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Abstract

Despite the many successes of the big bang model of the universe, it lacks the power
to explain some key features of the universe including the fact that it is homogeneous,
isotropic and spatially flat. A possible explanation of these are given by inflation, a
short period before the onset of standard big bang evolution during which the universe
expanded exponentially. This thesis starts with an introduction to single field inflation
models and explains how they produce primordial fluctuations and then calculates their
power spectrum, which can be observed in the cosmic microwave background. Following
this discussion, a model based on conformal gravity and conformal coupling of a scalar
field is introduced. The tensor and vector perturbations in this model are discussed
both classically and quantum mechanically and their power spectra are calculated and
are found to share key features with the power spectra of single field inflation.
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1. Introduction

The beginning of the twentieth century saw two developments in physics that would
change our understanding of nature. On the one hand quantum mechanics was developed
to explain the energy spectrum of black body radiation and was then further developed
to describe atoms and the world on small scales in general. The development of quantum
mechanics eventually led to the realisation that fields, like the electromagnetic field had
to be quantized too. This led to the formulation of quantum field theory which, much
like quantum mechanics, has applications in many areas of physics including particle,
solid state and statistical physics. Indeed or current understanding of the particles that
make up matter is given by the standard model of particle physics, which is formulated
in the language of quantum field theory and has so far stood the test of every experiment
thrown at it.

On the other hand, special relativity was introduced in 1905 and has challenged our
understanding of not only space but time. Time is no longer given by the beat of a
universal drum, but a dynamical quantity that passes at different speeds for observers
moving relative to each other. Electrodynamics, which can be used to motivate special
relativity, is easily incorporated into this new framework and most of Newtonian me-
chanics can be shown to be the low speed limit of Einstein’s 1905 theory. I say most
because gravity did not quite fit into the picture and led to the theory of general rela-
tivity which is currently our best description of gravity. General relativity quickly led to
an explanation of the, until then, anomalous orbit of mercury and introduced the idea
of black holes, a region of spacetime from which light cannot escape. The application of
general relativity most relevant for this thesis is cosmology.

Applying general relativity to the observable universe as a whole, assuming that the
cosmos is homogeneous and isotropic on large scales, then paints the picture of a universe
where the distance between free falling observers changes with time. Depending on
the details of the energy content of the universe the distance then gets smaller or,
what is currently happening in our universe, bigger where the latter is referred to as
the expansion of the universe. This expansion has famously been observed by Edwin
Hubble, who also discovered the Hubble law, which is the theoretical description of this
phenomenon.

It is often said that quantum mechanics and by extension quantum field theory is not
compatible with general relativity. Indeed this incompatibility drives a lot of research
in an area known as quantum gravity and has brought about such ideas as string theory
[1], loop quantum gravity [2] and causal dynamical triangulations [3] among many more
ideas of how to tackle this inconsistency. It is however possible to fix a gravitational
background and consider how quantum fields behave in the presence of gravity.

The combination of an expanding universe and the standard model of particle physics
then led to what we know today as the big bang theory, which describes how the universe
and its matter content evolved and still evolves. The big bang explains the abundance
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of hydrogen and helium and predicted that we should observe radiation coming from all
directions describing the spectrum of a black body at roughly 3K. This radiation which
is called the Cosmic Microwave Background (CMB), was indeed discovered by Penzias
and Wilson, who were awarded a Nobel prize. The CMB is our main tool to test wether
or not the idea of a homogeneous and isotropic background is justified and indeed this
holds to a very high precision.

Despite its many successes the big bang theory is not a complete description of our
universe. From the observational point of view only 5% of our universes energy content
can be described by the standard model of particle physics. 25% seems to be described
by matter that only interacts weakly and gravitationally and is therefore called dark
matter, while the remaining 70% is called dark energy and while it is described by a
constant of the theory of general relativity, the cosmological constant, its very small
magnitude remains a mystery. There are two popular ways to address the problem of
dark matter. One can either decide that particle physics is missing an ingredient and
look for new particles that would account for the missing 25% of energy, or one could
argue that general relativity works well on scales the size of our solar systems but needs
to be modified for cosmic distances. The second approach is sometimes also invoked to
explain the current acceleration of the universe.

From the theoretical side, the initial conditions of the big bang would have had to be
very finely tuned to produce our current universe, which is homogeneous, isotropic and
spatially flat. This invokes the wish for a causal mechanism that could set these initial
conditions for the big bang, without itself having to be finely tuned. Such a mechanism
is given by the theory of cosmological inflation first put forward by Guth [4, 5] and later
refined by Linde [6].

The first part of this thesis aims to motivate and explain a simple model of inflation.
Inflation does not only set the initial fine tuned conditions necessary for the big bang,
it also gives rise to inhomogeneities that can be seen as temperature fluctuations in
the CMB and seeds the formation of large scale structure in the universe [7]. Here is
where the true predictive power of inflation lies. Given an inflationary model properties
characterising the resulting deviations from a completely homogeneous and isotropic
background radiation can be calculated and compared to observations.

A striking property predicted by many inflationary models is that the perturbations
are almost scale invariant. The perturbations can be expanded into modes of different
frequency or wavelength, much like the vibrating string of a guitar. Scale invariance
then means that all frequencies contribute equally.

Knowing that the temperature fluctuations produced by inflation seem agnostic about
scale, one might wonder what perturbations might do in a model that is Weyl invariant
and therefore does not know about scales. On the gravity side of things this directly
leads to conformal gravity [8, 9]. The second part of this thesis motivates a model
built from conformal gravity and the requirement of scale invariance and computes the
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behaviour of cosmological perturbations and finds, like in simple inflation models, that
the perturbations are scale invariant.

2. The Big Bang and its Problems

The big bang model of the universe describes our universe very well. Not only does it
describe the expansion of our universe, it also describes how hydrogen and helium were
first formed through nucleosynthesis which predicts the abundance of hydrogen and
helium in our universe. The big bang also predicts the cosmic microwave background
radiation (CMB) which is electromagnetic radiation reaching us from all directions and
has the characteristics of a black body at a temperature of roughly 3K. The details of
this model can be found in [10, 11, 12, 13].

While in good agreement with observations, the big bang model has a few short comings.
The current homogeneity and flatness of the universe [14] can only be addressed by
setting fine tuned initial conditions [5]. This high degree of symmetry also poses a
problem for structure formation, as you need some degree of inhomogeneity for things like
stars, planets and solar systems to form. This section aims to describe how some of these
problems come about and motivate their resolution through the theory of cosmological
inflation [5, 6] which will be described in the next section.

2.1. FLRW Spacetime

Our basic model of the observable universe is based on the cosmological principle, the
idea that spacetime is spatially homogeneous and isotropic. There is no explanation for
the cosmological principle within the big bang theory, but this idea is well supported by
observations of the CMB which is homogeneous and isotropic up to fluctuations of the
order ∆T/T ∼ 10−5. I will first discuss what spacetimes are allowed by these symmetries
and some of their properties that will be relevant followed by discussing their dynamics
as dictated by the Einstein equations. Let us begin by defining a spatially homogeneous
and isotropic spacetime.

Kinematics

A pseudo-riemannian manifold with metric tensor gµν is spatially homogeneous if there
exists a one-parameter family of spacelike hypersurfaces Σt that foliate the spacetime
such that for each t and p, q ∈ Σt there exists an isometry φ of gµν for which φ(p) = q
[11, 15]. Intuitively this translates into the existence of surfaces of a constant timelike
parameter t in which the universe still looks the same after walking from p to q. Choosing
the parameter t, that labels the spatial hypersurfaces, as a coordinate the line element
can be written as ds2 = −dt2 + γijdx

idxj where γij is the induced metric on Σt.
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A spacetime is spatially isotropic at each point if there exists a family of timelike curves
with tangent vectors uµ having the property that given a point p ∈ Σt and two unit
vectors sµ1 and sµ2 that are orthogonal to uµ there exists an isometry φ of gµν that
leaves p and uµ invariant i.e. φ(p) = p and (φ∗u)µ = uµ but transforms sµ1 into sµ2 i.e.
(φ∗s1)µ = sµ2 . Restated less technically this means that for an observer with tangent
vector uµ the universe looks the same in all directions.

For a manifold to be both homogeneous and spatially isotropic at every point the set of
all vectors orthogonal to uµ at a point p must be the tangent space to Σt at p. Otherwise
an isometry that keeps you at p could take a vector in the tangent space of Σt out of
it. Isotropy also constrains the curvature. To see this consider the Ricci tensor R3 i

j of
the induced metric γij. This has to be proportional to δij as otherwise a geometrically
preferred direction could be constructed in violation of isotropy. Homogeneity then
forces R3 i

j to be constant. This puts severe restrictions on the induced metric γij and
all possible geometries of this kind can be written as

γijdx
idxj = a2(t)

( dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1)

The parameter k is a measure of the curvature as the Ricci scalar of such a geometry is
R3 = 6k/a2(t). Thus the full line element of a homogeneous and isotropic manifold is

given by

ds2 = −dt2 + a2(t)
( dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (2)

All models of this type are collectively referred to as FLRW spacetimes.

The coordinates on the spatial three-slices, r, θ and φ are called comoving coordinates.
Solving the geodesic equation ẍµ + Γµρν ẋ

ρẋν = 0 gives xµ = (t, ci) where ci = const
i.e. free falling observers remain at their comoving coordinates and they agree on the
passage of time between two spatial slices, motivating the name cosmic time for the
coordinate t.

Despite free falling observers staying at the same comoving coordinates they move away
or towards each other over time depending wether a(t) grows or shrinks. To see this
consider two objects of radial coordinates r = 0 an r = ∆rco at time t. Their physical
distance is given by the integral over the induced line element in the equal time slice
and turns out to give

∆rphys = a(t)

∫ ∆rco

0

dr = a(t)∆rco (3)

making the distance between two free falling observers in an expanding universe increase
with time. The speed at which two objects move away from each other is given by

v =
d

dt
∆rphys = ȧ∆rco = H∆rphys (4)

where H = ȧ/a is the Hubble parameter. This is Hubble’s law and it tells us that the
further objects are away from each other the faster they move away from one another.
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Note that so far all differentiation with respect to cosmic time has been denoted with a
dot.

It is often useful to transform the time coordinate according to a(t)dt = dτ where the
coordinate τ is called conformal time as in this coordinate the metric can be written
as

ds2 = a2(τ)
(
− dτ 2 +

dr2

1− kr2
+ r2dθ2 + r2 sin θdφ2

)
. (5)

A flat FLRW metric, where k = 0, can for instance be written as the Minkowski metric
times a conformal factor gµν = a2(τ)ηµν . Along with conformal time come a few con-
ventions. Differentiation with respect to conformal time is denoted with a dash i.e. the
derivative of some quantity f with respect to conformal time is written as

f ′ =
df

dτ
(6)

and it is useful to introduce the conformal Hubble parameter

H =
a′

a
= ȧ. (7)

Dynamics

So far I have only described the kinematics of FLRW spacetimes but left the scale factor
a(t) undetermined. To find the scale factor one plugs the FLRW ansatz into the Einstein
equation

Gµν + Λgµν = 8πTµν (8)

where the energy content of the universe sill needs to be specified. On large scales the
matter in the universe behaves as a perfect fluid with Energy-Momentum tensor

Tµν =

(
ρ 0
0 Pγij

)
(9)

where ρ is the energy density measured by the free falling observers and P is the pres-
sure of the fluid. As long as ρ = ρ(t) and P = P (t) this tensor is compatible with
the symmetries of the spacetime and the Einstein equations produce the Friedmann
equations

ȧ2

a2
= − k

a2
+

8π

3
ρ+

Λ

3
(10)

ä

a
= −4π

3
(ρ+ 3P ) +

Λ

3
. (11)

Differentiating the first Friedmann equation (10) and then using the second Friedmann
equation (11) to replace the terms with second derivatives of the scale factor ä produces
the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 (12)
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which can also be obtained from the conservation equation ∇µTµν = 0. The evolution
of the scale factor, and therefore of the universe, depends on its matter content and the
curvature of the surfaces of constant time. For the rest of this section I will set the
curvature of the three-slices to k = 0 and solve the Friedmann equations (10) and (11)
for matter, radiation and dark energy dominated universes.

Matter and Radiation Dominated Universes

For the time being I set the cosmological constant Λ = 0. With the equation of state
P = ωρ, the continuity equation (12) can be written as

d

dt
ln ρ = −3(1 + ω)

d

dt
ln a. (13)

Integrating this equation reveals that the energy density scales as

ρ = ρ0a
−3(1+ω). (14)

Using this expression for the energy density the first Friedmann equation (10) becomes

ȧ a1+3ω = const (15)

and is solved by

a(t) =
( t
to

)2/n

(16)

where n = 3(1 + ω) and a(to) = 1 was chosen as an initial condition. The time to is to
be understood as the time at which some observation was made and could for example
be the current time.

So far this is true for perfect fluids with an equation of state P = ωρ. To make this
specific to matter consider a cube with sides of comoving length L. If this cube is
filled with matter of energy density ρm the total energy contained in the cube is E =
ρma

3(t)L3. As the expansion of the universe does not create matter, the energy has to be
constant from which follows that the energy density scales as ρ ∝ a−3. This translates
into ω = 0 and n = 3 making the scale factor for a matter dominated universe

Matter Dominated Universe: a(t) =
( t
to

)2/3

(17)

To describe radiation first note that a single photon of wavelength λ has the energy
Eλ = 2π/λ. As the wave length will scale as a(t) the energy of a photon will scale as
a−1(t). Therefore the total energy of a cube with sides of comoving length L, containing
photons E = ρra

3(t)L3 will also scale as a−1(t). In order to produce this behaviour the
energy density has to behave as ρr ∝ a−4 making ω = 1/3 and n = 4. A universe filled
with radiation then evolves according to

Radiation Dominated Universe: a(t) =
( t
to

)1/2

. (18)
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Dark Energy Dominated Universes

Consider a universe with a cosmological constant but void of radiation and matter. In
such a universe the Friedmann equations reduce to

ȧ2

a2
=

Λ

3
(19)

which is solved by

a(t) = exp
(√Λ

3
(t− to)

)
. (20)

It is worth noting that for such a universe the Hubble parameter is constant in time and
given by H =

√
Λ/3. The line element for this spacetime is

ds2 = −dt2 + exp (H(t− to))d~x2. (21)

If the cosmological constant is greater than zero this describes de Sitter spacetime,
which while spatially flat, is a space for which the curvature of the full four-dimensional
geometry is positive and constant. To see this take the trace of the Einstein equation

Gµν + Λgµν = 0. (22)

to find R = 4Λ.

