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Abstract

During the last ten years, basic quantum operations on a single electronic spin in the
nitrogen-vacancy centre (NV) in diamond have been a rich field of study. These defects
have become promising candidates as robust, long-lived qubits. However, in order to
realize quantum computers with the help of these qubits one has to find a way to create
and control a system of many qubits. One promising way will be introduced in this thesis.

Using a wire grid, which is directly produced on the diamond sample, in combination
with a STIRAP-inspired (stimulated Raman adiabatic passage) transition gives access
to manipulate a specific NV within a large number of other NVs. The reason is that
STIRAP requires two photons in order to perform the transfer, which is utilized with the
wire grid. By sending one microwave pulse through a horizontal wire and the second pulse
through a vertical wire, the condition for STIRAP is only fulfilled at the junction of both.
Furthermore, introducing a detuning of these pulses is not only necessary to truly perform
a STIRAP-inspired (two-tone) transition but also reduces the effects of the microwave
signals at other crossings.

The first part of this thesis describes the basic physics of the NV and discusses STIRAP.
After explaining the experimental setup the implementation of the two-tone pulses is
demonstrated.

The second part is dedicated to the usage of the wire grid. First, the performance of the
wire grid is anticipated by using a single wire with a single NV, as single wire measurements
are easier to control and better understood. The dependence on the microwave power of the
two-tone efficiency is obtained and a comparison to the dependence on the distance is made.
Additionally, the time-behaviour of the two-tone transfer is observed depending on the
detuning of the two-tone pulses. After getting a good estimate of the performance of the
wire grid the grid itself is implemented in the experimental setup. Measurements confirm
the expected performance and the possibility to address a single site without affecting any
other sites. Finally, a way to cancel out any unintended effects at neighbouring crossings
is demonstrated in order to show that the wire grid can be built smaller while maintaining
high performance qubit control.
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1 Introduction

1.1 Overview of the research area

Quantum computing has attracted much attention over the last 15 to 20 years and is
fuelled by the promise of applications and by rapid experimental progress. However, it
became clear from the beginning that the restrictions on the physical system of choice are
severe. Fortunately, there are many ways to try and realize quantum computers based on
many different physical systems [1]. Some of the most promising systems are trapped ions
[2–4], ultracold neutral atoms [5, 6], Rydberg atoms [7], superconducting charge-, flux-
and phase-qubits [8], linear optics [9], quantum dots [10] and nitrogen-vacancy centre
in diamond [11]. All these systems have their own advantages in quantum information
processing. Although there are systems which appear to be better suited for quantum
computing at the moment, no physical implementation seems to have a clear edge over
the others.

Trapped, laser-cooled atomic ions [2] provide a relatively ’clean’ system, because they
can be trapped for long times while only experiencing small perturbations from the en-
vironment and can be coherently manipulated. The traps normally consist of a certain
arrangement of electric and/or magnetic fields (e.g. Paul trap), with which the ions can
be stored nearly indefinitely and be localized in space within a few nanometers. By cool-
ing the ions in such a Paul trap with a laser, they form a linear string. The ions in this
string are separated in space and the distance is determined by a balance between the
confining fields and the mutual Coulomb repulsion (see Fig. 1.1a). They are manipulated
individually by tightly focused laser beams. The qubit states are formed by two specific
internal states of each ion (|g〉 and |e〉) and are ’dressed’ by the oscillator states |n〉 of the
ion’s motion. The advantages of using ions are the long coherence times (∼10 min) and
the high initialization and detection efficiency of the qubit state ( >99 %). Furthermore,
through the mutual Coulomb repulsion the ions’ internal qubit state can be linked with the
external motion of the ions [3]. This is accomplished by applying qubit state-dependent
optical or microwave dipole forces on the ions. By scaling beyond 50 qubits the trapped
ions can be shuttled through space. The initially separated chains of ions can be coupled
in a multiplexed architecture called the quantum charge-coupled device (QCCD). To go
even beyond 1000 qubits separate registers of ion chains need to be linked with photonic
interfaces, i.e. chains of ions are entangled with each other using propagating photons
emitted by a subset of ions from each register [3]. Another approach which does not rely
on photonic interconnections and their limited rate is based on today’s silicon semicon-
ductor and ion trap technology [4]. The basic idea is the same as QCCD where ions are
shuttled by RF and static voltage electrodes. The connection between different modules
does not rely on photonic interfaces but on fast ion transport between adjacent modules.
The challenge is to fabricate RF and static voltage electrodes all the way to the edges
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2 1. Introduction

(a) Paul trap containing individually ad-
dressed 40Ca+ ions

(b) Optical standing wave (top) are over-
lapped to create an optical lattice (bot-
tom)

Fig. 1.1: Trapped, laser-cooled atomic ions and ultracold, neutral atoms in an optical
lattice. a.) Paul trap (beige) containing individually addressed 40Ca+ ions (blue).
After cooling by laser beams (red), the trapped ions form a string and are then
imaged by using a charge-coupled device (CCD). In the CCD image the spacing
of the two centre ions is ∼8 µm. (image taken from [2]) b.) An optical standing
wave is generated by superimposing two laser beams (top) creating a periodic
array of microscopic laser traps. By overlapping several standing waves higher-
dimensional optical lattices can be formed (bottom). (image taken from [5])

so that the electric fields reach beyond the edges and align two neighbouring modules
accurately in order to create overlapping electric fields. However, creating large trapped
ion arrays in reality is incredibly involved as a very large number of RF and static voltage
electrodes needs to be controlled individually. Moreover, laser beams must also be applied
in several locations simultaneously, which increases the laser requirements drastically.

Ultracold atoms in optical lattices [5] cannot yet rival the precise control of atomic ion
traps, but show very promising features. On the one hand neutral atoms couple more
weakly to the environment than ions resulting in long storage and coherence times, even
in the proximity of bulk materials. On the other hand ultracold atoms in optical lattices
allow to initialize a large number of particles simultaneously, which is needed for quantum
computation. The optical lattice is formed by interfering laser beams propagating along
different directions resulting in a periodic pattern of bright and dark fringes in one, two or
three dimensions (see Fig. 1.1b). Ultracold atoms loaded in the optical lattice are sorted
in such a way that every lattice site is occupied by a single atom due to strong repulsive
interaction in case of bosons or due to the Pauli blocking in case of fermions, but this site
filling mechanism is not reliable, i.e. not every site is filled with an atom. The spin states
(e.g. mF = 0 and mF = −1) of these loaded, ultracold atoms are used as the logical qubits
and can be manipulated using radio-frequency waves. However, controlling and imaging
a single atom in an optical lattice is a huge challenge. One way of addressing a single
atom in an optical lattice is described in [6]. Two circularly polarized laser beams are
crossed at a right angle and cause a vector light shift on the mF 6= 0 levels. This vector
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light shift is about twice as large for the targeted atom as for any other. The addressing
beams can be directed to a new target by using micro-electromechanical-system mirrors.
By scanning the microwave frequency which transfers the atom between the qubit states a
shift of the resonance frequency of the atoms along the addressing beams as well as for the
atoms at the crossing of the addressing beams is observed. By transferring only the ’cross’
atoms with the microwave the targeted atoms can be made optically visible. However, in
order to achieve scalable neutral atom quantum computation the following issues among
others need to be resolved: scalable addressing for two-qubit gates, reliable site filling and
the implementation of error correction. Moreover, the heating of the whole system due
to laser beams or moving the atoms close together to initiate quantum gates needs to be
dealt with.

Rydberg atoms [7] are highly excited neutral atoms (quantum number n� 1). Lattices
containing Rydberg atoms have similar advantages and disadvantages as ground-state
neutral atoms, but the large improvement is that the two-atom interaction can be turned
on and off with a contrast of twelve orders of magnitude (see Fig. 1.2a). This can be
compared to the interaction strength of trapped ions, whose Coulomb interaction is much
stronger but always present making it difficult to establish a many-qubit register. However,
transferring a neutral atom to a Rydberg state requires either a one photon excitation with
deep UV wavelength ( ∼297 nm) or a two photon excitation via the first resonance level,
which requires well-stabilized lasers. Furthermore the lattice spacing is constrained by the
requirement that a Rydberg excited electron with a characteristic orbital radius ∼ a0n

2,
where a0 is the Bohr radius, should not collide with neighbouring ground-state atoms.
Lastly, the strong dipole-dipole interaction not only improves the lifetime of the Rydberg
state and hence the coherence time, but also makes it extremely sensitive to small low-
frequency magnetic fields.

Superconducting circuits [8] are macroscopic in size but have quantum properties like
quantized energy levels, superposition of states and entanglement. The superconducting
qubit is realized by either the magnetic flux, the electric charge or the phase difference
across a Josephson junction controlled by electromagnetic pulses. The underlying super-
conducting properties are flux quantization and Josephson tunnelling. The magnetic flux
in a ring, which gets cooled to superconductivity while a magnetic field is applied, is quan-
tized after the magnetic field is switched off (see Fig. 1.2b). A Josephson junction consists
of two superconductors separated by an insulating barrier of ∼2 nm through which Cooper
pairs can tunnel coherently. The advantages of these circuits are that they can be engi-
neered to be isolated from the electrical environment, although they are of macroscopic
scale, and are thus represented by a single degree of freedom. Neighbouring superconduct-
ing qubits naturally couple to each other either capacitively or inductively [1]. Although
this coupling can be used for simple quantum logic gates, one needs to have long distance
interaction and switch the interaction on and off in order to create large-scale quantum
computer architecture. Microwave photons in transmission lines allow two-qubit gate
operations within a few tens of nanoseconds and measurements of non-local quantum cor-
relations between qubits that are several millimetres apart. Moreover, the ability to design
and structure these qubits arbitrarily to tailor their characteristic frequencies among other
parameters is a great advantage over atoms. However, superconducting qubits need to be
created by electron-beam lithography, operated at mK temperature in an ultralow-noise
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(a) Two-atom interaction strength for differ-
ent atoms (b) Superconducting flux qubit

Fig. 1.2: Rydberg atoms and superconducting qubits. a.) The dependence of the two-
particle interaction strength on separation R for singly charged ions (yellow),
ground-state Rb atoms (blue, violet) and Rb Rydberg atoms n = 100s (red) is
depicted. At the characteristic length scale Rc where the Rydberg atoms change
there seperation dependence the ratio between Rydberg interaction and ground-
state is approximately 1012. (image taken from [7]) b.) A flux qubit consists of
a superconducting loop interrupted by three Josephson junctions. The arrows
indicate the current flow in the two qubit states (green - | ↑〉 and yellow - | ↓〉).
(image taken from [8])

environment, as decoherence remains the biggest challenge for superconducting qubits,
and measured using highly sensitive techniques.

Quantum computing with single atoms in vacuum brings with it the complication that
the atoms need to be cooled and trapped, while superconducting qubits still mostly strug-
gle with rather short decoherence times and require cooling to mK temperatures [1]. To
create a large array of qubits, ’single atoms’ can be integrated into a solid-state host. The
requirements for implementation of a solid-state spin-photon interface are the presence
of an impurity with a degenerate ground-subspace coming from spin degrees of freedom
and optical transitions to excited states with strong spin-orbit coupling [10]. One of the
possible realizations are quantum dots, which are mesoscopic semiconductor structures.
Quantum dots come in many varieties. There are electrostatically controlled quantum
dots, where the motion of the electron and/or hole are confined by controlled voltages,
and self-assembled quantum dots, where a random semiconductor growth process creates
the potential for confining electrons and/or holes [10]. The latter often exhibit discrete
optical spectra and are therefore of greater interest for spin-photon interfaces. However, a
problem of self-assembled quantum dots is that they form in random locations, their optical
characteristics vary from dot to dot and their coherence times are only a few nanoseconds
or a few microseconds using spin echo sequences. Fortunately, these quantum dots are
optically initialized very fast and allow for single spin control via ultrafast pulses (on the
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order of picoseconds), which might enable extremely fast quantum computers.
Last but not least of the promising candidates of quantum computing is the nitrogen-

vacancy centre (NV) in diamond [11]. The NV is a point defect in diamond consisting of a
substitutional nitrogen-lattice vacancy pair. Its axis is oriented along the 〈111〉 crystalline
direction and it has a C3ν symmetry. The NV exists in two charge states: the neutral
nitrogen-vacancy centre (NV0) and the negative nitrogen-vacancy centre (NV-). The latter
has been a candidate for many studies and thus is much better understood, although many
properties are still not resolved. The NV- can be identified either by its zero phonon line
at 1.945 eV (637 nm) and associated vibronic bands that extend to higher/lower energy
in absorption/emission or by a zero field magnetic resonance at ∼2.88 GHz between the
ms = 0 and ms = ±1 spin sub-levels of the spin triplet ground state. The NV- fluoresces
strong enough to be detected as single centre using scanning confocal microscopy. Fur-
thermore, it is extremely photostable under off-resonance excitation and shows no sign of
photobleaching except in extreme conditions. The ground state spin has the longest single
spin coherence time (T2 = 1.8 ms) at room temperature of any electronic spin in a solid,
which can be used to couple to proximal electronic and nuclear spins and to manipulate
these spins.

The NV- was identified as a possible solid state qubit suitable for quantum information
processing because of the possibility to optical prepare and read out the centre’s electronic
spin. Moreover, demonstrations of NV--NV- spin coupling as well as steps towards pho-
tonic coupling speak for its scalability. The readout of the NV- spin is enabled by the
differing fluorescence of the ms = 0 and the ms = ±1 spin projections due to different
non-radiative decay pathways. Additionally, these non-radiative transitions also provide
the mechanism for optical spin preparation. After few optical cycles the probability to
find the NV- in the ms = 0 spin state is higher than for finding it in the ms = ±1 spin
states, a process known as optical spin polarisation. Both effects, optical readout and
spin-polarisation, happen simultaneously. However, the degree of ground state optical
spin polarisation is not consistently reported and ranges from 42 %-96 %. Unfortunately,
the ground state spin-polarization represents the preparation fidelity of the qubit and in
order to use the NV- as a qubit the preparation fidelity has to be well characterised. A
second problem is the readout contrast due to low collection efficiencies of current appa-
ratus. A single qubit operation has to be performed many times to distinguish between
the different NV- spin states at room temperature.

After raising some issues of NV-s as qubits their advantages are summarized as follows:

• A bright photostable optical transition, that can be used for detection of single NV-s
and single photon generation

• An optical zero-phonon line at room temperature that is independent to electric and
strain fields and dependent to the magnetic fields (Zeeman effect)

• A magnetically resonant and controllable electronic spin that exhibits long coherence
times and enables coupling to close spins

• Optical spin-polarisation and readout of the spin state

• Flexibility and robustness in fabrication
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(a) Schematic image of the wire grid

Ω-

Ω+

Δ-

Δ+

|-1>

|+1>

|0>

(b) Inverse Λ-scheme of the NV- spin-1
ground state

Fig. 1.3: Principle of operation of the wire grid using a STIRAP-inspired transfer sequence.
a.) Schematic image of the wire grid. By sending one MW pulse (Ω+, red)
through a vertical wire and the other MW pulse through a horizontal wire (Ω−,
blue) the condition for a transfer between | − 1〉 and | + 1〉 is only fulfilled at
the junction of both wires (yellow circle). The yellow dots depict the sites of
a NV qubit. b.) The blue line is the driving field Ω− with a detuning ∆− of
the |0〉 ⇔ | − 1〉 transition, while the red line is the driving field Ω+ with a
detuning ∆+ of the |0〉 ⇔ |+1〉 transition . The dashed arrows indicate resonant
transitions.

