
Online Test Vector Insertion:
A Concurrent Built-In Self-Testing (CBIST)

Approach for Asynchronous Logic
Jürgen Maier and Andreas Steininger

Institute of Computer Engineering
Vienna University of Technology

Email: {juergen.maier, andreas.steininger}@tuwien.ac.at

c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

Abstract—Complementing concurrent checking with online
testing is crucial for preventing fault accumulation in fault-
tolerant systems with long mission times. While implementing
a non-intrusive online test is cumbersome in a synchronous
environment, this task becomes even more challenging in asyn-
chronous designs. The latter receive increasing attention, mainly
due to their elastic timing behaviour; however the issues related
with their testing remain a key obstacle for their wide adoption.

In this paper we present a novel approach for testing of
asynchronous circuits that leverages the redundancy present
in the conventional 4-phase protocol for implementing a fully
transparent and fully concurrent test procedure. The key idea is
to use the protocol’s unproductive NULL phase for processing test
vectors, thus effectively interleaving the incoming 4-phase data
stream with a test data stream in a 2-phase fashion. We present
implementation templates for the fundamental building blocks
required and give a proof-of-concept by an example application
that also serves as a platform for evaluating the overheads of our
solution which turn out to be moderate.

I. INTRODUCTION

Throughout the last decades we have witnessed a tremen-
dous shrinking in the feature sizes of VLSI chips, paired with
an increase of complexity. While, without doubt, these trends
have been the key to the rapidly increasing performance, they
also cause an increasing rate of faults per chip. In the face of
extremely high transistor counts and small critical charges it
is unrealistic to assume that a chip, once tested and put into
operation, will perform its operation without further experienc-
ing transient faults or permanent defects. Consequently, fault-
tolerance provisions, e.g. based on concurrent checking or
replication and masking, have been devised to cope with those
faults and defects. However, all these approaches are based
on assumptions about the multiplicity of faults – typically
the single fault assumption – and they will fail when these
are exceeded. While it is often sufficiently improbable that
multiple faults coincide, the potential of fault accumulation
is sometimes overlooked: A permanent fault that is tolerated
within a fault-tolerance concept still uses up its fault-tolerance
capacity, thus making the system vulnerable to the next fault
that may occur, unless the first fault is properly removed. It is,
e.g., well understood that a TMR architecture exhibits lower
reliability than a simplex architecture, once one of the replica
is affected by a permanent fault. This becomes particularly
cumbersome for systems with long mission times. Therefore

it is crucial, in addition to masking, to detect the existence of a
fault, diagnose and remove it. The identification of faults may
be non-trivial, especially when faults in rarely used resources
must be considered that may remain undetected by concurrent
checking approaches for a long time. This is where on-line
testing becomes mandatory [1].

Asynchronous design is receiving increasing attention since
it naturally avoids some of the most serious problems cur-
rently faced by synchronous designs, such as the need for
low-skew clock distribution, insufficient tolerance to process,
temperature and voltage (PVT) variations, and high power
dissipation. Instead of a global clock it employs local hand-
shaking to coordinate the activities, which makes operation
demand driven and timing much more flexible. One of the
main reasons why asynchronous design, although being around
for several decades, has still not been widely adopted is the
difficulty of testing – in the absence of a clock that the
tester can use to control the test procedure, even their off-
line test requires considerable efforts. In contrast, the approach
we propose here naturally leverages the redundancy already
present in the asynchronous 4-phase protocol for introducing
test patterns into the data stream in a transparent fashion and
fully concurrent with the ongoing operation. The key idea
is to build components that present a conventional 4-phase
interface to the outside, but internally operate with a 2-phase
protocol, which allows test vectors to be inserted between any
pair of regular data words, namely during the NULL phase of
the external protocol. At the component’s output the results
pertaining to the regular data stream are presented to the
outside, again in a 4-phase fashion, while the test results are
internally conveyed to a response analysis block.

The paper is structured as follows: After a review of related
work we will present the fundamental concepts of the con-
sidered asynchronous design styles in Section III. Section IV
will be devoted to presenting our approach in detail. A proof-
of-concept implementation will be given and evaluated in
Section V. Finally we will conclude the paper in Section VI.