Our Universe

The universe we live in contains radiation, matter and dark energy described by a
cosmological constant. To gain some insight into the evolution of our universe it is
useful to rewrite the first Friedmann equation (10) by dividing it by the square of the
Hubble parameter to obtain the reduced Friedmann equation

1 = Ωr + Ωm + ΩΛ (23)

where

Ωr =
8π

3H2
ρr, Ωm =

8π

3H2
ρm, ΩΛ =

Λ

3H2
(24)

are called density parameters. Given the density parameters Ωro, Ωmo, ΩΛo and the
Hubble parameter Ho observed today the equation for the evolution of the scale factor
is

H2

H2
o

=
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0. (25)

Qualitatively this equations makes it clear that no matter how much radiation is present
it will decay in an expanding universe. Matter will also decay but slower than radiation.
Eventually the evolution of the scale factor will only be dictated by dark energy.
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For our universe the current density and Hubble parameters are roughly [14]

Ho ∼ 2× 1018s−1, Ωro ∼ 10−4, Ωmo ∼ 0.3079, ΩΛo ∼ 0.692. (26)

This makes the age of the universe to ∼ 4 × 1017s. After an initial phase in which the
universe was dominated by radiation the density parameters for matter and radiation
become equal at tm ∼ 1.5×1012s starting the era of matter domination. At tΛ ∼ 3×1017s
the matter and dark energy density parameters became equal starting the current epoch
of the universe which is dominated by dark energy.

2.2. Problems of the Big Bang

2.2.1. Horizon Problem

The horizon problem describes how the homogeneity and isotropy of the universe can not
be a product of a causal mechanism in the frame work of the big bang model. A strong
indication that our universe has the symmetry properties required by the cosmological
principle comes from the CMB which up to fluctuations of order ∆T/T ∼ 10−5 is
isotropic.

The CMB originates at trec ∼ 1013s where what is known as recombination took place.
Before recombination the photons, electrons and protons formed a hot plasma that was
opaque as the photons were Thomson scattered of the free electrons causing a very short
mean free path. At recombination the plasma cooled down enough to enable the protons
and electrons to bind forming hydrogen atoms. With the electrons bound the universe
becomes transparent as photons are no longer scattered. The photons that became free
to roam the universe at recombination are what we see as the CMB today. Details of
recombination can be found in [10, 11, 12].

As light is described by null vectors the equation that describes their path are obtained
by setting the line element zero

0 = −dt2 + a2(t)dr2. (27)

A photon that reaches us today and originated at trec therefore has travelled a comoving
distance of

rhom =

∫ to

trec

dt

a(t)
=

n

n− 2
to

(
1−

(trec
to

)(n−2)/n)
(28)

where the scale factor of a perfect fluid with equation of state P = ωρ was assumed.
This comoving radial distance is the scale on which we know the universe to have been
homogeneous and isotropic at recombination.

This also gives us a tool to probe causality. The distance a photon could have travelled
from t = 0 to trec

rcaus =

∫ trec

0

dt

a(t)
=

n

n− 2
t2/no t(n−2)/n

rec (29)
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Figure 1: Depiction of the horizon problem. rcaus is the comoving scale on which the
universe could have been made homogeneous by a causal mechanism, while
rhom is the comoving scale on which the universe is homogeneous

is the comoving radial distance on which a causal mechanism could cause the universe
to be homogeneous. As to � trec in both matter and radiation dominated universes the
scale on which the universe was already homogeneous at trec is far bigger than the scale
on which a causal mechanism could have caused this.

This idea can best be visualized in conformal time where the metric becomes ds2 =
a2(τ)(−dτ 2 +dr2) and light thus obeys 0 = −dτ 2 +dr2, making light straight lines when
plotting conformal time against comoving coordinates. Figure 1 depicts the discrepancy
between the comoving scales on which the universe is homogeneous versus those on
which it could have been made homogeneous by a causal mechanism.

2.2.2. Flatness Problem

To understand the flatness problem turn the spatial curvature back on. Summing the
density parameters for radiation, matter and dark energy up into one Ω = Ωr+Ωm+ΩΛ,
the reduced Friedmann equations (23) becomes

1− Ω = − k

(aH)2
. (30)
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In the early universe the Hubble radius (aH)−1 is given by

1

(aH)2
=
n2

4
t4/no t2(n−2)/n (31)

making it grow as long as 2 < n. This holds for both the radiation and matter dominated
era. From the Planck mission [14] it is known that today the curvature of the universe
is at most 1 − Ω = 0 ± 5 × 10−3. Considering equation (30) in a matter or radiation
dominated universe the presence of any initial non-zero spatial curvature would grow
with time. To get an idea how finely tuned the universe would have had to have been
initially to produce our current universe let’s extrapolate back to the Planck time.

To get an estimate on the flatness of the universe at the Planck time tP it is sufficient to
treat the radiation, matter and dark energy dominated epoch as if they evolved according
to (17), (18) and (21) respectively. Equation (30) holds for all times. This allows k to
be expressed through 1− Ω at an earlier time. Take t1 < t2 then

1− Ω(t1) =
(a(t2)H(t2)

a(t1)H(t1)

)2

(1− Ω(t2)). (32)

Using this formula to extrapolate from today back to the Planck time through first the
dark energy, then matter and then radiation dominated era one finds that the universes
curvature had to be very small initially,

|1− Ω(tP )| < 10−61. (33)

This constitutes a very fine tuned initial condition for the big bang model.

2.2.3. Further Problems of the Big Bang Model

While I will not go into detail it is worth mentioning the monopole problem, one of the
original motivations for studying inflation. When introducing a grand unified theory into
the picture of the standard big bang model the theory predicts an abundance of particles
e.g magnetic monopoles or gravitinos that are not observed today. An inflationary period
allows to get rid of these relics [4, 5].

The big bang model describes a homogeneous universe and can therefore not address
how structure in the universe is formed making the theory incomplete. The formation of
structure can be explained by perturbations of the homogeneous and isotropic spacetime,
where the perturbations produced during inflation seed these fluctuations in the matter
distribution. Thereby inflation solves this problem too and details of the process of
structure formation can for example be found in [7].

The cosmological principle, the idea that the universe is homogeneous and isotropic on
large scales, can be understood as an initial condition for the big bang. Given that there
is just one universe to observe, setting two of its key features as initial conditions seems
somewhat unsatisfying. This also is taken care of by a period of inflation. An era of
accelerated expansion of the universe can be understood as setting the initial values for
the big bang that create our current universe.
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2.3. Solution to the Horizon and Flatness Problems

Both the horizon and flatness problem can be solved by the same mechanism, a shrinking
Hubble radius (aH)−1. This can be rewritten as

d

dt
(aH)−1 < 0⇐⇒ ä > 0. (34)

A period in which the universe under goes accelerated expansion is called inflation and
will be discussed in the next chapter. For now I will describe how a shrinking Hubble
radius solves the big bang problems.

In case of the flatness problem it is easy to see that this is a solution to the problem
as if (aH)−1 decreases |1 − Ω| comes closer to zero. After a sufficiently long period in
which the Hubble radius shrinks the universe can go back into the evolution described
so far as it will be flat enough to eventually produce the universe we observe today.

To see how a shrinking Hubble radius solves the horizon problem note that the differential
dt can be rewritten using the Hubble parameter. As H = ȧ/a and da = ȧdt = aHdt,
the comoving distance traveled by light from time t1 to time t2 is given by

r =

∫ t2

t1

da

a2H
=

∫ t2

t1

d ln a

aH
. (35)

If the universe evolves such that (aH)−1 decreases with time then early times will con-
tribute more to the integral (35) increasing the scale on which a causal mechanism can
cause the universe to be homoheneous.

While the accelerated expansion of the universe solves the big bang problems in principle,
the period of inflation will not get rid of the fine tuning unless it lasts long enough. The
length of inflation is given in number of e-folds N . In one e-fold the scale factor a(t)
grows by a factor of e, where e is Euler’s number.

To obtain the number of e-folds that are needed to solve the flatness problem assume
that inflation started when the scale factor had the value ai and grew by N factors of e
to reach af = eNai by the end of inflation. The curvature parameter will then change
from the beginning to the end of inflation according to

1− Ω(ti) =
(afHf

aiHi

)2

(1− Ω(tf )). (36)

For simplicity assume that inflation is described by de Sitter space. The Hubble param-
eter is therefore constant meaning that Hi = Hf which combined with af = eNai gives
the evolution of the curvature parameter as

1− Ωi

1− Ωf

= e2N . (37)
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Suppose that the initial curvature parameter is of order one 1 − Ωi ∼ 1 and that after
inflation the universes curvature is given by 1− Ωf ∼ 10−61 then the number of e-folds
needed is

70 . N. (38)

Similar results can be obtained from the Horizon problem though here one needs to
assume a time at which inflation ended. The values found in the literature for the
number of e-folds required for inflation to solve the big bang problems are usually given
by 50− 70 . N [11].

2.4. Particle Horizons and Hubble Radius

The Hubble radius, given by rH(t) = (a(t)H(t))−1, is of importance in both formulating
and solving the big bang problems and their solutions, and is related to the idea of a
particle horizon. A particle horizon has, without being explicitly named, already been
used in the formulation of the horizon problem.

Consider an event at time t1 and an observer at t2 in an FLRW spacetime. A photon
that reaches the observer at time t2 must have been a comoving radial distance

rPH(t2, t1) =

∫ t2

t1

dt

a(t)
(39)

away from the observer at time t1. The observer at time t2 can only know about the
event time t1 if it took place at a comoving distance r < rPH(t2, t1). This defines the
particle horizon rPH(t2, t1), the line that separates the events an observer at t2 can know
about from those the observer can not know about if the events took place at time t1.

In a universe filled with a perfect fluid, where a(t) = (t/t2)2/n, the particle horizon is
found at

rPH(t2, t1) =
n t2
n− 2

(
1−

(t1
t2

)(n−2)/n)
. (40)

In such a universe the Hubble parameter is H(t) = 2(n t)−1 making the Hubble radius
rH(t) = (a(t)H(t))−1

rH(t) =
n

2
t
2/n
2 t1−2/n. (41)

Therefore if t1 � t2 the particle horizon and Hubble radius are related by

rPH(t2, t1) ' 2

n− 2
rH(t2) (42)

i.e. the Hubble radius is of the same order of magnitude as the particle horizon.

This is no longer true in a de Sitter universe. For simplicity normalize the scale factor
to a(t) = exp (Ht) and find the particle horizon at

rPH(t2, t1) =
exp (−Ht2)

H

(
exp (H(t2 − t1))− 1

)
(43)
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and the Hubble radius at

rH(t) =
exp (−H t)

H
. (44)

The relation between the two is therefore

rPH(t2, t1) = rH(t2)
(

exp (H(t2 − t1))− 1
)

(45)

making the particle horizon a lot bigger than the Hubble radius for t1 � t2. While in
a universe dominated by matter or radiation the Hubble radius is related to the causal
structure this is no longer true in an exponentially expanding universe.

3. Inflation in a Homogeneous Universe

An inflationary phase, in which the universe undergoes accelerated expansion, can be
constructed in a number of ways [16]. Two popular ways to construct exponentially
expanding universes are to add a scalar field to the Einstein-Hilbert action that drives
the expansion, or change the gravity theory from Einstein gravity to some alternative
theory [17] among which are the popular f(R) theories [18]. In this chapter the two
approaches will be explored to both explain inflation and in part motivate the model
that will be constructed later using conformal gravity [9].

3.1. Single Field Inflation

3.1.1. Cosmology with a Klein-Gordon Field

A simple model of inflation can be obtained by adding the action of a Klein-Gordon field
to the Einstein-Hilbert action

S =

∫
ωg

( R

16π
− 1

2
∇µϕ∇µϕ− V (ϕ)

)
. (46)

Varying this action with respect to the inverse metric gµν gives the Einstein equations
where the energy-momentum tensor of the scalar field is

Tµν = ∂µϕ∂νϕ−
1

2
gµν ∂ρϕ∂

ρϕ− gµνV (ϕ). (47)

As long as the spacetime is an unperturbed FLRW spacetime the scalar field can only
depend on time and upon comparing the energy momentum tensor of the scalar field
(47) with that of a perfect fluid (9) the energy density and pressure of the Klein-Gordon
field are found to be

ρ =
1

2
ϕ̇2 + V, P =

1

2
ϕ̇2 − V. (48)
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Knowing this, the Friedmann equations become

ȧ2

a2
=

8π

3

(
V +

1

2
ϕ̇2
)

(49)

ä

a
=

8π

3

(
V − ϕ̇2

)
(50)

and the continuity equation turns out to give the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (51)

Note that in the limit ϕ → const. the kinematical term in (46) will vanish and the
potential term becomes constant and takes the role of a cosmological constant. In the
absence of matter and spatial curvature, but with a cosmological constant present, de
Sitter space is the only solution an FLRW ansatz will allow. Therefore the limit of
constant scalar field in (46) gives the de Sitter limit of this model.

3.1.2. Slow-Roll Parameters

So far, (49)-(51) are the general equations that determine the evolution of the universe
in the presence of a Klein-Gordon field. As inflation is given when ä > 0 the universe
undergoes accelerating expansion when the potential is bigger than the derivative of the
scalar field squared V � ϕ̇2. Wether or not this condition is satisfied can be encoded in
a purely geometrical quantity given by

ε = − Ḣ

H2
. (52)

To see this note that with Ḣ = −4πϕ̇2 the condition V � ϕ̇2 can be rewritten as

V � ϕ̇2

V +
1

2
ϕ̇2 � 3

2
ϕ̇2

1

8π
H2 � 1

2
ϕ̇2

1� 4πϕ̇2

H2
= ε. (53)

As previously discussed too brief a period of inflation will not solve the big bang problems
and the condition V � ϕ̇2 has to be supplemented. In order for ε to be small sufficiently
long the change of ϕ̇2 should be slow. This can be achieved by requiring ϕ̈ � 3Hϕ̇
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making the change in ϕ̇ smaller than its value. Again this condition can be expressed
through geometrical quantities, namely ε. Differentiate ε with respect to time to find

ε̇ =
2

ϕ̇

(
4π

ϕ̇2

H2

)
ϕ̈+ 2H

(
4π

ϕ̇2

H2

)(
− Ḣ

H2

)
= 2H ε

ϕ̈

Hϕ̇
+ 2Hε2. (54)

Define δ as

δ = ε− ε̇

2Hε
. (55)

From (54) it is obvious that δ = −ϕ̈/Hϕ̇ and therefore if |δ| � 1 the condition |ϕ̈| �
3|H| required to make inflation last long is satisfied. This describes a broad class of
inflationary models summarized under the name slow-roll inflation as in these, the scalar
field ϕ slowly rolls from its original value at the beginning of inflation to its minimum.

