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Kurzfassung

Das Ziel von Kerndatenevaluationen ist die zuverlässige Bestimmung von Wir-
kungsquerschnitten und verwandten Observablen der Atomkerne. Die Bestimmung
dieser Observablen geschieht mittels einer Evaluationsmethode, in der die Infor-
mation aus Experimenten mit den Ergebnissen aus Modellrechnungen kombiniert
wird. Die auf diese Weise erhaltenen Schätzwerte mitsamt den zugehörigen Unsi-
cherheiten und Korrelationen werden zu Datensätzen zusammengefasst, welche für
die Entwicklung von zukünftigen nuklearen Einrichtungen, wie Fusionsreaktoren
zur Energiegewinnung und Beschleuniger getriebenen Systeme zur Verbrennung
nuklearen Mülls, benötigt werden. Die Effizienz und Sicherheit solcher Einrichtun-
gen wird in hohem Maße von der Qualität der Datensätze und folglich auch von
der Zuverlässigkeit der eingesetzten Evaluationsmethoden abhängen.

In dieser Arbeit wurde ein Großteil der existierenden Evaluationsmethoden
in zwei Szenarien studiert. Dabei hat sich herausgestellt, dass in nahezu allen
Methoden eine wesentliche Annahme fehlt. Üblicherweise basieren Nuklearmodelle
auf Näherungen, weshalb die Vorhersagen dieser Modelle schon alleine aus diesem
Grund von zuverlässigen experimentellen Daten abweichen können. Dennoch bleibt
diese Unzulänglichkeit der Modelle in den Evaluationsmethoden unberücksichtigt.
Dieser Umstand kann, wie in dieser Arbeit demonstriert wurde, zu evaluierten
Schätzwerten und Unsicherheiten führen, die nicht mit den experimentellen Daten
verträglich sind.

Deshalb wurde im Rahmen dieser Arbeit eine Erweiterung Bayesscher Evalua-
tionsmethoden vorgeschlagen um einen eventuellen Modellfehler zu berücksichti-
gen. Diese Erweiterung basiert auf der Modellierung des Modellfehlers durch einen
Gauß-Prozess. In dieser neuen Formulierung werden die Summenregeln zwischen
Reaktionskanälen erhalten und weiters ist eine explizite Abschätzung des Modell-
fehlers möglich. Die letztgenannten Besonderheiten der neuen Formulierung sind
bisher in keiner anderen Evaluationsmethode vorhanden.

Außerdem wurden zwei Verbesserungen für existierende Evaluationsmethoden
erarbeitet. Die eine Verbesserung betrifft Methoden, die Ergebnisse mittels Monte-
Carlo-Simulation erzielen. Es wurde ein Metropolis-Hastings-Algorithmus mit ei-
ner speziellen Vorschlagsverteilung entwickelt, der sich in den studierten Szenarien
als effizienter als bestehende Monte-Carlo-Simulations-Techniken erwiesen hat.

Die zweite Verbesserung betrifft Evaluationsmethoden, die das Nuklearmodell
auf bestimmte Weise vereinfachen. Bisher war die Anwendung dieser Methoden
auf zehntausende Observablen beschränkt. Eine neue Formulierung ermöglicht die
Auswertung von zehn Millionen und mehr Observablen und kann problemlos um
die Berücksichtigung von Modellfehlern erweitert werden.
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Der neue Ansatz ist bestens für die Implementierung als Datenbankanwendung
geeignet. Die Realisierung einer solchen Anwendung und ein öffentlicher Zugang
versprechen die beschleunigte Erzeugung von zuverlässigen Datensätzen. Weiters
erlaubt die um Modellfehler erweiterte Formulierung die automatische Erkennung
von Unzulänglichkeiten des Modells und der experimentellen Daten. Folglich wür-
de auch die Entwicklung von Nuklearmodellen mit hoher Vorhersagekraft von einer
solchen Datenbankanwendung profitieren.
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Abstract

The aim of nuclear data evaluation is the reliable determination of cross sections
and related quantities of the atomic nuclei. To this end, evaluation methods are
applied which combine the information of experiments with the results of model
calculations. The evaluated observables with their associated uncertainties and
correlations are assembled into data sets, which are required for the development
of novel nuclear facilities, such as fusion reactors for energy supply, and accelerator
driven systems for nuclear waste incineration. The efficiency and safety of such
future facilities is dependent on the quality of these data sets and thus also on the
reliability of the applied evaluation methods.

This work investigated the performance of the majority of available evaluation
methods in two scenarios. The study indicated the importance of an essential
component in these methods, which is the frequently ignored deficiency of nuclear
models. Usually, nuclear models are based on approximations and thus their
predictions may deviate from reliable experimental data. As demonstrated in this
thesis, the neglect of this possibility in evaluation methods can lead to estimates
of observables which are inconsistent with experimental data.

Due to this finding, an extension of Bayesian evaluation methods is proposed to
take into account the deficiency of the nuclear models. The deficiency is modeled as
a random function in terms of a Gaussian process and combined with the model
prediction. This novel formulation conserves sum rules and allows to explicitly
estimate the magnitude of model deficiency. Both features are missing in available
evaluation methods so far.

Furthermore, two improvements of existing methods have been developed in
the course of this thesis. The first improvement concerns methods relying on
Monte Carlo sampling. A Metropolis-Hastings scheme with a specific proposal
distribution is suggested, which proved to be more efficient in the studied scenarios
than the Monte Carlo sampling schemes of available evaluation methods.

The second improvement concerns Bayesian evaluation methods based on a
certain simplification of the nuclear model. These methods were restricted to
the consistent evaluation of tens of thousands of observables. In this thesis, a
new evaluation scheme has been developed, which is mathematically equivalent
to existing methods, but allows the consistent evaluation of dozens of millions of
observables.
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The new scheme is suited for the implementation as a database application.
The realization of such an application with public access can help to accelerate
the production of reliable nuclear data sets. Furthermore, in combination with the
novel treatment of model deficiencies, problems of the model and the experimental
data can be tracked down without user interaction. This feature can foster the
development of nuclear models with high predictive power.
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Introduction

The aim of nuclear data evaluation is the generation of reliable and consistent
estimates of reaction cross sections and related properties of the atomic nuclei.
These estimates represent our best knowledge of these quantities (cross sections,
decay rates, etc.) and are provided together with associated covariance matrices
in the form of so-called evaluated nuclear data files to the user community. These
evaluated data files are an important prerequisite for a wide range of applications
such as dosimetry, medical diagnosis and therapy, and environmental research.
Furthermore, they are the basis for the development of novel nuclear technology,
such as nuclear fusion and nuclear waste incineration. The availability of uncer-
tainty information in form of covariance matrices in recently established nuclear
data files allows for extended simulations of novel facilities in order to optimize
important design parameters with regard to efficiency and safety.
Originally, nuclear data files have been set up for neutron induced reactions

in order to provide a basis for the design and construction of nuclear reactors.
Nowadays, there is a more extended demand from the user community and eval-
uated data files for γ-, proton-, and deuteron-induced reactions have been set up.
These data files are based on two sources of information: experimental data and
results of model calculations. Latter are important to provide reliable predictions
of observables in energy regions where experimental data are scarce or not acces-
sible. For example, experimental information on neutron induced cross section
data is limited for incident energies beyond 20 MeV, but required for the develop-
ment of novel applications. Unfortunately, the nuclear many-body problem is of
high complexity and hampers calculations based on first principles. Hence nuclear
models have to be used which describe essential facets of the problem, but rely on
parameters whose values are to some extent uncertain. Consequently, evaluation
methods are applied to combine the information of the experimental data with the

1
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results of model calculations to generate estimates of cross sections and associated
covariance matrices at all relevant incident energies.
Several evaluation methods exists such as the FBET (Neudecker, 2012), BFMC

(Bauge, Hilaire, and Dossantos-Uzarralde, 2007), BMC (Koning, 2015), GANDR
(Muir et al., 2007), KALMAN (Kawano and Shibata, 1997), UMC-G (Smith,
2004), and UMC-B (Capote, Smith, et al., 2012). The majority of these methods
has a clear interpretation within Bayesian statistics. Bayesian statistics is a well-
founded framework which dates back to the work of Bayes (1763) and allows a
consistent combination of prior knowledge with observations. In Bayesian statis-
tics knowledge (or uncertainty for that matter) is modeled in terms of probability
distributions. The so-called prior distribution reflects the state of knowledge before
taking into account the observations. The likelihood is also a probability distribu-
tion and represents the information given by the observations. The multiplication
of prior and likelihood yields besides a normalization constant the posterior prob-
ability distribution, which expresses a refined state of knowledge. The described
calculation rule is known as the Bayesian update formula.
The reason for the increasing application of Bayesian statistics for problems of

inference not only in nuclear data evaluation may be found in its theoretical prop-
erties. Bayesian inference coincides with logical reasoning in the case of certainty
about the involved propositions. In the case of uncertainty about the propositions,
Bayesian statistics complies with principles of common sense reasoning. Even the
opposite direction has been proved by Cox (1946). Coherence with logical rea-
soning and principles of common sense reason leads necessarily to the Bayesian
update formula.
Even though the majority of methods is clearly interpretable within Bayesian

statistics, they are distinct from each other by two aspects. The first aspect
concerns whether the original nuclear model is replaced by a simplified model.
Using a simplified model leads to closed-form expressions for the calculation of
the estimates and associated covariance matrices. If the exact model is employed,
the latter information has to be obtained via Monte Carlo sampling. The second
aspect is the choice of the probability distribution of the likelihood. Most methods
use a multivariate normal distribution suggested by the principle of maximum
entropy (Jaynes, 1957a). However, especially Monte Carlo methods often make
other choices. So far, no consensus has been reached about the proper way of
doing nuclear data evaluation. This situation is not satisfactory, because different
evaluation methods may produce different estimates and uncertainty assessments
in the same evaluation scenario. Usually, the validity of evaluations and hence
also evaluation methods is tested by comparing results of simulations based on
the evaluated data with measurements from integral benchmark experiments (e.g.
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Markovskij et al. (2003)).
In this thesis another approach was followed to test the evaluation methods. The

above mentioned methods were applied in a situation with a simple linear model
and hypothetical experimental data. The experimental data were constructed in
such a way that the model was not able to describe them properly. The evaluation
methods relying on a multivariate normal likelihood produced unreasonable small
uncertainties. Only evaluated uncertainties of some Monte Carlo methods were
higher due to an alternative choice of the likelihood. However, it was clearly
demonstrated that the evaluated covariance matrices of all methods only permit
variations of the cross sections within the possibilities of the model. This property
of the methods is undesirable in the case of a nuclear model which cannot mimic
reliable experimental data.
In addition, the methods were studied in an evaluation of the neutron-induced

total cross section of 181Ta. The optical model in the parametrization of Koning
and Delaroche (2003) was employed as nuclear model. The results showed the im-
portance to consider model defects in an evaluation. Otherwise, uncertainties may
become unreasonable small and the evaluated cross sections may be inconsistent
with experimental data included in the evaluation. Furthermore, the modifica-
tion of the likelihood in the BMC and BFMC method yielded uncertainties which
seemed to be too large when taking into account the strong experimental evidence
for a certain cross section curve. These findings indicate that the modification
of the likelihood is not the proper way to take into account the deficiency of the
nuclear model.
Due to this insight, a new formulation of the Bayesian update formula has

been developed in this thesis to account for model defects. The prediction of
the nuclear model is combined with a so-called model error function. The latter
function describes the shape of the model error. Because the shape of this function
is unknown before taking into account the experimental data, it is modeled as a
random function governed by a Gaussian process. Gaussian process regression
is a statistical method for non-parametric regression and has already found wide
application in other fields such as geostatistics, economy, meterology, and machine
learning. Harnessing the respective methodology makes it possible to explicitly
estimate the form of the model error, which is done for the first time in nuclear
data evaluation. This information can be useful to refine the nuclear models. In
contrast to existing approaches which account for model defects, the new approach
preserves the sum rules of cross sections.
Another achievement of this thesis is the reformulation of the Bayesian up-

date formula as implemented by the FBET (Neudecker, 2012) and EMPIRE-MC
method (Herman et al., 2007). The evaluation according to the old scheme was
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limited to tens of thousands of observables. In contrast to that, dozens of millions
of observables can be simultaneously updated using the new formulation. The new
formulation is well suited to be implemented as a database application: users can
send a request with experimental data and an associated covariance matrix to the
server, and the desired evaluated cross sections are computed and sent back.
Finally, the slow convergence of the Monte Carlo schemes introduced by the

BMC, UMC-G and UMC-B in the evaluation scenario of the neutron-induced
total cross section of 181Ta necessitated a new Monte Carlo scheme. In this thesis
a simple but effective Metropolis-Hastings algorithm is suggested which resolved
the issues of the original Monte Carlo schemes.
This thesis is structured into two parts. Part I introduces Bayesian statistics and

outlines existing methods to perform nuclear data evaluation. The last chapter
of this part details the reformulated Bayesian update scheme to evaluate a large
number of observables.
Part II deals with the consistent treatment of model defects. First, the con-

sequences of model defects are studied in a scenario with a linear model and in
an evaluation of the neutron-induced total cross section of 181Ta. Then, existing
methods to take into account model defects are discussed. Finally, the new ap-
proach to deal with model defects is presented and applied in an evaluation of the
neutron-induced total cross section and the (n,2n) cross section of 181Ta.



Part I

Large Number of Observables

5



2

Bayesian statistics

Methods of nuclear data evaluation are in general based on statistics. Using statis-
tics, information about the properties of the nuclei is expressed in terms of proba-
bility distributions. Attempts to define the term probability have led to different
results and were accompanied by philosophical discussion. Two definitions of prob-
ability are of particular importance for nuclear data evaluation.
In the frequentist interpretation, probability is defined as the relative frequency

of events in a well-defined experiment when the number of trials approaches infin-
ity. This definition is suited for measurements of nuclear quantities in experiments.
Apart from constraints given by available measurement time and money, exper-
iments can be repeated arbitrary many times. Counting rates of detectors are
clearly defined events.
In the Bayesian interpretation, probability represents a degree of belief about

the truth of a proposition. This definition enables to apply statistics to a broader
range of problems than possible with the frequentist interpretation. For instance,
knowledge about the range of a parameter in a nuclear model can be cast into a
probability distribution. Values for that parameter associated with higher prob-
ability are believed to be more likely than those with lower probability. The
frequentist definition, in contrast, would not allow such a usage of probabilities
because of the missing link to a well-defined experiment.
This difference in interpretation splits the field of statistics in two schools of

thought, Bayesian statistics and frequentist statistics. Both schools of thought
work with the same set of basic formulas to calculate probabilities. They differ in
how these formulas are applied for statistical inference.
In nuclear data evaluation, we often face the problem of insufficient data. De-

signing modern nuclear facilities requires knowledge of reaction cross sections at
incident energies above 20 MeV, yet experimental data is often only available be-

6
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low that energy. The remedy is to take into account results of model calculations.
These results are dependent on the values chosen for the parameters of the nuclear
models. There is uncertainty about the true values of these parameters, which has
to be accounted for in an evaluation. Consequently, contemporary evaluation
methods are based on Bayesian statistics.
The three fundamental concepts in Bayesian statistics are the prior, the like-

lihood, and the posterior. Assume that we want to infer the value of a cross
section. The prior represents our belief about the true value of the cross section
before looking at the data. The likelihood expresses how likely observing a cer-
tain outcome in an experiment is taking into account the prior knowledge. After
performing an experiment, the combination of the prior and the likelihood yields
the posterior. The posterior represents an improved knowledge about the value of
the cross section based on both sources of information, the prior knowledge and
the experimental data.
The specification of a probability distribution for the prior is the first step of an

evaluation. Usually, prior knowledge about a cross section is limited to a best guess
and an idea about the accuracy of this guess. This information is not sufficient to
unambiguously define a probability distribution. In order to reduce subjectivity
in the assignment, principles such as the principle of maximum entropy (Jaynes,
1957a,b) and the principle of invariant transformation groups (Jaynes, 1968) are
applied.
The next section outlines the foundations of probability theory and introduces

the Bayesian update formula, which is fundamental for this thesis. Thereafter,
we elaborate on the multivariate normal distribution, which is without exception
used in this thesis to specify the probability distributions for the Bayesian update
formula.

2.1 Foundations of statistics

Statistical inference operates on probabilities. We follow the Bayesian interpreta-
tion and define probability as degree of belief and introduce the basic concepts of
statistics in a Bayesian diction. First, we discuss the basic concepts and relations
of statistics for countably many propositions. In a second step, we extend the
concepts to the case of uncountably many propositions.

2.1.1 Countably many propositions

A set of countably many proposition is given if there is an enumeration scheme that
does not leave out any of the propositions. Therefore, every finite set of proposi-
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tions is countable. An example for a countable set of infinitely many propositions
is

An ≡ n persons wait in the queue. (2.1)

A probability to each of the propositions An can be assigned reflecting the belief
about its truth. These assignments must conform to the probability axioms set by
Kolmogorov, e.g. (Kolmogorov, 2000). We introduce them in a Bayesian diction.

Probability axioms

1. The probability of a proposition A is a non-negative number,

P (Ai) > 0 . (2.2)

2. The probability that any of the mutually exclusive propositionsA1, A2, . . .

is true is given by

P (A1 ∨ A2 ∨ . . . ) = P (A1) + P (A2) + . . . (2.3)

3. For a set of mutually exclusive propositions Ai of which one has to be
true, it holds that

P (
∨
i

Ai) =
∑
i

P (Ai) = 1 . (2.4)

Two mutually exclusive propositions can never be true at the same time. For
instance, the propositions in Equation 2.1 are mutually exclusive. First and third
axiom imply that a probability is a number in the closed interval [0, 1]. Propo-
sitions associated with probability one are considered to be certainly true. Con-
versely, propositions associated with probability zero are considered to be certainly
false.

An important concept of statistics is conditional probability. For two proposi-
tions A and B, the conditional probability is defined as

P (A|B) :=
P (A ∧B)

P (B)
. (2.5)

It denotes the probability for proposition A to be true under the condition that
B is known to be true. From the definition of conditional probability and the
probability axioms two important formulas to calculate probabilities follow.
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Rules to calculate probabilities

sumrule P (A ∨B) = P (A) + P (B)− P (A ∧B) (2.6)

productrule P (A ∧B) = P (A |B)P (B) (2.7)

The probability axioms of Kolmogorov are not the only possible approach to
probability theory. The approach of Cox (2001) is of particular significance for
the Bayesian school of thought. His derivation promotes the laws of probabilities
as an extension of Aristotelian logic where the truth of propositions is uncertain.
Inference in Bayesian statistics is performed by the application of the Bayesian

update formula. The Bayesian update formula is the cornerstone of Bayesian
statistics.

Bayesian update formula

Let A and B be propositions. P (A) and P (B) > 0 are the associated proba-
bilities. The Bayesian update formula is given by

P (A|B) =
P (B|A)

P (B)
P (A) , (2.8)

where P (A) is called the prior probability distribution, P (B|A) the likelihood,
P (B) the evidence, and P (A|B) the posterior probability distribution.

The Bayesian update formula follows directly from the product rule. Using the
fact that A∧B and B∧A denote the same proposition, we can apply Equation 2.7
once for P (A∧B) and another time for P (B ∧A). Equating the right hand sides
leads to Equation 2.8.

We give an example of Bayesian inference, which demonstrates the interpreta-
tion of Bayesian statistics as an extension of Aristotelian logic. Suppose we want
to know whether it rained. We can try to obtain an answer by examining the
ground. If the ground is dry, we can conclude that it did not rain. If the ground
is wet, we have some indication that it indeed rained. However, a wet ground is
not a proof for rain because perhaps it was just artificially irrigated. We want
to obtain an answer whether it rained by performing Bayesian inference. To this
end, we must assign probabilities to the propositions. Table 2.1 shows our choices
for this example.

Assume that we observed wet ground. To get a refined estimate whether it
rained, we use the Bayesian update formula, Equation 2.8, to include the additional
information obtained by our observation,

P (rain |wet ground) =
P (wet ground | rain)

P (wet ground)
P (rain) . (2.9)
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The probability P (wet ground) is not listed in the table. To keep expressions
succinct, we denote the converse of hypothesis A by ¬A. It can be computed from
the listed probabilities by applying the product rule and the sum rule,

P (wet ground) = P (rain)P (wet ground | rain) + P (¬rain)P (wet ground | ¬rain).

(2.10)
Given the numbers in the table, we have P (wet ground) = 0.6. Inserting the values
for all required probabilities in Equation 2.9 yields P (rain |wet ground) = 0.83̇.
The observation of wet ground leads us to refine our assessment. Now we regard
the proposition that it rained more likely than before. However, we are still not
certain about whether it rained, because rain is not the only possible cause for a
wet ground.
Let us consider the opposite case. If we observe dry ground, the Bayesian update

formula takes the form

P (rain | ¬wet ground) =
P (wet ground | rain)

P (¬wet ground)
P (rain) (2.11)

We get P (rain | ¬wet ground) = 0. The observation of dry ground allows us to
conclude with certainty that it did not rain. This inference is equivalent to the
syllogism

From dry ground it follows that it did not rain.
The ground is dry.

Hence, it did not rain.

The first statement is equivalent to the proposition ‘rain causes wet ground’.
The inference made with Bayesian statistics coincides with classical logic. This
finding demonstrates an important consistency feature of Bayesian statistics. In
the limiting case of certainty about propositions, Bayesian inference reduces to
logical reasoning.

Prior Likelihood
P ( rain) = 0.5 P (¬wet ground | rain) = 0
P (¬rain) = 0.5 P ( wet ground | rain) = 1

P (¬wet ground | ¬rain) = 0.8
P ( wet ground | ¬rain) = 0.2

Table 2.1: Inferring whether it rained by examining the ground. Assignment of
probabilities to the propositions for Bayesian inference. The equal prior proba-
bilities reflect our indifference apriori whether it rained. The first two probabili-
ties under likelihood correspond to our assumption that rain always causes a wet
ground. The remaining two probabilities express that a wet ground is indication
for rain but not a proof.
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2.1.2 Uncountably many propositions

A set of uncountably many propositions is given if there exists no scheme to ex-
haustively enumerate over the propositions. Uncountably sets contain always an
infinite number of elements. An example for a set of uncountably many proposi-
tions is

A(t) ≡ The temperature in this room is t◦ Celsius. (2.12)

The temperature t is a real number, which makes it impossible to enumerate over
all propositions without leaving out any. In general, the assignment of probabilities
to propositions is not possible anymore. An assignment of non-zero probabilities
to an uncountable subset of the propositions would violate Equation 2.4. The
notion of probability has to be extended.

Probability density function

A function ρ : R → [0,∞) is called a probability density function (pdf) if it
is associated to a bijective mapping from real numbers to mutual exclusive
propositions A(t), exactly one of them true, such that

P (t1 ≤ t ≤ t2) =

∫ t2

t1

ρ(t) dt, (2.13)

where P (t1 ≤ t ≤ t2) is the probability for the true proposition being located
in the set of propositions corresponding to the numbers in the interval [t1, t2].
Taking t1 = −∞ and t2 = +∞ yields 1, because then the true proposition is
in the covered interval for sure.

In contrast to probabilities, probability density functions are allowed to yield
values greater than one. Only integrals of them must not be greater than one. This
thesis deals with the estimation of cross sections, which are continuous quantities.
Thus, propositions of interest are of the form

A(x1, x2, . . . ) = A1(x1) ∧ A2(x2) ∧ . . . with (2.14)

A1(x1) = the total cross section is x1 mBarn ,

A2(x2) = the elastic cross section is x2 mBarn ,
...

Two composite propositions A(x1, x2, . . . ), A(x′1, x
′
2, . . . ) are distinct if xi 6= x′i

for some i. Furthermore, we assume that two distinct propositions are mutually
exclusive. Maybe we are not certain which choice of the xi corresponds to the true
proposition, but we know that exactly one of the propositions has to be true.
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We restrict further discussion to a composite proposition A(x, y) with two ar-
guments. However, the extension to more variables is straight-forward. The
probability density function for a compound proposition A(x, y) can be defined
analogously to the univariate case and we write ρ(x, y). The probability that a
composite proposition in the set defined by x1 < x < x2, y1 < y < y2 is true is
given by

P (x1 < x < x2 ∧ y1 < y < y2) =

∫ x2

x1

∫ y2

y1

ρ(x, y) dx dy . (2.15)

Suppose we are only interested in the probability density distribution of x irre-
spective of the value of the other quantity y. We have to integrate over y to obtain
the marginal probability density,

ρX(x) :=

∫ +∞

−∞
ρ(x, y) dy . (2.16)

Using the definition of the marginal density distribution, we can define the condi-
tional probability density,

ρ(x|y) :=
ρ(x, y)

ρY (y)
, (2.17)

which denotes the probability density for x under the condition that we know the
true value of y. Finally, having defined the marginal pdf and the conditional pdf,
we can introduce the Bayesian update formula for the case of uncountably many
propositions.

Bayesian update formula for uncountably many propositions

Let ρ(x, y) be a bivariate probability density distribution. Let ρX(x) and ρY (y)

be the associated marginal probability distributions. The Bayesian update
formula is given by

ρ(x|y) =
ρ(y|x)

ρY (y)
ρX(x) . (2.18)

We call ρ(x|y) the posterior pdf, ρ(y|x) the likelihood, ρY (y) the evidence,
and ρX(x) the prior pdf.

We conclude this section with an example. Suppose we want to infer the current
room temperature. We model our prior belief about the true temperature t as a
standard normal distribution,

ρT (t) =
1√
2π

exp

(
−1

2
t2
)
. (2.19)

This probability density distribution encodes our belief that the most likely tem-
perature is 0◦ Celsius and we do not expect the true temperature to deviate more
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than a few degree from this value. More details of the normal distribution follow
in the next section.
We want to refine our prior belief by measuring the temperature with a ther-

mometer. We know that the measured temperature t′ usually differs from the
true temperature t due to measurement error. We assume that the deviation also
follows a normal distribution,

ρ(t′|t) =
1√
2π

exp

(
−1

2
(t− t′)2

)
. (2.20)

The application of the Bayesian update formula, Equation 2.18, additionally re-
quires the calculation of the evidence ρT ′(t′). The evidence is the marginal dis-
tribution of ρ(t, t′) where the true temperature t has been integrated out, see
Equation 2.16. We remark that also the prior pdf ρT (t) can be regarded as the
marginal distribution where the measurement t′ has been integrated out. The def-
inition of conditional probability density, Equation 2.17, enables us to calculate
the evidence,

ρT ′(t
′) =

∫ ∞
−∞

ρ(t, t′) dt =

∫ ∞
−∞

ρ(t′ | t)ρT (t) dt =
1

2
√
π

exp

(
−1

4
t′2
)
. (2.21)

Inserting prior pdf (Equation 2.19), likelihood (Equation 2.20), and evidence Equa-
tion 2.21) into the Bayesian update formula (Equation 2.18) yields the posterior
pdf,

ρ(t|t′) =
ρ(t′|t)
ρT ′(t′)

ρT (t) =
1√
π

exp
(
−(t− t′/2)2

)
. (2.22)

The posterior pdf is a function of the true temperature t. The other variable t′ has
to be regarded as a constant which is determined by measurement. For instance,
if t′ = 2 has been measured, we use ρ(t′ = 2|t) for the likelihood in the Bayesian
update formula. The relations of prior, likelihood and posterior are illustrated
in Figure 2.1. The posterior pdf is a normal distribution, which is due to the
fact that both likelihood and prior are normal distributions. In general, if the
posterior pdf lies in the same class of distributions as the prior pdf, one speaks
of a conjugate prior with respect to the likelihood (see section B.1). The concept
of conjugate priors was introduced by Raiffa and Schlaifer (1961). Working with
conjugate priors is convenient, because the Bayesian update formula reduces to
calculating the characterizing parameters of the distribution. In the case of the
(univariate) normal distribution, these parameters are the mean and the variance.
More about these quantities in the next section.
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Figure 2.1: Bayesian inference of the room temperature. The most likely temper-
ature according to the prior is 0◦ Celsius. The measured temperature is 2◦ Celsius
which leads to the shown likelihood. Combining prior and likelihood with the
Bayesian update formula yields the posterior. The tighter shape of the posterior
compared to the prior corresponds to a reduced uncertainty about the true value
of the temperature.

2.2 Multivariate normal distribution

The multivariate normal distribution takes a special role in this thesis. Priors and
likelihoods for cross sections, spectra, and angle-differential cross sections will be
without exception specified by multivariate normal distributions. Because of this
choice, the resulting posteriors will also follow multivariate normal distributions.
This feature allows for the efficient computation of the Bayesian update formula.
Theoretical justification for using multivariate normal distributions comes from
the principle of maximum entropy (Jaynes, 1957a), which is discussed in the next
section.
A multivariate normal distribution is a probability distribution for a set of

random variables Xi, which we combine to a vector ~X. It is characterized by
the mean values of the Xi and the covariances between them. For the following
considerations we distinguish between the random variable Xi and a realization xi
thereof. The former refers to the random variable with all its properties, such as
its probability distribution. The latter is just a number we could draw from the
random variable, for instance in terms of a measurement in an experiment.
The mean value and the covariance can be calculated for arbitrary probability

distributions ρ(~x). Especially, we obtain the mean value of the random variable
Xi in terms of the expectation operator,

µi = E[Xi] =

∫
xi ρ(~x) dx1 . . . dxn . (2.23)

Integration has to be performed over the set of feasible realizations ~x. The covari-



CHAPTER 2. BAYESIAN STATISTICS 15

ance between two random variables Xi and Xj can be computed by applying the
covariance operator,

Cov[Xi, Xj] =

∫
(xi − E[Xi]) (xj − E[Xj]) ρ(~x) dx1 . . . dxn . (2.24)

Obviously, the covariance operator is symmetric with respect to its arguments,
Cov[Xi, Xj] = Cov[Xj, Xi]. The covariance of a variable with itself is an important
quantity and referred to as variance. We introduce the variance operator,

Var[Xi] = Cov[Xi, Xi] =

∫
(xi − E[Xi])

2 ρ(~x) dx1 . . . dxn . (2.25)

These quantities represent first and second order moments of the probability
distribution and yield important information about the random variable. For
instance, if some Xi represents a nuclear model parameter and we assume that
Xi is governed by a normal distribution, then parameter values in the interval
E[Xi] ±

√
Var[Xi] are believed to be about two times more likely than values

outside this interval. In more technical terms, the probability mass within this
interval is approximately 0.683 and outside that interval 0.317. The smaller the
variance of a random variable, the smaller the uncertainty about its true value.
The mean value of a random variable E[Xi] has the important property that

it leads to minimal variance. Replacing E[Xi] in Equation 2.25 with any other
value would increase the result. Due to this property, the mean value is a reason-
able choice as a best guess for a random variable governed by a symmetrical and
unimodal probability distribution.
The covariance between two random variables Cov[Xi, Xj] is an unnormalized

measure of their mutual dependence. To get a normalized measure, we introduce
the correlation operator,

Cor[Xi, Xj] =
Cov[Xi, Xj]√

Var[Xi] Var[Xj]
. (2.26)

The correlation can take values in the closed interval [−1, 1]. A positive corre-
lation indicates that a higher value xi is more likely accompanied by a higher
value xj. Conversely, a negative correlations indicates that a higher value xi is
accompanied by a lower value xj. Furthermore, the closer the correlation is to
the boundaries of the interval, the more the values of the random variables are
dependent on each other. In the extreme case of a perfect positive or negative
correlation, Cor[Xi, Xj] = ±1, knowledge of the value xi is sufficient to infer the
value xj. In general, knowing xi leads to a relative reduction of the variance of xj
by Cor[Xi, Xj]

2.
Because the expectation operator is a linear functional, it satisfies

E[α + βXi + γXj] = α + β E[Xi] + γ E[Xj] , (2.27)
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for arbitrary scalars α, β, γ. Similarly, we have for the covariance operator

Cov[α + βXi + γXj, Xk] = β Cov[Xi, Xk] + γ Cov[Xj, Xk] . (2.28)

Additive constants leave the result unaffected. Due to the symmetry of the covari-
ance operator, the same identity holds for the second argument. For the variance
operator as a special case of the covariance operator, we get

Var[α + βXi + γXj] = β2 Var[Xi] + γ2 Var[Xj] + 2βγ Cov[Xi, Xj] . (2.29)

These linear relationships are of central importance for the developments presented
in this thesis. First, they lead in a straightforward way to the conservation of sum
rules and the relation between angle-integrated cross sections and the associated
angle-differential cross sections. Furthermore, the novel treatment of model defects
introduced in chapter 6 also relies on them.

After this concise elaboration on the expectation, variance and covariance op-
erator, we introduce the multivariate normal distribution. A collection of random
variables Xi follows a multivariate normal distribution if and only if all possible
linear combination of them follow a univariate normal distribution,

N∑
i=1

ciXi ∼ N (µ, σ2) , (2.30)

where the constants ci are arbitrary real numbers. The probability density function
of a univariate normal distribution with mean µ and standard deviation σ for a
random variable X is

ρ(x) =
1√

2π σ
exp

(
−1

2

(x− µ)2

σ2

)
. (2.31)

The application of the expectation operator and the covariance operator yields

E[X] = µ and Var[X] = σ2 . (2.32)

Mean value and variance are sufficient to unambiguously determine the shape of
the normal distribution. The standard deviation σ and the variance σ2 give the
same information. The specific task of the statistical study considered provides
usually criteria which one is more convenient to work with. In the case of the
normal distribution, the standard deviation is directly related to probabilities.
The probability mass in the interval [µ − σ, µ + σ] is 0.683 and in the interval
[µ−2σ, µ+2σ] 0.954. However, calculations relying on the identities Equation 2.27,
Equation 2.28 or Equation 2.29 are better carried out at the level of variances.
Another—and for our purposes more suitable—definition is to directly specify

the probability density distribution of the multivariate normal distribution. To
this end, we introduce for the set of random variables {Xi}i=1:N the abbreviations

µi = E[Xi] and vij = Cov[Xi, Xj] . (2.33)
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The mean values µi can be combined into the mean vector ~µ and the covariances vij
in the covariance matrix V. Then, the pdf of the multivariate normal distribution
is given by

ρ(~x) =
1√

(2π)d|V|
exp

(
−1

2
(~x− ~µ)TV−1(~x− ~µ)

)
, (2.34)

where d is the dimension of ~x. This probability density distribution is ubiquitous
in this thesis. Priors, likelihoods and posteriors without exception are modeled
as multivariate normal distributions. The elements of ~µ and ~x represent angle-
integrated cross sections at different incident energies, angle-differential cross sec-
tions at different incident energies and angles, and spectra at different incident
energies and emission energies.
However, definition Equation 2.34 is only applicable if V is positive definite.

For some multivariate normal distributions V is only positive semi-definite. For
instance, consider the two random variables X1 and X2 which are related by
X2 = cX1. In this case, the covariance matrix takes the form

V =

(
v11 c v11

c v11 c2 v11

)
. (2.35)

The second row is a multiple of the first row. Thus, the covariance matrix has
not full rank and its inverse is not defined. Consequently, the probability den-
sity distribution in Equation 2.34 is also not defined. Nevertheless, if X1 follows
a univariate normal distribution, the definition relying on linear combinations,
Equation 2.30, still applies.
To explicitly obtain the probability density function of a multivariate normal

distribution whose covariance matrix V is only positive semi-definite, one can
perform an eigen decomposition. We assume that the eigenvalues λi are sorted in
decreasing order. With ~ei we refer to the eigenvector associated with the eigenvalue
λi. One takes the d leading eigenvectors associated to non-zero eigenvalues and
assembles them into a matrix,

P = (~e1, ~e2, · · · , ~ed) where λi > 0,∀i ≤ d . (2.36)

Instead of working with the original random vector ~X we work with the random
vector ~Y . The relation between these two vectors is

~X = P~Y . (2.37)

The dimension of ~Y is given by the number of non-zero eigenvalues d of the
covariance matrix V. Finally, we need to transform the mean vector ~µ and the
covariance matrix V,

~τ = PT~µ and W = PTVP . (2.38)
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Now, because the inverse of W exists, the probability density function can be
stated,

ρ(~x) =
1√

2π|W|
exp

(
−1

2
(~y − ~τ)TW−1(~y − ~τ)

)
. (2.39)

In order to demonstrate the procedure we consider the example of Equation 2.35.
This covariance matrix resulted from the relation X2 = cX1 between the random
variables. Its eigenvalues and associated eigenvectors are

λ1 = v11(1 + c2), ~e1 =
1√

1 + c2

(
1

c

)
and λ2 = 0, ~e2 =

1√
1 + c2

(
c

−1

)
. (2.40)

The normalized eigenvectors are orthogonal, ~e1 ⊥ ~e2. The pairwise orthogonality
of eigenvectors is a general property of covariance matrices due to their symmetry,
Vij = Vji. Even though we consider two random variables, there is only one degree
of freedom because of the linear dependence of the rows of the covariance matrix.
Thus, the new random variable ~Y contains only one element Y1. By applying the
projection operator P = ~e1, we get a parameter equation for the straight line that
corresponds to feasible combinations (X1, X2),(

X1

X2

)
=

1√
1 + c2

(
1

c

)
Y1 . (2.41)

The transformed covariance matrix W contains only one element W11, which rep-
resents the variance of Y1. We get W11 = PTVP = v11(1 + c2), which coincides
with the eigenvalue λ1. This finding is of general validity: If we take some normal-
ized vector ~k pointing into an arbitrary direction, and ‘sandwich’ the covariance
matrix, ~kTV~k, we get the variance along the direction of ~k. If the vector ~k is
an eigenvector ~ei of the covariance matrix, ~eTi V~ei yields the respective eigenvalue
λi. Therefore, the eigenvalues of the covariance matrix are the variances along
the principal axis of the covariance matrix. The first principal axis is associated
with the direction of largest variance. The second principal axis is associated with
the largest variance under the condition that it is orthogonal to the first principal
axis. In general, the nth principal axis is defined by largest variance under the
condition that it is orthogonal to all previous (n− 1) principal axes. Multivariate
normal distributions for less or equal three random variables can also be visualized
by plotting their confidence ellipses. As an example, Figure 2.2 shows a bivariate
normal distribution.
So far, we have introduced the definition of the multivariate normal distribution

and the important notions of the expectation, variance, covariance and correlation.
Next, we discuss the marginal probability density and the conditional probability
density of the multivariate normal distribution. The general definition of these
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Figure 2.2: The green ellipses are a visualization of a bivariate normal distri-
bution with mean vector ~0, variances Var[X1] = Var[X2] = 1 and covariance
Cov[X1, X2] = 0.6. The probability to obtain a combination of realizations (x1, x2)
enclosed by one of the green ellipses is 0.68 for the inner ellipse, 0.95 for the mid-
dle ellipse, and 0.99 for the outer ellipse. The principal axes of the ellipses are
associated with the eigenvectors of the covariance matrix. The feasible combina-
tions of realizations (x1, x2) span an area. However, if the random variables are
perfectly correlated due to linear dependence, the ellipses degenerate to a straight
(red) line. In this case, the probability to obtain a combination not lying on the
line is zero. The mathematical signature of linear dependent random variables is
a non-invertible covariance matrix.

concepts was given in Equation 2.16 and Equation 2.17. Assume that we have a
set of random variables {Xi}i=1:n. We can partition them into the two disjoint
subsets {Xi}i=1:k and {Xi}i=(k+1):n. We combine the random variables of the first
subset to the random vector ~Y and those of the second vector into the random
vector ~Z. Let the expectation of ~Y be denoted by ~a and the expectation of ~Z be
denoted by ~b. The matrix U contains the covariances for ~Y and the matrix V

the covariances for ~Z. The covariance matrix relating ~Y and ~Z is denoted by C.
Using this notation, the mean vector and covariance matrix for the complete set
of random variables governed by a multivariate normal distribution can be written
as

~µ =

(
~a
~b

)
and A =

(
U C

CT V

)
. (2.42)

We use this partitioned form of the mean vector and the covariance matrix as a
basis to discuss the marginal distribution and the conditional distribution.
The marginal distribution of a subset of the random variables is also a mul-

tivariate normal distribution. It can be obtained by removing elements in the
mean vector and the covariance matrix that are connected to random variables
not element of the subset. For instance, the marginal distribution of the random
variables in ~Y is obtained by only keeping ~a in the mean vector and U in the
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covariance matrix,

ρX1,··· ,Xk(x1, . . . , xk) =

∫
ρ(x1, · · · , xn) dxk+1 . . . dxn ≡ N (~a,U) . (2.43)

Being able to obtain marginal probability densities by removing elements of the
mean vector and the covariance matrix represents a huge advantage. In general,
the evaluation of the multidimensional integral for the marginal probability den-
sities for general distributions is very difficult if not infeasible.
If we know the realizations xi of a subset of the random variables, we are perhaps

able to learn something about the unobserved random variables due to correla-
tions. For instance, the weather of two cities situated nearby is not independent.
Knowing that the sun is shining in one city could increase the probability that
the sun is also shining in the other city. Suppose we know the realizations ~z of
the random vector ~Z. The probability distribution for the random vector ~Y con-
ditioned on ~z is also a multivariate normal distribution. Its mean vector ~a~z and
covariance matrix U~z is given by (e.g. Mises and Geiringer (1966))

~a~z = ~a+ CV−1
(
~z −~b

)
(2.44)

U~z = U−CV−1CT (2.45)

The formula for the conditional distribution of the multivariate normal distribu-
tion is one way to derive the Bayesian update formula specialized to the case of
multivariate prior and likelihood.
Another important property of the multivariate normal distribution is its in-

variance under linear transformations of the random variable. Suppose we have a
random variable ~X governed by N (~µ,Σ) and perform an affine transformation

~Y = S ~X +~b . (2.46)

The transformed variable ~Y is multivariate normal with mean vector and covari-
ance matrix

~µ′ = Sµ+~b and Σ = SΣST . (2.47)

In particular, the expression for the transformed covariance matrix is frequently
denoted as sandwich formula. The invariance of the multivariate normal distribu-
tion under linear transformations is particularly useful for nuclear data evaluation.
For instance, apriori knowledge of nuclear model parameters is usually specified
in terms of a multivariate normal distribution. The linearization of the nuclear
model leads to a linear relation between observables and nuclear model parameters,
~σ = S~p + ~σ0. Hence, one obtains a multivariate normal distribution for the ob-
servables which can be easily computed from the multivariate normal distribution
of the model parameters.



CHAPTER 2. BAYESIAN STATISTICS 21

Finally, both the product and the convolution of the probability density func-
tions of two multivariate normal distributions yield a multivariate normal distri-
bution. However, in the case of the product, the resulting multivariate normal
distribution is not normalized anymore.
In general, the convolution is related to the sum of random vectors. Suppose

we want to know the probability density function of the sum of independent mul-
tivariate normal random vectors,

~Z = ~X1 + ~X2 + · · ·+ ~Xn . (2.48)

We take it as granted that ~Z will also follow a multivariate normal distribution.
Because the Xi are independent, their joint probability density function is given
by

ρ(~x1, . . . , ~xn) = ρ1(~x1) ρ2(~x2) . . . ρn(~xn) . (2.49)

To get the probability density for one particular realization ~z, we have to integrate
over all possible combinations of the ~xi that sum up to ~z. We end up with the
convolution

ρ(~z) =

∫
ρ1

(
~z −

n∑
i=2

~xi

)
ρ2( ~x2) . . . ρn(~xn) dx2 . . . dxn . (2.50)

We can make use of the properties of the expectation operator and covariance oper-
ator (see Equation 2.27 and Equation 2.28) to obtain the distribution parameters.
The mean vector and the covariance matrix associated with ~Z are

~µ = E[~Z] = E[ ~X1] + E[ ~X2] + · · ·+ E[ ~Xn] , (2.51)

Σ = Var[~Z] = Var[ ~X1] + Var[ ~X2] + · · ·+ Var[ ~Xn] . (2.52)

Here, we extended the applicability of the variance operator to random vectors.
The variance operator applied to a matrix shall give the covariance matrix for the
elements of the random vector. To summarize, we have for the random vector ~Z

~Z ∼ N

(∑
i

E[Xi],
∑
i

Var[Xi]

)
. (2.53)

Not only the convolution of multivariate normal distributions yields a multi-
variate normal distribution, but also their product. Assume we have the two
probability density function ρ1(~x) = N (~µ1,A1) and ρ2(~x) = N (~µ2,A2). Their
product is given by

ρ1(~x) ρ2(~x) = Z−1 1√
2π|C|

exp

{
−1

2
(~x− ~z)T C−1 (~x− ~z)

}
, (2.54)
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with
~z = C(A−1

1 ~µ1 + A−1
2 ~µ2) and C = (A−1

1 + A−1
2 )−1 . (2.55)

The probability distribution in Equation 2.54 is not normalized anymore due to
the occurrence of the extra factor Z−1, which is specified by

Z−1 =
1√

(2π)d|A1 + A2|
exp

{
−1

2
(~µ1 − ~µ2)T (A1 + A2)−1 (~µ1 − ~µ2)

}
. (2.56)

Concerning the multivariate normal distribution, the outlined properties and
relations give sufficient background information to discuss two developments in
this thesis: the extension of the applicability of the linearized Bayesian update
formula to a large number of observables, and the consistent treatment of model
defects within the framework of Bayesian statistics. The next section discusses
the principle of maximum entropy which gives theoretical support for the use of
multivariate normal distributions instead of other distributions.

2.3 Principle of maximum entropy

The application of Bayesian statistics requires the specification of a prior proba-
bility distribution. However, existing prior knowledge is usually not sufficient to
narrow down possible choices of the prior probability distribution to just one. This
arbitrariness is not desirable, because Bayesian inference starting from different
prior distributions leads to different results. Scientific methods for the acquisition
of knowledge should be objective. The result of a scientific method should not be
dependent on the person who applies it or the person’s beliefs. This arbitrariness
in the prior specification has been a common criticism of Bayesian statistics. Fre-
quentist statistics does not suffer from this problem, but is too restrictive for the
application in nuclear data evaluation. To alleviate the prior assignment problem,
principles are introduced which remove the ambiguity. Ideally, these principles are
of general nature and considered reasonable by everyone. The application of these
principles restores objectivity in Bayesian inference. In this section, we first dis-
cuss the concept of information entropy and afterward the principle of maximum
entropy introduced by Jaynes (1957a). The principle of maximum entropy gives
theoretical support for the use of the multivariate normal distribution if only the
means, variances and covariances of the random variables are known.
The concept of information entropy was introduced in a seminal papers of

Claude Elwood Shannon (Shannon, 1948a,b). Given a set of possible events
{Ei}i=1:n and for each event Ei a probability of its occurence pi, the measure
of information entropy H(p1, p2, . . . , pn) quantifies the uncertainty about the out-
come. Shannon demanded the information entropy to obey three properties, from
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which he derived its functional form. We cite these properties here from Shannon
(1948b, p. 10):

Characterization of the information entropy H

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H should be a monotonic increas-

ing function of n. With equally likely events there is more choice, or
uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original H
should be the weighted sum of the individual values of H. [...]

These general properties constrain the functional form of the information en-
tropy up to a constant factor K. The information entropy is given by (Shannon,
1948b, p. 11)

H(p1, . . . , pn) = −K
n∑
i=1

pi log pi . (2.57)

The arbitrary factor K is due to the fact that the base of the logarithm can be
chosen freely. It is a remarkable fact that the above stated rather general properties
lead to an unambiguous functional form. Considering this, the information entropy
appears to be a fundamental quantity to measure information.

The information entropy attains its largest value if all events have equal proba-
bility, pi = 1

n
, which is H = log n. The smallest value is attained if the probability

for a single event is one and for all other events zero. Defining 0 log 0 = 0 due
to lim

p→0+
p log p = 0, we obtain H = 0. The results of these limiting cases are in

line with our intuitive understanding of the term uncertainty. If asked to predict
the next event and all events are equally likely, we can only blindly guess. We are
maximally uncertain about the outcome. However, if probabilities of some events
are higher than others, we would choose some of the events with higher probabil-
ity. The uncertainty is reduced. If only a single event has probability one and all
others zero, it means we are absolutely certain about the outcome. Therefore, the
information entropy takes its lowest possible value, which is zero.
The definition of information entropy in Equation 2.57 is for a discrete set of

events only. Its generalization to an uncountable set of events—also given by
Shannon—is called differential entropy. It is defined as

H[X] = −
∫
p(x) log p(x) dx , (2.58)
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where p(x) is the probability distribution of the continuous random variable X.
The differential entropy does not possess all the features of the discrete version.
First, it can be negative, and second, it is not invariant under a transformation of
the variable. However, the difference H1(X)−H2(X) is still a useful measure to
compare uncertainties. Two ways to restore the properties of the discrete version
were suggested. The first way suggested by Jaynes (1957a) is the introduction of an
invariant measure. The second way is the Kullback-Leibler divergence (Kullback
and Leibler, 1951). The resulting definitions differ only by the sign. Here, we state
the Kullback-Leibler divergence,

D(p ‖ q) =

∫
p(x) log

p(x)

q(x)
dx . (2.59)

The function q(x) has to be a normalized probability distribution and is called
the reference measure (or reference probability distribution). The properties of
the discrete definition are restored. Especially important for the remainder of the
section, the positivity,

D(p || q) ≥ 0 . (2.60)

Having laid out the definition of the information entropy and the differential
entropy, we state the principle of maximum entropy.

Principle of maximum information entropy

From all possible probability distributions that are consistent to given con-
straints, one should pick the probability distribution that possesses maximum
information entropy. Choosing any other probability distribution means to
implicitly assume further knowledge one does not have.

The use of the multivariate normal distribution for the prior distribution in this
thesis is justified by the principle of maximum entropy. Inserting its definition
Equation 2.34 into Equation 2.58 yields the differential entropy of a multivariate
normal random vector ~X = (X1, X2, . . . , Xd)

T ,

H( ~X) =
1

2
ln
(
(2πe)d|V|

)
. (2.61)

For convenience, we stated the result in terms of the natural logarithm. The
information entropy depends only on the determinant of the covariance matrix V

and its dimension d.
If only the means E[Xi] and the covariances Cov[Xi, Xj] of the random variables

Xi are known, the distribution with maximum entropy is the multivariate normal
distribution. Because of the importance of this result for this thesis, we give a
proof here. Without loss of generality we can make a translation of the random
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vector ~X so that its mean vector is the zero vector. Further, we combine the
covariances to the covariance matrix V. As a first step of the proof, we expand
the Kullback-Leibler divergence,

D(p || q) =

∫
p(~x) log p(~x) d~x−

∫
p(~x) log q(~x) d~x . (2.62)

The first term on the right side is the negative differential entropy, see Equa-
tion 2.58. Assuming a zero-mean multivariate normal distribution with covariance
matrix V as reference distribution q(~x) and using Equation 2.60, we can write

Hp( ~X) ≤ −
∫
p(~x)

{
−1

2
ln
(
(2π)d|V|

)
− 1

2
~xTV−1~x

}
d~x . (2.63)

Due to the required normalization of p(x), we are able to evaluate the integral of
the first term,

Hp( ~X) ≤ 1

2

{
ln
(
(2π)d|V|

)
+ Ep[~x

TV−1~x]
}
. (2.64)

The integral of the second term was rewritten in terms of the expectation operator.
Using the fact that the trace of a scalar is the scalar itself, the cyclicity of the trace,
and the commutative property of trace and expectation operator, we obtain for
the second term

Ep[ ~x
TV−1~x ] = Tr

[
Ep[~x~x

T ]V−1
]

= Tr[VV−1] = d . (2.65)

The result is the dimension d of the covariance matrix. Inserting this result into
Equation 2.64 gives

Hp( ~X) ≤ 1

2

{
ln
(
(2π)d|V|

)
+ d
}

= Hq( ~X) . (2.66)

Therefore, any other distribution p(x) with the same mean vector and covariance
matrix has lower information entropy than the multivariate normal distribution.
The proof is completed.
We conclude this section by pointing out the geometric interpretation of the

information entropy of the multivariate normal distribution. Figure 2.2 shows
confidence regions of the bivariate normal distribution. Points associated with
the same probability density form an ellipse. For a trivariate normal distribution,
points with the same probability density form an ellipsoid. For even more vari-
ables, one obtains hyperellipsoids. In general, the volume of the d-dimensional
hyperellipsoid spanned by the standard deviations δi along the principal axes of
the covariance matrix V is given by the expression

Vd = π
d∏
i=1

δi . (2.67)
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To construct a confidence region that includes the true vector with probability p,
we additionally need the χ2-distribution (see section B.2). If χ2

d(p) denotes the
quantile function for probability p of the χ2-distribution with d degrees of freedom,
the volume of the respective confidence region is Vd(p) = [χ2

d(p)]
d
2 Vd.

We can compare the hyperellipsoid given in Equation 2.67 to the information
entropy of the multivariate normal distribution given in Equation 2.61. For this
purpose, we identically rewrite the information entropy,

H( ~X) = ln
(

(2πe)
d
2 |V|

1
2

)
= ln

(
d∏
i=1

δi
√

2πe

)
. (2.68)

Here, we replaced |V| 12 by the product of the square roots of the eigenvalues of
the covariance matrix,

√
λi = δi. Comparing Equation 2.67 and Equation 2.68,

we recognize the following relation between the information entropy and the hy-
perellipsoid spanned by the standard deviations along the principal axes of the
covariance matrix. If we inflate the latter mentioned hyperellipsoid by stretching
each axis by a factor

√
2πe, divide the result by π, and take the logarithm, we

obtain the information entropy.



