
TU WIEN

MASTER THESIS

Optimized Sampling of Graph
Signals

Author:
Valerija MIKLAUSIC

Main advisor:
Univ.Prof. Dipl.-Ing.

Dr.-Ing. Norbert
GÖRTZ

Co-advisor:
Univ.Ass. Dipl.-Ing.

Gabor HANNAK

January 11, 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

2

————————————————————————————–

3

TU WIEN

Abstract
Faculty of Electrical Engineering and Information Technology

Institute of Telecommunications

Master of Science

Optimized Sampling of Graph Signals

by Valerija MIKLAUSIC

A graph signal is a vector, for which complicated dependencies
between the vector components can be expressed by a weight matrix
that "connects" components that, e.g., tend to take similar values. A
very common example is an image signal (=graph signal), which has
a very regular weight matrix, in which neighbouring pixels (=graph
signal components) tend to take similar values (textures, such as blue
skies, white walls); edges are few, and only here the components
take values that are significantly different from one pixel to another.
Graph signals can also be defined in various other applications such
as recommender systems in online-shopping and in social networks.

A common strand of research in the field is how to reconstruct a
graph signal from few sampled components of the signal, when the
weight matrix is known. The weight matrix is used to regularize and,
thereby, solve the reconstruction problem (which as such is under-
determined). For so-called Tikhonov regularization the recovery
problem can be solved analytically, and, moreover, the well-known
Gauss-Seidel iterative algorithm can be used to solve the resulting
system of linear equations efficiently (without LU-decomposition,
Gaussian elimination or a matrix inversion). Hence, graph signal
recovery with Tikhonov regularization is feasible even for very large
signal dimension.

A particularly interesting problem is how to sample a graph sig-
nal with a small number of samples such that the reconstruction with
Tikhonov regularization works well (measured by the mean squared
error between the original graph signal and its reconstruction). Of
course the choice of samples from the graph signal depends on the
weight matrix, and it is a main goal of the thesis to analyze and nu-
merically investigate specific sampling schemes. The most simple
one is random sampling, which shall be used as a reference scheme.
A more sophisticated approach is to exploit the weight matrix to op-
timize the choice of sampled components.

http://faculty.university.com
http://department.university.com

5

Acknowledgements

I would like to take a moment and express my gratitude to all the
people supporting me, endorsing me and being with me throughout
my studies.

I would like to thank my supervisor, Univ.Prof.Dipl.-Ing.Dr.Ing.
Norbert GÖRTZ for his continuous support, patience, given knowl-
edge and guidance during the whole time.

Thanks to my friends for being there to share all the happy
and sad moments, bad and good times. Without you, these studies
would be unimaginable to go through alone. Special thanks to
Željko and Ayan for their patience, love and support.

Thanks to Lukas, for support, kindness and all the nice times
spent together.

Last but not the least, the biggest thanks goes to my family.
To my sisters, Božana and Tea, for always being part of everything,
supporting me, advising me and always having time for me.
And to my parents, Josip and Jelka, without your love and support it
would all be impossible, so special thanks to both of you for making
it all possible. Regardless on the bad times, this is just one little drop
in the ocean of good things which are about to happen. Live strong.

7

List of Abbreviations

G Graph
V Set of Vertices
E Set of Edges
A Adjacency matrix
WF Weighting Function
LS Least Squares
TR, L2 Tikhonov Regularization
LR Linear Regression

9

List of Symbols

ψ Graph incidence function
L∗ Lower triangular matrix
U∗ Upper triangular matrix
ℵ Set of natural numbers
< Set of real numbers
{ Set of complex numbers
N Graph signal dimension
M Number of samples
λ Scaling factor
σ Standard deviation of variance of noise
fac Inter-connectivity parameter
D Degree matrix
α Laplacian graph

11

Chapter 1

Introduction

Many real world situations can be described with a help of two or
more points and lines connecting them due to some dependency. The
set of those points and lines is called a graph.

Graphs are mathematical structures used to model relations and
processes among different entities like biological, social or informa-
tion systems. With a help of graph theory, one can mathematically
describe the various kinds of systems. One example is if we imag-
ine a graph where the vertices represent people. Furthermore, ver-
tices which represent people who are friends will be connected with
edges. Having that in mind, it is possible to describe the relation
between each two (or more) vertices in the graph.

Other example can be a link structure of a website. If we take
into account that each website is represented by one vertex, and a
link from one website to another is represented by an edge, we can
implement a graph which can describe relations among several web-
sites.

As we can see, depicting everyday life phenomenons with a
graph can be very useful in various situations. Even very compli-
cated mathematical formulas sometimes can be explained much eas-
ier by using a graph.
In the scope of this master thesis, a reader will be introduced to the
basic concepts of graph theory which will give a good introduction
to the actual problem statement. The later chapters will describe into
more detail the problem of graph signal recovery and graph signal
sampling. It will give an explanation of Tikhonov regularization us-
age with Gauss-Seidel iterative approach for the recovery of a graph
signal and an explanation of two sampling methods along with their
performance comparisons.
In the end, the final conclusion will be found in which the short com-
ment on the whole thesis will be stated.

13

Chapter 2

Graph

2.1 Graph

A graph G is an ordered triple (V(G), E(G), ψ(G)) consisting of a
nonempty set V(G) of vertices, a set E(G), disjoint from V(G), of edges,
and an incidence function ψG that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G[1].
If e would denote an edge of a graph, and m and n would denote the
vertices of a graph such that ψ(e) = mn, then e joins the vertices m
and n, and the vertices m and n are said to be ends of e.

FIGURE 2.1: An example of a graph

Each vertex is indicated by a point, each edge by a line which
joins the vertices.
The actual positioning of vertices, or the length of lines which repre-
sent the edges, do not play a role in the mathematical description of
a graph. Therefore, there is no sole or more correct way of drawing
graphs.
If we take a deeper look, we can see that the two graphs, G and X,
are identical if and only if they have the same vertices, same edges,

14 Chapter 2. Graph

FIGURE 2.2: Three isomorphic graphs

and their incidence functions are the same:

V (G) = V (X) and E(G) = E(X) and ψG = ψX
(2.1)

Since they are identical, they can always be described in the same
way, i.e. with the same diagram.
On the other hand, there are other graphs, which in the same time
obtain the same diagram but are not identical. Those graphs are said
to be isomorphic graphs.
In general, two graphs G and X are said to be isomorphic (written
G∼=X) if there are bijections θ = V (G)→ V (X) and φ : E(G)→ E(X)
such that ψG(e) = mn if and only if ψX(φ(e)) = θ(m)θ(n); such a pair
θ, φ of mappings is called an isomorphism between G and X [1].

Three isomorphic graphs are depicted in the Figure 2.2. The
important thing to remember is that once there are two or more
isomorphic graphs, they can all be "redrawn", or in better words,
translated to the forms of each other without any loss of mathemati-
cal or theoretical structure.

2.2. Adjacency matrix and weighted graph 15

2.2 Adjacency matrix and weighted graph

One more way to describe a graph is with a help of it’s adjacency
matrix. To every graph G there is a corresponding v x v matrix called
adjacency matrix. It is denoted by A(G) = aij , where aij denotes the
number of edges joining vi and vj . The graph and its corresponding
adjacency matrix are shown in the Figure 2.3.