The parameters ε and δ are therefore called the slow roll parameters and inflation persists
while

ε� 1, |δ| � 1 (56)

and its end is marked by ε ' 1 and |δ| ' 1.

The slow-roll parameter ε comes in handy when computing the number of e-folds inflation
lasts. In the infinitesimal time from t to t+dt the scale factor grows by a(t+dt) = a(t)edN .
The number of e-folds are therefore given by

dN = ln
a(t+ dt)

a(t)
=
ȧ(t)

a(t)
dt+O(dt2) (57)

making the number of e-folds from some initial time ti to tf

N =

∫ tf

ti

dtH(t) =

∫ ϕf

ϕi

dϕ
H(t)

ϕ̇(t)
= −
√

4π

∫ ϕf

ϕi

dϕ
1√
ε
. (58)

Here ϕi = ϕ(ti), ϕf = ϕ(tf ) and the last equality follows from ε = 4πϕ̇2/H2. Note
that as ε increases with time, ε−1/2 will decrease so that when taking the square root of
H2/ϕ̇2 one has to take the negative branch to obtain the physically sensible result of a
positive number of e-folds N .

3.1.3. Slow-Roll Approximation and Expansion

During a period of slow-roll inflation an approximation scheme called slow-roll approxi-
mation can be used to solve the Friedmann and Klein-Gordon equations (49), (51). The
approximation is achieved by simply discarding the ϕ̇2 term in (49) and the ϕ̈ term in
(51), as they are by assumption small anyhow, to give the equations

H2 =
8π

3
V, 3Hϕ̇+

dV

dϕ
= 0. (59)
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These equations can be used to rewrite ε and δ in terms of the potential making them
easier to calculate.

Recall from (53) that ε = 4πϕ̇2/H2. The slow-roll approximated Klein-Gordon equation
makes it possible for ϕ̇ to be expressed trough the potential and the Hubble parameter

to give ε = 4π
9H2

(
dV
dϕ

)2
which, using the approximated Friedmann equation yields

ε =
1

16π

( 1

V

dV

dϕ

)2

. (60)

To express the other slow-roll parameter δ = −ϕ̈/Hϕ̇ trough the potential differenti-
ate the approximated Klein-Gordon equation with respect to cosmic time to find an
expression for ϕ̈. A short calculation then shows

δ =
1

8π

( 1

V

d2V

dϕ2

)
− ε =

1

16π

( 2

V

d2V

dϕ2
−
( 1

V

dV

dϕ

)2)
. (61)

The slow-roll parameters prove useful to describe various processes during slow-roll in-
flation without having to specify a potential in a scheme called slow-roll expansion. The
slow roll parameters expressed in conformal time are

ε = 1− H
′

H2
, δ = 1− ϕ′′

Hϕ′
= ε− ε′

2Hε
. (62)

ε can be expressed as
d

dτ

( 1

H

)
= ε− 1. (63)

The change of ε during inflation is given by ε′ = 2Hε(ε− δ)/a and is therefore expected
to be small making it a safe assumption that

∫
dτ ε = τε for times when the slow-roll

approximation is valid. Equation (63) can then be integrated to give

H =
1

τ (ε− 1)
. (64)

Expanding this to first order in ε gives the simple expression

H = −1

τ
(1 + ε) +O(ε2) (65)

which will later be used to express results that hold for all models of slow-roll inflation
regardless of the potential.

3.1.4. An Example of Slow-Roll Inflation

As a concrete example consider the potential

V (ϕ) = λϕn (66)
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where λ and n are constants. By virtue of (60) and (61) the slow roll parameters for
this potential are given by

ε =
n2

16π ϕ2
, δ =

n(n− 2)

16 π ϕ2
(67)

and inflation ends when the field ϕ becomes smaller than the value ϕf = n
4
√
π

making,

with the aid of (58), the number of e-folds inflation lasts

N =
4π

n
ϕ2
i −

n

4
. (68)

Given a minimum number of e-folds NMIN inflation is to last, the initial field value has
to satisfy

ϕi >

√
nNMIN

4π
+

n2

16π
(69)

though one should keep in mind the argument found in [19] that the potential V (ϕ)
should always stay low enough to keep the model outside the energy regime, V (ϕ) < M4

P ,
where quantum gravity is expected to become relevant and the classical description of
spacetime used here breaks down.

With the potential (66) the Friedmann and Klein-Gordon equation in the slow-roll ap-
proximation read

H2 = λϕn, 3Hϕ̇+
3λ

8π
nϕn−1 = 0. (70)

Plugging the first of these equations into the second gives an equation in just ϕ, and
this in turn can be plugged into the first equation to turn it solvable in terms of ϕ. The
equations now are

ȧ

a
= −8π

n
ϕ̇ ϕ, ϕ̇+

√
λ

8π
nϕn/2−1 = 0. (71)

The first is easily integrated to give

a(t) = ai exp
(4π

n
(ϕ2

i − ϕ2(t))
)

(72)

where ai and ϕi are the values of a(t) and ϕ(t) at values at the time ti at the beginning
of inflation. To solve the second equation in (71) introduce a field ϕ̃ according to

ϕ̃ = ϕ2−2/n. In terms of this field the equation is given by ˙̃ϕ +
√
λn (4−n)

16π
= 0. After a

simple integration the result can be transformed back to the original field ϕ to give

ϕ(t) = ϕi

(
1− ϕ(n−4)/2

i

√
λn (4− n)

16 π
t
)2/(4−n)

. (73)

To visualize the solutions in a plot without having to specify the constant λ or decide on
initial values ϕi and ai, rescaled functions and time variables aR(tR) = a(t) exp (−4πϕ2

i /n/ai),

ϕR(tR) = ϕ(t)/ϕi and tR = ϕ
(n−4)/2
i

√
λn (4−n)t/16 π are used and the plot for n = 2 is
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Figure 2: The scale factor and Klein-Gordon field in a potential V ∝ ϕ2 during inflation.

given in figure 2. This graph shows the general property of slow-roll inflation where the
inflaton decreases while the scale factor grows exponentially. The plot is cut off at the
value for which äR(tf ) = 0, the point at which inflation stops. This is also in the gen-
eral vicinity in which the slow-roll approximation will no longer be valid and a solution
of the full Friedmann and Klein-Gordon equations (49) and (51) would be required to
investigate the effects the presence of a Klein-Gordon field would have on the expansion
of the universe.

3.2. Inflation from Alternative Gravity Theories

The study of theories of gravity different from Einstein gravity has a long history starting
with Hermann Weyl who tried to unify GR and electromagnetism in a geometric theory
that does not know about length. There are plenty of motivations to study alternatives to
Einstein gravity. From a theoretical point of view Einstein gravity is non renormalizable
and renormalizable theories of gravity can be constructed by adding terms to the Einstein
Hilbert action that introduce derivatives of the metric that are higher than order two
[20]. Also, low energy limits of string theory produce effective actions for gravity that
are not necessarily pure Einstein Gravity [21].

From an observational point of view, GR agrees with observations made in our solar
system. On larger scales however, there are deviations from what can be explained
through a combination of GR and the standard model of particle physics. Recall from
the discussion that the energy content of our universe is currently made up of around 70%
dark energy and 30% matter. However only around 5% of the energy is described by the
standard model leaving the remaining 25% of energy attributed to matter unexplained.
This is referred to as dark matter. While it is a popular idea that dark matter might
be described by the lightest super-symmetric particle [22] or axions [23], it is also a
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motivation to study alternative gravity theories, as what we see in the framework of
Einstein gravity as an unexplained source of energy might be large scale deviations from
Einstein gravity. On top of all this, non Einstein gravity is a rich environment for
building models of inflation.

A popular example for building models of inflation are f(R) theories, which are theories
with actions of the form

Sf(R) =

∫
ωg f(R) (74)

where f(R) is some function of the Ricci scalar. This theory is conformally related to
Einstein gravity with a Klein-Gordon field. To see this first note that the action can
equivalently be written with an auxiliary field χ as

Sχ =

∫
ωg
(
f ′(χ)R− V (χ)

)
(75)

where V (χ) = χ f ′(χ) − f(χ). The equations of motion for χ, obtained by setting the
variation with respect to the auxiliary field zero, given by

0 = δχSχ =

∫
ωg f

′′(χ)
(
R− χ

)
δχ (76)

reveal that for f ′′(χ) 6= 0 the field χ is equal to the ricci scalar, χ = R. Going on shell
in the auxiliary field action then reproduces the f(R) action, Sχ|χ=R = Sf(R).

So far this has all taken place in what is referred to as the Jordan frame, which is given
by the metric for which the action takes the form (74). This theory can equivalently be
written in the Einstein frame, into which one can change by the conformal transformation
gµν → Ω2gµν . In the Einstein frame (75) is given by

Sϕ =

∫
ωg̃

(
R̃− 1

2
g̃µν ∇̃µϕ∇̃νϕ− U(ϕ)

)
. (77)

where g̃µν = f ′(χ(ϕ)) gµν , ϕ =
√

3 ln f ′(χ) and U(ϕ) = V (χ(ϕ))/
(
f ′(χ(ϕ))

)2
. From

appendix D of [15] one finds

R̃ =
1

f ′(χ)

(
R−

6 gµν∇µϕ∇νϕ
√
f ′(χ)√

f ′(χ)

)
. (78)

Plugging all of these expressions into (77) recovers (75) up to a boundary term that
can, for purposes of the bulk equations of motion, be discarded, thereby showing the
equivalence of the actions Sf(R) and Sχ.

In the Einstein frame the action (77) is of the form of the action for single field inflation
(46). An inflationary model is then obtained by solving the Friedmann and Klein-Gordon
equations in the Einstein frame and then transforming back into the Jordan frame in
which the theory was originally formulated.

In a later section I will discuss a theory of gravity known as conformal or Weyl gravity
and its implications for inflation. Before I do so, let us make the universe more interesting
(and complicated) by introducing perturbations.
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4. Cosmological Perturbation Theory

So far I have treated inflation and indeed all of cosmology as purely concerned with the
evolution of a homogeneous spacetime. However while the universe is very homogeneous
on large scales we know from simply observing our solar system that it cannot be com-
pletely homogeneous. Indeed the true predictive power of inflation lies not within its
homogeneous limit presented above, but as the source of inhomogeneities that are the
seeds of structure formation and leave an imprint on the CMB. This chapter is concerned
with the formalism used to describe these fluctuations in both matter and metric. A
comprehensive review of the topic of cosmological perturbation theory can be found in
[24].

4.1. Perturbations and Gauge Freedom

This section deals with the differential geometry behind perturbation theory. To make
the presentation clearer indices on tensors and vectors will be dropped.

To formulate perturbation theory introduce two pseudo-riemannian manifolds M and
N with metrics gM and gN respectively. The pair (M, gM) is taken to be the physical
manifold while (N, gN) constitutes the background manifold. I will further require a

coordinate function φ : N → Rn and two diffeomorphisms D and D̃ that map N to M .
This setup is illustrated in figure 3 for clarity.

Perturbing the background manifold amounts to using one of the diffeomorphisms D, to
pull back the physical metric onto the background manifold. This expression can then
be expressed as the metric gN plus a term that is to be thought of as the perturbation

D∗(gM) = gN + δg. (79)

The same could have been done with the other diffeomorphism D̃ to obtain

D̃∗(gM) = gN + δg̃. (80)

As in GR all diffeomorphic manifolds are physically equivalent and there is a priori no
reason to choose one diffeomorphism over another to pull back the physical metric onto
the background manifold this constitutes a gauge freedom. A less mathematical and
for the physicist more intuitive way to think about this gauge freedom is in terms of
coordinate transformations.

To see that this can indeed be related to coordinate transformations take the coordinate
function φ that maps points form an open set in N to Rn to construct a coordinate
system on M . This can be achieved by taking a point m ∈M mapping it to N via D−1

and then using φ to obtain a point x ∈ R. This whole idea can of course be written
down shorter as x(m) = (φ◦D−1)(m) where x(p) ∈ R. Using a different diffeomorphism

D̃ one can then construct a different coordinate system x̃(m) = (φ ◦ D̃−1)(m) and a
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Figure 3: Depiction of the mathematical machinery behind perturbation theory in grav-
ity. The pair (M, gM) describes the physical spacetime, while (N, gN) is the

background spacetime. D and D̃ are diffeomorphis that map the physical to
the background and choosing between them is a matter of gauge.

change between the coordinate systems can be constructed by x̃ = (φ◦D̃−1 ◦D◦φ−1)(x)
showing the assertion that gauge transformations i.e. changing the diffeomorphism that
pulls back the physical metric to the background manifold is related to a coordinate
change.

An infinitesimal coordinate transformation will then cause perturbations to transform via
Lie derivative along the vector generating this infinitesimal change. This is not surprising
as going from the coordinates x to the coordinates x̃ is achieved via a diffeomorphism
D̃−1 ◦ D, yet will explicitly be shown for a scalar field q and a metric g. Tensor and
vector indices will be reintroduced.

