
Expedient Logging for C++ Using
Reflection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Klaus Bräutigam
Matrikelnummer 0825965

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Wien, 21.04.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Expedient Logging for C++ Using
Reflection

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Klaus Bräutigam
Registration Number 0825965

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Vienna, 21.04.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Klaus Bräutigam
Ameisthal 44, 3701 Großweikersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Many thanks to my family for assistance in all manner of situations, to my friends for their
patience and lenience in busy times and my advisor for his helpful mentoring.

iii

Abstract

From the very beginning of programming, the invisibility of software processing hindered effec-
tive interaction with human beings. Rising scale and complexity of increasingly parallelized and
distributed applications demanded advanced programming languages and additionally progres-
sive programming concepts like reflection. Logging and tracing to selectively reveal information
from executed imperative programs with assistance of specialized tools, emerged early and is im-
portant till today.
The present work is concerned with the research question: Is the development of practically
usable logging tools with “automatic message scope enrichment“ and “human-readable object
serialization“ possible by using existing approaches to equip C++ with reflective capabilities?
“Automatic message scope enrichment“ means that log messages are automatically equipped
with extended information. Examples are thread ids during execution or method signatures to
reveal the origin of the log statement in the source code. “Human-readable object serialization“
deals with serialization of C++ objects with complex types (classes) during runtime, suitable for
debugging tasks and software auditing. Next to pure feasibility of reflective logging for C++ also
the introduced resource consumption overhead is focused on. Since C++ does not intrinsically
provide sufficient reflective power, use of external frameworks is mandatory.
To solve the problem we start with general studies about reflective logging and required features
in the context of C++ including related theory and publications. The next part deals with analysis
and evaluation of available C++ reflection tools and outlines already existing reflective possibili-
ties. A prototypical implementation is presented and the resulting characteristics are explained.
Finally, the solution is evaluated concerning resource consumption and possible extensions for
the future are suggested.
Evaluation results show that in general powerful reflection can be realised within the natively
compiled C++ domain using available reflection tools. Also other mechanisms (e.g. persistence,
dependency injection, etc.) beside logging can be realised with the described concepts. The
solution reduces source code intrusion and uses reflection also for configuration of the logging
tool. This approach supports better convenience for users. Resource consumption overhead for
working memory is shown to be not really significant. On the one hand “automatic message
scope enrichment“ can be implemented with acceptable run-time performance overhead. On the
other hand this kind of overhead is higher for “human-readable object serialization“ limiting its
practical use.

v

Kurzfassung

Seit den Anfängen der Programmierung erschwert die verborgene Ausführung von Programmen
die Nachvollziehbarkeit durch den Menschen. Wachsende Größenordnungen und Komplexität
von Applikationen, welche immer verteilter und nebenläufiger operieren, erfordern immer mäch-
tigere und fortschrittlichere Programmiersprachen und Konzepte wie „Reflection“. „Logging“
bzw. „Tracing“ entwickelte sich früh zu einem wichtigen Instrument, um mit Hilfe spezieller
Werkzeuge relevante Informationen während der Programmausführung in für Menschen lesba-
rer Form zu extrahieren und hat bis heute große Bedeutung.
Diese Arbeit beschäftigt sich mit der Beantwortung der folgenden Forschungsfrage: Ist es mög-
lich, mit den heute verfügbaren „Reflection Tools“ praktisch einsetzbare Werkzeuge für „Log-
ging“ in C++ zu entwickeln, welche Funktionen wie „Automatic Message Scope Enrichment“
und „Human-Readable Object Serialization“ unterstützen? „Automatic Message Scope Enrich-
ment“ bedeutet, dass „Logging“-Nachrichten automatisch mit Informationen erweitert werden,
welche deren Wirkungsbereich beschreiben. Dies kann beispielsweise während der Programm-
ausführung der Identifikator eines „Threads“ sein oder auch der Ursprung im Quellcode der
Software. Neben dem Beweis der Machbarkeit der beschriebenen „Logging“-Mechanismen für
C++ mit „Reflection“ wird auch dem entstehenden Mehrverbrauch an Ressourcen große Be-
deutung beigemessen. C++ unterstützt „Reflection“ nicht in ausreichender Form, wodurch der
Einsatz externer Frameworks unumgänglich ist.
Um das Problem dieser Arbeit zu lösen, beginnen wir mit allgemeinen Studien über „Reflec-
tion“ und die „Logging“-Grundlagen und -Funktionen, inklusive relevanter wissenschaftlicher
Publikationen. Danach beschäftigen wir uns mit der Analyse und Evaluierung verfügbarer C++
Werkzeuge für „Reflection“. Darauf aufbauend wird ein lauffähiger Prototyp präsentiert und
dessen wichtigste Charakteristika beschrieben. Zuletzt wird die Lösung bezüglich ihrer Laufzeit-
eigenschaften evaluiert. Vorschläge für weitere wissenschaftliche Arbeiten beenden diesen Teil.
Die Ergebnisse offenbaren, dass „Reflection“ bereits in ausreichendem Maße von Werkzeugen
für die nativ kompilierte C++ Domäne unterstützt wird. Die erörterten Konzepte erlauben auch
die Umsetzung anderer Mechanismen (z.B.: „Persistence“, „Dependendy Injection“). Die be-
schriebene Lösung reduziert die Quellcodedurchdringung und verwendet „Reflection“ auch für
die Konfiguration des Werkzeugverhaltens. Der zusätzliche Arbeitsspeicherverbrauch, bedingt
durch den Einsatz von „Reflection“, konnte als gering ermittelt werden. Die Funktion „Au-
tomatic Message Scope Enrichment“ verursacht einen akzeptablen Overhead an Laufzeit. Die
Ausführung von „Human-Readable Object Serialization“ benötigt erheblich mehr Laufzeit und
kann deshalb momentan nicht für zeitkritische Anwendungen eingesetzt werden.

vii

Contents

1 Introduction 1
1.1 General Information . 1
1.2 Motivation . 4
1.3 Problem Statement . 5
1.4 Aim of the Work . 9
1.5 Methodology . 11

2 Analysis 15
2.1 Genesis of Reflection . 15
2.2 Adoption to Object-Oriented Programming 16
2.3 Adaptation for C++ . 16
2.4 Aspect-Oriented Programming in C++ . 20
2.5 Reflective Logging Features . 21

3 Reflection in the Context of Logging 23
3.1 Logging and Reflection . 23
3.2 C++ Reflection Tool Evaluation . 24
3.3 Reflection Tool Capabilities and Characteristics 29

4 Architecture and Configuration 33
4.1 Build Intervention Process . 33
4.2 Composition Architecture . 36
4.3 Execution Space Architecture . 42

5 Reflective Logging Implementation 45
5.1 Tool Set . 45
5.2 General Aspects . 46
5.3 Automatic Message Scope Enrichment . 49
5.4 Human-Readable Object Serialization . 55

6 Evaluation and Future Work 61
6.1 Functional Evaluation . 61
6.2 Usability and Integration Evaluation . 69
6.3 Open Issues and Limitations . 70

ix

6.4 Future Work . 71

7 Conclusion 73

Appendix 75
Appendix A Transformative Benchmark Program 75
Appendix B Base Criteria Evaluation Results . 78

Bibliography 85

x

CHAPTER 1
Introduction

1.1 General Information

This section provides generic information about the document typography and structure. An
accompanying example is introduced to support explanations throughout the work.

Typography and Document Elements

For the present work some basic rules are defined:

1. Footnotes are exclusively used for complementary information

2. Shorter code excerpts are depicted in dedicated figures and in

console font style

3. Longer code excerpts and groups of figures or tables are collected in an appendix

4. In the following cases text phrases are emphasised using an italic/cursive font style:

• Whenever the meaning of a name is mainly restricted to the context of this work (e.g.
feature names, program names, component names, function names, etc.)

• Names of used external tools

• Textual citations from other authors

• Programming language constructs (e.g. C++ types, short code snippets, operators, etc.)

1

Structure of the Work

• The introductory Chapter 1 motivates the general topic and explains the environment this
work fits into. Secondly, it defines the problem being actually addressed and the research
aim. The chapter continues with a description of the methodology. The procedural prin-
ciples are presented for solving the problems declared previously for the present work.

• Chapter 2 summarizes publications about the topics reflection, AOP (aspect-oriented pro-
gramming) and logging. They form the fundamental theoretic base for this thesis. We
start with the roots of reflection and how it founds its way into OOP (object-oriented pro-
gramming). Then the adoption to the C++ language is discussed for the different variants.
The chapter finishes with the publications in the context of advanced logging. They pro-
vide the background for selecting the scientifically relevant reflective logging features,
implemented within this thesis.

• Chapter 3 contains on the one hand general information about reflection and logging to
support understanding of basic conditions and surrounding aspects. On the other hand the
evaluation of available C++ reflection tools is described with two identified frameworks
being examined in more detail. This evaluation encourages understanding of the tool
architectures and implementation details.

• Chapter 4 presents at first an overview about the architecture of the prototyped reflec-
tive logging tool. It explains the input objects, processing steps, resulting output objects,
contained components and the most important mechanisms.

• Chapter 5 enumerates the tool set used for this thesis. Afterwards it dives into the details
concerning realization of the already described abstract concepts. It also partially deals
with revealed consequences and resulting characteristics of the obtained solution.

• In Chapter 6 the implemented reflective logging tool is carefully analysed and verified.
The evaluation is primarily concerned with the most important factor run-time perfor-
mance. Aside from that, possibilities for scientific investigations in the future are outlined
for the topic.

• Finally Chapter 7 summarizes all important deduced facts and points out the results of this
thesis.

• The appendix provides auxiliary information for completeness reasons and supports deeper
understanding of particular aspects.

2

Accompanying Example

To generate a relation to the real world and to support clearer explanations an accompanying ex-
ample is introduced now. It is intended to complement the presented information throughout the
work. The financial domain is chosen because of our corresponding knowledge and experiences
in this area.
The global financial system provides a platform for trading various different kinds of assets
approximately in real-time. The system is distributed among several continents and countries
and coordinated by specific local institutions (e.g. banks, stock exchanges, etc.). Today trad-
ing decisions are increasingly accomplished by fully automatised systems through exhaustive
computational market analysis. Under certain conditions human interaction must be possible to
react to exceptional situations. Such trading systems must act in a globally distributed manner
and cope with tremendous amounts of data. Their overall complexity and the necessity for quick
updates of certain internal aspects rises. Growing trading frequencies enforce the use of efficient
hardware, operating systems and performance maximizing software to be competitive. Every
trade must be specified precisely and with correct timing. Otherwise high losses arise. Auditing
and detailed documentation of all events, processes, calculations and decisions are a further cor-
nerstone within profitable trading systems. All things considered the following considerations
can be identified:

• Event-based distributed communication among the whole world

• High amounts of data

• Fast reaction times based on complex calculations

• Transactionally scoped processing of trades

• Detailed auditing and documentation enforced by law or enterprise internal policies

Tremendous amounts of money can possibly be earned with effectively built and serviced
automatised financial trading systems. For this reason high interest can be observed in the area.
Essential for successful systems is for sure sufficient domain knowledge about the financial mar-
kets. Nevertheless, suitable implementation of the applied software systems gets an increasingly
crucial part of the whole picture.
C++ is a programming language widely accepted for performance and data processing intensive
application domains. The presented characteristics of automatised trading systems form an ideal
example for the research topic of the present work. As will be outlined the auditing and doc-
umentation requirements are directly addressed by efficient reflective logging in C++. Further-
more, reflection in general is also applicable to many other aspects like for example transactional
safety and data processing. The example is generally named Exemplary Trading Platform and
used in different circumstances in this work. It will be referred to with the abbreviation EXTP.

3

1.2 Motivation

Information processing and the way computation is accomplished in modern computers today
goes far beyond what human brains can perceive on the fly. Programmers usually use logging
mechanisms with suitable powerfulness to reveal human-readable information from their devel-
oped or maintained programs [39]. For example, the heavy use of basic console outputs for
debugging pieces of source code shows the widespread relevance of logging for programming
processes. Carefully positioned log messages allow software developers to obtain important and
simplified information about what is actually happening during program execution. Generally it
does not matter at which complexity grade programmers operate. Effective use of logging can
be observed in small experimental applications and also within huge legacy software systems.

Logging in Changing Environments

Software systems reach striking dimensions and get more complicated every day. Computation
tends to become highly distributed and parallelized. Our example EXTP from the financial sec-
tor proves this fact. Several subordinated trading nodes must be executed in different countries
to support fast access to the local markets. Many different assets from different asset classes
must be analysed in parallel and relations among them get enmeshed stronger. These circum-
stances additionally complicate the observability for humans. Existing well-tried tool-sets get
progressively overstrained in certain situations. Conventional debuggers for step-wise execu-
tion and limited runtime variable introspection have been around for a long time. They are
often taught to programming neophytes as the most effective possibility to reveal errors. It can
be observed that these tools increasingly fail to successfully aid in solving difficult problems
within the changing execution environments of modern programs. The application fields and
tasks of software systems diversify and must be realized in shorter times and maintained by
smaller groups of computer scientists. This situation heavily impacts the way such systems
are designed, constructed, operated, maintained and replaced. Within the last years logging re-
ceived growing attention. It emerged as a major aspect of software product quality in industrial
and scientific areas [32]. Its excellences and advantages for improving development, debugging
and maintenance processes themselves were discovered and started to be researched [78] [82].
The potential and possibilities provided by expedient logging mechanisms for more effective
software development should not be underestimated. They should be seriously researched and
revealed.

Necessity for Reflection

Expedient logging mechanisms and most other progressive software development tools usually
rely on advanced concepts. These concepts like reflection are at best provided by the used
programming languages and execution environments. They can be found in strongly different
characteristics and also significantly vary concerning powerfulness. In the last decades virtu-
alization received increasing attention to exploit advantages through abstraction from specific
platforms. This circumstance can be observed on different layers like virtualized hardware re-
sources, operating systems and also execution environments of programs. Many virtual ma-

4

chines are available accepting abstract machine code instead of non portable native forms. This
circumstance was utilized to introduce already known advanced programming concepts with less
effort. Although, reflection can be provided for native execution environments, it received more
widespread importance within virtualized execution environments. An explanation can be that
development in these abstracted directions basically shifts focus from resource consumption to
other aspects. These aspects seem sufficiently important to be worth the acceptance of addition-
ally introduced overhead. C++ source code is usually compiled and executed natively on related
target platforms. This approach promises to be more resource preserving than others and is in
many cases argued in that way. For this reason the language was designed and implemented with
focus on other concepts but powerful reflection in mind. The fact that the language was designed
with different concepts in the foreground does not mean that no others can be added. As long
as no real antagonisms are identified with the language fundamentals, advanced development
tool sets (e.g. reflective logging) can benefit from them. Appliance of reflection can also im-
prove programming processes, source code and the overall resulting program quality. All things
considered it becomes clear that researching expedient logging mechanisms in conjunction with
reflection within C++ is worth to be paid adequate attention. This work is concerned with this
topic.

1.3 Problem Statement

Although logging has not yet received such strong significance in research as other topics have,
steady progress can be observed within the last years. In practice logging is widely treated as
rather dispensable as opposed to being a major aspect of successful software engineering. Be-
side others one of the reasons seems to be that for many languages no really expedient logging
tools exist. For the language C++ a number of different logging tools are available. They provide
basic functionalities used to integrate rudimentary logging into developed software systems. To
the best of our knowledge, many useful features are missing, leading to problems and inefficien-
cies. The artificial, abbreviated and simplified piece of C++ source code in Figure 1.1 serves
as a pictorial representation of state-of-the-art logging often observed by us in several projects.
Such logging code is often applied to industrial and scientific applications in similar forms using
widespread logging tools. The code should provide insights into the way how some desired ab-
stract logging features are realized and applied in practice. Several disadvantages and problems
can arise from such approaches.

5

...
class ClassName {

...
static LoggingLibrary::Logger classLogger;
...
ClassName () {

LOG_METHOD_DEF ("::ClassName ()");
LOG_TRACE ("Construction");
...
LOG_TRACE ("Constructed");

}
...
UInt32 methodName (UInt32 argument1, char** argument2) {

LOG_METHOD_DEF ("::methodName");
LOG_DEBUG ("ENTRY with " << argument1); // argument2 omitted
...
LOG_INFO ("Object State[M1: " << object.getM1 () <<
"|M2: " << object.getM2 () <<
"|M3: " << object.getM3 () <<
...
"]");
...
LOG_DEBUG ("EXIT with " << returnValue);
return returnValue;

}
...

};
...
LoggingLibrary::Logger ClassName::classLogger = LOG_LOGGER (“ClassName“);

Figure 1.1: Simplified example for state-of-the-art C++ logging source code

Automatic Message Scope Enrichment

The first observable logging feature that is realized within Figure 1.1 is enrichment of log mes-
sages with certain scope information:

• class name

• method name

• thread identifiers

• logging of method entry and exit points

The intention behind is to reveal origins of log messages within the source code or from
different threads and scope switches like method calls and returns. The form of this meta-
information is in most cases completely identical for all source code parts and can be classi-
fied as boilerplate code. Because of the fact that such logging code is often hand-crafted, the

6

consequence of frequent adaption mistakes during source code refactoring, movement or du-
plication arises. These mistakes continuously lead to confusion, unnecessary subsequent faults
and tremendous waste of invaluable development time [81]. Such kind of meta-information
should be added to log messages automatically, whenever requested by programmers with sim-
ple, adaptable and generalized mechanisms. This identified feature is within this work named
Automatic Message Scope Enrichment and in the following text referred to as AMSE. To be im-
plemented in a clean and generalised way it requires basic reflection capabilities. The scope of
every log message statement must be deduced and added as meta-information. This information
extension can be accomplished on the one hand at compile-time by automatic injection of scope
information into the log message statement. On the other hand an executed log statement can re-
flect the information dynamically at runtime from a meta-facility. Both possibilities necessitate
specific types of reflection categorized as compile-time and run-time reflection.

Human-Readable Object Serialization

The next popular logging feature concerns tracing of passed and returned variable values of
subroutine calls and objects in general. Figure 1.1 shows that variable values are printed within
methods to obtain additional contextual state information. Fully automatised and human-readable
object serialization is a valuable mechanism. It is essential for powerful logging and has al-
ready been implemented for languages like Java [42]. For C++, if anything, only fundamental
types can easily be serialized to human-readable formats [17]. All other more complex types
must be manually equipped with suitable serialization procedures. Mechanisms like overloaded
streaming operators are often used in such cases. This circumstance is unacceptable concerning
development effort, maintenance and error-proneness and should be automatised as far as pos-
sible [38]. This feature is named within this work Human-Readable Object Serialization and in
the following text referred to with the abbreviation HROS. As for AMSE basic introspective re-
flection is required for realization. HROS must deduce the member types and subsequently their
names. Afterwards the serialized instance must be introspected, to extract the current values for
all of these members. Additionally, the process must be considered to happen hierarchically and
even recursively. An object can subsume other objects (also possibly itself) which maybe again
subsume other objects and so on. Termination of the serialization procedure must be considered
for data structures with cyclic references. The HROS feature can as AMSE be realized using
different kinds of reflective mechanisms.
Many traditional logging tools would be even more worthwhile than today if they were equipped
with such advanced functionalities. The features AMSE and HROS provide improved usability
and benefits for users. They are not yet applied and the related drawbacks raise avoidable prob-
lems and inefficiencies in software development.

Tool Configuration and Adaptability

The way how functionalities can be accessed and suitably configured by users is an important as-
pect. Development tools should not only provide powerful functionalities, but also optimize the
way how these are applied and adapted in different circumstances. Many features of widespread
logging tools require boilerplate code and context specific hand-crafted extensions, limiting their

7

usefulness and effectivity.
To be really invaluable, a tool must consider its integration into the operation area. Most avail-
able logging tools force source code integration in an extremely intrusive way and are therefore
hard to change, adapt, remove and control. A good example for intrusive logging code provides
the source code example in Figure 1.1. It shows how work intensive changes like removing the
whole logging code from the project would be.
In our opinion this waste of development time to appropriately configure and maybe adapt log-
ging behaviour of software became a serious maintenance issue in many projects.

