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Kurzfassung

Die vorliegende Arbeit befasst sich mit Oberflächenprozessen an Nanowire-Sensoren. Im
Speziellen werden Gassensoren sowie Biosensoren betrachtet.

Im Falle von Gassensoren liegen keine direkten Messungen der Target-Moleküle an der Oberfläche
vor. Deshalb müssen die Informationen darüber über eine Kopplung der Oberflächenprozesse mit
einem elektrischen Transportmodell für den Halbleiter beschafft werden. Die benötigten Daten
können dann aus dem vom Sensor gegebenen Signal bestimmt werden.

Im Falle von Biosensoren ist es nicht ausreichend, Hybridisierung und Dissoziation an der Ober-
fläche zu betrachten, sondern es muss auch die Bewegung der Target-Moleküle in der den Sensor
umgebenden Flüssigkeit beachtet werden, was ein gekoppeltes System von Reaktions-Diffusions-
Gleichungen liefert.

In dieser Arbeit werden Modelle auf zwei verschiedenen Ebenen für beide Systeme entwickelt.
Erstens werden deterministische Modelle aus der Literatur für die genannten Systeme angepasst,
was auf nichtlineare gewöhnliche Differentialgleichungen für Gassensoren und ein gekoppeltes
Reaktions-Diffusions-System für Biosensoren führt. Mit diesen Modellen ist es möglich, die die
Oberflächenprozesse bestimmenden Parameter aus gegebenen Messdaten zu bestimmen.

Zweitens werden diese Modelle verfeinert indem die zufällige Natur von chemischen Prozessen
berücksichtigt wird, was auf stochastische Modelle führt. Im Falle von Gassensoren wird dieses
Modell benützt, um das Verhalten des Rausch-Levels im gemessenen Signal qualitativ zu erk-
lären. Die Messdaten werden dazu mittels einer Wavelet-Zerlegung betrachtet. Für das System
der Biosensoren wurden zwei Algorithmen (einer in einer, einer in zwei Dimensionen) implemen-
tiert um das gekoppelte System zu simulieren. Während Simulationen in einer Dimension das
grundsätzliche Verhalten und erste wichtige Eigenschaften des Systems sichtbar machen, können
die Simulationen in zwei Dimensionen genutzt werden, um Besonderheiten in der Geometrie mit
dem Verhalten des Sensors in Zusammenhang zu bringen.
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Abstract

The work at hand considers the surface processes taking place at nanowire sensors. In par-
ticular, gas sensors as well as biosensors are considered.

When dealing with gas sensors, there are no direct measurements of the surface interactions
at hand. Therefore, the surface interaction model has to be coupled with an electric transport
model for the nanowire, which allows to relate the measured signal to the surface processes.

In the case of biosensors, not only hybridization and dissociation at the surface, but also the
movement of the target molecules in the liquid surrounding the nanowire needs to be taken into
account, which yields a coupled system of reaction-diffusion equations.

In this work, these systems are modeled at two different levels. First, deterministic models are
adopted from literature to obtain a system of highly nonlinear ordinary differential equations for
gas sensors and a system of reaction-diffusion equations for biosensors. These systems are then
used to determine the parameters governing the surface processes taking place at both devices.

Second, we refine this approach to obtain stochastic models for the systems of interest. In the case
of gas sensors, this model is used to qualitatively explain the noise level in the measured signal.
To this end, the experimental data is analyzed using wavelet decomposition. For the biosensors,
two algorithms (one in 1D and one in 2D) were implemented to simulate the movement of the
target particles as well as the hybridization and dissociation processes at the surface. The one-
dimensional algorithm allows first insights in the general behavior and important features of the
system. The two-dimensional simulations enable distinction of several regions of the surface that
show different behavior under the presence of target molecules.
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Chapter 1

Introduction

Generally, a sensor is a device that translates information on the investigated situation into
information that can be processed by humans. As an example, a thermometer relates the

density of mercury to the temperature, a laser speedometer relates the phase shift of the light
wave to the speed of a vehicle, and a gas sensor relates the presence and concentration of a gas
to an electrical signal, and the respective thing is performed by a biosensor. The part of a sensor
performing this core feature is called transducer, which is the most important structure of the
device. This work is about the interactions of target particles, i.e. gas molecules or biomolecules
with the transducer.

Over the decades and centuries, there was a continuous development of the methods implemented
and of the devices for the measurement of all the quantities arising in everyday life. Nowadays,
the clear focus for improvement is on miniaturizing devices for mobile use, even as parts of things
everybody carries around with them at any time such as smartphones or tablets. To achieve this
goal, making use of structures at the micro- and nanoscale is unavoidable.

The quality of a sensor, regardless of its target, can be characterized by three parameters:

• Stability: To obtain reliable results from a sensing device, the response must always be the
same under the same conditions. If this requirement is not met, calibrations prior to the
measurement are in order. Usually, it is necessary to perform one calibration when using a
device the first time. A lack of stability leads to a need for frequent re-calibration, which
is at least inconvenient for the user, and in worst cases, not manageable.

• Sensitivity: It is obvious that there needs to be a response of the device to the presence
of the target species, whatever this is. However, a good sensor will not only tell that the
target species is there, but also report how much of it is present. The precision of this
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CHAPTER 1. INTRODUCTION 1.1 Gas Sensors

feature and also the detection limit, i.e. the lowest quantity detectable with the sensor at
hand, are important when deciding which device to use.

• Selectivity: The sensor response should only be due to the quantity of interest. If there are
other species present at the transducer, they need to be disregarded in any way. Depending
on the specific target, there are different strategies to ensure this, although this requirement
cannot always be met easily and is still open for discussion in certain cases, as will be seen
later on.

Especially when it comes to nanoscale devices, their optimal design with respect to the three
mentioned parameters is still a matter of discussion. In particular, there are two possibilities
to gain insight on this topic. First, one could build different devices and compare their perfor-
mance under circumstances they will face during their application. This is extremely money and
time consuming, since expensive machinery is needed and the manufacturing process takes some
time. Second, one could predict the sensor’s behavior by conducting computer simulations. This
approach is much cheaper in both of the discussed quantities and therefore favorable.

Recently, a self-consistent 3d model for electrical conduction in nanowire BIOFET sensors was
derived and mathematically analyzed [7, 45]. This approach was refined and improved [8, 12]
and used for optimal sensor design [9, 10, 11]. The topic of this work is to derive a model for
the surface processes taking place at semiconductor nanowires used for both gas sensing and
detection of biomolecules.

1.1 Gas Sensors

There are many reasons to measure the ingredients of a gas. The most straightforward applica-
tion is of course monitoring air quality under certain circumstances. Different settings like air
pollution in a city or heating ventilation and air conditioning (HVAC) systems are of interest
here. Moreover, there are many processes where toxic gases are produced and people must not
be exposed to them. Therefore, a reliable alarm is needed, which concerns home safety as well
as industrial processes. A different branch is mobile health care, where mostly breath analysis
is addressed. Several diseases can be diagnosed by investigating the compounds of the exhaled
air, and the availability of mobile devices to conduct the analysis is of great value. For a review
on possible applications, see [103].

Considering metal oxide gas sensors, stability is achieved using suitable processes for nanowire
growth and circuit integration. Since most of the metal oxides are capable of detecting many
different gas species, sensitivity is established and discussed later on in detail. However, selec-
tivity is still an issue, as might become clear from the previous statement. The investigation
of surface processes, which is the topic of one part of the work at hand, is an important step
towards amelioration of the situation.

In general, there are many different approaches to detect gases and monitor their quantities.
Apart from optical, capacitive, calorimetric or acoustic wave sensors, there are two types of
particular interest. First, sensors with a field-effect transistor (FET) configuration enable a
charge transport characteristic that is very sensitive to the gate potential, which is in turn
sensitive to the target gas. Second, there are conductometric sensors, where the metal oxide

2



CHAPTER 1. INTRODUCTION 1.1 Gas Sensors

works as a resistor, changing its resistivity according to present gas species. In this work, we
shall deal with conductometric sensors, and we therefore turn our attention on this type for the
remainder of this discussion.

The working principle of conductometric gas sensors is very simple. The basic structure, here
in the case of a metal-oxide nanowire gas sensor, is shown in Figure 1.1. The core is the metal
oxide nanowire which is contacted to two electrodes. The nanowire acts as a transducer, which
transforms the chemical signal of gas interaction into an electrical one. If one applies a voltage
between these electrodes, the current through the metal oxide can be measured.

During the measurement process, the metal oxide is exposed to the gaseous probe of interest.
When a gas molecule is near the sensor surface, it may adsorb and, during this process, exchange
electrons with the metal oxide, which alters the number of free carriers in it. This yields a
modulation of the conductance of the material, which corresponds to obtaining a change in the
current for a fixed applied voltage.

Source Drain

Nanowire

Substrate

Gas

Figure 1.1: Sketch of a nanowire gas sensor structure. The image is not true to scale,
in fact the nanowire can have a length of several µm and is just a few
tens of nanometers thick (cf. Figure 1.2).

The implementation of semiconductors as conductometric gas sensors goes back to the findings
of Heiland [43], Bielanski [14] and Seiyama [80]. By now, several subtypes have emerged. Thick
film sensors are porous and yield a high surface-to-volume ratio, which increases sensitivity, but
prohibits exact reproducability of the sensing layer. Thin film sensors are not that sensitive,
but allow reproduction of the thin film. Moreover, they can easily be integrated into a vari-
ety of micro-sized devices (cf. [66, 109]), which lowers power consumption and enables mobile
use. Finally, sensors based on single nanowires or nanowire networks have an extremely high
surface-to-volume ratio and have single-crystalline sensing layers, which combines high sensitiv-
ity, reproducability and easy integration in small-size devices.

A large class of semiconductors used in the fabrication of nanowire gas sensors are metal oxides,
since they meet all the requirements for mass production (simple manufacturing process and
affordability) as well as for sensing properties like reliability and sensitivity. Prominent materials

3
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used for this purpose include SnO2 [17, 20, 21], ZnO [2, 101], TiO2 [32], In2O3 [106], WO3 [76]
and CuO [58, 89], which have all been thoroughly investigated over the past decades. Thorough
reviews on different materials, manufacturing processes and results are found in [4, 53, 83].

Several strategies have been followed to enhance selectivity of conductometric gas sensors. Doping
of the implemented nanowires with different metals, which may enhance the response to certain
target gases is an experimental approach. An array of differently doped nanowires may therefore
not only enable distinction of different gases, but also increase the sensitivity of the system.
As an example, doping of tin dioxide with copper [55], copper oxide [49], but also with noble
metals like palladium [85] has been reported to give promising results. However, target gases
can also be distinguished without modification of the nanowire sensors. Ponzoni et al. show the
temperature dependence of a WO3 sensor response towards NO2, H2S, CO and NH3 [76], which
is considerably different for each gas. In this manner, gases can be discriminated by pattern
recognition.

The latter, heuristic, approach is further refined by developing a model for the interactions of
the target gases with the nanowire surface. The crucial step is then to estimate numerical values
for the parameters governing these reactions, and their dependence on temperature. With this
information obtained, one can simulate the sensor behavior at arbitrary temperatures and for
arbitrary target gas concentrations. Ding et al. [25] as well as Fort et al. [29, 30, 31] reported
results with commercial thin film gas sensors.

In this work, we use this approach for nanowire gas sensor prototypes built by the group of
Anton Köck (formerly Austrian Institute of Technology, now Materials Center Leoben), who
implemented mainly SnO2 and CuO sensors [17, 37, 88, 89]. We seek to confirm the reaction
paths proposed in literature and estimate the governing parameters for different gases in order
to predict the sensor behavior.

Figure 1.2: SEM image of a single SnO2 nanowire as used in our experiments. The
areas to the very left and right are the electrical contacts (Ti/Au). The
nanowire is approximately 53 µm long.
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CHAPTER 1. INTRODUCTION 1.1 Gas Sensors

1.1.1 Tin Dioxide (SnO2) Sensors

Tin dioxide is a material widely used for gas sensing. In its pure stoichiometric form, it is an
insulator due to its large bandgap of 3.6 eV. However, singly or doubly ionized oxygen vacancies
form donor levels at 30 meV and 150 meV below the conduction band. At elevated temperatures,
these electrons have enough energy to act as free electrons in the conduction band, which makes
SnO2 a semiconductor.

First SnO2 based gas sensors were described for commercial use in the early 1970’s by Taguchi’s
patents [70, 71], where, among others, detection of hydrogen, carbon monoxide, alcohol vapor and
smoke is reported. In 1977, the detection of water vapour was reported [15]. Since then, mainly
two types of sensors are employed. First, thin film sensors allow integration on microhotplates,
which enables very small devices, but are less sensitive than thick film sensors due to their lower
porosity. Several groups report detection of various gases with thin film sensors [73, 78, 82].
Second, nanowire based sensors have many advantages over thin film sensors, since they have
a higher surface-to-volume ratio, show higher stability and yield lower power consumption [16].
Numerous publications discuss the sensing properties of, among others, CO, CO2, H2, H2S,
NH3, SO2 and ethanol, where also the use of noble catalysts has been shown to be useful [17, 20,
21, 46, 102] to enhance both sensitivity and selectivity. A review on concentration ranges and
corresponding sensitivities for several target gases is given in [3].

Figure 1.3: Image of an integrated sensor on the microchip. The whole device is not
larger than approximately 2 cm.

A typical SnO2 single nanowire as used in our experiments is shown in Figure 1.2. The areas to
the very left and right are the electrical contacts. A real life image of the integrated sensor on
the microchip is shown in Figure 1.3.
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1.1.2 Copper Oxide (CuO) Sensors

Copper oxide is a p-type semiconducting material with a reported indirect bandgap between
1.2-2.1 eV [61, 69, 79], although even higher bandgaps have been reported for copper oxide
nanoparticles [50].

Gas sensors based on this material are mainly built as nanowire devices, where single as well as
network configurations are possible. For the nanowire fabrication, several techniques, e.g. thermal
oxidation, electrochemical deposition or direct plasma oxidation methods are employed [28].
With these structures, detections of CO, H2S, NO2, NH3 and ethanol were reported [51, 59, 60,
84, 105], but are not limited to these species. Detection ranges were reported in the low ppm
range, for H2S even in the range of tens of ppb.

As discussed previously, CuO is also widely used as dopant for gas sensors with other metal oxides
as transducer materials, which greatly amplifies sensitivity and also the response to several gases,
which is an important step towards selectivity.

We investigated the measurements conducted with CuO nanowire sensors in a network config-
uration for the analysis of fluctuations and noise depending on the gas species present in the
measurement chamber.

Figure 1.4: SEM image of a typical copper oxide nanowire network as used in our
experiments.

A SEM image of a device used in our experiments is shown in Figure 1.4. In particular, the left
part of the image shows several electrodes, which each have a nanowire network as shown in the
right part of the image. For a thorough description of the used devices see [87, 88, 89].