Given two coordinates xµ and x̃µ that are related by the infinitesimal transformation
x̃µ = xµ− ξµ the scalar field will take the same value in both coordinate system q(xµ) =
q(x̃µ). Splitting of the background value q̄ gives the relation

q̄(xµ) + δq = q̄(x̃µ) + δq̃. (81)

The background value of the right hand side is a function of x̃µ = xµ − ξµ and can
therefore be expanded around xµ to give to first order

q̄(xµ) + δq = q̄(xµ)− ξµ∂µ q̄(xµ) + δq̃ +O(ξ2). (82)
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As the transformation is infinitesimal the mistake made when ignoringO(ξ2) are minimal
and it follows that

δq̃ = δq + ξµ∂µ q̄(x
µ). (83)

The same logic can be applied to the metric, though the calculation is slightly more
involved due to the metrics tensor nature. Under coordinate transformations the metric
changes as

g̃µν(x̃
σ) =

∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(xσ). (84)

Taking the derivatives of xα = x̃α + ξα with respect to x̃µ gives δαµ + ∂̃µξ
α resulting in

g̃µν(x̃
σ) = gµν(x

σ) +
∂ξα

∂x̃µ
gαν(x

σ) +
∂ξβ

∂x̃ν
gµβ(xσ) +O(ξ2). (85)

The metric in both coordinate systems can now be split into background and perturba-
tion according to

g̃µν(x̃
σ) = ḡµν(x̃

σ) + δg̃µν (86)

gµν(x
σ) = ḡµν(x

σ) + δgµν . (87)

Now using xα = x̃α+ ξα, the background metric in coordinates xσ can be expanded as

ḡµν(x
σ) = ḡµν(x̃

σ) + ξγ
∂

∂x̃γ
ḡµν(x̃

σ). (88)

Splitting the remaining metrics in (85) into background and perturbation and expanding
them according to (88) gives g̃µν = δgµν + Lξ ḡµν where

Lξ ḡµν = ξγ
∂

∂x̃γ
ḡµν(x̃

σ) +
∂ξα

∂x̃µ
ḡαν(x̃

σ) +
∂ξβ

∂x̃ν
gµβ(xσ) (89)

4.2. SVT Decomposition

Having established how perturbation theory and gauge freedom works in the abstract,
it is now time to think about the concrete problem at hand, perturbations on a ho-
mogeneous and isotropic background manifold. The metric will be split according
to gµν = ḡµν + δgµν . It is simpler to do perturbation theory in conformal time, so
ḡµν = a2(τ)ηµν . The symmetries of the background allow one to decompose the metric
perturbations into scalars, vectors and tensors.

Under spatial SO(3) transformations the components δg00, δg0i and δgij of the metric
perturbation transform as a scalar, a vector and a tensor respectively. These can then
be further decomposed into irreducible representations of SO(3) to give

δgµν = a2(τ)

(
−2A Bi + ∂iB

Bj + ∂jB −2ψδij + ∂iEj + ∂jEi + 2∂i∂jE + 2hij

)
(90)
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where ∂iBi = ∂iEi = 0, ∂ihij = 0 and hii = 0. This is the scalar-vector-tensor (SVT)
decomposition of the perturbation. The SVT decomposition can be done for other tensor
fields as well.

Note that I have chosen a slightly different convention for the tensor perturbations.
The tensor perturbation are often defined as δ(gT )ij = a2(τ)hij [25], but I have chosen
δ(gT )ij = 2 a2(τ)hij as this is the convention used by xPand [26], a Mathematica package
designed for cosmological perturbation theory on a number of predefined backgrounds.
All perturbations done here were done using xPand.

To investigate how the gauge freedom might simplify this decomposition, do an infinites-
imal coordinate transformation xµ → xµ − ξµ(xν). The vector ξµ that generates this
change of coordinates, can also be decomposed into irreducible representations of SO(3)
according to ξ0 = T and ξi = Li+∂iL where ∂iLi = 0. This transformation is felt by the
metric perturbations as a Lie transport along ξµ, δgµν → δgµν+Lξ(a2(τ)ηµν). It is found
that the scalar, vector and tensor components of the SVT decomposition transform as

A→ A+ T ′ +H T (91)

B → B + L′ − T (92)

C → C +H T (93)

E → E + L (94)

Bi → Bi + L′j (95)

Ei → Ei + Lj (96)

hij → hij (97)

where H is the conformal Hubble parameter defined in (7). Note that the metric per-
turbation hij is gauge invariant. Two further gauge invariant scalar fields Φ and Ψ, and
one gauge invariant vector field Vi can be constructed according to

Φ = A+H(B − E ′) + ∂τ (B − E ′) (98)

Ψ = C +H(B − E ′) (99)

Vi = Bi − E ′i (100)

hij = hij. (101)

While on the topic of gauge invariant quantities, the Klein-Gordon field introduced
to drive inflation will also be perturbed and can be shown to have a gauge invariant
perturbation too. The background Klein-Gordon field ϕ(τ) will be perturbed by the
quantity δf as ϕ(τ) + δf . Under the usual infinitesimal coordinate transformations δf
will transform as δf → δf+ξµ∂µϕ = δf+Tϕ′. Therefore a gauge invariant perturbation
for the Klein-Gordon field is given by

δϕ = δf + (B − E ′)ϕ′ (102)
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The importance of gauge invariant quantities is that they allow one to differentiate
between actual physical perturbations and gauge artifacts. A general metric that may
look like a perturbed spacetime might actually be an unperturbed spacetime in new
coordinates. Gauge invariant quantities will be non zero for physical perturbations.

As is often done for systems with gauge freedom, I will now choose the gauge I will be
working with primarily, Newton or Longitudinal gauge as it is known in the literature.
To obtain this gauge take the general SVT decomposition introduced above and make
a gauge transformation with the transformation vector given by T = B − E ′, L = −E
and Li = −Ei to obtain

δgµν =

(
−2Φ Vi
Vj −2Ψδij + 2hij

)
(103)

and
δf = δϕ. (104)

All perturbations are expressed trough gauge invariant quantities.

4.3. Equations of Motion for Perturbations

There are two equivalent approaches to finding the equations of motion for the pertur-
bations to first order. First one can simply take the equations of the full theory, in our
case Einstein gravity minimally coupled to a Klein-Gordon field and expand them to
first order in perturbations. The different types of perturbations evolve separately [25]
whereby the equations of motion that follow from the Einstein equations are

(δGS)µν = 8π(δTS)µν (105)

(δGV )µν = 0 (106)

(δGT )µν = 0 (107)

for scalar, vector and tensor perturbations respectively.

The second method to obtain the equations of motion is to take the action of the theory
and expand it to second order in perturbations. The second order term of this expansion
then serves as the action from which, after variation with respect to the perturbations,
follow their equations of motion. This action also serves as the foundation for the
canonical quantization of the perturbations.

As is so often the case, depending on the situation one or the other approach might
be more straightforward to finding the equations of motion. Some preliminary work for
scalar perturbations is, for example, simpler starting from the Einstein equations.
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4.3.1. Vector Perturbations

While tensor and scalar perturbations will be dealt with in a chapter dedicated to them
and their quantization, the vector perturbations do not play a role in Einstein gravity
inflation and will quickly be dealt with here.

The equation (δGV )µν = 0 gives two equations for the vectors namely

0 = ∆Vi (108)

0 = a ∂iV
′
j + 2a′ ∂iVj. (109)

The second equation (109) can equivalently be written as (a2∂jVi)
′ = 0 making it clear

that Vi is proportional to the squared inverse scale factor Vi ∝ a−2. The vector pertur-
bations therefore decay fast in an expanding universe and unless they were initially very
large they can safely be ignored.

5. Observable Consequences of Inflation

Before I dive into calculating the behaviour of tensor and scalar perturbations during
inflation, it seems a good idea to explain why these are of relevance and paint the big
picture without going into too much detail. The discussion here follows [25].

The scalar field that drives inflation also dictates when inflation will end. By the uncer-
tainty principle arbitrarily precise measurement of time is not possible and the field will
have fluctuations depending on the space coordinates and inflation will be in different
stages of evolution at different places. This will then translate into quantum fluctuations
of the spacetime metric.

As will be done in the following chapters, both tensor and scalar perturbations can be
Fourier expanded into modes of wave vector k. The magnitude |k| of the wave vector is
proportional to the inverse wavelength. Therefore when k = Ha the wave length is of
the order of the Hubble radius. The Fourier modes at a time t can be divided into super-
and sub-Hubble modes where the former is defined by having a wave number k � aH
and the latter by k � aH.

In comoving coordinates the wavelength stays the same, during inflation however, the
Hubble radius shrinks and some of the modes become super-Hubble. This is often
referred to as inflation stretching the modes to super-Hubble scales. These modes then
remain outside the Hubble radius during the period of inflation and once they leave the
Hubble sphere the fluctuations are thought to shed their quantum behaviour but keep
their expectation values and correlators that are now to be thought of as the statistical
properties of the ensemble of values of a classical stochastic field. Once inflation stops
the Hubble radius will grow and eventually super-Hubble modes will re-enter the Hubble
sphere. For large enough scales this happens close to the release of the CMB and it is
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Figure 4: Illustration of a mode of wave number k becoming super-Hubble and re-
entering the horizon after inflation. The idea for this depiction was taken
from [25]

those modes that are of interest as they cause the CMB anisotropies and are the seeds
of large scale structure in the universe. This situation is sketched in figure 4.

Recall from section 2.4 that during the standard big bang evolution of the universe
the Hubble radius is roughly the same size as the particle horizon. In this picture,
perturbations with wavelengths of the order of the horizon are a bit of a mystery as they
could not be caused by a causal mechanism. Inflation remedies this situation and gives
an explanation of how these modes could have come about.

There is however one more problem with this picture. During the period following in-
flation, known as reheating, the physics is not clear and the equations governing the
evolution of the perturbations are not well known. This however, is not a problem. A
theorem due to Weinberg [12] states that there is a tensor mode with constant ampli-
tude and a constant scalar mode, both of which are super-Hubble. This allows one to
extrapolate the behaviour of perturbations that are of order of the Hubble radius during
inflation to horizon re-entry and thereby allows one to gain information about the high
energy period during which inflation happened by making observations of the low energy
period of recombination.

Before I move on to the next section let me introduce some notation. The statistical
property of interest for some stochastic field f(τ,x) is the variance or correlator quantum
mechanically given by 〈0| f(τ,x)f(τ,y) |0〉. The fluctuations of metric during inflation
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will turn out to be statistically isotropic and homogeneous, meaning that the two point
function only depends on r = |x− y|. This then enables the correlator to be expressed
as

〈0| f(τ,x)f(τ,y) |0〉 =

∫
dk

k
PFf (k)

sin (kr)

kr
(110)

where PFf (k) is called the power spectrum. This holds for all modes which is why the
power spectrum is given the superscript F for full. As the modes of interest are the
super-Hubble modes I also introduce the super-Hubble limit of the power spectrum as

Pf = lim
k�aH

PFf . (111)

6. Tensor Fluctuations During Inflation

First I will describe the tensor fluctuations as they are simpler than their scalar counter-
part. A general discussion of the equations of motion is followed by their solutions for
de Sitter geometry and slow-roll inflation. The tensor perturbations are then quantized
and the power spectrum is calculated in general, followed by the specific examples of de
Sitter and slow-roll models of inflation.

6.1. Classical Equations of Motion and their Solutions

Expanding (46) to second order in tensor perturbations gives the action

ST =

∫
d4x

a2(τ)

16π

(
h′ijh

′ ij − ∂l hij ∂ lhij
)

(112)

which will later be used as the basis for canonical quantization and gives, after varying
with respect to the tensor perturbations hij, the equations of motion

h′′ij + 2Hh′ij −∆hij = 0 (113)

where ∆ = δij∂i∂j. Note that this equation will depend on the geometry of spacetime,
due to the presence of H.

In anticipation of quantization, the tensor perturbations can be expanded into polarisa-
tions and fourier modes as

hij(τ, ~x) =
2∑
p=1

∫
d3k√

2(2π)3/2

(
ak,ph

∗
k,p(τ) exp (ik · x) + a†k,p(τ)hk,p exp (−ik · x)

)
epij.

(114)
For now ak,p is simply to be thought of as an amplitude, though it will become an
operator when quantizing. The 3× 3 tensor epij is a polarisation tensor that satisfies

epij e
mij = δpm. (115)
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It is symmetric by virtue of hij, from which it also inherits the properties

hii = 0→ ep ii = 0, ∂ihij = 0→ kiepij = 0. (116)

A symmetric 3× 3 matrix has at most 6 independent components; supplemented by one
equation describing tracelessness and three that describe the transversal nature of the
tensor perturbations two independent components remain. Therefore the tensor can be
decomposed according to (114) into the sum over two independent polarisation tensors.
The functions hk,p(τ) are called mode functions and are described by the equation of
motion

h′′k,p + 2H h′k,p + k 2 hk,p = 0 (117)

that follows from plugging the mode expansion (114) into (113). As the polarisations
are independent of one another it suffices to treat only one of them and, where neccesary
reintroduce the other.

For just one polarisation the action of interest is, after dropping the polarisation index
p,

SP =

∫
d4x

a2(τ)

16π

(
h′ 2 − ∂ih ∂ih

)
(118)

where h(τ,x) can be expanded as

h(τ,x) =

∫
d3k√

2(2π)3/2

(
ak h

∗
k(τ) exp (ik · x) + a†k hk(τ) exp (−ik · x)

)
(119)

and the mode functions hk(τ) satisfy the equation

h′′k + 2H h′k + k2hk = 0. (120)

Note that in this equation the vector k only shows up squared, whereby the mode
functions are not functions of k but of its magnitude k = |k|, a property that the
mode functions inherit from the isotropic FLRW background. This however does not
automatically imply that for two unit vectors e1 and e2, hke1 = hke2 as initial conditions
might have been different for hke1 and hke2 . Knowing that the initial conditions will be
isotropic I henceforth write hk = hk.

Next, let us solve these equations for the specific models of de Sitter and slow-roll
inflation.

6.1.1. Solutions on de Sitter space

De Sitter space is given by a flat FLRW space with scale factor a(t) = exp (Ht) where
H is a constant and t is the cosmic time. Integrating the equation dt = a(t)dτ gives the
conformal time τ = − exp (−Ht). Note that conformal time is always negative.
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The scale factor expressed through conformal time is a(τ) = −1/Hτ , with which the
conformal Hubble parameter becomes H = −1/τ , making equation (120)

h′′k −
2

τ
h′k + k2 hk = 0. (121)

This can be simplified by introducing the variable z = −k τ , which often comes in handy,
to give

d2hk
dz2
− 2

z

dhk
dz

+ hk = 0. (122)

Note that z is always positive. The solutions on de Sitter space are then given by

hk = A
(
z sin (z) + cos (z)

)
+B

(
sin (z)− z cos (z)

)
(123)

where A and B are integration constants.

Without having to specify initial conditions to fix these integration constants the super-
Hubble behaviour of these functions can be investigated. Recall that modes are super-
Hubble when their wavelength lies outside the Hubble radius, i.e. when k � H. For de
Sitter space this can be rewritten as

k � −1

τ
→ −k τ = z � 1 (124)

where the second inequality follows from the fact that the conformal time τ is always
negative. The super-Hubble limit is thereby given as the limit z → 0 in which the
functions (123) become

hk = A cos (z) +B sin (z). (125)

From this it is clear that, as advertised above, the tensor modes have a constant ampli-
tude outside the Hubble radius.

