Coming back to the Bethe-Salpeter equation, this can be defined in terms
of the channel to be considered. Therefore, there exist three Bethe-Salpeter
equations (one for each channel):

F = Γi +
∫∑

ΓiGGF (10)

The interpretation of these kind of equations is now straightforward: F is
the sum of all diagrams which are irreducible in the channel i + all diagrams
which are reducible in this channel, for which we use the notation of Φi:

Φi =
∫∑

ΓiGGF. (11)

Before we can proceed in the analysis of two-particle diagrams we have to
recall the definition of our main object, the Fourier transformed 4-point
function.

χνν
′
ω

σσ′
=
∫ β

0
dτ1dτ2dτ3χσσ′ (τ1, τ2, τ3)e−iντ1ei(ν+ω)τ2e−i(ν

′
+ω)τ3 (12)

Due to energy conservation this is a three-frequency object. We note here
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that this specific convention for the frequency definition is known as ”particle-
hole” notation. In fact, with this notation, χ describes an electron with
energy ν+ω being scattered by a hole with energy −ν and ω being the total
energy of this scattering process. However, since we only have to restrict
ourself to energy conservation, we can find another equivalent frequency
representation for χ, which we refer to a ”particle-particle” notation.

χνν
′
ω

pp,σσ′
=
∫ β

0
dτ1dτ2dτ3χσσ′ (τ1, τ2, τ3)e−iντ1ei(ω−ν

′
)τ2e−i(ω−ν)τ3 (13)

The physical motivation for this notation we can also see within the Fourier
integral, where two electrons with energies ν

′
and ω−ν ′ scatter. Due to the

fact that all scattering processes are included in the full Green’s function, it
is obviously possible to express the χpp in terms of χph and vice versa.

χνν
′
ω

pp,σσ′
= χ

νν
′
(ω−ν−ν′ )

ph,σσ′
(14)

χνν
′
ω

ph,σσ′
= χ

νν
′
(ω+ν+ν

′
)

pp,σσ′
(15)

2.2 Symmetries of Two-Particle Green’s functions

For a better understanding of the properties of two-particle vertex func-
tions and a more efficient numerical treatment, it is very useful to analyze
the behavior of those functions under symmetry transformations. We will
therefore give a brief overview on symmetry relations following Refs. [40]
and [44] for two particle functions and their implications on the further
calculations within this work (e.g., Spin diagonalization). Without loss of
generality, we will report here the symmetry relations in the particle-hole
frequency notation. Furthermore, although the equations reported below
are shown for χ and Γ, obviously similar relations exist also for F, which
can be found in Refs. [40] and [44].

2.2.1 Time-Reversal symmetry

Inside the time-ordering of Eq. 6 we can exchange the first two operators
with the 3rd and 4th. Using the anticommutation relations for fermionic op-
erators, one can permute the operators which, after Fourier transformation
leads to

χ
(ν
′
+ω)(ν+ω)(−ω)

σ′σ
= χνν

′
ω

σσ
′ (16)
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2.2.2 Crossing-symmetry

As a consequence of the Pauli principle, we can derive a second symmetry
relation, which is known as crossing-symmetry. The idea is that exchang-
ing two identical particles - which means exchanging all arguments of the
involved operators (i.e. the two c operators, should only change the sign of
the vertex function. For parallel spin (σ = σ

′
), exchanging cν′σ′ and c(ν+ω)σ

leads to

χν(ν+ω)(ν
′−ν)

σσ =< c†νσcν′σc
†
(ν′+ω)σ

c(ν+ω)σ > −
< (c†νσcν′σ) >< c†

(ν′+ω)σ
c(ν+ω)σ >

(17)

The derivation of this relation can be found in Ref. [40] and [44]

χν(ν+ω)(ν
′−ν)

σσ = −χνν
′
ω

σσ + χνν
′
ω

0 + χ
ν(ν+ω)(ν

′−ν)
0 (18)

For antiparallel spin (σ 6= σ
′
) the crossing symmetry reads as

χ
ν(ν+ω)(ν

′−ν)
σσ′ ,σ′σ

= −χν(ν+ω)(ν
′−ν)

σσ′
+ χνν

′
ω

0 (19)

For a complete derivation of the crossing-symmetry, we refer to [40]

2.2.3 SU(2) symmetry

If the Hamiltonian does not contain terms which are breaking rotation sym-
metry (e.g. a magnetic field), one can show that every matrix element (and
therefore also χ and F ) has to fulfill spin-conservation. A further conse-
quence is that we can find a relation of a χ and χ rotated by π

2 , which reads
as

χνν
′
ω

σσ = χνν
′
ω

σ(−σ) − χν(ν+ω)(ν
′−ν)

σ(−σ) + χνν
′
ω

0 (20)

2.2.4 Spin-diagonalization

As a consequence of the SU(2)-symmetry, we can set up a new ”spin-
diagonal” basis for the longitudinal particle-hole irreducible channel Γph and
the particle-particle irreducible channel Γpp in terms of linear combinations
of the two spin directions, (↑,↑) and (↑,↓). This can be done in the following
way:

The basic four-point function (and therefore also Γ) has 24 possible spin
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combinations (↑,↓ for each outer leg). Since we are dealing with a SU(2)
symmetric Hamiltonian, i.e. in the paramagnetic phase, we have spin con-
servation for all our diagrams. This reduces the number of combinations by
8. The remaining 8 combinations we can again reduce by 6 due to crossing
symmetry. The two remaining combinations of spins are (↑↑;↑↑) and (↑↓;↑↓),
which we indicate with a more compact notation as (↑↑) and (↑↓). Hence
at the level of Γ, the remaining quantities we have to calculate are Γph,↑↑,
Γph,↑↓,Γph,↑↑,Γph,↑↓,Γpp,↑↑,Γpp,↑↓.

If we further consider that the longitudinal channel can be transformed
to the vertical one and vice versa via the crossing symmetry, the remaining
quantities we have to calculate are Γph,↑↑, Γph,↑↓,Γpp,↑↑,Γpp,↑↓. This choice for
the channel definition, however, is not the most optimal one, because they
will be mixed by the Bethe-Salpeter equations. This problem can be avoided
by performing a so called diagonalization in the spin-sector, which decouples
all the four Bethe-Salpeter equations. The results of such diagonalization in
the spin-sector is given by:(

Γph,↑↑
Γph,↑↓

)
=⇒

(
Γd = Γph,↑↑ + Γph,↑↓
Γm = Γph,↑↑ − Γph,↑↓

)
(21)

(
Γpp,↑↑
Γpp,↑↓

)
=⇒

(
Γt = Γpp,↑↑
Γs = 2Γpp,↑↓ − Γpp,↑↑

)
. (22)

The first pair is typically called the density-/magnetic-channel, i.e. Γd(ensity)
and Γm(agnetic). The second pair, referring to the particle-particle sector is
called singlet-/triplet-channel, i.e. Γs(inglet) and Γt(riplet). This notations
and definitions will be used throughout the rest of this thesis.
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3 Asymptotic behavior of vertex functions Γ

In the last chapter, we have derived symmetry relations for two-
particle Green’s and vertex functions, which can now be used for
further analysis. The present chapter is dedicated to the deriva-
tion of the asymptotic behavior of the irreducible vertex func-
tion Γ. The concept of channel-dependent irreducibility of vertex
functions (see also chapter 2.2) will be explicitly discussed and
each channel will be analyzed separately. In particular, I will de-
rive the expressions of the equations for the irreducible particle-
hole and particle-particle channels in the asymptotic high-frequency
regime in terms of the irreducible Γ’s. I have also extended an al-
gorithmic procedure for calculation of the low-frequency sectors
of the irreducible Γ’s based on the work of Jan Kuneš ( [33])
to all channels and for all bosonic frequencies. A mathemati-
cal derivation based on the Lehmann representation [45] will be
given in the last part of this chapter

As mentioned in the introduction, the main goal of this thesis is the
calculation of the asymptotic behavior of two-particle irreducible vertex
functions of DMFT. This represent a very important step for improving
all algorithms using the Bethe-Salpeter equations in DMFT and for includ-
ing non-local correlations on all length scales by means of diagrammatic
extensions of DMFT [18, 23, 27, 33, 37]. Following Refs. [40, 41, 44], we start
from the Bethe Salpeter equations

F = Γi + Φi (23)

where Γi and Φi are the irreducible part and reducible part of channel i
(i = (ph, ph, pp)) respectively and the Parquet equation [41–43]

F = Λ + Φph + Φph + Φpp, (24)

where Λ is the fully two-particle irreducible vertex. Combining both equa-
tions (23) and (24) leads to

Γph = Λ + Φph + Φpp (25)

Γph = Λ + Φph + Φpp (26)

Γpp = Λ + Φph + Φph (27)
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for the vertex functions irreducible in channel i = (ph, ph, pp).

Similarly as χνν
′
ω, obviously Γ as well as Λ and Φ are 3-frequency functions.

In order to study the asymptotic frequency behavior of the irreducible ver-
tices Γi, we consider the 3-dimensional frequency space, spanned by the two
fermionic frequencies ν and ν

′
and the bosonic frequency ω. In fact, as we

will show explicitly in the following, the asymptotic behavior of Γνν
′
ω

i is not
uniform in the (ν, ν

′
, ω)-space, i.e., it strongly depends on the direction in

this space when approaching ∞ [40]

As mentioned in the previous chapter, since we are considering the para-
magnetic phase only, the relevant spin combinations are

(↑;↑) and (↑;↓).

Furthermore, as discussed in chapter 2.2 and [40], taking into account the
crossing symmetry, we can restrict ourselves to the calculation of the longi-
tudinal particle-hole irreducible channel (Eq. 25) and the particle-particle
irreducible channel (Eq. 27). As for the spin sectors (d,m,s,t), it is con-
venient to study the asymptotic behavior of Γph and Γpp in terms of (↑;↑)
and (↑;↓) spin channels and go back to the spin-diagonalized basis (d,m,s,t),
introduced in Chap. 2.2 later. For the study of the asymptotic behavior of
the vertex functions, we introduce the following notation, where the exact
way the high frequency limit is taken has to be explicitly specified1:

Γνν
′
ω

i,asympt := {Γνν
′
ω

i : lim
νν′ω→∞

Γνν
′
ω

i } (28)

3.1 Longitudinal Particle-Hole Channel

For calculation of this channel we use its natural frequency notation, i.e. the
particle-hole notation (see Eq. 12. As mentioned above, we first will calcu-
late all relevant diagrams for this channel in the (↑;↑) and (↑;↓) spin sectors
and finally use the spin-diagonalized basis in order to get the asymptotic
behavior of Γd(ensity) and Γm(agnetic). We will now study each part of the
right hand side of Eq. 25 separately.

1The asymptotic high-frequency behavior of Γνν
′
ω

i is not uniform in the (ν, ν
′
, ω)-space

but strongly depends on the direction in this space when approaching ∞. In this sense,

Γνν
′
ω

i,asympt contains all diagrams of Γνν
′
ω

i , which do not vanish when approaching ∞ along

certain directions in the (ν, ν
′
, ω)-space.
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3.1.1 fully irreducible diagrams Λ

Let us start analyzing the lowest order diagrams:

(↑↑)
We can immediately see that, due to Pauli’s principle, there is no contri-
bution to Λasympt at the first order in U (two electrons with parallel spin
cannot exist at the same place and at the same time).

