
Negotiating, Monitoring and
Recommending Data Contracts in

IoT Dataspaces

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Business Informatics

by

Florin Bogdan Balint, BSc
Registration Number 0725439

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.techn. Hong-Linh Truong

Vienna, 5th December, 2016
Florin Bogdan Balint Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Florin Bogdan Balint, BSc
Spengergasse 27, 2902, 1050 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Dezember 2016
Florin Bogdan Balint

iii

Acknowledgements

First of all I would like to express my sincere appreciation and gratitude to my advisor,
Mr. Prof. Hong-Linh Truong. He always gave me very valuable feedback, guidance,
support and I really enjoyed working on this thesis.

Furthermore I would like to thank Prof. Christian Huemer, Prof. Sabine Theresia Köszegi
and Prof. Markus Haslinger for their valuable feedback especially regarding the business
and the legal aspects of this thesis.

I would also like to thank my family, my brother Adrian and my parents, my friends
Marius, Bianca, Philipp, Rares and Sang Wha. Finally I would like to thank my girlfriend
Simone for her support, patience and encouragement.

v

Abstract

With the technological advances from the past few years in the Internet of Things (IoT)
the number of interconnected devices has increased drastically together with the amounts
of produced data.

Multiple IoT platforms have been created to facilitate IoT data purchasing and selling.
These platforms are limited regarding the data contract establishment and management.
For example current platforms do not support the negotiation of individual data contracts,
the monitoring of the data flow and making recommendations.

The challenge here is that different data contracts can be concluded for data produced by
the same Thing. Another challenge is the monitoring of the data flow for data contracts:
a data contract can consist of data produced by many Things, where each Thing can
produce entirely different data.

This thesis introduces a new extensible IoT contract-aware framework, which supports
the individual establishment of data contracts, the monitoring of the data flow for data
contracts and making recommendations.

The methodological approach of this thesis is divided into three parts. In the first part
literature research is conducted in order to find possible key elements regarding the design,
monitoring and recommendation of data contracts. Based on these findings requirements
are extracted for the implementation of a framework. In the second part a framework
and a prototype as a proof of concept are implemented. Finally, in the last part, the
implemented prototype is evaluated using two evaluation methods: a descriptive analysis
to demonstrate the utility of the prototype and a dynamic analysis to demonstrate the
performance and reliability of the prototype.

The obtained results demonstrate the effectiveness of the introduced framework for
negotiating, monitoring and recommending data contracts in IoT dataspaces.

vii

Kurzfassung

Mit den technologischen Fortschritten der letzten Jahre sind im Bereich des Internet
der Dinge (IdD) die Anzahl an verbundenen Geräten, und die dadurch produzierte
Datenmenge, drastisch gestiegen.

Mehrere IdD Plattformen wurden erstellt um den Kauf bzw. Verkauf von Daten zu
ermöglichen. Diese sind jedoch eingeschränkt in Bezug auf der Vertragsgründung und
Vertragsverwaltung. Zum Beispiel wird das Verhandeln von individuellen Datenverträgen
nicht unterstützt, ebenso wie das Überwachen des Datenflusses und das Empfehlen neuer
Verträge.

Die Herausforderung hier ist, dass unterschiedliche Datenverträge, für die produzierten
Daten von einem Ding, abgeschlossen werden können. Eine weitere Herausforderung
ist das Überwachen des Datenflusses für Datenverträge: Ein Vertrag kann aus Daten
bestehen, die von beliebigen Dingen erstellt werden und jedes Ding kann unterschiedliche
Daten produzieren.

Diese Arbeit stellt ein erweiterbares und skalierbares IdD vertragsbewusstes Framework
vor, welches das Verhandeln von individuellen Datenverträgen, die Überwachung des
Datenflusses für Datenverträge und Empfehlungen anbietet.

Der methodische Ansatz dieser Arbeit ist in drei Teilen eingeteilt. Im ersten Teil wird
eine Literaturrecherche durchgeführt um mögliche Schlüsselelemente für das Erstellen,
Überwachen und Empfehlen von Datenverträgen zu identifizieren. Basierend auf diesen
Ergebnissen werden Anforderungen für die Implementierung eines Frameworks erstellt.
Im zweiten Teil werden ein Framework und ein Prototyp als Konzeptnachweis erstellt.
Im letzten Teil wird der Prototyp mittels zwei Methoden ausgewertet: einer deskriptiven
Analyse, um den Nutzen des Prototyps zu demonstrieren und einer dynamischen Analyse
um die Stabilität und Zuverlässigkeit des Prototyps zu beweisen.

Die resultierenden Ergebnisse beweisen die Effektivität des vorgestellten Frameworks bei
dem Verhandeln, Überwachen und Empfehlen von Datenverträgen in IdD Datenräumen.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

List of Figures xiii

List of Tables xiv

List of Algorithms xv

Acronyms xvii

1 Introduction 1
1.1 Introduction . 1
1.2 Problem Statement . 2
1.3 Methodological Approach . 3
1.4 Contribution . 4
1.5 Thesis Structure . 4

2 Background and State of the Art 5
2.1 Legal Perspective of Data Contracts . 5
2.2 E-negotation of Data Contracts . 10
2.3 IoT Data Contracts . 15
2.4 Monitoring Data Contracts . 17
2.5 Recommending Data Contracts . 21
2.6 State of the Art . 25

3 Requirements Analysis 29
3.1 Brief Use Case Description . 29
3.2 Functional Requirements . 32
3.3 Non-Functional Requirements . 40

xi

4 Contract-aware Framework 41
4.1 Architecture . 41
4.2 Data Contract Management . 43
4.3 Data Contract Monitoring . 48
4.4 Recommending Management . 52

5 Experiments 55
5.1 Prototype . 55
5.2 Evaluation . 58

6 Summary 75

Bibliography 77

List of Figures

1.1 Concept of Data Contracts in IoT Dataspaces 2

2.1 Negotiation types overview [1] . 11
2.2 E-negotiation systems overview [2] . 11
2.3 Five Stage Model [3] . 13

3.1 Use Case Diagramm . 30

4.1 Framework Architecture . 42
4.2 Data Contract Data Model . 47

5.1 Thing Selection Screenshot . 61
5.2 Negotiation Screenshot 1 . 62
5.3 Negotiation Screenshot 2 . 63
5.4 Monitoring Screenshot 1 . 64
5.5 Monitoring Screenshot 2 . 65
5.6 Monitoring Screenshot 3 . 66
5.7 Performance Test Results - Monitoring Overhead 71
5.8 Performance Test Results - Thing Recommendation 73

xiii

List of Tables

2.1 QoD Problems Example - Temperature Recordings 18

3.1 Use Case 1 - User Registration . 32
3.2 Use Case 2 - Thing Registration . 34
3.3 Use Case 3 - IoT Dataspace Browsing . 35
3.4 Use Case 4 - Data Contract Negotiation . 36
3.5 Use Case 5 - Concluded Data Contract Monitoring 37
3.6 Use Case 6 - Thing Rating . 38
3.7 Use Case 7 - Recommend Data Contract . 39

5.1 Managing Services via REST API . 57
5.2 Evaluation Environment 1 - Virtual Server 58
5.3 Evaluation Environment 2 - Physical Machine 58
5.4 Negotiated Data Contracts . 60
5.5 Performance Test Results - Person Registration 69
5.6 Performance Test Results - Thing Registration 69
5.7 Performance Test Results - Data Contract Negotiation 70
5.8 Performance Test Results - Thing Recommendation 72

xiv

List of Algorithms

4.1 Data contracts monitoring algorithm . 49

4.2 QoD computation algorithm - opm1 . 50

4.3 QoS computation algorithm - opm2 . 50

4.4 Thing recommendation algorithm . 52

4.5 Thing tag-based recommendation algorithm 53

xv

Acronyms

API Application Programming Interface. xviii, 25, 41, 43

B2B Business-to-business. xviii, 10

BATNA Best Alternative to the Negotiated Agreement. xviii

DaaS Data as a Service. xviii, 15

DAO Data Access Object. xviii, 43

DSS Decision Support Systems. xviii, 11

ENS E-Negotiation System. xviii, 11, 12

ENT E-Negotiation Table. xviii, 11

GUI Graphical User Interface. xviii, 56, 67, 68

IdD Internet der Dinge. ix, xviii

IoT Internet of Things. vii, xiii, xviii, 1–5, 9, 10, 14, 15, 19, 21, 24–26, 29, 41, 43, 52,
55, 75

IT Information Technology. xviii, 14

JMS Java Message Service. xviii

JSF Java Server Faces. xviii

JSON JavaScript Object Notation. xviii, 34, 43, 67, 68

NAA Negotiation Agents-Assistant. xviii, 11

NoSQL non SQL. xviii, 55

NSA Negotiation Software Agent. xviii, 11

xvii

NSS Negotiation Support System. xviii, 11

QoD Quality of Data. xviii, 17, 33, 35, 37, 44, 48, 49, 71, 75

QoS Quality of Service. xviii, 17, 19, 33, 35, 37, 44, 48, 49, 71, 75

REST Representational State Transfer. xviii, 27, 56, 57, 67–69

SOA Service Oriented Architecture. xviii, 14

SOAP Simple Object Access Protocol. xviii, 14

SQL Structured Query Language. xviii

UML Unified Modeling Language. xviii, 12

URL Uniform Resource Locator. xviii, 57

WSDL Web Service Description Language. xviii, 13, 14

XML Extensible Markup Language. xviii, 14, 43

CHAPTER 1
Introduction

1.1 Introduction
The IoT is a “global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies” [4]. Companies and private
research institutes have estimated that the IoT will consist of more than 20 billion
interconnected devices by the year 2020 [5] [6] and the number of recorded data will
double in size every two years [7].

With the increasing amount of data from the past few years, several IoT platforms and
data markets (e.g. tilepay [8], MARSA [9], BDEX [10], Microsoft Azure Marketplace
[11]) have arisen to facilitate data purchasing and selling. However, these platforms are
limited regarding the data contract establishment and management.

In current developed platforms and IoT data markets, all customers mostly agree to
the same contract when purchasing and selling data. For example, no current platform
enables the negotiation of a data contract in such a way that one user can buy the data for
one price and use it for computing and future predictions, but to forbid the publication
of the results, and another user to buy the same data at the same time for another
price, yet to have no such restrictions. Another limitation is that of monitoring the data
stream for established data contracts. Finally, current platforms lack the functionality
of recommending data contracts based on concluded contracts, by taking into account
similar attributes (e.g. Things which were rated high by similar buyers).

1

1. Introduction

1.2 Problem Statement
A dataspace can be seen as a collection of different data (different databases, different
formats, etc.) [12]. We assume that within an IoT dataspace, data is produced by
different Things and has certain properties (e.g., different quality, different market value
price, etc.). This data can be packaged together to form a data package and sold with
an individual data contract to a customer (see Figure 1.1). Additionally the same data
can be uploaded directly into a cloud/database.

Thing

Thing

Thing Data

Data

Quality of Data
Pricing
...
Further Clauses/ConstraintsProvider

Customer

Network Cloud

DataData
Data

Data
Data

Data

Data

Data Package

Data Contract

Data Package

IoT Dataspace

Figure 1.1: Concept of Data Contracts in IoT Dataspaces

Based on the previously described concept of data contracts in IoT dataspaces (see Figure
1.1), this thesis aims to answer the following research questions:

• What are possible key elements for the establishment of individual data contracts?

• What is a possible solution for monitoring the data flow of individually established
data contracts? The main challenge here is that 1 to n different data contracts
can exist and each data contract can consist of streamed data from 1 to m devices.
Furthermore each device can produce entirely different data structures and broadcast
data at different frequencies.

• What is a possible solution for making user recommendations based on previously
concluded data contracts?

The previously mentioned research questions address aspects which can be in the interest
of multiple stakeholders. Being able to establish individual data contracts with different
contractual clauses (e.g., different price, different usage rights) might increase the number
of sales, which in turn increases the profit. Furthermore, monitoring the data flow of a
data contract enables the detection of anomalies (e.g., device broadcasting malfunction).

2

1.3. Methodological Approach

This way a Thing provider can reconfigure hist/her devices, so that it produces the
expected data accordingly. Finally, when dealing with high amounts of devices (e.g.,
smart city with thousands of Things), it might be helpful to have a recommender system,
which recommends the purchase of data produced by Things that align with a users’
interests.

The goal of this thesis is to develop a new framework from a business perspective, which
supports the establishment of individual data contracts, the monitoring of streamed data
according to concluded data contracts and recommendations for Things within one IoT
dataspace.

For the scope of this thesis the following assumptions have been made:

1. Things which produce data already exist and the focus is on the data contract
management part.

2. Interested parties are willing to negotiate data contracts for data produced by
Things.

3. When relating to data produced by Things, we assume that all data is non-personal.
Dealing with personal data would go beyond the scope of this thesis.

1.3 Methodological Approach
The methodological approach of this thesis is divided into three main parts: analysis,
design and development and evaluation. In the first part, literature research is conducted
to find possible key elements regarding the design, monitoring and recommendation of
data contracts. The literature research includes legal and business aspects which are
related to concluding IoT data contracts. Based on these findings, requirements are
extracted for the design of a new framework and the implementation of a prototype.

In the second part, the design and development part, a framework is designed and a
prototype is implemented, based on the previously defined requirements. This prototype
serves as a possible solution for the previously mentioned problem.

Finally, in the last part, the prototype is evaluated using two evaluation methods. The
first evaluation method analyses the prototype from an end user perspective and is a
descriptive analysis based on a few representative scenarios to demonstrate the utility of
the prototype. The second evaluation method analyses the prototype from a technical
perspective and is a dynamic analysis with the focus on performance.

3

1. Introduction

1.4 Contribution
This thesis introduces a new extensible IoT contract-aware framework, which supports
the individual conclusion of data contracts, the monitoring of the data flow for established
contracts and individual recommendations based on previously concluded data contracts.

Some parts of the work and results of this thesis have been extracted and summarized
into the following article: “On Supporting Contract-aware IoT Dataspace Services” [13].
This article was be submitted to the 5th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering April 6 – April 8, 2017 – San Francisco, USA.

1.5 Thesis Structure
The rest of this thesis is structured as follows:

• Chapter 2 presents relevant theoretical aspects regarding IoT data contracts, their
negotiation, recommendation techniques, relevant legal aspects and current state of
the art projects.

• In Chapter 3 requirements are presented, which have been extracted based on the
previously conducted literature research.

• In Chapter 4 the new proposed extensible contract-aware framework is described.

• In Chapter 5 the implemented prototype, which servers as a possible solution for
the previously mentioned problem, is presented and evaluated.

• Finally the findings of this thesis are summarized and future work is outlined in
Chapter 6.

4

CHAPTER 2
Background and State of the Art

In this chapter we are going to identify possible key elements for the establishment of
individual data contracts. First we are going to provide an overview of important legal
aspects regarding the conclusion of data contracts. Second we are going to analyse
relevant theoretical aspects regarding data contracts, their negotiation, monitoring and
recommendation techniques. Finally we are going to conclude this chapter with a short
overview of state of the art IoT data markets, their capabilities and their limitations.

2.1 Legal Perspective of Data Contracts
When establishing IoT data contracts, depending on the jurisdictional area, different
laws may apply. In this section we are going to elaborate upon legal aspects and possible
legal constraints, which have to be taken into account when concluding such contracts.
First we are going to analyse a few legal aspects from the perspective of European law
and afterwards from the perspective of Austrian law. The legal aspects are only analysed
from these two perspectives, because an analysis from an international perspective would
go beyond the scope of this thesis.

2.1.1 European Law

In the European Union each member state has its own national law. The European
Union tries to harmonize the national laws of the different countries through various
treaties, regulations and directives. With Article 6 of the consolidated version of the
treaty of the European Union, the Union recognises the rights, freedoms and principles
set out in the Charter of Fundamental Rights of the European Union. These rights have
the same legal value as the Treaties [14].

In Article 7 of the Charter of Fundamental Rights of the European Union it is stated
that “everyone has the right to respect for his or her private and family life, home

5

2. Background and State of the Art

and communications” and in Article 8 it is stated that “everyone has the right to the
protection of personal data concerning him or her” [15].

Multiple directives have been proposed in order to protect personal freedom, data and
privacy, which either have already been transposed into national law by the the EU
Member States or have to be transposed into national law in the next few years. In this
part of the chapter some of those regulations are presented.

Data Protection Directive 2016/680

It has been assumed that only non-personal data is bought/sold, however if a company
that sells non-personal data is possessing personal customer data (e.g., customer name,
address, phone number, payment details, etc.), then this data is subject to the data
protection law.

The Data Protection Directive 2016/680 [16] imposes regulations on the protection of
personal data. The directive entered into force on 5 May 2016 and the EU Member
States have to transpose it into their national law by 6 May 2018 [16, 17].

This directive imposes principles of processing personal data. Personal data (i.e., any
information relating to an identified or identifiable natural person ’data subject’) has to
be processed lawfully, accurate, kept in a form which permits identification and processed
in a manner that ensures appropriate security and there has to be a controller (i.e., a
competent authority) that shall be responsible for the compliance [16, Art. 4].

Furthermore, member states have to provide time limits for the erasure of personal data
[16, Art. 5]. The processing of special categories of personal data (e.g., ethnic origin,
political opinions, religious or philosophical beliefs, etc.) is only allowed where strictly
necessary and subject to appropriate safeguards for the rights and freedoms of the data
subject [16, Art. 10].

Member states have to provide certain information that has to be made available to the
data subjects. Amongst others these include the contact details of the controller, contact
details of the data protection officer, the legal basis for the processing and the period of
the data storage [16, Art. 13].

Data subjects have the right to obtain information whether or not personal data is being
processed and the purpose of and the legal basis for the processing. Furthermore data
subjects have the right to request from the controller rectification or erasure of personal
data and right to lodge a complaint with the supervisory authority (i.e., independent
public authority which is established by a Member State) and the contact details of the
supervisory authority [16, Art. 14].

