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Kurzfassung

Befehlsauswahl (Instruction Selection) ist eine wichtige Aufgabe eines Übersetzers. Sie ist
für die Auswahl von Maschinenbefehlen verantwortlich, die die Aktionen eines Programmes
- oder genauer gesagt dessen Zwischendarstellung - ausführen. Maschinenbefehle sind
spezifisch für die jeweilige Zielarchitektur, z.B. unterscheiden sich Maschinenbefehle für
x86 und ARM. Daher benötigt diese Aufgabe Wissen über die Zielarchitektur und den
verfügbaren Befehlssatz.

Im Gegensatz zu gewöhnlichen Compilern, die Sourcecode zu Maschinencode über-
setzen, und Interpretern, die Sourcecode innerhalb eines Aufrufs ausführen, verwenden
virtuelle Maschinen einen gemischten Ansatz. Code, der in der Programmiersprache Java
verfasst ist wird zu Java Bytecode übersetzt, der von einer virtuellen Maschine ausgeführt
werden kann. Diese Darstellung ist vergleichsweise maschinennahe, jedoch nicht spezifisch
für eine Zielarchitektur. Eine virtuelle Maschine führt den Bytecode aus, indem sie ihn
entweder interpretiert oder über einen JIT-Compiler in Maschinencode übersetzt und
diesen ausführt.

Die CACAO VM ist eine virtuelle Maschine für Java, die über keinen Interpreter
verfügt. Sie verwendet einen schnellen, nicht optimierenden Compiler zur Generierung von
Maschinencode für die Programmausführung. Häufig verwendete Teile des Programms
können mit einem optimierenden Compiler erneut übersetzt werden um die Ausführung
zu beschleunigen.

Diese Arbeit hat das Ziel die Befehlsauswahl des optimierenden Compilers zu ver-
bessern. Sie verwendet Pattern Matching um Maschinenbefehle auszuwählen, deren
Ausführung - verglichen mit dem derzeit verwendeten konservativen Ansatz - schneller ist.
lburg - ein Code-Generator Generator - wird verwendet um den Code der Mustererkennung
zu erzeugen der im optimierenden Compiler verwendet wird. Dieser Generator verwendet
Spezifikationen in einem Baum-Grammatik Format, die architekturspezifische Muster
für die Befehlsauswahl bereitstellen. Die Implementierung des Algorithmus - teilweise
generiert - enthält keine Spezifika von Zielplattformen.

Der Code, der von der optimierten Version erzeugt wird, ist bis zu 76% schneller.
Die Übersetzungszeit erhöht sich durch das Pattern Matching um etwa 5%, jedoch
werden weniger Maschinenbefehle und Operanden emittiert, wodurch sich die Zeit und
der Speicherbedarf für die Analyse der Aktivitätsbereiche und die Registerbelegung
verringern.
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Abstract

Instruction selection is an important task of a compiler. It is responsible for selecting
machine instructions that can perform the actions specified in a program - or to be more
precise - a higher level representation of it. Machine instructions are specific to the target
architecture, e.g. the machine instructions for x86 and ARM di�er. Therefore, this task
depends on knowledge about the target architecture and the available instruction set.

In contrast to traditional compilers that translate source code to machine code, and
interpreters that execute source code within one invocation, virtual machines take a
mixed approach. Code written in the programming language Java is compiled to Java
bytecode that can be executed in a virtual machine. This representation is comparatively
low level, but not target specific. A virtual machine executes it by either interpreting it,
or compiling it just-in-time (JIT) and executing the compiled version.

The CACAO VM is a Java Virtual Machine that does not feature an interpreter. It
uses a fast baseline compiler to generate machine code for program execution. Frequently
used program parts can be recompiled by an optimizing compiler to speed up execution.

This work aims to improve the instruction selection of the optimizing compiler. It
applies pattern matching to find machine instructions that execute faster than the ones
selected by the currently applied conservative approach. It adapts lburg - a code-generator
generator - to produce the pattern matching code that is used in the optimizing compiler.
This generator uses specifications in tree grammar format that contain target specific
patterns for instruction selection. The algorithm implementation - partly generated - is
kept platform agnostic.

The code generated by the optimized version runs up to 76% faster. Compile time is
increased by about 5% due to pattern matching, but due to less machine instructions
and operands emitted lifetime analysis and register allocation are performed faster and
require less memory.
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CHAPTER 1
Introduction

1.1 Virtual Machines
Rau identifies 3 kinds of representations of a program [Rau78]:

• High-level representation (HLR), i.e. program source code

• Direct interpretable representation (DIR): A lower representation that is reduced
by HLR constructs and should be faster to interpret

• Direct executable representation (DER), i.e. machine code

A traditional compiler translates HLR into DER that can be executed on one specific
target platform. Interpreters take a di�erent approach by directly reading HLR and
executing it. This eases distribution - the source code can be distributed and will run
on every platform that features an interpreter. Executables (DER) are faster than
interpreted code, but have to be compiled for every platform.

Virtual Machines make use of direct interpretable representation. The DIR is compiled
from HLR (the source code) and can be distributed to the di�erent platforms where
a virtual machine executes it. This can either be done by interpreting the DIR or by
compiling the DIR to DER and executing it. VMs aim to be faster than interpreters that
have to deal with HLR concepts.

The DIR of the Java™ programming language [AGH05] is called Java bytecode
[LYBB13]. The Java HotSpot™ VM 1 - the most popular Java VM - takes a mixed
approach in executing the Java bytecode:

• The bytecode is first interpreted. This way the startup time can be kept low.

• Frequently used parts are compiled to DER and executed natively. This improves
the performance of the running program [KWM+08].

1www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
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1.2 The CACAO Java Virtual Machine
The CACAO Java Virtual Machine2 was founded by Andreas Krall and Reinhard Grafl
and first provided an implementation for the Alpha Processor [KG97][Kra98]. In contrast
to the Java HotSpot™ VM which initially interprets bytecode and compiles parts that
are used frequently, the CACAO VM always compiles the bytecode to native code. This
increases startup times compared to interpreting implementations, but does need less
resources during execution which allows Java programs to be executed on low powered
microcontrollers. It currently supports following target architectures: Alpha, i386,
x86_64, ARM, MIPS, Sparc64, PowerPC, PowerPC64, PA-RISC, and s390.

It features a fast non-optimizing baseline compiler to keep startup times short and
an optimizing compiler for recompiling frequently used methods to speed up execution.
Approaches regarding an interpreter variant have been made [ETK06] but have not been
pursued further.

1.3 Motivation
In 2013 a replacement for the optimizing compiler was developed [Eis13]. It features sev-
eral techniques found in modern compilers, e.g. Static Single Assignment (SSA) [EBS+08]
[KWM+08] and an extensible pass structure [LA04a][LA04b]. The implementation is not
yet complete3 and compilation times as well as execution times need improvements.

1.4 Problem Definition
The new optimizing compiler currently only supports the x86_64 architecture. Lowering
of the intermediate representation (IR) to machine instructions is done iteratively: For
every high level instruction one or more machine instructions will be generated. As
a result, values are copied more often than necessary, the number of instructions is
higher and register usage also increases. Unnecessary move operations are eliminated
by the register allocator, but this task could often be avoided and compilation time
could be reduced. Further, many processors feature complex instructions that combine
some calculations into one step, e.g. Multiply-Add. The iterative approach cannot
utilize such commands as multiply and add are di�erent instructions in the intermediate
representation and lowered separately.

1.5 Aim of the Work
The lowering task should be improved by applying a pattern matching algorithm. The
algorithm should be able to handle directed acyclic graphs (DAGs). Alternatively graph
splitting has to be done to apply tree pattern matching. The implementation should be

2www.cacaojvm.org
3Development fork is maintained at BitBucket until it is ready for production
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target independent, target specific content should ideally only be supplied by means of
patterns used by the algorithm.

The e�ect on compilation time should be kept low. Hence, applying heuristics may
be favorable to more complex algorithms.

1.6 Methodical Approach
Instruction selection is done by all compilers and is a well researched topic. If possible,
an existing approach should be reused. Following questions have to be answered in
evaluating existing solutions:

• Is it fast enough to work in a JIT compiler?

• Can it be integrated into the optimizing compiler? Important things to consider are:
Is the intermediate representation suitable as input or does it need to be adapted?
Can the result be processed with the existing compiler infrastructure? Solutions
that are not based on C/C++ might also be hard to integrate.

• Does it also provide patterns for the target architectures? This would help sup-
porting additional targets.

• Is its license compatible with GPL4 used by CACAO VM?

If an existing solution can be reused, it has to be adapted and integrated into the
optimizing compiler. If not, it is necessary to develop a specialized solution. In this case
the theoretical work behind an existing solution might be reused.

1.7 Structure of the Work
The remainder of the work is structured as follows: Chapter 2 gives an overview of
the state of the art of instruction selection as well as related topics such as di�erent
intermediate representations and related compiler passes.

In chapter 3 the status quo of the optimizing compiler is discussed and a decision
is made on the approach used. It then shows how the existing architecture has to be
changed to implement the solution. Afterwards the implementation will be discussed.

Chapter 4 shows which optimizations can be done with the implemented solution. It
outlines the di�erent kinds of optimizations and gives some examples of actual optimiza-
tions done for the supported target architecture.

The results of the optimizations are evaluated in chapter 5. It provides benchmarks
and compares the results of the compiler with and without pattern matching. The
remainder of the work critically reflects on the work done (chapter 6) and provides a
conclusion (chapter 7).

4www.gnu.org/copyleft/gpl.html
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CHAPTER 2
State of the Art

2.1 Compiler Architecture
The architecture of a compiler is usually split into two parts. The front end, which is
responsible for parsing the code and building and optimizing a high level intermediate
representation. And the backend that generates executable code from the intermediate
representation. The main focus of this work is instruction selection, which is the first pass
in a compiler backend. The following sections deal with the intermediate representation
and the backend passes.

2.2 Static Single Assignment
Static single assignment (SSA) intermediate representation was developed by IBM
researchers [RWZ88] [AWZ88] [CFR+91] and is used by several important compilers and
virtual machines (e.g. GCC [Nov03], LLVM [LA04a], Java Hot Spot VM [KWM+08]).