ν
′
+ ω, σ

′

ν
′
, σ

′

ν + ω, σ

ν, σ

Figure 10: Lowest order diagram for Λ: for σ=σ
′

this diagram doesn’t exist

(↑↓)
For the antiparallel spin-case, the lowest order diagram does contribute to
the asymptotic fully-irreducible vertex (see Fig. 10 for σ 6= σ

′
gives a con-

stant U).

Moreover, for both spin combinations, all higher-order diagrams decay at
least as 1

ν . If we consider the subsequent order in perturbation theory for
Γ, this is given by the 4th order envelope diagram (Fig. 11). Our numerical
evaluation of this diagram demonstrate a uniform asymptotic behavior de-
caying at least as 1

ν . Evidently, higher order diagrams will display an even
stronger decay. Therefore, the only contribution to the asymptotic behavior
of Λ is given by the lowest order diagram in the (↑, ↓) shown in Fig. 10. The
corresponding sign can easily be calculated by explicitly applying Wick’s
theorem in the perturbation expansion and considering the anticommuta-
tion relations for fermionic operators. This yields that the diagram Fig. 10
contributes with a + sign and hence:

Λ↑↓,asympt = +U. (29)
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(ν + ω) ↑ (ν ′ + ω) ↑

ν ↑ ν ′ ↑
ν1 ↑

ν3 ↑

ν2 ↓ ν4 ↓

ν6 ↓

ν5 ↓
ν4 = −ν − ν ′ − ω + ν1 + ν2 + ν3
ν5 = −ν − ω + ν2 + ν3
ν6 = −ν + ν1 + ν2

Figure 11: An example of a 4th order envelope diagram for (↑↑)

3.1.2 reducible vertical particle-hole diagrams Φph,asympt

(↑↑)
The lowest order diagram which is contributing to the asymptotics is the
vertical particle-hole bubble (Fig. 12) In terms of Green’s functions, this

ν + ω ↑ ν
′
+ ω ↑

ν1 ↓ [ν1 + (ν
′ − ν)] ↓

ν
′ ↑ν ↑

Figure 12: Second order vertical particle-hole reducible diagram

reads

P1(ν, ν
′
) = −U

2

β

∑
ν1

G(ν1)G(ν1 + ν
′ − ν). (30)

If we now look at the asmyptotic behavior of this diagram, we find that for
keeping ν constant, this diagram vanishes for ν

′ →∞

lim
ν′→∞

P1(ν, ν
′
) = 0.

Obviously, we will get the same result if we exchange ν
′

by ν, i.e., ν → ∞.

18



ν + ω ↑ ν
′
+ ω ↑

ν2 ↓ [ν2 + (ν
′ − ν)] ↓

ν
′ ↑ν ↑

ν2 ↓

ν1 ↓ [ν1 + (ν
′ − ν)] ↓

ν3 ↑

(ν3 + ν1 − ν2) ↑

Figure 13: 4th order verti-
cal particle-hole reducible di-
agram

ν + ω ↑ ν
′
+ ω ↑

[ν2 + (ν
′ − ν)] ↓

ν
′ ↑ν ↑

ν2 ↓

ν1 ↓ [ν1 + (ν
′ − ν)] ↓

F abc
↓↓

a = ν1

b = (ν1 + ν
′ − ν)

c = (ν2 − ν1)

Figure 14: General verti-
cal particle-hole reducible di-
agram with vertex insertions

However, if we choose the path ν = ν
′

the vertical bubble diagram will not
vanish anymore. In fact, we can write P1(ν, ν

′
) as a function of only one

bosonic frequency, ν
′ − ν

P1(ν, ν
′
) = −U

2

β

∑
ν1

G(ν1)G(ν1 + ν
′ − ν) = +U2χ0(ν

′ − ν) (31)

In a similar way, we can now analyze also higher order diagrams of this class
(i.e. vertical particle-hole bubble with vertex insertions) and according to
Fig. (13, 14) this leads to

P2(ν, ν
′
) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν1+ν
′−ν)F ν1(ν1+ν

′−ν)(ν2−ν1)
↓↓ G(ν2)G(ν2+ν

′−ν).

(32)
Hence the contribution of the diagram shown in Fig. 14 can be also written
as effective one-frequency function P2(ν

′−ν). Summing up all contributions
to Φph↑↑,asymp (Eq. 30, Eq. 32) leads to

Φph↑↑,asympt =− U2

β2

∑
ν1ν2

[βG(ν1)G(ν1 + ν
′ − ν)δν1ν2

−G(ν1)G(ν1 + ν
′ − ν)F ν1(ν1+ν

′−ν)(ν2−ν1)
↓↓ G(ν2)G(ν2 + ν

′ − ν)].
(33)

According to Eq. 9, we can write the first part as −χν1ν2(ν
′−ν)

0 . For the
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second part, we use the crossing symmetry and write

F
ν1(ν1+ν

′−ν)(ν2−ν1)
↓↓ = −F ν1ν2(ν

′−ν)
↓↓ . (34)

For the SU(2) symmetric case, χν1ν2(ν
′−ν)

↓↓ = χ
ν1ν2(ν

′−ν)
↑↑ and we finally end

up with the following expression for Φph↑↑,asympt

Φph↑↑,asympt = +
U2

β2

∑
ν1ν2

χ
ν1ν2(ν

′−ν)
↑↑ = U2χ↑↑(ν

′ − ν). (35)

(↑↓)
We again start with the bubble-diagram without any vertex insertions (Fig.
15) and get the same asymptotic contribution as for the (↑↑) case

ν + ω ↑ ν
′
+ ω ↓

ν1 ↑ [ν1 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

Figure 15: Second order vertical particle-hole reducible diagram

P3(ν
′ − ν) = −U

2

β

∑
ν1

G(ν1)G(ν1 + ν
′ − ν). (36)

Considering all higher order diagrams (e.g. Figs. (16),(17)), this again leads
to a very similar expression as for the (↑↑) case namely,

P4(ν
′−ν) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν1+ν
′−ν)F ν1(ν1+ν

′−ν)(ν2−ν1)
↑↓ G(ν2)G(ν2+ν

′−ν)

(37)
Summing up all terms leads to

Φph↑↓,asympt =− U2

β2

∑
ν1ν2

[βG(ν1)G(ν1 + ν
′ − ν)δν1ν2

−G(ν1)G(ν1 + ν
′ − ν)F ν1(ν1+ν

′−ν)(ν2−ν1)
↑↓ G(ν2)G(ν2 + ν

′ − ν)].
(38)
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ν + ω ↑ ν
′
+ ω ↓

ν2 ↑ [ν2 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

ν1 ↑ [ν1 + (ν
′ − ν)] ↓

Figure 16: 4th order verti-
cal particle-hole reducible di-
agram

ν + ω ↑ ν
′
+ ω ↓

[ν2 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

ν2 ↑

ν1 ↑ [ν1 + (ν
′ − ν)] ↓

F abc
↑↓

a = ν1

b = (ν1 + ν
′ − ν)

c = (ν2 − ν1)

Figure 17: General verti-
cal particle-hole reducible di-
agram with vertex insertions

As for the (↑↑), we want to find an expression only in terms of χ0 and χ.
Applying the SU(2) symmetry

F
ν1(ν1+ν

′−ν)(ν2−ν1)
↑↓ = F

ν1(ν1+ν
′−ν)(ν2−ν1)

↑↑ + F
ν1ν2(ν

′−ν)
↑↓ . (39)

and using again the crossing symmetry for the (↑↑)-vertex yields

F
ν1(ν1+ν

′−ν)(ν2−ν1)
↑↓

crossing−symmetry
!= −F ν1ν2(ν

′−ν)
↑↑ + F

ν1ν2(ν
′−ν)

↑↓ . (40)

Now we can write Eq. 38 in terms of χ only, ending up with

Φph↑↓,asympt = +
U2

β2

∑
ν1ν2

(χν1ν2(ν
′−ν)

↑↑ − χν1ν2(ν
′−ν)

↑↓ )

=U2[χ↑↑(ν
′ − ν)− χ↑↓(ν ′ − ν)]

= U2χm(ν
′ − ν).

(41)

3.1.3 reducible particle-particle diagrams Φpp

For this section, we will slightly modify the way of drawing our diagrams
and put the outer ”particle-legs” on the upper side, and the outer ”hole-
legs” on the lower side. It is important to notice however, that we still
keep the particle-hole frequency notation used in the previous section. The
above mentioned step is only a ”trick” for better visualization of the particle-
particle reducible diagrams.
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(↑↑)
The lowest order contribution has the shape shown in Fig. 18 In contrast

ν + ω ↑ ν
′ ↑

ν1 ↓ −ν1 + ν + ν
′
+ ω ↓

ν
′
+ ω ↑ν ↑

Figure 18: This diagram cannot exist, due to Pauli’s principle

to the vertical particle-hole diagrams, we now have to consider the Pauli
principle, where two fermions with the same spin cannot be at the impurity
at the same time. If we look at the particle-particle bubble diagram in Fig.
18, we immediately see, that for the (↑↑) case, there is no contribution to
the asymptotics due to Pauli’s principle.

(↑↓)
For the (↑↓) case, the lowest order diagram has the following form (Fig. 19).
In terms of Green’s functions, this reads

ν + ω ↑ ν
′ ↓

ν1 ↑ −ν1 + ν + ν
′
+ ω ↓

ν
′
+ ω ↓ν ↑

Figure 19: Second order vertical particle-particle reducible diagram

P5(ν + ν
′
+ ω) =− U2

β

∑
ν1

G(ν1)G(−ν1 + ν + ν
′
+ ω)

= U2χ0(ν + ν
′
+ ω)

(42)
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ν + ω ↑ ν
′ ↓

ν1 ↑ −ν1 + ν + ν
′
+ ω ↓

ν
′
+ ω ↓ν ↑

ν2 ↑ −ν2 + ν + ν
′
+ ω ↓

Figure 20: 4th order vertical
particle-particle reducible di-
agram

ν + ω ↑ ν
′ ↓

−ν2 + ν + ν
′
+ ω ↓

ν
′
+ ω ↓ν ↑

ν2 ↑

ν1 ↑ −ν1 + ν + ν
′
+ ω ↓

Fabc
↑↓

a = ν2

b = ν1

c = (−ν1 − ν2 + ν + ν
′
+ ω)

Figure 21: General vertical particle-
particle reducible diagram with ver-
tex insertions

If we now look at the asymptotic frequency behavior, we find a non vanishing
contribution of Fig. 19 for

ν + ν
′
+ ω = const, (43)

assuming a maximum for
ν + ν

′
+ ω = 0. (44)

Considering higher order terms (Fig. 20, 21), we find a general expression
for such contributions

P6(ν, ν
′
, ω) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F ν2ν1(−ν1−ν2+ν+ν
′
+ω)

↑↓

G(−ν1 + ν + ν
′
+ ω)G(−ν2 + ν + ν

′
+ ω).

(45)

Summing up all contributions of the reducible particle-particle channel leads
to Eq. 46

Φpp↑↓,asympt = −U
2

β2

∑
ν1ν2

[−βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0

+G(ν1)G(ν2)F ν2ν1(−ν1−ν2+ν+ν
′
+ω)

↑↓ G(−ν1 + ν + ν
′
+ ω)G(−ν2 + ν + ν

′
+ ω)].
(46)
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If we rewrite this equation in terms of χ we can write Φpp↑↓,asympt as Eq.
47.

Φpp↑↓,asympt = −U
2

β2

∑
ν1ν2

[χν2ν1(−ν1−ν2+ν+ν
′
+ω)

↑↓ +

βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0].