Reflection Support

The reason why most available tools lack features like HROS and AMSE is that they require
support for advanced programming concepts like extensive reflective capabilities. Reflection
in informatics means that a computer program is able to discover, manipulate and influence
its own structure, configuration, properties and execution behaviour. Usually reflection should
be provided through dedicated mechanisms lying within the programming language itself [60]
[46]. Unfortunately, standard C++ provides only strongly limited [17] [10] and often prob-
lematic [45] built-in support for reflection. Due to the fact that it is important for some C++
applications [14] [49], extensive research has already been accomplished. In the past many
tools, more or less powerful, were implemented and published with strongly diversified fea-
tures [37] [55] [24] [16] [22]. They provide reflective extensions and functionalities for C++
from external. Many of these available reflective framework or library implementations for C++
were not designed under consideration of maximum general applicability. They were created
more in the context of specific problem domains. For this reason in many cases, special manda-
tory environmental preconditions and influences can be identified. Unfortunately, this lack of
general applicability strongly reduces reusability and therefore distribution to other application
areas. Software projects tend to disassociate themselves from proprietary framework solutions
to avoid problems. This circumstance seems to be one of the major reasons for the rare mani-
festation of advanced reflective concepts within the C++ domain. It should be resolved by suc-
cessfully applying already available reflective frameworks and libraries to practically relevant
and general problems. Clearly presented solutions can serve as examples to overcome common
prejudices against such advanced concepts. Often they are just dismissed as superfluous and
fancy ideas instead of being applied as serious improvements.

8

1.4 Aim of the Work

This section describes the aim of this work consisting of some subordinated aspects finally re-
sulting in an explicitly formulated research question.

Reflection in General

A subordinated aim of the present work is to provide fundamental insights into the topic of
reflection for the C++ language. It outlines different approaches researched in the past and their
applicability and usability. Especially also usability, stability and functional range are evaluated
for implementing advanced tools for software engineering in general.

Reflective Logging Features

Based on general analysis, the feasibility of implementing an advanced, portable and practically
usable logging tool for standard C++ is to be presented. The implementation uses available re-
flective capabilities and a consecutive evaluation shows the reached practicability. A restricted
set of two features is implemented using the best identified C++ reflection tools available. The
two features AMSE and HROS are representative for proving basic feasibility.
The AMSE feature provides several mechanisms to automatically enrich log messages in pro-
grams with additional scope information. In this context the term scope is used to express
circumscribable program structures or behaviour. Scopes can be classified for example by:

time Log messages from a procedure starting at timestamp x and ending at timestamp y are
absolutely time scoped with two timestamps. In another example a procedure lasted 5
seconds, giving just a relative time duration scope of 5 seconds for log messages. Such
time-based scope information is especially important for reactive processes.

declaration Log messages can relate to the same method, class or source code part. Important
for object-oriented domains.

execution space Log messages origin from the same thread, process or operating system in-
stance. Essential for multi-threaded and distributed applications.

execution behaviour Log messages origin from the same method call with a specific computa-
tion path.

priority Log messages have the same severity (e.g. ERROR, WARN, etc.) or semantic dec-
oration (e.g. ALGORITHM, MODEL, etc.) attached. Suitable for better grouping and
structuring of logs in a further dimension.

The following scope enrichment mechanisms are provided:

• class and method name a log message originates from

• thread id identifying the thread a log message comes from

9

• entry and exit logging for methods to provide scope among subsequent log messages

• time duration measurement of method calls

These mechanisms can assist software developers in several circumstances from the very
beginning of projects until maintenance and replacement of the applications. Developers of our
EXTP can efficiently locate programming mistakes within specific algorithms, asset tracking
threads, trade timings or data models by applying suitably scoped logging. The generated logs
can also be used for analysing the realized business processes. Of course all the outlined mech-
anisms already exist and are required by programmers. Different is in this case that they should
be applicable automatically, consistently and easer than before using a reflective approach.
The HROS feature is concerned with serialization of instances with complex C++ types (i.e.
class and struct) to human-readable text strings. For example, object states of assets, run-
ning transactions and fulfilled trades can directly be logged within EXTP and are automatically
adapted when types are modified. The complexity of the C++ type system and historical influ-
ences provide big challenges. So one aim surrounding this feature is also to evaluate existing
limitations that possibly prohibit a sound and complete solution. Such limitations can originate
from characteristics of the C++ language or used external tools.
The two explained features AMSE and HROS solve some of the biggest drawbacks and problems
of state-of-the-art logging. At least many open source projects suffer from lack of them [81].

Reflective Tool Configuration

Another important aspect of software engineering tools is concerned with configuration and
adaptability. The intention behind is to use reflective capabilities also for interaction with the
programmer, not only to implement functional features. Effective software development tools
exploit all available possibilities to provide a maximum level of usability and powerfulness.
Intrusiveness and forced prerequisites must be minimized. Showing possible solutions and im-
plementations with assistance of reflection form another aim of this work.

Critical Evaluation

The announced logging tool is expected to serve as a general proof for applying reflective con-
cepts within the domain of C++. Preconditions, restrictions and limitations are minimized. The
tool must work with standard compliant C++ compilers on different platforms and avoids as far
as possible the use of compiler dependent or non portable features. This approach encourages
representativeness in general.
As already mentioned, beside the plain proof of implementation feasibility, this work aims on
revealing the practical suitability concerning resource consumption. Especially for domains in
which C++ is commonly used, resource consumption is an important point to be considered. Not
only the general availability of useful features is of interest. At least as important, related costs
are assumed to be presented with sufficient precision. For this reason the logging tool will be
evaluated within two different application domains (reactive and transformative) [65]. Resource
consumption (runtime and memory) is measured according to well-defined guidelines and the
results presented in a clearly arranged manner.

10

Research Question

All things considered the aim of the present work is to answer the following research question:
Is the development of practically usable logging tools with AMSE and HROS possible by using
existing approaches to equip C++ with reflective capabilities?

1.5 Methodology

This section provides information about the applied methods and concepts of this work starting
with the origin of the topic. This work, in general, systematically applies scientific methods to
deduce the expected results.

Literature Study and Analysis

A very important scientific method is looking at related information and results already pub-
lished by other scientists. For this reason the pure analysis and research of suitable concepts
must be enriched with a systematical and extensive literature study. It is necessary to extract
fundamental knowledge about the already researched and commonly known theory of reflec-
tion in general. Afterwards a special focus is given to the topic within the context of the C++
language. Obtained information in summarized form can outline the most important factors and
proper categorization gives a clearly arranged overview. An important part of the literature study
is to obtain knowledge and understanding about logging in software systems and the overall rel-
evance for software development. It reveals the most significant features, identified by scientific
work in software engineering in the past. These features form the base for research within the
reflective logging work and outline concrete requirements for the applied reflective mechanisms.
Literature can be read with different perspectives in mind which determine the focus given to
specific details presented within the texts. In the context of this work we concentrate on three
related, but distinguishable perspectives:

• At first fundamental insights into the concept of reflection as a whole and within the
domain of C++ will be extracted.

• The second perspective deals with possibilities to apply this fundamental theory within
tools for improving development processes.

• The third one, especially relates to literature dealing with the topic of logging. Focus is
explicitly tied to the core intention of this work namely to acquire theoretic knowledge to
successfully and effectively apply reflection to logging tools for the language C++.

Reflection Tool Evaluation

In analogy to the literature study, for practical scientific research topics also already published
implementations must be taken into consideration. The practical part of the present work is
based on use of currently available reflection tools for C++. They must be studied and analysed
according to predefined methods and reasonable characteristics.

11

• Available tools which offer applicative reflective capabilities for the standard C++ lan-
guage must be identified. Suitability is not always obvious at the first glance since re-
flective capabilities are often hidden between or within other superordinated features. For
this reason the exploration of reflection tools for C++ must also operate aside the core
terminology of reflection.

• After identification of potentially suitable reflection tools, they must be evaluated for their
general applicability within the context of this work. Quality, stability and compatibility
of the provided functionalities are crucial. Each one’s adequacy is separately evaluated.
With this approach the completely unusable subset is discarded from the entire set of
reflection tools by verifying formal characteristics and properties.

• The remaining tools are functionally evaluated again in separation with lightweight pro-
totypical implementations to prove pure feasibility of required reflective logging features
in advance.

• The third evaluation part assumes that all remaining reflection tools are suitable on their
own. Since it is unlikely that one reflection tool already provides all necessary features
for the task, it is important to consider that several reflection tools must coexist. So they
also must support interaction with each other. For this reason the best suitable reflection
tools must be combined in another prototypical implementation to prove their ability to
fulfil all mandatory requirements also in conjunction.

The presented strategy is composed of a theoretical part ensuring certain formal character-
istics and properties to hold in advance of a time consuming in depth evaluation. A second
rigorous practice-driven part directly targets and reveals the practical suitability of the remain-
ing tools. The method applies the well-known divide and conquer paradigm. A preparatory in
depth evaluation of subjects in isolation is followed by a subsequent evaluation in combination.

Logging Tool Implementation

To show or refuse the feasibility of implementing AMSE and HROS is one of the core tasks of
this work. It is accomplished with a prototypical logging framework implementation using the
reflection tools, resulting from the related evaluation. Important to mention is, that the focus is
not tied to maximized development-friendly usability or finalized maturity of the logging tool.
Priority lies more on the scientific aim of proving or disproving the general feasibility.
The architecture of the logging tool is based on the prototypical implementation which proves
the used reflection tools to be compatible to each other. This decision is wise because the evalu-
ation discloses all prerequisites enforced by the reflection tools. It is seldom the case that tools
are designed with such vision and generic brilliancy that users can apply them on almost all of
their own architectures and layouts. For this reason the necessities for effective reflection tool
use are deduced directly from the evaluation results (prototypical implementations). This ap-
proach implies unpleasant restrictions that must be taken into account for the architecture (e.g.
type meta-information provided in form of compiled C++ binaries).
On the foundations of the resulting architecture AMSE and HROS are implemented in an iterative

12

way. They are not implemented one after another, but iteratively in parallel. Starting with fun-
damental functionality for both and related test cases in advance the two features are alternately
extended. So comparable maturity can be reached and none of both can occupy significantly
more effort than the other one. This approach reduces the risk that in the end not all research
aims can be reached because too much time was wasted on failing parts.
Also the reflective configuration is declared as a research aim and is tightly woven with both
features. For this reason also for this task an iterative and alternating approach is chosen.

Logging Tool Evaluation

For AMSE and HROS resource consumption overhead must be measured and depicted. A set
of test cases provides information about handling various detailed functionalities correctly (e.g.
stack tracing, C++ exceptions, enums, etc.). The evaluation is expected to reveal, whether the
researched approach fits practical requirements. The following parameters with their measured
quantitative values are compared using special benchmark programs:

• runtime

• maximum working memory consumption

• application binary size

A limit of 50 per cent is defined as the maximum acceptable resource consumption frac-
tion within the benchmark programs. If reflective extensions consume as much resources as the
underlying mechanisms themselves do, the approach should be declared to be practically not
applicable and refused. Pure analysis during development represents the exception, but in the
end reflective logging must be completely removed from production variants.
The measured time and memory consumption overhead is just considered for the reflective log-
ging tasks. The basic effort for executing logging statements, console output or writing to files
on persistent storage, etc. is not seen as reflective overhead. Also available traditional logging
tools require this overhead when writing static log messages to files.
Separate benchmark programs, representing different application domains, are implemented in
this work. They are equipped with logging statements and built with different configurations:

1. No Logging - any log statement is reduced to its neutral representation before compilation

2. Static Logging - logging to a file on the local file system (no reflective computations, only
log messages with predetermined static strings written)

3. Reflective Logging - logging with reflective mechanisms to a file on the local file-system

13

The three presented configurations provide direct comparability for different aspects:

• The cost of logging overall can be retrieved by simple subtraction comparison of measure-
ment results from configuration one and two.

• The proportion of reflective effort can be calculated by configuration two and three.

• The last possibility is to reveal the complete costs of reflective logging against using no
logging with configuration one and three.

In the end, careful examination and representation of measurement results reveals whether the
scientific aim has been reached or not.

14

CHAPTER 2
Analysis

This chapter provides a comprehensive aggregation concerning evolution of reflection in C++
and corresponding publications. The topic of reflection in informatics is a superordinate concept
and was originally not discovered and researched in C++. For this reason at the beginning also
non-C++-related publications are enclosed. In the following also the topics AOP and reflective
logging features are analysed.

2.1 Genesis of Reflection

In the literature the genesis of procedural reflection is in most cases seen in the work of Smith
[60]. Although his thesis finished in 1982 and showed reflection in action for the programming
language LISP-3, the original idea started in 1976 at the company Xerox. Smith worked on a
program (MANTIQ) basically reasoning about itself concerning structure and behaviour. In his
opinion the idea already existed before Citation: ”...procedural reflection is not a radically new
idea; tentative steps in this direction have been taken in many areas of current practice. The
present contribution - fully in the traditional spirit of rational reconstruction - is merely one of
making explicit what we all already knew.” [60]. In his work, definitions and general properties
of reflection and related calculi are given. In chapter 5 an example for applying reflective capa-
bilities in computer programs is described. It deals with string-based debug output in functions,
giving access to the computational process whenever a problem occurs during execution. This
example can be seen as a basic ancestor of the ideas behind the AMSE feature.
In 1983 Batali published about the topic and provides an answer to the question what introspec-
tion is [12]. Four properties are described which must hold for any system with introspective
behaviour. It is mentioned that reflection processing does only make sense for 2-levels. This fact
means that thinking about the way to think about the way to think about something, does not
really make sense. Batali claimed that strong relation and focus to human related concerns, like
deliberation and perception, were drawn at that time and that this tendency decreased in recent
scientific publications.

15

2.2 Adoption to Object-Oriented Programming

Maes [46] in 1987 described an experiment to adopt computational reflection for OOP lan-
guages. He provided a further definition of computational reflection and claimed that in previ-
ous publications mysterious orientation dominated in contrast to technical relevancy. A bunch
of examples were propagated, outlining the substantial practical value of reflection (e.g. perfor-
mance statistics, debugging information, step-wise execution and tracing, object serialization,
etc.). Many of the mentioned ideas like tracing of function entries are related to this thesis.
The importance of differentiating structural and computational reflection was stated more pre-
cisely in 1989 by Ferber [29]. The two reflection tools used within this thesis can more or less
be categorized to cover these distinct forms of reflection. Reflex provides more capabilities in
the direction of structural reflection and AspectC++ focuses more on the computational part.
Ferber also explained the widespread and important term reification in the context of message
sending processes among classes (i.e. method calls). In this case a common base class for all
reflected classes and special message objects is suggested to solve the problem of computational
reflection.

2.3 Adaptation for C++

One of the earliest publications for adoption of reflective concepts in C++ was tackled by Ping
et al. [52] in 1990. Structural and computational (although here named operational) reflection
were explicitly distinguished and separately dealt with. The difference between interpretation-
based and compilation-based languages was outlined. This differentiation raised the question,
whether reflective capabilities should be directly integrated into the compiler or added through
external mechanisms. The solution was chosen to be meta-object based, similar to the approach
described by Maes without compiler intervention. For this reason structural reflection on the one
hand was conceptually implemented with three forced rules, all reflected classes must keep the
properties:

• a single root class for all classes must exist

• the structure describing meta-object class of any class must be defined as subclass of it
including a default constructor

• only virtual member functions are allowed to be used such that vtable (virtual function
table) exploitation is possible

On the other hand computational reflection is accomplished with method diversion, which
means that vtables are exchanged dynamically. The problem with this approach is, that it forces
a specific inheritance hierarchy for the target application source code base. Hand-crafted meta-
object class definitions using four specifically provided macros must in addition be maintained
by the programmer. Tracing is mentioned to be one major target for applying the won reflective
possibilities. A later approach by Stephens [64] in 2003 also forces inheritance from a specific
root class to implement reflective capabilities.

16

In the same year Interrante et al. [35] pointed out that C++ provides no run-time information
about class names, inheritance hierarchies and so on. They explained that manual and incompat-
ible class extending mechanisms are no suitable substitute. They intended to create a standard
(”the dossier”class) including a tool. This tool should generate necessary additional source
code and add a data member to each defined class to support access to run-time type informa-
tion. Generally the same major problems like in other reflection extensions remain. User defined
classes must still be extended with specific properties and the use of virtual method definitions
stays mandatory.
In 1992 the definition of reification was updated by Madany et al. [44] and extended with expla-
nations about which attributes should be reified and why:

Storage Concurrency and performance for memory allocation and deallocation

Existence Mechanisms for automating the deletion of objects

Persistence Mechanisms for persistent object activation and deactivation

Class Relationship between object and its class

Inheritance Relationships between classes in a class hierarchy

Encapsulation Hardware-enforced encapsulation of instance data

Inspection Human-readable representation of objects for tracing and instrumentation

The availability of structural meta-information as a necessary part is stated, beside the ob-
jects address and object identity. This statement is crucial for designing and implementing the
feature HROS of the present work. The authors explicitly do not advocate modification of the
C++ language to establish support for the discussed reflective mechanisms. Such intervention
would fundamentally change the language. They wanted to provide information about the topic
from an operating systems perspective for designers founding new languages based on C++.
Most of their ideas contribute also to other contexts.

Reflection with Preprocessing and Code Generation

Chuang et al. [18] provided in 1998 another approach for reflection in C++. At first the term
introspection is defined to be a limited form of reflection. It just deals with analysis and modifi-
cation of object states at run-time using generalized mechanisms. The term introspection became
commonly used like that. Many frameworks existing at that time, like for example IBM SOM
and Microsoft COM provided C++ object introspection by forcing inheritance from special re-
flection base classes. The newly presented framework provides introspection through parsing
class declarations to create a support environment. If all class declarations of reflected classes
are available at development time, meta-classes can be built either manually during development
time or even automatically at build-time using a code generator. The resulting introspective

17

meta-information for reflected classes is not necessarily statically linked with the application bi-
naries. It can be used loosely-coupled as dynamically linked library and loaded on demand only
if necessary at run-time. As problems they mentioned limitations through ambiguities within the
language C++, for example class data members of type void* and unions and unavailable source
code of third-party libraries. In relation to this thesis, the automatised generation of overloaded
streaming operators « and » for serialization should be pointed out. It is claimed, that with the
presented system, the original class declarations are not modified and that all class properties
stay compatible in any way. Nevertheless, the mandatory insertion of special friend method dec-
larations must be seen as limited, but not fully negligible source code intrusion. At some points
even the static type system of C++ is bypassed, decreasing confidence in stability.
Chuang et al. [17] [19] also published a command line based tool providing automatised ob-
ject serialization code generation through source code analysis. A detailed elucidation is given
about problems with intrusive and non-intrusive concepts and platform independence (e.g. ob-
ject memory layouts, etc.). The strong limitations concerning RTTI (run-time type identification)
of C++ are pointed out, too. The examined approach is, like most others, also source code intru-
sive. The mandatory private member access forces insertion of friend methods into classes. The
type safety may be problematic since pointers of type void* are used for passing objects. Some
more issues and details for designing reflection tools for C++ are given by Kasbekar et al. [37].
They introduced an analyser and code generator for transparent object persistence to databases.
In the year 2003 within the SEAL project a work using GCC-XML [40] for C++ source code
analysis and java.lang.reflection [51] in mind for implementation was published by Roiser [56].
A comprehensive overview about many other approaches is provided and the limitations of them
explained in relation to the restricted reflective feature set of C++. In 2005 Roiser et al. [55] up-
dated the previous publication and officially presented the Reflex library of the SEAL reflection
system. In the same year the ROOT data analysis framework was discussed [14] in relation to
reflection and integrated Reflex. Later Reflex was completely migrated to ROOT [67] to form a
complete framework for extensive data analysis, heavily used at the LHC (Large Hadron Col-
lider at Cern, Switzerland).
Meanwhile in 2004 Madina et al. [45] provided additional insights into RTTI and presented an-
other intrusive approach for introspective reflection in C++. They also applied macros and friend
method insertion to access private class members. A further approach reflcpp followed 2007 by
Devadithya et al. [24] providing in addition extensive information about source code intrusive-
ness and an interesting definition Citation: ”Intrusiveness refers to the requirement of having to
add certain annotations to a class so that it is able to provide information about itself.”. This
definition is of special interest since Reflex provides annotations, disguised as standard C++
source code comments discussed in more detail later in Section 4.2. This fact raises the question
how to assess annotations concerning source code intrusiveness. Maybe the definition should
be extended to include the impact of added annotations to the source code. The publication fur-
ther mentions that Reflex uses offsets from object pointers to access data member values. This
approach may be problematic for certain applications because it is not guaranteed by the C++
Standard [6] for non-POD types.
In 2008 Naumann et al. [49] summarized all previous approaches to deduce reflective meta-
information (dictionary information) from C++ source code depicted in Table 2.1.