6.1.2. Solutions for Slow-Roll Inflation Models

It might seem surprising that it makes sense to talk about the solutions for slow-roll
inflation, instead of talking about solutions for a specific slow-roll model given by a
specific potential V (ϕ). At the heart of the possibility to solve equation (120) for slow-
roll inflation without using a concrete model lies the slow-roll expansion, essentially
given by (65) to first order.

Equation (65) gives the conformal Hubble parameter in terms of the slow-roll parameter
ε, a quantity that exists for slow-roll models regardless of the specific potential. Assum-
ing that ε is changing little during inflation (65) can be integrated quite easily to give
an expression for the scale factor a(τ)

d

dτ
ln (a(τ)) = −(1 + ε)

d

dτ

(
ln (τ) + ln (a0)

)
. (126)
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Here a0 is some integration constant. To choose a sensible integration constat, observe
that in the limit ε → 0 the slow-roll conformal Hubble parameter becomes that of de
Sitter space. One then chooses a0 = −1, making

a(τ) = (−τ)−(1+ε) (127)

which produces the de Sitter scale factor when ε vanishes. For the scale factor to not
become complex conformal time has to be negative, τ < 0, just like in de Sitter space.

The equation for tensor modes in slow-roll inflation is, using (65),

d2hk
dz2
− 2(1 + ε)

z

dhk
dz

+ hk = 0 (128)

where again z = −kτ . Therefore, during slow-roll inflation the tensor modes behave
as

hk = zc
(
AJc(z) +B Yc(z)

)
, c =

1

2
(3 + 2ε). (129)

To check the super-Horizon limit of these solutions find in [27] that the Bessel functions
behave as

Jc(z) ' 1

Γ(c+ 1)

(z
2

)c
, z → 0 (130)

Yc(z) ' − 1

π
Γ(c)

(2

z

)c
, z → 0 (131)

making the super-Hubble tensor fluctuations during slow roll inflation constant

hk = −2 cB

π
Γ(c). (132)

6.2. Quantization of Tensor Perturbations

The quantization procedure for the field described by the action

SP =

∫
d4x

a2(τ)

16 π

(
h′ 2 − ∂i h ∂ih

)
(133)

is similar the the usual canonical quantization one does in quantum field theory on
Minkowski space. Indeed the only difference working on an FLRW background makes is
that the vacuum is no longer uniquely defined and a suitable choice has to be made. The
details of why no unique vacuum exists on curved backgrounds are not detailed here,
and a discussion can be found in appendix A. Alternatively one could consult [28].

For FLRW spacetimes a suitable choice of vacuum is given by the Bunch-Davies vac-
uum, which relies on the observation that at early enough times all modes have wave-
length much shorter than the Hubble radius and will perceive the spacetime to be
Minkowski. The vacuum is then chosen by demanding that the field behaves like it
would in Minkowski space for early times.

Again I will first discuss the quantization procedure without specifying a scale function
as far as possible and then consider de Sitter space and slow-roll inflation.
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6.2.1. Quantization on General FLRW Spacetimes

The first step in quantizing a system is to find its canonical variables. For the action
(133) the canonical position variable is simply given by the field h(τ,x) and its canonical
momentum is found to be

p(τ,x) =
∂L
∂h′

=
a2(τ)

8π
h′(τ,x). (134)

Classically, the canonical variables satisfy the Poisson bracket relation

{h(τ,x), p(τ,y)} = δ(3)(x− y). (135)

To quantize this system the position and momentum variables, h(τ,x) and p(τ,x) are
promoted to operators and the algebra defined by the Poisson bracket replaced by

[h(τ,x), p(τ,y)] = i δ(3)(x− y). (136)

When promoting h(τ,x) to an operator what one does is actually promote the amplitudes
ak in the mode expansion (119) to operators. To find the algebra for these operators,
plug the mode expansion into the quantization condition (135) to find∫
d3k d3k̃

(2π)3

a2(τ)

16π
[ak, a

†
k]
(
h∗k h

′
k − h′∗k hk

)
exp (ik · (x− y)) = i

∫
d3k

(2 π)3
exp (ik · (x− y))

(137)
where the right hand side is the Fourier expansion of the delta function. This equation
is then satisfied if

[ak, a
†
q] = δ(3)(k− q), [ak, aq] = 0 (138)

and
a2(τ)

16π

(
h∗k h

′
k − h′∗k hk

)
= i. (139)

where the second equation (139) is called the normalisation condition. A vacuum is then
defined by requiring

ak |0〉 = 0. (140)

With the quantum machinery in place the 2-point correlator for h(τ,x) can now be
computed as

〈0|h(τ,x)h(τ,y) |0〉 =

∫
d3k

2(2π)3
|hk(τ)|2 exp

(
ik · (x− y)

)
. (141)

Due to the isotropy of the mode functions the integral can be written in spherical
coordinates and the angles can be integrated over to give

〈0|h(τ,x)h(τ,y) |0〉 =

∫
dk k2

4π2
|hk|2

sin (kr)

kr
(142)
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where r = |x− y|.

The actual aim of this section is to find the 2-point function for the tensor perturbations.
To do so we take the full tensor perturbation and calculate

〈0|hij(τ,x)hij(τ,y) |0〉 =
∑
p,m

〈0|hp(τ,x)hm(τ,y) |0〉 epijemij

=
∑
p,m

〈0|hp(τ,x)hm(τ,y) |0〉 δpm

=
2∑
p=1

〈0|hp(τ,x)hp(τ,y) |0〉 . (143)

As both polarisations have the same correlator this expression evaluates to

〈0|hij(τ,x)hij(τ,y) |0〉 = 2

∫
dk k2

4 π2
|hk|2

sin (kr)

kr
(144)

and the power spectrum for tensor perturbations is given by

PFh =
k3 |hk|2

2π2
. (145)

These results hold for any spatially flat FLRW spacetime and I will now make them
specific for the usual cases of de Sitter and slow-roll inflation.

6.2.2. Quantization on de Sitter Spacetime

Recall that for de Sitter spacetime the mode functions are given by (123). The essential
steps for quantization have been taken above and what remains to be done is to find
expressions for the integrations constants A and B. The first step in finding these is to
impose the Bunch-Davies vacuum condition on the mode functions.

A quantum field theory on a de Sitter like background is said to have as its ground
state the Bunch-Davies vacuum, if the mode functions behave for early enough times
like they would in Minkowski space. This makes sense as for early enough times any
mode functions would have wavelengths shorter than scales on which the curvature of
spacetime would be noticeable.

A good idea of wether or not a mode function would notice the geometry is to check if its
wavelength lies far inside the Hubble radius. As the wavelength is inversely proportional
the wave number k you are inside the Hubble radius if k � aH = H. In terms of the
variable z this can be written as 1� z i.e. you have to look at the limit z →∞.

Note that the mode functions for de Sitter are of the form hk = z µ(z), where µ(z) is

µ(z) = A
(

sin (z) +
cos (z)

z

)
+B

(sin (z)

z
− cos (z)

)
(146)
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and therefore stays finite in the limit of infinite z as does its derivative. Plugging this
decomposition into

d2hk
dz2
− 2

z

dhk
dz

+ hk = 0 (147)

gives
d2µ

dz2
+ µ− 2µ

z2
= 0. (148)

For the early time limit z → ∞ the last term vanishes requiring µ to display the early
time behaviour

d2µ

dz2
+ µ = 0 =⇒ µ ∝ exp (−iz). (149)

Therefore the condition to impose on the mode functions to select the Bunch-Davies
vacuum is

lim
z→∞

hk(τ)

z
∝ exp (−iz). (150)

One then finds that this forces B = −iA and the mode functions are

hk = A
(
1 + iz

)
exp (−iz). (151)

The last thing left to do is fix the constant A. This is done by taking (151) and demand
that it satisfies the normalisation condition (139). This gives

|A|2 =
8πH2

k3
(152)

thereby fixing |A|. The power spectrum for tensor fluctuations on de Sitter space is
then

PFh =
4H2

π
(1 + z2). (153)

This holds for all modes. However what we can observe in the CMB are only the modes
with a wavelength bigger than the Hubble radius i.e. modes with a wave vector k that
satisfies, k−1 � H−1, which as shown above can be expressed as, z � 1. The quantity
of interest is therefore

Ph = lim
z→0
PFh =

4H2

π
. (154)

The super-Hubble power spectrum displays two properties shared with more realistic
models of an exponentially expanding early universe. First it tells us about the Hubble
parameter, and thereby the energy scale, at which inflation took place. Second it is
scale invariant meaning that it is the same for all modes i.e. is independent of k. Similar
properties are derived from slow-roll inflation.
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6.2.3. Quantization During Slow-Roll Inflation

For slow-roll inflation the solutions for the mode functions are in terms of z given by
(129). Again, I start by imposing the Bunch-Davies vacuum condition. In the sub
Hubble limit z →∞ the Bessel functions behave as [27]

Jc(z) '
√

2

z π
cos (z − cπ

2
− π

4
), z →∞ (155)

Yc(z) '
√

2

z π
sin (z − cπ

2
− π

4
), z →∞. (156)

In this limit the mode functions take the form hk = zc−1/2µ(z) and equation (128) takes
the familiar form

d2µ(z)

dz2
+ µ(z) = 0. (157)

The Bunch-Davies condition is therefore

lim
z→∞

hk(τ)

zc−1/2
∝ exp (−iz) (158)

and forces B = −iA. The normalisation condition (139) forces A to

|A|2 =
4π2

k3+2ε
. (159)

The power spectrum of tensor fluctuations during slow-roll inflation is therefore

PFh = 2 k−2 εz2 c
(
J2
c (z) + Y 2

c (z)
)
. (160)

Despite what has been advertised, this looks very different from the power spectrum
for de Sitter space. To get the characteristic behaviour we would expect to find in the
CMB, again take the super Hubble limit, z → 0, which with the help of (155) and (156)
is

Ph = lim
z→0
PFh =

21+2 c Γ2(c)

π2
k−2 ε. (161)

First note that this is not exactly scale invariant, as the power spectrum is a function
of the wave number k. The wave number shows up to the power of −2ε, which is a
small number whereby the value of the power spectrum for two different values of k will
not be far from each other. A spectrum with this behaviour is said to be almost scale
invariant and its deviation from scale invariance is measured by the spectral index

nT =
d lnPh
d ln k

. (162)

For slow-roll models the spectral index is

nT = −2 ε. (163)
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To see how expression (161) relates to the Hubble parameter during inflation first de-
fine the time tk, at which the wavelength crosses into the super Hubble regime by
a(tk)H(tk) = k. As aH = H = −(1 + ε)/τ , the conformal time at horizon crossing is
τk = τ(tk) ' −1/k. The scale dependence of the slow-roll power spectrum can then be
rewritten as

Ph =
21+2 c Γ2(c)

π2
H2(tk)a

2(tk)k
−2(1+ε) (164)

and with a(tk) = (−τk)−(1+3) ' k(1+ε) we are left with

Ph =
4H2(tk)

π

(22 c−1 Γ2(c)

π

)
. (165)

This gives the relation of the power spectrum to the Hubble parameter at the value of
horizon exit for the mode of wave vector of magnitude k, where the dependence of the
power spectrum on k is hidden in H(tk).

In the de Sitter limit ε→ 0 the Bessel index c behaves as c→ 3/2. With Γ(3/2) =
√
π/2

the power spectrum then reads

Ph =
4H2(tk)

π
(166)

which takes the form previously found for de Sitter space, see (154). Note that while it
looks like the power spectrum of tensor fluctuations on de Sitter space it differs as the
Hubble parameter is the Hubble parameter at the time at which modes of wave number
k = a(tk)H(tk). Similar expressions are also found for the scalar modes in the next
section.

7. Scalar Fluctuations During Inflation

Having calculated the power spectrum for tensor perturbations I now calculate this result
for the scalar perturbations. From the perturbation of the metric there are two scalar
fields Φ and Ψ, and there is the field δϕ from perturbing the Klein-Gordon field. These
evolve according to the Klein-Gordon and Einstein equations, which also constrain them
to describe just one degree of freedom. This is the first result I will establish, after which
this single degree of freedom will be quantized and its power spectrum calculated.

7.1. The Relevant Field

To see that the three fields Ψ, Φ and δϕ describe one physical degree of freedom consider
the Einstein equations perturbed to first order in scalar perturbations

(δGS)µν = 8π (δTS)µν . (167)
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First note that the energy momentum tensor perturbation for a Klein-Gordon field has
the spatial components

a2 (δTS)ij =
(
ϕ′ δϕ′ − ϕ′ 2 − a2δϕ

dV (ϕ)

dϕ

)
δij (168)

while the Einstein tensor has

a2 (δGS)ij =
(
2H2Φ+4H′Φ+2HΦ′+4HΨ′+2Ψ′′+∆(Φ−Ψ)

)
δij +∂i∂j(Ψ−Φ). (169)

For i 6= j this gives the equation

∂i∂j(Ψ− Φ) = 0 (170)

which is solved by Ψ−Φ = cixi + c, where ci and c are constants. If ci were not zero the
perturbations could grow very big far from the origin of the coordinate system, which
would be at odds with the idea of small perturbations. Therefore ci = 0. The other
integration constant will also be set to zero, c = 0, mainly for simplicity. Thus

Φ = Ψ (171)

and we are left with only two fields.

The (i, 0) component of the Einstein Equation is then given as

−4π ϕ′δϕ+HΦ + Φ′ = 0 (172)

which is a constraint equation, allowing δϕ to be expressed through Φ, essentially re-
ducing the two remaining fields to just one independent scalar. In the de Sitter limit,
where ϕ′ = 0 the perturbation of the Klein-Gordon field will still fluctuate but it will no
longer couple to the metric. The de Sitter limit will therefore not be of interest for the
scalar modes.

Knowing this, one can then define the Mukhanov-Sasaki variable ξ and the useful quan-
tity u as

ξ = a
(
δϕ+

ϕ′

H
Φ
)
, u =

aϕ′

H
(173)

Expanding the action of the single field inflation model (46) to second order in Φ and ϕ
and employing Mukhanov-Sasaki variable (173) gives the action for the scalar degree of
freedom [24]

Sξ =
1

2

∫
d4x
(
ξ′ 2 − ∂iξ ∂iξ +

u′′

u
ξ2
)
. (174)

Following Weinberg [12] I rewrite this in terms of the variable R via ξ = uR. R is
a gauge invariant variable called the curvature perturbation and shows up in a gauge
called comoving gauge, defined by the vanishing of (δTS)ij. For the case of scalar field
matter this coincides with the vanishing of the perturbation of the Klein-Gordon field.
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R is of interest as it is the scalar quantity that is conserved on super-Hubble scales and
allows one to relate CMB fluctuations to fluctuations during inflation.