(47)

Analyzing the diagrams in Fig. 21 and Fig. 17 for fixed ω, we see that
the main contribution of the reducible vertical particle-hole channel is along
the diagonal ν = ν

′
, whereas the reducible particle-particle channel has its

main contribution along the secondary diagonal ν = −ν ′ − ω, shifted by a
constant ω.

3.1.4 Γd(ensity) and Γm(agnetic)

Now we have all ingredients for calculating the asymptotics of the spin-
diagonalized vertices Γd and Γm, defined as

Γd,asympt = Γ↑↑ + Γ↑↓ (48)

Γm,asympt = Γ↑↑ − Γ↑↓. (49)

Inserting the results derived above, we end up with an equation for the
asymptotic behavior of Γd and Γm (Eq. 50,51).

Γd,asympt = U +
U2

β2

∑
ν1ν2

[2χν1ν2(ν
′−ν)

↑↑ − χν1ν2(ν
′−ν)

↑↓ − (χν1ν2(−ν1−ν2+ν+ν
′
+ω)

↑↓

+ βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0)]

(50)

Γm,asympt = −U+
U2

β2

∑
ν1ν2

[χν1ν2(ν
′−ν)

↑↓ + χ
ν1ν2(−ν1−ν2+ν+ν

′
+ω)

↑↓

+ βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0]

(51)

3.2 Particle-Particle channel

In the previous section, we calculated the asymptotics of the longitudinal
irreducible particle-hole channel Γph. Due to the crossing symmetry, we
do not have to calculate Γph explicitly and therefore, we will now turn to
the last remaining channel - the particle-particle irreducible channel Γpp.
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The natural frequency notation for this channel is the particle-particle no-
tation (see Eq. 13) and, therefore, Λasympt, Φph,asympt and Φph,asympt are
also calculated adopting this frequency convention. Although it is possible
to calculate Φph,asympt and use the crossing symmetry to get Φph,asympt, we
will explicitly calculate both parts to get a clear understanding of all con-
tributions to Γpp,asympt. To avoid any confusion concerning the frequency
notation, we will denote the frequency notation with an ”pp” superscript.

3.2.1 fully irreducible diagrams Λ

Since the Pauli principle has to be fulfilled no matter which frequency nota-
tion we adopt, we can directly use our results from the irreducible particle-
hole channel for Λ.

(↑↑)
For σ = σ

′
the diagram Fig. 22, which corresponds to an instantaneous and

local interaction of two up-spin electrons, vanishes due to Pauli’s principle.
All higher-order contributions to Λ↑↑ are at least of the order O( 1

ν ), and
hence, do not contribute to the asymptotics, as it was already discussed for
the longitudinal particle-hole channel.

ω − ν, σ
′

ν
′
, σ

′

ω − ν
′
, σ

ν, σ

Figure 22: Fully irreducible first order diagram. Due to Pauli’s principle,
this diagram vanishes for σ = σ

′

(↑↓)
For (↑↓), the contribution of the lowest order diagram reads as

Λasympt,↑↓ = +U. (52)

3.2.2 reducible particle-hole diagrams Φph,asympt

(↑↑)
The lowest order diagram is the second order bubble diagram in Fig. 23 In
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ω − ν, ↑

ν
′
, ↑

ω − ν
′
, ↑

ν, ↑
ν1, ↓

ν1 + ω − ν − ν
′
, ↓

Figure 23: Particle-hole reducible second order diagram for (↑↑)

ω − ν
′ ↑

ν ↑

ω − ν ↑

ν
′ ↑

ν1 ↓ ν2 ↓

ν2 + ω − ν − ν
′ ↓ν1 + ω − ν − ν

′ ↓

ν3 + ν2 − ν1 ↑ν3 ↑

Figure 24: 4th order longitudinal particle-hole reducible diagram in particle-
particle frequency notation

terms of Green’s functions, it has the following form (Eq. 53)

P7(ν, ν
′
, ω) = +

U2

β

∑
ν1

G(ν1)G(ν1 + ω − ν − ν ′). (53)

Looking at the second Green’s function G(ν1 + ω − ν − ν ′) in Eq. 53, we
find that this diagram depends on ω − ν − ν ′ only and contributes to the
asymptotics for

ω − ν − ν ′ = const (54)

assuming a maximum for
ω − ν − ν ′ = 0. (55)

Considering higher order terms (Fig. 24,25), we find a general expression
for such contributions according to Fig. 25.

P8(ν, ν
′
, ω) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↓

G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′).
(56)

(↑↓)
For the (↑↓)-case, the lowest order longitudinal particle-hole reducible dia-
gram which does not vanish is the third order diagram Fig. 26. In contrast
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F abc
↓↓

ω − ν
′ ↑

ν ↑
ν1 ↓

ν1 + ω − ν − ν
′ ↓ ν2 + ω − ν − ν

′ ↓

ν2 ↓

ω − ν ↑

ν
′ ↑

a = ν1

b = ν2

c = (ν1 + ν2 + ω − ν − ν
′
)

Figure 25: General longitudinal particle-hole reducible diagram in particle-
particle frequency notation with vertex insertions

ω − ν
′ ↑

ν ↑

ω − ν ↓

ν
′ ↓

ν1 + ω − ν − ν
′ ↓

ν1 ↓

ν2 + ω − ν − ν
′ ↑

ν2 ↑

Figure 26: Particle-hole reducible third order diagram in particle-particle
notation

to the second order bubble Fig. 23, which is not part of the diagram with
general vertex insertions Fig. 25 and therefore, has to be considered sepa-
rately when summing up all contributions, the third order diagram is part of
the general longitudinal particle-hole reducible diagram in Fig. 27. There-
fore, the analytic expression for Φpp

ph↑↓,asympt according to Fig. 27 reads as

F abc
↓↑

ω − ν
′ ↑

ν ↑
ν1 ↓

ν1 + ω − ν − ν
′ ↓ ν2 + ω − ν − ν

′ ↑

ν2 ↑

ω − ν ↓

ν
′ ↓

a = ν1

b = ν2

c = (ν1 + ν2 + ω − ν − ν
′
)

Figure 27: Particle-hole reducible diagram in particle-particle notation with
general vertex insertions

P9(ν, ν
′
, ω) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↑

G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′).
(57)
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Summing up all contributions to Φpp
ph

2 leads to

Φpp
ph↑↑,asympt = +

U2

β2

∑
ν1ν2

[βG(ν1)G(ν1 + ω − ν − ν ′)δν1ν2

+G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↓ G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′)]

(58)

Φpp
ph↑↓,asympt = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↑

G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′).
(59)

We want to express Φpp
ph↑↑,asympt and Φpp

ph↑↓,asympt in terms of χ, which leads
to

+
U2

β2

∑
ν1ν2

βG(ν1)G(ν1 + ω − ν − ν ′)δν1ν2 = −U
2

β2

∑
ν1ν2

χ
pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
0

(60)

+
U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↓ G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′)

=
U2

β2

∑
ν1ν2

[−χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↑↑ + χ

pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
0 ]

(61)

+
U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↑ G(ν1 + ω − ν − ν ′)G(ν2 + ω − ν − ν ′)

=
U2

β2

∑
ν1ν2

−χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↑

(62)

Inserting Eq. 60 and Eq. 61 into Eq. 58 leads to

Φpp
ph↑↑,asympt = +

U2

β2

∑
ν1ν2

−χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↑↑ (63)

and insterting Eq. 62 into Eq. 59 finally leads to

Φpp
ph↑↓,asympt = −U

2

β2

∑
ν1ν2

χ
pp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↓↑ . (64)

2To avoid any confusion concerning the frequency notation, we will denote the particle-
particle frequency notation with an ”pp” superscript
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ω − ν
′ ↑ ω − ν ↓

[ν2 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

ν2 ↑

ν1 ↑ ν1 + ν
′ − ν ↓

F abc
↑↓

a = ν2

b = (ν2 + ν
′ − ν)

c = (ν1 + ν2)

Figure 28: General vertical particle-
hole reducible diagram in particle-
particle frequency notation with
vertex insertions

ν + ω ↑ ν
′
+ ω ↓

[ν2 + (ν
′ − ν)] ↓

ν
′ ↓ν ↑

ν2 ↑

ν1 ↑ [ν1 + (ν
′ − ν)] ↓

F abc
↑↓

a = ν1

b = (ν1 + ν
′ − ν)

c = (ν2 − ν1)

Figure 29: General vertical particle-
hole reducible diagram in particle-
hole frequency notation with vertex
insertions

3.2.3 reducible vertical particle-hole diagrams Φpp

ph

For the reducible vertical particle-hole diagrams Φpp

ph,asympt
, we can directly

use our results for Φph,asympt in particle-hole notation. In fact as we see in
Eq. 14, the two frequency notations can be transformed into each other by
substituting ω as

ω → ω − ν − ν ′ . (65)

Since the transformation only affects ω, Φph,asympt is completely not affected
by this transformation. To illustrate this, we show a diagram contributing
to Φph,asympt in particle-particle notation and compare it to its counterpart
in the particle-hole notation. In terms of Green’s functions, Fig. 28 can be
written as

P10(ν, ν
′
) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F pp,ν1(ν1+ν
′−ν)(ν1+ν2)

↑↓ G(ν1+ν
′−ν)G(ν2+ν

′−ν).

(66)
whereas for the particle-hole notation, Fig. 29 can be written as

P11(ν, ν
′
) = +

U2

β2

∑
ν1ν2

G(ν1)G(ν2)F ν1(ν1+ν
′−ν)(ν2−ν1)

↑↓ G(ν1+ν
′−ν)G(ν2+ν

′−ν).

(67)
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Both diagrams do not depend on ω and we are summing over all internal
frequencies (ν1, ν2), which leads to the same result for both equations. This

can also be seen by rewriting F pp,ν1(ν1+ν
′−ν)(ν1+ν2)

↑↓ in Eq. 66 in terms of the
ph-notation. According to Eq. 68

F pp,νν
′
ω

↑↓ = F
νν
′
(ω−ν−ν′ )

↑↓ (68)

the vertex function in Eq. 67 can be written as

F
pp,ν1(ν1+ν

′−ν)(ν1+ν2)
↑↓ = F

ν1(ν1+ν
′−ν)(ν2−ν1)

↑↓ (69)

Since this ω-independency is valid for all asymptotic Φph diagrams, we do
not have to calculate Φph again for the irreducible particle-particle channel,
because it is the same as for the longitudinal particle-hole channel.