The NV- is not only a promising candidate for quantum information processing, but
can also be used as a nanoscale sensor for DC, AC and fluctuating magnetic and electric
fields as well as a high sensitivity thermometer. In this thesis the main aspect lies upon
demonstrating a scalable system of qubit control using NV-s.

1.2 Scalable qubit control

Control over individual qubit in large-scale quantum systems is a requirement for many
quantum technologies. In case of a two-dimensional array of magnetic spin qubits the
difficulty consists in accessing each qubit with control lines, limiting the possibility to
scale the quantum system. In case of NVs a grid of wires (see Fig. 1.3a) in combination
with a STIRAP-inspired transfer sequence (see Fig. 1.3b) can address individual qubits.
The STIRAP-inspired transition transfers the NV- from | − 1〉 to | + 1〉, which requires
two MW pulses (Ω− and Ω+). By sending one MW pulse through a vertical wire and the
other MW pulse through a horizontal wire the condition for a transfer between | − 1〉 and
|+ 1〉 is only fulfilled at the junction of both wires. A single qubit can be addressed using
this method.

However, as this method has not been tested yet, the performance of the wire grid can
be anticipated by using a single wire with a single NV, as single wire measurements are
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easier to control and better understood. Using a single wire and a single NV (see Sec.
5.2), the dependence on the MW power of the two-tone efficiency is of great importance
as the power of the MW pulse depends strongly on the distance to the wires, which is
crucial for the application with the wire grid. Moreover, as the MW pulses do not only
affect the single site at the junction but also sites along the wires, the time-behaviour of
the two-tone transfer as well as the Rabi nutation is observed. Varying the detuning of
the two-tone pulses affects the two-tone transfer and the Rabi nutation differently and
hence, detuned two-tone pulses can be used to avoid unintended transitions. After getting
a good estimate of the performance of the wire grid the grid itself is implemented in the
experimental setup (see Sec. 5.3). Measurements confirm the expected performance and
the possibility to address a single site without affecting any other sites.

If detuned two-tone pulses are still not sufficient to avoid unintended transitions, the
MW signal from the two-tone pulse sequence can be cancelled by using a counteracting
signal in a neighbouring wire. The effects of counteracting pulses are demonstrated per-
forming a Rabi nutation measurement where the phase between signal and counter-signal
is shifted resulting in cancellation of the oscillation at a relative phase shift of π. By
implementing counteracting signals the wire grid can be built smaller while maintaining
high performance qubit control.





2 Basic physics of the NV centre

In this chapter I will discuss the basic physics of the nitrogen vacancy centre (NV). I will
begin by explaining the physical structure of the NV briefly (Sec. 2.1) - note that I will
restrict myself to the negatively charged NV centre (NV-) for the rest of this thesis, unless
otherwise noted. This will be followed by the most important optical transitions (Sec. 2.2).
After discussing the NV--specific description of the fine- and hyperfine structure (Sec. 2.3)
I will consider non-unitary dynamics, which result in dephasing and loss of coherence (Sec.
2.4). As many fundamental qualities of the NV can already be described with a two-level
quantum model, I will explain the most important features of the two-level model (Sec.
2.5). Lastly I will introduce the principles of a three-level model (inverse-Λ-scheme) as
the final goal of this thesis is to perform three-level manipulations (Sec. 2.6).

2.1 Structure of the NV centre

There are many colour defects in diamond, but the nitrogen-vacancy defect (NV) is one of
the most prominent ones, especially in nitrogen-rich diamonds. Furthermore the NV has
several advantages compared to other colour defects: Two of the main advantages are that
on the one hand green laser light initializes the NV in the ground state and on the other
hand its spin state can be read out optically, which allows for easy detection (see Sec.
2.2). Additionally the NV has a long T2 decoherence time even at room temperature (see
Sec. 4.2.3), which can be used to perform long and complicated measurement schemes.

The NV is formed by substituting a carbon atom with a nitrogen atom and an adjacent
vacancy (see Fig. 2.1). The orientation of the NV axis is the 〈111〉 direction [12] and
therefore four crystallographically equivalent orientations of this NV axis in diamond are
possible. As the vacancy is surrounded by three carbon atoms in nearest-neighbour posi-
tions, the defect has a C3v symmetry, meaning that the electronic states are characterized
by their transformations under C3v symmetry operations.

NVs are produced by implanting nitrogen in diamonds and then irradiating these di-
amonds with electrons, neutrons or various ions in order to create vacancies. Secondly
annealing with a temperature over 650◦C (activation energy of about 1.7 eV) allows the
vacancies to become mobile (diffusion length of about 260 nm [14]) until they get trapped
by the nitrogen atoms. Samples with single NVs are produced by using ultra pure dia-
monds, in which NVs occur naturally. Further details on the creation and properties of
NVs can be found in references [15] and [16].

2.2 Term scheme and optical transitions

Each of the nearest-neighbour carbon atoms and the nitrogen atom contribute one dangling
bond orbital to the centre. These orbitals have to be filled up with electrons according

9



10 2. Basic physics of the NV centre

Fig. 2.1: Structure of the NV consisting of the nitrogen atom (green) and the adjacent
vacancy (white). The vacancy has three carbon atoms as nearest neighbours
leading to C3v symmetry of the defect. (image taken from [13])

to Hund’s rule. Each carbon atom gives one electron, the nitrogen atom contributes two.
This object is electrically neutral and is called NV0. However, a sixth electron, which
is most likely taken from other nitrogen impurities, can bind to the defect, forming a
negatively charged NV, called NV-.

The best way to describe the electronic structure of the defect is given by the ’linear
combinations of atomic orbitals’ (LCAO) approach [17], which delivers a qualitative model
of the defect, but contains a number of phenomenological parameters. The exact electronic
structure, however, is still a partially unsolved problem.

The LCAO approach of the C3v symmetry delivers possible computable orbits [18]. The
irreducible representations of the many-electron states correspond to the orbitals of the
electrons. The ground state and many excited states can be found, but only the ground
state and three further excited states are considered as these are the only ones important
for this thesis. Furthermore all experiments are carried out at room temperature, where
phonon processes take place, which average out the orbital branches in the excited state
[19], resulting in a quite simple term scheme (see Fig. 2.2).

The ground state 3A2 is a spin triplet times an orbital singlet state, which is symmetric
under rotation and changes sign under reflection. This spin triplet state is split by the
spin-spin interaction (zero-field splitting) in one ms = 0 and two ms = ±1 states, which
are separated by 2.88 GHz. The optical excited state 3E is a spin triplet times an orbital
doublet state and has a lifetime of about 10 ns. The spin singlet states 1A1 as well as 1E1

do exhibit energies in between of the previous two. 1A1 is symmetric along the principal
NV axis and is a metastable state with a lifetime of about 220 ns at room temperature to
460 ns at 4.4 K. 1E1 is a spin singlet times orbital doublet state with a very short lifetime
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Fig. 2.2: Term scheme of NV at high temperature. Electric dipole transitions are indicated
as solid (dark) red arrows, magnetic dipole transitions as dotted black arrows.
Nonradiative intersystem crossing transitions are shown as dashed grey arrows,
the approximate branching ratios from the initial level are indicated as percent-
ages and arrow thicknesses. Note also the level lifetimes and spin projection
quantum numbers [20].

<1 ns and thus not very important for further considerations [20].

2.2.1 Optical transitions

The optical transitions have to obey Fermi’s golden rule. There are four dipole-allowed
transitions in the term scheme of Fig. 2.2, which do not involve vibrational excitations, i.e.
zero-phonon-lines (ZPL). Between the ground triplet-state 3A2 and the excited triplet-state
3E are three spin-preserving transitions at a wavelength of 637 nm (1.945 eV), whereby the
probability of a spin-flip at room temperature is about 1 % of the allowed transition rates
[21]. The final optical allowed transition is between the two singlet levels 1A1 and 1E1 at
1042 nm (1.940 eV) [20]. As the much weaker 1042 nm line is not used in our experiment,
the 637 nm line will be referred to as the NV- ZPL. Additionally there are non-radiative
transitions, shown as dashed grey arrows in Fig. 2.2.

Furthermore, phonons cannot be neglected as the NV- also couples quite strongly to
local and bulk vibrations, especially the optically excited states. Therefore only about 3 %
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Fig. 2.3: Emission spectra of the NV0 and NV- at room temperature. The excitation
wavelength were chosen so that one only excites NV0 and the other only NV-.
Spectra are normalized to the same area. (image taken from [22])

of the fluorescence intensity is emitted into the ZPL, the rest is emitted into the phonon
side band (PSB) [22] (see Fig. 2.3), resulting in wavelengths of the fluorescence light larger
than 637 nm. Although it is somewhat inconvenient that most of the fluorescence is in the
PSB, it can be used for off-resonant excitation with wavelengths shorter than the ZPL, as
vibrational energy states also exist above the optical excited states. With blue-detuned
excitation the defect is excited to its optically excited states plus phonons, which then
decay rapidly (∼ps) and non-radiatively to the excited states. This has the advantage,
that the exact wavelength of the laser does not have to be monitored, because inaccuracies
of several nanometers do not matter.

2.2.2 Spin polarization and fluorescence time traces

One of the reasons why NV-s are such promising candidates for quantum information
processing are the experimentally quite simple spin-dependent optical dynamics, which can
be used to initialize and readout the spin using non-resonant excitation and broadband
fluorescence detection. As stated previously the optical transitions between the triplet
states 3A2 and 3E are spin conserving with a probability of less than 1% for a spin-flip.
However, there is a process in the cycle which can lead to spin-flips namely the inter-system
crossing (ISC) process. The ms = ±1 sublevels of the excited triplet state preferentially
undergo non-radiative transitions to the two singlet states (see Fig. 2.2), where the lower
one 1A1 is a metastable state with a lifetime of about 300 ns and preferentially decays
non-radiatively to the ms = 0 sublevel of the ground state. As ISC occurs mainly for
ms = ±1 of the 3E state a spin-flip happens providing a mechanism for spin initialization
into the ms = 0 ground state by off-resonant optical pumping. After a few optical cycles
(∼ 3 µs) more than 80 % of the spins are polarized in ms = 0 (average quoted spin-
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Fig. 2.4: Fluorescence time trace under constant illumination. The blue trajectory is the
bright state ms = 0, whereas the green trajectory represents the dark state
ms = −1. The area, which is spanned by the difference between the time trace
of the bright and the dark state, represents the signal that allows to discriminate
different spin state. (image taken from [23])

polarisation from the vast range of spin-polarisations reported [11]). Additionally as 1A1

is a metastable state, the spin is trapped and cannot undergo additional optical cycles
resulting in remaining dark.

With the dynamics described previously, a way to distinguish the spin state of the
system is available. Experimentally this is realized by measuring the fluorescence time
traces under illumination (see Fig. 2.4). If the system is initially in the ms = 0 state,
an intensity peak immediately after the start of the illumination is detected decaying to
equilibrium. For an initial state in ms = ±1 the time trace looks different. There is
a drop of the intensity ’peak’ immediately after the start of the illumination below the
equilibrium level, which happens due to trapping of the electron in the metastable state.
After decaying for roughly 300 ns both fluorescence time traces return to equilibrium after
a few µs. By integrating over a lot of sweeps the fluorescence time traces are smoothed
out, and it is possible to determine the spin state by comparing the initial fluorescence
with the fluorescence in equilibrium. These level dynamics are the basis of the optically
detected magnetic resonance (ODMR) technique and all following pulsed measurements
(see Sec. 4.1 and Sec. 4.2).
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Fig. 2.5: Term scheme of the NV- ground state fine- and hyperfine structure due to cou-
pling to a spin-1

2 nucleus on a nearest-neighbour lattice sites (possibly 13C or
15N). There is no strain and an external magnetic field lifts the degeneracy of the
ms = ±1 states. Solid arrows indicate magnetic dipole transitions.

2.3 Fine- and hyperfine structure

As explained in the previous section, the optical ground- and excited states are only used
to read out the spin state of the system. Therefore the spin sublevels ( ms = 0,±1 -
|0〉, | + 1〉 and | − 1〉 respectively) of the ground state are the quantum bit (qubit) levels
used in the experiment, and thus the fine- and hyperfine structure of the ground state
play an important role to understand the dynamics of the NV-. Furthermore quantum
information is stored and processed in these spin sublevels and as bulk phonons couple
rather weakly to the spins the system exhibits a surprisingly long coherence time even
at room temperature [24], i.e. dephasing is not limited by coupling to phonons, but by
coupling to other spins in the surrounding spin bath.

As mentioned before in the absence of external fields the degeneracy of |0〉 and | ± 1〉
levels of the optical ground and excited state are lifted due to spin-spin interaction of the
two unpaired electrons (zero-field splitting - ZFS). Additionally the degeneracy of | − 1〉
and | + 1〉 is abrogated by slightly breaking the C3v symmetry of the NV- with a non-
axial strain field created by imperfection of the diamond lattice. In order to split | ± 1〉
further the Zeeman effect can be used by applying a magnetic field, ideally along the NV-

axis (28 MHz/mT). Thus the qubit states used to store quantum information are the
transitions from the ms = 0 state to either the ms = −1 or ms = +1 state.
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Fig. 2.6: Term scheme of the NV- ground state fine- and hyperfine structure due to cou-
pling to 14N. There is no strain and an external magnetic field lifts the degeneracy
of the ms = ±1 states. Solid arrows indicate magnetic dipole transitions. Pa-
rameters as given in the main text.

The last contribution to the NV--Hamiltonian is the coupling of the electron spin to the
nuclear spin of the 14N atom next to the vacancy (see Fig. 2.6) and possibly to spin-1

2
nucleus (13C atom - natural abundance of 1.1% [25] - or 15N) shown in Fig 2.5) in the
neighbouring lattice sites:
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where D = 2.88 GHz is the ZFS and S and I are the electron and nuclear spin operators,
respectively. B denotes the external magnetic field and µB is Bohr’s magneton. The
interaction between 14N nuclear spin and the electron spin are given by an axial and
transversal term, AN‖ = 2.3 MHz and AN⊥ = 2.1 MHz [11], whereas the coupling of the

electron spin to the nuclear 1
2 -spin ( A

1
2

‖ , A
1
2
⊥) depends on the position of the atom with

respect to the NV- (e.g. 13C - 126 MHz for nearest-neighbour and few MHz for nuclei
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further away [25]). The strong quadrupole coupling of P ' 5 MHz splits the mN = 0
state and the mN = ±1 states of the 14N nucleus [26]. g, gN and g 1

2
are the respective

gyromagnetic ratios.
If perturbations due to non-axial magnetic fields are not too strong the quantization axis

points along the NV axis, otherwise there may be some mixing of the levels. Lastly, the
Stark effect due to electric fields is several orders of magnitude smaller than the Zeeman
effect and can be neglected with regard to the experiment in this thesis (not included in
Eq. 2.1).

2.4 Dephasing and decoherence

Up to this point only unitary dynamics have been considered. In reality however non-
unitary dynamics need to be taken into account, like spontaneous emission in the excited
state or small phase shifts due to slightly different magnetic environment for each qubit.
These processes are characterized by three time constants: T1 is the longitudinal (spin-
lattice) relaxation time, T2 is the transverse (spinspin) relaxation time and T ∗2 is due to
inhomogeneous broadening [27].

