
Agile Software Performance
Engineering

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Johannes Artner
Matrikelnummer 1127256

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer

Wien, 1. Dezember 2016
Johannes Artner Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Agile Software Performance
Engineering

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Johannes Artner
Registration Number 1127256

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer

Vienna, 1st December, 2016
Johannes Artner Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Johannes Artner
Wiedner Hauptstraße 121/10, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2016
Johannes Artner

v

Kurzfassung

Performanz, unter dem Gesichtspunkt zeitlicher Anfrage-Antwortintervalle, ist eine cha-
rakteristische Eigenschaft von Softwaresystemen. Zur Evaluierung und Optimierung der
Performanz gibt es in der wissenschaftlichen Literatur eine Vielzahl an Ansätzen, wobei
aufgrund des zumeist sehr hohen Zusatzaufwandes und der zusätzlichen Komplexität die
meisten dieser Ansätze wenig Verwendung in der Praxis finden. Das adäquate Manage-
ment von Performanz anhand ingenieurmäßiger Prinzipien ist in der Praxis demfolgend
sehr selten. Die Konzeption und Evaluation der Performanz von Softwaresystemen wird
in der wissenschaftlichen Disziplin des Software Performance Engineerings behandelt.
In dieser Disziplin gibt es modell- und messgetriebene Methoden welche zumeist isoliert
voneinander ablaufen. In der jungen Vergangenheit gab es eine Vielzahl an Innovationen
im Bereich der Softwareentwicklung. Hierfür sind im Speziellen die Konzepte der agilen
Entwicklung, des Continuous Deliveries sowie die DevOps-Kultur von Interesse.
Die vorliegende Arbeit präsentiert ein neues Vorgehensmodell in der SPE-Domäne, den
ASPE-Ansatz (Agile Software Performance Engineering) welcher modell- und messgetrie-
bene Techniken verbindet. Der ASPE-Ansatz wurde auf Grundlage des Travelistr-Systems
evaluiert. Hierbei galt es zunächst, Travelistr unter Verwendung des ASPE-Ansatzes zu
entwickeln und die Nützlichkeit dieses Ansatzes zu evaluieren. Darauffolgend konnte in
einem empirischen Versuch mit 32 Testnutzern die Markov-Eigenschaft einer typischen
Web 2.0 Applikation bestätigt, und die Effektivität der Markov-Approximation gezeigt
werden. Des Weiteren wurden zwei Tools entwickelt die Teilbereiche des ASPE-Ansatzes
automatiseren: Der OperationsAndTraceMonitor und das UserTrace2Markov-Tool. Um
die Performanz eines Softwaresystems anhand der Warteschlangetheorie evaluieren zu
können, wurde ein Ansatz zur Berechnung von Ankunftsintervallen an Stationen auf
Basis der Ergodizitätstheorie und Little’s Gesetz entwickelt.

vii

Abstract

Performance, considered in this work with respect to timely responses, is a key-characteristic
of software systems. There are multiple performance engineering approaches in scientific
literature. However, most of these approaches lack utility due to the high overhead and
additional complexity. In practice, performance management of a software system is
often more of an ad-hoc trial and error approach, rather than an engineering approach.
Managing the performance of a software system belongs to the field of Software Perfor-
mance Engineering (SPE) where two distinct approaches are available: The model-based
approach and the measurement-based approach. Both having different limitations which
may be mitigated by combining them. In the last decade, a wide range of innovations in
the software engineering domain emerged. Of interest for this work are especially the
concepts Agile development, Continuous Delivery and the DevOps-culture. Besides other
benefits, these concepts enable better performance management.
This work introduces a new engineering approach to the SPE domain which showed
utility in practice: The ASPE-approach (Agile Software Performance Engineering) that
integrates and combines model-based and measurement-based techniques throughout
designing and developing a software system. In order to be useful in practice, it is essential
to have high utility while bringing little overhead. Therefore, the ASPE-approach is built
upon the principles (1) Force automation, (2) Reuse artefacts and (3) Use approximations
instead of over-engineering SPE. Principles 1 and 2 are tackled by the use of model-driven
concepts. Principle 3 is tackled by the use of Markov-models for describing user behaviour
and in consequence workloads on resources.
The ASPE-approach was evaluated in a case study covering the development of the
Travelistr software system which was later also used for an empirical user test where
the Markov assumption for a typical Web 2.0 application was evaluated and showed
effectiveness. Two self-developed tools that automate parts of the ASPE-approach are
introduced: (1) The OperationsAndTraceMonitor - an instrumentation tool able to track
user navigation and the duration of defined operations. (2) The UserTrace2Markov-tool -
which uses the results of the OperationsAndTraceMonitor and semi-automatically cal-
culates Markov model transition probabilities of first and second order. Furthermore,
for analysing a software systems performance with the widely used queuing network
formalism, an approach to transfer Markov models towards arrival-rates of resources
based on ergodicity theory and Little’s Law is introduced.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Overview 1
1.1 Introduction and Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 3
1.4 Methodological approach . 4
1.5 Motivating example . 4
1.6 Structure of the thesis . 9

2 Agile software engineering, continuous delivery and the DevOps cul-
ture 11
2.1 Overview . 11
2.2 Software engineering fundamentals . 11
2.3 The agile approach . 12
2.4 The DevOps culture . 13
2.5 The need for automation . 14

3 Software Performance Engineering, Markov models and queuing net-
works 15
3.1 Overview . 15
3.2 Software Performance Engineering . 16
3.3 Stochastic processes . 17
3.4 Markov models . 20
3.5 Queuing theory . 22

4 Cloud computing and model-driven engineering 25
4.1 Overview . 25
4.2 Cloud computing . 25
4.3 Model-driven engineering . 26

xi

4.4 OASIS TOSCA . 27

5 Related work 29
5.1 Overview . 29
5.2 Intermediate formats . 30
5.3 Performance annotations . 35
5.4 Transformation approaches . 36
5.5 Service demands and performance measurements 38
5.6 Markov models and queuing networks . 39
5.7 DevOps and QA . 40
5.8 Other related work . 41

6 An approach for Agile Performance Engineering 43
6.1 Overview . 43
6.2 Information requirements and basic elements 45
6.3 The CETO- and MUPOM metamodels . 48
6.4 The ASPE-process . 50
6.5 Profiling . 52
6.6 Model transformations . 56
6.7 From Markov models to queuing networks 59

7 Evaluation 61
7.1 Overview . 61
7.2 Objectives of the case study . 62
7.3 Data collection and Tools . 62
7.4 Travelistr . 63
7.5 Sprint 0 . 63
7.6 Sprint 1 . 68
7.7 Sprint 2 . 73
7.8 Sprint 3 . 76
7.9 Benefits and Overhead . 82
7.10 Threads to validity . 82

8 Conclusion and Outlook 85
8.1 Future research directions . 86

Acronyms 89

Results of the empirical user test 91

List of Figures 105

List of Tables 106

Bibliography 107

CHAPTER 1
Overview

This chapters purpose is to give an overview and a clear understanding of what the
problem domain is and why this domain is interesting for research work.
First, a short introduction about the involved concepts, techniques and approaches is
given with special focus on their combinations. Then the problem domain and the goals
of this thesis are outlined. At the end, the methodological approach, describing in what
way the problems are tackled, is presented and finally the structure of this thesis is
outlined.

1.1 Introduction and Motivation

Performance is an important non-functional requirement and a key-characteristic of
software systems. Performance is considered here with respect to timely responses of
software components and entire software systems.
It is useful to take performance already in early phases while designing the architecture
of a system into account [84]. Not only is it important to know if a software system can
meet certain performance constraints, but also with what hardware and furthermore
at what cost this can be achieved. It is essential for good software to maintain good
performance in an efficient way.
In practice, performance management is very often more an ad-hoc try and error- than
an engineering approach [46]. Managing the performance of a software system belongs to
the field of software performance engineering (SPE) [85].
With the rise of agile software development methodologies, the importance of continuous
delivery and thus the early provisioning of operations resources increased. As of today,
the DevOps culture, which highlights the high interdependence and need for collaboration
of development and operations, has gathered relevance in the last years [67] and is widely
accepted and practiced today [1]. When combining the agile methodology with the
DevOps culture, performance issues are more likely to already be unveiled in early stages

1

1. Overview

of development due to fast and incremental deliveries. However, there is still a strong
need for adequate performance management.
There are two main approaches to analysing the performance of software systems: The
measurement-based approach and the model-based approach [85]. Both having different
limitations that may be mitigated by each other. Given the new possibilities that agile
development, continuous delivery, DevOps and cloud solutions offer, it appears practically
usable to combine the model-based approach with the measurement-based approach
resulting in better performance engineering.
In the design phase of a software system predictive knowledge can be used to analyse
a software systems expected performance constraints to some extent. Once parts of
a software system during development are deployed, it is possible to gather empirical
knowledge through profiling-observations and enrich the model.
Markov models as well as queuing networks have shown their usability in many different
fields, and they are also used to describe the performance characteristics of software
systems (e.g.: [32, 46, 47]). Performance models in form of queuing networks for software
systems are useful because the performance of a software system is foremost affected
by shared resources and their contention leading to queues and in consequence waiting
times [70].

1.2 Problem statement
Software performance engineering (SPE), alongside a software engineering process, covers
any activity related to performance management of software systems [85]. It aids in
creating software systems that satisfy performance requirements, such as Service Level
Agreements (SLAs), while efficiently using resources. Furthermore, SPE highlights the
importance of engineering principles instead of ad-hoc try and error approaches towards
performance management. However, performance management is still split into two
areas: The model-based- and the measurement-based approach. In order to be relevant
for practitioners, I assume that automated tool-support, that minimizes the overhead
of performance engineering, must be available. For comprehensive tool support and
reusability, it is essential to introduce standardization especially in the nomenclature, the
concepts and the model-formats. With respect to model-driven engineering, standardized
metamodels are needed and respective software- and performance model transformation
methodologies necessary. All SPE-activities should be seamlessly integrated into a
software engineering process without making it unusable for practitioners due to a high
overhead. Markov models for describing user-behaviour and in consequence workloads
of resources are also used in research. However, an evaluation of the validity of the
Markov-assumption given a software systems specific user-behaviour is an essential
pre-condition.

2

1.3. Aim of the work

1.3 Aim of the work

This thesis will focus on SPE alongside an agile software engineering process.

The research interest and main goal of this thesis is to combine the model-based ap-
proach with the measurement-based approach in SPE. Currently, there is to the best
of my knowledge no scientific work on a systematic combination of the model- and the
measurement-based approach within a software engineering process available.
The performance-modelling approach I will introduce should be useful for analysis and
prediction and can be used for simulations, bottleneck analysis, capacity planning and
what-if analysis amongst other possible usages.

SG1: The first sub-goal of this thesis is to propose a metamodel that defines all relevant
elements and aspects sufficient for analysing the performance of a software system. The
metamodel must be capable of integrating both predictive- and measurement data. This
thesis will therefore contain an analysis of information requirements for performance
models (SG1.1). It is essential to analyse the rich literature in the SPE-domain to outline
an appropriate approach that builds upon other research work in this area.

SG2: The second sub-goal is the proposition of an agile software engineering process that
includes SPE in a seamless manner. The agile approach must combine the model-based
and the measurement-based approach and should contain performance-measure feedback
loops throughout. It is essential to evaluate ways to integrate performance objectives,
predictions and measures in the software engineering process (SG2.1). Furthermore, I will
outline needed model-transformations of this processes in order to be usable in practice
(SG2.3). Additionally, the utility of the proposed approach will be evaluated and the
needed tools and transformations will be outlined (SG2.4).

SG3: As user-behaviour is described with Markov models in this work, it is essential to
outline an approach to derive resource utilization from these Markov models. Especially,
an approach to retrieve queuing models from Markov models will be be proposed.

SG4: The fourth sub-goal is the proposition of a metamodel for performance analysis
that describes workloads on resources. This model can then be used to simulate a system,
detect bottlenecks, what-if analysis amongst many other possible usages. The metamodel
must be designed with respect to the stochastic nature of workloads using the Markov
model formalism. Therefore, the usability of Markov models in the field of SPE must
be analysed (SG3.1). Furthermore, a model-transformation methodology between the
metamodel in SG1 and SG3 must be described (SG3.2).

SG5: For modelling the user-behaviour, the Markov-model notation will be used. This
also implies that the underlying stochastic process of the user-behaviour fulfils the
Markov-assumption. First, a way to determine if the Markov-assumption for a specific
system holds has to be defined (SG4.1). Second, an evaluation of the Markov-assumption
for a specific web-software system will be carried out (SG4.2).

3

1. Overview

1.4 Methodological approach
The methodological approach consists of the following steps.

Literature review. I will perform a systematic literature review. I will use different
online databases, namely: IEEExplore, ACM Digital Library, CatalogPlus, the online
library of the Vienna University of Technology, Google Scholar, dblp: the computer
science bibliography of the University Trier as well as the Mendeley research library. I
will use primary- as well as secondary studies. For secondary studies I will however also
review the primary studies. The research questions and research goals will be answered
partly by outlining the systematic review. As we are in the field of software engineering,
the systematic literature review will be carried out with regard to the experiences of
Kitchenham et al. in the software engineering domain [35].

Proposition of an agile software performance engineering workflow and two
metamodels. For the elaboration of my contributions I will apply the principles and use
the guidelines of Hevner et al. [81] in order to design a model as an artefact, that improves
the process of agile software engineering with respect to performance management in an
iterative manner including reviews and evaluations of the artefacts.

Evaluation of the propositions. The evaluation will be carried out using a case study.
I will follow the recommended practices for software engineering case studies that Höst
et al. [69] presented. The case-study will be of both explanatory and exploratory nature.

1.5 Motivating example
Travelistr is an application designed for travellers. It enables people to share pictures of
their journey with other travellers that are nearby. Users are able to share pictures with
the Travelistr-App that is a web-application which can be used through a browser on any
device. The pictures are enriched with information about the geographic location where
the picture was made. Users have the possibility to like pictures, but always only one
out of three pictures that are presented to them. The algorithm that selects the three
pictures showed take different aspects into account. These aspects are the geo-location
and distance to the user. Furthermore it takes the »impact«into account. The impact of
a picture is determined by the number of Likes it has and the date it was taken, whereas
recently published pictures are favoured.

Following, three Travelistr software models are depicted. A Use-Case diagram in figure 1.1,
a Sequence diagram for the »Publish Picture«-Use-case in figure 1.2 and the Component-
diagram in figure 1.3 including the nodes where the components are deployed.
The Travelistr software system is used throughout this thesis for evaluation of the
proposed concepts as well as to clarify arguments and highlight concepts. In Chapter 7,
a case study based on the Travelistr software system is described.

At an early phase in a software project, one might ask questions towards performance of
the planned software system such as: Given these classical software models, how can the

4

1.5. Motivating example

performance quality of the software system be predicted? What improvements shall be
done in architecture, in order to perform more efficiently? Do we need more computing
resources? Shall a load-balancer be added for the ImageScaler-/ImageStore-/Database-
component?
How can performance constraints (such as SLAs or QoS constraints) be defined in a
model-theoretic way? How can i check if the software system will satisfy these constraints?
How can software models be transformed to Performance models that can be evaluated
with different approaches and tools?
How can a-posteriori knowledge about the system and the behaviour of the system,
be integrated during development and after release? How much overhead is software
performance engineering? Are there automated tools available?

This theses aims to propose an approach and describe results of a case study, that tackle
these and similar questions.

5

1. Overview

Figure 1.1: UML Use-Case-diagram of the Travelistr software system.

6

1.5. Motivating example

:M
o
b
il
e
U
se
r

:P
ic
tu
re

p
u
b

lis
h

Im
g

P
O

S
T(

Im
g
)

:A
u
th
e
n
ti
ca
ti
o
n

:U
se
rS
e
rv
ic
e

:P
e
rs
is
te
n
ce

S
e
rv
ic
e

:U
p
lo
a
d

:I
m
a
g
e
S
ca
le
r

:M
o
b
il
e
A
p
p

:I
m
a
g
e
S
to
re

is
A

u
th

()

g
e
tU

se
r(

)

:D
at
ab
a
se

g
e
tU

se
r(

)

g
e
tU

se
r(

)

U
sr

-O
b
j

u
sr

u
sr

u
sr

p
u
b

lis
h
Im

g
(im

g
, u

sr
)

:P
ic
tu
re

S
e
rv
ic
e

u
p
ld

Im
g
(i
m

g
)

sc
a
le

Im
g

(i
m

g
)

im
g

im
a
g

e
ID

sa
v
e
Im

g
R

e
f(

u
s
r,
 i
m

a
g

e
ID

)

p
u

b
li
cI

m
g

L
in

k

p
u

b
li
cI

m
g

L
in

k

H
T
T
P

R
e
s
p

sh
o

w

Im
g

st
o
re

Im
g
(i
m

g
)

im
ag

e
ID

Figure 1.2: Sample UML Sequence-diagram for the Use-Case Publish picture of the
Travelistr software system (Error cases are left out for simplification).

7

1. Overview

Figure 1.3: UML Component-diagram of the Travelistr software system.8

1.6. Structure of the thesis

1.6 Structure of the thesis
The theoretical background including the used terminlogy and mathematical foundations
will be covered in the Chapters 2, 3 and 4.
Chapter 5 summarizes relevant research in the problem domain and together with the
theoretical background constitutes the knowledge base that is used in chapter 6.
In Chapter 6, a new approach towards software performance engineering integrated in
agile software development is outlined.
The hypotheses propositions of Chapter 6 will be evaluated in Chapter 7 within a case
study. Finally in Chapter 8, the findings and results are summarized and additionally
future research directions and pending issues are outlined.

9

CHAPTER 2
Agile software engineering,
continuous delivery and the

DevOps culture

2.1 Overview
After outlining the aim of this thesis in the previous Chapter, this Chapter gives an
overview on the three concepts: agile development, continuous delivery and DevOps.
These concepts emerged in the last decade and are important in software engineering
practice today [1]. Model-driven engineering and performance engineering will only be
covered briefly here. For more details see the respective Chapters 3 and 4.

2.2 Software engineering fundamentals
»Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification to maintaining the system
after it has gone into use« [77]. This definition contains two main propositions: First,
the creation of software is an engineering approach. Second, it is concerned with »all
aspects« that come along the software creation process, not only technical aspects.

A key-characteristic of engineering disciplines is to reuse components and best-practices
that showed efficacy in the past. Therefore it is essential that software is developed
in a reusable and component-based way. The components have clear interfaces and
can therefore be separated from other components. Components can be replaced and
exchanged. A software-component offers a certain functionality, can be accessed by a
defined interface and may have dependencies. More information on component-based
software is given in Chapter 4.

11

2. Agile software engineering, continuous delivery and the DevOps culture

Creating software with whatever kind of software development methodology consists of
different phases. The following phases are the most essential and may occur multiple
times and in different orders depending on the used methodology.

• Requirements from a user perspective

• Specification from an engineering view

• Project planning from a project management view

• Design from a designers/technical view

• Implementation from a technical view

• Testing

• Integration - Binding components together from a technical view

• Operation and Maintenance

• Retirement

Release engineering is a software engineeering discipline and its goal is to establish
and improve a software deployment process in a reliable and predictable manner [40].
Continuous integration is a practice where changes are integrated to a main line of
development continuously. Developers therefore use a central repository where changes
are pushed to and integrated. The term integration corresponds to any level of gran-
ularity, components as well as finer or more coarse grained deliverables. Continuous
deployment is a practice deploying software (or parts of it) continuously to a production
or some sort of production environment. In this sense, continuous delivery is a term
that describes the ability to continuously deliver a software product to customers or any
other stakeholder.

2.3 The agile approach

In the last decade, the agile software engineering methodology became increasingly
important. The agile approach is especially well suited for projects with possibly changing
requirements. Core-concepts of the agile approach are:

• Incremental development in

• short iterations with

• fast and continuous deliveries of running software.

12

2.4. The DevOps culture

Due to these concepts, a broad range of knowledge in different fields is needed early and
in parallel in the software creation process. For example, the deployment of running
software after the first software development iteration triggers the need for a deployment
environment, thus operations infrastructure is needed already at this early stage. Another
consequence of the agile approach consequently is the increased demand of tool support
especially for automated processes. SCRUM is a prominent example for an agile software
development framework.

The agile approach changed the way, software is created. As a consequence of that, the
DevOps culture gathered increasing relevance in the last years [1].

2.4 The DevOps culture

DevOps is a term that stresses the strong interdependence between development and
operations. DevOps is a culture and movement that incorporates many different areas
inside an organisation such as sharing knowledge and ideas, working together as one
team instead of separation, automating workflows and routine tasks amongst others [49].

There are two interpretations of DevOps used in industry: DevOps as a culture and
DevOps as a job description [67]. The term DevOps is used in this thesis to describe
a culture where development and operations converge. Furthermore, DevOps is not
limited to only development and operations teams following the definition of Dyck et
al. [40]: »DevOps is an organizational approach that stresses empathy and cross-functional
collaboration within and between teams - especially development and IT operations - in
software development organizations, in order to operate resilient systems and accelerate
delivery of changes«.

In classic waterfall-models for software development, the development-phase was separated
from Quality Assurance (QA) and operations. The operations- and QA teams took over
after the development team finished their work. [67]
A meme called »Disaster Girl«that i think points out a problem of this seperation in a
funny way can be found in [7]. The text at this Meme says: »Worked fine in dev. Ops
problem now.«

DevOps is a cultural shift in organizations that highlights collaboration, communication
and interaction between teams, especially the development team with the operations
team. Another aspect of DevOps is its focus on Quality Assurance. In the minimum
realization of the DevOps culture from a development-perspective it covers the phases
Implementation, Testing, Integration as well as Operation andMaintenance. Collaboration
between development and operations results in more realistic testing and better feedback
for development. In the same sense, software performance management can benefit from
better collaboration.

13

2. Agile software engineering, continuous delivery and the DevOps culture

2.5 The need for automation
Humble et al. [48] argue that in order to continuously deliver software, the deployment
process must be highly automated.

In classic waterfall-models for software development, software artefacts are, in the best
case, deployed exactly once at the end of the development phase. In the last decade,
the situation changed. As a consequence of the the agile methodology, the DevOps
culture and continuous delivery, tasks like the deployment of artefacts to an operation
environment became routine tasks. Deployments are done much more often. In extreme
cases after each source-code-commit, but at least after each iteration. As the effort of
manual deployment of artefacts might be reasonable if it is done only a few times in the
end of a project, on a regular basis automated tool support is crucial towards cost and
performance of development.

Given these circumstances it is not surprising that in the last years the demand for
automated solutions and tools increased and many new products came to market, open
source as well as proprietary ones. Continuous delivery is essential to agile software
engineering and alongside with that, a deployment/operational environment has to
be set up, configured and orchestrated. The DevOps community actively supports
deployment automation by sharing knowledge and reusable artefacts. The artefacts
are mainly of the field of Configuration management and infrastructure as code in the
cloud-environment. [83]

14

CHAPTER 3
Software Performance

Engineering, Markov models and
queuing networks

3.1 Overview

In Chapter 2, the agile methodology and its impact on processes and cultures was
described. The goal of this chapter is to introduce the concepts of Software Performance
Engineering (SPE). Furthermore, Markov models and queuing networks are described
and the mathematical foundations for the Chapters 6 and 7 are laid here. The queuing
network formalism is widely used in SPE (e.g. [32, 46, 47]). Additionally, hidden Markov
models (HMM) are also described. Their use in SPE is rather new [41].

Performance is an important non-functional requirement and a key-characteristic of
software systems. The performance quality describes the degree to which a software
system or a software-component meets its performance requirements. In this work, per-
formance quality is considered with respect to timeliness. Consequently, the performance
quality is quantified with time intervals for responses. Responsiveness can be quantified
within a system as interaction-times between components. Responsiveness can also be
measured by interaction-times between users and a software system. The scalability
of a system describes its capability of still meeting performance quality criteria given
an increased workload-intensity. Throughput is defined in this thesis as the maximum
number of operations that can be processed by a software system in a specific time
interval. Throughput is defined here as the maximum of a servers-capacity and a given
workload [58]. Trashing is a term that describes the phenomena of decreasing throughput
when the workload exceeds a certain point [58].

15

3. Software Performance Engineering, Markov models and queuing networks

3.2 Software Performance Engineering

»Software Performance Engineering (SPE) represents the entire collection of software
engineering activities and related analyses used throughout the software development cycle,
which are directed to meeting performance requirements« [85].

SPE is a software engineering discipline. In software engineering, different graphical- or
formal models may be used. In this context, it is necassary to distinguish between two
types of models: (1) software models and (2) performance models [86]. Software
models have their primary focus on software system descriptions, workflows and interac-
tions between entities. Examples for classical software models are sequence-, activity-
and deployment diagrams. On the other hand, the focus of performance models are
performance evaluations. Performance models can be used for simulations and analytical
evaluations in a predictive way.