FIGURE 2.3: A graph and its adjacency matrix

In the scope of this thesis, the most used type of a graph will be
the weighted graph.
A weighted graph G is an ordered pair (V, w) where V is a set of
vertices of the graph defined like:

(V = v1, v2, ..., vn | nεN) (2.2)

where n is a number from the set of natural numbers, and w is
a weighting function(WF). The weighting function is used to de-
scribe a connectivity degree among two vertices. It gives a real non-
negative value w(vi, vj) to each pair of nodes (vi, vj), where vi ε V, vj ε
V and vi 6= vj . If we assume that a graph has n vertices, the weighted
graph will be called undirected when it’s weighting function is sym-
metric, i.e., w(vi, vj) 6= w (vj , vi), for all vi, vj , vi 6= vj . Usually, the
weighting function can take any value which is non-negative and
real. However, in this thesis we will restrict ourselves to the binary
values, i.e., 0 and 1, since the weighting coefficient will be introduced
as the measure of the "connection strength" in between the two ver-
tices.
A simple weighted graph, along with some random weights, is de-
picted in the Figure 2.4.

16 Chapter 2. Graph

FIGURE 2.4: Weighted graph

Weighted graphs can be described with the adjacency matri-
ces. The adjacency matrix of a weighted graph G = (V, w) where
V = v1, v2, ..., vn, is an n x n matrix A defined as[15]:

AG = [aij]

{
aij = w(vi, vj), if i 6= j.

aii = 0 otherwise.
(2.3)

The matrix becomes a symmetric matrix if a graph G is an undi-
rected graph. Undirected graph G with its adjacency matrix A is
depicted in the Figure 2.5.

2.2. Adjacency matrix and weighted graph 17

FIGURE 2.5: Weighted graph and its adjacency matrix

19

Chapter 3

Graph signal

3.1 Graph Signal and applications

The most important applications of graphs can be seen in the fields
of time, sensor, computer, transportation networks and more of other
scientific fields out of which, digital imaging rises as the most rele-
vant one. In these fields, the data is usually located on the vertices
of weighted graphs which describe the wanted network. In order to
process that data, the field of signal processing is introduced whose
main purpose is to connect the spectral analysis of weighted graphs
(which is a theoretical concept) and the algebraic concepts with a
help of which wanted data is received and processed. On the further
figures we can observe some applications of graph signals.
On the Figure 3.1 a finite periodic discrete time series are depicted.
All edges are directed and have the same weight - the weight of 1.

FIGURE 3.1: Periodic discrete time series

20 Chapter 3. Graph signal

Furthermore, as we mentioned before, graph signal techniques
are convenient for the usage of digital imaging methods. With a
quick glance at Figure 3.2, we can conclude that vertices of a graph
are correspondent to pixels. Each pixel depicted on a graph depends
on the other four of its "neighbors", i.e., the value of intensity of a
pixel is directly connected to the values of intensities of four adjacent
pixels. On the Figure 3.2, all the edges are assumed to be undirected
with equal weights.

FIGURE 3.2: Digital image

The next really important application is the sensor network data
processing. Mostly, this kind of application is used for temperature
measurements. On the Figure 3.3., the temperature measurements
form 150 weather stations,i.e., sensors, are shown. Each vertex of a
graph is connected to it’s closest neighbor, and the relation between
temperature measurements are shown as distances between the sen-
sors[4].

3.1. Graph Signal and applications 21

FIGURE 3.3: Sensor network[4]

The most familiar application of graph signals can be shown in
the field of computer networks. Only one of many examples is the
hyperlink reference usage. On the Figure 3.4 hyperlinked documents
are shown. To be more precise, a set of 50 blogs in the World Wide
Web connected by the hyperlink references. As in digital image
example, the edges of this graph are equally weighted and unidi-
rected[4].

22 Chapter 3. Graph signal

FIGURE 3.4: Hyperlinked documents[4]

3.2 Discrete signal processing on graphs

Graphs are used for the data representation. The vertices of a graph
represent finite data samples and each sample resides at one vertex
of a graph.
When considering a weighted graph, the weight associated with an
edge in a graph usually represents the level of similarity between
two vertices that edge is connecting.
The logic behind connectivities can be of a various kind, e.g. physical
distance, raw data similarity etc.
In order to process the data which are represented by the vertices of
a graph, we need to introduce some basic concepts of discrete signal
processing on graphs. Next sections, which are describing the basic
concepts of discrete signal processing on graphs, are based on [2],[8]
and [6].

3.2.1 Graph shift

Discrete signal processing on graphs studies signals with complex,
irregular structure represented by a graph G=(V,A), where V =
v1, v2, ..., vn is the set of vertices and A is the graph shift, or a weighted
adjacency matrix[2]. Adjacency matrix, still, represents the similari-
ties between two nodes whose connection or relation it is describing.

3.2. Discrete signal processing on graphs 23

3.2.2 Graph signal

After we have successfully described a graph alone as a set of vertices
and edges connecting it, we defined vertices as the data representa-
tives and edges as weight carriers. Weight represents the similarity
or relation between two connecting vertices. To map an incoming
signal and a graph, i.e. to get a graph, we need to introduce the term
graph signal. Graph signal can be seen as an one to one mapper be-
tween the signal coefficients xnεC and the vertex v. Once we finish
the mapping, we can write a graph signal as a vector:

x = [x1, x2, ..., xN]T εCN (3.1)

where the n-th signal coefficient will correspond to the node vn.
The example of a graph signal is shown on the Figure 3.5.

FIGURE 3.5: A random positive graph signal on the
vertices of the Petersen graph. The height of each blue

bar represents the signal value at the vertex. [6]

24 Chapter 3. Graph signal

3.2.3 Graph Fourier transform

A Fourier transform is used for a signal expansion using basis ele-
ments that are non-variant to filtering. In this case, the basis elements
which are non-variant to filtering are eigenbases of the adjacency ma-
trix/graph shift A1.
If the adjacency matrix A has a complete eigenbasis and we consider
a spectral decomposition of A :

A = V λV −1 (3.2)

where columns of the matrix V are formed with the eigenvectors
of A and λεCNxN is the diagonal matrix made of corresponding
eigenvalues of A: λ1, λ2, ..., λN . These eigenvalues are frequencies on
the graph.

Definition 1. The graph Fourier transform of xεCN is:

x̂ = V −1x (3.3)

The inverse graph Fourier transform is:

x = V x̂ (3.4)

Where the x̂ corresponds to the signal’s expansion in the eigenvector
basis and describes the frequency content of the graph signal x.
The inverse graph Fourier transform is used for the reconstruction of
the graph signal from its frequency contect by combining the graph
frequency components weighted by the coefficients of the signal’s
graph Fourier transform.

3.2.4 Laplacian graph

The (unnormalized) graph Laplacian is defined as α = D−W , where
the degree matrix D is a diagonal matrix whose ith diagonal element
di is equal to the sum of the weights of all the edges incident to vertex
i[6].
Laplacian graph can come to use as a difference operator because
for any signal x, it can describe the difference between neighbouring
components as[6]

α(x)(i) =
∑
jεϕ

Wij[x(i)− x(j)] (3.5)

where ϕ denotes the neighborhood, i.e., the set of vertices which are
directly connected to the vertex i.

1If there is no complete eigenbases, the Jordan eigenbases of A are used

3.2. Discrete signal processing on graphs 25

The matrix of a graph Laplacian is symmetric matrix with real values.
Therefore, it has a complete set of orthonormal eigenvectors.

27

Chapter 4

Graph signal recovery and
sampling

4.1 Introduction

In the scope of this thesis, the aim was to describe a simple iterative
approach to graph signal recovery out of sampled instances. Later
on, one of the sampling processes that fit good to this iterative graph
signal recovery problem is described. This chapter was based on a
research paper published as an internal paper of TU Wien[3].

4.2 Problem setting

Assuming an incoming signal values are gathered and defined as xj
where j = 1, 2, ...,N. Again, all of the signal values will be represented
by the vertices of the graph (Figure 4.1).