II. REQUIREMENTS AND RELATED WORK

Concurrent checking is a well researched field in dependable
computing. Its key principle is to employ some form of redun-
dancy (hardware replication [2], coding [3], repeated execution



of a calculation, etc.) to allow checking whether the result
of a computation is correct. While this approach works fine
for transient faults, it is not suitable for detecting permanent
faults that may reside in a resource that is not exercised by
the ongoing operation. Several of these dormant faults may
accumulate over time and, once activated together, exceed the
capabilities of the checking scheme. In order to safely unveil
these faults one cannot simply rely on the ongoing operation
to exercise the resources – a test is needed here that actively
applies a well selected set of stimuli, independent of what is
seen through normal system operation. This is another heavily
researched area, however most approaches were developed for
synchronous circuits, which sometimes leads to dissatisfying
results when used on asynchronous ones.

We have argued above that actively applying test stimuli is
desired and characteristic for testing. At the same time these
stimuli deliberately change the state of the system under test,
which interferes with the ongoing operation, and hence seems
to make testing and regular operation mutually exclusive.
Methods for online testing must fulfill two conditions: (value
domain) non-interference with the system state perceived by
the application and (time domain) no degradation of system
performance beyond the point where deadlines are missed.
This can be achieved by either interleaving phases of test and
normal operation in a carefully controlled way, or by devising
special test methods that remain transparent for the ongoing
operation [4].

The key quality criteria of an online test are

• low performance penalty for the application
• high test coverage for a given fault model; this is deter-

mined by the quality and amount of test vectors
• low error detection latency; this is determined by the

period required to apply the whole set of test vectors

We could not find approaches for a truly transparent test
of asynchronous logic in the literature. The available methods
either interrupt the ongoing operation [5] or simply check the
output without actively applying test vectors [6]. An interesting
combination of these two models is called input vector moni-
toring in [7]. Here a list of desired test vectors is determined
as a subset of all possible inputs during operation. When one
of these vectors is encountered during normal operation, the
corresponding output is checked against a known reference,
and the vector marked successful in the list. The test cycle
completes as soon as all vectors in the list have been marked.
Variations of this scheme have been proposed that differ in
how strictly the sequence within the list must be kept; some
even enter a dedicated test mode to apply vectors that are still
missing after a timeout.

The approach we propose here is specifically designed for
asynchronous logic. It provides a tight interleaving of test and
ongoing operation and exploits specific protocol properties to
largely eliminate performance penalties. It can be used with
any arbitrary set of test vectors, whose generation can be
carried out by standard methods from literature.

III. BACKGROUND

In synchronous systems all activities, specifically data ex-
change, are coordinated by a global clock. Asynchronous
design, in contrast, employs explicit handshaking between
communicating partners [8]: The sender indicates the validity
of the data provided by means of a request (REQ), while the
receiver indicates their reception by means of an acknowledge
(ACK) signal. This closed-loop principle is the root of the
elastic timing behaviour of asynchronous designs. Depending
on the specific interpretation associated with the transitions
on REQ and ACK two protocols can be distinguished: In
the 4-phase protocol (see fig. 1(a)) the sender indicates data
validity by activating REQ, to which the receiver responds
by activating ACK as soon as it has captured these data. This
is followed by a return-to-zero phase, in which sender and
receiver deactivate REQ and ACK, respectively. In the 2-
phase protocol (see fig. 1(b)) that unproductive return-to-zero
(RTZ) phase is avoided, and the falling transitions of REQ
and ACK already guide the transfer of the next data item.
This halves the number of control transitions per data transfer,
which makes the 2-phase protocol the preferred choice when
data needs to be transferred in an energy-efficient way. The
4-phase protocol, on the other hand, allows a more efficient
implementation of logic functions and registers, and is hence
usually employed for computation-centric blocks.

The indication of data validity via REQ faces a fundamen-
tal race condition: The activation of REQ must be perceived
by the receiver only after data has actually become valid.
The two principles used to ensure this pertain to different
timing models of the circuit and have substantially different
implementation complexity. In the bounded delay model a
delay element ∆ is artificially inserted into the REQ signal
path that is chosen large enough to accommodate for all
potential delays, including combinational functions, that the
data may experience on its travel from sender to receiver.
Obviously this necessitates a timing analysis and worst case
assumptions, just like in the synchronous case. We will further
refer to this approach as bundled data (BD), since it uses
one REQ for the complete bundle of data. In contrast, the
delay insensitive1 approach uses a more elaborate coding for
the data that allows the receiver to evaluate, by means of
a so-called completion detector, when a received data item
is valid. In this way no explicit REQ line is required any
more, thus avoiding the race condition. The advantage of this
solution is its ability to accommodate arbitrary delays on the
data path without the need for worst case assumptions, its
drawback is the necessity of data encoding (typically two
signal rails per data bit are required). We will refer to this
approach as completion detection (CD). In its 4-phase version
two successive data items are separated by a so-called NULL
spacer that establishes the RTZ phase. In the 2-phase version
the coding itself allows a separation of successive data items.