3.2.4 Γs(inglet) and Γt(riplet)

Now we have all ingredients for calculating Γs(inglet) and Γt(riplet). We use
the spin-diagonalized basis, derived in Sec. 2.2 and sum up all relevant
contributions

Γt(riplet)asympt = Γ↑↑ (70)

Γs(inglet)asympt = 2Γ↑↓ − Γ↑↑ = 2Γ↑↓ − Γt. (71)

Inserting all contributions lead to

Γt = Φpp
asympt,ph↑↑ + Φasympt,ph↑↑

= −U
2

β2

∑
ν1ν2

[χpp,ν1ν2(ν1+ν2+ω−ν−ν′)
↑↑ + χ

ν2ν1(ν
′−ν)

↑↑ ]
(72)

Γs = 2(Λ + Φpp
asympt,ph↑↓ + Φasympt,ph↑↓)− Φpp

asympt,ph↑↑ − Φasympt,ph↑↑

= 2U − 2
U2

β2

∑
ν1ν2

(χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↑↓ − χν1ν2(ν

′−ν)
↑↑ + χ

ν1ν2(ν
′−ν)

↑↓ )− Γt

(73)

Although we are now able to calculate the asymptotic triplet and singlet
channel numerically, we have a rather inconvenient form of Eq. 72 and Eq.
73, since we are mixing two different frequency notations in one equation.
It is advantageous to perform the frequency summation in only one nota-
tion and choose the particle hole notation for this. We therefore want to
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express χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )
↑↓ and χpp,ν1ν2(ν1+ν2+ω−ν−ν′ )

↑↑ in the particle-hole
notation which lead to

χ
pp,ν1ν2(ν1+ν2+ω−ν−ν′)
↑↑

ω→ω−ν1−ν2= χ
ν1ν2(ω−ν−ν′)
↑↑ (74)

χ
pp,ν1ν2(ν1+ν2+ω−ν−ν′)
↑↓

ω→ω−ν1−ν2= χ
ν1ν2(ω−ν−ν′)
↑↓ (75)

Eq. 72 and Eq. 73 can now be written as

Γt = −U
2

β2

∑
ν1ν2

[χν1ν2(ω−ν−ν′)
↑↑ + χ

ν2ν1(ν
′−ν)

↑↑ ] (76)

Γs = 2U − 2
U2

β2

∑
ν1ν2

(χν1ν2(ω−ν−ν′ )
↑↓ − χν1ν2(ν

′−ν)
↑↑ + χ

ν1ν2(ν
′−ν)

↑↓ )− Γt, (77)

which allows for numerical calculation in ph notation only.

3.3 Numerical calculation of the asymptotic Γasympt using ex-
act diagonalization

In the previous sections, we derived equations for Γdmst,asympt in terms of

generalized susceptibilities χνν
′
ω

σσ′
. We have shown that for Γdmst,asympt we

only have to deal with effective one-particle functions instead of the general
three-frequency function χνν

′
ω

σσ′
. We will explicitly discuss this one-frequency

dependence by using the definition of χνν
′
ω

σσ′
(Eq. 12 for the ph and Eq. 13 for

pp notation). The last step will be the numerical calculation of Γdmst,asympt
employing a standard ED (exact diagonalization) program. We will now
calculate each part of Γdmst (Eq. 50, 51, 76, 77) separately.

3.3.1 Explicit calculation of
∑

ν1ν2
χ
ν1ν2(ν

′−ν)
σσ′

Inserting the definition of χνν
′
ω

σσ′
(Eq. 12) leads to∑

ν1ν2

χ
ν1ν2(ν

′−ν)
σσ′

=
∑
ν1ν2

∫ β

0
dτ1dτ2dτ3e

−iν1(τ1−τ2)

e−iν2τ3ei(ν−ν
′
)τ2e−i(ν

′−ν)τ3χσσ′ (τ1, τ2, τ3)

(78)

with

χσσ′ (τ1τ2τ3) :=< T (ĉ†σ(τ1)ĉσ(τ2)ĉ†
σ′

(τ3)ĉσ′ ) >

− < T (ĉ†σ(τ1)ĉσ(τ2)) >< T (ĉ†
σ′

(τ3)ĉσ′ ) > .
(79)
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We can now interchange the summation and integration and use the follow-
ing identity for summation over Matsubara frequencies:∑

ν

e−iντ = βδ(τ). (80)

Inserting Eq. 80 into Eq. 78 and performing the summations over ν1 and
ν2 we get ∑

ν1ν2

χ
ν1ν2(ν

′−ν)
σσ′

= β2

∫ β

0
dτei(ν

′−ν)χσσ′ (τ, τ, 0) (81)

where τ1 → τ , τ1 = τ2 and τ3 = 0. Now there is only one time-integration
left with a bosonic frequency (ν

′ −ν) in the exponential. Since in this work,
we will calculate Eq. 81 numerically employing a ED solver, we have to intro-
duce a representation in terms of of the matrix elements of χσσ′ (τ, τ, 0) which
is known as Lehmann-Representation [45]. It is the representation of corre-
lation functions of a many-body problems in terms of a complete set {|n >}
of eigenstates of the full many-particle Hamiltonian. Since χσσ′ (τ, τ, 0) con-
tains a matrix element of a two-particle propagator and a product of two
one-particle propagators, we will discuss them separately. We start with the
matrix element of the two-particle propagator, which we call A

A =< T (ĉ†σ(τ)ĉσ(τ)ĉ†
σ′
ĉσ′ ) > (82)

Since the integration in Eq. 81 is on the positive time-interval [0, β], the
operators are already arranged in the correct time-order. In the next step,
we insert a complete set of eigenstates {|n >} of the full Hamiltonian and
use the finite temperature expression of the expectation value < ... >

A =
1
Z

∑
i,n

< i|e−βH(ĉσ(τ)†ĉσ(τ)|n >< n|ĉ†
σ
′ ĉσ′ )|i > (83)

inserting the Heisenberg picture of the operators ĉ and ĉ† leads to

A =
1
Z

∑
i,n

e−βEie−Eiτe−Enτ < i|ĉ†σ ĉσ|n >< n|ĉ†
σ′
ĉσ′ |i > . (84)

We now insert Eq. 84 into Eq. 81 and integrate over [0, β] For (ν
′ 6= ν) and

Ei 6= En, the integration is straightforward and lead to

β2

∫ β

0
dτei(ν

′−ν)A =
β2

Z

∑
i,n

< i|(ĉ†σ ĉσ|n >< n|ĉ†
σ′
ĉσ′ )|i >

(e−Enβ − e−Eiβ)
i(ν ′ − ν) + Ei − En

(85)
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We note that Eq. 85 contains singularities within the integration interval.
At the pole (ν

′
= ν ∧ Ei = En) however these can be easily resolved by

means of the L’Hospital rule:

β2

∫ β

0
dτei(ν

′−ν)A
ν→ν

′

Ei=En=
β3

Z

∑
i,n

< i|(ĉ†σ ĉσ|n >< n|ĉ†
σ′
ĉσ′ )|i > e−Enβ (86)

We now discuss the second part of χσσ′ (τ, τ, 0), which we call B

B =< ĉ†σ(τ)ĉσ(τ) >< ĉ†
σ′
ĉσ′ > (87)

The evaluation of B is much simpler since we do not have to insert a complete
basis set and therefore can directly express Eq. 88 as

B =
1
Z2

∑
i,j

< i|e−βH ĉσ(τ)†ĉσ(τ)|i >< j|e−βH ĉ†
σ′
ĉσ′ |j > (88)

which then gives

B =
1
Z2

∑
i,j

e−βEie−βEj < i|ĉ†σ ĉσ|i >< j|ĉ†
σ′
ĉσ′ |j > (89)

. We now insert Eq. 89 again into Eq. 81 and integrate over [0, β]

β2

∫ β

0
dτei(ν

′−ν)B =
β2

Z2

1
i(ν ′ − ν)

(ei(ν
′−ν)β − 1)∑

i,j

e−βEie−βEj < i|ĉ†σ ĉσ|i >< j|ĉ†
σ′
ĉσ′ |j >

(90)

For ν
′ 6= ν Eq. 90 gives 0 since

ei(ν
′−ν)β − 1 = e

i 2nπ
β
β − 1 = 0. (91)

For ν
′

= ν the integration is trivial and leads to

β2

∫ β

0
dτB =

β3

Z2

∑
i,j

e−βEie−βEj < i|(ĉ†σ ĉσ|i >< j|ĉ†
σ′
ĉσ′ )|j > (92)

Eq. 85, Eq. 86 and Eq. 90, Eq. 92 are now the expectation values which
we can easily be evaluated by using an ED-solver. In fact, contrary to the
general case of a two-particle Green’s function, here we have only matrix
elements of density operators, which allows for significant speed-up when
using the ED-solver.
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3.3.2 Explicit calculation of
∑

ν1ν2
χ
ν1ν2(−ν1−ν2+ν+ν

′
+ω)

↑↓

Inserting the definition of χνν
′
ω

σσ′
(Eq. 12) leads to

∑
ν1ν2

χ
ν1ν2(−ν1−ν2+ν+ν

′
+ω)

↑↓ =
∑
ν1ν2

∫ β

0
dτ1dτ2dτ3e

−iν1τ1ei(−ν2+ν+ν
′
+ω)τ2

e−i(ν1+ν+ν
′
+ω)τ3χ↑↓(τ1, τ2, τ3)

(93)

with

χ↑↓(τ1τ2τ3) :=< T (ĉ†↑(τ1)ĉ↑(τ2)ĉ†↓(τ3)ĉ↓) >

− < T (ĉ†↑(τ1)ĉ↑(τ2)) >< T (ĉ†↓(τ3)ĉ↓) > .
(94)

For the first part of Eq. 93, we can rewrite the exponential functions and
use the identity Eq. 80 for summation over Matsubara frequencies.

A :=
∑
ν1ν2

∫ β

0
dτ1dτ2dτ3e

−iν1τ1ei(−ν2+ν+ν
′
+ω)τ2e−i(ν1+ν+ν

′
+ω)τ3 < ... >

=
∫ β

0
dτ1dτ2dτ3(

∑
ν1

e−iν1(τ1−τ3))(
∑
ν2

e−iν2τ2)× ei(ν+ν
′
+ω)(τ2−τ3) < ... >

Eq.(80)
= β2

∫ β

0
dτe−iτ(ν+ν

′
+ω) < T (ĉ†↑(τ)ĉ↑(0)ĉ†↓(τ)ĉ↓(0)) >

(95)

For the second part of Eq. 93, due to the periodicity of the Matsubara
Green’s function, we can perform the transformation τ1 → τ1 + τ2

3.

B := −
∑
ν1ν2

∫ β

0
dτ1dτ2dτ3e

−iν1τ1ei(−ν2+ν+ν
′
+ω)τ2e−i(ν1+ν+ν

′
+ω)τ3 < .. >< .. >

= −
∑
ν1ν2

∫ β

0
dτ1dτ3e

−iντ1e−i(−ν1+ν+ν
′
+ω)τ3 ×

(∫ β

0
dτ2e

i(−ν1−ν2+ν+ν
′
+ω)τ2

)
< .. >< .. > .

(96)

3This transformation does not affect the integration limits. For further details see
Appendix of Ref. [40]
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Performing the integration over τ2 leads to

B = −
∑
ν1ν2

∫ β

0
dτ1dτ2dτ3e

−iν1τ1ei(−ν2+ν+ν
′
+ω)τ2e−i(ν1+ν+ν

′
+ω)τ3 < .. >< .. >

= −
∑
ν1ν2

∫ β

0
dτ1dτ3e

−iντ1e−i(−ν1+ν+ν
′
+ω)τ3 ×

(
βδ(−ν1−ν2+ν+ν′+ω)0

)
< .. >< .. > .

(97)

Since Eq. 97 cancels the last term of Eq. 50 and Eq. 51, we only have to
calculate Eq. 95 explicitely.

We first perform the transformation τ → β − τ which leads to

A = β2

∫ β

0
dτe+iτ(ν+ν

′
+ω) < T (ĉ†↑(0)ĉ↑(τ)ĉ†↓(0)ĉ↓(τ)) > . (98)

Applying the commutation rules for fermionic operators we get

A = −β2

∫ β

0
dτe+iτ(ν+ν

′
+ω) < T (ĉ↑(τ)ĉ↓(τ)ĉ†↑(0)ĉ†↓(0)) > . (99)

Inserting a full basis set {|j >< j|} and using the definition of a finite
temperature expectation value yields to the Lehmann-Representation of Eq.
100

A = −β
2

Z

∑
i,j

∫ β

0
dτe+iτ(ν+ν

′
+ω) < i|e−βH ĉ↑(τ)ĉ↓(τ)|j >< j|ĉ†↑(0)ĉ†↓(0)|i > .