The T1 relaxation processes are the simplest to understand and happen due to decay
mechanisms of the excited state to the ground state as a result of spontaneous emission,
interactions with phonons or other spin-flipping processes. The decay processes occur
stochastically and randomly break the coherence of the wave function. T1 is thus governed
by the lifetime of the excited state and ranges from few nanoseconds for optical transitions
to many minutes in nuclear magnetic resonance.

The T2 decoherence processes are more subtle to understand and generally T2 is the
time constant describing homogeneous broadening. However T2 is more often referred to
as spin-spin relaxation time. The loss of coherence is due to coupling of the qubit spins
to its local spin environment and happens on a timescale of T2, which is individual for
each spin system. In the case of a single qubit T2 describes the loss of the phase relation
between the two basis states in a superposition state. In order to measure T2 a spin-
echo sequence is used (see Sec. 4.2.3), where the time constant defining the decay of the
envelope corresponds to T2.

The T ∗2 decoherence processes have different explanations considering ensembles and
single qubits. In an ensemble of spins the phase relations between individual qubits can
get lost on a timescale of T ∗2 due to their slightly different intrinsic resonance frequencies
(inhomogeneous broadening) or extrinsic source of spectral drift like inhomogeneities of
the magnetic field. In single qubits T ∗2 refers to the timescale of dephasing that is reversible
(e.g. by inverting the system or the bath), in contrary to T2, which describes irreversible
decoherence processes, in a a given experimental context. There are two different ways
to obtain T ∗2 : On the one hand ODMR-spectra (see Sec. 4.1) with decreasing MW power
are recorded and the obtained linewidth is extrapolated at zero MW power, where the
FWHM then gives T ∗2 according to

T ∗2 =
1

πΓFWHM
. (2.2)

On the other hand a Ramsey-type measurement is performed (see Sec. 4.2.2), where the
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Fig. 2.7: The two-level approximation. A transition between the two levels takes place,
when the frequency of the driving field coincides with the transition frequency of
the system (see Eq. 2.3). (image taken from [27])

time constant describing the decay of the envelope defines T ∗2 .
In case of NV-s, T1 is very long ranging up to several milliseconds at room temperature

for single NV-s as well as ensembles. Such a long relaxation time can be observed as the
lifetime of the excited spin state is rather long and a coupling to spin-flipping phonon-
mediated processes is weak. However, for T2 and T ∗2 there is no such general statement
possible as the coherence time constants vary strongly from sample to sample and are
different for single NV-s and (dense) ensembles [23]:

• single NV- in chemically pure diamond (with natural 1.1% abundant 13C): The
dephasing is limited by the dipolar hyperfine coupling to the 13C spin bath.

• single NV- in isotopically pure diamond: The dephasing is limited by external mag-
netic noise, which results in very long T2 and T ∗2 .

• low-density ensembles of NV-s in a nitrogen-rich diamond: The dephasing is domi-
nated by impurities from other spins (P1 centres)

• high-density ensembles of NV-s: The coupling between NV-s becomes dominant,
reducing T2 and T ∗2 drastically.

2.5 Quantum theory of a two-level system

In a system (like an atom or the NV-) the electrons can be in many quantum levels,
therefore describing all possible transitions between the levels is quite involved. For starters
transitions between only two energy states are described. To make a transition between
two levels, a driving field can be applied, e.g. a laser or a microwave signal, which has to
satisfy

~ω = E2 − E1 (2.3)

where ω is the driving frequency, E2 is the higher energy level and E1 is the lower energy
level (see Fig. 2.7). The multi-level system can be reduced to only two levels, if on the
one hand the energy difference between the chosen energy levels differs strongly from the
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Fig. 2.8: Two-level transition between ground- and excited state (|0〉 and |1〉). ω is the
frequency of the driving field, ω0 is the transition frequency and ∆ is the detuning.
(image taken from [23])

difference between other energy states and if on the other hand the frequency of the driving
field is tuned to fulfil Eq. 2.3 and only the transition between those two energy states
is driven. This two-level approximation is a valid and powerful model-system capable of
describing many fundamental quantum properties.

The two-level system consists of a ground state (|0〉) and an excited state (|1〉) forming
an orthonormal basis. The ground state in this experiment is the ms = 0 spin-sub-
level of the NV- and the excited state is either the ms = +1 or the ms = −1 spin-sub-
level. In the absence of a driving field |0〉 and |1〉 are eigenstates of the system with
eigenvalues E0 and E1. Solving the undisturbed time-dependent Schrödinger equation
Ĥ0|ψ(t)〉 = i~ δ|ψ(t)〉

δt , where Ĥ0 is the time-independent Hamiltonian and |ψ(t)〉 is the
wave function, the coherent superposition of the eigenstates can be written as [27]

|ψ(t)〉 = c0|0〉e−i
E0
~ t + c1|1〉e−i

E1
~ t = c0|0〉+ c1|1〉e−iω0t (2.4)

where E0 = 0 and hence E1 = ~ω0. c0 and c1 describe the wave function amplitude
coefficients for the two states, where |c0|2 is the probability of observing the system in the
ground state and |c1|2 in the excited state. As the system has to be in one of the two
states, c0 and c1 must fulfil the normalization condition |c0|2 + |c1|2 = 1.

In order to make transitions between |0〉 and |1〉 a driving field is switched on, which
corresponds to a perturbation V̂ (t). Therefore the Hamiltonian can be written as Ĥ =
Ĥ0 + V̂ (t). Since the states |0〉 and |1〉 form a complete basis set, it is still possible to
write the general state similar to Eq. 2.4 as

|ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉e−iω0t (2.5)

Substituting this wave function into the general Schrödinger equation Ĥ|ψ(t)〉 = i~ δ|ψ(t)〉
δt

the whole problem reduces to finding the time-dependent behaviour of the coefficients c0
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and c1. After simple algebraic operations [27] one obtains

ċ0(t) = − i
~
(
c0(t)V00(t) + c1(t)V01(t)e−iω0t

)
ċ1(t) = − i

~
(
c0(t)V10(t)eiω0t + c1(t)V11(t)

) (2.6)

where Vij(t) = 〈i|V̂ (t)|j〉.
To solve these differential equations, the form of the perturbation V̂ (t) has to be taken

into account. With a semi-classical approach V̂ (t) is the energy shift of a magnetic dipole
in a magnetic field [27]

V̂ (t) = −µb(t) (2.7)

with the magnetic moment µ = pr, where p is the magnetic pole strength and r is
the vector pointing from South to North pole. By arbitrarily choosing the x-axis as the
direction of polarisation the magnetic field can be written as b(t) = (b0, 0, 0) cos(ωt) and
hence Eq. 2.7 simplifies to

V̂ (t) = −pxb0
2

(
eiωt + e−iωt

)
(2.8)

By introducing the dipole matrix element χij = p〈i|x̂|j〉 the matrix elements Vij(t) become

Vij(t) = −b0
2

(
eiωt + e−iωt

)
χij (2.9)

Since x̂ is an odd parity operator and atomic states have either even or odd parities,
it follows that χ00 = χ11 = 0. Furthermore the dipole matrix element represents a
measurable quantity and thus must be real, the off-diagonal entries have to be χ10 = χ01.
With these simplifications Eqs. 2.6 reduce to

ċ0(t) =
i

2
ΩR

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
c1(t)

ċ1(t) =
i

2
ΩR

(
e−i(ω−ω0)t + ei(ω+ω0)t

)
c0(t)

(2.10)

where ΩR = |χ01b0
~ | is known as the Rabi-frequency .

The solution for these two differential equations provides an understanding of the time-
dependent behaviour of the two-level system. A general solution for this problem can not
be found, however there are two extreme cases which are simple to solve: the weak-field-
and the strong-field limit. Since it is generally required to the drive the spin as fast as
possible, an approximation for the strong-field limit is provided.

In the strong-field limit two simplifications are made. Firstly the rotating wave ap-
proximation neglects all fast oscillating terms ±(ω + ω0). This is justified by the fact
that ∆ � (ω + ω0) and hence the fast oscillating terms average to zero on an apprecia-
ble time-scale much faster than any observation. Secondly the case of exact resonance
∆ = ω − ω0 = 0 is made. By using these simplifications Eqs. 2.10 reduce to

ċ0(t) =
i

2
ΩRc1(t)

ċ1(t) =
i

2
ΩRc0(t)

(2.11)
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Differentiating ċ1(t) and inserting it in ċ0(t) in Eq. 2.11 and vice versa yield two second
order differential equations, which can be solved by assuming that the system at t = 0 is
in the ground state (c0(t) = 1 and c1(t) = 0)). The solutions are

c0(t) = cos

(
ΩR

2
t

)
c1(t) = i sin

(
ΩR

2
t

) (2.12)

and accordingly the time-dependent probabilities to find the electron in one of the two
states are

P|0〉(t) = |c0(t)|2 = cos2

(
ΩR

2
t

)
P|1〉(t) = |c1(t)|2 = sin2

(
ΩR

2
t

) (2.13)

At t = π
ΩR

the spin is in the upper level, whereas at t = 2π
ΩR

it is in the lower state.

The spin thus oscillates between the upper and lower level with a frequency of ΩR
2π . This

oscillatory behaviour in the strong-field limit are commonly known as Rabi oscillations
(see Sec. 4.2.1). When the driving field is not exactly resonant with the transition, Eqs.
2.13 change to

P|0〉(t) = 1− P|1〉(t)

P|1〉(t) =
ΩR

2

Ω2
sin2

(
Ω

2
t

)
(2.14)

where Ω2 = ΩR
2 + ∆2.

2.6 Two-tone control of NV ground state

For many applications and techniques of the NV- (i.e. ODMR, Rabi oscillation, Hahn-
echo measurements, etc. - see Sec. 4.1 and Sec. 4.2) considering only either the transition
|0〉 ⇒ |−1〉 or the transition |0〉 ⇒ |+1〉 is enough. This system is described as a two-level
system (see Sec. 2.5). However, as the NV- has three sublevels (ms = 0,±1) it can also
be described as a three-level system, which opens the way for more precise measurements
and new measurement techniques, e.g. creating a transition between the states | − 1〉 and
|+ 1〉 via the state |0〉.

Assuming the initially populated state is | − 1〉 and a transfer to | + 1〉 is intended,
the most intuitive way is to apply a driving field for the transition | − 1〉 ⇒ |0〉 first and
afterwards a field for |0〉 ⇒ | + 1〉. By doing so not only | − 1〉 is populated but also |0〉,
which is not a desired result. In case of this experiment the NV- spin states of interest
are | ± 1〉, as the future-oriented goal is to initialize the whole wire grid e.g. in | − 1〉 and
transfer NV-s at certain crossings to |+1〉, creating a qubit system. Any NV-s in |0〉 either
do not contribute to this qubit system, hence are ’lost’, or even disturb the | − 1〉 ⇔ |+ 1〉
transition e.g. by decreasing the contrast.
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Fig. 2.9: Inverse Λ-scheme of the NV- spin-1 ground state. The blue (red) line is the
driving field Ω−(Ω+) with a detuning ∆− (∆+) of the |0〉 ⇔ | − 1〉 (|0〉 ⇔ |+ 1〉)
transition . The dashed arrows indicate resonant transitions.

A more counter-intuitive way at first glimpse is the technique of stimulated Raman
adiabatic passage (STIRAP). With STIRAP the driving field |0〉 ⇒ |+ 1〉 is applied first
and couples the two empty states creating a coherent superposition and thus does not
change the population of | − 1〉. By applying the field for | − 1〉 ⇒ |0〉 subsequently the
superposition couples to the populated state |−1〉 creating a ’trapped state’ - a state from
which the driving field | − 1〉 ⇒ |0〉 cannot transfer population to |0〉 but only directly to
|+ 1〉 [28].

More importantly the transfer has to be performed smoothly in order to transfer the
NV- from | − 1〉 to | + 1〉 adiabatically. By slowly increasing and then decreasing the
amplitude of the transfer pulses over time, adiabaticity is granted during the duration of
the STIRAP transfer.

The Hamiltonian describing the coupling of the three states by two coherent driving
fields is given by [28]:

Ĥ =
~
2

 0 Ω+ 0
Ω− 2∆+ Ω−
0 Ω+ 2(∆+ −∆−)

 (2.15)

within the rotating wave approximation (RWA) ωrot = |∆+ − ∆−|. Ω± are the Rabi
frequencies of the driving fields, which determine the coupling strength between the states
and ∆± is the detuning of the driving fields, respectively (see Fig. 2.9). In order for
STIRAP to work the two-photon detuning δ = |∆+ −∆−| has to be zero, which requires
that both single-photon detunings are equal (∆+ = ∆− = ∆) [29].

The detuning should not be far off resonance from the actual transition and each driv-
ing field should only interact with one pair of states (|0〉 ⇔ | − 1〉 and |0〉 ⇔ | + 1〉).
This demands that the energy-separation of | ± 1〉 be large compared to the driving field
linewidth or the Rabi frequency - whichever is larger. In our experiment this is realized
by applying a magnetic field of ∼ 30mT along the NV axis (see Sec. 2.3).

The eigenstates of the interaction Hamiltonian (Eq. 2.15) can be expressed in terms of
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’mixing angles’ θ and φ, which depend upon the Rabi couplings and the detuning:

tan θ =
Ω−
Ω+

tan 2φ =

√
Ω2

+ + Ω2
−

∆

(2.16)

The eigenstates can then be written as linear combination of the bare states |−1〉, |0〉 and
|+ 1〉:

|a+〉 = sin θ sinφ| − 1〉+ cosφ|0〉+ cos θ sinφ|+ 1〉
|a0〉 = cos θ| − 1〉 − sin θ|+ 1〉
|a−〉 = sin θ cosφ| − 1〉 − sinφ|0〉+ cos θ cosφ|+ 1〉

(2.17)

While the eigenvalue of |a0〉 is zero, the eigenvalue of |a+〉 is shifted up and of |a−〉 down:

ω+ = ∆ +
√

∆2 + Ω2
+ + Ω2

−

ω0 = 0

ω− = ∆−
√

∆2 + Ω2
+ + Ω2

−

(2.18)

After introducing the eigenstates (Eqs. 2.17) and the eigenvalues (Eqs. 2.18) the transfer
process itself will be discussed in more detail.

The objective at hand is to control the state vector |ψ〉 in order to control the distribution
of population among the three states. For the sake of argument the NV- is in the ms = −1
state at the beginning and hence |ψ〉 is identical to | − 1〉. After the transfer process the
NV- should end up in the ms = +1 state, whereby |ψ〉 is parallel to | + 1〉. However,
transient placement of population into |0〉 has to be avoided.

As |a+〉 and |a−〉 are linear combinations of all three bare states, which includes |0〉,
population in either one of these dressed states has to be avoided. |a0〉, on the contrary, is
free of any contribution from |0〉 and thus is the appropriate tool for transferring population
from | − 1〉 to |+ 1〉 without populating |0〉.

By looking at the mixing angle θ (Eq. 2.16) a certain way of doing the transfer process
can be found (see Fig. 2.10). θ can be controlled experimentally through the ratio of
the Rabi frequencies Ω± and should be zero at the beginning, because in this case |a0〉
is identical to | − 1〉 as well as |ψ〉. In order to set θ to 0°, Ω+ has to have a non-zero
value while Ω− has to be zero. After the increasing Ω+ reaches its maximum value it is
smoothly reduced and Ω− is increased simultaneously, resulting in a change of the mixing
angle θ from 0° to 90°. By doing that |a0〉 is rotated into a position parallel to |+ 1〉 in a
plane perpendicular to |0〉. Therefore |a0〉 never acquires a component of |0〉 during this
motion. If the coupling of the states by the driving field is strong enough and Ω− and Ω+

are increased and decreased smoothly, |ψ〉 (or the flow of population) follows the motion
of |a0〉 adiabatically. In the end |ψ〉 is parallel to |+ 1〉 and STIRAP is completed.