There are two different approaches to evaluate the performance of software systems, the
(1) model-based approach which is carried out early in a project and predicts the
performance quality of a system and (2) the measurement-based approach that is
carried out after development when the system is already deployed. There is a need and
tendency for both approaches to converge. [85]

This thesis aims at combining the model-based with the measurement-based approach
by capturing the stochastic nature of software systems in a model-driven way. There
are many examples for stochastic systems. In terms of software systems, workloads are
the primary stochastic element. The concept of workloads is used in a wide range of
literature for both, model-based- and measurement-based approaches (e.g. [23, 62,79]).
A workload is the amount of work that requests some sort of service in a specific time
interval. This workload is stochastic in the sense that it changes and occurs in a non-
deterministic way. An example of software systems with stochastic workloads are websites.
The workload is primarily generated by the stochastic user surfing behaviour on the
website.

Markov models may be widely used to model a software systems stochastic user behaviour
(e.g. [32,41,46]). On top of that, queuing networks are often used to analyse the utilization
of resources (e.g. [32,46]). Markov model- and queuing network formalisms enable the
analysis of a software systems performance quality. Other examples for performance
modelling formalisms are layered queuing models [43], Petri nets, stochastic algebra
models, simulation models In order to get insights about a systems characteristics
and solve stochastic models, two distinct approaches are available: analytical solutions
and simulations.

Requirements towards software systems may change multiple times within a software
project. This also triggers necessary changes in the SPE-domain. Software models as well
as performance models need to change too. Therefore, in the same sense as in continuous
delivery (Section 2.5), I assume that also in the SPE-domain, a high degree of automation
is essential for being practically usable.

16

3.3. Stochastic processes

3.3 Stochastic processes

A stochastic process is a mathematical tool in the field of probability theory. The term
stochastic describes its randomness and the term process describes the dependence and
the evolution of the state over time.

A stochastic process is an indexed collection of random variables that express the timely
change of the state of a system. The state of a system at a time-point is represented by
the values of the random variables at that moment. The degree of randomness is always
correlated to the available information. The more an observer knows about a system,
the less randomness is included in the model and the more deterministic the model is.

Stochastic processes can be classified with a range of criteria. Of interest for this thesis
is the classification based on the structure of their stochastic dependencies. These
dependencies are mostly defined using conditional probabilities. In this sense, stochastic
processes can be classified into two groups:

• Markov processes

• Martingales

A Martingale is a model for a stochastic process in which the knowledge about the current
state nor the past states does aid in predicting the future. In consequence, Martingales
are referred to as models for fair games. A prominent example for a fair game is coin
tossing. Here the information about the past coin tosses does not aid in predicting the
next coin toss result.
A stochastic process is a Markov process if it satisfies the Markov-property. The Markov-
property can be defined of any order. The Markov-property of order one states that the
future state depends only on the present state. The Markov-property of order two states
that the future only depends on the present and one previous state. And so forth.
So in conclusion, a stochastic process is Markov, if, with a limited information of the past,
it is possible to predict the future exactly as good as if i had the complete information
about the past. In Section 3.4 more information about Markov models is given.

In order to explain the concept of random variables and stochastic processes more
precisely, it is necessary to begin with the definition of a probability space.

3.3.1 The probability space

A probability space is a mathematical formalism used to model an event which outcome
depends on randomness.

The notion of a probability space was introduced by Kolmogorov. A probability space is
defined by the triple Ω, Σ and P.

17

3. Software Performance Engineering, Markov models and queuing networks

Ω describes the sample space which includes all possible outcomes of the event.
Σ is a set of subsets of Ω.
P denotes the assignment of probabilities to the sets of Σ.

A probability space needs to fulfil three axioms:

1. A ∈ Σ; Pr(A)→ [0, 1].
Every element A that is an element of Σ has a probability between 0 and 1 assigned.

2. Pr(Ω) = 1.
The probability of the whole sample space is 1.

3. Ak ∩Al = ∅, k 6= l : Pr(
⋃∞

n=1Ai) =
∑∞

n=1 Pr(Ai).
For any sequence of mutually exclusive events, their joint probability is equal to
the sum of the individual probabilities, called σ − additivity.

3.3.2 Random variables

A random variable X is a measurable function (in terms of Borel measurability) that
assigns a numerical value in the state space R to every possible outcome in Ω of a random
event. X : Ω −→ R

3.3.3 Law of total probability and conditional probabilities

The following statement holds for any probability space (Σ,Ω, P):

If the sequence (Hk) for k = 1, .., N is a finite or countably infinite subset of Ω with
Pr(

⋃N
k=1Hk) = 1 and Pr(Hk) = 1 ∀k = 1, .., N then ∀A ∈ Ω the following statement

holds:

Pr(A) =
N∑

k=1
Pr(Hk)× Pr(A|Hk) (3.1)

The conditional probability for two elements A,B ∈ Ω with Pr(B) 6= 0 is defined as
follows:

Pr(A|B) := Pr(A ∩B)
Pr(B) (3.2)

3.3.4 Formal definition of a stochastic process

Now that the necessary probability background was outlined, it is time to formally
describe a stochastic process.
A stochastic process is a collection of random variables Xt that are indexed by a parameter
t where t is part of an index set T . Typically the parameter t represents time. If t is of

18

3.3. Stochastic processes

type integer, the stochastic process is in discrete time. If t is of type real number, the
stochastic process is in continuous time.

A random variable Xt usually depends on earlier values of states of the process. For
example Xt will depend on Xt − 1,Xt − 2, .. in the discrete case, similarly this also holds
in the continuous case. This is the time-dependence of stochastic processes.

The probabilistic rules of so-called stationary processes are constant over time.

Ergodic systems

A system is ergodic if it is (1) irreducible, (2) aperiodic and (3) positive recurrent.

(1) A system is irreducible, if it is possible to reach each state from any other state.
The probability of being in state j after n-steps starting from i must therefore be greater
than zero (see equation 3.3).

Pr(Xn = j|X0 = i) > 0 (3.3)

If 3.3 also holds in the opposite direction (starting at j and reaching i after n-steps with
a probability bigger than zero) the states i and j communicate denoted by j ←→ i.
The communication-relation is symmetric due to its definition. Furthermore it is transitive
and every state communicates with itself.
A system is irreducible, if all states communicate with each other.

(2) A system is aperiodic, if the system state is not systematically connected to time.

(3) A system is recurrent if all states are recurrent. A state is recurrent, if the summed
probability of returning to that state for an infinite number of steps n is infinite (equation
3.4).

∞∑
n=1

Pn
i i =∞ (3.4)

A system is positive recurrent if the system periodically restarts itself in finite time and
every state is visited infinitely often. The expected return time from a state i to itself
must be in finite time.

E(minn ≥ 1 : Xn = i|X0 = i) <∞ (3.5)

To be positive recurrent, a system must be irreducible and aperiodic.

19

3. Software Performance Engineering, Markov models and queuing networks

3.4 Markov models
A Markov model is a stochastic model that fulfils the Markov property. The Markov-
property in this thesis will be regarded primarily of order one and can be summarized
as follows: The Future is independent of the past, given the present.
A more formal definition of the Markov-property is given in Equation 3.6:

Pr(Xt
k
|Xt

k−1
, Xt

k−2
, ..., Xt1

) = Pr(Xt
k
|Xt

k−1
) (3.6)

where tk denotes a set of times tk > tk−1 > ...

All necessary information is encoded in the present state, therefore information about the
past is not needed. The Markov-property is also called memoryless-property. Examples
for Markovian-distributions are the Poisson- and the Exponential distribution.

Stochastic processes with the simplifying Markov-property are usually easier to study
and analyse. Many theories are built upon this simplified model. However, for modelling
a real world system it is important to first check whether the Markov-property holds.
The term Markov-assumption is used for systems in which it is assumed that the
Markov-property holds. The simplest case of a Markov model is a Markov chain. Another
special case of a Markov model is a Hidden Markov Model.

3.4.1 Markov chains

Markov chains have a discrete state space that can be finite or infinite. Markov chains
are either in discrete- or continuous time. Events in discrete-time Markov chains can
only occur in fixed points in time whereas events in continuous-time Markov chains can
occur at any point in time.
If the state transition probabilities do not change over time, a Markov-chain is stationary.
In the case of a discrete state space, stationary Markov chain, the transition probabilities
between states can simply be encoded in a transition matrix. In continuous-time Markov
chains a transition-rate matrix is used.

Steady state

This part defines the calculation of the steady state for discrete time Markov chains. The
continuous-case is omitted here.
Given a transition matrix P of a discrete-time Markov chain, in order to get the n-step
transition probability from one state to the other, the transition matrix P is multiplied
with itself n-times.
pn

ij denotes the probability of being in state j after n-steps starting from state i.
For large n (n→∞), the resulting matrix might converge to a certain distribution. This
distribution is called the limiting probability denoted by πj (Equation 3.7).

πj = lim
n→∞

Pn
ij (3.7)

20

3.4. Markov models

In consequence, the limiting distribution is denoted by Π (Equation 3.8) whereM denotes
the number of states of the Markov chain. If a limiting distribution exists, it does not
depend on the starting state. If Π is the one single limiting distribution of a Markov
chain, Equation 3.9 must hold.

Π = (π0, π1, ..., πM−1) where
M−1∑
i=0

πi = 1 (3.8)

Π× P = Π (3.9)

There are two possible ways to calculate the limiting distribution:

1. Multiplying P with itself till an equilibrium is reached.
This approach might be reasonable for small M , but can get quite expensive in
terms of computing power with many, maybe infinite states.

2. Solving the stationary equations.
The stationary equations can be derived from equation 3.9. In general, they result
in M − 1 linearly independent equations.

An irreducible Markov chain has a unique stationary distribution if and only if all its
states are positive recurrent [72] (page 34, Theorem 54).
The limiting positive distribution is a Markov chains stationary distribution if the Markov
chain is ergodic [72] (page 40, Theorem 59).
The limiting distribution is also referred to as the steady state.

3.4.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov model where states cannot directly be
observed. Instead of observing states, it is possible to observe emissions of states. These
emissions are modelled with a states emission probability distribution. A HMM has
two information-chains: The state path and the observed sequence. Only the observed
sequence is visible. The underlying state path on the other hand is a Markov-chain that is
not visible and thus hidden, therefore the name Hidden Markov chain. HMMs are due to
the simplifying stationary- as well as the memoryless assumption well suited for analysis.
HMMs are full probabilistic models. Therefore, it is possible to use Bayesian probability
theory to show the significance of results or optimize the model. As an example, the
Viterbi-algorithm can be used to compute the most probable state path given an observed
sequence. [42]

Following the notation of HMMs with discrete observations that will be used in this
work and is taken from [78]. Please note that instead of A as a notation for the state
transition matrix P is used.

21

3. Software Performance Engineering, Markov models and queuing networks

• T : Observation sequence length

• N : Total number of states in the underlying Markov chain

• Q : Set containing all distinct states of the underlying Markov chain

• qt : A single state, therefore Q = {q1, q2, ..., qN}.

• M : Number of distinct observation symbols

• O : Observed emission sequence.

• Oj : A single observed emission, therefore OT = {O1, O2, ..., OT }

• P : State transition probability matrix of underlying Markov chain.

• B : Observation probability matrix.

• π : initial distribution of underlying Markov chain.

• λ denotes the hidden Markov model and consists of the triple (P, B, π).

Similar notations are used in a range of other publications in the field of HMMs (e.g. [41],
[65]).

3.5 Queuing theory
Queuing theory is used to mathematically describe the occurrence of waiting lines in
systems. Typical examples for such systems are supermarket checkout waiting lines,
highway traffic jam occurrence as well as in recent year the studies of waiting lines for
computing resources of software systems.
Queuing theory provides a formalism to describe systems in what waiting plays an
important role. Waiting lines occur whenever the demand exceeds the service availability.
The goals of queuing theory is prediction, description as well as proposing design im-
provements of systems.
There are two basic elements in a queuing system:
(1) A number of (limited) resources that are capable of executing tasks, called Servers.
(2) Customers that request tasks handled by servers.

In terms of software systems, a server might be for example an image server or a
CPU. Examples for customers in terms of software systems are other systems utilizing
components or simply users browsing a website.
Queuing systems have an arrival pattern as well as a service pattern of customers. The
Servers service customers based on a specific queuing discipline (e.g. First-Come-First-
Served). A queue-system has a capacity, that is the total number of customers in the
queue. The capacity may be infinite. Furthermore, a queuing system has a finite number
of parallel channels with Servers. The arrival pattern of customers (which is the workload

22

3.5. Queuing theory

of a system) is the primary stochastic element. There are stationary and non-stationary
arrival pattern. If the probability distribution describing the arrival pattern is time-
independent, it is a stationary process, otherwise a time-dependent process is called
non-stationary.
Furthermore, also the service pattern is usually modelled in a stochastic way. Therefore,
the queue length depends on the arrival distribution and the service distribution. Arrival-
and service distribution are mutually independent. Queuing networks are notated with a
quintuple:

1. Arrival distribution (e.g. M, D, GD, ..)

2. Service distribution (e.g. M, D, GD, ..)

3. Parallel servicing channels [1,∞)

4. Capacity [1,∞)

5. Queueing discipline (e.g. FCFS, LCFS, ..)

This is known as Kendall’s notation. In literature, mostly only the first three symbols are
used. Capacity and Queuing discipline are only stated if it differs from capacity being
infinite and the queuing discipline being First-come-first-served.
As an example, the M/D/1 model has a memoryless arrival distribution (such as
Exponential- or Poisson distribution), the service pattern is deterministic and there
is one service channel in the system.

A queuing network (QN) is constituted of a network of queues and thus a set of service-
centres, which in terms of software systems are a systems computing resources.
Performance models in form of queuing networks for software systems are useful because
the performance of a software system is foremost affected by shared resources and their
contention leading to waiting queues and in consequence waiting times [70]. Queuing
networks for performance analysis for software systems are widely used in literature and
are useful for predicting the performance of a software system (e.g. [46], [59]). A lot
of algorithms and approaches for solving queuing networks is based on the product
form-requirement [25].
In a queuing network in product form, equation 3.10 holds, which demands the indepen-
dence of the number of jobs at the queues in the queuing network [46].

Pr (n1, n2, .., nk) =
k∏

i=1
Pr (ni) (3.10)

An example for a queuing network in product form is the simple case of a Jackson-network.
In a Jackson-network, servers have two types of arrivals:

1. External arrivals following a Poisson arrival process.

23

3. Software Performance Engineering, Markov models and queuing networks

2. Internal arrivals from other servers that in consequence also follow a Poisson arrival
process.

Product-form QNs have been used as a basis for a wide-range of extensions (e.g. [25,46,70]).
An example for such an extension are Multiclass-queuing networks where routing
probabilities from one server to another not only depends on the two servers but also on
the class of a request [46]. In terms of computer systems, different classes of requests
demand different services of resources. Multiclass QNs were described in [59]. Further-
more the necessary input parameters for a simple multiclass QN were outlined, these
are: (1) classes, (2) devices, (3) request arrival rates on classes and (4) service demand of
requests of every class on every resource.
However, as outlined in [59], modern software systems often violate conditions of product-
form QN models. Product-form QN models are built upon the condition of independent
queues as showon in equation 3.10. Examples outlined in [59] for such violations are
blocking, simultaneous resource possession, forking amongst others. All these features
are however immanent to modern software systems. As an example, for software systems
it is common for an operation to use more than one resource in a nested fashion. E.g.
for an upload of a picture, CPU for scaling the image as well as the Image-Server is
needed. It is common sense nowadays to design- and develop software systems in a
layered fashion. Concerns are separated to different layers introducing abstractions in
each layer. An example of the layered sequence of calls and replies of resources can be
seen in the Travelistr-example in Figure 1.2.
If an operation utilizes more than one resource simultaneously, extended queuing network
are a suitable formalism introduced by Sauer et al. for »simultaneous resource posses-
sion« [70] [71].
A formalism for describing simultaneous possession of resources and including block-
ing, forking and showed applicability in practice was introduced in [43] as the Layered
queuing networks formalism (LQN). More information on the LQN-formalism is given in
Section 5.2.4.

3.5.1 Little’s Law

Little’s Law is a very prominent Operational law that applies to queuing theory. It is
both powerful an easy. Little’s Law states that the expected number of customers L in
any ergodic system is equal to the expected arrival rate λ times the expected spent time
of a task W .

L = λW (3.11)

The theorem is astonishing, as the arrival- nor the service distribution or anything else is
taken into consideration. It was proofed by John Little in [56].

24

CHAPTER 4
Cloud computing and

model-driven engineering

4.1 Overview
In the previous chapter, the Software Performance Engineering domain was introduced
together with its mathematical foundations in form of stochastic models and queuing
networks. The aim of this chapter is to give an overview of topics in the area of Cloud
computing and model-driven engineering that are relevant for this thesis. Additionally,
the model-driven provisioning specification OASIS TOSCA is introduced. TOSCA eases
the provisioning process and the management tasks of component-based systems in the
Cloud computing domain.

Cloud computing is a term that describes shared infrastructure that are easily accessible
and manageable. This is achieved by hiding away parts of the complexity through
abstraction from physical computing resources. Cloud computing gathered a lot of
attention in the last decade.

Model-driven engineering (MDE) uses models for knowledge representation. It is a
concept that introduces an additional layer of abstraction and so hides away parts of the
complexity of software systems. The Object Management Group (OMG) implements
MDE with its model-driven architecture (MDA) framework. Model-driven provisioning
is a term describing a model-driven approach towards application provisioning.

4.2 Cloud computing
»Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal

25

4. Cloud computing and model-driven engineering

management effort or service provider interaction« [57]. The NIST definition of Cloud
computing [57] defines three service models and four deployment models. The service
models are: software as a service (SaaS), platform as a service (PaaS), infrastructure as
a service (IaaS). The deployment models are: private-, community-, public- and hybrid
Cloud.

The concepts of Cloud computing are not new. However, technical limitations hindered
their realisation. Only in the last couple of years convenient large-scale Cloud platforms
from different vendors came to market. Examples for such platforms are Amazon web
services (AWS) in 2006, Microsoft Azure in 2010 or the IBM Cloud Bluemix in 2014. Due
to its novelty, Cloud computing lacks standardization. Different vendors follow different
concepts/standards and/or define their own standards.

In the software engineering process, the production-Cloud1 is not available in every stage
of the life-cycle.
Other servers or more cost efficient Clouds are used instead meanwhile. At the end of
development, the software system has to be migrated to a production environment.
There are many other examples that underline the importance of Cloud portability and
interoperability as well as the need for standardization.
Due to the lack of standardization, the migration from one Cloud platform to another is
not always possible and in some situations practically infeasible. The situation of not
being able to change a Cloud vendor is called a vendor lock-in.
Portability and interoperability must be defined in a concrete way inside a Cloud domain
as it would contain little information in a general way [39]. Following a definition of
different dimensions of portability and interoperability that is partly taken from Di
Martino et al. [39]. Four dimensions of portability: Data-, component-, service- and
application portability. And three dimensions of interoperability: Component-, service-
and application interoperability.

Elastic Clouds are new ways to handle scalability and performance issues. Computing
resources can be added on-demand quickly.
I assume that practitioners might be mislead to neglect the importance of performance
engineering, as resources in a Cloud can easily be extended. However, this may lead to
inefficient and costly software systems.

4.3 Model-driven engineering

Model-driven engineering (MDE) is a model-based approach in the software engineering
discipline. At the heart of model-driven engineering are models. A model is a repre-
sentation of a system or parts of it. Models are transformed either to other models
(model-to-model transformations) or to text (model-to-text transformations) which is

1The term production-Cloud is defined here as a Cloud platform where the application will be
provisioned when in productive use.

26

4.4. OASIS TOSCA

mostly source code in a specific language. With these formalisms, MDE introduces an
additional level of abstraction and separates concerns as it is technology- and platform
independent.

MDE increases the efficiency and effectiveness in software engineering and is said to have
a significant growth in usage in the future. One of the reasons for that is the convergence
of business analysis and software development. [34]
As an example, Gartner Inc. foresees a promising future of MDE: »By 2018, more
than half of all B2E mobile apps will be created by enterprise business analysts using
codeless tools« [9]. MDE separates the platform- and technology independent design
from the platform and technology dependent implementation. Therefore, MDE supports
portability, interoperability and reusability of components, services and applications [39].

Currently there are several research projects working on the combination of MDE with the
Cloud computing domain. An example for such a research project is MODAClouds [20].
The aim of the MODAClouds-project is to support developers as well as operators in the
development, provisioning and orchestration of Cloud applications.

Meta object facility (MOF) is a concept defined by the Object Management Group
(OMG). MOF describes a multi-layer architecture that’s aim is to describe a standard
that enables portability of models as well as model-transformations.
Model-driven architecture (MDA) [13] is an »industry-standard architecture« [19] based
on the MDE principles defined by OMG.

4.4 OASIS TOSCA
The deployment and orchestration of applications is a critical aspect in application
provisioning in the Cloud [36]. Especially the portability as well as the automated
management of applications and their components is of major interest in the enterprise
IT today [31]. The functionality of applications in the Cloud is typically provided by
multiple heterogeneous and distributed components [31]. Developing or using component-
based software that forces modularization and decomposition of services is therefore an
important aspect. It enables the migration of services as well as the exchangeability and
reusability of application components.
The OASIS topology and orchestration specification for Cloud applications (TOSCA) [21]
is a specification in the model-driven provisioning discipline that has the component-based
approach at its core. TOSCA is introducing an abstract, flexible, vendor- and technology
neutral way of defining application and infrastructure components. This approach results
in portable application- and management descriptions as well as interoperable and
reusable application-components that can be managed and deployed automatically. [36]

Binz et al. outline three major challenges that are tackled by TOSCA [31]:

1. Automating the application management

27

4. Cloud computing and model-driven engineering

2. Portability of applications as well as the portability of application management

3. Reusing interoperable application components

Applications are aggregates of services and components that process, store and use
data. TOSCA describes the components/services and their dependencies to other com-
ponents/services with a topology graph. These TOSCA topology models are software
models.

4.4.1 The TOSCA modelling language

TOSCAs meta-model is constituted of the following parts:

1. The topology template that consists of components and their relationships.

2. The dynamic behaviour and management of components/services/an application
can be modelled with any kind of workflow-language and is defined by Management
Plans.

3. The topology template and the plans together constitute the Service template.

4.4.2 TOSCA containers

TOSCA specifies CSAR (Cloud service archives) as its packaging format. CSAR archives
are processed by TOSCA containers such as OpenTOSCA and are processed either im-
peratively or declaratively. The declarative approach is realized by TOSCAs management
plans. The imperative approach is carried out by the respective TOSCA-container itself.

4.4.3 TOSCA policies

The TOSCA specification allows to define and manage non-functional behaviour and
quality-of-services of components and services through policies.

Types of policies are expressed by Policy Types. Node Types (e.g. a Database Server),
can have multiple Policy Types. A Node Template is an instance of a Node Type and
can declare to expose instances of the type Policy Template. A Policy Template is a
specific instance of a Policy Type. The Policy Types element defines which properties are
allowed and the Policy Templates element defines concrete values for these properties.

4.4.4 OpenTOSCA

OpenTOSCA [22] is an ecosystem of open-source software and tools that aim to help
with the provisioning and orchestration of Cloud-application with TOSCA. It has three
parts: (1) A modelling tool winery, (2) A runtime environment OpenTOSCA and (3) a
web-based provisioning platform Vinothek.

28

CHAPTER 5
Related work

5.1 Overview

The foundations and theoretic background were outlined in the previous chapters. It is
the goal of this Chapter to summarize relevant research work and research directions in
the different domains relevant for this thesis. First, research in the field of model-driven
Software Performance Engineering is outlined. A schematic workflow containing the main
research areas in this field is given in Figure 5.1. These research areas are:

1. Intermediate formats that are suited between software models and performance
models and enable the exchange and reusability of performance information of a
system. As an intermediate format, they also mitigate the overhead of the need for
many transformation approaches (Section 5.2).

2. Performance annotations is a way to integrate performance information, re-
quirements, the operational profile amongst others in software engineering artefacts.
Research mainly focuses on classical software diagrams in UML notations. Often
used are use case diagrams, sequence diagrams and component diagrams (Section
5.3).

3. Transformation approaches that are available for model-to-model transfor-
mations. The research work was filtered with respect to intermediate formats.
The transformations I analysed are thus carried out from a software model to an
intermediate model (Section 5.4).

29

5. Related work

Figure 5.1: The workflow for performance analysis that is used widely in research and is
subject of the first part of this literature review (partly based on [86, p. 1530, Fig. 1]).

This thesis aims to combine the model-based and the measurement-based approach for
component-based software systems within the DevOps culture using Markov models and
queuing networks. Therefore, also research in the field of performance measurement
(Section 5.5) and on Markov models as well as queuing networks for performance analysis
(Section 5.6) are outlined. Furthermore, work in the field of SPE with DevOps (Section 5.7)
is described and additionally, other related research is summarized in Section 5.8.

5.2 Intermediate formats

5.2.1 Core Scenario Model (CSM)

CSM [62] is an intermediate model used in the PUMA framework (Performance through
unified model analysis, Section 5.4.1). This intermediate model, similar to any other
intermediate format, comes with the purpose of reusability of transformation approaches
as well as exchangability of informations. The metamodel of CSM can be found in
Figure 5.2.