1For the sake of simplicity we disregard the notion of quasi-delay insensi-
tivity here, for a more detailed discussion see e.g. [8]



t

Data

REQ

ACK

NULL data1 NULL data2 NULL data3

(a) 4-phase protocol

t

Data

REQ

ACK

data1 data2 data3 data4 data5 data6

(b) 2-phase protocol

Fig. 1. Comparison of the two different handshake methods based on the indication of new data.

comb

C

latch comb

C

latch comb

LE LE
∆REQ

ACK

ACK

REQ

∆ ∆

Fig. 2. Fundamental structure of an asynchronous pipeline

Like in the synchronous case a fundamental structure for a
data processing unit is a pipeline, in which register stages
separate complex logic operations into smaller ones. The
classical pattern in the asynchronous domain is the Muller
pipeline shown in fig.2. Its constituent component is the Muller
C-Element, whose function is as follows: When both inputs
match, the same value is reflected on the output; otherwise the
output retains its last value. In the 4-phase operation that we
will consider in the following, the latches in the datapath are
transparent when LE is active, and opaque otherwise.

IV. PROPOSED APPROACH

When comparing the data streams in fig. 1 one can realise
that the 2-phase protocol works like a 4-phase protocol with
extra data items being conveyed during the RTZ phase. In the
CD case this can be understood as replacing the unproductive
NULL spacer by productive data2. So when processing an
incoming 4-phase data stream in a 2-phase function module,
we obtain the freedom to insert a data items of our choice
in place of the NULL spacers, (ideally) without loss of
performance. The key idea of our approach is to use this
freedom for inserting a stream of test data items into the
original user data stream. Notice that, although we obtain
an extremely tight interleaving between ongoing operation
and test, this approach is completely decoupled from and
transparent to the application, and allows choosing the test
data freely.

Figure 3(a) illustrates the basic architecture of our proposed
approach. At the input of the device under test (DUT) we
place a 4-to-2 phase merge element (4-to2 PhM) that joins
the 4-phase user data stream (UD) with the 4-phase test data
stream (TD) into a single 2-phase data stream (UTD). Of
course, a source for the test vectors is required here, which
is considered part of the self-testing module. In the following

2For the BD approach we assume early data validity [8], which is the most
common approach anyway.

we will, however, not go into detail about which test vectors
to actually select, these can be freely derived in accordance
with the needs of the given DUT by means of the available
test pattern generation techniques [9]. Here we will only be
concerned with inserting a given test vector into the data
stream and extracting the respective response later on.

The DUT now has to process the 2-phase data stream,
so its design has to be converted from the original 4-phase
protocol to 2-phase. This renders it more complex, which
can somehow be considered the price for the online testing
property. The DUT’s 2-phase output stream finally needs to
be separated into the test responses and the results pertaining
to the application input data, which are both again 4-phase.
This task is performed by a 2-to-4 phase split element (2-
to-4 PhS). The test responses can be analysed (compressed
with a multiple-input shift register, e.g., and compared with a
stored reference) inside the self-testing function block, while
the application data stream is passed on to the actual output
where it naturally appears as the 4-phase stream of results that
one would expect in response to the original 4-phase input data
stream. So from the outside the self-testing DUT behaves like
a regular 4-phase logic block.

Interestingly, the approach allows an arbitrary choice of
the DUT size: One extreme case would be to consider every
single pipeline stage a separate DUT and equip it with all the
required infrastructure at its input and output (fig. 3(b)). The
other extreme would be to regard the complete design as the
DUT(fig. 3(a)), thus trading controllability and observability
for lower implementation overheads.

In the following we will focus on the description of the
required merge and split elements, since they are fundamental
for our approach, and we could not find suitable imple-
mentation patterns in the literature – only 2-phase/4-phase
conversion of a single data stream [10] has been considered,
or splitting and merging of datastreams following the same
protocol [11], [12].