The action that describes R is given by

SR =
1

2

∫
d4xu2

(
R′ 2 − ∂iR ∂iR

)
(175)

and is the starting point for all further investigation.

7.2. Classical Equation of Motion and its Solutions

The equation of motion derived from (175) is

R′′ + 2
u′

u
R′ −∆R = 0. (176)

To find the expression u′/u during slow-roll inflation, once more evoke the slow-roll
expansion. From the definition of u (173) find

u′

u
= H +

ϕ′′

ϕ
− H

′

H
(177)

which, with the help of the slow roll parameters in conformal time (62) becomes

u′

u
= H

(
1 + ε− δ

)
' −1

τ

(
1 + 2ε− δ

)
(178)

where the last expression comes form using (65) and discarding the terms of second
order in slow-roll parameters.

For slow-roll inflation, equation (177) then reads

R′′ − 2
(1 + 2ε− δ)

τ
R′ −∆R = 0. (179)

Again, I introduce the mode expansion of the field R as

R(τ,x) =

∫
d3k√

2(2π)3/2

(
bkR∗k(τ) exp (ik · x) + b†kRk(τ) exp (−ik · x)

)
(180)

where the mode functions are governed by

d2Rk

dz2
− 2

(1 + 2ε− δ)
z

dRk

dz
+Rk = 0. (181)

This equation only depends on the magnitude of the wave vector. Anticipating an
isotropic Bunch-Davies condition, I write the mode functions as functions of k.

Rk = zcS
(
AJcS(z) +B YcS(z)

)
, cS =

1

2

(
3− 2δ + 4ε

)
. (182)
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Comparison with (129) reveals that the only difference between the classical behaviour
of the tensor and scalar modes is the Bessel index cS, which unlike for the tensor pertur-
bations contains the second slow-roll parameter. If the slow-roll parameters are equal,
ε = δ, the Bessel indices for scalar and tensor perturbations are equal too, cS|ε=δ = cT .
It is then not surprising that the quantum mechanics of scalar perturbations also gives
an almost scale invariant spectrum, as is shown below.

7.3. Quantization of the Scalar Perturbation

From the action (175), for the scalar field R, the canonical momentum

pS(τ,x) =
∂L
∂R

= u2R′ (183)

follows, and after promoting the canonical pair (R, ps) to operators, they are to satisfy
the usual commutation relation

[R(τ,x), pS(τ,y)] = i δ(3)(x− y). (184)

With the mode expansion (180) the operators bk and b†k then satisfy the algebra

[bk, b
†
q] = δ(3)(k− q), [bk, bq] = 0 (185)

and the mode functions are normalised by

u2

2

(
R′kR∗k −RkR′∗k

)
= i. (186)

Defining the vacuum state as the state that gets annihilated according to bk |0〉 = 0, the
power spectrum is given by

PFR =
k3|Rk|2

4π2
. (187)

Note that this general form of the power spectrum resembles the general form found for
tensor perturbations (145) divided by two, the number of polarisations.

Setting the Bunch-Davies vacuum works analogous to the method used above for the
tensor modes and restricts the integration constants in (182) to B = −iA. The normal-
isation condition (186) then gives the remaining constant A as

|A|2 =
z1−2 cS π

2k u2
. (188)

Here u2 has to be expressed in terms of z. This is easily done by integrating equation
(178). Note that for ε = δ, (178) gives u′/u = H = a′/a. This then suggests, that when
integrating (178) the initial value is to be chosen such that u|ε=δ = a, where a has been
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set, by demanding that it agrees with the scale factor of de Sitter space for ε = 0 in
section 6.1.2 and u is therefore

u = (−τ)−(1+2ε−δ) = z1/2−cSk−1/2+cS . (189)

The integration constant A is

|A|2 =
π

2k2 cS
(190)

and the full power spectrum is given by

PFR =
k3−2 cS

8π
z2 cS |JcS(z)− iYcS(z)|2 (191)

and becomes

PR = lim
z→0
PFR = 22cS

k3−2 cS

8π3
Γ2(cS) (192)

in the super Hubble limit. The first thing to note here is that this spectrum is dependent
on k. Keeping in mind 3 − 2cS = 2δ − 4ε, the spectral index for scalar perturbations,
defined as

nS − 1 =
d lnPR
d ln k

(193)

becomes
nS − 1 = 2 δ − 4 ε (194)

for slow-roll inflation.

As is the case for the tensor modes, this power spectrum can be rewritten in terms
of the value of the Hubble parameter at which the mode k leaves the Hubble horizon,
H(tk)a(tk) = k. Recall from the discussion of the slow-roll parameters in 3.1.2 that
−4πϕ = Ḣ and ε = −Ḣ/H2. Therefore u can be rewritten as

u2(tk) =
k2ε

4πH2(tk)
. (195)

With equation (189) and keeping in mind that at horizon crossing the conformal time
τk ' −k−1, this equation can further be rewritten as

1 =
k3−2 cSε

4πH2(tk)
(196)

and the power spectrum becomes

PR =
H2(tk)

π ε

(22cS−1 Γ2(cS)

π

)
. (197)

Note, that for δ = ε

PR|δ=ε =
Ph
4 ε
. (198)

The difference between the scalar and tensor power spectra are expected to be small due
to the smallness of the slow-roll parameters.

Thus I have calculated the spectral index for tensor and scalar modes in slow-roll inflation
and can define the tensor-to-scalar ratio, which are the parameters that are used to
compare a model of inflation to observations of the CMB.
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7.4. Spectral indices, Tensor-to-Scalar Ratio and Observation

So far I have calculated the power spectrum for scalar and tensor fluctuations, and
defined and calculated their spectral indices

nS − 1 = 2 δ − 4 ε, nT = −2 ε. (199)

These describe the dependence of the power spectra on the wave number k and scalar
and tensor spectra are scale invariant for nS = 1 and nT = 0 respectively.

A further quantity that is used to compare models of inflation to CMB measurements
is the tensor-to-scalar ratio that is defined as, and given for slow-roll inflation by

r =
Ph
PR
' 4 ε (200)

where the last expression follows from (198). Note that this is not the relation usually
found in the literature [11, 12]. This is due to the xPand convention for the SVT
decomposition, where the tensor perturbation is half of what is usually used. Therefore,
to translate values found here to values found elsewhere, multiply by two for every factor
of hij.

The power spectrum is proportional to the tensor perturbation squared. Calling the
power spectrum in the convention used by most of the world P̃h = 4Ph, the tensor-to-
scalar ratio is then found to be

r̃ =
P̃h
PR
' 16 ε. (201)

The values r̃ and nS encode the same information as the slow-roll parameters and there-
fore constitute a map between inflationary model and CMB observables. The relation-
ship between the tensor-to-scalar ratio and the scalar spectral index is usually given in
terms of an (r̃, nS) plot and is best explained through an example.

7.4.1. An Example of Slow-Roll Inflation, continued

In section 3.1.4 I discussed inflation with a potential

V (ϕ) = λϕn. (202)

In this model the slow-roll parameters and number of e-folds for which inflation lasts
are

ε =
n2

16 π ϕ2
, δ =

n(n− 2)

16 π ϕ2
, N =

4π

n
ϕ2
i −

n

4
(203)

where ϕi is the value of the Klein-Gordon field at the beginning of inflation. To calculate
spectral indices, these values are only interesting at the time tk when modes with wave
number k grow bigger than the Hubble radius. This can easily be achieved by introducing
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Figure 5: The (r̃, nS) plot.

the number of e-folds from the time tk to the end of inflation, Nk, and ϕk the value of
the Klein-Gordon field at tk. The relevant quantities are then

ε(tk) =
n2

16π ϕ2
k

δ(tk) =
n(n− 2)

16π ϕ2
k

, Nk =
4π

n
ϕ2
k −

n

4
. (204)

Assuming that n � 4π gives, ϕ2
k ' Nk n/4π and the tensor-to-scalar ratio and scalar

spectral index are

r̃ =
4n

Nk

, nS − 1 = −(n+ 2)

2Nk

. (205)

These can be combined to give r̃ as a function of nS

r̃(nS) =
8n(1− nS)

n+ 2
. (206)

and nS can be understood as a function of Nk. As the modes that are relevant for CMB
observations are those that exit the Hubble sphere towards the beginning of inflation,
and inflation is thought to have lasted between 50 and 70 e-folds, the domain of interest
is nS ∈ [1− (n+ 2)/100, 1− (n+ 2)/140]. r̃(nS) can then be plotted, as has been done
in figure 5 for a few different values of n and these values and plots can be compared
to observation [29]. This concludes my general discussion of single-field inflationary
models.
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8. An Inflationary Model Based on Conformal Gravity

Conformal, or Weyl gravity, is a theory of gravity which is invariant under local Weyl
rescaling. Historically speaking it was the first alternative proposed to Einstein gravity
and has recently become of interest as it shows up in low energy limits of string theory. It
is also of theoretical interest as, unlike Einstein gravity it is a renormalisable theory. Its
phenomenology has been studied extensively by Mannheim, especially as an attempt to
explain galactic rotation curves without dark matter [9, 30, 31]. The holographic prop-
erties have recently been studied in [32, 33] and ’t Hooft has recently studied conformal
gravity in the context of quantum gravity in [34].

As conformal gravity does, by design, not know about scale, it is an interesting question
what conformal gravity has to offer in terms of scale invariant spectra. With this aim
in mind I will first discuss general properties of conformal gravity and then discuss
a model based on conformal gravity for which I will later calculate power spectra of
fluctuations.

8.1. Conformal Gravity Action and Equations of Motion

Conformal gravity is based on the Weyl tensor Cµ
νσλ . Its most important properties

are summed up in appendix B. Given the properties of the Weyl tensor and defining
C2 := CµνσλCµνσλ the action of conformal garvity is given by

SCG =

∫
ωgC

2 =

∫
ωg(2RµνR

µν − 2

3
R2 +RµνλσR

µνλσ − 4RµνR
µν +R2) (207)

and is invariant under conformal transformations

gµν → Ω2(xρ)gµν . (208)

Given the Gauß-Bonnet theorem

8π2χ(M) =

∫
M

ωg(RµνλσR
µνλσ − 4RµνR

µν +R2) (209)

where χ(M) is a topological invariant of the manifold M , the action can be rewritten
as

SCG =

∫
ωg(2RµνR

µν − 2

3
R2) + 8π2χ(M). (210)

The Gauß-Bonnet term is then irrelevant for the equations of motion and after a straight-
forward, but long and tedious calculation, variation of the action gives

δSCG = 4

∫
ωgBµνδg

µν (211)
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making the equations of motion the Bach-flatness conditions

Bµν = 0 (212)

where Bµν = (∇ρ∇σ + 1
2
Rρσ)Cρµσν is the Bach tensor.

It is obvious that equation (212) is solved by all conformally flat metrics, as for those the
Weyl tensor vanishes. The Bach flatness condition is also satisfied by all solutions of the
vacuum Einstein equations, with or without cosmological constant. In an empty region
of spacetime the Einstein equations reduce to the Ricci flatness condition Rµν = 0, which
in turn causes Cµνρσ = Rµνρσ and reduces (212) to ∇ρ∇σRρµσν = 0, which is trivially
satisfied as the first Binachi identity, ∇ρRµνρσ = ∇µRνσ +∇νRµσ reduces to ∇ρRµνρσ =
0, for a Ricci flat metric. The same holds for metrics of Einstein spaces, for which
Rµν ∝ gµν . Conformal gravity therefore contains all phenomenology of vacuum Einstein
gravity with a cosmological constant. Indeed, choosing specific boundary conditions,
these are all solutions that remain for Conformal gravity [35].

The invariance of the action (207) under a Weyl rescaling translates into the Bach tensor
transforming as

Bµν → Ω−6(xρ)Bµν . (213)

This in turn means that if a metric gµν solves (212) then so does Ω2(xρ)gµν . As all FLRW
metrics are conformally flat [31] they are all solutions of conformal gravity. However this
also implies that conformal gravity will by itself not restrict the scale factor a(t) and an
evolution of the universe could randomly be chosen, thereby diminishing the predictive
power of pure conformal gravity for cosmology. Ignoring this problem, one could choose
a scale factor and study cosmological perturbations on this background. This has been
done for de Sitter space in [36]. The path taken here is to introduce scalar field matter
that will fix the scale factor.

8.2. Inflation From Conformal Invariance

Keeping in mind that what is of interest are the power spectra of a theory that is
conformally invariant, add a conformally coupled scalar field to the conformal gravity
action (207) according to

S =

∫
ωg
(
C2 − 1

2
∇µϕ∇µϕ−

1

12
Rϕ2 + λϕ4

)
(214)

If the field ϕ transforms as ϕ → Ω−1ϕ under conformal transformations (208), i.e. ϕ is
a field of conformal weight minus one the action is indeed conformally invariant.

This model can also be motivated by noting that recently models of inflation based on
conformally coupled scalar fields have been under investigation [37, 38, 39] and intro-
ducing conformal gravity into the picture amounts to further exploiting what is allowed
by the constraint of Weyl invariance.
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The scalar field in (214) has a curious property. As the scalar field is of conformal weight
minus one and the action is scale invariant, one is free to choose a frame and thereby
the field ϕ. Of course the action and by extension the equations of motion take a simple
form in a frame where the scalar field is constant and I choose ϕ =

√
6 making the

action

S =

∫
ωg
(
C2 − 1

2
R + Λ

)
. (215)

where Λ = 36λ. This is a type of Einstein-Weyl gravity with a cosmological constant
and theories of this type have been investigated before in [40] and is known to have seven
degrees of freedom [40, 41], two massless graviton polarisations and five massive ones.

The equations of motion that follow from (215) are the Einstein-Bach equations given
by

4Bµν =
1

2
Gµν + gµν

Λ

2
. (216)

As the Weyl tensor of an FLRW metric vanishes, the ansatz ds2 = −dt2 +a2(t)δijdx
idxj

produces the equation
ȧ2

a2
=

Λ

3
(217)

which is solved by a(t) = exp (Ht) where the Hubble parameter is H2 = Λ/3. Equation
(216) therefore restricts FLRW metrics to de Sitter space. Following [37] the action
(214) could be complemented with another scalar field of conformal weight minus one
to produce more realistic inflationary scenarios. This will not be done here as de Sitter
space gives a simple setting for a first study of fluctuations from (215).