In SSA a variable is only defined once. Cases where variables are redefined can be
transformed into SSA representation by replacing every redefinition with a definition of
a new variable. In cases where a variable is defined by multiple values (e.g. depending
on the branch taken) so called PHI operations are introduced that merge the values.
The SSA form simplifies the representation as reassignments are prevented and therefore
it is well suited for performing optimizations. Listing 2.1 shows a small example of a
conditional variable assignment using SSA representation.

2.3 Graph based SSA IR
Click and Paleczny [CP95] proposed a graph based intermediate representation that is in
SSA form. It completely omits variables and instead uses nodes for operations which
define a value. Using a value is expressed by def-use edges that provide a link between

5



Algorithm 2.1: Example SSA Representation. Source: [CFR+91]
1 if P then
2 V1 Ω 4
3 else
4 V2 Ω 6
5 end
6 V3 Ω „(V1, V2)

the defining operation and the operation that requires the value as input operand. The
example in figure 2.1 shows a SSA graph of a loop incrementing a variable.

Start initialdata

Region

Phi
1

Add

test

If

falsetrue

Figure 2.1: SSA graph example adopted from [CP95]. Control flow is shown as dashed
black edges, scheduling dependencies are denoted by blue edges, data dependencies are
shown in red.

2.4 Instruction Selection
Instruction selection is the task of choosing machine instructions that perform the actions
modeled in the intermediate representation. It is the first task that requires knowledge
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of the target architecture. Depending on the kind of intermediate representation and
compile time constraints there are several algorithms to choose from.

2.4.1 Tree Pattern Matching
Intermediate representations that are centered around statements in the program code
usually contain trees. Pattern matching using a bottom up approach has proven to be
an e�cient way of instruction selection and is used by Twig [AGT89] which generates a
table driven matcher, BEG [ESL89] and burg [FHP92b].

burg uses BURS (Bottom-Up Rewrite System) theory and works with cost augmented
tree grammars. Dynamic programming is already done at compile-compile time which
requires the cost values to be constants. burg finds an optimal tree cover in linear time.

iburg [FHP92b] works with the same grammars but its implementation is shorter and
simpler and moves dynamic programming to compile time. This causes a penalty in
runtime compared to burg but allows dynamic cost calculation.

lcc is a compiler that incorporates lburg [FH95] which is an adapted version of iburg.
Its tree pattern grammar accepts arbitrary strings instead of constant integer values for
the cost attributes. This can be used to specify a cost calculation that is inserted into
the generated matcher code.

An example lburg tree grammar can be seen in Listing 2.1. The rule in line 16 specifies
an ADD operation with a constant value. The helper function constant_encodable(a)
returns a cost of 1, if the constant is encodable as immediate, MAX_COST otherwise.
Loading a constant (line 14) and using the standard ADD (line 15) has a total cost of 2.
If the constant can be encoded the rule in line 16 will account for a cost value of 1 and
will be used in favor of the standard case.

Although dynamic cost calculation increases compile time, it might be favorable for
being able to consider type information that is not directly represented in the intermediate
representation.

Tree pattern matching can also be applied to directed acyclic graphs. The DAG will
be split into trees which are then matched with following assumptions:

• Nodes referenced from within the tree that are not part of the tree any more are
assumed to be values located in a register. (e.g. 2.1 line 13 will be matched instead
of whatever is actually present in the IR).

• The result of a tree root node must always be stored to a register.

Tree pattern matching provides optimal instruction selection for trees, but these are
only local optima. Overall the instruction selection might not be optimal for the DAG.

BURG Algorithm

All burg derivates have a two-pass structure. First, a labeling function traverses the
tree bottom-up, left-to-right and determines a minimum cost cover. Second, the tree is
reduced by traversing it top down and performing the actions specified for the determined

7



1 %{
2 // includes
3 ...
4 // declarations
5 int constant_encodable(Node* a);
6 }%
7 %start stm
8 %term ADD = 1
9 %term CONST = 2

10 %term REG = 3
11 %term LOAD = 4
12 %%
13 reg: REG "/*code to emit*/" 1
14 reg: LOAD(CONST) "/*code to emit*/" 1
15 reg: ADD(reg, reg) "/*code to emit*/" 1
16 reg: ADD(reg, CONST) "/*code to emit*/"

constant_encodable(a)
17 %%
18 // helper functions
19 int constant_encodable(Node* a){
20 if (...) return 1;
21 return MAX_COST;
22 }

Listing 2.1: Simplified lburg specification example

rules. This pass is usually implemented by the user whereas the labeling pass is generated
based on the grammar.

The labeling pass determines all rules and cost values for each node in the tree. There
might exist several rules that match the terminal node, di�ering in the left hand side
(lhs) nonterminal and in the parameters. For each left hand side nonterminal a data
structure is created within the state structure of the node that records the chosen rule
and its cost value. If a matching rule derives from the same lhs nonterminal and has
smaller cost, the rule and cost value will be overwritten. There can also be chain rules,
i.e. nonterminals that are derived to other nonterminals. In this case, the cost is only
forwarded. Traversing the tree every node is annotated with the best rules for each
lhs nonterminal and the cost values. Upon reaching the root node, the rule with the
minimum cost is chosen which implicitly defines the rules chosen for every other node
in the tree. The generated algorithm can be seen in procedure 2.2 (slightly simplified),
for a detailed description see [FHP92b] and [FHP92a]. After the minimum cost cover is
found, the reduce pass will traverse the tree and take the actions specified for the rules.

8



Procedure 2.2: burmLabel(node)
1 switch node.terminal do

// one case-statement generated for every terminal symbol

2 case terminalA ...;
3 case terminalB

// recursive labeling (omitted, if child node not present)

4 burmLabel(node.leftchild);
5 burmLabel(node.rightchild);

/* one if-block generated for each child nodes combination. for

leaf nodes if condition and child nodes are omitted */

6 if (node.leftchild.terminal = terminalX) · (...)) then
// add all child costs and rule cost

7 cost Ω State[node.leftchild].cost[param_nt] + ... + rule_cost
8 if cost < State[node].cost[lhs_nt] then
9 State[node].cost[lhs_nt] Ω cost

10 State[node].rule[lhs_nt] Ω rule

11 end
12 end
13 end
14 endsw

2.4.2 Extending Tree Pattern Matching to DAGs

Ertl shows how tree pattern matching can be extended to DAGs [Ert99]. If a value is
used multiple times the intermediate representation is a DAG. As described in 2.4.1 tree
pattern matching requires the DAG to be split. The calculation result is forced into a
register which is then accessed multiple times. Revisiting the example in listing 2.1 two
ADD operations referencing the same constant value node as operand would not be able
to utilize the rule in line 16.

This problem typically occurs with address arithmetic. Many machine instructions
not only support encoding addresses but also address calculations using registers, multi-
plications and o�sets. Hence the whole tree calculating the address can often be encoded
without emitting any machine code. As memory access often happens more than once
- e.g. when fetching a value and storing the results of a calculation back to the same
address - encoding address calculations cannot be done e�ciently with standard tree
pattern matching.

Ertl extends a tree pattern matching algorithm to parse DAGs. It keeps track of
already visited parts and if a subgraph is derived several times using the same nonterminal,
the subgraph can be shared, i.e. optimizing rules can be chosen. If the nonterminal
is not the same the subgraph might be reduced in di�erent ways which leads to code
duplication. In this case, splitting the graph and storing the result of the subgraph to a
register is more e�cient.

9



2.4.3 DAG Pattern Matching
Digital signal processors often feature irregular instructions that are highly e�cient but
hard to utilize as the IR result is a graph. Even today, performance critical parts often
remain hand written assembler code for that reason. [EKS03] and [EBS+08] solve this
problem using a SSA DAG intermediate representation for instruction selection. As
finding a minimum cost cover for a DAG is NP-hard they translate the SSA graph into
a Partitioned Boolean Quadratic Problem (PBQB) and use a heuristic solver to find a
solution. This provides near optimal results and keeps compilations times reasonable,
but it is not suited for JIT compilation.

2.4.4 LLVM
The compiler framework LLVM [LLV] uses a DAG-to-DAG pattern matching technique
for instruction selection. The intermediate representation of LLVM is used to create
a graph, that at first only consists of target independent nodes. These nodes - or
combinations of nodes - will be replaced by target specific nodes according to patterns
which are specified in so called TableGen-Specifications. After all nodes are suited for the
target the instructions in the graph will be scheduled and a list of machine instructions is
generated. According to Koes et al. [KG08] LLVM ’s default instruction selection uses a
maximal munch algorithm [AP03]. This algorithm matches a node and subsequent tree
child nodes greedily. They propose another algorithm that does near optimal instruction
selection on DAGs in linear time. The LLVM approach might be of interest in a few
other aspects too:

• The TableGen-Specifications contain the specifications for the target machines, i.e.
patterns for the DAG-to-DAG matching, opcodes, register information, instruction
set extensions etc.

• They are available for all targets supported by LLVM. This means, that all the
important architectures are specified in this format.

• TableGen is a program that reads a target specification and builds an in-memory
model of it. It is used within LLVM to generate target specific code which is
included in the compiler. It is possible to write custom backends for it to customize
the output regarding content and format.

Designing the pattern matching and the backend in a way that makes use of TableGen-
Specifications might dramatically ease supporting other targets with the optimizing
compiler.

2.5 Scheduling vs Register Allocation
Instruction selection does not necessarily order the machine instructions. Further, the
output uses so called virtual registers, i.e. placeholders for actual machine registers. The
task of scheduling and allocating registers is left to subsequent passes.
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There are several approaches about the order of the passes [GH88]:

• Prepass scheduling: Scheduling is done before register allocation. The scheduler
arranges the instructions to minimize wait times and does not take care of register
usage. This approach leads to more spills, i.e. code that is inserted to temporarily
move content from registers to memory.

• Twopass scheduling: Scheduling is done before and after register allocation to
optimize the schedule after spill code has been inserted.

• Postpass scheduling: Register allocation is done first, which minimizes spills. This
restricts the number of possible schedules and might introduce wait times.

• Register aware prepass scheduling algorithms: The scheduler keeps track of the
number of required registers and can switch scheduling strategies to avoid spilling.

The register aware scheduling algorithms proposed by the authors outperformed the
other approaches. Regarding the simple approaches, prepass scheduling seems to be
favorable.

