

Genetic analysis of bract colour formation in Poinsettia (*Euphorbia pulcherrima* Willd. ex. Klotzsch)

M.Sc. Vinicius Vilperte

Leibniz Universität Hannover Institute for Plant Genetics Section of Molecular Plant Breeding vilperte@genetik.uni-hannover

Euphorbia pulcherrima Willd. ex Klotzsch

- Euphorbiaceae family
- Cassava (*Manihot esculenta*) and the castor oil plant (*Ricinus communis*)
- Mexico as center of origin
- Genus *Euphorbia* contains ~2000 species

picture redacted

https://bsapubs.onlinelibrary.wiley. com/doi/full/10.3732/ajb.1200072

(TREJO ET AL. 2012)

Euphorbia pulcherrima Willd. ex Klotzsch

- Euphorbiaceae family
- Cassava (Manihot esculenta) and the castor oil plant (Ricinus communis)
- Mexico as center of origin
- Genus *Euphorbia* contains ~2000 species
- **Breeding** → Mutagenesis (X-ray irradiation)
- 'White paradox'

Expression of genes and enzyme activities involved in the formation of anthocyanin

Poinsettia transcriptome

Vilperte et al. BMC Genomics (2019) 20:900 https://doi.org/10.1186/s12864-019-6247-3 **RESEARCH ARTICLE**

BMC Genomics

Check for

Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts

Vinicius Vilperte^{1,2†}, Calin Rares Lucaciu^{3†}, Heidi Halbwirth⁴, Robert Boehm², Thomas Rattei^{3*} and Thomas Debener¹

1: Bracts of red and white Fig. poinsettia varieties for three color developmental stages.

Fig. 2: Anthocyanin biosynthetic pathway and expression of related genes during bract development.

First poinsettia transcriptome

Use in genetics and plant breeding

3: RNA-Seq RT-qPCR Fig. and expression profiles during bract development.

Major detoxifying enzymes

- Abiotic and biotic stress modulation
 pathways (ISLAM ET AL. 2017)
- Anthocyanin-related GSTs
 - Z. mays (Bz2) (MARRS ET AL. 1995)
 - A. thaliana (TT19) (KITAMURA ET AL. 2004)
 - P. hybrida (PhAN9) (ALFINETO ET AL. 1998)
 - D. caryophyllus (fl3) (LARSEN ET AL. 2003)

Fig. 4: RT-qPCR of *EpGST* for 12 red and white poinsettia varieties.

Mutations

(CHENG ET AL. 2015)

Fig. 5: Schematic representation of the full-length sequence (2314 bp) of the Euphorbia pulcherrima GST gene (EpGST).

- 2 introns and 3 exons → CDS of 645 bp
- Similar structure to AtTT19 and PhAN9

(CHENG ET AL. 2015)

GST genotyping

	90	100	110	120	130	140	150	160
	· · · · · · · · · · · ·	1 1 1						· · · · I
Epgst	TTTTGATCTTGTTC	ATGTTGATCTI	CCTTCTGCTC	AACATAAACI	rctcttcctt(CTTCTCAAAC	AGCCCTTTGG	GTTAG
Noel	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	PCTCTTCCTT(CTTCTCAAAC	AGCCCTTTGG	GTTAG
Valentino	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT(CTTCTCAAAC	AGCCCTTTGG	GTTAG
Christmas Feelings	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT	CTTCTCAAAC	AGCCCTTTGG	GTTAG
Christmas Glory	TTTTGATCTAGTTC	ATGTTGATCTT	CCTTCTGCTC	AACACAAACT	TCTCTTCCTT	CTTCTCAAAC	AGCCATTTGG	GTTAG
Joy	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT	CTTCTCAAAC	AGCCCTTTGG	GTTAG
Titan	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTTC	CTTCTCAAAC	AGCCCTTTGG	GTTAG
Bravo	TTTTGATCTAGTTC	ATGTTGATCTT	CCTTCTGCTC	AACACAAAC	TCTCTTCCTT	CTTCTCAAAC	AGCCATTTGG	GTTAG
SK130	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT	CTTCTCAAAC	AGCCCTTTGG	GTTAG
Christmas Feelings Pearl	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT	TCAAAC	AGCCCTTTGG	GTTAG
Christmas Glory White	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT	TCAAAC	AGCCCTTTGG	GTTAG
Joy White	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAAC	TCTCTTCCTT	FCAAAC	AGCCCTTTGG	GTTAG
Titan White	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAAC	TCTCTTCCTT	TCAAAC	AGCCCTTTGG	GTTAG
Bravo White	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAAC	TCTCTTCCTT	TCAAAC	AGCCCTTTGG	GTTAG
SK130 White	TTTTGATCTTGTTC	ATGTTGATCTT	CCTTCTGCTC	AACATAAACT	TCTCTTCCTT(TCAAAC	AGCCCTTTGG	GTTAG