(100)

Since τ > 0, the time ordering operator has no effect on the order of the
operators and we can directly evaluate the matrix elements of Eq. (100)

A = −β
2

Z

∑
i,j

∫ β

0
dτe+iτ(ν+ν

′
+ω)e−βEieτEie−τEj < i|ĉ↑ĉ↓|j >< j|ĉ†↑ĉ†↓|i > .

(101)

Performing the time integration, we finally get

A = −β
2

Z

∑
i,j

< i|ĉ↑ĉ↓|j >< j|ĉ†↑ĉ†↓|i >
i(ν + ν ′ + ω) + Ei − Ej ×

(
e−βEj − e−βEi

)
. (102)
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As before, at the pole (ν + ν
′

+ ω = 0 ∧ Ei = Ej), we have to apply
L’Hospitals’s rule which yields to

A

ν+ν
′
+ω→0

Ei=Ej= −β
3

Z

∑
i,j

< i|ĉ↑ĉ↓|j >< j|ĉ†↑ĉ†↓|i > ×e−βEi . (103)

This way, Eq. 102 and Eq. 103 can now be solved by using a standard
ED-Solver.
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3.4 Downfolding procedure

Separation of low and high frequency parts of a given problem is common in
theoretical physics. Also for some numerical solvers of DMFT (see Ref. [46]),
such separation is used for the calculation of the self-energy: the numerical
solution of the Dyson equation at low-frequencies is augmented by a high-
frequency asymptotic expansion obtained from the lowest moments of the
spectral function. As for the calculation of the irreducible vertex functions
Γ, we can proceed in a similar way as in the DMFT-practice, but of course
working at the level of the Bethe-Salpeter equation instead of the Dyson
equation. We will now consider explicitly the Bethe-Salpeter equations for
the four different channels (d,m,s,t) and use the high-frequency expansion
in order to reduce the computational effort for the inversion of the equa-
tions. Following the derivation by Jan Kuneš [33], we will end up with an
equation, where Γ can be obtained by inverting the Bethe-Salpeter equation
truncated to the low-frequency regime plus a correction term including the
high-frequency asymptotic Γ’s.

We will write down a general Bethe-Salpeter equation for channels (d,m)
in terms of matrices as following:

χ = χ0 − 1
β2
χ0 × Γ× χ (104)

The matrices χ,χ0 and Γ are arranged in sectors of small-(ν, ν
′
) and large-

(ν, ν
′
) denoted by indices 0,1. E.g., the sector (0,1) of the matrix Γ is a

sector with small ν and large ν
′

indices of Γνν
′
ω. For the moment, we do

not specify how the border between the low and high frequency subspaces
have to be chosen. This will be discussed in the next chapter. Using the
above mentioned notation, equation Eq. (104) can be written as

[
A00 A01

A10 A11

]
=
[
B00 0
0 B11

]
− 1
β2

[
B00 0
0 B11

] [
Γ00 Γ01

Γ10 Γ11

] [
A00 A01

A10 A11

]
(105)

where A = χ and B = χ0 for an easier reading. We now want to express Γ00

in terms of A00,B,Γ01,Γ10,Γ11 and we will use the results of the asymptotic
of Γ for the latter three. Algebraic manipulations of equation Eq. (105) lead
to

Γ00 = β2
(
[Γ01A10 + 1]A−1

00 −B−1
00

)
(106)
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with A10 being

A10 = − 1
β2

(
1 +

1
β2

Γ11

)−1

(B11Γ10A00) . (107)

Inserting Eq. (107) into Eq. (106) and switching to χ = A and χ0 = B
finally leads to

Γ00 = β2

[
χ−1

00 − χ−1
0(00) −

1
β2

Γ01

[
1 +

1
β2

Γ11

]−1

χ0(11)Γ10

]
. (108)

The last term of equation Eq.(108) can be interpreted as a correction to
the inversion of the truncated Bethe-Salpeter equation in the low-frequency
subspace (β2[χ−1

00 − χ−1
0,00]). For the remaining channels (s,t), we follow the

same algebraic manipulation steps as for the (d,m) channels but now starting
with a different Bethe-Salpeter equation. In fact, for the triplet channel, the
Bethe-Salpeter equation can be written as

χtpp = χ0,pp − 1
2β2

(
χ0,pp + χpp

)
× Γpp × χ0,pp. (109)

If we now move to new variables A = χpp+χ0,pp and B = χ0,pp, Equation
Eq. (109) can be written as

A = 2B − 1
2β2

A× Γpp ×B. (110)

After algebraic manipulation of equation Eq. (110), we can again write
down an equation for the low-frequency sector Γpp,00 as an inversion of a
truncated Bethe-Salpeter equation plus a correction term

Γtpp,00 = 4β2A−1
00 − 2β2B−1

00 −
1

2β2
Γpp,01B11

[
1 +

1
2β2

Γpp,11B11

]−1

Γpp,10.

(111)
For better reading, we have kept here the notation A = (χpp + χ0,pp),

B = χ0,pp.
The Bethe-Salpeter equation for the singlet channel can be written as

χspp = −χ0,pp − 1
2β2

(
χ0,pp − χpp

)
× Γpp × χ0,pp. (112)

38



We will move to new variables A = (χpp−χ0,pp) and B = χ0,pp and write
down equation Eq.(112) as

A = −2B +
1

2β2
A× Γpp ×B. (113)

After algebraic manipulation of equation Eq. (113), we can again write
down an equation for the low-frequency sector Γpp,00 as an inversion of a
truncated Bethe-Salpeter equation plus a correction term

Γspp,00 = 4β2A−1
00 + 2β2B−1

00 −
1

2β2
Γpp,01B11

[
1− 1

2β2
Γpp,11B11

]−1

Γpp,10.

(114)
These equation complete the analytical derivations we need to extend the
work of Jan Kuneš [33] to the particle-particle channel as well as to the ω 6= 0
case. As we will se by discussing our numerical results in the next chapter,
the value of the (bosonic) transfer frequency ω plays an important role for a
correct determination of a ”low-frequency” subspace in actual calculations.
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4 Numerical Results

In this chapter, the analytic expressions for Γdmst,asympt derived
in the previous chapter are exploited for a numerical determi-
nation of the DMFT vertex functions of the half filled Hubbard
model, especially in the most interesting regime of the Mott-
Hubbard Metal-to-Insulator transition (MIT). The chapter is di-
vided into three parts. I will start with a short discussion of
the Mott Metal-Insulator transition (MIT) and its influence on
dynamical response functions. In the second part, numerical re-
sults for the vertex functions are presented and used to identify
the hallmarks of the MIT within their frequency structures. In
the last part, I will compare vertex functions, calculated via an
inversion on a large frequency interval (320 fermionic frequen-
cies), with the corresponding vertex functions, calculated by us-
ing only a small frequency interval (40-80 fermionic frequencies)
plus a correction term, derived from the high-frequency asymp-
totic behavior. The results demonstrate the applicability of such
procedure in all channels. Furthermore, comparing the numeri-
cally calculated vertex functions with the purely asymptotic high
frequency vertex function has been helpful for determining the
minimal frequency interval, required for numerical inversion

4.1 Physics of the Mott Metal-to-Insulator transition

The most important approach for describing the electronic properties of
materials is based on electronic band theory. There exist numerous approx-
imations, like the nearly free electron approximation or the tight binding
model [47–49], which cover many aspects of the band structure of different
materials. According to band theory, the electronic conductivity of materials
is determined by the number of electrons per unit cell. If materials consist of
a lattice of atoms, each with an outer shell of electrons which freely dissociate
from their parent atoms and travel through the lattice, they are predicted
as conductors by standard band theories. However, in 1937 de Boer and
Verwey [50] pointed out that a variety of transition metal oxides, predicted
to be conductors by band theory, are insulators. This problem had occurred
because standard band theory treats the electron-electron interactions only
rudimentarily, which is a good approximation for most of the metals but
gets worse or even fails for a variety of other materials such as transition
metal oxides. An explanation for this ”anomaly” was first given by Nevill
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Mott and Rudolf Peierls [51]. They suggested that the electron-electron in-
teraction (correlation effects) are the main reason for the metal to insulator
transition within the transition metal oxides. Although the physical picture
is very intuitive, non-perturbative and computational calculations of the
correlation effects, and hence, of the metal-insulator transition (MIT) were
not possible until the development of DMFT. Since a detailed explanation of
the MIT can be found in the literature (e.g. [18,37,51]), we will concentrate
here on the effects of the MIT on the vertex functions and susceptibilities.

4.2 Mott transition and Vertex Functions

4.2.1 The MIT in the susceptibilities

The MIT can be understood as the suppression of electron mobility in a
partially filled system and the consequent formation of a long-living local
moment due to correlation effects. At the one-particle level, the MIT is char-
acterized by a divergence of the self energy Σ(ω) at ω = 0, which suppresses
the electronic spectral weight at the Fermi level while at the two-particle
particle level, the MIT becomes manifest in the 1

T divergence of the local
magnetic susceptibility χm(ω = 0). In the SU(2)-symmetric case the mag-
netic susceptibility in τ−space is given for τ > 0 by

χm(τ) =< Ŝz(τ)Ŝz > (115)

with
Ŝz(τ) =

1
2

(n̂↑(τ)− n̂↓(τ)) (116)

being the spin operator in z-direction. Hence, we can express χm(τ) as

χm(τ) =
1
2

(< n̂↑(τ)n̂↑ > − < n̂↑(τ)n̂↓ >). (117)

If we consider the regime of weak interactions (U < Ucrit), where Ucrit is
the U at the Mott transition point, χm quickly decays in τ due to temporal
fluctuations of the local spin due to the high electron mobility in the metallic
regime, whereas in the limit of strong interaction (U > Ucrit), all local spin
correlations are strongly enhanced, resulting in a huge magnetic response
function χm. In particular for U > Ucrit when the electron mobility is (al-
most totally) suppressed, χm(τ) becomes an almost constant function in τ .
In frequency space, this corresponds to a Curie-Weiss 1

T divergence of χm(ω)
at zero Matsubara frequency ω = 0. In Fig. 30 and Fig. 31, we have plotted
χd(ω = 0), χm(ω = 0) and χpp(ω = 0) for β = 26.0 and β = 50.0 respec-
tively. For both values of β, we observe a strong enhancement of χm(ω = 0)
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at the MIT, reaching a plateau in the Mott insulating phase. However, this
plateau is proportional to β, i.e. proportional to 1

T . In contrast to β = 50.0,
the behavior of χm(ω = 0) is rather smooth for β = 26.0. This is consistent
with the phase diagram of the Hubbard model, where at T > Tc the MIT
changes to a smooth crossover, while for T < Tc we observe a first order
phase transition. Tc is the lower tip of a crossover region where, in DMFT,
a smooth and continuous change of the physical properties is found by in-
creasing U. Note that this situation closely resembles the well-known one of
the liquid-gas transition.
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Figure 30: Visualization of the metal-insulator transition (MIT) in the two
particle response functions χd,m,pp(ω = 0) as function of U for β = 26.0..
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Figure 31: Same plot of the Metall-Insulator transition (MIT) in the two
particle response functions χd,m,pp(ω = 0) as function of U but now for
β = 50.0. In comparison to β = 26.0 one observes a stronger divergence of
the magnetic susceptibility due to the lower temperature compared to Fig.
30

While χm diverges at the MIT, local density and particle-particle fluc-
tuations and hence, χd and χpp are strongly suppressed. The considerations
are similar for both response functions, hence we will focus on χd only, which
is given by

χd(τ) = 2(< n̂↑(τ)n̂↑ > + < n̂↑(τ)n̂↓ > −2 < n̂↑(τ) >< n̂↑ >). (118)

For U < Ucrit at τ = 0, we observe a rather large value for χd(τ = 0) due
to a high electron mobility4. In the opposite limit, for U > Ucrit the onsite
Coulomb repulsion is the dominating energy scale, thus suppressing, as we
already mentioned, electron mobility. Hence, the local density response of
the system on an additional chemical potential will become very small. As
can be seen in Fig. 30 and Fig. 31, χd(ω = 0) can be oughly estimated as
N(ε = εF ) ≈ 1

2 at U = 0 whereas for U > Ucrit we observe a smooth disap-
pearance of χd for T � Tcrit and a first order phase transition for T � Tcrit.