It is also assumed that the weights in between two graph ver-
tices are non- negative real numbers. Since the graph is undirected,
the weights in both directions are the same, i.e., wij = wji. The
weight coefficient is written on top of an edge, and it describes the
similarity between two vertices which that edge is connecting. For
example, low values of weight coefficient, i.e., values close to zero,
indicate that two signal components are completely uncorrelated
numbers. On the other hand, large weight coefficients, i.e., coeffi-
cients closer to one, indicate that two signal components are similar,
i.e., their numerical values are very close.

After the signal is received, it’s signal components are mapped
to vertices and the signal is described by a graph.
If we take into consideration a graph depicted on the Figure 4.1., we
can see that only a few signal components are taken into observation
(components in the squares), i.e. components x2, x3 and x7. Those
components which are observed contain an additive noise due to
the channel imperfections. We wish to recover all the other signal
components of a graph signal from them.

28 Chapter 4. Graph signal recovery and sampling

FIGURE 4.1: Undirected graph signal[3]

However, if we want to state the recovery problem, we need to
introduce the sub-sampling matrix A. The sub-sampling matrix of
the problem from the Figure 4.1. is defined as following:

A =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

The sub-sampling matrix A consists of ones on the places where the
observed signal components are, and zeros on all the other places.
After constructing the sub-sampling matrix, the recovery problem
can be formally defined:

y = Ax+ n (4.1)

where x represents the graph signal column vector, i.e. x = xj, j =
1, 2, ..., N , n represents the noise column vector which is defined like
an independent Gauss distributed variable, i.e. nk ∼ ℵ(0, σ2

n), and
y represents a column vector o the measurements, i.e. y = yk, k =
1, 2, ...,M .
The graph signal recovery problem is an inverse problem. Inverse
problem is the mathematical process of predicting data based on
some physical or mathematical model with a set of model param-
eters (and perhaps some other appropriate information, such as ge-
ometry, etc.)[5].

4.2. Problem setting 29

The ill-posed (inverse) problem can only be solved by exploiting the
weight matrix, e.g. defining a regularization in an optimization prob-
lem[6]. In other words, we need to find a signal vector x which will
reproduce the observations. After finding the signal, the weighting
matrix will come to use in order to reproduce the rest of the signal
components from the graph.
Since the weight in the graph is directly connected with similarities
between two signal components, and since the weight is larger as
the signal components connected are more similar, we can describe
a problem with a help of difference operation between two signal
components:

xi − xj (4.2)

In other words, after we apply the operation of subtraction between
two signal components, and square the result (since the operation
can yield a negative number), the smaller number we get, the two
signal components are more similar. Then we need to weight up the
the difference with the belonging weights wij and add up the result
for all the signal components.
To proceed further in defining a recovery problem, we need to
introduce the measure of smoothness of a graph. The result which
we get after weighting the squared differences is the measure of
smoothness, we can formally write that measure as:

Sp(x̂) =
1

p

N∑
i=1

[N∑
j=1,j 6=i

wij | x̂i − x̂j |2
] p

2

(4.3)

The equation (4.3) defines the measure of smoothness of a graph,
and in the recovery problem, it can be introduced with the scaling
factor λ’. The scaling factor λ’ is defined in such a way that it can be
seen as some kind of a trade-off between the smoothness of a graph
and the accuracy of the graph reconstruction.
Now we can define the recovery problem as:

x̂ = argminx̂
{
|| y − Ax ||22 +λ′Sp(x̂)

}
(4.4)

In the scope of this thesis, we will use the Tikhonov regularization
method, which can be implemented for a factor p = 2 in the smooth-
ness measure equation.

30 Chapter 4. Graph signal recovery and sampling

Tikhonov regularization Tikhonov regularization is a common
approach while solving the ill-posed problems. Let us assume that
there are two vectors, x and b. Let us also assume that the matrix A
is given and we want to find out the values of the vector x from a
given statement:

Ax = b (4.5)

Way to do so is to apply the Least Squares (LS) linear regression
which will lead us to a non unique solution. To avoid that happen-
ing we can set the problem in a bit different way, where the matrix
A maps the vector x to the vector b. The least squares solution
minimizes the difference of the squared residuals

‖ Ax− b ‖2 (4.6)

with ‖ • ‖2 being the Euclidean norm.
In order to weight some solution more then others, the regulariza-
tion coefficient can be introducet as the part of the equation.

‖ Ax− b ‖2 + ‖ Γx ‖2 (4.7)

The regularization coefficient is in many cases the identity matrix
which is giving more weight to the solution with a smaller norm.
Also known as L2 regularization[7].

Gauss-Seidel approach Gauss-Seidel approach is well known
iterative method to solve a system of n linear equations with x being
an unknown. Writing the problem statement formally:

Ax = b (4.8)

The Gauss-Seidel approach is defined by the iteration:

L∗x
k+1 = b− Uxk (4.9)

Where A = L∗ + U , i.e., A is decomposed into lower triangular1 L∗
and upper triangular2 U component. And xk is the kth iteration of x
and xk+1 is the k + 1 th iteration of x. Gauss-Seidel approach will be
explained step by step in the section 4.3.

1square matrix in which all the entries above the main diagonal are zero
2square matrix in which all the entries below the main diagonal are zero

4.3. Graph signal recovery with Tikhonov regularization and
Gauss-Seidel approach 31

4.3 Graph signal recovery with Tikhonov
regularization and Gauss-Seidel ap-
proach

Considering the problem setting from the equation (4.4) and apply-
ing the Tikhonov regularization setup, i.e., setting p = 2, the term
transforms to:

L(x̂) =|| y − Ax̂ ||22 +λ′S2(x̂)

=
M∑
k=1

(yk − (Ax)k)
2 + λ

N∑
i=1

N∑
j=1,j 6=i

wij(x̂i − x̂j)2
(4.10)

Nex step is to take partial derivatives of the graph signal compo-
nents.
Since the graph is undirected, i.e., weight coefficients are symmetric,
after derivation, we find:

∂L(x̂)

∂x̂l
=

{
−2(yk − x̂l) + 4λ

∑N
j=1,j 6=l wlj(x̂l − x̂j), if Akl = 1 for some k.

4λ
∑N

j=1,j 6=l wlj(x̂l − x̂j), if Akl = 0 for all k.
(4.11)

setting the equation to zero (in order to find an extremum) for
each l = 1, 2, ..., N, we get:

yk = x̂l + 2λx̂l

N∑
j=1,j 6=l

wlj − 2λ
N∑

j=1,j 6=l

wljx̂j if Akl = 1 for some k

(4.12)

0 = x̂l

N∑
j=1,j 6=l

wlj−
N∑

j=1,j 6=l

wljx̂j assuming λ > 0 if Akl = 0 for all k

(4.13)

Grouping with graph signal component x̂l in the (4.7) equation, we
get the system of equations with graph signal component x̂l being
the unknown component. The system is defined as:

yk = x̂l(1 + 2λ
N∑

j=1,j 6=l

wlj)− 2λ
N∑

j=1,j 6=l

wljx̂j if Akl = 1 for some k

(4.14)

32 Chapter 4. Graph signal recovery and sampling

0 = x̂l

N∑
j=1,j 6=l

wlj−
N∑

j=1,j 6=l

wljx̂j assuming λ > 0 if Akl = 0 for all k

(4.15)

General measurement matrix When a problem consists of a
general measurement matrix, i.e., a matrix which can have negative
entries and non zero components, the system of linear equations
will take more of a general form:

M∑
k=1

Aklyk =
N∑

j=1,j 6=l

x̂j

(M∑
k=1

AkjAkl−2λwlj

)
+x̂l

(M∑
k′=1

A2
k′l+

N∑
j′=1,j′ 6=l

2λwlj′

)
(4.16)

For the purpose of easier calculation and description, we can refor-
mulate the (4.16) equation as:

bl =
N∑

j=1,j 6=l

x̂jclj + x̂lcll (4.17)

This statement can easily be turned back into (4.16) statement by us-
ing the sub-sampling matrix A with a single 1 in each row and col-
umn and putting 0 to all other places. In that case, AkjAkl = 0ifj 6= l
which leads us to the (4.16) equation.