3

Nuclear data evaluation

The aim of nuclear data evaluation is to produce best and consistent estimates and
associated uncertainties of observables, especially reaction related ones for atomic
nuclei throughout the nuclear charts (Chadwick et al., 2006). For instance, these
observables may be angle-integrated cross sections, spectra, and angle-differential
cross sections of various reaction channels. Knowledge about these observables
is required for the design of novel nuclear facilities, and to assess their efficiency
and safety. Two information sources are available to determine these observables:
experimental data and nuclear models. Experimental data usually do not cover
the whole range of incident energies that is of interest. Therefore, the predictions
of nuclear models are required to fill the gaps. Bayesian statistics offers a well-
founded framework to combine the experimental data with the results of model
calculations to obtain estimates and uncertainties at all relevant incident energies.
We stated the general form of the Bayesian update formula in Equation 2.18. In

order to make the distinction between prior distribution and likelihood apparent
from the function symbol, we use from now on π for the prior pdf and ` for the
likelihood function. Because the posterior can be used as the new prior distribution
in another evaluation, we also use the function symbol π for the posterior pdf.
Throughout this thesis, model parameters are denoted by ~p and vectors of cross
sections by ~σ. Using the adjusted notation, the Bayesian update formula takes
the form

π(~p |~σ,M) =
`(~σ | ~p,M)π(~p |M)∫
`(σ | ~p,M)π(~p |M) d~p

. (3.1)

The denominator represents the evidence. The given form is obtained by using
π(~σ, ~p |M) = `(~σ | ~p,M) π(~p |M), which follows from the definition of conditional
probability density in Equation 2.17, and then marginalizing over the model pa-
rameters, see Equation 2.16. The prior pdf π(~p |M) expresses our prior knowledge

27
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about the values of the model parameters before looking at the data. Parameter
sets for which the prior pdf takes higher values are believed to be more likely than
those with lower values. The likelihood `(~σ | ~p,M) gives the probability density
to measure a certain realization of the observables in the experiment under the
assumption that the true parameter vector is given by ~p. The result of prior pdf
times likelihood divided by the evidence yields the posterior pdf. The posterior
pdf represents a refined knowledge about the model parameters by taking into
account the experimental data.
All occurring probability density distributions are conditioned onM, which in-

dicates the systematics of the model. Therefore, results of the Bayesian inference
are conditioned on the fact that the model is a perfect description of reality. In
section 6.1, the consequences are worked out if this assumption does not hold. An
extended form of the Bayesian update formula is presented in chapter 9 which ac-
counts for possible deficiencies of the model. The fact that results of the Bayesian
inference are restricted to the possibilities of the model are evident in Equation 3.1,
because the refined probability distribution refers to the model parameters. How-
ever, in section 3.3 the Bayesian update formula is formulated at the level of cross
sections, which camouflages the conditioning on the model systematics.
The evaluation of the likelihood `(~σ | ~p,M) requires nuclear model with the pa-

rameter vector ~p. Throughout this thesis we exclusively use the nuclear model
code TALYS (Koning, Hilaire, and Duijvestijn, 2008). TALYS implements a vari-
ety of nuclear models, such as the optical model for elastic scattering and direct
reactions, and the exciton model for pre-equilibrium reactions. Depending on the
incident energy of the projectile and the mass of the target nucleus, computation
times may range from minutes to hours. In general, due to the computation time
of the model code, the computation of the exact posterior pdf is difficult. One
remedy is to linearize the relation between parameters and observables. This ap-
proach is detailed in section 3.2. Another approach is to construct a surrogate
model that can be evaluated much faster than the original model. This approach
is detailed in section 3.3. In both approaches, the prior pdf is specified as a multi-
variate normal distribution, either at the level of parameters or at the level of cross
sections. Yet another approach to deal with the complexity of the nuclear model
is to apply Monte Carlo procedures, such as the Bayesian Monte Carlo method
(Koning, 2015).
Once the observables of the experiment are predicted by a model calculation,

the likelihood takes the same form in each approach. The next section elaborates
on the construction of the likelihood function based on the available data.
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3.1 Accounting for experimental data

The concept of the likelihood is used in both Bayesian statistics and frequentist
statistics. The likelihood gives the probability to obtain a certain outcome, such
as a measured value of a cross section, under the assumption that a certain set
of model parameters ~p is the true one. The underlying statistical model has the
form,

~σ =M(~p) + ~ε , (3.2)

where ~σ denotes the experimental measurement,M(~p) the model prediction based
on the model parameters ~p, and ~ε the measurement error. Consequently, in the
absence of measurement errors, the model prediction of observables using the true
model parameter vector ~ptrue should perfectly match with corresponding measure-
ments.
The specification of the probability density distribution for the likelihood is de-

pendent on the assumptions made for the measurement error ~ε. In some cases,
the physical process determines the appropriate distribution. For instance, the
number of decay events in a radioactive material occurring in a given time span
is best described by a Poisson distribution. In other cases, it might be not clear
which distribution to choose. If the choice is not clear, there are several reasons
to use a (multivariate) normal distribution. First, many distributions such as
the binomial or the Poisson distribution, have as limiting distribution the normal
distribution. Second, if the measurement error is a superposition of many inde-
pendent contributions, their sum follows a normal distribution according to the
central limit theorem (e.g. Vaart (1998)). Third, if only mean values and vari-
ances are known, the principle of maximum entropy leads to a normal distribution.
In addition, if also correlations between the observables are given, a multivariate
normal distribution should be used. Because of these arguments, we assume pdf
of the measurement error to be given by a multivariate normal distribution. This
assumption leads to the likelihood

`(~σ | ~p,M) =
1√

(2π)d|B|
exp

{
−1

2
(~σ −M(~p))T B−1 (~σ −M(~p))

}
. (3.3)

The matrix B is the covariance matrix of the experiment, and d is the dimension of
the vector ~σ containing the measurement results. The nuclear modelM(~p) yields
the model predictions of the observables given in ~σ and determines the center of
the distribution.

We want to make plausible which considerations help to determine the variances
and the covariances contained in the covariance matrix B. We restrict the further
discussion to a single reaction channel. Suppose that the vector of measurement
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results is given by
~σ = (σ1, σ2, . . . , σn)T , (3.4)

where an element σi represents the cross section of the ith-experimental data point
measured at incident energy Ei. Generally, measurements are subject of two types
of uncertainties: statistical uncertainties and systematic errors. The total uncer-
tainties associated with the measurement is the sum of these two contributions,

~εtot = ~εstat + ~εsys . (3.5)

For both contributions, a covariance matrix has to be specified. The sum of them
yields the experimental covariance matrix, B = Bstat + Bsys. We first consider the
construction of the covariance matrix Bstat for the statistical uncertainties. Each
diagonal element Bstat,ii represents the variance of the measured cross section σi
associated with the ith experimental data point due to the statistical uncertainty.
Off-diagonal elements are zero. The magnitudes of the variances are determined
by the measurement process.
As an example, we briefly outline a schematic measurement process and its

statistical treatment. A cross section at a specific incident energy may be measured
by leading an incident beam through the target material and measure the reduction
of intensity of the outgoing flux in forward direction. Let Ninc denote the average
number of incident particles entering the target material each second. Further,
let Nout denote the average number of incident particles just passing through the
target material each second without being scattered. The respective cross section
is given by

σ = c
Ninc −Nout

Ninc
. (3.6)

The factor c subsumes other quantities that determine the cross section, such as
the density of the target material. They are not relevant for the point to be made.
The scattering process itself is not deterministic. In the short run, the number
of incident particles each second deviates from the average Ninc. Furthermore,
whether a certain incident particle hits upon a nucleus in the target material is a
matter of chance. We are dealing with a random process. We assume that we know
the value of Ninc. The average number of incident particles just passing through
each second, Nout, is what we have to infer to obtain the cross section. The number
of counts n(T ) of incident particles passing through without interaction in a time
period T follows a Poisson distribution. The probability to measure k counts in
the time span T is given by

Pr [n(T ) = k ] =
λke−λ

k!
with λ = TNout . (3.7)
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Expectation and variance of the Poison process are

E[n(T )] = λ and Var[n(T )] = λ . (3.8)

The distribution parameter λ indicates the number of expected counts when mea-
suring for the duration T . Therefore, an estimate of Nout and the associated
variance δ2 based on the measured number of counts k is

N̂out = δ2 =
k

T
. (3.9)

When extending the measurement time, the parameter λ increases as well. For λ
large enough (larger than twenty), the Poisson distribution approaches the normal
distribution. Therefore, the assumption of a multivariate normal distribution for
the likelihood seems justified. Equation 3.6 is a linear relation between Nout and
the cross section σ. Therefore, because of Equation 2.29, their variances are related
by

Var[σ] =
c2

N2
inc

Var[Nout] . (3.10)

Given the number of counts ki and the measurement time Ti at the incident
energy Ei of each experimental data point, the variance of Nout of each exper-
imental data point can be estimated with Equation 3.9. Using Equation 3.10,
the diagonal elements of the covariance matrix Bstat for the cross sections can be
determined. Off-diagonal elements are zero. The zero off-diagonals mean that the
multivariate normal distribution can be factorized into a product of univariate
normal distributions—one univariate normal distribution for each experimental
data point. This error component is called statistical error and can easily be in-
terpreted as a consequence of the inherent randomness of the physical process.
The only possibility to reduce this error component is by increasing measurement
time or using incident beams with a higher flux density. However, it is impossible
to completely eliminate the statistical error.
In contrast to statistical errors, the systematic errors may be completely elimi-

nated, at least in theory. They are the consequence of imperfect knowledge about
the experimental setup. The worst case is to be unaware of them. Then, what
is actually measured deviates from what should be measured. Large measure-
ment times may reduce the statistical error to an extent that the true value is not
contained within the calculated confidence interval anymore due to the systematic
error. The best case is to be aware of the systematic error and to be able to correct
the measurement results accordingly. The case between these two extreme posi-
tions is to be aware of the systematic error but to be unable to precisely quantify
its magnitude. We give a schematic example for the latter situation.
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The relation between the cross section and the counting rateNout was sketched in
Equation 3.6. An estimate of Nout was given in Equation 3.9. However, not every
particle hitting the detector is detected. The proportion of detected particles to
all particles hitting the detector is referred to as detector efficiency η. The relation
between the detected counts and the true number of counts is

ntrue(T ) =
ndet(T )

η
. (3.11)

Therefore, the cross section σi at incident energy Ei computed from the counts
without taking into account the detector efficiency has to be corrected. The cor-
rected cross section is given by σcor,i = σi/η. If the detector efficiency is not
perfectly known, we have to account for its uncertainty in Bsys. Assuming inde-
pendence of the detector efficiency from the incident energy and the count rate1,
we may model the uncertainty about the detector efficiency η as a normal distri-
bution,

η ∼ N (η0, τ
2) . (3.12)

The distribution parameter η0 represents a best estimate of the efficiency and the
standard deviation τ reflects the trust in this estimate.
The detector efficiency affects the measurement result at each incident energy

Ei in the same way. This fact is reflected in non-zero off-diagonal elements Bsys,ij

in the covariance matrix Bsys for the systematic error. The covariances are

Cov[σcor,i, σcor,j] = Cov

[
σi
η
,
σj
η

]
≈ Cov

[
η − η0

η2
0

,
η − η0

η2
0

]
=

1

η4
0

Var[η] =
τ 2

η4
0

.

(3.13)
This result is based on a first order Taylor expansion of σi/η with respect to η.
Due to Equation 2.28 the constant zero-order term σi/η0 does not show up in the
covariance. Noteworthy, all elements of Bsys take the same value, which is τ 2/η4

0.
Thus, the correlation between all experimental points are one if only taking into
account the covariance matrix Bsys. However, the correlations in the experimental
covariance matrix B = Bsys + Bstat are smaller due to the uncorrelated statistical
uncertainty modeled with Bstat. In general, the larger the statistical error com-
pared to the systematic error, the lower the correlations between the experimental
data points.
This section dealt with the specification of the likelihood in the Bayesian update

formula. Once the predictions of the model are obtained, the computation of the
likelihood can be quickly performed. The evaluation of the posterior probability
density function, however, is difficult. In order to calculate the posterior pdf

1This assumption is made for the sake of simplicity. Usually, the efficiency will depend on
the energy and sometimes also on the count rate.
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for several parameter vectors ~p, the model has to be evaluated for each model
parameter vector of the statistical ensemble. The next section presents one way
to deal with this situation, which is the linearization of the model.

3.2 Bayesian update of parameters

The Bayesian update formula for nuclear data evaluation was given in Equa-
tion 3.1. In section 3.1 we argued the choice of a multivariate normal distribution
for the likelihood. The two missing pieces to apply the Bayesian update formula
are the evidence and the prior distribution. The evidence represents a normal-
ization constant for the posterior distribution and the calculation of its value is
not required, as will be seen in this section. If our prior knowledge about the
model parameters is given only by best estimates and associated variances and co-
variances, we should choose—according to the principle of maximum entropy—a
multivariate normal distribution. Therefore, we introduce the multivariate normal
distribution as the prior distribution for the model parameters,

π(~p |M) =
1√

(2π)d|A0|
exp

{
−1

2
(~p− ~p0)T A−1

0 (~p− ~p0)

}
. (3.14)

The vector ~p0 represents the best apriori estimate of the model parameters, the
covariance matrix A0 contains associated variances and covariances, and d is the
number of model parameters contained in ~p0.
Even though, both likelihood and prior are given as multivariate normal distri-

butions, the posterior distribution is still difficult to evaluate. This is due to the
fact that the evaluation of the likelihood `(σ | ~p,M) involves the nuclear model.
Frequently, nuclear model calculations require solutions of differential equations.
Thus, a relationship between physical observables and the model parameters does
not exist in general. Furthermore, depending on the requested incident energy,
model calculations may be very time demanding.
One possible solution is to linearize the nuclear model, which means to use a

first order Taylor expansion instead of the true model,

Mlin(~p) = ~σref + S(~p− ~pref) with S =
∂M(~p)

∂~p

∣∣∣∣
~p=~pref

. (3.15)

The vector ~σref is the result of the exact model predictionM(~pref) at the expansion
point ~pref. The sensitivity matrix S represents the Jacobian matrix of the nuclear
model at the expansion point. Noteworthy, using the center vector ~p0 of the prior
distribution as the expansion point is a reasonable choice, but not a necessity.
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Replacing the original model by the linearized model in the likelihood, Equa-
tion 3.3, yields

`(~σ | ~p,M) =
1√

(2π)n|B|
exp

{
−1

2
(~σeff − S~p)T B−1 (~σeff − S~p)

}
(3.16)

with
~σeff = ~σ − ~σref + S~pref . (3.17)

The matrix B is the covariance matrix of the experiment, the vector ~σ contains
the measured observables, and n is its dimension.
We have to calculate the product of likelihood and prior to get the posterior.

The following consideration is helpful to achieve this goal. Technically, the likeli-
hood gives the probability density to obtain a certain measurement ~σ if the true
values of the observables are given by the model prediction. However, the exponent
is symmetric concerning the measurement and the model prediction. Swapping
~σeff and S~p in Equation 3.16 does not alter the result. Therefore, we may for-
mally interpet this equation as a multivariate normal distribution for the model
parameter vector ~p. We accept the broken normalization for the moment.

How to find the center vector ~p` and the covariance matrix B` of this multi-
variate normal distribution? We use ` as subscript to indicate that ~p` and B` are
the distribution parameters for the model parameter vector associated with the
likelihood. We can expand the relevant part of the exponent of a multivariate
normal distribution with center vector ~p` and covariance matrix B`,

(~p− ~p`)TB−1
` (~p− ~p`) = ~pTB−1

` ~p+ ~pTB−1
` ~p`

+~pT` B−1
` ~p+ ~pT` B−1

` ~p` .
(3.18)

Carrying out the same expansion for the exponent in Equation 3.16 yields

(S~p− ~σeff)TB−1(S~p− ~σeff) = ~pTSTB−1S~p+ ~pTSTB−1~σeff

+~σTeffB
−1S~p+ ~σTeffB

−1~σeff .
(3.19)

Comparing the first terms on the r.h.s. of Equation 3.18 and Equation 3.19, we
identify

B−1
` = STB−1S . (3.20)

Comparing the second terms on the r.h.s. of Equation 3.18 and Equation 3.19, we
identify

B−1
` ~p` = STB−1~σeff ⇒ ~p` = B` S

TB−1~σeff . (3.21)

We obtained the center vector ~p` and the covariance matrix B` for the parameter
vector ~p in the likelihood. Inserting found expressions again into Equation 3.18,
we realize that the 4th term on the r.h.s. differs from the corresponding term
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in Equation 3.19. This constant deviation in the exponent represents merely a
rescaling of the multivariate normal distribution, but does not alter its functional
form.
Because both the prior given in Equation 3.14 and the likelihood given in Equa-

tion 3.16 are multivariate normal distributions, also the posterior is a multivariate
normal distribution. Using Equation 2.54, we obtain the center vector ~p1 and the
covariance matrix A1 of the posterior,

A1 =
(
A−1

0 + B−1
`

)−1
=
(
A−1

0 + STB−1S
)−1

, (3.22)

~p1 = A1

(
A−1

0 ~p0 + B−1
` ~p`

)
= A1

(
A−1

0 ~p0 + STB−1~σeff
)
. (3.23)

The application of the Woodbury matrix identity (Woodbury, 1950) (see sec-
tion B.3) allows to rewrite these formulas to

A1 = A0 −A0S
T
(
SA0S

T + B
)−1

SA0 , (3.24)

~p1 = ~p0 + A0S
T
(
SA0S

T + B
)−1

(~σeff − S~p0) . (3.25)

In general, the Bayesian update formulas given by Equation 3.24 and Equation 3.25
appear to be numerically preferable to those in Equation 3.22 and Equation 3.23
because only one inversion on the grid of the experimental data is required.
SAMMY (Larson, 1998), a popular computer code for making R-matrix fits,

uses both versions of the update formulas. In the diction of the SAMMY manual,
the first block here corresponds to the (M+W) inversion scheme and the second
block to the (N+V) inversion scheme. SAMMY was originally published in 1984,
when computer power was very limited. Under the assumption that the covariance
matrices for both the experimental data and the model parameters are diagonal,
the update formulas Equation 3.22 and Equation 3.23 are beneficial because the
inversion of both covariance matrices is trivial and the final more involved inversion
is performed on the low dimensional space of model parameters. However, using
a diagonal experimental covariance matrix means to neglect systematic errors of
the experiment; or to only keep their diagonal contribution and thereby throwing
away information.
The linearization of the nuclear model lead to a multivariate normal posterior

distribution. Because we know the functional form of a properly normalized mul-
tivariate normal distribution, the computation of the evidence is not needed. In
general, the purpose of the evidence is to take care of the proper normalization of
the posterior distribution.
Two possible issues have to be considered when performing the Bayesian update

procedure with the linearized model. For describing the first issue, assume that
the experimental data suggest a parameter vector ~p far away from the parameter
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vector ~p0 at which the nuclear model had been linearized. The updated parameter
vector ~p1 may substantially deviate from the result using the exact nuclear model.
This situation is shown in the left diagram of Figure 3.1. A possible solution of
this problem is an iterative evaluation of the Bayesian update formula. In each
iteration step using the updated parameter vector ~p1 from the previous iteration
as expansion point ~pref. The iteration may continue until convergence is achieved.
The second issue concerns evaluated confidence intervals that significantly differ
from those resulting from using the exact nuclear model. This issue is illustrated
in the right part of Figure 3.1.
In general, however, the Bayesian update formula with the linearized model can

be expected to produce reasonable results if two criteria are met: The expansion
point of the linearized model is close to the maximum of the posterior distribution,
and the experimental data have small uncertainties, thereby narrowing down the
uncertainties of the parameters to the linear domain.
One remaining question is the choice of proper correlations between model pa-

rameters in the prior covariance matrix. If mathematical relations between model
parameters are known, these relations determine the correlations to use. If we
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Figure 3.1: Both diagrams show the total cross section of 181Ta at 2 MeV as a
function of the optical model parameter v1. The parameter v1 is given relative
to the default value of TALYS. The dashed green line indicates a hypothetical
experimental measurement and the green solid lines indicate the corresponding
experimental confidence interval. Each diagram illustrates a possible issue of the
Bayesian update when working with a linearized model. Left diagram: the model
is linearized around v1 = 0.88. The red line shows the systematics of the linearized
model. After the update with experimental data, the new best estimate is v1 ≈
1.07, marked by the orange line. However, the new best estimate obtained by
using the exact model would be v1 = 1, marked by the blue line. Right diagram:
the model is linearized around the optimal value v1 = 1. The red line corresponds
to the linearized model. The updated confidence interval for v1, indicated by the
orange lines, is larger than that obtained by using the exact model, indicated by
the blue lines.
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Figure 3.2: 95% confidence ellipses of bivariate normal distributions with Var[σ1] =
Var[σ2] = 1. The depicted bivariate normal distributions differ by the assumed
correlation between the two variables. With increasing correlation, the confidence
ellipses become thinner and more tilted. Also, the area surrounded by the ellipse
gets smaller. This is the geometric expression of the fact that correlations lower
the determinant of the covariance matrix.

are not aware of such relations or they simply do not exist, the principle of maxi-
mum entropy demands to treat the model parameters as uncorrelated. To justify
this statement, the differential entropy of the multivariate normal distribution is
needed. Recalling its definition from Equation 2.61, we realize that its value is
only dependent on the determinant and the dimension of the covariance matrix. A
special case of Hadamard’s inequality (Hadamard, 1893) for positive semi-definite
matrices, such as covariance matrices, is

|V| ≤
d∏
i=1

Vii. (3.26)

This inequality states that the product of the diagonal elements Vii is always
greater than or equal the determinant of the matrix. If the model parameters are
uncorrelated, off-diagonal elements of the covariance matrix V are zero. In this
case, the determinant is exactly given by the product of the diagonal elements,
which yields the largest possible determinant according to Hadamard’s inequal-
ity. The introduction of off-diagonal elements, thereby correlating parameters,
can only lower the value of the determinant. Therefore, the maximal differential
entropy is attained if parameters are uncorrelated.
As pointed out at the end of section 2.3, the determinant of the covariance

matrix is also related to the confidence hyperellipsoids of the multivariate normal
distribution. The change of its shape with increasing correlations for a bivariate
normal distribution is displayed in Figure 3.2.
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3.3 Bayesian update of observables

Linearizing the model around a reference set of model parameters has the benefit
that it leads to analytic matrix formulas for the Bayesian update, as has been
discussed in section 3.2. In contrast, using the exact model requires the application
of Monte Carlo procedures, which are computationally involved. However, the
linearization of the model has two drawbacks:

1. If the reference point for the linearization is far away from the optimal pa-
rameter vector according to model prior and experimental data, the Bayesian
update using the linearized model may yield a bad approximation of the best
parameter vector. The magnitude of this effect depends on the non-linearity
of the model.

2. If experimental evidence does not narrow down parameter uncertainties to
a sufficiently linear domain of the model, evaluated uncertainties may be
misleading.

Both issues were illustrated in Figure 3.1 of the last section. In this section, we
present another way of linearizing the model, which follows the maxim to be on
the safe side.
The probability density functions chosen for the likelihood and the prior have

been discussed in section 3.1 and section 3.2. For reference, we repeat the func-
tional form of the model prior here. The model prior is given by

π(~p |M) =
1√

(2π)d|A0|
exp

{
−1

2
(~p− ~p0)T A−1

0 (~p− ~p0)

}
, (3.27)

with the prior best estimate ~p0 and the associated covariance matrix A0. The
number of model parameters contained in ~p0 is denoted by d.
In order to make the Bayesian update formula analytically tractable, the original

nuclear model may be replaced by a simple surrogate model. This surrogate model
is constructed in the following way. Parameter vectors ~pi are sampled from the
prior distribution given in Equation 3.27. The nuclear model is applied for each
sampled parameter vector to get the model prediction, ~σi = M(~pi). Then, a
multivariate normal distribution is constructed based on the model predictions
~σi. This requires the specification of a center vector and a covariance matrix.
There are two possibilities to specify the center vector. The first possibility is to
evaluate the nuclear model for the center vector ~p0 of the prior distribution. Then,
the center vector at the level of physical observables is given by ~σ0 =M(~p0). The
second possibility is to to get the center vector ~σ0 by computing the arithmetic
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Figure 3.3: The dependence of the covariance matrix on the chosen center point ~σ0.
The black curve indicates predictions of cross sections σ1 and σ2 by a hypothetical
model. In the left diagram, the center is given by the arithmetic mean. This choice
leads to a covariance matrix which is visualized by the green confidence ellipses.
In the right diagram, the center is given by ~σ0 =M(~p0). The confidence ellipses of
the associated covariance matrix are drawn in red. Due to the minimum variance
property of the arithmetic mean, the left confidence ellipses enclose a smaller area.
However, the center point is not located on the model curve.

mean of the drawn samples {~pi}i=1:m,

~σ0 =
1

m

m∑
i=1

~σi . (3.28)

Having determined the center vector ~σ0, the covariance matrix can be computed
by

Ã0 =
1

n− 1

m∑
i=1

(~σi − ~σ0)(~σi − ~σ0)T . (3.29)

The computation of the covariance matrix is dependent on the center vector ~σ0.
The advantage of using the arithmetic mean for ~σ0 is that this choice leads to
minimal variance. The disadvantage may be that the vector ~σ0 represents a col-
lection of values for the observables, which cannot be reached by any choice of
model parameters. The vector ~σ0 would be outside the possibilities of the model.
These arguments are illustrated in Figure 3.3. In this thesis, we consider the use of
~σ0 =M(~p0) as the center vector to be the better option due to the latter reason.

The result of the outlined procedure is a statistical surrogate modelMsur(~σmod),
which replaces the original nuclear model in the Bayesian update procedure. Using
the surrogate model, the model prior takes the form

π(~σmod |M) =
1√

(2π)n|Ã0|
exp

{
−1

2
(~σmod − ~σ0)T Ã−1

0 (~σmod − ~σ0)

}
, (3.30)

Noteworthy, the probability distribution of the surrogate model is specified at
the level of physical observables, such as cross sections. The model parameters
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of the surrogate model are the physical observables. Hence, the connection to
model parameters is lost. The new evaluation scheme to tackle a large number of
observables developed in this thesis recovers this broken link. It is presented in
the chapter 5.
At this point it is important to remark that the modified prior distribution refers

to physical observables specified at the energies of the model mesh. For instance,
the model calculation may yield the cross sections at incident energies from 1 to
20 MeV in steps of 1 MeV. In contrast, the vector of experimental measurements
may contain the cross sections at incident energies in-between these mesh points.
Therefore, to be more precise, we refer with ~σexp to the observables measured in
the experiment and with ~σmod to the observables given at the incident energies of
the model mesh. We assume that the interpolation of the model predictions to the
incident energies of the experiment can be expressed as a linear transformation,

~σint =Msur(~σmod) = S~σmod , (3.31)

where S is the transformation matrix. The construction of this matrix is discussed
in section 3.4. Because of using the surrogate model with the mapping rule in
Equation 3.31, the likelihood introduced in Equation 3.3 is modified to

`(~σexp |~σmod,Msur) =
1√

(2π)n|B|
exp

{
−1

2
(~σexp − S~σmod)T B−1 (~σexp − S~σmod))

}
,

(3.32)
where B is the experimental covariance matrix, and n is the number of experi-
mental data points. The structure of the prior in Equation 3.30 and the likelihood
in Equation 3.32 is identical to the forms in Equation 3.14 and Equation 3.16 pre-
sented in section 3.2. Thus, we can reuse the Bayesian update formulas given in
Equation 3.24 and Equation 3.25 with variable names substituted appropriately,

Ã1 = Ã0 − Ã0S
T
(
SÃ0S

T + B
)−1

SÃ0 , (3.33)

~σ1 = ~σ0 + Ã0S
T
(
SÃ0S

T + B
)−1

(~σexp − S~σ0) . (3.34)

Applying these update formulas yields a modified center ~σ1 and covariance matrix
Ã1 for the multivariate normal distribution of the surrogate model parameters
~σmod.

It is important to consider the role of the surrogate model in more detail. Its
essential benefit is the convenient numerical treatment due to the simplification
of the original model. The surrogate model approximates relationships of observ-
ables, such as cross sections at different incident energies, by linear relationships.
The error thereby made due to non-linearities is taken into account as additional
uncertainty. The situation is shown for a schematic example in Figure 3.4. The
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fact that non-linear features of the original model are lost in the surrogate model
leads to lower predictive power compared to the original model. For instance, a
precise measurement at one incident energy may suffice to predict accurately the
cross section at another energy using the original model. The surrogate model, in
contrast, is limited to accounting for linear trends. Therefore, the uncertainties
in the predictions are always higher compared to the original model. Simply said,
the uncertainties due to non-linearities are just added to the uncertainties of the
prediction.
The loosening of the model systematics can be either an advantage or a dis-

advantage. If the original model is a very good description of reality, it is not
desirable to throw away some of its features. However, if the original model is not
that good but still useful, one might favor using the surrogate model. General
trends of the models are still captured, but details are thrown away. This opens
up the possibility that observables resulting from a Bayesian update reasonable
resemble included experimental data, even though the original model would not
be able to describe the data.
To conclude this section, Figure 3.5 and Figure 3.6 give impressions of the non-

linearities of the models used in TALYS to predict the neutron-induced total cross
section of 181Ta at low incident energies. Only the three most sensitive optical
model parameters rv, av and v1 are taken into account.
The next section elaborates on the specification of the transformation matrix

to map the predictions from the model mesh to the experimental observables.
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Figure 3.4: Visualization of the surrogate model. The original model (red) is
replaced by a linear surrogate model (blue). Non-linear features of the original
model are captured as additional uncertainties in the surrogate model.
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Figure 3.5: The cloud of orange points visualizes the accessible combinations of
values (in millibarn) for the neutron-induced total cross section of 181Ta at 1 MeV
and 5 MeV that can be reached by varying the optical model parameters rv, av,
and v1. The interval of variation for each model parameter relative to the TALYS
default value is given by [0.8,1.2]. The surrogate model approximates this cloud
of model possibilities by an ellipse. White regions not accessible by the original
model are possible results if using the surrogate model. The systematics of the
original model are loosened.

Figure 3.6: Visualization of the non-linear model systematics. The axes denote
the neutron-induced total cross section (in millibarn) of 181Ta at 1, 5, and 10 MeV.
The depicted manifold visualizes possible combinations of the cross sections when
varying optical model parameters rv and v1 up to 20% around TALYS default
values. The model parameter av is set to the TALYS default.
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3.4 Mapping model data to experiment

Model calculations require the specification of energies and angles at which the
values of observables should be computed. Two approaches are available to map
the calculated observables at the mesh points to the energies and angles of the
experimental data.
The first approach uses mesh points that coincide with the energies and angles

of the experimental data. If only few experimental data points are involved, this
approach can considerably speed up the search for the best set of model parameters
because usually the time needed for a model calculation depends on the chosen
mesh size. However, the comparison of calculated results with experimental data
that have not been taken into account for the model calculation is not possible.
The second approach makes use of a sufficiently dense grid that spans the com-

plete energy and angular range of the experimental data. An interpolation scheme
is applied to obtain observables at energies and angles in-between the mesh points.
This approach is beneficial if plenty of experimental data are available lying nearby
in terms of energy or angle. Computing the observables at only a few mesh points
significantly reduces the computation time compared to calculations at all ener-
gies of the included experimental data. In general, cross sections at high incident
energies (above few MeV) are smooth functions of the energy and therefore inter-
polation between mesh points yields sufficiently accurate results.
We follow the second approach because of its greater flexibility. Especially,

it allows predictions at energies where no experimental data are available, one
motivation of using Bayesian inference in nuclear data evaluation.
The Bayesian inference applied in this thesis is based on the multivariate normal

distribution which exhibits the important property that a linear transformation
of the random vector leads again to a multivariate normal distributions. More
precisely, if the pdf of ~X is a multivariate normal distribution with mean vector ~µ
and covariance matrix Σ, then the pdf of the transformed variable ~Y = S ~X +~b is
also a multivariate normal distribution with mean vector ~µ′ = S~µ+~b and covari-
ance matrix Σ′ = SΣST . Due to this fact interpolation schemes that are given
as linear transformations of the model vector are numerically beneficial because a
closed-form solution of the Bayesian update formula is preserved.
Consider a vector of cross sections ~σ resulting from a model calculation, where

each of its components σi is the cross section at a certain incident energy Ei.
Assume that the cross sections of the experiment have been measured at different
energies E ′j. An interpolation scheme based on a linear transformation to map
the cross sections from the energies of the model mesh to the energies of the
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experiment takes the form

σ(E ′j) =
∑
i

α(E ′j, Ei)σ(Ei) . (3.35)

The corresponding transformation sensitivity matrix S is given by

S =


α(E ′1, E1) . . . α(E ′1, En)

... . . . ...
α(E ′m, E1) · · · α(E ′m, En)

 . (3.36)

Hence, the mapping of the vector of model cross sections is performed by ~σ′ =

S~σ. Noteworthy, such a linear transformation does not imply linear interpo-
lation in-between the energies. As an example, consider three cross sections
~σ = (σ1, σ2, σ3)T at energies E1, E2, E3 from a model calculation. These cross
sections can be perfectly fitted with a polynomial of degree two,

f(E) = c1E
2 + c2E + c3 . (3.37)

The coefficients ~c = (c1, c2, c3) are the solution of the set of linear equations

~σ = X~c with X =

 E2
1 E1 1

E2
2 E2 1

E2
3 E3 1

 , (3.38)

leading to the formal solution ~c = X−1~σ. Knowledge of the coefficients ~c allows to
interpolate the model cross sections at the experimental energies E ′i,

f(E ′i) = (E ′2i , E
′
i, 1)~c = (E ′2i , E

′
i, 1) X−1~σ . (3.39)

From these considerations, we can identify the linear transformation matrix S =

(E ′2i , E
′
i, 1) X−1 and thus a polynomial of degree two is a linear transformation.

The matrix S is fully specified by the model energies and the experimental energies.
Once it is calculated, the model prediction at the experimental energies is ~σ′ = S~σ

where ~σ contains the predictions at the model energies. More generally, all kinds
of polynomials such as splines and trigonometric polynomials can be expressed as
linear transformations.
Throughout this thesis, we choose a simple linear interpolation for integral

cross sections and bilinear interpolation for spectra and angle-differential cross
sections. Linear and bilinear interpolation lead to very sparse transformation ma-
trices. Maximally four elements per row in the transformation matrix are distinct
from zero. This property can be exploited to speed up matrix multiplications
required in the Bayesian update procedure.
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3.4.1 Mapping of angle-integrated cross sections

Mapping in the case of cross sections (perfect monochromatic incident beam) In
this subsection we describe the mapping of angle angle-integrated cross section
data from the model mesh to the incident energies of the experimental data. For
simplicity we restrict ourselves to cross sections of one reaction channel. Let
~E = (E1, . . . , En)T be the mesh of model energies and ~E ′ = (E ′1, . . . , E

′
m)T the

energies with available experimental data. The model energies Ej are assumed
to be in ascending order, Ej < Ej+1. The model cross sections at ~E are denoted
by ~σ = (σ1, . . . , σn)T . The interpolated model cross section σ′i for one particular
experimental energy E ′i obtained through linear interpolation is

σ′i = σj +
σj+1 − σj
Ej+1 − Ej

(E ′i − Ej) (3.40)

=

(
Ej+1 − E ′i
Ej+1 − Ej

)
σj +

(
E ′i − Ej
Ej+1 − Ej

)
σj+1 ,

where Ej is the closest energy to E ′i from below and Ej+1 is the closest energy to
E ′i from above. Thus, the elements of the transformation matrix S are given by

Sij :=



Ej+1−E′i
Ej+1−Ej if Ej is closest neighbor to E ′i from below

E′i−Ej−1

Ej−Ej−1
if Ej is closest neighbor to E ′i from above

0 otherwise

(3.41)

Each row of the transformation matrix S describes the mapping from model cross
sections to one particular experimental energy and contains at most two non-
vanishing elements. Hence only 2m multiplications required in order to map the
model cross sections to the experimental mesh. In contrast, spline interpolation
would require m×n multiplications where n is the number of model mesh points.
Mapping in the case of cross sections (non-monochromatic incident beam, Gaus-

sian folding) However, in a real experiment this simple mapping rule does not
always provide an adequate description. Incident particle beams are usually not
perfectly monochromatic. Therefore, the angle-integrated cross section measured
in such an experiment is the superposition of cross sections in a certain interval
of incident energies. As long as cross sections are sufficiently smooth functions of
the incident energy, effects of non-monochromaticity can be neglected and one can
use the linear interpolation scheme described above. However, if the cross section
fluctuates significantly with varying energy, the interpolation scheme has to be
adapted.
In the following, we derive the adapted interpolation scheme for the case that

the energies in the incident particle beam are distributed according to a normal
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distribution. Introducing the probability density function of the standard normal
distribution,

φ(x) =
1√
2π

exp

(
−x

2

2

)
, (3.42)

with vanishing mean value ~µ = E[x] = 0 and standard deviation δ = 1, we define
the cumulative distribution function

Φ(x) =

∫ x

−∞
φ(x′) dx′ , (3.43)

which satisfies Φ(∞) = 1. Using the pdf of Equation 3.42, we can express normal
distributions with arbitrary means µ and standard deviations δ,

φ(x;µ, δ) =
1

δ
φ

(
x− µ
δ

)
, (3.44)

Φ(x;µ, δ) = Φ

(
x− µ
δ

)
. (3.45)

In our present considerations, mean and standard deviation define center and
spread of the energies in the incident particle beam. In order to to get the proper
mapping from the model cross sections to the observables of the experiment, we
have to evaluate the energy-weighted integral

σ(E) =

∫ Emax

Emin

σ(E ′)φ(E ′;µ, δ) dE ′ . (3.46)

Here, the integration boundaries Emin and Emax refer to the smallest and biggest
energy of the model mesh. The model cross section σ(E ′) can be obtained at
arbitrary energies E ′ by linear interpolation, Equation 3.40. Thus, we can eval-
uate the integral piecewise, where the boundaries of each segment are defined by
consecutive energies Ej and Ej+1 of the model mesh. Within one segment, the
integral takes the form∫ Ej+1

Ej

[(
Ej+1 − E ′

Ej+1 − Ej

)
σj +

(
E ′ − Ej
Ej+1 − Ej

)
σj+1

]
φ(E ′;µ, δ) dE ′ (3.47)

This integral is of the form
∫

(aE ′ + b)φ(E ′;µ, σ) dE ′ and can be solved analyt-
ically in terms of the cumulative distribution function. For the sake of compact
expressions, we introduce the functions

g (Ej, Ej+1;µ, σ) = φ (Ej+1;µ, δ)− φ (Ej;µ, δ) , (3.48)

G (Ej, Ej+1;µ, σ) = Φ (Ej+1;µ, δ)− Φ (Ej;µ, δ) . (3.49)

Thus the solution of the integral Equation 3.47 can be written
σj

Ej+1 − Ej

[
(Ej+1 − Ej − µ) G (Ej, Ej+1;µ, δ) + δ g (Ej, Ej+1;µ, δ)

]
+ (3.50)

σj+1

Ej+1 − Ej

[
µG (Ej, Ej+1;µ, δ)− δ g (Ej, Ej+1;µ, δ)

]
.
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In order to assemble the solutions of all piecewise integrations, we use the abbre-
viations

cj (µ, δ) :=
1

Ej+1 − Ej

[
(Ej+1 − Ej − µ) G (Ej, Ej+1;µ, δ)− δ g (Ej, Ej+1;µ, δ)

]
,

(3.51)

c̃j (µ, δ) :=
1

Ej − Ej−1

[
µG (Ej−1, Ej;µ, δ)− δ g (Ej−1, Ej;µ, δ)

]
, (3.52)

to specify the coefficients

aj(µ, δ) :=


c1(µ, δ) for j = 1

cj(µ, δ) + c̃j(µ, δ) for 2 6 j 6 n− 1

c̃j(µ, δ) for j = n

. (3.53)

Finally, the folded cross section from the model that can be compared with the
experimental observable can be written as

σ(µ, δ) =
n∑
j=1

aj(µ, δ)σj . (3.54)

As a reminder, the energy mesh of the model consists of n energies Ej and σj are
the associated values of the cross sections obtained by the model calculation. The
mean µ corresponds to the energy of the incident beam at which the experiments
are performed while the standard deviation δ characterizes the energy spread of
the incident particle beam. Suppose we havem experimental points (µi, δi). Then,
the corresponding transformation matrix S is given by

S =


a1(µ1, δ1) . . . an(µ1, δ1)
... . . . ...
a1(µm, δm) · · · an(µm, δm)

 . (3.55)

Note that the folding of model cross sections leads to a dense transformation
matrix. Analyzing the expression in more detail reveals that this is only partially
true. In fact, the contributions of model cross sections at energies of the mesh a few
δi away from µi are almost vanishing and can be neglected in good approximation.
The variances and covariances of the mapped model cross sections play an im-

portant role in Bayesian inference with multivariate normal distributions. The
variance of a mapped model cross section can be expressed in terms of the vari-
ances of the model cross sections at the mesh points,

Var[σ(µ, δ)] =
n∑
j=1

[aj(µ, δ)]
2 Var[σj]+2

n∑
i=2

i−1∑
j=1

ai(µ, δ) aj(µ, δ) Cov[σi, σj] . (3.56)
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The covariance between two mapped model cross sections σ(µ1, δ1) and σ(µ2, δ2)

is given by

Cov[σ(µ1, δ1), σ(µ2, δ2)] =
n∑
i=1

n∑
j=1

ai(µ1, δ1) aj(µ2, δ2) Cov[σi, σj] . (3.57)

Variances and covariances of mapped model cross sections are given as linear
combinations of variances and covariances of the model cross sections at the mesh
points. This is due to the fact that the folding integral Equation 3.46 represents
a linear functional.

It must be remarked that the inclusion of the energy spread of the incident beam
is conceptually different from taking into account an error in the determination of
the incident energy. Accounting for the energy spread means to model a known
property of the experimental setup. In contrast, accounting for the uncertainty of
the incident energy means to account for the imperfect knowledge of the actual
state of the incident beam. In other words, we may model the energy spread of
the incident beam with a normal distributions N (µ, σ), but we are still uncertain
about the exact values of µ and σ. The proper treatment of the uncertainty of the
incident energy is the subject of section 3.5.

3.4.2 Mapping spectra

The treatment of angle-differential cross sections as well as spectra of emitted
particles in the update procedure is more involved because of their dependence
on two variables. Hence a different procedure for the mapping of model data to
the energies of the experiment must be applied. In the following we restrict the
explanation to the treatment of spectra.

The collision of an incident beam of energy E with some target nuclei will lead to
a variety of reactions which are compatible with energy conservation. Depending
on the actual reaction, particles with different energies E ′ will be emitted. Thus
we can a spectrum of the emitted particles described by the cross section s(E,E ′).
The mathematical relation between a cross section σ(E) at a certain incident

energy E and the associated spectrum s(E,E ′) with E ′ being the energy of the
scattered particle is

σ(E) =

∫ ∞
0

s(E,E ′) dE ′ . (3.58)

The upper boundary for integration is due to the conservation of energy. Knowl-
edge of the spectrum s(E,E ′) at every emitted energy E ′ contains the information
needed to calculate the associated reaction cross section σ(E).
In order to apply Bayesian inference, model predictions of the spectrum at

incident energies Ei and emitted energies E ′j of the model mesh have to be mapped
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to the incident and emitted energies of the experimental data. Two cases have to
be addressed. If the emitted energy is about the incident energy, the spectrum
is given by a number of spikes associated with the resolved excitation energies
of the residual target nucleus. If the emitted energy is sufficiently smaller than
the incident energy, the spectrum can be regarded as a continuous function of the
emitted energy due to the limited resolution of detectors.
We first consider the case of a continuous spectrum. We use the abbreviation

sij ≡ s(Ei, Ej) to denote the values of the spectrum calculated in a model cal-
culation at the mesh points (Ei, Ej). Let Ẽ and Ẽ ′ be the incident and emitted
energy of one experimental data point, respectively. In order to determine the
corresponding value of the model, bilinear interpolation is used in this thesis. The
formula for bilinear interpolation is

s(Ẽ, Ẽ ′) =
1

(E2 − E1)(E ′2 − E ′1)

[
(E2 − Ẽ)(E ′2 − Ẽ ′) s11 + (E2 − Ẽ)(Ẽ ′ − E ′1) s12 +

(Ẽ − E1)(E ′2 − Ẽ ′) s21 + (Ẽ − E1)(Ẽ ′ − E ′1) s22

]
.

(3.59)

The quantities E1 and E ′1 are the closest energies to Ẽ and Ẽ ′ from below within
the set of all energies of the model mesh. Similarly, the quantities E2 and E ′2

are the closest energies to Ẽ and Ẽ ′ from above. Bilinear interpolation is a linear
transformation from the vector of computed values of the spectrum to the incident
energies and emitted energies of the experimental data.

Suppose that the model mesh consists of n incident energies Ei and k emitted en-
ergies E ′j. We assume the incident energies and the emitted energies to be ordered,
Ei < Ei+1 and E ′j < E ′j+1. A reasonable structure of the model vector ~s containing
the spectrum values could be ~s = (s11, · · · , s1k, · · · , si1, · · · , sik, · · · , sn1, · · · , snk)T .
However, other schemes to assign values of the spectrum to positions in the model
vector are equally possible. In order to formulate the transformation matrix, we
introduce the following quantities. The quantity V <

i denotes the incident energy
El of the model mesh that is closest from below to the incident energy Ẽi of the ith

experimental data point. The quantity V >
i denotes the incident energy El+1 of the

model mesh that is closest from above to the incident energy Ẽi of the ith experi-
mental data point. The quantitiesW<

i andW>
i refer to the emitted energy and are

analogously defined. Additionaly, we abbreviate di =
[
(V >

i −V <
i )(W>

i −W<
i )
]−1.

With E#j we refer to the incident energy associated with the jth element of the
model vector. Analogously, with E ′#j we refer to the emitted energy associated
with the jth element of the model vector. For instance, using the structure of the
model vector ~s outlined above, we have E#2 ≡ E1 and E ′#2 ≡ E ′2. As a reminder,
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Ẽi and Ẽ ′i refer to incident energy and emitted energy of the ith experimental data
point, respectively.
Using the introduced notation, the elements Sij of the transformation matrix S

for the spectra are

Sij :=



di (V
>
i − Ẽi)(W>

i − Ẽ ′i) if V <
i = E#j and W<

i = E ′#j

di (V
>
i − Ẽi)(Ẽ ′i −W<

i ) if V <
i = E#j and W>

i = E ′#j

di (Ẽi − V <
i )(W>

i − Ẽ ′i) if V >
i = E#j and W<

i = E ′#j

di (Ẽi − V <
i )(Ẽ ′i −W<

i ) if V >
i = E#j and W>

i = E ′#j

0 otherwise

(3.60)

The ith row describes the mapping of spectrum values of the model vectors to
the incident energy and emitted energy of the ith experimental data point. The
mapped values of the spectrum ~s ′ are given by S~s. The transformation matrix S

is very sparse, each row contains maximally four non-zero elements. Exploiting
this sparsity is a very important step in dealing with spectral data. For instance,
mapping to 1000 experimental data points from model data given on a mesh of
100 incident energies and 100 emitted energies leads to a transformation matrix of
dimension 103×104. A matrix of this dimension amounts to 80 MBytes if stored in
double precision, which is easily manageable on a modern computer. However, one
goal of this thesis is to consistently evaluate dozens or even hundreds of spectra
of different reaction channels together with cross sections and angle-differential
cross sections. Under this point of view, the storage requirement of 80 MBytes
for one reaction channel is already too much. However, exploiting the sparsity of
S greatly reduces the storage requirement. In the example, the reduced storage
requirement would amount to merely 32 KBytes.
The transformation matrix Equation 3.60 is derived under the assumption of

a monochromatic beam of incident particles and a detector with perfect energy
resolution. However, experiments to measure spectra have not only a certain
spread of energies in the incident beam but also a limited resolution in measuring
the energy of the emitted particles. If both the spread δ of energies in the incident
beam and the energy resolution δ′ for detecting emitted particles can be described
by a normal distribution, the following formula maps the spectrum from the model
mesh to the incident energy µ and emitted energy µ′ of the experimental data
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Figure 3.7: Bilinear interpolation as a sequence of two linear interpolations. First,
linear interpolation is done along the emitted energy E ′ in the two rows corre-
sponding to the incident energies of the model grid that are nearest to the incident
energy of the experimental data point. Second, linear interpolation is done along
the incident energy E between the obtained values (green stars) from the first step
to get the model value at the incident energy of the experimental data point (red
circle).

point,

s̃(µ, µ′) =

∫ Emax
inc

Emin
inc

∫ Emax
out

Emin
out

s(E,E ′)φ(E;µ, δ)φ(E ′;µ′, δ′) dE dE ′ . (3.61)

The limits of the integrals refer to the smallest and largest incident and emitted
energies of the model mesh. The definition of the two normal distributions denoted
with function symbol φ is given in Equation 3.42 and Equation 3.44. The value of
s(E,E ′) can be obtained by bilinear interpolation from the calculated spectrum
at the model mesh points, Equation 3.59. Bilinear interpolation can be carried
out by sequentially performing linear interpolations. Figure 3.7 illustrates this
approach. First we perform linear interpolation with respect to E, which allows
us to use Equation 3.54 for the folding of an angle-integrated cross section,

s̃(µ, µ′) =

∫ Emax
out

Emin
out

n∑
j=1

aj(µ, δ)s(Ej, E
′)φ(E ′;µ′, δ′) dE ′ . (3.62)

The coefficients aj(µ, δ) are defined as in Equation 3.53. The sum is over all n
incident energies Ej of the model mesh.
Applying linear interpolation with respect to the emitted energy E ′ leads in a

further step to

s̃(µ, µ′) =
n∑
j=1

m∑
k=1

aj(µ, δ) a
′
k(µ
′, δ′) s(Ej, E

′
k) . (3.63)

The coefficients a′k(µ′, δ′) are calculated in the same way as ak(µ′, δ′), but with the
emitted energy E ′k inserted. The sum is carried out over all m emitted energies of
the model mesh.
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Suppose there exist several experimental values of the spectrum. Let µi, δi, µ′j, δ′j
denote the measurement conditions for the ith experimental data point. Then, the
elements Sij of the transformation matrix are

Sij := apj(µi, δi)aqj(µi, δi), (3.64)

where pj is the index of the incident energy in the sorted mesh of incident energies
that corresponds to the incident energy associated with the jth element of the
model vector ~σ. The qj are analogously defined for the emitted energies.
The discussion so far was for the case of a continuous spectrum. However, if the

emitted energy is just slightly smaller than the incident energy, only few low lying
excitation levels of the target nucleus are involved in the scattering process. The
energy difference between these levels is reflected in the energy differences of the
emitted particles. Therefore, if the levels are sufficiently spaced, the detector can
resolve the energy differences and the spiky structure of the spectrum becomes
observable. With σxc,i being the cross section for scattering at the ith level of the
target nucleus, we can write the spectrum as

s (E,E ′) =
∑
i

σxc,i δ (Exc,i − E − E ′) . (3.65)

In order to compare the results of model calculations with the experiment, we have
to fold the true spectrum with the normal distributions φ(E;µ, δ) and φ(E ′;µ′, δ′)

characterizing the energy spread of the incident beam and the detector resolution,

s̃ (µ, µ′) =

∫ ∞
0

∫ ∞
0

s (E,E ′) φ (E;µ, δ) φ (E ′;µ′, δ′) dE dE ′ . (3.66)

Due to the Dirac delta-distribution, the integral with respect to E ′ can be imme-
diately evaluated,

s̃ (µ, µ′) =

∫ ∞
0

∑
i

σxc,i φ (E;µ, δ) φ (E − Exc,i;µ
′, δ′) dE . (3.67)

The remaining integral has a closed-form solution,

s̃ (µ, µ′) =
∑
i

σxc,i φ
(
Exc,i; (µ− µ′) ,

√
δ2 + δ′2

)
G
(

0,∞; µ̃, δ̃
)
, (3.68)

with the function G(.) defined in Equation 3.49 and the abbreviations

µ̃ =
(Exc,i + µ′) δ2 + µ δ′2

δ2 + δ′2
and δ̃ =

δ δ′√
δ2 + δ′2

. (3.69)

If we assume µ̃ � δ̃, then G(0,∞; µ̃; δ̃) ≈ 1 and therefore Equation 3.70 reduces
to

s̃ (µ, µ′) =
∑
i

σxc,i φ
(

(µ− µ′) ; Exc,i ,
√
δ2 + δ′2

)
. (3.70)
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We swapped the arguments (µ − µ′) and Exc,i, which is possible because of the
symmetry of the normal distribution, see Equation 3.42. Therefore, the result is
a sum of normal distributions centered at the Exc,i and scaled by the value of the
respective cross section σxc,i. Finally, the complete spectrum can be obtained by
adding up the solution for the folded continuous spectrum, Equation 3.63, and the
solution for the folded discrete spectrum, Equation 3.70.
In general, the energy spread of the incident beam and the resolution of the

detector may be neglected in the domain where the spectrum can be regarded
as continuous. However, for emitted energies close to the incident energy, the
discrete nature of the spectrum becomes noticeable. In this case, it is of utmost
importance to carefully assess the details of the experiment and fix spread δ and
resolution δ′ properly. In addition, the assumption of the normal distribution can
be questioned. For instance, the geometry of the experimental setup may suggests
using a rectangular kernel instead of a normal kernel. A non-adequate specification
of the folding kernel can lead to severe consequences for the comparability of
model results and experimental data. Even more severe, estimates or associated
uncertainties obtained through Bayesian inference may lose their validity.