18

Approach Description
Patched Compiler meta-information deduced by compiler or comparable mechanism
Custom Parser a special non compiler related parser is used for source code analysis

and meta-information generation
Debug Symbols compiler integrated debug information of binaries is exploited for re-

flective capabilities
Manually Maintained programmers must create and manually maintain type related reflective

meta-information

Table 2.1: General reflective information deduction approaches by Naumann et al. [49]

The efficiency of meta-information representation is discussed because extension of appli-
cations with reflective data increases resulting binaries. It is mentioned that using Reflex doubles
the size of finally linked binaries and even more overhead is introduced by heavy appliance of
templates. The authors claim that using another C++ parser clang LLVM [53] could reduce
build time and memory consumption. The improvement is possible by omitting the necessity of
generating, compiling and linking additional C++ source for reflective meta-information. Infor-
mation from pre-compiled headers can be used instead. In this context also the publication from
2010 by Dos Reis et al. [26] is of interest since they describe IPR, a systematic representation
of C++ as fully-typed abstract syntax tree. The intention behind was to create an infrastruc-
ture for convenient handling of C++ structures in several kind of programs like compilers for
example. But this circumstance maybe also contributes to external tools dealing with reflective
meta-information generation.
In 2012 a further framework Mirror, providing compile-time and run-time reflective function-
alities for C++, was presented by Chochlík et al. [16]. It is a command line utility (MAuReEn)
supporting automatised use for a variety of enumerated applications. Also another C++ parser
OpenC++ is mentioned with the drawback, that it is only working with older compiler versions
from GCC (GNU Compiler Collection [31]) and therefore not suitable for future extensions.
The framework also applies meta programming strategies including new features from C++11.

Reflection with C++ Templates

Based on the introduction of templates, some of the later approaches to equip C++ with reflective
extensions tried to exploit the possibilities available at compile-time. One of the earliest adop-
tions was done by Attardi et al. [11] using templates and macros for generating meta classes
of types for abstracted connections to relational databases. In the same year Attardi et al. [10]
again dealt with the topic to overcome the limited RTTI functionalities of C++ through exten-
sive use of C++ templates. They claimed that using templates instead of macros for definition of
reflective meta-information results in better support through multiple compilers and platforms.
Later in 2004, Zolyomi et al. [83] touched the topic not in the context of run-time reflection, but
with valuable information about checking template definition correctness at compile-time with
standard C++ language features.

19

In the year 2008, Kenyon et al. [38] announced CHIMP, a reflection tool using a two step im-
perative meta programming technique. Here templates were used for inspecting source code for
structures, classes and class members. Also a code generator was included for generating intro-
spective meta-information (referred to as dictionary information) non-intrusively. The biggest
drawback of this approach is the high complexity through different tools and an additional script
language embedded into C++.
Another approach using newly available RTTI features from C++11 was published in 2012 by
de Bayser et al. [22]. They provide a comprehensive introduction into the possibilities arising
from the use of dynamic_cast, typeid operator and variadic templates. The limitations for reflec-
tively iterating class members (i.e. data members and methods) and deducing their qualifiers and
values are still present as for all previous pure TMP (template meta programming) approaches.
In 2014 the reflection group of the C++ Standardization Committee SG7 published a pro-
posal [59] dealing with extraction of members and types from classes using variadic templates.

2.4 Aspect-Oriented Programming in C++

According to our studies the first publications dealing with AOP-related topics in the context
of C++ were published in 1999 by Willink et al. [77] [76]. They mention FOG (flexible object
generator), a meta-compiler for weaving of multiple definitions, such that resulting C++ code
satisfies ODR (one definition rule). A source-to-source translator converts super-set C++ source
files to traditional C++ header and implementation files. This approach provides the power to
define aspects separately for classes by introducing other classes and functionalities into them.
These extensions for existing classes are subsequently combined using FOG to cover ODR.
In the year 2002 C++ was enriched by Spinczyk [62] with even more powerful computational
reflection utilities. They presented AspectC++, a non-intrusive, aspect-oriented framework us-
ing PUMA as source code transformation system. A related scientific publication from 2011 by
Urban et al. [71] further explains cross-cutting concerns, pointcuts, join points, code weaving
and aspect-oriented basics in the context of C++. AspectC++ is based on the idea and therefore
strongly related to AspectJ [30] for the Java programming language, in all its facets. For the
reason that the C++ grammar is much harder to analyse and fundamentally different than that of
Java, some adaptions in the syntax for aspect and advice definitions were necessary. For exam-
ple the use of the % sign instead of * as wildcard, since * in the C++ grammar represents pointer
types. For scope definitions the delimiter :: is used to express C++ namespace nesting instead
of . for Java packages. Apart from that, most other concepts could be transferred to C++.
In 2005, Yao et al. [79] announced another aspect-oriented framework named AOP++. It fol-
lowed a different, source code intrusive approach based on TMP concepts. The obvious draw-
back is that hand-crafted TMP source code must be added to the target application. This ad-
ditional effort leads to reservations among programmers and therefore decreases interest for
practical implementations. The source code of this framework seems to be not freely available
from any official source.
Although the offered possibilities through AOP frameworks sound auspicious, they never really
received widespread approval within the C++ domain. The following publications show that
AspectC++ can be effectively applied to problems in specific application areas.

20

At first Mahrenholz et al. [47] dealt in 2002 with a monitoring tool for instrumentation and used
AspectC++ for analysis code weaving. The approach included time measurement similar to the
AMSE feature of this thesis. It is claimed that AspectC++ is much faster concerning execution
than AspectJ. It is argued that the weaved source code is compiled into the application, pro-
viding optimizations like code in-lining. No cumbersome run-time reflection mechanisms are
mandatory. All things considered, the publication is strongly related to the work of Spinczyk et
al. [62] but gives some additional valuable information. Calafiura et al. [70] used AspectC++ in
2004 for extensions of a HEP (high energy physics) framework for improved logging and some
other applications.
In this context another publication from 2002 by Thomas [69] outlines relations between re-
flection and AOP. It is claimed that computational reflection forms the roots of AOP and that
practical relevance of reflective and aspect-oriented programming concepts is underestimated.
Finally it should be mentioned that in fact more AOP frameworks for C (e.g. AspectC, AspeCt-
oriented C, Aspicere, etc.) and C++ (XWeaver [33], FeatureC++, etc.) exist, but they, according
to our studies, never received real attention in the scientific area and are therefore not covered in
more detailed.

2.5 Reflective Logging Features

A significant number of scientific publications mention advanced logging and tracing as example
of applying reflection and AOP. The available logging frameworks and features are just one side
of suitable software application logging. In many cases the power already provided by existing
logging tools is not sufficiently utilized. Suitable positioning and prioritization strategies for log
statements are crucial for effective logging. Correct configuration and use of further advanced
logging features are at least as important as the powerfulness of the logging tool itself is. A
goal of the present thesis is to identify potential logging use cases requiring reflective capabili-
ties. Yuan et al. [80] [81] identified and described major issues with log statements in analysed
software applications. In addition they provided some guidelines to improve logging message
design in general:

• Recording of thread ids within multi-threading environments

• Use __FILE__ and __LINE__ to extract the position of log messages in source code files

• Use of severities to support logging prioritization

• Record relevant variable values in logs

21

CHAPTER 3
Reflection in the Context of Logging

This chapter unifies the topics logging and reflection in the context of C++ and reveals reflective
capabilities already provided by existing tools for C++. This is accomplished in form of a
strategic exploration and evaluation of frameworks.

3.1 Logging and Reflection

Logging started to become more important for software systems and development in many dif-
ferent areas [32] [81] [80]. Some information sources for successful logging concepts exist and
some companies apply systematic approaches to reach high quality and tremendous improve-
ments [20] for their logs. On the other side many projects still suffer from fundamental misusage
and mismanagement of logging mechanisms [23]. This circumstance is a bit surprising, since
a lot of widespread modern languages (e.g. Java, C#, Pyhton, etc.) offer powerful reflective
mechanisms. So they also support uncomplicated implementation of advanced logging features.
Some related features are directly integrated and therefore naturally used. A good example in
Java is the method ”toString()” to serialize an object in addition to a textual logging message.
Without being properly overwritten, the method only prints the memory address of an object,
but the Java Reflection API provides the power to generate this method automatically [42]. Inte-
gration of such features directly into the language design opens the gates for applying them also
in other areas.

Language Internal Reflection for C++

Many successful and widespread languages are built around abstracted environments, for exam-
ple abstract machines or source code interpreters. C++ is generally compiled to native, platform-
specific formats and mostly used with the argument of being very resource preserving. The focus
on this aspect becomes obvious when examining the ideas and purposes behind the development
of the language [27]. Adding reflective capabilities was discussed [72] [59] in the C++ com-
munity and also rudimentarily realised with RTTI [22]. Limited support can be further seen in

23

the introduction of template meta-programming [7] [10] [11] [83]. In our opinion a consistent
integration of reflection has never been officially accomplished by the C++ committee. For this
reason the standard C++ language does not really provide a convenient base for the development
of advanced tools. They usually require powerful reflective mechanisms. The covered topic of
expedient logging is one possibility for using reflection to automatise and ease certain tasks of
software engineering.

Reflective Extensions for C++

Today users apply C++ for several reasons, but at the same time heavily depend on extensive
reflection for their daily business. Next to our example EXTP, scientists at the LHC [49] or
generally scientists working in the field of HEP (High Energy Physics) [14] in the past needed
reflection support within C++. They started investigations in this direction to bridge the gap.
From these groups in science and industry, tools were developed and published that promise to
provide a certain amount of reflective functionalities for C++. Another topic strongly related to
behavioural reflection came up with growing distribution of the aspect-oriented programming
paradigm. Some languages applied this paradigm and provided powerful tools. AspectC++
offers a broad variety of useful features for reflectively injecting code extensions at build-time
into applications.

Reflective Logging for C++

To the best of our knowledge no one ever before directly focused on researching the applicability
of reflection to expedient logging in the context of C++. Only basic approaches to veer towards
such ideas exist. One well known logging library, boost.log [57], applies the standard C++ im-
manent function-local predefined variable __func__. It reveals scope information with the macro
BOOST_LOG_FUNCTION for functions, methods and classes [58]. The C++ standard declares
the actual form of the variable content as implementation-defined [6]. This declaration prevents
portable use of the feature across different compilers. However, the library supports the use
of this limited feature whenever suitable. Another library from Arne Adams [8] partially deals
with the topic by offering hand-crafted macro definition-based reflective tracing. This approach
seems to be practically not applicable in most cases due to its tremendous manual maintenance
effort in addition to the restricted feature set it provides. Most logging tools provide different
limited scope information about runtime execution, for example thread identifiers. Also spe-
cial macros for marking specific scopes with proprietary identifiers are offered. Such identifier
strings are automatically added to log messages until the end of the scope [58].

3.2 C++ Reflection Tool Evaluation

Strategy

The evaluation strategy focuses on two different groups of criteria. The following set of formal
base criteria is evaluated on a theoretic level to eliminate tools which do not even fulfil the ab-
solutely necessary fundamental requirements. The presented order also expresses prioritization:

24

• The powerfulness provided by reflection tools is prioritized high to maximize possibilities
for implementation.

• Reflection for C++ in general and the prototyped logging tool of this work are intended to
be as portable as possible. For this reason the portability criterion is also very important
to support a broad range of application fields.

• The next important criterion is documentation since the best tool does not provide real
power without information about how to exploit it.

• Maintenance is the only guarantee that tools are not only valuable at the actual time but
also in the future. The overall age of a tool is also of interest in this context since emerging
technology is in many cases not stable and mature enough to be of real value.

• The criterion independence means within this evaluation that as few third party tools,
external libraries, etc. as possible are necessary to be used. Taking care of this aspect
can reduce overall complexity of integration and use. Also the intrusiveness concerning
source code is covered by this criterion. The perfect reflection tool should also as little as
possible depend on the actual source code base it is applied to.

• The overall maturity of tools targets the community interaction, current users, communi-
cation with the development team, etc. and is categorized just with three levels (experi-
mental, prototype and mature).

• The intention behind development tool gives an impression on the targeted application
fields. Deduction of the feature set and the way these can be accessed is supported.

• The final formal criterion evaluated for the reflection tools is the license since the proto-
type framework must omit any problematic economical dependencies.

Criteria are evaluated obtaining specific characteristics depicted in Table 3.1.

Criterion Characteristics
Powerfulness number of features, diversity of reflective capabilities
Portability restrictions for specific platforms/environments
Documentation number of words, completeness for features
Independence source intrusiveness, tool or language feature dependencies
Maintenance update frequency UF/last update LU/Age
Maturity experimental/prototype/mature
Intention intentions behind design and targeted application fields
License Open-Source/Free/Commercial

Table 3.1: Characteristics for evaluation criteria

25

Evaluation Subject Exploration

The set of evaluation subjects consists of the reflection tools identified during literature study
which are mostly of scientific origin. Some tools were found through an exhaustive exploration
on the internet using a powerful search engine [34]. The following C++ reflection tools form the
set for base criteria evaluation:

• QT’s meta-object compiler and system [43]

• ROOT Reflex [66]

• cpgf [54]

• Arne Adams - A Reflection Library [8]

• XCppRefl [25]

• CAMP [68]

• Classdesc [63]

• CppReflection [41]

• clReflect [75]

• idevkit [4]

• rttr [48]

• meta [73]

• autoreflect [13]

• crd [15]

• xrtti [36]

• Reflect [28]

• AspectC++ (aspect-oriented) [62]

• XWeaver (aspect-oriented) [33]

26

Base Criteria Evaluation

In this evaluation phase, available information from all libraries is carefully collected and anal-
ysed according to the criteria from the defined strategy. The detailed evaluation results for every
reflection tool can be referred to in Appendix B.
From the base criteria evaluation we conclude that only two reflection tools are adequate and
worth to be evaluated in a practical manner. Most of them are problematic concerning the cri-
terion ”powerfulness” and suffer from insufficient documentation. One of the major drawbacks
is the independence criterion. The predominant fraction of tools does not provide real automa-
tised reflective capabilities, but relies on macro-based or other hand-crafted meta-information.
This information must be provided by the application programmers in addition. This nuisance
is clearly defined to be avoided in the present work. Some promising tools must also be rejected
because they are explicitly implemented for a specific operating system or compiler. Because
of the outlined deficiencies only the following two tools seem to be possibly suitable and are
evaluated in more detail:

• Reflex

• AspectC++

Functional Evaluation in Separation

During separated functional evaluation, for both tools the necessary sources and binaries are
obtained from their related portals and prepared in dedicated development projects. With the
obtained knowledge from examples and tutorials dedicated project setups are created to under-
stand the functionalities provided by the frameworks.
For Reflex the following introspective capabilities seemed most valuable and dedicated experi-
mental code was written and executed in the related evaluation project.

• Obtaining type information data structure (Reflex::Type) from a class instance (typeid) or
by type name

• Extracting meta information (e.g.type name, member methods, namespace nesting, etc.)
for a specific type

• Iteration of types with stored introspective meta-information

• Deducing of annotation types added to a type or method, including handling of related
annotation attributes

• Construction of instances from type meta information

• Handling and conversion of fundamental data types within the Reflex type system

• Iteration and structural analysis of data members for a type

• Obtaining data member values for instances of types

27

• Introspective modification of object states (i.e. selective changing of data member values)

AspectC++ needed a project setup with an aspect header file (*.ah) and sources for code weav-
ing. The following functionalities have been explicitly verified in the AspectC++ evaluation
project:

• Entry and exit points of the main function were equipped with weaved in logging code

• Several pointcut definitions were used to verify the expression matching patterns

• Construction and destruction advices were applied to weave in code at object creation and
destruction time

• The differences of call and execution advices were analysed; template class code weaving
needs call advices; conventional class code weaving needs execution advices

• Obtaining meta information from join point (e.g. method signature, unique identifier, etc.)

• Use of slicing to weave in data members and methods into existing classes

• Accessing data member values of objects by type information

The evaluation of the two frameworks is based on the described tests and experiments with their
provided functionalities. Their suitability for powerful reflection in C++ could be proved.

Functional Evaluation in Combination

Combination of both reflective tools is done using the Reflex evaluation project and step by
step extending it with functionality from AspectC++. The integration of the code weaving
mechanism reveals a major issue. Introspective meta-information source files generated from
Reflex cannot be processed with ag++ from AspectC++. The sources include non-supported
C++ code leading to the mandatory separation of reflective processing at compile-time. Chapter
4 will be dedicated to explain this process in detail. To give a short preview the major aspect of
the necessary separation is that introspective reflective analysis with Reflex must be done before
code weaving. The introspective meta information is at first extracted from the source code
base and compiled to related binaries. After the code weaving process and compilation of the
resulting source, the binaries can be linked together.
The obtained perception is used to successfully combine the two frameworks in a single project
and to exploit their collective reflective powerfulness. The following points are important results
from this evaluation phase:

• Using introspective capabilities of Reflex in weaved source code parts

• Use join point meta information obtained from AspectC++ in Reflex mechanisms

• Separate the build process of the application into several phases to exploit full power of
annotation-based configuration

28

• Share information globally between logging components and weaved source code parts

The evaluation of both reflective tools in combination revealed further immanent characteristics
of them. These characteristics imply certain limitations and restrictions for the prototyped re-
flective logging tool. On the other hand also the reflective possibilities could be verified from
the practical perspective.

3.3 Reflection Tool Capabilities and Characteristics

In this section we outline the characteristics of both reflection tools with their strengths and
weaknesses.

ROOT Reflex

The Reflex reflection tool was founded within a project called SEAL [55] and in the end of 2005
was adapted and integrated into ROOT [67] (data analysis framework used at LHC). It can be
found in the literature under different names. The tool was intended to analyse existing source
code without the necessity for any markings or extensions added. It is fed directly with source
files. As a consequence separate meta-information source files are generated from them. The
generated meta-information source files can afterwards be independently compiled and linked
for any purpose. This approach guarantees complete non-intrusiveness and supports at the same
time full automatisation of the reflection process at build-time.
Reflex is based on GCC-XML [40], a powerful C++ language parser using the C++ front-end to
GCC for creating a complete representation of C++ source code in XML. Although GCC-XML is
of unpayable value and an important step in progress towards more improved C++ development
tools, its limitations should not be ignored. They arise from the circumstance that such analy-
sis mechanisms are not directly enforced to be embedded within the language by the standard.
Deviations can occur concerning which language features are supported by gcc and GCC-XML.
Source code parsing may yields different results, although the tools are closely related to each
other. As an example, GCC-XML cannot deal with atomic operations necessary within gcc to
approximately support the C++11 memory model [3]. This issue prevents the use of GCC-XML
within any source code applying the widespread boost::thread [5] library at that time. For this
reason such restrictions arising from the background must always be taken into account and dealt
with effectively.
Nevertheless, Reflex provides a bunch of valuable reflective features which can serve for an in-
calculable number of purposes within advanced programs. Features are mostly related to the
C++ type system and therefore of structural nature. Reflex deduces meta-information from ex-
isting source code and builds a compiled and run-time-accessible table of types from it. This
table is organized using the compiler’s internal unique type identifiers returned also by the C++
language operator typeid. Reflective information about the use and internal structure of known
types is provided. It can be obtained at run-time using the rich API established within the Reflex
namespace named Reflex::. The most important reflective capabilities of Reflex are on the one
hand that the complete naming of types with enclosing namespaces is possible. From arbitrary

29

reflected types, most names of data-members, nested types and also inherited types can be dis-
covered. Even new entities (methods, data members, etc.) can be added whenever necessary. On
the other hand the complete structural composition of types can be ascertained, including type
meta-information of all data-members, nested types and inherited types again. In addition to the
structure, types with related names of data-members and inherited types, also the exact memory
position of values in instances can be obtained. This functionality supports nearly complete in-
trospection of objects at run-time. All these capabilities enable unimagined possibilities for any
problem that concerns types in general, their structures and state of instances. The powerful-
ness in this specific area of reflection is strongly related to the foundational reasons leading to
the development of this reflection tool. Reflex is used for automatised high performance object
persistence tasks operating on huge amounts of data [55]. The described capabilities and char-
acteristics are also viable for automatised reflective logging of object states.
Another feature provided by Reflex are annotations which can be added to C++ classes, structs
and class methods. They can be accessed at run-time to express meta-information for several
different use cases. Annotations are well-known in other programming languages like Java [50]
and similarly as attributes in C# [21]. What is special about annotations from Reflex is that
they appear in form of standard C++ comments. For this reason, they are guaranteed to have
no influence on conventional interpretation during C++ preprocessing and compilation. Placed
annotations only have meaning in the context of reflective analysis with Reflex. They provide
useful possibilities for configurational tasks and at the same time do not introduce target source
code intrusion affecting run-time behaviour.