Fig. 6: Alignment of the EpGST CDS for 12 red- and white-bracted poinsettia genotypes.

Fig. 7: Genotyping of the 4 bp *indel* in the *EpGST* gene for red and white poinsettia genotypes.

Similarities with anthocyanin-related GSTs Universität Hannover

Fig. 8: Neighbour-joining tree of poinsettia *GST* genes and known anthocyaninrelated genes. Maximum Likelihood as statistical method and 1000 bootstraps.

Functional complementation – *tt19*

11 Leibniz 102 Universität 1004 Hannover

Fig. 9: Functional complementation of Arabidopsis tt19 mutant with the EpGST gene

KASP Assay

Fig. 10: KASP assay for the 4 bp indel in the *EpGST* gene.

Fig. 11: Genotyping of the 4 bp indel in Aurora progeny.

1 1 Leibniz 102 Universität 1004 Hannover

Amplicon-Seq

Variety	Total coverage (#reads)	Zygosity	
Chr. Feelings	468,931	Rr	
Chr. Feelings Pearl	392,563	rr	
Valentino	405,905	RR	
Vintage	325,598	RR	
Aurora	513,140	RR	
Aurora Pl	448,446	RR	
Aurora P2	465,673	RR	
Aurora P3	488,369	Rr	
35S::EpGST mut	373,687	rr	
35S::EpGST	538,723	RR	

Table 1: Summary of amplicon sequencing.

Fig. 12: Distribution of wild-type and mutated alleles from the *EpGST* for different poinsettia genotypes.

Fragment Length Analysis

SK159 Dark Pink (RR) with 525 progeny *3 heterozygous* progeny out of 190

Aurora Jingle (RR) with 750 progeny

3 heterozygous progeny out of 188

Fig. 13: Example of fragment length analysis for the progeny of irradiated homozygous varieties.

- 1) Identified and characterized the **anthocyanin-related GST** in poinsettia
- 2) Identified a **4bp** *indel* highly related to the white phenotype
- 3) Developed a molecular marker to select promising genotypes for poinsettia breeding
- 4) High **similarity** with other anthocyanin-related GSTs
- 5) Functional analysis in **Arabidopsis** *tt19* mutant
- 6) Identified the mutation arising from **homozygous red varieties**

Institute for Plant Genetics Section of Molecular Plant Breeding

Prof. Dr. Thomas Debener Dr. Marcus Linde Dr. Ina Menz Dr. Enzo Neu Dr. Annette Bartkiewicz Dr. Dietmar Schulz Helena Domes Janis Straube Julia Schröter Klaus Dreier Ingrid Robotta **TU Wien** Prof. Dr. Heidi Halbwirth

University of Vienna Prof. Dr. Thomas Rattei

Selecta One

Dr. Robert Boehm Dr. Andrea Dohm Guido von Tubeuf

Funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curia grant agreement No 675657.

Thank you for the attention.