3.5 Uncertainty about the incident energy

Specifics of the experimental setup, such as a finite energy spread in the incident
beam, can be taken into account in the Bayesian update by constructing the
sensitivity matrix S appropriately. Details on its construction have been given in
the previous two sections. Error sources, such as the imperfect knowledge about
the detector efficiency, can be taken into account by a proper construction of
the experimental covariance matrix B. A general discussion on its construction
has been given in section 3.1. Yet another possible error source requires special
treatment. The consequences of having a wrong idea about the incident energy
cannot be assessed by merely studying the experimental design. To assess the
impact of an inaccurately determined incident energy requires knowledge of the
model systematics. This section deals with the proper Bayesian treatment of an
uncertainty in the incident energy.
Starting point is an extended version of the Bayesian update formula. We

introduce a new random variable ~E, which contains the incident energies associated
with the experimental data points. Taking into account this new variable, the
Bayesian update formula takes the form

π(~p, ~E |~σ,M) ∝ `(~σ | ~p, ~E,M)π(~p, ~E |M) (3.71)
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with the factorized prior

π(~p, ~E |M) = π(~p |M) π( ~E) . (3.72)

The posterior pdf refers to both the vector of model parameters ~p and the vector
of incident energies ~E associated with the vector of measurements ~σ. The fac-
torized form of the prior indicates that model parameters and incident energies
of the experiment are assumed uncorrelated before taking into account the data.
However, in the resulting posterior pdf, correlations between these two variables
will exist in general. The specification of the prior for the model parameter has
been discussed in section 3.2. In the following we want to keep the numerical ben-
efits of the Bayesian update based on the linearization of the model. Therefore,
we assume again a multivariate normal distribution for the prior on the incident
energies,

π( ~E) =
1√

(2π)n|K|
exp

{
−1

2

(
~E − ~E0

)T
K−1

(
~E − ~E0

)}
. (3.73)

The best guess of the incident energies associated with the experimental data
points is denoted by ~E0. The associated uncertainties are expressed in terms of
the covariance matrix K. The number of experimental data points is denoted by
n.
In order to use the analytical Bayesian update formulas, we have to linearize

the nuclear modelM(~p; ~E) with respect to the model parameters and the incident
energies,

Mlin(~p; ~E) = ~σ0 + S(~p− ~p0) + T( ~E − ~E0) , (3.74)

with ~σ0 =M(~p0; ~E0) and

S =
∂M(~p; ~E)

∂~p

∣∣∣∣∣
~p=~p0

and T =
∂M(~p; ~E)

∂ ~E

∣∣∣∣∣
~E= ~E0

. (3.75)

The Jacobian matrices S and T can be determined numerically. We used the
center vectors ~p0 and ~E0 of the prior distributions as expansion points. Inserting
this linearized model in the likelihood, Equation 3.3, yields

`(~σ | ~p, ~E,M) =
1√

(2π)n|B|
×

exp

{
−1

2

(
~σeff − S~p−T ~E)

)T
B−1

(
~σeff − S~p−T ~E)

)}
, (3.76)

where
~σeff = ~σ − ~σ0 + S~p0 + T ~E0 . (3.77)
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The vector ~σ contains the measured values of the observables. The terms inde-
pendent of ~p and ~E were merged with the experimental vector to simplify further
treatment. Thus we introduce an effective measurement vector ~σeff.
In order to derive the distribution parameters of the posterior pdf, we note that

we are dealing with the statistical model

~σ =Mlin(~p; ~E) + ~ε = ~σ0 + S(~p− ~p0) + T( ~E − ~E0) + ~ε . (3.78)

The vector ~ε denotes the measurement error. We modeled the uncertainty about
the true values of the variables ~p, ~E, and ~ε as multivariate normal distributions
with covariance matrices

Var[ ~p ] = A,Var[ ~E ] = K, and Var[ ~ε ] = B . (3.79)

Due to the invariance of the multivariate normal distribution under linear trans-
formations, the quantities S~p and T ~E are multivariate normal distributions with
covariance matrices

Var[ S~p ] = SAST and Var[ T ~E ] = TKTT . (3.80)

Using the folding theorem Equation 2.48, we know that the sum in Equation 3.78 is
again a multivariate normal distribution. We are able to compute the covariance
matrices between ~σ and the terms in the sum. Recalling that ~p, ~E and ~ε are
pairwise independent, the application of Equation 2.28 yields

Cov[~σ,S~p] = SA and Cov[~σ,T ~E] = TK . (3.81)

The covariance matrix of ~σ is given by

Var[~σ] = SAST + TKTT + B . (3.82)

Using the results in Equation 3.81 and Equation 3.82, we can explicitly write the
center vector and the covariance matrix of the joint multivariate normal distribu-
tion of the random vector (~σ, ~p, ~E)T ,

~µ =

~σ0

~p0

~E0

 , Σ =

(SAST + TKTT + B) SA TK

AST A 0

KTT 0 K

 . (3.83)

These formulas yield the updated center vector ~p1 and updated covariance matrix
A1 of the posterior multivariate normal distribution, where the incident energy is
marginalized out,

π(~p |~σ,M) =

∫
π(~p, ~E |~σ,M) d ~E ∼ N (~p1,A1) . (3.84)
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If we obtained from an experiment a measurement vector ~σ, also ~σeff is deter-
mined due to Equation 3.77. We can condition the multivariate normal distribu-
tion of (~σ, ~p, ~E)T upon ~σ. Using Equation 2.44 and Equation 2.45, we obtain the
characterizing quantities of the posterior distribution,

~p1 = ~p0 + AST (SAST + TKTT + B)−1(~σeff − S~p0 −T ~E0) , (3.85)

A1 = A−AST (SAST + TKTT + B)−1SA . (3.86)

As a side note, we can summarize B̃ = TKTT + B and may refer to B̃ as the
experimental covariance matrix. If we denote by σi the prediction of the model
M(~p; ~Ei) at incident energy Ei, the covariance matrix B̃ can be written as

B̃ij =
∂σi
∂Em

Cov[Em, En]
∂σj
∂En

+Bij . (3.87)

This formula just performs linear error propagation, e.g. Smith (1991). Thus,
standard linear error propagation can be interpreted in the Bayesian framework as
expressing uncertainty about the observables as multivariate normal distributions
and linearizing the relationships.
Finally, we can also compute the posterior distribution parameters of the inci-

dent energy. In the same way Equation 3.85 and Equation 3.86 were derived, we
can get a refined assessment of the incident energy,

~E1 = ~E0 + KTT (SAST + TKTT + B)−1(~σeff − S~p0 −T ~E0) , (3.88)

K1 = K−KTT (SAST + TKTT + B)−1TK . (3.89)

We showed in this section the feasibility of a sound Bayesian treatment of uncer-
tainties with regard to the incident energies. The linearization of the model with
respect to incident energies has led to closed-form expressions for the Bayesian up-
date. Even though the formulas were derived on the basis of a linearized model,
analogous update formulas can be obtained for the surrogate approach.

3.6 Conservation of features

In the previous sections we have introduced simplified models which allowed us to
derive closed form expressions for the Bayesian inference. Especially the linearized
nuclear model approach (section 3.2) and the surrogate approach section 3.3 are
considered. Due to the simplification not all properties of the original model will
be preserved. However, we can show that two important features are preserved.
One feature is the conservation of sum rules. The other feature is the conservation
of the relation between angle-differential cross section (or spectra) and associated
angle-integrated cross section.
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We start the discussion with the conservation of sum rules. Suppose we have
the total cross section σtot, the elastic cross section σel, and the non-elastic cross
section σnon-el at the same incident energy. It must always hold that

σtot = σel + σnon-el . (3.90)

The result of a nuclear model calculation obeys this relation. We combine these
three cross sections to a vector ~σ = (σtot, σel, σnon-el)

T . To check whether the
linearized nuclear model,

Mlin(~p) = ~σ0 + S(~p− ~p0) , (3.91)

also obeys the sum rule, we have to study the sensitivity matrix S because the
sum rule is evidently preserved in ~σ0 due to ~σ0 =M(~p0). The sensitivity matrix
is the Jacobian matrix of the nuclear model at the expansion point ~p0. Thus, we
can write

S =
(
∂M
∂p1

∂M
∂p2

· · · ∂M
∂pd

)
. (3.92)

Each partial derivative ∂M/∂pi represents a column in the sensitivity matrix. The
numerical evaluation of these column vectors is carried out by taking the discrete
derivative,

∂M
∂pi

=
M(~p+ ~εi)−M(~p)

ε
. (3.93)

In the vector ~εi the only non-zero component is the ith element associated with
the model parameter pi. Its value is given by a small numerical constant ε. For
numerical derivatives carried out in this thesis, we choose ε to be between 1% and
1h of the model parameter value. In order to show that the linearized model
preserves sum rules, we have to show that the difference vector in the numerator
of Equation 3.93 preserves sum rules. Explicitly writing the numerator yields

M(~p+ ~εi)−M(~p) =

 σ′tot

σ′el
σ′non-el

−
 σtot

σel

σnon-el

 . (3.94)

The primed cross sections are the result of M(~p + ~εi) and those without primes
are the result of M(~p). Each of the two vectors is consistent with the sum rule,
because they are the result of an exact model calculation. Therefore, we have

σ′tot − σtot = (σ′el + σ′non-el)− (σel + σnon-el)

= (σ′el − σel) + (σ′non-el − σnon-el) .
(3.95)

The expressions in the brackets of the second row are the values of the elastic
and non-elastic component of the difference vector. Therefore each column in the
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sensitivity matrix obeys sum rules. Using the representation of the sensitivity
matrix in Equation 3.92, we can rewrite Equation 3.91 to

Mlin(~p) = ~σ0 +
d∑
i=1

∂M
∂pi

(pi − p0,i) . (3.96)

Because all occurring vectors obey the sum rule, their linear combination does as
well.
Having shown the conservation of sum rules for the linearized model, we con-

tinue the discussion for the surrogate model. The surrogate model introduced in
section 3.3 is given by

Msur(~σmod) = S~σmod . (3.97)

The application of the transformation matrix S interpolates the cross sections ~σmod

given at the incident energies ~E of the model mesh to the incident energies ~E ′ of the
experimental data. For the current consideration we assume the model vector to be
partitioned as ~σmod = (~σtot, ~σel, ~σnon-el)

T . Each component ~σtot, ~σel, ~σnon-el contains
the cross sections on the same mesh of incident energies ~E. The mapping to the
incident energies of the experiment ~E ′ is done via the transformation matrices Stot,
Sel, and Snon-el. The formula for the interpolation with matrices written element
wise is ~σ′tot

~σ′el
~σ′non-el

 =

 Stot 0 0

0 Sel 0

0 0 Snon-el


 ~σtot

~σel

~σnon-el

 =

 Stot ~σtot

Sel ~σel

Snon-el ~σnon-el

 . (3.98)

The cross section vectors with primes on the left hand side contain the inter-
polated values. In section 3.4 we showed that the transformation matrices are
unambiguously determined by the incident energies of the model mesh ~E and the
incident energies of the measurements ~E ′. Because ~E and ~E ′ are the same for each
component, we have

S? = Stot = Sel = Snon-el . (3.99)

In order to check the conservation of sum rules for the interpolated values, we
evaluate

S? ~σtot = S?~σel + S?~σnon-el = S?(

~σtot︷ ︸︸ ︷
~σel + ~σnon-el) . (3.100)

Thus, under the condition that sum rules are preserved by the predicted cross
sections on the model mesh, they are also preserved by the interpolated cross
sections.
The question remains whether the surrogate model satisfies sum rules at the

mesh points. The surrogate model is constructed by computing a center vector ~σ0
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and a covariance matrix Ã0 from the results of model calculations σi. For both
approaches to construct the center vector, either as a direct result of a model
calculation or as the arithmetic mean of model results, the center vector obeys
sum rules. The reason in the latter approach is that a linear combination of
vectors preserves sum rules if each vector obeys them. The prior distribution
for the surrogate parameter vector ~σmod determines which combinations of cross
sections are feasible. Sum rules are linear relationships between cross section.
Linear relationships can be perfectly reflected in a covariance matrix. This means
that a cross section vector violating a sum rule is associated with probability zero.
Therefore, the surrogate model preserves sum rules.
Finally, we discuss the conservation of the relationships between differential cross

sections and integrated cross sections. As an example, the spectrum s(E,E ′) at
incident energy E and emitted energy E ′ is related to the integrated cross section
σ(E) by

σ(E) =

∫ E

0

s(E,E ′) dE ′ . (3.101)

If the spectrum is given on a sufficiently dense grid, we can approximate the
integral as a sum

σ(E) ≈
n∑
i=1

αi s(E,E
′
i) . (3.102)

The coefficients αi depend on the interpolation scheme for the spectrum. Equa-
tion 3.102 represents a linear relationship between the values of the spectrum
and the integral cross sections and can be regarded as a special case of a sum
rule. Hence, also this consistency property of cross sections and spectra (or angle-
differential cross section) is preserved by both the linearized model and the surro-
gate model. A possible violation occurs in the magnitude due to the approximation
of the integral by a sum, which usually can be neglected.
Finally we note that the surrogate model is capable of mimicking more features

of the nuclear model than those discussed so far. The smoothness of cross sections
is such an additional feature. In general, it is difficult to assess which features
are preserved. The term feature itself is difficult to define. However, one qualita-
tive measure for the amount of preserved features is the number of non-vanishing
eigenvalues of the prior covariance matrix. The number of non-vanishing eigen-
values reveals how many axes in the space of cross section vectors are associated
with non-vanishing variation. For instance, consider a vector containing the cross
sections at hundred different incident of the same reaction channel. Vectors char-
acterized by a distinct choice of cross sections span a vector space. Theoretically
the nuclear model could permit variation along hundred orthogonal axes in this
vector space. Yet, the number of axes with non-vanishing variation is typically
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significantly lower. For the linearized model discussed in section 3.2, the number
of axes with non-vanishing variation is given by the number of model parameters.
In contrast, the surrogate model discussed in section 3.3 is more flexible due to
the fact that non-linear features are taken into account as additional uncertain-
ties. For instance, Figure 3.4 in section 3.3 demonstrated that a non-linear nuclear
model with one model parameter would be approximated by a surrogate model al-
lowing variation along two axes. Figure 3.8 shows the rapid decline of eigenvalues
in the prior covariance matrix for the neutron-induced total cross section of 181Ta.
Thus, also in the surrogate model the effective dimension is much lower than the
maximal possible.
In this section we showed that sum rules, and the relationship between differ-

ential cross sections and integrated cross sections are preserved by the Bayesian
update formula based on a simplified model. These consistency properties are an
essential aspect of the method because evaluated nuclear data files are only con-
sidered to be reliable and applicable if they statisfy these consistency properties.
In chapter 9 we will make use of the fact that the multivariate normal distribution
can perfectly capture sum rules to define a consistent model defect.
The next chapter gives an overview over existing methods for nuclear data eval-

uation. Either they are based on one of the approaches detailed in section 3.2 and
section 3.3 or on a Monte Carlo procedure.
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Figure 3.8: Eigenvalues of the prior covariance for the neutron-induced total cross
section of 181Ta constructed from a sample of model predictions with varied optical
model parameters. Sixteen parameters of the neutron optical potential were varied
according to a uniform distribution.
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Existing methods

Most existing methods for nuclear data evaluation are based on Bayesian statis-
tics. Strong arguments for the use of Bayesian statistics are given in the textbook
‘Probability Theory: The Logic of Science’ by Jaynes (2003). One argument is that
Bayesian statistics reduces to logical reasoning if there is certainty about the truth
of propositions. In the face of uncertainty, conclusions resulting from Bayesian in-
ference are still in line with common sense reasoning. The notion of common sense
is formalized in the book. The important message is that an inference procedure,
which is not equivalent to Bayesian statistics, must necessarily be in disagree-
ment with classical logic or in disagreement with cogent principles of common
sense reasoning. These features of Bayesian inference are in complete agreement
with the goals and requirements of nuclear data evaluation. Hence sharing Jaynes
viewpoint leads to the conclusion that proper nuclear data evaluation should be
performed within the framework of Bayesian statistics. Therefore, the only non-
Bayesian evaluation method (BFMC) of Bauge, Hilaire, and Dossantos-Uzarralde
(2007) presented in this chapter will also be interpreted within the framework of
Bayesian statistics.
The outlined methods are distinct from each other in two aspects. The first

aspect concerns the underlying statistical model, which means the choice of proba-
bility distribution for the likelihood and the prior distribution. The second aspect
concerns if and how approximations are made to obtain results. Following, we
present various methods and discuss their advantages and disadvantages.

61
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4.1 Backward-Forward Monte Carlo

The Backward-Forward Monte Carlo (BFMC) method of Bauge, Hilaire, and
Dossantos-Uzarralde (2007) relies on two steps. In the first step—the backward
step—model parameter vectors ~pi are drawn from a uniform distribution. Then,
for each parameter vector ~pi a model prediction vector ~σi = M(~pi) is obtained.
The cross sections in a model prediction vector ~σi are computed at the incident
energies associated with the cross sections in the measurement vector ~σexp. There-
after, the generalized χ2-value of each model prediction is calculated using the
measurement vector,

χ2
i = (~σexp − ~σi)T B−1 (~σexp − ~σi) . (4.1)

The covariance matrix of the experimental data is denoted by B. As a side remark,
this expression is proportional to the exponent of the likelihood in Equation 3.3.
Thus, finding a parameter vector ~p ? whose prediction ~σ ? leads to a minimum of
the χ2-value is equivalent to maximizing the likelihood given by a multivariate
normal distribution.
In the BMFC method, the χ2-values are used to construct a weight for each

sampled vector ~σi. The weights are given by the expression

ωi = C exp

[
−
(
χ2
i

χ2
min

)2
]
, (4.2)

where C is a normalization constant and χ2
min is the smallest χ2-value which oc-

curred for the samples. Based on these weights, a multivariate normal distribution
for the parameter vector is constructed. Its center vector is computed by

~p ′ =

∑n
i=1 ωi ~pi∑n
i=1 ωi

, (4.3)

where n is the number of samples. The associated covariance matrix is given by

A′ =

∑n
i=1 ωi (~pi − ~p ′)(~pi − ~p ′)T∑n

i=1 ωi
. (4.4)

With the calculation of the distribution parameters ~p ′ and A′ the backward step
is completed.
In the second step—the forward step—the uncertainties about the cross sections

are computed based on the uncertainties about the model parameters. To this end,
model parameter vectors ~qi are sampled from the multivariate normal distribution
N (~p ′,A′). Then, for each parameter vector ~qi the model predictions ~τi = M(~qi)

are calculated. A center vector (or best estimate) is then

~τ ′ =
1

m

m∑
i=1

~τi , (4.5)
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with the associated covariance matrix

C =
1

m− 1

m∑
i=1

(~τi − ~τ ′) (~τi − ~τ ′)T . (4.6)

The variable m denotes the number of drawn samples. Noteworthy, m and n do
not have to be equal. Whether to use m or m − 1 in the denominator can be
discussed. The former choice leads to a biased estimator for finite sample sizes
whereas the latter choice to an unbiased one. However, for sample sizes large
enough, the difference between these two estimators may be of no significance.
An advantage of the BFMC method is that the original nuclear model is used.

No approximations are introduced. A disadvantage is that the method is not
based on Bayesian statistics. Nevertheless, we can interpret the method within
the framework of Bayesian statistics and point out the statistical assumptions
made. We repeat the Bayesian update formula here,

π(~p |~σexp,M) ∝ `(~σexp | ~p,M) π(~p |M) . (4.7)

We want to identify the prior distribution and the likelihood which are implicitly
assumed in the BFMC method. Because parameter vectors are sampled uniformly
in the backward step, the prior distribution is given by a uniform distribution.
Scaling the obtained samples with the weights in Equation 4.2 means to assume
the same expression for the likelihood. If we rearrange Equation 4.2, we get for
the likelihood

`(~σexp | ~p,M) ∝

[
exp

{
−
(

1

2
(~σexp −M(~p))T B−1 (~σexp −M(~p))

)2
}]( 2

χ2
min

)2

.

(4.8)
The sample vector ~σi had been replaced by the predictionM(~p) for an arbitrary
parameter vector ~p. This form of the likelihood is difficult to justify. In section 3.1
we considered several motivations for the use of a multivariate normal distribution
for the likelihood if there are no arguments supporting another choice. The likeli-
hood in Equation 4.8 is distinct from the multivariate normal distribution by two
modifications. These modifications are opposite in their effect. One modification
is the squaring of the exponent which makes the distribution more peaked com-
pared to the multivariate normal distribution. The other modification, which is
taking the (χ2

min/2)2-th root of the exponential function, flattens the probability
distribution.
The original paper (Bauge, Hilaire, and Dossantos-Uzarralde, 2007) clearly ar-

ticulates the assumption of a perfect model. We cite the relevant sentence: ‘The
basis of the BFMC method relies on the assumption that the only source of un-
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certainty of the calculated cross section is the imperfect knowledge of the model
parameters.’
In chapter 6 we study the consequences for the evaluated cross sections and

associated uncertainties if the model is not a perfect description of reality and the
evaluation method does not take into account model defects. One consequence
are unreasonable small evaluated uncertainties. The analysis of the BFMC in
section 7.5 supports the assumption that the likelihood of the BFMC method is
in most situations much flatter than a multivariate normal distribution. If this
assumption holds, model predictions significantly deviating from the cross sections
of the experiment are associated with higher probability than in the case of a mul-
tivariate normal distribution. As a consequence, evaluated uncertainties are also
bigger. Therefore, one could interpret the non-normal likelihood of the BFMC
method as a measure to take into account model defects. Such a treatment, how-
ever, is not satisfactory. By mixing a model defect treatment into the likelihood
in such a way, the fundamental assumptions made for the model defect are not
clear. The consistent treatment of model defects in chapter 9 is well separated
from the likelihood, statistically sound, and the basic assumptions are clear.

4.2 Bayesian Monte Carlo

The Bayesian Monte Carlo procedure (BMC) of Koning (2015) deliberately relies
on Bayesian statistics. The prior distribution for the model parameters π(~p |M) is
given by a uniform distribution. In order to understand the choice of the likelihood
`(~σexp |M), we have to analyze the details of the evaluation method. The BMC
method is a Monte Carlo procedure that makes use of importance sampling with a
certain kind of self-learning capability. We are interested in the basic assumptions
of the statistical model. Thus, we want to know the choice made for the prior and
the likelihood. Because the self-learning capability distracts from understanding
the likelihood, it will not be discussed here.
Before the self-learning comes into effect, the parameter vectors ~pi are drawn

from the uniform prior distribution. Each parameter vector ~pi is used to predict
the observables measured in the experiments. We denote a specific observable
measured in an experiment by σexp,cmk. The index c identifies the reaction channel,
the index m the experimental data set, and the index k the measurement point
within the data set. The corresponding model prediction associated with the
parameter vector ~pi is denoted by σcmk,i. The standard error associated with the
experimental point σexp,cmk is denoted by δexp,cmk. The BMC method proceeds
by calculating a χ2-like quantity for each model prediction based on available
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experimental data,

χ̃2
i =

1

C

C∑
c=1

Mc∑
m=1

1

Nm

Nm∑
k=1

(
σcmk,i − σexp,cmk

δexp,cmk

)2

, (4.9)

with the total number of channels C, the number of experimental datasets Mc for
a channel c, and the number of data points Nm in the experimental dataset m.
This quantity is used to compute a weight for each model prediction i,

ω̃i ∝ exp(−χ̃2
i ) . (4.10)

We omitted a scaling factor given in the original paper which is of no relevance
to determine the likelihood. Its only purpose is to rescale the weights so that
they are representable by the standard floating point data type used in computer
programs.
Knowledge of the weights ω̃i allows to calculate summary statistics of the pos-

terior distribution. For instance, the evaluated mean vector of cross sections is
given by

~σ ′ =

∑n
i=1 ωi ~σi∑n
i=1 ωi

. (4.11)

Similarly, the associated covariance matrix can be determined,

A′ =

∑n
i=1 ωi (~σi − ~σ′) (~σi − ~σ′)T∑n

i=1 ωi
. (4.12)

In the following, we discuss the implications of using the χ2-like quantity of
Equation 4.9. The standard definition of the χ2 statistics is

χ2
i =

C∑
c=1

Mc∑
m=1

Nm∑
k=1

(
σcmk,i − σexp,cmk

δexp,cmk

)2

. (4.13)

If we would use this definition and calculate

ωi = exp

(
−1

2
χ2
i

)
, (4.14)

we would obtain weights that imply the use of a multivariate normal distribution
for the likelihood. To recognize the correspondence, we can combine the model
predictions σcmk,i for each parameter vector ~pi to a vector ~σi, and the experimental
data σexp,cmk to the vector ~σexp. Further, we construct a diagonal covariance matrix
B whose elements are δ2

exp,cmk. Now we can verify that

− 1

2
(~σexp − ~σi)TB−1(~σexp − ~σi) = −1

2

C∑
c=1

Mc∑
m=1

Nm∑
k=1

(
σcmk,i − σexp,cmk

δexp,cmk

)2

. (4.15)
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Therefore, using the standard definition of the χ2-statistics in Equation 4.13 and
the expression for the weights in Equation 4.14, we would indeed weight the sam-
ples according to a posterior that is defined by a uniform prior distribution and
a multivariate normal likelihood with zero-correlations between the individual ex-
perimental data points. The multivariate normal distribution with a diagonal
covariance matrix is the proper choice according to the principle of maximum en-
tropy if the correlations are not known. The justification was given at the end of
section 3.2.
The previous consideration has shown that the likelihood in the BMC method

does not agree with the principle of maximum entropy. In order to get more
insight, we analyze Equation 4.9 to understand the assumptions of the implied
likelihood. We start with the auxiliary quantity

χ̃2
cm(~p) =

1

Nm

Nm∑
k=1

(
M(~p)− σexp,cmk

δexp,cmk

)2

, (4.16)

where we substituted ~σcmk,i by the model prediction for an arbitrary parameter
~p. Dividing by Nm means to summarize the information of all points of an ex-
perimental dataset in one point. Technically, this measure significantly lowers the
χ̃2
i -value compared to the standard definition in Equation 4.13, and hence flattens

the likelihood.
Using Equation 4.16, the likelihood of the BMC method has the form

`(~σexp | ~p,M) ∝

[
exp

(
−1

2

C∑
c=1

Mc∑
m=1

χ̃2
cm(~p)

)] 2
C

. (4.17)

Similar to the BFMC method, the C/2-th root is taken of the result of the ex-
ponential function, which is another measure to make the likelihood significantly
flatter compared to the multivariate normal distribution.
One aim of the BMC method is to make comprehensive use of all available

experimental data. According to the principle of maximum entropy, the proper
form of the likelihood is a multivariate normal distribution. The proper form
combined with a huge amount of data leads to vanishing evaluated uncertainties.
Because models are often not perfect descriptions of reality, the evaluated cross
sections will not be consistent with experimental data. These findings will be
discussed in more detail in chapter 6. The flattened likelihood of the BMC method
can be seen as a way to take into account model defects. However, the same
objections as in the case of the BFMC method apply, i.e. the treatment of model
defects should be statistically sound and based on clear assumptions.
An advantage of the BMC method is that no approximations are introduced

concerning the evaluation of the nuclear model. The exact systematics of the
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Figure 4.1: Projection of the probability distribution of the neutron-induced total
cross sections of 181Ta onto the two directions of highest variance. This distribution
at the level of cross sections corresponds to a uniform distribution at the level of
the optical model parameters.

model are preserved. Furthermore, assuming a uniform prior distribution for the
model parameters is associated with a non-trivial distribution at the level of cross
sections. A Bayesian approach based on a surrogate model approximates this non-
trivial distribution by a multivariate normal distribution. The BMC method, in
contrast, perfectly takes this non-trivial distribution into account. A projection
of this distribution for the neutron-induced total cross section of 181Ta is shown
in Figure 4.1.

4.3 Unified Monte Carlo-G

Two versions of the Uniform Monte Carlo (UMC) method exist (Capote, Smith,
et al., 2012; Smith, 2004). Both versions are based on Bayesian statistics. This
section is focused on the original version of Smith (2004), which is termed UMC-G.
It can be regarded as a hybrid approach relying on both linearization and Monte
Carlo sampling. The nuclear model is replaced by a surrogate model. The details
have been discussed in section 3.3. We briefly recapitulate the construction of
the prior distribution for the cross sections. First, model parameter vectors ~pi are
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drawn from a uniform distribution.1 Next, for each parameter vector ~pi the model
prediction ~σi = M(~pi) is computed. The obtained cross section vectors are used
to calculate a center vector ~σ ′ and a covariance matrix A′. These quantities define
a multivariate normal distribution N (~σ ′,A′) on the space of cross section vectors,
which is used as prior distribution.
Combining this prior distribution with the likelihood, summary statistics such

as the mean vector or the covariance matrix are extracted from the posterior
distribution by means of a Monte Carlo procedure. The suitability of two sampling
algorithms has been studied by Capote and Smith (2008), a brute force algorithm
and a Metropolis-Hastings algorithm. Here we only outline the original brute force
approach. The results of an in-depth analysis of both approaches can be found in
section 7.1. Assume that a cross section vector is given by ~σ = (σ1, σ2, · · · , σn)T .
An ensemble ofm cross section vectors ~σi is produced. Each cross section vector ~σi
is generated by drawing a value from a uniform distribution for each of its element
σi,j. The support of the uniform distribution, σmin,j < σi,j < σmax,j, has to be
sufficiently large to cover the regions of significant posterior probability density.
Based on these samples, summary statistics f(~σ) can be estimated by

E[f(~σ)] =

∑m
i=1 f(~σi) π(~σi |~σexp,Msur)∑m

i=1 π(~σi |~σexp,Msur)
, (4.18)

where the posterior distribution is given by

π(~σ |~σexp,Msur) ∝ `(~σexp |~σ,Msur) π(~σ |Msur) . (4.19)

For instance, an estimate for the mean vector can be obtained by

E[~σ] =

∑m
i=1 ~σi π(~σi |~σexp,Msur)∑m
i=1 π(~σi |~σexp,Msur)

. (4.20)

As discussed above, the prior distribution is approximated by a multivariate nor-
mal prior distribution, π(~σ |Msur) ∼ N (~σ ′,A′). In this algorithm, every probabil-
ity distribution is conditioned upon the surrogate modelMsur. The experimental
measurements are contained in ~σexp.
The UMC-G approach is beneficial if the link between the cross sections of the

surrogate model ~σ and the quantities of the experiment ~σexp cannot be properly
described by a linear transformation

~σexp = S~σ . (4.21)

The Bayesian methods detailed in section 3.2 and section 3.3 are based on the as-
sumption that such a linear relationship is adequate. However, for instance, if the

1A multivariate normal distribution would also be an appropriate choice.



CHAPTER 4. EXISTING METHODS 69

ratio of two cross sections was measured in an experiment with large uncertain-
ties, the linear relationship could be inappropriate. An advantage of the BMC-G
method is that non-linear relationships between model cross sections and exper-
imental observables can be treated exactly. Another advantage is the possibility
to draw samples at high speed due to the use of the simplified surrogate model.
The latter advantage, however, represents also a possible disadvantage.because
non-linear features of the nuclear model are not preserved in the surrogate model
(see section 3.3).
Finally, the UMC-G method makes no reference to the use of a specific likeli-

hood. Its features are the use of a surrogate model and a Monte Carlo sampling
scheme to obtain summary statistics of the posterior distribution.

4.4 Unified Monte Carlo-B

The other version of the Uniform Monte Carlo method (UMC-B)of Capote, Smith,
et al. (2012) succeeds the original UMC-G method. It relies also on Monte Carlo
sampling but does not replace the nuclear model by a surrogate model. In this
sense, the method is superior, because it preserves the non-linear features of the
nuclear model.
In order to introduce the method, we remind that a summary statistics f(~σ) of

the posterior distribution is given by

E[ f(~p) ] =

∫
f(~p) π(~p |~σexp,M) d~p . (4.22)

The integration has to be performed over the volume of feasible parameter vectors.
Summary statistics at the level of cross sections can be computed by using

f̃(~σ) = f (M(~p)) . (4.23)

Summary statistics given as functions of cross sections are of main interest for
applications. Simple examples are the expectation vector f̃(~σ) = ~σ or the co-
variance matrix f̃(~σ) = ~σ~σT − E[~σ] E[~σT ]. A more complicated example is the
expectation value of an observable in an integral measurement. In this case, f(~σ)

would be defined by nuclear models, material properties, and the geometry of the
experiment.
In order to explain the UMC-B method, we have to expand the posterior dis-

tribution as a product of prior and likelihood in Equation 4.22,

E[ f(~p) ] =

∫
f(~p) `(~σexp | ~p,M)π(~p |M) d~p . (4.24)

Because this integral has to be carried out in the high-dimensional space of
model parameter vectors, deterministic integration approaches are at troublesome.
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Therefore, the UMC-B method relies on Monte Carlo integration. In the UMC-
B method, parameter vectors ~pi are drawn from the prior distribution π(~p |M).
Under this circumstance, an approximation of the integral in Equation 4.24 is

E[ f(~p) ] ≈
∑n

i=1 f(~pi) `(~σexp | ~pi,M)∑n
i=1 `(~σexp | ~pi,M)

. (4.25)

Within the Monte Carlo approach, the likelihood does not necessarily have to be
a multivariate normal distribution. However, the multivariate normal distribution
is in many cases the proper choice (section 3.1). Its assumption would lead to

`(~σexp | ~pi,M) ∝ exp

(
−1

2
(~σexp −M(~pi))

TB−1(~σexp −M(~pi))

)
, (4.26)

where B is the experimental covariance matrix. The determination of the normal-
ization factor of the likelihood is not necessary, because it cancels out in Equa-
tion 4.25.

Both the BMC and the UMC-B method rely on Bayesian statistics and use
the exact nuclear model without any approximation. Both methods deliberately.
The likelihood in the BMC is much flatter than the multivariate normal distribu-
tion, which in many situations would be the proper choice. The unconventional
choice of likelihood camouflages the problem of model defects. In contrast, the
paper of (Capote, Smith, et al., 2012) on the UMC-B methods makes reference to
the principle of maximum entropy and specifies probability distributions accord-
ingly. However, the paper on UMC-B only demonstrates the method in a simple
toy example with three data points. The application of the UMC-B method in
a situation with plenty of high quality experimental data can yield undesirable
results. Evaluated cross sections may disagree with experimental data and uncer-
tainties may be unreasonable low due to the use of the nuclear model without any
approximation. This issues will be discussed in detail in chapter 6.

4.5 Full Bayesian Evaluation Technique

The Full Bayesian Evaluation Technique (FBET) of Neudecker (2012) is based on
Bayesian statistics and implements the surrogate approach detailed in section 3.3.
The EMPIRE-MC method (Herman et al., 2007) also implements the surrogate
approach. We briefly recapitulate the procedure.

Model parameter vectors ~pi are drawn from a uniform or multivariate normal
distribution. The associated model predictions ~σi =M(~pi) are computed. Then,
a center vector ~σ′ and a covariance matrix A′ are estimated from the model pre-
dictions. These two quantities define a multivariate normal distribution, which is
used as the prior distribution. As a side note, the UMC-G method constructs the
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prior in the same way. A linear mapping, such as spline interpolation or linear
interpolation, is assumed to transfer the cross sections from the model mesh to
the incident energies of the experimental data. The further assumption of a mul-
tivariate normal distribution for the likelihood leads to analytic update formulas
for the center vector and the covariance matrix.
The FBET differs from the EMPIRE-MC method by an extended surrogate

model. Instead of the covariance matrix A′ estimated from the model samples,
the FBET uses

A′FBET = A′ + Adef . (4.27)

The matrix Adef accounts for the fact that models can be deficient. Different
algorithms for its construction were proposed, see Leeb, Neudecker, and Srdinko
(2008). These algorithms will be discussed in detail in chapter 8.
Finally, we mention SAMMY (Larson, 1998) and the EMPIRE-Kalman method

(Kawano and Shibata, 1997) which are based on the linearization of the model.
Details were given in section 3.2.
We make a brief comparison of the methods based on the linearization of the

model (SAMMY and EMPIRE-KALMAN) and the methods based on the surro-
gate model (EMPIRE-MC and FBET). Both approaches use closed-form update
formulas and hence are numerically less involved than the Monte Carlo procedures
outlined in the previous sections. The advantage of linearizing the method is that
the link to the model parameters is maintained. The advantage of the surrogate
approach is the greater flexibility of the simplified model, which leads to better
agreement with the included experimental data and more conservative evaluated
uncertainties. Therefore, the surrogate approach is less sensitive to the problem
of unreasonably low uncertainties. We can interpret the relaxation of the original
model as a measure to account for model defects. However, the non-linearity of
the model and its accuracy are independent qualities of the model. Therefore, the
linearization of the model cannot be regarded as the proper solution to take into
account the deficiencies of the model.
Another advantage of the linearized model is the smaller number of model pa-

rameters. For instance, the number of optical model parameters for the individual
particles is in the order of dozens to hundreds. In contrast, the surrogate approach
operates at the level of cross sections, which implies cross sections at dozens to
hundred incident energies for dozens to hundreds of reaction channels. Due to the
large number of ‘parameters’, the actual application of this approach is limited
to the evaluation of angle-integrated cross sections. However, the refined update
scheme presented in chapter 5 removes this limitation.
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4.6 Summary of methods

The presented methods except one rely on Bayesian statistics. The prior distribu-
tion for the model parameters is either the uniform distribution or the multivariate
normal distribution. As long as the prior does not restrict the parameter range
too much, the evaluated cross sections and uncertainties will be determined by
the likelihood—within the possibilities of the model. Under these conditions, the
choice of the prior distribution is of minor importance with regard to the result.
The likelihood is characterized by the estimates, uncertainties and correlations
of the experimental data. It is an important conclusion of the given comparison
of methods that the main purpose of the prior is not the specification of best
estimates of parameters and associated uncertainties but the conditioning of the
evaluated cross sections upon the model systematics. Of course, if only few ex-
perimental data points with moderate to high uncertainties are involved, the prior
probability distribution for the model parameters takes care of regularization. Val-
ues of model parameters should remain within reasonable ranges. Concerning the
prior, there is somewhat agreement between the methods.
The first aspect that sets methods apart are the involved approximations. The

model can be taken exactly into account. Information about the posterior has then
to be obtained through Monte Carlo sampling. If not treating the model exactly,
two prevalent approximations exist. First, the linearization of the nuclear model
at a specific set of model parameters. And second, sampling from the original
model and fitting a multivariate normal distribution based on the ensemble of
model predictions. The latter approach can be seen as trying to mimic the exact
distribution in cross section space that corresponds to the uniform/multivariate
normal distribution in parameter space by a multivariate normal distribution. This
approach can be justified by the principle of maximum entropy.
If we trust the model to be a perfect description of reality, using the exact nuclear

model is the best approach. All features of the nuclear model are preserved. How-
ever, the required Monte Carlo sampling is computationally involved. Methods
based on an approximation of the model produce results much faster, but discard
non-linear features of the original model. Methods using the linearization of the
model are superior, if the inclusion of experimental data narrows uncertainties
down to a linear domain of the model. Methods based on the surrogate approach
are beneficial if the experimental data does not narrow down the possibilities to
the linear domain of the model. Then, non-linear features are at least taken into
account as uncertainties. In contrast, the linearized model restricts the possibil-
ities to a tangent hyperplane of the non-linear model manifold in cross section
space whose dimension is given by the number of model parameters. Therefore,
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the linearized model is more rigid than the surrogate model.
Disagreement between the methods concerns the choice of the probability dis-

tribution of the likelihood. The general observation is that deterministic methods
always use a multivariate normal distribution for the likelihood. In section 3.1 we
elaborated why the multivariate normal distribution is usually the proper choice.
Among the Monte Carlo procedures, the UMC-B and UMC-G method also use a
multivariate normal likelihood, whereas the BMC and BFMC method make other
choices. The UMC-B method can be considered as the most exact method among
the presented methods. It is the only method that fulfills two criteria: the nuclear
model without any approximation is used and the likelihood is chosen to be a
multivariate normal distribution. However, to the knowledge of the author the
UMC-B method has only been demonstrated on a toy example with three data
points, whereas other Monte Carlo procedures such as BFMC and BMC have
already been applied in nuclear data evaluation.
The information of the last paragraph can help to understand why the issue

of model defects has not received the attention which it deserves. The surrogate
model used in UMC-G, EMPIRE-MC, and FBET is more flexible than the original
model. The greater flexibility of the surrogate model alleviates the issue of model
deficiencies. However, in some situations unreasonable results still occur, such as
negative cross sections at reaction thresholds. Such results are the manifestation
of a severe mismatch between data and the model systematics, which means either
the model is not perfect or the experimental data are inconsistent.
The Monte Carlo methods BFMC and BMC take the nuclear model exactly

into account and have also been applied on real world experimental data. In
this chapter it has been shown that the employed likelihood is much flatter than
compared to the multivariate normal distribution. Due to this choice, evaluated
uncertainties are bigger than if using the multivariate normal distribution. In
this thesis it will be demonstrated in chapter 9 that the proper choice of the
likelihood leads to unreasonable low uncertainties due to the fact that often nuclear
models are not perfect descriptions of reality. The issue becomes most apparent
in the situation when taking the nuclear model exactly into account and plenty of
high quality experimental data are available. The pioneering ideas of Pigni and
Leeb (2003) and Leeb, Neudecker, and Srdinko (2008) regarding model defects are
extended to a method whose foundation is fully justified within the framework of
Bayesian statistics.
To conclude this chapter, Figure 4.2 gives a graphical overview over evaluation

methods and their similarities and differences.
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5

Large number of observables

Nowadays, the significantly increased computer power and the vast amount of
available storage space offers exciting possibilities to deal with data of unprece-
dented complexity. Sophisticated algorithms in internet search engines help to
accurately locate the desired information among several hundred of millions of
websites in a fraction of a second. Machine learning algorithms scan through
databases to generate or test hypotheses, classify information, and detect note-
worthy anomalies. Examples range from spam filters of email programs (which
often rely on Bayesian statistics) over recommendation systems of internet retailers
to algorithms employed by credit institutes to detect fraud based on transaction
behavior. Thus it can be expected that many algorithms developed in the field of
machine learning dealing with big data will sooner or later find their way into the
field of nuclear data evaluation. In this chapter a revised Bayesian update scheme
is presented that can be interpreted as a technique to extract the best prediction
with regard to experimental information from a database of model calculations.
The method can be easily parallelized and the database can be distributed among
several computers. This development can be seen as a step into the above men-
tioned direction. We term the method Large Scale Bayesian Evaluation Technique
(LSBET).
Efforts have already been undertaken to harness today’s computer power and

inexpensive storage space in nuclear data evaluation. Two examples are the To-
tal Monte Carlo (TMC) method (Koning and Rochman, 2008; Rochman, Koning,
Cruz, et al., 2010; Rochman, Koning, and Marck, 2009) and the GANDR eval-
uation tool (Muir et al., 2007). In the TMC method, uncertainties of model
parameters are propagated to obtain uncertainties of integral observables, with-
out any approximation of the model or linearization of dependencies. This ap-
proach has become feasible only with the increased computer power. The aim of

75
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the GANDR tool is to assist in deciding which measurements could supply the
most significant information for the design of new nuclear facilities. Its evaluation
methodology relies on the generalized least squares approach (GLSQ) whose for-
mulas are equivalent to those discussed in section 3.3. The outstanding feature is
the high dimension (order 90000× 90000) of the prior covariance matrix which is
completely and consistently updated according to experimental data. This matrix
needs about 30 gigabytes of storage space.
The new evaluation method presented in this chapter, which is a main result of

this thesis, extends the Bayesian approach discussed in section 3.3 to a large num-
ber of observables. Millions or even dozens of millions of observables stemming
from a model calculations can be updated with experimental data. The storage
requirement of the complete prior covariance matrix would be in the magnitude
of hundreds of terabytes or even petabytes. The new approach circumvents its ex-
plicit calculation, yet the update formulas are equivalent to the original approach.
Finally, we have to remark here, that the GANDR approach and the new ap-

proach to be presented have to be seen as complementary due to different demands
on the methods. The basic assumption of the new evaluation scheme is that ob-
servables are updated with experimental data in one step, whereas several update
steps are possible in the GANDR approach. Furthermore, the assumption of the
new approach is that the prior is constructed on the basis of predictions from a
nuclear model code. The number of observables that can be updated with the new
approach exceeds the possible number of observables in the GANDR approach by
order of magnitudes.

5.1 Ensemble representation

The new evaluation scheme is based on the Bayesian update formula of the sur-
rogate approach which has been discussed in section 3.3. The relevant update
formulas for the evaluated center vector ~σ1 and the covariance matrix A1 are

~σ1 = ~σ0 + A0S
T
(
SA0S

T + B
)−1

(~σexp − S~σ0) , (5.1)

A1 = A0 −A0S
T
(
SA0S

T + B
)−1

SA0 , (5.2)

where A0 is the prior covariance matrix, ~σ0 is the prior best estimate, and S is
the sensitivity matrix transferring the predictions from the model mesh to the
incident energies, emitted energies, and angles of the experiment. The measured
quantities are contained in ~σexp, and B is the associated experimental covariance
matrix.
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The prior best estimate and prior covariance matrix are calculated from an
ensemble of model prediction vectors ~τi,

~σ0 =
1

n

n∑
i=1

~τi and A0 =
1

n

n∑
i=1

(~τi − ~σ0) (~τi − ~σ0)T . (5.3)

We are interested in the consistent evaluation of all reaction observables which can
be reliably determined with a nuclear model code, such as TALYS (Koning, Hilaire,
and Duijvestijn, 2008), for a set of nuclei of interest. For instance, observables
are integrated cross sections, angle-differential cross sections and spectra. An
evaluation up to 200 MeV requires a mesh of incident energies with about hundred
points. Also the mesh size for the angles and emitted energies has to be sufficiently
dense. TALYS using the default settings outputs angle-differential cross sections
in steps of two degrees, which leads to a mesh with 90 points. Finally, we assume
that the same mesh size is used for emitted energies. At higher energies, hundreds
of reactions might be possible. Under these assumptions, the dimension of the
prior best guess ~σ0 would be in the magnitude of one million. The corresponding
covariance matrix A0 would be of dimension 106 × 106, which corresponds to a
storage requirement of 80 terabytes. Hence, the Bayesian update via Equation 5.1
and Equation 5.2 is not feasible anymore.
An important insight of the considerations given in the previous chapters is the

fact that all the required information to perform the update is already contained
in the model predictions ~τi. If we assume the generation of 103 model prediction
vectors, each containing 106 elements, we obtain 109 elements of significant infor-
mation. Estimating a covariance matrix from these samples inflates the number
of elements to 1012 without adding any new information.
The idea of the new approach (Schnabel and Leeb, 2015) is to work directly with

an ensemble of samples and to circumvent the generation of the prior covariance
matrix. The same idea has been successfully applied in other contexts. Examples
are the L-BFGS method (Byrd et al., 1995) for optimization and the ensemble
Kalman filter (Evensen, 1994).
In order to explain the procedure, we introduce the shifted sample vectors

~ui = ~τi − ~σ0 . (5.4)

With this abbreviation the expression of the prior covariance matrix is

A0 =
1

n

n∑
i=1

~ui ~u
T
i . (5.5)

Explicitly inserting this expression into Equation 5.1, we get

~σ1 = ~σ0 +
1

n

n∑
i=1

~ui ~u
T
i ST

(
SA0S

T + B
)−1

(~σexp − S~σ0) . (5.6)
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The quantity

ωi =
1

n
~uTi ST

(
SA0S

T + B
)−1

(~σexp − S~σ0) . (5.7)

is just a number and can be considered as a weight. Thus we can cast the update
formula Equation 5.6 in the form

~σ1 = ~σ0 +
n∑
i=1

ωi~ui . (5.8)

Consequently, the Bayesian update formula is just a linear combination of the
shifted sample vectors and therefore also a linear combination of the model pre-
dictions ~τi. Model features such as the conservation of sum rules or energy balances
are linear constraints on the observables, which are fulfilled within every ~τi. Be-
cause Equation 5.8 is a linear combination of the vectors ~τi, also the updated
vector will be consistent with regard to the linear constraints. Furthermore, the
resulting vector of observables is always located on the hyperplane spanned by the
model predictions ~τi.
Due to the limited number of model parameters varied for the generation of

samples, the effective dimension is usually much smaller than the number of ob-
servables. Therefore, the required number of samples has only to be sufficiently
larger than the effective dimension of the problem and not larger than the number
of observables. The effective dimension is typically in the order of the number of
the varied model parameters. For instance, in the case of the optical model the
typical number of varied model parameters is about fifty. Experience showed that
sufficient convergence is achieved if the number of samples is in the order of thou-
sand. Because of the rather low effective dimension in general no regularization is
required to estimate the mean vector and the covariance matrix. However, to be
on the safe side, one can check if the mean vector and the standard deviations of
its elements are sufficiently converged.
Considering the high number of observables, it is infeasible (or at least unrea-

sonable due to time constraints) to compute the complete posterior covariance
matrix A1 of the observables. Nevertheless, simulations of nuclear facilities re-
quire at least blocks of the updated covariance matrix. For instance, one block
could be associated with the covariance matrix of an individual reaction chan-
nel. Using the definition of the prior covariance matrix in Equation 5.3 and the
shifted sample vectors defined in Equation 5.4, we can rewrite the formula for the
posterior covariance matrix, Equation 5.2,

A1 =
1

n

n∑
i=1

~ui~u
T
i −

1

n2

n∑
i=1

n∑
j=1

~ui~u
T
i ST

(
SA0S

T + B
)−1

S~uj~u
T
j . (5.9)
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We identify again a scalar weight term

ωij =
1

n2
~uTi ST

(
SA0S

T + B
)−1

S~uj (5.10)

which allows us to express Equation 5.9 in the compact form

A1 =
n∑
i=1

n∑
j=1

(
δij
n

+ ωij) ~ui~u
T
j , (5.11)

with δij = 1 if i = j and zero otherwise. Therefore, both the mean vector and
the covariance matrix can be updated by computing linear combinations of the
shifted sample vectors or their dyadic products.
To evaluate a block of the posterior covariance matrix, one keeps only the ele-

ments of interest in the sample vectors. For instance, to obtain the covariance
block given by row indices 1 . . . 49 and column indices 50 . . . 99, one uses the
reduced sample vectors ~vi = (ui,1, . . . , ui,49)T and ~wj = (uj,50, . . . , uj,99)T . The
respective block of the posterior covariance matrix can then be computed by

A(1:49),(50:99) =
n∑
i=1

n∑
j=1

(
δij
n

+ ωij)~vi ~w
T
j . (5.12)

One may doubt the benefit of rewriting the Bayesian update formulas in this
way, because the computation of the weights still requires to evaluate the product
SA. For instance, consider 103 experimental data points and 106 observables to
update. The sensitivity matrix would be of dimension 103 × 106 and the prior
covariance matrix of dimension 106 × 106. The time complexity for the required
multiplication SA would be 103 × 106 × 106 = 1015. Taking into account that a
contemporary desktop computer is capable of about 1010 instructions per second,
the multiplication would take 105 seconds, which is approximately one month. In
addition, the previous consideration neglects the fact that a covariance matrix of
80 terabytes does not fit into working memory and has to be loaded piecewise.
Access times and throughputs of hard disks are magnitudes smaller than those of
the working memory. The next section shows that harnessing the sparsity of the
sensitivity matrix and the ensemble representation of the covariance matrix allows
for the fast computation of the weights.
The important statement of this section is that—once the weights are available—

both updating the complete mean vector for millions of observables and computing
blocks of the posterior covariance matrix are feasible. Updating the mean vector
of ten million observables may take less than half an hour on a modern desktop
computer.
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5.2 Calculating the weights

The direct calculation of the weights is infeasible for a large number of observables
because of the required determination of the involved matrix product SA0S

T .
However, the computation of the weights is well manageable if making use of the
ensemble representation of the covariance matrix and exploiting the sparsity of
the sensitivity matrix S.
Starting point of the procedure are the expressions for the weights Equation 5.7

and Equation 5.10. We use the representation Equation 5.5 of A0 to express
SA0S

T ,

ωi =
1

n
(S~ui)

T

(
1

n

n∑
k=1

(S~uk) (S~uk)
T + B

)−1

(~σexp − S~σ0) , (5.13)

ωij =
1

n2
(S~ui)

T

(
1

n

n∑
k=1

(S~uk) (S~uk)
T + B

)−1

(S~uj) . (5.14)

Each vector ~ri = S~ui contains the model prediction associated with the ith cal-
culation interpolated to the energies and angles of the experimental data. The
number of available experimental data points is usually in the order of thousands,
whereas the number of values of observables predicted by the nuclear model code
may exceed several millions. If we assume that the vectors ~ri are available, the
inversion is the most time consuming operation. The inversion is performed on
the mesh of the experimental data, which means that the dimension of the matrix
is in the magnitude 1000 × 1000. The inversion of such a matrix takes not more
than half a minute on contemporary desktop computers.
Another important aspect is that the expression

X =

(
1

n

n∑
k=1

(S~uk) (S~uk)
T + B

)−1

(5.15)

has to be evaluated only once and the result can then be reused for the computation
of every weight. Also the expression ~r0 = (~σexp−S~σ0) can be reused. Using these
abbreviations, the formulas for the weights become particularly succinct,

ωi =
~r Ti X~r0

n
and ωij =

~r Ti X~rj
n2

. (5.16)

We note that once ~a = X~r0 is computed, the weights for updating the mean vector
are given by ωi = ~r Ti ~a. The dimension of the vectors in this scalar product equals
the number of experimental data points. If M is the number of experimental data
points and N the number of model predictions, the time complexity to evaluate
all weights ωi is M × N . In a common scenario with about 103 experimental
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data points and 103 model predictions, the computation time can be neglected.
The most expensive operation that has to be repeated for every weight ωij is the
computation of the matrix product X~rj. For 103 experimental data points, the
time complexity is 103 × 103 = 106. Furthermore, assuming 103 samples, we get
a time complexity of 106 × 103 = 109 to compute all weights. Recalling that
a modern desktop computer can perform about 1010 instructions per second, a
conservative guess of the computation time is a few seconds.