Regarding the security of the data processing, measures have to be implemented to prevent
unauthorized access, reading, copying, modification or removal of data. Furthermore
member states have to ensure that persons authorized to use an automated processing
system only have access to the data covered by their access authorization [16, Art. 29].

6

2.1. Legal Perspective of Data Contracts

In case of a personal data breach the supervisory authority has to be notified without
undue delay and (where feasible) within 72 hours. This notification has to contain the
nature of the data breach, the categories and an approximate number of data subjects
and data records which are concerned [16, Art. 30]. If this data breach is “likely to result
in a high risk to the rights and freedoms of natural persons” it has to be communicated
to the data subjects without undue delay [16, Art. 31].

E-Commerce Directive 2000/31/EC

The E-Commerce Directive 2000/31/EC entered into effect on 17th July 2000 and has
the objective to ensure “the free movement of information society services” [18, Art. 1].

Service providers (i.e., any natural or legal person which is providing an information
society service) have to provide general information which has to be easily accessible to
the recipients of the service. Amongst others this information has to include the name,
the address and the e-mail address of the provider [18, Art. 5].

This directive enforces the possibility to conclude contracts by electronic means (with a
few exceptions like creating or transferring rights in real estates) [18, Art. 9]. Furthermore
the service providers have to provide information to the recipient of the service regarding
the different technical steps that have to be followed in order to conclude a contract,
contract terms, general conditions and any relevant codes of conduct [18, Art. 10].

Once an order is placed, the service provider has to acknowledge the receipt of the
recipient’s order without undue delay and by electronic means. Additionally, technical
means have to be made available to identify and correct input errors, prior to the placing
of the order [18, Art. 11].

If an information society service is provided, that consists of the transmission in a
communication network of information or of storage of information, provided by a
recipient of the service, there is no general obligation to monitor the information these
services transmit or store [18, Art. 15].

Directive on the supply of digital content

There has been a proposal for a directive of the European Parliament and of the European
Council on certain aspects concerning contracts for the supply of digital content (i.e. data
which is produced and supplied in digital form, for example video, audio, applications)
[19]. At the time of the conducted research, this directive has not been accepted or
adopted yet.

After concluding a contract the supplier has to supply the digital content immediately to
the consumer or to a third party which allows the consumer to access the digital content
[19, Art. 5]. In case the content is not supplied immediately, the consumer is entitled to
terminate the contract immediately [19, Art. 11].

The digital content has to conform with the concluded contract and where relevant to
be of the quantity, quality, duration, version, and other features such as accessibility,

7

2. Background and State of the Art

continuity as required by the contract. In case this is not specified, the digital content
has to be fit for the purposes for which digital content of the same description would
normally be used [19, Art. 6].

Regarding the conformity of the contract, the burden of proof is on the supplier.
However, this does not apply if the environment of the consumer is not compatible
with interoperability and other technical requirements if the supplier informed the
consumer of such requirements beforehand. Furthermore to establish the consumer’s
digital environment, the supplier and the consumer have to cooperate. In case the
consumer fails to cooperate the burdon of proof will be on the consumer [19, Art. 9].

The supplier is liable to the consumer for any failure or lack of conformity to supply
the digital content, even if it is supplied over a period of time [19, Art. 10]. In case
the digital content is not conform to the contract, the consumer is entitled to have the
digital content brought into conformity with the contract free of charge (excepting that
it is impossible, disproportionate or unlawful) within a reasonable time. If the digital
content is provided in exchange for a payment, the consumer is entitled to a proportionate
reduction of the price (in accordance to the decrease of the value of the digital content),
if the supplier has not completed the remedy, or if it is impossible. In some cases the
consumer is entitled to terminate the contract (e.g., if the lack of conformity with the
contract impairs functionality) [19, Art. 12].

Another aspect covered by this directive is that of contract termination. In case of a
contract termination the supplier has to reimburse the paid price without undue delay
and no longer than 14 days from the receipt of notice. Additionally the supplier can
prevent any further use of the digital content by the consumer, however the consumer
does not have to pay for any use made in the period prior to the termination of the
contract [19, Art. 13].

The supplier is liable to the consumer in case of any economic damages to the digital
environment of the consumer, which are caused by the lack of conformity with the
contract or a failure to supply the content [19, Art. 14].

This directive regulates the modification of the digital content of a contract during a
subscription period. If the digital content is supplied over a period of time, the provider
may alter the functionality, accessibility and other features (e.g., continuity) of the digital
content only if the contract stipulates so, or the consumer is notified in advance and the
consumer can terminate the contract free of charges within no less than 30 days from the
receipt of the notice [19, Art. 15].

If a contract is concluded for an indeterminate period or the period exceeds 12 months,
the consumer is entitled to terminate the contract after the expiration of the first 12
months. The termination in this case has to become effective 14 days after the receipt of
the notice. In the case that the digital content was supplied for a price, the consumer
remains liable to pay the price for the supplied content for the period of time before the
termination of the contract [19, Art. 16].

8

2.1. Legal Perspective of Data Contracts

Jurisdiction

IoT data contracts can be concluded between two parties from two different countries.
In this case the parties may choose the law that applies for the contract. The choice has
to be made expressly or clearly [20, Art. 3].

If the law that applies for a contract has not been explicitly agreed upon or mentioned,
in case of the sell of goods a contract “shall be governed by the law of the country where
the seller has his habitual residence” and in the case of the sell of services “by the law of
the country where the service provider has his habitual residence” [20, Art. 4].

Furthermore in case of a legal dispute according to the Art. 4 of Regulation (EU) No
1215/2012 “persons domiciled in a Member State shall, whatever their nationality, be
sued in the courts of that Member State” [21].

2.1.2 Austrian Law

In Austria the previous European Directives were implemented into national law. The
Data Protection Directive 95/46/EG was implemented into national law with the Data
Protection Act 2000 (i.e., Datenschutzgesetz 2000) [22] (the new Directive (EU) 2016/680
not being implemented yet at the time of the conducted research). The E-Commerce
Directive was also implemented into national law with the E-Commerce Act [23].

IoT devices produce data and this data might be processed and enriched (e.g., pictures of
the environment or a temperature sensor records the temperature and measurement errors
might be automatically corrected, where inexistent predicted and further processed). In
this case intellectual property rights might apply. According to Austrian Law, databases
are viewed as a collection of works or collective works, data or other independent elements,
which are systematically or methodically arranged. A collective work is protected by
copyright laws if it is an intellectual creation [24, Art. 40f].

Furthermore the Austrian Civil Code (i.e., ABGB) applies. Different prices may be
charged for the same good, however “laesio enormis” has to be considered when doing so.
“Laesio enormis” states that when a contract is concluded for a product and the price is
more than twice as much as what is usually paid for such a product, the contract can be
terminated by the customer [25, Art. 934]. For example if a data contract is concluded
for weather data and this weather data usually costs 10 EUR, but the data is sold for 20
EUR or more, “laesio enormis” applies and the contract can be terminated immediately.

In this section we have shown that multiple directives exist on a European level that
try to harmonize the law across the member states. Some of those regulations, which
have already been transposed into national laws, and further national laws, need to
be taken into account when officially concluding IoT data contracts (e.g., acknowledge
the receipt of an order), while others exist to avoid any ambiguities (e.g., jurisdiction,
contract termination, etc.).

9

2. Background and State of the Art

2.2 E-negotation of Data Contracts

In the previous section we analysed certain legal aspects that have to be taken into into
consideration when concluding IoT data contracts. Since we assumed that a data provider
and an interested party are willing to negotiate a data contract (see Chapter 1), in this
section we are going to focus on the negotiation part of data contracts. At the beginning,
we are going to provide a short introduction into negotiations and e-negotiation systems.
Afterwards we are going to analyse negotiation system models among with key functions
for the support of negotiations. Finally we are going to take a look at current architectural
styles of e-negotiation systems.

2.2.1 Background

Business-to-business (B2B) e-commerce processes follow generally a three phase model.
In the first phase, an interested party will look for business partners and try to come
to an acceptable agreement. The partners might bargain about the price and other
contractual terms and therefore the second phase is that of negotiating an agreement. If
the negotiation is successful a contract is established, which the parties have to process
in a third phase (e.g., logistics, payment, etc.) [26].

During a negotiation two or more parties make decisions and interact with each other in
order to achieve mutual gain [27]. During a negotiation process, a proposal is created and
sent to another party and a new proposal might be generated after receiving a counter
proposal. This process continues until either an agreement or a deadlock is reached [28].
Traditionally negotiations end with binding contracts as an outcome [29].

Gregory Kersten [1] identified amongst others the following components that the practice
and theory of negotiations include: the negotiation problem (i.e., what is being negotiated),
objectives (i.e., what one wants to achieve), communication (e.g., formal, informal), the
negotiation process (e.g., arguments, offers, messages) and the negotiation outcomes (e.g.,
compromise, implementation).

Negotiations can be classified in various ways. One way used by Gregory Kersten [1] is
by taking into account the number of parties (see Figure 2.1). From this perspective
four types of negotiations can be distinguished. In the first type, the bilateral type, the
participation is restricted to two parties and the negotiation process is often well defined
for a single issue. The second type of negotiation is the multi-bilateral type. In this
case the negotiation involves two sides: one side is represented by a single party and the
other side is represented by many parties. The third type is multilateral negotiations
which involves many parties and the negotiation process is rarely well defined. Finally
the last type is that of nested negotiations which involves two or more parties and the
negotiations are conducted on behalf of organizations or individuals.

10

2.2. E-negotation of Data Contracts

Figure 2.1: Negotiation types overview [1]

2.2.2 E-Negotiation and E-Negotiation Systems

An E-Negotiation System (ENS) is a “software that employs internet technologies and
is deployed on the web for the purpose of facilitating, organizing, supporting and/or
automating activities undertaken by the negotiators and/or a third party” [2].

Various kinds of software systems have been designed to support individuals in negotiations
(see Figure 2.2). An E-Negotiation Table (ENT) is a software which provides negotiators
with a virtual bargaining table. In its simplest form it supports the posting of offers and
sending of messages. A Negotiation Software Agent (NSA) is a software which is involved
in the negotiations, can make decisions on behalf of one party and its purpose is to
automate one or more negotiation activities. A Negotiation Agents-Assistant (NAA) is a
software that provides timely and context-specific advice, critique and support. Decision
Support Systems (DSS) are systems that support the decision making process. As can
be seen in Figure 2.2, DSS tie the previously mentioned systems together. Negotiation
systems provide support which specifically deals with the negotiation process and extend
the functionalities provided by a DSS [2].

Figure 2.2: E-negotiation systems overview [2]

The key aspect of a Negotiation Support System (NSS) is that the decision process it
supports is consensual [2]. Kersten & Lai [2] identified a few properties regarding the
users, that need to be taken into account when designing an NSS. They stated that users

11

2. Background and State of the Art

are: independent, representing their own interests, able to reject every offer, request
another offer and propose a counteroffer.

Regardless of the negotiation type, each negotiation is based on a protocol which specifies
the users interactions. Even if it is not explicitly specified, every negotiation system is
using a negotiation protocol, which can be derived from possible interactions between the
negotiators and the system [30]. A negotiation protocol can also be seen as a model, which
guides the user and imposes restrictions on their activities. An e-negotiation protocol is
thus required to specify and control the activities undertaken by the negotiators [31].

2.2.3 Models and Functions

In order to be able to develop an ENS which supports the negotiation of various data
contracts, it is important to know how data contracts can be described generally and
what key functions such a system should support.

Schoop et al. [32] identified three main models regarding electronic negotiations:
electronic auctions, negotiation agents and negotiation support. The first two models are
quantitative approaches because they aim at enabling an efficient negotiation process in
terms of finding an economic optimum. Electronic auctions work according to general
auction principles (i.e., bids concerning different criteria, such as price, are placed on
a good to be purchased or sold). Negotiation agents take over parts of or the whole
negotiation process for the human principal and negotiation support approaches provide
support for complex negotiations, leaving the control over the negotiation process with
the human.

D.K.W. Chiu et al. [28] proposed a meta-modeling approach based on a meta-model
which is universally applicable. In this meta-modeling approach e-contracts can be
specified based on a standard contract template. A contract template is a reference
document, based on which new contracts can be negotiated. A contract template consists
of a number of contract clauses, each addressing a specific concern. Each contract clause
contains a set of template variables which can be negotiated [28]. D.K.W. Chiu et al.
propose the negotiation of data contracts based on the negotiation of template variables
and give the following example for a contract template:

“The PURCHASER shall send a Letter of Credit for the GOODS to the SUPPLIER in
the currency of [] within [] days of the invoice date...” [28].

D.K.W. Chiu et al. furthermore presented a meta-model of an e-contract template in
Unified Modeling Language (UML). A contract involves at least two parties. A contract
template consists of a number of contract clauses which are subject to the negotiation,
and these contract clauses typically include obligation, permission and prohibition [33].

For the general development of an ENS, Braun et al. [3] proposed a five stage model (see
Figure 2.3):

12

2.2. E-negotation of Data Contracts

1. The planning phase in which negotiators formulate their representation of the
negotiation problem including issues specifications and options.

2. Agenda setting and exploring the field which includes the negotiated issues and
their meaning. The result of these discussions may result in adding or removing
options and that the negotiators may have to revise the problem, objectives and
preferences.

3. Exchanging offers and arguments in which the parties learn about each others
limitations and identify the key issues and critical areas of disagreement.

4. Reaching an agreement is when the parties realize that the negotiation has been
successful, having identified all critical issues.

5. Concluding the negotiation which takes place when the parties reach an agreement.

Figure 2.3: Five Stage Model [3]

2.2.4 Architecture

Several architectures with the focus from different perspectives have been proposed for the
developing negotiation support systems. One common point for some of these proposed
architectures regarding the addressability is that of the usage of web services based on a
universal Web Service Description Language (WSDL) [34] [35].

Benyoucef & Keller [36] proposed a conceptual architecture for combined negotiation
support systems. A combined negotiation is a negotiation when a consumer is interested
in many goods or services and engages in many negotiations at the same time. The
negotiations can be of any type (e.g., fixed price sale, bilateral bargaining, etc.) and are
typically independent. The proposed architecture is divided in two parts: a start-up
time architecture during which the workflow is constructed and a run-time architecture
during which the combined negotiation is conducted. In comparison to the start-up

13

2. Background and State of the Art

time architecture, the run-time architecture contains multiple agents and each agent
communicates individually with a negotiation server.

Benyoucef & Rinderle [37] proposed a framework based on a service oriented architecture
for e-negotiation systems consisting of two main components: an e-marketplace and
an automated negotiation system. The e-marketplace enables a designer to specify
negotiation protocols. This component communicates through web services with the
automated negotiation system. The framework is based on a Service Oriented Architecture
(SOA) to enable communication between different Information Technology (IT) components
and to provide a standardized way of communication. The web services are described via
WSDL and accessed using Simple Object Access Protocol (SOAP) requests.

Schoop et al. [32] developed N egoisst, a process-oriented negotiation support system
aiming at enabling intuitive, unambiguous, and efficient electronic negotiations between
human negotiators. N egoisst was written in Java and implemented in a client–server
architecture. At the server side a three-tier-client architecture was implemented consisting
of a presentation layer, an application layer and a data layer.

The presentation layer provides a web user interface which is accessible through a browser.
Here a user can register, start a new negotiation, send messages and reply to incoming
messages, etc. The application layer consists of two main components: a negotiation
component which is responsible for starting, storing, and proceeding a negotiation and a
satisfiability checks component, which monitors the negotiations and checks the contract
fulfilment. The data layer is responsible for storing all the relevant information. In this
case two types of data storages were used: (1) Extensible Markup Language (XML)
documents which are representing the contracts and contain all relevant information and
(2) a relational database for the rest.

In this section we have analysed theoretical and technical aspects of negotiations and
e-negotiations which can be applied for the establishment of individual data contracts in
IoT dataspaces. Based on the scenario, different negotiation types (see Figure 2.1) might
be of interest for the negotiation of data contracts. For example in the case of one Thing
provider with a few devices, who would like to sell the data to a few customers, bilateral
negotiations can be used for the establishment of individual data contracts. In the case of
two or more companies interested in establishing data contracts for the purchase/selling of
different data nested negotiations could be applied. To support and ease the negotiation
process, data contract templates could be used. Finally, the negotiation process can
be implemented by taking into account the Five Stage Model (see Figure 2.3) (e.g.,
starting from the selection of the data, agenda setting, exchanging arguments, reaching
an agreement).

14

2.3. IoT Data Contracts

2.3 IoT Data Contracts
In our everyday life we conclude contracts all the time. For example, when we buy
something from a vending machine we conclude a contract with the vending machine
provider. In this simple case all contractual terms are clear to all parties: the price, which
is usually clearly visible, and the product (e.g., a bar of chocolate), which is also clearly
visible. When we conclude a more complex contract (e.g., a software hosting services
agreement), multiple aspects have to be taken into account and mentioned explicitly in
order to avoid ambiguity (e.g., price, fees, handling expenses, penalties, maintenance,
support etc.). In this section of this thesis, we are going to analyse IoT data contracts
with the goal to identify possible data contractual clauses, which can also be negotiated,
so that individual data contracts can be established.

2.3.1 Contracts and Data Contracts

“A contract is a binding agreement between two or more parties defining a set of obligations
and rewards in a business process” [28] and can also be seen as an “agreement between
parties to create business relations and meet legal obligations” [38]. Data contracts have
already been proposed by Truong et al. [39] to describe data contractual terms when
data is purchased or sold.

2.3.2 Data Rights

One possible property, that can be taken into account when establishing a data contract,
is that of data rights. Truong et al. [39] [40] investigated and identified the following
data rights as properties of data contracts, by studying existing data license agreements
and service contracts, which are relevant from the perspective of contracts for Data
as a Service (DaaS): derivation, collection, reproduction, attribution, commercial and
non-commercial usage.