6



CHAPTER 1. INTRODUCTION 1.2 Biosensors

1.2 Biosensors

The main aspect for the necessity of biomolecule detection is disease diagnosis. In order to employ
this type of diagnosis for the general public a simple, fast and reliable method is necessary. In
the past, many approaches have been followed to obtain suitable devices. For example, optical
detection via fluorescence methods is well-studied, but its major drawback is the necessity of
marking the target molecules prior to its detection (cf. [57]), which is of course a major inhibitor
for mass production and use.

Another important group of methods for detection are electrochemical techniques, which have
been shown to be even more sensitive. As there are many different techniques, we shall only
consider BIOFET devices here.

This approach is a label-free, real-time method for detecting biomolecules by using nanowire
sensors based on the field effect. This type of sensors, which is based on a principle reported
by Bergveld [13], has first been presented by Cui et al. [22]. Since then, detection of various
biomolecules, including proteins, nucleic acids and viruses have been demonstrated in aqueous
solutions [26, 48, 74, 90, 108], especially in whole blood [91].

Source Drain

Nanowire

Dielectric

Backgate

Substrate

Liquid

Figure 1.5: Sketch of a nanowire BIOFET structure. The working principle is that of
a field-effect transistor with a backgate electrode. The functionalization
is not shown here. Note the similarity to the structure of a nanowire gas
sensors (cf. Figure 1.1).

Generally, field-effect transistors consist of a doped semiconductor that is contacted to three
electrodes (source, gate, drain). The conductivity of the semiconductor is then modulated by
the voltage applied to the gate electrode, which allows very sensitive regulation of the current
through the semiconductor. Additionally, another backgate electrode can be implemented in
order to increase sensitivity of the device.

For the detection of biomolecules, the gate electrode is replaced by a functionalized layer at the
semiconductor surface. The functionalization consists of the receptor molecules for the intended

7
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species to search for, such as antibodies for the detection of antigens or the matching single-
stranded DNA for DNA detection. This layer is surrounded by an aqueous solution containing
the target particles. If the matching molecules hybridize, the charge density at the surface is
altered, which has the same effect on the nanowire as the gate electrode has. Note that since
every receptor is only sensitive for the respective matching species, selectivity of this device
comes for free.

A sketch of a typical biosensor structure is shown in Figure 1.5, where the functionalization of
the surface is not depicted for simplicity. A cross-section depicting the receptor molecules is
shown in Figure 3.2 later on. The most frequently used material for the transducer is silicon,
but also metal oxides have been shown to be working (cf. [24]), while silicon oxide is mostly used
as dielectric.

First steps have already been made in the description of biomolecule detection, where especially
the fluctuations and hybridization-induced noise was investigated [18, 44]. This approach is
continued in this work, where deeper insight behavior of the system is targeted. In particular,
the prediction of sensor responses under the exposure to different target-molecule densities shall
be investigated.

1.3 Remarks

Throughout the description of the working principles of both conductometric gas sensors and
field-effect-based biosensors it becomes clear that the detection mechanism is very similar for
both devices. Therefore, it seems natural that both mechanisms can be described by the same
model. Its development and its implementation for simulations is the topic of the work at hand,
where approaches on two different levels are considered.

First, we consider a deterministic model for the interaction processes at the transducer surfaces
(cf. Chapter 2). This model needs to be coupled with an electrical conduction model in the case
of gas sensors, or with a diffusion model in the case of biosensors to take all the relevant features
of the system into account.

A refined approach including the random nature of chemical processes leads to a stochastic
adsorption model (cf. Chapter 3), describing the density of adsorbed particles as stochastic
processes. In these systems, the measureable data is obtained via the statistics of the stochastic
processes, which can be calculated explicitly under several simplifying assumptions. If the latter
ones are not suitable, numerical solutions are the best one can get.

The deterministic model is used for the determination of parameters governing the respective
reactions (cf. Chapter 4). The gaseous species considered here include carbon monoxide, oxy-
gen and hydrogen, while the hybridization of ssDNA oligomers will be investigated within the
biosensors framework. These data obtained for the hybridization processes can then be utilized
in the simulations of Chapter 5.

In Chapter 5, the stochastic description of the surface processes is first used to analyze exper-
imental data from the detection of hydrogen sulfide and water vapor. A decomposition of the
signal enables the distinction of situation where the gases are present from those where they
are not. Second, two algorithms coupling the stochastic hybridization processes coupled to the

8
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diffusion model were implemented in order to simulate sensor behavior under the influence of
target molecules. Here, the focus is on the equilibrium values as well as on the evolution over
time of the signal, the fluctuations, and the signal-to-noise ratio.
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Chapter 2

Deterministic Detection Models

In order to be able to simulate the sensor response under the influence of the target, we need
to rephrase the working principle of the device into mathematical terms. This step is called

modeling. There, every step in the mechanism is described with a suitable approach and finally,
all the different models are coupled to obtain the whole system describing a working sensor
device. In this chapter, we will discuss the approaches used to model the underlying processes
for the two sensors of interest. In each case, there are two steps to consider in order to obtain a
realistic model.

There is no opportunity to observe the surface interactions at metal oxide gas sensors directly.
Rather, these processes are only accessible via measurements of the conductivity of the trans-
ducer. As a consequence, the full gas sensor model combines an electrical conduction model for
the nanowire with a surface interaction model, which allows deductions from measurement data.
Here, the interactions of oxygen, carbon monoxide, hydrogen, hydrogen sulfide and water vapor
are discussed.

Unlike as for gas sensors, there exist direct measurements of the binding processes of biomolecules
to its receptors at nanowire biosensors, which allows straightforward investigation of the surface
interactions. Therefore, the electrical conduction model for the nanowire is not necessary, al-
though it would also be suitable to simulate the actual sensor response. However, especially when
it comes to lower target-molecule concentrations, the transport through the surrounding liquid
also needs to be taken into account. Therefore, the model for biosensors combines a transport
equation for the target molecules in the liquid with the surface interactions to obtain a reliable
description of biomolecule detection.

Note that a diffusion model is not necessary for gas sensors, since expecially at high temperatures
the diffusion constant of a gas is large enough to consider the transport to be instantaneous.

11
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In this chapter, we assume that there are large amounts of all the quantities involved and we
are considering large timespans. This assumptions allow to neglect the random nature of all the
chemical reactions and we can just consider the average values, which leads to a deterministic
model.

In the following, we will first develop the specific description of gas detection (cf. Sections 2.1
and 2.2) and then continue with the coupled model for biosensing in Sections 2.3 and 2.4.

These derivations are based on the author’s publications [96] and [98].

2.1 Conduction in the Metal Oxide

The principle of carrier transport in the nanowire strongly depends on several factors, where its
geometry, in particular its thickness, and its morphology play the most important roles. For
example, in poly-crystalline probes, the electrons need to overcome the electronic barriers at
the many grain boundaries, while in single-crystalline probes these barriers are only present at
the surfaces. Also, the donor density as well as relative permittivity and, apart from material
properties, temperature have influence on the the decision which model to use, since they change
the effect of the surface states on the whole nanowire behaviour.

The classical model for the carrier current in semiconduction materials is given by the drift-
diffusion equations [64],

∇ ·~jn = R, (2.1a)

∇ ·~jp = −R, (2.1b)

~jn = qnµn ~E + qDn∇n, (2.1c)

~jp = qpµp ~E − qDp∇p, (2.1d)

where ~jn,p denote the current densities, R denotes the recombination rate [81], µn,p are the
mobilities and Dn,p are the diffusion constants for electrons and holes, respectively, q denotes

the electronic charge and ~E is the electric field. The respective first terms on the right hand side
of the last two equations represent drift, while the respective last ones represent diffusion.

The electric field is derived from the solution of the Poisson equation,

−∇ · (ǫ0ǫr∇V (~x)) = ρ (2.2)

with suitable boundary conditions, which relates derivatives of the electrical potential V to the
charge density ρ := q · (p− n) in the nanowire and the permittivity of the material ǫ0ǫr. Since
the charge density is determined by the densities of electrons and holes, coupling of the Poisson
equation to the drift-diffusion system is established. Typical boundary conditions are Dirichlet
conditions at the Ohmic contacts (representing the applied voltage) and zero Neumann conditions
everywhere else. The electric field is then given as the gradient of the potential,

~E(~x) = −∇V (~x). (2.3)

In n-type sensors, there are no free holes present, while in p-type sensors, no free electrons are
present, so two of the above equations always vanish. For the rest of this section, we shall only
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consider n-type metal oxides. The derivation of the link between resistance of a p-type metal
oxide and the surface states of the material is based on the same principles, although a little
different in some details [1, 47].

Assuming that the depletion layer thickness is of comparable size with the mean free path, the
current density mainly consists of the drift part. Therefore, dropping the diffusion term in (2.1)
is a valid approximation, which greatly simplifies the calculations. Furthermore, assuming that
the drop of the applied potential is uniform along the nanowire, it is sufficient to calculate the
current through the nanowire at any cross-section via

I =

∫∫

A

~jdrift
n d~x = qEµn

∫∫

A

n(~x) d~x, (2.4)

where E is the electric field normal to the cross-section here. This approximation is called the
graded-channel approximation.

We define the quantity σ to be the proportionality factor relating the electric field and the current
density in the material, yielding

σ := qµnn (2.5)

for n-type sensors. This quantity is henceforth called specific conductivity. The total conductance
for the whole sensor, which relates the electric field to the total current is then given by

G :=

∫∫

A

σ d~x = Āqµnns, (2.6)

where the last equation is derived from potential barrier theory [25, 68] and Ā is a constant
taking into account the sensor geometry of the sensor. According to potential barrier theory, the
conductance only depends on the density of electrons at the surface ns, which in turn depends
on the surface potential Vs,

ns = ND exp

(
− qVs
kBT

)
, (2.7)

where ND is the donor density in the metal oxide, kB is the Boltzmann constant, and T is
the temperature in Kelvin. The same theory also relates the total density of localized surface
electrons to the surface potential via the Schottky relation [68],

Vs = − qN2
eff

2ǫ0ǫrND
, (2.8)

where Neff is the effective density of localized surface electrons.

Summarizing, the conductance of a nanowire is given by

G = ĀqµND exp

(
− qVs
kBT

)
= ĀqµND exp

(
− q2N2

eff

2ǫ0ǫrNDkBT

)
=

= G0T
−

3

2 exp

(
− q2N2

eff

2ǫ0ǫrNDkBT

)
, (2.9)
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where we condensed all pre-exponential constants into one parameter G0 and took into account
that the mobility also depends on the temperature, µ ∝ T−3/2. As can be seen from this formula,
for a fixed geometry, material and temperature, the conductance varies with the effective density
of surface states Neff, so it is straightforward to seek for an expression for this quantity. A proper
description of the processes taking place at the sensor surface, which will provide Neff, is in order.
This task is going to be one of the main goals of the work at hand.

2.2 Surface Processes for Gas Detection

As derived during the last section, surface processes do heavily influence the conductive behavior
of the metal oxide, which is the crucial step in the sensing mechanism. The need for proper
modelling of the adsorption and the desorption of gas molecules is an obvious consequence.
However, this part of the sensor behavior is still open for discussion. On the one hand, several
surface reactions are understood qualitatively under certain surrounding conditions, although
there is some uncertainty when it comes to more complicated situations. This includes possible
multiple steps in the processes and also their stoichiometry. As an example, Fort et al. [31]
consider a two-step reaction mechanism for oxygen adsorption, where the first step is assumed to
be much faster and therefore always to be in equilibrium. On the other hand, there is still great
doubt on the quantitative results for the reaction constants that govern the surface processes.
For example, Fort et al. [29] express their doubts about the accuracy of the obtained values.

As a consequence, one objective of the presented work is to confirm the reaction paths proposed in
literature, and, moreover, obtain an estimation for the numerical values of the reaction-governing
parameters.

A common model to describe the electronic behavior of a semiconductor surface is the rigid band
model. Within this model, the interactions of the surface with any other species is described via
localized electronic energy levels, the so called surface states [68]. These surface states have many
different origins which also influence their density, and we are interested in two of them. First,
there are intrinsic states that occur since the periodicity of the lattice is broken at the surface,
which yields the named electronic behavior. Second, the adsorption of any species changes the
electronic structure of the metal oxide near the surface, again yielding localized energy levels.

Free electrons in the conduction band of the metal oxide can occupy the surface states, which
prevents them from contributing to the electrical conduction through the nanowire. The relation
between occupied surface states and conduction is given by equation (2.9). In the following, any
interaction of target gases with the surface is described in terms of surface state occupation.

2.2.1 Inert Conditions

If only inert gases like nitrogen (N2) or noble gases (e.g. Ar) are surrounding the nanowire, there
are no interactions with the surface. This is of course the most simple case, where only intrinsic
surface states play a role. Here, some electrons in the conduction band are trapped in surface
states and have built up a potential barrier at the surface so that the system of electrons is in an
equilibrium. In this situation the number of occupied surfaces states can be influenced by varying
the temperature. An increase provides more energy for the electrons and makes overcoming the
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potential barrier more likely, which yields more trapped electrons in surface states. A decrease
of the temperature yields a higher release rate from the surface states, which also decreases the
potential barrier.

Source Drain

Substrate

Figure 2.1: Trapping and releasing of electrons to and from intrinsic surface states.

The trapping and releasing of electrons in surface states can be described as a dynamic process.
Experiments show [25] that this process is taking place in the range of minutes, which is very
slow compared to typical time scales of electronic systems. The process can be written as a
chemical reaction, yielding [31]

Si + e− ⇋ S−

i , (2.10)

where Si, S
−

i denote an unoccupied and occupied intrinsic surface state, respectively. Figure 2.1
sketches these processes within the sketch of the whole device. Application of the mass action
law allows to relate the change in the density of occupied surface states to its current value, to
the density of surface electrons and to the total available density of surface states. This yields
an ordinary differential equation, reading

dNi

dt
= k1ne([Si]−Ni)− k2Ni, (2.11)

where Ni denotes the density of occupied intrinsic surface states, [Si] denotes the total density
of available intrinsic surface states and k1, k2 are reaction constants. The first term on the right
hand side represents the trapping rate, while the second one represents the releasing rate of
electrons. For a given temperature, k1 and k2 are constant. The modelling of their temperature
dependence will be discussed in Section 2.2.7. The quantity ne represents the density of free elec-
trons at the surface, i.e. those with enough energy to overcome the potential barrier. According
to the discussion in Section 2.1, its value is given by

ne := ND · exp
(
− q2N2

i

2ǫ0ǫrNDkBT

)
, (2.12)

Obviously, the exponential renders the differential equation nonlinear. The equation can also
not be solved in closed form. To simulate the sensor behavior with given parameters, even here
a numerical solution is the best we can get.
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2.2.2 Oxygen

It is quite natural to investigate the interactions of oxygen with the sensor surface first, as its
presence in real-life applications is unavoidable. Moreover, surface processes of oxygen come in
handy under certain circumstances, since many target gases are detected via interaction with
pre-adsorbed oxygen, as will be discussed in the respective sections.