Gauss-Seidel approach The best way of solving the problems
stated by (4.16) is by the iterative approach to it. Technically speak-
ing, it could be solved by the standard linear algebra techniques, but
the question of complexity poses a big problem. In this thesis we
will use the Gauss-Seidel approach which was already mentioned in
the section 4.2. Here, the technique’s steps will be described more
detailed.
The iterative method assumes solving a problem statement in
iterations, i.e. first solve it for x̂ and then use it to solve the statement
for the next step of the iteration i.e.x̂i+1

l .

4.3. Graph signal recovery with Tikhonov regularization and
Gauss-Seidel approach 33

In other words, formally written, step by step[3]

1. Compute bl and clj for j, l = 1, 2, ..., N .

2. Set iteration counter to i = 0 and initialize solution vector x̂l =
0∀l = 1, 2, ..., N .Moreover set small threshold 1� ε > 0

3. If the inequality

N∑
l=1

(
bl −

N∑
j=1

cljx̂
(i)
j

)2

< ε (4.18)

is fulfilled, stop iterating and the solution will be given by
x̂
(i)
l , l = 1, 2, ..., N .

Otherwise, go to step 4).

4. Compute:

• for l = 1 :

x̂
(i+1)
l =

(
bl −

N∑
j=l+1

cljx̂
(i)
j

)/
cll (4.19)

• for l = 2, 3, ..., N − 1:

x̂
(i+1)
l =

(
bl −

l−1∑
j=1

cljx̂
(i+1)
j −

N∑
j=l+1

cljx̂
(i)
j

)/
cll (4.20)

• for l = N :

x̂
(i+1)
l =

(
bl −

l−l∑
j=1

cljx̂
(i+1)
j

)/
cll (4.21)

5. Set i = i+ 1 and go to step 3).

34 Chapter 4. Graph signal recovery and sampling

4.4 Graph signal sampling

One of the key issues in the graph signal analysis is how to sample
a graph signal with a given (weighting) sub-sampling matrix using
the least number of signal components sampled. During this sec-
tion and next chapter, Tikhonov regularization with Gauss-Seidel
approach used for the recovery of a graph signal was assumed.
In order to describe two different sampling techniques used, the
graph signal on the Figure 4.2 is used as an example.

FIGURE 4.2: Graph signal[3]

Weighting matrix for this graph is stated as:

W =

0 w12 w13 0 0 0 0
w12 0 w23 0 0 0 0
w13 w23 0 w34 0 (w36) 0
0 0 w34 0 0 0 0
0 0 0 0 0 w56 w57

0 0 (w36) 0 w56 0 w67

0 0 0 0 w57 w67 0

At this point, for the sake of further usage, we can define a degree
matrix D. The D matrix is a diagonal matrix whose djth diagonal
element is a sum of the weights of signal components which are di-
rectly connected to the signal component j over non-zero entries in
the weighting matrix W. For the Figure 4.2. the diagonal matrix is:

4.4. Graph signal sampling 35

D =

w12 + w13 0 0 0 0 0 0
0 w12 + w23 0 0 0 0 0
0 0 w13 + w23 + w34(+w36) 0 0 0 0
0 0 0 w34 0 0 0
0 0 0 0 w56 + w57 0 0
0 0 0 0 0 w56 + w67(+w36) 0
0 0 0 0 0 0 w57 + w67

Therefore, the Laplacian graph is defined as[6]:

α = D −W (4.22)

..so it reads as:

α =

w12 + w13 −w12 −w13 0 0 0 0
−w12 w12 + w23 −w23 0 0 0 0
−w13 −w23 w13 + w23 + w34(+w36) −w34 0 (−w36) 0
0 0 −w34 w34 0 0 0
0 0 0 0 w56 + w57 −w56 −w57

0 0 (−w36) 0 −w56 w56 + w67(+w36) −w67

0 0 0 0 −w57 −w67 w57 + w67

36 Chapter 4. Graph signal recovery and sampling

4.4.1 Ad-hoc scheme

In the sampling process, we want to find out which signal com-
ponents xj can be sampled in order to make a full reconstruction
of a graph. The weight matrix, which describes the similarity
weights between two signal components, is one of the key fea-
tures of solving the reconstruction problem. The idea of such leads
us to the definition of the following matrix used for ad-hoc sampling:

C =

1 w12 w13 0 0 0 0
w12 1 w23 0 0 0 0
w13 w23 1 w34 0 (w36) 0
0 0 w34 1 0 0 0
0 0 0 0 1 w56 w57

0 0 (w36) 0 w56 1 w67

0 0 0 0 w57 w67 1

From all the signal components given, we randomly choose one com-
ponent and insert a single 1 on the desired place:

X =

0
0
...
1
0
...
0

Next step is to multiply the matrix C and vector X and look for the
non-zero components in the given result Y1:

Y 1 = CX (4.23)

Before we proceed to the iterative multiplication algorithm, the
scaled weighting matrix needs to be defined. The reason behind it
is that if the multiplication like in the equation (4.23) is proceeded
further and further, the output values are getting larger and larger
which is in not convenient for the results which are expected. There-
fore, the weighting matrix is scaled, and the new matrix is used fur-
ther on. The scaled weighting matrix formally written reads:

Wtmp =
W

max(
∑max(rows)

i=1

∑max(columns)
j=1 wij + 0.1)

(4.24)

4.4. Graph signal sampling 37

The process can then be proceeded for k = 2, 3, ..., N , with multi-
plying with the scaled weighting matrix Wtmp :

Y (k) = WtmpWtmp...WtmpY
1 = W k−1

tmp CX (4.25)

The logic behind this procedure is that if there is some component
observed, different from a sampling component, i.e., j′ 6= j, and
that component takes a non-zero value after k iterations, then a sig-
nal component xj′ can be reconstructed since signal component xj is
sampled. For only one step, i.e., k = 1, and non-zero value, we con-
clude that the two components are directly connected.
The steps of an ad-hoc greedy approach are given in detail below[3]:

1. Set the number M of graph signal components to be sampled.

2. Initially pick the component j for which the diagonal entry in
the degree matrix D3 takes the largest value. Add the compo-
nent to the sampling set S = j.

3. Set the signal components xS with indicies in the sampling set
S to one and compute :

Y 1 = CX (4.26)

and then:
Y (k) = W k−1

tmp Y
1 (4.27)

for k = 2, 3, 4, ... Stop to iterate, when the iterations steps of
computing those components in Y (k) that are not in the set S
exceeds a given threshold value .

4. Pick the index j’ for which the component y(k)j′ takes the smallest
value. If several components in Y (k) are zero, pick one of them
randomly. Add the chosen component to the sampling set S,
i.e., S = S ∪ j′.

5. If M =| S |, stop. Otherwise, go to Step 3.

The matrix exponentiation could be simplified by using the eigen-
value decomposition, but only for a high degree exponents. In that
case, it would reduce the complexity compared to the step by step
multiplication with itself.

3diagonal matrix whose jth diagonal element is equal to the sum of the weights
of all the signal components connected to the signal component j via non-zero
entries in the weight matrix W[3]

38 Chapter 4. Graph signal recovery and sampling

4.4.2 Random sampling

The other scheme in the scope of this thesis, which is compared to
ad-hoc greedy scheme, is the random sampling scheme.
Here, the signal components which are observed are taken com-
pletely randomly.
Performance comparisons between two different schemes are stated
throughout the Chapter 5.