A loss of population of the trapped state |a0〉 may occur due to non-adiabatic transfer to
the states |a±〉. Therefore, the condition for adiabatic following is that the non-adiabatic
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(a) Rabi frequencies Ω±

(b) Mixing angle θ

(c) States

Fig. 2.10: Stimulated Raman adiabatic passage. The NV- starts in |−1〉 and ends in |+1〉.
a.) The time evolution of the Rabi frequencies of Ω−-pulse (blue) and Ω+-pulse
(red) is shown. Typical for STIRAP measurements the Ω+-pulse precedes the
Ω−-pulse. b.) The mixing angle θ is plotted over time. During the STIRAP
transfer the mixing angle θ changes from 0° to 90° (see Eqs. 2.16) c.) The time
evolution of the NV- state is shown. The initial state is | − 1〉 (blue) and due to
the STIRAP transfer the NV- reaches its final state |+ 1〉 (red).
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coupling |〈a±|ȧ0〉| is small compared to the field induced splitting |ω±−ω0| of the energies
of these states [28]

|〈a±
∣∣ȧ0〉| � |ω± − ω0

∣∣ (2.19)

Using Eqs. 2.17 one finds |〈a±|ȧ0〉| = θ̇ sinφ and with sinφ = 1 Eq. 2.19 can be written
as

|θ̇| � |ω± − ω0| (2.20)

Finally, using Eq. 2.16 it is easy to show that Eq. 2.20 can be written in the form [30]∣∣∣∣∣ Ω̇−Ω+ − Ω−Ω̇+

Ω2
− + Ω2

+

∣∣∣∣∣� |ω± − ω0| (2.21)

This may be considered to be a ’local’ adiabaticity criterion, because both sides can be
evaluated at any given time. As long as the condition in Eq. 2.21 is satisfied throughout the
interaction non-adiabatic coupling is small. Furthermore, a convenient ’global’ adiabaticity
criterion can be derived from Eq. 2.20 by taking the time average of the left-hand side
〈θ̇〉 = π

2∆τ , where ∆τ is the period during which the pulses overlap, and setting the

right-hand side |ω± − ω0| = Ωeff with Ωeff =
√

Ω2
− + Ω2

+. This leads to

Ωeff∆τ > 10 (2.22)

where the numerical value 10 is obtained from experience and numerical simulation studies
[28].

At this point it is important to mention that many of the two-tone transitions performed
in this thesis are not real STIRAP processes, rather STIRAP-inspired processes. However,
the underlying ideas are the same. A major difference is that not only smooth transfer
pulses are used, like Gaussian pulses, but also rectangular pulses, which do not fulfil the
condition of adiabaticity. Moreover, the counterintuitive pulse sequence described before
is often not implemented as there is no delay between the two transfer pulses.



3 Experimental setup

In this chapter I will describe the most important components of the experiment. I will
start with the optical setup. Afterwards I will describe the microwave sources and chains
used in the experiment in detail.

3.1 Optical setup

The optical setup for this experiment is rather simple, consisting of a confocal microscope
with laser excitation and single-photon fluorescence detection (see Fig. 3.1). As the setup
was already built at the beginning of this thesis only a short overview outlining the basic
ideas will be given - for more details, the reader is referred to Ref. [31].

The light for excitation is provided by a frequency doubled solid state laser (∼500 mW,
532 nm), which can be stabilized using the first acousto-optic modulator (AOM). An AOM
generates a diffraction pattern, where the power of the laser beam of the first and higher
orders can be regulated by the AOM. By choosing the first diffraction order with an iris
diaphragm, picking off a few percent of the laser beam at the beam sampler and focusing it
on a photo diode a feedback loop can be created, which intensity-stabilizes the excitation
light from this point forward. The laser beam intensity itself is chosen by the relative
positions of the half-wave plate retarder and a polarizer directly after the laser diode
(⊥ . . . 0 % and ‖ . . . 100 % laser power).

The beam is then focused onto a second AOM, which is optimized for fast switching
and therefore used to chop the laser, generating laser pulses with a rise- and fall-time of
a few nanoseconds. Furthermore, this AOM controls the excitation light intensity, which
is monitored by a second photo diode. By calibrating the photo diode to the actual laser
beam power at the objective the excitation light intensity can be chosen.

In order to separate the sensitive beam preparation part from the actual experiment the
laser beam is coupled into a single-mode polarization maintaining fibre. Moreover using
this fibre cleans up the beam profile as only the lowest order Gaussian beam is transmitted.
After the fibre a second half-wave plate retarder is used as each of the four NV--families
(see Sec. 2.1) fluoresces most for a specific polarization direction.

A dichroic mirror follows, which reflects the incoming laser beam through the objective
onto the NV-, but lets the fluorescence light from the NV- pass since the dichroic mirror
is transparent for light with a wavelength larger than 658 nm. This fluorescence light is
focused onto a pinhole and an additional 650 nm long-wavelength-pass filter, which cuts
most of the undesired NV0 fluorescence. Finally two avalanche photo diodes (APDs)
detect the fluorescence photons and generate pulses, which are registered by a very fast
time-to-digital converter card and are uploaded to the control PC.

The objective used in this experiment is a Olympus PLAPON 60XO, which is apoc-
hromatic and spring loaded and has an NA of 1.42 and a working distance of 150 µm.
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Fig. 3.1: Sketch of the optical setup. The green line is the green laser light, while the
red one is the fluorescence light from the NV-. All components except lenses are
labelled in the sketch and the details are explained in the text. Depending on
the experiment one (black MW chain) or more (turquoise MW chain) microwave
cables are brought to the sample (see Sec. 3.2).

The high numerical aperture is chosen in order to collect as many photons as possi-
ble and immersion oil is used to match the refractive index of diamond more closely (
ndiamond = 2.4, noil = 1.518, nair = 1.0) in order to reduce the angle of total internal
reflection between sample and objective.

3.2 Microwave setup

In order to perform spin manipulations, microwave signals (MW) are installed. A range
of 2.87 ± 1 GHz is needed as an applied magnetic field shifts the transition frequency
|0〉 ⇒ | − 1〉 (|0〉 ⇒ | + 1〉) to roughly 2.07 GHz (3.67 GHz) as nuclear spin polarization
is desired [32]. Furthermore fast chopping for pulsed measurements (Sec. 4.1 and Sec.
4.2) as well as pulse shaping (Sec. 4.2.4) is required. Therefore several MW devices are
necassary, which will be discussed in the following. A sketch of the MW chain is illustrated
in Fig. 3.2.

Firstly, four different MW sources are needed as both transitions has to be driven on
and off resonance - more details follow in Sec. 4.2.4. The main carrier signal is provided by
a signal generator (Anritsu 3691B) operating with a maximum power output of 17 dBm
in a frequency range from 10 MHz to 10 GHz. The output signal is fed into the local
oscillator (LO-) input of an IQ mixer (Marki Microwave IQ-1545) mixing two channels of
an arbitrary-waveform generator (homemade AWG with an Opal Kelly XEM6010) onto
the carrier signal. The AWG is able to generate signals with a temporal resolution of
5 ns and a rise- and fall-time within the same magnitude. The IQ mixer has its optimal
working point at 13 dBm, therefore the power of the Anritsu 3691B is chosen accordingly.
The second signal is generated by a Thurlby Thandar TGR6000, which operates in a
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Fig. 3.2: Sketch of the microwave chain. Four sources provide signals in a range of 2.87±1
GHz. Two of the sources (Anritsu MG3691B and CN0285) are paired with
arbitrary-waveform generators via IQ mixers in order to shape the microwave
pulses. A switch for each source allows to choose which signals are sent to the
sample. Afterwards the signals are combined according to the conducted experi-
ment (red or green) and amplified by 45 dB.

frequency range from 10 MHz to 6 GHz with a maximum output power of 7dBm. As this
MW source is used for driving the transition resonantly no further manipulating of the
signal is required. The final two signals are provided by two wideband synthesizers with
integrated voltage controlled oscillator (Analog Devices ADF4351), where one is paired
with a wideband transmit modul (Analog Devices ADL5375), which works as an IQ mixer
with an optimal working point of 0 dBm (Analog Devices CN0285). Another homemade
AWG provides the analog I/Q signals. The ADF4351s generate a signal with a frequency
in the range from 35 MHz to 4.4 GHz and an adjustable power (−4 dBm, −1 dBm, 2 dBm
or 5 dBm) - −1 dBm is chosen as it fits the working point of the ADL5375 best.

Secondly, switches (Mini-Circuits ZASWA-2-50DR+) are placed after each source to
choose between the different signals or more signals simultaneously. From this point on
the microwave chain depends on the conducted experiment (red or green coloured parts in
Fig. 3.2). On the one hand all four signals are combined in a power splitter (Mini-Circuits
ZB4PD-462W+) with a fast switch (Custom Microwave Components CMCS0947A-C4)
afterwards, which chops the final signal with a temporal resolution of 3 ns. The RF-
signal is then fed into a microwave amplifier (Mini-Circuits ZHL-16W-43+), amplifying
the signal by 45 dB (black/red parts in Fig. 3.2) and sent to the sample. On the other
hand the two signals of the ADF4351s are combined separately (green) as well as the
signals from the Anritsu 3691B and the TGR6000 (black). Each combined signal is fed
into a 45 dB-amplifier and sent to the sample individually (black/green parts in Fig. 3.2).





4 Measurement schemes

In this chapter I will give an overview about the fundamental measurement techniques
such as ODMR and Rabi oscillations, which are the foundation of every measurement.
Afterwards I will go into a little more detail about measuring the different decoherence
times described in Sec. 2.4. I will finish this chapter with a description of the sequence
needed for the two-tone transfer mentioned in Sec. 2.6.

4.1 Optically detected magnetic resonance

The optically detected magnetic resonance (ODMR) measurement is based on the differ-
ence in fluorescence light for ms = 0 and ms = ±1 states (see Sec. 2.2.2 and Fig. 2.3)
and is the underlying measurement for all following measurements as the frequency for
both transitions can be determined. After initializing the NV- in |0〉 with a laser pulse via
the spin-dependent optical dynamics outlined in Sec. 2.2 and Fig. 2.2, it is transferred
to | ± 1〉 with a MW signal of constant power. Another laser pulse excites the NV- and
the fluorescence photons are counted in roughly the first 300 ns of the laser duration. The
rest of the laser pulse is used to initialize the NV- again. While continuously transferring,
exciting and counting the fluorescence the MW signal is sweeped over a frequency range,
lasting a few milliseconds at each step. Integrating over many such sweeps may be neces-
sary to detect dips of the fluorescence rate at certain MW frequencies, which correspond
to resonant spin transitions (see Fig. 4.1).

In order to resolve the fine and hyperfine structure the MW power has to be lowered as
power broadening of the resonance lines is reduced. Furthermore applying a MW-π-pulse
instead of a CW MW signal increases the contrast. At last a magnetic field of about
∼30 mT is applied along the NV axis in order to partially polarize the nuclear spin [32]
resulting in an even higher ODMR contrast.

4.2 Pulsed measurements

Using the resonance frequencies obtained from ODMR spectroscopy, pulsed MWs can be
applied to coherently manipulate the spin state. As good initialization in |0〉 is necessary to
make spin manipulations of the NV- controllable, every experimental sequence starts with
a 5.5 µs laser pulse, which populates the ms = 0 sub-level of the ground state with a high
probability via the spin-dependent optical dynamics outlined in Sec. 2.2 and Fig. 2.2. The
metastable singlet state has a lifetime of roughly 300 ns, therefore a waiting time of 1.5 µs
follows, in order to wait for the population to decay to the optical ground state. Afterwards
a series of MW pulses is applied, possibly interleaved with waiting times, depending on
the experiment carried out. Finally, in order to readout the spin state the laser is switched
on again and the fluorescence time traces (see Fig. 2.4) are recorded. This sequence is
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(a) Measurement single NV (b) Measurement ensemble

Fig. 4.1: Optically detected magnetic resonance measurement. By sweeping the MW fre-
quency of an applied π-pulse resonance lines of the NV- can be found depending
on the magnetic field. The blue crosses represent the data points and the red line
is a fit function a.) ODMR measurement of a single NV- shows two resonance
dips symmetric around 2.87 GHz representing either the transition |0〉 ⇔ | − 1〉
or the transition |0〉 ⇔ | + 1〉. The MW power is too high to resolve hyperfine
structure. The fit consists of two functions according to Eq. 2.14 with a FWHM
of ∼7 MHz. b.) In an ODMR measurement of a NV- ensemble four resonances
per spin state can be found due to the four possible orientations of a NV- in the
diamond lattice. In small magnetic fields the resonances are again symmetric
around 2.87 GHz. The fit consists of eight functions according to Eq. 2.14 with
a FWHM of ∼7 MHz.

repeated several million times for each point in the parameter space, which delivers smooth
fluorescence traces. The result is then obtained by normalizing the number of counts in
the first 200–300 ns of the laser pulse to an equally long counting window 4.5 µs later when
the system has reached its equilibrium state. By scanning different parameters in such
a measurement different behaviours can be observed, like Rabi nutations or dephasing
effects.

4.2.1 Rabi nutations

A MW signal at a certain frequency can transfer the spin state, however, this transfer
does not happen instantaneous. The rate of the transfer which depends on amplitude,
polarization and detuning of the MW has to be determined. This is done by scanning
the length τ of the MW pulse and reading out the spin state (see Fig. 4.2a). The state
oscillates between the brighter |0〉 and darker | ± 1〉 state at a given Rabi frequency, as
shown in Fig. 4.2b. If the polarization of the MW is not altered and the MW is always
driven on resonance, the resulting Rabi frequency only depends on the amplitude and thus
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Micorwave

initialization read-out

τ

(a) Sequence

(b) Rabi nutation of a single NV

Fig. 4.2: Rabi nutation measurement. a.) The required sequence of laser pulse and MW
pulse is sketched. After an initialization pulse of the green laser (green) a MW
pulse (orange) with a duration τ is applied. The duration τ is varied and the
typical Rabi oscillation is acquired. The read-out pulse works as initialization
pulse as well and the sequence is repeated several thousands of times for each
duration point. b.) With the described sequence a Rabi oscillation is observed.
The frequency depends on the applied MW power and has in this case a value of
2π × 2.17 MHz. The obtained counts are normalized in a way, that the maximal
value represents a fully populated spin ground state and the minimal value an
fully populated spin excited state. The blue crosses are the normed data points,
while the red curve is a sine fit function.
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on the power (P ∝ A2). Moreover, the time needed for a π-spin-flip can be determined as
well as the duration of the MW to drive the spin into an equal superposition of |0〉 and
|±1〉 with a π

2 -pulse. Since dephasing processes, which happen on timescales ranging from
tens of nanoseconds in dense ensemble samples to tens of microseconds in pure single-NV
samples, limit the maximum duration of coherent manipulation experiments, the transfer
has to be driven faster than the dephasing and corresponding high MW amplitudes have
to be achieved. With gold micro-structures directly on the sample Rabi frequencies as
high as 2π × 7.96 MHz can be achieved. When using a gold wire above the sample to
deliver the MW, values on the order of 2π × 1.59 MHz are possible.