9. Einstein-Weyl Perturbations During Inflation

This section will discuss the classical and quantum behaviour of perturbations in a theory
based on the Einstein-Weyl action (216), which is (214) in a frame where the scalar field
ϕ =

√
6. This theory has seven degrees of freedom [40, 41] which in terms of the SVT

decomposition split up into one scalar, two vector and four tensor degrees of freedom.

Unlike in inflation based on Einstein gravity, like the single field model (46), the vector
perturbation in the model under investigation will not decay. This is all together not
that surprising as linearised conformal gravity is known to contain a massless spin one
degree of freedom [42]. The tensor modes describe the same two degrees of freedom as
Einstein gravity plus another two degrees of freedom.These added two degrees of freedom
and the vector perturbations describe ghost degrees of freedom and spoil unitarity of
the theory.

The scalar degrees of freedom are ignored here. As a more realistic model of inflation
would require an extra scalar field that would couple to the scalar degree of freedom
already present in (214) the equations of motion would be vastly different, in contrast
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to the vector and tensor modes where the difference in the equations of motion amounts
to changing the scale factor and conformal Hubble parameter a and H of the resulting
slow-roll type model.

9.1. Vector Perturbations

9.1.1. Classical Vector Perturbations

Perturbing the Einstein-Weyl gravity action with a cosmological constant (215) to second
order gives the action

SV =

∫
d4x
(
− a2(τ)

4
∂iVj ∂

iV j −∆Vj∆V
j + ∂iV

′
j ∂

iV ′j
)

(218)

for the vector perturbations. The first term in the action comes from the Ricci scalar
sector of (215) and the second and third term comes from the conformal gravity sector.
Note that only the first term contains the scale factor a(τ). The scale factor cannot
show up in the conformal gravity part as the latter is agnostic regarding the scale factor.
The expansion here was done with xPand and agrees with the action found in [36].

The equation of motion that follow from (218) are

−a
2

4
∆Vi −∆V ′′i + ∆2Vi = 0. (219)

In analogy with section 6.1 the vector perturbations can be expanded into mode func-
tions

Vi =
2∑
p=1

∫
d3k√

2(2π)3/2

(
ak,pV

∗
k,p(τ) exp (ik · x) + a†k,pVk,p(τ) exp (−ik · x)

)
epi (220)

where the polarisation tensor satisfies kiepi = 0 and epi e
(m)i = δpm. The action, mode

expansion and equations of motion for the mode function, for one polarisation are given
by

SV P =

∫
d4x
(
− a2

4
∂iV ∂

iV −∆V∆V + ∂iV
′∂iV ′

)
(221)

V (τ,x) =

∫
d3k√

2(2π)3/2

(
akV

∗
k (τ) exp (ik · x) + a†kVk(τ) exp (−ik · x)

)
(222)

V ′′k + (k2 +
a2

4
) = 0. (223)

The scale factor for de Sitter space is a(τ) = −1/Hτ and employing the usual variable
z = −kτ the equation of motion (223) can be written as

d2Vk
dz2

+
(

1 +
1

4H2z2

)
Vk = 0 (224)
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which is solved by

Vk(τ) =
√
z
(
AJc(z) +BYc(z)

)
, c2 =

1

4
− 1

4H2
. (225)

This will allow us to calculate the power spectrum of vector perturbations on de Sitter
space after quantization.

9.1.2. Quantizing Vector Perturbations

From the action (221) the canonical momentum is given by

pV = −2∆V ′. (226)

Following the usual algorithm of canonical quantization the mode functions and the
amplitudes turned operators ak, satisfy the normalisation condition and algebra

V ∗k V
′
k − VkV ′∗k =

i

k2
, [ak, a

†
q] = δ(3)(x− y) (227)

and the vacuum is given by ak |0〉 = 0. The two point function for one polarisation is
then

〈0|V (τ,x)V (τ,y) |0〉 =

∫
dk

k

k3

4π2
|Vk|2

sin (kr)

kr
. (228)

The 2-point correlator for the vector perturbation is then simply the sum over the two
point functions of the polarisations and the power spectrum reads

PFV =
k3|Vk|2

2π2
. (229)

Given the equation (224), its solution (225) with the large z behaviour

Vk →
√

2

π

(
A cos (z − cπ

2
− π

4
) +B sin (z − cπ

2
− π

4
)
)

(230)

the Bunch-Davies vacuum condition, ignoring the phase in (230), is given by

lim
z→∞

Vk(τ) ∝ exp (−iz). (231)

This fixes B = −iA giving

Vk =
√
zA
(
Jc(z)− iYc(z)

)
. (232)

Fixing A then amounts to solving the normalisation condition (227). This equation does
not only constrain A but also c and thereby H2 and Λ. The normalisation condition will
result in an equation of the type i|A|2f(k) = i/k2. As the square of the magnitude of
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the possibly complex number A is a real number, for this equation to make sense f(k)
has to be a real number. For complex c this expression is however not guaranteed to be
real. To guarantee the realness of |A|, c has to be real, which forces H2 ≥ 1. This then
translates into the cosmological constant to be constrained from below, Λ ≥ 3.

The constant A is then found to be

|A|2 =
π

4k3
(233)

making the power spectrum

PFV =
z

8π
|Jc(z)− iYc(z)|2. (234)

Given the behaviour of the Bessel functions in the z → 0 limit, the mode functions
behave as

Vk = −i 2cA

π
Γ(c)z1/2−c. (235)

Their exact behaviour in the super-Hubble regime now depends on the value of the
constant c. From (225) and the fact that c is a real number it follows that c ∈ [0, 1

2
].

For the value c = 1
2
, which corresponds to Λ = 3, the dependence on z vanishes making

the vector modes constant. For any other possible value of c the mode functions will
decay approaching z = 0. Recall from section 4.3.1 that similar behaviour is observed
for vector perturbations in Einstein gravity. The difference is that on de Sitter space the
Einstein vector modes decay as Vi ∝ (−τ)2 approaching τ = 0, while for Einstein-Weyl
gravity they decay at most with Vi ∝ (−τ)1/2 and can become constant.

The power spectrum in the z = 0 limit is therefore

PV = lim
z→0
PFV =

1

4π2
δΛ3. (236)

9.2. Tensor Perturbations

9.2.1. Classical Solutions

Perturbing the action (215) to second order in tensor perturbations gives the action

ST =

∫
d4x
(
− a

2(τ)

2

(
h′ijh

′ ij−∂lhij ∂lhij
)

+2h′′ijh
′′ ij−4 ∂lh

′
ij ∂

lh′ij +2∆hij∆h
ij
)

(237)

which again is made up of a sector that comes from the Ricci scalar part of (215), marked
by the appearance of the scale factor a(τ), and by the rest which stems from the C2

part. The equations of motion that then follow for de Sitter space are

h′′′′ij − 2∆h′′ij + ∆2hij =
1

4H2τ 2

(
− h′′ij +

2

τ
h′ij + ∆hij

)
. (238)
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This equation can be written in a number of equivalent forms.

First note that with the d’Alambertian of de Sitter space �dS [31] this equation can be
rewritten as (

�dS − 2H2
)(
�dS − 4H2 − 1

4

)(
a2hij) = 0 (239)

which is the equation found in [40] and shows that the approach taken there and here
are compatible. This also suggests that equation (238) can be written as a product of
two linear second order differential operators. For the purposes here there is however a
better decomposition.

From [43] it is known that (238) can be decomposed on de Sitter space as( d2

dτ 2
+

2

τ

d

dτ
−∆ +

1

4H2τ 2

)( d2

dτ 2
− 2

τ

d

dτ
−∆

)
hij = 0. (240)

To discuss how to solve this, think of this equation as L1L2hij = 0, where L1 and
L2 are the two linear second order differential operators. Any solution of the equation
L2f2 = 0 will automatically be a solution of (240). Consider a solution f1 of the equation
L1f1 = 0. f1 will not solve (240), but a function f3 that is a solution of L2f3 = f1 will,
as L1L2f3 = L1(L2f3) = L1f1 = 0. This solution strategy then suggests that the tensor
modes will be of the form

hij = h
(1)
ij + h

(2)
ij (241)

prompting the mode expansion

hij(τ,x) =
2∑
p=1

∫
d3k√

2(2π)3/2

(
ak,p h

(1)∗
k (τ) exp (ik · x) + bk,p h

(2)∗
k (τ) exp (ik · x)+

+a†k,p h
(1)
k (τ) exp (ik · x) + b†k,p h

(2)
k (τ) exp (ik · x)

)
epij (242)

where the polarisation tensor satisfies the usual traceless and transversal condition. Just
one polarisation has to be considered and the relevant action reads

STP =

∫
d4x
(
− 1

2H2τ 2

(
h′2 − ∂lh ∂lh

)
+ 2h′′ 2 − 4 ∂lh

′ ∂lh′ + 2∆h∆h
)
. (243)

The relevant mode expansion for one polarisation is given by (242) without the sum and
the equation of motion for the mode function is given by( d2

dz2
+

2

z
+ 1 +

1

4H2τ 2

)( d2

dz2
− 2

z

d

dz
+ 1
)
h

(i)
k = 0 (244)

where z = −kτ of course. This is solved by

h
(1)
k = A

(
z sin (z) + cos (z)

)
+B

(
sin (z)− z cos (z)

)
(245)

h
(2)
k = z3/2

(
DJc(z) + F Yc(z)

)
, c2 =

1

4
− 1

4H2
. (246)

The first solution has been encountered before in section 6.1.1 for tensor perturbations
on de Sitter space in single field inflation. The second solution, along with the vector
solution (225) and the scalar solution not discussed here, are the degrees of freedom
added to the usual Einstein degrees of freedom (245) through Weyl gravity in (215)
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9.2.2. Quantizing Tensor Perturbations

Much like solving the equations of motion, quantizing the tensor perturbations described
by (237) is more complicated than what has been encountered so far, due to the sec-
ond order derivative with respect to conformal time showing up in the action (243).
In classical mechanics the Legendre transformation replaces the first derivative of the
generalized coordinate with a generalized momentum, taking you from configuration to
phase space. In a Lagrangian with derivatives of order two or higher this transformation
will not take you into what is normally thought of as phase space and a different route
has to be taken.

The Lagrangian can be reduced to second order by introducing extra fields. Following
[43, 44] introduce the auxiliary field β and fix the condition β = h′ with a Lagrange
multiplier λ. The action

Sβ =

∫
d4x(− 1

2H2τ 2
(h′2 − ∂kh∂kh) + 2(β′2 − 2∂kh

′∂kh′ + (∆h)2 − λ

2
(β − h′)) (247)

is equivalent to (243). The equations of motion for the auxiliary field and Lagrange
multiplier are

8β′′ + λ = 0 (248)

β − h′ = 0. (249)

Going on-shell with β gives back the action (243), Sβ|β=h′ = STP . As the Lagrange
multiplier will not show up in the total Hamiltonian constructed from (247) it is not of
interest for quantization and the canonical momenta of interest are

ph =
∂L
∂h′

= − h′

H2τ 2
+ 8∆h′ +

λ

2
= − h′

H2τ 2
+ 8∆h′ − 4h′′′ (250)

pβ =
∂L
∂β′

= 4β′ = 4h′′ (251)

where the last equality employed the auxiliary and Lagrange multiplier equations of
motion. This system can now be quantized by promoting the canonical coordinates and
momenta to operators and demand that they satisfy

[h(τ,x), ph(τ,y)] = iδ(3)(x− y), [β(τ,x), pβ(τ,y)] = iδ(3)(x− y). (252)

Expressing these commutators in terms of the mode expansion (242) then gives restric-
tions on the algebra of the operators ak and bk, and gives two normalisation conditions
for the mode functions h

(1)
k and h

(2)
k . Here the algebra is not uniquely fixed and I make

the ansatz
[ak, a

†
q] = δ(3)(k− q), [bk, b

†
q] = σ δ(3)(k− q) (253)
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where σ is a constant to be determined. With this ansatz the commutation relations
(253) produce the normalisation conditions( 1

H2τ 2
+ 8k2

)(
h

(1)∗
k h

(1)′

k − h(1)′∗
k h

(1)
k + σ(h

(2)∗
k h

′(2)
k − h

′(2)∗
k h

(2)
k )
)

+

+4
(
h

(1)∗
k h

(1)′′′

k − h(1)
k h

(1)′′′∗
k + σ(h

(2)∗
k h

(2)′′′

k − h(2)
k h

(2)′′′∗
k )

)
= −2i (254)

h(1)′∗h(1)′′ − h(1)′h(1)′′∗ + σ
(
h(2)′∗h(2)′′ − h(2)′h(2)′′∗) =

i

2
(255)

and the 2-point function for one polarisation gives

〈0|h(τ,x)h(τ,y) |0〉 =

∫
dk

k

k3

4π2
(|h(1)

k |
2 + σ|h(2)

k |
2)

sin (kr)

kr
(256)

where the vacuum has been defined as ak |0〉 = bk |0〉 = 0. This makes the power function
for both polarisations of the tensor perturbations

PFh =
k3

2π2
(|h(1)

k |
2 + σ|h(2)

k |
2). (257)

The Bunch-Davies vacuum has to be imposed on the mode functions h
(1)
k and h

(2)
k sep-

arately and the conditions for the solutions (245) and (246) are given by

lim
z→∞

h
(1)
k

z
= lim

z→∞

h
(2)
k

z
∝ exp (−iz) (258)

which constrains the integrations constants in (245) and (246) to B = −iA and F =
−iD. The two normalisation conditions of the mode functions therefore link the three
constants A, D and σ. The normalisation condition (255) then gives

−k
3

π

((
9− 4c2)σ|D|2 + 2k2τ 2(π|A|2 + 2σ|D|2)

)
=

1

2
. (259)

The second term in the big parentheses poses a problem as it depends on conformal
time. As A and D are constants they can not depend on time. This problem would be
solved if π|A|2 + 2σ|D|2 = 0. This can be achieved for different ratios between σ and
|D|2 and I choose A = D and σ = −π/2.