30

5.2. Intermediate formats

Figure 5.2: Simplified class diagram of the CSM metamodel, taken from [86](p. 1536,
Fig. 6).

Following a brief description of some of the CSM model elements.
CSM is based on the same concepts as MARTE (»UML Profile for Modeling and Analysis
of Real-Time Embedded systems«(MARTE) [23]). It is built around the three elements
(1) Resource, (2) Scenario and (3) Workload.
A Resource is modelled using the entity GeneralResource. A GeneralResource has a
scheduling policy and can be either active or passive, logical or physical. A Scenario is
constituted of Steps. A Step can acquire and release resources. Two Steps are connected
with a PathConnection. Any PathConnection can have a Message associated to it which
describes the type and size of a message sent from one step to the other. A PathConnection
defines the relationship and sequence of processing. It can be of the following types:

• Sequence for sequential ordering of steps

• Branch for an OR split

• Merge for an OR join

• Fork for an AND split

• Join for an AND join

31

5. Related work

• End for the ending of a path and thus a Scenario

• Start at the beginning of a path and thus a Scenario. Start also has an association
to a Workload.

A Workload can be open or closed and defines an arrival pattern attribute. The distinction
between open and closed workloads is based on the distinction in the field of queuing
networks regarding open- and closed networks. An open network has external arrivals-
and departures whereas closed networks have a fixed population.

5.2.2 PMIF

The Performance Model Interchange Format (PMIF) was first introduced by Smith et
al. [73]. Later, the metamodel was revised and introduced again as PMIF2 [76]. PMIF
and PMIF2 are built upon the theory of queuing networks.
The authors describe a workflow that uses the concepts of MDE with respective model
transformations. Another exchange format they use in this workflow is S-PMIF which is
intended to capture architecture-, design- and performance informations about a software
system. It is constituted of three different schemas: Topology, ComputerResourceRequire-
ments and Distribution. A translation approach from S-PMIF to PMIF is described
in [75]. PMIF2 defines the QNM metamodel 2 which is a metamodel describing the
model elements that can be used in PMIF2 to describe a software system with a queuing
network model. The head element of the QNM metamodel 2 is the QueuingNetworkModel,
it’s sub elements are Arc, Node and Workload. Two Nodes are connected with an Arc. A
Node can either be a Server or a Non-Server Node. A Workload is linked to a Server
via a Service Request. More detailed descriptions about the PMIF specifications can be
found in [14]. The metamodel of PMIF2 can be found in Figure 5.3.

Figure 5.3: Class diagram of the PMIF2 metamodel, taken from [74]

32

5.2. Intermediate formats

5.2.3 KLAPER

Grassi et al. [45] introduced KLAPER, a Kernel Language for Performance and Reliability
analysis that is, in its purpose very similar to CSM and PMIF: An intermediate model
between software models and performance models. The aim of KLAPER is easing
the process of non-functional analysis of software systems. Therefore, the focus is not
restricted to performance analysis. In their work, they outline the KLAPER metamodel
as well as transformation approaches towards the KLAPER model (Section 5.4.3).
The metamodel of KLAPER can be found in Figure 5.4.

Figure 5.4: Class diagram of the KLAPER metamodel, taken from [45].

5.2.4 Layered queuing networks

Layered queueing networks (LQN) [43] is a notation for extended queuing networks in
canonical form. As described earlier, given multiple requests, an operation on a resource
may not be serviced at once. Instead the operation gets slices of computing power
over time. A canonical form does not take these timely slices into account, instead an
operation is modelled as if it was done at once.
Extended queuing networks, and respectively LQN, are able to describe simultaneous
resource possessions (Section 3.5).
The model elements of LQNs are (1) Tasks which represent resources. Tasks run on a
physical or logical (2) Processor and have a queue. Tasks offer operations defined by their
(3) Entries and can call operations of other tasks with (4) Requests. Requests can be of
type Rendezvous which is a synchronous call that blocks the client till the server replies,
Forwarded which is an asynchronous call that doesn’t block the client and Send-no-reply
which is also an asynchronous call but with the difference that the client does not get an

33

5. Related work

answer from the server at any time.
The demand of a service type, and therefore the workload of Processors can be defined
with (5) phases and (6) activities.
Phases are specified at the entries of tasks in a numerical way.
Activities are finer grained and are used to model the work steps with a directed activity
graph. Activities are connected with Pre- (And-Join, Quorum-Join, Or-Join) and Post
(And-Fork, Or-Fork, Loop) operations.
Processors are utilized by activities and are Servers in the sence of classical queuing
network models as they only receive requests but do not send requests to others. Processors
have a single queue for requests. The execution time of a processor is divided into slices
by using the (7) Group element. A Group consists of tasks. An example for this is the
computing time of a CPU wich is needed by a group of taks. Each task gets some slices
of the CPU time to carry out work. [44]
The metamodel of LQN can be found in Figure 5.5.

Figure 5.5: Class diagram of the LQN metamodel, taken from [44](p. 3, Fig. 1.2).

5.2.5 Palladio component model

The Palladio component model (PCM) [28], is a metamodel used to describe and analyse
the quality of component-based software in a model-theoretic way. Its first and foremost
goal is to aid in the prediction of performance and reliability. PCM »explicitly include
all factors influencing the performance of a software component« [28]. These factors
are: (1) implementation, (2) external service performance, (3) execution environment

34

5.3. Performance annotations

performance and the (4) usage profile. PCM allows to specify quality of service (QoS)
in a parametric way and allows the modelling of component behaviour with stochastic
distributions. PCM has similar concepts like PMIF, CSM and KLAPER but is novel in
that it focuses explicitly on component-based architectures.
One PCM instance is constituted by different models. These models are: (1) Component
specification, (2) Architecture model, (3) Usage Model and are specified by different
developer roles (Section 5.4.2).

5.3 Performance annotations

5.3.1 UML SPT and MARTE

The »UML Profile for Modeling and Analysis of Real-Time Embedded systems« (MARTE) [23]
is the successor of UML SPT, the »UML Profile for Schedulability, Performance and
Time« [24].

The concepts of UML for MARTE are very close to those of the CSM metamodel. There-
fore it is only described briefly here. In [86] a more comprehensive explanation to MARTE
is given as well as its equivalent model elements in the CSM metamodel (Section 5.2.1).
The metamodel of UML SPT can be found in Figure 5.6.

Figure 5.6: Class diagram of the UML SPT performance analysis domain model, taken
from [62].

The MARTE profile is constituted of three parts:

• MARTE Foundations

• MARTE Design Model

• MARTE Analysis Model

MARTE foundations are the core of the profile. The Design model and the Analysis Model
extend the foundations. The modelling of real-time- and embedded systems is supported
by the Design Model. Annotations that are meant to be added to UML models in order

35

5. Related work

to enable evaluations of the modelled software systems, are defined in the Analysis Model.
The Analysis Model has support for schedulability (the SAM package) and performance
(PAM). PAM (Performance Analysis Model) and SAM (Schedulability Analysis Model)
share the concepts of quantitative analysis in the GQAM package (Generic Quantitative
Analysis Model). QCAM describes three basic elements: Resource, Scenario andWorkload.
A Scenario is a specific case of user interaction with a system. A Scenario is triggered
by an event and has one or more Steps. A Step utilizes a Resource. A Workload is
constituted of one or more events that consequently start a Scenario. [29]

5.4 Transformation approaches

5.4.1 The PUMA framework

The PUMA framework (Performance from Unified Model Analysis) [87] was first intro-
duced in 2005. This initial PUMA model was built for UML models in combination with
UML SPT, the UML profile for Schedulability, Performance and Time.
In 2014 [86], the PUMA framework was adapted in order to use UML MARTE anno-
tations instead of UML SPT. The UML profile MARTE is used to add non-functional
properties to software models. For more information see Section 5.3.1.
In their work [86], Woodside et al. present the PUMA framework that uses automation
efforts by transforming software models to performance models. Software models have
their primary focus on the functionality and architecture of software systems as well as
workflows and interactions. Examples for classical software models are sequence-, activity-
and, deployment diagrams. On the other hand, the focus of performance models are
performance evaluations based on resource usages in the sense of simulations or analytical
solutions.
Due to their different focus, software models and performance models contain different
information resulting in what the authors call a »semantic gap«. For transformations
between these two kinds of model, the semantic gap is overcome by using the com-
mon elements. In essence, these elements are resources and behaviour. Behaviour is
thereby modelled with steps that make use of resources. A step therefore is a »unit of
behaviour«resulting in resource utilization. The main purpose of the PUMA framework is
a highly automated creation of performance models based on software models annotated
with UML and MARTE (Section 5.3.1).
The PUMA framework is capable of using a variety of software models and performance
models. In concrete terms, PUMA allows to transfer software models in the form of
interaction-, activity- and deployment diagrams to performance models in the notation
of queuing networks, layered queuing networks, Petri nets and simulation models [86].
In [86] furthermore a description of transformation approaches towards LQN and Petri
nets are presented.
Resulting performance models can afterwards be analysed or simulated with respective
third party tools independent of the PUMA framework. PUMA has the intermediate
format CSM (Section 5.2.1) at its core that reduces the efforts for the need of many

36

5.4. Transformation approaches

transformation approaches.

The PUMA approach defines five steps for transferring software models to performance
models:

1. Preliminary: Select the critical usage profile of interest.
The use cases that seem to be relevant are identified and must be contained in the
software models.

2. Add the usage profile information to the software models with MARTE annotations

3. Select and transfer the relevant information of the software models towards a CSM
model.

4. Optional: If the performance model will be of type layered queuing network (see
Section 5.2.4) an analysis of extended resource properties must be carried out.

5. Transfer CSM to some performance model.

The PUMA framework automates steps 3, 4 and 5. Step 1 and 2 are however manual
tasks.

5.4.2 The Palladio component model

Becker et al. [28] introduced the PCM model (Section 5.2.5). In the development of
component-based software the authors differentiate four different roles: (1) component
developer that specifies the components, (2) System Architect that specifies the architecture
model, (3) system deployer that specifies the resource model and the (4) domain expert
that specifies the usage model and thus the usage scenarios, the workloads and the
scenario behaviour.
A PCM instance is built by these different roles and includes different models which are
translated in terms of M2M and M2C transformations towards performance models and
code implementations.
The authors furthermore provide a tool with a graphical user interface in order to ease
the specification of the needed models.

5.4.3 UML and OWL-S to KLAPER

Grassi et al. [45] describe a transformation approach from UML- and OWL-S models
to a KLAPER model (Section 5.2.3). Furthermore, they describe a transformation
from KLAPER to analysis model, namely discrete time Markov processes (DTMP) and
extended queuing networks (EQN).

37

5. Related work

5.4.4 UML to PMIF2

Cortollessa et al. [37] present a transformation approach from classic UML models to
PMIF2 queuing network models. The authors add performance information to software
models in UML notation. This additional information is integrated using UML SPT
annotations. The authors implemented the transformation by using ATL [3]. The
transformation logic is based on the SAP one approach [38].
The outlined methodology in [37] defines a set of transformation rules for generating
a multi-chain queuing network model. The software models define static aspects of a
software system with component diagrams and dynamic aspects with sequence diagrams,
whereas one sequence diagram has to be drawn for every use case.

5.4.5 AutomationML and PMIF

Berardinelli et al. [26] show the combined use of AutomationML and PMIF. Automa-
tionML is a standard for representing and exchanging artefacts between engineering
tools. With the combination of AutomationML and PMIF they outlined a step towards
early performance validation of CPPS (cyber physical production systems). The authors
describe three integration styles between AML and PMIF (namely native, linking, trans-
formations). This study is built upon a case study from Folmer et al. on the evaluation
in industrial plant automation [18].

5.5 Service demands and performance measurements
In order to estimate parameters of performance models, direct measurement techniques
are available that need performance probes of different layers. E.g. resource-, application-
level or request-based. An approach introduced in [53] uses high-level request based
measurements to estimate service resource consumptions. Therefore, two approaches
are proposed: (1) a linear regression method and (2) a maximum likelihood function.
Their approach has several advantages compared to lower-level approaches. For example,
request-measurements are easy to obtain, integrating external services is no problem,
there is no need to profile a system which may lead in observation overhead that may
distort measurements is needed and also factors such as latency are taken into account.
The results of an experimental validation show that their proposed approach is effective
and often more effective than other approaches based on linear regression using lower-level
measurements.

Magpie is a toolchain described in [27] that, based on hardware-, middleware- or
application-component level traces that are then correlated to the requests, extract
the workload of a software system. The computing demand for any request is then
calculated and dependencies are causally ordered. The results can be used as a basis for
performance models.

Kieker [68] is a framework for continuous monitoring and analysing the runtime behaviour
of software systems. Kieker offers two main benefits: (1) Monitoring of an applications

38

5.6. Markov models and queuing networks

performance and (2) Tracing of the interactions of components [68]. Based on that, it is
possible to execute dynamic analysis of software systems [80]. Kieker is an extendable,
open-source project hosted at sourceforge [18]. Researchers as well as companies contribute
to it [68]. Kieker allows system-level- (e.g. CPU utilization) as well as application-level
(e.g. response times of components) monitoring [11]. Kieker is split in two main parts:
(1) Kieker.Tpmon and (2) Kieker.Tpan [68]. Kieker.Tpmon is the component responsible
for monitoring and logging data. Kieker.Tpan is the analysis-component where the
runtime behaviour logged in the monitoring data is reverse-engineered and visualized.
Visualizations used by Kieker are for example sequence diagrams and class diagrams.
For the purpose of application-level monitoring, components must be annotated at a
language-level. For example, in Java this is realised by Java annotations. For the purpose
of system-level monitoring, Kieker makes use of the Sigar API [15].

5.6 Markov models and queuing networks

Markov models and queuing networks are two formalisms widely used in SPE (e.g.
[32, 46, 47]). Hidden Markov models have been used in many different fields [41]. The
first major application of HMMs was in speech recognition [65]. However, the use of
hidden Markov models in the field of performance evaluations of software and thus in
the field of Software Performance Engineering is relatively new [41].

In [30], the Java Modelling Tools are presented. A tool dedicated to evaluate computer
systems performance with queuing models. It is licensed under GNU GPL and consists of
several tools such as JMVA, a tool to carry out the Mean Value Analysis for product-form
queuing networks.

Hoorn et al. [79] describe an approach for generating probabilistic workloads for web-based
systems that are able to vary in intensity. The user behaviour is described by means
of Markov models and captured in a User behaviour model. Besides that, the authors
define three other models: the Application Model that specifies the possible sequences
of usages with a hierarchical finite state machine, a User Behaviour Mix model that
defines which user behaviours are used during generating a workload and a Workload
intensity model that specifies the varying numbers of users over time. Based on this
approach, the authors furthermore extended the workload generator JMeter to what they
call Markov4JMeter.

Zhou et al. [88] proposed a method for late-cycle website performance analysis using
Markov models. They used log files of the user navigation and from there extracted an
extended state diagram. Based on the extended state diagram the authors derived a user
behaviour model by using the Markov model formalism. This model was then used for
performance analysis.

Jespersen et al. [50] evaluated the Markov assumption for the mining of web usage. The
authors examined the quality of rules derived from two websites with the Hypertext
Probabilistic Grammar model (HPG) [33]. HPG is a method that relies on the Markov

39

5. Related work

assumption where the probability of the next state is only determined by the current
state. HPG is a method for websites, taking all pages as states and the hyperlinks
between pages as transitions.
For the quality evaluation they defined two measures: (1) similarity and (2) accuracy.
Similarity compares the amount of rules that were derived with HPG that are equal
to the true usage patterns. Accuracy compared the derived probabilities of the rules
with the true usage patterns. As a result, the authors suggested that Markov based
approaches are better suited for tasks that need less accuracy.

Li et al. [55] propose an easy approach for evaluating the Markov property for modelling
user behaviour. In this approximative approach, the transition probabilities only taking
the current state into account are compared to the transition probabilities when taking
the current and one previous state into account. This approximative approach was
demonstrated in a case study of the website www.seas.smu.edu for web usage profiling.
A definitive answer if web usage can be modelled with Markov chains is not given however
as the empiric case study has several limitations.

Rabiner et al. [66] describes three basic problems of HMMs that must be tackled in order
to be useful in practice. In addition Muntz et al. [41] added a fourth problem. The
authors also show the solutions to these problems in their work ([66] as well as [41]).

HMM - Problem 1

Given a model λ, what is the probability of observing the sequence of emissions OT :
Pr(OT |λ)?

HMM - Problem 2

Given an observation sequence OT , find an optimal state sequence in a specific sense.

HMM - Problem 3

Construct a model λ given the observations OT where Pr(OT |λ) is maximized.

HMM - Problem 4

Given a set of Models λj as well as observations O: With what probability is λj the
actual underlying model.

5.7 DevOps and QA

Roche [67] describes the transition of classic quality assurance (QA) after development in
the waterfall model towards a more mature software engineering process that integrates
QA throughout design and development by adopting DevOps practices. DevOps alongside
an agile software development process and QA therefore converge. Feedback mechanisms

40

www.seas.smu.edu

5.8. Other related work

aid in making informed decisions by using large datasets of quantified metrics. Unlike
other disciplines in industry, results of decisions can then be predicted and validated.

Wang et al. [82] published the «Filling-the-Gap»-tool that, based on resource-level
monitoring data estimates performance parameters of software performance models. The
performance parametrizes queuing network models that are centred around resources.
The tool supports four different algorithms for calculating the parameter estimates,
whereas all algorithms depend on response times of queue lengths. The Filling-the-Gap-
tool is constituted of four main components: (1) FG Local DB - a database storing
the monitoring data, (2) FG Analyzer - calculates the parameter estimates with one
of the available algorithms, (3) FG-Actuator - that updates the parameters in models,
(4) FG Reporter - that provides feedback in form of reports for the developer. The
Filling-the-Gap-tool is based on the design outlined in [61]. In this work, the authors
describe the parameters that are estimated in more detail. The parameters the tool is
capable of estimating are: (1) the population, (2) resource consumptions, (3) think times
and (4) stage durations, transition probabilities, efficiency. A stage thereby describes the
state of resources. The possible stages are: start-up, failure, low- and high contention.

5.8 Other related work
In the performance engineering discipline on a wide range of tools can be set up. Queuing
models are popular notations for describing and analysing performance models. In [12] a
list of queuing theory software is available.

Woodside et al. [86] outline that SPE is a software engineering discipline. In software
engineering, different graphical- or formal models may be used. In this context, it is
necassary to distinguish between two types of models: (1) software models that have
their focus on the functionality of a software system and (2) performance models that
are based on resources and the resource usage.
Furthermore, Smith et al. [76] describes two types of performance models: (1) Software
execution models and (2) system execution models. Software execution models are based
on scenarios. A scenario is used to model a workload that a specific interaction behaviour
results in. Software execution models are described using execution graphs. They are
used to evaluate one specific workflow and unveil critical design limitations. Execution
graphs therefore show the utilization of platform resources of process steps.
System execution models on the other hand are modelled with some sort of queuing model
whereas queuing network models or layered queuing network models are used. System
execution models may also be simulated. They are used to analyse a software system
under load. That means many different scenarios are executed simultaneously.

Franks et al. [85] state that there are two approaches in software performance engineering:
the predictive model-based and the measurement-based approach. They define software
performance engineering as follows: »Software Performance Engineering (SPE) repre-
sents the entire collection of software engineering activities and related analyses used
throughout the software development cycle, which are directed to meeting performance

41

5. Related work

requirements« [85]. Furthermore, the authors suggest that there is a need for combining
the model-based with the measurement-based approach for the performance evaluation
of computer systems and networks. They also argue that empirical measures can be
integrated in the predictive models over time and re-estimate these models.

Moreno et al. [60] describes three distinct stages of evaluation of performance capabilities
in software performance engineering: (1) The Simple-model-, (2) the Best- and Worst-
Case- and the (3) Adapt-to-Precision Strategy. They argue, that a simple model is used at
first and then over time it is refined and extended. A concrete workflow for this approach
is however not available.

Cala et al. [63] outlined the possibilities that OASIS TOSCA brings for reusability and
portability of Cloud applications. They argue that the TOSCA specification can fulfil
the requirements towards a scientific workflow and furthermore introduce additional
potential benefits such as »portability, automatic deployment and scalability of workflows
« [63]. Breitenbücher et al. [83] showed an approach to transform DevOps artefacts to
TOSCA. They distinguished between Node-centric artefacts and Environment-centric
artefacts. The purpose of environment-centric artefacts is the modelling of multi-node
environments including the relations between nodes. On the other hand Node-centric
artefacts are used to model single nodes. Clearly in practice, both types of artefacts
supplement each other. In their work, they proposed a framework to transform artefacts
of type Chef Cookbooks [4] and Juju Charms [10] to TOSCA artefacts.

Brambilla et al. [34] argue that model-driven engineering increases the efficiency and
effectiveness in software engineering. The authors suggest a significant growth in usage
in the future. One of the reasons for that is the convergence of business analysis and
software development.

Humble et al. [48] argue that in order to continuously deliver software, the deployment
process must be highly automated. Tasks like the deployment of the artefacts to an
operation environment became routine tasks and thus a high degree of automation is
needed.

The Architecture Tradeoff Analysis Method (ATAM) was introduced by Kazman et al.
in [52]. ATAM extends SAM, the Software Architecture Analysis Method [51].
ATAM is a method used very early in the requirements- and design-phase of a software
development process. One of the reasons for using ATAM is to build understanding
amongst stakeholders of a software project about the design alternatives. Furthermore it
aids in evaluating a software systems architecture trade-offs concerning their competing
quality attributes such as performance and security. To achieve this, the authors originally
proposed a spiral model with six phases. Since then, the ATAM was reworked and now
has nine phases. More information about the current ATAM can be found in [2].

42

CHAPTER 6
An approach for Agile

Performance Engineering

6.1 Overview
In the last chapters, the theoretic background and related work was presented. It is
now time to introduce my contributions to this research domain, especially the ASPE-
approach. The underlying assumptions, that the proposed approach is based on as well
as hypotheses that are evaluated in Chapter 7 are expressed as follows:

Hypothesis 1. The agile methodology in combination with continuous delivery, model-
driven engineering and the use of the Markov model formalism for describing workloads
on resources is a valid approach to combine predictive- and measurement based approaches
in SPE.

Hypothesis 2. The transition probability between pages/features of a typical Web 2.0
application can be described in Markov model notation and in consequence fulfills the
Markov assumption.

Assumption 1. Typical Web 2.0 applications are very likely to be expressed in terms of
ergodic systems. And if not, they can be transferred to such.

Hypothesis 3. Users in typical Web 2.0 applications are not bound to a specific starting
state. Users are likely to enter at any state.

Hypothesis 4. The fraction of users in each state in the long run, given that the Markov
assumption holds, will be close to the steady state solution of the user behaviour expressed
in Markov model notation.

Hypothesis 5. In order to retrieve service times of operations on resources, it is sufficient
to measure response times on a language level.

43

6. An approach for Agile Performance Engineering

For evaluating the proposed hypotheses, a case study was carried out and is outlined
in Chapter 7. The case study is based on the concepts, approaches and methodologies
outlined in the following sections. The proposed approach as well as the hypothesis are
evaluated for a typical Web 2.0 application. However, the ASPE-approach may also be
valid for other types of software systems.

Figure 6.1: The model-measure-feedback cycle is the basic workflow of the ASPE-
approach.

This chapter is structured as follows: First, a methodology in the field of Software
Performance Engineering that combines the model-based- with the measurement-based
approach is proposed. Specifically, a workflow-model and two meta-models for integrating
predictive-, static- and measured data are proposed. In consequence, the proposed
workflow integrates modelling, measurement and analysis tasks into an agile software
performance engineering process, the ASPE-process.
The two proposed metamodels are class diagrams in UML-notation, namely the CETO-
and the MUPOM metamodel.
A CETO-model is the central data format in the ASPE-process for capturing static,
predictive- and measurement data relevant to the performance of a software system.
Three different approaches are outlined for gathering the needed information of CETO-
models (Section 6.5.2).

44

6.2. Information requirements and basic elements

The MUPOM-model is a performance model used to express user-behaviour with the
Markov-model formalism. The user-behaviour combined with the workload-intensity is
the workload of a system and in consequence describes the arrival rates on resources with
respect to queuing networks.

The ASPE-process is an approach that explicitly tackles performance engineering during
development and is a hybrid between early-cycle predictive- and late-cycle measurement
SPE techniques. The basic workflow of the ASPE-process is shown in Figure 6.1, and
in Figure 6.4 it is outlined in more detail. The required types of information and
model-elements are described in Section 6.2, based on this, Section 6.3 shows the two
metamodels CETO and MUPOM. Section 6.4 describes the ASPE-process in more detail.
Approaches to capture measurement-information of deployed software systems is given
in Section 6.5. Transformations between the respective models shown in Figure 6.1 are
described in Section 6.6. Section 6.7 describes a transformation from Markov models
towards queuing networks with respective arrival rates to stations.