The crucial parameter for oxygen adsorption is the temperature, as experiments indicate different
mechanisms for different temperature ranges [5]. TPD chromatography in [104] shows that at
temperatures below 150◦C oxygen is adsorbed as O−

2 , while at temperatures between 150◦C and
400◦C, the dominant species is O−. Since the investigated measurements were all conducted
within the latter temperature range, only the mechanism for the O− processes will be discussed
here.

Adsorption of oxygen takes place in two steps [25, 68]. First, oxygen molecules are chemisorbed
to the surface, which creates an unoccupied surface state, henceforth referred to as extrinsic
surface state, at the site of the adsorbed oxygen atom. Second, the oxygen atom is ionized via
occupation of the extrinsic surface state, a process similar as described in Section 2.2.1. A scheme
of the mechanism is shown in Figure 2.2.

O2
O2

O2

O O O

O O O O O O

Figure 2.2: Mechanism of oxygen adsorption/desorption at SnO2 surfaces. Upper
left image: Oxygen reaches the surface and creates an extrinsic surface
state. Upper right image: The extrinsic surface states are occupied by free
electrons. Lower left image: Situation with occupied surface states. Lower
right image: Oxygen is desorbed, electrons are released and contribute to
conduction.
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The reactions equations for this process are

1

2
O2 + Se ⇋ SO, (2.13a)

SO + e− ⇋ S−

O , (2.13b)

where Se denotes an available surface site, SO and S−

O denote unoccupied and occupied extrinsic
surface states, respectively. The negative sign distinguishes unoccupied from occupied surface
states and also indicates the type of its charge. Similarly to the intrinsic behavior, occupation
of an oxygen surface state traps a free electron at the surface, preventing it from contributing to
conduction through the sensor. In this two-step process, the first reaction has been shown to be
much faster than the latter one [25]. Therefore, Fort et al. [29, 31] consider the chemisorption
process to be always in its equilibrium, which yields a simplification of the investigated system.
However, we will implement this process as stated above in order to still investigate the full
system.

Again, application of the mass action law yields the following equations

dNO

dt
= k3 [O2]

1

2

(
[Se]−NO −N−

O

)
− k4NO − dN−

O

dt
, (2.14a)

dN−

O

dt
= k5neNO − k6N

−

O , (2.14b)

where [Se] denotes the total density of surface sites and NO and N−

O denote the densities of
unoccupied and occupied extrinsic surface states, respectively. As the occupation of extrinsic
surface states influences the potential barrier, the expression for the surface electron density
changes, now yielding

ne := ND · exp
(
−q

2
(
Ni +N−

O

)2

2ǫ0ǫrNDkBT

)
. (2.15)

With oxygen present, this expression has to be used in (2.11) too, which establishes coupling
between the two processes. Note that Neff is now given by the sum of intrinsic and extrinsic
surface states.

2.2.3 Carbon Monoxide

Carbon monoxide is a toxic gas that occurs, e.g., during incomplete combustion of fossil fuels.
Monitoring its level is therefore not only important for personal safety, but also useful for opti-
mization of combustion processes. The detection of carbon monoxide with nanowire gas sensors
has been reported and discussed in, e.g. [52].

According to literature, there are several paths that have to be taken into account when consid-
ering CO detection. First, CO may adsorb directly to the SnO2 surface via a mechanism quite
similar to oxygen adsorption [38],

CO + Se ⇋ SCO, (2.16a)

SCO ⇋ S+
CO + e−, (2.16b)
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where the notation used in previous sections has been adopted. Again, we have a chemisorption
process followed by ionization. However, the important qualitative difference to oxygen adsorp-
tion is the opposite charge of the occupied surface states. In other words, occupation of a carbon
monoxide surface state injects a free electron into the nanowire, which can then contribute to
conduction in the metal oxide. Gases injecting electrons upon reacting with the surface are called
reducing gases. The differential equations for the discussed process are

dNCO

dt
= k7 [CO]

(
[Se]−NCO −N+

CO

)
− k8NCO − dN+

CO

dt
, (2.17a)

dN+
CO

dt
= k9NCO − k10neN

+
CO, (2.17b)

where here, the expression for ne is

ne := ND · exp
(
−q

2
(
Ni −N+

CO

)2

2ǫ0ǫrNDkBT

)
. (2.18)

The negative sign in the expression for Neff is due to the opposite charge of intrinsic and carbon
monoxide surface states, which yields a lower effective potential barrier than in the inert situation.

Second, carbon monoxide interacts with pre-adsorbed ionized oxygen. This reaction’s product
is gaseous carbon dioxide (CO2), while the electron occupying the surface state is released and
can contribute to conduction. Unlike the reactions discussed so far, this process is irreversible.
The reaction equation reads

CO + S−

O → CO2 + e− + Se. (2.19)

The last term in this equation indicates that a formerly occupied surface site has now become
available.

2.2.4 Hydrogen

Hydrogen is a highly explosive gas that arises, for instance in various industrial processes. More-
over, it faces a future as favorable energy carrier [65] and rocket fuel [86]. All these situations
make proper and effective monitoring of hydrogen indispensable.

Malyshev et al. [63] consider hydrogen detection with SnO2 sensors under various conditions,
including different temperatures, target gas concentrations, humidity levels and different cata-
lysts. However, they propose a reaction mechanism only for temperatures higher than 350◦C. A
mechanism for lower temperatures involving dominant pre-adsorbed oxygen species is proposed
by Gong et al. [36], which will be the one implemented for our studies and checked for validity.
Other than in the case of carbon monoxide, hydrogen does not directly interact with the metal
oxide surface, but only with pre-adsorbed oxygen.

The reaction path investigated is

H2 + S−

O → H2O + e− + Se, (2.20)

which has to be combined with the equations of oxygen adsorption discussed in Section 2.2.2.
The mechanism, which is again reversible, produces water vapour, a free electron in the nanowire
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and an available chemisorption site. The corresponding ODE system is obtained by adding one
term to the oxygen adsorption system,

dNO

dt
= k3 [O2]

1

2

(
[Se]−NO −N−

O

)
− k4NO − dN−

O

dt
, (2.21a)

dN−

O

dt
= k5neNO − k6N

−

O − k11 [H2]
1

2 N−

O , (2.21b)

where the expression for ne is the same as in equation (2.15), since hydrogen does not chemisorb
directly to the surface.

Since during this reaction water vapor is produced, there could, theoretically speaking, also occur
an interaction of H2O with the surface. In our case, this fact will be neglected, which is justified
by the specific setup of the measurement chamber and the low gas concentrations used in the
respective experiments.

2.2.5 Hydrogen Sulfide

Hydrogen sulfide is a highly toxic gas that appears for example during putrefaction, but also
during refinery of petroleum. Monitoring the hydrogen sulfide level is therefore crucial for the
safety of the involved personnel. Detection of H2S was, e.g., reported in [19].

At low concentrations, H2S interacts with the pre-adsorbed oxygen forming water vapour and
sulfur dioxide (SO2). For n-type SnO2 sensors at temperatures above 370◦C, a mechansim
involving doubly charged oxygen was proposed, yielding [62]

H2S + 3S2−
O → H2O + SO2 + 6e− + 3Se. (2.22)

According to this reaction path, six electrons per reaction are injected into the metal oxide,
which should make the device highly sensitive for H2S detection.

For lower temperatures, a mechanism based on singly charged adsorbed oxygen was proposed
for p-type CuO sensors [107],

H2S + 3S−

O + 3h+ → H2O + SO2 + 3Se, (2.23)

where h+ denotes a hole. Adaptation of this process for n-type sensors yields

H2S + 3S−

O → H2O + SO2 + 3e− + 3Se, (2.24)

from which we obtain

dNO

dt
= k3 [O2]

1

2

(
[Se]−NO −N−

O

)
− k4NO − dN−

O

dt
, (2.25a)

dN−

O

dt
= k5neNO − k6N

−

O − k12 [H2S]
(
N−

O

)3
. (2.25b)

This systems resembles equations (2.21), but has now another nonlinear term in the second
equation.
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However, especially at higher target gas concentrations, H2S directly interacts with the surface
by replacing lattice oxygen with sulfur, yielding

2H2S + SnO2 ⇋ 2H2O + SnS2 (2.26)

for SnO2 nanowires [62]. Although this process also severely alters the electrical behavior of the
device and therefore allows gas detection in principle, this mechanism is beyond the capabilities
of the model used in this work and cannot be considered here. As a consequence, only very low
concentrations of H2S will be investigated.

2.2.6 Humidity

Humidity, i.e. the presence of water vapour in the ambient air, crucially alters the conductive
behavior of metal-oxide sensors. Due its presence almost everywhere in natural environments, it
is an important step to better understand these alterations. However, the underlying mechanisms
are very complicated and not yet confirmed for all situations, which prevents any exact studies
in this work. Since we will only qualitatively investigate the effects of water vapour interactions
on the noise level, we will just write down the reaction paths discussed in literature.

When considering SnO2 sensors, two types of interaction seem possible. First, there is the
interaction with lattice atoms [6],

H2O + 2Snlat + Olat ⇋ 2 [Snlat − OH] + [Olat − H]+ + e−. (2.27)

Second, there is interaction both with pre-adsorbed oxygen atoms and Sn lattice atoms, which
yields [54]

H2O + O− + 2Sn ⇋ 2 [Snlat − OH] + e−. (2.28)

For CuO sensors, a reaction model related to the one in equation (2.28) was proposed. Here,
copper atoms from the lattice are involved [47],

H2O + O− + 2Cu + h+ ⇋ 2 [Culat − OH] + Se. (2.29)

As already mentioned, these processes will not be investigated for the estimation of reaction
parameters. Rather, the effect of humidity on the quality of the signal will be considered in
Section 5.1, where it suffices to have an idea of what happens at the surface when water vapour
is present.

2.2.7 Reaction Constants

For a given temperature, the ki are constant. However, they vary with temperature. A widely
used model to take this fact into account is the Arrhenius form [56], given by

ki := σi · exp
(
− Ei

kBT

)
, (2.30)

where i ∈ N, κi is the frequency factor and Ei is the activation energy, which are both constant.
The index here denotes the different reaction constant arising in all the mechanisms. Therefore,
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for each reaction rate to determine, we have in fact two quantities to estimate, which doubles the
overall number of unknown parameters stemming from reaction constants in the system when
considering more than one temperature.

Moreover, since the activation energies arise within an exponential, the system depends on the
parameters in a highly nonlinear way, which makes their estimation even more difficult.

2.2.8 Material Parameters

There are still two material parameters within the model that have not been discussed yet. In
particular, the relative permittivity ǫr and the free donor density ND require some attention.
Most importantly, numerical values need to be chosen in order to perform the simulations. Since
both parameters strongly depend on the manufacturing process, choosing the correct numerical
values is not straightforward. However, since the results are not qualitatively influenced by any
of the quantities, we chose some typical values, which are shown in Table 2.1.

Parameter Numerical Value Unit Comment

q 1.602×10−19 C elementary charge

kB 1.38×10−23 J K−1 Boltzmann constant

T – K temperature

ǫ0 8.854×10−12 A s (V m)−1 dielectric constant

ǫr 9.58 – relative permittivity

ND 6×1023 m−3 free carrier concentration

µn,p – cm2(V s)−1 mobility of electrons/holes

Dn,p – cm2 s−1 diffusion coefficient
~jn,p – A cm−2 current density
~E – V m−1 electric field

σ – Ω−1 conductivity

Ā – – geometric factor

G – Ω−1 conductance

VS – V surface potential

σi – depends on reaction order frequency factor

Ei – J activation energy

Table 2.1: Used symbols and their numerical values for gas-sensor applications.

2.3 Surface Processes for Biosensing

The principle of detecting biomolecules at surfaces is resembling the one for gas adsorption in
general, but has its differences in some details. Consider the surface of a nanowire biosensor. In
order to detect biomolecules, it is functionalized with appropriate receptor (or probe) molecules.
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Advantageously, one can control their surface density experimentally, which allows to fix this
parameter in simulations. This functionalized surface is surrounded by an aqueous solution
containing the matching target molecules. The dynamic process of binding and unbinding of the
respective species, or hybridization and dissociation, again changes the surface charge density
and hence the electrical characteristics of the nanowire, which allows detection of the binding
processes in measurements. Since these surface processes do not involve any electron transfers
with the semiconductor as it was the case for gas sensors, the reaction formulation is comparably
simple in this case and written as

T+P
ra−→ PT, (2.31a)

PT
rd−→ T+P, (2.31b)

where T denotes a target molecule, P denotes a probe molecule and PT denotes a probe-target
complex at the sensor surface. The two reaction constants are given by ra and rd, respectively.
Since two compounds are necessary for hybridization, this reaction is of second order, while the
dissociation is of first order. Biosensors usually are operated at constant temperatures, which is
why we do not need to write them in the Arrhenius form.

Source Drain

Backgate

ra rd

Dielectric

Figure 2.3: Investigated surface processes at silion nanowire sensors. The receptor
molecules are shown in red, while the target molecules are shown in blue.

If there are large amounts of target as well as probe molecules present in the liquid and at
the sensor surface, respectively, the effects caused by randomness of the chemical reactions is
negligible. In this case, the mass action law allows a transformation of equations (2.31) into
an ordinary differential equation for the density of probe-target complexes at the functionalized
surface, yielding

dPT

dt
(t) = raCT (CP −PT(t))− rdPT(t) (2.32a)

PT(0) = 0, (2.32b)
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where CT denotes the target-molecule concentration near the surface and CP denotes the density
of probe molecules at the surface. As we do not want to have any probe-target complexes present
at the surface in the beginning of the simulation, we impose a zero initial condition for the system,
which corresponds to a complex-free surface in the beginning of the simulation. Of course, other
initial complex-densities can be implemented easily by setting the respective non-zero initial
condition.

Considering the density of target molecules in the liquid as a reservoir, which means that the
target-molecule concentration is constant no matter how many molecules are taken away, this
equation has an analytic solution, which is given by

PT(t) =
raCPCT

raCT + rd
·
(
1− e−(raCT+rd)t

)
=
α

β
·
(
1− e−βt

)
, (2.33)

where we used the abbreviations

α := raCPCT , (2.34a)

β := raCT + rd. (2.34b)

With this expression, the probe-target density can be computed explicitly for any time. Finally,
the receptor density is known in this setting, which indeed leaves us just with two unknown
parameters to determine in this situation.

Putting all this together, under the assumptions made to derive this model, parameter estimation
is much simpler than for the gas-sensor case.

2.4 Diffusion of Biomolecules

For a realistic model of the surface processes at the nanowire, it is not sufficient to only consider
the hybridization and dissociation processes assuming constant target-molecule concentration.
Rather, one also needs to take into account the fact that with every target DNA hybridized with
its matching receptor molecule, there are fewer molecules near the surface to interact and vice
versa. However, if there is still DNA throughout the aqueous phase, there will be diffusion which
transports the particles towards the surface and allows the continuation of the hybridization
process.