The discussion so far elaborated on the calculation of the weights once the vec-
tors ~ri = S~ui are available. The remainder of this section deals with the calculation
of the ~ri. In section 3.4 the construction of the sensitivity matrix for integrated
cross sections using linear interpolation and spectra using bilinear interpolation
was explained. To recapitulate the mapping scheme, consider an experimental
data vector ~σexp with observations (integrated and differential cross sections) at
certain energies and angles. Further consider a vector of model predictions ~σmod

at different energies and angles. Using linear Equation 3.40 and bilinear interpo-
lation Equation 3.59, an interpolation from the model mesh to the experimental
mesh always has the form

σinti = αi1σ
mod
βi1

+ αi2σ
mod
βi2

+ αi3σ
mod
βi3

+ αi4σ
mod
βi4

. (5.17)

The observables in the vector ~σint are specified at the same energies and angles as
the observables in ~σexp. Each interpolated data point is given as the weighted sum
of up to four elements of the model prediction vector ~σmod. For linear interpolation
only two elements of ~σmod are involved, hence one may assign αi3 = αi4 = 0 and
βi3 = βi4 = 1. The constants αik can be arranged into a matrix α. Also the
βik can be arranged into a matrix β. The ith row of these matrices contains
the information to compute the interpolation σinti associated with the ith element
of ~σexp. The dimension of both matrices is M × 4 where M is the number of
observations in ~σexp. The interpolation is computationally inexpensive when the
matrices α and β are given. Only M × 4 multiplications have to be performed to
obtain the complete interpolated vector.
In order to determine α and β, we introduce the index table I associated with

a cross section vector ~σ. The index table contains the reaction channel, incident
energy, and outgoing energy or angle of each observable included in ~σ. A complete
characterization of observables requires both the index table and the cross section
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vector. As a schematic example, consider the pair

~σ =



σ1

σ2

...
σd−1

σd


, I =

Pos Reac Einc Eout
1 CS/TOT 1.5 0

2 CS/TOT 2.0 0
...

...
...

...
d− 1 SP/PART/n 8.0 5.5

d SP/PART/n 8.0 6.5

. (5.18)

In this example, the index table tells us that the first element of the cross section
vector is the total cross section at 1.5 MeV incident energy. The reaction channel
of an element in the cross section vector is identified by a reaction string. The
reaction string also gives the information whether the associated element in the
cross section vector is an integrated cross section, a spectrum value or an angle-
differential cross section. The example shows that the reaction string of integrated
cross sections starts with ‘CS’. Because no emission energy has to be specified then,
the entry in the column ‘Eout’ is set to zero. The last column was labeled ‘Eout’
for brevity. If the reaction string indicates an angle-differential cross section, the
value in the last column represents the angle.
In the following we consider an experimental vector ~σexp with index table Iexp

and a model vector ~σmod with index table Imod. The construction of the matrices α
and β can be performed solely on the basis of Imod and Iexp. For a fast construction
ofα and β, the index table Imod is sorted primarily according to ‘Reac’, secondarily
according to ‘Einc’ and tertiarily according to ‘Eout’. For two arbitrary rows i
and j of Imod, it can be decided whether they are related by

(Reac,Einc,Eout)i < (Reac,Einc,Eout)j (5.19)

or not. Due to the fact that the rows in Imod are sorted, a binary search (also
known as bisection method) can be applied to quickly obtain the relevant rows.
The binary search is defined by the recursive function

bs(x, r1, r2, I) :=


bs(x, r1, b r1+r2

2
c, I) if x < row(I, b r1+r2

2
c)

bs(x, b r1+r2
2
c, r2, I) if x > row(I, b r1+r2

2
c)

r1 otherwise
(5.20)

where x denotes a triple (Reac,Einc,Eout) to which the information specified in I
should be mapped. The row numbers r1 and r2 define the boundaries of the range
in which the search has to be performed. Finally, the notation row(I, i) represents
the content of the ith row of I. The function bs(.) returns the number of the row
in I whose content is closest from below to x out of all rows. The binary search
is schematically depicted in Figure 5.1.
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1 25 50 75 100

Figure 5.1: Illustration of binary search. Because rows are sorted, a particular
row can be found by recursively halving the search interval.

The matrices α and β are constructed row-wise. For every row i in Iexp, the
relevant rows in Imod are determined. The obtained row positions are then stored
in the ith row of β. Based on the information in the relevant rows of Imod, the
associated coefficients in Equation 5.17 are computed and stored in the ith row
of the matrix β. Following we describe the process to determine one row in α

and β for an integrated cross section. The algorithm is analogous for a spectrum
value or angle-differential cross section. Assume that the ith row of Iexp contains
Reac = CS/TOT, E = Einc = 5.0, and Eout = 0.0. To construct a linear mapping
from a model prediction vector to this observation of the experiment, two rows
in Imod have to be located. Both rows must contain Reac = CS/TOT. One row
must contain the incident energy E1 which is closest from below to the incident
energy E = 5.0 of the experimental data point. The other row must contain
the incident energy E2 which is closest from above to the incident energy of the
experimental data point. Because Imod is sorted, these two rows are adjacent. The
location of this pair is determined by a binary search. Using the binary search
function defined in Equation 5.20, the relevant rows in Imod can be determined by
k = bs(row(Iexp, i), 1, n, Imod), where n is the total number of rows in Imod. Let
the incident energy in the kth and (k+1)th row be Ek and Ek+1 respectively. Now,
the ith row of β is

βi. = (k; k + 1; 1; 1) . (5.21)

The coefficients for linear interpolation are written in the ith row of α,

αi. =

(
Ek+1 − E
Ek+1 − Ek

;
E − Ek

Ek+1 − Ek
; 0; 0

)
. (5.22)

The last two coefficients are set to zero, because only two elements of the model
prediction vector are involved in linear interpolation.
The binary search is very efficient. For instance, if Imod contains 106 rows, only

twenty comparisons are needed to locate the rows in Imod that are relevant to map
a model prediction vector to one row in Iexp. In general, the time complexity to
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compute α and β is proportional toM× log(N) whereM is the number of rows in
Iexp and N is the number of rows in Imod. Therefore, the mapping can be quickly
performed even for N w 107.
This section showed that the calculation of the weights is computationally in-

expensive. In fact, the bottleneck is the storage device. For instance, storing 103

model prediction vectors with 107 observables in double precision requires 80 gi-
gabytes. The working memory of typical contemporary desktop computers is too
small to keep all model prediction vectors at once. Thus, model predictions have
to be read piecewise from the hard disk. Hence, the time demand is primarily
determined by the access speed of the storage device. Nevertheless, the whole
procedure is well-manageable.

5.3 Interpretation as Gaussian process

Gaussian process regression is a powerful method for non-parametric regression
and well interpretable within the framework of Bayesian statistics. In this section
we show that the described procedure to update a large number of observables
can be interpreted as a Gaussian process regression. This interpretation will sig-
nificantly simplify the treatment of model defects in chapter 9. The notation we
introduce in this section will also be helpful to explain the database approach
introduced in the next section. A more formal introduction of Gaussian processes
will be given in section 9.1.
A Gaussian process can be regarded as the generalization of a multivariate

normal distribution. A multivariate normal distribution is a probability distri-
bution for a finite number of random variables. A Gaussian process is a prob-
ability distribution for an infinite number of random variables. A collection of
infinitely many random variables can be regarded as a random function f(x),
where the value of the function for any permissible choice of x is a random vari-
able. The defining property of a Gaussian process is that for every possible finite
set {x1, x2, . . . , xn} of values of the function argument, the associated random vari-
ables f(x1), f(x2), . . . , f(xn) are governed by a multivariate normal distribution.
The scheme for updating a large number of observables is based on the surro-

gate approach discussed in section 3.3. In this approach the prior is constructed
by fitting a multivariate normal distribution to an ensemble of model prediction
vectors. In order to recognize the link to Gaussian processes, we restrict our-
selves to model prediction vectors which contain only the values of the total cross
section at different incident energies Ei. Therefore, also the fitted multivariate
normal distribution refers only to the total cross section. The total cross section is
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a function of the incident energy. Prior estimates of total cross sections in-between
the incident energies of the model mesh are obtained by linear interpolation. This
means that the prior mean vector ~σ with associated energies ~E is augmented to
a continuous function σ(E) via linear interpolation. Linear interpolation repre-
sents a linear transformation of the random variables (the cross section values)
defined at the energies of the model mesh. As pointed out on section 2.2, a linear
transformation of a multivariate normal random vectors yields another multivari-
ate normal random vector. Therefore, the assumption of a multivariate normal
distribution for the model vector together with linear interpolation defines a Gaus-
sian process. The same argument applies for bilinear interpolation of spectra and
angle-differential cross sections.
Having established the link to Gaussian processes, one might refrain from con-

sidering the model prediction vector as object of primary interest and instead
considers a model prediction function. The scheme to update a large number of
observables conforms well to this interpretation. In section 5.2, we discussed ef-
ficient interpolation schemes to determine from the vector of model predictions
the corresponding values of the model on the mesh of an experiment vector ~σexp.
Instead of building up the complete sensitivity matrix S and perform the matrix
multiplication S~σmod, only the operations required for linear and bilinear inter-
polation are carried out. We emphasize this fact by introducing the mapping
operator

Ŝ(I1, I2, ~v) ≡ S~v (5.23)

whose action is equivalent to the evaluation of the matrix product S~v. The index
table I2 specifies the meaning of the values in ~v whereas the index table I1 specifies
the mesh to which values should be interpolated. An example for the structure of
an index table was given in Equation 5.18.
Using the mapping operator and Equation 5.3, we can compute the prior esti-

mates of observables at arbitrary energies and/or angles

σ0(I) = Ŝ(I, Imod, ~σ0) . (5.24)

The vector ~σ0 contains the prior estimates of the observables on the model mesh.
The index table Imod describes the reaction type, energies, and angles associated
with values in ~σ0. The index table I specifies the observables at arbitrary energies
or angles within the boundaries of the mesh. The mapping operator takes care of
the proper interpolation from the discretized energy mesh to the specified energies
in I. The discrete nature of the energy and angle meshes is hidden in the internals
of σ0(I). From the outside, the object σ0(I) appears as a vector-valued function
with several arguments, given that we keep the number of rows in I constant and
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only allow the adjustment of the energies and angles. Therefore, we can regard
σ0(I) as the prior mean function.
Similarly, prior covariances between observables at arbitrary energies and angles

are given by

A0(I1, I2) =
1

n

n∑
i=1

Ŝ(I1, Imod, ~ui) Ŝ(I2, Imod, ~ui)
T , (5.25)

where ~ui are the shifted sample vectors defined in Equation 5.4, and n is the
number of sample vectors. Again, from the outside A0(I1, I2) appears as a vector-
valued function if the number of rows in I1 and I2 are kept fixed, and we can
regard it as the prior covariance function.
The updated quantities correspond also to a Gaussian process. Using the map-

ping operator and Equation 5.8, the posterior mean function has the form

σ1(I) = Ŝ(I, Imod, ~σ0) +
n∑
i=1

ωi Ŝ(I, Imod, ~ui), (5.26)

with the weights ωi defined in Equation 5.7. Based on Equation 5.11, the posterior
covariance function is given by

A1(I1, I2) =
n∑
i=1

n∑
j=1

(
δij
n

+ ωij) Ŝ(I1, Imod, ~ui) Ŝ(I2, Imod, ~uj)
T (5.27)

with the weights ωij defined in Equation 5.10. The efficient computation of the
weights has been discussed in section 5.2.
This section demonstrated that the surrogate approach, and hence also the

scheme to update a large number of observables, can be interpreted as Gaussian
process regression. Both the prior and the posterior can be interpreted as Gaussian
processes. This interpretation will be tremendously helpful in chapter 9 to define
consistent model defects. Once the technical details such as the implementation of
the mapping operator are solved, the Bayesian update becomes very simple. The
next section elaborates on these technical details.

5.4 Database approach

The basis to perform the Bayesian update for a large number observables are the
model prediction vectors ~τi. Each of them contains the observables predicted by a
nuclear model using specific values of the model parameters. The first important
design consideration is the storage format of the ensemble of model prediction
vectors ~τi with the associated index tables Imod,i. We discuss two options.
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A straight-forward approach is to generate a model prediction matrix

τ = (~τ1, ~τ2, . . . , ~τn) , (5.28)

where each column is given by a particular model prediction vector ~τi. To construct
such a matrix, every ~τi must contain the same number of elements. In addition, it
is reasonable to demand that all ~τi possess the same structure. Therefore, all index
tables Imod,i are identical and we just write Imod. The matrix τ can be stored in
a single file and the index table Imod in another file. For vectors containing 107

variables, the memory requirement of the index table Imod is about 300 megabytes
and fits completely into working memory. The binary search, see Equation 5.20,
allows a quick determination of the relevant rows in τ for the Bayesian update. For
instance, to calculate the weights based on 103 experimental cross sections involves
up to 2000 rows of τ . If stored suitably, individual rows of τ can be read at once.
Conventional hard disks have a throughput about hundred megabytes per second.
Assuming 103 model prediction vectors equivalent to 103 columns, reading one row
takes about 0.1 milliseconds. However, the access time to move the read head to
the start of the row is in the magnitude of milliseconds. Therefore, the time to
retrieve the values of 2000 rows is in the magnitude of dozens of seconds. Due to
the regular structure of a matrix, this storage scheme is computationally efficient.
Splitting the matrix τ into blocks and distributing these blocks across several
hard disks can help to speed up the computation. Relevant information from the
model prediction vectors can then be retrieved in parallel. The disadvantage of
this storage scheme is its inflexibility. Either adding new model prediction vectors
to τ or augmenting the existing vectors with a new observable is an expensive
operation. The situation is illustrated in Figure 5.2.
The lack of flexibility is a severe drawback of this storage format. For instance,

assume that observables were collected from model calculations and stored into
such a matrix. While gathering experimental data, one finds data for a reaction
channel that has not been included in the model prediction matrix τ . Extracting
the corresponding observables from the model calculations, and adding them to
τ takes time. Eventually, hundreds of gigabytes have to be written again to hard
disk. Further, the number of provided observables of a model code may vary
with the choice of model parameters. At which incident energy reaction channels
open up may depend on model parameters. It then becomes difficult to define a
common mesh of observables, which is necessary to store the observables of the
model calculations as a matrix.
Therefore, another storage format based on the original output of the model

code is proposed which avoids the drawbacks discussed above. The idea of the
other approach is to work with the original output of the nuclear model code. We
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Figure 5.2: Ordering schemes of the matrix containing the model prediction vec-
tors. If each block contains the observables Oi associated with one model predic-
tion ~τj, the insertion of a new model prediction at the end of the chain is fast,
whereas amending an observation to every prediction slow. In the latter case, the
whole structure has to be copied. Runtime complexities of these two insertion
operations are switched, if each block contains the same observable Oi from all
the model prediction vectors ~τj.

assume that the output of each model calculation based on model parameter set
~pi is located in a directory Di on the hard disk. The output files in one directory
Di contain all the information required to build up the model prediction vector ~τi
and also the index table Imod,i. Based on the mapping operator in Equation 5.23
we introduce another operator T̂ ,

T̂ (I, Di) ≡ Ŝ(I, Imod,i, ~τi) . (5.29)

The operator T̂ extracts the relevant information from directory Di and applies
an interpolation scheme to produce the predictions of the observables specified
in I. The operator T̂ does not require Imod,i or ~τi as arguments, because this
information is available in the files contained in Di. For convenience, we further
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Figure 5.3: The update scheme for a large number of observables as database
application. This diagram shows the associated computer infrastructure.

define
T̂ (I, Di −D0) := T̂ (I, Di)− T̂ (I, D0) , (5.30)

where D0 is the directory that contains the model results based on the prior best
parameter set ~p0.
In the diction of programming, the operator T̂ is a function. The form of

Bayesian update is unaffected by the operations within this function. Due to this
fact, the approach becomes very flexible. If linear interpolation is not desirable, one
can rewrite T̂ to implement some other interpolation scheme. If a new version of
the nuclear model code is made available which predicts a new type of observable,
it suffices to extend the function to read from the appropriate files.
The update scheme for a large number of observables can be implemented as a

database application, which can work with a database distributed across several
computers. A client requests specific evaluated observables based on an exper-
imental data set from the server. The server distributes the computation tasks
among several worker computers, each connected to a storage device containing
a subset of the model calculation directories. Partial results are sent back to the
server and combined there. The final result is transmitted back to the client. The
layout of the described infrastructure is depicted in Figure 5.3.
In the following, we describe all steps involved starting from the client request

and ending with sending back the evaluated observables. Let Ci denote the ith

worker computer. Further let Di denote the set of directories located on the
storage device connected to Ci. The directory D0 shall contain the output files of
the calculation made with the prior best parameter set and is stored on the server.

1. The client requests an evaluation of the observables specified in Ieval based
on experimental data ~σexp, Iexp and associated covariance matrix B. This
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information is sent to the server.

2. The server sends to each worker computer Ci the request to compute T̂ (Iexp, D)

and T̂ (Ieval, D) for all D ∈ Di. The resulting vectors ~τk and ~σk, respectively,
are sent back to the server.

3. The server computes the shifted prediction vectors ~rk = ~τk − T̂ (Iexp, D0),
and based on them the expression in Equation 5.15

X =

(
1

n

n∑
k=1

~rk ~r
T
k + B

)−1

. (5.31)

4. The server computes the expression ~a = X (~σexp − T̂ (Iexp, D0)). Then, the
weights to update the mean vector and the covariance matrix are calculated,

ωi =
~r Ti ~a

n
and ωij =

~r Ti X~rj
n2

. (5.32)

5. The server computes the shifted prediction vectors ~uk = ~σk − T̂ (Ieval, D0).
These vectors are used to evaluate the requested observables,

~σeval = T̂ (Ieval, D0) +
n∑
k=1

~uk ωk , (5.33)

and the associated covariance block

Aeval =
n∑
i=1

n∑
j=1

(
δij
n

+ ωij) ~ui ~u
T
j . (5.34)

6. The evaluated observable vector ~σeval and the associated covariance matrix
Aeval are sent back to the client.

Parallelization is not restricted to the retrieval of information of the directories
which contain the model predictions and interpolation of this information (step
2). Calculating the sums in step three and five, and the calculation of the weights
in step four can also be parallelized. However, the speed gain achieved by these
measures is much smaller than achieved by the parallelization in step two. As has
been pointed out in section 5.2, the time limiting factor of the procedure is the
time needed to retrieve the information from the storage devices. Compared to
this time, the evaluation of the sums is negligible.
If such a server/worker infrastructure is not available, the whole procedure can

be carried out on a single computer. The directories may be still distributed across
several hard disks. The use of solid state disks whose random access time is about
two magnitudes lower than those of conventional hard disks makes possible to
further reduce the overall time of the procedure.
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5.5 Comparison to Monte Carlo methods

The update scheme for a large number of observables (LSBET) bears a strong
resemblance to the Monte Carlo methods, such as BMC and UMC-G, discussed in
chapter 4. For a comparison of the methods, we insert the shifted sample vector
defined in Equation 5.4 into Equation 5.3,

~σ1 = ~σ0 +
n∑
i=1

ωi(~τi − ~σ0) , (5.35)

where ~σ0 is the prior best estimate and ~τi are the model prediction vectors. The
model prediction vectors are obtained by drawing model parameter vectors ~pi
from the prior distribution and then computing the associated model predictions,
~τi =M(~pi).

If we use the arithmetic mean to construct the prior best estimate ~σ0,

~σ0 =
1

n

n∑
i=1

~τi , (5.36)

the formula to update the mean vector, Equation 5.35, can be written as

~σ1 =
1

n

n∑
i=1

~τi +
n∑
i=1

~τi ωi −
1

n

n∑
i=1

n∑
j=1

~τi ωj = (5.37)

=
n∑
i=1

~τi

[
ωi +

1

n

(
1−

n∑
j=1

ωj

)]
=

n∑
i=1

~τi ω̃i . (5.38)

Thus, the updated mean vector is a weighted sum of the model prediction vectors
obtained by sampling from the prior distribution of the model parameters. Also in
Monte Carlo methods, such as UMC-B, an estimate of the mean vector is given by
a weighted sum of the model prediction vectors drawn from the prior distribution.
The formula to estimate statistics from model prediction vectors in Monte Carlo
procedures is given in Equation 4.25. Especially, the mean value is given by

~σMC
1 =

n∑
i=1

~τi

(
ωMC
i∑n

i=1 ω
MC
i

)
=

n∑
i=1

~τi ω̃
MC
i (5.39)

In the update scheme for a large number of observables, the likelihood is a multi-
variate normal distribution. Using the same likelihood in a Monte Carlo procedure,
the weights ωMC

i become

ωMC
i ∝ exp

{
(−1

2
(~σexp − S~τi)

TB−1(~σexp − S~τi)

}
, (5.40)

with the vector of measurements ~σexp and the associated covariance matrix B.
The sensitivity matrix S maps the model predictions in ~τi to the mesh of ~σexp.
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Figure 5.4: Distributions of the first schematic scenario are shown in the left
diagram. A comparison of UMC-G/B and LSBET in terms of efficiency is shown
in the right diagram.

This expression for the weights is very different from Equation 5.13. In order to
understand the consequence of this difference, we discuss two schematic scenarios.
In the first scenario, we consider the update of a single cross section σ. We as-

sume the prior to be a multivariate normal distribution, π(σ) ∼ N (µ0 = 56;A0 =

9). Further, we assume that an experiment yields the estimate σexp = 57 and
variance B = 3. Because prior and experiment refer to the same cross section, the
sensitivity matrix can be discarded from the update formula. Then the Bayesian
update yields

σ1 = σ0 + A0S(A0 +B)−1(σexp − σ0) = 56 +
9

9 + 3
(57− 56) = 56.75 , (5.41)

A1 = A0 − A0(A0 +B)−1A0 = 9− 81

9 + 3
= 2.25 . (5.42)

Therefore, the posterior is the multivariate normal distributionN (σ1 = 56.75, A1 =

2.25). Under the assumption of a (multivariate) normal prior and (multivariate)
normal likelihood, the computed parameters of the posterior distribution represent
the exact solution. The distributions are shown in the left diagram of Figure 5.4.
In both the LSBET and a Monte Carlo procedure, such as the UMC-G or UMC-

B method, samples ~τi are drawn from the prior distribution. A refined estimate of
the cross section vector is then given by a weighted sum of the sample vectors. We
are interested in the efficiency of the LSBET and Monte Carlo methods. Drawing
a certain number N of samples, how large is the expected difference to the exact
solution? Due to the sampling from the prior, the difference fluctuates randomly.
The standard error represents the expected difference between the estimate of the
mean vector and the exact solution; consequently 68% of the drawn cases lie within
this interval. We computed the standard error of LSBET and UMC-G/B for the
schematic scenario as a function of the number of sample vectors N . The result
is shown in the right diagram of Figure 5.4. The standard errors of LSBET and
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UMC-G/B are

ε(N ;LSBET) =
0.767√
N

and ε(N ;UMC) =
1.44√
N
. (5.43)

Roughly 3.5 times more samples are required for the UMC-G/B method to achieve
the same accuracy as the LSBET. If the experimental data is very unlikely accord-
ing to the prior distribution, the spread can be even larger. In general, the LSBET
is more efficient if the prior distribution is a multivariate normal distribution.
In the second schematic scenario, we investigate the behavior if the prior dis-

tribution is different from a multivariate normal distribution. We consider the
update of two cross section ~σ = (σ1, σ2)T . The prior should be constructed based
on the non-linear model

M(α) =

(
50 + 10 sin(α)

50 + 10 cos(α)

)
. (5.44)

We assume a uniform distribution in the interval 0 ≤ α ≤ π/2 as the prior
distribution of the model parameter. Because the LSBET is equivalent to the
surrogate approach discussed in section 3.3, drawing a sufficiently large number of
samples leads to the multivariate normal prior specified by

~σ0 =

(
56.3524

56.3524

)
and A0 =

(
9.7444 −8.9323

−8.9323 9.7444

)
(5.45)

Let us consider a measurement of these two cross sections to be characterized by

~σexp =

(
57

54

)
and B =

(
3 0

0 0.05

)
(5.46)

The bivariate prior distribution used in LSBET and the experiment distribution
are illustrated in the left diagram of Figure 5.5. Performing the Bayesian update
with the LSBET leads to the posterior distribution with

~σLSBET =

(
57.9772

54.0269

)
and ALSBET =

(
1.0428 −0.0297

−0.0297 0.0493

)
(5.47)

In contrast, performing the Bayesian update with the UMC-B method leads to
the posterior distribution with

~σUMC-B =

(
59.1540

54.0181

)
and AUMC-B =

(
0.0097 −0.0221

−0.0221 0.0502

)
(5.48)

We note that in the case of a non-linear model and a sufficient large sample size,
the results of the UMC-G method and the LSBET are virtually identical. This
is due to the fact that both methods approximate the non-linear model by the
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Figure 5.5: Distributions of the second toy scenario are depicted in the left dia-
gram. The evaluated cross sections of LSBET and UMC-B and associated 68%-
and 95% confidence ellipses are shown in the right diagram.

multivariate normal distribution given in Equation 5.45. In the UMC-B method
the exact model is used and thus the posterior preserves all model systematics.
The evaluated correlation between the two cross sections is ρLSBET = Cor[σ1, σ2] ≈
−0.1312 if using the LSBET, and ρUMC-B ≈ −0.9989 if using the UMC-B method.
The high evaluated correlation of the UMC-B method indicates that both cross
sections are virtually linear dependent.
The evaluated cross sections and associated uncertainty ellipses of both methods

are depicted in the right diagram of Figure 5.5.
If we believe the model to accurately describe reality, the result of the LSBET

method does not yield the proper solution. The UMC-B method, on the other
hand, comes arbitrary close to the proper estimate when the number of samples
gets larger and larger. The magnitude of the bias introduced by approximating
the model in the LSBET depends on the non-linearity of the model. However, we
have also to note that the proper solution on the model manifold is not excluded
by the evaluated covariance matrix. Updating with another experiment which is
concentrated on a point on the model curve would remove the bias in the LSBET.
We conclude by summarizing the two important insights of this section. If

the prior uncertainties of the model parameters are small enough to constrain the
model to a linear domain, and furthermore using a multivariate normal distribution
for the model parameters, the LSBET is more efficient. A smaller number of
samples is needed to get accurate results. If the uncertainties do not restrict the
model to a linear domain, evaluated quantities of the LSBET are biased compared
to the exact solution. In general, evaluated covariance matrices of LSBET are less
stiff than of UMC-B. Evaluated quantities do not have to lie on the manifold of
model possibilities.
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6

Consequences of model defects

If a model prediction does not agree with experimental data, then either the
experimental data are inconsistent or the model does not account for all relevant
physical aspects. Because nuclear models are an essential element in an evaluation
procedure, results are significantly affected by the quality of the employed nuclear
models.
In real evaluation scenarios, experimental data are often scarce and thus eval-

uators have to take into account model predictions. In addition, the lack of data
makes it difficult to assess the quality of the nuclear models. Indications for the
reliability of evaluated data are usually obtained by a comparison of simulations
based on these data with measurements from integral benchmark experiments (e.g.
Markovskij et al. (2003)).
In this and the next chapter we follow another approach to study the impact

of the quality of the nuclear model on the results produced by different evalua-
tion methods. We investigate the performance of the methods in two evaluation
scenarios with a large amount of experimental data available.
In the first scenario we assume a simple linear model which has the advantage

that the simplification of the nuclear model (i.e. linearization of the model or the
surrogate approach) does not affect the result. Hence evaluation methods based
on the simplification of the model, such as FBET, and Monte Carlo methods, such
as UMC-B, collapse to one common approach. Differences in the results are then
only due to different choices of the likelihood.
In the second scenario we use the various methods to perform an evaluation

of the neutron-induced total cross section of 181Ta. In contrast to the first sce-
nario, the employed optical model establishes a non-linear relationship between
the parameters of the optical potential and the values of cross sections at different
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incident energies. Therefore, results can be expected to be dependent on whether
the nuclear model is replaced by an approximation or accounted for exactly.
In this chapter we analyze the evaluation methods EMPIRE-Kalman, EMPIRE-

MC, FBET, UMC-G, UMC-B, BMC and BFMC in the scenario with the linear
model. Furthermore, we introduce the details of the evaluation scenario dealing
with the neutron-induced total cross section of 181Ta and apply the EMPIRE-
Kalman and FBET/EMPIRE-MC method, which use an approximation of the
nuclear model. Monte Carlo methods which use the exact nuclear model will be
discussed separately in chapter 7.

6.1 Deficient linear model

In order to study the consequences of model defects, we consider a very simple
hypothetical model M to predict the cross sections of a single reaction channel.
The model assumes that the cross sections σ at different incident energies E are
located on a straight line. The functional form of the model is

M(E) = kE + d . (6.1)

The slope k and the intercept d of the straight line are the model parameters. Of
course, this simple model is not suitable to predict any real cross section curve.
Nevertheless, this model like any actual model represents a function that predicts
cross sections once the model parameters are specified. Furthermore, because the
model is linear, Monte Carlo methods, such as UMC-G, UMC-B, and linearized
methods, such as FBET and EMPIRE-MC, yield the same solution. The following
results were obtained by the application of the update formulas of section 3.2.
In actual nuclear data evaluation, we never know the true values of the ob-

servables, e.g. cross sections, but only results of measurements. Contrary in the
current schematic scenario, we can assume that a certain cross section curve rep-
resents the truth. In the present toy example, this true cross section curve should
be given by

σtrue(E) = (E − 15)2 + 10 . (6.2)

The true cross sections reside on a parabola whereas the model assumes that cross
sections are located on a straight line. Hence, the model is deficient and cannot
provide a proper description of the true values.
Measurements are always afflicted by measurement error. Therefore, measured

values are only approximations to the true values. Let us assume that indepen-
dent measurements at 20 energies were made, each with a standard error (or
uncertainty) of δ = 2 mBarn. Thus the associated covariance matrix B is di-
agonal, and each diagonal element is given by δ2 = 4. In order to simulate the
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Einc xs Einc xs Einc xs Einc xs
10.0000 35.7150 12.6316 11.8115 15.2632 9.7647 17.8947 15.1050
10.5263 27.9861 13.1579 16.2711 15.7895 8.9097 18.4211 20.4166
11.0526 27.0942 13.6842 10.9031 16.3158 11.3483 18.9474 23.6427
11.5789 21.8605 14.2105 12.6094 16.8421 13.8749 19.4737 28.2947
12.1053 15.8224 14.7368 8.3059 17.3684 12.7900 20.0000 36.3257

Table 6.1: Values of the hypothetical measurements rounded to four decimal
places. Each value is associated with the same standard error (=uncertainty)
δ = 2. The experimental data points are assumed to be uncorrelated.

hypothetical measurements, we added Gaussian noise N (0, δ2) to the true cross
sections given by Equation 6.2. The in this way obtained ‘experimental values’ are
listed in Table 6.1. In this simple example, the sensitivity matrix S of dimension
20 × 2 consists of the elements Si1 = Ei and Si2 = 1, where Ei is the incident
energy of the ith experimental data point.
In order to apply Bayesian statistics, a prior has to be specified for the model pa-

rameters. We assume a multivariate normal distribution for the model parameters
~p = (k, d) with

~p0 =

(
k0

d0

)
=

(
1

15

)
and A0 =

(
2 0

0 400

)
. (6.3)

The true cross section curve, the generated experimental values, and the model
prior are displayed in Figure 6.1.
Performing the Bayesian update yields the multivariate normal posterior distri-

bution with

~p1 =

(
k1

d1

)
=

(
0.0328

19.3382

)
and A1 =

(
0.0212 −0.3182

−0.3182 4.9707

)
. (6.4)

The corresponding evaluated cross section curve is displayed in Figure 6.2. We
remark that assuming perfectly correlated experimental errors does not make any
difference for the further discussion (evaluated uncertainties of cross section esti-
mates would be around 1.4 mBarn). The basic assumption that the model per-
fectly describes reality is reflected in the evaluated cross section curve. The model
is a straight line and consequently also the evaluated cross section curve is a
straight line. No amount of experimental data suggesting a different shape can
change this behavior. Furthermore, the evidence given by the experimental data
leads to rather small uncertainties of the evaluated cross section. From the point
of Bayesian statistics, the obtained mean values and the associated uncertainties
are completely correct.
However, they do not reflect the obvious energy dependence of the available

set of reliable experimental data. Especially, the given error band appears too
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Figure 6.1: True cross section curve, the generated values of the measurements
and the model prior in the hypothetical scenario. The green line denotes the
prior best estimate and the pale green area indicates the associated 1-sigma (68%)
uncertainty band. The vertical extent of the 95% uncertainty would be roughly
two times larger.
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Figure 6.2: True cross section curve, the generated values of the measurements
and the evaluated cross section in the hypothetical scenario. The blue line denotes
the posterior estimate and the pale area indicates the associated 2-sigma (95%)
uncertainty band.
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narrow and does not correspond to well founded expectations. Consequently, such
a result would not be acceptable for nuclear data evaluation. The origin of this
unsatisfactory posterior is the incorrect assumption that the model provides a
perfect description of the ‘true’ value of the observables.
This simple toy example reveals a fundamental shortcoming of most contem-

porary evaluation methods, i.e. the assumption that the involved nuclear models
yield a perfect description of the observables. With regard to the complexity of
the nuclear many-body problem the validity of this assumption is highly question-
able. The given example clearly shows the significant impact of ignored model
defects on the final evaluation. The ignorance of model defects usually results in
biased estimates of the mean values and unrealistic (frequently underestimated)
error bands. Hence, the reliability of the evaluation must be questioned.
As discussed in chapter 4, the BFMC and BMC method are based on unconven-

tional choices for the likelihood. These unconventional choices lead to evaluated
uncertainties differing from those produced by the methods mentioned in the last
paragraph. In the following, we investigate these differences also on the basis of
the toy model.
The likelihood of the BMC method was given in Equation 4.17. The value of

the likelihood depends explicitly on the number of experimental datasets. This
property may be criticized, because the result of an evaluation should be inde-
pendent of how the data is split. Only the actual information in the data should
determine the result. If we assume that each experimental data point represents
an individual dataset, the result of the BMC method coincides with the result
Equation 6.4 obtained by the FBET and the other approaches. The evaluated
cross section curve is illustrated in Figure 6.2. An alternative visualization of
the update procedure in terms of the model parameters k and d is presented in
Figure 6.4.
We have the other extreme case of the BMC method if all experimental data

points belong to the same dataset. Rewriting the exponent in Equation 4.17 in
matrix notation, we get for the toy scenario (a single reaction channel and only
one dataset)

`BMC(~p |~σexp,M) ∝ exp

(
−1

2
(M(~p)− ~σexp)T (NB)−1 (M(~p)− ~σexp)

)
, (6.5)

where N is the number of experimental data points contained in the vector ~σexp.
The covariance matrix in this likelihood B̃ = NB is scaled by a factor N compared
to the conventional choice. Performing the update with the BMC method yields

~pBMC =

(
k1

d1

)
=

(
0.1115

16.7523

)
and ABMC =

(
0.2977 −4.4207

−4.4207 69.6138

)
. (6.6)
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Figure 6.3: The evaluated cross section curve and the associated 95% confidence
band resulting from updating with the BMC method. The BMC method inflates
the uncertainties of the experimental data points. This measure leads to larger
evaluated uncertainties, compare to Figure 6.2.

Evaluated uncertainties are about a factor 3.7 larger than those associated with
Equation 6.4. The evaluated cross sections are shown in Figure 6.3. The up-
date in terms of model parameters is visualized in Figure 6.5. Even though, the
uncertainties are larger, the evaluation is still not consistent to experimental data.
Hence, a modified likelihood does not represent a viable possibility to account

for model defects. If the model and the experimental data are reliable, evaluated
uncertainties are larger than required. On the other hand, in case of severe model
deficiency, the evaluated mean values and uncertainties may still not reflect the
information contained in the experimental data.
There is yet another reason why the modification of the likelihood cannot be

considered as an appropriate measure to treat model defects. Not only the eval-
uated cross section curve is restricted to the possibilities of the model but also
evaluated covariance matrices at the level of cross sections inherently include the
systematics of the model. In the case of model deficiency, however, these depen-
dencies are not given and therefore inappropriate. Figure 6.6 shows cross section
curves drawn from the BMC posterior. Clearly, admissible deviations from the
posterior best estimate are confined to straight lines. Every evaluation method
not taking into account model defects possesses the same feature. Only methods,
such as FBET and EMPIRE-MC, that replace the original model by a surrogate
model allow freedom beyond the possibilities of the model. The degree of freedom
depends on the non-linearity of the nuclear model. The implied assumption that
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the probability distributions introduced in the schematic scenario. The displayed
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Figure 6.6: Cross section curves drawn from the posterior distribution obtained
by the BMC method.

there is a relationship between the non-linearity of the model and the extent of the
model defect is difficult to justify. Furthermore, in view of the large amount of data
produced by a nuclear model code and the non-negligible runtime of these codes,
the degree of non-linearity of the model is difficult to assess. Thus, assumptions
for the model defect remain unknown.
The issues addressed so far also apply for the BFMC method. For the sake of

completeness, we have also applied the BFMC method to the toy scenario. The
likelihood of the BFMC method was given in Equation 4.8. We repeat it here
specialized to the case of the linear modelM(~p) = S~p,

`BFMC(~σexp | ~p,M) = C

[
exp

{
−
(

1

2
(~σexp − S~p)T B−1 (~σexp − S~p)

)2
}]( 2

χ2
min

)2

(6.7)
In contrast to the likelihood in Equation 6.5 of the BMC method, the exponent of
the BFMC likelihood is squared. This likelihood significantly differs from a multi-
variate normal distribution. For the linear modelM(~p) = S~p of the toy scenario,
the model parameters k and d occur up to the fourth power in the exponent of
the likelihood. Thus, one cannot expect to easily (if at all) obtain analytic update
formulas. The derivation of such formulas would require the solution of a system
of equations where the variables occur up to the third power. Therefore, even for
the simple linear model of the toy scenario, we have to resort to numeric methods.
We start with the determination of the χ2

min-value. In the BFMC method, the
χ2
min-value is given by the lowest χ2

i -value of the sampled model prediction vectors
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~σi. The formula to compute the χ2
i -values is

χ2
i = (~σexp − ~σi)T B−1 (~σexp − ~σi) , (6.8)

where ~σexp contains the measured cross sections and B is the associated covariance
matrix. In the toy scenario, we can compute the theoretically lowest possible
χ2
i -value that could appear in a sample. The χ2

min-value is associated with the
parameter vector ~p` for which the exponential function in Equation 6.7 attains its
largest value. Because squaring a non-negative function preserves the location of
the maximum, the same parameter vector ~p` is associated to the maximum of the
multivariate normal distribution

C̃ exp

{
−1

2
(~σexp − S~p)T B−1 (~σexp − S~p)

}
. (6.9)

We derived the parameter vector ~p` that leads to a maximum likelihood in sec-
tion 3.2. Adapting the solution in Equation 3.21 to the current situation,

~p` = (STB−1S)−1STB−1~σexp , (6.10)

we obtain ~p` = (−0.1100, 20.0919)T and hence χ2
min = 362.792. The χ2

min-value
quantifies the adequacy of the model taking into account the deviation from ex-
perimental data. For a good model the quantity χ2

min/N with N being the num-
ber of experimental data points should be about one. As expected, the value
362.792/20 ≈ 18 indicates the deficiency of the linear model in the toy scenario.
The exponent (2/χ2

min)2 in Equation 6.7 flattens the likelihood according to the
magnitude of the model deficiency. In this sense, the BFMC method is the only
Monte Carlo procedure that accounts for model defects. Nevertheless, evaluated
estimates and covariance matrices are still determined by the restriction of the
(maybe very deficient) model, and therefore biased mean values and questionable
uncertainties might be obtained.
With the knowledge of the χ2

min-value, we can normalize the likelihood in Equa-
tion 6.7 to unity, ∫

RN
`BFMC(~σexp | ~p,M) d~p = 1 . (6.11)

We evaluated this integral by Monte Carlo integration and obtained the normal-
ization constant C = 0.0955 ± 0.0004. Knowledge of this normalization constant
is not required in the BFMC method. However, here we need C for a comparison
of evaluated confidence areas to those of other methods.
Using again Monte Carlo integration, we get the mean parameter vector ~p` and

the associated covariance matrix B`,

~p` =

(
k`

d`

)
=

(
−0.1216

20.3300

)
and B` =

(
1.2535 −18.8492

−18.8492 295.0867

)
. (6.12)
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Figure 6.7: Comparison of the evaluated cross section curves and associated 95%
uncertainty bands obtained by the BMC and BFMC method.

The mean vector ~p` is slightly different from the values given under Equation 6.10
because of the statistical error of the Monte Carlo integration. The statistical
fluctuations are by a factor hundred smaller than the evaluated uncertainties
∆k =

√
1.2634 ≈ 1 and ∆d =

√
295.0867 ≈ 17, and hence of no significance. If

we assume that the prior is sufficiently uninformative, the posterior is essentially
determined by the likelihood. Consequently, the evaluated uncertainties of k and
d are about two times larger than in the BMC method. In general, the uncertain-
ties generated by the BFMC method strongly depend on the actual χ2

min-value.
Figure 6.7 compares the evaluated cross section curves resulting from the BMC
and the BFMC method. Due to the rescaling of the likelihood, the BFMC method
encloses most experimental data points in the 95% uncertainty band. The possi-
bilities are still restricted to a straight line, and realizations of cross section curves
drawn from the posterior would be exclusively given by straight lines, similar to
those in Figure 6.6 but more scattered.
Furthermore, we want to discuss the functional form of the BFMC likelihood,

Equation 6.7. This likelihood is not a multivariate normal distribution; never-
theless the isolines of the probability density are ellipsoids of the same shape as
those of the multivariate normal distribution determined by the same covariance
matrix B. Equal shape means that the ratio of the major axis and the minor axis
of the ellipsoids is the same for both the BFMC likelihood and the corresponding
multivariate normal likelihood.
In the forward step of the BFMC method, the probability distribution of the

likelihood is approximated by a multivariate normal distribution whose first and
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Figure 6.8: Visualization of the BFMC likelihood and the BFMC posterior distri-
bution. The ellipsoids indicate 68% and 95% uncertainty areas. The BFMC poste-
rior is obtained by fitting a multivariate normal distribution to samples weighted
according to the BFMC likelihood. The prior distribution employed by other
methods, such as FBET, UMC-G, BMC, etc. is shown for comparison.

second moments match those of the exact likelihood. The first moments represent
the mean vector and the second moments the covariance matrix. The weights
obtained for the drawn parameter vectors in the backward step are used in the
forward step to construct a multivariate normal distribution for the parameters,
hence we refer to the latter distribution as the BFMC posterior. The probability
distributions are visualized in Figure 6.8. The fact that both isolines of the BFMC
likelihood enclose the respective isolines of the BFMC posterior might irritate.
This phenomenon can be attributed to the specific functional form of the BFMC
likelihood. Figure 6.9 shows the decline of probability density as function of the
distance from the center point along the major axis of the uncertainty ellipsoid
for both the BFMC likelihood and the BFMC posterior visualized in Figure 6.8.
The BFMC likelihood is flatter around the center than the BFMC posterior with
the same mean vector and covariance matrix. Therefore, confidence intervals
associated with the same level of trust are wider.
In this section we showed at the example of a simple linear model that a de-

ficient model may lead to biased evaluated cross section curves whose meaning
are questionable. The results are summarized in Table 6.2. In the example, the
slope k and the intercept d exhibit a strong negative correlation for all considered
methods. Propagating the uncertainties ∆k and ∆d from the model parameters
to the cross sections, we obtain for the correlation between two cross sections σi
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Figure 6.9: Logarithmized probability density of the BFMC likelihood and the
BFMC posterior along the major axis of the green ellipsoids shown in Figure 6.8.
The dashed lines indicate the intersection points with the 68% uncertainty isolines
and the dotted lines the intersection points with the 95% uncertainty isolines.

at energy Ei and σj at energy Ej

Cor[σi, σj] =
EiEj∆k

2 + ∆d2 + ρ∆k∆d(Ei + Ej)

EiEj∆k2 + ∆d2 + ∆k∆d(Ei + Ej)
, (6.13)

where ρ is the evaluated correlation between slope and intercept, i.e. ρ = Cor[k, d].
All involved quantities are positive except the correlation coefficient ρ. Perfect
positive correlation between cross sections is achieved for ρ = 1. The evaluated
negative correlation ρ ≈ −1 of all methods might be interpreted as the attempt to
reduce the correlations between cross sections at different incident to a minimum,
in order to agree with the assumption of uncorrelated experimental data points.
The latter assumption is reflected by the diagonal experimental covariance matrix
B. The correlations of the evaluated cross sections are displayed in Figure 6.10.

Method k d ρ ∆k ∆d ∆σ
FBET 0.0328 19.3382 -0.9805 0.1456 2.2300 0.6021
BMC 0.1115 16.7523 -0.9711 0.5456 8.3435 2.5073
BFMC -0.1216 20.3300 -0.9801 1.1200 17.1781 4.6093

Table 6.2: Comparison of the results obtained by the methods in the toy scenario.
Given are standard errors (=uncertainties) ∆k, ∆d and the correlation ρ between
the slope k and the intercept d. The quantity ∆σ denotes the average standard
error of the cross sections. The result of FBET is identical to that of EMPIRE-
Kalman, EMPIRE-MC, UMC-B, and UMC-G for large sample sizes.
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Figure 6.10: Evaluated correlations between the cross sections resulting from the
application of the FBET in the toy scenario.

As pointed out above, among the presented methods only the BFMC method
takes into account model defects. However, the modification of the likelihood
function with a quantity characterizing the quality of the model does not provide a
satisfactory treatment of model defects. Even though evaluated uncertainty bands
are widened, the posterior still allows variations only within the possibilities of the
model. Not a single cross section curve sampled from the posterior would reflect
the visible trend in the experimental data. Consequently, a proper treatment of
model defects in evaluation methods is required. Such a treatment should allow
evaluated cross section curves to be outside the possibilities of the model whenever
experimental data indicates deficiencies of the model. Returning to the toy model,
a reasonable evaluation accounting for model deficiencies might lead to a result
as illustrated in Figure 6.11. The points made about model defects in the toy
scenario are of general validity.
The considerations within the simple toy model clearly indicate that the proper

treatment of the model deficiencies requires an extension of the Bayesian update
procedure. In chapter 9 we will show that an extension of the prior with Gaussian
processes provides a proper framework. This extension for model defects can be
applied to almost all available Bayesian evaluation techniques because UMC-B,
UMC-G, FBET, EMPIRE-Kalman, and EMPIRE-MC differ only in the applied
method for the evaluation of the Bayesian update formula, either by a Monte Carlo
procedure or the approximation of the nuclear model.
The next section demonstrates the consequences of model defects for a serious

case in nuclear data evaluation.
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Figure 6.11: Illustration of an evaluated cross section curve that can be considered
reasonable. It agrees with experimental data and the 95% uncertainty band has
a reasonable width.

6.2 Deficient non-linear model

In this section we consider a realistic application, i.e. the evaluation of the neutron-
induced total cross section of 181Ta. The study of this example is of particular
interest with regard to nuclear data evaluation. It is well known that the available
optical model potential provides a good description of this cross section. The
agreement between experimental data and model predictions may give rise to the
assumption that the issue of model defects is of no relevance here. A careful
analysis of the various evaluation methods outlined in this section refutes this
assumption. In the following we give the details of the evaluation scenario.
The global parametrization of the neutron-nucleus optical potential of Koning

and Delaroche (2003) depends on more than twenty parameters (see section A.1).
Optimizing only the three most significant parameters yields a very accurate fit
to the experimental data. The possibility to restrict the variation to three model
parameters is of great value for studying the methods. The low dimensional space
of model parameters can be exhaustively explored, which in consequence allows to
perform any evaluation method—Monte Carlo or not—in short time. The gener-
ation of Monte Carlo histories consisting of hundred thousand model calculations
takes less than a minute. Finally, a wealth of high-quality experimental data is
available, which makes possible to benchmark the evaluation methods.
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E [MeV] σ [mbarn] εEXFOR εnorm εstat εtot
5.2925 5800.8700 16.1500 29.0043 48.4500 56.4682
7.8956 5085.2900 12.9200 25.4264 38.7600 46.3556
11.7788 5227.6700 15.8500 26.1384 47.5500 54.2606
17.7486 5417.0700 20.7300 27.0853 62.1900 67.8322
26.4779 4769.3300 16.6900 23.8467 50.0700 55.4587
39.5005 4055.2800 14.0500 20.2764 42.1500 46.7734
59.5202 4327.4100 14.9800 21.6370 44.9400 49.8775
88.7940 4436.7500 16.1800 22.1837 48.5400 53.3690
132.4650 3574.9900 14.4600 17.8749 43.3800 46.9184
199.6020 2724.0600 13.4300 13.6203 40.2900 42.5300

Table 6.3: Excerpt from the Finlay et al. (1993) dataset containing measurements
of the neutron-induced total cross section σ of 181Ta at different incident energies.
The column εEXFOR lists the statistical errors given in the EXFOR database. The
columns εnorm, εstat, and εtot list the normalization error (0.5%), statistical error,
and total error that we use in the evaluation scenario. The unit of all given error
contributions is millibarn.

We used the experimental data of Finlay et al. (1993) either as input or as
benchmark of the results. These data are included in the EXFOR database (Na-
tional Nuclear Data Center, 2015b; Otuka et al., 2014) where a normalization error
below 0.5% and a statistical error about 0.4% is given. We assumed the normal-
ization error to be 0.5% and rescaled the statistical error by a factor of three to
be on the safe side. These assumptions lead to an overall error about 1.2% for the
data points. We restricted the evaluation to incident energies between 5 and 200
MeV. The dataset of Finlay contains 364 points in this range. An excerpt from
the dataset is shown in Table 6.3.
To determine the most sensitive parameters, we numerically calculated the quan-

tities ∂σi/∂pj for a dense mesh of incident energies Ei and the 24 neutron optical
model parameters pj. We used a difference quotient to approximate the derivative

∂σi
∂pj
≈ σi(pj + hj)− σi(pj)

hj
. (6.14)

The constant hj was chosen to be 1% of the default value of the model parameter
pj. Figure 6.12 illustrates the sensitivity of the cross sections at different incident
energies with regard to the change of a particular model parameter (variation
10%). Hence, the figure visualizes the quantities Jij = 0.1pj(∂σi/∂pj). In order
to make all evaluation methods tractable, we restricted possible variations to the
model parameters rv, av and v1. Sensitivities with respect to these parameters are
visualized in the bottom three rows of Figure 6.12. All other model parameters
were left at their default values given by the global parametrization of Koning
and Delaroche (2003). First we prove whether the variation of the three selected
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Figure 6.12: Sensitivity of the neutron-induced total cross section of 181Ta at
different incident energies to variations of the neutron optical model parameters.
The colors of the cells indicate the change of the cross section value when the model
parameter is changed by 10% from its default value. The change is measured in
powers of 10, e.g. blue color indicates that the change of cross section is between
100 and 1000 mBarn. The parameters are identified via their keywords used in
TALYS input files. Details are given in the TALYS manual (Koning, Hilaire, and
Goriely, 2013).

parameters is sufficient to obtain a good fit to the data.
The restriction to three model parameters makes it possible to exhaustively

explore the parameter space. We defined for the parameter av the mesh A :=

{0.85d1, 0.86d1, . . . , 1.14d1, 1.15d1} where d1 represents the default value of av. The
mesh for rv is given by R := {0.85d2, 0.86d2, . . . , 1.14d2, 1.15d2} with d2 the default
value of rv. And finally, the mesh for v1 is V := {0.85d3, 0.86d3, . . . , 1.14d3, 1.15d3}
with d3 the default value of v1. The compound mesh for all three parameters is
given by the cartesian product A×R×V . We performed a TALYS calculation for
each combination of parameter values occurring in this mesh. These 31×31×31 =

29791 calculations were carried out on the Vienna Scientific Cluster. The mesh of
incident energies Ei used in all calculations comprised 235 points from 0.1 MeV
to 210 MeV and was generated with the formula

Ei = 0.1 exp

(
(i− 1)(ln 210− ln 0.1)

235

)
, i = 1..235 . (6.15)

In the following we denote ãv = av/d1, r̃v = rv/d2, ṽ1 = v1/d3 as the model
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parameters.
Based on these model predictions on the 4-dimensional mesh (E, ãv, r̃v, ṽ1) the

use of linear interpolation with respect to each parameter and the incident energies
allows us to compute cross sections at arbitrary incident energies for arbitrary
combinations of parameter values ãv, r̃v, ṽ1 within the boundaries of the meshes.
The results of the model calculations together with the interpolation scheme define
a surrogate model Msur(~p, ~E). Due to the dense mesh of model parameters and
incident energies, the predictions of the surrogate model reflect to a great extent
the features of the original model. Moreover, calculations of the surrogate model
can be performed very fast (predictions for thousands of model parameter sets in
a few seconds) whereas calculations of the original model are rather involved.