One problem, that was identified by Kumari et al. [41] is that once the data has been
delivered, it cannot be controlled any more by the data provider. One possible way
to deal with this problem is from a legal perspective, by taking into account certain
legal aspects, which leads to our next possible data contractual properties: regulatory
compliance and control and relationship.

2.3.3 Regulatory Compliance and Control and Relationship

When concluding service contracts several legal aspects must be taken into consideration.
Regulatory compliance refers to the protection of privacy and confidentiality of information
[39]. Multiple compliance laws and directives already exist to protect the privacy and the
confidentiality of data (e.g., Sarbanes–Oxley Act of 2002 [42] and the European Union
Data Protection Directive 2016/680 [16]).

Regarding the control and relationship, Bradshaw et al. [43] conducted a comparison and
analysis of terms and conditions for cloud computing services. Some of the terms and

15

2. Background and State of the Art

conditions align with the research conducted by Truong et al. [39]: warranty, indemnity,
liability and jurisdiction.

2.3.4 Pricing

The pricing is another data contractual property which can be taken into consideration
for the establishment of data contracts. In some cases the price is not relevant (e.g.,
accessing public data for free), but for the rest of this thesis we will assume that a data
provider would always like to sell the data produced by his/her Things for a certain
amount of money.

Various pricing models and pricing model categories exist. Sen et. al., [44] conducted a
survey regarding smart data pricing and identified two main pricing model categories:
static and dynamic pricing. Static pricing models are models in which the price does not
vary over time. Amongst others, Sen et. al., [44] identified the following most common
static models: usage-based (i.e., depending on the data volume), flat-rate (i.e., unlimited
access for a certain period of time), priority pricing (i.e., better quality of service for
certain packages) and time-of-day pricing (i.e., different prices for different usage hours).

Another possibility to set the price is by using a dynamic pricing model. Dynamic pricing
models are models in which the price can vary over time and allow more flexibility [44].
Examples of dynamics pricing models are auctions (i.e., bid each time), congestion pricing
(based on real-time or current congestion) and day ahead pricing (guarantee a certain
price in advance) [44].

2.3.5 Purchasing Policy

Additional data contractual clauses which might be included when concluding data
contracts are with respect to the purchasing policy. Goodchild et al. [45] presented a new
specification of Business-to-Business contracts in which such clauses have been explicitly
specified. Furthermore, some of these clauses can also be found in the general terms and
conditions of the platforms mentioned in Chapter 2.6:

• Contract Termination: Term specifying contract termination details.

• Shipping / Delivery: Term specifying how the products/goods (i.e., data) will be
shipped or delivered.

• Refund: Term specifying if price charges are refundable or not.

16

2.4. Monitoring Data Contracts

2.4 Monitoring Data Contracts

In the previous section we identified and elaborated upon a few possible data contractual
clauses (e.g., data rights, pricing, etc.). In this section we are going to analyse two
further data contractual properties: Quality of Data (QoD) and Quality of Service (QoS).
These properties can be used for monitoring the data flow of individually established
data contracts.

2.4.1 Quality of Data

Data represents real world objects, in a format that can be stored, retrieved an elaborated
by a software procedure. QoD has become a significant issue for operational processes of
businesses and organizations [46]. The Data Warehousing Institute estimated that data
quality problems cost U.S. businesses more than USD 600 billion a year [47]. For this
reason we consider data quality as one possible data contractual term. This has already
been proposed by Truong et al. [39], [40].

The challenge here is to measure the data quality: within an IoT dataspace multiple
Things can produce different types of data and each produced data can have different
quality aspects. Multiple dimensions have been associated with respect to data quality
[46, 47, 48, 49, 50, 51]. In this section we are going to elaborate upon some of these
dimensions.

Completeness

Data completeness is generally defined as “the extent to which data are of sufficient
breadth, depth, and scope for the task at hand” [48] and can be further divided into
different types [49]:

• Schema completeness: represents “the degree to which entities and attributes are
not missing from the schema” [46, p. 24].

• Column completeness: a function of “the missing values for a specific property or
column in a table” [46, p. 24].

• Population completeness: measurement for “the missing values with respect to a
reference population” [46, p. 24].

Carlo Batini and Monica Scannapieco [46] estimated that both data and schema dimensions
are important, because low quality data influences the quality of business processes and
a low quality schema (e.g., an unnormalized schema) in the relation model results in
potential redundancies and anomalies during the lifecycle of data usage. In Table 2.1 an
example of completeness error is illustrated at the fourth entry: the scale of the recorded
temperature is missing.

17

2. Background and State of the Art

ID Temperature Scale Date
1 2.5 Celsius 2016-12-01 12:00:00
2 3.8 Fahrenheit 2016-12-01 14:00:00
3 3.6 Celius 2016-12-01 14:30:00
4 2.0 null 2016-12-01 20:00:00

Table 2.1: QoD Problems Example - Temperature Recordings

Consistency and Conformity

Consistency is the “degree to which data managed in a system satisfy specified constraints
or business rules” [51]. Such rules can be integrity constraints (e.g., uniqueness of customer
identifiers) or referential integrity (e.g., for each order, a customer record must exist).

“Data conformity describes how well data adheres to standards and how well it’s
represented in an expected format” [52]. C. Tărât,ă [53] stated that conformity consists
in ensuring that data is following a standard format (e.g., date values as yyyy/MM/dd,
or customer genders can only be male or female).

Accuracy

“Accuracy is defined as the closeness between a value v and a value v’ considered the
correct representation of the real-life phenomenon that v aims to represent” [46, p. 20].

Batini and Scannapieco [46] and Fürber and Hepp [50] distinguish between syntactic
accuracy and semantic accuracy. Syntactic accuracy refers to syntax violations and it
refers to the domain definition. If the true value is v=Jack and the real value is v’=John
the data entry is syntactically correct because both values are from the same domain.
The semantic accuracy refers to the closeness of the value v to the true value v’.

In Table 2.1 an example of a semantic accuracy error is provided in the second entry,
where “Fahrenheit” is listed as the scale of the temperature recording which is not
accurate, the correct value would be “Celsius”. The third entry represents a syntactic
accuracy error, because “Celius” is not a correct temperature scale.

Time Related Dimensions

One aspect of data is that it changes and it is updated over time [46]. Currency concerns
how promptly data is updated and can be “measured with respect to the last update
metadata”. Simple currency measurement values are current and not current. For
example if an entry is estimated to change every five years and the last update of was
one year ago, then the respective data can be assumed to be current. However, if the
last update was performed 10 years ago the data can be assumed to be not current. The
currency can also be computed as follows [46]:

Currency = Age + (DeliveryT ime− InputT ime) (2.1)

18

2.4. Monitoring Data Contracts

“Volatility characterizes the frequency with which data vary in time” [46, p. 29]. The
birth date of a person has a volatility equal to 0, as it does not change at all. An example
of high volatility would be that of stock quotes, which changes frequently. Batini and
Scannapieco [46] proposed to use the length of time data remains valid as a metric for
volatility.

“Timeliness expresses how current data are for the task at hand” [46, p. 29]. For example
the timetable for a university course can be current by containing the most recent data,
however if this data is provided after the start of the classes it is not timely [46]. The
timeliness is defined as:

Timeliness = max {0, 1− currency

volatility
} (2.2)

Other Data Quality Dimension

Batini and Scannapieco [46] proposed two further dimensions regarding the geographical
and geospatial domain: positional accuracy and attribute / thematic accuracy. They
defined positional accuracy as the quality parameter indicating the accuracy of geographical
positions and the attribute / thematic accuracy as the positional and/or value accuracy of
properties such as sociodemographic attributes in thematic maps. The Victorian Spatial
Council [54] based on the ISO Standard 19113 further divided the positional accuracy
into absolute or external accuracy (i.e., closeness of reported coordinate values to values
accepted as or being true) and relative or internal accuracy (i.e., closeness of the relative
positions of features in a dataset to their respective relative positions accepted as or
being true).

2.4.2 Quality of Service

Another aspect that can be taken into account when concluding data contracts is that of
the QoS. For example sensors are expected to measure different things and to broadcast
the measured values with a certain frequency. Furthermore, it might be in the interest of
the involved parties of a data contract to find out, if the expected broadcasting frequency
does not equal the actual broadcasting frequency. For this reason we consider the QoS
as one possible data contractual property.

QoS monitoring has also become a key activity, especially since assessing the actual
quality of what service users are paying for has become a mission-critical business practice
requirement [55]. R. Duan, X. Chen and T. Xing stated that the QoS of application
and service layers is perceived directly by customers and therefore becomes the most
important standard of evaluation for IoT [56].

Multiple properties have already been associated with the QoS: D. A. Menasce stated
that the quality of service is a combination of several qualities or properties of a service,
such as [57]: availability, security (which include authentication mechanisms), response
time and throughput (i.e., the rate at which a service can process requests). Other
characteristics have been identified from a network perspective [58, 59]: latency or delay

19

2. Background and State of the Art

(i.e., the time that has passed while the data was transmitted from source to destination)
and jitter (i.e., is the variation in delay).

In this and the previous section of this thesis we discussed different aspects, which
have already been proposed as possible data contractual clauses through the literature,
however not as a combination. Therefore we propose the following set of representative
data contractual clauses as one possibility to model data contracts:

• Data Rights: Derivation, Collection, Reproduction, Commercial Usage

• Quality of Data: Completeness, Conformity, Average Message Age, Average
Message Currency

• Quality of Service: Availability

• Pricing Model: Price, Subscription Period

• Purchasing Policy: Contract Termination, Shipping, Refund

• Control and Relationship: Warranty, Indemnity, Liability, Jurisdiction

20

2.5. Recommending Data Contracts

2.5 Recommending Data Contracts
In the previous sections we elaborated upon data contracts and their establishment.
Within an IoT dataspace a lot of Things which produce data can exist. Potential buyers
might face the difficulty of having to choose between different devices from different
dataspaces. In this situation it might be helpful to have a recommender system, which
recommends the purchase of data produced by Things that align with a users interests.
In this section we are going to provide an overview of recommender systems together
with a few basic methods used for building recommender systems.

Recommender Systems are software tools and techniques that provide suggestions for
items to be of use to a user and to support the decision-making process. An item in this
context is a general term referring to what the system recommends to users [60].

Ricci et al., [60] stated that there are two types of recommendations: personalized
recommendations and non-personalized recommendations. Personalized recommendations
are recommendations for different users or user groups. In this case users receive diverse
suggestions and recommender systems try to predict what the most suitable products
or services are, based on the user’s preferences and constraints. In order to do so
recommender systems collect user preferences, which are either explicitly expressed, e.g.,
as ratings for products, or are inferred by interpreting user actions. Non-personalized
recommendations are recommendations which are easier to generate (e.g., top ten selection
of books) and are not user-specific.

2.5.1 Collaborative Filtering Recommender Systems

Schafer et al., [61] defined collaborative filtering as the process of filtering or evaluating
items using the opinions of other people. A very simple example is when people discuss
books they have read and restaurants they have tried. The task of a collaborative filtering
algorithm is to predict the utility of items to a particular user based on user votes from
a sample or population [62].

Ratings in Collaborative Filtering

Two types of ratings were distinguished by Schafer et al., [61]: explicit ratings and implicit
ratings. Explicit ratings require a user to rate a product and offer an accurate description
of a user’s preference. The main disadvantage of explicit ratings is, that users have to
rate items. Implicit ratings are observations of user behaviour, from which preferences
are derived, e.g., “time spend reading about a product”. These ratings however might
not be accurate, e.g., “time spend reading” can be drastically extended if the respective
person takes a lunch break and the product information is still displayed on the screen
[61].

According to Schafer et al., [61] the most common types of ratings are the following:
unary (e.g, good or don’t know), binary (e.g., good or bad) and integer Likert-like (e.g.,
1− 5). Furthermore Schafer et al., [61] separated collaborative filtering algorithms into

21

2. Background and State of the Art

two types: non-probabilistic and probabilistic algorithms. An algorithm is probabilistic,
if it is based on an underlying probabilistic method.

Non-probabilistic Algorithms

Neighbourhood collaborative filtering use user-item ratings stored in the system directly to
predict ratings for new items. This can be achieved using either user-based or item-based
recommendation [63].

User-based Nearest Neighbour Algorithm

A very known class of nearest neighbour algorithms is that of user-based algorithms [61].
This approach relies on the rating of user u for items i, and on the ratings of other users
as well. Desrosiers and Karypis [63] stated that the rating of a user u for a new item i
is likely to be similar to that of another user n, if u and n have rated other items in a
similar way. If a user n is similar to a user u, then n is a neighbour of u [61].

In order to compute the nearest neighbours, the Euclidean distance can be used [64],
which is computed as follows:

d(x, y) =

√√√√ N∑
k=1

(xk − yk)2 (2.3)

A prediction for the user u for an item i is generated by analysing ratings for i from
users in u’s neighbourhood. A naive approach is to average all neighbours ratings for the
item i [61]. In the formula below the rating of a neighbour n for an item i is represented
by rni and the total number of neighbours which rated the item by N.

prediction(u, i) =
∑N

n=1 rni
N

(2.4)

This approach is considered naive, because it does not take into account that some
neighbours might have higher similarity levels than others. More accurate predictions
can be generated if the user similarities are taken into account. If userSim(u, n) is a
measure of the similarity between a target user u and a neighbour n, then a more accurate
prediction can be computed as follows:

prediction(u, i) =
∑N

n=1 rni ∗ userSim(u, n)∑N
n=1 userSim(u, n)

(2.5)

The above formula can also be extended by taking into account average adjusts for user’s
mean ratings and using the Pearson correlation [65]. One limitation of this approach is
that if the data is sparse then the predictions might not be accurate enough. For example
if there are only three common rated items, then the ratings could match almost exactly
[61].

22

2.5. Recommending Data Contracts

Herlocker et al., [66] have proven that accuracy can be improved by limiting the prediction
to a users closest k-neighbours. To reduce processing time also sampling and clustering
algorithms have been tried [61]. In sampling only a subset of users are selected and in
clustering a user is compared to a group of users so that clusters of users similar to the
target are quickly discovered and the nearest neighbours selected [61].

Item-based Nearest Neighbour Algorithm

The search for the nearest neighbour among a large user population can be a bottleneck
[66]. Item based algorithms explore the relationship between items first and can be
used to avoid this bottleneck [67]. This approach computes recommendations using
similar items, that the user has liked. Sarwar et al., [67] stated that the relationships
between items are static and that item-based algorithms might provide the same quality
as user-based algorithms with less online computation.

In order to compute the similarity between two items i and j, the first step is to isolate
the users which have rated both items [67]. One way to compute the similarity between
two items is the cosine-based similarity method. In this method two items are thought of
as two vectors and similarity is measured by computing the cosine of the angle between
these two vectors [67]:

sim(i, j) = cos(~i,~j) =
~i ∗~j

‖~i‖2 ∗ ‖~j‖2
(2.6)

Other methods to compute the similarity are: the adjusted cosine similarity method and
by using Pearson-r correlation [67].

Probabilistic Algorithms

In order to compute recommendations, probabilistic algorithms explicitly represent
probability distributions [61]. A predicted rating r of a user u for an item i is calculated
based on the most probable value or the expected value of r :

E(r|u, i) =
∑

r

r ∗ p(r|u, i) (2.7)

Bayesian network models derive probabilistic dependencies among users or items [61].
Breese et al., [62] described a method for deriving and applying Bayesian networks using
decision trees. For every item that can be recommended, a separate tree is constructed
and the probabilities are displayed at the leaves of the tree [62].

Collaborative filtering systems are not always able to make personalized predictions
[61]. When a user first registers with a collaborative filtering system, there are no
ratings for this user, consequently personalized predictions cannot be computed (e.g., a
neighbourhood of similar users cannot be established). This is known as a “cold start
problem”. The same situation can occur when a new item is registered. Because it has
no ratings, no recommendations can be made. One way to overcome this problem is

23

2. Background and State of the Art

to provide non-personalized recommendations (e.g., population averages or randomly
selected items).

2.5.2 Content-based Recommender Systems

Content-based recommender systems are trying to recommend items to users, based on
their preferences and similar liked items from the past [68]. The basic process performed
by a content-based recommender system is matching up attributes of a user profile (in
which the user’s preferences and interests are stored) with attributes of items in order to
find these recommendations.

One option is to let the user specify his or her own profile. This can be done by providing
a simple graphical user interface with check-boxes representing certain attributes. This
method however requires an effort from the user, which might be difficult to get or can
become inaccurate if the user’s preferences change over time [69].

Items are represented by a set of features called attributes or properties [68]. If each item
is described by the same set of attributes, which can take only a certain set of values,
then machine learning algorithms can be used to learn a user’s profile [69].

Content-based recommender systems only recommend similar items to those already
rated by users which leads to over-specialization and the system is not able to recommend
items that are different, from anything that the user has seen before. This is also referred
to as serendipity. One possible solution to address this problem is to recommend random
items [68].

Content-based filtering and collaborative filtering can also be automatically combined.
This is also known as a “hybrid approach”. Such systems use content analysis to identify
items and collaborative filtering to capture features like quality [61].

In this section we provided an overview of recommender systems together with a few
basic methods that can be used for creating such systems and that can be applied for
recommending data contracts in IoT dataspaces. Based on concluded data contracts
and user ratings, recommendations can be made for the purchase of data produced by
Things. These recommendations might also be applied to data contractual clauses, for
example by making a recommendation for data produced by a Thing and also a price
recommendation. However, in such cases a conflict of interest can appear: e.g., a provider
would want to sell data at the highest possible price, whereas a consumer would want to
purchase data at the lowest possible price.