Naturally, this process is modeled by the diffusion equation, which is given by

∂u

∂t
= D∆u in Ω× (0, tend], (2.35a)

ν · ∇u = g on ∂Ω× (0, tend], (2.35b)

u(x, 0) = u0 in Ω. (2.35c)
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This is an equation for the density of target molecules u(x, t), which is a time-dependent function.
Here, Ω denotes the liquid domain surrounding the nanowire. In particular, the quantity needed
for the surface processes is

CT = CT (t) =
1

ΩS

∫

ΩS

u(x, t)dx, (2.36)

which is the mean value of the target-molecule density near the surface. The parameter D is the
diffusion constant of the investigated target molecules. To determine its numerical value, the
single-stranded DNA molecules can be considered as rod-like according to Tirado et al. [92]. In
this study, the macroscopic diffusion coefficient is given by

D =
γkBT

3πηLDNA

, (2.37)

where γ is a correction factor taking into account so-called end-effects, which converges to a
finite value for infinitely long rods, kB is the Boltzmann constant, T is the temperature in
Kelvin, η is the viscosity of the liquid, and LDNA is the length of the DNA oligomer. In our
numerical studies, we consider a setup described in the work by Peterson et al. [75], from which
all necessary parameters are derived. The respective numerical values for these quantities are
given in Table 2.2.

Parameter Numerical Value Units Comment Reference

γ 2.074 – correction factor [92]

kB 1.38065× 10−23 J K−1 Boltzmann constant –

T 298.15 K temperature in Kelvin [75]

η 9.719× 10−4 N s m−2 viscosity [39]

LDNA 10.5 nm length of molecules [75]

D 8.877× 10−11 m2 s−1 diffusion constant (2.37)

Table 2.2: Parameters used for the computation of the diffusion constant.

The rod-like model relies, among others, on the strong influence of interactions between different
parts, especially the two ends of the same molecule, which is mostly repulsive. Instead of this
assumption, there is also a different approach. Considering these interactions to be weak, the
DNA oligomer becomes more flexible, which is then referred to as free-draining model. In this
case, the Rouse diffusion coefficient [77] is given by

DRouse =
kBT

6πηLP
, (2.38)

where LP is the persistence length of the DNA. Tree et al. [93] estimated its value to be between
0.6 nm and 1.3 nm depending on the ionic strength of the solution, which yields 3.75×10−10 m2/s
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and 1.73 × 10−10 m2/s as numerical values for the diffusion coefficients. However, since this
approach yields the same order of magnitude for the diffusion coefficient and is still not perfectly
confirmed, as has been pointed out in [93], the influence on the solution is not too large, and we
employ the numerical value obtained in (2.37).

The function g setting the boundary condition in equation (2.35b) is defined such that at the
boundary representing the device surface it gives the net balance of hybridization and dissociation
processes, while there is no molecule flow at all the other boundaries. This is exactly the point
where the surface interactions at the nanowire influence the diffusion throughout the liquid,
which, together with equation (2.36) establishes the coupling of the system.

The initial condition given by equation (2.35c) allows to set up different situations for the be-
ginning of the measurement. For example, one could consider a well stirred solution or imitate
an injection of the target molecules at the very top of the liquid domain. Of course, the possible
complexity of the scenario depends on the number of dimensions that are considered for this
problem. This topic is investigated later on in this study.

2.5 Summary

The coupling of a widely used model for electrical transport through a metal-oxide nanowire to
a surface-interaction model enables the investigation of adsorption processes at the transducers,
especially the determination of reaction parameters. This will be the task in Chapter 4. In com-
parison, the hybridization processes at biosensors appear to be simpler, but for a full description,
the diffusion of the target biomolecules needs to be taken into account.

Especially when it comes to low amounts of involved molecules, the randomness of all the re-
actions taking place cannot be neglected any longer, which is why a stochastic model for the
ongoing processes is in order. This will be the topic of the next chapter.
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Chapter 3

Stochastic Surface-Interaction Models

The signal of a sensor is never smooth. Rather, there are noise and fluctuations in the output,
which is due to various effects. On the one hand, there are several factors in the measurement

process, ranging from the power source to structural defects in the device, that make noise
unavoidable. On the other hand, one important origin for fluctuations is the random nature of
the reactions taking place at the sensor surface. In particular, the interaction of a target molecule
with its receptor (which may be the nanowire surface itself or a respective receptor molecule)
is random in space and time, i.e., the exact position where the molecule adsorbs and the exact
time when this process happens are random. Since we cannot resolve the different positions at
the nanowire surface for now, we will only focus on the time resolution here.

In this setting, the situation is as follows. The deterministic reaction rate approach discussed
for the parameter estimation in the last chapter is only an approximation either for very large
quantities of adsorption-desorption processes taking place at the same time or for large time
intervals under investigation. Then, the reaction rate is given by the average of all the small
time intervals. When considering low amounts of target molecules, this assumptions are not
fulfilled, and therefore, there will always be some variation in the number of reactions happening
within a fixed time interval. This is the origin of biological noise [40, 41, 42].

A sampling over many time intervals (with the system in the same state) will produce a mean
value, which coincides with the numerical value of the reaction rates based derivations in the
previous chapter. This fact will also be justified by the calculations in Section 3.2.

However, there is a lot of information to gather from the fluctuations, both in an absolute sense
as well as regarding its value related to the mean value.

In this chapter, we will refine the deterministic model from the previous chapter to obtain a
stochastic formulation of the surface processes. On the one hand, this approach together with
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methods of signal decomposition will be used to understand and analyze the noise in gas-sensor
measurements. On the other hand, this model together with the target-molecule diffusion model
is used to simulate the hybridization processes at biosensor surfaces in Chapter 5.

The derivations on the topic of biosensors follow the author’s publication [98], whereas the
stochastic description of gas-sensor surface processes is based on [100].

3.1 Stochastic Formulation of the Surface Processes

To calculate the sensor behavior near the detection limit, it is necessary to look at very few
molecules throughout the whole system. By doing so, the random nature of the surface processes
cannot be neglected any more. It is therefore necessary to find a probabilistic formulation for
the problem of interest. This can be done by considering adsorption as well as dissociation as
independent stochastic processes. Therefore, the consideration of stochastic differential equations
instead of ordinary differential equations is necessary. In particular, this approach yields a
chemical Langevin equation and was thoroughly investigated by Gillespie ([33, 34, 35]). For
thorough background information on stochastic differential equations, see [72].

Within this approach, the density of adsorbed (or hybridized) species becomes a stochastic pro-
cess, which will generally be denoted as {Xt}t∈[0,tend] here. In the case of gas-sensor adsorption,
this quantity is a vector whenever extrinsic surface states are involved. This stochastic process
is defined on a probability space ([0,∞]n,F ,P), where n is the total number of reaction paths, F
is a σ-algebra on [0,∞]n and P is a n-dimensional probability distribution.

The random variables ω drawn from [0,∞]n represent the number of reactions taking place
within a certain time interval τ . For each reaction, this is a counting process, and hence, each
component ωi of ω obeys a Poisson distribution with parameter λi,

P = (Pλ1
, . . . ,Pλn

). (3.1)

The parameters λi depend on Xt and τ as they are given by the product of the respective reaction
rate and the considered time interval,

λi(Xt, τ) = τ · ki, (3.2)

where the ki represents reaction constants for biomolecule hybridization/dissociation as well as
for gas-sensor adsorption/desorption.

By choosing τ large enough, one obtains large parameters λi. In this case, the Poisson distribution
approximates a Gaussian distribution N (µi, σi) with µi = λi, σi =

√
λi so that each index of a

random variable ω drawn from this distribution admits the form

ωi = λi(Xt, τ) +
√
λi(Xt, τ)N (0, 1). (3.3)

Altogether, by defining the matrix M = {Mi,j}n,mi,j=1 for m involved species as

Mi,j =

{
l if reaction i increases the density of species j at surface by l,

−l if reaction i decreases the density of species j at surface by l,
(3.4)
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the change in the state vector within a time interval τ is

Xt+τ − Xt =
n∑

i=1

Miωi, (3.5)

where Xt is a m-dimensional vector.

Altogether, in the limit of τ → 0, equation (3.5) becomes a Langevin equation in white-noise
form,

dXt =

n∑

i=1

Miωi dt+

n∑

i=1

Mi
√
ωi dBi, (3.6a)

X0 = 0, (3.6b)

where dBi are mutually independent standard Wiener processes. A Wiener process is a time-
continuous stochastic process with independent, stationary and Gaussian-distributed increments.
Note that if neglecting the stochastic terms in equation (3.6), one arrives exactly at the deter-
ministic versions of the differential equations.

Apart from calculating a single outcome for such an equation, the investigation of its statistics
is an important task where a lot of insight on the properties of the system is gained. Here, three
quantities are of great interest.

• Expected Value: In our cases, the expected value represents the signal of the sensor or the
measured quantity itself. It is given by

E(Xt) :=

∫

[0,∞]n

Xt(ω) dP(ω). (3.7)

• Variance: The variance corresponds to the fluctuations or the noise in the system and
reads

V(Xt) =

∫

[0,∞]n

(Xt(ω)− E(Xt(ω)))
2 dP(ω). (3.8)

• Signal-to-Noise Ratio: The signal-to-noise ratio (SNR) is a very important parameter
when considering the quality of any sensor. As indicated by its name, the SNR relates the
measured signal and the fluctuations therein, which allows to determine the treshold for a
signal to be distinguished from the noise of the device. As was stated above, the signal is
related to the expected value, while the noise corresponds to the standard deviation of the
random variable, yielding

SNR(t) :=
E(Xt)√
V(Xt)

. (3.9)

Note that the signal to noise ratio is a dimensionless quantity. As is clear from its definition,
a large value for the SNR is always desired.

In the following we will consider the processes at both biosensors and gas sensors and calcu-
late explicit solutions for the stochastic differential equations for biosensors under simplifying
assumptions.
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3.2 Stochastic Description of Processes at Biosensor Surfaces

The stochastic equations for biosensors are based on the deterministic model presented in Section
2.3. In this explicit case, we will denote the stochastic process by {PTt}t∈[0,tend]. The parameters
governing the probability distribution are

λa(PTt, τ) = τraCT (CP − PTt) , (3.10)

λd(PTt, τ) = τrdPTt. (3.11)

Neglecting the fact that CT is actually time-dependent, one obtains explicit expressions for the
expected value, the variance and the signal-to-noise ratio of PTt. These quantities shall be
derived in the following paragraphs.

3.2.1 Calculation of the Expected Value

The formula for the calculation of the expected value is given by equation (3.7). We therefore
integrate on both sides of equations (3.6) to obtain

dE(PTt) =raCT (CP − E(PTt)) dt− rdE(PTt)dt

+ E(
√
raCT (CP − PTt)dB1)︸ ︷︷ ︸

=0

−E(
√
rdPTtdB2)︸ ︷︷ ︸

=0

, (3.12)

where the last two terms vanish because the expectancy of an Itō integral is zero. Altogether,
the equation simplifies to

dE (PTt)

dt
=raCT (CP − E(PTt))− rdE(PTt), (3.13a)

E (PT0) =0. (3.13b)

Obviously, the coefficients on the right hand side of this equation are exactly the same as in
equation (2.32), which hence yields

E(t) := E(PTt) =
α

β

(
1− e−βt

)
. (3.14)

The equivalence of equations (2.33) and (3.14) justifies the application of the simplified deter-
ministic model to determine the reaction constants ra and rd later on in Section 4.2. In fact,
the expected value of the stochastic differential equation always yields its deterministic version
in the linear case.
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3.2.2 Calculation of the Variance

The calculation of the variance is more involved, since it also necessary to calculate E
(
PT2

t

)
.

This quantity is computed by applying Itō’s formula to PT2
t , yielding

d
(
PT2

t

)
= 2PTt dPTt + dPTt dPTt. (3.15)

We obtain an equation in white-noise form by substituting the expression for dPTt from equation
(3.6) and by using dBi dBj = δijdt as well as dt dt = dt dBi = dBi dt = 0,

d
(
PT2

t

)
=
(
raCTCP + (2raCTCP − raCT + rd)PTt − 2(raCT + rd)PT2

t

)
dt

+ 2PTt

(√
raCT (CP − PTt)dB1 −

√
rdPTtdB2

)
, (3.16)

where several algebraic manipulations have been made. Again, application of the expected value
and usage of the abbrevations defined in equations (2.34) yields

dE(PT2
t ) =αdt+ (2α− raCT + rd)E(PTt)dt− 2βE(PT2

t )dt

+ E

(
2PTt

√
raCT (CP − PTt)dB1

)

︸ ︷︷ ︸
=0

−E

(
2PTt

√
rdPTtdB2

)

︸ ︷︷ ︸
=0

(3.17)

and therefore

dE(PT2
t )

dt
=α+ (2α− raCT + rd)

α

β

(
1− e−βt

)
− 2βE(PT2

t ), (3.18a)

E
(
PT2

0

)
=0, (3.18b)

which is again a linear ordinary differential equation. Note that the time-dependent inhomogenity
stems from the expression for the expected value derived in equation (3.14). Its solution is given
by

P (t) :=E
(
PT2

t

)

=
α

β2

(
α+ rd + (raCT − 2α− rd) e

−βt + (α− raCT ) e
−2βt

)
. (3.19)

Finally, the variance of PTt is calculated from equations (3.14) and (3.19), yielding

V(PTt) = E(PT2
t )− E(PTt)

2 = P (t)− E(t)2

=
α

β2

(
rd + (raCT − rd) e

−βt − raCT e
−2βt

)
(3.20)

=
α

β2
(1− e−βt)(rd + raCT e

−βt).
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This last result can also be derived via binomial statistics, where the event to consider is the
number of binding processes at a certain time. The parameter governing this statistics is then

p(t) :=
E(t)

CP
, (3.21)

which yields

V(PTt) = CP p(t)(1− p(t)) =
α

β2
(1− e−βt)(rd + raCT e

−βt). (3.22)

This is the same result as equation (3.20).

3.2.3 Signal-to-Noise Ratio

We can now utilize the results obtained in the last two sections to find an expression for the
signal-to-noise ratio under the discussed assumptions. Using equations (3.14) and (3.20), we
obtain

SNR(t) =
√
α

1− e−βt

√
(1− e−βt)(rd + raCT e−βt)

. (3.23)

Note that the SNR has a finite value as t→ ∞,

lim
t→∞

(SNR(t)) =

√
CPCT ra

rd
. (3.24)

3.3 Stochastic Description of Surface Processes at Gas Sensors

Let us now turn to the more complicated situation of systems of nonlinear differential equations
as they arise in the gas-sensors setting. In particular, we will consider the stochastic formulation
for H2S adsorption to CuO sensors here. The respective system of deterministic differential
equations was presented in Section 2.2.5. The corresponding stochastic differential equation
reads

dXt =
∑

i=1,...,6,12

Miωidt+
∑

i=1,...,6,12

Mi
√
ωidBi, (3.25)

X0 = X̄, (3.26)

where (cf. equation (2.25))

λ1(Xt, τ) = τk1ne([Si]−Ni), M1 = [1, 0, 0, 0],

λ2(Xt, τ) = τk2Ni, M2 = [−1, 0, 0, 0],

λ3(Xt, τ) = τk3ne([Se]−NO −N−

O )[O]1/2, M3 = [0, 1, 0, 0],

λ4(Xt, τ) = τk4NO, M4 = [0,−1, 0, 0],

λ5(Xt, τ) = τk5neNO, M5 = [0,−1, 1, 0],

λ6(Xt, τ) = τk6N
−

O , M6 = [0, 1,−1, 0],

λ12(Xt, τ) = τk12(N
−

O )3[H2S], M12 = [0, 0,−3, 0],
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and the respective expressions for ne (cf. equation (2.12)) and ki (cf. equation (2.30)) discussed
earlier apply.