To verify the adequacy of the model, we determined the most appropriate pa-
rameter vector ~p = (ãv, r̃v, ṽ1)T of the surrogate model by minimization of the
generalized χ2(~p)-value

χ2(~p) = (~σexp −Msur(~p))
TB−1(~σexp −Msur(~p)) . (6.16)

The vector ~σexp contains the measurements and B is the associated experimental
covariance matrix. We employed the L-BFGS algorithm (Byrd et al., 1995) to find
the parameter vector associated with minimal χ2. The L-BFGS algorithm allows
to specify ranges in which the parameter values have to reside. This feature of the
algorithm is a necessity in our case, because cross sections can only be interpolated
within the boundaries of the mesh A×R× V of model parameters and the mesh
of incident energies.
We performed several optimization runs, using either the experimental covari-

ance matrix B containing all correlations or a stripped version Bstrip thereof in
which only diagonal elements are non-zero. Independent of the parameter set from
which the optimization started, we obtained with the full covariance matrix B the
most appropriate parameter set,ãvr̃v

ṽ1

 =

1.0611

0.9762

1.0167

 and χ2 = 348.6544 . (6.17)

When we used the stripped covariance matrix Bstrip we gotãvr̃v
ṽ1

 =

1.0618

0.9772

1.0161

 and χ2 = 279.2549 . (6.18)

In both cases, the estimates of the optimal parameters are approximately the
same. The quantity χ2/N with N = 364 being the number of experimental data
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Figure 6.13: Neutron-induced total cross section of 181Ta. The experimental
dataset of Finlay is used in the evaluation scenario. Error bars denote the 95%
confidence interval. The shown TALYS predictions are based on the default pa-
rameter set and an optimized parameter set.

points is in both cases around one. Therefore, the model can be regarded as
adequate. For comparison, the default parameter vector (1, 1, 1)T is associated
with χ2 = 696.3525. Noteworthy, the parameter set which minimizes the χ2

value maximizes the corresponding likelihood (see Equation 3.3). Furthermore, if
the prior distribution in the Bayesian update is uninformative, the parameter set
with minimal χ2 is also associated with the highest possible posterior probability
density. Experimental data and the TALYS predictions based on the default
parameter set and the optimized parameter set are shown in Figure 6.13.

The calculations so far show the suitability of the nuclear model and that the
adjustment of the three most significant model parameters is sufficient to fit the
model to the data. In the following we introduce a benchmark procedure for
the assessment of the evaluation methods. We are interested in the following
characteristics of the evaluation methods:

1. Descriptive power. How well does a method describe the experimental
data included in the evaluation process?

2. Predictive power. How well does a method predict experimental data
which had not been included in the evaluation process?

Clearly, both features are associated with the quality of the employed nuclear
model. A good model will describe included data well and make accurate predic-
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Figure 6.14: Benchmark procedure for the evaluation methods. The experimental
data are split into two sets. The set A on the left half is used in the evaluation
process whereas the set B on the right half is only used to benchmark the evaluated
cross sections.

tions. However, the nuclear model has to be seen separate from the evaluation
method. An evaluation method is (or at least should be) a statistical procedure
to produce reliable estimates. Reliable estimates are not necessarily accurate esti-
mates. Whether the estimates are accurate depends on the quality of the employed
nuclear model and is outside the scope of the evaluation method. However, to gen-
erate reliable estimates is a key requirement of an evaluation method. Reliable
estimates are accompanied by a reasonable assessment of their uncertainty. The
use of nuclear models of high quality should lead to sharp predictions of the ob-
servables. On the other hand, the use of poor nuclear models should lead to high
uncertainties (large standard errors) of the evaluated estimates.
We have already verified that the optical model is able to rather accurately

predict the total cross section. In order to study the reliability of the various
evaluation methods, we split the experimental data into two sets A and B. The
set A contains the data from 5 to 100 MeV and is used in the evaluation process.
The set B contains the data from 100 to 200 MeV and is used to benchmark the
reliability of evaluated cross sections. We denote the complete set of experimental
data as C. These sets are displayed in Figure 6.14.
In order to apply a Bayesian evaluation method, a prior distribution for the

model parameters is required. For the sake of simplicity, we assume a uniform
distribution in the interval [0.85, 1.15] for each of the parameters r̃v, ãv and ṽ1.
For evaluation methods which require a multivariate normal distribution as prior
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distribution, we use the standard deviations ∆r̃v = 0.15, ∆ãv = 0.15 and ∆ṽ1 =

0.15. The parameters are always assumed to be uncorrelated. In all considerations
we use the center vector is assumed to be ~p0 = (1, 1, 1)T . The chosen boundaries
of the uniform distribution and the chosen standard deviations of the multivariate
normal distribution express a rather vague knowledge of the model parameters.
The optimal parameters obtained by a fit to the complete dataset in Equation 6.17
are consistent to these choices. In the following analysis of the evaluation methods,
the term uncertainty denotes the standard deviation (≈68% confidence interval of
the normal distribution).

6.3 Analysis of the EMPIRE-Kalman method

We start with the analysis of the EMPIRE-Kalman method which implements the
approach detailed in section 3.2. In this approach the KALMAN code (Kawano
and Shibata, 1997) is coupled with the EMPIRE code (Herman et al., 2007).
Especially, the update step is performed with Equation 3.25. In order to per-
form the update, the sensitivity matrix S is computed at the prior center vector
~p0 = (1, 1, 1). The setup of the prior covariance matrix and the experimental co-
variance matrix B was explained in section 6.2. Updating with the complete set
of experimental data C yields the evaluated parameter set ~p1 and the associated
covariance matrix A1,ãvr̃v

ṽ1

 =

1.0974

0.9909

1.0001

 and A1 = 10−6

 56.2529 5.4510 −8.2628

5.4510 5.6739 −6.9469

−8.2628 −6.9469 10.6774

 . (6.19)

The evaluated uncertainties of the parameters are in the order of 10−3. The
uncertainties at the level of cross sections are about 0.4%. The evaluated cross
sections are shown in Figure 6.15.
The evaluated parameter set differs significantly from the optimal solution in

Equation 6.17. Furthermore, the 95% confidence band is inconsistent with the
experimental data. These deviations may indicate the following: Either the prior
has a significant influence on the inference or the linear approximation of the model
at the prior center vector is improper. The latter would be the case if non-linear
features of the optical model calculation between the prior center vector and the
optimal solution cannot be neglected.
In order to decide which of these two possible causes is true, we extend the

EMPIRE-Kalman method to an iterative procedure. In each step, the nuclear
model is replaced by a linear approximation with the current parameter vector as
expansion point. The Bayesian update formula is then solved analytically which
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Figure 6.15: Evaluated cross sections obtained by the EMPIRE-Kalman method
and the iterative approach. The complete experimental data set C was included
in the evaluation. The shown are the 95% confidence bands of the evaluated cross
sections and the experimental data.

yields an estimate of the best posterior parameter vector. The iteration continues
until convergence is achieved. This approach is also implemented in the code
SAMMY (Larson, 1998) to generate R-matrix fits.
Depending on the initial expansion point ~pref for the linear approximation, the

iterative approach converged to two slightly different solutions. The better solution
(in terms of χ2) is given by

~pb =

1.0610

0.9762

1.0167

 and Ab = 10−6

 75.4753 8.8800 −13.4959

8.8800 5.0312 −7.1248

−13.4959 −7.1248 11.7834

 . (6.20)

The evaluated parameters are almost identical to the best solution in Equa-
tion 6.17. Therefore, the prior is uninformative enough and the result of the
inference is essentially determined by the information of the highly peaked like-
lihood. Further, non-linear features of the optical model calculation play an im-
portant role and we can expect differences between Monte Carlo methods and
methods based on a simplified model.

The cross section prediction of the slightly worse solution is shifted approxi-
mately 1% upward compared to the better solution. The evaluated quantities are
given by

~pw =

1.0701

0.9810

1.0104

 and Aw = 10−6

 67.7976 8.9601 −11.9581

8.9601 5.4067 −6.8238

−11.9581 −6.8238 10.3352

 . (6.21)
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Figure 6.16: Posterior probability density along the straight line defined by the
solutions ~pb and ~pw. Dotted and dashed line mark the λ value associated with ~pw
and ~pb, respectively.

The covariance matrices associated with the two solutions obtained by the itera-
tive approach are comparable. The uncertainties of the parameters are of order
10−3 and the associated uncertainties of the cross sections are about 0.4%. These
uncertainties are comparable to those obtained by the EMPIRE-Kalman method.
We observed a limitation of the accuracy of 10−3 in the case of convergence

to the slightly worse solution ~pb. As soon as this accuracy was reached, further
iteration steps caused the parameter vector to cyclically jump in the magnitude of
this accuracy. It seems as convergence of the iterative linearized Bayesian update
approach is not mathematically guaranteed.
The existence of two solutions is associated with a multimodal posterior distri-

bution. We studied its shape by scanning the parameter space along a straight
line defined by the two parameter vectors ~pb and ~pw. The functional form of this
line is

~p(λ) = λ ~pb + (1− λ) ~pw . (6.22)

The posterior probability density associated with this line is visualized in Fig-
ure 6.16. Noteworthy, along this line there appears another local maximum of the
posterior probability density associated with λ ≈ −0.3. The solution ~pw does not
coincide with this local maximum. Even choosing the parameter vector associated
with λ = −0.3 as the initial one, the iterative approach still converges to ~pw.
Therefore, the iterative linearized Bayesian update procedure does not necessarily
yield points in parameter space which are associated with local maxima of the
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posterior probability density distribution. The reason for this can be attributed
again to the linear approximation of the nuclear model.
Because the evaluated cross sections obtained by the EMPIRE-Kalman method

are not consistent with experimental data, we restrict the following discussion to
the iterative linearized Bayesian update procedure. Several restarts using different
initial parameter vectors warrant that the best solution in terms of the χ2 value
is found. Nevertheless, the essential arguments in the further discussion apply
equally to the EMPIRE-Kalman method.
Albeit the evaluated cross sections obtained by the iterative approach conform

well with the experimental data, the associated uncertainty of 0.4% with regard
to the location of the experimental data points may be regarded as too low. If
this is the case, it means at least one of the prior assumptions that entered the
evaluation is problematic. Several assumptions might be questioned. Following we
list some of these assumptions, revise them, and check the change in the evaluated
observables:

1. The statistical error in the experimental data points about 1% is under-
estimated. If we assume a statistical error of 5%, we obtain an evaluated
uncertainty of 0.7% for the cross sections.

2. The normalization error in the experimental data points about 0.5% is under-
estimated. If we assume a normalization error of 5%, we obtain an evaluated
uncertainty of 0.6% for the cross sections.

3. Both statistical error and normalization error are underestimated. If we
assume a statistical error of 5% and a normalization error of 5%, we obtain
an evaluated uncertainty of 2.6% for the cross sections.

4. The uncertainty about the energy dependent detector efficiency is not taken
into account. We add to the experimental matrix B the contribution

Beff,ij = 0.052σiσj

(
1− |Ei − Ej|

10

)2.5

+

, (6.23)

where Ei is the incident energy associated with the cross section σi. The
notation (x)+ means that the bracket should evaluate to zero whenever x
is negative. This contribution expresses an additional uncertainty for each
data point of 5%. The correlations in Beff vanish if the difference between Ei
and Ej is larger than 10 MeV. We checked the positive definiteness of this
matrix by a Cholesky decomposition. Now the application of the Bayesian
update leads to an evaluated uncertainty of 1.3%. If we take instead of 5%
only 1% uncertainty due to detector efficiency for each cross section, the
evaluation would yield an uncertainty of 0.5%.
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5. The assumption that the model is a perfect description of reality does not
hold. Maybe because of experiences made in past evaluations, we assume
that the model prediction—even with the best possible parameter set—can
deviate by 1% from reliably measured experimental data. This type of prior
assumption cannot be expressed by a certain choice of the experimental
covariance matrix B.

It may be the case that the rough construction of the experimental covariance
matrix B only based on a global energy independent normalization error and a
statistical error is inappropriate. However, most of the adjustments of (1)-(4) may
be considered as to warily, yet they still yield evaluated uncertainties ranging from
0.5% to 0.7%. If these are considered too low with regard to the locations of the
experimental data points, it has to be due to (5). In chapter 9 we elaborate how
a certain distrust in the model can be mathematically expressed to be amenable
for an inclusion in the Bayesian update procedure.
We proceed by performing the benchmark explained in section 6.2. The in-

clusion of only the experimental data set A in the iterative linearized Bayesian
update procedure yields

~pA =

1.1032

0.9557

1.0389

 and AA = 10−6

104.4001 0.6011 −6.2205

0.6011 8.0949 −11.9070

−6.2205 −11.9070 19.2916

 . (6.24)

Uncertainties of evaluated cross sections are again about 0.4%. For comparison,
we also used the EMPIRE-Kalman method to update with A. The evaluated cross
sections are shown in Figure 6.17 and the evaluated correlations in Figure 6.19.
The evaluated cross sections obtained by the iterative approach are inconsistent

with the benchmark data set B which had not been included in the evaluation
procedure. In this energy domain, the 95% confidence band of the evaluated
cross sections hardly overlaps with the 95% confidence band of the experiment.
Therefore, according to the uncertainties of the experimental data, the evaluated
cross sections are very unlikely to be true. And conversely, according to the
evaluated uncertainties, the experimental data are very unlikely to be true. If we
assume that we constructed the experimental covariance matrix B coherently to
our belief about their validity, this undesirable evaluation result must be due to
the inappropriate assumption of a perfect model.
Even in the energy domain where data had been included, the evaluated cross

sections slightly below 100 MeV are inconsistent with experimental data. The
mismatch between data is even more severe for the EMPIRE-Kalman method.
The result that the EMPIRE-Kalman evaluation matches well experimental data
not included in the update process has to be seen as a coincidence.



CHAPTER 6. CONSEQUENCES OF MODEL DEFECTS 120

●●
●
●●●
●

●●
●●
●
●●
●
●●●●
●●
●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●

●●●
●
●
●●●●
●●●
●
●●
●●●●●
●
●●
●
●
●
●
●●
●
●
●

●
●
●●●●
●●
●●●
●
●
●
●
●●●

●●●●●
●
●
●●●
●●●
●
●●●
●
●●
●
●
●
●
●●●
●

●●
●●●●
●●●
●●●
●●●
●
●●●

●●
●
●●●
●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●●
●●
●●
●●●

●●
●●●

●●
●
●●
●●
●
●●●

●
●
●●
●●
●●●●●

●●●●●●
●●●

●●
●
●●

●●
●
●●●

●
●●

●
●
●●

●
●●

●●●

●
●
●●

●●●
●●●●

●●
●●

●●●●●
●●●●

●●●
●●

●
●●

●
●
●●●●●

●●●
●
●
●●●

●●●●●
●

●●
●●

●●
●

●
●

●●●
●

●●
●●

●●
●

●●●
●

●●
●

●●●

●●
●

●●
●●

●●
●●

●●

● ● ●
●

●
● ● ● ●

● ●
● ●

● ● ●
● ●

● ●
●

● ● ●

3000

4000

5000

0 50 100 150 200

incident energy [MeV]

cr
os

s 
se

ct
io

n 
[m

ba
rn

]

EMPIRE−Kalman

Iterative Bayesian update

Figure 6.17: Evaluated cross sections obtained by the EMPIRE-Kalman method
and the iterative approach. Only data set A (green points) was included in the
evaluation. Shown are the 95% confidence bands of the evaluated cross sections
and the experimental data. The black line denotes the cross sections associated
with the default parameter set (1, 1, 1)T .

We arrive at the conclusion that accounting for model defects is a necessity
in evaluation procedures. Otherwise evaluation results may be inconsistent with
experimental data and obtained uncertainties are undesirably low. The use of
high quality models do not justify to neglect the treatment of model defects.
Continuous technological development will lead to an increasing amount of precise
experimental data revealing new features not contained in present models.

6.4 Analysis of the FBET/EMPIRE-MC method

The Full Bayesian Evaluation Technique (FBET) and the EMPIRE-Monte Carlo
(EMPIRE-MC) method are based on the surrogate approach detailed in sec-
tion 3.3. They have also been briefly discussed in section 4.5.
The basic idea is to fit a multivariate normal distribution to an ensemble of

model predictions and then to use this multivariate normal distribution as the
prior. The development of the FBET is associated with the development of al-
gorithms to construct so-called model defect covariance matrices. If no model
defect covariance matrix is used in the evaluation, the FBET and the EMPIRE-
MC method are identical. Because we want to study the consequences of model
defects, we do not include a model defect covariance matrix in the Bayesian up-
date procedure here. The construction of model defect covariance matrices will be
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Figure 6.18: Evaluated uncertainties and correlations for the neutron induced total
cross section of 181Ta. The iterative linearized Bayesian update was used and the
update was performed with the complete experimental data set C.

Figure 6.19: Evaluated uncertainties and correlations for the neutron induced total
cross section of 181Ta. The iterative linearized Bayesian update was used and the
update was performed only with the experimental data set A.
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Figure 6.20: Prior cross section curves and associated 95% confidence bands. The
cross section curve labeled ‘xsmean’ represents the arithmetic mean of the model
prediction vectors. The other curve labeled ‘parcenter’ represents the cross section
curve associated with the prior best parameter vector ~p0 = (1, 1, 1)T .

discussed separately in chapter 9.
As a first step, we draw 10000 parameter vectors ~pi = (ãv, r̃v, ṽ1)T from a uniform

distribution. The interval of the uniform distribution for each parameter ãv, r̃v, ṽ1

is given by [0.85, 1.15]. From the associated model prediction vectors ~τi =M(~pi)

we calculate the covariance matrix

A0 =
1

10000

10000∑
i=1

(~τi − ~σ0)(~τi − ~σ0)T . (6.25)

The center vector ~σ0 is given by the arithmetic mean of the ~τi or the model
prediction using the center parameter vector ~p0 = (1, 1, 1)T . The prior center
cross section curve and associated 95% uncertainty band for both choices is shown
in Figure 6.20. The difference of these prior cross section curves, especially at
lower energies, is due to the non-linearity of the model. The center vector and
covariance matrix unambiguously determine the multivariate normal distribution
which serves as prior knowledge.
Replacing the non-trivial prior distribution at the level of cross sections by a

multivariate normal distribution leads to a less restrictive prior distribution. Cross
section curves excluded by the original model are possible solutions when using the
surrogate model. Because we allowed variation of only three model parameters (ãv,
r̃v, ṽ1), admissible combinations of values in a vector ~σ containing cross sections at
different incident energies are very limited. If for a parameter vector ~p the model
yields the cross section vector ~σ = M(~p), admissible cross section vectors in the
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vicinity are restricted to a three-dimensional tangent hyperplane. As discussed
in section 3.3, non-linearities loosen this restriction in the surrogate model. We
want to study the increased flexibility of the surrogate model prior compared to
the original prior.
The inspection of the correlation matrix associated with A0 is one way to learn

about the restrictions. Figure 6.21 and Figure 6.22 show correlations and uncer-
tainties associated with the prior covariance matrix for the two possible choices of
the prior center vector ~σ0. The correlation structure resulting from these choices
is slightly different and the correlations are stronger when using the arithmetic
mean. The latter observation is associated with the minimum variance property
of the arithmetic mean and therefore of general validity.
The uncertainties ranging from 8% to 20% are large enough to enclose the

experimental data in the 68% confidence band. Cross sections at different incident
energies are highly positively correlated. This finding indicates that many features
of the original model are also preserved in the surrogate model.
We know that the original model possesses three degrees of freedom. In order to

determine the degrees of freedom of the surrogate model, we perform an eigende-
composition of the prior covariance matrix. The obtained eigenvalues λi represent
the variances along the directions given by the associated eigenvectors ~ei. Because
covariance matrices are symmetric, the eigenvectors define an orthogonal basis in
cross section space. Thus, it is possible to express any cross section vector ~σ whose
elements are arbitrary real numbers as a linear combination of the eigenvectors,

~σ =
d∑
i=1

βi~ei . (6.26)

The dimension of ~σ is denoted by d, which is equal to the number of incident
energies in the mesh. For the following, it is particularly convenient to write a
cross section as

~σ = ~σ0 +
d∑
i=1

βi~ei , (6.27)

where ~σ0 is the model prediction based on the best prior parameter vector ~p0 =

(1, 1, 1)T . In Equation 6.27 we expressed a cross section in the eigenbasis of the
covariance matrix. In contrast to the original cross sections σi contained in ~σ,
the new coordinates βi are apriori uncorrelated. Therefore, the prior variance of
a cross section σk at some incident energy Ek can be expressed as

Var[σk] =
d∑
i=1

Var[βi]eik , (6.28)

where eik is the kth component associated with the energy Ek of the eigenvector ~ei.
The variances of the βi are given by the eigenvalues λi of the covariance matrix.
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Figure 6.21: Uncertainties and correlations associated with the prior covariance
matrix if using ~σ0 =M(~p0).

Figure 6.22: Uncertainties and correlations associated with the prior covariance
matrix if using the arithmetic mean of the cross section vectors ~τi.
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If Var[βi] is close to zero, it means the direction associated with ~ei is frozen out.
Evidence provided by experimental data that the prior cross section vector ~σ0

should be changed in the direction of ~ei will consequently be ignored. Hence, this
direction is not relevant in the Bayesian update procedure. In order to determine
the relevant eigenvectors, we introduce the vector ~qi =

√
Var[βi]~ei. The vector

~qi is a measure for the significance of the direction ~ei in the Bayesian update
procedure. The vectors ~qi corresponding to the first fifteen eigenvectors associated
with largest variance are illustrated in Figure 6.23. Here we used ~σ0 = M(~p) as
the center vector to construct the prior covariance matrix.
Evidently, the number of relevant eigenvectors is about ten. The inclusion of

further eigenvectors does not significantly change the result of the Bayesian update
procedure. Corresponding changes in the cross sections most likely will not exceed
a few millibarn. Therefore, we have about ten degrees of freedom in the surrogate
model. Even though this number is significantly higher than for the original model,
the surrogate model is still rather restrictive. Effectively, evaluated cross section
curves are a linear combination of about ten eigenvectors.
Performing the Bayesian update with the FBET or EMPIRE-MC method and

including the complete dataset C yields the evaluated cross sections illustrated in
Figure 6.24. The evaluated correlations are shown in Figure 6.25. For these results
we used ~σ0 =M(~p0) as the prior center vector. Using the arithmetic mean leads
to the same results and the cross section curves, uncertainties and correlations are
indistinguishable.
The evaluated cross sections generated by the iterative linearized Bayesian up-

date illustrated in Figure 6.15 matched the experimental data very well. The
evaluated cross sections generated by the FBET/EMPIRE-MC method follow the
experimental data perfectly. This is due to the fact that the linear approximation
of the model at a certain parameter vector is more restrictive than the surrogate
model. We can verify how many degrees of freedom (number of eigenvectors) of
the surrogate model are involved in the evaluated cross section curve. To this
end, we project the difference vector ~σeval − ~σ0 onto the eigenvectors of the prior
covariance matrix. We obtain the evaluated βi coefficients of Equation 6.27

βeval,i = ~ei · (~σeval − ~σ0) . (6.29)

This equation holds when the orthogonal eigenvectors ~ei of the prior covariance
matrix are normalized. In order to determine the eigenvectors of significant influ-
ence on the result, we compute for each eigenvector the quantity

δabs,i = max
1≤k≤d

{
|eik(σeval,k − σ0,k)|

}
, (6.30)
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Figure 6.23: Eigenvectors of the prior covariance matrix. Each eigenvector ~ei is
scaled by the square root of the associated eigenvalue λi. The annotation i =
[x, x + 2] of each plot indicates that the eigenvectors ~ex (red), ~ex+1 (green), and
~ex+2 (blue) are shown. Eigenvectors are sorted decreasingly with respect to the
associated eigenvalues.
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Figure 6.24: Evaluated cross sections and associated 95% confidence band ob-
tained by the FBET/EMPIRE-MC method when updating with the complete
experimental data set C and using ~σ0 =M(~p0).

Figure 6.25: Uncertainties and correlations obtained by the FBET/EMPIRE-MC
method when updating with the complete experimental data set C and using~σ0 =
M(~p0).
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i βeval,i δabs,i δrel,i i βeval,i δabs,i δrel,i
1 8.25e+02 9.66e+01 1.95e-02 11 -9.92e+00 2.70e+00 5.14e-04

2 -4.22e+01 1.18e+01 2.35e-03 12 9.89e-01 3.33e-01 6.54e-05

3 -2.68e+02 5.22e+01 9.64e-03 13 2.82e+00 1.46e+00 2.65e-04

4 -6.93e+00 2.36e+00 4.02e-04 14 1.28e+00 3.73e-01 8.51e-05

5 2.44e+02 6.90e+01 1.31e-02 15 6.73e-01 2.68e-01 5.12e-05

6 1.21e+02 4.71e+01 9.27e-03 16 7.22e-02 2.18e-02 4.08e-06

7 -3.13e+02 1.52e+02 2.59e-02 17 -3.53e-03 1.06e-03 1.95e-07

8 -5.83e+01 1.96e+01 3.33e-03 18 7.45e-02 2.55e-02 5.04e-06

9 -8.70e+01 2.28e+01 4.15e-03 19 -3.96e-02 1.22e-02 2.83e-06

10 -3.60e+01 1.05e+01 1.93e-03 20 -5.69e-03 1.72e-03 3.96e-07

Table 6.4: Significance of the directions given by the eigenvectors ~ei of the prior
covariance matrix for the evaluated cross section curve. The coefficient βeval,i de-
notes the difference between the prior cross section vector and the evaluated cross
section vector projected onto the direction of the eigenvector ~ei. The measures
δabs,i and δrel,i defined in Equation 6.30 and Equation 6.31 indicate how much the
shift along the direction ~ei contributes to the evaluated cross section vector.

which picks for a given direction (eigenvector) ~ei the biggest absolute difference
between the prior cross section σ0,k and the evaluated cross section σeval,k occurring
at some energy Ek. Furthermore, we define

δrel,i = max
1≤k≤d

{∣∣∣∣eik(σeval,k − σ0,k)

σ0,k

∣∣∣∣} (6.31)

which yields for the eigenvector ~ei the biggest relative difference between the prior
cross section σ0,k and the evaluated cross section σeval,k occurring at some energy
Ek. The values of these quantities for the twenty eigenvectors associated with
largest variance are stated in Table 6.4. The relative contribution of eigenvectors
~ei with i > 10 is below one tenth of a percent and absolutely measured below five
millibarn. This finding supports the conclusion of our prior analysis that about
ten eigenvectors are significant in the Bayesian update procedure.
Next, we perform the benchmark procedure specified in section 6.2. We include

only the datasetA in the Bayesian update. The datasetA contains measured cross
sections associated with incident energies between 5 and 100 MeV. The evaluated
cross section curve is shown in Figure 6.26 and the associated correlations are
shown in Figure 6.27. In contrast to the iterative linearized Bayesian update
procedure (see Figure 6.17), the evaluation performed with the FBET/EMPIRE-
MC method conforms well with the experimental data. It follows perfectly the
data which had been included in the update and resembles well the data used to
benchmark the evaluation. The reason will become fully apparent in chapter 9
where we introduce the new evaluation methodology to consistently take into
account model defects. Nevertheless, we give a qualitative explanation here.
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Figure 6.26: Evaluated cross sections and associated 95% confidence band obtained
by the FBET/EMPIRE-MC method when only updating with datasetA and using
σ0 =M(~p0)

Figure 6.27: Evaluated correlations and uncertainties obtained by the
FBET/EMPIRE-MC method when only updating with dataset A and using
σ0 =M(~p0).
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The original nuclear model is able to predict the cross section rather well. A fit
of the nuclear model to the complete experimental dataset C yields a description
that does not deviate more than 2% from the measurements (see Figure 6.13).
However, the model is slightly deficient at low energies. It cannot simultaneously
mimic the experimental data in the first valley at approximately 7 MeV and the
rest of the data. Due to plenty of experimental data in this valley, the Bayesian
update tries to align the model to these data at the cost of a worsened align-
ment in the domain of higher incident energies. Because the iterative linearized
Bayesian update procedure (and also the EMPIRE-Kalman) method is restricted
to the possibilities of the model, the evaluation becomes inconsistent. In con-
trast to that, the surrogate model cannot preserve non-linear relationships. These
non-linear features are transformed into additional uncertainties in the surrogate
model. The discrepancy between ~σ0 = M(~p0) and the arithmetic mean of the
cross section samples at low energies reveals the non-linearity of the optical model
in this energy domain (see Figure 6.20). Consequently, the model defect of the
original nuclear model disappears in the surrogate model. Furthermore, due to the
non-linearity also the connection between cross sections at low incident energies
to those of higher incident energies is weakened. This fact is reflected in white
stripes appearing near the left edge and the bottom edge of Figure 6.27
At higher incident energies the relationships between cross section are in good

approximation linear and the predictive power of the original model is preserved.
Including data from 50 to 100 MeV is sufficient to predict the data at incident
energies above 100 MeV. To underpin the current argument, we performed the
Bayesian update with both the FBET/EMPIRE-MC method and the iterative
linearized Bayesian update procedure including only dataset B. The obtained
results are illustrated in Figure 6.28. Evidently, the non-linearity of the original
model leads to greater flexibility of the surrogate model at low energies. Hence,
also the predictive power of the surrogate model is weakened and the uncertainty
band of the FBET/EMPIRE-MC method at low energies is larger than those of
the iterative linearized Bayesian update procedure.
This section showed that the FBET/EMPIRE-MC method produces reliable

estimates and uncertainties of the neutron-induced total cross section of 181Ta—
despite the small deficiency of the nuclear model. However, the conclusion that
methods such as FBET or EMPIRE-MC based on the surrogate model are su-
perior to Monte Carlo methods or methods relying on the linearization of the
model cannot be made for three reasons. First, model defects do not necessar-
ily appear in energy domains where the nuclear model is highly non-linear. If
the model defect would appear in an energy domain where the original model is
rather linear, predictions made by the surrogate approach can also be inconsistent
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Figure 6.28: Comparison of the evaluated cross sections and associated 95%
confidence bands obtained by FBET/EMPIRE-MC and the iterative linearized
Bayesian update when only updating with dataset B (red points).

with experimental data. This fact had been demonstrated in section 6.1. Second,
the surrogate model has less predictive power than the original model due to its
greater flexibility. Information of the experimental data is not as efficiently used
as it could be. Methods such as the iterative linearized Bayesian update procedure
or Monte Carlo procedures such as UMC-B have higher predictive power. And
third, it remains unclear in which energy domains the model is adequate and in
which it is deficient.

6.5 Summary and conclusions

In this chapter we first studied the methods EMPIRE-Kalman, EMPIRE-MC,
FBET, UMC-G, UMC-B, BMC and BFMC in an evaluation scenario with a linear
model. Due to the application of a linear model, the methods EMPIRE-Kalman,
EMPIRE-MC, FBET, UMC-B and UMC-G collapsed to one common approach.
Hence, in the following, references to FBET will mean all of them. Only the
BMC and BFMC methods have to be considered as different approaches due to
an alternative choice of the likelihood.
The experimental data were constructed in a way to be not representable by

the linear model. The evaluation on the basis of this deficient model lead to un-
reasonable low uncertainties obtained by the FBET which assumes a multivariate
normal distribution for the likelihood. The evaluated 95% uncertainty band did
not enclose the majority of the experimental data points. Furthermore, the al-
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lowed variations permitted by the posterior covariance matrix were restricted to
the representation possibilities of the nuclear model. Especially in the studied
schematic scenario, the experimental data clearly indicated the true cross section
curve to be a parabola whereas the predictions of the model were given by straight
lines.
In contrast to that, the evaluated uncertainties of the BMC and BFMC were

larger compared to those of the FBET, which can be attributed to the alternative
choice of the likelihood. However, in the case of the BMC method a non-negligible
number of experimental data points were still located outside the 95% confidence
band. Furthermore, it may be regarded as an undesirable feature that the likeli-
hood of the BMC method explicitly depends on the number of datasets and data
points within these datasets. In which structure the observations are presented
should not affect the result of an evaluation. From a conceptual point of view,
only the information about the observations, such as the measured values and
associated uncertainties, should have an impact on the result.
Also the BFMC method uses a likelihood different from a multivariate normal

distribution. The employed likelihood is determined by the smallest χ2 value
within the obtained ensemble of model predictions. Therefore, among all studied
methods only the BFMC method takes into account model defects. Consequently,
the evaluated uncertainties were larger compared to those of all other methods
and consistent with the experimental data. However, as in the case of all other
studied methods, the posterior covariance matrix only allowed deviations within
the possibilities of the nuclear model.
In addition, we detailed the specifics of the second scenario dealing with the

evaluation of the neutron-induced total cross section of 181Ta in this chapter and
performed an evaluation with the EMPIRE-Kalman and the FBET (or equiva-
lently EMPIRE-MC) method. The important difference to the first scenario is
the non-linear relationship between model parameters and the cross sections at
different incident energies established by the optical model. For the evaluation we
split the complete dataset C into the subsets A and B containing the data below
and above 100 MeV, respectively.
The EMPIRE-Kalman method, which relies on the linearization of the model,

did not produce reliable results. Therefore, we extended the method to an iterative
procedure as implemented in the code SAMMY. The update with the complete
dataset C led to a rather good reproduction of experimental data. However, con-
sidering the evaluated cross section curve with regard to the experimental data,
the evaluated uncertainties about 0.4% may be considered too low. The update
only with dataset A led to an inconsistency between the evaluation and the exper-
imental data in dataset B. The uncertainties of the experimental data excluded
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the evaluated cross section curve, and conversely, the evaluated cross section curve
excluded the experimental data.
In contrast to that, the evaluation performed with the FBET/EMPIRE-MC

approach was consistent with experimental data, independent from the dataset
used for the update. We argued that the nuclear model is not able to mimic
the data at low and high incident energies equally well due to a model defect at
low energies. However, the employed surrogate model is associated with more
degrees of freedom than the original model. Therefore, the model deficiency at
low incident energies (as a ‘feature’ of the original model) is not preserved in the
surrogate model.
We conclude that evaluation methods must account for model defects. Other-

wise, evaluated cross section curves might be inconsistent with included experi-
mental data. The modification of the likelihood as in the BMC and BFMC is not
the proper solution to deal with model defects, because the posterior covariance
matrix still reflects the systematics of the nuclear model. However, in the case of
model deficiency, the systematics of the model is inadequate. Also the linearization
of the model cannot be regarded as proper measure to deal with model defects.
In general, the non-linearity of the nuclear model and a possible deficiency have
to be regarded as independent aspects.



7

Consequences in Monte Carlo
methods

We continue the discussion of the evaluation methods at the example of the sce-
nario introduced in section 6.2. We briefly recapitulate the important aspects: The
methods are applied in an evaluation of the neutron-induced total cross section
of 181Ta. We use the optical model in the global parametrization of Koning and
Delaroche (2003) with possible variations restricted to the parameters av, rv, v1.
For convenience, in the course of this chapter we work with the rescaled model
parameters ãv = av/d1, r̃v = rv/d2, ṽ1 = v1/d3 with d1, d2, d3 being the default
parameters in the global parameterization of Koning and Delaroche (2003). The
experimental data from Finlay et al. (1993) are used for the Bayesian update. The
full dataset C is split in two subsets A and B where the former contains the data
below 100 MeV and the latter above 100 MeV.

In this section we focus on Monte Carlo methods, hence we will also investigate
the efficiency of the applied sampling schemes. All studied methods except the
UMC-G method use the original nuclear model without any approximation.

7.1 Analysis of the UMC-G method

The Unified Monte Carlo-G (UMC-G) method described in section 4.3 is based
on the surrogate approach. Therefore, the prior distribution is constructed in the
same way as in the FBET and the EMPIRE-MC method, which were analyzed in
section 6.4. In the evaluation scenario introduced in section 6.2, the likelihood is
assumed to be a multivariate normal distribution. Due to this choice, the FBET/
EMPIRE-MC method and the UMC-G method evaluate the same multivariate

134
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normal posterior distribution. The only difference between the methods is the de-
termination of the posterior distribution. The FBET/EMPIRE-MC method uses
closed-form expressions to compute the mean vector and the covariance matrix of
the posterior distribution whereas the UMC-G method uses Monte Carlo sampling
to obtain these quantities. The UMC-G method converges for a sufficient large
sample size to the solution of the FBET/EMPIRE-MC method. Hence the anal-
ysis carried out in section 6.4 also applies to the UMC-G method. Albeit nothing
new can be learned about model defects at the example of the UMC-G method,
we still want to study its performance in our evaluation scenario. Insights on the
efficiency and convergence will be helpful in the discussion of other Monte Carlo
procedures.
The accurate approximation of the nuclear model described in section 6.2 en-

ables us to assess the performance of the sampling schemes proposed by Capote
and Smith (2008) at the example of the neutron-induced total cross section of
181Ta. The main difference compared to study presented in the paper is the
number of experimental data points which are included in the evaluation. The
evaluation scenario studied in the paper includes seven experimental data points
whereas we are going to include up to 364 points. The wealth of experimental
data in our evaluation scenario is associated with a likelihood that is extremely
peaked compared to the likelihood considered in the paper.
In the following discussion, we denote with ~σ0 and A the prior center vector

and the prior covariance matrix, respectively. These quantities unambiguously
specify the shape of the multivariate normal prior distribution. Because the sur-
rogate model approach is applied, this distribution refers to cross section vectors
and not model parameters. We denote the vector of measurements by ~σexp and
the associated covariance matrix by B. In this section we include the complete
experimental data set C in the likelihood.
An essential prerequisite to apply the UMC-G method is the determination of

the prior center vector and the prior covariance matrix. For the construction of
the prior, we sampled 10000 parameter vectors ~pi = (ãv,i, r̃v,i, ṽ1,i) from a uniform
distribution. The range of the uniform distribution for each model parameter is
given by [0.85, 1.15]. The model prediction vectors ~τi = M(~pi) associated with
the sampled parameter vectors ~pi are used to construct the covariance matrix,

A =
1

10000

10000∑
i=1

(~τi − ~σ0)(~τi − ~σ0)T , (7.1)

where the prior center vector is given by ~σ0 =M(~p0). With the knowledge of the
prior distribution and the likelihood, the posterior distribution can be determined
by means of Monte Carlo sampling. Capote and Smith (2008) suggested two
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sampling schemes: a brute-force scheme and the Metropolis-Hastings algorithm.
In the following we benchmark both schemes.
In the brute-force scheme, cross section vectors ~τi are drawn from a uniform

distribution. The boundaries of the uniform distribution for the elements τi,k of
the vector ~τi are determined by

σ0,k − ψ
√
Akk ≤ τi,k ≤ σ0,k + ψ

√
Akk . (7.2)

The boundaries depend on the elements σ0,k of the prior center vector, the diagonal
elements Akk of the prior covariance matrix and the coefficient ψ. The chosen value
of ψ can be expected to have great impact on the efficiency of the UMC-G method.
In the next step, the associated posterior probability density is calculated for

each sampled cross section vector ~τi,

π(~τi |~σexp) ∝ exp

(
−1

2
(~σexp − S~τi)

TB−1(~σexp − S~τi)

)
×

exp

(
−1

2
(~τi − ~σ0)TA−1(~τi − ~σ0)

)
. (7.3)

The sensitivity matrix S maps the cross sections from the model mesh to the
incident energies of the experimental data. Finally, the posterior center vector
can be estimated by

~σ1 =

∑n
i=1 ~τi π(~τi |~σexp)∑n
i=1 π(~τi |~σexp)

, (7.4)

and the posterior covariance matrix is given by

A1 =

∑n
i=1(~τi − ~σ1)(~τi − ~σ1)T π(~τi |~σexp)∑n

i=1 π(~τi |~σexp)
. (7.5)

Even though, the brute-force scheme is straight forward, we were unable to apply
it successfully. The first obstacle was the reduced rank of the prior covariance
matrix A. The variation of only three model parameters lead to very strong cor-
relations between cross sections at different incident energies. We used a mesh of
200 incident energies for the model calculations. Because of the limited precision
of floating point numbers, an eigendecomposition of A revealed about 100 from
the 200 eigenvalues to be almost zero and 56 of them even slightly negative. The
smallest eigenvalue was approximately −10−7. The rank deficiency of A made it
impossible to evaluate the posterior probability density with Equation 7.3. There-
fore, we applied the procedure explained on page 17 in section 2.2 to deal with
covariance matrices that are only positive-semidefinite. Hence we replaced ~σ, ~σ0

and A in the second exponential function of Equation 7.3 by

~λ = PT~σ, ~µ = PT~σ0, and W = PTAP . (7.6)
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ψ log ω̃2 log w̃3 log w̃4 log w̃5

1.000 -9.90e+07 -1.09e+08 -1.29e+08 -1.42e+08

0.500 -1.23e+07 -2.01e+07 -2.11e+07 -2.26e+07

0.100 -3.75e+05 -3.90e+05 -8.93e+05 -9.28e+05

0.050 -8.64e+04 -1.03e+05 -1.30e+05 -2.60e+05

0.010 -1.36e+04 -1.76e+04 -1.80e+04 -2.02e+04

0.005 -1.64e+01 -1.86e+03 -2.01e+03 -2.16e+03

0.001 -1.93e+01 -4.77e+01 -5.79e+01 -7.57e+01

Table 7.1: The largest weights occurring in the ensemble of one million cross
section vectors for each choice of ψ. The weights are given relative to the largest
weight ω1 occurring in the ensemble, ω̃i = ωi/ω1. Scaled weights are stated in
terms of the logarithm to base 10.

The columns of the projection matrix P = (~e1, ~e2, . . . ) are the eigenvectors of the
prior covariance matrix which are associated with positive eigenvalues.
We tried different choices of ψ in Equation 7.2 to set the limits of the uniform

distribution and generated for each choice n = 106 cross section vectors. We did
not observe convergence for any choice of ψ. The largest weights encountered
in the ensemble of cross section vectors for each choice of ψ are summarized in
Table 7.1. The largest weight in an ensemble is orders of magnitudes larger than all
other weights. Therefore, actually only one term in Equation 7.4 and Equation 7.5
determines the result. Effectively we have drawn just a single cross section vector.
In a real evaluation, increasing the size of the ensemble is not an option. Con-

sidering the run times of nuclear model codes, the generation of an ensemble of 106

model predictions can already exceed the capabilities. Moreover, we tentatively
tried an ensemble size of 107, but the rapid decline of weights persisted.
The essential problem is directly related to the fact that the sampling distri-

bution is determined by the characteristics of the prior. However, in the present
evaluation scenario the posterior distribution resembles more the distribution of
the sharply peaked likelihood.
The second scheme for the generation of samples is the Metropolis-Hastings

(MH) algorithm (Hastings, 1970; Metropolis et al., 1953). We explain the MH
algorithm in the diction of the current evaluation scenario. However, the MH
algorithm can be applied in any scenario where samples should be drawn from
a certain probability distribution and other methods, such as inverse transform
sampling, do not work.
In order to draw an ensemble of cross section vectors from a probability distri-

bution p(~σ), the MH algorithm constructs a chain of samples stepwise. In each
step, based on the current cross section vector ~τi a new cross section vector ~τ ′ is
proposed by drawing a sample from the proposal distribution q(~σ |~σi). We restrict
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the following explanation to proposal distributions which are symmetric in their
arguments, q(~σ |~τi) = q(~τi |~σ). The acceptance of a proposed cross section vector
is a matter of chance. A number γ in the interval [0, 1] is drawn from a uniform
distribution. If the condition

p(~τ ′)

p(~τi)
≥ γ (7.7)

holds, the proposal is accepted and the next cross section vector in the chain is
~τi+1 = ~τ ′. Otherwise, the current cross section vector ~τi is repeated, ~τi+1 = ~τi.
The thereby obtained chain of cross section vectors represents a sample drawn
from the probability distribution p(~σ).1

In the paper of Capote and Smith (2008), the proposals of cross section vectors
~τi are generated by

τ ′k = ~τi,k + (2η − 1)δ
√
Akk , (7.8)

where η is a number in the interval [0, 1] drawn from a uniform distribution and δ
is a constant which specifies the step length. Albeit its similarity to Equation 7.2
there is an essential difference because the center of the uniform distribution in the
former expression is given by the current cross section vector ~τi in the chain whereas
in the latter equation it is frozen to the center vector of the prior distribution.
The initial cross section vector may lie in a domain in cross sections space

associated with small posterior probability. It may require a certain number of
steps until the chain enters into the region of significant probability density. This
initial stage is called burn-in phase. In order to avoid distortions of the summary
statistics, a certain number of cross section vectors drawn at the start of the Monte
Carlo chain is usually discarded.
The other crucial aspect is the value of δ which determines the step length. A

smaller step length leads to a higher acceptance rate, but also to slower mixing. For
small step sizes, subsequent cross section vectors in the chain are located nearby
and it takes more steps to explore the probability distribution. Therefore, the
optimal choice of δ represents a compromise between acceptance rate and speed
of exploration.
In the current evaluation scenario, we know the closed-form solution for the

posterior mean vector. We can choose the cross section vector associated with
highest posterior probability density as initial cross section vector. Then, no cross
section vectors at the start of the chain have to be discarded due to the burn-
in phase. This makes it possible to investigate the impact of the choice of δ
separately from the burn-in phase. The following table summarizes acceptance
rates estimated from 104 samples:

1Technically, the proposal distribution has to meet some criteria to ensure that the cross
section vectors in the chain represent an ensemble drawn from the probability distribution p(~σ)
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Figure 7.1: Cross section curves drawn from the prior probability distribution of
the surrogate model. The curves are colored according to the associated logarith-
mized prior probability density.

δ 1.0e-07 1.0e-06 5.0e-06 1.0e-05 1.5e-05 2.0e-05 3.0e-05

acc.rate 99.88% 94.99% 71.74% 47.80% 28.85% 16.13% 2.43%

Evidently, the acceptance rate is very sensitive on the chosen value of δ. An
acceptance rate between 20% and 40% is considered a good compromise between
speed of exploration and the acceptance of samples, see e.g. Brooks (2011). The
feasible interval of δ is very narrow. This finding suggests that the proposal dis-
tribution is not well aligned to the posterior distribution in the present evaluation
scenario. The following consideration supports this assumption.
The prior covariance matrix reflects the features of the nuclear model. For ex-

ample, the smoothness of the cross section curve is such a feature of the optical
model which can be verified by drawing cross section vectors from the prior distri-
bution, see Figure 7.1.2 If an experimental data point included in the evaluation
corrects the prior cross section at the respective energy upward, also cross sections
at nearby incident energies will be pulled upward due to the smoothness constraint
reflected in the prior covariance matrix. Hence nearby cross sections are strongly
positively correlated. The proposal distribution in Equation 7.8 does not account
for this fact, but samples the cross section at every incident energy independently
from cross sections at other incident energies. The posterior distributions for two
cross sections at nearby incident energies and the proposal distribution are visu-

2When the number of incident energies in the model mesh goes to infinity, predicted cross
section vectors become cross section curves. Conversely, a cross section vector with a finite
number of elements can be regarded as a discretized version of a cross section curve.
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Figure 7.2: Schematic illustration. The green ellipses represent the 68% and
95% confidence areas for two cross sections σ1 and σ2 according to the posterior
distribution. Proposals are selected within a box whose proportion is determined
by the prior standard deviations ∆σ1 and ∆σ2 of the cross sections. Rescaling
the larger box by a small constant δ leads to a box size associated with a sensible
acceptance rate.

alized in Figure 7.2. It is apparent from the graph that δ has to be a very small
value to shrink down the box of the uniform distribution sufficiently. Only then
the acceptance rate falls within the desirable range. However, the desirable ac-
ceptance rate leads to a bad mixing of the chain. The traversal of the posterior
probability distribution along the direction of highest variance requires plenty of
steps.
The question of the efficiently of the MH algorithm to explore the cross section

space in domains of significant probability density as well as the number of steps
associated with the burn-in phase are related. In order to study the number of
iterations associated with the burn-in phase, we used the prior center vector ~p0 =

(ãv, r̃v, ṽ1)T = (1, 1, 1)T as initial vector for the MH algorithm and investigated
the evolution of the probability density associated with the sampled cross section
vectors. A representative result is illustrated in Figure 7.3. The chain does not
walk up the probability distribution, but instead walks down slightly and remains
in a certain range of the posterior probability density. This result is doubtful
because we know from the previous sections that the prior center vector is rather
unlikely under the posterior distribution. Hence the probability density associated
with the cross section vectors should in average increase with an increasing number
of iterations.
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Figure 7.3: Evolution of the posterior probability density associated with the cross
sections vectors in the Monte Carlo chain. The proposal function in Equation 7.8
is employed with a step length δ = 10−5. The depicted logarithmized posterior
probability density is not normalized.

We argued at the example of Figure 7.2 that the proposal distribution is not
well aligned to the posterior distribution in our evaluation scenario. Furthermore,
the prior covariance matrix is degenerated due to the variation of only three model
parameters. Thus, feasible cross sections are located in a linear subspace of cross
section space, yet the proposal distribution gives non-vanishing probabilities for
a jump along all directions of the cross section space. In terms of the schematic
illustration in Figure 7.2, the posterior distribution is a straight line. Ideally, no
finite size of the box indicating the boundaries of the uniform distribution leads to
proposals of cross section vectors associated with non-vanishing probability. Prac-
tically, we obtained a certain acceptance rate because we projected the proposed
cross section vectors onto the subspace of feasible cross section vectors.
To verify the argument, we set the off-diagonal elements of the prior covariance

matrix to zero and applied again the MH-algorithm with the proposal function
in Equation 7.8 and a step length δ = 10−2. A representative result is shown
in Figure 7.4. Now the Monte Carlo chain possesses the expected behavior and
climbs up the posterior probability density distribution until cross section vectors
fall into a significant domain.
We conclude that the sampling schemes studed by Capote and Smith (2008)

are not adequate in scenarios with a large number of experimental data and hence
sharply peaked likelihoods. In addition, due to smoothness constraints reflected
in the prior distribution, these sampling schemes become less efficient with an
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Figure 7.4: Evolution of the posterior probability density associated with the cross
sections vectors in the Monte Carlo chain. The proposal function in Equation 7.8
is employed with a step length δ = 10−2. In addition, off-diagonal elements of the
prior covariance matrix A0 were set to zero. The depicted logarithmized posterior
probability density is not normalized.

increasing density of incident energies in the model mesh.

7.2 Refined Monte Carlo scheme

The previous section showed that the two Monte Carlo schemes for the UMC-G
method suggested by Capote and Smith (2008) are not applicable in our evaluation
scenario. Also the paper on the UMC-B approach (Capote, Smith, et al., 2012)
leaves the question of an appropriate sampling scheme unanswered. Therefore, an
efficient Monte Carlo scheme is needed to make the UMC-G/B approach feasible
in cases where the likelihood is sharply peaked.
In this section, we introduce a simple and effective proposal distribution for

the Metropolis-Hastings (MH) algorithm. In the further discussion the posterior
distribution of the parameter vector ~p is denoted by π1(~p). The basic idea is to
linearize the nuclear model at the prior center vector. Then we can use the closed-
form expression of Equation 3.24 to compute the posterior covariance matrix A1.
We use this covariance matrix to specify the proposal distribution,

q(~p ′ | ~p) ∼ N (~p, δA1) , (7.9)

where δ determines the step length. In order to decide whether a jump from ~p to
the proposed parameter vector ~p ′ is accepted, a random number η in the interval
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[0, 1] is drawn from a uniform distribution. A move is accepted if

π1(~p ′)

π1(~p)
≥ η . (7.10)

In contrast to the two Monte Carlo schemes presented in the previous chapter,
the proposal distribution in Equation 7.9 is adapted to an approximation of the
posterior covariance matrix. Consequently, the choice of the step length is far
less dependent on the specifics of the evaluation scenario, such as the number of
included experimental data points.
We briefly repeat the analysis of the UMC-G method using the MH algorithm

and the refined proposal distribution in Equation 7.9. In the UMC-G method the
original model is already replaced by a surrogate model. We can directly use the
update formula in Equation 3.33. The following table states acceptance rates for
different choices of the step length δ:

δ 4e-02 6e-02 8e-02 1e-01 2e-01 3e-01 4e-01

acc.rate 84.43% 77.76% 70.45% 62.77% 34.38% 14.75% 5.23%

The evolution of the posterior probability density associated with the cross
section vectors for δ = 0.2 is illustrated in Figure 7.5. After a few hundred
iterations the chain enters a domain of significant posterior probability density.
We discarded the first thousand cross section vectors and calculated an estimate
of the posterior center vector according to Equation 7.4. The maximal relative
deviation from the analytic solution is approximately 0.1%.
We will use the MH algorithm with the proposal distribution in Equation 7.9 to

obtain results with the UMC-B method. Also the efficiency and accuracy of the
BMC and BFMC method will be compared to this MH algorithm.