24

2.6. State of the Art

2.6 State of the Art

In the past few years the number of IoT devices increased drastically. As mentioned
before, it is estimated that the number of IoT devices, and therefore the amount of
recorded data will continue to increase (due to different factors like connectivity price
reduction) [5] [6] [7]. This has given rise to multiple IoT platforms and data markets,
which facilitate purchasing, selling and exchanging data. In this section we are going to
present current state of the art IoT data markets, their capabilities and their limitations.

2.6.1 MARSA

MARSA is a dynamic cloud-based marketplace for near real-time human-sensing data
[9]. The platform distinguishes two types of data participants: data providers and data
consumers and supports data delivery in near real-time from consumers to buyers [9].
In order to do so, the platform offers the possibility to transfer data streams directly
between consumers and providers through an Application Programming Interface (API)
(which can be used for machine-to-machine communication). MARSA also provides a
service for data discovery, which allows users to search for data streams.

Furthermore, the platform supports multiple cost models (e.g., free usage, payment on
time of subscription, etc.) and multiple contract models (e.g., obligation free contracts,
customizable contracts) [9].

However, MARSA also has a few disadvantages. If a user wants to provide and buy
data at the same time, two different accounts are necessary since the platform strictly
distinguishes between these two types of users. Furthermore the platform is limited to
the data discovery service and no data recommendation mechanism is provided, e.g. for
making recommendations for Things which might be of interest to a user. The prototype
also has the disadvantage that it was originally designed to provide near real-time data
with the focus on machine-to-machine communication and no data contract negotiations
are possible.

2.6.2 ThingStore

ThingStore is a platform for IoT application development and deployment [70]. This
platform distinguishes between different categories of users and is designed to address
the challenges of device heterogeneity, system complexity and use of network bandwidth.

ThingStore provides an IoT marketplace and APIs for smart service development and
hosting and introduces an Event Query Language which can be used to query for events
[70].

From an IoT data contract establishment perspective, ThingStore does not offer the
possibility to specify or negotiate individual data contractual terms.

25

2. Background and State of the Art

2.6.3 BDEX

BDEX [10] is a data exchange platform which enables buying and selling data in near
real time. It allows the user to search for data based on age and quality and also to
combine different data points. BDEX tries to quantify the data quality by introducing
data scoring: every transaction, consumer and seller is scored and furthermore offers
unbiased and impartial scoring. Another functionality offered by this platform is real-time
monitoring of the data exchange, with the option to adjust the prices and to track the
performance. Last but not least BDEX offers the possibility to target specific user groups.

At the time of the conducted online research BDEX did not offer the possibility of
designing individual data contractual terms, e.g. it is not possible to sell the same
data at the same time to different users, using a different price and differences in usage
rights. Furthermore the data quality is limited to data scoring and does not offer further
information by using data mining techniques, e.g. anomaly detection.

2.6.4 Microsoft Azure Marketplace

The Microsoft Azure Marketplace [11] offers a broad range of different types of data
which can be accessed directly online or through an API. It supports data searching
based on price, category and publisher. Regarding the cost model, only the following
three pricing categories are supported: free data, free trials (which is usually limited to a
few data transactions) and payment per data transaction.

From the point of view of data contracts, the Microsoft Azure Marketplace has a few
disadvantages. It does not offer a dynamic cost model where the user pays based on the
data size or can buy unlimited access for a limited time. Furthermore each publisher can
specify the terms under which the data is provided. These terms apply to all users. This
is a disadvantage, because it is not possible to negotiate these data contractual terms
individually.

2.6.5 Further Platforms

Amazon Web Services Public Data Sets [71] provides public data for free, users have to pay
only for data computation and data storage. The data is divided into different categories
(e.g. astronomy, climate), however the platform provides no option for searching through
the datasets, but just browsing through them. Furthermore no concrete information
about the data quality is presented, just the text provided by the data publisher.

Tilepay [8] is an IoT micropayments platform that allows users to sell and exchange IoT
data. It provides a user control mechanism, that allows users to specifically allow or deny
data access and supports pseudonimity (i.e. disguised identity). However, at the time of
the conducted research, the platform did not offer any information regarding the data
contractual terms, nor if it is possible to monitor and recommend data contracts.

Thingspeak [72] is an IoT open data platform. It allows its users to access embedded
devices and web services and to collect, store, and analyse data from sensors or actuators.

26

2.6. State of the Art

In order to do so, users are able to create a channel where the devices which contains
multiple attributes like data fields, location fields and a status field. After a channel is
created data can be written on that channel through provided APIs (e.g. Representational
State Transfer (REST) services). Finally the data can be processed using MATLAB code.
A major disadvantage of this platform is that users cannot exchange directly the data
through channels and channels have to be made public first. Furthermore, at the time of
the conducted research, the platform did not offer the possibility to establish individual
data contracts.

27

CHAPTER 3
Requirements Analysis

In the previous chapter we elaborated upon IoT data contract establishment and provided
an overview of current state of the art projects and data marketplaces. Based on the
findings of the previous chapter, we are going extract a set of requirements in order to
be able to implement a possible solution for the problem mentioned in Chapter 1. First
we are going to provide a brief overview of the identified use cases, afterwards we are
going to describe the functional requirements of these use cases and finally we are going
to elaborate upon a few non-functional requirements.

3.1 Brief Use Case Description

Across IoT dataspaces many providers, having multiple Things can exist. Consequently,
multiple potential customers can exist and some of these potential customers can also be
Thing providers. Some of the current IoT platforms strictly distinguish between multiple
types of users (see Chapter 2.6). However, in order to avoid the necessity of having
multiple accounts we will assume that all actors of the system are users.

A user can either be a Thing provider (i.e., a user who owns a temperature sensor – a
Thing – and wants to sell the streamed data produced by his/her Thing) or a Thing
consumer (i.e., a user who wants to purchase data) or both at the same time. Furthermore,
from a business perspective, a user is either a natural or a legal person. Each user can
register only once and once registered, each user can act as a Thing provider and as a
Thing consumer. For this reason, every user can register a Thing.

Furthermore it should be possible to bilaterally (see Figure 2.1) negotiate and conclude
data contracts for the data produced by the previously registered Things. If the dataspace
of the provider contains more than one Thing, a consumer has to be able to browse
between the Things and select, and, negotiate data contracts for any number of Things.

29

3. Requirements Analysis

After a data contract is concluded, it should be possible to monitor the data stream
from a data quality perspective. The monitoring period of the data stream can be
started/stopped by either one of the parties (i.e., Thing provider or Thing consumer).
Furthermore, it should be possible to have multiple monitoring periods (e.g., if a data
contract runs for 24 hours, it should be possible to have multiple monitoring periods of
e.g., a few minutes/hours). After concluding a data contract, the Things, for which the
data contract was concluded, can be rated.

Finally for each user a personal recommendation for a Thing can be computed, based
on the users previous ratings and the ratings of his neighbourhood (see also use case
illustration in Figure 3.1).

User Registration Thing Registration

Establish DataContract

Recommend Thing

Monitor ConcludedContract

System
«includes»

«includes»

«includes»

«extends»

User

Thing Provider

Thing ConsumerLegal Person

Natural Person

Browse Dataspace

«includes»

Rate Thing

«extends»

«includes»

Figure 3.1: Use Case Diagramm

The previously mentioned use cases can be identified in several scenarios. For example
let us consider a few providers, which are either natural persons (e.g., having a couple of
sensors measuring the outside temperature), or companies (e.g., having multiple sensors
measuring different environmental data). In this scenario different types of users might be
interested in buying different types of data (e.g., local news agencies might be interested in
weather data, universities and government in the measurements of air contaminants, etc.)
and all stakeholders have one thing in common: they want to conclude data contracts and
they wish to achieve it in the best possible way (e.g., purchase/sell at the lowest/highest
possible price or access it for free).

One more scenario would be that of a smart city. For example in the Array of Things
project, multiple Things are installed to monitor Chicago’s environment [73]. In this

30

3.1. Brief Use Case Description

case different stakeholders might be interested in different types of data produced by
different Things. For example local news agencies might be interested in temperature
recordings, research institutes in air quality data, etc. Like in the previous scenario, all
stakeholders have the same thing in common: they all want to access data and establish
data contracts.

Another scenario, from an even larger perspective, has been identified by the Fraunhofer
Institute. In this particular case an industrial dataspace was presented. This presented
concept covers multiple branches with the goal of establishing a network of trusted data,
which is produced by multiple sources: companies, Things, etc. [74]. Similar to the
previous scenarios multiple stakeholders can be identified with the same goal: to establish
data contracts for the purchase of data (e.g., automated measurements recorded by some
robots in production lines) or access the data for free.

31

3. Requirements Analysis

3.2 Functional Requirements
In the previous section we provided a short overview of the identified use cases. In this
section we are going to present these use cases from a functional point of view, together
with at least one representative scenario upon which the prototype will be evaluated (see
Chapter 5.2) in order to demonstrate its utility.

3.2.1 User Registration

The user registration use case (see Table 3.1) addresses a limitation of currently existing
platforms (see Chapter 2.6): a user should have to register only once, regardless of the
role (i.e., provider or consumer) he/she is playing.

Use Case Element Description
Name User Registration
Primary Actor(s) Thing provider – John, Thing consumer – Jane
Preconditions None
Brief Description Each user can create an account and afterwards use the

system.
Postconditions A user account is created and the user can log in.
Main Success Scenario 1 1. A natural person (John) opens the main page in a

browser.
2. John selects the following type of person: ’natural
person’.
3. John provides his first name and last name.
4. John provides his e-mail address and a password.
5. John provides his birth date.
6. John provides his home address.
7. John clicks on the ’Register’ button.

Main Success Scenario 2 1. The employee (Jane) of a small company (Thing Inc.)
opens the main page in a browser.
2. Jane selects the following type of person: ’legal person’.
3. Jane provides the company name and the company
registration number.
4. Jane provides her e-mail address and a password.
5. Jane provides the address of the company.
6. Jane clicks on the ’Register’ button.

Exception Flows In case an e-mail address is invalid or already registered,
an error message is received.

Table 3.1: Use Case 1 - User Registration

For the specification of a person, we chose a set of representative fields (see Table 3.1),
serving as a proof of concept. When developing IoT data markets, it might in the interest

32

3.2. Functional Requirements

of multiple stakeholders to have more data about the person they are doing business
with (e.g., for legal persons the beneficial owner).

3.2.2 Thing Registration

In order to conclude data contracts for data produced by a Thing (see description in
Table 3.2) it should be possible to register a Thing. Furthermore every user has to be able
to register a Thing. In this context a Thing is a device (of any kind, e.g., temperature
sensor), which produces some kind of data.

Since the data, which is produced by Things, can have various formats, it is necessary
to know the meta-model of the produced messages in order to be able to compute QoD
and QoS metrics in further steps. For the sake of simplicity and as a proof of concept it
should be possible for the provider to specify the meta-model of the produced messages
of a Things upon its registration. Another option to retrieve the meta-model of a Thing
would be to provide a custom component which can exchange information with other
external systems that also manage Things and know their meta-model, such as [75].

At the end of Chapter 2.4 we presented one possibility to model data contracts. As
mentioned in Chapter 1.2, we assumed that users are willing to negotiate data contracts
for the purchase of data produced by registered Things. In order to ease the negotiation
process, it should be possible for a Thing provider to specify a negotiation template. The
negotiation template consists of sample data contractual clauses, which will be used in a
later step for the negotiation process. As a proof of concept, from the proposed data
contract model, all terms, except the QoD and the QoS, should be negotiable.

33

3. Requirements Analysis

Use Case Element Description
Name Thing Registration
Primary Actor(s) Thing provider
Preconditions Registered and logged in user.
Brief Description Each user can register a Thing in order to be able to conclude

data contracts in a further step.
Postconditions 1. The Thing is saved, the user can edit its data and other

users can find it in the dataspace of the provider.
2. The Thing provider receives notifications on how to
configure his Thing, so that the platform can receive all
Things messages.

Main Success Scenario 1. John logs in to his account.
2. John selects the option to register a Thing.
3. John provides the meta-model of the messages which are
produced by his Thing.
4. John provides a resource ID for his Thing.
5. John provides a sample JSON object, similar to the ones
which his Thing produces.
6. John provides a short description for the Thing (e.g.,
temperature sensor in the Vienna city center).
7. John provides information regarding the quality of data
(i.e., completeness, conformity, accuracy, consistency and
timeliness).
8. John provides information regarding the quality of service
(i.e., device broadcasting frequency and the availability).
9. John specifies if his Thing should be monitored by the
standard monitoring component of the system or not.
10. John specifies a pricing model (e.g., 10 EUR for 1 month
of data) which will be used in the data contract template.
11. John specifies data rights clauses (i.e., derivation,
collection, reproduction, commercial usage) which will be
used in the data contract template.
12. John specifies purchasing policy clauses (i.e., contract
termination, refunds, shipping) which will be used in the
data contract template.
13. John specifies control and relationship clauses (i.e.,
warranty, indemnity, liability, jurisdiction) which will be
used in the data contract template.

Exception Flows If the Thing sample JSON, description or pricing model are
not provided, an error message appears.

Table 3.2: Use Case 2 - Thing Registration

34

3.2. Functional Requirements

3.2.3 IoT Dataspace Browsing

As mentioned in Chapter 1 multiple Things can exist within an IoT dataspace. These
Things can belong to one or to multiple providers. As a proof of concept we limit one
IoT dataspace to only one provider (which in turn can own multiple Things).

However, we also assume that multiple dataspaces can exist, therefore it has to be possible
for a user to browse or to switch between them and to see the Things that are bound to
a dataspace (see description in Table 3.3).

Use Case Element Description
Name Browse Dataspace
Primary Actor(s) Thing consumer
Preconditions Registered and logged in user, at least on dataspace exists

from another user with at least one registered Thing.
Brief Description Each consumer is able to see all dataspaces and browse

between them, so he can establish data contracts in further
steps.

Postconditions All Things within one dataspace are clearly visible.
Main Success Scenario 1. Jane logs in to her account.

2. Jane selects the option browse the dataspaces (from a
menu or from an icon).
3. Jane sees a list of the available dataspaces and can select
any of them and see all available Things.

Exception Flows In case no dataspaces are available, a corresponding message
is displayed.

Table 3.3: Use Case 3 - IoT Dataspace Browsing

3.2.4 Data Contract Negotiation

In order to support the bilateral negotiation of data contracts, according to the previously
mentioned three phase model (locate potential business partners (1), negotiate an
agreement (2) and conclude a contract (3) – see Section 2.2), the following data contractual
clauses have been chosen to be negotiable: data rights, pricing, control and relationship
and purchasing policy. The QoD and QoS clauses have been left out of the negotiation
process because they could require a manual configuration for each concluded data
contract for each Thing, or a more complex automatic configuration or alteration of the
produced data, which would go beyond the scope of this thesis.

By negotiating the above mentioned data clauses, individual data contracts can be
established (see Table 3.4).

35

3. Requirements Analysis

Use Case Element Description
Name Negotiate Data Contract
Primary Actor(s) Thing provider, Thing consumer
Preconditions Registered and logged in user, at least on dataspace exists

from another user with at least one registered Thing.
Brief Description Individual data contracts can be concluded by negotiating

data contractual terms.
Postconditions A proposal for a data contract is always seen by the other

party.
Main Success Scenario 1. Jane logs in to her account.

2. Jane selects the option browse the dataspaces (from a
menu or from an icon).
3. Jane sees a list of the available dataspaces and selects
Johns dataspace.
4. Jane selects one or more Things for which she wants to
negotiate a data contract.
5.1. If only one Thing is selected, the contractual terms from
the data contract template for that Thing is proposed to
Jane.
5.2. If Jane selects multiple Things, no data contractual
terms are pre-filled.
6. Jane sends the contract proposal to John.
7. John logs in to his account.
8. John sees Janes proposal and sends her a counter proposal.
9. Jane can see the counter proposal including the contractual
terms of her last proposal.
10. Jane sends John a new counter proposal.
11. John accepts the received data contract proposal from
Jane without modifying anything.

Exception Flows In the pricing model, the price, the subscription period, the
broker URL and the queue name (i.e., where exactly to send
all Thing messages, once the contract is concluded) have to
be specified, otherwise an error is displayed.

Table 3.4: Use Case 4 - Data Contract Negotiation

36

3.2. Functional Requirements

3.2.5 Data Contract Monitoring

The data contract monitoring (see Table 3.5) is bound to a monitoring period for one data
contract and for all Things, for which the standard monitoring is enabled. As described
in the previous use case (see Table 3.2), the standard monitoring flag is specified upon
a Things registration and if it is enabled, then the data flow produced by this Thing
can be monitored by the new proposed framework. After a data contract monitoring
period is started (by any user), the monitoring should start automatically and when
the monitoring period is ended (by any user), the monitoring should end automatically.
Furthermore, during the subscription period of a data contract, it should be possible to
have multiple monitoring periods.

Use Case Element Description
Name Monitor Concluded Data Contract
Primary Actor(s) Thing provider, Thing consumer
Preconditions Registered and logged in user, concluded data contract

and subscription period of the concluded data contract has
started.

Brief Description For each Thing, which has the standard monitoring enabled,
the monitoring can be started/stopped for a certain period
for a data contract (e.g., simple start/stop button-function).

Postconditions QoD and QoS metrics are available for every Thing within
the data contract with the standard monitoring enabled. The
monitored values refer only to the data contract subscription
period.

Main Success Scenario 1. John logs in to his account.
2. John selects a concluded data contract, for which the
subscription period is still running.
3. John can start/stop monitoring the data flow any time,
which creates a monitoring period. 4. John can see the
following QoS metrics for each monitoring period: number of
samples, availability (in %), first message receival time, last
message receival time.
5. John can see the following QoD metrics for each monitoring
period: number of samples, message completeness (in %),
message conformity (in %), average message age (in ms),
average message currency (in ms).
6. If multiple monitoring periods exist, John can see them
all.