Obviously, this system is very complicated. In this work, we want to focus on the following
very simple deduction. The more sources of noise we have, i.e. the higher the dimension of the
probability space is, the larger the variance of the signal will be. This feature will be investigated
later on in Section 5.1.

3.4 Algorithms for Reaction-Diffusion Systems

We turn now back to the biosensor setting. In this section, we focus on the calculation of
solutions for reaction-diffusion systems as we encounter them in the case of biosensors. To
obtain numerical data for the investigated problem, we implemented two different algorithms.
The first, box-based, algorithm is very simple and does not require the exact position of the
target molecules within the liquid domain. As easy as this approach is in one dimension, as
cumbersome its extension to higher dimensions gets, which is why another, random-walk based,
approach was also implemented. Here, the positions of all the particles at the current time is
stored and all the desired quantities are computed from this data.

As a first step, one can just consider a one-dimensional domain, which corresponds to investigat-
ing a uniform geometry parallel to plane the nanowire surface. The advantage here is the shorter
calculation times. Nevertheless, many useful insights can be obtained already from this setup.

However, the implementation of a two-dimensional domain allows to investigate a specific sensor
geometry and to discriminate between the nanowire and the wafer on which the transducer is put.
Of course, here one considers a cross-section perpendicular to the orientation of the nanowire.
On the one hand, this setup enables the study of the effects of the surrounding wafer on the
nanowire. On the other hand, much more complicated (especially more realistic) geometries and
initial conditions can be implemented.

Since it is valid to assume that the whole device is uniform along the nanowire, the implemen-
tation of a three-dimensional system is not necessary, since everything can be computed on a
cross-section of the device.

3.4.1 Box-Based Approach

The following description of this algorithm is limited to the one-dimensional case for simplicity.
An extension to higher dimensions is possible, but cumbersome.

The idea of this approach is to divide the whole liquid domain in several compartments and
to just consider the number of particles therein, not their exact position. Diffusion is therefore
the transition of a particle from one box to an adjacent one, where the transition probability
corresponds to the diffusion constant, the number of particles and the time interval looked at. In
particular, we denote the probability that a particle from box imoves to its left or right neighbour
by σi = TiD/l

2, where Ti is the number of target molecules in the compartment i and l is the
height of the compartment. In order to include the chemical reactions at the surface, a further,
virtual, compartment is added, which can only be accessed from the compartment representing
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the area next to the nanowire surface. Here, the transition probabilities include the hybridization
and dissociation frequencies, respectively, and are given by σN = TND/l

2+ raTN (P−PT) and
σN+1 = rdPT, where P is the total number of probe molecules at the nanowire surface. The
quantity σN takes into account that from boxN diffusion to boxN−1 occurs, while the transition
to box N + 1 takes place just by hybridization.

A sketch of the domain is shown in Figure 3.1 where the physical as well as the virtual compart-
ments are indicated.

physical domain

virtual compartment

Figure 3.1: Sketch of the domain in one dimension for the box-based approach.
The virtual compartment at the very bottom represents the hybridized
PT complexes. Target molecules are shown in blue, probe molecules are
shown in red.

Algorithm 1. (Box-Based Algorithm, based on [27])

1. Initialize the boxes according to the given initial data.

2. Calculate the timestep according to

τ =
1

σ0
log

(
1

ξ1

)
, (3.27)

where σ0 =
∑N

i=1 σi +
∑N+1

i=2 σi and ξ1 ∈ U([0, 1]).

3. Determine the two boxes involved in the transition from a drawn random variable
ξ2 ∈ U([0, 1]).

4. Update the number of particles in the respective boxes.

5. Unless the final time is reached, go to Step 2.
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A simple implementation of Step 3 is done by considering the transition from box i to either
box i − 1 or box i + 1 as different reactions. From that, one obtains a discrete cumulated
probability distribution function, which allows choosing a certain transition corresponding to a
drawn random variable.

Clearly, the advantage of this algorithm is its very simple implementation and its low memory
requirements compared to a random-walk approach. However, there is a drawback when consid-
ering large amounts of molecules or high reaction frequencies. Since in Step 2 the calculated τ
is the time until the next reaction occurs, one obtains very small steps for the aforementioned
cases, which results in longer durations for the simulations.

This algorithm was implemented within the MATLAB environment.

3.4.2 Random-Walk Approach

Facing the drawbacks when it comes to large amounts of molecules and the awkwardness at
higher dimensions, an algorithm based on random walks was also implemented.

Here, the particles move around in the liquid domain according to their diffusion constants and
drawn random variables, and if they are close enough to the surface, there is a chance that
hybridization occurs. This event is also determined via a random variable, as is the dissociation
of already hybridized PT complexes.

The advantage here is also the easily implementable possibility to distinguish different parts of
the nanowire surface as well as the wafer surface on which the transducer is put. This yields the
chance to compute the effects arising from complicated, though realistic, initial conditions. A
sketch of the domain is shown in Figure 3.2, where a possible partition of the surface is shown
with dotted lines.

Also, the size of the time steps is fixed here and can be chosen much larger than in the box-based
approach, which also yields much faster computing times.

The algorithm presented in the following is based on the one by Erban et al. [27], who proposed
a one-dimensional version of it.

Algorithm 2. (Random-Walk Algorithm, based on [27])

1. Initialize the positions of the molecules according to given initial data.

2. Move each particle in the liquid according to

Xi(t+ τ) = Xi(t) +
√
2Dτξ1, (3.28)

where Xi denotes the coordinates of the i-th particle and ξ1 ∈ N (0, 1)n, where n is the
dimension of the physical domain.

3. Check if all moved particles are inside the liquid domain. If not, reflect from the respective
boundaries, until they are in the liquid domain.

4. For every particle near enough to the surface, draw a random variable ξ2 ∈ U([0, 1]). If

ξ2 ≤ raT(P−PT)τ, (3.29)
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Figure 3.2: Sketch of the domain in two dimensions for the random-walk approach.
The surface is divided into several domains, which allows the calculation
of PT densities at different positions, and enables analysis of compli-
cated initial conditions. The dashed line represents the maximum distance
where hybridization is possible. The dotted lines show the partitions of
the surface.

consider the particle hybridized at the corresponding part of the surface.

5. For every particle hybridized at the surface at time t, draw a random variable ξ3. If

ξ3 ≤ rdPTτ, (3.30)

put the particle back into the liquid domain by drawing random variables for its position in
the corresponding area near the surface.

6. Unless the final time is reached, go to Step 2.

To perform Step 4, one needs to define what actually is meant by particles near the surface. In
fact, this quantity should correspond to the distance between a target and its receptor at which
they hybridize. In our experiments, we consider this length to be 25 nm, which is about the
length of two ssDNA strands considered here in line.

For scientific computations, this algorithm was implemented within the Julia environment, where
a two-dimensional domain was considered. As the sensor is uniform along the third axis, the
third dimension does not need to be included into the model.

In order to compare the random-walk-based algorithm to the box-based algorithm, a one-
dimensional version was also implemented within the MATLAB environment. It turned out
that the random-walk approach is approximately five times faster than the box-based algorithm.
This is mainly due to the fact that for the random-walk algorithm, one can choose a larger τ ,
which reduces the number of steps necessary for each realization.
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3.4.3 Sampling and Parallelization

Every execution of the discussed algorithms realizes one possible evolution of the system. To
obtain the statistics for the parameters of interest, several thousands of iterations have to be
calculated. The most important quantities to observe are the expected value and the variance of
the PT complexes at the surface, but also waiting times until a certain amount of PT complexes
has built might be of interest.

In order to speed up computations, parallelization of the whole task is appropriate. Advanta-
geously, every realization is independent of each other, which enables a distribution of the single
evaluations to different cores and to sample the quantities of interest directly. This procedure can
be implemented in a straightforward manner by using parfor -loops instead of for -loops within
MATLAB, or by using the @parallel macro within Julia, and yields the expected speed-up.

3.5 Wavelet Decomposition of a Signal

Transforming a signal is a very important technique to obtain information hidden in the measured
stream of numbers. This procedure is widely used throughout engineering, where its most popular
representative is Fourier transformation. This enables the calculation of a frequency spectrum
of a periodic signal, which in turn allows the identification of sources of noise.

Unfortunately, since the basis functions used in Fourier analysis are periodic and therefore non-
local, this technique gives only useful results for a stationary signal, which means a constant
environment around the nanowire in this application. It is not possible to resolve local frequency
changes. Since the core feature of the investigated measurements are changing environments and,
consequently, pulsed signals, one has to come up with a different method. What is additionally
needed here, is a time-localization of frequencies in the signal. An obvious approach is to use
local functions, i.e. functions with compact support, for that.

The basic idea of wavelet analysis is to consider a certain basis function in L2, a so called mother
wavelet, that admits certain properties, which are defined via so called filter coefficients and a
scaling function. By rescaling and shifting this function, one obtains an orthogonal basis that
enables the decomposition of a signal. Similar to Fourier transform, for a wavelet function
ψ ∈L2(R) the wavelet transform of a function f : R → R is given by

(Wf)(a, b) :=
1√
a

∫

R

f(x)ψ

(
x− b

a

)
dx, (3.31)

where a ∈ R is the scale factor and b ∈ R is the translation.

After first mentioning of wavelets in the Appendix of Haar ’s thesis, several types such as Meyer
wavelets [67] or Daubechies wavelets [23] have been developed, where most of them have been
derived according to necessary properties for a certain application. In this work, we will use two
different types of Daubechies wavelets. One of these is shown in Figure 3.3 together with its
scaling function.

The discrete wavelet transform resembles a fast Fourier transform. It is a linear transformation
and can therefore be represented as a matrix multiplication, where the matrix entries correspond
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(b) Wavelet function

Figure 3.3: Scaling function and wavelet function for the investigated Daubechies
wavelet of order 5.

Signal

a1

a2

a3

a4 d4

d3

d2

d1

=a4+d1+d2+d3+d4

Figure 3.4: Scheme of the decomposition of a signal. The whole information is con-
tained in all the detail coefficients d1, d2, d3, d4 and the final average co-
efficient a4.

to the filter coefficients of the chosen wavelet family. In the matrix, the filter coefficients in
each row are arranged in such a way that the signal vector is divided into two parts, where the
first one contains an averaged signal, while the second one contains the detail information. The
same procedure can be applied several to the remaining average part, again yielding an average
and a detail part. This way, one obtains a hierarchy of decompositions that contains all the
information. A scheme of this procedure is shown in Figure 3.4.

This procedure will be employed to obtain information on the noise in the sensor signal in
Section 5.1.
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3.6 Summary

The deterministic approach followed in Chapter 2 was refined to obtain a description based on
the random nature of chemical reactions. These findings, together with the presented algorithms
for reaction-diffusion system can be utilized to obtain numerical results on the sensor behavior.
The respective simulations will be presented in Chapter 5.

Moreover, the concept of signal decomposition presented here will be employed to obtain infor-
mation on a gas-sensor signal without the numerical knowledge of reaction parameters, since
this method allows a deduction just based on the statistics governing the stochastic differential
equations.
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Chapter 4

Determination of Model Parameters of

Surface-Interaction Processes

The estimation of parameters arising as coefficients in systems of ordinary differential equa-
tions is quite a delicate task. Even in the simplest case of one linear differential equation,

when there exists an analytical solution, fluctuations in the signal might lead to considerably
different numerical values for the parameters. Fortunately, the experimental data for biosensor
hybridization has a very low noise level, which leads to trustworthy results (cf. Section 4.2).

Of course, the situation is worse if the system is nonlinear itself and depends nonlinearly on the
parameters as is the case for all the systems corresponding to gas-sensor operation. To remedy
these difficulties in this situation, there are several steps that are of help. First, a proper scaling
of the equations is in order, which is discussed in Section 4.3. Furthermore, we will estimate
the parameters step by step if possible. The procedure begins with estimating the parameters
for the trapping and releasing of the intrinsic surface states from experiments conducted under
nitrogen or argon atmosphere. Next, the equations arising from the addition of one species are
considered, while the already obtained parameters are used. One continues this way until all
species of interest are added and all the parameters are determined.

Unfortunately, this protocol cannot always be applied, since on the one hand not all nanowire
materials work properly under inert conditions, and on the other hand, measurements are not
always available for the investigated setup.

The results presented in Sections 4.5 and 4.6 stem from a stepwise estimation process, while the
results in Section 4.7 are obtained from an overall estimation procedure.

The material discussed in Sections 4.3-4.6 was published in [96]. The findings of Section 4.7 are
based on [97] and [95], while the discussion of the error norms (cf. Section 4.8) were presented
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in [94].

4.1 Determination Procedure

The determination of the the numerical values of the respective parameters was performed within
the Mathematica environment. In particular, the simulated sensor behavior was implemented
as a function of its parameters, which could then be compared to the measured data. For this
task, which was to find the minimum in the difference between simulation and measurement with
respect to the declared norm, a global optimization routine was employed. A discussion on the
matter which norm to use is presented in Section 4.8.

The Mathematica environment provides several minimization methods with its package for global
optimization. These include differential evolution, Nelder-Mead or simulated annealing. In this
study, the best results were obtained by using the latter method.

4.2 DNA Hybridization

We now consider the determination of numerical values for the reaction rates of the surface
processes ra and rd. For the adsorption of ssDNA with different probe densities at the nanowire
surface, Peterson et al. [75] measured hybridization efficiency over time. We used least-squares
optimization to obtain the desired values from their data. The results are shown in Table 4.1.
The simulated adsorption efficiency based on those values is compared to the experimental data
in Figure 4.1. Since the agreement is very good, the model for the investigated processes is
suitable.

molecules/cm2 assoc. rate ra dissoc. rate rd

2× 1012 3933 0.0016

3× 1012 4071 0.0042

5.2× 1012 1014 0.0019

9.5× 1012 861 0.0037

12× 1012 348 0.0027

Table 4.1: Reaction parameters for DNA hybridization. The very left column gives
the different probe densities.

The association rate values indicate two different regimes. Until a probe density of
3×1012 molecules/cm2, the rate is almost constant, while it is considerably lower for all higher
probe densities and even further decreases with increasing probe density. This can be explained
in the following way.