As for the remaining susceptibility, χpp, one observes a very interesting
phenomenon. χd and χpp perfectly coincide (Figs. 30, 31). This happens
because, at half-filling, there exist an additional symmetry in the Hubbard
model as well as in its associated AIM in DMFT called particle-hole sym-
metry. While for a detailed discussion we refer to the literature [40,52], here

4For τ = 0 and U = 0 one can calculate Eq.118 analytically and gets χd(τ = 0) = 1
2

for U = 0, while χd(ω = 0) ≈ N(ε = εF
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we will give just a short explanation of this special symmetry:

At half filling, one can make use of a (partial) particle-hole transformation
in order to map the repulsive (U > 0) onto the attractive (U < 0) Hubbard
model [53]. By means of such a transformation the x− and y−components
of the Spin S are mapped on a local cooper-pair density (c†↑c

†
↓), which is

connected to χpp, and its z−component to the charge density (n↑), which
corresponds to χd [54]. For SU(2) symmetry, all three spin components are
degenerate, which also holds for the quantities on which they are mapped.
Hence, one gets the result, that local charge-fluctuations, referring to χd
and local particle-fluctuations, referring to χpp, coincide, which is verified
numerically in Figs. 30 and 31.

4.2.2 The MIT in the asymptotical irreducible vertex functions

In Chap. 3, we were able to express the asymptotics of the irreducible vertex
functions Γdmst solely by using the physical susceptibilities χm,d,pp. Hence
one expects to observe hallmarks of the MIT also in the high-frequency
behavior of these vertex functions. In fact, our calculations confirm this
expectation. For instance, if we consider the asymptotics of, e.g., the irre-
ducible vertex function Γd (see Eq. 50 in Chap. 3):

Γd,asympt = U +
U2

β2

∑
ν1ν2

[2χν1ν2(ν
′−ν)

↑↑ − χν1ν2(ν
′−ν)

↑↓ − (χν1ν2(−ν1−ν2+ν+ν
′
+ω)

↑↓

+ βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0)]

= U + 2U2χ↑↑(ν
′ − ν)− U2χ↑↓(ν

′ − ν)− U2χpp(ν + ν
′
+ ω),

(119)

one can easily identify the main contributions alongside ν ′ − ν = const and
ν + ν ′ + ω = const assuming a maximum for ν ′ − ν = 0 and ν + ν ′ + ω = 0.
Considering Eq. 21 (Sec. 2.2), we are able to express the first two terms of
the sum as linear combination of χd and χm

2χ↑↑(ν − ν ′)− χ↑↓(ν − ν ′) =
3
2
χm(ν − ν ′) +

1
2
χd(ν − ν ′). (120)

Hence, the enhancement of χm(0) at the MIT will be visible in the main
diagonal (ν = ν

′
) of the vertex functions. This can be indeed observed in

Fig. 32. The main diagonal (red colored), showing the contribution of Eq.
120 to Γd (Eq. 119) becomes actually strongly enhanced with increasing U
(approaching the MIT).
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Figure 32: Layered density plot of Γνν
′(ω=0)

d,asympt as function of ν, ν
′

for different
U. Approaching the MIT leads to a strong enhancement of the main diagonal
(red colored), which corresponds to a strong enhancement of the χm(0)
contribution to Γd,asympt in Eq. 119 (Note the changes in the color scale for
increasing U.).

The evaluation of the sum over the last two terms of Eq. 119 leads to a
expectation value∫ β

0
dτeiωτ < T (c↑(τ)c↓(τ)c†↓c

†
↑) >= χpp(ω), (121)

which can be interpreted as a (local) cooper-pair response function and ac-
counts for the secondary diagonal structure in Fig. 32. As one can observe,
with increasing U, the secondary diagonal structure almost vanishes above
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the MIT (Ucrit ' 2.4), indeed perfectly matching the behavior of the suscep-
tibility χpp(ω = 0) in Figs. 30 and 31. For the analysis of the asymptotics of
the remaining irreducible vertex functions Γmst, we can proceed in a similar
way as for Γd. One can see, for instance, for Γm

Γm,asympt = −U+
U2

β2

∑
ν1ν2

[χν1ν2(ν
′−ν)

↑↓ + χ
ν1ν2(−ν1−ν2+ν+ν

′
+ω)

↑↓

+ βG(ν1)G(−ν1 + ν + ν
′
+ ω)δ(−ν1−ν2+ν+ν′+ω)0],

(122)

that the first term of the sum can be interpreted as linear combination of
χd and χm as

χ↑↓(ν − ν ′) =
1
2
χd(ν − ν ′)− 1

2
χm(ν − ν ′). (123)

It accounts for the main diagonal of Γm and diverges at ν = ν
′
due to the ( 1

T )
divergence of χm(0) when approaching the MIT. As for Γd, the remaining
terms of the sum in Eq. 122 are contributing to the secondary diagonal
of Γm. In Fig. 33, one indeed observes a strong enhancement of the main
diagonal (blue colored) with increasing U. As for Γd, the secondary diagonal
almost vanishes above the MIT, which we have also found in χpp in Figs.
30 and 31. The main diagonal of Γd (Fig.32) and Γm (Fig.33) have opposite
sign, which comes from the different sign, with which χm(ν − ν ′) enters in
Γd and Γm.
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Figure 33: Layered density plot of Γνν
′(ω=0)

m,asympt as function of ν, ν
′

for different
values of U. Approaching the MIT leads to a strong enhancement of the
main diagonal (blue colored), which corresponds to a strong enhancement
of the χm contribution to Γm,asympt in Eq. 122. χm contributes to Γm,asympt
with a minus sign (Eq. 123), which renders the corresponding main diagonal
structure also negative (in contrast to Γd). Note the changes in the color
scale for increasing U

4.2.3 Irreducible vertex functions in the asymptotic high-frequency
regime

We will now investigate the asymptotic high frequency part of the irreducible
vertex functions along different 1D-paths within the 3D-frequency space and
compare it to the irreducible vertex functions, calculated via an inversion
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on a large frequency interval (320 fermionic frequencies). As we have seen
in the previous chapter (Sec. 3), the irreducible vertex is a function of the
two fermionic Matsubara frequencies ν and ν ′, and the bosonic matsubara
frequency ω. For a better readability of the plots of the vertex function, we
will present them as functions of the indices n,n

′
and m of the Matsubara

frequencies, instead of the Matsubara frequencies themselves5

The frequency structure of Γ is presented in Fig. 34 for ω = 0 and in
Fig. 35 for ω = 20 (U = 1.00 and β = 26.0) as a density plot in the
νν
′
-plane. In the asymptotic regime of the irreducible particle-hole vertex

(Fig. 34, upper panels), the main structures of the vertex originate from
diagrams, which are constant along ν − ν ′ = const and ν + ν

′
+ ω = const

with a maximum at ν − ν ′ = 0 and ν + ν
′

+ ω = 0 ( see Eq. 119, 122).
As for the particle-particle sector, we have calculated the particle-particle
vertex (Fig. 34, lower panel) employing the particle-particle frequency no-
tation, one observes a similar structure as for the particle-hole vertex (a
main diagonal and a secondary diagonal). However, the equation for the
secondary diagonal within the particle-particle channel is now a function of
ω − ν − ν ′ . An increasing ω leads to a shift of the secondary diagonal in
the opposite direction compared to the particle-hole channel (Fig. 35). In
Chap. 3 we have also analyzed the contribution of the fully irreducible parts
to the asymptotics of the irreducible vertex functions, which we reduce to
the constant U.6 We can subtract this constant U contribution from the
irreducible vertex without loosing any relevant information and concentrate
on the frequency dependent contributions only. However for the plots along
the most significant 1D-paths, we will keep the contribution of the fully
irreducible parts to the asymptotics of the irreducible vertex functions in
order to better quantify the relative error of the asymptotics and the rel-
ative error of the downfolded irreducible vertex functions in comparison to
the numerical ”exact” vertex functions.

5However, we will nevertheless keep the labels ν,ν
′

and ω for the Matsubara frequency
axes for the sake of a better readability

6Λ↑↓,asympt = +U.
which leads to a constant background in the irreducible vertex functions Γdmst:
Γd,const = +U , Γm,const = −U , Γs,const = +2U , Γt,const = 0.
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Figure 34: Densityplot of the irreducible vertex functions Γνν
′(ω=0)

dmst,asympt for
β = 26.0 and U = 1.00. The upper panel showing the density (left) and
magnetic (right) channel. The particle-particle channel is shown in the lower
panel (triplet channel lower-left and singlet channel lower-right). The back-
ground, caused by the bare interaction U has been subtracted

49



Γm+U

-40 -20  0  20  40

-40

-20

 0

 20

 40

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

Γd-U

-40 -20  0  20  40

-40

-20

 0

 20

 40

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Γt

-40 -20  0  20  40

-40

-20

 0

 20

 40

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Γs-2U

-40 -20  0  20  40

-40

-20

 0

 20

 40

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Figure 35: Densityplot of the irreducible vertex functions in the asymptotical
high frequency regime Γνν

′(ω=20)
dmst for β = 26.0 and U = 1.00. The upper

panel showing the density (left) and magnetic (right) channel. The particle
channel is shown in the lower panel (singlet channel lower-left and triplet
channel lower-right). The background, caused by the bare interaction U has
been subtracted

When using the vertex functions in its asymptotical form as input for the
downfolding approach, one has to separate the regions (in the 3D frequency
space), where the numerical inversion of the Bethe-Salpeter equations is
strictly necessary from the regions, where one can use the asymptotic form of
the irreducible vertex functions instead. In order to compare the numerical
inversion of the Bethe-Salpeter equations on a large frequency range (320
fermionic frequencies) with the asymptotical form of the irreducible vertex
functions, we have chosen the most significant 1D-paths in the (ν,ν

′
)-space

for constant ω = 0, 20, U = 1.0, 1.5 and β = 26.0. It is important to notice
that for this comparison, we have chosen generic values for U and β, where we
can show the similarities and discrepancies between the asymptotics and the
numerical ”exact” vertex functions in all four channels (density, magnetic,
singlet, triplet) in the (ν,ν

′
)-space. However, comparison of the asymptotics
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with the numerical ”exact” vertex functions has to be done over a larger
U-range prior to implementation into existing computational procedures,
which we will discuss in Chap. 5. In Fig. 36, we compare the asymptotical
irreducible vertex functions with the irreducible vertex functions, calculated
by inverting the Bethe-Salpeter equations on a 320 fermionic frequency range
for U = 1.0 and ω = 0 along the 1D-path ν = 07. Although truncating
the inversion after 320 frequencies is still an approximation to the ”exact”
inversion procedure, we use this numerical result as basis for the comparison
with the asymptotics. As one can see in Fig. 36, the asymptotics almost
coincides with the numerical ”exact” value already outside a relatively small
frequency range of about 40 frequencies (|ν ′ | > 20) in all four channels. In
Fig. 37, we investigate the relative error of the asymptotics along the 1D-
path ν = 0 for U = 1.00. At ν

′
= 20, the largest relative error, appearing

in Γm, is already below one percent. For the particle-hole channels, this
result confirms similar observations by Jan Kuneš [33]. We note that for
the triplet channel, the asymptotic approximation almost coincides with
the exact value. In Figs. 34 and 35 the main frequency-structures of the
irreducible vertex functions are along ν = ν

′
, ω+ν+ν

′
= const and ω−ν−

ν
′

= const for the particle-hole and particle-particle channels respectively.
Therefore we also compare the asymptotic approximation with the exact
results along ν = ν

′
. In Fig. 38 we have plotted this path (ν = ν

′
) for U =

1.0, ω = 0 and β = 26.0. As one can observe, the asymptotics essentially
coincides with the numerical ”exact” value outside the same small frequency
range of about 40 (|ν ′ | > 20) frequencies.