39

Chapter 5

Graph signal sampling
implementation

5.1 Introduction

In this chapter, the two implementations of graph signal sampling
and their performances will be shown. Important to note is that
a random incoming signal is assumed and Tikhonov regularization
with Gauss-Seidel approach as a recovery scheme is used.
In the next sections, implementations of signal generation, signal re-
covery, ad-hoc sampling and random sampling will be shown. The
Matlab code of the implementations can be found in the Appendices.
Since we can not use the completely random signals to test the sam-
pling and recovery, we used the used the manually generated signal
with a random weight matrix.

5.2 Generation of a graph signal and
Tikhonov regularization

In order to test the ad-hoc and random sampling implementations,
the graph signal needed to be generated. As it could have been seen
before, recovery method used in this thesis (Tikhonov regularization
with Gauss-Seidel approach), does not yield good results if a com-
pletely random signal is used, since the signal is not smooth enough.
Therefore, we imagine that some random signal has came and got
sampled (by some of the algorithms explained later). Later on, with
a help of a weight matrix, which is defined as a random, symmetric,
weight matrix, we generate a graph signal, i.e., we map the signal
components into the vertices of a graph.
In the implementation code of a graph signal generator (See Ap-
pendix B), a few components which are of a big importance and can
be adjusted were used. Their adjustments yield different kinds of
results which are all of significance regarding the sampling and re-
covery problem. Those parameters are:

• Graph signal dimension N - the number which describes the
dimension of a signal. For the higher graph signal dimension,

40 Chapter 5. Graph signal sampling implementation

more components of an incoming signal will be mapped into a
graph signal. The parameter is of the high importance for the
random weight matrix generation.

• Number of sampled components M - describes a number of
samples taken from the signal. The number of samples are very
significant for the Tikhonov regularization problem, i.e., for a
higher number of samples, recovery should be better consistent
graph signal.

• Standard deviation of noise σ - noise which is added to the
graph signal to make it less consistent with the recovery pro-
cess.

In the GenerateGraphSignal.m file, the algorithm of generation and the
Tikhonov recovery algorithm can be found(Appendix B). Three main
parameters described above were used for the generation and recov-
ery.
In the process of generation, the consistent graph signal was gener-
ated for a given weight matrix.
The parameter M, the number of sampled components, set the num-
ber of sampled components from the graph, which were used to
recover the graph signal. The recovered version is supposed to be
consistent with the weight matrix in the sense that the signal model
(which is not defined by the weight matrix) is implicitly posed by
Tikhonov regularization used in the generation of the graph signal.
The last parameter, sigma σ, represents the standard deviation of the
variance of the noise that is added to the recovered graph signal com-
ponents after the process of recovery. The purpose of it is to make the
graph signal less consistent with Tikhonov regularization.
On the Figure 5.1 generation process can be followed.

5.2. Generation of a graph signal and Tikhonov regularization 41

FIGURE 5.1: Graph signal generation and recovery

The blue colored signal represents the random incoming signal,
the signal gets sampled by the points which are marked on the Figure
with red points. Consistent signal recovered is the red colored signal,
and since there is the noise added after the recovery, noisy signal
is shown by the green color. The standard deviation of variance of
noise, σ is in this example set up on 0.1.
Just to compare, on the Figure 5.2. the graph signal generation and
recovery is shown with the σ set up on 1. As it is shown, the standard
deviation of the variance of noise has a major influence on the final
version of a signal, more will be shown in the later sections.

42 Chapter 5. Graph signal sampling implementation

FIGURE 5.2: Graph signal generation and recovery
with more noise

5.3 Implementation of sampling methods

As mentioned before in the Chapter 4, throughout this thesis two
kinds of samplings were introduced and their performances com-
pared.

5.3.1 Ad-hoc sampling and Random sampling

As described in the step by step process from the Chapter 4, ad-hoc
sampling is implemented and the code is shown in the Appendix C.
The function adhocsampling.m as parameters takes the weighting ma-
trix, number of samples and an ε parameter used for the iteration
termination.
As opposed to ad-hoc approach, which had some method of choos-
ing the samples of a signal, the random sampling is implemented
in a way that the sampled points are chosen randomly. The code
of the random sampling method can be seen in the Appendix D.
The function randomsampling.m receives two parameters, weighting
matrix and the number of samples. Random sampling chooses ran-
domly M number of samples and applies to the signal.
In the next section, the two methods will be compared regarding to

5.4. Ad-hoc sampling and random sampling performance
comparison 43

the change of various parameters.
As expected, in all the comparisons the ad-hoc sampling technique
will, naturally yield better results. On the Figure 5.3. the signal flow
of the random incoming signal, ad-hoc sampled and recovered signal
and random sampled and recovered signal are shown.

FIGURE 5.3: Random graph signal, ad-hoc sampled
signal and random sampled signal

5.4 Ad-hoc sampling and random sampling
performance comparison

In this section, performances of two different sampling methods will
be compared. The base of comparisons will be the variation of differ-
ent parameters. Here, we will vary the most important parameters,
number of samples M, scaling factor λ, standard deviation of vari-
ance of the noise σ and the weighting matrix.

44 Chapter 5. Graph signal sampling implementation

5.4.1 Performance comparison when number of sam-
ples M are varied

If the number of samples are varied, we can compare and plot the
overall performances of ad-hoc sampling and random sampling al-
gorithms.
As expected, for a smaller number of samples, ad-hoc sampling algo-
rithm performs better. Reason why is that if there is a small number
of samples which is supposed to be chosen, the ad-hoc sampling al-
gorithm chooses them more carefully. On the other hand, for a really
high number of samples to be chosen, both sampling methods per-
form similar. The reason behind is that if the number of samples
allowed to be taken is somewhat close to the number which describes
a dimension of a graph, then even randomly chosen points will yield
pretty good results.
In the table 5.1 the performances for different values of numbers of
samples M are shown.
Two measurements were made. The setup for the first one was set
on a number of samples varying from 20 to 60 with an intermediate
step of 5. The second setup was set on a number f samples varying
from 20 to 110 with an intermediate step of 5. In both setups, the
measurements were made with 300 iterations.

Number of
samples M

Ad-hoc sampling
MSE

Random Sampling
MSE

|adhoc_sampling MSE-
random_sampling MSE|

30 80.8 84.24 3.49
50 66.86 69.49 2.63
60 59.85 62.84 2.99
80 47.4 48.54 1.14
100 34.1 34.91 0.81

TABLE 5.1: Ad-hoc sampling vs. Random sampling
performance comparison, number of samples varied

from 20 to 100

On the Figure 5.4 the results from the setup 1 can be found. On the
Figure 5.5 the results from the setup 2 can be found. As we can ob-
serve, in both cases, the ad-hoc sampling performs better. One more
trend can be observable, with the fewer number of samples used,
the difference between the MSE of the two sampling techniques gets
bigger and bigger, naturally to the Ad-hoc sampling advantage.

5.4. Ad-hoc sampling and random sampling performance
comparison 45

FIGURE 5.4: Ad-hoc sampling vs. Random sampling
performance comparison while number of samples

M= 20..60

46 Chapter 5. Graph signal sampling implementation

FIGURE 5.5: Ad-hoc sampling vs. Random sampling
performance comparison while number of samples M

= 20...110

5.4.2 Performance comparison when a scaling factor λ
is varied

As mentioned before in the Chapter 4, scaling factor can be seen as a
trade-off between the smoothness of a graph and the accuracy of the
graph reconstruction. As it can be seen in the equation (4.4):

x̂ = argminx̂
{
|| y − Ax ||22 +λ′Sp(x̂)

}
(5.1)

The larger the scaling factor λ’ is, the smoother the reconstructed
graph is.
On the other hand, scaling factor as well influences the performances
of ad-hoc sampling scheme and random sampling scheme.
In the table 5.2 the performances of Ad-hoc sampling scheme and
Random sampling scheme are shown when the parameter λ is var-
ied. The measurements are made with the λ parameter varying from
0.1 to 3 in 20 steps through 300 iterations.