Since DNA molecules carry charges, they repel each other if the distance between them becomes
too small. A high probe density means a low distance between different probe molecules at the
surface and hence lower distances between target molecules near the surface. As a consequence,

42



CHAPTER 4. PARAMETER DETERMINATION 4.3 Scaling

�
��
�
��
�
��
�

	
�

�
	
�

�

���

���

���

���

�

��
����

� ��� ��� 	�� ���� �
�� ����

����������

����������


�����������

	�
���������

�����������

Figure 4.1: Experimental data from [75] (points) and simulated curves with the cal-
culated parameters (lines). The parameters reflect the decreasing binding
efficiency with increasing probe density.

mutual repulsion as well as sterical hindrance effects impede hybridization which yields lower
binding rates. Meanwhile, the dissociation of probe-target complexes is not influenced by mutual
repulsion. Altogether, as hybridization is slower for higher probe densities while dissociation
rates do not change, a lower binding efficiency is obtained at the equilibrium for increasing probe
density. A graphical representation of the numerical values of the reaction rates is shown in
Figure 4.2.

The values obtained in this section will be employed to conduct various simulations depending
on parameters such as geometry, target-molecule concentration or initial conditions in Chapter 5.
The simulations are performed in one as well as in two dimensions. This is sufficient, since the
nanowire and its surrounding liquid domain are uniform with respect to the axis parallel to the
nanowire, which allows to omit this dimension. Therefore, we can avoid a three-dimensional
simulation, which is favorable regarding complexity of the code as well as regarding calculation
times.

4.3 Scaling

We now continue with the investigation of gas-sensor experiments and the determination of
the respective parameters. The numerical values of all the quantities used in the model are
different by many orders of magnitude, which leads to serious trouble during the task of parameter
estimation. To remedy this drawback scaling of the equations is necessary. While Fort et
al. [29, 31] employ a scaling procedure yielding a minimal number of extra constants in the
system, we will follow an approach yielding dimensionless quantities. Normalized quantities will
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Figure 4.2: Reaction parameters versus probe-molecule density. For higher probe
densities, the hybridization rate decreases significantly.

be denoted by a tilde over the variable in this work, and are obtained via

Ñ (−,+)
α = N (−,+)

α ·N−2/3
D S̃

(−)
β = S

(−)
β ·N−2/3

D T̃ = T · ǫ0kB

q2N
1/3
D

, (4.1)

where α ∈ {i,O,CO} and β ∈ {i,e}. The superscripted signs in bracket indicate that both charged
and uncharged quantities are meant here.

Together with this approach, we also condense fixed parameters within the unknown parameters.
To avoid confusion if a parameter includes condensed parameters, we also change the notation
for the reaction constants, yielding

κ̄i = κi · exp
(
−λi
T̃

)
(4.2)

for the condensed quantities. With this procedure, we arrive at dimensionless quantities with
simplified notation. The exact form of the equations to work with will be presented in the
respective results sections for the different situations.

4.4 Estimation of G0

When linking the measured conductance to the surface-state density, it is necessary to know all
parameters arising in equation (2.9). The best way to do so is by determing the pre-exponential
factor G0 from the measurement. The procedure for that is explained in what follows.

It is of great help here that the surface-state variation is quite slow. Therefore, exposing the sensor
to fast temperature changes, i.e. in the range of a few seconds, allows to consider the surface-state
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density constant throughout heating or cooling periods. Application of the logarithm on both
sides of equation (2.9) yields

logG+
3

2
log T = logG0 −

q2N2
S

2ǫ0ǫNDkBT
=: logG0 −

C̄

T
, (4.3)

where the left hand side is taken from the experiment and the right hand side represents a linear
relationship between the data and T−1. A linear fitting procedure gives the value for G0.

0 0.5 1 1.5

x 10
−3

−5.8

−5.6
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2 )

1.6 1.7 1.8 1.9
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G
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3/
2 )

Figure 4.3: Fitting for the parameter G0. The experimental data is shown in orange,
the fitted curve is shown in dashed blue. The left image shows determi-
nation of G0 at T−1 = 0, the right image shows a close-up view of the
fitting of the experimental data.

This procedure is ideally conducted over a large temperature change. In our case, we only have
small temperature changes (25-50◦C), but several of these, and at different start and end points.
Of course, in every situation the parameter C̄ is going to be different, but G0 always has to be
the same, which yields N + 1 parameters for N temperature changes in the fit.

The resulting curves are shown in Figure 4.3. The right image shows the quality of the fit, while
the left image shows the obtained numerical value, which is G0 = 1.047± 0.0096× 10−2 S. This
value was then used to calculate the density of surface states for the parameter estimations for
nitrogen and carbon monoxide atmospheres. Note that this value is only valid for the investigated
device and also just for the measurements carried out during a short period of time before and
after the discussed estimation experiment. The reason to the first restriction is the influence of
the exact geometry on the conductive behavior, which is of course different for every device. The
second restriction is due to the fact that with time, the electronic state of the nanowire might
change due to many reasons like aging or oxidation.

With the calibration of the conduction model done, we are now ready to investigate the sensor
behavior under exposure to different gases.

The measurements discussed in the following sections were conducted with single SnO2 nanowire
sensors, where the results on inert atmosphere and carbon monoxide even belong to the same
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experiment (and therefore, of course, to the same sensor), while a different sensor was used for
the hydrogen experiments as well as for the discussion on the error notion.

Information on the manufacturing process of the devices used in these experiments is given in
[16, 17].

4.5 Inert Atmosphere

The sensor behavior in nitrogen atmosphere was investigated at 250, 275, 300, 325 and 350◦C ac-
cording to the temperature profile shown in Figure 4.4. The measurement indicates that the
variation of the intrinsic surface states is very slow (time constants of tens of minutes), as was
also reported in [25, 30].
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Figure 4.4: Measured resistance (orange, aligned with left y-axis) and temperature
(black, aligned with right y-axis) profile in pure nitrogen atmosphere.

The scaled and dimensionless differential equation in this case is based on equation (2.11) and
yields

dÑi

dt
= κ1 exp

(
−λ1
T̃

)
exp

(
− Ñ2

i

2ǫrT̃

)
(S̃i − Ñi)− κ2 exp

(
−λ2
T̃

)
Ñi, (4.4)

where κ1, κ2, λ1, λ2 and S̃i are the parameters to be determined.

As can be seen from the temperature profile, two temperatures have been considered twice,
where the sensor was once heated and once cooled to that temperature. Surprisingly, the process
velocity is quite different in those two cases, which is reflected in the fact that no parameter set
could be found to agree with the signal in both situations. Due to this discovery, one parameter
set was determined for the situation of heating, and one set was determined for cooling. Both of
them are listed in Table 4.2.

The comparison of the best estimate to the measured data is shown in Figure 4.5. The timescales
until recovery indicate that the equilibration during cooling is much faster than during the heating
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Parameter Heating Phase Cooling Phase

κ1 23.765 140.15

κ2 0.0655 0.0279

λ1 0.3501 0.3150

λ2 0.7289 0.1764

S̃i 0.8855 0.9176

Table 4.2: Estimated parameters for the processes under inert conditions during heat-
ing and cooling.

phase, although still in the range of tens of minutes. This feature is also reflected in the values for
the frequency factor κ1, which is larger for the cooling period. Nevertheless, this finding might
be exploited in real-life applications, in particular when it comes to time-saving measurement
strategies.
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(a) Heating Phase
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(b) Cooling Phase

Figure 4.5: Comparison of the best estimates for pure nitrogen atmosphere to the
experimental data during heating and cooling. The blue curve represents
the simulation, while the orange curve represents the experimental data.

It is also worth noting that except for 350◦C during the heating phase, the equilibrium is never
reached, which also complicates the parameter determination.

4.6 Carbon Monoxide

The experiment discussed in the last section was continued with a measurement of carbon monox-
ide pulses at different temperatures. Here a concentration of 50 ppm carbon monoxide in dry
nitrogen was considered, where two pulses of 15 minutes each were applied at temperatures of
300◦C and 350◦C, respectively (see Figure 4.6). After each pulse, 15 minutes of recovery time
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Figure 4.6: Measured resistance (orange, aligned with left y-axis) and temperature
(black, aligned with right y-axis) profile for the carbon monoxide mea-
surement.

have been scheduled.

Parameter Numerical Value

κ7 2.9192×102

κ8 1.6136×109

κ9 1.0678×1018

κ10 8.503×109

λ7 0.2932

λ8 0.8271

λ9 1.4551

λ10 0.8448

S̃e 72.411

Table 4.3: Estimated parameters for the adsorption process of carbon monoxide in
nitrogen atmosphere.

Now, the full scaled and dimensionless system reads

dÑi

dt
= κ1 exp

(
−λ1
T̃

)
exp

(
−(Ñi − Ñ+

CO)
2

2ǫrT̃

)
(S̃i − Ñi)− κ2 exp

(
−λ2
T̃

)
Ñi, (4.5a)

dÑCO

dt
= κ7 exp

(
−λ7
T̃

)
[CO]

(
S̃e − ÑCO − Ñ+

CO

)
− κ8 exp

(
−λ8
T̃

)
ÑCO − dÑ+

CO

dt
, (4.5b)

dÑ+
CO

dt
= κ9 exp

(
−λ9
T̃

)
ÑCO − κ10 exp

(
−λ10
T̃

)
exp

(
−(Ñi − Ñ+

CO)
2

2ǫrT̃

)
Ñ+

CO, (4.5c)

where the parameters of the first equation have already been considered in the previous section.
Since the carbon monoxide adsorption experiment was conducted shortly thereafter, the obtained
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CHAPTER 4. PARAMETER DETERMINATION 4.7 Hydrogen

numerical values for those parameters are assumed to be still valid and were included as known
parameters into the system. Hence, the number of parameters to determine at once decreases
to nine. The newly obtained parameter values are shown in Table 4.3. Obviously, the frequency
factors are much higher than those for the intrinsic surface-state occupation, which means that
the response of the sensor is much faster. This fact can also be qualitatively derived from the
experimental data, see Figure 4.7. Furthermore, the adsorption process appears to be much
faster at higher temperatures, which is also reflected in a comparably high value of the scaled
activation energy λ9.
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(a) 300◦C
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(b) 350◦C

Figure 4.7: Comparison of the simulation with the best parameter estimates for the
carbon monoxide pulses to the experimental data at 300◦C and 350◦C.
Blue curve: simulation; orange curve: experimental data.

Figure 4.7 shows the comparison of the best estimates with the experimental data at both
temperatures. At 350◦C, the difference is small enough to be negligible, whereas at 300◦C, there
is a small deviation of the numerical solution from the signal. This might be due to the fact, that
during the application of the gas pulses, the sensor signal is not yet stable, but still shows a drift
based on the intrinsic reactions. This of course makes the parameter estimation more difficult.
Nevertheless, the maximal difference between measurement and simulation is smaller than 1%.

4.7 Hydrogen

Measurements of hydrogen adsorption were only considered at one temperature. On the one
hand, this simplifies the parameter determination, since we do not need to employ the Arrhenius
form for reaction rates, but on the other hand, we do not gain any information on temperature
dependence.

Experiments with hydrogen pulses were performed in dry air (80% N2, 20% O2). However, for the
sensor used during these measurements, no data is available for the inert environment situation.
Therefore, it was necessary to estimate the parameters for the intrinsic surface state occupation
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as well as the oxygen adsorption processes at the same time. The remaining parameter κ̄11 for
the hydrogen pulses is then derived in a second step.

The scaled system under investigation reads

dÑi

dt
= κ̄1 exp

(
−(Ñi + Ñ−

O )2

2ǫrT̃

)
(S̃i − Ñi)− κ̄2Ñi, (4.6a)

dÑO

dt
= κ̄3 [O2]

1

2

(
S̃e − ÑO − Ñ−

O

)
− κ̄4ÑO − dÑ−

O

dt
, (4.6b)

dÑ−

O

dt
= κ̄5 exp

(
−(Ñi + Ñ−

O )2

2ǫrT̃

)
ÑO − κ̄6Ñ

−

O − κ̄11 [H2]
1

2 Ñ−

O ,

where a total of 9 parameters are to be determined.

In these measurements, pulses of 20 ppm hydrogen were applied for 15 minutes at 300◦C, where
two pulses were measured. The comparison of the best estimates to the measurement data is
shown in Figure 4.8.
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Figure 4.8: Comparison of the best estimates for the hydrogen pulses at 300◦C. Blue
curve: simulation; orange curve: experimental data.

The gas-induced change in the equilibrium is covered very well with the obtained model. However,
at the beginning of the gas pulse, there is a small deviation between measurement and simulation,
as the simulation overshoots and then reaches the equilibrium. During the recovery period, there
is also a small deviation, since the simulation recovery takes a bit longer than in the measurement.
However, the approximation is quite good, given the small size of the shift in the equilibrium
and the fact that all parameters had to be estimated at once.

The determined numerical values are shown in Table 4.4. Here, we only needed to determine an
effective frequency factor since only one temperature was considered. Therefore, no information
on the activation energies is obtained. In order to compare the obtained numerical values to
the results of Section 4.5, we need to compute the effective frequency factors from the nitrogen
experiment using formula (2.30). There, we obtain as numerical value during the cooling phase
κ̄1 = 0.00281, which is the same order of magnitude and therefore quite a reasonable result. How-
ever, the back-reaction yields a frequency factor κ̄2 = 0.00012, which is one order of magnitude
lower.
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Parameter Value

κ̄1 0.00601

κ̄2 0.00580

κ̄3 0.00137

κ̄4 0.00175

κ̄5 0.00189

κ̄6 0.00547

κ̄11 0.00274

S̃i 3.5563

S̃e 0.5954

Table 4.4: Estimated parameters for the adsorption process of hydrogen in dry air
atmosphere. Note that since we consider a fixed temperature, no activation
energies were to be determined.

4.8 Using Different Error Notions

The choice of the error notion when comparing simulation and experiment is not clear a priori,
although there are three natural candidates to consider, namely the L1-norm, the L2-norm and
the L∞-norm.

Heuristically speaking, the L1-norm is the sum of the errors at each data point during the mea-
surement, while the L2-norm is the square root of the sum of the squared errors. By definition,
both notions take every point of the measurement into account. Contrarily, the maximum norm
only uses the largest error throughout the set of data points.
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Figure 4.9: Comparison of the best estimates for the L1-norm (blue line), the L2-
norm (blue, short-dashed) and the L∞-norm (blue, long-dashed) to the
experimental data (orange) at 200◦C.

To shed light on the question which norm to use, measurements of carbon monoxide pulses in
nitrogen atmosphere at 200◦C, 250◦C and 300◦C were investigated separately. The best estimates
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for all three norms are shown in Figures 4.9, 4.10 and 4.11.
�
�
��
�
�
�
�	


�
��

�
��
	
�

�
�

����

�����

�����

�����

�����

���

����������

� �� �� 	� �� 
� �� ��

Figure 4.10: Comparison of the best estimates for the L1-norm (blue line), the L2-
norm (blue, short-dashed) and the L∞-norm (blue, long-dashed) to the
experimental data (orange) at 250◦C.