Exception Flows None.

Table 3.5: Use Case 5 - Concluded Data Contract Monitoring

37

3. Requirements Analysis

3.2.6 Thing Rating

Once a data contract is concluded, a Thing consumer has to be able to submit a rating
for each Thing which is bound to the data contract (see description in Table 3.6). This
rating will be used in a later step for making recommendations.

Use Case Element Description
Name Rate Thing
Primary Actor(s) Thing consumer
Preconditions Registered and logged in user, concluded data contract

and subscription period of the concluded data contract has
started.

Brief Description Each Thing, for which a data contract was concluded, can
be rated once by the consumer.

Postconditions The rating is persisted into the database.
Main Success Scenario 1. Jane logs in to her account.

2. Jane selects a concluded data contract.
3. Jane submits a rating for each Thing from the data
contract on a scale from 1 to 5 stars.

Exception Flows In case a Thing has already been rated by the user, a message
is displayed, among with the submitted rating value.

Table 3.6: Use Case 6 - Thing Rating

3.2.7 Data Contract Recommendation

In order to stimulate data contract conclusions it has to be possible to make data contract
recommendations. The recommendations are based on the submitted ratings of other
users (see scenarios from Table 3.7).

In order to avoid a conflict of interest between Thing providers and Thing consumers
(e.g., a provider would want to sell data at the highest possible price, whereas a consumer
would want to purchase data at the lowest possible price), the recommendation is only
bound to recommending Things and not to recommending data contractual clauses.

38

3.2. Functional Requirements

Use Case Element Description
Name Recommend Data Contract
Primary Actor(s) Thing provider, Thing consumer
Preconditions Registered and logged in user
Brief Description Each user receives a personal recommendation based on

previously concluded data contracts and the neighbourhood
of the user.

Postconditions A recommendation or a message that a recommendation
cannot be made is clearly visible.

Main Success Scenario 1 1. Jane logs in to her account.
2. Jane has no previously concluded data contracts and in
the platform multiple Things exist, which have been rated
by other users.
3. Jane receives a recommendation for the highest rated
Thing.

Main Success Scenario 2 1. Jane logs in to her account.
2. Jane has no previously concluded data contracts and in
the platform no rated Things exist.
3. Jane receives a recommendation for a randomly chosen
Thing.

Main Success Scenario 3 1. Jane logs in to her account.
2. Jane has no previously concluded data contracts and in
the platform no Things exist.
3. Jane receives no recommendation, just a notification,
that no recommendation can be made.

Main Success Scenario 4 1. Jane logs in to her account.
2. Jane has previously concluded data contracts and in the
platform multiple rated Things from multiple users exist.
3. Jane receives a recommendation for a Thing she didn’t
conclude a data contract yet and has the highest rating in
the nearest neighbourhood, which is computed using the
Euclidean distance (see Formula 2.3) between commonly
rated Things.

Exception Flows None.

Table 3.7: Use Case 7 - Recommend Data Contract

39

3. Requirements Analysis

3.3 Non-Functional Requirements
In the previous section functional requirements, that need to be fulfilled, have been
described. In this section a few identified non-functional requirements, which apply for
the new proposed framework, are presented:

• The developed platform has to be able to deal with a high number of users, Things
and data contracts, thus it has to be scalable.

• The developed architecture should be based on small services (e.g., microservices)
which can run independently.

• The developed architecture should be extensible by custom components.

40

CHAPTER 4
Contract-aware Framework

Based on the conducted literature research from Chapter 2 and the defined requirements
from Chapter 3 an extensible contract-aware framework was designed, which can serve
as a possible solution for the problem mentioned in the introduction of this thesis (see
Chapter 1). In this Chapter we are going to present this framework: at the beginning we
are going to provide a short overview from an architectural point of view and afterwards
we are going to describe each of the frameworks components in more detail.

4.1 Architecture
In order to support all required features and to achieve a better separation of concerns,
the architecture of the framework was developed based on microservices. This way
small services can manage different aspects. The following types of services have been
identified: DataContract, Monitoring, Recommending and further custom plugins/services
(see Figure 4.1).

Each service can be scaled individually and can communicate with a database on its
own. All services are managed through a ServiceHandler. The main purpose of the
ServiceHandler is to integrate multiple services of different types including custom made,
which makes the architecture easily extensible by custom components. For example
Thing providers can create a custom made microservices for other activities (e.g., custom
monitoring or further features) and register them via the API of the ServiceHandler.

In the new proposed framework, it has been assumed that Things publish data to IoT
data hubs. Since one single IoT device can produce a lot of data (e.g., a temperature
sensor can record the temperature every hour, minute or every second), and this data
can be stored and/or published in multiple locations, it has been further assumed, that
Things publish the produced data as messages to message brokers.

41

4. Contract-aware Framework

IoT
 Da

ta H
ub

Ser
vice

 AP
I

DB
Mo

nito
ring

Mic

ros
erv

ices

Ser
vice

Han
dler

Sav
e /

Acc
ess

Sav
e /

Acc
ess

Pro
vide

r

Thi
ng

End
 Us

er
Cus

tom
 Plu

gins

Dat
a D

eliv
ery

Nod
e ..

.Dat
a In

ges
tion

Nod
e ..

.

Thi
ng

Thi
ng

Inst
anc

e 1
Inst

anc
e k

Nod
e 1

Que
ue

i

Con
sum

es

Thi
ng

Con
sum

er
Con

sum
er

Con
sum

er

Nod
e 1

Pub
lish

es

...

Que
ue

1

Que
ue

1

Que
ue

j
IoT

 Da
ta F

low
Dat

a F
low

Dat
aCo

ntra
ct

Mic
ros

erv
ices

Inst
anc

e 1
Inst

anc
e m

Rec
om

me
ndin

g
Mic

ros
erv

ices
Inst

anc
e 1

Inst
anc

e n

Sav
e /

Acc
ess

Sav
e /

Acc
ess

Fi
gu

re
4.
1:

Fr
am

ew
or
k
A
rc
hi
te
ct
ur
e

42

4.2. Data Contract Management

We assumed that Things publish the produced data to data ingestion nodes (see Figure
4.1). One node can consist of one or more message brokers/queues. Another assumption
that has been made, is that an IoT provider is willing to configure his/her Thing to send
all messages to a specific queue and that messages might also contain specific custom
parameters/properties (e.g., queue topic or custom message property). By doing so,
each consumed message can be immediately mapped to the Thing which produced the
respective message. For example, let us consider two Things t1 and t2 that publish
messages to the same queue. By attaching a custom property to every message, e.g.,
thingid = t1 resp. thingid = t2, the producing Thing can always be identified.

Finally, we made the assumption, that all messages are string representations of JSON
objects 1. However, it is not assumed, that the produced JSON objects have a common
model or that the model of the messages is known. The model of a message is only
known, if the meta-model of the Thing (which produced the message) is known. As
described in use case 2 (see Table 3.2) the meta-model of a Thing can be provided upon
its registration.

The overall functionality of the framework can be accessed through a provided API of
the ServiceHandler. Alternatively a GUI server can offer end-user access, which in turn
accesses the same ServiceHandler API.

4.2 Data Contract Management
The data contract service is responsible for managing data contracts and consists of
a layered architecture with the following layers: (1) Data Access Object (DAO) layer,
(2) a business layer and (3) a communication/API layer. All operations regarding data
contracts are run through this service, including the registration of Things, for which
the data contracts are established for. Things and data contracts can be updated and
created by accessing the provided API.

In order to be able to support individual data contract establishment, this microservice
consists of two components: a Thing component and a data contract component. The
Thing component provides all necessary services for the Thing management and the data
contract component provides all necessary services for the establishment and maintenance
of data contracts (an example of a data contract is provided Listing 4.1).

As we can see in the nested object dataContractMetaInfo the most important data
contract information is saved (i.e., contract ID, creation date, etc.). The rest of the
contract consists of the agreed data contractual clauses, the IDs of the Things from
which the data shall be broadcasted and a flag indicating that the monitoring is currently
enabled for this data contract. The data contractual clauses have been chosen based on
the conducted literature research and based on the extracted requirements (see Chapters
2.4 and 3.2).

1Having to deal with other types of messages (e.g., XML) could be an option and is highly possible,
but would go beyond the scope of this thesis

43

4. Contract-aware Framework

Listing 4.1: Data Contract Example
{

" dataContractMetaInfo " : {
" c o n t r a c t I d " : " c123 " ,
" c reat ionDate " : "2016−10−06 0 0 : 1 1 : 0 3 " ,
" a c t i v e " : true ,
" party1Accepted " : true ,
" party2Accepted " : true ,
" r e v i s i o n " : 5 ,
" party1Id " : " p123 " ,
" party2Id " : " p456 " ,

} ,
" dataRights " : {

" d e r i v a t i o n " : f a l s e ,
" c o l l e c t i o n " : true ,
" r e p r o d u c t i o n " : f a l s e ,
" commercialUsage " : t rue

} ,
" pr ic ingModel " : {

" p r i c e " : 3 ,
" currency " : "EUR" ,
" t r a n s a c t i o n " : f a l s e ,
" numberOfTransactions " : 0 ,
" s ta r tD at e " : "2016−10−07 0 0 : 0 0 : 0 0 " ,
" endDate " : "2016−10−08 0 0 : 0 0 : 0 0 " ,
" brokerURL " : " tcp : / / 1 2 7 . 0 . 0 . 1 : 6 1 6 1 6 " ,
" queueName " : " consumerQueue "

} ,
" contro lAndRelat ionsh ip " : {

" warranty " : " None " ,
" indemnity " : " None " ,
" l i a b i l i t y " : " None " ,
" j u r i s t i c t i o n " : " AustriaVienna "

} ,
" p u r c h a s i n g P o l i c y " : {

" contractTerminat ion " : " Automatic " ,
" s h i p p i n g " : " Automatic " ,
" re fund " : " None "

} ,
" t h i n g I d s " : [{ " t h i n g I d " : " . . . " } , . . .] ,
" monitor ing " : t ru e

}

Each data contract (see class diagram in Figure 4.2) is concluded between two parties,
which can be either natural or legal persons. Furthermore a data contract is concluded for
a list of Things and contains certain clauses (i.e., pricing model, control and relationship,
data rights, purchasing policy). Upon every Thing registration, data contractual clauses
have to be specified. These clauses are automatically used to set up a data contract
template which is used for the negotiation.

A Thing contains a list of ratings, QoD and QoS information and the messages, that
Things produce, are specified by a meta-model. The meta-model is represented by a list
of attributes. Each attribute has a certain data type (e.g., STRING, BOOLEAN, DATE,
etc.), a few optional properties (e.g., an identifier flag, which can be set, if the attribute
acts as an identifier) and, if the attributes data type is not primitive, the attribute can
also have a meta-model per se. When data contracts are negotiated, a data contract trail
is saved. The data contract trail represents the negotiation history, containing all values
from all negotiated clauses.

When data contracts are negotiated, a data contract trail is automatically saved. The
data contract trail contains the negotiation history as data contract trail entries, with

44

4.2. Data Contract Management

all values from all negotiated clauses. For each data contract offer or counter-offer a
trail entry is saved. An example of a data contract trail is provided in Listing 4.2. In
this example we can see that two offers have been exchanged and two data contract
trail entries exist, with different values at various clauses (e.g., data rights derivation,
reproduction and pricing).

By modelling only two parties in a data contract, the negotiation process is limited
to bilateral negotiations. Based on the scenarios mentioned in the previous section,
other types of negotiation are also suitable. For example in an industrial dataspace
multi-bilateral or nested negotiations might also be considered. However, as a proof of
concept, we modelled our framework (and later on the prototype) to be able to deal with
bilateral negotiations only, as supporting the other types would go beyond the scope of
this thesis.

45

4. Contract-aware Framework

Listing 4.2: Data Contract Trail Example
{

" c o n t r a c t I d " : " c123 " ,
" r e v i s i o n " : 1 ,
" c l a u s e s T r a i l " : [{

" dataRights " : {
" d e r i v a t i o n " : true ,
" c o l l e c t i o n " : true ,
" r e p r o d u c t i o n " : true ,
" commercialUsage " : t rue

} ,
" pr ic ingModel " : {

" p r i c e " : 3 . 0 ,
" currency " : "EUR" ,
" t r a n s a c t i o n " : f a l s e ,
" numberOfTransactions " : 0 ,
" s u b s c r i p t i o n " : {

" s ta r tD at e " : "2016−10−01 0 0 : 0 0 : 0 0 " ,
" endDate " : "2016−10−31 2 3 : 5 9 : 5 9 " ,
" brokerURL " : " tcp : / / 1 2 7 . 0 . 0 . 1 : 6 1 6 1 6 " ,
" queueName " : " customQueue "

}
} ,
" p u r c h a s i n g P o l i c y " : {

" contractTerminat ion " : " Automatic " ,
" s h i p p i n g " : " Automatic " ,
" re fund " : " F u l l "

} ,
" contro lAndRelat ionsh ip " : {

" warranty " : "2 y ears " ,
" indemnity " : " None " ,
" l i a b i l i t y " : " None " ,
" j u r i s t i c t i o n " : " Austr ia /Graz "

}
} ,
{

" dataRights " : {
" d e r i v a t i o n " : f a l s e ,
" c o l l e c t i o n " : true ,
" r e p r o d u c t i o n " : f a l s e ,
" commercialUsage " : t rue

} ,
" pr ic ingModel " : {

" p r i c e " : 1 0 . 0 ,
" currency " : "EUR" ,
" t r a n s a c t i o n " : f a l s e ,
" numberOfTransactions " : 0 ,
" s u b s c r i p t i o n " : {

" s ta r tD at e " : "2016−10−01 0 0 : 0 0 : 0 0 " ,
" endDate " : "2016−10−31 2 3 : 5 9 : 5 9 " ,
" brokerURL " : " tcp : / / 1 2 7 . 0 . 0 . 1 : 6 1 6 1 6 " ,
" queueName " : " customQueue "

}
} ,
" p u r c h a s i n g P o l i c y " : {

" contractTerminat ion " : " Automatic " ,
" s h i p p i n g " : " Automatic " ,
" re fund " : " None "

} ,
" contro lAndRelat ionsh ip " : {

" warranty " : " None " ,
" indemnity " : " None " ,
" l i a b i l i t y " : " None " ,
" j u r i s t i c t i o n " : " Austr ia / Vienna "

}
}]

}

46

4.2. Data Contract Management

Fi
gu

re
4.
2:

D
at
a
C
on

tr
ac
t
D
at
a
M
od

el

47

4. Contract-aware Framework

4.3 Data Contract Monitoring

Within an IoT dataspace, lots of devices can exist, which produce different types of data.
This data is published at different frequencies and has to be consumed and redirected to
all relevant subscribers (see Figure 4.1).

The Monitoring microservice is responsible for the monitoring and redistribution of all
incoming messages from all devices and consists of a similar layered architecture as the
data contract management service.

In this context two main challenges have been identified:

1. Data redistribution: x data contracts can be concluded, each for data produced by
1 to y Things.

2. Data monitoring: x Things can produce z ≤ x different types of data at t ≤ x
different frequencies.

In order to solve the above mentioned challenges we propose a new concept of operators
called dataspace operators. We define dataspace operators op to be operations which are
applied to the consumed data from an IoT data hub (see Figure 4.1). For the previously
mentioned challenges two operator types can be used: data operators opD and monitoring
operators opM .

Data operators can be used to apply all necessary operations so that the consumed
data is distributed accordingly to concluded data contracts. As a concept, depending
on the situation multiple operators can be applied. For the concrete data redistribution
problem, the appliance of a filtering operation will suffice in most cases (i.e., as long as
data tampering is not necessary). If the consumed data has to be altered before it is
redistributed to the consumers, then further operators could be used (e.g., split, merge,
etc.).

The monitoring operators can be used for the quality assurance monitoring. For this
purpose we propose the usage of two monitoring operators: opm1 for the QoD monitoring
and opm2 for the QoS monitoring.

Algorithm 4.1 shows how the proposed dataspace operators can be applied on a data
stream for the QoD and QoS computation. One Monitoring microservice consumes
messages from one IoT data hub node, where multiple Things publish their messages.
For each registered Thing the filtering data operator opD is applied. The purpose of
this filtering operation is to retrieve a list of all valid data contracts which have been
concluded and include data produced by the current Thing.

Based on a configurable amount of consumers, multiple messages can be read at the same
time. Each message is delivered to all relevant subscribers (i.e., consumers) according to
the concluded data contracts.

48

4.3. Data Contract Monitoring

After the message delivery the second type of monitoring operators can be applied in
order to compute QoD and QoS metrics (see Algorithms 4.2 and 4.3).

Algorithm 4.1: Data contracts monitoring algorithm
Input: thingsList, nrOfConsumers, allDataContracts
Output: void

LOOP thingsList
1: for thing in thingsList do
2: dataContractList = opd1(thing)

LOOP nrOfConsumers
3: for consumer in nrOfConsumers do
4: start consumer and consume message from thing.queue
5: messageReceivalT ime := currentT ime;
6: deliver message to subscriber
7: if (currentT ime in sampleMonitoringT ime) then
8: messageDeliveryT ime := currentT ime;
9: opm1(thing.metaModel, message);

10: opm2(thing, messageReceivalT ime);
11: end if
12: end for
13: end for
14: return

One possible solution for the computation of the QoD is presented in Algorithm 4.2.
In this case the computation is based on the meta-model of the produced messages of
a Thing. If the meta-model is know, then a message can be validated against it. If
all attributes of a message are existent, then the message is considered to be complete.
Furthermore, if the data types of the properties of a message match the expected data
type (as specified by the meta-model), then the message is considered complete (also see
Chapter 2). All attributes of a message are traversed and checked against completeness
and conformity. If the data type of one attribute is not primitive (e.g., boolean, integer),
then the function recalls itself.