7For better readability and to avoid any confusion, we keep the notation ν, ν
′
ω but

show the numerical results as functions of n, n
′

and m (see footnote 5)
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Figure 36: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies,
for U = 1.00, β = 26.0 and ω = 0 at ν = 0. The density and magnetic
channel are in the upper left and upper right panel respectively. The singlet
and triplet channel are in the lower left and right panel. The asymptotically
calculated vertex functions are in very good agreement with the vertex func-
tions calculated on a large fermionic frequency interval (320 frequencies) for
|ν ′| > 20.
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Figure 37: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies.
The plot is showing a 1D-path of Γdmst along ν = 0 for U = 1.00, β = 26.0,
ω = 0 within a small frequency range (between ν

′
= −10 and ν

′
= −60) .

At ν
′

= 20, the largest relative error, appearing in Γm is already below one
percent

If we compare the vertex functions with its asymptotical form along the
1D-path (ν = 0, ν

′
) as for U = 1.0 (Fig. 36) also for U = 1.5 (Fig. 39), we

identify the same frequency range (|ν ′ | > 20), where the asymptotical high
frequency irreducible vertex functions coincide with the numerical ”exact”
vertex functions. Therefore, one can assume a U-independent frequency
range, where one can safely replace the numerical ”exact” vertex by its
asymptotical form. Let us mention another interesting observation when
comparing Γd for U = 1.0 and U = 1.5:
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Figure 38: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies,
for U = 1.00, β = 26.0 and ω = 0 at ν = ν

′
.

The graphs of the exact vertex functions are completely different in the
low-frequency regime. This behavior is consistent with recently discovered
low-frequency divergencies in Γd for U-values definitely smaller than Ucrit (U
at the Mott transition point) [55]. Interestingly, the high-frequency behavior
is not affected by this singularity, as one can clearly see by comparing the
asymptotic vertex functions for U = 1.0 and U = 1.5 in Figs. 36 and 39. Let
us stress that, though these low frequency divergencies con be considered as
precursors of the MIT, they are completely different from the high frequency
divergencies along ν = ν

′
of Γdmst, discussed in Sec. 4.2.2.
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Figure 39: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies,
for U = 1.50, β = 26.0 and ω = 0 at ν = 0. The density and magnetic
channel are in the upper left and upper right panel respectively. The singlet
and triplet channel are in the lower left and right panel. One can see an
enhancement of the asymptotical high frequency irreducible vertices (blue)
compared to U = 1.00 (Fig. 36). For the numerical ”exact” vertices, Γdensity
obeys a rather different behavior at lower frequencies compared to U = 1.00

Hitherto, we have only discussed the irreducible vertex functions in their
asymptotical form for ω = 0 similarly as what was already done for the
particle-hole channel in Ref. [33]. From now on, we will also compare the
asymptotics with the numerical ”exact” value for finite ω. In Fig. 40,
we have plotted the irreducible vertex functions Γdmst for (U = 1.0, β =
26.0, ω = 20, ν = 0, ν

′
). Two main structures, at ν

′
= 0 and ν

′
= 20 for

the singlet/triplet channel, and ν
′

= −20 for the density/magnetic channel
are obtained. The reason behind this is that the asymptotic vertex func-
tions Γdm,asympt and Γst,asympt depend only on (ν − ν

′) and (ν + ν
′

+ ω)
(for Γdm,asympt) and (−ν − ν ′ + ω) (for Γst,asympt) via the susceptibilities
χd,m(ν − ν

′
), χd,m(ω − ν − ν

′
) and χpp(ν + ν

′
+ ω). As one can see for
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(ν = 0, ν
′
) in Fig. 40 and also (ν = ν

′
) in Fig. 41, this affects also the fre-

quency range, where we safely can use the asymptotics instead of the numer-
ical ”exact” vertex. This is now ”shifted” by ±ω

2 for the density/magnetic
and singlet/triplet channel respectively. We observe moreover, that the fre-
quency range, where we still have to invert the Bethe-Salpeter equations
numerically, has also to be enlarged w.r.t the case ω = 0. For ω = 20 (e.g.
Fig. 41) a frequency range of (−40 < ν < 20) for the density/magnetic and
(−20 < ν < 40) for the singlet/triplet channel should be sufficient according
to Figs. 40 and 41. This happens because the frequency region, where one
has to actually invert the Bethe-Salpeter equations does now contain two
main structures: at ν

′
= 0 and ν

′
= ±ω for the density/magnetic and sin-

glet/triplet channel respectively. Summing up the observations from Figs.
40 and 41, the frequency-interval where the numerical inversion is manda-
tory should be defined as:

Inversion-range: [−Max− ω,Max] (for the density/magnetic channel)
Inversion-range: [−Max,Max+ ω] (for the particle-particle channel),

where Max is the lowest frequency |ν|, where one can replace the ”exact”
vertex by its asymptotical form, at ω = 0 (in our previous cases Max = 20).
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Figure 40: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies,
for U = 1.00, β = 26.0 and ω = 20 at ν = 0.

57



 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

-60 -40 -20  0  20  40  60

Γ d
(e

ns
ity

)

ν’

320 freq. inv.
asymptotics

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-60 -40 -20  0  20  40  60

Γ m
(a

gn
et

ic
)

ν’

320 freq. inv.
asymptotics

 4

 4.5

 5

 5.5

 6

 6.5

 7

-60 -40 -20  0  20  40  60

Γ s
(i

ng
le

t)

ν’

320 freq. inv.
asymptotics

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-60 -40 -20  0  20  40  60

Γ t
(r

ip
le

t)

ν’

320 freq. inv.
asymptotics

Figure 41: 1D plot of the irreducible asymptotic vertex functions compared
to the irreducible vertex functions calculated for 320 fermionic frequencies,
for U = 1.00, β = 26.0 and ω = 20 at ν = ν

′
.

4.3 Application of the Downfolding procedure

4.3.1 Downfolding for ω = 0

In Sec. 3.4 we have illustrated a method for the calculation of the low
frequency part of the irreducible vertex functions Γ by inverting a truncated
Bethe-Salpeter equation and adding a correction term, which includes the
high-frequency asymptotics of the Γ’s. These treatments extends the work
of Jan Kuneš [33] to all channels and bosonic frequencies ω 6= 0. Since the
computational effort for calculating the asymptotics of the Γ’s is much lower
than for the inversion of the Bethe-Salpeter equation (or more precisely for
the calculation of the generalized susceptibilities χνν

′
ω

dmst), we were able to
calculate the asymptotics on a significantly larger frequency range (we have
calculated the asymptotics on a 1600 frequency range. However, in principle
one could also perform the calculation on a much larger frequency range).
In the following, we show the applicability of the downfolding by computing

58



the vertex functions in all four channels (d,m,s,t) using the new downfolding
algorithm developed in Sec. 3.4 and compare it with the vertex functions
calculated from an inversion in a large frequency range (320 frequencies),
which we assume to be the exact result. We first discuss the results for the
ω = 0 case and will later extend our considerations to the ω 6= 0 case. To
compare the results for different inversion ranges, we show 1D plots along
different paths within the 2D (ν, ν

′
;ω = const) frequency space. According

to our previous considerations about the asymptotics, we choose now the
most significant paths, ν = 0, ν = ν

′
and ν = −ν ′ . In Fig. 42, we compare

the vertex functions for U = 1.0 and β = 26.0 calculated on a large frequency
range (320 freq. red line), with the vertex functions calculated with 40
frequencies for the inversion (green line). While for Γt, the small frequency
range for inversion has no significant effect on the vertex function8, the
vertex functions in the other channels, calculated on a small frequency range,
are different from the numerical ”exact” ones throughout the considered
frequency interval (green line). If we now add the correction terms derived
in Sec. 3.4 (Eq. 108, Eq. 111 and Eq. 114) to the vertex functions which
have been calculated on the smaller frequency interval (40 frequencies), we
obtain a significant improvement, with results approaching the numerical
”exact” functions. However, a closer inspection of, e.g., Γdensity (e.g. for
ν = ν

′
in Fig. 43 or ν = −ν ′ in Fig. 44), indicates an overcorrection

since the corrected vertex function now lies slightly above the numerical
”exact” value. We will discuss this issue when we describe the limitations
and conclusions of the downfolding procedure at the end of this chapter.

8This is analog to the atomic limit result in [44] where Γ
νν

′
(ω=0)

t was shown to be
∝ (δνν′ + δν(−ν′
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Figure 42: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated in a small frequency range (40 frequencies, green
line) + correction term from the downfolding (blue line). The plot is showing
a 1D-path of Γdmst along ν = 0 for U = 1.00, β = 26.0, ω = 0
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Figure 43: Comparison of the irreducible vertex functions calculated on
a large frequency interval (320 frequencies, red line), to the correspond-
ing vertex function calculated on a small frequency range (40 frequencies,
green line) + correction term from the downfolding(blue line). The plot is
showing a 1D-path of Γdmst along ν = ν

′
for U = 1.00, β = 26.0, ω = 0.