6.2 Information requirements and basic elements
This section describes which information and what kind of elements are needed in order
to adequately build a performance model of a software system. It is the basis for the
ASPE-process as well as the two proposed metamodels CETO and MUPOM.
What is meant by the term adequate here, is derived from research in the fields of
performance analysis frameworks and intermediate model formats with respect to queuing
theory and will also be subject of evaluation in Chapter 7. In Chapter 5, different formats
and formalisms, namely PMIF, CSM, KLAPER, LQN, PCM, UML SPT and UML for
MARTE as well as performance engineering approaches with regard to queuing theory
and Markov models were outlined. All of these models and methodologies have more or
less fine-grained elements for modelling a software system and its characteristics relevant
to performance analysis. These models and methodologies all have a slightly different
focus. However, all these formats and formalisms have common elements.
Proposition 1 is derived by findings in literature, especially CSM [62] and MARTE [23].

Proposition 1. The essential and most basic elements for describing the performance
characteristics of a software system are (1) resources that offer computing capabilities,
the (2) workload that describes how the resources are being used by users and the (3)
workload-intensity that describes the intensity of workloads in terms of inter-arrival
times.

The performance of a software system is in essence determined by resources and the way
they are used. Waiting lines appear if the arrival rate is higher than the service rate in a
specific time interval. In terms of software systems: A queue on a resource appears if there
are more operations than computing power in a given time interval. If an operation waits
on another operation to finish this leads to virtual queues on a higher level. Therefore,
besides arrival-rate and service-rate on resources, dependencies between operations and

45

6. An approach for Agile Performance Engineering

in consequence resources, also determine the performance quality of a system. The
workload is constituted of the usage-profile which describes the user-behaviour in a
probabilistic way including think-times. In the ASPE-approach, user-behaviour (and thus
the workload) is described using Markov models. The relevant elements to describe a
workload with Markov models is outlined in the MUPOM model. Think-times are the
amount of time that users are in a specific state of the Markov model before switching to
another state described by a probability distribution (a normal distribution here). The
workload-intensity may vary over time and may be time dependent. An example for this
is increased traffic at web-applications in the evenings.

The term user is used in this work for both, humans as well as other systems that interact
with a software system. If a software system does not have user-authentication, in general
it still is possible to distinguish between different users by using other techniques like
IP-Address/Session/Thread/Cookies/ . . .

In this work, the model-based and the measurement-based approach in SPE are combined.
Therefore, three types of information are needed: (1) static information, (2) predictive
information and (3) measurement information.
In order to combine the model-based and the measurement-based approach in SPE and
with respect to Proposition 1, there are four needed information-aspects described in
Proposition 2:

Proposition 2. For describing resources, workloads and workload-intensities, and in
order to combine the model-based and the measurement-based approach in SPE, static-,
predictive- and measurement information is needed. The following informations are
sufficient: (1) Functionality of a software system and the causal ordering of operations
that enable this functionality, (2) Structure and topology of a software systems components
and resources (3) Predictive- and measurement data of behaviour and in consequence
workloads, (4) Predictive- and measurement-data of operation durations on resources.

Aspects (1) and (2) are static informations about a software system. Aspects (3) and
(4) are a mixture of predictive- and measurement data. As measurements are retrieved
at the end of each development sprint in the ASPE approach, the higher the degree of
completion of a software system in terms of development, the more measurement-data is
available and the less predictive data is needed. Additionally, static performance goals
and constraints may be defined on a use-case- and an operational level. Besides feedback,
also checks whether these performance constraints or goals are violated or are predicted
to be violated can be made at the end of every sprint.
There are two information requirements for measurements: user-behaviour and the
duration of operations on resources. Measurements can only be retrieved from observable
emissions, hereafter called observations.

The modelling of resources and their workloads as well as the causal ordering of operations
leads to queuing networks with nested requests and thus simultaneous resource possession.
The outlined information-aspects are capable of taking extended properties of resource

46

6.2. Information requirements and basic elements

usage into account. As described earlier, it is rare in software systems to only utilize one
resource per request without operations depending on each other. There is a myriad
of applications in the SPE-research available that make use of queuing networks. Most
of these approaches are based on the product-form condition of queuing networks [25].
The LQN-formalism [43], as an example, was specifically designed for describing and
analysing layered architectures with nested operations and thus simultaneous resource
possession build upon the theory of extended queuing network [70].

The way a software system is used, is described by a workload. There are usually many
different ways how a software system is used in practice. Therefore, the workload may
be substituted by multiple usage profiles. A single usage profile here is expressed by
sequences of use-case activations. The time between two use-case activations is expressed
with think times. Think times are described with probability distributions. Workload-
intensities are on top of a usage profile and describe the amount of users that interact
with a system in a specific time interval. Also workload-intensities are described using a
probability distribution.
In order to deliver the functionality described in a use-case, a software system has
operations. It must be expressed what operations and what resource usages a usage
profile results in.
Another important aspect is to describe how long an operation on a resource takes. For
example, when a user logs into a system, first this user has to provide its username
and password. The software system then has to retrieve this user from a datastore, for
example a relational database. It is essential to know how long this operation takes.

Proposition 3 summarizes the described findings above. It is essential to point out that
it has to be verified for every software system of analysis if the Markov-property holds
for describing the user-behaviour. Furthermore it has to be verified if the product-form
conditions for a specific system holds when analysing a systems performance with product-
form queuing network solution approaches. Based on that, either closed-form solutions
or approximative approaches may be used.

Proposition 3. Following elements are sufficient for analysing the performance of a
software system given a user-behaviour where the Markov property holds: (1) Use-cases
and their needed operations (2) physical resources, (3) Causal ordering of operations on
resources, (4) a Markov-model describing user-behaviour, (5) workloads of user-behaviour,
(6) think times of users between use-case transitions, (7) operation durations.

47

6. An approach for Agile Performance Engineering

6.3 The CETO- and MUPOM metamodels
In order to represent all necessary information and basic elements for evaluating the
performance of a software system with the ASPE-process, the following two metamodels
are described here:

1. CETO - Components Emission and Timely Observations.
This model captures static-, predictive- and measured informations about a software
system.

2. MUPOM - Markov Usage Process and Operation Measurements.
This metamodel describes user-behaviour using the Markov-model formalism as
well as operations on resources. MUPOM is a performance model.

Figure 6.2: The CETO metamodel.

CETO is the central model in the ASPE-process used for capturing all relevant information
outlined in the previous Section.
The reason for proposing two metamodels is two-folded. The ASPE-process combines
the model-based- and the measurement-based approach in SPE. To achieve this, a
mix of static-, predictive- and measurement data is needed. Models such as CSM or
PMIF provide capabilities to model static- and predictive data, but no measurements.
Therefore, the first and foremost reason for the conception of the CETO-metamodel is
to also capture measurement-data. The MUPOM-metamodel is designed with the goal

48

6.3. The CETO- and MUPOM metamodels

to model stochastic processes of user-behaviour in Markov-model notation. There is,
to the best of my knowledge, no such metamodel in the SPE-domain available. The
CETO-model as well as the MUPOM-model are living artefacts within the ASPE-process.
The CETO-model is self-contained which means that it contains sufficient information to
analyse the performance of a software system. The CETO-metamodel can be found in
Figure 6.2 and is divided into two parts:

1. Static-information: Functionality, structure and topology of a component-based
software system.

2. Predictive- and measured information of user-behaviour and operation durations.

The MUPOM-metamodel is shown in Figure 6.3. The contained elements can be classified
as follows:

1. Resources, use-cases and operations on resources.

2. User behaviour denoted in Markov-model notation.

Figure 6.3: The MUPOM metamodel.

The MUPOM-metamodel defines only open workloads with external arrivals and de-
partures. Internal arrivals result from use-case dependencies on its, possibly nested,
operations. Therefore the arrival-rate of resources is determined by external- and internal
arrivals. The arrivals are modelled using one of three available distributions: Poisson,

49

6. An approach for Agile Performance Engineering

Exponential- and Normal distribution. Duration and Think-time also follow one of these
three distributions.

A MUPOM model can be seen as the result of solving a CETO model. A methodology for
doing this is described in Section 6.6. The MUPOM metamodel does not take nestings,
joins or other enhanced operation-sequences into account. This is due to the goal of
the ASPE approach of being usable in practice with low overhead and high benefits.
However, this is a possible future extension for further research. In both metamodels,
one operation always utilizes one or more resources.

6.4 The ASPE-process

The Agile Software Performance Engineering-process (ASPE) is built upon the agile
principles of software development. Therefore, software development is concerned as
being created in an incremental and iterative manner. Parts of a software system are
continuously integrated and in consequence continuously delivered to a test- or production
environment where the running software is profiled. The ASPE-process covers the software
life-cycle phases Requirements, Specification, Design, Implementation, Integration and
Testing as defined in Section 2.2.
Design- as well as implementation decisions during development may have a strong impact
on the performance of a software system. The ASPE-process ensures fast feedback for
developers and designers and forces checks if QoS- or SLA- constraints are violated or
are predicted to be violated.

The software-, CETO- and MUPOM models are living artefacts that are adapted over
time. Model-driven engineering is used throughout, respective model-transformations
in the ASPE-process are: (1) Use-case and operation topology to CETO, (2) CETO to
MUPOM and (3) MUPOM to performance model. These transformations are described
in Section 6.6.

As outlined in the introduction of this thesis, Software Performance Engineering is not
necessarily part of software development in practice. Instead, after development when
performance problems occur, these problems are mitigated in an ad-hoc trial and error
fashion. I assume that a reason why SPE often is neglected in practice is the tremendous
overhead that it brings. In consequence, the ASPE-process tackles this in three ways:
(1) Force automation, (2) Reuse artefacts and (3) Use approximations instead of over-
engineering SPE. The ASPE-process was in consequence also designed with respect to
the agile-principle: »working code over extensive documentation« [16]. Automatically,
as much information is gathered as possible from observations, instead of the extensive
need of full-grown, predictive diagrams. The workflow of the ASPE-process is shown in
Figure 6.4.

The information requirements to adequately build a performance model are outlined
in Section 6.2. To represent the static information concerning functionality, structure
and topology of a software systems operation two types of models are sufficient: (1) A

50

6.4. The ASPE-process

Figure 6.4: The ASPE-workflow that combines the model-based approach and the
measurement-based approach.

Use-case diagram and (2) a component topology model that describes the structure of
components as well as their deployment and therefore also the dependencies amongst
components and resources. Based on these models, transformations may construct the
basic structure of Markov models. One state in the Markov model represents one use-case.

51

6. An approach for Agile Performance Engineering

A CETO-model is the central element in the ASPE-process. All necessary information
is kept in a single CETO-model and solved by transforming it to a MUPOM-model.
The CETO-model is over time enriched with observations. The ASPE-process defines
a feedback loop, therefore CETO-, MUPOM- as well as the software models are living
artefacts that are changed and adapted over time.

After every development-iteration (Sprint), the software system is deployed and profiled.
There are two types of observations that enrich the CETO-model:

1. The tracked observations of use-case and operation calls.
A use-case has operations that use components and in consequence resources. Use-
cases, operations as well as components and resources generate emissions when
being used. These emissions are observed through log-files, profiling tools or similar.

2. The duration times of operations.
In order to provide functionality, a use-case performs operations. These operations
result in computing times on resources and are measurable.

The ASPE-process combines the model-based and the measurement-based approach
which was the main goal of this theses.

6.5 Profiling
In order to integrate measurements into performance analysis and enhance the accuracy
of prediction over time, observations are captured on the deployed software system. There
are two types of informations that are observed in the ASPE-process and stored in a
CETO-model: (1) Operation durations on resources and (2) workloads by observing
user-behaviour.
For capturing these measurements there are different tools and techniques available. All
of these approaches demand different types of information. They mainly differ on the
level the information that is extracted.

6.5.1 Resource operation duration measurements

For any operation that demands a resources service, a time interval can be defined
in which a resource is possessed. From a hardware point-of-view, an operation is not
necessarily carried out at once. Instead, slices of computing time will be used [43].
However, a resource operation duration is described by a number representing the total
time it took to process an operation at a resource. The time interval for an operation may
vary from one user to the other or even for one user when the user carries out an operation
multiple times. An example for this is the upload of a picture in the Travelistr-example.
Obviously, the time of uploading and processing an image depends on the size of the
image and therefore varies. Having many operation durations observed allows to build a
probability distribution on the duration.

52

6.5. Profiling

In [59], the duration of operations is described by service demands of requests. A system
has different classes of requests and is therefore called a multiclass QN model.
The duration of operations can either be directly observed gathering complete information
by respective profiling tools such as MagPie [27], Kieker [68] or simply by logging. Other
techniques include statistical inference techniques such as linear regression or a maximum-
likelihood method outlined where only incomplete information is available [53].

6.5.2 Workload and workload-intensity

The workload is derived from profiling user-behaviour and is constituted of the usage-
profile, including think-times on use-cases and the transition-probabilities between use-
cases. The workload-intensity is how often a specific behaviour is performed in a time
interval. The workload-intensity may vary over time.
For modelling user-behaviour, the mathematical formalisms of Markov models are used
in the ASPE-approach. Of special interest here, as will be outlined later, are furthermore
Hidden Markov Models (HMMs). The use of HMMs in SPE is relatively new but may
have increased usage in the future [41].

Remarks:

1. Some single observations of users are probably too little to describe the overall
behaviour of users. The sample should therefore be big enough.

2. Modelling user-behaviour with Markov models only brings reasonable results if the
Markov-property on user-behaviour holds.

There are several approaches how the user-behaviour can be captured. Please mind that
tools are available that use only information on one specific layer or combined information
from different layers. The CETO-meta-model is able to capture information with all the
three approaches outlined as follows.

Approach 1 - Request-based capturing

This approach is very simple and straightforward. The usage-profile is derived from
request calls. A request is the triggering event of a use-case and therefore one state in
the Markov model.
The needed measurement data for this approach are request calls plus the time the
request entered the system and the time a response left the system. The user that made
the request and operation duration measurements for every request call can be calculated
using statistical inference or similar techniques (e.g. [53]). The time between a system
sends the response and the user send the next request is the think time in a specific
use-case and therefore in a state of the Markov-model.

53

6. An approach for Agile Performance Engineering

Approach 2 - Component-based capturing

Here the requests are not directly observed, instead the emissions of components are
observed. A component is a logical resource and every logical resource utilizes a physical
resource at some point.
The state sequence and the transition between states cannot be observed directly, the
underlying Markov model therefore is hidden. Only the emissions of the components are
visible. The underlying Markov model can be unveiled using the mathematical formalisms
of hidden Markov models.
In order to be feasible, there must be a correlation between operation emission and the
respective use-cases. The correlation must be significant in a sense, that an assignment
towards the use-cases is possible with a specified statistical significance threshold. This
may not be the case for every software system.

In this approach, the information is again profiled per user. The profiling result will look
somehow like the following example, whereas James, Linda and Patricia are users and
AC,BC,DC, ... are emissions of components grouped per request.
O = {{(James) : {IC,DC,AC, TC}, {EC, IC, PC,RC}, {DC}, ...},
{(Linda) : {BC,RC, IC}, {LC,AC}, ...},
{(Patricia) : {IC,AC}, {OC}, {LC}}, ...}

The notation for HMM used in this work is outlined in Section 3.4.2.

Figure 6.5: Hidden Markov Models emissions and states.

This leads to the definition of the main elements in the HMM and their correspondence
to use-case- and component topology descriptions. As stated earlier, there must be a
probabilistic relationship between emissions of components and states of the underlying
Markov chain. This relationship is encoded using the observation matrix B.
In Figure 6.5 the relationship between observed emissions and the underlying Markov-
process is depicted.

54

6.5. Profiling

HMM element Software system element

T The observation sequence length is the total number of resource
operations where emissions were tracked.

N The total number of states in the underlying Markov chain is the
total number of use-cases.

Q The set containing all states is constituted of all use-cases.
qt A single state is represented by a single use-case.

M The number of distinct observation symbols is the number of
distinct resource operation emissions.

O The observation sequence is represented by all observer resource
operation emissions.

Oj
A single observed emission is represented by a single resource
operation emission.

P The transition matrix is constituted by the transition probabilities
from one use-case to another.

B
The observation probability matrix is constituted by the prob-
abilistic distributions that link resource operation emission and
use-case.

π
The initial distribution of the underlying Markov chain is the
initial distribution of believed use-case usage.

Table 6.1: Corresponding HMM and software system elements for unveiling Markov
models given incomplete information.

In case of software systems it is very unlikely to only use exactly one resource per use-case.
Imagine an Image-Upload in the Travelistr-system: Simultaneously the Database, the
Application-Server and the Image-Server are used. This concept of simultaneous resource
possession was already examined and described in the LQN-metamodel by Franks et
al. [43] (see Section 5.2.4 for more details). Of special interest here is the fact, that
the possession and usage of multiple resources also leads to emissions of these resources.
Therefore the hidden Markov model here has to relate a set of emissions to the underlying
Markov process, using the observation matrix B. This is a major difference to classic
hidden Markov models. Therefore special techniques for unveiling the underlying Markov
process based on this emissions has to be taken (see Section 6.6 for more details.) In
conclusion, Table 6.1 summarizes the respective equivalent elements.

Approach 3 - Resource-based capturing

This approach does profile the emissions on a resource level. On the resource-level it is to
my knowledge not possible to get the user information that requested a specific service
and therefore it can not be distinguished between different users or any other Session
information. However, also here the use of HMMs seems an interesting approach and a
very interesting domain for future research.

55

6. An approach for Agile Performance Engineering

6.6 Model transformations

The ASPE-process is model-driven and therefore model-to-model transformations de-
scribed in this Section. First, the transformation towards a CETO-model is described
including the approaches to capture measurement-data. Second, a transformation method-
ology from CETO to MUPOM is outlined. Third, the alternative way using CSM as
intermediate format and from here transforming to a performance model is outlined.

6.6.1 Software models and observations to CETO

This Section describes how information from two different types of sources, namely
software models and profiling-data, are combined and integrated in a single CETO-model.
The different sources provide static-, predictive- and measurement information.
As described in Proposition 1, the needed information is divided into resources, work-
loads and workload-intensities. Proposition 2 consequently outlines necessary elements
with regard to the ASPE-process that take predictive model-based elements as well as
measurement data into account. The CETO-metamodel expresses these aspects in its
conception. This Section will be described four layered, describing the four types of
relevant information for evaluating a software systems performance in Proposition 2.

1. Functionality and operations
Use-cases and respectively features describe the functionality of a software system.
They may for example be derived from use-case diagrams. Use-cases define available
ways for using a software system from outside through defined interfaces. In order
to provide functionality, a software system has components which in turn provide
operations.

2. Structure and topology of components and resources
Software components interact with other software components or use resources.
Information about components, their structure and dependencies on resources or
other components is derived from a component-topology diagram.

3. Resource operation durations
At early stages of a software project or the start of development, only predictive
information about operation durations are available. As time goes by, the predictive
information is replaced by measurement data gathered as described in Section 6.5.

4. Workload and workload-intensity
Similar as the resource operation duration, at an early stage of a software project,
there is no profiling data available. Therefore, predictive data has to substitute
the not yet available measurements. As time goes by, the predictive information is
replaced by measurement data as described in Section 6.5.

56

6.6. Model transformations

6.6.2 CETO to MUPOM

This Section describes the transformation from CETO to MUPOM. CETO models
contain static- and predictive information as well as measurements. The observations in
the CETO-model have a structure shown in Figure 6.6.

Figure 6.6: Use-case requests and operations on resources resulting in two layered
observations.

For transforming a CETO-model to a MUPOM-model, multiple steps are necessary. As
stated earlier, a MUPOM-model can be seen as the solution of a CETO-model. The
steps to solve a CETO model are as follows:

1. (Optional) Classify users and group users of same types.
The classification of users must be defined specific to a software system. It does
not make sense in a general classification. For example in the Travelistr-example
there may be two different groups of users: People that just browse and look at
photos from others and people that upload a picture.

2. (Optional) Unveiling the underlying Markov chain
If the observations are captured according to approach 2 or 3, first the hidden
Markov model must be unveiled based on the emissions.

57

6. An approach for Agile Performance Engineering

Rabiner et al [66] outlines three basic problems of HMMs that must be tackled in
order to be useful in practice. For unveiling the underlying Markov model, Problem
three is of interest here:
Construct a model λ given the observations OT where Pr(OT |λ) is maximized.
In Section 3.4.2 the theoretic background of HMMs was briefly outlined. It was
outlined, that HMMs are full probabilistic models. To solve problem three, dynamic
programming is useful and in general the Viterbi-algorithm can be used. However,
as shown in Figure 6.5 as a Use-case usually results in more than one emission,
special algorithms need to be used. Li et al. [54] define an approach for solving
problem three when having multiple emissions per state.

3. Canonicalization of operation-durations
Given multiple operations on a resource, in fact, these operations are computed
by the resource in a time-sharing fashion. Instead of computing an operation at
once, time-slices are assigned to an operation. For the performance evaluation of
a system, this technique is not of interested and therefore is not contained in the
performance models. Instead, the total amount of time to compute an operation is
modelled. Therefore, operation-duration observations must be transformed into a
canonical form.

4. Construct probability distributions for think times and operation dura-
tions.
Think times as well as operation durations are described by a normal-distribution.
A normal-distribution has two parameters: the mean λ and the variance σ2.

5. Constructing the transition matrix P of the Markov model.
A Markov model based on the observations (User-Traces) is constructed by calcu-
lating a transition-matrix in the discrete case and a transition-rate matrix in the
continuous case.

6. Check whether the Markov-property for the usage holds
This check may be done similar as described with the approach in [55]. The
Markov property is validated approximately by comparing the history-independent
transition probabilities with the history-dependent transition probabilities. If the
history-independent does not much diverge from the history dependent, the Markov
property is assumed to hold. Otherwise the usage profile can not be modelled
accurately with Markov models. In that case, a transformation from CETO to
some intermediate format as described in Section 6.6.3 can be considered as an
alternative.

7. Calculate the steady state distribution
If a unique limiting distribution exists, this is the steady state that describes the
long-run behaviour of a system independent of the starting state. For calculating
the steady state, approximative solutions ma be considered. This step may also be
subject of future research as outlined in the next Chapter.

58

6.7. From Markov models to queuing networks

8. (Optional) Derive the causal orderings and parallelism of operations.
In order to be practically usable by reducing the overhead of Performance engineer-
ing, the ASPE-approach and thus the CETO-metamodel do not consider complex
sequences like splits, forks, .. for operations on resources. However, as outlined
in the next Chapter, this is also another interesting research direction to retrieve
operation sequences and orderings from observations.

9. Check whether the system satisfies the product-form assumption of
queuing networks. If it does satisfy the product-form assumption, a wide range of
possible closed-form solutions are available. If it does not, approximative approaches
like LQN for example might be more suitable.

10. Construct a performance model. In Section 6.7 an approach to derive queuing
networks from Markov models that describe the user-behaviour is outlined. However,
if the product-form assumptions or other prerequisites like ergodicity do not hold,
other formalisms outlined in the previous Chapter may be considered.

6.6.3 MUPOM to some performance model

As shown in the previous Chapter, there is extensive research in SPE available. Futher-
more, many different intermediate formats for performance engineering exist. The
respective models showed applicability in practice. For the transformation towards
a performance model, two steps are necessary: (1) An intermediate step towards an
intermediate format and afterwards (2) a transformation form the intermediate format
to a performance model. The descriptions of these transformations are omitted here.

6.7 From Markov models to queuing networks

As stated many times, to capture the user-behaviour in this approach, the Markov
model notation is used. Resource utilization in software systems is mainly a result of
user-behaviour. The MUPOM-model, besides the Markov model itself, also contains the
solution for the steady state if it exists. As described in Section 3.4.1 a Markov chain has
a limiting distribution if it is irreducible and all its states are positive recurrent [72] (page
34, theorem 54). For the purpose of transferring a Markov chain to queuing networks with
the following approach, the stronger ergodic-assumption that demands an irreducible and
positive recurrent chain and additional non-periodicity must hold. The reason herefore is
that Little’s Law (as described in Section 3.5.1) is necessary to determine the number
of users in a system. Following Little’s Law for ergodic systems, the average number of
users in an ergodic system is equal to the arrival rate of users times the average time
spent in the system (Equation 6.1).
Given these findings, it is now possible to translate from Markov models and in conse-
quence from MUPOM-models to queuing theory.
With Little’s law, we can calculate the average number of users in a system, and with

59

6. An approach for Agile Performance Engineering

the steady state distribution we know what fraction of users are in each state (Equation
6.2). Given this knowledge, there are two main possible aspects that we can focus on:

• State-based evaluations

• Transition-rate-based evaluations

As i am not dealing with usability in this thesis and the states of the Markov chain
represent use-cases it is not surprising that i am more interested in transition-rate-based
evaluations. Transitions between use-cases are triggering-events for resource utilization
in software systems.
Markov chains in the MUPOM model are described in discrete time. The time-step
is one second. We know how many users are in each state on average. And blessedly,
Markov chains fulfil the Markov-property and are therefore memoryless, the transition
rate between two states can simply be calculated by multiplying the average number of
users with the transition probability (Equation 6.3). The total number of average new
entering to a state per second then is the sum of all arrival rates to that state (Equation
6.4). We then know the arrival rates of each state and by taking the inverse of it, we get
the inter arrival rate that is very important and together with the service rate the basis
for queuing theory analysis.
Following this workflow described verbally is now outlined more formal:

1. Calculate average number of users in system using Little’s law:

E(N) = λ ∗ E(T) (6.1)

2. Calculte average number of users in each state

Ni = πi ∗ E(N) (6.2)

3. Calculate transition rates between each state

λj = pij ∗Ni (6.3)

4. Sum all incoming transition of each state

ΛJ =
k∑

j=1
λj (6.4)

5. Take the inverse of the arrival-rates in order to get the inter-arrival rates

From here on, queuing systems/networks can be constructed in order to evaluate a
systems performance. There is a lot of research available herfore. An example is the
Mean Value Analysis (MVA) which will be used in the Case-study in Chapter 7. Basic
idea there will be the detection and removal of bottlenecks.