A. Merge and split for the bundled data approach
It is possible to compose the merge unit from two nearly

independent blocks, one for handling the data bus and one
for the control lines. The data handling block boils down to a
multiplexer (MUX) that selects between forwarding the user
data and the test data. In contrast to other approaches in the
literature [11] we have a strict alternation between the two
inputs and hence a fixed association between input source



. . . UD
4-phase

4-to-2
PhM

TD
4-phase

UTD
2-phase

UTD
2-phase

. . . UTD
2-phase

UTD
2-phase

2-to-4
PhS

TD
4-phase

UD
4-phase

. . .

validityDUT

(a) Complete DUT tested at once

. . . UD
4-phase

UD
4-phase

UD
4-phase

. . . UD
4-phase

UD
4-phase

UD
4-phase

. . .

DUT

UD
4-phase

4-to-2
PhM

UTD Logic
2-phase

2-to-4
PhS

UD
4-phase

TD
4-phase

TD
4-phase

validity

(b) Each stage inside the DUT tested separately

Fig. 3. Principle of the proposed approach showing two different test granularities. Components that need to be adapted for the approach are shaded,
additionally required components are shown as circles.

and state of REQ in the 2-phase protocol on the output
side. This allows to hardwire the MUX’s select input to the
output REQ, yielding low circuit complexity. In particular
we chose to associate user data with REQ = 1 and test
data with REQ = 0. According to the bounded delay model
an appropriate delay needs to be added before conveying the
REQ signal downstream, to compensate the data delay caused
by the MUX.

For the output REQ, termed rUT in fig. 4, we want a
rising edge when (a) the REQ of the user data (rU ) rises,
indicating new user data are available, and (b) the REQ of
the test data (rT ) falls, indicating the test vector generator is
in its RTZ phase – whichever happens last. The same is true
for the falling edge of rUT , with the input transitions from
rU and rT inverted. The Muller C-element shown in fig. 4(a)
(top) serves exactly this purpose. The ACK signal coming
from the 2-phase function unit, termed aUT can be simply
conveyed as the ACK to the user input (as aU ), and after
inversion to the test input (aT ).

For the 2-to-4 phase split element the data handling unit
becomes trivial, namely just a set of wire forks: Since the
data may assume any arbitrary value during the RTZ phase,
all incoming data are directly forwarded to both outputs at
the same time. It is up to the REQ signals to indicate which
of the outputs is intended to receive the respective data word.
Recall that the merge unit associated user data with rUT = 1.
Therefore we need to activate rU (and deactivate rT ) at the
split unit output when the rUT = 1 is seen at its input, and
set rT = 1 (and deactivate rU ) otherwise. The simple circuit
shown in fig. 4(b) (top) does this job and ensures that rU
and rT are activated in a mutually exclusive fashion. Merging
the ACK responses aU and aT from the 4-phase outputs
to a common 2-phase ACK, namely aUT , follows the same
pattern as outlined for the REQ signals in the merge unit. Not
surprisingly, a Muller C-element with one inverted input, as
shown in fig. 4(b) (bottom), does the job.

B. Merge and split for completion detection approach

From the available options for implementing the CD ap-
proach we chose NCL as the 4-phase protocol and LEDR
as the 2-phase one. As these protocols use different data
representations, a bit-level conversion becomes necessary in

C
rT

rU
rUT

aT

aU
aUT

1

(a) phase merge

rUT
rU

rT1

CaUT
aU

aT

(b) phase split

Fig. 4. Handshake signals generation for the bundled data implementation

the merge and split unit. Table I shows the required mapping
(per data bit). In the 2-phase protocol we have 2 rails per bit,
one value rail (val) and one phase rail (phs). On the 4-phase
side we have again 2 rails per bit, this time a one-hot code
with one rail indicating high (hi) and one low (lo). For the
merge unit we need to convert from 4-phase to 2-phase (right-
to-left in the table). Notice that in the 4-phase representation
only a single rail is high at a time in each of the four valid
states.

The circuit shown in fig. 5(a) identifies these states and
maps them to the respective LEDR code. As the two 4-phase
inputs (user data and test data) originate in different sources,
we cannot avoid invalid intermediate input patterns (i.e. such
with 2 rails or no rail at high). This is why we use Muller
C-elements to retain the valid previous outputs during those
phases. The ACK can be treated in the same way as in the
BD merge.