One possible solution for the computation of the availability is illustrated in Algorithm
4.3. Here fe is the expected device broadcasting frequency, tfmr is the first message
receival time, tmr is the current message receival time, me represents the number of
expected messages and mt is the number of total received messages. If there are no
current measurements of the availability, then the current received message is the first
and only message so the availability is set to 100%.

49

4. Contract-aware Framework

Algorithm 4.2: QoD computation algorithm - opm1
Input: metaModel, message
Output: completeness, conformity

completeness := true; conformity := true;
{loop all metaModel attributes}

1: for attribute in metaModel do
2: if (message not contains attribute.name) then
3: completeness := false;
4: continue;
5: else
6: currentAttr := message.attribute
7: if (currentAttr.dataType != attribute.dataType) then
8: conformity:= false;
9: end if

10: end if
11: if (attribute.dataType is not primitive Type) then
12: traverseMetaModel(attribute.metaModel, message.attribute);
13: end if
14: end for
15: return

Algorithm 4.3: QoS computation algorithm - opm2
Input: thing, tmr

Output: thing.monitoredqos
availability := 0;

1: fe := thing.fe;
2: if (thing.monitoredqos != NULL) then
3: tfmr := thing.monitoredqos.tfmr;
4: ∆t := tmr - tfmr;
5: me := ∆t / fe;
6: me++;
7: thing.monitoredqos.me := me;
8: thing.monitoredqos.mt++;
9: thing.monitoredqos.availability := mt / me;

10: else
11: thing.monitoredqos.tfmr := tmr;
12: thing.monitoredqos.me := 1;
13: thing.monitoredqos.mt := 1;
14: thing.monitoredqos.availability := 1;
15: end if
16: return

50

4.3. Data Contract Monitoring

However, if previous measurements exist, then based on the device broadcasting frequency,
the receival time of the first message and the receival time of the last message, the number
of expected messages can be computed. Let us assume a device which is broadcasting
data every second and the monitoring is enabled for the following period of time: starting
at "12:00:00" until "12:00:59". In this particular case we expect one message at "12:00:00",
one at "12:00:01", etc. until "12:00:59" totalling 60 messages, or me = 60. With every
received message mt is increased by 1. If at "12:00:59" our device broadcasted as expected,
then mt = 60, which leads to an availability of 100%. However, if the device broadcasts
data every 2 seconds (e.g., due to misconfiguration), then mt = 30, which leads to an
availability of 50%.

51

4. Contract-aware Framework

4.4 Recommending Management
Depending on the scenario, within an IoT dataspace, thousands of devices may exist,
which are all producing data. In this particular case it may be useful to have a system
which makes recommendations, that aligns with a users interests.

Algorithm 4.4 shows a possible hybrid approach that can be used, to recommend data
produced by Things, that a current user did not buy, but his/her neighbours did. First
the Euclidean neighbourhood is computed using the Euclidean distance (see Chapter
2.5). If the neighbourhood exists, the neighbours are sorted based on their distance, with
the nearest distance first. If at least one neighbour has concluded a data contract for one
Thing that the current user did not conclude a data contract, then this Thing is returned.
If no Thing can be found in the neighbourhood, or if no such neighbourhood exists, the
top rated Thing is returned. In case there are no ratings, and the top rated Thing does
not exist, then a random Thing is proposed. Finally, if no Things are existent, then a
random Thing cannot be proposed and a recommendation cannot be made.

Algorithm 4.4: Thing recommendation algorithm
Input: userId
Output: thing

1: Map<String, Double> map = computeEuclideanNeighborhood(userId);
{Map<userId, distance>}

2: if (map is not empty) then
3: Map<String, Double> sortedMap = sortMapByNearestDistanceFirst(map);
4: for entry < String, Double > in sortedMap do
5: thing := findThingNeighbourHasButUserHasNot(entry.String, userId);
6: if (thing is not NULL) then
7: return thing;
8: end if
9: end for

10: end if
11: thing := computeTopRatedThing(); {Thing with highest average rating}
12: if (thing is not NULL) then
13: return thing;
14: else
15: thing := getRandomThing();
16: if (thing is not NULL) then
17: return thing;
18: end if
19: end if
20: return NULL;

Algorithm 4.4 recommends Things and not data contractual clauses because a conflict
of interest can exist between Thing providers and Thing consumers (e.g., a provider

52

4.4. Recommending Management

would want to sell data at the highest possible price, whereas a consumer would want to
purchase data at the lowest possible price).

One disadvantage of Algorithm 4.4 is that it does not take external events into consideration.
Let us assume multiple regions where multiple Things measure environmental data. If
an important environmental event occurs in one single region (e.g., storm, hurricane,
earthquake, etc.), then the data produced by the Things of that region might gain more
importance than the data produced by the Things of other regions.

One option to deal with such scenarios is presented in Algorithm 4.5. This algorithm is
very similar to the previous one with two main differences: (1) the neighbourhood is left
out and (2) the recommendation is based on tags.

In this case we assumed, that Things can have multiple Tags (e.g., for a temperature sensor
#Vienna, #Austria, #Temperature). If an important event occurs (e.g., thunderstorm in
Vienna), Thing recommendations can be made based on these tags (e.g., finding Things
tagged with #Vienna).

Algorithm 4.5: Thing tag-based recommendation algorithm
Input: tag
Output: thing

1: thing := computeTopRatedThing(tag);
2: if (thing is not NULL) then
3: return thing;
4: else
5: thing := getRandomThing(tag);
6: if (thing is not NULL) then
7: return thing;
8: end if
9: end if

10: return NULL;

53

CHAPTER 5
Experiments

In the previous Chapter we presented the design of a new extensible contract-aware
framework. Based on this design and the requirements from Chapter 3, a prototype was
build to serve as a possible solution to the problem description mentioned in Chapter
1. In this Chapter we are going to present the implemented prototype 1 and evaluate it
from two perspectives: from end user perspective and from a technical perspective.

5.1 Prototype

Based on the previously presented architecture (see Figure 4.1), we implemented a data
marketplace prototype – called IDAC. IDAC was implemented as a proof of concept, can
run on its own, can be plugged in to existing IoT data hubs and also act as an IoT data
hub.

5.1.1 Implementation

We implemented IDAC in the Java programming language (version 1.8). As shown in
Figure 4.1, IDAC consists of several components and was designed as an extensible and
scalable distributed system, which can run on different physical machines.

As a database the non SQL (NoSQL) database MongoDB was used. MongoDB was
chosen because it is schema less and due to its performance and scalability options [76].

As mentioned in Chapter 4.1, for the sake of simplicity, we assumed that Things publish
data to message brokers/queues. As a proof of concept we simulated an IoT data hub
ingestion node and a delivery node (see Figure 4.1), by using the Apache ActiveMQ [77]
message broker.

1Complete code available at: https://github.com/e0725439/idac, accessed November 13, 2016

55

https://github.com/e0725439/idac

5. Experiments

For the implementation of all services, the Apache Camel framework [78] was used. The
Apache Camel framework was chosen, due to the possibility to use multiple enterprise
integration patterns and to integrate different technologies at the same time. In order to
run each service, the integrated Jetty server, that comes with Apache Camel framework,
was used. The Graphical User Interface (GUI) was developed using PrimeFaces [79] and
run on an Apache Tomcat [80].

Furthermore, all services consist of multiple components. Each component provides
REST services, so that the components functionality can be accessed. Furthermore, the
ServiceHandler and the microservices also communicate via REST service calls. This
gives the possibility to run each service on entirely different physical machines.

For the sake of completeness, a simple balancing mechanism was implemented for the
monitoring services, which balances the load equally between all service instances, based
on the service type. For example if two DataContract microservices ms1 and ms2 are
registered and two external requests r1 and r2 are received to establish the location
of a DataContract service, then one request receives the location of one DataContract
microservice and the other request receives the location of the other microservice, e.g.,
r1 → ms1 and r2 → ms2. Beyond the previously mentioned feature, the ServiceHandler
assigns Things publishing information to each registered monitoring microservice instance.
This way one monitoring microservice instance is responsible for consuming messages
published by multiple Things from one data ingestion node only (see Figure 4.1).

In order to achieve a better separation of concerns and to avoid code repeatability, IDAC
consists of several projects (e.g., common model project, common test project, etc.). Each
project can be build using the build automation tool Maven [81]. All build configurations
and dependencies to other projects are managed in pom.xml files. Each project was
created using the Maven standard directory layout:

• src/main/java: Java classes.

• src/main/resources: Configuration files.

• src/test/java: JUnit tests.

IDAC was implemented using test-driven development, summing in total 114 JUnit
tests. All tests run automatically during each build. The prototype was configured as a
multi-module project, with the parent on the highest directory level. Running a build
(e.g., mvn clean install) on this level ensures the correct build order of all artefacts.

56

5.1. Prototype

5.1.2 Configuration and Deployment

As mentioned in the previous section, all projects use the Maven standard directory
layout. All necessary configurations can be found in the directory src/main/resources,
where the following properties files exist:

• mongo_db.properties: Database configuration

• webservices.properties: Jetty server configuration

• activemq.properties: ActiveMQ consumer and broker Uniform Resource Locator
(URL) configuration (monitoring services only)

After a build job is executed successfully, runnable JAR files are created in each project.
For the deployment of the prototype, the following runnable JAR files are needed, in
each case together with their corresponding lib folder (which contains all necessary
dependencies):

• ac.at.tuwien.mt.servicehandler-1.0.0-SNAPSHOT.jar

• ac.at.tuwien.mt.datacontract-1.0.0-SNAPSHOT.jar

• ac.at.tuwien.mt.monitoring-1.0.0-SNAPSHOT.jar

• ac.at.tuwien.mt.recommending-1.0.0-SNAPSHOT.jar

After all services have been started (e.g., process started using java -jar ...), all microservices
have to register to the ServiceHandler. In order to do so, all microservices provide a
GET REST service, which automatically registers the service to the ServiceHandler.
Furthermore a shut down REST service is provided, which attempts a graceful shut down
of the respective service (see Table 5.1).

Type Path Service Description Expected Response
GET /ping Verifies service availability. 204 No Content.
GET /register Registers service to ServiceHandler. 200 OK.
GET /shutdown Attempts a graceful shut down. 204 No Content.

Table 5.1: Managing Services via REST API

57

5. Experiments

5.2 Evaluation
In the previous section we elaborated upon some of the prototypes implementation
details. In this section we are going to evaluate the prototype using two evaluation
methods. The first evaluation method is from an end user perspective and is a descriptive
evaluation, based on the representative scenarios from the previously described use cases,
to demonstrate the utility of the prototype. The second evaluation method is from a
technical perspective and is analytical, more specific a dynamic analysis with the focus
on performance.

5.2.1 Evaluation Environment

The prototype was evaluated in two different environments, with the properties shown in
Tables 5.2 and 5.3. These system settings were chosen to demonstrate the performance
and the reliability of the prototype, even when running within a limited environment.

Property Value
Operating System CentOS Linux 7.2.1511
Kernel 64-bit
CPU Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz
CPU Cores 2
Memory 8 GB

Table 5.2: Evaluation Environment 1 - Virtual Server

Property Value
Operating System Windows 10
Kernel 64-bit
CPU Intel(R) Core(TM) i3 M370 @ 2.40GHz
CPU Cores 2
Memory 8 GB

Table 5.3: Evaluation Environment 2 - Physical Machine

58

5.2. Evaluation

5.2.2 Descriptive Evaluation

In this section we will analyse the prototype from an end user perspective to demonstrate
its utility. This evaluation is based on the representative scenarios described in the use
cases in Chapter 3.2 and was conducted completely in environment 1 (see Table 5.2).

At the beginning, the user registration was evaluated based on the described main success
scenarios from Use Case 1 provided in Table 3.1. In this case two person registrations
were completed successfully: a natural person (John Doe) and a legal person (Jane Doe).
These two registered persons were further used in all other use case evaluations.

We further evaluated the Thing registration based on the described main success scenario
from Use Case 2 provided in Table 3.2. The registration of the following three types of
Things was conducted:

1. Real device: Temperature sensor DS18B20 connected to Raspberry Pi (see message
example in Listing 5.1).

2. Simulated device: Water quality sampling data downloaded from [82].

3. Simulated device: Mobile device measurements obtained with [83].

Listing 5.1: Thing Message JSON Object Example
{

" t h i n g I d " : "42921004292100" ,
" temperature " : " 2 8 . 0 " ,
" s c a l e " : " C e l s i u s " ,
" time " : "2016−10−31 ’T’ 1 5 : 4 2 : 5 9 . 0 0 . 1 2 3 + 0 2 0 0 "

}

For each type of Thing two devices were registered. In order to be able to simulate the
dataspace browsing Use Case 3 (see Table 3.3) one further person was registered and
that person registered one Thing. Afterwards, the previously registered user (i.e., Jane
Doe) was able to see two dataspaces and the registered Things from each dataspace.

For the previously registered devices (assuming their IDs are: T1, T2, W1, W2, M1, M2),
several data contracts were established by negotiation (see Table 5.4), each consisting of
different Things. In all cases two negotiation steps were simulated. First, the Things were
selected for which a data contract should be established (see Figure 5.1). Afterwards, a
data contract offer was sent to the provider. The provider responded with a counter offer,
which the consumer accepted. Each sent offer, represents a data contract trail and was
saved into the database. The other party was always able to clearly see the differences
between the received data contractual clauses and the sent data contractual clauses. For
example, in Figure 5.2 a data contract offer was sent, in which all data rights values were
enabled, however, the provider sent a counter-offer, where only the commercial usage
of the data was allowed. Another example of a counter-offer is provided in Figure 5.3,
where a price difference can be clearly seen.

59

5. Experiments

Data Contract Things
DC1 T1
DC2 W1
DC3 M1
DC4 T2, W2
DC5 T2, M2
DC6 W2, M2
DC7 T1, W1, M1

Table 5.4: Negotiated Data Contracts

After the successful establishment of the data contracts, each data contract was monitored
for different monitoring periods. For example in Figure 5.4 a data contract consisting of
one Thing was monitored for a period of approx. 1 hour, time during which 425 messages
were successfully analysed. An example of a data contract monitoring consisting of two
Things can be seen in Figure 5.6.

One Thing was configured to broadcast messages at a lower frequency than the expected
one. The expected frequency was 10 seconds, but the actual configured frequency was 11
seconds. The data contract, which consisted of this Thing was monitored twice. The first
monitoring period lasted approx. 1 minute, time during which such an anomaly could
easily be overlooked. However, a second longer monitoring period, showed decrease of
the device’s availability (see Figure 5.5).

The Thing recommendation was evaluated based on the described main scenarios from
the Use Cases 6 and 7 (see Tables 3.6 and 3.7). As mentioned previously, in order to
avoid a conflict of interest between providers and consumers, the recommendations were
made for Things only. In all cases where recommendations could be made, the user was
redirected to a similar page as the one shown in Figure 5.1, however, consisting only of
one Thing.

The successful completion of all previously mentioned experiments demonstrates that in
IDAC different Things (i.e., temperature sensor and simulated devices with data from
[82] and [83]), which produce different types of data, can be combined together in data
contracts as shown in Figure 1.1, which illustrates the concept of this new framework.

Furthermore, the data contracts can be bilaterally and individually negotiated according
to the five stage negotiation systems model (see Chapter 2.2). After a successful data
contract establishment, the data stream can be successfully monitored, without an explicit
time period limitation, while the data contract subscription period is still running. Finally
we have shown that recommendations for Things can be made based on user ratings. As
a conclusion, it is safe to assume that this prototype can serve as a possible solution for
the problem described in Chapter 1.

60

5.2. Evaluation

Fi
gu

re
5.
1:

T
hi
ng

Se
le
ct
io
n
Sc

re
en

sh
ot

61

5. Experiments

Fi
gu

re
5.
2:

N
eg
ot
ia
tio

n
Sc

re
en

sh
ot

1

62

5.2. Evaluation

Fi
gu

re
5.
3:

N
eg
ot
ia
tio

n
Sc

re
en

sh
ot

2

63

5. Experiments

Fi
gu

re
5.
4:

M
on

ito
rin

g
Sc

re
en

sh
ot

1

64

5.2. Evaluation

Fi
gu

re
5.
5:

M
on

ito
rin

g
Sc

re
en

sh
ot

2

65

5. Experiments

Fi
gu

re
5.
6:

M
on

ito
rin

g
Sc

re
en

sh
ot

3

66

5.2. Evaluation

5.2.3 Analytical Evaluation

In the previous section we analysed the prototype from an end user perspective and
demonstrated its utility and the fact that it can serve as a possible solution from the
problem described in Chapter 1. In this section we will conduct experiments in order
to analyse the prototypes performance and stability, especially when running in limited
environments such as those mentioned in Chapter 5.2.1.

First we conducted performance tests in environment 1 using the tool Apache JMeter [84].
These performance tests are based on the described representative scenarios from Chapter
3.2. All tests consisted of different REST requests, which are sending different JSON
objects directly to the microservices and/or the ServiceHandler in order to simulate
different requests from different GUI servers. For most of the conducted tests, the
following properties were recorded automatically by the the tool Apache JMeter:

• Threads: The number of threads which was set manually for every performance
test. One thread can be seen similar to one user.

• Ramp-up period: The time in seconds, during which all threads were started. E.g.,
if the number of threads is 10 and the ramp-up period is 10, then 10 threads were
started during a period of 10 seconds.

• Loop count: The number of times the threads are restarted .

• Number of samples: The total number of requests which were sent (e.g., if a thread
group consists of two requests and one thread is started to execute the thread group
and the loop count is two, then the total number of sent samples is four).

• Average response time: The average time in milliseconds that was needed in order
to receive a response for a request.

• Minimum response time: The minimum time in milliseconds that was needed in
order to receive a response for a request.

• Maximum response time: The maximum time in milliseconds that was needed in
order to receive a response for a request.