As shown in Sec. 2.3 the spin resonance transitions are always hyperfine triplets leading
to interactions of several detuned spins with the driving field and therefore resulting in
beatings of the Rabi oscillations when working with single NV-. In dense ensemble samples
the different frequencies of the spins average out and the beatings are no longer observable.

4.2.2 Free induction decay measurement

In Sec. 2.4 it was already mentioned that T ∗2 can be measured with a Ramsey-type (free
induction decay - FID) measurement. Before starting the spin manipulation the spin is
initialized in |0〉 with green laser light. Then a π

2 -pulse follows, which creates an equal
superposition |ψ〉 = 1√

2
(|0〉 + |1〉) of the two qubit states. By waiting a certain amount

of time τ , during which the spin can evolve freely, the two components may pick up
a relative phase due to interactions with surrounding magnetic moments (spin bath) or
inhomogeneous broadening, which is converted into a population difference by the final
π
2 -pulse and read out optically (see Fig. 4.3a).

Without a spin bath environment the signal would simply oscillate at a frequency corre-
sponding to the MW detuning, because the phase shift is proportional to the free precession
time τ and to the detuning δ of the driving field (∆φ ∝ δτ). However, due to the 14N
hyperfine structure, a beating of three oscillations can be observed with frequencies corre-
sponding to three detunings δ, δ−2.2 MHz and δ+2.2 MHz. Fortunately, with the help of
nuclear spin polarization the beating due to the 14N hyperfine structure can be avoided as
one of the NV- spin states is populated with a high probability [32], while the other two
have low population probability.

Furthermore, a decay envelope of the FID signal can be observed, if additional spins
from a dephasing bath are present. These spins cause slightly different effective magnetic
fields at the location of the NV- spin resulting in a beating of precession frequencies of
the components of the superposition state, which sums up to said decay envelope. The
timescale of T ∗2 of the decay is given by the mean of the interaction strength with the spins
of the bath (see Fig. 4.3). Using an ensemble of NV- spins instead of a single spin in a
dephasing bath, a similar effect occurs: A decay envelope of the FID signal is observed due
to the fact that the resonance frequency of each spin of the ensemble is slightly different
from the others (inhomogeneous broadening). However, a beating is no longer observed
as the large amount of different frequencies average out.
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τπ/2 π/2
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(b) Measurement (c) Comparison to linewidth of ODMR.

Fig. 4.3: Free induction decay measurement. a.) A sketch of the sequence is shown. After
an initialization pulse of green light (green) a MW π

2 -pulse (orange) rotates the
spin vector to the equator of the |0〉 ⇔ | ± 1〉-Bloch-sphere. A waiting time of
duration τ follows and a second π

2 -pulse rotates the spin vector further. The
duration τ of the waiting time is changed for each measurement point. After a
read-out laser pulse the sequence is repeated. b.) Applying the FID sequence
with detuned π

2 -pulses results in an oscillating function of the fluorescence counts
with a decay envelope. A detuning of 125 kHz is chosen. The blue crosses are
the data points and the red curve is an exponential decaying sine fit function,
while the green line is the decay envelope. A dephasing time-constant T ∗2 of 33 µs
is obtained from a single NV--sample. c.) As mentioned in Sec. 2.4 T ∗2 can
also be obtained from the FWHM of ODMR measurements. Using Eq. 2.2 T ∗2
should be ∼23.9 µs. The difference can be explained from perturbations of the
magnetic field, the temperature etc. while doing ODMR measurements resulting
in a broader line-width.
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(b) Measurement

Fig. 4.4: Spin echo measurement. a.) The described sequence is pictured: After an initial-
ization pulse of the green laser (green) the spin vector is rotated with a π

2 -pulse
(orange) to the equator of the |0〉 ⇔ | ± 1〉-Bloch-sphere. In contrary to the FID
sequence a π-pulse (orange) is inserted in between the waiting time τ symmetri-
cally. After the second π

2 -pulse (orange) a read-out pulse (green) is applied and
the sequence is repeated. The total waiting time duration τ is changed for each
measurement point although it is halved. b.) Applying the spin echo sequence
results in a dephasing time-constant T2, which in case of single NV- samples is
larger and has an value of about 1.4 ms. The blue crosses are the data points and
the red curve is a Gaussian fit function.
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4.2.3 Spin echo measurement

In Sec. 2.4 was stated that T ∗2 refers to the timescale of dephasing that is reversible,
therefore techniques to recover coherence from the bath can be found. The simplest
technique is the spin echo sequence (sometimes called Hahn echo) π

2 −
τ
2 − π −

τ
2 −

π
2 :

Differently from FID, where a generated superposition state evolves for a precession time
τ and is read out, the precession time τ is cut in half and a π-pulse is inserted in the middle
of those equally long precession times τ

2 (see Fig. 4.4a). This additional pulse causes the
dephasing of the system spin (the NV-) to be reverted and the quantum information to
be refocused from the bath onto the NV--spin, as long as the bath has a coherence time
longer than the system. Furthermore all noise components of the bath slower than τ

2 get
cancelled out in this symmetrized measurement causing an extended coherence time of the
signal known as T2.

Usually spin echo signals show collapses and revivals at the Larmor frequency of the
13C nuclear spin due to the limiting surrounding spin bath. If the precession time τ

2
matches the bath precession time, the phase shifts during the de- and rephasing intervals
get exactly cancelled out. However, the height of the revival peaks decays on T2 timescale,
since the coherence time of the bath itself is limited.

Normally T2 is considerably longer than T ∗2 and goes up to milliseconds in isotopically
purified samples, limited by external magnetic field noise. Considering ensemble samples
based on nitrogen-rich raw material the situation changes as the spin bath is dominated
by substitutional nitrogen centres. T2 decreases and is in most cases on the same order
of magnitude as T ∗2 . Moreover, revivals can no longer be observed since electron spins
interact more with each other and the environment than the nuclear spins and hence lose
their coherence more quickly.

4.2.4 Two-tone transitions

All of the previous measurements where done in either the |0〉 ⇔ |− 1〉 or the |0〉 ⇔ |+ 1〉
subsystem of the three-level system of the NV-. Spin manipulations in these two-level
systems require only one MW source and can be done quite easily in the experiment. One
major characteristic is that the magnetic spin quantum number changes by one (∆ms = 1)
and are thus single photon processes. However, transitions between | − 1〉 and | + 1〉 are
achievable as well, which was discussed in Sec. 2.6. In contrary to |0〉 ⇔ |± 1〉 transitions
the magnetic spin quantum number changes by two (∆ms = 2), which is forbidden in
one-photon transitions, implying that two-photon processes have to take place requiring
at least two MW sources.

One of the advantages of using the | − 1〉 ⇔ | + 1〉 subsystem is that the population
transfer is more robust against small variations of experimental conditions like MW stabil-
ity, pulse timing and pulse shape. Moreover, in case of single NV- T ∗2 of the |−1〉 ⇔ |+ 1〉
subsystem tends to be larger than T ∗2 of the |0〉 ⇔ |±1〉 subsystem, which improves many
measurements in terms of decoherence. In this experiment, however, the biggest advantage
is that two MW signals are required in order to complete a population transfer. The two
signals can be applied via two separate wires (e.g. crossed wires) and a transfer can only
happen if the transfer conditions are correct regarding both MW signals at the location
of the NV-. A more detailed discussion will follow in Ch. 5.
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Laser (532nm)

Micorwave

initialization read-out

π πτ

(a) Sequence

(b) Measurement with rectangular pulses on
a single NV- sample

(c) Measurement with sin2 pulses on a single
NV- sample

Fig. 4.5: Two-tone transition measurement. a.) The sequence starts with an initializing
pulse of green laser (green) and is followed by a resonant π pulse (orange) of
one of the four MW sources. Afterwards the two-tone pulses (violet and blue)
driven by two other MW sources are applied for a changing duration τ . Before
reading out the state optically (green) either a π-pulse resonant to |0〉 ⇔ |±1〉 or
no π-pulse at all (dashed yellow/orange) is applied depending on the interested
NV- spin state. b.)+c.) The NV- gets initialized in | − 1〉 (blue) with the first
resonant π

2 -pulse. Due to a detuning of the two-tone pulses |0〉 (green) does
not get populated during the whole transition time. Crosses are data point,
while the curves are fit functions. b.) Applying the rectangular two-tone pulses
results in a transfer to | + 1〉 (red). As the two-tone pulses are not switched off
after a successful transfer the population starts moving back to | − 1〉 resulting
in an oscillation between | − 1〉 ⇔ | + 1〉. The fit functions are determined by
solving the Hamiltonian (Eq. 2.15) for each spin state with initital conditions of
imperfect electron spin polarization and rectangular two-tone pulses and evolve
the solution in time. c.) Applying the sin2 two-tone pulses results in a transfer
to |+ 1〉 (red). In contrary to rectangular pulses the population of the NV- stays
the same after the transfer, although the power of the two-tone pulses is not yet
zero. The fit functions are determined by solving the Hamiltonian (Eq. 2.15) for
each spin state with initial conditions of imperfect electron spin polarization and
sin2 two-tone pulses and evolve the solution in time.
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Fig. 4.6: Required MW transitions in order to perform two-tone transfer. Blue lines drive
the transition |0〉 ⇔ | − 1〉, while red lines drive |0〉 ⇔ | + 1〉. The dashed blue
line is the resonant driving field ω− and the dashed red line the resonant driving
field ω+. The two-tone pulses are driven by the fields Ω− (blue) and Ω+ (red)
with a detuning ∆.

As mentioned before at least two MW sources are required, however in order to imple-
ment the two-tone measurement sequence to this experiment four MW sources are needed
as on the one hand the state of the NV- has to be prepared/read out and on the other
hand the two-tone transition has to be driven (see Fig. 4.6). The sequence starts with
one MW source transferring the population of |0〉, which has been initialized with a green
laser pulse, to |+ 1〉 with a resonant π-pulse (ω+). Afterwards two MW sources drive the
detuned two-tone pulses (Ω+ and Ω−), which transfer the population to |− 1〉 in a certain
time τ . After completion of the transfer, the population of the target state is determined
by transferring the population of |−1〉 by another resonant π-pulse (ω−) back to |0〉 where
a laser pulse excites the NV- and the fluorescence photons are counted. |0〉 and |+ 1〉 can
be read out as well by applying either no π-pulse at all or a π-pulse (ω+) resonant to the
|0〉 ⇔ | + 1〉 transition after the two-tone transfer, respectively. Of course, the two-tone
transfer can be started from | − 1〉 as well - one only has to swap |+ 1〉 and | − 1〉 in the
previous text. The sketch of the sequence is shown in Fig. 4.5a.

A detuning is introduced in order to prevent populating |0〉 during the transfer process
as an effective two-level system | − 1〉 ⇔ | + 1〉 is desired. As already mentioned in Sec.
2.6 the condition ∆+ = ∆− = ∆ has to hold for the whole transfer time. Additionally
the MW power of both pulses needs to be the same (Ω+ = Ω−). The pulses used in
this experiment are mostly sin2- or rectangular pulses, although arbitrary pulses can be
created with the AWGs described in Sec. 3.2. π-pulses for initialization and read-out are
always rectangular, while two-tone pulses can be both. Smooth pulses, like sin2-pulses,
have the advantage that they come more closely to the adiabatic transfer ideal of STIRAP,
whereas rectangular pulses complete the transfer faster at the same maximal MW power
and detuning and are generally easier to handle. In case of smooth transfer pulses a certain
MW power requires a specific set of parameters, which include the detuning, the width
of the pulse and a delay between both pulses. With every parameter set the population
transfer needs a certain amount of time to be completed. Rectangular pulses only depend
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on the MW power and the detuning. At fixed MW power the transfer needs a longer time
to be finished with increasing detuning.

Fig. 4.5 shows a scan of the duration τ of the population transfer for rectangular and
sin2 pulses, where all three states are read out successively.



5 Matrix control of qubits

Control over individual qubit in large-scale quantum systems is a requirement for many
quantum technologies. In case of a two-dimensional array of magnetic spin qubits the
difficulty consists in accessing each qubit with control lines, limiting the possibility to
scale the quantum system. A method which promises scalable control of NV- spins with
two-tone transitions is tested in the following chapter.

Two-tone transfers, described in Sec. 2.6 and Sec. 4.2.4, require that the two Rabi
frequencies (Ω±) of the two-tone pulses are of equal magnitude. This requirement can be
used to control three-level systems in a grid by applying the two driving fields through
crossed wire arrays (see Fig. 5.1b). At a junction of two wires, which transport the fields
for either Ω+ or Ω−, a NV- on the surface in a distance r to the wire experiences a Rabi

frequency of Ω± = η
√
PMW
r , where η is the driving efficiency and PMW is the MW power.

By increasing the distance r to the wire the Rabi frequencies Ω± decrease, respectively,
and therefore the population transfer efficiency gets smaller rapidly. The advantage of
two-tone transfer is, hence, that a transfer of the population close to a wire crossing does
not affect NV-s at other sites. Moreover, a large common detuning ∆, which is required
to reduce the three-level system to an effective two-level system, can be used to prevent
population transfers on the transitions |0〉 ⇔ | ± 1〉.

Throughout this chapter I will compare single NV measurements with the measure-
ments done with the chip in order to verify the functionality of the chip. Considering the
functionality of the chip one has to consider several sources of errors, such as:

• Initializing the NV- with green laser light is not a process which transfers the state
to |0〉 with a 100 % success rate as already mentioned in Sec. 2.2.2.

• A π-pulse, which swaps the population of two spin states, e.g. |0〉 ⇔ |−1〉, is normally
not a process with a 100 % efficiency due to the hyperfine population distribution of
the NV-.

• Relaxation and decoherence mechanisms have to be considered as these mechanisms
limit the duration of a measurement sequence.

• The success rate of the transfer |−1〉 ⇔ |+1〉 might not reach 100 % at the intended
site. Conversely, a partial two-tone transfer could take place at another crossing as
well.

• State |0〉 of the NV- should not be populated during the whole two-tone transfer
process. Additionally, the initialized state at other crossings should not change due
to two-tone transfer pulses, especially along the wire where the MW is applied.

For single NV measurements I use a single-crystal artificial diamond created by chemical
vapour deposition (CVD). An epitaxially grown layer of 50 µm thick, isotopically purified
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(a) Diamond sample with chip (b) Circuit board with mounted sample

Fig. 5.1: Wire grid chip mounted on a PCB board. a.) The gold structure of the chip is
bright yellow. The fine lines in the center are the wire grid, while the rather large
area are the connection pads for the bonds. The bonds themselves are the black
lines going to each pad. The SiO2-layer is hardly visible. b.) The circuit board
consists of twenty supply lines, which are designed to have an impedance of 50 Ω.
The wholes in the board connect the top ground layer with the bottom ground
layer. The diamond sample sits, where all lines come together. SMA connectors
are put at the end of the supply lines to connect the board with the diverse MW
sources.

to 99.999 % 12C hosts the single NV- centres. The MW fields are applied through a 100 µm
gold wire spanned over the diamond surface. For chip measurements, however, I use a NV
ensemble, which is hosted by an untreated CVD diamond with natural isotopic abundance
and a nitrogen content below 1 ppm. The MW fields are applied through a crossed-wire
control grid, described in Sec 5.1.