In the split unit the format has to be transformed back to
the 4-phase protocol (left-to-right in Table I). Notice in the
table how the alternation of test data and user data in the
2-phase stream leads to a natural insertion of the required
NULL spacers into the 4-phase data streams. The required
circuit can be easily derived and is not shown here. A purely
combinational (glitch-free) implementation without Muller C-
elements is sufficient here, since the 2-phase input does not
exhibit invalid intermediate states.

Finally, the generation of the ACK signal is again realised
by connecting the incoming ACK lines to a Muller-C element
with the test ACK in its negated form.

C. Enhancements

So far we have presented the basic implementations of the
blocks handling the control signals. It is possible to increase



≥ 1

≥ 1

≥ 1

≥ 1UD

TD

low rail

low rail

high rail

high rail

C

C

UTD

value
rail

phase
rail

(a) Format conversion unit

aT

aU
aUT

1

(b) phase merge

CaUT
aU

aT

(c) phase split

Fig. 5. Completion detection format conversion from NCL to LEDR

TABLE I
TRUTH TABLE, FORMAT CONVERSION

2-phase UTD 4-phase UD 4-phase TD
val phs int hi lo int hi lo int
0 0 LO(TD) 0 0 NULL 0 1 LO
0 1 LO(UD) 0 1 LO 0 0 NULL
1 0 HI(UD) 1 0 HI 0 0 NULL
1 1 HI(TD) 0 0 NULL 1 0 HI

their speed at the cost of increased complexity and thus
increased area overhead. In the case of the merge element
it is possible to acknowledge the NULL phase earlier, namely
as soon as the data of the other input are propagated, giving
the data values more time to travel through the logic. This
yields advantages if NULL values are much faster than data
values, which is the case when asymmetric delay lines are
used. Another possibility is to propagate new data as soon
as they show up, no matter if the other input has already
delivered its NULL spacer or not, of course only after the
ACK was received from the succeeding stage. Furthermore,
introducing a latch at the output of the merge unit makes it
possible to acknowledge the inputs right away, resulting in a
further decoupling of in- and output.

For the split unit it is possible, to start the NULL phase
at the output that received the last data as soon as the input
gets acknowledged. Another alternative is to acknowledge the
input as soon as the output that recently received the data has
acknowledged them, without the necessity of the other one
having acknowledged its NULL phase. In addition a latch may
be implemented at the input making it possible to acknowledge
the input stream right away. For a more detailed and generic
treatment of this topic see [13].

V. EVALUATION

We verified our online test approach for a three-stage
Muller-pipeline. To keep the focus on the newly designed
units, we did not introduce combinational functions between
the pipeline registers; that would, however, be easy to add
in a next step. More specifically we augmented the pipeline
by a test vector generator, a response analyzer, and, most
importantly, by our proposed merge and split units.

Fig. 6. Post-layout simulation with detection of a stuck-at fault

After synthesizing the VHDL design we carried out a post-
layout simulation, whose result can be seen in fig. 6. The
topmost three traces show the input signals to the DUT and the
four traces at the bottom the output signals. TV G represents
the output of the test vector generator and TRA the input
of the test response analyser. The highlighted signal cmpDev
gets high as soon as TV G and TRA mismatch, i.e. a fault
is detected. Note how the values from data In and TV G
are processed in an alternating fashion and show up at the
output with some delay corresponding to their propagation
time through the pipeline.

To validate the self-testing capability of our approach we
introduced a stuck-at-0 fault on bit 3 in our design. This fault
is activated by the test vector 9B which is transformed to 93
(as well as the data vector 3F being transformed to 37). As
soon as the TRA recognizes 93 it raises cmpDev, as intended.

The area overhead and performance penalty introduced by
our approach depend on many implementation parameters and
are hard to estimate in general. We therefore decided to give an
analytic estimation here that still allows to judge the influence
of some choices, rather than presenting specific quantitative
area and timing data from the synthesized design.

For the area overhead we compare the transistor count of
the original pipeline with that of the enhancements required for
the online testing feature. We do not include the TVG and the
TRA in our analysis for two reasons: (1) The need for these
units is common to all test approaches, and (2) depending
on the specific demands the complexity of these units varies
by orders of magnitude. In general, when mapping gates to
transistor counts, we did not assume highly optimized cell
designs, but we applied simplifications in the overall circuit
when they were obvious (like reducing inverter count). The
results of our analysis are shown in table II.