2.5.1 Scheduling
As mentioned above, scheduling tries to arrange instructions in a way that minimizes wait
times. Multiple computation units and pipeline architectures allow scheduling of non
conflicting instructions in an interleaved way to utilize unused resources. Warren defines
a list scheduling algorithm for systems with multiple computation units that arranges
the instructions and avoids wait times [War90]. Provided a dependency graph, it first
determines which instructions are eligible for scheduling (i.e. have no dependencies).
It will choose the instruction farthest away from the graph root. The def-use edges’
weight specifies the wait time required for the preceding instruction to provide a result.
Following the edges from the root to the eligible nodes these values can be summed up.
The node with the highest value will be scheduled and removed from the dependency
graph. This is repeated until no instruction is left. The scheduling approach by Gibbons
and Muchnick solves the problem for pipelined architectures in a similar way [GM86].

2.5.2 Register Allocation
Register allocation can be expressed as a graph coloring problem which is NP-hard.
Chaitin [Cha82] proposed heuristics to solve this graph problem and spill registers to
memory if necessary. Some improvements [BCKT89] and other graph coloring heuristic
solutions [CH90] have been proposed, but similar to section 2.4.3 heuristics for NP-hard
problems are usually not fast enough for JIT compilers.

Poletto and Sarkar [PS99] describe an algorithm called linear scan register allocation
(LSRA) which scans the live range of registers in one linear pass - hence the name -
and is considerably faster than any allocator using graph coloring. As such it is an
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ideal candidate for JIT compilers. It is optimized and implemented by Wimmer and
Mössenböck in the Java HotSpot™ VM [WM05]. Wimmer and Franz further show how
LSRA can be used directly on an IR in SSA form [WF10]. Omitting the creation of
another representation saves compilation time and memory and the characteristics of
SSA form help the algorithm to produce slightly better machine code.

2.6 Java HotSpot™ VM
The Java HotSpot™ VM features an interpreter and two optimizing compilers. The client
compiler is described in [KWM+08] and features a high level SSA IR, low level machine
code IR, LSRA, etc. However the article does not mention how instruction selection
is done. The highly optimizing server compiler uses BURS tree pattern matching for
instruction selection [PVC01].

2.7 Graal VM
The Graal VM is a modification of the Java HotSpot™ VM replacing the optimizing
compilers with the Graal Compiler. Graal is written in Java and its intermediate
representation is an SSA graph [DSW+13] that is similar to the one proposed by Click
et al. [CP95]. The IR makes heavy use of annotations to declare the dependencies in the
graph representation.

Speculative optimization is also considered in the design of the IR [DWS+13]. Unlikely
program branches (e.g. exception handling) are pruned and not part of the optimized
version. If the assumptions do not hold, deoptimization is done. The VM state is
reconstructed to execute the pruned branch via the interpreter. The IR supports this by
inserting special nodes, e.g. Guard-nodes for null checks or FrameState-nodes that note
the bytecode index for the interpreter to start when deoptimization happens.

One of the most important optimization techniques is inlining as it avoids function
calling overhead. Inlining is often done at an early stage, e.g. on bytecode level or during
generation of the IR. The Graal VM performs late inlining and uses a graph cache to
speed up compilation [SDMW12]. Before building the IR for a function to be inlined,
the graph cache is looked up. If the graph IR is already available in the cache it can be
directly used. This is particularly rewarding for functions that are inlined frequently.
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CHAPTER 3
Implementation

3.1 Status Quo
This part will give an overview on the currently implemented features of the CACAO
VM optimizing compiler and provide a foundation for the implementation decisions made
in section 3.2. A detailed description can be found in [Eis13].

The compiler is organized in passes. Each pass can specify dependencies to other
passes that are required to precede it, e.g. to provide necessary input. The passes
will be scheduled according to these dependencies provided a schedule is found. The
early passes are responsible for constructing the SSA graph and for performing high
level optimizations such as constant propagation, constant folding, etc. Later passes are
responsible for scheduling, instruction selection and register allocation. Figure 3.1 shows
the later passes and their dependencies relevant for this work.

The optimizing compiler uses a graph based SSA IR similar to the one proposed
by Click and Paleczny [CP95] (see section 2.3) and implements a scheduling concept
proposed by Click in his PhD thesis [Cli95]. Instruction selection is usually done in a basic
block scope, but the HIR does not provide these boundaries. Click’s scheduling concept
is responsible for determining basic blocks, scheduling the basic blocks and assigning the
high level instructions to the basic blocks. Within basic blocks the optimizing compiler
uses list scheduling to order the high level instructions.

Afterwards instruction selection and scheduling is done within the MachineInstruc-
tionSchedulingPass. The instruction selection is currently done iteratively and cannot
combine HIR instructions for optimization purposes. Improving this part of the com-
piler is the main subject of this work. The low level intermediate representation (LIR)
instruction ordering follows the list scheduling order of the HIR instructions, i.e. no
further scheduling is done, as it is already valid, but scheduling of LIR instructions could
improve execution time.

After handling loops in LIR, the lifetime analysis will be done. Its analysis is used as
input for the LSRA (see section 2.5.2). Afterwards the machine code is created by using
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CodeGenPass

RegisterAllocatorPass

LinearScanAllocatorPass

LivetimeAnalysisPass

MachineLoopPass

MachineInstructionSchedulingPass

BasicBlockSchedulingPass ListSchedulingPass

LoopPass

DominatorPass

ScheduleClickPass

...

...

...

Figure 3.1: Late compiler passes (adopted from [Eis13]). Black arrows denote strong
dependencies. Green edges show modifications and red edges show destroys postconditions
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BeginInst

LOADInst CONSTInst

ADDInst

RETURNInst

Figure 3.2: HIR graph of a function that adds a constant value to a parameter and
returns the result. Blue arrows indicate scheduling dependencies, red arrows show data
dependencies. The dashed arrow associates the BEGINInst and ENDInst (in this case of
subtype RETURNInst). No CFG edges are shown as the function only consists of one
basic block.

opcodes and encoding operands such as registers, memory locations and immediates and
the result is emitted into memory.

3.1.1 A closer look at the basic block and instruction selection

Figure 3.2 shows the HIR of a simple function adding two integers and returning the
result. One of the integers is provided via parameter, the other value is a constant.
After the list scheduling pass instruction selection is performed by processing every high
level instruction separately. All high level instructions are subclasses of the Instruction
class and instruction selection is done using the visitor pattern. The result is a low
level intermediate representation (LIR) that models the machine instructions. Lowering1

involves creating several objects for the low level intermediate representation:

MachineInstruction: Subtypes of this class represent machine instructions and contain
information like opcodes and encoding functions.

Mov-Instructions: Subclasses of MachineInstruction frequently used for x86_64. In
two-operand machine code one of the source operands will also be used as destination.
To prevent overwriting values that might be required somewhere else, one operand will
first be copied into another location which will also be used to store the result after the
machine instructions is executed.

1As instruction selection creates a low level IR it is also referred to as lowering
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MachineOperands: Represent values that are defined or used by machine instructions.
Important subclasses are:

• VirtualRegister: Used as placeholder, will be resolved to a machine register by the
register allocator.

• NativeRegister: Specifies an actual machine register for instructions that require
specific registers.

• Immediate: Constant values that can be moved to a register or encoded into an
instruction.

As can be seen in figure 3.3, the result is far from optimal. First, move operations
are introduced that are not needed. They are later removed by the register allocator,
but it would speed up compilation if they are not created in the first place. Second, the
constant value is represented as a separate high level instruction and is therefore lowered
on its own, which results in the constant value being moved to a virtual register which
will be used when the add instruction is lowered. All this can be avoided, if the constant
can be encoded into the add instruction as immediate value. However it is not possible
to utilize this feature with this approach.

3.2 Implementation Decisions
Pattern matching on DAGs is not an option for the JIT nature of CACAO VM.
Even solutions that apply heuristics (see section 2.4.3) are not suited runtime performance
wise.

LLVM DAG-to-DAG matching was particularly interesting due to the TableGen-
Specifications as they would help supporting additional target architectures. It has not
been evaluated regarding runtime as there were other issues discovered:

• As noted in section 2.4.4 LLVM builds a separate DAG for the matching task. This
should be avoided to keep runtime consumption and memory usage down. But
this would imply adaptations to the HIR of the CACAO VM ’s optimizing compiler
as otherwise the patterns that already exist within the LLVM project would not
match.

• The TableGen-Specifications are not always complete: Things that are hard to
specify in a declarative fashion are often omitted and instead handled in hand
written C++ code. E.g. x86_64 opcodes are not specified but code emission uses
hard coded hex values and encodes the operands with it.

• Constraints for applying patterns often rely on hand written code: E.g. for ARM
architectures not all constants can be encoded as immediate value. LLVM as well
uses C++ functions for such cases.
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MachineLabelInst

MovInst

MovInst

MovInst

ADDInst

RETInst

VirtualRegister parameter

parameter stack index

Immediate

VirtualRegister constant

VirtualRegister srcdst

Figure 3.3: LIR Result of Iterative Lowering. Operands are shown in green, machine
instructions are grey. Blue arrows denote the ordering of machine instructions. Red
arrows show data dependencies (ADDInst reads and writes the same virtual register).

• The TableGen-Specifications are highly coupled with LLVM code. C++ functions,
classes, enums etc. are directly referenced by the specifications. Using the specifi-
cations would require significant e�ort to either port LLVM code into CACAO VM
- which might be a licensing issue - or writing equivalent code.

Because of these drawbacks reusing LLVM pattern matching is not an option. When
extending the architecture support of the optimizing compiler it might still provide some
options. If the architecture to be supported is specified with opcodes and operands
writing a TableGen backend and generating code for the code emission task might be a
viable solution. This is not in the scope of this work but should be considered for future
tasks.

Tree pattern matching is therefore the obvious choice. It is faster and does not
impose the JIT compiler with a high runtime penalty. And it can also be used for DAGs
by splitting them.
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The extension proposed by Ertl (see section 2.4.2) is considered for future optimiza-
tions. The optimizing compiler’s capabilities for non-static content are limited at the
moment. Memory access is only done for static variables, stack content, and arrays and
only primitive types are supported. The first two cases have only minor optimization
potential and array access is handled by separate HIR instructions which can incorporate
the optimization without the need for pattern matching. Once the optimizing compiler
supports non-static content address arithmetic calculations will happen quite often and
this optimization should be considered.

3.2.1 Starting Point

lburg is chosen as basis for this work as it enables dynamic cost calculation without further
adaptations. The Instruction subclasses used in the HIR are not subclassed regarding
data type; this information is only available via member variable/function. Subsequently
the grammar cannot incorporate type information which should a�ect decisions. With
dynamic costs the type information can be accessed and the cost value can be calculated
accordingly to influence rule selection.