5.4. Ad-hoc sampling and random sampling performance
comparison 47

Scaling
parameter

λ

Ad-hoc sampling
MSE

Random Sampling
MSE

|adhoc_sampling MSE-
random_sampling MSE|

0.1 81.32 82.97 1.65
0.55 90.89 94.12 3.23
1.02 93.72 96.02 2.3
1.5 96.11 98.68 2.57
2.23 98.46 100.4 1.94

3 98.52 9.81 1.29

TABLE 5.2: Ad-hoc sampling vs. Random sampling
performance comparison, λ varied from 0.1 to 3

From the measurements it is observable that Ad-hoc sampling
method performs better than Random sampling method. The scal-
ing factor is a trade-off between smoothness and accuracy of the re-
construction. If the scaling factor becomes larger, the signal becomes
smoother which is necessary for the reconstruction. On the other
hand, for a smaller scaling factor, the reconstruction should become
more accurate. In theory, it can not be concluded whether the recov-
ery would work better if the scaling factor is really large or really
small, but the measurements have shown that a smaller scaling fac-
tor suggests a better MSE.
In the same time, it is possible to conclude that Ad-hoc sam-
pling method performs again better compared to Random sampling
method. The performance comparison can be seen on the Figure 5.6.

48 Chapter 5. Graph signal sampling implementation

FIGURE 5.6: Ad-hoc sampling vs. Random sampling
performance comparison while the scaling factor λ =

0.1...3

5.4.3 Performance comparison when standard devia-
tion of variance of the noise σ is varied

Standard deviation of noise σ is added to the graph signal after the
recovery with Tikhonov regularization in order to make the graph
signal generated, less consistent with the Tikhonov regularization in
a controlled way.
In the table 5.3 results from the measurement are shown. The mea-
surement took 10 samples of σ in the range from 1 to 50 with overall
300 iterations.

σ
Ad-hoc sampling

MSE
Random Sampling

MSE
|adhoc_sampling MSE-

random_sampling MSE|
1 1.027 1.052 0.025

17.3 242.3 247.7 5.4
28.22 675.4 653.9 21.5
39.11 1305 1265 40

50 2012 2080 68

TABLE 5.3: Ad-hoc sampling vs. Random sampling
performance comparison, σ varied from 1 to 50

5.4. Ad-hoc sampling and random sampling performance
comparison 49

From the results in the table, it can be seen that for a smaller
σ, i.e. less noise, the two methods are much closer regarding the
performance. With more and more noise added, it becomes clear
that ad-hoc sampling method yields better results. However, even
though the ad-hoc sampling method yields better results, the mini-
mum squared error becomes big enough so the recovery process is
not completely reliable.
The performances of ad-hoc sampling method and random sampling
method can be seen on the Figure 5.7.

FIGURE 5.7: Ad-hoc sampling vs. Random sampling
performance comparison while the σ factor varied

from 1 to 50

5.4.4 Performance comparison when weighting matrix
is varied

As mentioned before, weighting matrix is chosen randomly. That
fact gives us a freedom to choose and modify the weighting matrix
in a way that we can see what type of the weighting matrix, i.e. gen-
erated graph signal, suits the best for the sampling schemes.
The random symmetric weighting matrix is designed on a way that
we choose a random number of graph signal components connected.
In other words, each vertex of a graph can be connected with max-
imum of (N − 1) of other vertices. With a short look on the code

50 Chapter 5. Graph signal sampling implementation

inter-connectivity
parameter

Ad-hoc sampling
MSE

Random Sampling
MSE

|Ad-hoc sampling MSE-
Random sampling MSE|

0.05 82.72 84.59 1.87
0.2 90.4 88.35 2.05
0.3 92.31 93.73 1.42
0.45 92.42 94.19 1.77
0.5 95.22 96.6 1.38

TABLE 5.4: Ad-hoc sampling vs. Random sampling
performance comparison when an inter-connectivity

factor is varied

in the Appendix A., it can be seen that with the usage of an inter-
connectivity parameter (var. fac) we can dictate how many compo-
nents of a graph signal will be actually connected together. There-
fore, a measurement over varying the fractional variable was made.
In the test, standard value of N = 120 as a graph signal dimension
was used, 30 samples, scaling factor λ = 0.1 and all of that ran over
100 iterations. The inter-connectivity parameter was varied over a
range of values from 0.06 to 0.5.
The results of a measurement can be seen in the table 5.4 and on the
Figure 5.8.

FIGURE 5.8: Ad-hoc sampling vs. Random sampling
performance comparison while the inter-connectivity

parameter varied

5.4. Ad-hoc sampling and random sampling performance
comparison 51

As expected, ad-hoc sampling technique performs better than
random sampling technique. On the Figure 5.8 and in the Table 5.4,
the growing MSE trend can be spotted. The reason behind is that, if
the inter-connectivity parameter is a large value, the graph signal has
more signal components connected, that is, for an inter-connectivity
parameter of 1, all the signal components are connected and the com-
plete graph is established. Furthermore, more the connections, i.e.,
edges, a graph signal has, the harder it is to sample it correctly. There-
fore, the growing MSE trend can be seen.
As we can see, the weighting matrix, which was chosen randomly
in this thesis, is also of a great importance in the overall sampling
performance.

53

Chapter 6

Conclusion

The technology industry is a fast growing industry with more and
more users each day who ask for more and more services. From
the perspective of a service dealer, each dealer wants to be the best,
to have the highest number of users, and to have a strong research
team who make the new approaches of solving the already existing
problems possible.

One of those new approaches is the approach of solving prob-
lems with a help of graph signals. Graph signal recovery and sam-
pling problem is shown to be a very good technique of dealing with
today’s signal processing problems. It is a simple, usable and very
elegant choice.

As the reader was able to mark during this thesis is that the
biggest obstacle during the whole process is the signal recovery tech-
nique choice and the sampling technique choice.

In this thesis the signal recovery technique choice was set on the
Tikhonov regularization technique with Gauss-Seidel iterative ap-
proach. But the sampling techniques were freely implemented and
compared.

In all of the tests which were done, the ad-hoc sampling im-
plementation performed better compared to random sampling tech-
nique. All the results were expected as they are.

The future developments on the field of graph signal sampling
should be done to make the ad-hoc approach even better, because
with a good sampling technique, the recovery process is more accu-
rate, which is crucial for the usage of a whole.
In the end, graph signals techniques will be the one of the main fu-
ture techniques of signal processing.

55

Bibliography

[1] John Adrian Bondy and Uppaluri Siva Ramachandra Murty.
Graph theory with applications. Vol. 290. Citeseer, 1976.

[2] Siheng Chen et al. “Discrete signal processing on graphs: Sam-
pling theory”. In: IEEE Transactions on Signal Processing 63.24
(2015), pp. 6510–6523.

[3] Norbert Görtz. Iterative Graph-Signal Recovery. Tech. rep. TU
Wien, 2016.

[4] Rui Vilela Mendes. “Signal processing on graphs”. URL:
http://label2.ist.utl.pt/vilela/Cursos/Signal_Proc_Net_SL.pdf.
2014.

[5] Randall M. Richardson and George Zandt. Inverse Problems in
Geophysics GEOS 567. 2003.

[6] David I Shuman et al. “The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains”. In: IEEE Signal Processing
Magazine 30.3 (2013), pp. 83–98.

[7] Andrew Y Ng. “Feature selection, L 1 vs. L 2 regularization,
and rotational invariance”. In: Proceedings of the twenty-first in-
ternational conference on Machine learning. ACM. 2004, p. 78.