60

CHAPTER 7
Evaluation

7.1 Overview

In the previous chapter, the ASPE-process together with its information requirements
and resulting metamodels as well as transformation approaches was outlined.
The main Hypothesis is that the ASPE-process is capable of combining the model-based
approach with the measurement-based approach in SPE. The aim now is to evaluate
this and all other Hypotheses/Propositions in a case study. The case study covers the
implementation of the Travelistr software system using the ASPE-approach.

In the case study presented here, the guidelines of Runeson and Höst [69] are applied.
Using the analytical research paradigm to verify the Hypotheses in an isolated way would
not be appropriate here. Instead, it is essential to use an empiric approach that, on
the one hand, includes an empiric evaluation of usage-behaviour modelling with Markov
models, and on the other hand, an empiric assessment of the benefits, needed tools and the
overhead associated to using the ASPE-approach for Software Performance Engineering.
This will lead to a better understanding of the investigated phenomenas [69].
The case study is of explanatory as well as of exploratory nature. It evaluates the
hypotheses made and furthermore investigates additional phenomena and directions for
future research.
The case study both uses quantitative and qualitative data. In order to be as transparent
as possible, all results of this case-study are, besides being presented here, also available
online together with the implementation of the Travelistr-software system [8].

The case study is carried out in a real-world setting for the Travelistr software project.
The project is structured in an agile way with time-boxed iterations that are called Sprints
here. This naming is due to the use of the agile-methodology SCRUM, a specific agile
process model. This iterative approach allows much flexibility in doing this case study.
In total, four iterations were carried out, whereas Sprint 0 exclusively uses predictive

61

7. Evaluation

knowledge and is furthermore used to set up the development environment. After each
iteration, the current state of Travelistr is deployed to a Cloud platform and predictive-
and measurement data in a quantitative or qualitative way are captured and analysed.

This Chapter is structured as follows:
Section 7.2 outlines the objectives of the case study. Section 7.3 defines the way
quantitative- and qualitative data is gathered as well as the tools that automate aspects
of the monitoring, modelling and load-test approaches within the ASPE-process.
Section 7.4 gives a very brief overview about the Travelistr software system and further-
more outlines the used Technology Stack as well as the Cloud environment it is hosted at.
More detailed information and the results of the iterations are given in the respective
Sections 7.5 (Sprint 0), 7.6 (Sprint 1), 7.7 (Sprint 2) and 7.8 (Sprint 3).

7.2 Objectives of the case study
The nature of this case study is both exploratory and explanatory.

The explanatory part tries to confirm the Hypotheses and goals of this thesis. The
main research interest herefore lies in the combination of the model-based- and the
measurement-based approach. The ASPE-process is one possible solution to combine
them and the results of its evaluation are presented here.
The exploratory part on the other hand found additional hypotheses and aspects as well
as future research directions in SPE that are presented within the respective Sections
and are summarized in Chapter 8.

7.3 Data collection and Tools
Different data sources were used in this case study. Qualitative data was incorporated
from my own experience applying the ASPE-approach in the Travelistr software project.
The benefits, tools and the resulting overhead is also being analysed with this qualitative
data.
Quantitative data is gathered with respective tools. These tools are:

1. JMVA (a JMT-component) [30]

2. Markov4JMeter [79]

3. OperationsAndTraceMonitor

4. UserTrace2Markov

JMVA is a software package of JMT and a tool to calculate the MVA-algorithm (see
Section 5.6 for more details).
Markov4JMeter is an extension of JMeter [17] used to automatically generate a workload
following behaviour described with Markov models (see section 5.6 for more details).

62

7.4. Travelistr

The two self written tools to track and analyse user-traces and service-times are both
written in Java. The OperationsAndTraceMonitor can be integrated anywhere in the
Travelistr-software or any other Java software and writes observations to a CSV-file in
a thread-safe manner that has the right format to be evaluated with R-software [64], a
statistical computing tool, as well as to the UserTrace2Markov-tool, a semi-automatic
tool to transfer user-traces tracked with the OperationsAndTraceMonitor in CSV-format
to a Markov model of Orders one and two.

The analysis of the collected data was done at the end of each iteration.
Additionally, or evaluating the Markov assumption for the usage-behaviour of Travelistr,
an empiric test was carried out.

7.4 Travelistr

Travelistr is a Web application that lets travellers share their pictures with others. A
detailed description what Travelistr is and what features it offers to its users is given in
Section 1.5. The reason for defining a software project such as Travelistr here is, that the
Travelistr software system is a relevant and very typical type of system nowadays and
stands as an example of many similar systems in the era of Web 2.0.

Technology Stack
Travelistr is a Java EE application realised with Spring-MVC. For database access, the
Hibernate framework is used together with the c3pO connection pool. The web-frontend
is created with static html-pages and dynamic JSP-pages. Log4j is used as logging
framework and OperationsAndTraceMonitor-instructions are added at language-level.
The Travelistr-App is hosted at an Apache Tomcat 8 server. The data is stored in a
Postgresql database and the images are stored using the external vendor Cloudinary [5]
which is free up to 75000 pictures or 2GB of storage.

Cloud environment
The Travelistr software system is hosted at the Cloud vendor Digitalocean [6]. Digitalocean
makes it easy to create virtual servers, called Droplets, in any of their datacenters around
the world. Within a few seconds, the available resources can on-demand be increased-
or decreased. For the initial setup of Travelistr, the database is hosted at the London
datacenter and the application server runs in a datacenter in Frankfurt. Both Servers
are virtual and use the Ubuntu 16.04.1 operating system.

7.5 Sprint 0

In the domain of agile software development, a Sprint 0 is commonly referred to a
time-boxed period that is used for setup- and design tasks. This meaning is also used
here. Besides setting up the development environment and the code-bases, also the
model-based evaluation and prediction of user-behaviour- as well as system behaviour

63

7. Evaluation

is carried out. The result of this predictive evaluation gives a good overview of the
characteristics of the Travelistr software system.
In Figure 7.1 the predicted user-behaviour-model is shown and in Table 7.1 this model is
expressed with its transition-matrix.

Figure 7.1: Markov model representing the states of Travelistr and the expected user-
behaviour defined with predictive knowledge in Sprint 0.

64

7.5. Sprint 0

Pij Start Login Reg. About Dashb. Logout Publ. Profile Nearby Like
Start 0.2 0.4 0.3 0.1 0 0 0 0 0 0
Login 0 0.2 0.1 0 0.7 0 0 0 0 0
Register 0 0.1 0.2 0.7 0 0 0 0 0 0
About 0.6 0 0 0.4 0 0 0 0 0 0
Dashb. 0 0 0 0 0.2 0.1 0.1 0.1 0.5 0
Logout 0.8 0 0 0 0 0.2 0 0 0 0
Publish 0 0 0 0 0.7 0 0.3 0 0 0
Profile 0 0 0 0 0 0 0 0.3 0.7 0
Nearby 0 0 0 0 0.2 0 0 0.1 0.3 0.4
Like 0 0 0 0 0 0.2 0 0 0.7 0.1

Table 7.1: Predicted transition matrix of user-behaviour before implementation in
Sprint 0.

For calculating the limiting distribution there are two ways: (1) Solving the balance
equations, or (2) calculating the power of the transition matrix till an equilibrium is
reached.
In order to give the steady state of the system a meaning in terms of arrivals to each
state, two parameters need to be defined:

1. Estimated arrival-rate to the Travelistr-system

2. Estimated time a user on average spends in the Travelistr-system per interaction

The attentive reader will not be surprised that these parameters are applied using Little’s
Law to calculate the average number of users in the Travelistr-system. The application
of Little’s Law is possible because the system depicted in Figure 7.1 is ergodic.
For the initial evaluation an estimated arrival-rate of 2 users per second and a mean
session-duration of 15 seconds is assumed.
Applying Little’s-law, by simply multiplying the arrival-rate with the average session
duration results in an average of 30 active users in the Travelistr-system.
The next step is to calculate the average number of users in each state and based on that
the transition-rates between states can be calculated (Equations 6.2 and 6.3). The last
step is to sum the incoming transitions of each state (Equation 6.4) and then take the
inverse to retrieve the time between two consecutive arrivals, the inter-arrival rate. A
more detailed description of the transformation approach from Markov models to queuing
networks, or in fact arrival rates, can be found in Section 6.7. In Table 7.2 the results of
these calculations are presented. As can be seen, the states Nearby, Like and Dashboard
have the biggest fractions. This is not surprising, as these are assumed to be the main
states/Features of Travelistr.

65

7. Evaluation

P Steady state E(N) λ per sec 1/λ
Start 0.106 3.18 2.562 0.39
Login 0.059 1.77 1.413 0.71
Register 0.047 1.41 1.131 0.88
About 0.073 2.19 0.318 3.14
Dashboard 0.145 4.35 3.486 0.29
Logout 0.052 1.56 0.435 2.30
Publish 0.021 0.63 0.435 0.75
Profile 0.064 1.92 1.388 0.14
Nearby 0.301 9.03 6.909 0.28
Like 0.134 4.02 3.612 0.28

Table 7.2: Results of steady state analysis and derived arrival rates to the Travelistr
system given predictive knowledge in Sprint 0.

7.5.1 Operations and service times on resources

After calculating the arrival-rates it is now time to define the operations that each
state requires and the service-demands these operations result in. The resources of the
Travelistr software system here are the CPU of the application-server, the database and
the image-server.

Taking every single aspect of Travelistr into account may result in a big overhead and in
general, a model never takes every aspect of the real system into account. This also is
true for this model-based analysis here and also true for other performance evaluation
frameworks and performance modelling standards. The CSM-model [62] for example
requires the definition of »Core« - scenarios in a deterministic step by step manner.
However, more precise results that also take things like the implementation-style, the
used frameworks and many others will be retrieved in Sprints 1, 2 and 3 by running
empiric evaluations and load-tests.
As an approximation, the handleRequest() - operation is defined for every operation.
The states Start, About, Logout and Dashboard are mostly simple static web pages with
no business-logic attached. Their only server-side logic is the handling of requests.

The six distinct core-operations of Travelistr are shown in Table 7.3. An operation
in the nomenclature of the ASPE-process represents a class in a multiclass-queuing
network. Extending the service times is, at least for me and I have more than five years
of experience as a Software Engineer, very difficult however.

Given this simple approximative setup, it is obvious that the product-form assumption
of queuing networks is not violated here and a wide range of queuing network solution-
techniques can be used.
Here, the Mean Value Analysis (MVA) that calculates mean queue-lengths, mean uti-
lizations and other mean values of the system is used. This also coincides with the fact
that the transformation approach from Markov models to queuing models outlined in

66

7.5. Sprint 0

Operation λ DB CPU ImageServer
handleRequest() 21.639 0 500 0
getUser() 3.882 750 500 0
saveUser() 1.131 900 500 0
publishImage() 0.435 600 2000 1000
getNearby() 6.909 1500 500 500
doLike() 3.612 700 500 0

Table 7.3: Distinct set of Travelistr operations and their service times in milliseconds
predicted before implementation in Sprint 0.

Section 6.7 also primarily relies on mean values.

As an exmample for an immediate result of this calculation it can be easily calculated
that on average 1566 images are uploaded to the Travelistr-system per hour. This is
an interesting finding, as the effort of uploading, scaling and storing images is high.
Furthermore, prizes for storing such an amount of pictures can be calculated when using
a third party vendor.

7.5.2 Mean Value Analsyis

Given the results of Table 7.3, the mean value analysis can be carried out. To simplify
this process, JMVA [30], a component of the Java Modelling Tool (JMT) is used. Please
note that JMVA works on a seconds-basis, therefore, the input must also be in seconds.
The main purpose of the mean value analysis here is to determine the utilization of
resources. Please consider that usually utilization is regarded with values between 0 and
1 as it is defined as the percentage a station is utilized. However, here and throughout
this work, utilization is regarded as the mean-value of the number of customers in a
station. Therefore it can be a value bigger than one.
The basic setup has the following utilization shown in Table 7.4.

* Aggreg. handlReq. getUser saveUser publImg. getNearby doLike
DB 17.0823 0.0 2.9115 1.0179 0.261 10.3635 2.5284
CPU 19.4565 10.8195 1.941 0.5655 0.87 3.4545 1.806
ImageS. 3.8895 0.0 0.0 0.0 0.435 3.4545 0.0

Table 7.4: Resource-utilization: Average number of users in each station DB, CPU and
ImageServer in the Travelistr system calculated with predictive knowledge in Sprint 0.

These figures show a high utilization of CPU and DB. Especially for Travelistrs main
feature Nearby, there is a very high utilization at the database. This result is very
helpful as it gives a very good first overview of the resource utilization. One might
already adapt the architecture or maybe scale the computing resources for CPU and DB
horizontally-/vertically.

67

7. Evaluation

However, all of the data is predictive and done somehow with a guts-feeling. It is now
very obvious that practitioners seek for measured data. And that is the reason I conclude
Sprint 0 here and continue with the implementation of Travelistr in Sprint 1.

7.6 Sprint 1
After setting up the environment and analysing the Travelistr-software system in a
predictive way in Sprint 0, it is now the time to start developing. At the end of the
Sprint, measurement-data from the deployed software system is retrieved.

Following Travelistr-features/pages are developed in Sprint 1 : (1) Start, (2) About, (3)
Register, (4) Login and (5) Profile. The necessary respective operations are (1) han-
dleRequest(), (2) getUser() and (3) saveUser().
OperationTraceMonitor-insertions are added to these operations. Additionally all interfaces-
and operation- stubs are defined as well in order to easily launch full load-tests.

7.6.1 Running load tests

Two important aspects for combining the model-based- and the measurement-based
approach with the ASPE-process is to force automation and reuse artefacts. The
user-behaviour model defined in Markov-model notation is therefore reused in the
Markov4JMeter-tool [79], an extension of JMeter.
A Markov Session Controller has to be created within a Thread Group. Sub-elements of
the Markov Session Controller are the Markov states. The transitions between the states
are defined with guards and actions. After that, the User Behaviour Models have to be
defined. As outlined in the previous chapter only a single user-behaviour-model is used in
this approach if there is no reason against doing so. The user-behaviour-model is stored
as a CSV-file and simply contains the structure of the Markov-model transition matrix in
Table 7.1. But here an important difference has to be outlined: In the ASPE-approach,
the think-times are expressed by a states transition probability to itself. Defining it like
this in Markov4JMeter would result in additional calls of that state. Think-times in
Markov4JMeter are in contrast described with distribution-functions such as a Gaussian-
distribution.
The manual creation of this probabilistic Load-test model with Markov4JMeter is quite a
lot of work and furthermore error-prone. Automatic transformations from Markov-model
descriptions towards load test plans would be highly valuable. However, a very useful
side effect of using load-tests is that they can always also be seen as integration tests.
Hypothesis 5 in the previous Chapter is, that measurements on only language level are
sufficient to estimate resource utilizations. In order to not cause delays and falsify the
measurements, only one user is simulated with a waiting time of around one second after
each request call. Besides the software system is not being used by others. This ensures
that the data is not corrupted by contention and good approximations can be derived
from the observations.

68

7.6. Sprint 1

Limitations of Markov4JMeter
Markov4JMeter has useful concepts. However, a big problem that makes it unusable for
Travelistr is that in Markov4JMeter a start-state must be defined without having the
possibility to define other entry points nor how long a user stays in a system.
This results in a situation where the starting state is entered after every loop and a loop
only reaches a couple of other states before terminating. The consequence is a very high
utilization of the starting state and its neighbours. But states more far away from the
starting state are visited very rarely.
The distribution of state visits is therefore not converging to the steady state solution.
Especially for modern Web 2.0 software systems it is assumed that the behaviour of
Markov4JMeter is not appropriate. The session information (especially for mobile apps)
is not deleted for very long times, or often is never deleted so that the user does not
enter the starting state again in a long time. The resulting resource utilization of modern
software systems are therefore assumed to be closer to a systems steady state solution
(see Hypothesis 4).

7.6.2 Retrieving service times

The focus now lies on measuring the service times of operations on resources. In the
JMeter View Results Tree, all sent http-requests- and responses are listed. Also it is
possible to extract graphs for different performance metrics using available plugins.
However, as also the user-behaviour needs to be tracked in Sprint 3 in an empiric
evaluation with real users and in order to evaluate Hypothesis 5, instead of using JMeter,
the self-developed OperationTraceMonitor is integrated in the Travelistr software system.
Furthermore, it is necessary to retrieve the response times of operations which would
anyways not be possible with JMeter.

As outlined, the relevant operations in Sprint 1 are handleRequest(), getUser() and
saveUser(). These operations together with a Java Servlet-Filter measuring begin and
end of a request where instrumented with OperationsAndTraceMonitor-probes.
The OperationsAndTraceMonitor produces two CSV-files: (1) operationDuration.csv and
(2) userTrace.csv.
The operationDuration-file has the following attributes: operationID, startTime, endTime,
duration, input, output and error.
The userTrace-file is used in this work only for generating the user-behaviour Markov
model and is therefore described in the respective Section 7.8.1. The load test described
in the previous section resulted in an operationDuration.csv-file that is analysed with
R-software [64] as follows.

Operation getUser() service times:
After removing outliers, a histogram showing the service times of the getUser()-operation
on the database is depicted in Figure 7.2.

As can be clearly seen, there are two accumulation points. The main question now is,
why is this the case?

69

7. Evaluation

Figure 7.2: getUser() - service times in ms measured on the deployed Travelistr-system
after Sprint 1, n = 416.

The first assumption was, that this is a result of the following: The getUser()-operation
is used in combination with saveUser() in the Registration-feature. However, if someone
registers, usually there is no entry of this person in the database whereas getUser()
returns null. These requests are faster then those for the Login-feature, where most of
the time, a user-object is returned.
However, this assumption could not be confirmed as there is no difference with statistical
significance between requests that return no user-object and those who do.
The second assumption was that this is a result of caching. And indeed, login attempts for
users that were shortly before retrieved were faster than the others, as they still were in
the Cache of the used persistence-provider framework Hibernate on the application-server
and no request to the database was made. But also removing this still resulted in two
accumulation-points.
The third assumption, which turned out to hold, was that the used connection-pool c3p0
influenced the results. The overhead for creating a connection is quite big and this also
influences the service times. The solution was to get the connection before starting the
time measurement. And for the service-times, these setup-costs of the connection-pool
are not regarded as we are interested in the steady state here. And in the steady state
with a correct connection-pool setup, connections don’t need to be created as they are
reused and the reconnection is not regarded here.

A conclusion therefore is, that for analysing the performance it is also necessary to first be
very careful where and how the service-times are retrieved and second which technologies
are being used as they may influence the performance. A statistical evaluation as done
here showed effectiveness to find such effects in data.
After correcting the test-setup and randomizing the Login-requests, the data had the
form as shown in Figure 7.3. The arithmetic mean for the getUser()-operation is 18.02
ms.

Operation saveUser() service times:
The observations of the saveUser()-operation are shown in Figure 7.4. The arithmetic
mean of the saveUser()-operation is 53.29 ms.

70

7.6. Sprint 1

Figure 7.3: Service times of operation getUser() measured on the deployed Travelistr-
system after Sprint 1, n = 1001.

Figure 7.4: Service times of operation saveUser() measured on the deployed Travelistr-
system after Sprint 1, n = 429.

Operation handleRequest() service times:
The handleRequest() service time here is defined as the difference between response-times
and summed operation service times. The response-times show a couple of accumulation
points and a very broad variance. That is not surprising as the GET-request for
the Start-page does not require any operation other than handling the request. In
contrast for example, register needs the two operation getUser() and saveUser(). So

71

7. Evaluation

there are two assumptions tested as follows: (1) response times are dependent on the
requested page/feature and (2) the handleRequest()-operation is almost independent on
the requested page.
If the second assumption doesn’t hold, new operations must be defined that replace the
default handleRequest()-operation. In Figure 7.5 the response-times for the different
pages is shown.

Figure 7.5: Response times of the different already implemented pages at the end of
Sprint 1.

As can be seen, there is a difference between dynamic-(Register, Login and Profile) and
static (Start, About, Dashboard, Logout) pages. The phenomena previously described for
the getUser()-operation of accumulation points can also be seen here. However, to some
extent, this is a characteristic of the software system at this level and therefore has to be
regarded as such. The arithmetic mean-values of the response-times are: Start: 1.15 ms,
About: 3.07 ms, Register : 107.54 ms, Login: 46.48 ms, Dashboard: 2.18 ms, Logout: 8.71
ms and Profile: 56.56 ms.
As an approximation of the handleRequest()-service-time of the respective pages, their
respective sum of service times are subtracted from their average response times. The
result is, that every page has a different mean value and due to this differences the

72

7.7. Sprint 2

handleRequest()-operation is split up for every page. The summarized results of the
analysis of observed service times after Sprint 1 can be found in Table 7.5.

Operation λ DB CPU ImageServer
handleRequestStart() 2.562 0 1.15 0
handleRequestAbout() 0.318 0 3.07 0
handleRequestLogin() 1.413 0 28.46 0
handleRequestRegister() 1.131 0 36.23 0
handleRequestDashboard() 3.486 0 2.18 0
handleRequestProfile() 1.388 0 38.54 0
getUser() 3.882 18.02 0 0
saveUser() 1.131 53.29 0 0

Table 7.5: Travelistr operations and their service times in milliseconds observed on the
deployed software system at the end of Sprint 1.

7.6.3 Observing user-behaviour

Observing the user-behaviour after each Sprint is not part of this work. It appears to be
of little sense to launch user-tests after the first Sprint as too little features are available.
However, an interesting research direction for future work is, if observed user-interactions
on a limited set of features can be extrapolated to a systems entire user-behaviour model
in some way.

7.6.4 Enriching the MVA-model

The parameters of the MVA analysis for the entire Travelistr software system are enriched
with the measurement-data derived in this Sprint and outlined in Table 7.5. The results
of this analysis in terms of utilization are as follows.

• DB: 13.28

• CPU: 6.28

• ImageServer: 3.89

These figures describe the average number of users in each station DB, CPU and
ImageServer. As can be seen, there is a strong decrease in the expected utilization for all
three resources.

7.7 Sprint 2
In Sprint 2, only one feature is implemented: The upload of an image, publishImage().
Images are stored at the third-party cloud-vendor Cloudinary [5]. In order to have more

73

7. Evaluation

fine-grained information on the necessary steps to uploading a picture, the publishImage()-
operation has four defined sub-operations: (1) uploadImage(), (2) scaleImage(), (3)
uploadToStore() and (4) saveImageRef().
The collected data for this sprint is also structured based on these sub-operations. The
service-times of all these operations (except saveImageRef()) are affected by the size of
the image that is uploaded. The Travelistr system allows its users to upload pictures
up to a size of 10MB. It is assumed that most people use Travelistr with their mobile
phones whereas 1MB seems to be a good guess for the average size of pictures uploaded.
The test was therefore launched exclusively uploading a 1MB picture many times.
Figure 7.6 shows the observed service-times for the four operations.

Figure 7.6: Response times of the sub-operations of publishImage() and the total response
times, n = 176.

As can be seen, the uploadImage()-operation takes very long, on average roughly 16.5
seconds. When running this load-test, i was in my home village in a very rural area of
Austria with a very bad internet speed. Launching this test again in my flat in Vienna
shortens the time to about 4 seconds. And when I carried out the test in the WIFI at
the campus of the Vienna University of Technology it completes after about 2 seconds.
This shows the high dependence of service-times lengths on the infrastructure of a user
for the publishImage()-feature.
It is very clear that with my approach of only measuring service-times at language level,

74

7.7. Sprint 2

it is not possible to extract accurate service times for the uploadImage()-operation. The
problem is, that the transmission does not depend on own hardware but also heavily on
the users-hardware. This can only be mitigated when also the hardware-resources are
instrumented in order to retrieve valid service-times. Due to this finding, Hypothesis 5
has to be rejected.
For now, due to the lack of a accurate measurement data, the uploadImage()-operation is
changed in a predictive way to 1.5 seconds on the CPU which also includes the time to
scale the image.
The mean values of the other operations are: scaleImage(): 900.01 ms, uploadToImage-
Server(): 889.26 ms and saveImageRef(): 56.83 ms. Furthermore the handleRequestPub-
lish()-operation takes 70.8 ms.