It is obvious that the maximum norm does not provide any reasonable approximation of the
sensor signal, since not only is the error at the beginning of the pulse significant, but also is there
no sign of a recovery of the base signal after the end of the pulse. The problem here might lie
in the fact that as soon there is any deviation in the sensor signal (which might occur due to
technical reasons and also due to the randomness of all the occuring processes), there will be a
difference to the simulated signal, the maximum of which governs the norm. Therefore, during
search for a minimum of the norm, it does not matter if there are significant deviations as long
as they are smaller than the already accounted maximum deviation.

The L1-norm does cover the beginning as well as the end of the pulse. In particular, at 200◦C,
the L1-norm gives the best estimate, but there is still a significant deviation between the best
estimate and the measured signal at higher temperatures.

The L2-norm, finally, gives very good results at 200◦C, and the best results at 250◦C and 300◦C.
This is also the most widely used notion for the error, known as the least-squares estimate.

However, neither of the error notions gives estimates that model the exact sensor behavior at
higher temperatures. Nevertheless, it has to be mentioned that the maximal drop in the signal
during the pulse is in the range of 0.4% in these measurements.

4.9 Summary

The estimation of the reaction constants for biomolecule detection worked very well. The agree-
ment of the simulation and the experimental data is good and the obtained numerical values are
reasonable.

Although gas-detection measurements only provided small temperature steps, the estimation of
the pre-exponential factor G0 governing electrical conductance worked well, i.e., a low least-
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Figure 4.11: Comparison of the best estimates for the L1-norm (blue line), the L2-
norm (blue, short-dashed) and the L∞-norm (blue, long-dashed) to the
experimental data (orange) at 300◦C.

squares error was obtained in the fitting process. From this, it seems natural to assume that the
applied model is a very good approximation to the actual behavior of the nanowire.

The estimation of reaction parameters turned out to be quite sensitive to errors in measurements.
Even with small noise, the results can change considerably. Nevertheless, the obtained numerical
values provide a satisfying approximation of the sensor signal. It must be noted that especially
after finishing a heating period, there seem to be effects that are not taken into account yet.
Therefore, the approximation is not as good as during other sections of the measurements.

The comparison of different norms confirmed the application of the L2-norm as reference for the
error. The L1-norm as well as the maximum norm showed a much larger deviation from the
sensor signal.
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Chapter 5

Analysis and Simulation of

Fluctuations in Nanowire Sensors

As has been discussed at several occasions throughout this thesis, the simulation of nanowire
sensors is an essential tool for optimizing the design of these devices. Here, two objectives are

addressed. First, we analyze noise in gas-sensor signals in order to see whether any information
on the detected gas can be extracted (cf. Section 5.1). The analysis is based on the theory
presented in Sections 3.3 and 3.5. These findings were published in [100].

Second, we present simulations for realistic biosensor devices, which are mostly based on the ones
considered in [75]. With the results obtained in Section 4.2, the full reaction-diffusion system is
simulated and analyzed in the remainder of this chapter.

To gain first insights into the behavior of the coupled systems, we present results from the one-
dimensional simulations, which have been conducted following the box-based algorithm. After
we proved the necessity for including diffusion to the model, we calculate binding efficiencies
as well as absolute PT densities for target-molecule concentrations in the range between 1 nM
and 270 µM. Next, we consider the behavior of the final variance, its evolution over time as
well as the SNR under the same conditions. To complete the simulations in one dimension,
we investigate the system under different initial conditions, which corresponds to stirring the
aqueous solution prior to the measurement. All results on one-dimensional reaction-diffusion
systems were published in [98] and [99].

Since the one dimensional simulations just allow very simple geometries, we extended simulations
to two dimensions. As the implementation of the box-based algorithm is a bit cumbersome in
this case, we used the random-walk approach here. In these simulations, the surface will divided
into several partitions, which allows to distinguish the behavior at these regions of the surface.
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Again, signal, noise and SNR will be investigated depending on different widths of the domain
in Section 5.3.1. Furthermore, we consider asymmetrical initial conditions, which correspond to
more realistic devices, where the slit for target-molecule entry is at one particular side of the
domain. The effects of this setup are investigated in Section 5.3.2.

5.1 Analysis of Gas-Sensor Signals

This section addresses the decomposition of gas-sensor signals in order to extract noise induced
by surface processes. Here, wavelet decomposition is used in two different settings. First, a
measurement of H2S pulses was decomposed and the detail coefficients were investigated in
detail. Second, several measurements with different environmental parameters (eight in dry air,
two in humid air) were looked at using wavelet decomposition to find out the ones performed
with humidity present.

All experiments discussed in this section were performed with CuO sensors using a nanowire
network configuration. For a thorough presentation of the used sensor, see [87].

5.1.1 H2S pulses

Wavelet decomposition was applied to a measurement of hydrogen sulfide (H2S) pulses in dry air
(80% nitrogen, 20% oxygen) at 325◦C. The pulses included different H2S concentrations of 100-
500 ppb, where two pulses per concentration were measured. One pulse lasted for 15 minutes,
after which the system was given 30 minutes to recover. The exact pulse data and the obtained
signal is given in Figure 5.1.
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Figure 5.1: Applied gas pulses (black, dashed) and obtained signal (red line) from the
H2S measurement in dry air.

The application of a discrete wavelet transform gives the detail coefficients shown in Figure 5.2.
Here, Daubechies wavelets of order 3 were used, and we calculated four detail coefficients. The
larger variances in the first three coefficients during certain periods of time as well as the sharp
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Figure 5.2: Wavelet decomposition of the investigated signal. The first four detail
coefficients are shown.
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Figure 5.3: Variances of the first detail coefficient d1 with and without presence of
H2S gas. Each gas concentration was measured twice.

extrema at the beginning and at the end of these periods already indicate the presence of the
gas.

As a next step, the variances of the detail coefficients d1 were calculated for phases with present
gas and for the recovery phases. It turns out that these variances increase during the gas pulses
and are even proportional to the gas concentration. During the recovery phases, the variance is
also proportional to the prior gas concentration, which can be explained by the fact that the gas
molecules need some time to desorb from the surface when the gas pulse is over. Until then, its
effect is still seen in the noise. The results discussed in this paragraph are shown in Figure 5.3.
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Figure 5.4: Measurements taken for the determination of the presence of humidity.
Two of them were taken within a humid environment, while the rest was
conducted within dry air.

5.1.2 Humidity

Ten short-time measurements using the same sensor were performed, eight of which in dry air,
the rest in humid air. All the measurements were taken using different electrode setups, which
results in different base resistances shown in Figure 5.4. At that time, we did not know which
were the experiments in humid air.

We now searched for differences in the decomposition of the signals, which originates in the
presence of water vapour. In order to do so, the signal was decomposed again using Daubechies
wavelets of order 5.

The variances of the first six detail coefficients for all the measurements are shown in Figure 5.5.
In every coefficient, the variance in experiments 4 and 5 is significantly higher than in all the
others. This suggests that these are the experiments conducted in humid air, and also corresponds
to the theoretic qualitative prediction of higher variances with more occuring reactions. Indeed,
experiments 4 and 5 are the ones including water vapour in the sensor atmosphere.

5.1.3 Summary

The goal of this section was to extract information on the surface reactions from the signal by
just considering the noise level. The important feature here is that no numerical information
on the governing parameters is necessary. In particular, the presence of an additional species
could even be determined without exactly knowing the reaction path and its stoichiometry. The
difference in the noise arises by the fact that each reaction increases the noise level due to its
random nature. For the pulsed gas measurement, even a correspondence to the gas concentration
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Figure 5.5: Variances of the first six detail coefficients for all ten considered mea-
surements. Experiments 4 and 5 are the ones conducted under humid
environment.

was found.

Of course, these results alone cannot be used to distinguish between different gases, since there
are too many unknowns in the system to do so. However, in combination with other techniques
like governing parameter estimation, this task could be accomplished.

5.2 Biosensor Simulations in 1D

We now turn our attention to simulations of biosensors. Starting with simulations in one di-
mension, we employed Algorithm 1 to obtain the numerical results. In this case, we considered
a liquid domain of 500 µm in height and used 500 target molecules to move around. In order
to obtain the desired target-molecule density, we virtually changed the width and depth of the
domain. Since this has no effect on the diffusion, the only consequence is a change in the absolute
number of receptor molecules at the surface that actually needs to be changed.

5.2.1 SNR in the Case of Constant Target-Molecule Concentration Near the
Surface

In the (simplified) case of constant target-molecule concentration near the surface, one can
easily calculate the signal-to-noise ratio via formula (3.23). For the reaction constants obtained
in Section 4.2 and the target-molecule density of 1 µM used in the experiments, the evolution of
the SNR is shown in Figure 5.6.

It turns out that the final SNR is higher for lower probe densities, which can also be seen from
the representation in formula (3.24).

59



CHAPTER 5. FLUCTUATIONS IN NANOWIRE SENSORS 5.2 Biosensor Simulations in 1D

�
�
�
��
�
�
�
	

�

���

�

���

�

���


�����	

� ��� ��� ��� ���� ���� �	��

�
��������

�
��������

���
��������

���
��������

��
��������

Figure 5.6: SNR for different probe-molecule concentrations in the constant target-
molecule concentration regime.

5.2.2 Motivating the Implementation of the Coupled System

To motivate the implementation of the coupled reaction-diffusion system, we compared the results
to the data obtained from the pure hybridization system. We calculated both solutions for a 1µM
solution of target molecules in the liquid, and for the different probe densities. The comparison
of the data is shown in Figure 5.7.

The difference between the two situations is significant for all probe densities. In particular,
the surface-charge density is lower in the coupled system, which is in line with intuition, since
with a limited amount of target molecules fewer probe-target complexes will build up. This
fact confirms that the investigation of the coupled model leads to further information on the
investigated device.

5.2.3 Binding Efficiency and Surface-Charge Density

To optimize sensor design, we investigate the correlation between probe-molecule density and
target-molecule density under various circumstances. The goal is to find an optimal setup for a
given target-molecule concentration, and to obtain information on detection limits and waiting
times in such a setup. Here, we consider target-molecule concentrations in the range between
1 nM and 270 µM.

There are two different quantities of interest when considering optimal setups, which will both
be investigated in this study. On the one hand, there is binding efficiency, which is given by
the ratio of hybridized complexes at the surface to the total number of probe molecules. On
the other hand, the surface-charge density is proportional to the total number of probe-target
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Figure 5.7: Comparison of solutions of the reaction model and the reaction-diffusion
system. The differences are significant, which motivates the utilization of
the coupled system.

complexes per surface area.

The reason for considering the binding efficiency is obvious, since one always seeks for the most
efficient way of measuring a quantity. The necessity of considering the surface-charge density
instead of the binding efficiency becomes clear when investigating very low target and probe
concentrations: In this case, one may obtain a very high binding efficiency, i.e. most of the probe
molecules are hybridized to complexes, but since they are very few, the change in the surface-
charge density barely influences the sensor signal. Hence, if one has a noisy signal, one might
miss the detection of the target molecules. Furthermore, when considering high probe-molecule
densities, the change in binding efficiency may be very small, but since the absolute number of
probe-target complexes at the surface is very large, the change in the surface-charge density is
high and therefore yields a strong signal.

The equilibrium values of the binding efficiency depending on the target concentration are
shown in Figure 5.8. The binding efficiency attains a perfect value of almost 100% when the
target-molecule density is large enough. However, this treshold extremely differs between probe-
molecule densities, as it is around 1 µM for 2 × 1012 molecules/cm2 and around 270 µM for
12 × 1012 molecules/cm2. Furthermore, when a binding efficiency of 100% is reached, it is not
possible to obtain any quantitative results on the target-molecule density. For low target-molecule
concentrations, the final binding efficiencies differ by a constant factor, as is indicated by the
parallel lines in the log-log plot.

Figure 5.9 shows the equilibrium values of the density of probe-target complexes. As expected,
the result is quite different to the efficiency approach. Again, for lower target concentrations,
the resulting values differ by a constant factor, where the highest densities are obtained for lower
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Figure 5.8: Binding efficiency as a function of target-molecule concentration. The
different curves represent different probe densities at the surface (numer-
ical values indicated in the legend). At sufficiently high concentrations,
all the probe molecules are hybridized.

probe-molecule densities. However, for large target-molecule concentrations, the situation is vice
versa, as we obtain lower values for lower probe-molecule densities. The equilibria with respect
to the target-molecule density that are approached in the shown curves clearly originate from
the perfect efficiency at the respective probe-molecule densities and therefore coincides with the
respective treshold values discussed in the previous paragraph.

As a consequence, there is an inversion of the optimal probe density. As can be determined
from Figure 5.9, this happens roughly around 1 µM target-molecule concentration. As discussed
above, this observation is important, since it means that the probe-molecule density is a major
design parameter. For optimal sensor responses, one has to adjust its value to the target-molecule
density of interest.

5.2.4 Variance

To determine whether a sensor works fine or not, the expected value for the signal is not the
only parameter to consider. One also needs to turn ones attention to the noise in the signal.
Therefore, motivated by the discussion in Section 3.1 an investigation of the variance is crucial.

The numerical values of the variances at the equilibrium are shown in Figure 5.10. There is a
maximum at a value around 3 µM. For lower target-molecule densities, the variance increases with
increasing target-molecule density, while it is the other way round for target-molecule densities
higher than 3 µM. This is related to the fact that at high target densities, practically every probe
molecule is hybridized. Furthermore, if dissociation occurs, the respective probe molecule will be
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Figure 5.9: Equilibrium PT density depending on target-molecule concentration. In-
version of the optimal probe density occurs around 1 µM. The equilibria
being approached for high target-molecule densities correspond to the
perfect binding efficiencies observed in Figure 5.8.

re-hybridized almost immediately, since there are still many target molecules in the liquid. This
fact is important for the investigation of the SNR, which will be done in the following section.

After we have considered the equilibrium values of the variances, we should now also have
a look at their evolution over time. Therefore, we have a closer look on the simulations at
several concentration regimes between 0.26 and 16.6 µM. Here, the probe-molecule density was
set to 2 × 1012 molecules/cm2. The corresponding curves are shown in Figure 5.11. At lower
concentrations, i.e. up to approximately 0.46 µM, the variance monotonously increases from the
beginning to reach its equilibrium state. The period of time until the equilibrium is reached
decreases with higher concentration. This behavior is not surprising at all.

However, at higher concentrations, the behavior is qualitatively different, since a significant
maximum evolves before the variance attains its equilibrium value. Therefore, to obtain the
optimal signal-to-noise ratio, it is necessary to wait for a certain period of time, which is an
important information for an experimenter. Here again, one finds the decrease in the equilibrium
variance for increasing target-molecule concentration.

5.2.5 Signal-to-Noise Ratio

From the data gathered in the previous sections, we are now ready to investigate the signal-to-
noise ratio of the device.