7.3 Analysis of the UMC-B method

The Unified Monte Carlo-B (UMC-B) method (Capote, Smith, et al., 2012) can
be regarded as the most exact evaluation method among all the methods analyzed
in this chapter. The combination of two features distinguishes this method from
other approaches: the nuclear model without any approximation is used and the
likelihood is specified according to the principle of maximum entropy. However,
to our knowledge the UMC-B method has not yet been applied in a realistic
evaluation scenario. The method was introduced in (Capote, Smith, et al., 2012)
and only a demonstration in a schematic example with three experimental data
points was given. In this section we apply the UMC-B method to the evaluation
of the neutron-induced total cross section of 181Ta with a rich set of available
experimental data.
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Figure 7.5: Evolution of the posterior probability density associated with the cross
sections vectors in the Monte Carlo chain. The prior is specified by the surrogate
model. The proposal distribution in Equation 7.9 with a step length δ = 0.2 is
used.

The UMC-B method makes use of Bayesian statistics leading to the posterior
distribution

π(~p |~σexp,M) ∝ `(~σexp | ~p,M) π(~p |M) , (7.11)

where the vector ~p contains the values of the model parameters ãv, r̃v, and ṽ1.
In our evaluation scenario, the likelihood is a multivariate normal distribution.
Therefore it is given by

`(~σexp | ~p,M) =
1√

(2π)d|B|
exp

{
−1

2
(~σ −M(~p))T B−1 (~σ −M(~p))

}
, (7.12)

where ~σexp denotes the vector of cross section measurements and B is the asso-
ciated experimental covariance matrix. In contrast to the UMC-G method, the
nuclear modelM is not replaced by an approximation in the UMC-B method.3

The approach applied by Capote, Smith, et al. (2012) draws an ensemble of
parameter vectors ~pi from the prior distribution π(~p |M) and determines summary
statistics of the posterior distribution in terms of a weighted sum of the associated
model predictions ~τi = M(~pi). Especially, the posterior mean vector ~σ1 can be
estimated by

~σ1 =

∑n
i=1 ~τi `(~σexp | ~pi,M)∑n
i=1 `(~σexp | ~pi,M)

. (7.13)

3This essential difference between the UMC-G and the UMC-B method remains without
remark in the original paper.
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Further, the posterior covariance matrix is given by

A1 =

∑n
i=1(~τi − ~σ1)(~τi − ~σ1)T `(~σexp | ~pi,M)∑n

i=1 `(~σexp | ~pi,M)
. (7.14)

In the description of the schematic example in (Capote, Smith, et al., 2012),
the choice made for the prior distribution π(~p |M) is not explicitly mentioned.
However, there are indications that a uniform distribution was used. For reasons
discussed in section 7.1, this sampling scheme is not feasible in our evaluation
scenario. Due to the highly peaked likelihood, model parameter vectors sampled
from the prior distribution are associated with almost vanishing weights.
A simple consideration allows us to estimate the number of samples required

to draw one sample with a significant value of the likelihood when sampling from
the prior. The iterative Bayesian update yielded for each of the evaluated model
parameters ãv, r̃v, and ṽ1 an uncertainty about 10−3 (see Equation 6.20). In the
current evaluation scenario, the prior distribution is a uniform distribution for each
parameter in the range [0.85, 1.15]. Therefore, the probability that a parameter
vector drawn from the prior distribution has significant weight is approximately
given by

(10−3)3

0.33
=

10−9

27 · 10−3
≈ 3 · 10−6 . (7.15)

Hence, only one sample out of 3·106 samples can be expected to be associated with
a significant value of the likelihood. Clearly, this sampling scheme is inapplicable.
Instead of sampling from the prior distribution as done by Capote, Smith, et al.

(2012), we use the Metropolis-Hasting algorithm to directly draw model param-
eter vectors from the posterior distribution π(~p |~σexp). In order to construct the
proposal distribution introduced in section 7.1, we compute an approximation of
the posterior covariance matrix. To this end, we linearize the nuclear model at
the prior center vector and apply the analytical update formula in Equation 3.22.
We already performed such a calculation for the EMPIRE-Kalman method. The
resulting posterior covariance matrix for the model parameters is given in Equa-
tion 6.19.
We included the complete experimental data set C in the specification of the

likelihood and created a Monte Carlo chain with n = 105 parameter vectors ~γi
using the step length δ = 0.8 in the proposal distribution yields an acceptance
rate of 34%. Figure 7.6 shows the evolution of the posterior probability density.
Comparing this posterior probability density with those illustrated in Figure 7.5,
we notice that the present probability density is much lower. This is due the fact
that the UMC-B method relies on the exact model and the UMC-G method on a
more flexible surrogate model, which can better adapt to the data. Furthermore,
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Figure 7.6: Evolution of the posterior probability density associated with the cross
sections vectors in the Monte Carlo chain. The prior is specified by the a uniform
distribution for the model parameters and the exact model is employed. The
proposal distribution in Equation 7.9 with a step length δ = 0.2 is used. The
depicted logarithmized posterior probability density is not normalized.

the burn-in phase is rather short. After about fifty iterations, there is no visible
trend anymore.
Because the obtained parameter vectors represent an ensemble drawn from the

exact posterior distribution, the mean vector ~p1 and the covariance matrix A1 of
the posterior distribution are determined by the standard formulas

~p1 =
1

n

n∑
i=1

~γi and A1 =
1

n

n∑
i=1

(~γi − ~p1) (~γi − ~p1)T . (7.16)

Using these formulas, we obtainãvr̃v
ṽ1

 =

1.0614

0.9766

1.0162

 and A1 = 10−6

 90.0749 13.1820 −19.2156

13.1820 6.8861 −9.3364

−19.2156 −9.3364 14.5449

 .

(7.17)
In order to assess the accuracy of these estimates, we created several Monte Carlo
chains each consisting of 105 samples. The fluctuations observed in the mean vector
were in the order of 10−4. The fluctuations in the diagonal of the covariance matrix
were about 10−6 or less.
The obtained mean vector is approximately the same as in the iterative lin-

earized Bayesian update procedure (see Equation 6.20). This finding reflects the
sharply peaked likelihood which reduces the uncertainty in the model parameters
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to a linear domain of the model. However, the difference between the respective
covariance matrices is statistically significant. The diagonal elements of the co-
variance matrix produced by the iterative linearized Bayesian update are roughly
20% smaller. This deviation can be attributed to a local maximum of the poste-
rior probability distribution. The marginal density distributions for pairs of model
parameters are shown in Figure 7.10, Figure 7.12, and Figure 7.14.
The linearization of the model in the iterative Bayesian update procedure makes

this method blind for local maxima. If local maxima exist, uncertainties are then
probably underestimated. In contrast to that, a Monte Carlo method based on
the Metropolis-Hastings algorithm is able to discover these local maxima. In
the present situation, a linearized method might be still regarded more efficient
because the sharply peaked likelihood restricts the nuclear model approximately
to a linear domain. The confidence regions enclosing the global maximum are of
elliptical shape which is a signature of linearity. Only in confidence areas associated
with high certainty enclosing a larger domain in the space of parameter vectors,
the non-linearity of the model becomes noticeable.
In order to study the reliability of the predictions obtained by the UMC-B

method, we made an additional evaluation only including the dataset A in the
likelihood. Based on a Monte Carlo chain with 105 parameter vectors and using a
step length δ = 0.8, we obtainedãvr̃v

ṽ1

 =

1.1037

0.9569

1.0372

 and A1 = 10−6

112.3212 0.5221 −6.9062

0.5221 11.7173 −16.6597

−6.9062 −16.6597 25.6224

 .

(7.18)
The evaluated cross section curve is visualized in Figure 7.7. The associated
uncertainties and correlations are shown in Figure 7.8. Due to the small deficiency
of the model at low incident energies, the model prediction is inconsistent with
the dataset B, which had not been included in the likelihood.
The comparison of the evaluated correlations with those resulting from an up-

date with C (see Figure 7.9) yields at first glance a surprising result: The uncer-
tainties of the evaluated cross sections are larger when updating with the complete
dataset C than when only updating with A. This observation may seem doubtful
because new information should never increase the uncertainty. Despite this ob-
servation, the uncertainty is indeed reduced, but not along directions associated
with the diagonal of the covariance matrix for the cross sections. The reduced
uncertainty is reflected in the higher correlations of the covariance matrix result-
ing from an update with C. The reduced uncertainty can also be verified at the
evaluated parameter covariance matrix, in which the diagonal elements are indeed
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Figure 7.7: Evaluated cross sections obtained by the UMC-B method. In one
evaluation the update was performed with dataset A (red) whereas in the other
evaluation the update was performed with dataset C. The shown confidence bands
indicate the 95% trust level.

smaller than those obtained with the full data set C.
The comparison of the results obtained by the UMC-B method and the iterative

linearized Bayesian update Equation 6.24 shows that evaluated mean vectors are
in very good agreement. As in the case of only updating with C, the differences
in the covariance matrices are statistically significant. The increased uncertainty
in the case of UMC-B can be attributed to the non-linearity of the model. Fig-
ure 7.11, Figure 7.13, and Figure 7.15 show marginal density plots of the posterior
distribution of the model parameters.
Posterior distributions that substantially differ from the multivariate normal

distribution can only be accurately treated with Monte Carlo methods. In the
prsence of significant non-linearities, methods based on either the linearization of
the model (see section 3.2) or the surrogate approach (see section 3.3) produce
different results. Whether evaluated uncertainties of methods linearizing the model
are lower or higher compared to those obtained by Monte Carlo methods depends
on the specific evaluation scenario. In contrast to that, evaluated uncertainties
produced by methods based on the surrogate approach are always higher and
yield the most cautious predictions. However, it is also not desirable to be overly
cautious in evaluations because results could lead to the wrong conclusion that
some experiment has to be carried out to get more certainty. Another consequence
could be that nuclear facilities are not as efficiently constructed as they could be.
Consequently, it is desirable to keep the complete (non-linear) systematics of the
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Figure 7.8: Evaluated uncertainties and correlations obtained by the UMC-B
method when including the complete dataset A. These estimates of the uncer-
tainty and the correlations are based on 105 parameter vectors drawn from the
posterior distribution.

Figure 7.9: Evaluated uncertainties and correlations obtained by the UMC-B
method when including the complete dataset C. These estimates of the uncer-
tainty and the correlations are based on 105 parameter vectors drawn from the
posterior distribution.
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nuclear model to get accurate predictions and tight confidence intervals. However,
in the evaluation with the UMC-B method including only the data set A the
predicted cross section curve (illustrated in Figure 7.7) was misleading. Therefore,
it is of utmost importance to account for the expected reliability of the nuclear
model in the prior distribution. The mathematical modeling of this trust is the
subject of chapter 9.
We have extensively analyzed the UMC-B method in this section for three rea-

sons. First, the exact nuclear model is taken into account for the inference and
consequently the results of the Bayesian inference are not distorted or diluted
by approximations of the nuclear model. Second, the likelihood is a multivariate
normal distribution which is a choice based on sound principles (see section 3.1).
Third, using the Metropolis-Hastings algorithm provides a theoretical guarantee
that we indeed sample from the posterior distribution. Thus, every part of the
update procedure stands on solid ground. If a Monte Carlo method does not con-
verge to the result of the UMC-B method, it necessarily disagrees with one of the
three mentioned aspects.
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Figure 7.10: Marginal density distribution of the posterior where ṽ1 has been
integrated out. The complete dataset C entered the likelihood. The optical model
without any approximation is used to map the model parameters to cross sections.
The contours denote confidence areas.
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Figure 7.11: Marginal density distribution of the posterior where ṽ1 has been
integrated out. The optical model without any approximation is used to map the
model parameters to cross sections. The contours denote confidence areas.
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Figure 7.12: Marginal density distribution of the posterior where ãv has been
integrated out. The complete dataset C entered the likelihood. The optical model
without any approximation is used to map the model parameters to cross sections.
The contours denote confidence areas.
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Figure 7.13: Marginal density distribution of the posterior where ãv has been
integrated out. Only the dataset A entered the likelihood. The optical model
without any approximation is used to map the model parameters to cross sections.
The contours denote confidence areas.
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Figure 7.14: Marginal density distribution of the posterior where r̃v has been
integrated out. The optical model without any approximation is used to map the
model parameters to cross sections. The contours denote confidence areas.
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Figure 7.15: Marginal density distribution of the posterior where r̃v has been
integrated out. Only the dataset A entered the likelihood. The optical model
without any approximation is used to map the model parameters to cross sections.
The contours denote confidence areas.
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7.4 Analysis of the BMC method

The Bayesian Monte Carlo (BMC) method (Koning, 2015) uses Monte Carlo sam-
pling to obtain summary statistics of the posterior distribution. The specification
of the likelihood (see Equation 4.17) is different from that of the UMC-B method.
Furthermore, the BMC method implements a certain kind of self-adaptive impor-
tance sampling scheme.
Before we elaborate on the specific details of the self-adaptive sampling scheme,

we outline the basics of importance sampling. Assume that we want to compute a
summary statistics f(~p) of the probability distribution π(~p). One way to achieve
this goal is to evaluate the integral

Eπ[f(~p)] =

∫
S
f(~p)π(~p) d~p . (7.19)

The subscript π indicates that the expectation is with respect to the probability
distribution π(~p). The integration has to be performed over the support S of π(~p).
If the integral is not tractable by means of deterministic quadrature schemes,
an alternative is the sampling of ~pi according to the distribution π(~p) and the
estimation of the integral by

Eπ[f(~p)] ≈ 1

n

n∑
i=1

f(~pi) . (7.20)

In some cases, directly sampling from π(~p) is also not possible. Then, one can
sample instead from another so-called instrumental distribution φ(~p). The idea
behind this modified evaluation of the integral is best seen rewriting Equation 7.19
as

Eπ[f(~p)] =

∫
f(~p)π(~p)

φ(~p)
φ(~p) d~p . (7.21)

Interpreting the fraction in the integrand as a summary statistics of φ(~p), an
estimate of the integral is given by

Eφ[f(~p)] ≈ 1

n

n∑
i=1

f(~pi)π(~pi)

φ(~pi)
. (7.22)

The number of samples to obtain a certain accuracy can be significantly reduced
if the distribution φ(~p) resembles closely the original distribution π(~p). If one of
the probability distributions is not normalized, the following integral yields c 6= 1,∫

π(~p) d~p =

∫
π(~p)

φ(~p)
φ(~p) d~p = c . (7.23)

In this case, we must estimate c as well,

Eφ[1] ≈ 1

n

n∑
i=1

π(~pi)

φ(~pi)
≈ c (7.24)
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Figure 7.16: Illustration of the function S(k) which determines the probabilities
to choose between φ1(~p) and φ2(~p) in an iteration k.

and modify Equation 7.22 accordingly,

Eφ[f(~p)] ≈
1
n

∑n
i=1

f(~pi)π(~pi)
φ(~pi)

1
n

∑n
i=1

π(~p)
φ(~p)

=

∑n
i=1 f(~pi)ωi∑n

i=1 ωi
, (7.25)

where ωi = π(~pi)/φ(~pi).
The objective of Monte Carlo methods relying on Bayesian statistics is the

computation of summary statistics, such as the mean vector, of the posterior
distribution π(~p |~σexp). The self-adaptive sampling scheme of the BMC method
uses two different instrumental distributions φ1(~p), φ2(~p). In each iteration k a
random number γk is drawn from a uniform distribution in the range [0, 1]. The
value γk is then compared to the value of the function

S(k) =

{
17k4

16k4+N4
burn

for k < Nburn

1 for k ≥ Nburn
. (7.26)

If γk > S(k) holds, the parameter vector in the kth iteration is drawn from φ1(~p),
otherwise from φ2(~p). The function S(k) is illustrated in Figure 7.16.
(Koning, 2015) choose a uniform distribution φ1(~p) for the model parameters.

Its support should be large enough to remove as much as possible the influence of
the prior on the result. In our evaluation scenario we assume

φ1(~p) :=

{ (
3
10

)3 for ~p ∈ [0.85, 1.15]3

0 otherwise
(7.27)

The specification of the instrumental distribution φ2(~p) in the kth iteration de-
pends on the parameter vectors ~p1, ~p2, . . . , ~pk−1 drawn so far, thus a better notation
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is φk2(~p). Let the parameter vectors ~q1, ~q2, . . . , ~qm be the subset of the parameter
vectors drawn before the kth iteration that were sampled from the prior distribu-
tion φ1(~p). We denote the associated weights by ω̃i = π(~qi |~σexp)/φ1(~qi). Now the
instrumental distribution φk2(~p) can be defined as

φk2(~p) :

{
ω̃i∑m
j=1 ω̃j

if a ~qi exists so that ~p = ~qi

0 otherwise
(7.28)

In the paper of (Koning, 2015) not many details are given on the construction
of φk2(~p). Defining φk2(~p) based only on the samples drawn from φk1(~p) seems
reasonable to us, yet this choice might differ from the choice in the paper.
Thus, the BMC sampling scheme is completely specified and we can apply it to

the neutron-induced total cross section of 181Ta. As shown in section 6.1, the value
of the likelihood depends on the number of involved channels C and the number
of points Nm in each experimental data set m. For convenience, we repeat the
functional form of the likelihood here,

`(~σexp | ~p) ∝ exp

[
− 1

C

C∑
c=1

Mc∑
m=1

1

Nm

Nm∑
k=1

(
σexp,cmk −M(~p)

δexp,cmk

)2
]
. (7.29)

The subscript cmk identifies a cross section by its channel c, to which dataset m
it belongs and the position k within this dataset. The experimental measurement
values are denoted by σexp,cmk and the associated uncertainties by δexp,cmk. The
functionM(~p) gives the appropriate model prediction for the experimental data
point σexp,cmk. This likelihood does not include correlations between the data
points.
In our evaluation scenario we consider only one channel, hence C = 1. We

included the complete dataset C in the likelihood and assumed that all points
belong to one dataset. According to Equation 6.5, this corresponds to a rescaling
of the experimental covariance matrix B by the number of data points (364).
Because correlations between the data points are ignored, the matrix B contains
non-zero values only in the diagonal.
First, we generated 104 parameter vectors and used Nburn = 104. The sampling

process is visualized in Figure 7.17. Inserting ~p1 = f(~p) = ~p and f(~p) = (~p−~p1)(~p−
~p1)T into Equation 7.25, we obtained the evaluated mean vector and covariance
matrix

~pBMC =

1.0234

0.9833

1.0172

 and ABMC = 10−4

 60.3391 −13.1244 15.8424

−13.1244 3.7115 −5.0835

15.8424 −5.0835 15.9559

 .

(7.30)
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Figure 7.17: Bayesian Monte Carlo self-adapting scheme. Shown are the posterior
probability densities (unnormalized and logarithmic) associated with the sampled
parameter vectors. Points in blue were sampled from φ1(~p) and points in red from
φ2(~p).

The evaluation at the level of cross sections is shown in Figure 7.18 and the asso-
ciated uncertainties and correlations are illustrated in Figure 7.19. The evaluated
uncertainties are larger than those obtained by the EMPIRE-Kalman, FBET and
UMC-B method, which can be attributed to the alternative specification of the
likelihood.
As a reference evaluation, we also applied the UMC-B method using the same

choice of the likelihood. The evaluated mean vector and covariance matrix ob-
tained by the UMC-B method based on 105 samples from the posterior distribu-
tion, and using a step length δ = 0.8, are given by

~pUMC-B =

1.0226

0.9839

1.0151

 and AUMC-B = 10−4

 56.3889 −11.5769 13.2041

−11.5769 3.3926 −4.7509

13.2041 −4.7509 16.2219

 .

(7.31)
The mean vectors estimated with the BMC method and the UMC-B method are
approximately equal. The occurring differences are well below the evaluated un-
certainties of these parameters. Hence, the two evaluation methods are consistent
with each other. At the level of cross sections, evaluated cross section curves and
associated confidence bands are hardly distinguishable by eye.
Next, we investigate the change of evaluated quantities with an increasing num-

ber of sampled parameter vectors. After iteration k = Nburn, samples are drawn
exclusively from the instrumental distribution φk2(~p). This means that new samples
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Figure 7.18: Evaluated cross section curve obtained by the BMC method when
updating with the complete dataset C. 104 parameter vectors were sampled and
Nburn was set to the same value.

Figure 7.19: Evaluated uncertainties and correlations obtained by the BMC
method when updating with the complete dataset C. 104 parameter vectors were
sampled and Nburn was set to the same value.
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are generated by randomly picking from old samples. The probability to select a
certain sample is proportional to its weight. We reused the samples which yielded
the result in Equation 7.30 and generated on their basis using φk2(~p) another 9 ·104

samples. We obtained the estimates

~pBMC =

1.0230

0.9834

1.0171

 and ABMC = 10−4

 60.2108 −13.0818 15.6801

−13.0818 3.7009 −5.0432

15.6801 −5.0432 15.8447

 .

(7.32)
They slightly differ from the results in Equation 7.30 where we stopped the itera-
tion after Nburn = 104 samples.

In the following we are interested in estimates of summary statistics f(~p) in the
limit of infinitely many iterations. After the initial burn-in phase, samples are
exclusively drawn from φk2(~p). Therefore φk2(~p) = φn2 holds for all k, n > Nburn.
and we can drop the superscript k for the following consideration. We rewrite the
probability density function of φ2(~p) given in Equation 7.28 as

φk2(~p) = C
m∑
i=1

ω̃i δ(~p− ~qi) , (7.33)

where δ(.) denotes the Dirac-delta functional and ~qi are the samples drawn from
φ1(~p) before a number of Nburn iterations is reached. The factor C denotes the
normalization constant and is given by C−1 =

∑m
j=1 ω̃j.

One possibility to compute a summary statistics f(~p) is to sample from φ2(~p)

and then estimate its value using Equation 7.20. However, because we know φ2(~p)

explicitly, we can also directly solve the integral in Equation 7.19,∫
f(~p)C

m∑
i=1

ω̃iδ(~p− ~qi) d~p = C
m∑
i=1

f(~pi) ω̃i . (7.34)

This result shows that recycling samples does not offer an advantage, because the
result in the limit of infinitely many iterations is analytically available. This result
is also important with respect to the Total Monte Carlo (TMC) framework.
In the TMC framework, uncertainties in model parameters are propagated to

uncertainties of observables, which are relevant for applications, such as the crit-
icality keff of reactors. Dependencies between quantities are exactly accounted
for—no perturbation theory or sensitivity analysis is applied. Model parameters
are generated according to a probability distribution, which reflects the uncer-
tainty in the value of the parameter. For each set of sampled model parameters,
the whole application chain is executed. Albeit the computations performed in
this application chain are complex, in terms of statistics it just represents the
evaluation of a summary statistics f(~p). For this reason, in the remainder of this
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section we always create exactly a number of Nburn samples and then calculate the
mean vector and the covariance matrix analytically.
Next, we perform an evaluation with the BMC only including dataset A in

the likelihood. The estimates for the parameter mean vector and the covariance
matrix are given by

~pBMC =

1.0369098

0.9793851

1.0171299

 and ABMC = 10−4

 59.9923 −13.6613 13.3971

−13.6613 4.1351 −4.8254

13.3971 −4.8254 14.2780

 .

(7.35)
The evaluated cross section curve is shown in Figure 7.20 and associated uncertain-
ties and correlations are shown in Figure 7.21. The uncertainties at high incident
energies are considerably larger than those obtained in updates with the com-
plete dataset C (see Equation 7.31. However, the evaluated parameter vectors are
approximately equal. Further, the oscillation of the uncertainty at low incident
energies clearly shows the influence of the model systematics, because the uncer-
tainties of the experiment reflected in the covariance matrix B are rather uniform.
In contrast to the result of the UMC-B method in Equation 7.18, the evaluation
is consistent with the experimental dataset B which had not been included in the
update process. This result can be attributed to the modified specification of the
likelihood.
Multiplying the covariance matrix B by the number of experimental data points

(dataset A contains 294 points) corresponds to the assumption of larger experi-
mental uncertainties. Thus, the experimental data does not give enough evidence
for a cross section curve that cannot be described by the model. Hence the model
deficiency does not affect the result of the evaluation in an undesirable way.
However, rescaling the covariance matrix means to throw away information from

the measurements. If a sound assessment of an experiment yields an uncertainty of
1% in the cross section values, there is no cogent reason to enlarge this uncertainty
dependent on the number of data points. For instance, in Figure 7.20 the evaluated
uncertainty at 50 MeV might be larger than necessary. Another point of criticism
may be that also around 50 MeV the evaluated curve deviates noticeably from the
experiment which was included in the evaluation. If the experimental data are
reliable, it is a desirable feature of the evaluated cross section curve to mimic well
the experimental data points.
As the last practical investigation, we want to use a multivariate normal likeli-

hood and apply the self-adaptive Monte Carlo scheme of the BMC method. Ac-
cording to Equation 7.29, the BMC likelihood coincides with a multivariate normal
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Figure 7.20: Evaluated cross section curve obtained by the BMC method when
updating ony with the dataset A. 104 parameter vectors were sampled and Nburn

was set to the same value.

Figure 7.21: Evaluated uncertainties and correlations obtained by the BMC
method when updating only with the dataset A. 104 parameter vectors were
sampled and Nburn was set to the same value.
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distribution4 if only one channel is included in the update and each experimental
data point is associated with a separate dataset. We used the full dataset C and
the form of the likelihood given in Equation 7.12 for the evaluation and performed
104 iterations with Nburn = 104. We found the same issue as for the UMC-G
and UMC-B method relying on the originally proposed brute-force scheme (see
section 7.1): The spread of the obtained weights ω̃i was very large and only a
few parameter vectors ~qk had significant weight. The smallest weight was about
1012244 times smaller than the largest weight. For the sake of illustration, we state
the seven largest weights among the 104 weights we obtained:

1.00e+00 2.43e-01 9.94e-02 1.98e-03 8.42e-04 1.42e-04 3.37e-09

The weights are divided by the largest weight for comparability. Consequently,
only a few weights among the 104 weights are non-negligible. In the extreme case
it could happen that only one weight associated with some parameter vector ~ql is
several orders of magnitude larger than all other weights. Then, the instrumental
distribution φk2(~p) (see Equation 7.33) would be very accurately given by

φk2(~p) = C
m∑
i=1

ω̃i δ(~p− ~qi) ≈ δ(~p− ~ql) , (7.36)

and consequently only the parameter vector ~ql is drawn from φk2(~p). In the present
result only the parameter vectors associated with the six largest weights have
a realistic chance to get recycled in 104 iterations. On the basis of just a few
parameter vectors no reliable estimates of summary statistics are possible.
Finally, we want to discuss a theoretical issue that might affect estimates of

summary statistics unfavorably. As discussed at the beginning of this section, the
weights resulting from importance sampling are given by ω(~p) = π(~p)/φ(~p) where
π(~p) is the distribution of interest and φ(~p) is the instrumental distribution from
which the samples are drawn. The explanation of the self-adaptive importance
sampling scheme of the BMC method ((Koning, 2015)) suggests that φ(x) for
the calculation is either given by φ1(~p) or φ2(~p). However, the random process
to select between these distributions itself has to be considered. Therefore, the
proper instrumental distribution is given by

φk(~p) = (1− S(k))φ1(~p) + S(k)φk2(~p) . (7.37)

The probability to draw samples from φ1(~p) declines to zero as the number of
iterations approaches Nburn. This means that the probability to draw a vector

4Stricly speaking, also the BMC likelihood is a multivariate normal distribution, but the
covariance matrix is rescaled dependent on the number of channels involved and the number of
measurement points in the datasets.
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~p which was not already sampled declines to zero. In consequence, the weights
for such parameter vectors diverge. After Nburn iterations, there is zero proba-
bility to explore new parameter vectors. This is in contradiction to an essential
requirement of importance sampling. Every parameter vector ~p associated with a
non-zero probability density under π(~p) must have a chance to be sampled from
the instrumental distribution φ(~p). To see the reason for this requirement numeri-
cally, we may assign a small probability ε to draw from φ1(~p) after Nburn iterations.
The instrumental distribution after Nburn steps then takes the form

φ(~p) = εφ1(~p) + (1− ε)φ2(~p) . (7.38)

The expectation value of a summary statistics f(~p) under the distribution π(~p) is
given in Equation 7.22. In the following we abbreviate I = Eπ[f(~p)]. An estimate
In of I based on a finite number n of samples is afflicted with a statistical error. If
we use importance sampling and some instrumental distribution φ(~p), the variance
of the estimate is given by

Varφ[In] =
1

n
Varφ

[
f(~p)π(~p)

φ(~p)

]
=

1

n

∫
S

(
f(~p)π(~p)

φ(~p)
− I

)2

φ(~p) d~p . (7.39)

We assume that f(~p)π(~p) is bounded in S and further that there exists a measur-
able subset of S in which f(~p)π(~p) 6= 0. Due to the definition in Equation 7.21,
f(~p)π(~p) 6= 0 implies f(~p)π(~p) > 0 in some region of S. In general, these assump-
tions hold if f(~p) is a reasonable summary statistics. Now we return to the specific
instrumental distribution in Equation 7.38. Because φ2(~p) is defined only on a dis-
crete subset of S, there exists a subset A such that φ2(~p) = 0 and f(~p)π(~p) > 0

for all ~p ∈ A. Let B be the complementary set to A. We can split the integral in
Equation 7.39 into the sum∫

A

(
f(~p)π(~p)

εφ1(~p)
− I

)2

εφ1(~p) d~p+

∫
B

(
f(~p)π(~p)

φ(~p)
− I

)2

φ(~p) d~p (7.40)

Now we can expand the first integral as∫
A

(
(f(~p)π(~p))2

εφ1(~p)
− 2f(~p)π(~p)I + εI2φ1(~p)

)
d~p =

1

ε

∫
A

(f(~p)π(~p))2

φ1(~p)
d~p−

∫
A

(
2f(~p)π(~p)I + εI2φ1(~p)

)
d~p (7.41)

Therefore, Varφ[In] → ∞ when ε → 0. The variance of the estimate In gets
arbitrarily large for ε declining towards zero. This argument proves that assigning
non-zero probabilities only to parameter vectors drawn in an earlier stage of the
sampling process is illicit in importance sampling.
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7.5 Analysis of the BFMC method

The Backward-Forward Monte Carlo method (Bauge and Dossantos-Uzarralde,
2011; Bauge, Hilaire, and Dossantos-Uzarralde, 2007) is not intentionally designed
as Bayesian method, though its underlying assumptions can be interpreted within
the framework of Bayesian statistics (see section 4.1).
In the BFMC method, parameter vectors ~pi are drawn from a uniform distribu-

tion. For each obtained parameter vector ~pi the χ2-value is computed by

χ2
i = (~σexp −M~pi))

TB−1 (~σexp −M~pi)) , (7.42)

where the vector ~σexp contains the measurements and B is the associated experi-
mental covariance matrix. We denote the smallest χ2-value occurring in the set of
drawn parameter vectors ~pi as χ2

min. As the next step, a weight for each parameter
is calculated by

ωi = exp

(
−
(
χ2
i

χ2
min

)2
)
. (7.43)

The occurrence of χ2
min in the exponential function distinguishes this method from

all other methods. The analysis of the UMC-G method using the brute-force
sampling scheme in section 7.1 showed that due to the sharply peaked likelihood
no significant weights are generated if drawing from the uniform prior distribution.
The same would hold for the BFMCmethod if the likelihood would not be adjusted
by the smallest χ2-value.
We generated 105 parameter vectors by drawing from a uniform distribution in

the interval [0.85, 1.15]3. The complete dataset C was used to calculate the χ2-
values. The following table shows the decline of the weights as calculated in the
BFMC method and those used in the UMC-B method, ωUMC-B,i = exp(−0.5χ2

i ).
Starting from the parameter vector associated with the largest weight, every fifth
weight is stated:

i 1 6 11 16 21 26 31
ωBFMC 1.00e+00 9.69e-01 9.52e-01 9.48e-01 9.42e-01 9.31e-01 9.25e-01

ωUMC-B 1.00e+00 6.17e-02 1.43e-02 9.94e-03 5.52e-03 2.11e-03 1.20e-03

All displayed weights are divided by the largest weight. The UMC-B weights de-
cline rapidly and only dozens of the 105 generated weights significantly contribute
to the estimation of summary statistics. For the generated ensemble of parameter
vectors, the largest weight was about 1012830 times larger than the smallest one.
Concerning the BFMC weights, the ratio of the largest to the smallest weight
was with about 1012376 comparable in size. However, the BFMC weights decline
much slower than the UMC-B weights and hence many of them contribute in the



CHAPTER 7. CONSEQUENCES IN MONTE CARLO METHODS 165

1e−04

1e−02

1e+00

0 2500 5000 7500

index

w
ei

gh
t

Figure 7.22: The decline of the weights as computed in the BFMC method. The
largest 9000 weights out of 105 weights associated with the parameter vectors are
shown in decreasing order.

estimation of summary statistics. Figure 7.22 illustrates the decline of the BFMC
weights in our evaluations scenario when using the complete dataset C. About
5000 from the 105 weights are significant in the estimation of summary statistics.

On the basis of the computed weights ωi associated with the drawn parameter
vectors ~pi, the BFMC method uses the following formulas to calculate the mean
vector and the covariance matrix for the parameter vectors:

~p ′ =

∑n
i=1 ωi~pi∑n
i=1 ωi

and A′ =

∑n
i=1 ωi(~pi − ~p ′) (~pi − ~p ′)T∑n

i=1 ωi
. (7.44)

We obtained on the basis of 105 parameter vectors and including the complete
dataset C the result

~p ′ =

1.0475

0.9772

1.0184

 and A′ = 10−4

 38.9246 5.8039 −8.4423

5.8039 3.7445 −4.9616

−8.4423 −4.9616 7.6248

 . (7.45)

Several runs of the BFMC method, in each drawing 105 parameter vectors from
a uniform distribution, indicated the stability of this solution. Differences of the
values in the mean vectors were about 10−3 and in the elements of the covariance
matrix about 10−5.
Before we discuss the forward step of the BFMC procedure, we want to men-

tion the following observation. Even though, the mean vector and the covariance
matrix for the parameters were approximately the same in each run of the BFMC
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Figure 7.23: Differences between the cross section curves of different runs with
the BFMC method. The cross section curve and the uncertainties were directly
estimated using the weights from the backward step.

method, we obtained big differences when we estimated the cross section curves
by

E[σ(E)] ≈
∑n

i=1 ωiM(~pi;E)∑n
i=1 ωi

. (7.46)

The results stemming from different runs with the BFMC method are shown
in Figure 7.23. We will discuss this observation together with the cross section
estimates resulting from the forward step, which is the last step of the procedure.

In the forward step, parameter vectors ~pi are drawn from the multivariate nor-
mal distribution defined by the mean vector and the covariance matrix given in
Equation 7.45. Associated cross section vectors ~σi =M(~pi) are computed relying
on the nuclear modelM. The mean vector and the covariance matrix for the cross
sections are now estimated by

~σfwd =
1

n

n∑
i=1

~σi and Afwd =
1

n

n∑
i=1

(~σi − ~σfwd)(~σi − ~σfwd)T . (7.47)

Noteworthy, the big differences of the cross section curves between several runs
when using the weights of the backward step do not occur in ~σfwd anymore. Fig-
ure 7.24 allows the comparison of the cross section curves resulting from the for-
ward step of the same two runs which are shown in Figure 7.23.
In order to understand the significant difference when using the weights of the

backward step and why these differences vanish after the forward step, we esti-
mated the probability density in parameter space based on the parameter vectors
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Figure 7.24: Cross section curves and 95% confidence band resulting from two
runs of the BFMC method after the forward step. The same two runs lead to the
cross section curves illustrated in Figure 7.23 .

drawn in the backward step and their associated weights by kernel density esti-
mation. Two projections of the probability density in parameter space onto the
ṽ1 − ãv plane are shown in Figure 7.25 and Figure 7.26. Due to the large amount
of precise experimental data points, parameter vectors associated with large χ2-
values are concentrated in a small region of parameter space. The consideration in
section 7.3 (page 145) showed that the probability for a parameter vector drawn
from the uniform prior distribution to fall into this region is negligible. The dis-
tance of drawn parameter vectors to this region is a matter of chance. Due to this
fact associated χ2-values fluctuate significantly between different runs. This fluc-
tuation is reflected in the plots of the marginal probability density distributions.
Therefore, the values within the parameter vectors associated with largest weights
of different runs can differ significantly, which explains the large differences of
cross sections estimates based on the weights of the backward step occurring in
different runs.
However, in the forward step this highly fluctuating estimate of the probability

distribution in parameter space is replaced by a multivariate normal distribution.
Fluctuations are not preserved by the multivariate normal distribution. Only
the gross structure of the probability density distribution is preserved, which is
approximately the same in each run. We arrive at the conclusion that the forward
step in the BFMC method is a necessity to guarantee a certain reproducibility of
evaluations.
To bring the discussion back to more practical matters, Figure 7.27 shows eval-
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Figure 7.25: Marginal probability density distribution of ṽ1 and ãv estimated on
the basis of the parameter vectors and their associated weights generated in the
backward step of BFMC run 1. The ellipse indicates the 90% confidence interval of
the multivariate normal distribution estimated from the drawn parameter vectors
and their weights.
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Figure 7.26: Marginal probability density distribution of ṽ1 and ãv estimated
on the basis of parameter vectors and their associated weights generated in the
backward step of BFMC run 3. The ellipse indicates the 90% confidence interval of
the multivariate normal distribution estimated from the drawn parameter vectors
and their weights.
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Figure 7.27: Evaluated uncertainties and correlations obtained by the BFMC
method when including the complete dataset C in the procedure.

uated uncertainties and correlations for 181Ta obtained by the BFMC method
including the complete dataset C. The uncertainties ranging from slightly below
3% to 4.5% are the largest among all analyzed methods. This is due the fact that
the BFMC method adjusts the likelihood on the basis of the the minimal χ2-value
encountered in the ensemble of parameter vectors.
Despite the large uncertainties of the cross sections at different energies, they are

strongly positively correlated. This result is opposed to that of the BMC method
which produced lower uncertainties and weaker correlations (see Figure 7.19).
We generated cross section curves from the BFMC posterior and the BMC

posterior to get an understanding of the different uncertainty-correlation structure
of the methods. They are shown in Figure 7.28 and Figure 7.29. In the BFMC
method, cross section curves with high probability density are distinct from each
other by a global shift. In contrast to that, cross section curves with high posterior
probability density in the BMC procedure often cross each other at lower incident
energies and are only roughly parallel above 80 MeV. These differences can be
attributed to the different choices of the likelihoods made in these methods in
combination with the normalization uncertainty of the experimental data.
The BMC method uses a multivariate normal likelihood, but discards correla-

tions between the experimental data points. Additionally, the uncertainties of the
experimental data points are inflated by a factor which depends on the number
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Figure 7.28: Samples drawn from the posterior distribution of the BMC method.
The multivariate normal likelihood involved uses a modified version B′ of the
experimental covariance matrix B: the original matrix B is multiplied by the
number of experimental data points and off-diagonal elements are set to zero.
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Figure 7.29: Samples drawn from the posterior distribution of the BFMC method.
The original experimental covariance matrix B enters the likelihood but the like-
lihood is flattened based on the minimal χ2-value.
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of experimental data points. In contrast to that, the BFMC method retains the
correlations between experimental data points, but does not use a multivariate
normal distribution as likelihood. It uses a functional form for the likelihood that
is flattened compared to the multivariate normal distribution dependent on the
minimal χ2-value encountered for the ensemble of drawn parameter vectors.
Especially, the result of the BFMC evaluation demonstrates the importance

of a consistent treatment of model defects in the evaluation method. The 95%
confidence band in Figure 7.24 is consistent with the experimental data. However,
the observation that the most likely cross section curves according to the BFMC
posterior are different from each other merely by a global shift exclusively reflects
the systematics of the model. Furthermore, the uncertainty of about 4% of the
evaluated cross sections seems to be overestimated.
We complete the investigation of the BFMC method by performing an evalua-

tion only with datasetA. The evaluated parameter mean vector and the associated
covariance matrix based on 105 parameter vectors are given by

~p ′ =

1.0432

0.9761

1.0200

 and A′ = 10−4

 41.0839 6.2775 −9.0406

6.2775 3.8941 −5.1925

−9.0406 −5.1925 7.9738

 . (7.48)

The evaluated cross section curve is shown in Figure 7.30. Evaluated uncertain-
ties and correlations are visualized in Figure 7.31. This result is approximately
equal to the solution resulting from the inclusion of the complete dataset C (see
Equation 7.45).
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Figure 7.30: Evaluated cross section curve obtained by the BFMC method when
only including dataset A. The shown band indicates the 95% confidence level.

Figure 7.31: Evaluated uncertainties and correlations obtained by the BFMC
method when only including dataset A.
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7.6 Summary and conclusions

In this chapter we studied the Monte Carlo methods UMC-G, UMC-B, BMC
and BFMC in an evaluation of the neutron-induced total cross section of 181Ta.
The former two methods use a multivariate normal distribution for the likelihood
whereas the latter two make other choices. All of these methods except the UMC-G
approach use the exact nuclear model without any approximation for the Bayesian
inference.
The UMC-G method is based on the surrogate approach outlined in section 3.3.

Hence, in principle the analysis of the FBET/EMPIRE-MC method in section 6.4
also applies for the UMC-G method. However, contrary to the FBET the UMC-G
method obtains results by means of Monte Carlo sampling. We studied the brute-
force sampling scheme and the Metropolis-Hastings algorithm proposed by Capote
and Smith (2008). Due to several reasons the proposed sampling schemes were not
applicable in our evaluation scenario with plenty of experimental data available.
The primary reason was the neglect of correlations between cross sections which
led to the generation of cross section vectors with almost vanishing weights.
Therefore, we suggested a new sampling scheme based on the Metropolis-Hastings

algorithm with a refined proposal distribution. The idea is to construct the pro-
posal distribution on the basis of the posterior covariance matrix obtained by a
Bayesian update using a simplified model. The refined proposal distribution re-
solved the issues of the original sampling schemes suggested by Capote and Smith
(2008).
We applied the refined Metropolis-Hastings algorithm to perform the evalua-

tion with the UMC-B method. The inclusion of the complete dataset C yielded
an evaluated cross section curve which followed well the trend of the experimental
data. However, only considering the dataset A containing data points below 100
MeV led to an evaluation which was inconsistent with the dataset B. The results
were almost equal to those obtained by the iterative procedure analyzed in sec-
tion 6.3. Only in confidence regions in parameter space associated with a large
trust level, the non-linearity of the nuclear model became apparent in the form of
a local maximum of the probability density. The possibility to discover such local
maximums represents a clear benefit of Monte Carlo methods over methods that
linearize the model.
The BMC method relies on a modified likelihood which explicitly depends on the

number of datasets and data points therein. As discussed in the previous section,
this dependence is from a conceptual point of view not satisfactory. Under the
assumption that each experimental data point belongs to the same dataset, the
BMC likelihood can be interpreted as a multivariate normal distribution where
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the experimental covariance matrix is scaled by the number of experimental data
points. Using this choice of likelihood, the evaluation with the BMC method was
consistent with the experimental data. However, two concerns were raised with
respect to the suggested adaptive sampling strategy. First, the recycling of samples
does not offer an advantage, because the asymptotic result of this sampling process
is analytically available; and second, exclusively recycling samples drawn in an
earlier stage of the sampling process violates a basic requirement of importance
sampling: If a point is associated with non-vanishing probability density under
the target distribution, this point must also be associated with non-vanishing
probability density under the instrumental distribution.
Finally, the evaluation obtained by the BFMC method was also consistent with

experimental data, independent from whether the complete dataset or only a sub-
set was included in the update. However, the evaluated uncertainties seemed to
be exaggerated with regard to the strong evidence given by the experimental data.
Evaluated uncertainties were about three times larger at each point than the re-
spective experimental uncertainties. Furthermore, we recognized that the forward
step is essential to guarantee the reproducibility of results among several runs.
To summarize, from the three Monte Carlo methods UMC-B, BMC and BFMC,

which use the exact nuclear model, only the latter two produced an evaluation con-
sistent with experimental data. Also the latter two rely on a likelihood different
from a multivariate normal distribution, which might advocate the modification
of the likelihood as a proper measure to deal with model defects. However, the
evaluated uncertainties, especially in the case of the BFMC method, did not con-
form to the experimental uncertainties. Moreover, accounting for the nuclear
model without any approximation restricts cross section curves associated with
non-zero probability density under the posterior distribution to the possibilities of
the model. Therefore, the modification of the likelihood cannot be regarded as a
satisfactory solution to account for model defects.



8

Existing approaches

The analysis of the previous two chapter showed the necessity of the consistent
treatment of model deficiencies in an evaluation method. Otherwise, evaluations
might be inconsistent with reliable experimental data, even if the employed nuclear
model gives accurate predictions.
Few approaches exist to deal with model defects. Monte Carlo methods such as

the BMC and BFMC modify the functional form of the likelihood. The adjustment
of the likelihood means to modify the assumptions about the uncertainties of the
experimental data. This measure implies the assumption that the model is perfect
and its disagreement with experimental data is due to an inadequate uncertainty
assessment of the experimental data. However, it is generally known that nuclear
models can only describe some facets of the nuclear many-body problem due to
the required approximations in nuclear structure and reaction calculations. Thus
the concept of a perfect model is not a realistic option.
In this section we revisit the existing approaches to deal with model defects.

First, we discuss χ2-rescaling. Conclusions will be representative for all methods
that adjust the likelihood to deal with model defects. Afterward, we study the
Symmetric Monte Carlo procedure (Rochman, Koning, Bauge, et al., 2014), which
accounts for model defects in a pragmatic way. Finally, we discuss the use of a
Ornstein-Uhlenbeck-process1 (Pigni and Leeb, 2003) and the scaling procedure
(Leeb, Neudecker, and Srdinko, 2008), which are well embedded in the framework
of Bayesian statistics.

1No name was originally given to this approach.

175
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8.1 chi-square rescaling

The χ2-value is a measure how well a model prediction fits the experimental data.
For a satisfactory description the quotient χ2/N with N being the number of
experimental data points (degrees of freedom) should be about one. If the χ2-
value is significantly larger than N , either the model cannot describe the data or
the uncertainties of the experimental data are underestimated. In such a case,
the uncertainty band of the evaluated cross section curve is inconsistent with the
experimental data. A common approach to address this issue is to rescale the
evaluated covariance matrix according to the χ2-value. This can only be justified
if the uncertainties of the experimental data are underestimated. The rescaling
of the evaluated covariance matrix corresponds to a rescaling of the experimental
covariance matrix.
In the following we check whether the rescaling of the covariance matrix is

a proper procedure to account for model defects. For the sake of simplicity, we
assume a linear modelM(~p) = S~p. In section 3.2, we derived the formula to update
the covariance matrix A0 of the model parameters based on the experimental
covariance matrix B,

A1 =
(
A−1

0 + STB−1S
)−1

. (8.1)

In general, we can expect A0 and STBS to be positive definite. We can use the
matrix identity

(U + V)−1 = U−1 −U−1V(U + V)−1 (8.2)

to construct the expansion

(U + V)−1 = U−1 −U−1VU−1 + U−1VU−1V − . . . (8.3)

Expanding Equation 8.1 in this way yields

(A−1
0 + STBS)−1 = (STB−1S)−1 − (STB−1S)−1A−1

0 (STB−1S)−1 + . . . (8.4)

The covariance matrix A0 can be decomposed into PDPT , where P is an or-
thogonal matrix, hence PT = P−1, and D is a diagonal matrix which contains the
eigenvalues λi of A0. Further we can also decompose B into QEQT . The inversions
of the decomposed matrices are given by (A0)−1 = PD−1PT and B−1 = QE−1QT .
The inverse of the diagonal matrices are simply D−1 = diag(1/λ1, 1/λ2, . . . ) and
analogously E−1 = diag(1/τ1, 1/τ2, . . . ) E−1. The eigenvalues represent the un-
certainties along the principal axes of the covariance matrix. If the uncertainties
reflected in B are much smaller than those in A0, the second and higher order
terms in Equation 8.4 can be neglected. Consequently, the updated parameter
covariance matrix is in good approximation determined by the experimental co-
variance matrix. Rescaling the evaluated covariance matrix by factor λ can then
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be interpreted as rescaling the experimental covariance matrix that entered the
update process by the same factor,

λA1 ≈ (ST (λB)−1S)−1 . (8.5)

In the following, we motivate when χ2 rescaling is a proper measure and afterward
explain on the basis of Equation 8.5 why it is not a suitable measure to address
model defects.
Generally, measurements are afflicted with statistical and systematic errors. In

the following we assume a vector of measurements ~σexp to be the sum of the true
cross section vector ~σtrue and the measurement error ~ε,

~σexp = ~σtrue + ~ε . (8.6)

The specifics of the experiment determine the probability distribution of the mea-
surement error. Often, a multivariate normal distribution is the proper choice,
~ε ∼ N (~0,B). If we have an accurate estimate of the true cross section vector and
the probability distribution of the measurement error reflects the uncertainties of
the experiment, it follows that the quantity

X = (~σexp − ~σtrue)TB−1(~σexp − ~σtrue) (8.7)

corresponds to a χ2
k-distribution with k degrees of freedom, where k is the number

of experimental data points. Mean value and variance of the χ2
k-distribution are

given by
E[X] = k and Var[X] = 2k . (8.8)

Therefore, X/k is in the order of one if the required conditions are satisfied. If X/k
is significantly larger than one, then either the experimental covariance matrix is
misspecified or the estimate of the true cross section vector ~σtrue is inappropri-
ate. If the former is the case, we can enforce a χ2-value of k by multiplying the
experimental covariance matrix with X/k,

X̃ = (~σexp − ~σtrue)T
(
X

k
B

)−1

(~σexp − ~σtrue) = k . (8.9)

In order to understand problems arising with the χ2-dependent rescaling of the ex-
perimental covariance matrix, we have to consider the estimation of ~σtrue. In most
available methods, the fundamental assumption is that the true cross section vec-
tor can be predicted by a nuclear model if only the model parameters are adjusted
properly, ~σtrue ≡ ~σmod ≡ M(~ptrue). In section 6.1 we discussed at the example of
a simple linear model that the evaluated covariance matrix reflects the system-
atics of the employed nuclear model. Rescaling the evaluated covariance matrix
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does not change this feature. Therefore, the best posterior estimate will be still
in disagreement with experimental data and variations allowed by the evaluated
covariance matrix are still restricted to cross section curves which can be predicted
by the model and do not resemble the curve indicated by the experimental data.

8.2 Symmetric Monte Carlo

The Symmetric Monte Carlo (SMC) method of Rochman, Koning, Bauge, et al.
(2014) is a pragmatic solution to merge the information from model calculations
and experimental data. Evaluated covariance matrices of Monte Carlo methods
are in general associated with high correlations due to the dependence on relatively
few model parameters (compared to the number of observables). This feature is
often regarded as undesirable, which expresses a certain distrust in the nuclear
model. If we have no doubts about the reliability of the model, we have to accept
any degree of evaluated correlation. The SMC method is constructed in a way
that evaluated correlations are weakened and evaluated cross sections are closer
to the experimental data points, even if the nuclear model is not able to predict
them.
The basic idea of the SMC method is to generate not only a sample of model

predictions on the basis of a nuclear model with varied model parameters but also
a sample of experimental data points. The sampling of model predictions can be
done for instance with the BFMC method (see section 4.1).
For the outline of the idea, it suffices to restrict the discussion to the cross

sections of different channels at the same incident energy. Let us denote with
σMi (a) the model prediction made with parameter set ~pi for the cross section of
channel a. The quantity σE(c) denotes the experimental measurement of the cross
section of channel c. All cross sections are at the same incident energy. The SMC
method is capable to deal with a large amount of experimental data points and
associated correlations. For a basic understanding of the method, one experimental
data point is sufficient.
The value of the experimental measurement σE(c) and the associated uncer-

tainty δE(c) define a normal distribution for the true cross section value, σtrue ∼
N (σE(c), δE(c)). In the SMC method, cross section values σEi (c) are drawn from
this normal distribution. Then, each sampled model prediction σMi (c) is combined
with one σEi (c) to form a combined cross section

σME
i (c) = ωiσ

M
i (c) + (1− ωi)σEi (c). (8.10)

Several choices for the weights ωi are discussed by (Rochman, Koning, Bauge,
et al., 2014). For instance, one possible choice is the weight ω = σEi (c)/δE(c)
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where δE(c) is the uncertainty of the experimental data point. The higher the
uncertainty of the experimental data point, the closer the combined cross section
is to the model prediction. The combined cross sections can be used in the TMC
procedure for the determination of summary statistics of integral observables.
The sampling of experimental data points can be circumvented if we are only

interested in a consistent ENDF file with best estimates and associated covariance
matrices. For this restricted goal, it suffices to calculate the expression

E[σME
i (c)] = E[ωiσ

M
i (c)] + E[(1− ωi)σEi (c)] =

=
1

δE(c)
E[σEi (c)σMi (c)] + E[σEi (c)]− 1

δE(c)
E[σEi (c)2] =

=
1

δE(c)
E[σMi (c)]E[σEi (c)] + E[σEi (c)]− 1

δE(c)
E[σEi (c)2] .