The other normalisation condition (254) then essentially gives the same equation for A
as (255)

|A|2 =
1

k3(9− 4c2)
=

H2

k3(1 + 8H2)
. (260)

The power spectrum of tensor perturbations in the theory (215) is then given by

PFh =
H2

2π(1 + 8H2)

(
|1 + iz|2 − z3π

2
|Jc(z)− iYc(z)|2

)
. (261)
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The first term comes from the usual Einstein gravitons and the second is a consequence
of the presence of the ghost gravitons added by conformal gravity. As usual it comes
with a negative sign, signifying the loss of unitarity.

In the super Hubble limit, where z → 0, the second term vanishes due to the constraint
c > 1 and the power spectrum becomes

Ph = lim
z→0
PFh =

H2

2π(1 + 8H2)
. (262)

This resembles the power spectrum of tensor perturbations on de Sitter space in Einstein
gravity (154). Much like (154), (262) is scale invariant and is dependent on the Hubble
parameter. While the direct contribution of the ghost gravitons vanish on super Hubble
scales they make their presence known via the normalisation constant.

10. Conclusion

I have investigated what the properties of power spectra of cosmological perturbations
during inflation are in a Weyl invariant theory (214), where conformal gravity is confor-
mally coupled to a real scalar field of conformal weight minus one. Due to the invariance
of the action under local Weyl rescaling, the scalar field can be chosen to take any de-
sired form. In a frame where it is constant the theory is simply given as Einstein-Weyl
gravity with a cosmological constant (215). Reminiscent of the Higgs mechanism, this
can be interpreted as the partially massless gravitons of conformal gravity eating up the
scalar field, becoming massive in the process.

For an FLRW ansatz Einstein-Weyl gravity with a cosmological constant (215) only
allows de Sitter space, which can be interpreted as a model of eternal inflation. While
this is not a very realistic scenario as inflation would have to end in order to allow
the universe to evolve according to the Big Bang theory, it is nevertheless a simple
setting allowing a first investigation of vector and tensor perturbations in Einstein-Weyl
gravity.

There are two main results, one from the vector and one from the tensor perturbation
sectors of the theory. On the vector side, the presence of a C2 term introduces vector
modes that decay with time (235), but slower than their Einstein gravity counter part,
see section 4.3.1.

The power spectrum of vector perturbations in the super-Hubble limit (236) is then ei-
ther zero or constant, not only in time but also in scale making the vector perturbations
scale invariant. This sector of the theory however, is only relevant for observables for
a specific value of the cosmological constant Λ = 3, which corresponds to λ = 1/12
in the original action (214). This behaviour is somewhat surprising as in the classical
theory the value λ = 1/12 has no significance and, apart from stemming from calcula-
tion, currently lacks a deeper explanation. The appearance of a non-vanishing vector
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perturbation in the super-Hubble regime however is not surprising. Setting the cosmo-
logical constant in (215) zero and requiring the background to be maximally symmetric
produces Minkowski space, on which vector perturbations from Einstein-Weyl gravity
show the same behaviour as the massive tensor perturbations [45]. The possibility of a
vanishing power spectrum could have been expected from the discussion found in [46].

The tensor sector, unlike the vectors, produces a power spectrum on super Hubble scales
(262), for all allowed values of Λ, with qualities similar to the power spectrum of pure
Einstein gravity on de Sitter space (154). They are both scale invariant and contain
information about the energy scale at which inflation took place, as the square of the
Hubble parameter shows up in both power spectra. The same result has independently
been found in [47].

As mentioned in section 8.2, a next step to investigate the possibilities of models based
on Weyl invariance and conformal gravity would be to conformally couple another scalar
field as has been done in [37]. This would then allow to build a more realistic single
field type inflation model and vector perturbations could be studied in a more realistic
setting. The work done here would serve as a consistency check as it gives the expressions
to be expected of the de Sitter limit of the single field type inflation model. It is worth
mentioning here that, due to the vanishing of the Noether charge of Weyl symmetry,
this approach to inflation model building has come under criticism recently [48]. It is
argued that what is presented in [37] is merely a field redefinition.

The results found here have to be taken with a grain of salt. It is established that
conformal gravity and Einstein Weyl gravity contain ghost degrees of freedom [42, 8].
On general grounds this spoils unitarity of the theory and it is not at all obvious if
such a theory can or will give sensible results. A possible solution of this problem is
PT-symmetric quantum mechanics due to Bender [49]. It is argued that the problem of
ghosts is not a principle problem of the theory but a problem of choosing the correct
conjugated state 〈ψ|, which is argued to work for the Pais-Uhlenbeck oscillator [50],
though it is not yet clear under what circumstances this conjecture holds [51]. Further
investigation into this direction would be in order.

With this in mind, my main result are the method of how to quantize the vector and
tensor perturbations of Einstein-Weyl gravity, and that vector perturbations during
inflation might lead to observables in the CMB spectrum as their mode functions do not
necessarily decay, but might approach a constant value (235).
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A. The Non-Uniqueness of the Vacuum

Throughout the main text I have talked about ”choosing the Bunch-Davies vacuum”
and have then demanded that the mode functions satisfy some asymptotic condition.
This prompts two questions. First, how does a condition for the mode functions relate
to a vacuum, and second, why is the vacuum not unique? This appendix aims to answer
these questions and closely follows [28] and sometimes borrows from [25].

Consider a massive Klein-Gordon field in a flat FLRW spacetime described by the ac-
tion

S =

∫
d4x a4

( 1

2a2
ϕ′ 2 − 1

2a2
∂iϕ∂

iϕ−m2ϕ2
)
. (263)

Redefining the field as χ = aϕ this action can equivalently be rewritten as

S =
1

2

∫
d4x
(
χ ′ 2 − ∂iϕ∂iϕ−m2

eff (τ)χ2
)

(264)

where m2
eff (τ) = a2m2 − a′′/a. This is the action of a Klein-Gordon field with time

dependent mass in Minkowski space, where the geometric information about the curved
background the field lives on is encoded in the effective time dependent mass meff . The
equation of motion for χ is given by

χ′′ −∆χ+m2
eff (τ)χ = 0. (265)

Fourier transforming the field χ according to

χ(τ,x) =

∫
d3k

(2π)3/2
χk(τ) exp (ik · x) (266)

gives the equation

χ′′k +
(
|k|2 +m2a2 − a′′

a

)
χk = 0. (267)

which is of the type χ′′+ω2(τ)χ = 0. It is known from the theory of ordinary differential
equations that such equations have a two dimensional space of solutions.

Consider two linearly independent solutions χ1k(τ) and χ2k(τ) of (267). These can be
used as a basis {χ1k(τ), χ2k(τ)}, but more importantly for the application here, these can
be used to motivate a complex basis made up of the functions vk(τ) = χ1k(τ) + iχ2k(τ)
and v∗k(τ) = χ1k(τ) − iχ2k(τ). In terms of the basis {vk, v∗k} the function χk can be
decomposed as

χk =
1√
2

(
akv

∗
k + a†−kv−k

)
. (268)

Plugging the decomposition (268) into (266) then gives the mode expansion

χ(τ,x) =

∫
d3k√

2(2π)3/2

(
akv

∗
k(τ) exp (ik · x) + a†kvk(τ) exp (−ik · x)

)
. (269)
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Having set this up, I am now ready to quantize the theory.

The canonical momentum that follows from (264) is p = χ′. Promoting the fields
χ(τ,x) and p(τ,x), and thereby ak and a†k, to operators and demanding that they
satisfy [χ(τ,x), p(τ,y)] = δ(3)(x− y) gives the normalisation of the mode functions and
the algebra for ak as

v′kv
∗
k − vkv′∗k = 2i, [ak, a

†
q] = δ(3)(k− q). (270)

The vacuum for the operator a is then defined as ak |0(a)〉 = 0, which gives the last
piece of information required to address the question: how does a condition on the mode
functions relate to a vacuum?

The mode functions vk in (269) can be any complex solutions spanning the solutions
space of (267), as long as the satisfy the normalisation condition (270). The mode
expansion could also have been expressed in a different basis {uk, u∗k} that is related to
the basis {vk, v∗k} via

v∗k = αku
∗
k + βkuk, |αk|2 − |βk|2 = 1 (271)

where the second equation that restricts αk and βk is a consequence of the normalisation
condition (270) and ensures that it is also satisfied by the basis {uk, u∗k}. Use this to
express the mode expansion in terms of the new basis and find

χ(τ,x) =

∫
d3k√

2(2π)3/2

(
u∗k
(
αkak+β∗ka

†
−k
)

exp (ik · x)+uk
(
α∗ka−k+βka

†
k

)
exp (−ik · x)

)
.

(272)
Therefore, when expanding the field χ in terms of {uk, u∗k} the creation and annihilation
operators in the decomposition are

bk = αkak + β∗ka
†
−k (273)

b†k = βka−k + α∗ka
†
k. (274)

I can then define a b vacuum by bk |0(b)〉 = 0. Transformations (271), (273) and (274)
between different mode functions and creation and annihilation operators are called
Bogolyubov transformations.

This shows that a given set of mode functions correspond to a certain pair of creation
and annihilation operators that define different vacua and choosing a mode function by
requiring a certain asymptotic behaviour therefore selects a vacuum for the theory. The
b vacuum |0(b)〉 in general will be an excited state for the ak operators and vice versa.

To explicitly see this define the operator N (b) = b†kbk that gives the particle number of
b particles in a given state. For the b vacuum this is, as is to be expected,

〈0(b)|N (b) |0(b)〉 = 〈0(b)| b†kbk |0(b)〉 = 0 (275)
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meaning that there are no b particles in the b vacuum. For the a vacuum however

〈0(a)|N (b) |0(a)〉 = 〈0(a)| b†kbk |0(a)〉 (276)

= |βk|2 〈0(a)| aka†−k |0(a)〉 (277)

= |βk|2δ(3)(0) (278)

i.e. there is an infinite number of a particles in the b vacuum if βk 6= 0. This infinity
might seem alarming; it is however to be understood as number of particles in the entire
universe and the relevant number is |βk| which is the density of a particles. This then
answers the first of the two questions posed at the beginning of this appendix.

Next construct the Hamiltonian of the theory. With the canonical momentum given
above the Hamilton function is found to be

H(τ) =

∫
d3x
(
p2 + ∂iχ∂

iχ+m2
effχ

2
)
. (279)

Upon quantization and after using the mode expansion this is expressed as

H(τ) =
1

4

∫
d3k
(
aka−k

(
v′∗ 2
k + ω∗ 2

k (τ)v∗ 2
k

)
+ a†ka

†
−k
(
v′2k + ω2

k(τ)v2
k

)
+

+
(
2a†kak + δ(3)(0)

)(
|v′k|2 + ω2

k(τ)|vk|2
))

(280)

where ω2
k(τ) = k2 +m2a2 − a′′/a.

The expectation value of the energy of the ground state is then

〈0(a)|H(τ) |0(a)〉 =
1

4
δ(3)(0)

∫
d3k
(
|v′k|2 + ω2

k(τ)|vk|2
)

+
1

4
δ(3)(0). (281)

The two infinities that show up in this expression are harmless. The last term, is simply
the sum over the zero point energy of infinitely many harmonic oscillators and can simply
be dropped. Once more this expression is to be understood as accounting for the energy
in the whole universe whereby the physically relevant information becomes the energy
density which is given by

lim
V→∞

E

V
=

1

4

∫
d3k
(
|v′k|2 + ω2

k(τ)|vk|2
)
. (282)

For a quantum field theory in flat spacetime the vacuum is now defined as being given
by the mode functions that minimize the energy density (282). In curved spacetime this
does not work.

In Minkowski space, the frequency ω is time independent, which is no longer the case for
curved spacetime. One could then suggest that a vacuum could be chosen by minimizing
the energy density for a fixed time τ0. This type of vacuum is called instantaneous
vacuum. Minimizing (282) at a fixed time τ0 then gives a specific mode function vk(τ)
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and therefore gives the annihilation operator ak that defines the vacuum at τ0. If one
were to then go and do the same procedure at a later time τ1 one would find a vacuum
that does not agree with the vacuum found at τ0. Note that (282) can only have a global
minimum for times when ω2

k(τ) > 0 i.e. there could be times when an instantaneous
vacuum can not be defined at all.

This then answers the question why there is no unique vacuum. It is worth noting that
despite what most introductory quantum field theory texts would make you believe, there
also is no unique vacuum in Minkowski space. The correct statement would be that in
Minkowski space all inertial observers define the same vacuum. Indeed an accelerated
observer in empty Minkowski space would measure a temperature proportional to the
acceleration. This is called the Unruh effect and is a consequence of the inertial and
accelerated observer defining different ground states. It would go to far to discuss this
here, but a quick discussion of the Unruh effect can be found in [28] and a more thorough
review is given in [52].

In de Sitter and quasi de Sitter space a preferred vacuum, called the Bunch-Davies
vacuum, can be defined. Here the time dependent frequency is given by

ω2(τ) = k2 − 2

τ
. (283)

As τ is negative big magnitudes of τ correspond to early times. This then means that
for early enough times for all values of k there will be a period of time when the time
dependence of ωk can be ignored and the field will behave as if it were in Minkowski
space. This then allows to define a unique vacuum for sufficiently early times.

B. Weyl Tensor

Contracting the first and third index of the Riemann tensor gives the Ricci tensor
Rµ

νµσ = Rνσ, which can be understood as the trace of the Riemann tensor. The trace
free part of the Riemann tensor is the Weyl tensor Cµνσλ and is in n dimensions given
by [15]

Rµνσλ = Cµνσλ +
2

(n− 2)

(
gµ[σRλ]ν − gν[σRλ]µ

)
− 2

(n− 1)(n− 2)
Rgµ[σgλ]ν . (284)

The Weyl tensor then inherits the symmetries of the Riemann tensor

Cµνσλ = −Cµνλσ = −Cνµσλ (285)

Cµνσλ = Cσλµν (286)

Cµνσλ + Cµσλν + Cµλνσ = 0 (287)

and is additionally trace free
Cµ

νµλ = 0. (288)
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The property that is of most interest here is that under Weyl transformations gµν →
Ω2(xρ)gµν the Weyl tensor is invariant

Cµ
νσλ → Cµ

νσλ . (289)

From this then follows that C2 := CµνσλC
µνσλ transforms as

C2 → Ω−4(xρ)C2 (290)

under local rescaling. As the volume form transforms according to ωg → Ω4(xρ)ωg the
product ωgC

2 is invariant
ωg C

2 → ωg C
2 (291)

making conformal gravity (207) invariant under Weyl transformations.
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