By definition of the signal-to-noise ratio in equation (3.23), the SNR is higher when the variance
is lower, so from this point of view, very large as well as very low target-molecule concentrations
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Figure 5.10: Standard deviation of the number of probe-target complexes at the sur-
face at equilibrium with respect to the target-molecule concentration. At
high concentrations, the value decreases with increasing target-molecule
densities since almost all probe molecules are hybridized.

appear to be acceptable. However, since the signal increases with increasing target-molecule
concentration, the SNR will be highest for large concentrations. The exact data can be seen
in Figure 5.12. In fact, for concentrations below 3 µM, expected value and standard deviation
increase by the same factor, so the SNR stays almost constant in this regime. At higher target
concentrations, the variance decreases according to Figure 5.10, so the SNR increases.

5.2.6 Different Initial Conditions

Another parameter influencing the performance of the sensor is the initial composition of the
aqueous solution. In particular, we investigate if mixing the fluid prior to the measurement will
have any effect on the surface processes. This question was also investigated experimentally in
[90].

Of course, the preparation of the aqueous solution is described by the initial conditions for the
system, which will be set in an appropriate way. In particular, we consider two cases.

In the first case, we consider that the fluid is well stirred, which corresponds to a uniform
distribution of the target molecules in the beginning of the simulation. This is established by
putting an equal amount of molecules into each box. When the simulation starts, there are
molecules near the surface at the beginning, which can immediately hybridize with the probe
molecules at the nanowire.

Second, we consider the situation that the target molecules are poured into the measurement
chamber from above. This corresponds to putting all the molecules in the very top box of the
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Figure 5.11: Evolution of the variance for several different target-molecule concentra-
tions. In high-concentration regimes, a significant maximum is observ-
able.

measurement chamber. Here, it will take some time until the target molecules reach the surface
to hybridize with their matching probe molecules.

In this approach, we calculate the expected time until 80% of the equilibrium surface-charge
density is reached in each case.

For low concentrations, there is almost no dependence on the concentration of the solution.
At approximately 0.5 µM, the expected time starts to decrease with increasing concentration.
However, the important difference here is that this effect is larger when the solution is well stirred
in the beginning, as is shown in Figure 5.13.

The numbers in Figure 5.13 indicate that the equilibration process can be speeded up from a few
minutes to several seconds, which is approximately two orders of magnitude. This simulation
results appear to be important for experimenters, since it means that proper mixing of the
solution is essential for fast detection.

5.3 Biosensor Simulations in 2D

Simulations in two dimensions allow two important improvements. First, one can distinguish
hybridization at the transducer and at the chip on which the transducer is placed. The effects of
this distinction and the 2D geometry are adressed in Section 5.3.1. Second, as already mentioned
several times, more complicated initial conditions can be realized in this setting. Here, we will
simulate the hybridization at the surface for asymmetric different initial conditions and compare
the respective output to the symmetric case.
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Figure 5.12: Signal-to-noise ratio at the equilibrium corresponding to Figure 5.10. Its
value is constant up to a target concentration of approx. 3 µM. This is
also due to the fact that the variance decreases with increasing target-
molecule concentration.

5.3.1 Basic Features and Dependence on the Width of the Chip

First of all, we simulated the system under the following circumstances. We have a fixed number
of target molecules within the liquid, and we consider different widths for the domain. Also,
the height of the domain is fixed. The used parameters for this series of simulations is given in
Table 5.1. With these numerical values, we obtain simulations for concentrations between 2.5
and 93 µM. As initial condition, we want to have an already mixed solution in the beginning, so
the target molecules are distributed uniformly over the whole liquid domain. Here, we divided
the surface into compartments of 25 µm each, which allows to investigate the hybridization in
different regions of the device. A sketch of this partitioning is shown in Figure 5.14(b).

The equilibrium values of the signal depending on the target-molecules concentration are shown
in Figure 5.14(a). Here, the different curves relate to different positions at the sensor. This
correspondence is explained in Figure 5.14(b). It turns out that the hybridization is higher at
the four compartments next to the edges of the sensors. This is due to the fact that the area from
which the probe molecules in these regions are accessible is higher, as was already indicated in the
sketch of the geometry in Figure 3.2. The same argument explains the lower hybridization rate
at the regions representing the corners of the sensor as well as the region next to the nanowire,
which have a lower area from which they are accessible. For all the other regions, the final
PT density is between the of the two discussed values and is the same everywhere. We will refer
to this three regions as edge regions, corner regions and middle regions, respectively.

For the highest investigated concentrations, full hybridization, which is 3×1012/cm2 is almost
reached for edge and middle regions. Based on the discussion in the previous paragraph, it is
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Figure 5.13: Expected time until 80% of the equilibrium surface-charge density are
reached. Solid lines represent solutions where the target molecules are
initially in the uppermost simulation box, while the dashed lines repre-
sent solutions where a uniform initial concentration is assumed.
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Figure 5.14: Left: Equilibrium value of the signal for different regions of the surface.
Basically, there are only three regions to distiguish, where all the values
are similar for the same type of surface. Right: Sketch of the different
types of regions at the surface. The colors in the plot correspond to the
colors indicating the types of regions.

not surprising that full hybridization is first obtained for edge regions. It can be seen that the
difference between the different regions becomes lower for increasing concentrations.
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parameter numerical value unit

height of domain 1 µm

width of domain 200-5000 nm

depth of domain 12 nm

height of sensor 100 nm

width of sensor 100 nm

number of particles 100 –

duration 150-250 s

stepsize 1 ms

iterations 2000 –

probe molecule density 3×1012 cm−2

Table 5.1: Used parameters for the simulations investigating the effect of the domain
width on the sensor behavior.
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Figure 5.15: Equilibrium values for noise (left) and SNR (right). Again, the behavior
for the different regions is resolved. The coloring is according to the
sketch in Figure 5.14(b).

The equilibrium values for the noise, which corresponds to the standard deviation, are shown
in Figure 5.15(a). Like in the 1D case, there is a maximum in the equilibrium value, but here,
the position of the maximum is different for the different regions at the sensor. For increasing
accessible area, the concentration of the maximum value decreases.

Resulting from Figures 5.14(a) and 5.15(a), the equilibrium values for the signal-to-noise ratio
are shown in Figure 5.15(b). Similar as in the 1D case for that concentration regime, the SNR
increases with increasing concentration. However, unlike in the 1D case, the behavior here is
somewhat superlinear.

We now turn our attention to the evolution of the quantities of interest over time. Due to limited
space in this work, we just consider one instructive case here, which will be the simulation for
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Figure 5.16: Evolution of the signal (left) and the noise (right) for the simulation
of a 200 nm wide domain. The different colors correspond to different
regions at the nanowire and the chip and are related to Figure 5.14(b).

a domain of 200 nm width. The evolution of the signal is shown in Figure 5.16(a). Here, the
qualitative behavior is considerably different for the different regions. While it takes almost until
the end of the simulation to reach the equilibrium (which is also the maximum) at corner regions,
the equilibrium is attained very quickly for all the middle regions. However, the evolution for
the edge regions is non-monotonic. There is a maximum after a short period of time, after which
the value slowly lowers to reach the equilibrium value shortly before the end of the simulation.

The evolution of the variance is shown in Figure 5.16(b). As for the signal, the qualitative
behavior is different. In all three cases, the maximum is reached after a few seconds. For the
corner regions, the variance then slowly reaches its equilibrium value. The variance in the middle
regions attains its equilibrium faster after a significant drop. For the edge regions, there is a
steep drop after the maximum, and a minimum is reached at approximately 25 seconds, after
which the value slowly attains its equilibrium.

As the variance has a significant maximum for the edge regions while at this point, the drop has
already happend for the middle region and the noise in the corner region has just a little dropping
ahead, the global minimum in the noise of the whole sensor might not be in the equilibrium.
This is an important information for an experimenter, since it means that one has to conduct
the measurement at the right time before the equilibrium is reached.

5.3.2 Different Initial Conditions

As we have seen in the previous section, we obtain the same results at similar regions of the
surface. Therefore, in this case it is enough to only consider on half of the domain. Now we
are ready to go one step further by considering more realistic initial conditions. In fact, in
experiments the target molecules sometimes enter the domain via one small slit in the side of
the box. This will be modeled here by putting all target molecules in a small area at the very
right of the domain, as is shown in Figure 5.17(a).
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Figure 5.17: Left: Sketch of the asymmetrical initial conditions used in this simula-
tion. Right: Comparison of the signal at the two halfs of the nanowire.
Here, just the first 0.25 s are shown. The difference between the two
parts is significant in the beginning, but vanishes during the simulation.

In order to investigate different initial conditions, it is necessary to choose very small timesteps
in order to resolve single moves of the particles. The maximal acceptable timestep is assumed to
be in the order of the size of the nanowire, which is 100 nm in this case. Here, we chose a step
of 5×10−6 s. Accordingly, we only investigated shorter periods of time, since after some time the
system will be in the same state as in the symmetric situation. In fact, it will turn out that this
happens very fast. The used parameters for this simulation are given in Table 5.2.

Figure 5.17(b) shows the sums of the hybridized complexes on the left and on the right half of
the nanowire. Obviously and as expected, hybridization starts earlier on the right half, but the
density increases approximately with the same rate at both parts. However, after just 0.25 s, the

parameter numerical value unit

height of domain 1 µm

width of domain 200 nm

depth of domain 12 nm

height of sensor 100 nm

width of sensor 100 nm

number of particles 10 –

duration 3 s

stepsize 5 µs

iterations 5000 –

probe molecule density 3×1012 cm−2

Table 5.2: Used parameters for the simulations investigating the effect of the initial
conditions on the sensor behavior.
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difference between these two vanishes again and the situation is similar as in the cases discussed
in the previous section.

This shows that asymmetrical initial conditions have low effects in the investigated situation.
This means that there is no urgent need for experimental improvements in order to lower the
waiting time until an optimal signal-to-noise ratio is obtained.

5.4 Summary

In this last part, we simulated the biosensor behavior with a one-dimensional as well as with a
two-dimensional model. The 1D model allowed insight in the basic behavior of the system, which
includes dependences on the target-molecule density in the liquid, the probe-molecule density at
the surface and different initial conditions. Important features for experimentalist have beend
discovered, that help to rationally design the biosensors.

In the 2D case, the effect of the sensor geometry was considered. Especially the different regions
of the surface were of interest here, and insight not only on the signal, but only on the noise was
given here. The subsequent study of asymmetrical initial conditions revealed that the effects are
very small, which might allow a neglection of the asymmetry in the initial conditions in the first
place. However, it has to be kept in mind that the overall initial conditions have indeed great
impact on the sensor behavior.
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Chapter 6

Conclusions and Outlook

There were two main objectives in this work. The first task was the determination of pa-
rameters governing surface processes at nanowire sensors from experimental data. Secondly,

simulations of biomolecule hybridization at biosensor surface were to be performed by taking
into account the random nature of all the chemical processes taking place within the system.

To obtain numerical values for parameters describing the interactions of the target molecules
with the surface, a deterministic model was adopted from literature and refined for our case.
The mass action law allows a formulation in terms of ordinary differential equations. The main
difficulty here is that the system of equations is highly nonlinear in the case of gas sensors,
which is due to an exponential term related to the density of available electrons. Therefore, the
differential equations can only be solved numerically. Furthermore, the parameters governing
the processes arise also within exponential, which makes their determination difficult. When
considering biosensors, the situation is easier since the differential equation becomes linear under
certain assumptions.

This model was used to investigate measurements performed with prototypes of SnO2 single
nanowire gas sensors. These devices were fabricated by the group of Anton Köck, who collabo-
rated with our group in this project.

For the parameter determination, we first considered measurements under inert atmosphere,
which is ideal for a stepwise estimation procedure. We obtained parameters determined from
five different temperatures between 250◦C and 350◦C.

Next, we considered the sensor behavior during carbon monoxide adsorption at 300◦C as well as
at 350◦C, where the results from the inert-atmosphere case could already be exploited.

Finally, we also investigated the adsorption of hydrogen in an atmosphere of dry air, which
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turned out to be complicated, since all parameters had to be estimated at once from the given
data. Therefore, we only obtained results for one constant temperature, which was 300◦C in this
experiment.

This investigation was completed by a comparison of different error notions in order to find out
the best one for the determination of the numerical values. It turned out that it is crucial to
take all data points into account for comparison, which means that the maximum norm cannot
be used for this task. The best results were obtained for the widely used least-squares error.

To tackle the second objective, the deterministic model approach was refined in order to include
the random effects. A stochastic model was derived which yields chemical Langevin equations for
the surface interactions. When considering gas sensors, this model is sufficient for the description
of the system, which allows to draw conclusions on the expected level of biological noise in the
experiments. In fact, it turned out that the noise level increases with an increasing number of
reactions taking place. This qualitative approach worked very well within the measurement data
again provided by Anton Köck’s group. Here, prototypes of CuO single nanowires and nanowire
networks detecting hydrogen sulfide and water vapor in air were considered.

However, the diffusion of the target molecules through the liquid is much slower than the trans-
port of a heated gas. Therefore, the surface-interaction processes need to be coupled with a
diffusion equation to obtain reliable results. This coupled system was used to simulate the
binding efficiency and the corresponding fluctuations at biosensor surfaces.

To calculate the quantities of interest, we implemented two different algorithms. First, for the
one-dimensional simulations, we considered a box-based approach, which considers diffusion as
well as hybridization as transition between different boxes. Second, since the box approach
turns out to bit cumbersome in higher dimensions, we also implemented a random-walk based
approach, which was then used for the two-dimensional simulations.

The first set of experiments was conducted using a one-dimensional simulator. Here, we focused
on the interplay between diffusion and hybridization at the surface. From these, we extracted
information on the equilibrium values of signal, noise and signal-to-noise ratio depending on
probe density and target-molecule concentration in the aqueous solution surrounding the sensor.
Here, it turned out that there are two notions that can be considered as a signal, which are
binding efficiency and surface-charge density. We discussed the advantages of considering each
of these quantities throughout the thesis. Furthermore, we discovered that there might be a
waiting time to obtain the best signal-to-noise ratio under certain circumstances. This is due to
the fact that there is a significant maximum in the variance after a certain period of time when
considering high target-molecule concentrations.

In the second set of simulations, we used a two-dimensional simulator to investigate the hybridiza-
tion at different regions of the surface. It turned out that there are three regions to distinguish
in our case, which all showed different qualitative behavior. Therefore, a proper choice of the
geometry of the domain yields a better signal-to-noise ratio. However, it also turned out that the
optimal signal-to-noise ratio might not be obtained in the equilibrium, which makes it necessary
to find the right moment for the detection of the biomolecules.

Finally, we investigated asymetrical initial conditions, which corresponds to a more realistic
situation due to the design of the biosensing devices. Considering the hybridization at both halfs
of the nanowire, we obtained a difference in the signal in the very beginning of the simulation,
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which then vanishes surprisingly fast, i.e. within tenths of seconds. In particular, this effect is
very small, so it can be neglected in the first place. However, the overall initial conditions do
have significant influence on the sensor behavior, which still makes a proper choice necessary.

Of course, especially for the two-dimensional case, many more different situations, which could
not be considered in this thesis, are of interest. Hence, based on the insights obtained in this
work, a lot can be done on this topic that will lead to further insights yielding to even better
sensor designs that might lead to safe, efficient and reliable sensing of whichever species in the
future.
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