The service-times of operations developed and analysed in Sprint 1 have not changed
significantly and therefore their service times are kept as they were. In Table 7.6 the
updated list of measured service-times is shown.

Operation λ DB CPU ImageServer
handleRequestStart() 2.562 0 1.15 0
handleRequestAbout() 0.318 0 3.07 0
handleRequestLogin() 1.413 0 28.46 0
handleRequestRegister() 1.131 0 36.23 0
handleRequestDashboard() 3.486 0 2.18 0
handleRequestProfile() 1.388 0 38.54 0
getUser() 3.882 18.02 0 0
saveUser() 1.131 53.29 0 0
publishImage() 0.435 56.83 1500 889.26

Table 7.6: Distinct set of measured Travelistr operations of the deployed system after
Sprint 2 and their service times in milliseconds.

7.7.1 Enriching the MVA-model

The parameters of the MVA analysis for the entire Travelistr software system are enriched
with the measurement-data derived in this Sprint and outlined in Table 7.6. The results
of this analysis in terms of average utilization (number of customers at each station) are
as follows. DB: 13.05, CPU: 6.06 and ImageServer: 3.84.
Again, a decrease in the expected utilization can be seen compared to the results of
Sprint 2.

7.7.2 Retrieving the order of operation-execution

As outlined in Chapter 5, an information-requirement for many intermediate-format
notations such as PMIF, CSM or KLAPER is the ordering of operations.
As these models are all in the domain of model-based performance engineering, the

75

7. Evaluation

ordering of operations is defined in a predictive way before implementation. However, a
useful automated tool may retrieve the orderings and also the probability of operation-
executions from observation data.
The research question herefore is as follows: How can orderings of operations as well as
execution-probabilities be derived from observation data?

7.8 Sprint 3
Sprint 3 is the final iteratio for developing Travelistr. The two features Nearby and Like
were developed and the profile-page was extended. Additionally the connection handling
was adapted. Instead of using separate connections for every operation, the »Connection
per Thread«-pattern was introduced. The connection-pooling was also adapted to the
expected amount of users in a sense that at least 50 connections are always kept open
and are reused and shared between users. Furthermore, also the passwords are hashed
server side and a Salt is added.

The respective operations added in this Sprint are getNearby() and doLike(). The
operation getNearby() was split into two sub-operations getRecentTrending() and order-
RecentTrendingByDistance().
An interesting finding here is the fact that now there is a significant difference in the
getUser()-operation duration when called from the Register- and Login-feature. The
reason for this is that together with the User-object, also it’s pictures are loaded eagerly
resulting in the Login-feature having a bigger response time than the Register-feature.
Also, the getUser()-operation is split into two operations: getUserEmpty() and getUserEx-
ists(). When compared to the results of Sprint 2, the results show a high impact of the
changes.

After that, Travelistr is in the Beta-status. All its features are available. Again, synthetic
load tests with JMeter were launched. The final results of operation durations can be
found in Table 7.7. The result of the MVA-analysis is as follows. DB: 2.33, CPU: 0.69
and ImageServer: 0.39.
Just like in Sprint 1 and 2, the expected utilization decreased for all three resources.

In Figure 7.7, the results of the MVA-analysis for Sprint 1, 2 and 3 and the respective
resources DB, CPU and ImageServer is shown. The final numbers including nearly
complete measurement data is far away from the predictions in the beginning. This is due
to high predictions in the first place but also due to performance improvements such as
enhanced connection-pooling. Additionally I assume that also for practitioners it is hard to
predict operation-durations before development. As shown in Figure reffig:utilizationView
for every Sprint, the expected utilization of resources dropped.
As outlined earlier, no adaptation of the expected user-behaviour was done during
development. To replace the predicted user-behaviour by measured user-behaviour has
not been done so far and is subject the next section.
Based on the results of Sprint 3, an adaptation of the computing capabilities of the
Travelistr-software system seems necessary. For the empiric user-test, an amount of about

76

7.8. Sprint 3

Operation λ DB CPU ImageServer
handleRequestStart() 2.562 0 3.33 0
handleRequestAbout() 0.318 0 2.88 0
handleRequestLogin() 1.413 0 1.41 0
handleRequestRegister() 1.131 0 2.05 0
handleRequestDashboard() 3.486 0 2.18 0
handleRequestProfile() 1.388 0 8.09 0
getUserEmpty() 1.131 88.38 0 0
getUserExists() 2.801 158.78 0 0
saveUser() 1.131 52.52 0 0
publishImage() 0.435 56.83 1500 889.26
getNearby() 6.909 199.26 0.1 0
doLike() 3.612 89.047 1.47 0

Table 7.7: Distinct set of measured Travelistr operations of the deployed system and
their service times in milliseconds after Sprint 3.

30 users maximum is expected just as the calculations shown above. Given the results
the only adaptation is an increase of computing capabilities at the DB. The way this
optimization and increase is handled is not described here. It is not subject of this work
and there is a tremendous amount of literature to this topic available (such as [46]).

Figure 7.7: Expected Utilization of the resources of the Travelistr software system over
time at the end of the development Sprints.

77

7. Evaluation

7.8.1 Evaluating the Markov assumption for Travelistr

The purpose of this section is to evaluate Hypothesis 2 with the observed user traces
of the empiric user test that was carried out using the Travelistr system. To do so, an
approximative approach proposed by Li et al. [55] is applied. Here, transition-probabilities
of a Markov model of order one are compared to transition-probabilities of order two. If
the probabilities of order one and two don’t diverge more than a certain threshold, the
Markov assumption is accepted.

The observational data is retrieved using the UserTrace-component of the OperationsAnd-
TraceMonitor-tool. User traces here are stored in a CSV-file. The retrieval of a Markov
model given the data in a CSV-format is a sophisticated error-prone task. Such tasks are
ideally automated by using a respective software tool. The software tool implemented
therefore is called userTrace2Markov and is available online [8]. It is a command-line tool
written in JAVA that accepts four parameters. The first parameter is the path to the
input file, the second parameter the path to the output file, the third parameter describes
how long a user interaction is considered as one interaction and the fourth (optional)
parameter is the name of the software system. For this evaluation, user-interactions are
considered as cohesive if two consecutive requests are within 120 seconds.

The input file must be a CSV-file and include the following attributes: entered-path, time,
userIP, sessionID, userID, action.
The action can in the first version of the UserTrace2Markov-tool only be of type GET.
The results of the analysis are written to a file defined in the second parameter in form
of a txt-file. The tool calculates transition-rates between states for a first- and second
order Markov chain. Furthermore, think-times of every state are calculated and described
by mean-value and deviation of a standard normal distribution. Additionally, the total
aggregated time spent in each state by every user is summed up. This is useful for
analysing the steady state assumption of Hypothesis 4.

The results of the empirical user-test in form of a first-order Markov model are shown in
Figure 7.8.

In the appendix, the detailed results for every state and every transition can be found.
The states Like and Liked were omitted for evaluation because these pages had simple
redirects, resulting in no usable information gain for my purposes. Furthermore also the
states Logout and About were omitted as they do not provide the users with sufficient
freedom of decision where to go next. An evaluation would therefore also result in no
information gain.

The user test took place for one week. In total, 32 users participated. All of them are
my personal friends and I asked them to join the test in the following way:

»For the practical part of my master thesis I do an empiric test. Right now, I am looking
for some test-users. Would be cool if you participate also. The Travelistr-platform is very
simple. All you need to do is register and from time to time upload a picture or like other
pictures. Comparable to how you would use Instagram for example. The test will run till

78

7.8. Sprint 3

Figure 7.8: Results of the empirical user test in form of a first order Markov model.

79

7. Evaluation

the end of October.
The test is about evaluating the Markov-assumption for the usage-profile of websites in
the domain of Software Performance Engineering. A more detailed description about
Travelistr and more background information can be found directly at the welcome-page of
Travelistr.
Your usage data will only be used anonymously!
Here is the link to Travelistr:
http://138.68.73.16:8080/TravelistrApp/start
To participate you only need to register (please remember the password) and then you
can already use all features of Travelistr. You can start right away as the test is already
running.
Thanks in advance!«

146 pictures were uploaded to Travelistr which received 839 Likes altogether. 4520
transitions between states were observed within 173 distinct user interactions. Two
consecutive transactions from a user are considered to be in the same user interaction if
their timely difference is equal or less than 120 seconds. To distinguish users, a randomly
generated ID was generated for each session and, besides being stored server side, also
copied to the users local machine with the use of Cookies. A user-session was never
invalidated during the whole test. So if a user hasn’t on purpose logged out, the user
could continue were he/she left the last time without logging in again. The results for
the approximative evaluation of the Markov assumption can be found in Table 7.8.

State
Avg. information loss
from 2nd to 1st order
model

Observed Transitions (n)

Nearby 4.36% 1067
Dashboard 11.45% 506
Profile 6.72% 193
Publish 2.87% 190
Published 1.77% 153
Start 7.58% 128
Login 3.14% 106
Register 12.48% 35

Table 7.8: Results of comparing the first-order Markov model solution of user-behaviour
with the second-order Markov model.

These results confirm Hypothesis 2. Markov models of order one seem to be good
approximations of user-behaviour of typical Web 2.0 applications. However, the artificial
user test carried out has certain threads to validity that are described in Section 7.10.
Furthermore, in Chapter 8, future research directions and remaining research questions
are outlined that build upon this works results.

80

http://138.68.73.16:8080/TravelistrApp/start

7.8. Sprint 3

7.8.2 Empirical results compared to the steady state

Hypothesis 4 states that the distributions of the summed total time users on average
spent in each state will converge to a steady state solution of the Markov model. In
Table 7.9, the total time users spent in each state is outlined.

State Total time (in sec) Distribution Probability to en-
ter from Outside

Nearby 8701 30.3% 11.0%
Publish 6490 22.6% 2.9%
Liked 2996 10.5% 0.0%
Profile 2989 10.4% 3.3%
Dashboard 2366 8.3% 8.8%
Published 1631 5.7% 3.7%
Start 1154 4.0% 53.0%
Login 1139 4.0% 11.0%
Register 825 2.9% 1.5%
About 189 0.7% 1.5%
Like 171 0.6% 2.9%
Logout 20 0.1% 0.4%

Table 7.9: Observed total times summed of each user that were spent in each state of
the Travelistr system.

Hypothesis 3 states, that users in typical Web 2.0 applications are not bound to a specific
starting state. As can be seen in Table 7.9, this is true for this evaluation. I furthermore
assume, that given observations of longer periods of empiric studies, the probability of
entering a state from outside will be somehow connected to the steady state distribution.

Hypothesis 4 cannot be accepted or rejected here. The Travelistr case study is also of
exploratory nature. Here, additional parameters were identified that were not taken into
account in the first place. These new parameters that may need to be taken into account
are:

• Specific probabilities for entering specific states.

• Self-references of states (e.g. a refresh on a website). Because of that, the transition
matrix has to be defined in a different way and also the think-times have to be
regarded differently.

A new mathematical approach may be defined for this changed circumstances that also
takes these new parameters into account. Given the observed data, the simple steady
state calculation however is assumed to be a valid approximation but reliable assertions
based on the given data is not possible. Hypothesis 4 is not accepted nor rejected

81

7. Evaluation

therefore. An empiric study evaluating already productive applications in future research
is needed to evaluate this Hypothesis.

Assumption 1 is true for Travelistr and is assumed to be true for many other software
systems. An important aspect of ergodic systems is, that there are no seperated states
or islands of states that cannot be reached from others. Such software systems where
features are unreachable given a specific state would make little sense I assume.

7.9 Benefits and Overhead
Taking performance early and throughout a software project into consideration showed
high utility in the Travelistr case study.
The predictive model-based approach in SPE alone is not accurate as it does not take
language-specific, implementation style and other factors into account. An example for
this in the Travelistr case study is the use of a connection-pool that would be hard to
describe predictively. Furthermore, changes in the implementation and the architecture
can be compared to earlier versions and their effect is measurable. Furthermore, I assume
that for practitioners it is nearly impossible to guess the operation durations and resulting
resource utilizations beforehand. Therefore, measurements on deployed software systems
are very useful.

However, there is overhead associated to the ASPE approach. Therefore, the existence of
respective automation tools is essential. Given, only the need to install resource/language
level probes and define a system in a way such as depicted in Figure 7.8 seems to be
reasonable and usable for practitioners. Furthermore, as the domain is rather complex,
these tools are able to hide away the complexity of the approach. Especially the use of
order one Markov models is very easy compared to other approaches.

7.10 Threads to validity
The empiric user test evaluating the Markov assumption and other hypotheses was
successful. However, 32 users took part in the test and not every state/transition was
visited as often as it would be necessary. To reduce the risk of evaluating bad data, only
states and their respective transitions with more than 20 observed transitions were taken
into consideration for evaluating the Markov assumption.
Furthermore, there is a risk that the users did not use Travelistr as they would if
Travelistr was a real application used in their daily lifes. To mitigate this problem, I
only asked personal friends of mine i can trust they would keep on using it for a while in
an appropriate way. A second initiative to mitigate this risk was to include a gamified
approach where each night, an email with the Most Liked Pictures was sent out to all
users together with the statistics for their performance on Travelistr with regard to how
many Likes they got the day before.
The evaluation period is another risk, as it is assumed, that the behaviour of users over a
longer period accordingly changes due to a better understanding of the system or due to

82

7.10. Threads to validity

the simple fact that the registration only needs to be done once and never again. The
fractions of some states (e.g.Register) is therefore assumed to be different in the long run.
This is also a reason why Hypothesis 4 could not be evaluated in this work.

83

CHAPTER 8
Conclusion and Outlook

The proposed ASPE-approach combines model-based techniques and measurement-based
techniques in SPE and showed utility in a case study for developing a typical Web 2.0
application.

Sub-goal one (SG1) was to propose a metamodel describing the information require-
ments for adequately evaluating a software systems performance. Herefore, the CETO-
metamodel was defined which showed validity and effectiveness in the Travelistr case
study.

The second sub-goal (SG2) for proposing an agile software engineering process that
includes SPE in a seamless manner was achieved by outlining the ASPE-process. The
agile process showed effectiveness for retrieving and defining static-, predictive- as well as
measurement data. The validity and effectiveness of the ASPE-process was demonstrated
in the Travelistr case study. Furthermore, its usability and utility for real world projects
was shown. Sub-goal 2 was expressed in Hypothesis 1, which was the main research
interest of this work. Respective automation tools are however necessary to be usable for
practitioners.

Sub-goal three (SG3), an approach to retrieve queuing networks from Markov user-
behaviour models, was achieved. For the outlined transformations, necessary conditions
need to hold, especially ergodicity as well as the Markov assumption for user-behaviour.
These conditions are expressed in Hypothesis 1 and 2. However, Hypothesis 4 could
neither be accepted nor rejected in this work and needs to be evaluated in future research.

The fourth sub-goal (SG4) was the proposition of a metamodel for performance analysis
that describes workloads on resources. Herefore, the MUPOM metamodel was proposed
which uses the Markov model formalism for describing the usage profile. The MUPOM-
metamodel showed validity and effectiveness in the Travelistr case study.

85

8. Conclusion and Outlook

The fifth sub-goal (SG5) was achieved by doing an empirical user test. The Markov
assumption was evaluated with an approximative approach that shows the information
loss from a Markov model of order two compared to a Markov model of order one. The user
test showed that Markov models are valid approximations for modelling user-behaviour
of typical Web 2.0 applications.

Hypothesis 5 was rejected, as especially service times that depend on users resources, such
as the upload of an image through a local network, can not be determined appropriately
without also adding resource-probes.

8.1 Future research directions
The Travelistr case study was, besides being of confirmatory nature, also of exploratory
nature. As the SPE discipline, and in consequence my own research work, cover a broad
range of domains, it is not surprising that further contributions are necessary. Some
possible research directions are outlined as follows.

One interesting aspect is the extrapolation of user-behaviour based on a limited set of
available features after an iteration as described in Section 7.6.3. The research questions
herefore are: Can observed user-interactions on a limited set of features be extrapolated
to a systems entire user-behaviour model? How can these measurements be validated?
The practical consequence would be, that already during development, usage patterns
can be quantified and besides enhancing the accuracy of operation durations, also the
user-behaviour model can be adapted and enriched with findings from measurements
over time. A possible solution approach herefore might be to mock the behaviour of
missing features.

Another problem outlined in the case study applies for operations where the infrastructure
of users has a strong influence on the request-response-interval. As stated above, measured
service times on a language level alone are not sufficient. Instead, also observations on
physical resources have to be retrieved in order to estimate the service-times more precisely.
An interesting tool for doing this is Kieker [68], that integrates both, language-level- and
resource-level instrumentation. Evaluating Kieker and other resource-instrumentation-
tools for their applicability in the ASPE-approach is another research direction.

As outlined in Section 7.7.2, the retrieval of causal operation-orderings from observation
data is a possible way for automating big parts of the performance engineering process.
This research direction is suited around the following question: How can orderings of
operations as well as execution-probabilities be derived from observation data? The
practical consequence is a decreased overhead leading to higher utility.

An assumption and necessary pre-condition for using the ASPE-approach for developing
a software system and managing its performance is, that the user-behaviour as well as
the structure of the system in terms of navigability must be ergodic. This is expressed in
Assumption 1. For Travelistr, which is a typical Web 2.0 application and the basis of the
outlined case study, this assumption holds. However, also other types of software systems

86

8.1. Future research directions

may be of the same nature. The respective research questions are: Are software systems
likely to be of ergodic nature? What types of software systems are likely to be ergodic?

As outlined in Section 7.9, tool support and automation is important for the ASPE-
approach to be usable in practice. Therefore, a tool that takes information defined as in
Figure 7.8 might be developed. This can either be done in a self-contained manner or via
interfaces to other tools.

A further research direction is concerned with the concept of Elastic-Clouds, where
computing power can be extended on demand. The research question here is as follows:
How can findings in the ASPE-approach be integrated into Elastic-Cloud frameworks?
How can respective metrics and rules be derived from measurements? How can such rules
be defined in a model-theoretic way?

As outlined in Section 5.6, Hidden Markov Models seem to be a useful technique in SPE.
A brief concept herefore may look as follows: Operation calls and use-case calls as well as
the resulting user-behaviour model are retrieved by only observing resource-utilizations.
From there, the underlying Markov process is derived using respective techniques. This
might be especially useful if, due to some circumstances, emissions on a use case level
can not directly be observed.

87

Acronyms

SPE Software Performance Engineering

ASPE Agile Software Performance Engineering

DevOps Development and Operations

SLA Service Level Agreement

QoS Quality of Service

SCRUM An agile software development framework

QA Quality assurance

Cloud Internet-based computing with shared resources

HMM Hidden Markov models

QN Queuing network

LQN Layered Queuing network

EQN Extended Queuing network

CPU Central Processing Unit

DB Database

MDE Model driven engineering

MDA Model driven architecture

OMG Object Management Group

MOF Meta Object Facility

IaaS Infrastructure as a Service

PaaS Platform as a Service

89

SaaS Software as a Service

OASIS Organization for the Advancement of Structured Information Standards

TOSCA Topology and Orchestration Specification for Cloud Applications

CSM Core Scenario Model

UML Unified Modeling Language

UML MARTE UML Profile for Modeling and Analysis of Real-Time Embedded
systems

UML SPT UML Profile for SPT Schedulability, Performance and Time

PMIF Performance Model Interchange Format

QNM Queuing Network Metamodel

KLAPER Kernel Language for Performance and Reliability

PCM Palladio Component model

PUMA Performance from Unified Model Analysis

DTMP Discrete time Markov processes

OWL-S Web Ontology Language for Web Services

ATL Atlas Transformation Language

JMT Java Modeling Tool

JMVA Java Mean Value Analysis

GNU GNU’s not Unix

GPL General Public License

HPG Hypertext Probabilistic Grammar model

CETO Components Emission and Timely Observations

MUPOM Markov Usage Process and Operations Measurements

90

Results of the empirical user test

Mean information losses

The results of the evaluation of each state are as follows:

State Nearby:

Number of transitions from or to this state (n) = 1067.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 4.36%.

Incoming
state

Transition
Probability Deviation

Transition From Nearby to Nearby
Dashboard 2.5% 0.6%
Liked 0.53% 1.37%
Published 0.0% 1.9%
Outside 7.7% 5.8%
Profile 3.08% 1.18%
Nearby 43.75% 41.85%

Overall 1.9% Avg. Error:
2.17%

Transition From Nearby to Like
Dashboard 65.20% 9.10%
Liked 81.64% 7.34%
Published 80.0% 5.70%
Outside 50.00% 24.30%
Profile 73.85% 0.45%
Nearby 12.5% 61.8%

Overall 74.3% Avg. Error:
9.38%

Dashboard 21.52% 7.22%
Liked 12.43% 1.87%
Published 15.00% 0.70%
Outside 23.08% 8.78%
Profile 13.85% 0.45%
Nearby 31.25% 16.95%

Overall 14.3% Avg. Error:
3.80%

From
state

Transition
Probability Deviation

Transition From Nearby to Profile
Dashboard 8.86% 4.16%
Liked 3.57% 1.13%
Published 0.00% 4.70%
Outside 11.54% 6.84%
Profile 7.7% 3.00%
Nearby 6.25% 1.55%

Overall 4.70% Avg. Error:
3.97%

Transition From Nearby to Outside
Dashboard 1.90% 3.00%
Liked 1.85% 3.05%
Published 5.0% 0.10%
Outside 7.70% 2.80%
Profile 1.54% 3.36%
Nearby 6.25% 1.35%

Overall 4.90% Avg. Error:
2.46%

91

State Dashboard:
Number of transitions (n) = 506;
The average error of all transitions from an order 2 model compared to an order 1 model
is: 11.45%.

Incoming
state

Transition
Probability Deviation

Transition From Dashboard to Profile
Liked 19.40% 0.52%
Profile 0.00% 19.92%
Nearby 38.20% 18.28%
Login 25.60% 5.68%
Register 12.50% 7.42%
Published 10.10% 9.82%
Outside 4.50% 15.42%

Overall 19.92% Avg. Error:
11.01%

Transition From Dashboard to Logout
Liked 2.80% 6.80%
Profile 13.80% 4.20%
Nearby 22.90% 13.30%
Login 3.50% 6.10%
Register 0.00% 9.60%
Published 0.00% 9.60%
Outside 4.50% 5.10%

Overall 9.60% Avg. Error:
7.81%

Transition From Dashboard to Outside
Liked 5.60% 2.50%
Profile 10.30% 2.20%
Nearby 6.90% 1.20%
Login 0.00% 8.10%
Register 3.10% 5.00%
Published 0.00% 8.10%
Outside 9.10% 1.00%

Overall 8.10% Avg. Error:
4.01%

From
state

Transition
Probability Deviation

Transition From Dashboard to Nearby
Liked 44.40% 12.60%
Profile 31.00% 0.80%
Nearby 20.10% 11.70%
Login 62.80% 31.00%
Register 50.00% 18.20%
Published 10.10% 21.70%
Outside 9.10% 12.60%

Overall 31.80% Avg. Error:
16.96%

Transition From Dashboard to Publish
Liked 27.80% 2.85%
Profile 31.00% 0.35%
Nearby 11.81% 18.84%
Login 15.10% 15.55%
Register 50.00% 19.35%
Published 88.00% 57.35%
Outside 22.70% 7.95%

Overall 30.65% Avg. Error:
17.46%

92

State Publish:
Number of transitions (n) = 190.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 2.87%.

Incoming
state

Transition
Probability Deviation

Transition From Publish to Outside
Published 0.00% 0.00%
Outside 0.00% 0.00%
Dashboard 7.75% 2.55%
Publish 0.00% 0.00%
Profile 0.00% 0.00%

Overall 10.03% Avg. Error:
2.55%

Transition From Publish to Published
Published 0.00% 0.00%
Outside 0.00% 0.00%
Dashboard 88.03% 5.73%
Publish 0.00% 0.00%
Profile 0.00% 0.00%

Overall 82.30% Avg. Error:
5.73%

From
state

Transition
Probability Deviation

Transition From Publish to Publish
Published 0.00% 0.00%
Outside 0.00% 0.00%
Dashboard 3.50% 2.80%
Publish 0.00% 0.00%
Profile 0.00% 0.00%

Overall 6.30% Avg. Error:
2.80%

Transition From Publish to Dashboard
Published 0.00% 0.00%
Outside 0.00% 0.00%
Dashboard 0.70% 0.40%
Publish 0.00% 0.00%
Profile 0.00% 0.00%

Overall 1.10% Avg. Error:
0.40%

State Published:
Number of transitions (n) = 153.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 1.77%.

Incoming
state

Transition
Probability Deviation

Transition From Published to Publish
Publish 2.17% 0.27%
Outside 0.00% 0.00%

Overall 1.90% Avg. Error:
0.27%

Transition From Published to Dashboard
Publish 58.70% 3.20%
Outside 0.00% 0.00%

Overall 55.50% Avg. Error:
3.20%

Transition From Published to Nearby
Publish 14.50% 1.00%
Outside 0.00% 0.00%

Overall 13.50% Avg. Error:
1.00%

From
state

Transition
Probability Deviation

Transition From Published to Profile
Publish 18.12% 0.58%
Outside 0.00% 0.00%

Overall 18.70% Avg. Error:
0.58%

Transition From Published to Outside
Publish 6.52% 3.78%
Outside 0.00% 0.00%

Overall 10.30% Avg. Error:
3.78%

93

State Profile:
Number of transitions (n) = 193.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 6.72%.