• Standard deviation: The standard deviation from the average response time.

• Error: How many requests (in percent) were responded with an error (e.g., 500
internal server error).

• Throughput: The number of processed requests (usually measured per second or
minute).

67

5. Experiments

User Registration Experiments

These performance tests were aimed at the ServiceHandler to evaluate the person
registration REST service and were conducted in environment 1. When a person is
registered, the GUI server sends a JSON object to a REST service. This JSON object
contains all fields which were filled out in the GUI (e.g., for natural persons their first
name, last name, e-mail, address, etc.). Similar JSON objects, like those created by
the GUI server were constructed and used in the performance tests. However, in order
to simulate different persons, some fields contain a reference to a JMeter variable (i.e.,
${RAND_INT}), which generates random integers.

A thread group was created, which consisted of two requests simulating the consecutive
registration of two persons: one natural and one legal person. For the avoidance of
redundancies in the database, a search process was implemented in the registration
REST services. Consequently, before starting the tests, 10000 persons were added to the
database in order to simulate a real running system.

During the first test, 10 threads were started during a period of 10 seconds, (i.e., ramp-up
period) simulating the registration of the two persons 10 times which resulted in 200
person registrations. The average response time for the complete registration of a person
was 56 milliseconds, the minimum response time was 43 milliseconds and the maximum
113 milliseconds. The standard deviation was 11,97 and all requests have been successfully
processed without any errors. The recorded throughput (i.e., processed requests per
second) was 19,8.

During the next performance tests, the number of threads was increased and the system
behaviour was observed. All requests from all tests have been successfully processed
without any errors indicating a stable system behaviour, even when the CPU load reached
the maximum of 100%. The maximum CPU load was observed only for a few seconds.
The system performance increased as the number of threads increased, however in the
end it started decreasing as can be seen from the measured standard deviation values.
All measured and observed values indicate a stable system behaviour even when high
amounts of requests occur at the same time. The test results have been logged in Table
5.5.

Thing Registration Experiments

With the second set of performance tests (see Table 5.6), the Thing registration REST
service was evaluated in environment 1. In this case single a thread group, consisting of
a single request was created. This request accessed the Thing registration REST service
directly.

All requests have been successfully processed and no errors occurred. At the beginning 10
threads were started, which were processed very fast and resulted in a low CPU increase.
As the number of threads increased, the throughput also increased, the average response

68

5.2. Evaluation

Test Nr. 1 2 3 4 5
Threads 10 20 40 80 100
Ramp-Up Period (s) 10 10 10 10 10
Loop Count 10 10 10 10 10
Nr. of Samples 200 400 800 1600 2000
Average (ms) 56 60 73 128 258
Min (ms) 43 42 45 45 46
Max (ms) 113 121 218 623 3344
Standard Deviation 11,97 13,10 21,71 65,33 176,27
Error (%) 0,00 0,00 0,00 0,00 0,00
Throughput (s) 19,8 37,3 70,8 137,4 126,8
Max. Load CPU Core 1 (%) 1,3 2,0 46,0 84,0 98,3
Max. Load CPU Core 2 (%) 42,9 84,0 100,0 100,0 100,0
Load Memory (GB) 3,04 3,08 3,08 3,08 3,08

Table 5.5: Performance Test Results - Person Registration

time remained constant, the standard deviation fluctuated a little and the maximum
CPU load increased for very short periods of time.

Test Nr. 1 2 3 4 5
Threads 10 20 40 80 100
Ramp-Up Period (s) 10 10 10 10 10
Loop Count 10 10 10 10 10
Nr. of Samples 100 200 400 800 1000
Average (ms) 53 53 50 63 53
Min (ms) 38 35 37 36 34
Max (ms) 126 127 113 361 353
Standard Deviation 17,31 18,01 13,94 30,23 21,91
Error (%) 0,00 0,00 0,00 0,00 0,00
Throughput (s) 10,04 19,5 39,0 77,0 94,6
Max. Load CPU Core 1 (%) 0,7 0,7 1,3 3,2 2,6
Max. Load CPU Core 2 (%) 29,0 37,0 60,3 64,9 90,9
Load Memory (GB) 3,05 3,05 3,05 3,06 3,08

Table 5.6: Performance Test Results - Thing Registration

Data Contract Negotiation Experiments

The third set of performance tests was aimed at the data contract negotiation REST
service and was conducted in environment 1. In this case a thread group was created,
which consisted of five requests, simulating two data contract offers, two counter offers
and one acceptance. The first test was conducted using 10 threads and indicated a stable

69

5. Experiments

system behaviour and fast response times (on average 59 milliseconds for a request). The
test was repeated with 20, 40 and 80 threads and each time all requests were successfully
processed. At the beginning a decrease of the standard deviation was observed and
afterwards an increase, together with the minimum and maximum response time. The
maximum CPU load for both set of performance tests was observed for very short periods
of time.

The test results for both sets of performance tests (logged in Tables 5.6 and 5.7) have
shown a stable system behaviour even when a higher amount of requests occurs.

Test Nr. 1 2 3 4
Threads 10 20 40 80
Ramp-Up Period (s) 10 10 10 10
Loop Count 10 10 10 10
Nr. of Samples 500 1000 2000 4000
Average (ms) 59 52 62 106
Min (ms) 36 36 37 43
Max (ms) 223 122 393 815
Standard Deviation 25,06 11,80 19,99 57,30
Error (%) 0,00 0,00 0,00 0,00
Throughput (s) 41,7 82,5 156,8 269,1
Max. Load CPU Core 1 (%) 1,3 1,3 23,8 88,9
Max. Load CPU Core 2 (%) 69,3 97,6 100,0 100,0
Load Memory (GB) 3,05 3,05 3,05 3,05

Table 5.7: Performance Test Results - Data Contract Negotiation

5.2.4 Data Contract Monitoring Experiments

At the beginning the resource consumption during the previously conducted descriptive
analysis evaluation in environment 1 was observed. During the whole period of the
conducted experiment the average CPU load remained below 3% for both cores. The
maximum CPU load was 10% for core 1 and 100% for core 2. However, this load was
observed for short periods of time lasting approximately 1 second. All observed values
indicate a stable running system behaviour.

The second set of performance tests were conducted to evaluate the average computation
time for the QoD and QoS for 100 data contracts, each consisting of one Thing, for
100 respectively 1000 messages produced by the three types of Things mentioned in the
previous section. These performance tests run in environment 2 and were executed by
calling the computation component directly (i.e., no messages were read/sent from/to
any message broker).

The experiments properties and results are as follows (where t is the Thing type: (1)
temperature sensor, (2) device simulation with data from [82] and (3) device simulation

70

5.2. Evaluation

with data from [83]), n is the number of Things, m the number of produced messages
per Thing, f the broadcasting frequency in ms and tavg is the average computation time
in ms of the QoD and QoS metrics for one single message):

• t = 1, n = 100, f = 100ms, m = 100, tavg = 1.46ms

• t = 1, n = 100, f = 100ms, m = 1000, tavg = 1.07ms

• t = 2, n = 100, f = 100ms, m = 100, tavg = 1.38ms

• t = 2, n = 100, f = 100ms, m = 1000, tavg = 1.01ms

• t = 3, n = 100, f = 100ms, m = 100, tavg = 1.77ms

• t = 3, n = 100, f = 100ms, m = 1000, tavg = 1.20ms

This results demonstrate that the computation of QoD and QoS metrics is not a time
consuming task.

To further evaluate the performance of the monitoring component and the caused
monitoring overhead in addition to simple message redistribution we conducted 12 further
performance tests in environment 2 simulating real data transmissions and data contracts.
For each of the previously mentioned Thing types 4 tests were conducted. In each of these
4 cases either 10 or 20 Things broadcasted data to either one or two message queues. In
all cases each Thing was bound to a different data contract and for all Things a minimum
number of 1000 messages were consumed. The results are shown in Figure 5.7 (where R
stands for the time in milliseconds needed to read a message and redistribute it and M
stands for the time used for the computation of the quality): the monitoring overhead
ranges from approx. 32% to approx. 38%.

10
20
30
40
50
60

Tim
e in

 ms

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
M 4,78 13,5 4,26 12,1 4,82 11,9 3,75 11,9 4,24 10,1 3,52 10,9
R 13,9 41,6 12,4 37,2 13,3 35,1 10 36,5 11,2 31,5 9,54 33,3

0
10

Figure 5.7: Performance Test Results - Monitoring Overhead

71

5. Experiments

The fact that all messages are first redistributed and afterwards, if enabled, the quality
is computed, and the fact that all operations are in the milliseconds range (all below 60)
proves that data stream monitoring is negligible when dealing with no real-time data
transmissions.

5.2.5 Data Contract Recommendation Experiments

Before the execution of the data contract recommendation performance tests, 10000
persons and 10000 Things were inserted into the database. For each inserted Thing a
random number (uniformly distributed integer value) from 1 to 1000 was generated. This
generated number represented the number of ratings of a Thing (i.e., how many people
submitted a rating for this Thing). For each of these ratings, a random user was picked
and a random rating was generated and added to the Thing. This way, different Things
with different ratings by different users were simulated. Each submitted recommendation
request from each performance test was executed for one of the existent users (randomly
picked from the existing 10000 users).

All performance tests were conducted in environment 2. In all cases, all requests were
processed successfully (see Table 5.8 and Figure 5.8).

Test Nr. 1 2 3 4
Threads 10 20 40 80
Ramp-Up Period (s) 10 10 10 10
Loop Count 10 10 10 10
Nr. of Samples 100 200 400 800
Average (ms) 91 102 661 1431
Min (ms) 79 80 80 86
Max (ms) 163 169 4124 18874
Standard Deviation 14 17 492 3104
Error (%) 0,00 0,00 0,00 0,00
Throughput (min) 10,01 19,20 24,20 25,80

Table 5.8: Performance Test Results - Thing Recommendation

During each performance test the average CPU load was observed and remained below
20%. Furthermore in all cases a high discrepancy was observed between the minimum
and the maximum response time of the requests. As the number of threads increased, the
throughput remained constant (around 1 request per second), but the average response
time increased, together with the standard deviation.

One possible explanation for the observations is because of the computation of the
neighbourhood: in some cases a user has multiple neighbours and only those which are
closest to him/her are taken into consideration. In order to do so, the distance to all
neighbours has to be calculated (for more details see Chapter 2). One possible way to deal

72

5.2. Evaluation

400
600
800

1000
1200
1400
1600

0
200
400

1 2 3 4
Samples Average response time (ms)

Figure 5.8: Performance Test Results - Thing Recommendation

with this high performance consuming task would be to pre-calculate the neighbourhood
of a user, or perhaps even the whole recommendation and to save it into the database.

The results of the conducted experiments from this section (i.e., analytical evaluation)
demonstrate the stability and performance of the implemented prototype, even when
running in limited environments. Furthermore, they demonstrate that a large number of
concurrent requests are supported and can be processed error free.

73

CHAPTER 6
Summary

In this thesis we introduced IDAC – a new extensible contract-aware IoT data marketplace
framework, which was build as a scalable distributed system and which supports bilateral
negotiations and establishment of data contracts by taking into account, amongst others,
the following possible data contractual clauses: data rights (e.g., derivation, collection,
reproduction, commercial usage), quality of data (e.g., completeness, conformity, etc.),
quality of service (e.g., availability), pricing models, purchasing policy (e.g., contract
termination) and control and relationship (e.g., warranty, jurisdiction).

One possible solution to monitor the data flow, is by measuring the quality of data and
the quality of service. QoD measurements can be obtained by validating a message
against the meta-model of a Thing and QoS measurements can be computed by taking
into account the expected broadcasting frequency of a device. The evaluation results
show that the monitoring of the data flow on an individual data contract level is not a
time consuming task, even when running within limited environments.

Furthermore we have shown that custom components containing hybrid recommendation
techniques can be plugged in and used to recommend the conclusion of data contracts
for data produced by Things.

The obtained results demonstrate the effectiveness of the introduced framework for
negotiating, monitoring and recommending data contracts in IoT dataspaces.

A future research direction in this area is the development of custom components and their
integration with IoT data markets and the automated enforcement of data contractual
clauses – e.g., the automated configuration of Things in accordance to data contracts
(for example to automatically reconfigure the broadcasting frequency of a device, or to
automatically modify the data structure of the produced data).

75

Bibliography

[1] G. E. Kersten, Negotiations and E-negotiations: People, Models, and Systems, 2010.

[2] G. E. Kersten and H. Lai, “Negotiation support and e-negotiation systems: An
overview,” Group Decision and Negotiation, vol. 16, no. 6, pp. 553–586, oct 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10726-007-9095-5

[3] P. Braun, J. Brzostowski, G. Kersten, J. B. Kim, R. Kowalczyk, S. Strecker, and
R. Vahidov, “e-negotiation systems and software agents: Methods, models, and
applications,” in Intelligent Decision-making Support Systems. Springer London,
2006, pp. 271–300. [Online]. Available: http://dx.doi.org/10.1007/1-84628-231-4_15

[4] I. T. Union. “Internet of things global standards initiative.” 2016. [Online]. Available:
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx. [Accessed: Feb. 10, 2016].

[5] Gartner. “Gartner says 6.4 billion connected "things" will be in use in 2016.” Nov.
2015. [Online]. Available: http://www.gartner.com/newsroom/id/3165317. [Accessed:
Feb. 10, 2016].

[6] Cisco. “Connections Counter: The Internet of Everything in Motion.” Jul. 2016.
[Online]. Available: http://newsroom.cisco.com/feature-content?articleId=1208342.
[Accessed: Mar. 21, 2016].

[7] V. Turner, D. Reinsel, J. F. Gantz, and S. Minton. “The Digital Universe of
Opportunities: Rich Data and the Increasing Value of the Internet of Things.” 2014.
[Online]. Available: http://www.emc.com/leadership/digital-universe/2014iview/
executive-summary.htm. [Accessed: Mar. 24, 2016].

[8] Tilepay. “tilepay.” 2016. [Online]. Available: http://www.tilepay.org. [Accessed: Feb.
16, 2016].

[9] T.-D. Cao, T.-V. Pham, Q.-H. Vu, H.-L. Truong, D.-H. Le, and S. Dustdar, “MARSA:
A Marketplace for Realtime Human-Sensing Data,” 2016, transactions on Internet
Technology, 2016. Accepted.

[10] BDEX. “Bdex, the marketplace for data.” 2016. [Online]. Available: http://www.
bigdataexchange.com. [Accessed: Mar. 21, 2016].

77

http://dx.doi.org/10.1007/s10726-007-9095-5
http://dx.doi.org/10.1007/1-84628-231-4_15
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.gartner.com/newsroom/id/3165317
http://newsroom.cisco.com/feature-content?articleId=1208342
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.tilepay.org
http://www.bigdataexchange.com
http://www.bigdataexchange.com

[11] Microsoft. “Microsoft Azure Marketplace.” 2016. [Online]. Available: https://
datamarket.azure.com/browse/data. [Accessed: Mar. 22, 2016].

[12] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces: A new
abstraction for information management,” SIGMOD Rec., vol. 34, no. 4, pp. 27–33,
Dec. 2005. [Online]. Available: http://doi.acm.org/10.1145/1107499.1107502

[13] F. B. Balint and H.-L. Truong, “On Supporting Contract-aware IoT Dataspace
Services,” 2016, submitted.

[14] The Member States of the European Union. “Consolidated version of the Treaty on
European Union.” 2012. [Online]. Available: http://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A12012M%2FTXT. [Accessed: Aug. 15, 2016].

[15] ——. “Charter of Fundamental Rights of the European Union.” 2012. [Online].
Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012P/
TXT. [Accessed: Aug. 16, 2016].

[16] European Parliament, Council of the European Union. “Directive (EU)
2016/680 of the European Parliament and of the Council.” 2016. [Online].
Available: http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32016L0680. [Accessed: Aug. 9, 2016].

[17] European Commission. “Protection of personal data.” 2016. [Online]. Available:
http://ec.europa.eu/justice/data-protection/. [Accessed: Aug. 11, 2016].

[18] European Parliament, Council of the European Union. “Directive 2000/31/EC
of the European Parliament and of the Council.” 2016. [Online]. Available: http:
//eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000L0031. [Accessed:
Aug. 9, 2016].

[19] Council of the European Union. “Proposal for a directive of the European
Parliament and of the Council on certain aspects concerning contracts for the supply
of digital content.” 2015. Procedure 2015/0287/COD. [Online]. Available: http:
//data.consilium.europa.eu/doc/document/ST-15251-2015-INIT/en/pdf. [Accessed:
Aug. 15, 2016].

[20] European Parliament, Council of the European Union. “Regulation (EC) No 593/2008
of the European Parliament and of the Council of 17 June 2008 on the law applicable
to contractual obligations (Rome I).” 2008. [Online]. Available: http://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX%3A12012M%2FTXT. [Accessed: Aug. 16,
2016].

[21] ——. “Regulation (EU) No 1215/2012 of the European Parliament and of the
Council of 12 December 2012 on jurisdiction and the recognition and enforcement
of judgments in civil and commercial matters.” 2012. [Online]. Available: http:
//eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32012R1215. [Accessed:
Aug. 16, 2016].

78

https://datamarket.azure.com/browse/data
https://datamarket.azure.com/browse/data
http://doi.acm.org/10.1145/1107499.1107502
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A12012M%2FTXT
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A12012M%2FTXT
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012P/TXT
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012P/TXT
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L0680
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L0680
http://ec.europa.eu/justice/data-protection/
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000L0031
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000L0031
http://data.consilium.europa.eu/doc/document/ST-15251-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-15251-2015-INIT/en/pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A12012M%2FTXT
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A12012M%2FTXT
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32012R1215
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32012R1215

[22] “Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für Datenschutzgesetz
2000.” 2016. [Online]. Available: https://www.ris.bka.gv.at/GeltendeFassung.wxe?
Abfrage=Bundesnormen&Gesetzesnummer=10001597. [Accessed: Aug. 15, 2016].