AspectC++

AspectC++ is a software development tool supporting AOP features for the C++ language. It
is strongly related to AspectJ [30] for the Java programming language. A number of scientific
publications are referenced in Chapter 2. Sources and binaries are freely available on the inter-
net. In general, aspects with contained advices can be defined in so called aspect header files
with the default file extension *.ah. In the context of our example EXTP, possible applications
of the available AOP mechanisms are outlined in Figure 3.1.
Advice definitions are supported in different sorts (call, execution, constructor or destructor)
and must be chosen correctly. For example, methods of template classes must be declared as
call pointcuts. For non-template classes execution pointcuts are mandatory to work appropri-
ately. Pointcut expressions support template parameters and hierarchical namespaces and are
therefore suitable also for non trivial tasks. For intercepting method calls three different types of
advices are provided (before, after and around). They support behaviour enrichment separately
before the method call and after return. Also around-invoke definitions for both cases in a single
advice definition are possible. Order-advices can be defined to prioritize competing advice defi-
nitions. In addition to behavioural extensions for method calls also the structural constitution of
types can be changed. New data members, methods and inherited superclasses with slice advices
can be added to existing classes.
AspectC++ provides access to certain meta-information for an actual join point. Examples are
a unique identifier, function or method signatures and line numbers in the related source code
file. Furthermore, the types of data members, class names and pointers to data values for specific

30

instances can be obtained. These functionalities enable introspective reflection of object states
at run-time. The only drawback is that they are designed as template methods with the argument
numbers being specified as template parameters. For this reason, the structure of the type cannot
be dynamically iterated as it is possible with Reflex. So the type structure must be completely
known at advice generation time. This requirement complicates implementation of introspective
mechanisms.
The practical use of AspectC++ is based on two different GCC related executables called ag++
and ac++. They are fed with aspect header files (*.ah) in conjunction with source code files. The
defined code extensions are then weaved in. Two different processing results can be requested:

• Source files containing the weaved in extensions as C++ source code

• Compiled binaries of the source code base containing the weaved in functionalities already
in form of machine code

// EXTP aspect header example
// An interceptor forced by law to intercept trades on the financial market
aspect LawfulTradeInterceptor {

// match all trade entities in the source code base
pointcut TradeEntities() = "extp::trade::%";
// match all execution methods of trade entities with void return parameter
pointcut TradeExecutions() = "void extp::trade::...::execute(...)";
...

// generic class with specific law enforced properties
slice class LawfulTradeMarker {

unsigned long recordIdentifier;
...
public:
void getRecordIdentifier () {

return recordIdentifier;
}
...

};

// Let all matched trade entities inherit from LawfulTradeMarker
advice TradeEntities () : slice LawfulTradeMarker;

// all trade executions must be notified to a controlling trade inspection
advice execution (TradeExecutions ()) : around () {

TradeInspection::getInstance ().notifyTradeInception (this.toString ());
tjp->proceed(); // actual call of the void execution(...) method
TradeInspection::getInstance ().notifyTradeCompletion (this.toString ());

}
...

};

Figure 3.1: Example for applying AOP to EXTP

31

CHAPTER 4
Architecture and Configuration

This chapter describes the architecture of the prototypical logging tool implementation in the
following referred to as RefLog. At first an explanation about, how the building process of an
application that makes use of RefLog must be intervened. Then the internals of the RefLogExec
application are presented. The last part deals with how RefLog is embedded into the source code
of applying applications.

4.1 Build Intervention Process

This section explains necessary modifications for the build process of an arbitrary application
using RefLog. In the following it is referred to as target application. Figure 4.1 presents this
build intervention process in graphic form to provide a clean overview at a glance. The interven-
tion is mandatory to support sufficiently powerful reflective capabilities within C++ applications
with the identified reflection tools. Usually a program build just includes the compilation of
the source code base and linking of related compiled binaries. The introduced expanded pro-
cess incorporates certain activities and components to enable and entirely exploit reflection tool
functionalities. Their purposes and procedures are described in the following to provide a solid
background about the architecture of the reflective logging tool. Also the appearing input ob-
jects, intermediate objects and output objects (source files, binaries, etc.) are explained. To really
understand the process described here, it is indispensable to distinguish and internalize the dif-
ferent levels and dimensions of reflection. RefLog applies reflective concepts for introspection of
types at build-time to extract meta-information necessary for the target application build process
itself. The same meta-information is used in addition later at run-time for the HROS feature.
Another form of build-time reflection is used to configure and inject logging code into the appli-
cation source code to implement AMSE. In the end, the reflectively injected logging code again
uses reflection to access meta-information for controlling the logging mechanism at run-time.

33

Figure 4.1: Reflective Logging Build Intervention Process

Introspection

The first step of the process is to obtain reflective meta-information from the source code base.
All C++ source files (*.h, *.hpp, etc.) containing class or struct definitions are mandatory input
objects for this activity. The evaluated C++ reflection tool Reflex is fed with the source files and
generates intermediate source files (e.g. *_rflx.cc). They contain reflective meta-information for
essential introspective procedures. These resulting intermediate source files are in Figure 4.1
named Introspective Meta-Information Files. Using a C++ compiler (e.g. g++) corresponding
intermediate Introspective Meta-Information Binaries (e.g. *_rflx.o) are created. They can be
linked to various executables to support introspection for the current build process or later at
target application run-time.

RefLogExec

A set of fixed binaries from RefLog and the Introspective Meta-Information Binaries are used
as input objects to link an intermediate executable named RefLogExec. The mandatory RefLog

34

binaries are explained later in this chapter. RefLogExec is executed afterwards as part of the
ongoing target application build process and can be seen as a dynamically created build-time
component of RefLog. Within RefLogExec most preparatory reflective build-time work for re-
flective run-time processing is done. It gets obsolete immediately after the build because any
modification on the source code base (e.g. annotations, methods, etc.) changes the boundary
conditions it operates on. This approach is involved but one of the most effective and efficient
ways to analyse meta-information extracted from source code using Reflex. This additional level
of indirection during target application build-time enables the power to exploit reflection not
only at run-time. Also annotation-based configuration of the target application at build-time can
be realised.

Annotation Scanning

The evaluation of C++ reflection tools reveals, as part of the feature set of Reflex, the concept
of annotations. Detailed explanations can be found in Section 3.3. Users of RefLog can mark
classes or methods within their source code base with annotations. This marking expresses their
intention to receive behavioural log information during execution. To support this kind of func-
tionality RefLogExec deduces which entities were equipped with meta-information. For these
entities corresponding reflective logging code is embedded. At the beginning Reflex scans the
source code base for known annotations and generates an information structure. This structure
can be queried by subsequent procedures for relevant meta-information to implement a variety
of functionalities.

Reflective Logging Deduction

Within RefLogExec the extracted reflective meta-information from annotated source code is used
to deduce which logging mechanisms must be injected into the original source code base. The
corresponding logging source code is stored in an intermediate output object (*.ah file) in the
following referred to as aspect header file. It contains a set of logging-related aspect and ad-
vice definitions, that can be directly handed over to AspectC++. RefLogExec contains a code
generator component AspectGenerator explained in more detail later in this chapter. Important
to understand at this point is just the fact that reflective meta-information is reflectively trans-
formed to AOP-based instructions.
Logging is often seen as a good use case for applying AOP. Writing aspects and advices suitable
for direct use with AOP tools is generally a demanding and annoying task. Programmers rarely
exploit this power [69], especially for smaller dimensioned projects and rudimentary program
analysis. All things considered, within this activity of ”reflective logging deduction” the un-
pleasant hand-crafted creation of aspects and advices is avoided. The creation process is fully
automatised, abstracted and isolated from the programmer and source code base using another
form of configurational build-time reflection. Of course AOP provides much more power than
representable with a set of simple annotations, but in many cases ease of use is more significant
for widespread adoption of mechanisms.

35

Code Weaving

At this point of the process build-time, reflective concepts were applied to the source code base.
Enough meta-information could be extracted to actually generate and weave the logging code
into the original source code base. The corresponding header and implementation files are fed
in conjunction with the build-time generated aspect header file to AspectC++. The resulting
binaries already contain the desired reflective logging code. At this point it gets obvious that
some limitations and restrictions are introduced by this process architecture. The application
source code base can be equipped with reflective logging in so far as AspectC++ supports it.

Application Linking

The last activity of the process concerns linking of all necessary binaries to the final executable
target application binary. The necessary input objects are the previously compiled source code
implementation binaries enriched with reflective logging functionalities. In addition the Intro-
spective Meta-Information Binaries are mandatory. At this point the different scopes and use
cases for introspective reflection get obvious and undercut the power behind this concept:

• at target application build-time for annotation-based configuration

• at target application run-time for the HROS feature

4.2 Composition Architecture

The most important fact to understand about the architecture of RefLog is that it cannot be seen
as most C++ libraries. Usually they consist of headers files containing the available definitions
in conjunction with pre-built binaries finally linked to the target application. As outlined more
detailed in Section 4.1 RefLog consists of different abstract parts and components. They are used
in separate phases of the development and building process of the target application. For this
reason, it is not really possible to provide a component or class diagram in the traditional style.
In contrast, the description will consider the different mandatory aspects. Supplementary a list
of entities is provided for a better overview:

RefLog.hpp C++ header for source code interaction

• Preprocessor declarations for logging statements

• Annotation components for annotating class/struct/method

RefLog intermediate executable for build-time reflection activities

AnnotationScanner component for retrieving information about annotations types

AnnotationPool data-structure for clean memorization of type annotations

AspectGenerator component for generating AOP information for code weaving

ObjectSerializer component for serializing objects of known types

36

Logger component for handling the actual logging process

MethodSignatureHandler component for method internal log message scope enrichment

Timekeeper component for handling any time related tasks

Microchronometer component for measuring time durations

MicroSecondEpochTimestamp data-structure for storing and adapting timestamps

C++ Preprocessing and Annotation-Based Architecture

From the programming perspective a single header file RefLog.hpp is essential for programming
with RefLog. The file contains a set of preprocessor declarations for the different available log-
ging features. The reason why traditional preprocessing is preferred is that an additional level of
indirection is established for controlling behaviour at compile-time using macros. This approach
supports varying interpretation of logging source code for different build targets or complete re-
moval from the actually compiled application. In some situations, logging is not only expected
to be turned off, but as a whole should be non-existent in the built application binaries. Possible
use cases are size reduction of resulting binaries or absolute guarantee that no run-time influ-
ence happens through logging. In exceptional scenarios, allocated but never used logger objects
are not acceptable and desired to be completely removed from applications. Also executed if-
statements for checking whether a log message should be written or not can cause unintentional
side effects during program execution.
Many progressive development tools1 found in other programming languages (e.g. Java, C#,
VB.NET, etc.) heavily apply annotation-based concepts. The reason may be that annotations
provide an improved way of expressing direct relationships between aspects and entities within
the source code. In contrast, separated marking approaches like external configuration files com-
plicate the identification of interrelations. RefLog.hpp contains a set of annotations with default
valued attributes which can be added to class and method definitions. This extension of source
code with meta-information supports configuration of execution logging behaviour within the
application. For the practical representation in the source code the more widespread term ”trac-
ing” instead of the less established ”logging” is used. The annotations described in Table 4.1
and related functionalities are provided by the AMSE feature of RefLog.
Within our EXTP example TraceConstruction, TraceDestruction and TraceStruction can be used
to log proper construction and destruction of temporary objects to prevent memory leaks. From
the business point of view auditing of trades can be realised by careful logging of construction
and destruction of related objects in the application. Also the timestamps and contained values
are of interest in this case to support confirmability of every single trade within the system. Trace
in conjunction with RefLogScoped can be used for conventional debugging during development
and internal process auditing during productive execution. RefLogTimeMeasured can be applied
for performance optimization tasks in development. For business, auditing of trade timings for
long-term analysis of market movement and reaction strategies is a valuable supported option.

1The classification in APIs and framework implementations is omitted

37

Name Annotatable
Entities

Descriptions

Trace (Severity = ”TRACE”) Class, Method Entry, exit and execution time duration
of corresponding methods are logged at
runtime with provided severity; for an-
notated classes all methods are traced
but definition can be overwritten for
specific methods whenever necessary

TraceConstruction (Severity =
”TRACE”)

Class Entry, exit and execution time duration
of constructor calls are traced with the
provided severity

TraceDestruction (Severity =
”TRACE”)

Class Entry, exit and execution time duration
of destructor calls are traced with the
provided severity

TraceStruction (Severity =
”TRACE”)

Class Entry, exit and execution time duration
of constructor and destructor calls are
traced with the provided severity

RefLogScoped () Class, Method Extended scope information is col-
lected on a stack for partial stack traces
or method internal log message enrich-
ment; for annotated classes all con-
tained methods are treated like be-
ing explicitly annotated but definition
can be overwritten for specific methods
whenever necessary

RefLogTimeMeasured () Class, Method Execution duration time of annotated
methods is logged at run-time; for an-
notated classes all methods are treated
like being explicitly annotated but def-
inition can be overwritten for specific
methods whenever necessary

Table 4.1: Annotations for AMSE provided by RefLog

Build-time Architecture

For building RefLogExec the following components are linked together:

• Introspective Meta-Information Binaries generated from the target application source code

• AspectGenerator (RefLog internal component)

• AnnotationScanner (RefLog internal component)

• AnnotationPool (RefLog internal data-structure type)

38

Figure 4.2: Intermediate executable RefLogExec analysis and processing

For the following explanation please refer to Figure 4.2. Run-time type introspection pro-
vided by Reflex allows the AnnotationScanner component to scan annotations in the target appli-
cation source code base. This processing is done during execution of the RefLogExec executable
at target application built-time. The extracted information is stored in per-annotation-separate
instances of AnnotationPool. These pools afterwards contain configuration information for the
intended logging behaviour of the currently built target application.
The component AspectGenerator processes the annotation information from the pools for all
known types and generates a single aspect for the reflective logging. Within this aspect for ev-
ery method a separate advice is created. These advice definitions contain logging statements
according to the configuration provided by the programmer for the method. Some possibilities
are entry, exit or time duration log statements or code for extended scope information added to
log messages within called methods. An example for such statements is given later because of
the strong relation to the implementation perspective.

39

Run-time Architecture

At run-time of the target application equipped with reflective logging several different com-
ponents and procedures operate. In the first instance the Singleton core component Logger is
strongly used. All executed log statements finally result in a call to the log method. The Logger
can redirect log message output to different sorts of output targets (e.g. console, log files, etc.).
Several severity levels are distinguished for advanced filter and prioritization capabilities. Mea-
surement and logging of execution duration times for method calls can be requested using the
RefLogTimeMeasured annotation on methods or even for complete classes. Measurements are
taken with microsecond precision.
The second component provided by RefLog in use at run-time is the ObjectSerializer. It pro-
vides the capability to serialize instances of types for which introspective meta-information is
available. Programmers request in the source code base serialization of objects using a C++ pre-
processor directive from RefLog.hpp described later in detail. ObjectSerializer heavily uses the
possibilities provided by Reflex to implement the HROS feature. The implementation recursively
iterates the integral parts of a type and serializes the values of the currently processed instance.
Since types in C++ can be of manifold sorts, a number of different cases must be considered.
To reduce complexity and achieve suitable balance between powerfulness and practicability cer-
tain restrictions are declared. The following C++ language constructs are not considered during
serialization, but for sure are allowed to appear in reflected types:

• unions

• pointers to class/struct data members

• const (volatile) static data members

• reference data members

• function pointer data members

The reason why these constructs are not supported are in the first place that the used Reflex
tool introduces limitations to handle them. Secondly they have little to no significance in model
types which are usually requested to be serialized. For most practical applications these restric-
tions do not imply too strong limitations. Contrariwise the following much more relevant C++
language features are fully supported:

• inheritance hierarchies

• fundamental (static) data members

• complex (static) data members

• pointer data members (also several levels of indirection e.g. **, ***, ***)

• array data members (also multidimensional)

• string types const char*, char*, std::string

40

Termination of the serialization mechanism is guaranteed by recursive reference memoriza-
tion. Objects with cyclic data dependencies (e.g. self referencing pointers) are tracked, enriched
with memory address designators and back referenced when a cycle is detected. This solution
ensures that no cyclic endless serializations are possible.
The run-time component MethodSignatureHandler stores signatures of annotated methods be-
ing reflectively logged. These signatures are used for method internal log statements which are
requested to be enriched with scope information. This functionality is fundamental for realizing
the AMSE features. This approach was chosen, since it is one of the simplest and cleanest solu-
tions for solving the problem of behavioural execution scope deduction (i.e. to obtain location
information from the program during execution). In addition also the possibility of deducing
partial stack traces during execution arises. The functionality is clearly restricted to the call
hierarchy annotated with RefLogScoped and especially useful when exceptions are thrown. In
most cases not the complete execution stack trace is of interest, but only specific important parts
of it. The source of the problem with behavioural execution scope deduction in C++ is that no
real language integrated mechanism has been declared. The only assurance given by the C++
standard to identify the currently executed function (i.e. execution scope) during run-time is the
function-local predefined variable __func__. Unfortunately, the C++ standard declares the ac-
tual form of the variable content as implementation-defined [6] and therefore prevents portable
use of this feature across different compilers. Neither reasonable content nor uniqueness of the
variable values are forced to be provided by compilers. A generalized and portable mechanism
cannot rely on this C++ language immanent feature. Other approaches to exploit run-time infor-
mation for example with function pointers and address deduction imply much higher complexity
and create doubt concerning portability among different platforms.

Auxiliary Components

Absolute time is an essential quantity in the context of software logging since many reactive
software systems heavily rely on timing, events and other time critical mechanisms. Temporal
ancillary information is in many cases as relevant as the core information itself. For this reason
the component Timekeeper was introduced providing absolute timestamps at execution time.
This functionality is not only relevant for logging to enrich log messages with timestamps, but
also for program intrinsic profiling and other necessary relative time duration measurements.
In addition to timestamp inference also duration measurement of procedures is commonly used
for logging. The Microchronometer component is included in RefLog and uses Timekeeper to
track start and endpoints in time during conventional program execution. Microchronometer is
one of the key figures during the performance evaluation phase of this work.
The last entity explained within this architectural description is MicroSecondEpochTimestamp.
It represents a specialized data-structure that holds a single timestamp and supports efficient
numerical processing of several instances for calculations through overloaded operators. Also
serialization to human-readable string formats is provided.

41

4.3 Execution Space Architecture

The term execution space means in the context of the present work an abstract circumscribable
and designated scope in which machine code is executed and certain form of data access struc-
turing takes place. This definition and the following explanations are based on our experiences.
In the last decades parallelisation of computational tasks earned rising attention and lead to the
introduction of hierarchical execution spaces with manifold characteristics. Figure 4.3 provides
an abstract overview.

Today a growing number of applications for example in the area of HPC (high perfor-
mance computing) do not run single-threaded on a single processing core. They distribute
geographically among different networks, machines, platforms and multi-threaded processing
cores. EXTP is of course a representative example. Debugging and logging tasks often found
in such distributed and parallelized applications create the desire for logging tools taking the
different execution spaces into account. Specialized architectural designs are mandatory which
support suitable and reasonable logging mechanisms to reveal issues. Identifying and resolv-
ing strongly distributed and interrelated errors in such software systems is a demanding task.
Logging approaches tailored to these particular needs can be invaluable.

Hierarchy and Identification

Today a thread running within a process on an operating system can be seen as the atomic
execution space. Machine code execution can be assumed to take place sequentially such that
absolute ordering of events is intrinsically guaranteed. On most platforms threads can usually
be identified uniquely with an id, at least within a superordinated process. The next hierarchical
execution space level are thread subsuming processes. A process can usually also be uniquely
identified using an id within the operating system managing it. The next step in the hierarchy
are encapsulated and often even virtualized operating systems subsuming several processes in
parallel. Unique identification of executed operating system instances is in many cases only
provided in a platform dependent manner and must therefore be specifically tackled. Executed
operating system instances can be subsumed by cluster or cloud structures which form the next
level in the execution space hierarchy. Unique identification in such environments is usually
possible with proprietary mechanisms.

Thread Id Enrichment

The AMSE feature addresses exactly the problem of revealing additional information about the
scope of log messages. For time limitation reasons within this work just the first level of the
execution space hierarchy can be dealt with. So, the origin of messages can at least be matched
to actual threads within programs.

Parallel Execution and Synchronization

The support of multi-threading is mandatory for state-of-the-art development tools. This re-
quirement introduces unpleasant consequences for the build-time and run-time architecture of

42

Figure 4.3: Abstracted execution space hierarchy of highly distributed software applications

RefLog. At build-time weaved code must be adapted to suit multi-threading needs and at run-
time suitable synchronization of shared resources must be implemented.
When using the MethodSignatureHandler component at build-time not only a single stack must
be taken into account, but one per thread. Also the registration and identification mechanisms
for threads must be realised in a way that the resulting code can deal with it. At run-time access
of MethodSignatureHandler through different threads must be synchronized. Influencing the ex-

43

ecution parallelism intended with the use of multi-threading must be minimized. Plain synchro-
nization of the method signature stack handling would result in a non acceptable approximately
sequential execution of the target application. The architecture of MethodSignatureHandler was
chosen to be a map data-structure indexed by thread ids. Map elements reference stack data-
structures representing the call hierarchies of method signatures on a per thread basis. The
access to this map is synchronized using specific sorts of locks. Since different threads only
access the map with their related thread ids, no multiple access to the same value of the map
can occur. The only situations introducing synchronization problems are when new threads are
added or existing ones destructed within the process. At this time the element structure of the
map must be modified. This modification possibly implies race conditions with other threads
accessing their related stack instances concurrently. For this reason, two different types of locks
are necessary to reach thread-safety for these scenarios:

mutual exclusive lock Only one entity can obtain a lock at the same time and all subsequent
lock requests are blocked.

shared lock Several entities can obtain a lock at the same time but only if no mutual exclusive
lock occurred. For obtaining a mutual exclusive lock all shared locks must be unlocked
before.