The lburg-generated code requires adaptations before it can be included in the
context of the optimizing compiler. The essential algorithm emitted should not need any
customization.

As the license of lcc2 (the compiler suite incorporating lburg) conflicts with the GPL
used by CACAO VM the generator code is kept in a separate repository3.

3.3 Changes to the Pass Structure

Instruction selection is done in the MachineInstructionSchedulingPass. It requires two pre-
ceding passes: BasicBlockSchedulingPass which schedules the basic blocks, and ListSchedul-
ingPass which schedules the HIR Instructions within a basic block. The input to the
MachineInstructionSchedulingPass is in both cases a schedule, i.e. a list of pointers to the
basic blocks / instructions. The lowering task will generate machine instructions with
respect to these schedules.

Pattern matching is done with basic block scope and creates machine instructions,
so it naturally fits into the MachineInstructionSchedulingPass. But there is no need for a
schedule within the basic block before that task, so the ListSchedulingPass is not needed.
At the moment pattern matching should only be optional and list scheduling can not be
removed. Instead both options should be selectable via configure options.

To support this strategy, list scheduling is removed as a separate pass and integrated
into the MachineInstructionSchedulingPass. This pass inherits the dependencies of the
ListSchedulingPass and depending on the configuration either list scheduling and iterative
lowering or pattern matching will be performed.

2License information and source code at github.com/drh/lcc
3bitbucket.org/kuetsch/cacao-patternmatching
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3.4 Grammar Design
The lburg input grammar is already shown in listing 2.1. The generated code is included
into a Matcher class to retain the object structure used in the optimizing compiler. This
has a few e�ects on the grammar input file. As the generated file will never be compiled
on its own the includes and declarations in the top part can be left empty and will be
provided by the including file. The bottom part which usually features helper functions
will only be used for methods that are architecture specific. Commonly used methods are
defined in Matcher. The string token in every rule that usually contains the assembler
code is used to specify a rule identifier that is used in an enum definition. This way the
rule specific content can be accessed by name rather than a numeric value.

3.4.1 Excluded Instructions

lburg supports instructions with at most two input operands. Some HIR instructions
exceed that limits, e.g. PHIInst, or INVOKESTATICInst as function calls allow an arbitrary
number of parameters. Adding support would cause significant e�ort and performance
improvements are unlikely. Hence, these instructions will not be handled by pattern
matching and they will not appear in any grammar rule. The implications on adapting
the generator and designing the Matcher are discussed in the subsequent sections.

3.4.2 Terminals

Every Instruction in the HIR has an opcode member of enum-type InstID. The same
names and integer values are used in the grammar to define the associated terminal
symbols. The specification only supports terminals with fixed arity, but RETURNInst
does not follow this approach. It is used as ending statement in a function and the
operand it takes represents the return value. But it can also be used for void functions
without a return value. In contrast to the excluded instructions in section 3.4.1 including
RETURNInst in pattern matching is desired. One way to cope with this is to create
separate HIR instructions for these cases. The current matcher implementation solves it
by assuming the operand to be present and providing a stub if it is missing (see section
3.8.4).

3.4.3 Basic Rules

As HIR instructions are not subclassed for di�erent data types, the rules cannot distinguish
between them. But the HIR itself is already consistent regarding data type. E.g. adding
di�erent data types is solved by inserting a CASTInst for one operand and the ADDInst
itself never gets operands with di�erent data types as input.

This has some interesting implications on the nonterminals and basic rules that do not
perform any optimization. As nonterminal definition and usage always ensure compatible
data types no distinction has to be made. In fact, a nonterminal represents a def-use edge
in the SSA graph that also has no type information attached. As a result the grammar
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can be modeled with only one nonterminal. This nonterminal is trivially used as start
terminal in the grammar and for all operands. An excerpt can be seen in listing 3.1.

1 %{
2 %}
3 %start stm
4 ...
5 %term ADDInstID = 10
6 %term SUBInstID = 11
7 %term MULInstID = 12
8 %term DIVInstID = 13
9 %term REMInstID = 14

10 %term SHLInstID = 15
11 %term USHRInstID = 16
12 %term ANDInstID = 17
13 %term ORInstID = 18
14 %term XORInstID = 19
15 %term CMPInstID = 20
16 %term CONSTInstID = 21
17 ...
18 %%
19 stm: ADDInstID(stm,stm) "ADDInstID" 1
20 stm: SUBInstID(stm,stm) "SUBInstID" 1
21 stm: MULInstID(stm,stm) "MULInstID" 1
22 stm: DIVInstID(stm,stm) "DIVInstID" 1
23 stm: REMInstID(stm,stm) "REMInstID" 1
24 stm: SHLInstID "SHLInstID" 1
25 stm: USHRInstID "USHRInstID" 1
26 stm: ANDInstID(stm,stm) "ANDInstID" 1
27 stm: ORInstID(stm,stm) "ORInstID" 1
28 stm: XORInstID(stm,stm) "XORInstID" 1
29 stm: CMPInstID(stm,stm) "CMPInstID" 1
30 stm: CONSTInstID "CONSTInstID" 1
31 ...
32 %%
33 ...

Listing 3.1: Basic Grammar

These basic rules are the equivalent to iterative lowering. When matched only one
HIR instruction will be processed. They provide a minimum implementation without
optimizing rules. Every HIR instruction is matched by one rule and the Matcher forwards
the instruction selection task to the existing LoweringVisitor. The identifier string token
is identical to the terminal and allows easy identification of basic rules by checking if the
identifier value is in the InstId value range.
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3.5 Generated Grammar Content
Handling the large number of Instruction subclasses can be a tedious task. Hence Eisl
developed a small Python script that generates some include code. It is used e.g. for
Instruction IDs, and for generating the visit() method declarations for the lowering
visitor. The script requires a csv file as input that lists all the instruction class names
and generates the output files accordingly.

This python script and the accompanying csv file are extended to generate code
and grammar content for the matching process. The csv file is extended by a column
denoting the arity of the instruction. If the column is empty and no arity is given, the
instruction is not suitable for pattern matching. These instructions will be listed in the
file ExcludedNodes.inc and used by the Matcher that checks for excluded instructions
(see section 3.4.1). The instructions that define an arity are used to generate the basic
grammar content, i.e. the terminal definitions and the basic rules as shown in listing 3.1.

The optimizing grammar not shown in the example (denoted by ... around the
separator in line 32) is specified in a separate file. Whereas the basic grammar is only
available once and identical for all target architectures, the optimizing grammar is target
specific and located in each architecture subfolder.

3.6 Workflow
Both the Python script and the generator have to be called manually before building the
CACAO VM. As the script also creates input for the generator it has to be executed first.

The workflow is slightly complicated due to the fact that the generator is located in
a separate repository. To simplify working with the generator, its makefile executes all
steps with one invocation. It assumes that the CACAO VM repository is cloned to the
same folder as the generator repository and that its folder is named cacao-compiler2.
It first compiles the generator, then it executes the Python script located in the VM
repository that generates include content and the basic grammar. For each architecture
the basic grammar and the optimizing grammar part are then concatenated to a complete
grammar file. Then the generator is called for every architecture with this complete
grammar as input. It generates the Grammar.inc file which is included by the Matcher.
All generated (intermediate) files except the ones generated by the Python script are
located in the respective architecture subdirectories.

As the pattern matching generator is not part of the CACAO VM repository and
build process, the generated files are committed to the repository. Otherwise building
the VM would fail. Editing the grammar requires the pattern matching repository, but
as long as other tasks are handled, the developer is not required to clone the repository.

3.7 Generator Adaptations
lburg is only modified with respect to the generated output. The generated content is split
into several parts that are surrounded by #ifdef macros. Each part can be included
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on its own at the appropriate location in the Matcher code. The generated content is
only slightly adapted. An additional enum RuleId is generated based on the string token
in the grammar. This is used to identify the rules and to execute the corresponding
code. The method definitions are prefixed with the class name as the generated function
declarations are included within the Matcher class definition. Logging and aborting
execution is also adapted to use the CACAO VM provided functions and macros. Manual
memory allocation is replaced by new and shared_ptr<>. Other minor changes related
to a specific topic are discussed in the respective chapters.

3.8 Matcher
The Matcher class incorporates the generated code and is instantiated within the Machine-
InstructionSchedulingPass for every basic block. This section covers the implementation
as well as the applied algorithms.

3.8.1 Interfaces
The Matcher constructor accepts 3 arguments:

• Pointer to GlobalSchedule: This is provided by the ScheduleClickPass (that was
preceding ListSchedulingPass) which is responsible to assign the Instructions to basic
blocks.

• Pointer to BeginInst: The begin instruction is used as marker in the GlobalSchedule
to find the instructions associated with the basic block.

• Reference to LoweringVisitor: This class is used by the visitor pattern for the
iterative instruction selection. It is target specific (e.g. a typedef for the ac-
tual X86_64LoweringVisitor) and has visit(...) methods for all HIR instruc-
tions. It is used for lowering of single instructions and extended with the method
lowerComplex(...) that handles lowering of instructions that match optimizing
rules.

For every basic block a Matcher object is instantiated and the method run() is called
which performs all necessary tasks for the instruction selection.

3.8.2 Determining Trees
The GlobalSchedule is first iterated with respect to the basic block to collect all instructions
that are contained. Pointers to the found instructions are kept in a set. This allows easy
checks if an instruction is part of the basic block which would otherwise require iterating
over the global schedule again for searching it. The PHIInsts will be stored into another
set as they are not part of the matching and always have to be scheduled directly after a
BeginInst.
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The set of instructions within the basic block is then iterated and DAG splitting is
performed. An Instruction can be the root of a subtree for following reasons:

• The node is excluded from matching and must not be part of a tree: Upon matching
the trees the root nodes are again checked and excluded nodes are skipped. Instead
of pattern matching the node is passed on to the existing LoweringVisitor.

• The node has multiple users. This is the classic DAG splitting case.

• The node has no users. This might occur if calculated values are discarded.

• The node’s user is outside of the basic block: Pattern matching is only done with
basic block scope so the node will serve as a tree root within the basic block.

• The node’s user is an excluded node: As excluded nodes are lowered separately,
they assume that the operand value is available in a VirtualRegister.

The matcher keeps track of the subtrees as well as the dependencies (and reverse depen-
dencies) between them to order the output properly. Finding and handling dependencies
is discussed in section 3.8.5.