5.1 Design and production of chip

As the grid is produced directly on the diamond sample, the sample size itself is a limitation
for the chip size. The diamond samples used in this thesis have a width and length of
about 3 mm and thus the chip cannot be larger than that. In fact it has to be smaller
as a gap of about 500 µm to the edge of the diamond is required in order to remove the
edge bead, which is a result of the production process. The total size of the grid circuit
therefore is 2 mm x 2 mm and the chip is shown in Fig. 5.1a.

The centre piece of the chip is a wire grid. It consists of 5 x 5 wires in two layers
resulting in 25 crossings. The wires have a length of about 700 µm and a width of 10 µm.
The height of the wires is different for the two layers. The bottom ones are about 200 nm
thick and the top ones about 400 nm. The distance between the wires in each layer is
125 µm and the layers themselves are separated by 300 nm SiO2. In order to connect the
chip with a circuit board, the wires end in pads, which provide a larger area for bonding.
The pads are triangular shaped and positioned in a way so they fill the remaining area of
the chip in order to be as large as possible. The side closest to the chip edge has a length
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(a) First Au layer

(b) SiO2 layer

(c) Second Au layer

(d) Bonds to circuit board

Fig. 5.2: Production steps of wire grid chip. a.) After spray-coating a layer of photoresist
onto the diamond and structuring it with lithography a layer of gold is deposited
on the diamond (red). b.) A square SiO2 layer is put on the first Au layer in
order to provide insulation between the two gold structures (grey). c.) A second
gold layer is deposited on the SiO2 layer to fabricate a second (orthogonal) wire
array (blue) using the same structuring technique. d.) Lastly the wire grid chip
is mounted on the circuit board (green) and the connections are established with
gold bonds (yellow).

of 350 µm and the minimum distance between two pads is 50 µm.
The chip undergoes several steps of depositing and lifting off material to fabricate the

required wire grid. Starting the procedure a photoresist, which is a light-sensitive material,
is spray-coated onto the diamond. Afterwards the photoresist is structured using optical
lithography as it becomes either soluble or insoluble when exposed to light. A thin layer
(10 nm) of titanium together with a 200 nm thick gold layer are deposited on top of the
light-treated photoresist. Then the soluble parts of photoresist are lift off generating the
desired pattern (see Fig. 5.2a). A square SiO2 layer with a thickness of 300 nm is then
applied to provide insulation between the two wire arrays and is structured using the same
method (see Fig. 5.2b). Afterwards a second titanium layer (10 nm) and a second gold
layer (400 nm) is deposited to fabricate the second (orthogonal) wire array with the same
procedure (see Fig. 5.2c).

The sample itself is placed on a FR-4 circuit board, which is shown in Fig. 5.1b. The
board has a length of 10 cm and a width of 8 cm and is 1.55 mm thick. On the top as well
as on the bottom side is a 18 µm thick layer of copper, where the bottom layer serves as
ground plane only. On the top layer the wires leading from the SMA connectors to the
sample are designed to have an impedance of 50 Ω at 2.87 GHz MW frequency, resulting
in a width of 1.6 mm with a 300 µm gap to the surrounding ground planes. The chip is



42 5. Matrix control of qubits

connected via bonds to the circuit board (see Fig. 5.2d).

5.2 Single NV

As measurements with the wire grid chip have not been done before, the errors listed in the
introduction of this chapter are discussed with the help of a single NV- and a single gold
wire spanned over the diamond surface first. The reason doing single wire measurements
first is that these kind of measurements are well understood and have been done before
opposed to the wire grid measurements. However, many qualitatively equal measurements
can be performed with a single wire and comparable data can be collected.

The following discussion addresses each error listed in the introduction of this chapter
successively concerning single NV-s, but with regard to the wire grid chip, especially the
success rate of the transitions | − 1〉 ⇔ |+ 1〉 and |0〉 ⇔ | ± 1〉.

The errors due to bad initialization of the green laser are not fully experimentally
controllable, as the initialization is determined by the transition probabilities between the
NV- states (see Fig. 2.2). At high enough laser power, so that the NV- is saturated, the
probability to end in the spin ground state |0〉 after several optical cycles is around 80 %
(average quoted spin-polarisation from the vast range of spin-polarisations reported [11]).
A 100 % success rate is not achievable by simply radiating green light onto the NV-. This
inconvenience, however, can be regarded for in the analysis of the data. The NV- has to
be in one of the three possible spin states ( |0〉, | − 1〉 or |+ 1〉):

p|0〉 + p|−1〉 + p|+1〉 = 1 (5.1)

where p|0〉, p|−1〉 and p|+1〉 are the population probabilities, respectively. Additionally, the
real photon counts c for each state can be expressed by

c|0〉 = p|0〉∆c+ cmin

c|−1〉 = p|−1〉∆c+ cmin

c|+1〉 = p|+1〉∆c+ cmin

(5.2)

with cmin being the theoretically minimal photon counts, i.e. fluorescence, if the read-
out state is not populated at all, and ∆c being the count difference between theoretically
maximal and minimal photon counts. As Eq. 5.1 and Eqs. 5.2 create a system of four
equations with five unknown variables the system remains analytically unsolvable. An
assumption about the probability distribution between the spin states has to be made.
Two rather naive ways to make the additional assumption is by assuming either that the
minimal real count value is also cmin or the initialized state is populated with a probability
of 80 %. With that the system of equations (Eq. 5.1 and Eqs. 5.2) is solvable and cmin
and ∆c can be estimated. By having an estimation for cmin and ∆c the probabilities to
find the NV- in a certain spin state at each time step of the two-tone transfer process can
be calculated from the data.

Thus, the error due to initialization with green laser light is known and can be accounted
for. However, the initialization probability of the green laser is not fully experimentally
controllable, i.e. a certain value of initialization probability cannot be exceeded. For the
rest of the thesis this will be held in mind, but will not be mentioned explicitly.
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After initializing the NV- in |0〉, spin state manipulations are done, but the success rate
of these transfer processes is generally not 100 %. Due to the hyperfine splitting of the NV-

(see Fig. 2.6) a transfer pulse is resonant to only one of the nuclear spin states, strictly
speaking, and therefore only one third of the population of |0〉 is transferred, assuming the
population probability is the same for all three nuclear spin states. However, a transfer
pulse has a certain broadening in the frequency spectrum due to its power and also transfers
the population of the other two nuclear spin states partially. By increasing the MW power
the probability to transfer the population from |0〉 gets closer to 100 %. For example, a
100 ns long π-pulse corresponding to a Rabi frequency of 2π × 5.00 MHz resonant with
the mI = 0 hyperfine state of | − 1〉 transfers the population from |0〉 to | − 1〉 with a
probability of ∼90 %. Unfortunately, due to limitations of the MW source output powers
and the MW amplifiers shorter π-pulses than 50 ns are not possible with this setup.

Another approach to increase the transfer probability of a π-pulse is to polarize the
nuclear spin of the 14N atom [32]. Polarizing the nuclear spin means that the probability
to find the NV- in one of the three hyperfine states is increased, while the probabilities for
the other two is decreased and ideally goes towards zero. In order to polarize the nuclear
spin a magnetic field has to be applied. However, not only the strength of the magnetic
field but also its direction is important to polarize the nuclear spin to a high degree. In
order to achieve large nuclear spin polarization magnetic fields of several tens of mT have
to be applied [32]. Furthermore, the angle between NV-- axis and magnetic field vector
has to be less than 1° in order to get more than 50 % nuclear spin polarization probability
[33]. With a magnetic field strength of 44 mT and a perfectly aligned magnetic field vector
a nuclear spin polarization of ∼95 % is achievable [33].

However, in this experiment the limitation of magnetic field strength arises due to the
limitation of the MW frequency of the MW components. The energy splitting due to the
Zeeman effect depends on the magnetic field 28 MHz/mT and as most MW components
work between 2 GHz and 4 GHz the magnetic field strength is limited to ∼30 mT with
this setup. With a magnetic field strength of 30 mT and a perfectly aligned magnetic field
vector a nuclear spin polarization of ∼85 % is achievable [32]. In Fig. 5.3 a magnetic field
of 28.2 mT is applied along the NV--axis and a nuclear polarization of 78.1 % is achieved.

Relaxation and decoherence mechanisms limit the duration of a measurement sequence.
After a certain amount of time the spin state of the NV- is not well defined and therefore
spin manipulations are not correctly done anymore. The time constants for relaxation
and decoherence mechanisms have already been described in Sec. 2.4. In case of single
NV centres at room temperature T1 has a duration of several ms, whereas T2 is several
hundreds of µs long. The smallest time constant is T ∗2 , which still has a duration of
several tens of µs. Fortunately, a MW pulse used in the two-tone transfer sequence lasts
only from ∼50 ns to maximal a couple of µs. Therefore the errors due to relaxation and
decoherence mechanisms can be easily avoided by pulse durations smaller than T ∗2 . The
longest two-tone pulse lasts around 10 µs.

After explaining errors, which also need to be considered in most other measurement
schemes, errors concerning two-tone transitions, which will arise from using the wire grid
chip, are discussed. On the one hand two-tone transitions may occur elsewhere than at
the intended site. Therefore, the transfer probability depending on the distance to the
intended transfer site is determined. Moreover, if not a two-tone transfer some other
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Fig. 5.3: ODMR of a single NV- with polarized nuclear spin. Scanning the MW frequency
of an applied π-pulse with a power corresponding to a Rabi frequency of 2π ×
183 kHz results in a spectrum with three resonance dips fitting the hyperfine
transitions. The blue crosses are data points and the red curve is a fit function
consisting of three functions according to Eq. 2.14 with a FWHM of ∼320 kHz.
A magnetic field of 28.2 mT is applied and by aligning the field vector with the
NV--axis a nuclear spin polarization of 78.1 % is achieved.

transitions may occur elsewhere in the wire grid, e.g. |0〉 ⇔ | + 1〉 transitions, which has
to be investigated. On the other hand the two-tone transfer itself might not perform as
intended, e.g. populating |0〉 during the process.

As the final goal is to transfer the NV- state from | + 1〉 to | − 1〉 (or vice versa) at
a certain crossing of the wire grid and only at that crossing, the effect of the two-tone
signals depending on the distance to the crossing is of great interest. In case of single NV-

samples changing the location of the NV- is impossible, and looking for NV-s which sit at
different distance relative to the wire is a time-consuming process, if there are even NV-s
at this certain distance in the sample. However, the power of the applied MW signals at
the site of the NV- depends strongly on the distance to the wire. Therefore measuring the
transfer probability by sweeping the MW power of the two-tone pulses corresponds to a
measurement where the location of the NV- is changed with respect to the wire.

In Fig. 5.4 a MW power sweep of one of the two-tone pulses is shown. The NV- is
prepared in |+ 1〉 by applying a resonant π-pulse after the initialization with green laser
light. Afterwards the two-tone pulses are applied in order to transfer the NV- from |+ 1〉
to | − 1〉. Lastly the state of the NV- is readout either by driving a π-pulse resonant
to | − 1〉 or | + 1〉 or by applying no MW at all. The MW power of the two-tone pulse
corresponding to the |0〉 ⇔ | − 1〉 (Ω−) transition is changed while the power of the other
two-tone pulse (Ω+) is held constant. Thinking of the wire grid this measurement is equal
to one, where the distance between NV- and the wire, which guides the MW corresponding
to the |0〉 ⇔ | − 1〉 transition, changes. The measurement in Fig. 5.4 is done with a MW
power corresponding to a Rabi frequency of 2π × 2.11 MHz in the resonant |0〉 ⇔ | ± 1〉
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Fig. 5.4: Power scan of one of the two-tone pulses performed with a single NV-. The NV-

is prepared in | + 1〉 and a two-tone transfer is performed with a MW power
corresponding to a Rabi frequency of 2π × 2.11 MHz and a detuning of 0 MHz.
While the power of the Ω+-pulse is held constant, the power of the Ω−-pulse is
varied. 0 dBJ is set, where the power of the Ω+- and Ω−-pulse has the same
value. The red curve corresponds to population in |+1〉, the green one in |0〉 and
the blue one in | − 1〉.

transition and with zero detuning. Furthermore, the two-tone pulses are square-shaped
and their duration is chosen so that the best transfer success rate is achieved for the chosen
MW power (τ = 413 ns). The power scale is determined by

p(dBJ) = 10 log10

(
p

p0

)
(5.3)

where p0 is the point, at which both two-tone pulses have the same power, and p is the set
power of the Ω−-pulse. The three different colors in Fig. 5.4 represent the three different
spin states of the NV-: blue↔ |−1〉, green↔ |0〉 and red↔ |+1〉. The transfer efficiency
is largest, as intended, at 0 dBJ, where the MW powers of the two-tone pulses are the
same - the population probability of | − 1〉 reaches its maximal value. For decreasing MW
power of the Ω−-pulse the transfer efficiency decreases as well. | − 1〉 gets less and less
populated through the two-tone pulses. As reducing the MW power at a fixed distance to
the wire is qualitatively equal to increasing the distance to the wire at fixed MW power,
the assumption can be made, that in case of the wire grid the two-tone transfer efficiency
at a neighbouring crossing is close to zero. Although the population transfer efficiency
from | + 1〉 to | − 1〉 is reduced at low MW power of the Ω−-pulse, a population transfer
still occurs in the |0〉 ⇔ | + 1〉 manifold of the spin states. As the MW power of the
Ω+-pulse remains the same while the Ω−-pulse power decreases the two-tone pulses get
reduced to simple |0〉 ⇔ | + 1〉-transfer pulses. The measurement pulse train therefore
resembles one done in Rabi oscillation measurements. Thinking about the wire grid, NV-s
along the wire carrying the Ω+-pulses and at sites at a great distance to the Ω−-pulse-wire
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(a) Pulse (b) State |+ 1〉 (c) State |0〉 (d) State | − 1〉

Fig. 5.5: Detuning scan of rectangular two-tone pulses performed with a single NV-. a.)
The pulse shape of the two-tone pulses is pictured. The amplitude is normalized
to its maximum value. In this series of measurements the shape of the two-tone
pulses is rectangular. b.)-d.) The time trace of each NV- state (b.) → | + 1〉,
c.) → |0〉 and d.) → | − 1〉) is plotted over the detuning of the two-tone pulses,
which have a MW power corresponding to a Rabi frequency of 2π × 3.65 MHz.
The color scale goes from blue (empty state) to red (occupied state).

are simply performing Rabi oscillations between |0〉 and |+ 1〉. However, even transitions
in this subspace of the spin manifold of the NV- are unwanted and therefore a detuning
has to be introduced.

The main purpose of using MW signals detuned form the resonance frequency is to
reduce the three-level system (|0〉, | − 1〉 , | + 1〉) to an effective two-level system (| − 1〉,
|+1〉) as described in Sec. 2.6, i.e. no population should be in |0〉 at any given time during
the process.

In Fig. 5.5 a detuning scan for rectangular two-tone transfer pulses is shown. The
Rabi frequency for the resonant |0〉 ⇔ | ± 1〉 transitions is 2π × 3.65 MHz. The detuning
is plotted on the x-axis, while the y-axis represents the duration of the applied two-tone
pulses. The colour shows the population of the state, where red means that the whole
population is in that state whereby dark blue stands for an empty state. The two-tone
transfer process starts always in |+ 1〉, which can be seen in Fig. 5.5b. For small detuning
|0〉 gets partially populated several times during the transfer process (see Fig. 5.5c) and
always as transfer state between | ± 1〉. By increasing the detuning, |0〉 becomes less
and less populated, whereas the two-tone transfer process is not affected apart from the
time needed to complete the transfer. For larger detuning the two-tone pulses have to be
applied longer in order to transfer the population from | + 1〉 to | − 1〉 successfully (see
Fig. 5.5d).