Every value access to the map by thread ids must use shared locks and every element struc-
ture modification of the map must use mutual exclusive locks. For example, mutual exclusive
access to the map for adding or removing threads is only granted if no shared lock is active at
that time. On the other hand several entities can hold shared locks at the same time. This strategy
can be seen as multiple read, single write principle [74]. The extension of this general principle
is that threads are just prevented from altering the superordinate data-structure (i.e. the map).
At the same time they are allowed to access and arbitrarily modify their dedicated stack data-
structure indexed by their thread id. Using this approach the required parallel, but thread-safe
access to the MethodSignatureHandler component can be realized.
At run-time multi-threading introduces another challenge for the ObjectSerializer component.
Access to the working memory of the process is not guaranteed to be exclusive any more. Mul-
tiple processes executed on an operating system instance usually have sealed working memory
spaces dedicated for them. These areas are protected by the operating system concerning mod-
ifications from outside. No concurrency issues during data access can occur at run-time within
a single-threaded program. With multiple threads having the same possibilities to access data
within the process working memory this circumstance is obsolete. Serialization of objects using
the ObjectSerializer can cause concurrent memory access and possibly yields undefined execu-
tion behaviour of the program. Unfortunately, the problem cannot be effectively solved within
the RefLog tool using suitable synchronization mechanisms. The reason is that C++ supports
arbitrary memory access using pointer arithmetic at any time. Users can inevitable write source
code accessing the same memory areas concurrently. According to our experience and studies
no complete and portable mechanism exists to prevent such scenarios. The problem must be
solved at the level of application programming. Responsibility for synchronization of possi-
ble concurrent access to objects is handed over to the user of the RefLog tool. Of course this
approach leads to certain inconvenience that must be accepted.

44

CHAPTER 5
Reflective Logging Implementation

This chapter gives insights into the internals of the RefLog implementation and the applied tool
set. It is recommended to carefully study and understand the abstract architecture of RefLog
described in Chapter 4 in advance.

5.1 Tool Set

For this work a large set of tools is used. It supports and simplifies all the necessary and diversi-
fied tasks. The different operational areas are described and the corresponding tools enumerated.

Operating System

The whole practical part including programming tasks, application building, RefLog benchmark-
ing, reflection tool evaluation, etc. was accomplished within a VMware virtual machine using
the freely available VMware Player 6.0.4 build-2249910. The executed virtualized operating
system is Ubuntu 14.04 LTS.

Programming

Programming was accomplished on the virtual machine within the cross-platform IDE Eclipse
CDT (C/C++ Development Tooling). The source code base for the present work is version
controlled using the DVCS (distributed version control system) Git and the related front-end
TortoiseGit.

Compilation and Building

• The traditional make is used for controlling and coordinating the necessary build pro-
cesses.

45

• Contained programs and scripts from the external reflection tools are used (e.g. genreflex
from Reflex, ag++ from AspectC++, etc.). More information can be found in Chapter 3.

• For compiling and linking C++ source code g++ 4.8.2 from GCC is used.

Benchmarking

For benchmarking RefLog GNU time with its verbose option is used, available on most Unix-like
systems for measurements on an executed process:

• runtime duration

• maximum working memory consumption

5.2 General Aspects

This chapter explains some important general aspects and details necessary to understand the
complete implementation of RefLog.

Time

Time is, adjacent to space, one of the two base criteria of computation and needs to be dealt with
in this context in a relative and an absolute manner. RefLog can be counted to the set of perfor-
mance critical tools and must treat efficiency and precision as major aspects. A fast and precise
mechanism for obtaining time and date information from the execution environment must be
chosen. The environment was chosen to be the operating system executing the RefLog extended
target application in a process.
The relative part of handling time within RefLog is concerned with execution duration mea-
surement. Based on our experience the struct timeval and the function gettimeofday from
<sys/time.h> are used for the implementation in the class Timekeeper. Unfortunately, they are
not directly available on all platforms, but usually can be replaced by suitable substitutes. The
duration measurement functionality is implemented within the C++ class Microchronometer.
Timestamp and time duration values are handled in the class MicroSecondEpochTimestamp. The
entities Microchronometer and MicroSecondEpochTimestamp are not intended to be thread-safe.
Concurrent handling by different threads does not really seem to make a lot of sense. Time du-
ration measurements should be done within a single thread or must be explicitly synchronized
in a suitable way. Care must be taken about the added time consumption which is maybe not
negligible.
Users usually want log messages to be equipped with human-readable absolute timestamps
which inform about the actual point in time something happened during execution. This property
is especially important for reactive and geographically distributed software applications as our
EXTP example. Trading strategies based on arbitrage exploit price differences of identical assets
on different markets. When considering geographical distribution of related trading activities,
the importance of absolute timestamps for later confirmability of price interrelations becomes
clear. For this reason actual time and date information must be efficiently obtained and suitably

46

converted by logging tools. The functions localtime and strftime from <ctime> are selected for
converting timestamps to human-readable formats. Configuration according to different needs
can be realised on most platforms.

Annotation Scanning

The target application source code includes RefLog.hpp. This header file further includes An-
notations.hpp containing definitions for all annotations that can be used in conjunction with
RefLog. For annotations prefixed with ”Trace”, attributes are chosen to be of type std::string.
AnnotationScanner is designed as a C++ template and dedicated template instantiations must
be requested for all annotation types. As already mentioned in Chapter 3 the reflection tool Re-
flex fortunately supports extraction and iteration of all reflected types within an analysed source
code. This iteration is used to identify all annotated types and methods in a type-safe manner
using information returned by Reflex::Type::Annotations ().
The result of annotation scanning is an instance of the C++ template class AnnotationPool. It
is template instantiated with the same type parameter as the processing template instance of
AnnotationScanner. This design assures absolute type-safety. AnnotationPool instances pro-
vide convenient access to all classes and methods which have been annotated with the specific
annotation type. Annotation scanning for RefLog is designed and structured on a per-annotation-
separated basis (i.e. scanner with related storage object) in contrast to a per-type or method basis.
In most cases specific features need only a subset or even a single annotation from all possible
ones, therefore the chosen approach fits best.

Build-time Invasion Control of Logging Code

To solve the problem of dynamic insertion and removal of specific functional aspects in software
applications, it is important to support sufficient power through their foundational architecture.
For this reason RefLog and the underlying reflective approach was designed in a way to re-
duce source code intrusion to the inclusion of a single header file (RefLog.hpp). Annotations
are interpreted as Standard C++ source code comments during conventional compilation and
preprocessing. Logging macros in addition provide maximum flexibility for controlling build
processes.
RefLog distinguishes five different default severity levels (TRACE, DEBUG, INFO, WARN and
ERROR). They can be used to prioritize log messages according to their criticality for debug-
ging and error resolution. Dedicated macros accept any string-based message as parameter and
are defined as REFLOG_LOG_[SEVERITY](message).
Also a raw version REFLOG_LOG(message, severity) for arbitrary severities is provided. It
extends possibilities for using dedicated severities for specific aspects (e.g. synchronization,
transactions, etc.) or tracing of special workflows (e.g. complex calculation algorithms, separate
business processes). The remaining macros are assumed to be self explanatory and depicted
with all others in Table 5.1.

The run-time characteristic of all these macros depends on the build-time invasion and can
be actively controlled using specific compiler-passed macro definitions. The different variants of
REFLOG_[SEVERITY] are used to globally enable reflective logging. In addition the severity-

47

Name Descriptions
REFLOG_LOG (message, severity) Raw imperative logging statement with string

based message and arbitrary string based
severity parameter

REFLOG_LOG_TRACE (message) TRACE severity logging statement with
string based message

REFLOG_LOG_DEBUG (message) DEBUG severity logging statement with
string based message

REFLOG_LOG_INFO (message) INFO severity logging statement with string
based message

REFLOG_LOG_WARN (message) WARN severity logging statement with string
based message

REFLOG_LOG_ERROR (message) ERROR severity logging statement with
string based message

REFLOG_SERIALIZE (object) Logging statement for serializing an object of
reflectively known type (no C++ fundamental
types) to human-readable string format

REFLOG_STACK_TRACE () Logging statement for serializing the partial
stack trace available to RefLog for the corre-
sponding thread to a human-readable string

Table 5.1: Logging macros provided through RefLog.hpp

selective compiled-in REFLOG_LOG statements are selected (e.g. REFLOG_WARN for only
ERROR, WARN and proprietary statements, REFLOG_TRACE for all statements being embed-
ded in the application). During preprocessing of the target application source code base the
macro-based logging statements are resolved based on their severity. So it is possible to inject
only log statements with specific severity levels in form of machine code and remove any impact
from lower granularity levels at run-time. Resolution of macro-based logging statements during
preprocessing can be of the form necessary for expedient logging or elimination.

• With activated logging, the statements are consequently compiled to target application im-
manent machine code. Reflective logging is possible during target application execution.

• For elimination, the statements are reduced to their neutral representation. The neutral
representation of macros is simply nothing (nil). So no compile invasion of logging code
takes place except for REFLOG_SERIALIZE(object) and REFLOG_STACK_TRACE().
These two macros must be transformed to their neutral representation of an empty string
std::string(””). This is mandatory to prevent source code invalidation through use of this
logging statement within other statements or expressions, for example:

– function1(REFLOG_SERIALIZE(object))

– REFLOG_SERIALIZE(object).size()

48

Target Application Build Integration

Insights into the build intervention process of target applications using RefLog are provided in
Figure 4.1. In this section a stepwise prototypical implementation of this process in form of a
Makefile is described for make.

1. At first the exertion of Reflex is presented. The subset of files containing class/struct defini-
tions from the target application source code must be identified. They are separately fed to
the python script genreflex in the form genreflex headerFile1.hpp -o headerFile1_rflx.cc.
Within a Makefile automatisation can be reached using a suitable pattern rule. The gen-
erated files (*_rflx.cc) are compiled with an arbitrary C++ compiler (e.g. g++), including
header files from Reflex. The resulting linkable binary files (*_rflx.o) contain introspective
meta-information mandatory in later steps. The practical challenge of this part is only the
identification of all source files containing type definitions especially in huge and com-
plicated projects. A simple but often inefficient possibility is to introspect all source files
within the target application project.

2. The next step is to build the intermediate executable binary RefLogExec from the compiled
RefLog source code with an arbitrary C++ compiler (e.g. g++). Afterwards they are
linked with the previously prepared binaries (*_rflx.o) and the Reflex related static library
libReflex.so. For successful compilation the Reflex header files must also be included.

3. After successful build-time compilation the intermediate executable RefLogExec is exe-
cuted once to generate the aspect header file (Aspect.ah).

4. This file is then used with the application ag++ from the AspectC++ tool to generate a
logging-code-enriched version of the target application source code. The resulting gener-
ated code is further compiled to a linkable target application binary.

5. The last step missing, is to link the introspective meta-information binaries (*_rflx.o) with
the previously created target application binary.

For multi-threading applications it is important to understand that the AspectC++ related pro-
gram ag++ cannot be treated as a conventional GCC compiler. It does not provide the com-
mand line arguments and options which are available for g++ or gcc. For this reason, whenever
weaved source files are compiled using ag++, enabling multi-threading support through the
command line argument -pthread does not succeed. One possibility to enable multi-threading
support is to directly link the related posix library using the -l argument like -lpthread.

5.3 Automatic Message Scope Enrichment

The architecture description in Chapter 4 explains the relevance of differentiation between build-
time and run-time dimension of RefLog. The AMSE feature relies on configuration through
several different annotations for controlling the details at build-time. It therefore implies heavy
appliance of AnnotationPool instances at build-time in the dedicated C++ class AspectGenerator.

49

This approach is mandatory to deduce where and which extensional logging source code must
be weaved into the original application source code base.

Aspect Generation

The AspectGenerator component is only instantiated and executed at target application build-
time. It is responsible for dynamically generating a single aspect header file (Aspect.ah). This
file is only temporarily valid and available for the current target application build. The aspect
header file contains a fixed prolog and epilog. The prolog is depicted in Figure 5.1 and declares
the following parts:

• guard macro definition (definition closed in epilog)

• header include for using the introspective reflection mechanisms from the Reflex tool also
for the weaved source code at target application run-time

• header include of RefLog.hpp for accessing the global entity MethodSignatureHandler
explained in detail later in this chapter

• definition begin of the RefLogAspect aspect enclosing all the method corresponding ad-
vices for weaved source code (definition closed in epilog)

#ifndef _REFLOG_GENERATED_ASPECTS_AH_
#define _REFLOG_GENERATED_ASPECTS_AH_

#include <iostream>

#include "Reflex.h"
#include "../RefLog/RefLog.hpp"

aspect RefLogAspect {

Figure 5.1: Build-time generated aspect header file prolog

The epilog is of minor interest. It just contains the closing fragments of the RefLogAspect
aspect and guard macro scopes introduced in the prolog.
The main part enclosed by prolog and epilog contains the definition of advices. Since logging
can be configured differently for every single method, the weaved source code can therefore
possibly deviate for all of them. The generated advice decomposition was chosen such that for
every method a dedicated around-invoke advice is introduced. A pointcut expression identifies
just one specific method. This design assures that the generated source code deduced from the
information provided through annotations is weaved in only at the correct join points (i.e. every
execution of the method within the target application source code base). For a more detailed ex-
planation of the AOP concept and its mechanisms and possibilities provided trough AspectC++

50

advice execution ("void extp::trade::Stock::postOrder(...)") : around () {

// RefLogScoped
RefLog::methodSignatureChannel.pushMethodSignature (JoinPoint::signature ());

// Trace
REFLOG_LOG("Calling " + std::string (JoinPoint::signature ()), "TRACE")

// RefLogTimeMeasured
RefLog::Microchronometer microchronometer;

// join point (postOrder method execution)
tjp->proceed();

// RefLogTimeMeasured
const RefLog::MicroSecondEpochTimestamp& duration = microchronometer.stop ();

// Trace
REFLOG_LOG("Called " + std::string (JoinPoint::signature ()), "TRACE")

// RefLogTimeMeasured
REFLOG_LOG("Execution duration of " +

std::string (JoinPoint::signature ()) +
" was " + duration.duration (), "TRACE")

// RefLogScoped
RefLog::methodSignatureChannel.popMethodSignature ("");

}

Figure 5.2: Example advice definition for weaved source code

please refer to the tool related documentation [61]. To clarify the outlined description an exam-
ple advice including weaved source code is given in Figure 5.2.

This advice is defined with the pointcut identified by the pointcut expression
void extp::trade::Stock::postOrder(...). Just the method postOrder with return type void and any
parameters in the class Stock from namespace extp::trade matches. In this case the parameters of
the method are not of relevance since there is only one method named postOrder within the class.
It can be observed that an around-invoke-advice is used. The statement tjp->proceed(); does not
really belong to the weaved source code, but represents the actual process accomplished at the
join point (i.e. execution of the method void extp::trade::Stock::postOrder(...)). The statements
in front of tjp->proceed(); are executed immediately after the method call, but before the first
instruction of the method. The reason for this behaviour is the advice ”execution” declaration.
The statements after tjp->proceed(); are executed after the last instruction of the method but
immediately before the return of the method to the call point. In contrast to around-invoke-
advices also before- and after-advices can be defined. They are useful for tasks, that need to be
weaved either only before the join points or afterwards. The example from EXTP presented in
Figure 5.2 shows all possible reflective extensions with their related annotations. Not all of the

51

presented source code parts are always weaved in. It depends on the annotation-based logging
configuration of the classes and methods in the target application source code base.

Method Entry and Exit Logging

Annotations prefixed with the term Trace are intended to serve as markers and configuration
mechanisms for automatic advanced logging of method calls. After annotation scanning, the
necessary information is available and accessed by AspectGenerator to generate log statements
for all join points (i.e. method calls). Either complete classes or just specific methods can be
annotated. If both entities are annotated simultaneously with possibly different attribute values,
the more specific definition of the method is preferred. Generic advices for non specifically
annotated methods of a class are generated in a first iteration, the remaining ones for specific
methods in a second one.
The resulting source code fragments in the advice are REFLOG_LOG logging statements. String-
based scope information provided by AspectC++ with JoinPoint::signature () is used before and
after the join point action. The applied severities are obtained from the corresponding ”Severity”
annotation attribute. An example is given in Figure 5.2.

Execution Time Logging

The annotation RefLogTimeMeasured can used by programmers to configure RefLog to reflec-
tively deduce the execution duration time of method calls. Measured results are output with
corresponding messages to the configured log sink (e.g. log file, console). This message pro-
vides human-readable microsecond precise information about the time duration of a specific
method call. The functionality is implemented as all scope enriching ones using additional
weaved logging source code statements before and after the join point action. In this case an
Microchronometer instance is constructed and initialized with the current time before method-
related code is executed. It is stopped with a call to MicroSecondEpochTimestamp::stop() after
the method execution has finished. MicroSecondEpochTimestamp::duration() immediately re-
turns the desired time duration of the method execution. These reflective code fragments are
also contained in the example presented in Figure 5.2.

Method Signature Enrichment of Log Messages

The annotation RefLogScoped can be used by programmers to configure RefLog to reflectively
deduce and prepare advanced scoping information for log messages. Logging statements within
the entered scope (e.g. a log message within a method) is then enriched with the desired scope
information (e.g. a method signature, class name, etc.). The origin of log messages within the
target application source code base can so effectively be deduced.
The core component for dealing with scope tracking and stack trace preservation is the compo-
nent MethodSignatureHandler already mentioned in Chapter 4. It administrates a state consist-
ing of two parts:

• A thread identifier indexed map of stacks for storing method calls on a per thread basis.

52

• A special form of mutex (boost::shared_mutex) [74] for implementing the synchroniza-
tion strategy already explained in Subsection 4.3.

Calls to boost::shared_mutex::lock () and boost::shared_mutex::unlock () are used for mu-
tually exclusively modifying the map elements to support insertion of newly started threads.
For thread intrinsic and encapsulated manipulations of the related stack elements the following
shared lock/unlock variants are used.

• boost::shared_mutex::lock_shared()

• boost::shared_mutex::unlock_shared()

They support parallel access to the map instance except for cases in which mutual exclusive
access is requested. MethodSignatureHandler provides the following methods for concurrent
use by several threads:

• void pushMethodSignature (const char* methodSignature)
inserts the passed signature on top of the threads call stack; if no thread entry exists for
the thread, a new entry in the stack preserving map is created; used on method call events

• const char* getMethodSignature ()
provides method-internal access to the signature currently on top of the threads call stack;
if the method is annotated with RefLogScoped, the signature on top conforms to the current
execution scope; used in method internal scope enriched log statements

• void popMethodSignature (const char* methodSignature)
removes the passed signature on top of the stack; if the last signature is removed from the
stack, the thread is assumed to terminate and therefore precautionary removed from the
map to prevent memory leaks; used in method call return events

The thread separated stack instances are designed accessible from the whole application.
This design decision is mandatory because method related weaved logging source code must
directly operate on the thread specific stack from within any execution scope. The functionality
must be available immediately after the application start. An example of weaved in source
code that performs the necessary modifications on the stack before and after method-internal
statements is given in Figure 5.2.

Partial Stack Tracing

The administrated scope information from RefLogScoped-annotated methods can also be used to
obtain some kind of partial stack traces at run-time. For this functionality specific boundary con-
ditions must hold as explained in the following. The logging macro REFLOG_STACK_TRACE()
can be used to retrieve a human-readable string representation of the currently tracked thread-
local method call stack. It must be kept in mind that only calls of RefLogScoped-annotated
methods are taken into account. Even if all classes and consequently all methods in the source
code base have been annotated, possible global function calls are not considered. So no complete

53

stack trace can be provided because at least the root function call to main is missing. Although
completeness cannot be expected, it is necessary in very seldom cases. The preponderant number
of scenarios is just concerned with specific areas and pieces of the whole application functional-
ity. In this cases partial stack traces provide much better overview because of their configurable
level of precision and volume.