3.8.3 Labeling Trees

The labeling pass requires some type and macro definitions that can be seen in listing
3.2. The typedef in line 1 defines the HIR instructions as tree nodes. Line 2 makes
another typedef for the state structure. Although it is generated by lburg it could
be exchanged easily. The #defines provide methods to access the tree or the state
structures associated with the nodes. Line 4 and 7 are simple mappings, but accessing the
children of a subtree in a DAG is more complicated and handled in a separate method.
For every tree determined (see section 3.8.2) the labeling function is called. The generated
algorithm is discussed in section 2.4.1.

1 typedef Instruction* NODEPTR_TYPE;
2 typedef struct burm_state STATE_TYPE;
3
4 #define OP_LABEL(p) ((p)->get_opcode())
5 #define LEFT_CHILD(p) (getOperand(p, 0))
6 #define RIGHT_CHILD(p) (getOperand(p, 1))
7 #define STATE_LABEL(p) (state_labels[p])

Listing 3.2: Type and Macro Definitions
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3.8.4 Providing Stubs and Determining Dependencies
The matcher avoids creating separate tree data structures for the labeling pass. It directly
uses the HIR that is not in tree form. The method getOperand() is responsible for
presenting it to the labeling pass like a tree by providing stub nodes. It also finds
dependencies between trees and is therefore one of the more complex hand written parts.
Both the stubs and the dependencies are stored in the Matcher object. The stubs will be
directly used by the labeling pass whereas the dependency information is only relevant
during the reduce phase.

In the simplest case, this method only returns the operand that is modeled in the
HIR. This is the default action when operating inside the tree. Handling the borders of
a tree that results from DAG splitting requires some special handling. A tree correctly
ends at its leaves, i.e. nodes without operands. DAG splitting results in nodes that have
operands that are not part of the tree (see figure 3.4). The tree pattern matching is not
allowed to incorporate the child node for matching, but the tree is incomplete without a
leaf. In this case the requested operand is replaced by a stub for the labeling pass.

The class NoInst is a subclass of the HIR class Instruction. This node never appears in
the HIR graph itself and is used exclusively for stubs. When accessing a child node via
getOperand() the method checks if a stub is already existing or necessary and returns
the corresponding instance. Using the get_operand() method of the Instruction class
always returns the actual HIR node. The algorithm is shown in function 3.1.

... ...CONSTInst

ADDInst ADDInst

Figure 3.4: DAG Splitting: Both ADDInst nodes use the same CONSTInst node. The
DAG is split up in 3 trees: CONSTInst will be a separate tree with only the root node.
The ADDInsts in the other two trees will be matched with NoInst stubs replacing the
constant definition.

The getOperand() method detects following cases and provides stub nodes:

• If the requested child node is missing a stub will be provided. This is only the case
for RETURNInst of type TypeID:VoidTypeID.

• If the requested child node is the root of another tree in the same basic block (as
determined by 3.8.2) a stub is provided. This is also true for excluded nodes, as
they are treated like tree root nodes. Further the data dependency to the other
tree is tracked.
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• If the requested child node is not part of the basic block it is also stubbed. In this
case, no dependency needs to be tracked.

Dependency Tracking: The trees are always identified by their root nodes. If a
dependency is detected between trees it is entered into the dependency and reverse-
dependency data structure. This requires knowledge of the root node of the currently
handled tree. To prevent traversing the tree bottom-up until it is found the labeling
function is extended by a second parameter that always passes the root of the current
tree. For convenience, this information is also stored into the state structure.

Function 3.1: getOperand(parentInst, index)
// use stub, if it already exists

1 if ÷Stubs[parentInst][index] then
2 return Stubs[parentInst][index]
3 end
// get actual operand

4 operand Ω parentInst.operands[index]
/* create stub if operand does not exist, or is a tree root, or is an

excluded node, or is not part of the basic block */

5 if (@operand) ‚ (operand œ Roots) ‚ (operand œ ExcludedNodes) ‚ (operand /œ
BasicBlockInstructions) then

// create and set stub

6 stub Ω new NoInst()
7 Stubs[parentInst][index] Ω stub

// for roots (and excluded nodes) track dependencies

8 if (operand œ Roots) ‚ (operand œ ExcludedNodes) then
9 treeRoot Ω State[operand].root

10 Dependencies[treeRoot] Ω operand
11 ReverseDependencies[operand] Ω treeRoot

12 end
// return stub

13 return stub

14 end
// return actual operand

15 return operand

3.8.5 Scheduling

The first instructions scheduled in a basic block are always the BeginInst followed by all
PHIInst. They are always lowered before the actual scheduling within the basic block
starts (see procedure 3.2 line 1-4).
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On a basic block level the trees are scheduled as a whole one after the other with
respect to dependencies. The algorithm considers trees to be scheduled if they have
no dependencies to other trees and will choose the tree that has the most reverse
dependencies (i.e. other trees depending on it). The tree with the highest count is
scheduled and removed from the dependencies and reverse dependencies data structures.
This is repeated until no trees are left for scheduling. The only constraint is, that the
tree containing the EndInst (e.g. RETURNInst) is scheduled at last. See procedure 3.2
starting from line 5 for this part.

Scheduling of the specific tree is done as shown in procedure 3.3. If the tree root is
an excluded node, it consists only of this one node and will be lowered using the default
lowering visitor method. Otherwise the procedure is called in recursive fashion for all
child rules and afterwards the procedure to lowering the parent itself is called.

Lowering a single rule is shown in procedure 3.4. If the rule identifier is an instruction
identifier, it denotes the lowering of a single instruction (see section 3.4.3). In this case
the existing LoweringVisitor approach is used, provided that the instruction is not a stub
in which case no lowering has to be performed at all. Otherwise, a rule with more than
just one instruction is the subject, and complex lowering is performed. The complex
lowering gets the root instruction and the rule identifier as parameters and creates the
LIR representation accordingly.
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Procedure 3.2: scheduleTrees
// lower beginInst and all PHI instructions

1 lower(BEGINInstruction)
2 foreach phi œ PHIInstructions do
3 lower(phi)
4 end
// loop until no tree is left

5 while unscheduledTrees ”= ÿ do
6 foreach tree œ unscheduledTrees do
7 if Dependencies[tree] ”= ÿ then

// skip tree if it depends on another tree

8 continue
9 end

10 if (tree ∏ ENDInst) · (unscheduledTrees \ tree ”= ÿ) then
/* skip tree if it contains ENDInst and other trees still have

to be scheduled */

11 continue
12 end
13 if ReverseDependencies[tree].size > ReverseDependencies[candidate].size

then
/* if more trees are depending on the tree, it becomes the new

candidate */

14 candidate Ω tree

15 end
16 end

// lower the tree

17 lowerTree(candidate.rootInst, 1)
18 end
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Procedure 3.3: lowerTree(rootInst, nonTerm)
1 if rootInst œ ExcludedNodes then

// default lowering for excluded instructions

2 lower(rootInst)
3 end
// get state struct with results of labeling pass

4 instState Ω State[rootInst]
// get number of matched rule via helper function

5 rulenumber Ω getRule(instState, nonTerm)

6 foreach (childRule, childInst) of rootInst do
/* recursively lower subtrees using its root instruction and

nonterminal */

7 lowerTree(childInst, NonTerminals[rulenumber][childRule])
8 end
// lower tree using its root instruction and rule id

9 lowerRule(rootInst, rulenumber)

Procedure 3.4: lowerRule(rootInst, ruleId)
1 if ruleId œ InstId then
2 if rootInst.opcode = NoInstID then

// stub. no lowering required

3 else
// default lowering of a single instruction

4 lower(rootInst)
5 end
6 else

// lowering of multiple instructions at once

7 lowerComplex (rootInst, ruleId)
8 end
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CHAPTER 4
Optimizations

4.1 Avoiding Copies
As shown in figure 3.3 the iterative lowering process creates many unnecessary copies.
As two address instructions use the first operand as destination this operand has to be
copied first to avoid overwriting the original value which might be used somewhere else.
The register allocator will remove unnecessary copy operations, but avoiding them where
possible would speed up the register allocation.

Checking the usage of every operand of an instruction during lowering is quite
elaborate. Withing a tree the values are never accessed more than once and this
information can be stored during the labeling pass. The state structure is extended by
a copyOperands boolean that is set to false for all nodes that only use operands
that are part of the tree. For all nodes that use values defined outside of the tree it is

operand1 operand2

SUBInst

...

...

(a) Copy required

operand1 operand2

SUBInst

...

(b) Copy can be avoided

Figure 4.1: Copies can be avoided for values that are not reused. Nodes in blue denote
instructions that are not part of the matched tree.
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set to true. Figure 4.1a shows a SUBInst where the first operand is defined outside of
the matched tree. In this case copying the operand is required. In figure 4.1b the first
operand is part of the matched tree. As can be seen, the SUBInst is the only user of
operand1. Hence, creating a copy can be avoided and overwriting the source operand
is safe.

4.1.1 Extending the Generator

This optimization requires some modifications to the generator. For every tree node that
is labeled the generated code is extended by one line that checks if any of the operands
is of type NoInst. If a stub is detected the node is not part of the tree (as in figure 4.1a)
and the boolean value is set in the handled node to indicate the usage of foreign values.

4.1.2 Extending the Visitor Pattern

As described in section 3.4.3 the basic rules reuse the visitor pattern for lowering
single high level instructions. Every Instruction subclass features a void accept (
LoweringVisitor& v ) method that calls the LoweringVisitor’s void visit (
Instruction* I ) method with its actual Instruction subtype. Both methods are
extended by a bool copyOperands parameter. Its value is true for all cases outside of
pattern matching (e.g. lowering BeginInst and PHIInst) as well as for calls when pattern
matching is deactivated. With pattern matching the value is determined by the boolean
value defined in section 4.1.1.

The LoweringVisitor is extended by a method to setup the operands for the classic two-
operand instructions. If no copy is required and the first operand is of type VirtualRegister
it will be directly used as destination. The method also considers exchanging operand
order for commutable instructions (e.g. ADDInst) and switches operands if the second
operand is a VirtualRegister.

4.1.3 Possible Improvements

This optimization is only done for the most basic case. Instructions that require more
specific handling of operands (e.g. DIVInst or REMInst) are not considered but might
also benefit from applying it.