[23] “Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für E-Commerce-Gesetz.” 2016.
[Online]. Available: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=
Bundesnormen&Gesetzesnummer=20001703. [Accessed: Aug. 15, 2016].

[24] “Urheberrechtsgesetz (UrhG).” 2016. [Online]. Available: http://www.jusline.at/
Urheberrechtsgesetz_(UrhG).html. [Accessed: Aug. 15, 2016].

[25] “Allgemeines Bürgerliches Gesetzbuch (ABGB).” 2016. [Online]. Available: https://
www.jusline.at/Allgemeines_Buergerliches_Gesetzbuch_(ABGB).html. [Accessed:
Aug. 15, 2016].

[26] M. Schoop, J. Köller, T. List, and C. Quix, “A three-phase model of
electronic marketplaces for software components in chemical engineering,” in
Towards the E-Society. Springer US, 2001, pp. 506–522. [Online]. Available:
http://dx.doi.org/10.1007/0-306-47009-8_37

[27] L. Thompson, The Mind and Heart of the Negotiator, 2nd ed. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2000.

[28] D. K. W. Chiu, S. C. Cheung, P. C. K. Hung, S. Y. Y. Chiu, and A. K. K. Chung,
“Developing e-negotiation support with a meta-modeling approach in a web services
environment,” Decis. Support Syst., vol. 40, no. 1, pp. 51–69, Jul. 2005. [Online].
Available: http://dx.doi.org/10.1016/j.dss.2004.04.004

[29] H. Raiffa, The Art and Science of Negotiation. Belknap Press, 1985. [Online].
Available: http://www.amazon.com/Art-Science-Negotiation-Howard-Raiffa/
dp/067404813X%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D067404813X

[30] G. E. Kersten, S. E. Strecker, and K. P. Law, “Protocols for electronic negotiation
systems: Theoretical foundations and design issues,” in E-Commerce and Web
Technologies. Springer Berlin Heidelberg, 2004, pp. 106–115. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30077-9_11

[31] S. Strecker, G. Kersten, J.-B. Kim, and K. P. Law, “Electronic negotiation systems:
The invite prototype,” in Multikonferenz Wirtschaftsinformatik 2006, Gesellschaft
für Informatik e.V. Berlin: GITO, 20.-22. Februar 2006, pp. 315–331.

[32] M. Schoop, A. Jertila, and T. List, “Negoisst: a negotiation support system for
electronic business-to-business negotiations in e-commerce,” Data & Knowledge
Engineering, vol. 47, no. 3, pp. 371–401, dec 2003. [Online]. Available:
http://dx.doi.org/10.1016/S0169-023X(03)00065-X

79

https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10001597
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10001597
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001703
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001703
http://www.jusline.at/Urheberrechtsgesetz_(UrhG).html
http://www.jusline.at/Urheberrechtsgesetz_(UrhG).html
https://www.jusline.at/Allgemeines_Buergerliches_Gesetzbuch_(ABGB).html
https://www.jusline.at/Allgemeines_Buergerliches_Gesetzbuch_(ABGB).html
http://dx.doi.org/10.1007/0-306-47009-8_37
http://dx.doi.org/10.1016/j.dss.2004.04.004
http://www.amazon.com/Art-Science-Negotiation-Howard-Raiffa/dp/067404813X%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D067404813X
http://www.amazon.com/Art-Science-Negotiation-Howard-Raiffa/dp/067404813X%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D067404813X
http://www.amazon.com/Art-Science-Negotiation-Howard-Raiffa/dp/067404813X%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D067404813X
http://www.amazon.com/Art-Science-Negotiation-Howard-Raiffa/dp/067404813X%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D067404813X
http://dx.doi.org/10.1007/978-3-540-30077-9_11
http://dx.doi.org/10.1016/S0169-023X(03)00065-X

[33] O. Marjanovic and Z. Milosevic, “Towards formal modeling of e-contracts,” in
Enterprise Distributed Object Computing Conference, 2001. EDOC ’01. Proceedings.
Fifth IEEE International, 2001, pp. 59–68.

[34] R. Y. K. Lau, “Towards a web services and intelligent agents-based negotiation
system for b2b ecommerce,” Electron. Commer. Rec. Appl., vol. 6, no. 3, pp. 260–273,
Oct. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.elerap.2006.06.007

[35] J. B. Kim and A. Segev, “A web services-enabled marketplace architecture for
negotiation process management,” Decis. Support Syst., vol. 40, no. 1, pp. 71–87,
Jul. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.dss.2004.04.005

[36] M. Benyoucef and R. K. Keller, “A conceptual architecture for a combined negotiation
support system,” in Database and Expert Systems Applications, 2000. Proceedings.
11th International Workshop on, 2000, pp. 1015–1019.

[37] M. Benyoucef and S. Rinderle, “Modeling e-negotiation processes for a service
oriented architecture,” Group Decision and Negotiation, vol. 15, no. 5, pp. 449–467,
aug 2006. [Online]. Available: http://dx.doi.org/10.1007/s10726-006-9038-6

[38] P. R. Krishna and K. Karlapalem, “Electronic contracts,” IEEE Internet Computing,
vol. 12, no. 4, pp. 60–68, July 2008.

[39] H.-L. Truong, M. Comerio, F. D. Paoli, G. R. Gangadharan, and
S. Dustdar, “Data Contracts for Cloud-based Data Marketplaces,” Int. J.
Comput. Sci. Eng., vol. 7, no. 4, pp. 280–295, Oct. 2012. [Online]. Available:
http://dx.doi.org/10.1504/IJCSE.2012.049749

[40] H.-L. Truong, G. Gangadharan, M. Comerio, S. Dustdar, and F. De Paoli, “On
Analyzing and Developing Data Contracts in Cloud-Based Data Marketplaces,” in
Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific, Dec 2011, pp.
174–181.

[41] P. Kumari, A. Pretschner, J. Peschla, and J.-M. Kuhn, “Distributed data usage
control for web applications: A social network implementation,” in Proceedings
of the First ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’11. New York, NY, USA: ACM, 2011, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/1943513.1943526

[42] U. Congress. “Sarbanes-oxley act of 2002.” [Online]. Available: https://www.gpo.
gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm. [Accessed: Nov. 1,
2016].

[43] S. Bradshaw, C. Millard, and I. Walden, “Contracts for clouds: comparison and
analysis of the terms and conditions of cloud computing services,” International
Journal of Law and Information Technology, vol. 19, no. 3, pp. 187–223, 2011.

80

http://dx.doi.org/10.1016/j.elerap.2006.06.007
http://dx.doi.org/10.1016/j.dss.2004.04.005
http://dx.doi.org/10.1007/s10726-006-9038-6
http://dx.doi.org/10.1504/IJCSE.2012.049749
http://doi.acm.org/10.1145/1943513.1943526
https://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
https://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm

[44] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “A survey of smart data
pricing: Past proposals, current plans, and future trends,” ACM Comput.
Surv., vol. 46, no. 2, pp. 15:1–15:37, Nov. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2543581.2543582

[45] A. Goodchild, C. Herring, and Z. Milosevic, “Business contracts for b2b.” ISDO,
vol. 30, 2000.

[46] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies and
Techniques (Data-Centric Systems and Applications). Springer, 2006.

[47] W. W. Eckerson. “Data quality and the bottom line.” [Online]. Available: http:
//download.101com.com/pub/tdwi/Files/DQReport.pdf. [Accessed: Jul. 22, 2016].

[48] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality means to
data consumers,” Journal of Management Information Systems, vol. 12, no. 4, pp.
5–33, 1996. [Online]. Available: http://dx.doi.org/10.1080/07421222.1996.11518099

[49] L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,”
Commun. ACM, vol. 45, no. 4, pp. 211–218, Apr. 2002. [Online]. Available:
http://doi.acm.org/10.1145/505248.506010

[50] C. Fürber and M. Hepp, “Towards a vocabulary for data quality management in
semantic web architectures,” in Proceedings of the 1st International Workshop on
Linked Web Data Management, ser. LWDM ’11. New York, NY, USA: ACM, 2011,
pp. 1–8. [Online]. Available: http://doi.acm.org/10.1145/1966901.1966903

[51] K.-U. Sattler, Data Quality Dimensions. Boston, MA: Springer US, 2009, pp.
612–615. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-39940-9_108

[52] S. Systems. “Data quality glossary – conformity.” May 2011. [Online]. Available:
http://www.dqglossary.com/conformity.html. [Accessed: Jul. 24, 2016].

[53] C. Tărât,ă. “Data quality dimensions – from accuracy to uniqueness.”
Mar. 2015. [Online]. Available: http://www.performancemagazine.org/
data-quality-dimensions-from-accuracy-to-uniqueness/. [Accessed: Jul. 24,
2016].

[54] V. S. Council. “Spatial information data quality guidelines.” Sep. 2009. [Online].
Available: http://victorianspatialcouncil.org/cms/library/attachments/SIMF%
20Data%20Quality%20Guidelines%20Edition%202_September%202009.pdf.
[Accessed: Jul. 24, 2016].

[55] O. Adinolfi, R. Cristaldi, L. Coppolino, and L. Romano, “Qos-monaas: A portable
architecture for qos monitoring in the cloud,” in Signal Image Technology and
Internet Based Systems (SITIS), 2012 Eighth International Conference on, Nov
2012, pp. 527–532.

81

http://doi.acm.org/10.1145/2543581.2543582
http://download.101com.com/pub/tdwi/Files/DQReport.pdf
http://download.101com.com/pub/tdwi/Files/DQReport.pdf
http://dx.doi.org/10.1080/07421222.1996.11518099
http://doi.acm.org/10.1145/505248.506010
http://doi.acm.org/10.1145/1966901.1966903
http://dx.doi.org/10.1007/978-0-387-39940-9_108
http://www.dqglossary.com/conformity.html
http://www.performancemagazine.org/data-quality-dimensions-from-accuracy-to-uniqueness/
http://www.performancemagazine.org/data-quality-dimensions-from-accuracy-to-uniqueness/
http://victorianspatialcouncil.org/cms/library/attachments/SIMF%20Data%20Quality%20Guidelines%20Edition%202_September%202009.pdf
http://victorianspatialcouncil.org/cms/library/attachments/SIMF%20Data%20Quality%20Guidelines%20Edition%202_September%202009.pdf

[56] R. Duan, X. Chen, and T. Xing, “A QoS Architecture for IOT,” in Internet of
Things (iThings/CPSCom), 2011 International Conference on and 4th International
Conference on Cyber, Physical and Social Computing, Oct 2011, pp. 717–720.

[57] D. A. Menasce, “QoS issues in Web services,” IEEE Internet Computing, vol. 6,
no. 6, pp. 72–75, Nov 2002.

[58] Microsoft. “What Is QoS.” 2003. [Online]. Available: https://technet.microsoft.com/
en-us/library/cc757120(v=ws.10).aspx. [Accessed: Jul. 21, 2016].

[59] Cisco. “QoS Frequently Asked Questions.” 2009. [Online]. Available:
http://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/
22833-qos-faq.html. [Accessed: Jul. 21, 2016].

[60] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds.,
Recommender Systems Handbook. Springer, 2010. [Online]. Available:
http://www.amazon.com/Recommender-Systems-Handbook-Francesco-Ricci/
dp/0387858199%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%
3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D0387858199

[61] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering
recommender systems,” in The adaptive web. Springer, 2007, pp. 291–324.

[62] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive
Algorithms for Collaborative Filtering,” in Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, ser. UAI’98. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1998, pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[63] C. Desrosiers and G. Karypis, “A comprehensive survey of neighborhood-based
recommendation methods,” in Recommender systems handbook. Springer, 2011, pp.
107–144.

[64] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, “Data mining methods for
recommender systems,” in Recommender Systems Handbook. Springer, 2011, pp.
39–71.

[65] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens:
An Open Architecture for Collaborative Filtering of Netnews,” in Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work, ser.
CSCW ’94. New York, NY, USA: ACM, 1994, pp. 175–186. [Online]. Available:
http://doi.acm.org/10.1145/192844.192905

[66] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An Algorithmic
Framework for Performing Collaborative Filtering,” in Proceedings of the 22Nd
Annual International ACM SIGIR Conference on Research and Development in

82

https://technet.microsoft.com/en-us/library/cc757120(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc757120(v=ws.10).aspx
http://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/22833-qos-faq.html
http://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/22833-qos-faq.html
http://www.amazon.com/Recommender-Systems-Handbook-Francesco-Ricci/dp/0387858199%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387858199
http://www.amazon.com/Recommender-Systems-Handbook-Francesco-Ricci/dp/0387858199%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387858199
http://www.amazon.com/Recommender-Systems-Handbook-Francesco-Ricci/dp/0387858199%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387858199
http://www.amazon.com/Recommender-Systems-Handbook-Francesco-Ricci/dp/0387858199%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387858199
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://doi.acm.org/10.1145/192844.192905

Information Retrieval, ser. SIGIR ’99. New York, NY, USA: ACM, 1999, pp.
230–237. [Online]. Available: http://doi.acm.org/10.1145/312624.312682

[67] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based Collaborative
Filtering Recommendation Algorithms,” in Proceedings of the 10th International
Conference on World Wide Web, ser. WWW ’01. New York, NY, USA: ACM,
2001, pp. 285–295. [Online]. Available: http://doi.acm.org/10.1145/371920.372071

[68] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recommender systems:
State of the art and trends,” in Recommender systems handbook. Springer, 2011,
pp. 73–105.

[69] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The
adaptive web. Springer, 2007, pp. 325–341.

[70] K. Akpınar, K. A. Hua, and K. Li, “ThingStore: A Platform for Internet-of-things
Application Development and Deployment,” in Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems, ser. DEBS ’15. New
York, NY, USA: Association for Computing Machinery (ACM), 2015, pp. 162–173.
[Online]. Available: http://dx.doi.org/10.1145/2675743.2771833

[71] Amazon Web Services. “AWS Public Data Sets.” 2016. [Online]. Available: https:
//aws.amazon.com/datasets/. [Accessed: Mar. 22, 2016].

[72] MathWorks, Inc. “Thingspeak, The open data platform for the Internet of Things.”
2016. [Online]. Available: https://thingspeak.com/. [Accessed: Mar. 21, 2016].

[73] Array of Things. “Array of Things.” 2016. [Online]. Available: https://arrayofthings.
github.io/. [Accessed: Sep. 28, 2016].

[74] O. Boris, J. Jan, S. Jochen, A. Sören, M. Nadja, W. Sven, and C. Jan. “Industrial
Data Space.” Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
2016. [Online]. Available: www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/
industrial-data-space/Industrial-Data-Space_whitepaper.pdf. [Accessed: Sep. 28,
2016].

[75] D. Le, N. C. Narendra, and H. L. Truong, HINC - Harmonizing Diverse Resource
Information across IoT, Network Functions, and Clouds, 2016.

[76] MongoDB Inc. “Introduction to MongoDB.” 2016. [Online]. Available: https://docs.
mongodb.com/manual/introduction/. [Accessed: Sep. 28, 2016].

[77] Apache Software Foundation. “Apache ActiveMQ.” 2016. [Online]. Available: http:
//activemq.apache.org/. [Accessed: Nov. 13, 2016].

[78] ——. “Apache Camel.” 2016. [Online]. Available: https://camel.apache.org/.
[Accessed: Nov. 13, 2016].

83

http://doi.acm.org/10.1145/312624.312682
http://doi.acm.org/10.1145/371920.372071
http://dx.doi.org/10.1145/2675743.2771833
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
https://thingspeak.com/
https://arrayofthings.github.io/
https://arrayofthings.github.io/
www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-Data-Space_whitepaper.pdf
www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-Data-Space_whitepaper.pdf
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
http://activemq.apache.org/
http://activemq.apache.org/
https://camel.apache.org/

[79] PrimeTek Informatics. “PrimeFaces.” 2016. [Online]. Available: http://primefaces.
org/. [Accessed: Nov. 13, 2016].

[80] Apache Software Foundation. “Apache Tomcat.” 2016. [Online]. Available: http:
//tomcat.apache.org/. [Accessed: Nov. 13, 2016].

[81] ——. “Apache Maven.” 2016. [Online]. Available: http://maven.apache.org/.
[Accessed: Nov. 30, 2016].

[82] City of Austin open data. “Water Quality Sampling Data.” City of
Austin. 2016. [Online]. Available: https://data.austintexas.gov/Environmental/
Water-Quality-Sampling-Data/5tye-7ray. [Accessed: Oct. 14, 2016].

[83] OpenSignal. “OpenSignal.” OpenSignal. 2016. [Online]. Available: https://opensignal.
com/. [Accessed: Oct. 14, 2016].

[84] Apache Software Foundation. “Apache JMeter.” 2016. [Online]. Available: https:
//jmeter.apache.org/. [Accessed: Nov. 13, 2016].

84

http://primefaces.org/
http://primefaces.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://maven.apache.org/
https://data.austintexas.gov/Environmental/Water-Quality-Sampling-Data/5tye-7ray
https://data.austintexas.gov/Environmental/Water-Quality-Sampling-Data/5tye-7ray
https://opensignal.com/
https://opensignal.com/
https://jmeter.apache.org/
https://jmeter.apache.org/

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Introduction
	Problem Statement
	Methodological Approach
	Contribution
	Thesis Structure

	Background and State of the Art
	Legal Perspective of Data Contracts
	E-negotation of Data Contracts
	IoT Data Contracts
	Monitoring Data Contracts
	Recommending Data Contracts
	State of the Art

	Requirements Analysis
	Brief Use Case Description
	Functional Requirements
	Non-Functional Requirements

	Contract-aware Framework
	Architecture
	Data Contract Management
	Data Contract Monitoring
	Recommending Management

	Experiments
	Prototype
	Evaluation

	Summary
	Bibliography