The first row analyses the bundled data case. In the first
line the transistor count (unit “T” for “transistors”) for a stage
(register plus control) of the original pipeline is given; in case
the transistor count is proportional to the number of data bits
“/DL” indicates “per data line”. Line 2 gives the overheads
for the online test. The columns correspond to the individual
function blocks (merge and split), with the rightmost column
giving the overhead in % depending on the number n of stages,
for large data width and without combinational logic. For the
latches the overhead for conversion into a capture/pass latch
according to [14] is accounted for as well3. In the BD approach

3In contrast to the implementation proposed in [14] we did not account 8T
per switch but rather 4T (transmission gate).



the combinational function block (if any) remains unchanged.
As there are substantially different ways of implementing the
REQ delay required in the BD approach, and furthermore the
size largely varies with the required delay value, we did not
include it here. This means that the initial size of the pipeline is
underestimated here (making the relative overheads seemingly
higher), and that the extra delay to compensate for the MUX
introduction is not accounted for in the overheads.

The bottom row in table II shows the respective numbers
for the CD approach. Here the conversion of the logic is far
more complicated because each single gate has to be replaced.
Unfortunately no concrete numbers could be found in the
literature: That is why we make the pessimistic assumption
that the transistor count will duplicate when moving from 4-
phase to 2-phase4. Furthermore, merge and split blocks need
to be added, as well as the completion detector modified.

TABLE II
AREA OVERHEAD ESTIMATED BY TRANSISTOR COUNT

merge comb. pipel. node split n stages (%)

BD native - - 14 + 12/DL -
117 + 100

ntest 16 + 12/DL 14/DL 16

CD native - - 2 + 70/DL -
5.7 + 94

ntest 2 + 44/DL ≈*2 4/DL 14 + 22/DL

As shown in Table II the overhead for the BD approach
is 117 + 100/n%. For a test-per-stage approach (n = 1)
this yields 217%, while for a large number n of pipeline
stages between a single pair of merge/split elements, this value
drops towards 117%. With large logic function blocks this
relative overhead, however, quickly approaches 0%: Consider
a combinational block of 12T/DL/pipeline stage; just this
approximately halves the overhead.

For the CD approach with its more complex native pipeline
stages the relative overhead is much lower. However, as,
according to our pessimistic estimation, converting the logic
function blocks roughly duplicates their transistor count, the
situation does not improve with large function blocks.

For estimating the performance penalty we identify the
additional delays introduced by the test infrastructure. To attain
a generic view we consider gate delays (measured in inverter
delays ID of the respective technology) and assume zero wire
delays. The results are summarized in table III (k = number of
data lines). They show the accumulated values for forward and
backward (ACK) path. In all cases we assume that TVG and
TRA operate fast enough to perform the handshaking without
extra delays.

The numbers for the BD approach are shown in the first
row, with the first line referring to the native implementation
and the second one to the overhead for the online test
infrastructure. The introduction of the merge and split units
causes a delay of 5 and 2 ID, respectively. Relative to the stage
delay this represents a penalty of more than 100%. However,

4In a very simple example that we used for a first comparison, we could
build an XOR for NCL with about 70T, while its counterpart in LEDR
required 100T, yielding an overhead of less than 50%.

as the number of stages between merge and split, as well as
the delays of the logic function blocks (not considered here)
grow, the relative penalty quickly approaches 0%. Similarly,
the extra 1 ID for the register stage becomes negligible in case
of complex combinational function blocks with high delays.

For the CD approach the picture is again initially better
(penalty below 100%), as the native pipeline stage has more
delay. The problematic point, however, is, once more, the com-
plexity increase when transforming the combinational logic
from 4-phase operation to 2-phase. The related performance
penalty strongly depends on the specific circuit; we roughly
estimate it as 50...100%. Unfortunately, this number does not
scale down with the number of stages or with the initial
complexity of the combinational logic, as in the BD approach.