(8.11)

Here, we used the linearity of the expectation operator (see Equation 2.27) and
the independence of the random variables σMi (c) and σEi (c). Thus, we were able
to substitute E[σEi (c)σMi (c)] by E[σMi (c)]E[σEi (c)]. The expectations E[σEi (c)] and
E[σEi (c)2] of a normally distributed random variable are known in closed form,

E[σEi (c)] = σE(c) and E[σEi (c)2] = (σE(c))2 + (δE(c))2 , (8.12)

while the expectation of σMi (c) has to be estimated from the sample of model
predictions,

E[σMi (c)] ≈ 1

n

n∑
i=1

σMi (c) = σ̂M(c) . (8.13)

Putting everything together, we obtain the expression for the best estimate

E[σME
i (c)] ≈ σ̂M(c)

σE(c)

δE(c)
+ σE(c)− (σE(c))2 + (δE(c))2

δE(c)
= σ̂ME(c) (8.14)

Similar calculations lead to the variance. Sampling in the suggested form becomes
only necessary, if the sampling distribution of the experimental data point would be
conditionally dependent on the value of the model prediction. Analogous formulas
are available for the multivariate case.
Evaluations with the SMC method are not restricted to the representation pos-

sibilities of the nuclear model which is a clear benefit of the method. However, to
allow deviations from the predictions of the model might lead to inconsistencies
such as the violation of sum rules. Hence, for each combined cross section σME

i (c)

the excess
αi(c) = σMi (c)− σME

i (c) (8.15)

has to be distributed to other channels in order to preserve sum rules. In order
to sketch the formalism of redistribution used in the SMC method, we introduce
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the following quantities. The estimate of the expectation σ̂M(a) for an arbitrary
channel a can be calculated analogously to Equation 8.13. An estimate of the
uncertainty δM(a) of a cross section σM(a) stemming from the model is given by

δM(a) =

√√√√ 1

n− 1

n∑
i=1

(
σMi (a)− σ̂M(a)

)2
. (8.16)

Further, the correlation between two cross sections of different channels can be
estimated from the model predictions by

ρ(a, b) =
1

(n− 1)

n∑
i=1

(
σMi (a)− σ̂M(a)

)(
σMi (b)− σ̂M(b)

)
δM(a)δM(b)

. (8.17)

Using the introduced quantities, the formula for the redistribution of the excess
αi(c) in channel c to another channel b is given by

σME
i (b) =

ρ(c, b)
(
σMi (b)

)1.5∑
j 6=c |ρ(c, j)| (σMi (j))

1.5 × αi(c) + σMi (b) . (8.18)

Although this expression looks reasonably, it does not allow a clear statement
concerning the conservation of sum rules. Therefore, we tested the formula for a
schematic case. We consider the total σ(tot), elastic σ(el) and non-elastic σ(nonel)
cross section which can be combined to a vector ~σ = (σ(tot), σ(el), σ(nonel))T . We
assume that the estimate of the covariance matrix A and the associated correlation
matrix Φ from the model predictions is given by

A =

50 30 20

30 20 10

20 10 10

 and Φ ≈

1.0000 0.9487 0.8944

0.9487 1.0000 0.7071

0.8944 0.7071 1.0000

 . (8.19)

From the correlation matrix we see that ρ(el, nonel) ≈ 0.7071, ρ(el, tot) ≈ 0.9487

and ρ(nonel, tot) ≈ 0.8944. The covariance matrix has not full rank which is due
to the constraint σ(el) + σ(nonel) = σ(tot). We further assume that we sampled
the model prediction vector

~σM1 =

100

70

30

 . (8.20)

Finally, we assume that due to a measurement of the elastic cross section and some
sampled value from the respective distribution, we obtained the combined cross
section σME

1 (el) = 50, which yields the excess α1(el) = 70− 50 = 20. Inserting all
numbers into Equation 8.18 gives

σME
1 (tot) =

0.9487× 1001.5

0.9487× 1001.5 + 0.7071× 301.5
× 20 + 100 = 117.8178 (8.21)
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and

σME
1 (nonel) =

0.7071× 301.5

0.9487× 1001.5 + 0.7071× 301.5
× 20 + 30 = 32.1822 . (8.22)

The resulting cross sections violate the sum rule

σME
1 (el) + σME

1 (nonel) = 50 + 32.1822 6= 117.8178 = σME
1 (tot) . (8.23)

Therefore, from a mathematical point of view, the Equation 8.18 for redistributing
the excess does not guarantee the conservation of sum rules.
Due to this finding, we want restrict the further analysis to a single channel.

In the course of this thesis, we regard Bayesian inference as the proper tool for
nuclear data evaluation. Therefore, in the following we interpret the SMC method
within Bayesian statistics and point out the implied assumptions.
In Equation 8.10 we gave the definition of the combined cross section generated

from experimental data and model predictions. In the following discussion we only
consider a single cross section at some incident energy and regard the weight ωi as
independent from the value of the drawn quantities σMi (c) and σEi (c) and hence
just write ω. We will also drop the channel specification in the quantities, because
we consider only a single channel. Under these assumptions, we obtain for the
expectation of the combined cross section

σ1 = E[σME
i ] = ωE[σMi ] + (1− ω)E[σEi ] . (8.24)

The quantity σ1 would enter a nuclear data file as the best estimate. Even though
not necessarily true in practice, the model predictions are assumed to be drawn
from a normal distribution, σMi ∼ N (σM0 , δ

M
0 ). The quantities σM0 and δM0 can

be estimated from the model predictions. As a reminder, we also assume σEi ∼
N (σE, δE). Under these assumptions Equation 8.24 can be given in the compact
form

σ1 = ωσM0 + (1− ω)σE . (8.25)

In Bayesian statistics, the assumption of a normal distribution for the model cross
section and the experimental cross section leads to the prior π(σM) ∼ N (σM0 , δ

M
0 )

and the likelihood `(σE |σM) ∼ N (σM , δE), respectively. Thus, the solution for
the mean vector of the posterior distribution is available in closed form,

σ1 =
(δE)2σM0 + (δM0 )2σE

(δM0 )2 + (δE)2
. (8.26)

Consequently, the SMC method coincides with Bayesian inference if the weight is
chosen as

ω =
(δE)2

(δM0 )2 + (δE)2
. (8.27)
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Another assumption of the SMC method concerns the priority given to experimen-
tal data, i.e. features of the model such as smoothness are considered of minor
importance at incident energies where experimental data are available.
is that the features of the model such as smoothness have to be completely dis-

trusted at incident energies where an experimental data point is available. Because
of this assumption, evaluated cross section curves may look jagged. If such a result
is undesirable, it means we have some prior assumptions about the smoothness of
the cross section curve which did not enter the inference procedure.

8.3 Ornstein-Uhlenbeck process

Another approach of Pigni and Leeb (2003) aims directly at the specification of
the model defect. The approach was developed as an extension to the surrogate
approach (see section 3.3). The idea is to use a prior covariance matrix of the
form

A = Amod + Adef, (8.28)

where the model covariance matrix Amod is constructed based on a sample of model
predictions with varied parameter sets. The model defect covariance matrix Adef

expresses information about the deficiency of the model. Deficiency of the model
means the deviation of the best model prediction from the (unobservable) true
values.
In the following we describe the construction of the model defect covariance

matrix. Suppose that σexpk are the measured values of cross sections at energies
Ek of the same reaction channel. The associated uncertainties are denoted by
δexpk . Furthermore, we denote by σmod

k the model predictions for the cross sections
measured in the experiment. Using these quantities, we can introduce the relative
errors

δuk =
|σmod
k − σexpk |
σmod
k

, (8.29)

and the associated weights

ωk =

(
σmod
k

δexpk

)2

. (8.30)

The weights are larger for cross sections with lower experimental uncertainty. The
introduced quantities serve for the definition of

(δu)2 =

∑n
k=1 ωk(δuk)

2∑n
k=1 ωk

, (8.31)

which represents a global measure for the deviation of the model from experimental
data. It can be termed as the weighted mean squared relative error of the model.
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The original paper suggests that experimental data for the calculation of (δu)2

should not be included in the Bayesian update procedure in order to avoid double-
counting of experimental data. We will argue in section 9.4 why it could be still
reasonable to use the experimental data which are included in the update for
the determination of the model defect whenever no other experimental data are
available.
The calculated δu is used to specify covariances between two model errors ε(E1)

and ε(E2) at energies E1 and E2, respectively,

Cov[ε(E1), ε(E2)] = σmod(E1)σmod(E2)C(E1, E2) . (8.32)

The covariances C(E1, E2) on a relative scale are given by

C(E1, E2) = (δu)2 exp

(
δu

δu0

| lnE1 − lnE2|
)
. (8.33)

In the original paper the choice for the constant δu0 is 0.01. The covariance
function in Equation 8.32 serves to define a model covariance matrix Adef for an
arbitrary mesh of incident energies.
The addition of Adef to the prior covariance matrix extends the representation

possibilities of the original model, which is a proper measure to address the is-
sue of model misspecification. However, covariances between distinct channels
are assumed to be zero. Due to this assumption, consistency properties such as
the fulfillment of sum rules are not necessarily preserved by the evaluated quanti-
ties. The conservation of sum rules has been an important objective in the novel
approach to treat model defects which will be presented in chapter 9.
The form of the relative covariance function in Equation 8.33 defines a Gaussian

process, in particular an Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Orn-
stein, 1930). A random process is the generalization of the concept of a random
variable to functions. Thus, a random process defines a probability distribution
on a function space. In order to get an idea about the implied assumptions by the
choice of an OU process, we set δu = 0.1 and draw a sample (a function) from
the probability distribution defined by the OU process. The obtained function is
shown in Figure 8.1.
The illustrated model error function looks very jagged. This observation reflects

a theoretical property of the OU process: possible functions are continuous but
not differentiable. In the fast neutron region, cross section curves are expected
to be rather smooth, therefore the non-differentiability of functions from the OU
process may be not in line with our prior belief. Other choices of the covariance
function are possible which yield smoother curves.
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Figure 8.1: A function drawn from an Ornstein-Uhlenbeck process. The
parametrization of the process is given in Equation 8.33 with δu0 = 0.01 and
δu = 0.1.

8.4 Scaling procedure

The scaling procedure (Leeb, Neudecker, and Srdinko, 2008) aims directly at the
specification of the model defect. Analogously to the approach outlined in the
previous section, the scaling procedure is an algorithm to construct a model defect
covariance matrix Adef, which is added to the prior covariance matrix Amod of the
surrogate approach (see section 3.3).
The fundamental assumption of the scaling procedure is that the model performs

comparably well for different isotopes of the same element. If the predictions
systematically deviate from experimental data for one isotope, then the same
systematic deviation is expected for the isotope of current interest.
The scaling procedure does not provide guidance for the specification of the co-

variances between cross sections of different reaction channels. They are assumed
to be zero. Hence, model defects of different channels are assumed to be indepen-
dent, and thus we can restrict the further discussion to cross sections of a single
reaction channel. In the following we outline the procedure.
The energy region is divided into m = 1 . . .M bins with the energies Em at the

centers of the bins. Further, we consider n = 1 . . . N different isotopes. Let σexpi

be a measured cross section of isotope ni at incident energy Ei associated with the
energy bin mi. The cross section σmod

i is the model prediction for the measured
cross section σexpi . The index set bin(n,m) contains all indices i for which ni = n

and mi = m—in other words for which the cross sections σexpi are associated with
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isotope n and falling into the energy bin m.
As a first step, the following weights are calculated,

ωi =
σmod
i∑

j∈bin(ni,mi)
σmod
j

. (8.34)

Now a weighted mean value 〈D(n,m)〉 of the relative deviation of the experimental
cross sections from the model predictions can be calculated for every bin(n,m),

〈D(n,m)〉 =
∑

i∈bin(n,m)

ωi

(
σexpi

σmod
i

)
. (8.35)

Similarly, a weighted non-central second moment 〈
(
D(n,m)

)2〉 of the relative de-
viation of the experimental cross sections from the model predictions for each
bin(n,m) is given by

〈
(
D(n,m)

)2〉 =
∑

i∈bin(n,m)

ωi

(
σexpi

σmod
i

)2

. (8.36)

The weights in Equation 8.34 give emphasis in each bin(n,m) on deviations asso-
ciated with larger model predictions σmod

i , i ∈ bin(n,m). Please also note that the
sum of all weights associated with a single bin(n,m) is one by construction.
In the scaling procedure, the prior cross section curve is rescaled by the following

factor

D =
1

N

N∑
i=1

〈D(n)〉 with 〈D(n)〉 =
M∑
m=1

ω̃(n,m)〈D(n,m)〉 . (8.37)

The weights ω̃(n,m) should be in correspondence with the weights ωi. This can be
achieved by the assignment

ω̃(n,m) =

∑
i∈bin(n,m) ωi∑M

m=1

∑
i∈bin(n,m) ωi

. (8.38)

The elements of the model defect covariance matrix defined on a relative scale
are specified as

C(Em, Em′) =
1

N

N∑
k=1

{[
〈D(k,m)〉 −D

]
×
[
〈D(k,m′)〉 −D

]
+ Tm,m′

}
. (8.39)

The term Tmm′ is defined as

Tm,m′ = δm,m′
(
〈
(
D(n,m)

)2〉 − 〈D(n,m)〉
)

(8.40)

and its purpose is to account for the limited accuracy of the experimental data.
Now the covariance between two model defects ε(Em) and ε(Em′) for energy bin

m and m′, respectively, is given by

Cov[ε(Em), ε(Em′)] = σmod(Em)σmod(Em′) C(Em, Em′) . (8.41)
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where σmod(Em) is the model prediction for the isotope of interest at the center
energy Em of the mth energy bin. Using these covariances, we can specify the
elements (Adef)ij of the model defect covariance matrix by

(Adef)ij = Cov[ε(Ei), ε(Ej)] . (8.42)

The whole procedure appears rather involved. In order to understand the struc-
ture of the model defect as defined in Equation 8.42, we study an idealized scenario.
We consider a single angle integrated cross section channel. As in section 6.1, we
assume that the model is given by a straight line,

M(E) = kE + d , (8.43)

where k is the slope and d the intercept of the straight line. Given the incident
energy E, this model predicts the respective cross section. Suppose that several
isotopes of the chemical element of interest exist. Further assume that we are
able to measure the cross sections of each isotope with perfect precision, and the
measured cross section curves of the isotopes are identical. We assume that the
cross section curve of each isotope determined by the measurements is given by

σtrue(E) = (E − 15)2 + 10 . (8.44)

The model parameters which describe this curve between 10 and 20 MeV best (in
the sense of χ2) on the basis of thousand equidistant experimental data points are

k = 0 and d ≈ 18.35 . (8.45)

The estimate of d varies slightly with the number of data points used for χ2-fitting.
The situation is illustrated in Figure 8.2. Under the assumed conditions, the term
Tm,m′ in Equation 8.39 vanishes.
We can create a dense grid of perfectly precise measurements σexpi and assign

exactly one measurement to each energy bin. Hence, all weights ωi are one and we
can discard them from the formulas. We computed the model defect covariance
matrix for this scenario. The corresponding correlation matrix and uncertainties
are illustrated in Figure 8.3. The model defect covariance matrix Adef has rank
one. Consequently, only one eigenvector is associated with a non-zero eigenvalue.
This eigenvector determines the shape of the model error. The permitted shapes
are visualized in Figure 8.4.
Finally, we perform a Bayesian update using the uninformative prior(

k0

d0

)
=

(
0

15

)
and A0 =

(
15 0

0 100

)
. (8.46)
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Figure 8.2: Schematic scenario. Perfectly precise measurements are located on the
true cross section curve. The best model fit to that curve is a horizontal line. The
true cross section curve is identical for all isotopes and so are the best model fits.

Figure 8.3: The correlations of the model defect covariance matrix in the schematic
scenario.
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Figure 8.4: Possible shapes of the model error permitted by the model defect
covariance matrix.

Using the sensitivity matrix S characterized by Si1 = Ei and Si2 = 1, we can
specify the complete prior covariance matrix A which includes the model defect
covariance matrix,

A = SA0S
T + Adef . (8.47)

Due to the assumption of perfectly precise measurements, the experimental covari-
ance matrix would be given by the matrix of zeros. But then we would not be able
to apply the update formulas Equation 3.33 and Equation 3.34. Hence we added
a small value 10−6 to the diagonal elements of the experimental covariance matrix
to make the formulas usable. The result of the Bayesian update is illustrated in
Figure 8.5. The evaluated cross section curve is closer to the true cross section.
However, in the schematic scenario with perfect knowledge about the true cross
section curve and the assumption that the systematic deviations of the model pre-
diction from the true cross section curve is the same for each isotope, we would
have expected a perfect match of the evaluated cross section curve and the true
cross section curve. The schematic scenario can be regarded as a consistency test
for methods that take into account model defects and base its construction on the
available information about neighbor isotopes.

8.5 Conclusions

None of the existing approaches guarantees the conservation of important con-
sistency properties such as the fulfillment of sum rules. None of the existing
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Figure 8.5: Update in the schematic scenario. The model defect covariance matrix
Adef has been included in the prior.

approaches takes into account smoothness constraints. Consequently, given a suf-
ficiently dense mesh of incident energies, evaluated cross section curves may look
jagged. However, in the fast neutron energy region, cross section curves are ex-
pected to be rather smooth. Even though possible for the scaling procedure and
the Ornstein-Uhlenbeck process, the evaluated model defect function has never
been computed and studied. Knowledge about the form of the model defect can
be regarded as valuable information to refine the physical models.
In the next chapter we formulate a solution of these issues by means of Gaussian

processes. With the exception of χ2-rescaling, all of the presented methods can
be interpreted as special forms of Gaussian processes.



9

Consistent treatment of model
defects

In this chapter, we introduce a new way to take into account model defects, which
preserves important consistency constraints such as the sum rules of cross sections.
Furthermore, we establish the link to Gaussian processes and exploit the respective
methodology. The use of Gaussian processes enables us to explicitly estimate the
magnitude and the functional form of the model deficiency. Furthermore, we
obtain information on how the systematics of the model is inadequate.
The new approach is fully justified within the framework of Bayesian statistics.

Therefore, every evaluation method based on Bayesian statistics can be augmented
by the new approach to account for model defects. Specific details about how the
Bayesian update formula is evaluated—by the linearization of the model or Monte
Carlo sampling—are not relevant in this respect.

9.1 Model defects as Gaussian processes

Gaussian process regression is a powerful statistical tool to perform non-parametric
regression. Historically, this technique was for the first time described in the
master thesis of Krige (1951), which dealt with the estimation of abundances of
gold on the basis of known abundances at some places. The technique was later
formalized by Matheron (1962). In contrast to regression based on a parametric
model, the specification of a a function for which the optimal parameters are sought
is not required. Instead a probability distribution is defined on a function space.
We will show in this section that this approach is well suited for the treatment of
model defects of nuclear models.

190
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Usually there is no prior knowledge about the specific functional form of the
model defect, otherwise it would be possible to construct a better nuclear model
from the beginning. However, there are expectations about the smoothness of an
evaluated cross section curve and to what extent reliable experimental data can be
described by the model. These expectations provide already enough information
to define a probability distribution on a function space.
Nowadays, Gaussian process regression is profitably applied in many fields,

such as geostatistics, meterology, economics, robotics, and machine learning. Fre-
quently, it is used to estimate a function from data in order to bypass the difficulty
to specify a parametric model. In contrast to that, the idea in this thesis is to use
the parametric nuclear model as a basis and to model its deficiency as a Gaussian
process. The idea to use a Gaussian process to describe model deficiency as such
is not particularly new. Blight and Ott (1975) described how the model deficiency
in form of a Gaussian process can be taken into account in polynomial regression.
The Ornstein-Uhlenbeck process and the scaling procedure discussed in chap-

ter 8 as an extension of the surrogate approach rely on special forms of Gaussian
processes. However, the link to Gaussian process regression was not realized.
Consequently, the respective statistical methodology was not exploited. As an
example, the approach relying on an Ornstein-Uhlenbeck process leads to shapes
of model defects that are nowhere differentiable, which may not properly reflect
prior assumption on the smoothness of cross section curves. Further, the speci-
fication δu0 = 0.01 in Equation 8.33 appears rather ad-hoc. Such parameters of
the so-called covariance functions can be estimated by maximizing the marginal
likelihood, which is a well-defined statistical method (see section 9.4).
The approaches so far that directly aim at the specification of the model defect

were exclusively combined with linearized versions of the Bayesian update formula.
This fact might suggest that model defects cannot be properly taken into account
in Monte Carlo procedures. However, the linearization of the nuclear model is
independent from the treatment of model defects. Sound Bayesian statistics can
be carried out equally well using linearized models (and hence closed form Bayesian
update formulas) and exact models (and hence using Monte Carlo sampling). After
this brief introduction and important clarifications, we formulate in this section
model defects as Gaussian processes.
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We start with the definition of a Gaussian process:

Definition of a Gaussian process

Let the function space F contain all functions f : Rd → R. Consider a
probability distribution ρ(.) on F that assigns to every function f ∈ F the
probability density ρ(f). We equally well think of the probability density
as a functional ρ[f(~x)] : F → [0,∞]. The probability density distribution
ρ(.) induces a Gaussian process if for any finite set of {~xi}i=1..N ,∀i : ~xi ∈
Rd the associated function values {f(~xi)}i=1..N follow a multivariate normal
distribution. In other words, a Gaussian process is defined over all marginal
distributions of finitely many function values.

A general introduction to Gaussian processes is given by Rasmussen and Williams
(2006).
Because it is not possible to exhaustively enumerate the mean vectors and covari-

ance matrices for all possible sets {f(~xi)}i=1..N , the mean vectors and covariance
matrices have to be defined over a so-called mean function m(~x) and covariance
function k(~x, ~x ′). These functions can be expressed in terms of the expectation
and covariance operator,

m(~x) = E[f(~x)] , (9.1)

k(~x, ~x ′) = Cov[f(~x), f(~x ′)] . (9.2)

The mean function and the covariance function completely characterize the Gaus-
sian process. In analogy to a random variable which is characterized by a probabil-
ity distribution over its possible realizations, the probability distribution induced
by the mean function and covariance function characterizes a random function.
We express this by writing

f(~x) ∼ GP(m(~x), k(~x, ~x ′)) . (9.3)

Realizations of a random function can be generated by drawing from the respective
probability density distribution. For this purpose, a mesh of functions arguments
{~xi}i=1..N has to be specified. Then, for every tuple (~xi, ~xj), i = 1..N, j = 1..N , the
value k(~xi, ~xj) of the covariance function is evaluated. Further, the mean function
is evaluated for every ~xi, i = 1..N . On the basis of these results, a mean vector ~x0

and a covariance matrix A0 are constructed,

x0,i = m(~xi) and A0,ij = k(~xi, ~xj) . (9.4)

Now one can draw from the multivariate normal distribution N (~x0,A0) to ob-
tain the values f(~xi) of a particular realization of the random function. Under
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the condition that the functions associated with non-vanishing probability density
are sufficiently smooth, interpolating the values between the mesh points yields
a good approximation to the realization of the random function. The generation
of realizations of random functions is useful to learn which functions shapes are
considered very likely. We can then judge if the assumed Gaussian process ad-
equately reflects our prior beliefs, for instance concerning the smoothness of the
function. However, we have to remark that the Bayesian inference procedure does
not require sampling from the Gaussian process.
For the following discussion, we assume that the mean function is zero every-

where, m(~x) ≡ 0. With regard to the specification of a model defect, this assump-
tion seems to be reasonable. Without prior knowledge about the failure of the
nuclear model, one might consider the model prediction still as the best estimate
if no experimental data are available to give evidence against this assumption.
We restrict ourself to one-dimensional arguments x for the moment. The exten-

sion to vector-valued arguments will become relevant for the treatment of model
defects in several channels (see section 9.6). To give some practical intuition
about Gaussian processes, we introduce the squared exponential covariance func-
tion, which is a very common choice in the field of machine learning,

k(E,E ′) = δ2 exp

(
− 1

2λ
(E − E ′)2

)
. (9.5)

It depends on two hyperparameters δ and λ. The term hyperparameter should re-
mind that these parameters do not characterize a certain function but characterize
the probability distribution on a function space. In order to visualize the impact
of the values of the hyperparameters on the shapes of the most likely functions,
we generated several realizations of the random function for two choices of hyper-
parameter sets (δ, λ). Figure 9.1 shows samples for the choice δ = 0.3 and λ = 20

and Figure 9.2 for the choice δ = 0.1 and λ = 5. We labeled the axes according
to the meaning in nuclear data evaluation. From Figure 9.1 and Figure 9.2 the
meaning of the hyperparameters is well conceivable. The parameter λ determines
the length-scale of changes with incident energy of the most likely error functions.
The expected number of upcrossings E[N ] of the zero-line in a unit interval for a
stationary covariance function k(x− x′) is given by (Adler, 2010, Theorem 4.1.1)

E[N ] =
1

2π

√
−k′′(0)

k(0)
. (9.6)

This quantity takes the value (2πλ)−1 for the squared exponential. In some cases,
this theoretical result makes allows a direct specification of the length-scale. For
instance, a statistical (physical) model may be only capable to describe the average
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Figure 9.1: Realizations of the Gaussian process defined by the squared exponen-
tial covariance function with δ = 0.3 and λ = 20.
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Figure 9.2: Realizations of the Gaussian process defined by the squared exponen-
tial covariance function with δ = 0.1 and λ = 5.
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cross section but not the fluctuations due to resonances. If an expectation about
the typical resonance width Γ exists, one can set λ = Γ/π. If we expect the
fluctuations of the model defect to decrease with increasing incident energy, we
are free to take the logarithm of the incident energies in the exponent,

k(E,E ′) = δ2 exp

(
− 1

2λ
(logE − logE ′)2

)
. (9.7)

The other hyperparameter δ specifies the expected magnitude of the model error.
If there is an expectation about the typical χ2-value of model fits to experimental
data, the quantity χ2/N − 1 with N the number of data points can serve as a
good guess for δ2. However, there is also the possibility to set hyperparameters
automatically by maximizing the marginal likelihood.

In the following sections, we will usually make use of the squared exponential
covariance function. However, other choices are possible. For instance, the co-
variance function of the Ornstein-Uhlenbeck process in Equation 8.33 is another
option. Both the Ornstein-Uhlenbeck and the squared exponential covariance
function are within the Matern class given by (Stein, 1999)

kMatern(r) =
21−ν

Γ(ν)

(
r
√

2ν

λ

)ν

Kν

(
r
√

2ν

λ

)
, (9.8)

where r = |E−E ′| and ν and λ are positive hyperparameters. The function Kν is
a modified Bessel function (Abramowitz and Stegun, 1965, sec. 9.6). The choice
ν = 1/2 leads to the Ornstein-Uhlenbeck process and the squared exponential
covariance function is realized for ν → ∞. The hyperparameter ν determines
the roughness of the functions. Higher values of ν are associated with smoother
functions.
An important property of covariance functions is their additivity in order to

construct new covariance functions. This property is very useful to tailor the
covariance function to the specific situation. For instance, the optical model is
known to give a very accurate prediction of the total cross section at higher incident
energies, but cannot properly describe the resonance range. In this case, we can
define a Gaussian process to capture resonances at low incident energies,

kres(E,E
′) = θ(Ec − E)θ(Ec − E ′)δ2

1 exp

(
− 1

2λ
(logE − logE ′)2

)
, , (9.9)

where θ(Ec − E) = 1 for E < Ec and zero otherwise. Another Gaussian pro-
cess kglob can be defined for the complete range of incident energies to cap-
ture global model deficiencies. The combined Gaussian process is then given by
k(E,E ′) = kres(E,E

′) + kglob(E,E ′). This property of Gaussian processes is also
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the key to construct model defects that preserve the sum rules of cross sections
(see section 9.6).
Independent of the choice of the covariance function, the model error can be

defined either on a relative scale or an absolute scale. If we directly use a covariance
function such as Equation 9.7 to specify the model error, we would use an absolute
scale. However, this choice is problematic due to the dynamic range of cross
section values. A cross section may rise from zero at its threshold energy to
several thousand millibarn. A stationary covariance function on an absolute scale
would either allow negative cross sections at energies associated with very low
cross section values or assign unreasonable low uncertainty to large cross sections.
Consequently, it is reasonable to define the covariance function k(E − E ′) on a
relative scale. This can be achieved by

k̃(E − E ′) = σ(E)σ(E ′)k(E,E ′) , (9.10)

where σ(E) is the prior best estimate of the cross section stemming from a model
calculation. The covariance function k(E − E ′) on a relative scale is rescaled to
obtain the covariance function k̃(E − E ′) on an absolute scale.
Finally, we point out the relationships between existing approaches for model

defects with Gaussian processes. The method based on the Ornstein-Uhlenbeck
process obviously uses a Gaussian process. The scaling procedure discussed in
section 8.4 constructs a model defect covariance matrix Adef in a specific way. In
the Bayesian inference procedure Adef is transformed to the incident energies of
the experimental data by SAdefS

T , where S is the sensitivity matrix. As shown
in section 3.4, elements Sij of the sensitivity matrix are fully determined by the
incident energies Ei of the experimental data points and the incident energies Ej of
the model mesh. Because the sensitivity matrix can be constructed for experiments
with arbitrary incident energies E within the boundaries of the model mesh, we
may equally write S(E,Ej). Covariance elements associated with the model defect
covariance matrix between arbitrary energies are then given by

Adef(E,E
′) =

M∑
i=1

M∑
j=1

S(E,Ei)Adef,ijS(E ′, Ej) , (9.11)

which represents a covariance function. At the end of section 8.2 we showed that
the Symmetric Monte Carlo procedure coincides with Bayesian inference for a
certain choice of the weights (see Equation 8.27) and the assumption of a normal
distribution for the cross sections predicted by the nuclear model. Therefore, we
can interpret the SMC procedure in the following way. The original nuclear model
is replaced by a Gaussian process with mean function m(E) = E[σmod(E)] where
σmod(E) is the arithmetic mean of the drawn model predictions, and covariance
function k(E,E ′) = δ(E − E ′)Var[σmod(E)].
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9.2 Integration into the Bayesian update

The previous section was focussed on the formulation of the model defect in terms
of a Gaussian process. This knowledge on model defects represents apriori knowl-
edge which has to be combined with the prior knowledge about the values of the
model parameters in the Bayesian inference procedure. Before we combine these
two pieces of knowledge, we want to recapitulate Bayesian inference as commonly
applied technique in nuclear data evaluation.
In nuclear data evaluation one usually assumes that the experimental cross

section vector ~σexp is given as the sum of the model prediction ~σmod =M(~p) and
the measurement error ~εexp of the experiment,

~σexp = ~σmod + ~εexp . (9.12)

The additional assumption that the measurement error is governed by a mul-
tivariate normal distribution ~ε ∼ N (~0,B) leads to the likelihood `(~σexp | ~p) =

N (M(~p),B). If we further assume that also the uncertainty about the val-
ues of the model parameters is specified as a multivariate normal distribution,
π(~p) ∼ N (~p0,A0), we obtain the Bayesian update formula

log π(~p |~σexp) = logC − 1

2
(~σexp −M(~p))T B−1 (~σexp −M(~p))

− 1

2
(~p− ~p0)T A−1

0 (~p− ~p0) .
(9.13)

where the normalization constant C is given by

C−1 =

∫
`(~σexp | ~p)π(~p) d~p . (9.14)

Moments of the posterior distribution in Equation 9.13 can be evaluated via
Monte Carlo sampling techniques, such as importance sampling or the Metropolis-
Hastings algorithm. If the model is linearized (section 3.2) or replaced by a sur-
rogate model (section 3.3), the posterior is also multivariate normal and closed
form expressions are available to calculate its mean vector and covariance matrix.
Independent of how the moments of the posterior are obtained, most evaluation
techniques are based on the assumption of a perfect nuclear model which yields
a perfect description of reality. Thus, the errors are composed of parameter un-
certainties and experimental uncertainties. The analysis in chapter 6 showed that
even small model defects may lead to undesirable evaluated cross section curves.
The inclusion of model defects in an evaluation is straight-forward. The statisti-

cal concept of nuclear data evaluation has to be extended with a model deficiency
term,

~σexp = ~σmod + ~εmod + ~εexp . (9.15)
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The model deficiency term ~εmod is specified by a Gaussian process, GP(m(x), k(x, x′)).
It should be remarked that in the novel formulation, the true cross section vector
is the sum of the model prediction and the model deficiency, ~σtrue = ~σmod + ~εmod.
This is the essential conceptual difference to the standard Bayesian inference pro-
cedure used in nuclear data evaluation so far. Assuming a multivariate normal
distribution for the measurement error, ~εexp ∼ N (~0,B), the likelihood is given
by `(~σexp | ~p, ~εmod) = N (M(~p) + ~εmod,B). Whenever M(~p) appears, it denotes
the model prediction vector for some parameter set ~p that fits in the context.
The model defect vector ~εmod contains the model defects at the incident ener-
gies of the measurement vector ~σexp. We also have to introduce the vector ~εpred
which contains the model defects at incident energies of interest. Both vectors
are combined to ~εTcomb = (~εTpred, ~ε

T
mod). With the choice of a multivariate normal

prior π(~p) = N (~p0,A0) and the assumption of apriori independence of model pa-
rameters and the model deficiency, π(~p | ~εmod) = π(~p), we obtain the posterior
distribution

log π(~p, ~εcomb |~σexp) = log C̃ + log `(~σexp | ~p, ~εmod) + log π(~p) + log π(~εcomb)

= logC − 1

2
(~σexp −M(~p)− ~εmod)T B−1 (~σexp −M(~p)− ~εmod)

− 1

2
(~p− ~p0)T A−1

0 (~p− ~p0)

− 1

2
(~εcomb)TK−1

0 (~εcomb) .

(9.16)

In the case of a uniform prior distribution for the the model parameters, the term
log π(~p) can be discarded from the equation. Elements of K0 are determined by
the covariance function of the Gaussian process, K0,ij = k(Ei, Ej), where the Ei
are the incident energies associated with the elements of ~εcomb. We remind that
the prior mean vector of the model defect is the zero vector and therefore does
not show up in Equation 9.16.
Important summary statistics can be computed from this posterior. The pos-

terior expectation of the true cross section ~σtrue(~p, ~εpred) = M(~p) + ~εpred is given
by

~σ best
true = E[~σtrue(~p, ~εpred)] =

∫
~σtrue(~p, ~εpred)π(~p, ~εcomb |~σexp) d~p d~εcomb . (9.17)

The cross sections in ~σbesttrue enter nuclear data files as best estimates. Another
important summary statistics is the posterior covariance matrix

A best
true = Var[~σtrue] =

∫ (
~σtrue(~p, ~εpred)− ~σ best

true

)(
~σtrue(~p, ~εpred)− ~σ best

true

)T×
π(~p, ~εcomb |~σexp) d~p d~εcomb , (9.18)
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which enters nuclear data files to characterize the uncertainty of the best estimate
~σbesttrue . A new feature of the approach is the possibility to explicitly estimate the
form of the model deficiency,

~ε bestpred = E[~εpred] =

∫
~εpredπ(~p, ~εcomb |~σexp) d~p d~εcomb . (9.19)

The associated covariance matrix can be calculated analogously to Equation 9.18.
A quantity that may be considered of fundamental interest is the posterior covari-
ance matrix between ~p and ~εpred, which gives information about the systematics
the model is not able to capture

C = Cov[~εpred, ~p] =

∫ (
~εpred − ~ε bestpred

)(
~p− ~pbest)

)T×
π(~p, ~εcomb |~σexp) d~p d~εcomb , (9.20)

where ~pbest = E[~p] is calculated analogously to Equation 9.19.
These formulas are difficult to evaluate due to the high dimensionality of the

parameter space and the time needed to evaluate the nuclear model for one param-
eter set. One possibility to address this difficulty is to use Monte Carlo integration;
another possibility is to work with a simplified nuclear model. In this thesis we
follow the latter approach.

9.3 Linearization of the Bayesian update

In chapter 3 we described two approaches to simplify the model in order to obtain
closed form Bayesian update formulas. In the following we restrict ourselves to
the linearized model, while the surrogate approach (section 3.3) can be regarded
as a special case of the linearization of the model (section 3.2). The linearized
version of the modelM has the form

Mlin(~p) = ~σref + S(~p− ~pref) = ~∆ + S~p , (9.21)

where ~σref is the model prediction at the expansion point ~pref, the vector ~p contains
the model parameters, and the sensitivity matrix S is the Jacobian matrix ∂~σ/∂~p
of the nuclear model. In the case of the surrogate approach, we identify ~p =

~σmod, ~pref = ~0, ~σref = ~0.
For the sake of clarity we have to introduce some additional notation. In the

following discussion three meshes of incident energies will be relevant: 1) the mesh
Iexp associated with the measurement vector ~σexp, 2) the mesh Ipred which contains
the incident energies for which we want to obtain estimates of cross sections, and
3) the combined mesh Icomb which contains both the incident energies of Iexp and
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Ipred. The sensitivity matrices for the mapping of a model parameter vector to
cross section values at the incident energies of these meshes are denoted by Sexp,
Spred, and Scomb, respectively. The model defect vector ~εmod is defined on the mesh
Icomb. The matrices Texp and Tpred select from ~εmod the entries associated with
Iexp and Ipred, respectively. The quantity ~∆ in Equation 9.21 is defined on the
mesh Icomb.
First, we construct the statistical model. Inserting the linearized model into

Equation 9.15 yields

~σexp = Texp~∆ + Sexp~p+ Texp~εmod + ~εexp . (9.22)

We make the following choices for the prior probability distributions:

~p ∼ N (~p0,A0), ~εmod ∼ N (~0,K0), and ~εexp ∼ N (~0,B) . (9.23)

The covariance matrix K0 is constructed with the covariance function of the Gaus-
sian process. Further we assume the mutual independence of ~p, ~εmod and ~εexp

apriori. Thus, the statistical model is completely defined.
For the derivation of the Bayesian update formulas, we need all covariances

between ~σexp on the left hand side of Equation 9.22 and the variables on the right
hand side:

Cov[~σexp, ~p] = SexpA0, (9.24)

Cov[~σexp, ~εmod] = TexpK0 . (9.25)

In addition, we need the prior covariance matrix of ~σexp,

Var[~σexp] = SexpA0S
T
exp + TexpK0T

T
exp . (9.26)

Therefore, the prior joint multivariate normal distribution of the random vector
~xT = (~σ Texp, ~p

T , ~εTmod) is characterized by the mean vector

~x0 =

Texp~∆ + Sexp~p0

~p0

~0

 , (9.27)

and the covariance matrix

Σ0 =

(SexpA0S
T
exp + TexpK0T

T + B) SexpA0 TexpK0

A0S
T
exp A0 0

K0T
T
exp 0 K0

 . (9.28)

Before taking into account experimental data, the variable ~σexp has to be consid-
ered as a random variable. If we perform a measurement, we obtain a realization
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σ̃exp of the random variable ~σexp. We can then derive the Bayesian update formulas
by conditioning the random variables ~p and ~εmod on the known first component
of the joint multivariate normal distribution. For convenience, we introduce the
abbreviations

~α = (σ̃exp −Texp~∆− Sexp~p0), (9.29)

X = (SexpA0S
T
exp + TexpK0T

T
exp + B)−1 . (9.30)

The application of Equation 2.44 yields the posterior mean vectors

~p1 = ~p0 + A0S
T
expX~α , (9.31)

~ε1 = K0T
T
expX~α . (9.32)

These posterior mean vectors can be transferred to the mesh Ipred which contains
the incident energies of interest,

~σpred = Tpred~∆ + Spred~p1 (9.33)

~εpred = Tpred~εmod (9.34)

~σtrue = ~σpred + ~εpred . (9.35)

The cross sections in ~σtrue would enter nuclear data files as best estimates. A
novelty of this approach is that we can also estimate the magnitude of model
deficiency at every incident energy of interest. This feature is definitely an im-
provement compared to assessing the model quality by its χ2-value. As a side
remark, high values of the model defect at some incident energy do not neces-
sarily indicate the deficiency of the nuclear model. It could also indicate that
inconsistent experimental data were included in the update procedure.
The derivation of the posterior covariance matrices can be performed with Equa-

tion 2.45 and yields

A1 = A0 −A0S
T
expXSexpA0 , (9.36)

K1 = K0 −K0T
T
expXTexpK0 . (9.37)

For the derivation of the posterior covariance matrix Atrue associated with ~σtrue,
we consider the random variable

~u = Scomb~p+ ~εmod . (9.38)

Its prior covariance matrix is given by

U0 = Var[~u] = ScombA0S
T
comb + K0 , (9.39)
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and the prior covariance matrix between ~σexp and ~u by

C0 = Cov[~u, ~σexp] = ScombA0S
T
exp + K0T

T
exp . (9.40)

Using again Equation 2.45, we obtain

U1 = U0 −C0XCT
0 . (9.41)

All evaluated covariance matrices stated so far are defined on the mesh Icomb. We
can transfer them to the mesh Ipred,

Apred = TpredA1T
T
pred , (9.42)

Kpred = TpredK1T
T
pred , (9.43)

Atrue = TpredÃ1T
T
pred . (9.44)

Finally, the covariances between ~σpred and ~εpred are of particular interest for the
development or refinement of nuclear models, because they reflect the systematics
which the nuclear model is unable to describe. Using the linearity of the variance
operator (see Equation 2.29),

Var[~σtrue] = Var[~σpred] + Var[~εpred] + 2Cov[~σpred, ~εpred] , (9.45)

we obtain

Dpred = Cov[~σpred, ~εpred] =
1

2

(
Atrue −Apred −Kpred

)
. (9.46)

9.4 Marginal likelihood maximization

The prior covariance matrix K0 of the model defect vector ~εmod is constructed
with the covariance function k(E,E ′) of a Gaussian process. The choice of the
covariance function and specific values for its hyperparameters induce a probability
distribution on a function space. For instance, the squared exponential covariance
function introduced in Equation 9.5 depends on the amplitude δ and the length-
scale λ. Although we gave some intuition in section 9.1 which considerations
may help to specify the hyperparameters, the specification of the hyperparameters
remains in many cases a difficult task. The maximization of the marginal likelihood
is a statistical technique to automatically adjust the hyperparameters on the basis
of experimental data.
The marginal likelihood, also called the evidence, represents the probability

distribution for the measurement ~σexp. Under the assumption of the statistical
model, the marginal likelihood gives the information how likely it is to make a
certain observation. In our case of a prior probability distribution for the model
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parameters and another one for the model defect, the marginal likelihood is given
by

π(~σexp | δ, λ) =

∫
`(~σexp | ~p, ~εexp)π(~p)π(~εexp | δ, λ) d~p d~εexp . (9.47)

We made explicit reference to the dependence of the distribution on the hyperpa-
rameters by writing π(~εexp | δ, λ). Suppose that the result of a measurement is the
vector σ̃exp. This measurement is associated with a certain probability density.
The approach suggested in this thesis is to choose values for the hyperparameters
δ and λ which maximize the marginal likelihood,

(δ, λ) = argmax
δ,λ∈R+

ρ(~σexp | δ, λ) . (9.48)

This approach clearly violates the Bayesian principle that the prior should not be
specified based on the data included in the update process. Hence, we leave the
school of classical Bayesian statistics. However, in the following we argue why
the consideration of experimental data to set the hyperparameters of the model
defect distribution is reasonable. Generally, Bayesian methods which take into
account the experimental data for adjusting the prior hyperparameters are known
as Empirical Bayes methods, e.g. Casella (1985).
The principal objection against using the observations that enter the Bayesian

inference for the specification of the prior is the double-counting of data. For
instance, consider ten noisy observations x1, x2, . . . , x10. Their mean value x̂ as a
best guess for the true value is associated with the variance

Var[x̂] =
1

102

10∑
i=1

Var[xi] =
1

10
Var[x] . (9.49)

If we just duplicate each observation xi, denote the duplicate by x̃i, and calculate
the variance again, without taking into account the perfect correlations in the
dataset, we obtain

Var[x̂] =
1

202

10∑
i=1

(Var[xi] + Var[x̃i]) =
1

20
Var[x] . (9.50)

The variance is incorrectly reduced, suggesting that we have a more accurate guess
for the true value than is the case. If we would perform a proper calculation and
account for the perfect correlations, the result would be

Var[x̂] =
1

202

10∑
i=1

(Var[xi] + Var[x̃i] + 2

=1︷ ︸︸ ︷
Cov[xi, x̃i]) =

1

10
Var[x] , (9.51)

and hence nothing is changed. These considerations clearly show that including
the data several times in the Bayesian inference procedure renders the reliability
of the evaluated uncertainties void.
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However, estimating the hyperparameters of the model defect is conceptually
different. Compared to the Bayesian update procedure that does not take into
account model defects, the maximization of the marginal likelihood always leads
to larger evaluated uncertainties, and hence to more reliable estimates.
We want to explain the philosophy of maximizing the marginal likelihood with

an illustrative example. Suppose that we ask a weatherman for a prediction of
the weather of today and tomorrow. We give him the information about today’s
weather, such as the temperature and the cloudiness, which is available to us.
Suppose that we give him the information that the sun is shining today and the
temperature is 25°C. If we ask him then for the prediction of today’s weather, and
he answers us that the sky is completely clouded and the temperature is 15°C,
we very likely would react in two ways. First, we would correct his prediction of
today’s weather to match better our observation, and second, we would have an
increased distrust in his prediction of tomorrow’s weather.
The situation in nuclear data evaluation is analogous. The prior distribution of

the model parameters is updated according to experimental data. If the evaluated
cross section curve is inconsistent with the experimental data, we would have an
increased distrust in the reliability of the nuclear model. Consequently, we would
increase the uncertainties at incident energies without experimental data and ad-
just the evaluated cross section curve to better match the available observations.
Adjusting the hyperparameters of the probability distribution for the model defect
function represents exactly this strategy.
After the discussion of this conceptual aspect, we want to derive the specific

form of the marginal likelihood. The evaluation of the integral in Equation 9.47
is an involved task in general. Frequently, Monte Carlo methods are applied for
its evaluation. However, in the present case due to the linearization of the nuclear
model and the assumption of multivariate normal distribution for all variables,
the integral can be solved analytically. Our starting point for a simple derivation
of the solution is the statistical model

~σexp = Texp~∆ + Sexp~p+ Texp~εmod + ~εexp . (9.52)

with the assignments

~p ∼ N (~p0,A0), ~εmod ∼ N (~0,K0), and ~εexp ∼ N (~0,B) . (9.53)

The notation was explained at the beginning of section 9.3. Because all random
variables on the right hand side of Equation 9.52 are multivariate normal, also the
variable ~σexp follows a multivariate normal distribution. Therefore, it suffices to
calculate its mean vector and covariance matrix. The mean vector is given by

~m = E[~σexp] = Texp~∆ + Sexp~p0 , (9.54)
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and for the covariance matrix we obtain

H(δ,λ) = Var[~σexp] = SexpA0S
T
exp + TexpK0(δ, λ)TT

exp + B . (9.55)

The probability density distribution of the marginal likelihood is thus π(~σexp) =

N (~m,H) and its logarithm takes the form

log π(~σexp | δ, λ) = −1

2
log det H(δ,λ) −

1

2
(~σexp − ~m)TH−1

(δ,λ)(~σexp − ~m)− n

2
log(2π) ,

(9.56)
where n is the dimension of ~σexp. We are interested to find the hyperparameters
that maximize the marginal likelihood. For instance, increasing the hyperparam-
eter δ leads to larger variances in the diagonal of K0 and hence the second term
in Equation 9.56 becomes larger (less negative). Simultaneously, the determinant
of H(δ,λ) gets larger and thereby the first term becomes smaller. The first term is
besides an additive constant the negative information entropy (see Equation 2.61).
Therefore, maximizing the marginal likelihood denotes a trade-off between entropy
minimization and the maximization of the probability density to observe σ̃exp.
The search for the parameters that maximize Equation 9.56 can be performed

with a gradient-based optimization algorithm such as L-BFGS-B (Byrd et al.,
1995). The L-BFGS-B algorithm allows the restriction of parameter ranges in the
optimization procedure. This feature is convenient because the hyperparameters
δ and λ must be non-negative. Further, the restriction to certain intervals can be
regarded as a measure to take into account prior knowledge.
The gradient of log π(~σexp | δ, λ) with respect to the hyperparameters is analyt-

ically available. Using the matrix identities (e.g. Petersen et al. (2006))

∂

∂φ
log det H = Tr(H−1∂H

∂φ
) and

∂

∂φ
H−1 = −H−1∂H

∂φ
H−1 (9.57)

we obtain

∂

∂φ
log π(~σexp | δ, λ) = −1

2
Tr(H−1∂H

∂φ
)

+
1

2
(~σexp − ~m)TH−1∂H

∂φ
H−1(~σexp − ~m) . (9.58)

In the first term only the diagonal elements of the matrix-matrix product have
to be calculated for the evaluation of the trace. In the second term, the quantity
~α = H−1(~σexp − ~m) has to be computed only once. The remaining calculation of
~α T (∂H/∂φ)~α can be performed fast.
Finally, we remark that the maximization of the marginal likelihood is not

necessarily in contradiction to classical Bayesian statistics. If experimental data
of neighbor isotopes are available, the hyperparameters can be adjusted on the
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basis of these data. The most conservative values of the hyperparameters which
occurred for some isotope can be chosen for the current evaluation. The most
conservative values are those which lead to maximal information entropy of the
constructed model defect covariance matrix. In the case of the squared exponential
covariance function (see Equation 9.5) and the Ornstein-Uhlenbeck process (see
Equation 8.32), the information entropy increases with increasing amplitude δ and
decreasing length-scale λ.

9.5 Showcase: deficient non-linear model

The analysis in chapter 6 showed that not accounting for model defects can have
severe consequences for the reliability of an evaluation. The evaluated cross section
curve may disagree with experimental data included in the Bayesian inference and
might be also inconsistent with experimental data which had not been included.
In this section we perform an evaluation of the neutron-induced total cross section
of 181Ta with the extended Bayesian update which accounts for model defects.
The evaluation scenario was detailed in section 6.2. We briefly recapitulate the
important aspects.
The complete experimental dataset C from Finlay et al. (1993) in the energy

range from 5 to 200 MeV is split into two datasets. Dataset A contains the
data points below 100 MeV and dataset B the data points above 100 MeV. The
experimental data are illustrated in Figure 6.14. The evaluation is performed
with one of these datasets and the resulting cross section curve is compared to the
datasets which had not been included in the update.
The optical model is employed and the variation of model parameters is re-

stricted to av, rv and v1. Instead of these parameters we use the dimensionless
parameters ãv = av/a

Def
v , r̃v = rv/r

Def
v and ṽ1 = v1/v

Def
1 , where the superscript

Def denotes the choice according to the global parameterization of Koning and
Delaroche (2003).
We will use the iterative linearized Bayesian update procedure outlined in sec-

tion 6.3. Without the inclusion of model defects, the evaluated cross section curve
was inconsistent with dataset B if only the dataset A was included in the Bayesian
update (see Equation 6.24 and Figure 6.17). In this section we will show how the
inclusion of model defects restores consistency. The inclusion of model defects
requires the following modification of the iterative linearized Bayesian update ap-
proach.
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Iterative linearized Bayesian update with model defects

1. Set the reference parameter vector ~pref to the best prior estimate ~p0.

2. Linearize the model at ~pref (see Equation 9.21).

3. Find the hyperparameters δ and λ that maximize the marginal likelihood
given in Equation 9.56.

4. Construct the covariance matrix K0 of the model defect with the covari-
ance function using the values of the hyperparameters δ and λ obtained
in the previous step.

5. Perform the Bayesian update with Equation 9.31 to obtain the posterior
parameter vector ~p1.

6. If ~p1 did not converge yet, choose ~p1 as reference parameter vector ~pref
and continue with step two.

In the following evaluation, the probability distribution of the model defect func-
tion is given by the Gaussian process ε(E) ∼ GP(m(E), k(E,E ′)) with m(E) ≡ 0

and the squared exponential covariance function

k(E,E ′) = σ(E)σ(E ′)δ2 exp

(
− 1

2λ2
(logE − logE ′)2

)
. (9.59)

with the best prior estimate of the cross section σ(E), the magnitude of the model
error δ and the length-scale λ. The prior distribution of the nuclear model param-
eters is given by ~p ∼ N (~p0,A0) with

~p0 =

1

1

1

 and A0 =

0.152 0 0

0 0.152 0

0 0 0.152

 . (9.60)

The inclusion of the complete experimental dataset C in the iterative Bayesian
update yields

~p1 =

1.0411

0.9832

1.0144

 and A1 = 10−4

 15.0534 −2.2677 2.2481

−2.2677 0.6182 −0.7722

2.2481 −0.7722 1.8753

 . (9.61)

The evaluated uncertainties of the model parameters are about 10−2. For compar-
ison, the evaluated uncertainties of the iterative Bayesian update without model
defects were in the order of 10−3 (see Equation 6.20). The values of the hy-
perparameters found by maximizing the marginal likelood are δ = 0.0117 and
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Figure 9.3: Evaluated cross section curve obtained by the iterative linearized
Bayesian update procedure with model defects. The complete experimental
dataset C had been included in the update. Shown are also the 95% confidence
bands.