One observes a slight overcorrection of the vertex functions calculated on
a drastically truncated frequency range (blue line) compared to the vertex
functions calculated on a large frequency interval
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Figure 44: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (40 frequencies, green
line) + correction term from the downfolding (blue line). The plot is show-
ing a 1D-path of Γdmst along ν = −ν ′ for U = 1.00, β = 26.0, ω = 0.
One observes a slight overcorrection of the vertex functions calculated on
a drastically truncated frequency range (blue line) compared to the vertex
functions calculated on a large frequency interval

Consistently with the analysis of the previous section, if we increase U
(e.g. to U = 1.50 in Fig. 45), the relative error of the vertex functions
calculated on the small frequency interval compared to the vertex functions
calculated on the large frequency interval has basically not changed com-
pared to a smaller U. At the same time, the size of the frequency interval
of the actual inversion of the Bethe-Salpeter equations obviously strongly
affects the quality of the results: In Fig. 46 and Fig. 47, we have calculated
the irreducible vertex functions on a larger frequency range (80 frequencies).
In comparison to the smaller frequency interval of 40 frequencies (Fig. 42
and Fig. 43) one observes a significant enhancement of the non-corrected
vertex functions (green line). However, the important finding here is that in

62



both cases, adding the corresponding correction terms (blue line) lead essen-
tially to the same result. This demonstrates the validity of the downfolding
procedure.
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Figure 45: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (40 frequencies, green
line) + correction term from the downfolding (blue line). The plot is showing
a 1D-path of Γdmst along ν = 0 for U = 1.50, β = 26.0, ω = 0. In comparison
to a smaller U (e.g. U = 1.00 in Fig. 42), the relative error has not changed
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Figure 46: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (80 frequencies, green
line) + correction term from the downfolding (blue line). The plot is show-
ing a 1D-path of Γdmst along ν = 0 for U = 1.00, β = 26.0, ω = 0. The
uncorrected vertex functions (green line) are now closer to the numerical
”exact” ones (red line), compared to the smaller frequency interval (40 fre-
quencies) in Fig. 42. However, adding the correction term lead to the same
result for both frequency intervals (blue line), showing the strength of the
downfolding procedure
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Figure 47: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (80 frequencies, green
line) + correction term from the downfolding (blue line). The plot is show-
ing a 1D-path of Γdmst along ν = ν

′
for U = 1.00, β = 26.0, ω = 0. The

uncorrected vertex functions (green line) are now closer to the numerical
”exact” ones (red line), compared to the smaller frequency interval (40 fre-
quencies) in Fig. 43. However, adding the correction term lead to the same
result for both frequency intervals (blue line), showing the validity of the
downfolding procedure

In summary, we have shown numerically how the correction terms cal-
culated by the downfolding procedure for ω = 0 significantly improve the
results of the calculation of the irreducible vertex functions on a small fre-
quency interval. We didn’t observe any major influence of different U’s on
the quality of the correction terms. Furthermore, also larger errors, obtained
by the usage of smaller frequency intervals, were successfully corrected. In
Figs. 48 and 49 we have compared the irreducible vertex functions calcu-
lated on a 40- and 80-frequency interval respectively (green line), with the
irreducible vertex functions calculated on a large frequency interval (320
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frequencies, red line) for U = 1.00 again, but now zoomed into a tiny range
within ν

′
= −15 and ν

′
= −5. The relative error of the irreducible ver-

tex function calculated on a 40-frequency interval compared to the ”exact-
result” in the selected area (between ν

′
= −15 and ν

′
= −5) is about 6

% (e.g. for Γd). For the 80-frequency interval, the relative error dropped
down to approximately 2 % (for Γd). However for both frequency intervals
(40- and 80-frequencies), adding the corresponding correction term lead to
a relative error of approx. 0.4 %. As we will see in the next section, the
minimal frequency interval, we have to use for the exact inversion of the
Bethe-Salpeter equations depends on the bosonic Matsubara frequency ω.
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Figure 48: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (40 frequencies, green
line) + correction term from the downfolding (blue line). The plot is showing
a 1D-path of Γdmst along ν = 0 for U = 1.00, β = 26.0, ω = 0 within a small
frequency range (between ν

′
= −15 and ν

′
= −5) . For Γd, the relative

error of the uncorrected irreducible vertex function calculated on the small
frequency range is approx. 6 percent. The relative error of the corrected
irreducible vertex function is about 0.4 percent
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Figure 49: Comparison of the irreducible vertex functions calculated on a
large frequency interval (320 frequencies, red line), to the corresponding
vertex function calculated on a small frequency range (80 frequencies, green
line) + correction term from the downfolding (blue line). The plot is showing
a 1D-path of Γdmst along ν = 0 for U = 1.00, β = 26.0, ω = 0 within a small
frequency range (between ν

′
= −15 and ν

′
= −5) . For Γd, the relative

error of the uncorrected irreducible vertex function calculated on the small
frequency range is approx. 2 percent. The relative error of the corrected
irreducible vertex function is about 0.4 percent

4.3.2 Downfolding for ω 6= 0

If we turn to the ω 6= 0 case, we again have to define regions where numerical
inversion is mandatory and, in contrast, where we can approximate using
our asymptotic results, respectively. We can identify the regions of interest
by considering the involved diagrams of the respective irreducible channels.
For the particle-hole channels, e.g., the second order bubble diagram (lon-
gitudinal) is proportional to

P1 = G(ν)G(ν + ω) (124)
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Since the Green functions are proportional to 1
ν and 1

ν+ω respectively, the
main contribution of P1 to the irreducible particle-hole channel will be
around ν = 0 and ν = −ω (For the particle-particle channel it can be
shown, that the main contributions are around ν = 0 and ν = +ω). There-
fore for the ω = 0 case, we were able to center our inversion interval around
ν = 0, i.e. [-Max,+Max]. At finite ω, our inversion interval will change,
according to

[−Max...+Max]
ph→ [−Max− ω...+Max] (125)

and
[−Max...+Max]

pp→ [−Max...+Max+ ω]. (126)

From an algorithmic point of view, it is better to center our inversion in-
terval around ω

2 and −ω
2 for the particle-particle and particle-hole channel

respectively. This is evidently consistent with observations about the vertex
asymptotics of the previous section. In order to check the quality of the
downfolding procedure for finite ω, we choose significant paths for our plots,
ν = ν

′
, ν = 0 and ν = ±ω. The main difference due to a finite ω can be

observed, e.g. in the Γsinglet channel, where the two main structures are
clearly separated (see e.g. Fig. 50 for a 40 frequency inversion interval). If
one reduces the interval below a critical value (evidently dependent on the
ω we use), the main structures in the small interval would be cut off. Since,
in this procedure, the whole irreducible vertex is computed as the inversion
interval + its asymptotics, we would replace parts of the main structure
with the asymptotic value of the vertex function, which is obviously wrong.
Hence, for increasing ω, the inversion interval, and therefore the computa-
tional effort gets progressively larger. This is obviously a limiting factor of
the whole downfolding procedure. However, there is still potential for algo-
rithmic improvements in this respect which we will discuss at the end of the
chapter.
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Figure 50: 1D-plot of the Vertex functions for ν = 0, U = 1.0, β = 26.0 and
ω = 10 with exact inversion of 320 frequencies compared to the 40 frequency
inversion (with and without the correction calculated with the downfolding
formula). The inversion interval is centered around −ω

2 for the ph-channels
and +ω

2 for the particle-particle channels. In the Γs plot at the left bottom,
one clearly identifies the two main structures around ν = 0 and ν = ω
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Figure 51: 1D-plot of the Vertex functions for ν = ν
′
, U = 1.0, β = 26.0 and

ω = 10 with exact inversion of 320 frequencies compared to the 40 frequency
inversion (with and without the correction calculated with the downfolding
formula). The inversion interval is centered around −ω

2 for the ph-channels
and +ω

2 for the particle-particle channels. In the Γs plot at the left bottom,
one clearly identifies the two main structures around ν = 0 and ν = ±ω

2

4.4 Evaluation and Limits of the Downfolding procedure

In the previous section, we illustrated the power of the developed down-
folding procedure based on the comparison of a strongly reduced inversion
interval (40,80 frequencies) to a large one (320 frequencies). We observed
a remarkable improvement of the results, when adding a correction term,
calculated on basis of the asymptotic behavior of the vertex functions, which
have been calculated on a significantly larger frequency interval (1600 fre-
quencies). However, a closer look on the results (e.g. Fig. 42) reveals a
slight overcorrection (red dots are slightly below the blue ones). Up to now,
there is no clear explanation for this behavior, nevertheless, a hand waving
argument based on the results can be given. The downfolding procedure for
the larger inversion intervals (80 and higher) frequencies is very stable and
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leads to the same overcorrection. Therefore, the irreducible vertex function
obtained by the downfolding procedure is more likely to be close to the exact
function.

Another problem within the downfolding procedure is the growing inver-
sion interval for finite ω. As was mentioned in the discussion, we cen-
tered the interval around ±ω

2 and extended it to [−Max − ω...Max] and
[−Max...Max+ω] for the particle-hole and particle-particle channel respec-
tively. The parameter Max is the critical parameter regarding the accuracy
of the calculation. For large ω, the performance of the procedure gets worse
since a large inversion interval is needed to include the structures at ν = 0
and ν = ±ω. If we consider, e.g. the Γs of Fig. 50, we observe a clear
separation of the two structures proportional to ω. However the good news
is that, if ω gets larger, we can again approximate the region in between
ν = 0 and ν = ±ω by its asymptotic form. Therefore, a possible improve-
ment could be a recursive procedure, where one alternately replaces the first
structure with the asymptotics and calculates the second one.
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5 Summary and Outlook

In my thesis, I have derived the expressions for the two-particle irreducible
vertex functions of DMFT in all channels and for all bosonic (transfer) fre-
quencies in the high-frequency asymptotic regime. After showing, how the
hallmarks of the Mott-Hubbard MIT are also visible in the vertex asymp-
totics, I moved to consider some important algorithmic aspects. In particu-
lar, I have compared the asymptotical irreducible vertex function with the
exact vertex function calculated via an inversion on a large frequency inter-
val (320 fermionic frequencies). For ω = 0 the asymptotics coincides with
the numerical ”exact” value outside a small frequency range of about 40 fre-
quencies in all channels (spin, charge, singlet, triplet). Hence one can replace
the numerical ”exact” vertex by its asymptotic form over a large frequency
range. This is a major improvement over existing methods for calculating
irreducible vertex functions, since the computational effort for calculating
the asymptotic form of the irreducible vertex is significantly lower than the
numerical inversion on a large frequency range. Specifically, I have shown
that the size of the frequency range, where one still needs to invert the
Bethe-Salpeter equations seems not to be affected by the value of U consid-
ered, but gets larger with increasing ω, thus increasing the computational
effort. However, as I have proposed in Sec. 4.4, one can still approximate
the region between ν = 0 and ν = ±ω by its asymptotic form for larger ω,
hence reducing the computational effort again. These considerations have
an important impact on future algorithmic developments. In fact, if one
aims at reducing the numerical effort, the full vertex calculations as well
as the inversion of the inversion of the Bethe-Salpeter equations have to be
done in the smallest possible frequency interval. In this respect, as I have
shown in Chap. 4, the systematic error we make by truncation of the fre-
quency range for the inversion can successfully be compensated by adding a
correction term. Following the derivation by Jan Kuneš [33], I was able to
calculate the correction term by means of a downfolding algorithm, which I
have extended to the particle-particle channels and to finite ω. For further
improvement and implementation of the presented asymptotic approxima-
tion and the downfolding procedure, additional tests have to be done, which
are beyond the scope of this thesis. In particular, although I have shown
the U-independence of the frequency regime where one can replace the nu-
merical ”exact” vertex by its asymptotic form, I have only presented data
available for U values below the MIT (U < Ucrit). Therefore comparison
of the asymptotic high-frequency irreducible vertex function with the nu-
merical ”exact” vertex above Ucrit should be done prior to implementation.
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Furthermore, I have proposed an extension to the developed downfolding
method in Sec. 4.4, which clearly indicates the direction to continue the
work of my Diploma thesis. In fact, the implementation of the proposed
recursive procedure could significantly enhance the performance of the cal-
culation of the irreducible vertex functions Γνν

′
ω

dmst for all ν,ν
′

and ω. Such
developments can be potentially of a very high impact for the algorithmic
improvements of all diagrammatic extensions of DMFT, which requires ac-
curate calculations of local two-particle vertex functions as a starting point.
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