It is currently only used for basic rules. As complex rules lower multiple HIR
instructions at once a single boolean parameter is not enough. The lowerComplex()
method would be required to access the state structure created during the labeling pass
to access the copyOperands information for every node.

Another improvement would be possible by storing the information for every operand
of an instruction. The current implementation creates a copy of the first operand even
if only the second operand is not part of the tree. However, this approach has to take
care of di�erent arities and might lead to more complexity in the visitor pattern and the
passing of the parameter(s).
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4.2 Encoding Immediates
Many instructions allow encoding of immediate values into the machine code. As constant
values are a separate HIR instruction this optimization can not be done by iterative
lowering. The patterns used for this optimization can be seen in listing 4.1.

1 stm: ADDInstID(stm, CONSTInstID) "AddRegImm"
encodeDiscreteCost(a, a->get_operand(1))

2 stm: SUBInstID(stm, CONSTInstID) "SubRegImm"
encodeDiscreteCost(a, a->get_operand(1))

3 stm: MULInstID(stm, CONSTInstID) "MulRegImm"
encodeDiscreteCost(a, a->get_operand(1))

Listing 4.1: Encoding Immediates

For all three instructions, a constant can be encoded to avoid moves and the creation
of VirtualRegisters. The terminal can be directly specified as parameter, it is not necessary
to provide another nonterminal. The cost calculation is only shown in a shortened way:
The encoding is currently only done for discrete values, hence the TypeID of the instruction
has to be ByteTypeID, IntTypeID or LongTypeID. Further, encoding is limited to 4 byte, so
another check has to be done, if the value of CONSTInst fits into 4 byte. If all conditions
are met, the cost value will be 1 whereas it will be a high value (constant MAX_COST )
otherwise. The cost calculation in this example is misused for constraints. The grammar
does not provide a way to specify constraints that have to be met for using the rules.
But they can be enforced by the cost calculation that produces very high cost values. If
the value can be encoded and the cost is 1 it will be used in favor of two basic rules, that
account for a total sum of 2 (see listing 3.1 line 19 and 30). If the constant cannot be
encoded the cost value of MAX_COST is too high and these two rules with total cost
of 2 will be used instead.

Although ADDInst and MULInst are commutative no rules with exchanged operand or-
der are specified. Operations with constants are handled separately during creation of the
HIR and always place the CONSTInst as second operand for commutative instructions1. If
the order is changed by optimizations or by changes done to the SSAGraphConstructionPass
the optimizing rules have to be created accordingly.

Non-commutative instructions with a constant as first operand are not suitable for
encoding immediates. For SUBInst this would require the second parameter to be negated
first and afterwards an add instruction with encoded immediate value could be issued.
In the end no reduction of machine code or register usage can be achieved this way.

4.3 Combining HIR Instructions
Previous optimizations only combined instructions with CONSTInst which is a separate
HIR instruction but not a real one in machine code. This section shows how actual

1Operations with two constant operands should be eliminated by constant folding optimization before
instruction selection takes place.

31



instructions can be combined to utilize machine instructions that perform multiple
operations within one step.

4.3.1 The LEA Instruction
The Intel architecture often allows one of the operands to be located in memory. The
address of the operand does not need to be calculated beforehand. Instead the most
common address arithmetic calculations are supported by the machine instructions and
can be encoded.

The LEA instruction’s only action is to calculate this address arithmetic and to
store the resulting address into a register (see [Int] for instruction details). It therefore
performs less tasks than MOV that uses the address and loads / stores a value from / to
the memory location or other commands that use the value in the specified location. As
it is not accessing the memory it can be used for arbitrary calculations.

1 lea dst, [base + index * scale + displacement]
2 // dst, base, index: registers
3 // scale: 2,4,8
4 // displacement: max. 4 byte immediate value

Listing 4.2: Address Calculation

Listing 4.2 shows how the address calculation is structured. base usually contains
the begin of an array in memory, index selects the n-th element and is multiplied by
the scale factor that takes care of the element size. An arbitrary, signed displacement
value can further be added (which also enables subtractions). The only constraint for
this value is that it has to fit into 4 bytes. All values are optional and can be omitted
which makes it quite versatile.

4.3.2 Implementing LEA Optimizations
Figure 4.2 shows an example of a HIR graph that can be optimized by using a LEA
machine instruction. As base and index are required to be registers, they do not need to
be part of the matched tree. Several other possible forms exist that can be optimized
with the LEA instruction. The order and operands of the instructions might be di�erent
and as all values are optional they and the respective operations might be missing. All
these permutations have to be specified as patterns to do this optimization where possible.
Listing 4.3 shows some patterns of HIR instructions that can be calculated with a single
LEA instruction. The example omits the identifier token and the cost calculation for
clarity. The cost calculation is also used for constraints, similar to section 4.2. It assures
that scale has the value 2, 4 or 8 and that displacement fits into 4 byte.

4.3.3 Further Optimizations
The work only highlights some examples how pattern matching can be used. The
examples only handle a few instructions regarding discrete values. There may be lots of
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stm base stm index CONSTInst scale CONSTInst displacement

MULInst

ADDInst

ADDInst

Figure 4.2: A HIR example that can be solved with LEA Optimizations. All operands
are optional. base and index have to be registers and do not need to be part of the
matched tree. scale has to be 2,4 or 8. displacement has to fit into 4 bytes.

1 stm: ADDInstID(ADDInstID(stm, stm), CONSTInstID)
2 stm: ADDInstID(stm, ADDInstID(stm, CONSTInstID))
3 stm: ADDInstID(stm, MULInstID(stm, CONSTInstID))
4 stm: ADDInstID(MULInstID(stm, CONSTInstID), stm)
5 stm: ADDInstID(ADDInstID(stm, MULInstID(stm, CONSTInstID)),

CONSTInstID)
6 stm: ADDInstID(stm, ADDInstID(MULInstID(stm, CONSTInstID),

CONSTInstID))
7 ...

Listing 4.3: LEA Patterns

other optimizations for discrete and floating point instructions that profit from pattern
matching.
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CHAPTER 5
Evaluation

5.1 Methodology
The compiler performance is evaluated regarding compilation time, allocated memory,
register allocator results and code size. The execution of the resulting machine code is
only evaluated regarding execution time. The compiler is limited to static content and
arrays, that are not a�ected by the implemented optimizations, so memory consumption
can be left out of the comparison. Execution times will be averaged from 30 executions
to eliminate influences by the system. For the same reason, the benchmarks are executed
after a reboot with no other applications running.

5.1.1 Building the CACAO VM Executables

Two builds of the CACAO VM are created from the same SW version. One build is
done for iterative lowering, the other build configures pattern matching1. Both builds
have debugging disabled2, optimizations enabled3 and activated timing4, statistics5, and
logging6 options for compiler evaluation.

5.1.2 Test Environment

The test system is comprised of a 2.66 GHz Intel® Core™ 2 Duo processor, 8 GB DDR3
RAM (1067 MHz bus speed) and a Samsung 830 Series SSD on an SATA II port. The
system runs OS X Yosemite 10.10.2.

1-DPATTERN_MATCHING compiler flag; will be a configure option in the future
2–disable-debug
3–enable-optimizations
4–enable-rt-timing
5–enable-statistics
6–enable-logging
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5.2 Benchmarks

There are several benchmarks available for measuring integer performance, e.g. Dhrystone
[Wei84] or the more modern CoreMark [GO]. The algorithms would have to be ported to
Java as they are written in C or other compile-only languages. Fhourstones [Tro] is an
exception as it is available in Java as well. DaCapo [DaC] and SPECjvm [Sta] are Java
benchmark suites that perform various real life tasks such as XML transformation, vector
graphics calculation etc. However, these benchmarks cannot be used as the optimizing
compiler is not mature enough for running fully fledged benchmarks.

5.2.1 Status Quo

Eisl uses micro-benchmarks for evaluating the performance of the optimizing compiler
[Eis13]. Evaluation is done by compiling single methods and writing the object code to
file. This object code is linked and called for evaluation.

An easier solution is already available and being used for the JUnit test suite. They
compile and execute methods via a Java Native Interface (JNI)7 method. In contrast
to the above mentioned benchmarks everything can be coded in Java, but only the one
specified method is compiled by the optimizing compiler. Everything else is compiled
by the baseline compiler. Each test case is comprised of two methods: The @Test
annotated JUnit test case, and a method that is the test candidate. Each test case
compiles and executes a test candidate twice: first using the baseline compiler, then with
the optimizing compiler. The criteria for a succeeding test case is return value equality
between the two methods.

5.2.2 Adaptations

Measuring Execution Time: The micro benchmarks implemented in this work reuse
the JUnit test infrastructure that is already available. The test framework is slightly
adapted for the benchmark usage. The existing JNI method is split up into two methods,
one responsible for compiling, the other one for executing the compiled code. The Java
call to the executing method is surrounded by code for time measurement. It uses
System.nanoTime() and logs the execution time of every call.

Measuring Compiler Performance: Measuring compiler performance is already
implemented and can be done with the respective configure options (see section 5.1.1).
Due to the changes to the pass structure (see section 3.3) MachineInstructionSchedulingPass
incorporates both available solutions. Depending on the compiler switch the pass performs
either HIR list scheduling and iterative lowering or pattern matching. The evaluation
compares the results of MachineInstructionSchedulingPass and the subsequent passes.

7docs.oracle.com/javase/7/docs/technotes/guides/jni/
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5.2.3 Benchmark Methods
Due to the limitations of the micro-benchmarks, the test methods are usually small
and finished within several µs. Function calling overhead and system influences often
account for most of the time measured and can easily cause values that are several
times higher. To outrule these influences long running benchmarks are desired. The
implemented benchmarks use for-loops to accomplish this. An example can be seen in
listing 5.1. Note that base and index are modified within the for loop to prevent code
motion optimizations from moving the calculation out of the for loop. All benchmarks
will be called with a large count value to accomplish a runtime of 100ms to 300ms.

1 static int base_indexScale__Displacement(int count, int base,
int index) {

2 int a = 0;
3 for (int i=0; i <= count; i++){
4 base = base+i;
5 index = index+i;
6 a = (base + (index * 2)) + 3;
7 }
8 return a;
9 }

Listing 5.1: Benchmark for LEA Optimization

Following benchmarks have been implemented to test the optimizations:

• Add Immediate: Performs several ADDInst with CONSTInst as operand to evaluate
performance gains of encoding immediate values.