Incoming
state

Transition
Probability Deviation

Transition From Profile to Publish
Nearby 0.00% 2.10%
Published 0.00% 2.10%
Outside 0.00% 0.00%
Dashboard 2.22% 0.12%

Overall 2.10% Avg. Error:
1.44%

Transition From Profile to Nearby
Nearby 45.65% 11.25%
Published 55.17% 20.77%
Outside 0.00% 0.00%
Dashboard 26.67% 7.73%

Overall 34.40% Avg. Error:
13.25%

From
state

Transition
Probability Deviation

Transition From Profile to Outside
Nearby 4.35% 9.75%
Published 0.00% 14.10%
Outside 0.00% 0.00%
Dashboard 14.44% 0.34%

Overall 14.1% Avg. Error:
8.06%

Transition From Profile to Dashboard
Nearby 50.00% 0.50%
Published 44.83% 4.67%
Outside 0.00% 0.00%
Dashboard 56.67% 7.17%

Overall 49.50% Avg. Error:
4.11%

State Login:
Number of transitions (n) = 106.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 3.14%.

Incoming
state

Transition
Probability Deviation

Transition from Login to Register
Login 0.00% 0.00%
Start 5.97% 0.67%
Register 0.00% 0.00%
Outside 3.70% 1.60%

Overall 5.30% Avg. Error:
1.14%

Transition From Login to Dashboard
Login 0.00% 0.00%
Start 89.55% 7.95%
Register 0.00% 0.00%
Outside 85.19% 3.59%

Overall 81.60% Avg. Error:
5.77%

Transition From Login to Start
Login 0.00% 0.00%
Start 1.49% 0.31%
Register 0.00% 0.00%
Outside 3.70% 1.90%

Overall 1.80% Avg. Error:
1.11%

From
state

Transition
Probability Deviation

Transition From Login to Outside
Login 0.00% 0.00%
Start 0.00% 8.80%
Register 0.00% 0.00%
Outside 3.70% 5.10%

Overall 8.80% Avg. Error:
6.95%

Transition From Login to Login
Login 0.00% 0.00%
Start 2.99% 0.39%
Register 0.00% 0.00%
Outside 3.70% 1.10%

Overall 2.60% Avg. Error:
0.75%

94

State Register:
Number of transitions (n) = 35.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 12.48%.

From
state

Transition
Probability Deviation

Transition From Register to Dashboard
Login 0.00% 0.00%
Start 95.83% 24.73%
Register 0.00% 0.00%
Outside 0.00% 0.00%

Overall 71.10% Average Er-
ror: 24.73%

Transition From Register to Login
Login 0.00% 0.00%
Start 4.17% 0.23%
Register 0.00% 0.00%
Outside 0.00% 0.00%

Overall 4.40% Average Er-
ror: 0.23%

From
state

Transition
Probability Deviation

Transition From Register to Register
Login 0.00% 0.00%
Start 0.00% 0.00%
Register 0.00% 0.00%
Outside 0.00% 0.00%

Overall 0.00% Average
Error: 0.00%

Transition From Register to Outside
Login 0.00% 0.00%
Start 0.00% 0.00%
Register 0.00% 0.00%
Outside 0.00% 0.00%

Overall 0.00% Average
Error: 0.00%

State Start:
Number of transitions (n) = 128.
The average error of all transitions from an order 2 model compared to an order 1 model
is: 7.58%.

Incoming
state

Transition
Probability Deviation

Transition From Start to Register
Start 0.00% 0.00%
Logout 0.00% 0.00%
Outside 24.32% 5.32%
About 0.00% 0.00%
Login 0.00% 0.00%

Overall 19.0% Avg. Error:
5.32%

Transition From Start to Start
Start 0.00% 0.00%
Logout 0.00% 0.00%
Outside 1.80% 0.50%
About 0.00% 0.00%
Login 0.00% 0.00%

Overall 1.30% Avg. Error:
0.50%

Transition From Start to Login
Start 0.00% 0.00%
Logout 0.00% 0.00%
Outside 57.66% 12.66%
About 0.00% 0.00%
Login 0.00% 0.00%

Overall 45.00% Avg. Error:
12.66%

From
state

Transition
Probability Deviation

Transition From Start to About
Start 0.00% 0.00%
Logout 0.00% 0.00%
Outside 8.11% 0.51%
About 0.00% 0.00%
Login 0.00% 0.00%

Overall 7.60% Avg. Error:
0.51%

Transition From Start to Outside
Start 0.00% 0.00%
Logout 0.00% 0.00%
Outside 8.11% 18.89%
About 0.00% 0.00%
Login 0.00% 0.00%

Overall 27.00% Avg. Error:
18.89%

95

Raw result data of the UserTrace2Markov-Tool

The results were retrieved with the UserTrace2Markov-Tool and are as follows:
1 Input: C:\Users\Johannes\OneDrive\TU_WIEN\MASTER\MasterThesis\Travelistr\Sprints\EmpiricalResults\

sampleTrace.csv
Output: C:\Users\Johannes\OneDrive\TU_WIEN\MASTER\MasterThesis\Travelistr\Sprints\EmpiricalResults\

results.txt
3 Duration: 120sec

Systemname: Travelistr
5 *************************** General Information ***********************************

7 System{name=’Travelistr’, states=[
State{id=’’},

9 State{id=’LOGOUT’},
State{id=’REGISTER’},

11 State{id=’LIKE’},
State{id=’DASHBOARD’},

13 State{id=’PUBLISHED’},
State{id=’PROFILE’},

15 State{id=’PUBLISH’},
State{id=’LOGIN’},

17 State{id=’NEARBY’},
State{id=’START’},

19 State{id=’OUTSIDE’},
State{id=’LIKED’},

21 State{id=’ABOUT’}]}
Altogether there were 4243 visits to states observed from 173 distinct users-interactions.

23 Total number of transitions: 4520

25

27 Following the informations about the States:

29 State: State{id=’’}
Think-time in ms (normal distributed):

31 Mean: 8166.666666666666
StandardDeviation: 8328.665359267754

33 Transition{from=State{id=’’}, to=State{id=’REGISTER’}} = 1
Transition{from=State{id=’’}, to=State{id=’NEARBY’}} = 1

35 Transition{from=State{id=’’}, to=State{id=’LOGIN’}} = 4
Total time of users spent in this state: 49sec

37 --
Second order Markov model transitions:

39 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’’}, next=State{id=’NEARBY’},
transition=1}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’’}, next=State{id=’REGISTER’},
transition=1}

41 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’’}, next=State{id=’LOGIN’},
transition=3}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’’}, next=State{id=’LOGIN’},
transition=1}

43 --
State: State{id=’LOGOUT’}

45 Think-time in ms (normal distributed):
Mean: 4000.0

47 StandardDeviation: 2121.3203435596424
Transition{from=State{id=’LOGOUT’}, to=State{id=’START’}} = 5

49 Transition{from=State{id=’LOGOUT’}, to=State{id=’OUTSIDE’}} = 48
Total time of users spent in this state: 20sec

51 --
Second order Markov model transitions:

53 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’LOGOUT’}, next=State{id=’OUTSIDE
’}, transition=4}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’LOGOUT’}, next=State{id=’START’},
transition=1}

55 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’LOGOUT’}, next=State{id=’START’
}, transition=3}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’LOGOUT’}, next=State{id=’START’},
transition=1}

57 --
State: State{id=’REGISTER’}

59 Think-time in ms (normal distributed):

96

Mean: 23571.428571428572
61 StandardDeviation: 13346.701981445174

Transition{from=State{id=’REGISTER’}, to=State{id=’REGISTER’}} = 1
63 Transition{from=State{id=’REGISTER’}, to=State{id=’DASHBOARD’}} = 32

Transition{from=State{id=’REGISTER’}, to=State{id=’LOGIN’}} = 2
65 Transition{from=State{id=’REGISTER’}, to=State{id=’OUTSIDE’}} = 10

Total time of users spent in this state: 825sec
67 --

Second order Markov model transitions:
69 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’REGISTER’}, next=State{id=’DASHBOARD

’}, transition=23}
SecondOrderTransiton{from=State{id=’START’}, current=State{id=’REGISTER’}, next=State{id=’LOGIN’},

transition=1}
71 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’REGISTER’}, next=State{id=’

REGISTER’}, transition=1}
SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’REGISTER’}, next=State{id=’

DASHBOARD’}, transition=1}
73 SecondOrderTransiton{from=State{id=’ABOUT’}, current=State{id=’REGISTER’}, next=State{id=’DASHBOARD

’}, transition=2}
SecondOrderTransiton{from=State{id=’’}, current=State{id=’REGISTER’}, next=State{id=’LOGIN’},

transition=1}
75 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’REGISTER’}, next=State{id=’DASHBOARD

’}, transition=6}
--

77 State: State{id=’LIKE’}
Think-time in ms (normal distributed):

79 Mean: 202.6066350710902
StandardDeviation: 655.6210690963171

81 Transition{from=State{id=’LIKE’}, to=State{id=’PROFILE’}} = 1
Transition{from=State{id=’LIKE’}, to=State{id=’LIKE’}} = 15

83 Transition{from=State{id=’LIKE’}, to=State{id=’LIKED’}} = 827
Transition{from=State{id=’LIKE’}, to=State{id=’DASHBOARD’}} = 1

85 Total time of users spent in this state: 171sec
--

87 Second order Markov model transitions:
SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’LIKE’}, next=State{id=’LIKED’},

transition=793}
89 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’LIKE’}, next=State{id=’PROFILE’},

transition=1}
SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’LIKE’}, next=State{id=’LIKED’},

transition=7}
91 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LIKE’}, next=State{id=’LIKED’},

transition=8}
SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’LIKE’}, next=State{id=’LIKE’},

transition=10}
93 SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKE’}, next=State{id=’LIKED’},

transition=13}
SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’LIKE’}, next=State{id=’LIKE’},

transition=3}
95 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’LIKE’}, next=State{id=’LIKED’},

transition=6}
SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’LIKE’}, next=State{id=’DASHBOARD’},

transition=1}
97 SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKE’}, next=State{id=’LIKE’},

transition=2}
--

99 State: State{id=’DASHBOARD’}
Think-time in ms (normal distributed):

101 Mean: 4908.713692946059
StandardDeviation: 7626.955071600951

103 Transition{from=State{id=’DASHBOARD’}, to=State{id=’NEARBY’}} = 166
Transition{from=State{id=’DASHBOARD’}, to=State{id=’PROFILE’}} = 104

105 Transition{from=State{id=’DASHBOARD’}, to=State{id=’LOGIN’}} = 1
Transition{from=State{id=’DASHBOARD’}, to=State{id=’PUBLISH’}} = 160

107 Transition{from=State{id=’DASHBOARD’}, to=State{id=’LOGOUT’}} = 50
Transition{from=State{id=’DASHBOARD’}, to=State{id=’START’}} = 1

109 Transition{from=State{id=’DASHBOARD’}, to=State{id=’OUTSIDE’}} = 42
Total time of users spent in this state: 2366sec

111 --
Second order Markov model transitions:

113 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’DASHBOARD’}, next=State{id=’PUBLISH’
}, transition=14}

97

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’DASHBOARD’}, next=State{id=’
PUBLISH’}, transition=27}

115 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’DASHBOARD’}, next=State{id=’
NEARBY’}, transition=9}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY’
}, transition=16}

117 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’DASHBOARD’}, next=State{id=’PUBLISH’
}, transition=10}

SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’DASHBOARD’}, next=State{id=’
PUBLISH’}, transition=76}

119 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGIN’
}, transition=1}

SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’DASHBOARD’}, next=State{id=’PROFILE’
}, transition=22}

121 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY
’}, transition=27}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’PROFILE
’}, transition=55}

123 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY’
}, transition=54}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY’
}, transition=29}

125 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGOUT’
}, transition=33}

SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’DASHBOARD’}, next=State{id=’
NEARBY’}, transition=16}

127 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’DASHBOARD’}, next=State{id=’OUTSIDE’
}, transition=2}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY
’}, transition=13}

129 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGOUT
’}, transition=12}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’DASHBOARD’}, next=State{id=’
OUTSIDE’}, transition=9}

131 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’DASHBOARD’}, next=State{id=’PROFILE’
}, transition=7}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’OUTSIDE
’}, transition=10}

133 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’PUBLISH
’}, transition=17}

SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’DASHBOARD’}, next=State{id=’
PUBLISH’}, transition=11}

135 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’DASHBOARD’}, next=State{id=’START’
}, transition=1}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’DASHBOARD’}, next=State{id=’
PROFILE’}, transition=13}

137 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’
OUTSIDE’}, transition=2}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’
PUBLISH’}, transition=5}

139 SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’DASHBOARD’}, next=State{id=’
PROFILE’}, transition=4}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’DASHBOARD’}, next=State{id=’NEARBY
’}, transition=2}

141 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’
PROFILE’}, transition=1}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGOUT’
}, transition=1}

143 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’DASHBOARD’}, next=State{id=’
PROFILE’}, transition=1}

SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’DASHBOARD’}, next=State{id=’PROFILE’
}, transition=1}

145 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGOUT’
}, transition=3}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’DASHBOARD’}, next=State{id=’LOGOUT
’}, transition=1}

147 SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’DASHBOARD’}, next=State{id=’
OUTSIDE’}, transition=1}

--
149 State: State{id=’PUBLISHED’}

Think-time in ms (normal distributed):
151 Mean: 11733.812949640285

StandardDeviation: 18667.40767404802

98

153 Transition{from=State{id=’PUBLISHED’}, to=State{id=’PUBLISH’}} = 3
Transition{from=State{id=’PUBLISHED’}, to=State{id=’OUTSIDE’}} = 16

155 Transition{from=State{id=’PUBLISHED’}, to=State{id=’DASHBOARD’}} = 86
Transition{from=State{id=’PUBLISHED’}, to=State{id=’NEARBY’}} = 21

157 Transition{from=State{id=’PUBLISHED’}, to=State{id=’PROFILE’}} = 29
Total time of users spent in this state: 1631sec

159 --
Second order Markov model transitions:

161 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISHED’}, next=State{id=’
PROFILE’}, transition=25}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISHED’}, next=State{id=’
DASHBOARD’}, transition=81}

163 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PUBLISHED’}, next=State{id=’
DASHBOARD’}, transition=1}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISHED’}, next=State{id=’
PUBLISH’}, transition=3}

165 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISHED’}, next=State{id=’NEARBY
’}, transition=20}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISHED’}, next=State{id=’
PROFILE’}, transition=4}

167 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISHED’}, next=State{id=’
OUTSIDE’}, transition=9}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISHED’}, next=State{id=’
OUTSIDE’}, transition=1}

169 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISHED’}, next=State{id=’
DASHBOARD’}, transition=4}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISHED’}, next=State{id=’NEARBY
’}, transition=1}

171 --
State: State{id=’PROFILE’}

173 Think-time in ms (normal distributed):
Mean: 16792.134831460673

175 StandardDeviation: 19544.1422710658
Transition{from=State{id=’PROFILE’}, to=State{id=’LOGIN’}} = 2

177 Transition{from=State{id=’PROFILE’}, to=State{id=’LOGOUT’}} = 1
Transition{from=State{id=’PROFILE’}, to=State{id=’DASHBOARD’}} = 95

179 Transition{from=State{id=’PROFILE’}, to=State{id=’NEARBY’}} = 66
Transition{from=State{id=’PROFILE’}, to=State{id=’PUBLISH’}} = 4

181 Transition{from=State{id=’PROFILE’}, to=State{id=’PROFILE’}} = 3
Transition{from=State{id=’PROFILE’}, to=State{id=’OUTSIDE’}} = 27

183 Transition{from=State{id=’PROFILE’}, to=State{id=’LIKE’}} = 7
Total time of users spent in this state: 2989sec

185 --
Second order Markov model transitions:

187 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’PROFILE’}, next=State{id=’
DASHBOARD’}, transition=13}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY’},
transition=21}

189 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’
DASHBOARD’}, transition=51}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’
OUTSIDE’}, transition=13}

191 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY
’}, transition=24}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY’
}, transition=1}

193 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY
’}, transition=16}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PROFILE’}, next=State{id=’PUBLISH’
}, transition=2}

195 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PROFILE’}, next=State{id=’
DASHBOARD’}, transition=4}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY’
}, transition=3}

197 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PROFILE’}, next=State{id=’DASHBOARD
’}, transition=23}

SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’PROFILE’}, next=State{id=’LIKE’},
transition=1}

199 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’
PUBLISH’}, transition=2}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PROFILE’}, next=State{id=’OUTSIDE’
}, transition=2}

99

201 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PROFILE’}, next=State{id=’
DASHBOARD’}, transition=2}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’PROFILE’}, next=State{id=’PROFILE’},
transition=1}

203 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’PROFILE’}, next=State{id=’
DASHBOARD’}, transition=2}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’
PROFILE’}, transition=2}

205 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PROFILE’}, next=State{id=’LIKE’},
transition=5}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’LOGOUT
’}, transition=1}

207 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’LOGIN’
}, transition=2}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’PROFILE’}, next=State{id=’NEARBY’},
transition=1}

209 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PROFILE’}, next=State{id=’LIKE’
}, transition=1}

--
211 State: State{id=’PUBLISH’}

Think-time in ms (normal distributed):
213 Mean: 36875.0

StandardDeviation: 28804.29035503466
215 Transition{from=State{id=’PUBLISH’}, to=State{id=’OUTSIDE’}} = 18

Transition{from=State{id=’PUBLISH’}, to=State{id=’PUBLISHED’}} = 144
217 Transition{from=State{id=’PUBLISH’}, to=State{id=’’}} = 1

Transition{from=State{id=’PUBLISH’}, to=State{id=’LOGOUT’}} = 1
219 Transition{from=State{id=’PUBLISH’}, to=State{id=’PROFILE’}} = 6

Transition{from=State{id=’PUBLISH’}, to=State{id=’NEARBY’}} = 11
221 Transition{from=State{id=’PUBLISH’}, to=State{id=’DASHBOARD’}} = 2

Transition{from=State{id=’PUBLISH’}, to=State{id=’PUBLISH’}} = 11
223 Total time of users spent in this state: 6490sec

--
225 Second order Markov model transitions:

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISHED’}, transition=125}

227 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’NEARBY
’}, transition=9}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’
PROFILE’}, transition=5}

229 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PUBLISH’}, next=State{id=’PUBLISH’
}, transition=2}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISHED’}, transition=7}

231 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’PUBLISH’}, next=State{id=’
PROFILE’}, transition=1}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PUBLISH’}, next=State{id=’PUBLISHED
’}, transition=4}

233 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISHED’}, transition=1}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISHED’}, transition=1}

235 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’
OUTSIDE’}, transition=11}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’PUBLISH’}, next=State{id=’OUTSIDE’
}, transition=1}

237 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’LOGOUT
’}, transition=1}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISH’}, transition=5}

239 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’
DASHBOARD’}, transition=1}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISH’}, next=State{id=’
PUBLISHED’}, transition=6}

241 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’PUBLISH’}, next=State{id=’PUBLISH’
}, transition=1}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISH’}, next=State{id=’PUBLISH’
}, transition=2}

243 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’PUBLISH’}, next=State{id=’NEARBY’
}, transition=1}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’PUBLISH’}, next=State{id=’’},
transition=1}

100

245 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISH’}, next=State{id=’
DASHBOARD’}, transition=1}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’PUBLISH’}, next=State{id=’OUTSIDE’
}, transition=2}

247 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’PUBLISH’}, next=State{id=’PUBLISH’
}, transition=1}

SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’PUBLISH’}, next=State{id=’NEARBY
’}, transition=1}

249 --
State: State{id=’LOGIN’}

251 Think-time in ms (normal distributed):
Mean: 10847.619047619046

253 StandardDeviation: 10174.233057828895
Transition{from=State{id=’LOGIN’}, to=State{id=’DASHBOARD’}} = 93

255 Transition{from=State{id=’LOGIN’}, to=State{id=’START’}} = 2
Transition{from=State{id=’LOGIN’}, to=State{id=’ABOUT’}} = 1

257 Transition{from=State{id=’LOGIN’}, to=State{id=’REGISTER’}} = 6
Transition{from=State{id=’LOGIN’}, to=State{id=’OUTSIDE’}} = 10

259 Transition{from=State{id=’LOGIN’}, to=State{id=’LOGIN’}} = 3
Total time of users spent in this state: 1139sec

261 --
Second order Markov model transitions:

263 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD’},
transition=60}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’LOGIN’}, next=State{id=’
DASHBOARD’}, transition=1}

265 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD’
}, transition=23}

SecondOrderTransiton{from=State{id=’REGISTER’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD
’}, transition=2}

267 SecondOrderTransiton{from=State{id=’ABOUT’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD’},
transition=2}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LOGIN’}, next=State{id=’START’},
transition=1}

269 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’LOGIN’}, next=State{id=’ABOUT’},
transition=1}

SecondOrderTransiton{from=State{id=’’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD’},
transition=4}

271 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’LOGIN’}, next=State{id=’REGISTER’},
transition=4}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’LOGIN’}, next=State{id=’LOGIN’},
transition=2}

273 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’LOGIN’}, next=State{id=’REGISTER’},
transition=1}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LOGIN’}, next=State{id=’REGISTER’
}, transition=1}

275 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’LOGIN’}, next=State{id=’DASHBOARD’},
transition=1}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LOGIN’}, next=State{id=’LOGIN’},
transition=1}

277 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’LOGIN’}, next=State{id=’OUTSIDE’},
transition=1}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’LOGIN’}, next=State{id=’START’},
transition=1}

279 --
State: State{id=’NEARBY’}

281 Think-time in ms (normal distributed):
Mean: 8334.291187739462

283 StandardDeviation: 6973.469266458318
Transition{from=State{id=’NEARBY’}, to=State{id=’LIKED’}} = 1

285 Transition{from=State{id=’NEARBY’}, to=State{id=’NEARBY’}} = 21
Transition{from=State{id=’NEARBY’}, to=State{id=’START’}} = 1

287 Transition{from=State{id=’NEARBY’}, to=State{id=’DASHBOARD’}} = 155
Transition{from=State{id=’NEARBY’}, to=State{id=’OUTSIDE’}} = 53

289 Transition{from=State{id=’NEARBY’}, to=State{id=’LIKE’}} = 805
Transition{from=State{id=’NEARBY’}, to=State{id=’PUBLISH’}} = 8

291 Transition{from=State{id=’NEARBY’}, to=State{id=’PUBLISHED’}} = 1
Transition{from=State{id=’NEARBY’}, to=State{id=’PROFILE’}} = 51

293 Transition{from=State{id=’NEARBY’}, to=State{id=’’}} = 1
Total time of users spent in this state: 8701sec

295 --
Second order Markov model transitions:

101

297 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=103}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’
}, transition=4}

299 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE’},
transition=1}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=48}

301 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’NEARBY’}, next=State{id=’PUBLISHED
’}, transition=1}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD’
}, transition=94}

303 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’
DASHBOARD’}, transition=34}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE’
}, transition=1}

305 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=617}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE’},
transition=14}

307 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’PUBLISH
’}, transition=5}

SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE
’}, transition=14}

309 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=4}

SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=16}

311 SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’NEARBY’}, next=State{id=’
DASHBOARD’}, transition=3}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE’},
transition=1}

313 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=13}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE’
}, transition=5}

315 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD
’}, transition=9}

SecondOrderTransiton{from=State{id=’PUBLISHED’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE
’}, transition=1}

317 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD
’}, transition=6}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’START’},
transition=1}

319 SecondOrderTransiton{from=State{id=’’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=1}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE’
}, transition=3}

321 SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE’},
transition=27}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE’
}, transition=2}

323 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE
’}, transition=3}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=1}

325 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’NEARBY’}, next=State{id=’LIKED’
}, transition=1}

SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’NEARBY’}, next=State{id=’PROFILE’
}, transition=1}

327 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD’
}, transition=5}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’},
transition=2}

329 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’},
transition=7}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’’},
transition=1}

331 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD
’}, transition=3}

SecondOrderTransiton{from=State{id=’LIKED’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’},
transition=4}

102

333 SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’PUBLISH’
}, transition=1}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’NEARBY’}, next=State{id=’DASHBOARD’
}, transition=1}

335 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’LIKE’},
transition=2}

SecondOrderTransiton{from=State{id=’PROFILE’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’},
transition=2}

337 SecondOrderTransiton{from=State{id=’PUBLISH’}, current=State{id=’NEARBY’}, next=State{id=’NEARBY’},
transition=2}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’PUBLISH’},
transition=2}

339 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’NEARBY’}, next=State{id=’OUTSIDE’},
transition=1}