Scope Jumps and Method Calls Through Pointers

The last details considered for functionalities from the AMSE feature are scope jumps:

Exceptions In C++ at any point and within any execution scope (i.e. function or method) an
exception of arbitrary type can be thrown. The exception handling mechanisms and po-
sitions completely depend on the target application source code and cannot be effectively
analysed. Each exception thrown beyond the current execution scope (scope jump) inval-
idates the complete call stack because the displacement cannot be extracted at run-time.
RefLog recognizes scope jumps from methods through incompatible signatures in void
popMethodSignature (const char* methodSignature). As a consequence an entire un-
wind of the threads call stack is initiated. From this time on, the call stack is preserved in
the correct way again, but of course with a completely different and unpredictable starting
point. Each execution scope request until the unwind and call stack recovery is completed
and results in an empty string return. Call stack recovery happens through consequent
function/method invocations building up a new relative call stack. Conventional program
execution flow should usually not throw exceptions. It is a well-known pattern to not
use exceptions for flow control, but only for real exceptional cases in the application.
If programmers for whatever reason use such constructs, the RefLog-served partial stack
trace is only guaranteed to be valid until the point the exception is thrown. The stack
unwinding process to the handling catch-clause cannot be effectively tracked due to tech-
nological limitations and restrictions of C++ at run-time. If there is no other possibility
to work around exceptions, the stack trace should be extracted within the first possible
catch-clause and before any further method call.

Goto-statements Although the use of goto-statements within object-oriented source code is
generally not recommended and not the preferred solution they can occur for unforeseen
reasons. In general the same problem already explained in conjunction with thrown ex-
ceptions also directly applies to program internal jumps as a consequence of goto. Also in
this case the RefLog-served partial stack trace of the corresponding thread is guaranteed
to be valid until the point of goto. It then recovers in the already explained way, but is
invalid in the meantime.

Method pointer calls A final limitation concerns method calls of template types, which only
work properly with ”call” advices. For successful code weaving all join points must be
identified and modified according to the advice definition. The problem in this particu-
lar case is that method calls accomplished using class member function pointers cannot
be unambiguously resolved. The functionalities from the AMSE feature do not work in

54

such situations, but also do not invalidate stack information. The raw logging mechanism
without reflective extensions is naturally still guaranteed to be correct.

5.4 Human-Readable Object Serialization

The logging macro REFLOG_SERIALIZE (object) represents the target source code intrusive
entry point of this feature. It can be used in any expression or statement where instances of
std::string can be applied. This feature is in contrast to AMSE mainly concerned with intro-
spective reflection. AspectC++ is not necessary for the implementation. This section provides
information about implementing object serialization with the functionalities and power from the
C++ language and the reflection tool Reflex.

Run-time Type Deduction and Serialization Entry Point

At run-time arbitrary instances of reflectively known complex types can be passed to the macro
REFLOG_SERIALIZE(object). One problem is how to deduce the type of the passed object and
how to pass the object itself in a type-safe manner. Fortunately, the C++ type system contains
two very useful mechanisms presented in the following listing which provide in combination
with Reflex a suitable solution.

• The C++ language operator typeid returns a unique identifier of type std::type_info for
every passed type [6]. These type identifiers are used internally by Reflex to administrate
all known reflected types in a collection.

• The next important construct is the C++ pointer type void*. It supports pointing in princi-
pal to anywhere in the memory including each instance of an arbitrary type. The immanent
problem with this type are dangerous type casts enforced with its use. Usually type safety
is surrendered in related program designs. Contrariwise the void* type provides maximum
generality and is therefore an elegant solution to identically treat and pass instances of any
type. In general void* declarations are not recommended and should be omitted as far as
possible. In exceptional cases they provide the mandatory powerfulness. In this context it
is important to know exactly about the impacts and consequences the use of void* implies.

Type safety is an aspect of major importance for object-oriented programming and cannot
be dispensed by RefLog. The two constructs (void* and type identifiers from typeid) are coupled
to form a type-safe type deduction mechanism. According to the preceding explanations the im-
plementation of the logging statement REFLOG_SERIALIZE(object) looks as depicted in Figure
5.3. It can be observed that method static std::string RefLog::ObjectSerializer::toString(void*
instance, const std::type_info& typeInfo) of the C++ template class ObjectSerializer is called
as the entry point of the serialization process. The passed object address is casted to the type
void* and the corresponding instance of std::type_info is directly deduced from the object. The
method returns an object of type std::string and can therefore be used within expressions and
statements. This design prohibits the use of a semicolon to finalize the statement.

55

#define REFLOG_SERIALIZE(object)\
RefLog::ObjectSerializer::toString ((void*) &(object), typeid ((object)))

Figure 5.3: Implementation of the logging macro REFLOG_SERIALIZE(object)

Serialization Strategy

Serialization is initiated with a static method call to ObjectSerializer. An instance of type void*
pointing to the actual serialization subject and corresponding type information in form of an
instance of type std::type_info are provided. Based on these entities an introspective reflection
of the type structure is accomplished with corresponding value deduction from the instance. The
feature is implemented with a recursive structural decomposition strategy:

1. At the begin Reflex is queried for the introspective meta-information of the currently ex-
amined serialized type using the passed type identifier. This reflective type information is
only available for reflectively known types within Reflex.

2. The returned instance of type Reflex::Type supports access to the structural type informa-
tion necessary for introspection. The returned type is verified to be valid, otherwise the
serialization is aborted with the unknown type marker ”?TypeName?[...]”.

3. In all other cases the recursive structural decompositional introspection and serialization
can be initialized. From this time on the Reflex-immanent type descriptor Reflex::Type&
type is used instead of the compiler-deduced one. A stream is recursively passed used
throughout the serialization process to collect the resulting information.

4. In this context, recursion is implemented using differently named methods with compat-
ible parameter sets. These serialization methods are later explained in dedicated subsec-
tions dealing with the different constructs of the C++ type system. They call each other or
even themselves again on different recursion levels during the structural type decomposi-
tion. The recursively passed object (const Reflex::Type& type) is never modified within
the recursion. The pointer to the serialized instance of type void* dynamically changes
and cannot be relied on to always point to the objects start address. For example, in case
of array value extraction during recursive method calls the passed address is frequently
modified for iterating all array elements.

At the topmost level, structural decomposition of Reflex::Type& type takes place using the fol-
lowing methods from Reflex [2]:

• bool Reflex::Type::IsFundamental() const - Returns true for fundamental C++ types

• bool Reflex::Type::IsClass/IsStruct() const - Return true for complex C++ types

• bool Reflex::Type::IsArray() const - Returns true for C++ array types

• bool Reflex::Type::IsPointer() const - Returns true for some C++ pointer types

56

Unfortunately it is not directly possible to handle all pointer types using
bool Reflex::Type::IsPointer() const because of limitations explained later in this chapter. The
raw identification of pointer types is accomplished by checking existence of at least one ’*’
character within the type name.

Fundamental Types

Fundamental types are in this context differentiated in two groups:

1. Fundamental types defined within the C++ standard.

2. Commonly used types for example from the C++ standard library. They are so widespread
that special treatment is mandatory. A good example is the type std::basic_string<T>
(widely used as std::string). It is not reflectively serializable with the mechanisms pro-
vided by Reflex and treated like a special fundamental type within RefLog.

Fundamental types should be serialized directly using the provided C++ streaming operators
and cannot be directly passed to REFLOG_SERIALIZE(object). They are only handled correctly
when used as members of a reflectively known C++ class or struct.
At the end of the recursive serialization process the passed void* pointer contains the address of
the fundamental type to be serialized. A pointer dereferencing cast of form *reinterpret_cast<T*>
returns the correct value. T represents in this statement the fundamental type (e.g. char, bool,
signed long long int, etc.) specified by const Reflex::Type& type. Finally the actual fundamental
type instance serialization can be done using the standard C++ streaming operator« in a type-safe
manner.

Composition and Inheritance

Most objects requested to be serialized are complex types either through composition (data mem-
bers) or inheritance. Such types are serialized by first being hierarchically and structurally de-
composed into the foundational fragments:

1. At first all inherited super types (base classes) of the serialized type are iterated and se-
rialized with the declared inheritance qualifiers (e.g. virtual, public, etc.). Recursive se-
rialization procedures are initiated for them with their corresponding obtained types and
adapted memory address pointers to the sub-parts of the instance.

2. After inherited type parts were recursively resolved and serialized the compositional parts
are examined. The functionality is realised with an iteration of all data members. The
void* instance pointer again must be adapted for all recursive calls to be correct for the
actual data members.

In addition to Listing 5.4 the following different forms of data members must be distinguished
for the compositional serialization process [2]:

57

• bool Reflex::Type::IsStatic() const - Returns true for static members

• bool Reflex::Type::IsEnum() const - Returns true for enum members

Beside the pure value serialization also the type and member names including possible qual-
ifiers (e.g. virtual, public, const, static, volatile, etc.) are serialized to form a clean and human-
readable representation.

Pointer Dereferencing

Pointers are core constructs within the C++ type system and can be used for multifarious uti-
lizations. RefLog supports multilevel pointer dereferentiation for data members, but instances of
pointer types cannot be passed to REFLOG_SERIALIZE(object). For example, a function local
variable int *pInteger cannot be serialized with REFLOG_SERIALIZE(pInteger). On the other
hand a data member of type const char***** will be dereferenced to a const char*. This type is
interpreted as a conventional null terminated C-string and can be successfully serialized.
Pointer types (e.g. T***) can be used for example for reference chains through several func-
tion calls or to point to dynamic multi-dimensional arrays. RefLog cannot deduce from the type
information (i.e. T***) which intention the declaration follows. For this reason, such pointer
types are always interpreted to be simple reference chains to a single element at the end. This
element is dereferenced and serialized. Maybe an instance of type T***** points to a dynamic
five-dimensional array. Unfortunately, neither the intention nor the necessary array dimension
sizes can be deduced from the type information.
Clean object-oriented design should avoid the use of pointer constructs for such complex data-
structures. There exist other more powerful and safe mechanisms (e.g. containers) from the
C++ standard library or the C++ boost library [5]. The only exception are absolutely perfor-
mance critical implementations like EXTP for example, in which microseconds can be crucial
for success. For these seldom cases human-readable serialization must annoyingly be imple-
mented independently from RefLog.
The pointer serialization implementation recursively dereferences instances of pointer types un-
til the element at the end of the chain can be directly accessed. The reflection tool Reflex does
not really support convenient handling of pointer types. The necessary mechanisms for deduc-
ing the level of indirection (number of *) and dereferentiation must be specifically implemented.
For the underlying types, to which pointer types point to, serialization is initiated again. The
types char*, const char*, etc. are identified, interpreted and serialized as null-terminated strings
and treated as special kind of fundamental types within RefLog.

Multidimensional Arrays

Arrays with compile-time fixed sizes like for example int array3D[7][5][3] provide enough
contextual type information to support complete serialization. An array dimension is resolved by
obtaining its length and iterating all resulting sub-arrays with one less dimension. This procedure
is recursively applied until the pure elements are accessible in the last dimension.

58

Termination and Cyclic Reference Resolution

During dereferentiation of pointer type instances all dereferenced addresses are stored in a data-
structure static std::set<void*> pointerStore within ObjectSerializer. The structure is cleared
after each initiated serialization process. This approach is necessary to assure termination of
the recursive serialization procedure. In general it is possible that within software applications
reasonable data-structures and models arise which contain cyclic references. This scenario must
be taken into account and handled correctly. Serialized data-structures are marked with their
memory address as program internal unique identifier. Whenever a cyclic reference is recognized
after the second iteration just an infinity marker of form DuplicateOfInstance@0x7fffee924530
is inserted. The marker informs about the abbreviated endless serialization structure. This design
proves that the serialization mechanism terminates at least after examination of all possible
memory addresses.

59

CHAPTER 6
Evaluation and Future Work

This chapter provides detailed information about the evaluation of RefLog and the obtained
results. Existing issues and limitations of the created reflective logging tool are documented. In
the end possibilities for further research, improvements and optimizations are pointed out.

6.1 Functional Evaluation

The general approach is explained in Subsection 1.5. A specific program RefLogTest contains
a set of test cases for evaluating correctness of specific functional details. Real benchmarking
is based on two programs to distinguish the important transformative and reactive application
domains [65]. Furthermore, applicability of RefLog for different kinds of systems is shown. The
implemented features AMSE and HROS are benchmarked separately in the two programs.

TransfBM is the name of the benchmark program representing the transformative application
domain. It is dedicated for benchmarking the AMSE feature.

ReactBM is the name of the benchmark program representing the reactive application domain.
It is dedicated in the first instance for benchmarking the HROS feature, but also applies
the AMSE feature for duration measurement tasks.

Test Cases

The evaluation program RefLogTest contains the following test cases:

CompositionTest handling hierarchical composition of data members for HROS

CyclicPointerTest handling cyclic pointers for HROS

ExceptionStackTraceTest stack tracing with thrown exception for AMSE

InheritanceTest serialization of inherited data members for HROS

61

MethodPointerTest logging behaviour with use of method pointers for AMSE

MultithreadingTest logging behaviour with parallel threads for AMSE

PointerTest handling pointers of various form for HROS

Test cases are collectively executed within the program RefLogTest producing a log file con-
taining results for all individual cases.

Benchmarking Approach and Environment

Benchmarking of native applications can be accomplished with different approaches. They have
specific advantages and drawbacks:

• Direct execution and measurement on machines with operating systems. The advantages
are benchmarking under realistic conditions and the simplicity of the approach. The dis-
advantages are unpredictable and uncontrollable influences from other applications, the
operating system or the machine hardware.

• Program transformation and execution on a virtualized environment. The advantage is that
benchmark results are completely independent from the hardware and execution environ-
ment. The drawback is that transformation of native programs to virtualized environments
may not yield representative measurements.

According to the declared aim of practicability for the present work we chose the first ap-
proach. To reduce fuzziness, runtime measurements are accomplished several times and summa-
rized using statistics. At the same time a virtual machine is used as benchmarking environment
to mitigate influences from different platforms (i.e. hardware and operating systems). During
benchmarks the virtual machine is configured to use 4 processing cores from the CPU and to oc-
cupy up to 4GB RAM. Further information about the virtual machine environment and applied
measurement tools can be found in Section 5.1.
Measurements are accomplished on two different physical machines with different host operat-
ing systems to reach certain heterogeneity in the results.

1. Machine (Notebook)

Microsoft Windows 8.1 Professional 64-Bit-Version (6.3, Build 9600)

Intel(R) Core(TM) i7-3840QM CPU @ 2.8GHz (4 Cores) with 8GB RAM

Samsung SSD 840 Pro Series (SATA)

2. Machine (Workstation)

Microsoft Windows 7 Professional 64-Bit-Version (6.1, Build 7601)

Intel(R) Core(TM) i5-2500 CPU @ 3.3GHz (4 Cores) with 8GB RAM

Intel(R) SSD 320 Series (SATA)

62

Transformative Benchmark for AMSE

The single-threaded program TransfBM includes an implementation of the famous quicksort
algorithm. It is fed with a file containing 20,000 random numbers in the range of 0 to 1,000,000
obtained from [1]. The sorting algorithm was chosen because of its recursive architecture leading
to a complex method call hierarchy. The source code is provided in Appendix A. As can be seen
recursively called methods are equipped with the following annotations from the AMSE feature:

• RefLogScoped

• Trace

• RefLogTimeMeasured

The benchmark includes all possible reflective extensions to method calls and produces the
maximum reflective overhead for reasonable comparison. For this benchmark the complete run-
time of the application is measured and all three logging configurations (explained in Subsection
1.5) are applied. The program is executed for each of the three configurations 30 times and three
corresponding average runtime durations are calculated (arithmetic mean) as final results. Ad-
ditionally the size of the binaries and the maximum resident working memory consumption for
every configuration is measured.

Reactive Benchmark for HROS

For the multi-threaded program ReactBM we refer back to our example EXTP. A small part of
an asset analysing system often seen in the financial software domain is implemented. Various
indicators (e.g. RSI, MACD, etc.) are used to calculate certain quantitative parameters for
different types of assets (e.g. stocks, bonds, options...). The obtained parameters are afterwards
used to coordinate trading decisions for the tracked assets. As depicted in Figure 6.1 for this
benchmark only a single indicator called AverageIndicator is implemented. It calculates the
average value from all stored historic values of an asset.

Every asset instance is at the beginning equipped with a base value. The reactive behaviour
of the system is simulated using AssetTracker for starting a dedicated thread for each asset
instance. Within this thread a loop is initialized with a predefined number of iterations. For
benchmarking 100 iterations are chosen to be suitable. In each iteration the following tasks
simulate a conventional asset value movement caused by trading on the related market.

63

Figure 6.1: Class diagram for reactive benchmark program ReactBM

• A random number is generated.

• A deviation to the previous asset value is calculated using the random number to simulate
changes on the market.

• Configurable serialization of the asset instance using the HROS feature is logged a file.

• The random number is used to generate a varying time delay until the next iteration and
change of the asset value occurs.

Because of the reactive nature of the system the overall runtime duration of the program
cannot be used for measurement. Several calculation procedure calls interrupted by random
waiting periods would not yield reasonable results. Instead execution duration times of spe-
cific method calls are measured using the RefLogTimeMeasured annotation, program-internally.
The execution duration times of calculation method calls to AverageIndicator are extracted from
the generated log files. These time durations provide reasonable quantitative values for bench-
marking the reactive behaviour. The overhead costs are identified again through comparison of
separate ReactBM builds equipped with two different logging configurations (static logging and
reflective logging). Although the principle of these logging configurations is the same, in this
case the RefLog-internal macro-based configuration cannot be used. Not the complete logging
must be configured differently, but only a single serialization statement within the program.

• The first build configuration for benchmarking ReactBM includes the serialization state-
ment for the tracked asset instance in every iteration using REFLOG_SERIALIZE.

• In the second one the serialization statement is changed to log just a static string of com-
parable length.

64

The two finally compared benchmark values are calculated (arithmetic mean) as average ex-
ecution duration times of the calculation method calls. The comparison provides information
about the overhead introduced through adding a single serialization statement for asset object
states. It should be noticed that the used asset objects are composed of string-based and numer-
ical data members including an array of fundamental types. So serializing a single state of such
an object already produces a substantial amount of logging data. In some cases especially for
software auditing in the financial sector such precise object state logging is necessary.

Results

Executed test cases reveal correctness of the RefLog functionalities depicted in Table 6.1. The
limitations are described in Section 6.3.

Test Case Evaluation Result
CompositionTest numerical serialization of enums, fundamental type instances, null terminated

character strings, std::string instances including qualifiers (const, volatile, mu-
table), static members, object members of known types are hierarchically re-
solved and serialized

CyclicPointerTest cycle pointers are resolved and marked with cycle begin memory address
ExceptionStackTraceTest stack trace valid until exception is thrown, recovery of destroyed stack infor-

mation correct
InheritanceTest inherited data members from base classes hierarchically serialized, also multi-

ple inheritance and all inheritance qualifiers (virtual, public, etc.) supported
MethodPointerTest stack trace invalidated through method pointer calls but valid again after return
MultithreadingTest AMSE feature also correct with multiple threads
PointerTest array members also with multiple dimensions, pointer members to single in-

stances also with several levels of dereferentiation, pointer to arrays supported

Table 6.1: Test case evaluation results

65

Benchmark values are presented in dedicated tables for both benchmark programs. Values
for the transformative case are provided in Table 6.2, for the reactive case in Table 6.3.

Runtime[s] Peak Memory[KB] Log Size[MB] Binary Size[KB]
No Logging 99
Machine 1 0.01 2112 0
Machine 2 0.01 2112 0
Static Logging 103
Machine 1 2.65 2116 32.9
Machine 2 2.54 2116 32.9
Reflective Logging 351
Machine 1 3.71 2284 32.6
Machine 2 3.84 2284 32.6

Table 6.2: Transformative benchmark values from TransfBM

Runtime[us] Peak Memory[KB] Log Size[KB] Binary Size[KB]
Static Logging 379
Machine 1 25.41 2164 797
Machine 2 44.52 2164 793
Reflective Logging 375
Machine 1 193.12 2256 735
Machine 2 417.78 2256 736

Table 6.3: Reactive benchmark values from ReactBM

From these benchmark values evaluation results can be calculated given in Table 6.4. For a
better impression on the relative differences the benchmark values are also depicted in dedicated
histograms 6.2 and 6.3. The information base allows us to conclude certain facts about RefLog:

• TransfBM only uses the AMSE feature. Approximately one third of the runtime duration
is consumed by reflective tasks during application execution. This fraction of resource
consumption is according to our defined limit of 50 per cent acceptable. This result gives
evidence that reflective extensions can be implemented with sufficiently small runtime
overhead for practical applications. The biggest runtime performance deceleration is in-
troduced by writing log messages to a persistent storage (disk). So whenever log files are
used as logging sink the additional overhead of reflection introduced by the AMSE feature
can be accepted.

• ReactBM shows that significant overhead is introduced by using the HROS feature for
serializing objects. The fraction of costs lies in the range of 90 per cent and exceeds our
defined limit of 50 per cent. For this reason HROS can only be applied in non performance

66

critical situations. It must be noticed that also hand-crafted serialization mechanisms in-
troduce computational overhead. This circumstance relativises the result to some extent.

• The impact of reflection on the working memory consumption is in the range of 4-7%
of total costs and therefore far below our 50% limit. For this reason working memory
consumption can be seen as less problematic in conjunction with reflection in C++.