• Mul Immediate: Performs several MULInst with CONSTInst as operand. Unlike
ADDInst encoding immediate values causes a 3-operand instruction.

• Several LEA Benchmarks: To test LEA optimizations, the implemented patterns
have to be reflected in the test code. All tested patterns can be seen in table 5.1,
benchmark LEA5 is already shown in listing 5.1.

Existing Unit Test Methods: The following test methods are included in some
comparisons: boyerMoore, sqrt, permut, matAdd, matMult, and matTrans. They give
insights on how the changes a�ect more complex methods that do not profit that much
from the optimization patterns.
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Benchmark Pattern
LEA1 (base + index) + displacement
LEA2 base + (index + displacement)
LEA3 base + (index ú scale)
LEA4 (index ú scale) + base
LEA5 (base + (index ú scale)) + displacement
LEA6 base + ((index ú scale) + displacement)

Table 5.1: LEA Benchmarks and Associated Patterns

5.3 Results
The newly created benchmarks target the implemented optimizations and are therefore
not conclusive about overall performance. As a counterpart the existing benchmarks are
compared, but their execution time is rather short. As soon as more complex benchmarks
are possible the optimizations should be reevaluated.

5.3.1 Execution Time
Execution time comparison can be seen in table 5.2 and figure 5.1. Overall a significant
improvement can be observed. Targeted benchmarks are 43.37% faster on average with
LEA5 improving by 76.09%. MulImm did not show any runtime di�erences. This could
be caused by the optimization requiring an additional register compared to the 2-operand
MUL instruction.

The existing unit tests have also been evaluated regarding execution time (see table
5.3). Their execution time is shorter as they are not looped. The e�ect of the optimizations
is much smaller, as the code does not make heavy use of them. Overall an improvement
of 3.62% can be observed with a peak improvement of 22.18% for matAdd.

Benchmark Iterative Lowering Pattern Matching Comparison
ms ms 1 ≠ IL/PM in %

AddImm 257.67 192.97 -33.53
MulImm 228.83 229.21 -0.17

LEA1 152.80 116.40 -31.28
LEA2 166.86 119.61 -39.51
LEA3 176.48 116.99 -50.85
LEA4 178.55 126.44 -41.21
LEA5 206.53 117.28 -76.09
LEA6 201.20 115.22 -74.62

Table 5.2: Comparison of execution time for targeted benchmarks
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Figure 5.1: Comparison of execution time between Iterative Lowering and Pattern
Matching.

Benchmark Iterative Lowering Pattern Matching Comparison
µs µs 1 ≠ IL/PM in %

boyerMoore 11.53 11.20 -2.98
sqrt 6.76 6.60 -2.53

permut 12.77 13.13 2.79
matAdd 10.47 8.57 -22.18

matMult 14.17 14.70 3.63
matTrans 7570.77 7534.03 -0.49

Table 5.3: Comparison of execution time for existing unit test methods
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5.3.2 Compilation Time
As can be seen in table 5.2 and figure 5.2 the time needed for compiling the functions
mostly increased. The only notable exception is AddImm that compiled 4.08% faster. On
the other end of the range LEA2 shows an increase in compile time of 11.65%. Overall
compile time increased by 5.30%.

The newly created benchmarks are long running, but the algorithms are quite simple.
Hence compilation is a lot faster compared to the existing test methods that feature more
complex algorithms that are not looped.

Comparing the time spent in the passes (see table 5.5) it can be seen that
MachineInstructionSchedulingPass takes more time when pattern matching is performed.
LivetimeAnalysisPass is performed faster due to fewer registers used in the LIR when
pattern matching is done. LinearScanAllocatorPass performance is improved for all shown
benchmarks except for MulImm and LEA1. 8

Benchmark Iterative Lowering Pattern Matching Comparison
µs µs 1 ≠ IL/PM in %

AddImm 1040 999 -4.08
MulImm 836 936 10.71

LEA1 909 1013 10.26
LEA2 906 1026 11.65
LEA3 919 993 7.43
LEA4 923 1015 9.08
LEA5 961 1029 6.59
LEA6 957 995 3.80

boyerMoore 8085 7991 -1.18
sqrt 1330 1324 -0.49

permut 3400 3722 8.66
matAdd 3659 3900 6.18

matMult 4749 4824 1.54
matTrans 7335 7642 4.02

Table 5.4: Comparison of compilation time (rounded to µs)

8
RegisterAllocatorPass is not listed as it is a meta-pass and does not consume runtime.
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Figure 5.2: Comparison of compilation time between Iterative Lowering and Pattern
Matching

AddImm MulImm LEA1 LEA5 boyerMoore
Pass IL PM IL PM IL PM IL PM IL PM

MachineInstructionScheduling 222 300 166 244 187 292 201 299 2463 2680
MachineLoop 33 33 32 35 31 32 32 32 353 366

LivetimeAnalysis 75 58 61 54 72 58 75 58 310 279
LinearScanAllocator 472 370 364 377 400 404 429 405 3355 3212

CodeGen 32 28 32 29 28 31 31 30 90 83

Table 5.5: Comparison of compiler pass time consumption for selected benchmarks. All
values in µs
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5.3.3 Total Memory Allocated
Total memory allocated has not changed much (see 5.6) and is 0.46% higher on average.
The AddImm benchmark uses 13% less memory, MulImm 9% less, but most other
benchmarks cause the compiler to allocate slightly more memory. Compiling methods
handling matrices allocated between 7.05% and 9.21% more memory. Table 5.7 shows
the total memory allocated for the classes that account for most memory. Allocations
for Value have increased which is directly related to creating stubs for pattern matching
(NoInst is a subclass of Value). MachineOperand and MachineInstruction allocations have
decreased due to fewer copy operations and complex machine instructions that replace
multiple instructions. Encoding immediates instead of moving them to VirtualRegisters
not only reduces MachineOperands, but also allocations of LivetimeIntervalImpl. As less
values are to be organized, the lifetime analysis accounts for less allocations (and the
corresponding LivetimeAnalysisPass also uses less runtime; see table 5.5).

Benchmark Iterative Lowering Pattern Matching
AddImm 30504 26944
MulImm 24456 22400

LEA1 27048 27248
LEA2 27048 27608
LEA3 27048 27608
LEA4 27488 27248
LEA5 28776 27952
LEA6 28776 27952

boyerMoore 170752 173728
sqrt 35848 36600

permut 87648 91064
matAdd 94360 101512

matMult 110192 118552
matTrans 162328 178800

Table 5.6: Comparison of total memory allocated (in byte) in the optimizing compiler
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Benchmark Strategy Value Machine
Operand

Machine
Instruction

Lifetime
IntervalImpl

IL 5016 15776 4736 2392AddImm PM 6024 12208 4584 1456
IL 3984 12504 3760 1560MulImm PM 4824 10936 2920 1144
IL 4488 14032 3896 2080LEA1 PM 6168 12824 3912 1768
IL 4832 14848 4256 2288LEA5 PM 6512 12824 4272 1768
IL 28688 86968 32160 144matTrans PM 44144 86624 33480 256

Table 5.7: Total Memory Allocation per Class (in byte)

5.3.4 Register Allocator Performance
Comparing register allocation showed mixed results. In most cases the spill statistics are
equal or di�er by one spill load / store. Benchmark matTrans has far more spill loads
and stores when pattern matching is active. Fewer instructions and operands should help
the register allocator but in this case the opposite happens. Most likely the scheduling
algorithm orders the machine instructions in an unfavorable way for register allocation.
Figures 5.3 and 5.4 show the spill statistics for all benchmarks that have spill loads or
stores.
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Figure 5.3: Spill Loads Comparison
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Figure 5.4: Spill Stores Comparison

5.3.5 Code Size
The code size of the compiled methods naturally decreases if less machine instructions are
emitted (see table 5.8). Encoding immediates increases code size, but has no influence in
this comparison: Traditional executables might provide constant values outside the code
block (e.g. text block) and perform a load from memory, but this is not done here. The
iterative lowering encodes the immediates as well, but only into a MOV instruction that
moves the immediate to a register. So, encoding immediates does not change code size,
but omitting MOV instructions and combining instructions (e.g. with LEA) does help to
decrease it.

Only matMult and matTrans showed an increase in code size. As can be seen in
section 5.3.4 the spill loads and stores have increased for these benchmarks, which means
that also more spill code is generated.
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Benchmark Iterative Lowering Pattern Matching
AddImm 96 72
MulImm 68 52

LEA1 56 50
LEA2 58 58
LEA3 60 56
LEA4 58 48
LEA5 68 58
LEA6 68 58

boyerMoore 704 640
sqrt 116 110

permut 530 472
matAdd 484 460

matMult 576 580
matTrans 918 954

Table 5.8: Comparison of Code Size (in byte)

45





CHAPTER 6
Critical Reflection

6.1 Limitations
The implemented tree pattern matching approach has several limitations. Hence, some
processor features cannot be utilized.

Basic Block Scope: Sometimes nodes outside of a basic block could still be used for
optimizations. E.g. a CONSTInst located in another basic block could still be encoded as
immediate. Although certain exceptions could be made, this approach would be error
prone. Instead instruction selection across basic block boundaries would be favorable.

Conditional Instructions: Some architectures (e.g. ARM) allow conditional execu-
tion of single instruction. Depending on the flags set by the previous instruction the
following instruction will be executed or not. This mode reduces the jumps and labels
emitted in machine code. The instruction will be executed (pipelined) and a rollback will
be performed if it should not be executed, which is usually faster than a regular branch
hazard. Again, this cannot be solved optimally under basic block scope as the IFInst
results in 3 basic blocks (the basic block where if is scheduled, the then- and the else-
block).

Packed Instructions are instructions that are usually found in multimedia instruction
set extensions (e.g. SSE for x86_64). They operate on large registers (e.g. 128bit) that
are treated like a list of smaller registers (e.g. 4 ú 32 bit or 8 ú 16 bit). The instruction is
then performed multiple times in parallel.

These operations are di�cult to utilize. Usually loop unrolling has to be done first
until multiple calculations of one loop can be combined to a packed instruction. As these
operations do not share data dependencies but are independent of each other, pattern
matching cannot be used.
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Implementing this optimization in the backend might be di�cult, as the LIR will be
harder to analyze. On the other hand, an HIR optimization pass would require knowledge
about the target architecture in the compiler frontend.