TABLE III
PERFORMANCE PENALTY IN GATE DELAYS

merge comb. pipel. node split n stages (%)

BD native - - 6 -
17 + 117

ntest 5 - 1 2

CD native - - 9 + dlog2(k)e ∗ 2 - n+8
n(2∗dlog2(k)e+9)test 4 ≈*1.5− 2 1 4

VI. CONCLUSION

We have proposed to exploit the, normally unproductive,
RTZ phase or NULL spacers of the asynchronous 4-phase
protocols for conveying test vectors. While this can be done
fully transparent and concurrent to the ongoing application,
a new test vector can be applied after every single data
word, which yields the tightest possible interleaving between
test and operation, and hence an excellent detection latency.
Test vectors can be freely chosen, independent from the user
data, to optimize test coverage versus test period. We have
identified the required infrastructure blocks for this approach
and illustrated their basic implementation. In a case study we
have proven the feasibility of the approach.

For the BD approach the area overheads can, according
to our estimations, go up to 200% under the most pes-
simistic assumptions. Fortunately they approach 0% quickly
with increasing number of stages and complexity of the
combinational logic. The performance penalty can be close to
150%, with the same favorable trends. So in practical cases the
overheads will be very moderate. The CD approach exhibits
lower relative overheads in the worst case scenarios, simply
because the native implementation is more complex already.
However, for the conversion of the combinational logic from
4-phase to 2-phase it is difficult to estimate the incident
penalties. Under our pessimistic assumptions the overheads
for this conversion dominate, and therefore we cannot attain
the favorable scaling as seen with the BD approach.

However, even in the worst cases the observed overheads are
still competitive with those of typical fault-tolerance methods
like TMR, duplication or time redundancy, given the superior
performance: In contrast to these fault-tolerance approaches
that are based on concurrent checking, our online test detects



permanent faults in the hardware, which are hard to unveil
otherwise, with the best attainable (namely cycle-wise) inter-
leaving between application and test.

Future work will be devoted to increasing the concurrency
within the merge and split modules, as already sketched in
this paper. This should aid in further reducing the performance
penalty. Furthermore, it will be interesting to study the prop-
erties of the approach in more complex settings.

REFERENCES

[1] C. Scherrer and A. Steininger, “Dealing with dormant faults in an
embedded fault-tolerant computer system,” IEEE Transactions on Re-
liability, vol. 52, no. 4, pp. 512–522, 2003.

[2] T. Verdel and Y. Makris, “Duplication-based concurrent error detection
in asynchronous circuits: Shortcomings and remedies,” in DFT. IEEE
Computer Society, 2002, pp. 345–353.

[3] R. W. Hamming, “Error Detecting and Error Correcting Codes,” The
Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[4] M. Nicolaidis and Y. Zorian, “On-line testing for vlsi - a compendium
of approaches,” J. Electron. Test., vol. 12, no. 1-2, pp. 7–20, Feb. 1998.
[Online]. Available: http://dx.doi.org/10.1023/A:1008244815697

[5] D. Koppad and A. Efthymiou, “Bist for strongly-indicating asyn-
chronous circuits,” in Very Large Scale Integration (VLSI-SoC), 2009
17th IFIP International Conference on, Oct 2009, pp. 215–218.

[6] N. Minas, M. Marshall, G. Russell, and A. Yakovlev, “Fpga implemen-
tation of an asynchronous processor with both online and offline testing
capabilities,” in Asynchronous Circuits and Systems, 2008. ASYNC ’08.
14th IEEE International Symposium on, April 2008, pp. 128–137.

[7] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent testing
technique for digital circuits,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 7, no. 12, pp. 1250–1260, 1988.

[8] J. Sparso, S. B. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective. Springer, 2001.

[9] M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Springer, 2000.

[10] A. Mitra, W. F. McLaughlin, and S. M. Nowick, “Efficient asynchronous
protocol converters for two-phase delay-insensitive global communica-
tion,” in ASYNC, 2007, pp. 186–195.

[11] M. Ferringer, “Conversion and interfacing techniques for asynchronous
circuits,” in Design and Diagnostics of Electronic Circuits & Systems,
2011, pp. 11–16.

[12] ——, “Conversion of two- to four-phase delay-insensitive asynchronous
circuits,” in EUROCON. IEEE, 2011, pp. 1–4.

[13] R. Najvirt, S. Naqvi, and A. Steininger, “Classifying virtual channel ac-
cess control schemes for asynchronous nocs,” in Asynchronous Circuits
and Systems (ASYNC), 2013 IEEE 19th International Symposium on,
2013, pp. 115–123.

[14] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32,
no. 6, pp. 720–738, Jun. 1989. [Online]. Available:
http://doi.acm.org/10.1145/63526.63532