• Size of application binaries rises when using reflection because of the additionally linked
meta information. This fact can be deduced from the benchmark values of TransfBM. The
size difference for ReactBM arises from inclusion of additional strings for static logging
behaviour. Both compiled configurations include reflective mechanisms.

In the context of our research question and aim described in Section 1.4 the following conclusion
can be drawn. The question can be answered with ”yes”. The general feasibility of reflective
logging (i.e. AMSE and HROS features) has been proved with the implementation and evaluation
of RefLog. Resource consumption of working memory could be successfully hold below the set
limit of 50%. Concerning runtime this target was only partially reached for the AMSE feature,
but not for HROS.

Machine 1 Machine 2
Runtime Reflection Costs[%] for TransfBM 29 34
Runtime Reflection Costs[%] for ReactBM 87 89
Runtime Memory Costs[%] for TransfBM 7 7
Runtime Memory Costs[%] for ReactBM 4 4

Table 6.4: Calculated costs from evaluation results

67

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Machine 1 Machine 2 Machine 1 Machine 2

Static Logging Reflective Logging

Transformative Benchmark Results [s]

Figure 6.2: Transformative benchmark values for TransfBM in relation

0
50

100
150
200
250
300
350
400
450

Machine 1 Machine 2 Machine 1 Machine 2

Static Logging Reflective Logging

Reactive Benchmark Results [µs]

Figure 6.3: Reactive benchmark values for ReactBM in relation

68

6.2 Usability and Integration Evaluation

Next to the functional aspects described in the previous chapter, evaluation of usability and
tool integration are important. In the course of evaluating RefLog we determined the following
aspects. In our opinion they have significant impact on the way the logging tool is used.

Annotation-based Logging

Using annotations to configure logging for an application turned out to be an interesting ap-
proach. We think it is the most suitable one for programs with class-based structuring following
approved OOP design guidelines. RefLog internal annotation types are intended to be used with
classes and included methods. The annotation-based approach maybe does not suit certain prac-
tically relevant situations:

• Large classes with voluminous methods limit usefulness because scope information gets
less valuable. Assistance through extended message scope of logs may be not so helpful
to understand a problem.

• Huge projects with collections of many classes being treated in a similar way. Annotations
are comfortable for fast adaptions and newly introduced classes. The situation is different
whenever large numbers of classes must be reconfigured. They can possibly be spread
among several source files too. In such cases all class definitions must be visited and their
annotations changed. Such effort is not acceptable and should be avoided. A possible
solution is suggested in 6.4.

Object Serialization Format

HROS successfully enables insights into object states at specific execution points during run-
time. This kind of information is usually hard to reveal especially in multi-threaded environ-
ments and can assist in various situations. The most important C++ constructs for data structur-
ing (composition and inheritance) commonly used in practice are supported. Some drawbacks
with the current object serialization implementation were identified during the evaluation phase:

• The format of serialized objects automatically includes memory addresses for back refer-
encing entities in case of cyclic data structures. For most cases the memory information
is redundant and can be omitted to improve readability.

• The grade of serialization detail can not be adapted. In some situations only specific object
parts are of interest. Serialization range should be configurable using annotations.

Project Integration

The necessary intervention of target application build processes to integrate RefLog complicates
setup and maintenance of projects. In some cases this intervention may not be possible because
of other dependencies or necessary tasks during the build. Runtime duration of builds also
increases. This aspect may be unacceptable in some circumstances.

69

6.3 Open Issues and Limitations

The reflection tools Reflex and AspectC++ provide powerful mechanisms for the most impor-
tant constructs of the C++ language. Nevertheless, it is of tremendous effort to cope with the
language in its entirety. As a consequence many limitations and issues arise as described in this
section.

Template Meta-Programming

C++ templates are hard to be handled in a sound and complete manner because of their complex-
ity. A valuable base for appraising the possibilities and impacts of templates to the programming
habits in C++ is given by Alexandrescu [9]. He gives a foretaste on the facilities of template
meta-programming and shows that debugging such C++ programs, executed at compile-time,
is a demanding task. Only information from compiler internal error messages and notifications
are provided and they are often difficult to interpret. For this reason RefLog does not support
advanced logging features assisting in template meta-programming.

Restrictions and Limitations

C++ as a language with a comprehensive historic evolution contains a lot of constructs which
lost much of their former relevance (e.g. function pointers, unions, etc.). Some of them are
today even frowned upon to be used (e.g. goto statements). Nevertheless, they are part of the
C++ standard and must be handled correctly. It can be observed that the reflection tools, used
for implementing RefLog, even omit direct support of them. For this reason they are also not
reflectively logged. Other constructs are also excluded from the implementation for different
reasons explained later in this chapter. The following limitations exist for the HROS feature:

pointer to members as data members of introspectively reflected types are not serialized

const static data members since their values are well known directly from sources

member references as data members of introspectively reflected types are not serialized

unions cannot be reflected either as type on their own or as data members of reflected types

enum string representation only the numerical values of enum instances can be serialized but
not their corresponding string representations

limitations of GCC-XML in general introspective reflection is based on GCC-XML and can-
not support additional language constructs

features from c++11, c++14 in general newly introduced features from the latest published
C++ standards are not covered by the applied reflection tools and cannot be relied on

Also for the AMSE feature restrictions and limitations exist, which have already been discussed
to some extend in the previous chapters:

70

goto statements can invalidate stack hierarchy and therefore break correctness of the feature

exceptions can invalidate stack hierarchy and therefore break correctness of the feature

template class member function pointer calls reflective extensions do not work for calls to
template classes using class member function pointers

limitations of ag++ behavioural reflection is based on ag++ and restricted to its powerfulness

features from c++11, c++14 in general newly introduced features from the latest published
C++ standards are not covered by the applied reflection tools and cannot be relied on

6.4 Future Work

The scope of this thesis is naturally restricted to the targets described in Chapter 1, but reveals
further research topics and directions that can be of interest for future endeavours. Some of the
most promising are outlined in the following subsections.

Multiple Platforms

RefLog was foundationally intended and designed for use on different platforms (operating sys-
tems, compilers and IDEs). The limited time resources of this work just allowed us to implement
and evaluate a single platform solution. In scientific environments in many cases Unix-like op-
erating systems are used, so Linux with g++ from GCC is chosen. It is mandatory to prove
support on other platforms with practically representative benchmarks. Only implementations
with further compilers and execution on different operating systems can give evidence about
real portability characteristics. The most obvious combination would be a verification based on
Microsoft Visual C++ on the operating system Microsoft Windows. It is also of high relevance,
especially for industrial software development.

Extended Benchmarking

The limited time resources of the present work just allowed us to implement a restricted number
of benchmark programs. To provide more insights into resource consumption and performance
of RefLog, it is necessary to apply the logging tool to many more different programs. They
should be chosen from several domains and application fields. Especially in the area of HPC the
applicability is of interest.

Advanced Configuration Capabilities

RefLog provides through its annotation-based configuration approach powerful control over its
operational behaviour. The use of annotations is according to our experiences quite uncommon
in the C++ development domain. Nevertheless, they provide unimagined possibilities for conve-
nient user interaction and maintainable source code integration. Of course, annotations are not
suitable for all kinds of configuration requirements and tasks. For this reason, in parallel to the

71

source code intrusive adaption and control mechanisms using annotations, a second servicing
point should be established. For example, configuration files or network interfaces. Such exten-
sions raise powerfulness and as a direct consequence usefulness of the development tool for a
broader variety of applications. Distributed systems represent a potential domain.

Feature Optimization and Extension

One of the targets of this work is to provide fundamental insights into the topic reflection in the
context of C++. Based on these insights the prototypical features implemented in RefLog should
be optimized and extended in all facets. Also the presented reflective capabilities provided
through the available and evaluated reflection tools should be taken into account. Furthermore,
completely new features and extensions should be implemented in addition to those presented
in this thesis. Features can be identified from software development requirements. Possible
candidates are:

manual run-time severity adaptation Severity levels should be adaptable at run-time using
for example a network interface to the application.

automatic dynamic run-time severity adaptation With this feature the severity level of writ-
ten logs should be automatically adapted under specific circumstances. For example a
thrown exception should result in detailed log output of the last 1000 messages usually
suppressed through static severity level configuration.

automatic parameter serialization For specific method calls the passed parameters and re-
turned result values should be automatically serializable.

instance-based logging Extended logging should not only be configurable on a per-type basis,
but also support logging of specific instances of a type. For example, only the interaction
with a specific data member should be logged, not all method calls to the type.

extended execution scope enrichment Further levels of execution scope enrichment as de-
scribed in Section 4.3 should be conceptualized and implemented.

configurable serialization coverage Grade of detail for serialization should be configurable.

Reflection Tool Improvement

The architectural design of RefLog should be optimized as a whole for better suitability and
to support a broader range of different applications. Beside more and advanced features, also
the integration into target applications should be improved to simplify appliance and adoption
for arbitrary projects. More powerful or simpler configuration possibilities and chosen default
values for existing features can increase their usefulness.

72

CHAPTER 7
Conclusion

This thesis presented some advanced possibilities for logging in C++ that directly address prac-
tical issues and drawbacks found in many software projects. Consequences are inefficient de-
velopment processes and decreased product quality. Reflection was shown to be a really pow-
erful concept for designing suitable and conveniently applicable mechanisms to overcome these
limitations. Many publications mentioned logging and tracing of software applications as an
appropriate use case for reflection. In our opinion the key points and really desired features have
never been outlined in sufficient detail. The present thesis is one of the first explicitly tackling the
topic of reflective logging in C++. Reflection was applied for implementing the desired logging
features, but furthermore also for configuring and adapting their detailed behaviour. Not only
the pure feasibility perspective received focus. The design also considered the critical aspect of
performance in this context. It was demonstrated that reflective solutions for C++ can satisfy
acceptable performance criteria. The results are comparable to traditional approaches with all
the advantages being offered by reflective extensions.
Another achievement of this thesis was to prove the general applicability and powerfulness of
currently available state-of-the-art C++ tools for introspective and behavioural reflection. The
C++ language was not equipped with profound reflective features and therefore lots of compet-
ing tools were built and published. Some of them are definitely worth to be paid attention. They
can offer useful functionalities for a wide variety of elegant applications and problem solutions.
The present work showed that reflection is not only practically relevant for creating generic tools
on virtualized platforms. It can also be applied in natively compiled environments to combine
the benefits of reasonable run-time performance and simplifying abstraction. Hopefully, the
results will encourage more scientific investigations. Native reflection use should become com-
mon best practice for better software development and resulting products in the future, not only,
but also within the domain of the C++ language.

73

Appendix

Appendix A Transformative Benchmark Program

The following source code is a simple implementation of the famous quicksort algorithm. It is
used as transformative benchmark program for evaluation of RefLog in Subsection 6.1.

#ifndef _QUICK_SORT_HPP_
#define _QUICK_SORT_HPP_

#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>

#include "../RefLog/RefLog.hpp"

namespace reflog {

/**
* Simple implementation of the quicksort algorithm for unsigned integers read

* from a text file.

*/
//@custom:RefLogScoped()
//@custom:TraceConstruction(Severity="DEBUG")
//@custom:TraceDestruction(Severity="DEBUG")
class QuickSort {

/// data structure for numbers to be sorted
std::vector < unsigned int > numbers;

public:

75

/**
* Read tab separated unsigend integers from a file also with multiple

* lines. Assure linefeed on the end of the file to get all numbers.

*/
//@custom:Trace(Severity="INFO")
//@custom:RefLogTimeMeasured()
void readNumbersFromFile (const std::string& filePath) {

// initialize file stream with passed filepath
std::ifstream fileStream;
fileStream.open (filePath.c_str ());

std::string lineOfNumbers;

// read in line by line numbers from file
for (;;) {

getline (fileStream, lineOfNumbers);

if (fileStream == 0) {
return;

}

std::stringstream numberReader (lineOfNumbers);

int currentNumber;

// iterate all numbers of the current line and store them in the
// internal vector
for (;;) {

numberReader >> currentNumber;
if (numberReader.eof () || numberReader == 0) {

break;
}
numbers.push_back (currentNumber);

}
}

}

/**
* Root call for quick sorting read in unsigned integers

*/
//@custom:Trace(Severity="INFO")
//@custom:RefLogTimeMeasured()
void sort () {

quickSort (0, numbers.size ());
}

76

//@custom:Trace(Severity="TRACE")
//@custom:RefLogTimeMeasured()
void quickSort (unsigned int l, unsigned int r) {

unsigned int pivot;

if (l < r) {
pivot = partition (l, r);
quickSort (l, pivot);
quickSort (pivot + 1, r);

}
}

//@custom:Trace(Severity="TRACE")
//@custom:RefLogTimeMeasured()
int partition (unsigned int l, unsigned int r) {

unsigned int pivot = l;

for (unsigned int i = l + 1; i < r; ++i) {
if (numbers[i] <= numbers[l]) {

++pivot;
std::swap (numbers[pivot], numbers[i]);

}
}

std::swap (numbers[pivot], numbers[l]);

return pivot;
}

/**
* Print sorted numbers to console.

*/
//@custom:Trace(Severity="INFO")
//@custom:RefLogTimeMeasured()
void printNumbers () {

for (std::vector < int >::const_iterator numberIterator = numbers.begin();
numberIterator != numbers.end ();
++numberIterator) {

std::cout << *numberIterator << " ";
}
std::cout << std::endl;

}
};

} // reflog

#endif // _QUICK_SORT_HPP_

Figure .1: Source code listing of RefLog annotated quicksort

77

Appendix B Base Criteria Evaluation Results

The following tables present the results of the base criteria evaluation described in Subsection
3.2. Information is provided separately for the different reflection tools.

Criteria Evaluation Result
Powerfulness introspection, signal and slot
Portability cross-platform functionality even for mobile and embedded platforms
Documentation deep and complete documentation
Independence intrusive using manual macro definitions for meta-data creation but source is

generated by moc
Maintenance UF: frequently/LU: 2014-09-15/ QT since 1991 23years
Maturity Mature
Intention Not special
License GPL for open-source parts but also commercial license available

Table .1: QT’s meta-object compiler and system

Criteria Evaluation Result
Powerfulness introspection (inheritance, member access and member slicing) support for

templates and annotations
Portability Linux, Windows MSVC >= 7.1, MacOS >= 10.4, Solaris
Documentation complete reference and source code examples
Independence non-intrusive except for annotations with fully automatic meta-data generation

using genreflex and GCC-XML tool
Maintenance UF: frequent until 2010 but further maintained in context of ROOT framework/

LU: 2013-01-18/ since 2003 11years
Maturity Mature
Intention store huge data proportions for HEP projects like LHC at Cern
License GPL for open-source parts but also commercial license available

Table .2: ROOT Reflex Library

78

Criteria Evaluation Result
Powerfulness introspection, serialization, script binding, callbacks, signal and slot
Portability gcc and MSVC
Documentation detailed complete documentation
Independence intrusive, meta-data creation manually by programmer for every class, meta-

gen for generation from doxygen xml but not really powerful
Maintenance UF: monthly/LU: 2014-10-11/ since 2011-11-05 3years
Maturity Prototype
Intention general reflection library for C++ but started from gaming framework
License Apache License, Version 2.0

Table .3: cpgf

Criteria Evaluation Result
Powerfulness introspective (inheritance and member serialization), no templates supported
Portability Visual C++ 6.0 (Service Pack 6) limited, Visual C++ 7.1 and GCC 3.2
Documentation features completely targeted with source extensions and comprehensive exam-

ple sources
Independence source intrusive with macro declarations and method defini-

tions(getClassName), Boost and Loki headers necessary
Maintenance UF: Unknown/LU: 2004-09-13/Age: 10years
Maturity Prototype
Intention Tracing Utility
License free to use without fee but with copyright notice on all copies and support

Table .4: Arne Adams - A Reflection Library

Criteria Evaluation Result
Powerfulness introspection (inheritance and member serialization)
Portability According to source included platform.hpp many platforms and environments

(Linux/Windows/Solaris...)
Documentation Paper 6 pages and 1 basic HTML site
Independence code generation to add meta-data, so C++ Standard compliant, non-intrusive

and auto-generated
Maintenance UF: Reflex mentions that sourceforge claimed that obsolete/LU: source pack-

age 2007-10-25/Age: 7years
Maturity Prototype
Intention for PSE (Problem Solving Environments)
License open-source, free of charge but copyright must be passed with all copies, no

warranty

Table .5: XCppRefl - C++ Reflection Library

79

Criteria Evaluation Result
Powerfulness introspection (members and method invocation)
Portability MS Windows Visual C++, Linux GCC, MAC OS X GCC
Documentation Wiki with much information about general and detailed aspects
Independence intrusive with manual binding
Maintenance UF: unknown/LU: 2014-09-10 (License), 2010-09-01 (Source)/Age: at least

5years
Maturity Prototype
Intention create reflective library for advanced tools (script binding with Python)
License open-source, license by Tegesoft obsolete, GNU/LGPL v3 license

Table .6: CAMP

Criteria Evaluation Result
Powerfulness serialization of types including C++ STL container
Portability MS Windows Visual C++, Linux GCC + GNU make, is claimed to run with

any ISO standard C++ compiler
Documentation Complete documentation in HTML and Doxygen API
Independence partially intrusive (CLASSDESC_ACCESS...), auto-generation by preproces-

sor analysis without pointers with dump a human-readable serialization engine
for C++ objects

Maintenance UF: every some months/LU: 2014-09-10/ 10years
Maturity Prototype
Intention build general C++ library, focus clearly on serialization (pack)
License open-source, free of charge but copyright must be passed with all copies, no

warranty

Table .7: Classdesc

80

Criteria Evaluation Result
Powerfulness introspection (object construction from types only with default constructor,

no enums, unions and bit fields and static members supported, only limited
handling of virtual functions, no qualifiers, common class must be inherited)

Portability Explicit different sources for Windows and Unix but auto-generation of de-
scriptors from debug information only with gcc in Unix

Documentation Doxygen API for library, 1 HTML page with good introductory documentation
Independence generates type descriptions automatically from debugging information only

with gcc in Unix but intrusive with macros for extensions by programmer
Maintenance UF: unknown/LU: 2006-01-18/at least 8years
Maturity Experimental
Intention try possibilities to extract reflection descriptions from debug information
License open-source, free of charge but copyright must be passed with all copies, no

warranty

Table .8: CppReflection

Criteria Evaluation Result
Powerfulness introspection (construction, method invocation, slicing members)
Portability Used in Windows (MSVC), Linux and MAC OSX
Documentation introductory documentation about appliance and internal structure, thorough

advanced information about the topic in general
Independence intrusive since crcpp_reflect and related mechanisms must be added to the

source, but powerful auto-generated descriptions in databases using clang
source parsing

Maintenance UF: some commits per years/LU: 2014-07-30/since 2011-07-11 so 3years
Maturity Prototype
Intention versionable serialization of objects in games like Splinter Cell for example
License open-source, free of charge but copyright must be passed with all copies, no

warranty

Table .9: clReflect

81

Criteria Evaluation Result
Powerfulness extendable serialization/deserialization of C++ objects, script binding
Portability Linux, MacOS, Windows packages available and clang compiler is necessary
Documentation unknown
Independence intrusive with dependency to cpgf (http://www.cpgf.org/), uses Clang for pars-

ing C++ source code to automatically build meta-information from C++ head-
ers, intrusive since it needs to register meta classes with macros

Maintenance UF: unknown/LU: website updated on 2014-03-12/since unknown
Maturity Experimental
Intention unknown
License open-source, free of charge but depends on license of cpgf
Note No sources or binaries available

Table .10: idevkit

Criteria Evaluation Result
Powerfulness introspection (constructors, inheritance, members, method invocation, lan-

guage binding, network communication, manual registration no automatic
generation of meta-data

Portability compiled and tested on Windows with MS VC 12 and on Linux with gcc 4.8.1
Documentation doxygen documentation complete for provided features
Independence intrusive for classes with inheritance, reflection information created automati-

cally but in cpp files, only Standard ISO C++ necessary
Maintenance UF: unknown/LU: 2014-07-13/since 2013-06-27 1year
Maturity Prototype
Intention General insights into technological basics
License MIT license

Table .11: rttr

Criteria Evaluation Result
Powerfulness introspection of attributes and modification by class to member pointer ->*
Portability Windows and Linux sources available
Documentation Comprehensive details in theory, more an article with sample source
Independence strongly intrusive since a dedicated MOP but without dependencies
Maintenance UF: unknown/LU: 2014-07-13/since 2000 14years
Maturity Experimental
Intention Support for comprehensive and complex abstract business related models
License free of charge

Table .12: meta

82

Criteria Evaluation Result
Powerfulness only loading variable values from preference files (very restricted)
Portability developed for MSVC on Windows
Documentation only few blog posts
Independence in principle intrusive but also auto-generating some parts
Maintenance UF: unknown/LU: 2009-05-05/since 2009 5years
Maturity Experimental
Intention reflection for preference loading from files
License unknown

Table .13: autoreflect

Criteria Evaluation Result
Powerfulness SQL query generation and object serialization
Portability uses typeof so only for gcc in general
Documentation only small description and few examples in txt
Independence uses TMP for manual dictionary creation by programmer, not automatised
Maintenance UF: yearly until 2008/LU: 2008-03-05/ since 2007-05-04 7years
Maturity Prototype
Intention SQL query generation for persistence and general object serialization
License GPLv2

Table .14: crd

Criteria Evaluation Result
Powerfulness general introspection, instance construction and destruction for class, method

invocation
Portability available binaries only for gcc but is claimed to run also on other platforms
Documentation some examples and one html site with general explanations
Independence non-intrusive auto-generation of dictionary information using GCC-XML, in-

trusive for private member access as friends
Maintenance UF: yearly until 2009/LU: 2009-02-14/ since 2007-04-30 7years
Maturity Prototype
Intention general reflection for C++
License GPLv2

Table .15: xrtti

83

Criteria Evaluation Result
Powerfulness introspection but only supports basic C++ structures and not in depth
Portability because only Standard C++ is used potentially any platform is supported
Documentation basic documentation about the most important aspects available
Independence intrusive, no external tool, but manual generation of dictionary information
Maintenance UF: frequently /LU: 2014-09-29/ since 2004 10years
Maturity Prototype
Intention equip Helium Game Engine with reflection
License BSD-style license

Table .16: Reflect

Criteria Evaluation Result
Powerfulness AOP aspect definition and code weaving, slicing for additional members to

classes, introspection (inheritance and members)
Portability for Linux and Windows explicitely but generally for any platform
Documentation detailed, complete and updated
Independence non-intrusive with automatic meta-data creation and code weaving
Maintenance UF: daily builds/ LU: every day again/since 2001-11-06 13years
Maturity Mature
Intention support general AOP for C++ like with AspectJ
License GPL or commercial with Puma in backend

Table .17: AspectC++

Criteria Evaluation Result
Powerfulness AOP aspect definition and code weaving, preserves source structure and com-

ments
Portability claim to be available on all platforms for Standard C++
Documentation deep and complete documentation
Independence source intrusive with external tool for analysis and code weaving
Maintenance UF: unknown/ LU: 2005-11-17/ since 2005 9years
Maturity Prototype
Intention AOP tool for several languages
License GPL

Table .18: XWeaver

84

Bibliography

[1] randomserver - free random numbers. Online http://www.randomserver.
dyndns.org/client/random.php accessed 03/30/2015.