6.2 Recommended Improvements
The implementation should be improved in following aspects.

Constraints: The current approach misuses the cost calculation for applying con-
straints (see section 4.2). This is a valid solution, but it can be error prone. If an
optimizing rule cannot be applied MAX_COST will be returned. But if the non-
optimizing rules are missing, the optimizing rule is the only rule matching and trivially
the cheapest rule to be selected. Hence, the pattern matcher will select it although it
cannot be applied. The lowering code has to assert viability by again checking the same
conditions that already have been checked by the cost calculation. The implementation
should be extended by constraints, which would require an extension of the input grammar
and the generator.

Scheduling: As the main task was to improve instruction selection, the scheduling
approach is still pretty basic. Currently it only creates a valid schedule that is far
from optimal. The chosen nested approach (scheduling the trees and scheduling the
instructions within the tree; see section 3.8.5) leads to a fixed schedule that only takes
care of data dependencies. It should be replaced by a fully fledged scheduling concept.

48



CHAPTER 7
Summary and Future Work

This chapter provides a short summary of the work and discusses possible future work.

7.1 Summary
In this work the optimizing compiler of the CACAO VM is improved regarding instruction
selection. Tree pattern matching is applied to detect patterns that can be solved e�ciently
by the target processor’s instruction set. The implementation shows how a DAG IR can
be augmented and fed into an algorithm that expects trees without duplicating parts
of the intermediate representation. The optimizations done show promising evaluation
results and performance is expected to improve further once other optimizations are
implemented.

7.2 Future Work
The implemented optimizations only provide a proof-of-concept. Although some opti-
mizations cannot be done with this approach (see section 6) providing a meaningful
implementation is still an elaborate task to be done. Some promising optimizations can
only be done for a more mature optimizing compiler, e.g. encoding address arithmetic
using Ertl’s approach (see section 2.4.2). Extending the tree grammar rules by constraints
would be advisable.

Instruction scheduling clearly needs improvements and could provide significant
performance gains. An optimized scheduling algorithm should not rely on the tree
patterns found in the HIR. Instead it should analyze the generated machine instructions,
its operands, and results and be able to move all machine instructions freely within the
basic block. Further it should keep track of register pressure to produce a schedule that
prevents register spills.
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APPENDIX A
Optimization Example

The optimization chapter (see section 4) only discusses the patterns but omits code
that has to be written for the optimization. This section shows how an optimization
is implemented in actual code. It uses a LEA optimization as example and shows cost
calculation as well as lowering code.

A.1 Rules and Cost Calculation
Listing A.1 shows a LEA optimization pattern with all operands being used. There
are several ways the HIR can be structured when calculating the same value due to
commutative operations, only one pattern is discussed here.

The string token BaseIndexMultiplierDisplacement is the identifier of the
rule that is used in the lowering afterwards. Even if di�erent rules can be lowered in the
same way the token must not be reused. All string tokens are collected in an enum and
compilation will fail if a name is specified more than once.

The operands of an Instruction are only available as Value supertype. Hence checking
properties of a subtype requires calling the virtual casting functions.

1 ...
2 stm: ADDInstID(ADDInstID(stm, MULInstID(stm, CONSTInstID)),

CONSTInstID) "BaseIndexMultiplierDisplacement"
calcBaseIndexMultiplierDisplacementCost(a)

3 ...
4 %%
5
6 namespace {
7
8 bool isMultiplier(CONSTInst* c){
9 s8 val = c->get_value();
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10 if ((val == 2) || (val == 4) || (val == 8)) return true;
11 return false;
12 }
13
14 bool isConstEncodable(CONSTInst* c){
15 return fits_into<s4>(c->get_value());
16 }
17
18 bool isDiscreteValue(Instruction* a){
19 return ( a->get_type() == Type::ByteTypeID ||
20 a->get_type() == Type::IntTypeID ||
21 a->get_type() == Type::LongTypeID);
22 }
23
24 int calcBaseIndexMultiplierDisplacementCost(Instruction* a){
25 if (isDiscreteValue(a) &&
26 isConstEncodable(
27 a->get_operand(1)->to_Instruction()->to_CONSTInst())

&&
28 isMultiplier(
29 a->get_operand(0)->to_Instruction()->get_operand(1)
30 ->to_Instruction()->get_operand(1)
31 ->to_Instruction()->to_CONSTInst()))
32 return 1;
33 return MAX_COST;
34 }
35
36 }

Listing A.1: LEA Pattern and Cost Calculation

A.2 Lowering

The lowerComplex method in the X86_64LoweringVisitor is basically a big switch/case
statement and for every pattern a case block is available that performs the lowering.
Again dynamic casts are required to access properties, e.g. constant values of CONSTInst.

Up to line 16 in listing A.2 the HIR instructions are reconstructed and MachineOperands
are gathered for the tree foreign values, e.g. the base operand in line 10 from an arbitrary
HIR instruction that is referenced. In line 18 a VirtualRegister is created that will hold the
result. Line 19 shows the creation of a ModRMOperand that takes all the input operands
that will later be encoded as ModRM and SIB byte (see [Int]). In line 21 the LEAInst is
created and the following line pushes it into the code memory.
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At last, the result (i.e. the VirtualRegister created in line 18) is linked to the HIR
instruction, i.e. the root instruction of the tree pattern. This way other HIR instructions
that use the defining HIR instruction as operand can find the MachineOperand that is
used as LIR input. See line 10 on how a user can access this information.

1 void X86_64LoweringVisitor::lowerComplex(Instruction* I, int
ruleId){

2 switch(ruleId){
3 // other rules ...
4 case BaseIndexMultiplierDisplacement:
5 {
6 assert(I);
7 Type::TypeID type = I->get_type();
8
9 Instruction* bim_root =

I->get_operand(0)->to_Instruction();
10 MachineOperand* base =

get_op(bim_root->get_operand(0)->to_Instruction());
11
12 Instruction* nested_mul =

bim_root->get_operand(1)->to_Instruction();
13 MachineOperand* index =

get_op(nested_mul->get_operand(0)->to_Instruction());
14 CONSTInst* multiplier = nested_mul->get_operand(1)
15 ->to_Instruction()->to_CONSTInst();
16
17 CONSTInst* displacement =

I->get_operand(1)->to_Instruction()->to_CONSTInst();
18
19 VirtualRegister *dst = new VirtualRegister(type);
20 ModRMOperand

modrm(ModRMOperand::get_scale(multiplier->get_Int()),
IndexOp(index), BaseOp(base),
displacement->get_value());

21
22 MachineInstruction* lea = new LEAInst(DstOp(dst),

get_OperandSize_from_Type(type), SrcModRM(modrm));
23 get_current()->push_back(lea);
24 set_op(I,lea->get_result().op);
25 }
26 break;
27 default:
28 ABORT_MSG("Rule not supported", "Rule " << ruleId

<< " is not supported by method lowerComplex!");
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29
30 }
31 }

Listing A.2: Lowering Code for Optimizing Rules

A.3 LIR Code
Listing A.3 shows the LEAInst class definition and the emit method implementation
that handles the encoding of instruction opcode, registers and immediate values. The
content of the LEAInst class and its emit method is mainly copied from MovModRMInst,
as MOV uses the same address calculation method as LEA. Only newly created code is
shown, so ModRMOperandDesc and called functions are not shown in the listings.

1 class LEAInst : public GPInstruction {
2 private:
3 enum OpIndex {
4 Base = 0,
5 Index = 1,
6 Value = 2
7 };
8 ModRMOperandDesc modrm;
9 public:

10 LEAInst( const DstOp &dst, OperandSize op_size, const
SrcModRM src )

11 : GPInstruction("X86_64LEAInst", dst.op, op_size, 2),
12 modrm( ModRMOperandDesc(

src.op.scale,operands[Index], operands[Base],
src.op.disp )){

13 operands[Base].op = src.op.base;
14 operands[Index].op = src.op.index;
15 }
16 virtual void emit(CodeMemory* CM) const;
17 };
18
19 void LEAInst::emit(CodeMemory* CM) const {
20
21 X86_64Register *reg;
22 u1 opcode;
23
24 MachineOperand *op = get_result().op;
25 reg = (op?cast_to<X86_64Register>(op) : 0);
26
27 opcode = 0x8D;
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28
29 assert(reg);
30 CodeSegmentBuilder code;
31 // set rex
32 u1 rex = get_rex(reg,modrm,get_op_size() ==

GPInstruction::OS_64);
33 if (rex != 0x40)
34 code += rex;
35 // set opcode
36 code += opcode;
37 // set modrm byte
38 // mod
39 u1 modrm_mod;
40 if (modrm.disp == 0) {
41 // no disp
42 modrm_mod = 0;
43 }
44 else if (fits_into<s1>(modrm.disp)) {
45 // disp8
46 modrm_mod = 1;
47 } else {
48 // disp32
49 modrm_mod = 2;
50 }
51 X86_64Register *index_reg = (modrm.index.op != &NoOperand

? cast_to<X86_64Register>(modrm.index.op) : 0);
52 X86_64Register *base_reg = (modrm.base.op != &NoOperand

? cast_to<X86_64Register>(modrm.base.op ) : 0);
53 // r/m
54 u1 modrm_rm;
55 bool need_sib;
56 // for the time being always use SIB byte
57 if (!index_reg && base_reg && base_reg->get_index() !=

0x4) { // 0b100
58 modrm_rm = base_reg->get_index();
59 need_sib = false;
60 } else {
61 modrm_rm = 4; // 0b100
62 need_sib = true;
63 }
64 code += get_modrm_u1(modrm_mod,reg->get_index(),modrm_rm);
65
66 if (need_sib) {
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67 // set sib
68 u1 sib=0;
69 sib |= modrm.scale << 6;
70 if(index_reg) {
71 sib |= (0x7 & index_reg->get_index()) << 3;
72 }
73 else {
74 sib |= 0x4 << 3; // 0b100 << 3
75 }
76 assert(base_reg);
77 sib |= (0x7 & base_reg->get_index()) << 0 ;
78 code += sib;
79 }
80 if (modrm_mod == 1) {
81 code += s1(modrm.disp);
82 }
83 if (modrm_mod == 2) {
84 code += (0xff && (modrm.disp >> 0));
85 code += (0xff && (modrm.disp >> 8));
86 code += (0xff && (modrm.disp >> 16));
87 code += (0xff && (modrm.disp >> 24));
88 }
89 add_CodeSegmentBuilder(CM,code);
90 }

Listing A.3: LEAInst Code
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