--
341 State: State{id=’START’}

Think-time in ms (normal distributed):
343 Mean: 9779.661016949152

StandardDeviation: 14280.544169059185
345 Transition{from=State{id=’START’}, to=State{id=’REGISTER’}} = 30

Transition{from=State{id=’START’}, to=State{id=’START’}} = 2
347 Transition{from=State{id=’START’}, to=State{id=’LOGIN’}} = 71

Transition{from=State{id=’START’}, to=State{id=’NEARBY’}} = 3
349 Transition{from=State{id=’START’}, to=State{id=’ABOUT’}} = 12

Transition{from=State{id=’START’}, to=State{id=’OUTSIDE’}} = 42
351 Total time of users spent in this state: 1154sec

--
353 Second order Markov model transitions:

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’LOGIN’},
transition=64}

355 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’REGISTER’
}, transition=27}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’ABOUT’},
transition=9}

357 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’NEARBY’},
transition=3}

SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’OUTSIDE’},
transition=9}

359 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’START’}, next=State{id=’LOGIN’},
transition=1}

SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’START’}, next=State{id=’LOGIN’},
transition=1}

361 SecondOrderTransiton{from=State{id=’DASHBOARD’}, current=State{id=’START’}, next=State{id=’ABOUT’},
transition=1}

SecondOrderTransiton{from=State{id=’ABOUT’}, current=State{id=’START’}, next=State{id=’LOGIN’},
transition=4}

363 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’START’}, next=State{id=’START’},
transition=2}

SecondOrderTransiton{from=State{id=’START’}, current=State{id=’START’}, next=State{id=’OUTSIDE’},
transition=1}

365 SecondOrderTransiton{from=State{id=’LOGOUT’}, current=State{id=’START’}, next=State{id=’REGISTER’},
transition=1}

SecondOrderTransiton{from=State{id=’LOGOUT’}, current=State{id=’START’}, next=State{id=’LOGIN’},
transition=1}

367 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’START’}, next=State{id=’REGISTER’},
transition=1}

SecondOrderTransiton{from=State{id=’LOGOUT’}, current=State{id=’START’}, next=State{id=’ABOUT’},
transition=2}

369 SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’START’}, next=State{id=’REGISTER’},
transition=1}

--
371 State: State{id=’OUTSIDE’}

Think-time in ms (normal distributed):
373 Mean: NaN

StandardDeviation: NaN
375 Transition{from=State{id=’OUTSIDE’}, to=State{id=’’}} = 4

Transition{from=State{id=’OUTSIDE’}, to=State{id=’PROFILE’}} = 9
377 Transition{from=State{id=’OUTSIDE’}, to=State{id=’LIKE’}} = 8

Transition{from=State{id=’OUTSIDE’}, to=State{id=’REGISTER’}} = 4
379 Transition{from=State{id=’OUTSIDE’}, to=State{id=’START’}} = 145

Transition{from=State{id=’OUTSIDE’}, to=State{id=’ABOUT’}} = 4
381 Transition{from=State{id=’OUTSIDE’}, to=State{id=’DASHBOARD’}} = 24

Transition{from=State{id=’OUTSIDE’}, to=State{id=’LOGOUT’}} = 1

103

383 Transition{from=State{id=’OUTSIDE’}, to=State{id=’NEARBY’}} = 30
Transition{from=State{id=’OUTSIDE’}, to=State{id=’PUBLISHED’}} = 10

385 Transition{from=State{id=’OUTSIDE’}, to=State{id=’LOGIN’}} = 30
Transition{from=State{id=’OUTSIDE’}, to=State{id=’PUBLISH’}} = 8

387 Total time of users spent in this state: 0sec
--

389 Second order Markov model transitions:
--

391 State: State{id=’LIKED’}
Think-time in ms (normal distributed):

393 Mean: 3627.118644067796
StandardDeviation: 1217.6243847222202

395 Transition{from=State{id=’LIKED’}, to=State{id=’REGISTER’}} = 1
Transition{from=State{id=’LIKED’}, to=State{id=’LIKE’}} = 9

397 Transition{from=State{id=’LIKED’}, to=State{id=’NEARBY’}} = 778
Transition{from=State{id=’LIKED’}, to=State{id=’PROFILE’}} = 2

399 Transition{from=State{id=’LIKED’}, to=State{id=’DASHBOARD’}} = 36
Transition{from=State{id=’LIKED’}, to=State{id=’OUTSIDE’}} = 2

401 Total time of users spent in this state: 2996sec
--

403 Second order Markov model transitions:
SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKED’}, next=State{id=’DASHBOARD’},

transition=35}
405 SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKED’}, next=State{id=’NEARBY’},

transition=778}
SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKED’}, next=State{id=’REGISTER’},

transition=1}
407 SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKED’}, next=State{id=’LIKE’},

transition=9}
SecondOrderTransiton{from=State{id=’LIKE’}, current=State{id=’LIKED’}, next=State{id=’PROFILE’},

transition=2}
409 SecondOrderTransiton{from=State{id=’NEARBY’}, current=State{id=’LIKED’}, next=State{id=’DASHBOARD’

}, transition=1}
--

411 State: State{id=’ABOUT’}
Think-time in ms (normal distributed):

413 Mean: 23625.0
StandardDeviation: 19798.538907130063

415 Transition{from=State{id=’ABOUT’}, to=State{id=’START’}} = 4
Transition{from=State{id=’ABOUT’}, to=State{id=’OUTSIDE’}} = 9

417 Transition{from=State{id=’ABOUT’}, to=State{id=’LOGIN’}} = 2
Transition{from=State{id=’ABOUT’}, to=State{id=’REGISTER’}} = 2

419 Total time of users spent in this state: 189sec
--

421 Second order Markov model transitions:
SecondOrderTransiton{from=State{id=’START’}, current=State{id=’ABOUT’}, next=State{id=’OUTSIDE’},

transition=3}
423 SecondOrderTransiton{from=State{id=’OUTSIDE’}, current=State{id=’ABOUT’}, next=State{id=’LOGIN’},

transition=1}
SecondOrderTransiton{from=State{id=’START’}, current=State{id=’ABOUT’}, next=State{id=’START’},

transition=4}
425 SecondOrderTransiton{from=State{id=’START’}, current=State{id=’ABOUT’}, next=State{id=’REGISTER’},

transition=2}
SecondOrderTransiton{from=State{id=’LOGIN’}, current=State{id=’ABOUT’}, next=State{id=’LOGIN’},

transition=1}

104

List of Figures

1.1 UML Use-Case-diagram of the Travelistr software system. 6
1.2 Sample UML Sequence-diagram for the Use-Case Publish picture of the Trav-

elistr software system (Error cases are left out for simplification). 7
1.3 UML Component-diagram of the Travelistr software system. 8

5.1 The workflow for performance analysis that is used widely in research and is
subject of the first part of this literature review (partly based on [86, p. 1530,
Fig. 1]). 30

5.2 Simplified class diagram of the CSM metamodel, taken from [86](p. 1536, Fig.
6). 31

5.3 Class diagram of the PMIF2 metamodel, taken from [74] 32
5.4 Class diagram of the KLAPER metamodel, taken from [45]. 33
5.5 Class diagram of the LQN metamodel, taken from [44](p. 3, Fig. 1.2). 34
5.6 Class diagram of the UML SPT performance analysis domain model, taken

from [62]. 35

6.1 The model-measure-feedback cycle is the basic workflow of the ASPE-approach. 44
6.2 The CETO metamodel. 48
6.3 The MUPOM metamodel. 49
6.4 The ASPE-workflow that combines the model-based approach and the measurement-

based approach. 51
6.5 Hidden Markov Models emissions and states. 54
6.6 Use-case requests and operations on resources resulting in two layered obser-

vations. 57

7.1 Markov model representing the states of Travelistr and the expected user-
behaviour defined with predictive knowledge in Sprint 0. 64

7.2 getUser() - service times in ms measured on the deployed Travelistr-system
after Sprint 1, n = 416. 70

7.3 Service times of operation getUser() measured on the deployed Travelistr-
system after Sprint 1, n = 1001. 71

7.4 Service times of operation saveUser() measured on the deployed Travelistr-
system after Sprint 1, n = 429. 71

105

7.5 Response times of the different already implemented pages at the end of Sprint
1. 72

7.6 Response times of the sub-operations of publishImage() and the total response
times, n = 176. 74

7.7 Expected Utilization of the resources of the Travelistr software system over
time at the end of the development Sprints. 77

7.8 Results of the empirical user test in form of a first order Markov model. . . . 79

List of Tables

6.1 Corresponding HMM and software system elements for unveiling Markov
models given incomplete information. 55

7.1 Predicted transition matrix of user-behaviour before implementation in Sprint 0. 65
7.2 Results of steady state analysis and derived arrival rates to the Travelistr

system given predictive knowledge in Sprint 0. 66
7.3 Distinct set of Travelistr operations and their service times in milliseconds

predicted before implementation in Sprint 0. 67
7.4 Resource-utilization: Average number of users in each station DB, CPU and

ImageServer in the Travelistr system calculated with predictive knowledge in
Sprint 0. 67

7.5 Travelistr operations and their service times in milliseconds observed on the
deployed software system at the end of Sprint 1. 73

7.6 Distinct set of measured Travelistr operations of the deployed system after
Sprint 2 and their service times in milliseconds. 75

7.7 Distinct set of measured Travelistr operations of the deployed system and
their service times in milliseconds after Sprint 3. 77

7.8 Results of comparing the first-order Markov model solution of user-behaviour
with the second-order Markov model. 80

7.9 Observed total times summed of each user that were spent in each state of
the Travelistr system. 81

106

Bibliography

[1] 10 companies killing it at DevOps, Teachbeacon, HPE Software initiative. http:
//techbeacon.com/10-companies-killing-it-devopsl. Accessed: 2016-
06-04.

[2] Architecture Tradeoff Analysis Method ATAM. www.sei.cmu.edu/
architecture/tools/evaluate/atam.cfm. Accessed: 2016-11-30.

[3] ATL Transformation Language. https://eclipse.org/atl/. Accessed: 2016-
11-30.

[4] The chef automation environment. https://www.chef.io/chef/. Accessed:
2016-06-30.

[5] Cloudinary: Image and video management in the cloud. http://cloudinary.
com/. Accessed: 2016-11-30.

[6] DigitalOcean: Cloud computing, designed for developers. https://www.
digitalocean.com/. Accessed: 2016-11-30.

[7] Disaster Girl, Worked fine in Dev - Ops Problem Now. https://memegenerator.
net/instance/22605665. Accessed: 2016-11-30.

[8] Empiric data and case-study findings as well as the Travelistr software system.
http://46.101.118.228:8080/TravelistrApp/. Accessed: 2016-11-30.

[9] Gartner Outlook 2018. http://www.gartner.com/newsroom/id/2939217.
Accessed: 2016-06-30.

[10] Juju charms. https://jujucharms.com/. Accessed: 2016-06-30.

[11] Kieker tools for software monitoring. http://kieker-monitoring.net/. Ac-
cessed: 2016-11-30.

[12] A list of queuing theory software. http://web2.uwindsor.ca/math/hlynka/
qsoft.html. Accessed: 2016-05-03.

[13] OMGs Model Driven Architecture. http://www.omg.org/mda/. Accessed: 2016-
06-30.

107

http://techbeacon.com/10-companies-killing-it-devopsl
http://techbeacon.com/10-companies-killing-it-devopsl
www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm
www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm
https://eclipse.org/atl/
https://www.chef.io/chef/
http://cloudinary.com/
http://cloudinary.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://memegenerator.net/instance/22605665
https://memegenerator.net/instance/22605665
http://46.101.118.228:8080/TravelistrApp/
http://www.gartner.com/newsroom/id/2939217
https://jujucharms.com/
http://kieker-monitoring.net/
http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://www.omg.org/mda/

[14] PMIF Schemas. http://www.spe-ed.com/pmif/PMIF/Schemas.html. Ac-
cessed: 2016-11-30.

[15] Sigar API: System Information Gatherer And Reporter. https://support.
hyperic.com/. Accessed: 2016-11-30.

[16] The Agile Manifesto. http://agilemanifesto.org/principles.html. Ac-
cessed: 2016-05-03.

[17] The Apache JMeter application. http://jmeter.apache.org/. Accessed: 2016-
11-30.

[18] The Kieker project on Sorceforge. https://sourceforge.net/projects/
kieker/. Accessed: 2016-11-30.

[19] The MetaObject Facility Specification. http://www.omg.org/mof/. Accessed:
2016-11-30.

[20] The ModaClouds research project. http://www.modaclouds.eu/. Accessed:
2016-06-30.

[21] The OASIS TOSCA Specification v 1.0. http://docs.oasis-open.org/
tosca/TOSCA/v1.0/TOSCA-v1.0.html. Accessed: 2016-06-04.

[22] The OpenTOSCA Ecosystem. http://www.iaas.uni-stuttgart.de/
OpenTOSCA/. Accessed: 2016-06-30.

[23] The UML for MARTE Specification. http://www.omg.org/spec/MARTE/1.1/.
Accessed: 2016-06-30.

[24] UML SPT Specification. http://www.omg.org/spec/SPTP/1.1/. Accessed:
2016-11-30.

[25] S. Balsamo. Product form queueing networks. In Performance Evaluation: Origins
and Directions, pages 377–401. Springer, 2000.

[26] L. Barardinelli, E. Mätzler, T. Mayerhofer, and M. Wimmer. Integrating Perfor-
mance Modeling in Industrial Automation through AutomationML and PMIF. In
Proceedings of the International Conference on Industrial Informatics (INDIN 2016),
pages 1–6. IEEE, 2016.

[27] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request
Extraction and Workload Modelling. In OSDI (Operating Systems Design and
Implementation), volume 4, pages 18–18, 2004.

[28] S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3–22,
2009.

108

http://www.spe-ed.com/pmif/PMIF/Schemas.html
https://support.hyperic.com/
https://support.hyperic.com/
http://agilemanifesto.org/principles.html
http://jmeter.apache.org/
https://sourceforge.net/projects/kieker/
https://sourceforge.net/projects/kieker/
http://www.omg.org/mof/
http://www.modaclouds.eu/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SPTP/1.1/

[29] S. Bernardi, J. Merseguer, and D. C. Petriu. Model-driven dependability assessment
of software systems. Springer, 2013.

[30] M. Bertoli, G. Casale, and G. Serazzi. JMT: performance engineering tools for
system modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15, 2009.

[31] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. TOSCA: portable automated
deployment and management of cloud applications. In Advanced Web Services, pages
527–549. Springer, 2014.

[32] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006.

[33] J. Borges and M. Levene. Data mining of user navigation patterns. In Web usage
analysis and user profiling, pages 92–112. Springer, 2000.

[34] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in
practice, volume 1. Morgan & Claypool Publishers, 2012.

[35] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of systems and software, 80(4):571–583, 2007.

[36] A. Brogi, J. Soldani, and P. Wang. TOSCA in a nutshell: Promises and perspectives.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8745 LNCS:171–186, 2014.

[37] V. Cortellessa, S. Di Gregorio, and A. Di Marco. Using ATL for Transformations in
Software Performance Engineering: A Step Ahead of Java-based Transformations?
In Proceedings of the 7th International Workshop on Software and Performance,
WOSP ’08, pages 127–132, New York, 2008. ACM.

[38] A. Di Marco and P. Inverardi. Compositional generation of software architecture per-
formance QN models. In Proceedings of the Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA 2004), pages 37–46, 2004.

[39] B. Di Martino, G. Cretella, and A. Esposito. Cloud Portability and Interoperability.
In Cloud Portability and Interoperability, pages 1–14. Springer, 2015.

[40] A. Dyck, R. Penners, and H. Lichter. Towards Definitions for Release Engineering
and DevOps. 2015 IEEE/ACM 3rd International Workshop on Release Engineering,
pages 3–3, 2015.

[41] E. d. S. e Silva, R. M. M. Leão, and R. R. Muntz. Performance evaluation with
hidden markov models. In Performance Evaluation of Computer and Communication
Systems. Milestones and Future Challenges, pages 112–128. Springer, 2011.

109

[42] S. R. Eddy. What is a hidden Markov model? NATURE BIOTECHNOLOGY, 22,
Number 10, 2004.

[43] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced mod-
eling and solution of layered queueing networks. IEEE Transactions on Software
Engineering, 35:148–161, 2009.

[44] G. Franks, P. Maly, M. Woodside, D. Petriu, A. Hubbard, and M. Mroz. Lay-
ered Queueing Network Solver and Simulator User Manual. http://www.sce.
carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf, 2013. Accessed: 2016-
11-30.

[45] V. Grassi, R. Mirandola, and A. Sabetta. From Design to Analysis Models : a Kernel
Language for Performance and Reliability Analysis of Component-based Systems.
Proceedings of the 5th International Workshop on Software and Performance (WOSP
2005), pages 25–36, 2005.

[46] M. Harchol-Balter. Performance Modeling and Design of Computer Systems: Queue-
ing Theory in Action. Cambridge University Press, New York, NY, USA, 1st edition,
2013.

[47] G. Hevizi, M. Biczó, B. Poczos, Z. Szabo, B. Takics, and A. Lorincz. Hidden Markov
model finds behavioral patterns of users working with a headmouse driven writing
tool. In Proceedings of the IEEE International Joint Conference 2004 on Neural
Networks, volume 1. IEEE, 2004.

[48] J. Humble and D. Farley. Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

[49] M. Hüttermann. Introducing DevOps. In DevOps for Developers, pages 15–31.
Springer, 2012.

[50] S. Jespersen, T. B. Pedersen, and J. Thorhauge. Evaluating the markov assumption
for web usage mining. In Proceedings of the 5th ACM international workshop on
Web information and data management, pages 82–89. ACM, 2003.

[51] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software
architecture. IEEE Software, 13(6):47–55, 1996.

[52] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. The
architecture tradeoff analysis method. In Proceedings of the Fourth International
Conference on Engineering of Complex Computer Systems, 1998. ICECCS’98., pages
68–78. IEEE, 1998.

[53] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson. Estimating service resource
consumption from response time measurements. In Proceedings of the Fourth Interna-
tional ICST Conference on Performance Evaluation Methodologies and Tools, page 48.

110

http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf
http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009.

[54] X. Li, M. Parizeau, and R. Plamondon. Training hidden markov models with multiple
observations-a combinatorial method. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(4):371–377, 2000.

[55] Z. Li and J. Tian. Testing the suitability of Markov chains as Web usage models.
In Proceedings of the 27th annual Computer Software and Applications Conference,
COMPSAC 2003., pages 356–361. IEEE, 2003.

[56] J. D. C. Little. A Proof for the Queuing Formula: L = λ W. Operations Research,
9(3):383–387, 1961.

[57] P. Mell and T. Grance. The NIST definition of cloud computing. NIST Special
Publication, 145:7, 2011.

[58] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L. Dowdy. Performance by design:
computer capacity planning by example. Prentice Hall Professional, 2004.

[59] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida. Performance by Design:
Computer Capacity Planning By Example. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2004.

[60] G. A. Moreno and C. U. Smith. Performance analysis of real-time component
architectures: An enhanced model interchange approach. Performance Evaluation,
67(8):612–633, 2010.

[61] J. F. Perez, W. Wang, and G. Casale. Towards a devops approach for software quality
engineering. In Proceedings of the 2015 Workshop on Challenges in Performance
Methods for Software Development, pages 5–10. ACM, 2015.

[62] D. B. Petriu and M. Woodside. An intermediate metamodel with scenarios and
resources for generating performance models from uml designs. Software & Systems
Modeling, 6(2):163–184, 2007.

[63] R. Qasha, J. Cala, and P. Watson. Towards automated workflow deployment in the
Cloud using TOSCA. In Proceedings of the 8th International Conference on Cloud
Computing, pages 1037–1040. IEEE, 2015.

[64] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN
3-900051-07-0.

[65] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

111

[66] L. Rabiner and B.-H. Juang. An introduction to hidden Markov models. ASSP
Magazine, IEEE, 3(January):4–16, 1986.

[67] J. Roche. Adopting DevOps practices in quality assurance. Communications of the
ACM, 56(11):38–43, 2013.

[68] M. Rohr, A. Van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke, and
W. Hasselbring. Kieker: continuous monitoring and on demand visualization of
java software behavior. In Proceedings of the IASTED International Conference on
Software Engineering, SE 2008, pages 80–85, 2008.

[69] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering, 14(2):131–164, 2009.

[70] C. H. Sauer. Approximate solution of queueing networks with simultaneous resource
possession. IBM Journal of Research and Development, 25(6):894–903, 1981.

[71] C. H. Sauer, E. A. MacNair, and S. Salza. A language for extended queueing network
models. IBM Journal of Research and Development, 24(6):747–755, 1980.

[72] R. Serfozo. Basics of applied stochastic processes. Springer Science & Business
Media, 2009.

[73] C. Smith and L. Williams. A performance model interchange format. Journal of
Systems and Software, 49(1):63–80, 1999.

[74] C. U. Smith and C. M. Lladó. Performance Model Interchange Format (PMIF
2.0): XML definition and implementation. In Proceedings of the First International
Conference on the Quantitative Evaluation of Systems, QEST 2004, pages 38–47,
2004.

[75] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D. Marco, and L. G. Williams. From
UML models to software performance results: an SPE process based on XML
interchange formats. In Proceedings of the 5th international workshop on Software
and performance, pages 87–98, 2005.

[76] C. U. Smith, C. M. Lladó, and R. Puigjaner. Performance model interchange format
(pmif 2): A comprehensive approach to queueing network model interoperability.
Performance Evaluation, 67(7):548–568, 2010.

[77] I. Sommerville. Software Engineering. Pearson; 9 edition (March 13, 2010), 2010.

[78] M. Stamp. A revealing introduction to hidden Markov models. Department of
Computer Science San Jose State University, 2004.

[79] A. Van Hoorn, M. Rohr, and W. Hasselbring. Generating probabilistic and intensity-
varying workload for web-based software systems. In Proceedings of the SPEC
International Performance Evaluation Workshop, pages 124–143. Springer, 2008.

112

[80] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: a framework for application
performance monitoring and dynamic software analysis. In Proceedings of the third
joint WOSP/SIPEW international conference on Performance Engineering - ICPE
’12, number July, pages 247–248, 2012.

[81] R. H. Von Alan, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS quarterly, 28(1):75–105, 2004.

[82] W. Wang, J. F. Pérez, and G. Casale. Filling the gap: a tool to automate parameter
estimation for software performance models. In Proceedings of the 1st International
Workshop on Quality-Aware DevOps, pages 31–32. ACM, 2015.

[83] J. Wettinger, U. Breitenbucher, and F. Leymann. Standards-based DevOps au-
tomation and integration using TOSCA. In Proceedings of the 7th International
Conference on Utility and Cloud Computing, UCC 2014, 2014 IEEE/ACM, pages
59–68, 2014.

[84] L. G. Williams and C. U. Smith. Performance evaluation of software architectures.
In Proceedings of the 1st international workshop on Software and performance, pages
164–177. ACM, 1998.

[85] M. Woodside, G. Franks, and D. C. Petriu. The Future of Software Performance
Engineering. Future of Software Engineering (FOSE ’07), pages 171–187, 2007.

[86] M. Woodside, D. C. Petriu, J. Merseguer, D. B. Petriu, and M. Alhaj. Transformation
challenges: from software models to performance models. Software and Systems
Modeling, 13(4):1529–1552, 2014.

[87] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Merseguer.
Performance by unified model analysis (PUMA). Proceedings of the 5th international
workshop on Software and performance WOSP 05, pp:1–12, 2005.

[88] Q. Zhou, H. Ye, and Z. Ding. Performance Analysis of Web Applications Based on
User Navigation. Physics Procedia, 24:1319–1328, 2012.

113

	Kurzfassung
	Abstract
	Contents
	Overview
	Introduction and Motivation
	Problem statement
	Aim of the work
	Methodological approach
	Motivating example
	Structure of the thesis

	Agile software engineering, continuous delivery and the DevOps culture
	Overview
	Software engineering fundamentals
	The agile approach
	The DevOps culture
	The need for automation

	Software Performance Engineering, Markov models and queuing networks
	Overview
	Software Performance Engineering
	Stochastic processes
	Markov models
	Queuing theory

	Cloud computing and model-driven engineering
	Overview
	Cloud computing
	Model-driven engineering
	OASIS TOSCA

	Related work
	Overview
	Intermediate formats
	Performance annotations
	Transformation approaches
	Service demands and performance measurements
	Markov models and queuing networks
	DevOps and QA
	Other related work

	An approach for Agile Performance Engineering
	Overview
	Information requirements and basic elements
	The CETO- and MUPOM metamodels
	The ASPE-process
	Profiling
	Model transformations
	From Markov models to queuing networks

	Evaluation
	Overview
	Objectives of the case study
	Data collection and Tools
	Travelistr
	Sprint 0
	Sprint 1
	Sprint 2
	Sprint 3
	Benefits and Overhead
	Threads to validity

	Conclusion and Outlook
	Future research directions

	Acronyms
	Results of the empirical user test
	List of Figures
	List of Tables
	Bibliography