[8] Aliaksei Sandryhaila and José MF Moura. “Discrete signal pro-
cessing on graphs”. In: IEEE transactions on signal processing
61.7 (2013), pp. 1644–1656.

[9] Mario Osvin Pavčević. “Uvod u teoriju grafova”. In: Element,
Zagreb (2006).

[10] C Vasudev. Graph theory with applications. New Age Interna-
tional, 2006.

[11] Dragan Stevanovic, Marko Miloševic, and Vladimir Baltic.
“Diskretna matematika”. In: Zbirka rešenih zadataka, DMS,
Beograd (2004).

[12] Reinhard Diestel. “Graph theory. 1997”. In: Grad. Texts in Math
(1997).

[13] Gita Babazadeh Eslamlou et al. “Graph signal recovery from
incomplete and noisy information using approximate message
passing”. In: 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2016, pp. 6170–
6174.

56 BIBLIOGRAPHY

[14] Gene H Golub, Per Christian Hansen, and Dianne P O’Leary.
“Tikhonov regularization and total least squares”. In: SIAM
Journal on Matrix Analysis and Applications 21.1 (1999), pp. 185–
194.

[15] Shinji Umeyama. “An eigendecomposition approach to
weighted graph matching problems”. In: IEEE transactions on
pattern analysis and machine intelligence 10.5 (1988), pp. 695–703.

[16] F.R.K. Chung. Spectral Graph Theory. ams, 1997.

[17] Aliaksei Sandryhaila, Jelena Kovacevic, and Markus Puschel.
“Algebraic Signal Processing Theory: 1-D Nearest Neighbor
Models”. In: IEEE Transactions on Signal Processing 60.5 (2012),
pp. 2247–2259.

[18] “Big Data Analysis with Signal Processing on Graphs: Repre-
sentation and processing of massive data sets with irregular
structure”. In: IEEE Signal Process. Mag. 31.5 (2014), pp. 80–90.

[19] Akshay Gadde and Antonio Ortega. “A Probabilistic Inter-
pretation of Sampling Theory of Graph Signals”. In: CoRR
abs/1503.06629 (2015). URL: http : / / arxiv . org / abs /
1503.06629.

[20] A. Singer. “From graph to manifold Laplacian: The conver-
gence rate”. In: Applied and Computational Harmonic Analysis
21.1 (2006), pp. 128–134. ISSN: 1063-5203. DOI: http://dx.
doi.org/10.1016/j.acha.2006.03.004. URL: http:
//www.sciencedirect.com/science/article/pii/
S1063520306000510.

[21] Andrej Nikolaevich Tikhonov and Vasiliy Yakovlevich Ars-
enin. Solutions of ill-posed problems. Winston, 1977.

[22] Michael I Jordan. “Graphical models”. In: Statistical Science
(2004), pp. 140–155.

[23] Michael I Jordan et al. “Major advances and emerging develop-
ments of graphical models [from the guest editors]”. In: IEEE
Signal Processing Magazine 27.6 (2010), pp. 17–138.

[24] Benjamin A Miller, Nadya T Bliss, and Patrick J Wolfe. “To-
ward signal processing theory for graphs and non-Euclidean
data”. In: 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE. 2010, pp. 5414–5417.

[25] Norbert Goertz et al. “Iterative recovery of dense signals from
incomplete measurements”. In: IEEE Signal Processing Letters
21.9 (2014), pp. 1059–1063.

[26] Narsingh Deo. Graph theory with applications to engineering and
computer science. Courier Dover Publications, 2016.

[27] Douglas Brent West et al. Introduction to graph theory. Vol. 2.
Prentice hall Upper Saddle River, 2001.

http://arxiv.org/abs/1503.06629
http://arxiv.org/abs/1503.06629
https://doi.org/http://dx.doi.org/10.1016/j.acha.2006.03.004
https://doi.org/http://dx.doi.org/10.1016/j.acha.2006.03.004
http://www.sciencedirect.com/science/article/pii/S1063520306000510
http://www.sciencedirect.com/science/article/pii/S1063520306000510
http://www.sciencedirect.com/science/article/pii/S1063520306000510

BIBLIOGRAPHY 57

[28] Ingrid Daubechies, Michel Defrise, and Christine De Mol. “An
iterative thresholding algorithm for linear inverse problems
with a sparsity constraint”. In: Communications on pure and ap-
plied mathematics 57.11 (2004), pp. 1413–1457.

[29] Aamir Anis, Akshay Gadde, and Antonio Ortega. “Towards
a sampling theorem for signals on arbitrary graphs”. In: 2014
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE. 2014, pp. 3864–3868.

[30] Michael Unser. “Sampling-50 years after Shannon”. In: Pro-
ceedings of the IEEE 88.4 (2000), pp. 569–587.

[31] Gita Babazadeh Eslamlou, Alexander Jung, and Norbert Go-
ertz. “Smooth graph signal recovery via efficient Laplacian
solvers”. In: 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2017.

[32] J Honerkamp and J Weese. “Tikhonovs regularization method
for ill-posed problems”. In: Continuum Mechanics and Thermo-
dynamics 2.1 (1990), pp. 17–30.

[33] Xiaowen Dong et al. “Learning laplacian matrix in
smooth graph signal representations”. In: arXiv preprint
arXiv:1406.7842 (2014).

59

Summary

The main goal of the thesis was to research graph signal methods
used to describe and solve the problems posed in today’s technolog-
ical aspects. The main problem was to determine and compare the
performances of the two sampling techniques (ad-hoc sampling and
random sampling). It was assumed that an incoming signal is a ran-
dom signal. The signal would get sampled with one of the two tech-
niques mentioned above. The random symmetric weighting matrix
was generated and with a help of a weighting matrix and the sam-
ples, the graph signal was reconstructed using the Tikhonov recov-
ery method with Gauss-Seidel approach. The better the performance
of one of the sampling techniques is, the better the recovered signal
will be. In all of the tests, ad-hoc algorithm gave out better results.

61

Appendix A

Appendix

1 %%
2 clear; clc;
3

4 % matlab file used for varying number of samples M
5 tic;
6

7 iterations = 50;
8

9 % intead of ems, any parameter which is to be
varied can be inserted

10 for ijk = 1:length(ems)
11

12 mse_adhoc = [];
13 mse_random = [];
14

15 for iii = 1:iterations
16

17 % Standard deviation of noise added to the graph
signal

18 sigma = 10;
19

20 % Set Weight-Matrix parameters
21 N = 120; % Graph Signal Dimension
22

23 M = 30; % Number of Sampled Components
24

25 % Randomly choose symmetric Weight matrix
26

27 % fraction of connected components. Set 0<fac<1
28 fac = 0.075;
29

30

31 NmaxEdges = nchoosek(N,2);
32 NW = round(fac * NmaxEdges);
33

34

35 W = zeros(N,N);
36

37 jj_vec = mod(randperm(NmaxEdges),N)+1;

62 Appendix A. Appendix

38

39 for ii=1:NW,
40 jj = jj_vec(ii);
41 kk = randi(N);
42

43 while((kk == jj) || (W(jj,kk)>0))
44 kk = randi(N);
45 end
46

47 % Set weight matrix component to a numer 0...1
48 W(jj,kk) = rand(1);
49 % Produce a symmetric weight matrix
50 W(kk,jj) = W(jj,kk);
51

52 end
53

54 %create a graph signal
55 [x, x_noise] = GenerateGraphSignal(W,M,sigma);
56

57 M_samples = ems(ijk);
58

59 sampling_vec_adhoc = sampling_adhoc(W, M_samples,
1e-3);

60 sampling_vec_random = sampling_random(W,
M_samples);