With a MW power corresponding to a Rabi frequency of 2π × 3.65 MHz an absolute
detuning of at least 13 MHz is needed to significantly suppress the population of |0〉.

In Fig. 5.6 sin2-pulses are used instead of square pulses. The MW power of the resonant
|0〉 ⇔ | ± 1〉 transitions is still the same as for square pulses resulting in a Rabi frequency
of 2π × 3.65 MHz.

The advantages of using sin2-pulses instead of rectangular ones is that sin2-pulses change
the MW amplitude very smoothly and come close to the adiabatic following condition
mentioned in Sec. 2.6. Moreover, sin2-pulses always start from zero amplitude while
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(a) Pulse (b) State |+ 1〉 (c) State |0〉 (d) State | − 1〉

Fig. 5.6: Detuning scan of sin2 two-tone pulses performed with a single NV-. a.) The
pulse shape of the two-tone pulses is pictured. The amplitude is normalized to
its maximum value. In this series of measurements the shape of the two-tone
pulses is sin2. b.)-d.) The time trace of each NV- state (b.) → |+ 1〉, c.) → |0〉
and d.) → |− 1〉) is plotted over the detuning of the two-tone pulses, which have
a maximal MW power corresponding to a Rabi frequency of 2π× 3.65 MHz. The
color scale goes from blue (empty state) to red (occupied state).

Gaussian pulses theoretical only approach zero amplitude. However, as the amplitude
is smoothly increased and decreased the time needed to complete the transfer increases
which has been explained in Sec. 4.2.4.

A similar behaviour in case of small detuning is observed but not as prominent as for
square pulses, i.e. |0〉 gets populated only close to resonance. Starting from a detuning of
about 5 MHz, |0〉 is populated negligibly during the whole process (see Fig. 5.6c). A rather
big difference to square pulses is the behaviour for increasing detuning. On contrary to
square pulses, at certain values of detuning the population stays in the final state | − 1〉
for the remaining pulse duration (see Fig. 5.6d), although the MW power is not yet zero.

Thinking about the wire grid a detuning of the transfer pulses has an additional ad-
vantage. Moving along one wire away from the site of the two-tone transfer, the signal
power of the perpendicular wire decreases consequently and goes to zero as was mentioned
before. Hence, starting at a certain distance a NV- is only affected by the MW signal of
the parallel wire and transitions happen in either the |0〉 ⇔ | − 1〉 or the |0〉 ⇔ | + 1〉
sub-system. From the perspective of the NV- the wire grid is reduced to a single wire.
Therefore, Rabi nutations of a single NV- can be compared to two-tone measurements
done with the chip at crossings farther away from the two-tone transfer site. Introducing
a detuning, however, reduces the transfer probability depending on the MW power.

In Fig. 5.7a a MW signal with a power equal to a Rabi frequency of 2π × 8.78 MHz is
applied and the time trace depending on the detuning is recorded. The duration of the
MW pulse is in a range from 12.5 ns to 150 ns, while the detuning is scanned from 0 MHz
to 40 MHz. In Fig. 5.7b the MW power is reduced to a value equal to a Rabi frequency of
2π × 746 kHz. As smaller MW power results in longer transfer-times, the pulse duration
goes from 12.5 ns to 2000 ns. Vice versa, the detuning which is needed to stop a population
transfer gets smaller. Therefore the detuning ranges from 0 MHz to 4 MHz. Fig. 5.7 shows
that a detuning can be found for any applied MW power, at which a population transfer
does not occur any more. A higher MW power requires a larger detuning.
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(a) Rabi frequency of 2π × 8.78 MHz (b) Rabi frequency of 2π × 746 kHz

Fig. 5.7: Detuning scan of Rabi nutations. The NV- is prepared in |0〉. The frequency
of the applied MW signal is detuned by some amount and the time trace is
observed. The color scale goes from blue (empty state) to red (occupied state).
a.) The power of the resonant MW signal corresponds to a Rabi frequency of
2π× 8.78 MHz. b.) The power of the resonant MW signal corresponds to a Rabi
frequency of 2π × 746 kHz.

To summarize the expectations of the performance of the wire grid chip:

• The transfer efficiency of the two-tone pulses decreases with increasing distance to
the intended transfer-site (see fig. 5.4). Thus, a two-tone transfer at neighbouring
junctions might not take place.

• However, sites along one of the two wires carrying the two-tone pulses might still
perform partial population transfers in the |0〉 ⇔ |+1〉 (|0〉 ⇔ |−1〉) spin-sub-system.
In order to oppress these transitions a detuning must be introduced (see Fig. 5.7).

• This detuning is needed as well for reducing the three-level spin-system to an effective
| − 1〉 ⇔ | + 1〉 spin-system in order to avoid populating |0〉 during the two-tone
transfer (see Fig. 5.5 and Fig. 5.6).

5.3 Chip

In the previous section the performance of the wire grid chip was anticipated by using
qualitatively equal measurements done with single NV- and a single wire. In the following
section measurements done with the wire grid itself will be demonstrated, but first some
thoughts have to be given to the change of the diamond sample from single NV- to NV--
ensemble.

In case of green laser initialization one has to consider, that ensembles consist of a huge
amount of NV-s and therefore a higher laser power is needed to make sure that as many
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Fig. 5.8: ODMR of a NV--ensemble with polarized nuclear spin. Scanning the MW fre-
quency of an applied π-pulse with a power corresponding to a Rabi frequency of
2π×861 kHz results in a spectrum with three resonance dips fitting the hyperfine
transitions. The blue crosses are data points and the red curve is a fit function
consisting of three functions according to Eq. 2.14 with a FWHM of ∼1.39 MHz.
A magnetic field of 27.0 mT is applied and by aligning the field vector with the
NV--axis a nuclear spin polarization of 84.0 % is achieved.

NV-s as possible are initialized in |0〉. The thoughts about the efficiency are the same as
for single NV-s, i.e. due to the transition probabilities in the optical cycles (see Fig. 2.2)
a certain value of initialization efficiency cannot be exceeded.

Furthermore, in ensembles four orientations of the NV--axis are possible. These different
orientations have the effect that an arbitrary applied magnetic field is in general felt
differently by each of the NV--families as was already discussed in Sec. 4.1. The | ± 1〉
energy states are shifted less or more for each family due to the Zeeman effect. If the
magnetic field is aligned with the axis of one of the families, this family undergoes the
largest energy shift, whereas the other three experience the same effective magnetic field.
A MW π-pulse resonant with the most shifted NV--family, therefore, transfers only one of
the families from |0〉 to | ± 1〉 while the others remain in |0〉. At least three fourths of the
NV-s are always in the same state namely |0〉 and thus emit the same amount of photons
per second for a specific laser power. This NV--fluorescence can be seen as background.
Only one fourth of the NV-s react to the MW pulse and contribute to the wanted signal.
As a consequence the contrast of the obtained signal between the ’bright’ and the ’dark’
state is lower compared to single NV--measurements.

The discussion of the transfer efficiency of MW π-pulses holds for NV--ensembles as well
as for single NV-. Either the π-pulse has to have high power in order to gain high transfer
efficiencies - same order of magnitude as for single NV- transitions. Or the magnetic field
has to be increased and aligned to the NV-axis of one of the NV--families in order to
polarize the nuclear spin. In Fig. 5.8 the magnetic field has a magnitude of 27.0 mT and
the degree of nuclear spin polarization is ∼84.0 %. Moreover, the contrast drop discussed
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(a) Rabi frequency of 2π × 1.50 kHz (b) Rabi frequency of 2π × 8.20 MHz

Fig. 5.9: Rabi nutation measurement performed with wire grid. Rabi oscillations are ob-
served at different MW powers in order to show the interference of different Rabi
frequencies mentioned in the text. The blue crosses are data points, while the
red curve is a mean value over four data points. a.) The Rabi nutation with a
frequency of 2π × 1.5 MHz is damped due to dephasing mechanisms. b.) The
Rabi nutation with a main frequency of 2π×8.2 MHz shows a collapse of the Rabi
oscillation at ∼200 ns due to destructive interference in the observed volume. At
∼350 ns an oscillation is visible again, possibly due to partial re-phasing of the
oscillations.

in the previous paragraph is seen clearly, if Fig. 5.8 is compared to single NV- ODMR
measurements from Fig. 5.3.

However, in contrary to single NV- sequences MW pulses applied to ensemble samples
cannot have an arbitrarily high power. In general a higher MW power results in faster
Rabi oscillations, i.e. the Rabi frequency is increased. While a MW pulse applied to
a single NV- just increases the Rabi frequency with increasing power and has no effect
on the decay envelope, NV- ensembles show a collapse of the nutations after one or two
periods at high MW powers (see Fig. 5.9). This can be explained by the fact that not
a single NV- is observed with the microscope but a whole volume of NV-s. While the
resolution in lateral direction is quite good (<500 nm), the resolution in z-direction is
worse (several µm) resulting in a certain observed volume. The magnetic field from the
MW is not constant over the observed volume and thus results in many different Rabi
frequencies. These Rabi oscillations can de-phase destructively and cause a collapse of
the visibility. However, revivals are possible as well, if the Rabi oscillations interfere
constructively before the dephasing mechanisms take over. Furthermore, a π-pulse, which
transfers the NV-s in a different state, is no true π-pulse for all NV-s in the observed
volume anymore, which causes worse transfer efficiencies. Thus, high MW powers (short
π-pulses), which are wanted in case of single NV-, are counter-productive for measurements
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with NV--ensembles. A physics-motivated lower limit of the MW pulse duration exists.
As has been already discussed in Sec. 5.2 the duration of the measurement sequence

cannot be arbitrarily long either. The dephasing and decoherence time-constants T1, T2

and T ∗2 limit the duration of the measurement sequence. While the smallest time-constant,
which is T ∗2 , is still several tens of µs large in case of single NV-, the spin bath of all the
NV-s in an ensemble reduce T ∗2 drastically. T ∗2 has a duration of ∼600 ns in the ensemble
used for the wire grid measurements and is around two orders of magnitude smaller than
for a single NV-. This reduction of the time-constant T ∗2 as well as the discussed lower
limit of the pulse duration due to too high MW power restrict the length of the transfer
pulses between ∼50 ns and ∼1 µs.

Up to now only the change from a single NV-- to an ensemble-sample was discussed and
more difficulties have arisen already:

• In order to initialize the ensemble in |0〉 as good as possible a higher green laser
power is needed.

• Due to the additional NV--families the contrast between ’bright’ and ’dark’ state is
lower.

• The duration of the transfer pulses is limited on the one hand because of smaller
dephasing and decoherence times and on the other hand due to differences in the
Rabi frequencies in the observed volume for high MW powers.

Therefore good performance of the wire grid chip will be harder to handle than that of
the single wire with a single NV- of Sec. 5.2.

The behaviour of the wire grid was already anticipated in Sec. 5.2 and measurements
on the wire grid itself will be done in the following paragraphs. The two-transfer in each
measurement starts in |+1〉 and the π-pulses are determined for each set of measurements
in order to guarantee the best initialization and read out. However, one has to keep in
mind the worse performance due to the use of a NV--ensemble as sample.

Firstly, in order to show that a two-tone pulse at a certain junction does hardly effect
any other NV-s at other wire crossings the transfer efficiency depending on distance to the
two-tone transfer site is determined. In order to compare these kind of measurements to
the power sweep measurement done with single NV- (see Fig. 5.4) the dependence of the
MW power to the distance has to be determined. The magnetic field created by current I
running in the y-direction along a wire of finite width w lying in the xy-plane is given by

Bx = − µ0I

2πw

[
arctan

(
x+ w/2

y

)
− arctan

(
x− w/2

y

)]
By =

µ0I

4πw
log

(
(x+ w/2)2 + y2

(x− w/2)2 + y2

) (5.4)

where µ0 is the vacuum permeability. The relative magnitude of this field |Bxz| is shown
in Fig. 5.10a.

The wires are very thin (∼400 nm) and have a width w of 10 µm, while the distance
r to the transfer site is some tens of µm. Thus, the ratio b

r is small and the wires can
be assumed to be infinitely thin with respect to the distance to the transfer site. Fig.
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(a) Field strength |Bxz| (b) ∆B = |Bxz| − |Bthinwire|

Fig. 5.10: Magnetic field of a thin but 10 µm broad wire. a.) The relative magnitude of the
magnetic field is plotted over the distance to the centre of the wire (x) and over
the depth (z). Most measurements are conducted at 10 µm distance to the wire-
centre and in a depth of 15 µm. In this region the magnetic field vector is almost
perpendicular to the NV--axis, which assures good transfer probability. While
yellow depicts a large magnitude of the magnetic field and is set at 50 % of max
|Bxz| , dark blue stands for low magnetic field magnitude. b.) The difference in
magnitude of the magnetic fields of a broad wire and an ideal infinitely thin wire
is plotted over the distance to the centre of the wire (x) and over the depth (z).
At the site where most measurements are conducted (x = 10 µm, z = 15 µm)
the difference is very small (about 0.1 % and thus the magnetic field is almost
similar to Eq. 5.5. While yellow depicts a large difference of the magnetic field
magnitude and is set at 25 % of max ∆B , dark blue stands for a small difference.

5.10b shows that the difference between real magnetic field and the magnetic field of an
infinitely thin wire is very small at depths (z) larger than 15 µm and distances from the
wire edge (x − w) larger than 5 µm, where the measurement is usually conducted. Thus
the magnetic field strength of the MW pulses can be simply written as

Bthinwire =
µ0I

2πr
(5.5)

Finally, as the power of the MW is proportional to the square of the magnetic field
(p ∝ |B|2) the power can be written in logarithmic scale with the help of Eq. 5.3 as

p(dBJ) = 10 log10

(
r2

0

r2

)
(5.6)

where r0 is the distance to the wire, where the two-tone transfer works best. A simple
way to calculate the power from the distance to the wire edge has been found, with which
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Fig. 5.11: Distance scan moving along one of the wires carrying the two-tone pulses per-
formed with the wire grid. The NV-s are prepared in | + 1〉 and a two-tone
transfer is performed with a MW power corresponding to a Rabi frequency of
2π × 2.10 MHz and a detuning of 0 MHz. While the distance to the Ω+-wire is
held constant, the distance to the Ω−-wire is changed. The power is calculated
according to Eq. 5.6. The red curve correspond to the population in |+ 1〉, the
green one to |0〉 and the blue one to | − 1〉.

the measurement done in Fig. 5.4 can be compared to the distance scan measurement
performed with the wire grid (see Fig. 5.11).

The measurement is performed by changing the distance to the wire driving the Ω−-
pulses, while the distance to the Ω+-wire remains the same. Additionally the initialization
and read-out pulses are all led through the Ω+-wire in order to assure efficient |0〉 ⇔ |±1〉
transitions for all distances. The sequence starts as usual with the initialization in |0〉
via a green laser pulse - keep in mind that the laser power needs to be higher than in
single NV--measurements to have a high initialization efficiency. Afterwards the NV- is
transferred with a 100 ns π-pulse into state |+ 1〉. The MW power for the two-tone pulses
are set at a certain distance r0 in a way to get the best possible transfer efficiency. After
choosing the parameters the distance is changed for each measurement and the dependence
of the transfer efficiency is obtained. The state of the NV- (| ± 1〉, |0〉) after the two-tone
pulses is read out by either applying a π-pulse resonant with |0〉 ⇔ | ± 1〉 or applying no
MW signal at all, respectively.