Figure 9.4: Evaluated correlations and uncertainties obtained by the iterative
Bayesian update procedure with model defects. The complete experimental
dataset C had been included in the update.
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Figure 9.5: Evaluated model defect on a relative scale and the associated 95%
confidence band obtained by the iterative linearized Bayesian update procedure.
The complete dataset C was included in the update.

λ = 0.3051. Hence, the optical model is able to fit the data with an accuracy of
about 1% globally. Therefore, we can consider the optical model as a rather accu-
rate and useful model. The evaluated cross sections computed with Equation 9.35
are shown in Figure 9.3. The evaluated cross section curve is smooth and matches
the data perfectly. In contrast to that, the evaluated cross section curve obtained
by the iterative Bayesian update procedure without model defects was good but
deviated at some energies slightly from the experimental data (see Figure 6.15).
The evaluated correlations and uncertainties are shown in Figure 9.4. The in-

clusion of the model defect in the prior knowledge automatically weakens the
evaluated correlations (compare for instance with Figure 6.15). Even though, the
linearization of the nuclear model leads typically to stiff correlation matrices, the
inclusion of the model defect causes a cancellation of model systematics. It is
automatically detected that the systematics of the model is inappropriate at the
level of accuracy given by the experimental data. The evaluated correlations ap-
pear uniform and reflect the normalization error of the experimental uncertainty.
However, due to the finite length-scale of the covariance function, the correlations
of cross sections at different incident energies significantly decrease with an in-
creasing difference of the incident energies. For comparison, the cross sections
obtained by the FBET/EMPIRE-MC method based on the surrogate approach
without model defects are stronger correlated (see Figure 6.25).
The evaluated model defect is shown in Figure 9.5. We recognize again that

the optical model is an accurate and useful model. The hypothesis of a perfect
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Figure 9.6: Evaluated correlations of the model prediction and the model de-
fect. Also the correlations between the model prediction and the model defect are
shown.

model cannot be rejected at most incident energies, because the 95% confidence
band encloses the zero-line. However, at around 10 MeV and 50 MeV the model
is clearly deficient. The deficiency in these regions is estimated to be slightly
below 2%. These deficiencies were also the reason, why evaluated cross section
curves of methods using the exact model such as the UMC-B method became
inconsistent with experimental data. The evaluated correlations of the model
prediction and the model defect are displayed in Figure 9.6. The correlations of
the model prediction and those of the model defect are of similar structure. Model
prediction and model defect are negatively correlated, and thus the model defect
weakens the correlations of the model prediction.
Next, we perform the iterative linearized Bayesian update procedure with model

defects including only dataset A. We obtain the evaluated parameter mean vector
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and covariance matrix,

~p1 =

1.0737

0.9735

1.0242

 and A1 = 10−4

 21.7842 −4.3239 4.6015

−4.3239 1.2633 −1.5280

4.6015 −1.5280 2.8174

 . (9.62)

The best hyperparameters δ = 0.012 and λ = 0.299 are approximately equal to
those obtained by updating with the complete dataset C. The evaluated cross
section curve is illustrated in Figure 9.7. The cross section curve perfectly agrees
with included experimental data and gives a reasonable prediction in the range of
dataset B. In contrast to that, the evaluation with the iterative Bayesian update
procedure without model defects was inconsistent with dataset B (see Figure 6.17).
The evaluated uncertainty and correlations are shown in Figure 9.9. The evaluated
uncertainty is about 0.5% in the energy range from 5 to 100 MeV from which data
were included in the update. In the energy range above 100 MeV where data had
not been included, the uncertainty gradually increases to about 1.8%. In contrast
to the evaluation without model defects (see Figure 6.18) the cross sections above
100 MeV are only weakly correlated to those below 100 MeV. The estimate of the
model defect is shown in Figure 9.9. Finally, in Figure 9.7 the model component
of the evaluated cross section curve is shown which deviates slightly from the
experimental data due to the model deficiency.
As a last benchmark, we perform the update with dataset B. The evaluated

parameter mean vector and covariance matrix are given by

~p1 =

1.0757

0.9818

1.0134

 and A1 = 10−4

 151.7837 −12.2696 −6.6565

−12.2696 1.1863 −0.2601

−6.6565 −0.2601 5.2059

 . (9.63)

The evaluated cross section curve is shown in Figure 9.11. The maximization of
the marginal likelihood yielded the hyperparameters δ = 0.0001 and λ = 9.237.
The model defect is virtually switched off because of the small value of δ. This is
due to the fact that the model is deficient at low incident energies. Because only
the dataset B associated with energies above 100 MeV was included, the model
deficiency could not be inferred from the data.
The results of this section indicate that the problems of available evaluation

methods studied in chapter 6 are resolved:

1. The evaluated cross section curve mimics well the experimental included
in the update process and associated uncertainties reflect the experimental
uncertainties.
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Figure 9.7: Evaluated cross section curve and 95% confidence band obtained by the
iterative linearized Bayesian update procedure with model defects. The complete
experimental dataset A was included in the update.

Figure 9.8: Evaluated correlations and uncertainties obtained by the iterative
Bayesian update procedure with model defects. The complete experimental
dataset A was included in the update.
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Figure 9.9: Evaluated model defect and associated 95% confidence band on a
relative scale obtained by the iterative linearized Bayesian update procedure. Only
dataset A has been included in the update.
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Figure 9.10: Evaluated model component and associated 95% confidence band
obtained by the iterative linearized Bayesian update procedure with model defects.
Only dataset A has been included in the update.
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Figure 9.11: Evaluated cross section curve and associated 95% confidence band
obtained by the iterative linearized Bayesian update procedure with model defects.
Only dataset B was included in the update.

2. The evaluated cross section curve is consistent with experimental data which
were not included in the evaluation procedure and associated uncertainties
are increased due to the deficiency of the nuclear model.

3. The evaluated cross section curve is a smooth function. It follows the trend
of the experimental data but does not follow every local fluctuation.

4. The evaluated uncertainties are generated directly from the evaluation pro-
cedure. No ad-hoc rescaling with the χ2-value due to too small uncertainties
or a mismatch between experimental data and evaluated cross section curve
is necessary.

The new approach to deal with model defects combines the advantages of no-
model fit techniques, such as smoothing splines, and model fits without their
disadvantages. No-model fits yield an excellent reproduction of the included ex-
perimental data, yet they have no predictive power beyond the energy range of
included data. In contrast to that, a model fit can predict cross sections in en-
ergy domains without data, but due to imperfections of the model might deviate
significantly from included experimental data.
Within this special evaluation scenario, the new approach seems to be the jack

of all trades. However, also the new approach is based on assumptions and if these
are violated, we still can obtain unsatisfactory evaluations. The assumptions are
reflected in the choice of the covariance function in Equation 9.59:
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1. The relative model defect is expected to be roughly the same at every inci-
dent energy.

2. The expected fluctuations of the model defect decrease with increasing inci-
dent energy

3. The model defect is a smooth function with derivatives of any order.

For instance, the violation of assumption (1) leads to overly cautious values of
δ and λ obtained by the maximization of the marginal likelihood in order to be
consistent with the data in the energy domain of most severe model deficiency.
However, other choices of the covariance function are possible which imply different
assumptions.

9.6 Sum rule conserving model defects

The introduction of a model defect function in the Bayesian update allows for
deviations of the evaluated cross section curves from the systematics of the model.
On one hand, this extended flexibility helps to overcome the deficiencies of the
model, but on the other hand consistency constraints such as the sum rules of
cross sections may be violated. For instance, at the same incident energy E the
total cross section is always given as the sum of elastic and non-elastic cross section,

σn,tot(E) = σn,el(E) + σn,non-el(E) . (9.64)

As another example, the neutron production cross section is given by

σn-prod(E) = σn,n(E) + 2σn,2n(E) + 2σn,2np(E) + . . . (9.65)

In general, some cross sections are defined as linear combinations of other cross
sections,

σ(E) =
∑
i

αiσi(E) , (9.66)

and evaluated cross sections must obey these relations. From now on we refer to
relationships between cross sections of the form in Equation 9.66 as sum rules. In
this section we extend the formulation of model defects to ensure their fulfillment.

The essential key for this extension is the fact that a multivariate normal dis-
tribution is able to perfectly capture linear relationships between observables.
Consequently, also the Bayesian update preserves these relationships. Due to the
importance of this feature for the construction of consistent model defects, we give
a proof here.
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Considering the relation in Equation 9.66, the variance of σ(E) is given by

Var[σ(E)] =
∑
i,j

αiαjCov[σi(E), σj(E)] . (9.67)

Covariances between σ(E) and the cross sections on the r.h.s of Equation 9.66 are
given by

Cov[σ(E), σi(E)] =
∑
j

αjCov[σ(E), σj(E)] . (9.68)

Using the abbreviation cij = Cov[σi(E), σj(E)], the covariance matrix A which
contains the variances and covariances of the cross section σ and the cross sections
σi can be written as

A =


∑

ij αiαjcij
∑

j αjc1j

∑
j αjc2j . . .∑

j αjc1j c11 c12 . . .∑
j αjc2j c12 c22 . . .
...

...
... . . .

 . (9.69)

The first row is a linear combination of the other rows, hence the rank of this
covariance matrix is reduced by one. We can immediately identify the (not nor-
malized) eigenvector

~e0 = (1,−α1,−α2, . . . )
T , (9.70)

which is associated with the eigenvalue λ0 = 0. Because a covariance matrix is
symmetric, its eigenvectors are pairwise orthogonal, ~eTi ~ej = 0, i 6= j. Due to the
definition of orthogonality, the eigenvectors orthogonal to ~e0 have to obey the
relation

(x0, x1, x2, . . . )~e0 = x0 − α1x1 − α2x2 − · · · = 0 , (9.71)

which is exactly the sum rule that caused the reduced rank of the covariance ma-
trix. Therefore, the components of all eigenvectors except ~e0 are in agreement with
the sum rule. We can write the covariance matrix in its spectral decomposition

A =
∑
i

λi~ei~e
T
i , (9.72)

and insert it into the linearized Bayesian update formula (see e.g. Equation 3.34)

~σ1 = ~σ0 + A0~u = ~σ0 +
∑
i

λi~ei(~e
T
i ~u) . (9.73)

The only contribution in the sum associated with ~e0 that could lead to a violation
of the sum rule vanishes because of the zero eigenvalue. Therefore, sum rules are
perfectly preserved in the linearized Bayesian update formula.

For the construction of a consistent (=sum rule preserving) model defect, we
have to construct covariance matrix elements between channels in such a way
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Figure 9.12: Some relationships of neutron-induced cross sections of 181Ta visual-
ized as a graph. (a=alpha, n=neutron, p=proton, h=Helium-3, d=deuteron).

that Equation 9.67 and Equation 9.68 are satisfied whenever a sum rule of the
form Equation 9.66 exists. In practice, there are many cross sections of interest
which are defined as linear combinations of other cross sections such as residual
production cross sections. Figure 9.12 illustrates some of these relationships for
neutron-induced cross sections of 181Ta.
We restrict the further discussion to cross sections of different channels at the

same incident energy. The generalization to different energies will be discussed
afterward. The following discussion requires an extended notation. Especially,
we denote by σ(c) the cross section associated with reaction channel c. If a cross
section σ(c) is defined as a linear combination of other cross sections σ(c′), we
denote by α(c|c′) the multiplication constant associated with σ(c′) in the linear
combination. For instance, the total cross section can be written as

σ(tot) = α(tot|el)σ(el) + α(tot|nonel)σ(nonel) ,

with α(tot|el) = α(tot|nonel) = 1 .
(9.74)

Another possibility is to express the total cross section as sum of elementary cross
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sections

σ(tot) =α(tot|el)σ(el) + α(tot|n,inel)σ(n,inel) +

α(tot|n,2n)σ(n,2n) + α(tot|n,a)σ(n,a) + . . .
(9.75)

In principle, we could have omitted the multipliers α(., .) because they are one
in this example, but we want to keep the discussion general and in other cases
such as production cross sections they are not necessarily one. With elementary
cross sections we denote cross sections that are the building blocks of other cross
sections. These elementary cross sections fulfill two criteria:

1. An elementary cross section cannot be expressed as a linear combination of
other elementary cross sections.

2. All non-elementary cross sections can be expressed as linear combinations of
elementary cross sections, σ =

∑
i αiσi, with non-negative multipliers αi.

Figure 9.13 schematically illustrates elementary and non-elementary cross sections.
If we start from an elementary cross section, following a path along the directions
of the arrows and encounter in this order the cross sections σ(c1), σ(c2), σ(c3), their
multipliers satisfy the relation

α(c3|c1) = α(c3|c2)α(c2|c1) . (9.76)

In order to construct consistent model defects, we make the following fundamental
assumption:

Apriori independence of model defects

Model defects of elementary cross sections associated with different elementary
reaction channels are assumed to be independent of each other. This choice is
in agreement with the principle of maximum entropy. If there is no knowledge
about the form of the dependence, assuming independence leads to a maximum
of the information entropy.

Independence between reaction channels means zero-correlations between them. A
covariance matrix with given diagonal elements has maximal information entropy
if all off-diagonal covariance elements are zero (see Equation 3.26). We remark
that the assumption of a-priori independence enters the prior distribution, but
an update with experimental data will in general introduce correlations between
model defects of different channels.
For the following discussion we introduce the index set E which contains all ele-

mentary cross sections. Further, we introduce the concept of common elementary
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cross section. Suppose that we have two cross sections given as linear combinations
of elementary cross sections,

σ(c1) =
∑
c′∈E

α(c1|c′)σ(c′) and σ(c2) =
∑
c′∈E

α(c2|c′)σ(c′) . (9.77)

We call an elementary cross section which occurs both in the linear combination
of σ(c1) and σ(c2) a common elementary cross section. We denote the set of all
common elementary cross sections of σ(c1) and σ(c2) as CEC(c1, c2). Noteworthy,
CEC(c, c′) = {c′} if σ(c′) is an elementary cross section and contributes in the
linear combination of σ(c); and CEC(c1, c2) = ∅ if both σ(c1) and σ(c2) are
elementary cross sections and not identical. Further, we denote by ε(c) the model
error associated with the cross section σ(c).
The assumption of apriori independence between model defects associated with

elementary cross sections greatly simplifies the task to construct consistent model
defects. The constraint

σ(c) =
∑
c′∈E

α(c|c′)σ(c′) . (9.78)

induces the following constraint on the variance,

Var[σ(c)] =
∑
c′1∈E

∑
c′2∈E

α(c|c′1)α(c|c′2)Cov[σ(c′1), σ(c′2)] , (9.79)

which in case of the model defects due to the independence assumption, Cov[ε(c′1), ε(c′2)] =

0,∀c′1, c′2 ∈ E , reduces to

Var[ε(c)] =
∑
c′∈E

α(c|c′)2Var[ε(c′)] . (9.80)

Similarly, the induced constraint on the covariance between a non-elementary cross
section σ(c) and an elementary cross section σ(c′),

Cov[σ(c), σ(c′)] =
∑
c′′∈E

α(c|c′′)Cov[c′′, c′] , (9.81)

simplifies for the model defect to

Cov[ε(c), ε(c′)] = α(c|c′)Var[ε(c′)] . (9.82)

Covariances between two model defects associated with arbitrary cross sections
σ(c1) and σ(c2) are given by

Cov[ε(c1), ε(c2)] =
∑

c′∈CEC(c1,c2)

α(c1|c′)α(c2|c′)Var[ε(c′)] . (9.83)

We note that Equation 9.80 and Equation 9.82 are special cases of Equation 9.83.
If we define

∑
c′∈CEC(c1,c2) · · · = 0 for CEC(c1, c2) = ∅, and α(c|c) = 1, then Equa-

tion 9.83 can be used to calculate variances and covariances of and between model
defects associated with arbitrary—elementary or non-elementary—cross sections.
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We emphasize the important result that variances and covariances of model de-
fects associated with arbitrary cross sections are completely determined by the
variances of the model defects associated with elementary cross sections and the
multipliers in the definitions of the derived cross sections. If the model defect
covariance matrix satisfies Equation 9.83, and additionally model defects associ-
ated with elementary cross sections are uncorrelated, the fulfillment of sum rules
is guaranteed.

9.7 Assignment of model defects

We extend the discussion of the previous section to cross sections in different
channels and at different incident energies. Let σ(c, E) denote the cross section
of reaction channel c at incident energy E. The corresponding model defect is
denoted by ε(c, E). Model defects of all elementary cross section channels c ∈ E
can be specified as Gaussian processes,

ε(c, E) ∼ GP(mc(E), kc(E,E
′)) , (9.84)

where mc(E) ≡ 0. The same form of the covariance function can be taken for
each channel or different choices can be made for different channels. The variance
of a model error associated with an elementary cross section σ(c, E) is given by
kc(E,E). Therefore, according to Equation 9.83, covariances between different
channels have to be specified as

kc1,c2(E1, E2) =
∑

c′∈CEC(c1,c2)

α(c1|c′)α(c2|c′)kc′(E1, E2) . (9.85)

If c1 6= c2 and c1, c2 ∈ E and thus CEC(c1, c2) = ∅, then kc1,c2(E1, E2) = 0. A
model defect covariance matrix K0 constructed with kc1,c2(E1, E2) is guaranteed
to preserve sum rules.
Next, we discuss the assignment of model defects to cross section channels.

Assume that we take the squared exponential covariance function which relies on
two hyperparameters δ and λ. At high incident energies, hundred of elementary
cross sections are open and the assignment of a covariance function to each of them
means to introduce hundreds of hyperparameters δc, λc for each c ∈ E . However,
without experimental data and insufficient prior knowledge, there is no way to
specify the values of the hyperparameters. In addition, it is often desirable to
specify a model defect for a non-elementary cross section such as the total cross
section which can be accurately measured. For these reasons, we introduce a
scheme which allows to specify model defects for arbitrary elementary or non-
elementary cross section channels. The model defect is distributed to elementary
channels in order to enforce sum rules.
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Depending on the incident energy a cross section may vary over several orders of
magnitude. Therefore we define the covariance function k̃c(E,E ′) of every channel
c on a relative scale,

kc(E,E
′) = σM(c, E)σM(c, E ′)k̃c(E,E

′) , (9.86)

where σM(c, E) is the prior best model prediction. For example, the relative
covariance function k̃c(E,E ′) could be given as the squared exponential covariance
function

k̃c(E,E
′) = δc exp

(
− 1

2λ2
c

(logE − logE ′)2

)
(9.87)

with hyperparameters δc, λc. If a relative covariance function k̃c(E,E ′) is defined
for a non-elementary cross section channel, we construct the covariance matrix on
an absolute scale as

kc(E,E
′) =

∑
c′∈CEC(c,c)

α(c|c′)2σM(c′, E)σM(c′, E ′)k̃c(E,E
′) . (9.88)

In order to preserve sum rules, we make for all elementary channels c′ which
contribute to c the choice

kc′(E,E
′) = σM(c′, E)σM(c′, E ′)k̃c(E,E

′) for all c′ ∈ CEC(c, c) . (9.89)

Hence, we assume the same functional form of the relative covariance function
of the non-elementary channel also for the elementary channels. Only the hyper-
parameters associated with k̃c(E,E ′) are introduced and all elementary channels
which contribute to c are associated with the same values of the hyperparameters.
The choices in Equation 9.88 and Equation 9.89 lead to the preservation of sum
rules.
An additional issue which has to be addressed is the question how to resolve

contradictory assignments. For instance, the specification of a relative covariance
function k̃tot(E,E ′) for the total cross section leads via Equation 9.89 to the as-
signment of the same relative covariance function to all elementary cross sections.
If in a second step a model defect is assigned to the non-elastic cross section chan-
nel, some assignments of covariance functions to elementary cross sections have to
be changed accordingly. In order to accomplish this task, an assignment table can
be used. As an example, it could be given by

elementary channel reac1 reac2 reac3 reac4 . . .
assignment (n,tot) (n,tot) - (n,nonel) . . .

This table indicates which relative covariance function is used for a particular ele-
mentary reaction channel. With A(c′) we denote the assignment to the elementary
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channel c′, for instance A(reac1) = (n,tot) in the current example. It is also pos-
sible that an elementary channel is not associated with a model defect (indicated
by the dash).

If a new model defect is specified for a particular reaction channel c, the following
rules determine the adjustments of the assignment table.

Model defect assignment rules

Suppose that a model defect is introduced for a channel c. The index set
E(c) = CEC(c, c) contains all elementary reaction channels that contribute
in the linear combination of σ(c). The current assignment of a particular
elementary reaction channel c′ is denoted by A(c′). The assignments A(c′) of
all elementary channels c′ are altered according to the following rules:

1. If E(c) ⊂ E(A(c′)) then change the assignment to A(c′) = c.

2. If E(A(c′)) ⊂ E(c) then leave the assignment A(c′) unaffected.

3. If neither the condition of (1) nor (2) is satisfied, but E(c)∩E(A(c′)) 6= ∅
leave the assignment A(c′) unaffected.

The idea behind rule (1) is that if a non-elementary cross section σ(c) is defined
as a linear combination of elementary cross sections which are a subset of the
elementary cross sections in the linear combination of σ(c′), then σ(c) is more
directly related to these elementary cross sections than σ(c′). Therefore, it seems
reasonable to chose the relative covariance function associated with σ(c) also for
these elementary cross sections. Rule (2) represents the opposite case and is stated
just for the sake of completeness. Even though rule (3) is also superfluous in the
current form, we stated it to emphasize the fact that some cross sections are not
in a parent-child relation. For instance, the neutron production cross section and
the residual production cross section are not in a parent-child relation but have
common elementary cross sections. Using a first come-first serve principle for the
condition in (3) is a pragmatic solution. However, the existence of a better decision
rule whether to leave the assignment or to change it is very likely.
On the basis of the assignment table, Equation 9.85 and Equation 9.89, covari-

ances associated with the model defect between arbitrary cross sections can be
calculated by

kc1,c2(E1, E2) =
∑

c′∈CEC(c1,c2)

α(c1|c′)α(c2|c′)σM(c′, E)σM(c′, E ′)k̃A(c′)(E,E
′) .

(9.90)
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9.8 Showcase: conservation of sum rules

In this section we demonstrate the effect of sum conserving model defects at the
example of an evaluation of the (n,2n) cross section of 181Ta. The (n,2n) scattering
process leaves the residual nucleus either in the ground state or an isomer state.
The sum of these contributions has to equal the (n,2n) total cross section and
hence this cross section is suited to verify whether sum rules are preserved by the
model defects.
We used the surrogate approach described in section 3.3, especially the update

formulas in Equation 3.33 and Equation 3.34. A sample of thousand model pre-
dictions was generated by randomly varying parameters of the optical model and
the Fermi gas model. The model parameters associated with the optical model in
the parametrization of Koning and Delaroche (2003) were drawn from a uniform
distribution within a 20% window around the default values. Table 9.1 lists the
TALYS adjustment factors of these model parameters. The level density param-
eters of the Fermi gas model were drawn from a uniform distribution within the
intervals listed in Table 9.2. The allowed intervals of variation of the optical model
parameters roughly matches the choice of Leeb, Schnabel, et al. (2015) and the
boundaries of the intervals for the level density parameters are identical.
The experimental data for the (n,2n)-total, (n,2n)-ground and (n,2n)-isomer

cross section included in the evaluation are listed in Table 9.3.
First, we performed an evaluation without model defects. The result is shown

in Figure 9.14. The (n,2n)-ground cross section is adequately described whereas
the evaluated cross section curve of the (n,2n)-total channel is above and those of
the (n,2n)-isomer channel is below the experimental data. The experimental data
of these three channels are inconsistent because they violate the sum rule. The
Bayesian update procedure preserves sum rules and consequently the evaluated
cross section curves in the individual channels represent a compromise. Plenty of
data are available in the (n,2n)-ground channel, hence the evaluation within this
channel is rather fixed. For the other two channels, the number of experimental
data points is much smaller. The evaluation is shifted upwards from the experi-
mental data in the (n,2n)-total channel in order to get closer to the data in the
(n,2n)-isomer channel. Noteworthy, the evaluated cross sections of all channels
between 7.5 and 8 MeV near the threshold energy are slightly negative (about –10
millibarn) which is due to model deficiency.
The evaluated correlations of and between the cross section channels are shown

in Figure 9.15. Correlations of the (n,2n)-total and (n,2n)-isomer cross section look
almost identical. Furthermore, the same structure can be found for the correlations
between these channels. Therefore, a shift of the cross section curve in one of these
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rvadjust avadjust v1adjust v2adjust v3adjust v4adjust
rwadjust awadjust w1adjust w2adjust rvadjust avadjust
rwdadjust d1adjust d2adjust d3adjust rvsoadjust avsoadjust
vso1adjust vso2adjust rwsoadjust awsoadjust wso1adjust wso2adjust

Table 9.1: TALYS (Koning, Hilaire, and Duijvestijn, 2007) keywords to adjust the
default parameters of the optical model in the global parametrization of Koning
and Delaroche (2003). Each particle (neutron, proton, ...) is associated with
its own set of these adjustment factors. Thousand parameter sets were created
for the construction of the prior mean vector and the prior covariance matrix.
Adjustment factors of the neutron, proton and alpha-particle were drawn from a
uniform distribution in the interval [0.8, 1.2].

keyword alphald betald Pshiftconstant gammashell
lower limit 0.011402 0.126247 -3.000000 0.331541
upper limit 0.030059 0.332833 3.000000 0.615719

Table 9.2: Ranges of the level density parameters of the Fermi Gas model in which
values were drawn from a uniform distribution.

Reference EXFOR # points
(n,2n) total cross section

Veeser, Arthur, and Young (1977) 10445009 10
Frehaut (1980) 20416016 14
Takahashi (1992) 22136026 1

(n,2n)-ground level
Peiguo (1985) 30733002 1
Han-Lin, Wen Rong, and Guo (1985) 30724003 33
Kasugai (1992) 22351005 6
Filatenkov (1999) 41240103 8
Filatenkov (2001) 41424056 4
Zhu et al. (2011) 32696009 6

(n,2n)-isomer level
Ikeda (1988) 22089106 8

Table 9.3: Experimental data included in the evaluation.



CHAPTER 9. CONSISTENT TREATMENT OF MODEL DEFECTS 226

●
●●

●

●
●

●
●

●
●●●

●●●●●●
●●●●●

●●●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●

●●●●●●

●

●●●●●●●
●

●

●

●

●
●

●
●

●
●

●●●●●
●

●

●

●

●

●
●

●
●

●

●

0

1000

2000

0

1000

2000

0

1000

2000

C
S

/R
E

A
C

/200000/L00
C

S
/R

E
A

C
/200000/L02

C
S

/R
E

A
C

/200000/TO
T

10 20 30

energy [MeV]

cr
os

s 
se

ct
io

n 
[m

B
ar

n]

expid

●

●

●

●

●

●

●

●

●

●

●

●

TALYS

bhatia2013

chuanxin2011

filatenkov1999

filatenkov2001

frehaut1980

hanlin1985

ikeda1988

kasugai1992

peiguo1985

takahashi1992

veeser1977

Figure 9.14: Evaluated cross sections (blue lines) obtained by the surrogate ap-
proach without model defects. Illustrated are from top to bottom the (n,2n)-
ground, (n,2n)-isomer, and (n,2n)-total cross section of 181Ta. Error bars of the
experiment indicate the 95% confidence interval and the error band indicates the
68% confidence interval of the prior cross section curve.
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channels leads to approximately the same shift in the other channel.

Figure 9.15: Evaluated correlations obtained by the surrogate approach without
model defects. The blocks in the diagonal show from bottom-left to top-right the
correlation matrices of the (n,2n)-ground, (n,2n)-isomer, and (n,2n)-total cross
section channel. Off-diagonal blocks visualize the correlations between these reac-
tion channels.
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In the following we perform the evaluation with model defects, hence the formu-
las of section 9.3 were applied. We assume two Gaussian processes for the model
defect in the (n,2n)-ground and (n,2n)-isomer channel (abbreviated as gnd and
iso, respectively),

ε(gnd, E) ∼ GP(m(E), kgnd(E,E ′)) and ε(iso, E) ∼ GP(m(E), kiso(E,E
′)) .

(9.91)
The mean function for both model defects is given by m(E) ≡ 0. We choose for
both channels a squared exponential covariance function,

k̃c = δ2
c exp

(
− 1

2λc
(E − E ′)2

)
. (9.92)

Therefore, four hyperparameters δgnd, λgnd, δiso, λiso are involved in the evaluation.
The covariances of and between all channels are determined by Equation 9.90.
The maximization of the marginal likelihood (seeEquation 9.56) yields

δgnd λgnd δiso λiso

0.2612 3.0018 0.1695 0.5718

The evaluated cross sections are shown in Figure 9.16. Due to the specific con-
struction of the model defects, the sum rules are preserved. The sum of the (n,2n)-
ground and (n,2n)-isomer cross section deviates not more than 3× 10−4 millibarn
from the (n,2n)-total cross section. The small deviation can be attributed to
numerical imprecisions in the calculation.
The evaluated cross section curve, especially in the (n,2n)-isomer and (n,2n)-

total cross section channel may not be in line with our expectations about the
proper shape. However, we have to consider the assumptions which entered the
evaluation:

1. Estimates and associated uncertainties of the experimental data are reliable.

2. The model defect is a smooth function with derivatives of any order.

3. Indifference about the length-scale of the model defect.

According to these prior assumptions, the evaluated cross section curves makes
sense, because:

1. All experimental data included in the evaluation are perfectly described,
except at the incident energies where they violate the sum rule.

2. Abrupt changes of the evaluated cross section curve do not occur due to the
assumed smoothness of the model defect, hence also the oscillations.
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3. The length-scale λiso is adjusted to a small value in order to allow the rapid
increase of the model defect in the (n,2n)-total cross section channel. Due to
the small length-scale, the evaluated (n,2n)-total cross section curve is able
to quickly deviate from the experimental data in order to represent a good
compromise with the experimental data in the (n,2n)-isomer channel.

We redo the evaluation, but this time forbid length-scales smaller than 3 MeV.
The L-BFGS-B algorithm (Byrd et al., 1995) used for the maximization of the
marginal likelihood can deal with this type of restriction. The result of the eval-
uation is shown in Figure 9.17. The obtained hyperparameters are given by

δgnd λgnd δiso λiso

0.2503 5.9159 0.4721 3.0000

Evaluated cross section curves do not exhibit the oscillations anymore and may be
considered more in line with the expectation about the proper shape. Compared
to the evaluation without model defects, the resulting cross section curves from the
evaluation with model defects better resemble the experimental data. In addition,
also the negative evaluated cross sections at the threshold energy do (almost) not
appear anymore. Without model defects, the most negative cross section was
about 10 millibarn. In contrast to that, the most negative cross section occurring
when taking into account model defects is approximately –0.1 millibarn—a huge
improvement.
The evaluated model defects are illustrated in Figure 9.18. The graph clearly in-

dicates the deficiency of the model in the (n,2n)-ground channel near the threshold
energy. Exactly this deficiency caused the negative cross section in the evaluation
which did not account for model defects. Further, we recognize the power of Gaus-
sian processes in predicting the shape of unknown functions. Even though, the
employed stationary covariance function implies the prior assumption that the rel-
ative model error is in the same magnitude at every incident energy, the evaluated
model error can have significant different values at different incident energies. In
the current example, the obtained value δiso = 0.4721 reflects the prior assumption
that the model deficiency is in the order of 50%, yet the evaluated model error at
the threshold energy in the (n,2n)-isomer channel is greater than 300%.
Further, the assumption of a uniform model error seems not to hold. If the

model deficiency in several evaluations is always very pronounced at the threshold
energy and almost zero at higher incident energies, one may consider to refine
the assumptions about the model defect. It is possible to construct a covariance
function which implies the assumption of a high and quickly varying model defect
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Figure 9.16: Evaluated cross section curves (green lines) obtained by the surrogate
approach with model defects. The graphs display from top to bottom the (n,2n)-
ground, (n,2n)-isomer, and (n,2n)-total cross section. The squared exponential
covariance function was employed for the model defects.
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at the threshold energy and a slower varying model defect component at higher
incident energies.
The evaluated correlations are shown in Figure 9.19. These correlations are for

the quantity which we denoted the ‘true cross section’, ~σtrue = ~σpred + ~εmod. The
structure visible in these graphs is different from the correlations resulting from an
evaluation without model defects (see Figure 9.15). Correlations within channels
and also between different channels are rather dimmed. Only cross sections at
nearby incident energies are strongly correlated due to the finite length-scale of
the covariance function of the model defect. However, the correlations between the
cross sections of the (n,2n)-isomer and the (n,2n)-total channel at nearby energies
are very pronounced. This finding reflects the sum rule constraint between the
cross section channels: The evaluated cross section curve in the (n,2n)-ground
channel is fixed due to plenty of experimental data; and due to the sum rule
between the cross section channels only one degree of freedom remains for the
(n,2n)-isomer and (n,2n)-total channel. If the cross section curve in the (n,2n)-
isomer channel is shifted upwards, the same shift has to occur in the (n,2n)-total
channel.
The evaluated correlations of the model defect are shown in Figure 9.21. Even

though the model defect of elementary channels are assumed to be apriori uncorre-
lated, the evaluated model defects of the (n,2n)-ground and (n,2n)-isomer channel
are slightly correlated. Further, two domains of the model defect can be distin-
guished in the (n,2n)-ground channel: The model defects below about 16 MeV
are strongly correlated with each other, and the model defect above 16 MeV are
rather strongly correlated. However, the correlation of the model defects between
these domains is very weak.
The evaluated correlations between the model prediction and the model defect

are illustrated in Figure 9.21. All correlations are negative, which is the expected
result. The model prediction is adapted to the experimental data as good as
possible and the model defect helps to overcome the remaining deviation. If the
model prediction slightly changes in some direction, the model defect has to change
in the other direction in order to still yield a good description of the data.
Finally, the evaluated correlations and uncertainties of the (n,2n)-total cross

section are displayed in Figure 9.22. The smallest uncertainty is about 1% where
experimental data are available. In the high energy tail the uncertainty rises to
about 30%. Near the threshold energy the evaluated uncertainty is even larger
than 100%, hence would need to be cut before entering a nuclear data file. For
comparison, also the evaluated correlations of the (n,2n)-total cross section ob-
tained by the surrogate approach without model defects are shown in Figure 9.23.
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Figure 9.17: Evaluated cross section curves (green lines) obtained by the surrogate
approach with model defects. The graphs display from top to bottom the (n,2n)-
ground, (n,2n)-isomer, and (n,2n)-total cross section. The squared exponential
covariance function was employed for the model defects. Length-scales of the
model defects were restricted to values greater than 3 MeV in the maximization
of the marginal likelihood.
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Figure 9.18: Evaluated relative model errors with associated 95% confidence
bands. Shown are from top to bottom the (n,2n)-ground, (n,2n)-isomer, and
(n,2n)-total cross section channel. If included experimental data are reliable, then
the model is clearly deficient near the threshold energy in the (n,2n)-ground chan-
nel. Everywhere else the nuclear model seems to be reliable.
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Figure 9.19: Evaluated correlations of cross sections within and between the re-
action channels obtained by the surrogate approach with model defects. The
channels in the diagonal are from bottom-left to the top-right the (n,2n)-ground,
(n,2n)-isomer and (n,2n)-total cross section channel.
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Figure 9.20: Evaluated correlations of the model defect within and between the
reaction channels obtained by the surrogate approach. The channels in the diag-
onal are from bottom-left to the top-right the (n,2n)-ground, (n,2n)-isomer and
(n,2n)-total cross section channel.
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Figure 9.21: Evaluated correlations between the model defect and the model pre-
diction within and between the reaction channels obtained by the surrogate ap-
proach. The channels in the diagonal are from bottom-left to the top-right the
(n,2n)-ground, (n,2n)-isomer and (n,2n)-total cross section channel.
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Figure 9.22: Evaluated correlations of the evaluated (n,2n)-total cross section and
associated uncertainties obtained by the surrogate approach with model defects.

Figure 9.23: Evaluated correlations of the evaluated (n,2n)-total cross section
and associated uncertainties obtained by the surrogate approach without model
defects.



10

Summary and outlook

The existing evaluation methods (FBET, EMPIRE-MC, EMPIRE-Kalman, UMC-
G, UMC-B, BMC, BFMC) were thoroughly studied in two evaluation scenarios.
In the first scenario, the evaluation was performed with a linear model and hypo-
thetical experimental data. The experimental data were specifically constructed
in order to be not representable by the linear model. Due to the choice of a linear
model, all methods except the BFMC and BMC method collapsed to one common
approach.
The evaluated estimates and uncertainties of all studied methods except BFMC

were inconsistent with the included experimental data. The possibility for the
experimental data points to represent the true cross sections was excluded by the
evaluated uncertainties. Only the uncertainties obtained by the BFMC method
were in agreement with the experimental data due to an alternative choice of the
likelihood.
In the second scenario, an evaluation of the neutron-induced total cross section

of 181Ta was performed. The optical model in the parametrization of Koning
and Delaroche (2003) was employed and the experimental data of Finlay et al.
(1993) were included in the evaluation. The important difference to the first
scenario is the non-linear relationship between model parameters and cross sections
established by the optical model. It has been demonstrated that the optical model
is capable to describe the experimental data rather well.
From the evaluation methods which use a multivariate normal likelihood, only

the FBET, EMPIRE-MC and UMC-G method based on the surrogate approach
produced evaluations consistent with the experimental data. The BFMC and BMC
method using a likelihood different from a multivariate normal distribution were
also consistent, but their evaluated uncertainties were significantly larger than
suggested by the experimental data. In addition, the evaluated covariance matrix
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restricted possible variations of the cross section curve to possibilities within the
model. An undesirable feature if the model is deficient. The evaluations obtained
by all other studied methods were inconsistent with the experimental data.
The investigation of the evaluation methods in the two evaluation scenarios

leads us to the following conclusions:

1. The form of the likelihood reflects the assumptions about the uncertainties in
the experiment. Hence, from a conceptional point of view it is inappropriate
to modify its form in order to obtain evaluated uncertainties of reasonable
magnitude.

2. Using a simplified model (surrogate approach or linearization of the model)
cannot be regarded as a sufficient measure to deal with the deficiencies of
the nuclear model. The deficiency of a model cannot be expected to be
dependent on the degree of non-linearity of the model. Yet, regarding the
surrogate approach as a proper measure to address model defects would
imply this assumption.

3. Proper Bayesian inference can be performed on the basis of evaluation meth-
ods using a simplified model and Monte Carlo methods using the exact nu-
clear model. The choice among these two classes of methods is a choice on
how the Bayesian update formula should be evaluated. However, from a
conceptional point of view it is more important to consider the assumptions
which enter the Bayesian inference procedure.

4. Assumptions about the quality, predictive power or efficiency of the nuclear
model have to enter the prior distribution. If the nuclear model is not con-
sidered to be capable to perfectly predict the ‘true’ cross section curve, an
essential assumption is missing in most contemporary evaluation methods.

On the basis of these conclusions, the Bayesian update formula was extended to
account for the deficiency of the nuclear model. The assumption of contemporary
evaluation methods that the true cross section curve can be predicted by the
nuclear model was replaced by the assumption that the true cross section curve is
the sum of the model prediction and a model error function. Because the shape
of the latter function is unknown, it has to be regarded as a random function
which was modeled as a Gaussian process. Therefore, no specific functional form
needs to be specified for the evaluation. Instead, a probability function on possible
functions is constructed based on the expected smoothness of the evaluated cross
section curve and the expected deviations of the model prediction from reliable
experimental data. The maximization of the marginal likelihood was proposed
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to find the so-called hyperparameters of the Gaussian process, which determine
smoothness and magnitude of the model error function. Moreover, the prior on the
model error functions of different channels was constructed in a way to preserve
the sum rules of cross sections. Exploiting the statistical methodology of Gaussian
process regression, it was shown how the functional form of the model defect can
be explicitly estimated. Both the possibility to explicitly estimate the shape of
the model error and a Bayesian formulation accounting for model defects which
preserves sum rules is unprecedented in nuclear data evaluation.
The extended Bayesian update formula was tested in the evaluation of the

neutron-induced total cross section of 181Ta. The update formula was evaluated
with the iterative linearized Bayesian update approach1. The evaluated cross sec-
tion curve and uncertainties perfectly matched included experimental data. In
addition, the evaluated uncertainties were consistent with the experimental data
which had not been included in the evaluation. Therefore, the open questions of
available methods have been resolved. A second evaluation of the (n,2n) cross
section of 181Ta was performed in order to demonstrate the conservation of sum
rules.
The squared exponential covariance function was chosen in the evaluations to

demonstrate the features of the extended Bayesian approach. This choice implies
certain assumptions on the model error function such as the existence of derivatives
of any order and the prior expectation that the relative model error is independent
of the incident energy. Without further prior knowledge, both assumptions can
be regarded reasonable. However, in some situations prior knowledge may exist
which suggests different assumptions. In such cases, the covariance functions can
be tailored according to the specific prior knowledge. It is even possible to use
other processes than Gaussian processes to model the prior knowledge about the
model error. However, the important conclusion of this thesis is that the model
error must be defined as a random function, which is added to the model prediction
in order to form the true cross section.
How the extended Bayesian formula is evaluated, either by the simplification of

the nuclear model or Monte Carlo methods, is then a completely different question.
If Monte Carlo methods are feasible, they are the preferred choice to evaluate the
Bayesian update formula. The exact model is taken into account and thus a clear
separation between the model prediction and the model error is possible. If the
model is replaced by a surrogate model, it remains an open question whether the
model is accurate or its deficiency (as a model feature) was not captured by the
surrogate model.

1This approach is for instance implemented in the code SAMMY.
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The existing Monte Carlo schemes suggested for the BMC, UMC-B and UMC-
G method proved to be not efficient in the evaluation scenarios. Their sampling
distributions are determined by the prior distribution, yet often the posterior
distribution is to a large extent determined by the likelihood. Additionally, the
proposed sampling distributions for the UMC-G method do not account for the
prior correlations between cross sections, which has a severe negative impact on
convergence.
Therefore, as another achievement of this thesis, a more efficient sampling

scheme has been proposed. The idea is to apply the Metropolis-Hastings algo-
rithm and to use an approximation of the posterior covariance matrix to define a
multivariate normal distribution as proposal distribution. The approximation is
constructed by using the Bayesian update procedure with a simplified model. In
the evaluation of the neutron-induced total cross section of 181Ta with plenty of
experimental data available, the refined sampling scheme has been demonstrated
to be more efficient than the other sampling schemes. However, very likely still
better sampling schemes exist to further increase the speed of convergence.
Finally, the Bayesian update formulas based on the surrogate approach as im-

plemented by the FBET and the EMPIRE-MC method have been reformulated
in order to avoid the explicit calculation of the prior covariance matrix. In the
conventional update scheme it is not feasible to evaluate more than tens of thou-
sands of observables. In contrast to that, the new scheme allows the evaluation of
dozens of millions of observables. Furthermore, model defects can be included in
the new scheme in a straight-forward way.
The new scheme is suited to be implemented as a database application: A

client sends experiment data and an associated covariance matrix to the server
and requests specific evaluated observables (cross sections, angle-differential cross
sections, etc.). The server retrieves the desired observables from a sample of
model calculations with varied model parameters and weights them according to
received experimental data. Simple vector and matrix computations yield then the
posterior means and covariances of the demanded observables, which are sent back
to the client. Such a database application accessible over the Internet could prove
useful to accelerate the production of reliable nuclear data. Due to the inclusion
of model defects, deficiencies of the nuclear models or inconsistent experimental
data can be automatically tracked down without user interaction. Therefore, also
the development of more accurate nuclear models can profit from such a database.



A

Nuclear models

The nuclear models code TALYS (Koning, Hilaire, and Duijvestijn, 2007) was used
to obtain angle-integrated cross sections. Especially, the parameters of the optical
potential were varied in order to generate the prior distributions. In the following
we outline the optical potential as implemented in TALYS. We closely follow the
explanation of the TALYS manual (Koning, Hilaire, and Goriely, 2013).

A.1 Neutron and proton optical potential

The optical potential is a phenomenological approach to describe the interaction
between a nucleon and a nucleus. It explicitly describes shape elastic scattering
while non-elastic channels are only accounted for globally. The numerical solution
of the Schrödinger equation with the optical potential yields several quantities
of interest such as the angle-integrated and angle-differential cross sections of
the shape elastic component. TALYS uses the optical potential in the global
parametrization of Koning and Delaroche (2003).
The optical potential is of the form

U(r, E) =− Vv(r, E)− iWv(r, E)− iWd(r, E)

+ Vso(r, E)` · σ + iWso(r, E)` · σ + VC(r)
(A.1)

with the real and imaginary volume-central components Vv(r, E) andWv(r, E), the
imaginary surface central component Wd(r, E), the real and imaginary spin orbit
component Vso(r, E) and Wso(r, E) and the real Coloumb component VC(r). All
components are separated in well depths Vv,Wv,Wd, Vso, and Wso, which depend
on the laboratory energy of the incident particle, and energy-independent radial
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parts f = f(r),

Vv(r, E) = Vv(E)f(r, Rv, av) ,

Wv(r, E) =Wv(E)f(r, Rv, av) ,

Wd(r, E) = −4adWd(E)
d

dr
f(r, Rd, ad) ,

Vso(r, E) = Vso(E)

(
~
mπc

)2
1

r

d

dr
f(r, Rso, aso) ,

Wso(r, E) =Wso(E)

(
~
mπc

)2
1

r

d

dr
f(r, Rso, aso) .

The form factor f(r, Ri, ai) is given by a Wood-Saxon shape,

f(r, Ri, ai) =

[
1 + exp

(
r −Ri

ai

)]−1

(A.2)

where the radius is determined by Ri = riA
1/3, with the atomic mass number A

and the diffuseness parameter ai. If the particle is charged, the Coloumb term VC

is given by the potential of a uniformly charged sphere,

VC(r) =

{
Zze2

2RC

(
3− r2

R2
C

)
for r ≤ RC

Zze2

r
for r > Rc

, (A.3)

with the charge of the target and the the projectile Z and z, respectively. The
Coloumb radius is given by RC = rCA

1/3. The energy-dependent potential depths
for neutrons and protons take the form

Vv(E) = v1[1− v2(E − Ef ) + v3(E − Ef )2 − v4(E − Ef )3] ,

Wv(E) = w1
(E − Ef )2

(E − Ef )2 + w2
2

,

Wd(E) = d1
(E − Ef )2

(E − Ef )2 + d2
3

exp[−d2(E − Ef )] ,

Vso(E) = vso,1 exp[−vso,2(E − Ef )] ,

Wso(E) = wso,1
(E − Ef )2

(E − Ef )2 + w2
so,2

.

(A.4)

The Fermi energy for neutrons is given by

En
f = −1

2
[Sn(Z,N) + Sn(Z,N + 1)] , (A.5)

where Sn denotes the neutron separation energy. The Fermi energy for the proton
is determined by

Ep
f = −1

2
[Sn(Z,N) + Sn(Z + 1, N)] , (A.6)
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with the proton separation energy Sp available in the nuclear structure database
(National Nuclear Data Center, 2015a). For some isotopes TALYS provides opti-
mized values for the parameters v1, v2, . . . . If such an optimized parameter set is
not available, the global parametrization of Koning and Delaroche (2003) is used,
which is valid for mass numbers in the range 24 ≤ A ≤ 209. The optical potential
parameters for neutrons are given by

rnv = 1.3039− 0.405A−1/3 ,

anv = 0.6778− 1.487× 10−4A ,

rnd = 1.3424− 0.01585A1/3 ,

and = 0.5446− 1.656× 10−4A ,

rnso = 1.1854− 0.647A−1/3 ,

anso = 0.59 ,

vn1 = 59.30− 21
N − Z
A

− 0.024A ,

vn2 = 0.007228− 1.48× 10−6A ,

vn3 = 1.994× 10−5 − 2× 10−8A ,

wn1 = 12.195 + 0.0167A ,

wn2 = 73.55 + 0.0795A ,

dn1 = 16− 16
N − Z
A

,

dn2 = 0.018 +
0.003802

1 + exp[(A− 156)/8]
,

dn3 = 11.5 ,

vnso,1 = 5.922 + 0.0030A ,

vnso,2 = 0.0040 ,

wnso,1 = −3.1 ,

wnso,2 = 160 ,

En
f = −11.2814 + 0.02646A .

(A.7)
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In the case of the proton, the following optical potential parameters are differ-
ently parametrized,

apd = 0.5187− 5.205× 10−4A ,

vp1 = 59.30 + 21
N − Z
A

− 0.024A ,

vp2 = 0.007067 + 4.23× 10−6A ,

vp3 = 1.729× 10−5 + 1.136× 10−8A ,

wp1 = 14.667 + 0.009629A ,

dp1 = 16 + 16
N − Z
A

,

Ep
f = −8.4075 + 0.01378A ,

rC = 1.198 + 0.697A−2/3 + 12.994A−5/3 ,

V C =
1.73ZA−1/3

rC
.

(A.8)

In TALYS the default values can be modified with keywords such as rvadjust,
avadjust, etc. To which nucleon the modification applies is specified by appending
the particle type to the keyword. For instance, rvadjust n 1.05 scales the default
value of rnv by 1.05.



B

Statistics

B.1 Conjugate prior with respect to a likelihood

In Bayesian statistics, the posterior distribution is proportional to the product of
prior distribution and likelihood. If the functional form of the latter product is
of the same form as the prior distribution, the Bayesian update formula can be
conveniently evaluated. Then, it suffices to calculate the distribution parameters
which completely characterize the functional form of the posterior distribution.
Because this property depends not only on the form of the prior distribution but
also on the likelihood, one speaks of a conjugate prior with respect to the likelihood.
In the following we give a formal definition taken from Felsenstein (2006).

Definition

A class of prior density functions Π = {πψ|ψ ∈ Ψ} for the parameters θ in
the parameter space Θ with a set of hyperparameters Ψ is conjugated to a
family of probability density functions P = {Pθ|θ ∈ Θ} if there exists for every
sample x ∈ X of the sample space X and every πψ ∈ Ψ a ψx ∈ Ψ such that

θ|X = x ∼ πψx ∈ Π , (B.1)

for X|θ ∼ Pθ and θ ∼ πψ.

The notation x ∼ P indicates that the random variable x is distributed ac-
cording to the probability density distribution P . As an example, consider the
estimation of the mean value m of a random variable x distributed according to
a normal distribution with known variance v. Hence, for a given choice of m we
have x ∼ `(x|m) = N (m, v). The set of all admissible values of m represents
the parameter space Θ. The prior distribution π(m) for the mean value m could
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be given as a normal distribution with center µ and standard deviation δ. It
reflects the uncertainty about the unknown value of m. The quantities µ and δ

are called hyperparameters because they determine the probability distribution
for the parameter m which has to be inferred. A concrete measurement x̃ is as-
sociated with the likelihood `(x̃|m) which is reduced to a function of m. The
posterior π(m|x̃) ∝ `(x̃|m)π(m) is again a normal distribution for the mean value
m characterized by new hyperparameters µ′ and δ′.

B.2 chi-square statistics

The χ2-distribution plays a prominent role in statistics. It appears in several sta-
tistical tests, such as the χ2-test of independence, and is used to assess the quality
of a model fit to data. In this thesis, the χ2-distribution is frequently used to de-
termine confidence regions associated with the multivariate normal distribution.
Let the random variables Z1, . . . , Zk be distributed according to a standard

normal distribution, Zi ∼ N (0, 1), then the sum of their squares is distributed
according to a χ2-distribution with k degrees of freedom,

Z1 + Z2 + · · ·+ Zk = X ∼ χ2
k . (B.2)

The probability density distribution fk(x) of the χ2-distribution with k degrees
of freedom is given by

fk(x) =

{
xk/2−1 exp(−x/2)

2k/2Γ(k/2)
for x > 0

0 for x ≤ 0
(B.3)

The associated cumulative distribution function Fk(x) =
∫∞
−∞ fk(x) dx is often

given in tabulated form. However, if k is an even number, it takes the simple form

Fk(x) = 1− exp
(
−x

2

) k/2−1∑
i=0

1

Γ(i+ 1)

(x
2

)i
. (B.4)

Using the χ2-distribution, confidence regions of a multivariate normal distri-
bution with mean vector ~µ and covariance matrix Σ can be determined. The
confidence region within the true vector is located with probability p is given by

(~x− ~µ)TΣ−1(~x− ~µ) ≤ χ2
k(p) , (B.5)

where χ2
k(p) denotes the quantile function for probability p of the χ2-distribution.
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B.3 Woodbury identity

The Woodbury matrix identity (Woodbury, 1950) is used in section 3.2 to obtain
a particular form of the Bayesian update formula and is given by

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (B.6)

with A,U,C, and V being matrices of appropriate dimension.
The validity of the formula can be verified by multiplying both sides by (A +

UCV) from the left. Evidently, the left side equals the identity matrix, and
therefore it suffices to evaluate the right hand side of Equation B.6,

(A + UCV)[A−1 −A−1U(C−1 + VA−1U)−1VA−1]

= 1+ UCVA−1 − (U + UCVA−1U)(C−1 + VA−1U)−1VA−1

= 1+ UCVA−1 −UC(C−1 + VA−1U)(C−1 + VA−1U)−1VA−1

= 1+ UCVA−1 −UCVA−1 = 1 .

(B.7)
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