61

62

63 y_adhoc = x_noise;
64 y_random = x_noise;
65

66 y_adhoc(sampling_vec_adhoc==0) = 0;
67 y_random(sampling_vec_random==0) = 0;
68

69

70 lambda = 0.1;
71

72 x_adhoc = recoverSignal(y_adhoc, W, lambda,
sampling_vec_adhoc);

73 x_random = recoverSignal(y_random, W, lambda,
sampling_vec_random);

74

75 if(sum(isnan(x))>0)
76 disp(’### NaN components in the solution! Too

few edges in weight matrix’)
77 end
78

79

80 tmp_mse_adhoc = norm(x_noise-x_adhoc,2)^2/N;
81 tmp_mse_random = norm(x_noise-x_random,2)^2/N;
82

Appendix A. Appendix 63

83 if ~isnan(tmp_mse_adhoc) &&
~isnan(tmp_mse_random) &&
~isinf(tmp_mse_adhoc) && ~isinf(tmp_mse_random)

84 mse_adhoc = [mse_adhoc, tmp_mse_adhoc];
85 mse_random = [mse_random, tmp_mse_random];
86 end
87

88 end % end iterations
89

90 toc;
91

92 if true
93

94 figure(1);
95 N_x = length(x);
96 plot(1:N_x, x_adhoc, ’r-’);
97 hold on;
98 plot(1:N_x, x_random, ’b-’);
99 plot(1:N_x, x_noise, ’k-’);

100 hold off;
101 legend(’adhoc’,’random’, ’original’);
102 end
103

104 mean_adhoc(ijk) = mean(mse_adhoc)
105 mean_random(ijk) = mean(mse_random)
106

107 fprintf(’progress %.1f %%\n’,
ijk/length(ems)*100);

108 end
109

110

111 figure(1)
112

113 N_x = length(x);
114 plot(ems, mean_adhoc, ’r-’);
115 hold on;
116 plot(ems, mean_random, ’b-’);
117 hold off;
118 legend(’adhoc’,’random’, ’original’);
119 ylabel(’mse’);
120 xlabel(’M’);

LISTING 1: mk.m

65

Appendix B

1 function [x, x_noise] =
GenerateGraphSignal(W,M,sigma)

2 % The function generates a graph signal for a
given weight matrix W

3 % The parameter M is the number of samples
4 % The parameter sigma is the standard deviation

of noise added to a signal to make the
5 % recovery less consistent in a controlled way
6

7 szW = size(W);
8 N = szW(1);
9

10 x = zeros(N,1);
11

12 % Set Lagrange multiplier for the Tikhonov
regularization used below

13 % lambda = 0;
14

15 % Pick randomly M signal components to be sampled
16 Sall = randperm(N);
17

18 % Set of measurement indices
19 S = Sall(1:M);
20

21 % complement set of S
22 SC = Sall(M+1:N);
23

24 % randomly choose the graph signal’s component
values:

25 xr = randn(N,1);
26

27 % Get M randomly selected samples
28 y = xr(S);
29

30

31 % Do Gauss-Seidel iterations until change of
solution falls below the

32 % threshold tol
33 Dold = 1E20;
34 Dnew = 0;
35 tol = 1E-3;
36 xold = 1E10 .* ones(N,1);
37

66 Appendix A. Appendix

38 cnt = 0;
39

40 while(abs(Dnew-Dold) > tol*Dold)
41

42 cnt = cnt + 1;
43

44 x(S) = y;
45 Wcolsum = sum(W);
46

47

48 for ll = M+1:N,
49 tmp = Wcolsum(SC(ll-M)) - W(SC(ll-M));
50 tmpX = 0;
51 for jj=1:N,
52 if(jj ~= SC(ll-M))
53 tmpX = tmpX +

W(SC(ll-M),jj)*x(jj);
54 end
55 end
56 x(SC(ll-M)) = tmpX/tmp;
57 end
58

59 Dold = Dnew;
60 err = x - xold;
61 Dnew = sqrt(sum(err.^2)/N);
62 xold = x;
63

64 end
65

66

67 % Produce noisy version of solution
68 x_noise = x + sigma.* randn(size(x));
69

70

71 figure(1)
72 plot(xr)
73 hold on
74 plot(S,xr(S),’rs’)
75 plot(x,’r’)
76 plot(x_noise,’g’)
77 hold off
78 legend(’Original Random Signal’,’Sampled

Components’,’Consistent Signal’,’Noisy
Consistent Signal’)

79 grid on
80

81

82

Appendix A. Appendix 67

83 end

LISTING 2: Graph signal generation
and Tikhnov regularization with Gauss-Seidel

approach

69

Appendix C

1 function [sampling_vector] = sampling_adhoc(W,
M, eps_break)

2 %adhoc1 returns a sampling vector of the signal
where thinks should be sampled

3 % W ... weight matrix
4 % M ... number of samples
5 % eps_break ... some small number
6

7

8 N_nodes = size(W,2); % number of nodes, can also
be calculated from the weight matrix

9

10

11 % create this C matrix
12 C = W + eye(size(W));
13

14 % generate the degree matrix D
15 D = diag(sum(W,2));
16

17 % entries of D as a vector
18 d = diag(D);
19

20 % find the maximum and its index
21 [~, index_max] = max(d);
22

23 % set this index as the first sample
24 S = [index_max];
25

26 % create X
27 X = zeros(N_nodes, 1);
28 X(index_max) = 1;
29

30 %algorithm
31 Y = C*X;
32

33 a_big_number = 30;
34

35

36 alpha = 1/max(sum(W,2)+0.1);
37

38 W_tmp = W*alpha;
39

40 for ss = 1:M-1

70 Appendix A. Appendix

41 X = zeros(N_nodes, 1);
42 for si = S
43 X(si) = 1;
44 end
45

46 for ii = 1:a_big_number
47 Y = W_tmp*Y;
48 min(Y);
49 [min_v, index_min] = min(Y);
50 end
51

52 [val, ind] = sort(Y,’ascend’);
53

54 for sw = 1:N_nodes
55 if ~any(abs(ind(sw)-S)<1e-3),
56 S = [S ind(sw)];
57 break
58 end
59 end
60

61

62 end
63 indices = S;
64 sampling_vector = zeros(N_nodes, 1);
65

66 for i=indices % could be implemented faster
without a loop

67 sampling_vector(i) = 1;
68 end
69

70 end

LISTING 3: Ad-hoc sampling

71

Appendix D

1 function [sampling_vector] = sampling_random(
W, M)

2 % returns a indicies vector with M 1s
3

4 N = size(W,1);
5 sampling_vector = zeros(N,1);
6 perm = randperm(N);
7

8 indices = perm(1:M);
9

10 for i=indices % could be implemented faster
without a loop

11 sampling_vector(i) = 1;
12 end
13

14 end

LISTING 4: Random sampling

	Abstract
	Acknowledgements
	Introduction
	Graph
	Graph
	Adjacency matrix and weighted graph

	Graph signal
	Graph Signal and applications
	Discrete signal processing on graphs
	Graph shift
	Graph signal
	Graph Fourier transform
	Laplacian graph

	Graph signal recovery and sampling
	Introduction
	Problem setting
	Graph signal recovery with Tikhonov regularization and Gauss-Seidel approach
	Graph signal sampling
	Ad-hoc scheme
	Random sampling

	Graph signal sampling implementation
	Introduction
	Generation of a graph signal and Tikhonov regularization
	Implementation of sampling methods
	Ad-hoc sampling and Random sampling

	Ad-hoc sampling and random sampling performance comparison
	Performance comparison when number of samples M are varied
	Performance comparison when a scaling factor is varied
	Performance comparison when standard deviation of variance of the noise is varied
	Performance comparison when weighting matrix is varied

	Conclusion
	Bibliography
	Appendix