As expected, the overall performance of the ensemble sample is worse than that of
the single NV- sample. On the one hand the transfer efficiency is lower, as dephasing
effects screw up a clean transfer. On the other hand more noise is measured due to the
additional fluorescence of the other three NV--families, which remain in |0〉. However,
the dependence on the power from Fig. 5.11 is qualitatively similar. For smaller MW
powers - larger distances to the wire - the efficiency of the two-tone transition decreases.
The suggested behaviour anticipated with the power scan measurement from Fig. 5.4 is
observed in the wire grid and the educated guess that the two-tone pulses hardly transfer
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NV-s from |+1〉 to |−1〉 at other crossings can be stuck to as well. Lastly, the importance
of detuning of the two-tone pulses can be emphasized again. As the power of the Ω−-
pulse decreases the three-level (| + 1〉, |0〉, | − 1〉) system decreases to a two-level system
(| + 1〉, |0〉) and transitions between | + 1〉 ⇔ |0〉 still occur. By applying a detuning to
the two-tone pulses these transitions can be avoided.

Finally, after showing that manipulating NV-s only at a certain junction of the wire grid
should be possible, the measurements themselves will follow in the next few paragraphs.

The measurement is done at four different junction of the wire grid: One at the actual
site of the two-tone transfer (Figs. 5.12 a-c), one at each neighbour along the two wires
driving the Ω−- and Ω+ pulses (Figs. 5.12 d-f and Figs. 5.13 a-c) and one at the nearest
diagonal neighbour (Figs. 5.13 d-f). The measurements are done with the usual initial-
ization and transfer sequence for two-tone transitions. On the one hand the state of the
NV-s is read out for changing durations of the two-tone pulses (y-axis), on the other hand
the detuning of the two-tone pulses is changed after each duration scan (x-axis). The MW
power of the two-tone pulses corresponds to a Rabi frequency of 2π × 5.00 MHz in the
|0〉 ⇔ | ± 1〉 transitions and their shape is rectangular.

In Figs. 5.12 a-c the NV-s are intended to do a transfer from |+ 1〉 to | − 1〉. However,
at small detunings |0〉 is populated. By increasing the detuning |0〉 gets less and less
populated, while the transfer from |+ 1〉 to | − 1〉 just needs more time to be completed.
Meanwhile the efficiency of the two-tone transfer is only slightly decreased. A detuning can
be found, where |0〉 does not get populated anymore but the efficiency is still reasonable.
In case of Figs. 5.12 a-c this detuning would be around −12 MHz. The measurements at
the site of the two-tone transfer are similar to those done with a single wire in Fig. 5.5.
The wire grid fulfils the expectations regarding the two-tone transfer.

Moving along the Ω+-wire to the neighbouring junction reduces the effective power of
the Ω−-pulse at the observed site. In Figs. 5.12 d-f the occupation of each NV- state is
plotted again over detuning and pulse duration. While the population of | − 1〉 stays the
same for all measurements because of lack of MW power of the Ω−-pulses, Rabi nutations
between | + 1〉 and |0〉 are observed. As anticipated in Sec. 5.2 the two-tone pulses get
reduced to simple |0〉 ⇔ |+ 1〉 transfer pulses. In good agreement with the detuned Rabi
nutation measurements with a single NV- from Fig. 5.7 the transfer efficiency between |0〉
and | + 1〉 gets lower by increasing the detuning. Starting from a detuning of −12 MHz
|0〉 hardly gets populated, which is a nice result as the detuning for the two-tone pulses
at the site of the actual transfer should also be −12 MHz or more.

The measurements conducted when moving along the Ω−-wire to the next junction are
shown in Figs. 5.13 a-c. Therefore the power of the Ω+-pulse is decreased, similar as
the Ω−-signal before, and the two-tone pulses are reduced to |0〉 ⇔ | − 1〉 transfer pulses.
However, as the NV-s gets still initialized in |+1〉 before applying the two-tone pulses, the
Ω−-pulse has hardly any to no effect on the NV-s and they remain in | + 1〉 for all MW
durations and detunings. Thus, NV-s at all junctions but those along the Ω+-wire remain
in |+ 1〉 even at zero detuning, if they have been initialized in |+ 1〉.

Lastly, the junction diagonal to the actual two-tone transfer site gets looked at (Figs.
5.13 d-f). At this junction the power of the Ω+- as well as the Ω−-pulse is small and as
expected the NV-s do barely respond to the two-tone pulses at all.

After describing the effects of the two-tone pulses at the individual crossings a chosen
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State |+ 1〉

(a)

State |0〉

(b)

State | − 1〉

(c)

(d) (e) (f)

Fig. 5.12: Detuning scan of rectangular two-tone pulses performed with the wire grid at
different crossings. The NV-s are prepared in | + 1〉. The MW of the two-tone
pulses corresponds to a Rabi frequency of 2π × 5.00 MHz. The color scale goes
from blue (empty state) to red (occupied state). a.)-c.) Detuning scan at actual
transfer site. d.)-f.) Detuning scan at neighbour along Ω+-wire

detuning and time point at which the two-tone transfer shows promising success while the
effects at other crossings are rather small is discussed. The chosen point is at a detuning
of −6 MHz and a MW duration of 150 ns. The population probability for the individual
states at different crossings is plotted in Fig. 5.14 after the two-tone transfer is completed.

At the crossing along the Ω+-wire (blue) the largest part of the NV-s remain in the
initial state |+ 1〉 (59 %). State |0〉 is populated with a probability of 27 % and | − 1〉 with
a probability of 14 %. The power of the Ω−-pulse is close to zero due to the large distance
to the Ω−-wire and thus, the two-tone transfer pulses are reduced to |0〉 ⇔ |+1〉-transition
pulses. Rabi oscillations between |0〉 ⇔ | + 1〉 occur and as the detuning is not yet big
enough a small part of the NV-s are still transferred explaining the population probability
of 27 % of state |0〉.

At the crossing along the Ω−-wire (azure) most of the NV-s stay in the initial state
|+ 1〉 (76 %). The power of the Ω+-pulse is almost zero meaning that the two-tone pulses
are reduced to |0〉 ⇔ | − 1〉-transition pulses. The NV-s, however, are initialized in |+ 1〉
and thus the two-tone pulses have hardly any effect on the NV-s resulting in the high
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State |+ 1〉

(a)

State |0〉

(b)

State | − 1〉

(c)

(d) (e) (f)

Fig. 5.13: Detuning scan of rectangular two-tone pulses performed with the wire grid at
different crossings. The NV-s are prepared in | + 1〉. The MW of the two-
tone pulses corresponds to a Rabi frequency of 2π × 5.00 MHz. The color scale
goes from blue (empty state) to red (occupied state). a.)-c.) Detuning scan at
neighbour along Ω−-wire. d.)-f.) Detuning scan at diagonal neighbour.

population probability of | + 1〉. The remaining population probability of the other two
states (|0〉 → 19 % and | − 1〉 → 5 %) can be explained by the already discussed imperfect
laser light initialization and the non-perfect MW-π-pulses.

The NV-s at the crossing diagonal to the intended two-tone transfer site (yellow) are
least affected by the two-tone pulses as the Ω+/Ω−-wires are quite distant, i.e. the power
of the two-tone pulses are very small. The NV-s remain in the initial state | + 1〉 (76 %)
and as before the population probability of |0〉 (17 %) and | − 1〉 (7 %) can be explained
by the imperfect laser light initialization and the non-perfect MW-π-pulses.

The NV-s at the crossing where the two-tone transition is intended (red) are transferred
with a high success rate from | + 1〉 to | − 1〉, while the population probability of |0〉 is
within the expected values due to imperfections in initialization. The efficiency of two-tone
transfer remains nearly the same when implementing a detuning on the two-tone pulses,
because the transfer occurs via a ’virtual’ state. As a result, the NV-s in state |0〉 remain
nearly unaffected by the two-tone pulses during the whole transfer (12 %). The initial
state | + 1〉 remains populated with a probability of 23 %, while | − 1〉 has a population
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(a) Measurement (b) Ideal

Fig. 5.14: Population probability for the individual states at different crossings. A detun-
ing of −6 MHz and a MW duration of 150 ns are chosen to demonstrate the
effects of the two-tone pulses. a.)+b.) Blue depicts the neighbouring junction
along the Ω−-wire, while azure represents the neighbouring junction along the
Ω+-wire. The crossing diagonal to the intended two-tone transfer site is de-
picted by yellow and the site of the actual two-tone transfer is shown in red.
The population probability after a two-tone transfer sequence is plotted over the
three different spin states of the NV- (|+ 1〉, |0〉 and | − 1〉). a.) The population
probability from the measurements performed in Figs. 5.12 and 5.13 is plotted.
b.) The population probability for the ideal case of no dephasing but imperfect
initialization (| − 1〉 → 10 %, |0〉 → 10 %, |+ 1〉 → 80 %) is plotted.

probability of 65 % after the two-tone transfer. A successful two-tone transfer of most
NV-s has been accomplished.

In summary the two-tone transition at the intended site is performed with a good
transfer efficiency, while the effects at other crossings are kept within a limit. Overall,
the NV-s at the intended crossing are in state | − 1〉 while the NV-s at all other junctions
remain in | + 1〉. A grid of NV-s in state | + 1〉 but a single site is accomplished. Hence,
addressing a single qubit within a large number of qubits is achieved with the wire grid
proposed in this thesis.

Theoretically using sin2-pulses instead of rectangular ones should have a better perfor-
mance as the condition of adiabatic following mentioned in Sec. 2.6 is mostly fulfilled.
However, sin2-pulses need a longer time to finish the two-tone transfer. Unfortunately, the
duration of the two-tone transition is limited by the dephasing time of the NV--ensemble
and T ∗2 is too small (∼600 ns) to perform tow-tone transitions with sin2-pulses.

After showing that the wire grid can be used to transfer NV-s at a single site from one
state to another with hardly affecting the NV-s at other sites a way to cancel out a MW
signal totally at the neighbouring wire is demonstrated. The idea is to run a counteracting
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(a) Rabi nutations of two phase-shifted MW
signals (b) Rabi frequency of effective MW signal

Fig. 5.15: Rabi nutations depending on the phase difference between two MW signals. By
applying two phase-correlated MW signals on neighbouring wires and changing
the phase constructive and destructive classical interference of the MW signals
can be observed. The measurement was conducted about 10 µm from the wire
edge and with a MW power of each signal equal to a Rabi frequency of 2π ×
2.17 MHz. a.) Rabi oscillations are observed depending on the phase between
the MW signals. The colors represent an occupied state |0〉 (red) and an empty
state |0〉 (blue). b.) The Rabi frequency depending on the phase is calculated
from each time-trace by using a cosine fit function with an exponential decay
envelope.

signal through the neighbouring wire to cancel out the MW signal from the pulse sequence.
In order to do so the two signals have to have a phase correlation and the phase of at least
one of the signals has to be tunable. In theory, every MW pulse regardless of its shape
should be cancellable. However, the principle is demonstrated with simple rectangular
pulses and Rabi nutation-like measurements.

Both MW signals come from the same MW source (Anritsu 3691B) and are split using
a power-splitter to guarantee a phase correlation. Afterwards one is led via a switch and
an amplifier directly to the experiment. The other is fed through an IQ-mixer first as the
IQ-mixer has the property to tune the phase φ of the signal [23]

tanφ(t) =
Q(t)

I(t)
(5.7)

where I(t) and Q(t) are the two input signals of the IQ-mixer. As only rectangular pulses
are applied the two input signals are constant in time: I(t) = I and Q(t) = Q. By choosing
the ratio between I and Q the phase φ of the MW signal is set. However, I and Q can not
be chosen completely freely, because the effective amplitude A =

√
I2 +Q2 has to have

the same value for all phases.
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The measurement is conducted close to one of the two wires (distance to wire edge
∼10 µm ) and with a MW power of each signal equal to a Rabi frequency of 2π×2.17 MHz.
The ratio between I and Q is changed, while the effective MW power remains constant.
The Rabi nutations depending on the phase are recorded, which is pictured in Fig. 5.15a,
and the Rabi frequency is determined and plotted in Fig. 5.15b. The maximal Rabi
frequency is observed at φ = 127.3° and has an value of roughly double the individual
Rabi frequencies (2π × (2× 2.17 MHz) ∼ 2π × 4.25 MHz). An expected result as the two
MW signal simply add up and produce an effective magnetic field of double the magnitude
of the individual MW pulses. Moreover, a phase can be found, where the Rabi nutations
nearly disappear, i.e. the Rabi frequency is close to zero, at φ = 309.1°. The difference
between maximal and minimal Rabi frequency is about 180°, which agrees nicely with the
phase shift between two cosine functions.

It has been demonstrated that cancelling out a MW signal at a chosen site using a
second phase-correlated MW pulse is possible. The implementation of this knowledge in
the two-tone sequence, however, would go beyond the scope of this thesis.





6 Conclusion and Outlook

The work of this thesis has demonstrated a fairly simple way to create a scalable qubit
system. The spin states (ms = ±1) of a NV- serve as qubit and microwaves are used as
initializing, read-out and transfer mechanism.

After introducing the principle of two-tone transfer the anticipated performance of the
wire grid is demonstrated using a single NV- sample and a single gold wire (Sec. 5.2). From
these measurements can be concluded that a single site at a certain crossing of the wire
can be addressed without transferring NV-s at other junctions by introducing a detuning.
The measurements with the wire grid (Sec. 5.3) confirm the anticipated statements. For
increasing distance to the two-tone transfer site the efficiency of the two-tone transition
decreases. At the neighbouring junction the two-tone transfer probability is close to zero,
even with a MW power equal to a Rabi frequency of 2π × 5.00 MHz. While the efficiency
of the two-tone transfer is hardly affected by the detuning, transitions at other crossings,
especially those along the wires driving the two-tone pulses, hardly occur starting from
a certain detuning. If there should be still some MW signal at the neighbouring wire, a
counteracting pulse can cancel out any transitions.

Using the wire grid and detuned MW signals a single site can be manipulated, while
all other sites are unaffected. Therefore, a single qubit can be changed within a system of
qubits. Furthermore, the number of sites of wire grid scales quadratically with the number
of wire pairs and thus a large system of qubits can be achieved easily.

However, there is still much room for improvements concerning the wire grid. A quite
obvious improvement is switching from NV--ensemble sample to a single NV- diamond. As
demonstrated in Sec. 5.2 the single NV- sample has on the one hand much longer dephasing
and decoherence time constants and thus more complex MW pulses can be driven in order
to transfer the NV- adiabatically. On the other hand the contrast between the different
spin states of NV- is much higher resulting in better distinguishability and higher fidelity
of the population probability of the spin states. However, producing diamond samples
with single NV-s only at chosen sites is difficult. Furthermore, the alignment of the single
NV-s with the wire grid is a hard task, but the benefits of using single NV-s would be
worth the effort. Another improvement can be achieved by implementing the cancelling
MW signal in the sequence and avoid unintended transitions. The next step will be to
address several sites successively and increase the efficiency of the two-tone transition.

To conclude, in this work I have demonstrated that qubit arrays can be addressed in
a scalable manner using two-tone addressing in a wire grid system. This result is not
unique to NV centres, but can potentially be used for any system with a spin greater
than 1

2 . Finally, I showed that classical interference can be used to remove any remaining
cross-talk between neighbouring sites. Taken together, these results demonstrate that
the addressing method is promising for numerous applications, including quantum sensor
arrays and quantum information processing.
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