[2] Root reflex api. Online http://seal.web.cern.ch/seal/documents/
dictionary/reflex/doxygen/html/index.html accessed 03/21/2015, 2006.

[3] Gcc-xml support bug with gcc 4.9. Online http://www.cmake.org/Bug/print_
bug_page.php?bug_id=14912 accessed 03/21/2015, 2014.

[4] idevkit. Online https://sites.google.com/site/idevkit accessed
03/21/2015, 2014.

[5] Boost c++ libraries. Online http://www.boost.org/ accessed 03/21/2015, 2015.

[6] ISO/IEC 14882. International standard information technology programming languages
c++, September 2011.

[7] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley
Professional, 2004.

[8] Arne Adams. A reflection library. Online http://www.arneadams.com/ accessed
10/09/2014, 2004.

[9] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

[10] Giuseppe Attardi and Antonio Cisternino. Reflection support by means of template
metaprogramming. In Proceedings of the Third International Conference on Generative
and Component-Based Software Engineering, GCSE ’01, pages 118–127, London, UK,
UK, 2001. Springer-Verlag.

[11] Giuseppe Attardi and Antonio Cisternino. Template metaprogramming an object interface
to relational tables. In Proceedings of the Third International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns, REFLECTION ’01, pages 266–
267, London, UK, UK, 2001. Springer-Verlag.

85

http://www.randomserver.dyndns.org/client/random.php
http://www.randomserver.dyndns.org/client/random.php
http://seal.web.cern.ch/seal/documents/dictionary/reflex/doxygen/html/index.html
http://seal.web.cern.ch/seal/documents/dictionary/reflex/doxygen/html/index.html
http://www.cmake.org/Bug/print_bug_page.php?bug_id=14912
http://www.cmake.org/Bug/print_bug_page.php?bug_id=14912
https://sites.google.com/site/idevkit
http://www.boost.org/
http://www.arneadams.com/

[12] John Batali. Computational introspection. AIM-701, 1983.

[13] Charles Bloom. autoreflect. Online http://cbloomrants.blogspot.co.at/
2009/05/05-05-09-autoreflect.html accessed 03/21/2015, 2009.

[14] Walter Brown, Philippe Canal, Mark Fischler, Jim Kowalkowski, and Marc Paterno. A
case for reflection. JTC1/SC22/WG21/N1775, January 2005.

[15] Remi Chateauneu. crd. Online http://sourceforge.net/projects/crd/ ac-
cessed 03/21/2015, 2008.

[16] Matus Chochlik. Portable reflection for c++ with mirror. JIOS, VOL. 36, NO. 1, pages
13–26, 2012.

[17] Tyng-Ruey Chuang, Chuan-Chieh Jung, Wen-Min Kuan, and Y. S. Kuo. Objectstream:
Generating stream-based object i/o for c++. In Proceedings of the Technology of Object-
Oriented Languages and Systems-Tools - 24, TOOLS ’97, pages 70–79, Washington, DC,
USA, 1997. IEEE Computer Society.

[18] Tyng-Ruey Chuang, Y. S. Kuo, and Chien-Min Wang. Non-intrusive object introspection
in c++: Architecture and application. In Proceedings of the 20th International Conference
on Software Engineering, ICSE ’98, pages 312–321, Washington, DC, USA, 1998. IEEE
Computer Society.

[19] Tyng-Ruey Chuang, Y. S. Kuo, and Chien-Min Wang. Non-intrusive object introspection
in c++. In Software-Practice and Experience, pages 191–207, 2002.

[20] Cisco. System log management. Online http://www.cisco.com/c/en/us/
td/docs/voice_ip_comm/cucm/service/4_2_3/ccmsrvs/ccmsrvs/
sssyslog.html accessed 10/09/2014.

[21] Microsoft Corporation. Attributes c#. Online https://msdn.microsoft.com/
de-de/library/z0w1kczw.aspx accessed 03/21/2015.

[22] Maximilien de Bayser and Renato Cerqueira. A system for runtime type introspection
in c++. In Proceedings of the 16th Brazilian Conference on Programming Languages,
SBLP’12, pages 102–116, Berlin, Heidelberg, 2012. Springer-Verlag.

[23] Jerry Dennany. Tracelisteners and reflection. Online http://www.codeproject.
com/Articles/3737/TraceListeners-and-Reflection accessed
10/09/2014.

[24] Tharaka Devadithya, Kenneth Chiu, and Wei Lu. C++ reflection for high performance
problem solving environments. In Proceedings of the 2007 Spring Simulation Multicon-
ference - Volume 2, SpringSim ’07, pages 435–440, San Diego, CA, USA, 2007. Society
for Computer Simulation International.

86

http://cbloomrants.blogspot.co.at/2009/05/05-05-09-autoreflect.html
http://cbloomrants.blogspot.co.at/2009/05/05-05-09-autoreflect.html
http://sourceforge.net/projects/crd/
http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/service/4_2_3/ccmsrvs/ccmsrvs/sssyslog.html
http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/service/4_2_3/ccmsrvs/ccmsrvs/sssyslog.html
http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/service/4_2_3/ccmsrvs/ccmsrvs/sssyslog.html
https://msdn.microsoft.com/de-de/library/z0w1kczw.aspx
https://msdn.microsoft.com/de-de/library/z0w1kczw.aspx
http://www.codeproject.com/Articles/3737/TraceListeners-and-Reflection
http://www.codeproject.com/Articles/3737/TraceListeners-and-Reflection

[25] Tharaka Devadithya, Kenneth Chiu, and Wei Lu. Xcpprefl - c++ reflection library. Online
http://www.extreme.indiana.edu/reflcpp/ accessed 03/21/2015, 2007.

[26] Gabriel Dos Reis and Bjarne Stroustrup. A principled, complete, and efficient representa-
tion of c++. Mathematics in Computer Science, 5(3):335–356, 2011.

[27] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, January 1990.

[28] Geoff Evans, Zach Brockway, and Fred Zyda et al. Reflect. Online https://github.
com/HeliumProject/Reflect accessed 03/21/2015, 2014.

[29] J. Ferber. Computational reflection in class based object-oriented languages. In Confer-
ence Proceedings on Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’89, pages 317–326, New York, NY, USA, 1989. ACM.

[30] The Eclipse Foundation. Aspectj. Online https://eclipse.org/aspectj/ ac-
cessed 03/21/2015, 2015.

[31] Inc. Free Software Foundation. Gnu compiler collection. Online https://gcc.gnu.
org/ accessed 03/21/2015, 2015.

[32] Chiclana F.-Carter J. Galli, T. and H. Janicke. Towards introducing execution tracing to
software product quality frameworks. In Acta Polytechnica Hungarica, Vol. 11, No. 3,
pages 5–24, 2014.

[33] P&P Software GmbH. Xweaver. Online http://www.pnp-software.com/
XWeaver/ accessed 03/21/2015, 2008.

[34] Inc. Google. Google. Online http://www.google.com/ accessed 03/21/2015, 2015.

[35] John A. Interrante and Mark A. Linton. Runtime access to type information in c++. In In
USENIX Proceedings C++ Conference, pages 233–240. USENIX Association, 1990.

[36] Bryan J. Ischo. xrtti - extended runtime type information for c++. Online http://www.
ischo.com/xrtti/ accessed 03/21/2015, 2009.

[37] Mangesh Kasbekar, Chita R. Das, Shalini Yajnik, Reinhard Klemm, and Yennun Huang.
Issues in the design of a reflective library for checkpointing c++ objects. In Proceedings
of the 18th IEEE Symposium on Reliable Distributed Systems, SRDS ’99, pages 224–233,
Washington, DC, USA, 1999. IEEE Computer Society.

[38] J.L. Kenyon, F.C. Harris, and S.M. Dascalu. The c++ hybrid imperative meta-programmer:
Chimp. In International Conference on Computational Intelligence for Modelling Control
Automation, pages 356–361, Dec 2008.

[39] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

87

http://www.extreme.indiana.edu/reflcpp/
https://github.com/HeliumProject/Reflect
https://github.com/HeliumProject/Reflect
https://eclipse.org/aspectj/
https://gcc.gnu.org/
https://gcc.gnu.org/
http://www.pnp-software.com/XWeaver/
http://www.pnp-software.com/XWeaver/
http://www.google.com/
http://www.ischo.com/xrtti/
http://www.ischo.com/xrtti/

[40] Brad King. gccxml. Online http://gccxml.github.io/HTML/Index.html ac-
cessed 03/21/2015, 2015.

[41] Konstantin Knizhnik. Cppreflection. Online http://www.garret.ru/
cppreflection/docs/reflect.html accessed 03/21/2015, 2006.

[42] Apache Commons Lang. Reflectiontostringbuilder. Online http://commons.
apache.org/proper/commons-lang/apidocs/org/apache/commons/
lang3/builder/ReflectionToStringBuilder.html accessed 02/27/2015,
2014.

[43] The Qt Company Ltd. Qt’s meta-object compiler and system. Online http://
qt-project.org/doc/qt-4.8/moc.html accessed 03/21/2015, 2015.

[44] Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell. Reification
and reflection in c++: An operating systems perspective. Technical report, 1992.

[45] Duraid Madina and Russell K. Standish. A system for reflection in C++. CoRR,
cs.PL/0401024, 2004.

[46] Pattie Maes. Concepts and experiments in computational reflection. In Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications, OOP-
SLA ’87, pages 147–155, New York, NY, USA, 1987. ACM.

[47] D. Mahrenholz, O. Spinczyk, and W. Schroder-Preikschat. Program instrumentation for de-
bugging and monitoring with aspectc++. In Object-Oriented Real-Time Distributed Com-
puting (ISORC 2002), pages 249–256, 2002.

[48] Axel Menzel. rttr - run time type reflection. Online http://www.axelmenzel.de/
projects/coding/rttr accessed 03/21/2015, 2014.

[49] Axel Naumann and Philippe Canal. C++ and data. PoS, ACAT08:073, 2008.

[50] Oracle. Java annotations. Online https://docs.oracle.com/javase/
tutorial/java/annotations/ accessed 03/21/2015.

[51] Oracle. java.lang.reflection. Online http://docs.oracle.com/javase/
7/docs/api/java/lang/reflect/package-summary.html accessed
03/21/2015, 2014.

[52] Chen Ping, Cai Xiya, and Jin Yimin. An approach to introduce the reflection to c++.
In Fourteenth Annual International Computer Software and Applications Conference,
COMPSAC 90, pages 52–56. IEEE, 1990.

[53] LLVM Project. Llvm. Online http://llvm.org/ accessed 03/21/2015, 2015.

[54] Wang Qi. cpgf library. Online http://www.cpgf.org/ accessed 03/21/2015, 2013.

88

http://gccxml.github.io/HTML/Index.html
http://www.garret.ru/cppreflection/docs/reflect.html
http://www.garret.ru/cppreflection/docs/reflect.html
http://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/ReflectionToStringBuilder.html
http://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/ReflectionToStringBuilder.html
http://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/ReflectionToStringBuilder.html
http://qt-project.org/doc/qt-4.8/moc.html
http://qt-project.org/doc/qt-4.8/moc.html
http://www.axelmenzel.de/projects/coding/rttr
http://www.axelmenzel.de/projects/coding/rttr
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://llvm.org/
http://www.cpgf.org/

[55] S Roiser and P Mato. The seal c++ reflection system. In Computing in High Energy
Physics and Nuclear Physics, Interlaken, Switzerland, pages 437–440, September 2005.

[56] Stefan Roiser. Reflection in c++. Technical report, 2003.

[57] Andrey Semashev. Boost c++ libraries log library. Online http://www.boost.org/
doc/libs/1_56_0/libs/log/doc/html/index.html accessed 10/09/2014,
2014.

[58] Andrey Semashev. Boost c++ libraries log library attributes. Online http:
//www.boost.org/doc/libs/1_56_0/libs/log/doc/html/log/
detailed/attributes.html accessed 10/09/2014, 2014.

[59] Cleiton Santoia Silva and Daniel Auresco. C++ type reflection via variadic template expan-
sion. Online http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n3951.pdf accessed 10/09/2014.

[60] Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1982.

[61] Olaf Spinczyk and Daniel Lohmann at pure-systems GmbH. Aspectc++ language quick
reference sheet. Online http://www.aspectc.org/doc/ac-quickref.pdf ac-
cessed 03/21/2015, 2012.

[62] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. Aspectc++: An aspect-
oriented extension to the c++ programming language. In Proceedings of the Fortieth In-
ternational Conference on Tools Pacific: Objects for Internet, Mobile and Embedded Ap-
plications, CRPIT ’02, pages 53–60, Darlinghurst, Australia, 2002. Australian Computer
Society, Inc.

[63] Russell Standish. Classdesc. Online http://classdesc.sf.net/ accessed
03/21/2015, 2014.

[64] Kurt Stephens. Xvf: C++ introspection by extensible visitation. 2003.

[65] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich. Scheduling hardware/software
systems using symbolic techniques. In Proceedings of the Seventh International Workshop
on Hardware/Software Codesign, 1999. (CODES ’99), pages 173–177, 1999.

[66] Root Team. Root reflex library. Online http://root.cern.ch/drupal/
content/reflex accessed 03/21/2015, 2014.

[67] ROOT Team. Root data analysis framework. Online https://root.cern.ch/
drupal/ accessed 03/21/2015, 2015.

[68] Tegesoft. Camp. Online https://github.com/tegesoft/camp accessed
03/21/2015, 2015.

89

http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/log/detailed/attributes.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/log/detailed/attributes.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/log/detailed/attributes.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3951.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3951.pdf
http://www.aspectc.org/doc/ac-quickref.pdf
http://classdesc.sf.net/
http://root.cern.ch/drupal/content/reflex
http://root.cern.ch/drupal/content/reflex
https://root.cern.ch/drupal/
https://root.cern.ch/drupal/
https://github.com/tegesoft/camp

[69] Dave A. Thomas. Reflective software engineering - from mops to aosd. Journal of Object
Technology, 1(4):17–26, 2002.

[70] C. Tull and P. Calafiura. Aspect-oriented extensions to hep frameworks. In Computing in
High Energy Physics and Nuclear Physics 2004, pages 621–624, 2004.

[71] Matthias Urban, Daniel Lohmann, and Olaf Spinczyk. Puma: An aspect-oriented code
analysis and manipulation framework for c and c++. In Shmuel Katz, Mira Mezini, Chris-
tine Schwanninger, and Wouter Joosen, editors, Transactions on Aspect-Oriented Software
Development VIII, volume 6580 of Lecture Notes in Computer Science, pages 141–162.
Springer Berlin Heidelberg, 2011.

[72] Daveed Vandevoorde. Reflective metaprogramming in c++. Online http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1471.pdf ac-
cessed 10/09/2014.

[73] Detlef Vollmann. meta. Online http://www.vollmann.com/en/pubs/meta/
meta/meta.html accessed 03/21/2015, 2014.

[74] Anthony Williams. Boost c++ libraries - thread shared mutex. Online http://www.
boost.org/doc/libs/1_41_0/doc/html/thread/synchronization.
html#thread.synchronization.mutex_types.shared_mutex accessed
04/06/2015, 2008.

[75] Don Williamson. clreflect. Online http://www.donw.org/rfl/ accessed
03/21/2015, 2014.

[76] Edward D. Willink and Vyacheslav B. Muchnick. Preprocessing c++: Meta-class aspects.
In Proceedings of the Eastern European Conference on the Technology of Object Oriented
Languages and Systems, page 2, 1999.

[77] Edward D. Willink and Vyacheslav B. Muchnick. Weaving a way past the c++ one defini-
tion rule. In In Proceedings of the Aspect-Oriented Programming Workshop at ECOOP’99,
1999.

[78] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 117–132, New York,
NY, USA, 2009. ACM.

[79] Zhen Yao, Qi-long Zheng, and Guo-liang Chen. Aop++: A generic aspect-oriented pro-
gramming framework in c++. In Generative Programming and Component Engineering,
volume 3676 of Lecture Notes in Computer Science, pages 94–108. Springer Berlin Hei-
delberg, 2005.

[80] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy.
Sherlog: Error diagnosis by connecting clues from run-time logs. In Proceedings of the

90

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1471.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1471.pdf
http://www.vollmann.com/en/pubs/meta/meta/meta.html
http://www.vollmann.com/en/pubs/meta/meta/meta.html
http://www.boost.org/doc/libs/1_41_0/doc/html/thread/synchronization.html#thread.synchronization.mutex_types.shared_mutex
http://www.boost.org/doc/libs/1_41_0/doc/html/thread/synchronization.html#thread.synchronization.mutex_types.shared_mutex
http://www.boost.org/doc/libs/1_41_0/doc/html/thread/synchronization.html#thread.synchronization.mutex_types.shared_mutex
http://www.donw.org/rfl/

Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XV, pages 143–154, New York, NY, USA, 2010. ACM.

[81] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in open-
source software. In Proceedings of the 34th International Conference on Software Engi-
neering, ICSE ’12, pages 102–112, Piscataway, NJ, USA, 2012. IEEE Press.

[82] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving
software diagnosability via log enhancement. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVI, pages 3–14, New York, NY, USA, 2011. ACM.

[83] Istvan Zolyomi and Zoltan Porkolab. Towards a general template introspection library. In
Gabor Karsai and Eelco Visser, editors, GPCE, volume 3286 of Lecture Notes in Computer
Science, pages 266–282. Springer, 2004.

91

	Introduction
	General Information
	Motivation
	Problem Statement
	Aim of the Work
	Methodology

	Analysis
	Genesis of Reflection
	Adoption to Object-Oriented Programming
	Adaptation for C++
	Aspect-Oriented Programming in C++
	Reflective Logging Features

	Reflection in the Context of Logging
	Logging and Reflection
	C++ Reflection Tool Evaluation
	Reflection Tool Capabilities and Characteristics

	Architecture and Configuration
	Build Intervention Process
	Composition Architecture
	Execution Space Architecture

	Reflective Logging Implementation
	Tool Set
	General Aspects
	Automatic Message Scope Enrichment
	Human-Readable Object Serialization

	Evaluation and Future Work
	Functional Evaluation
	Usability and Integration Evaluation
	Open Issues and Limitations
	Future Work

	Conclusion
	Appendix
	Appendix A Transformative Benchmark Program
	Appendix B Base Criteria Evaluation Results

	Bibliography

