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Kurzfassung

Diese Arbeit besteht aus drei Teilen.
Im ersten Teil wird die Stabilität des unterdimensionalen Busemann-

Petty Problems für beliebige Maße gezeigt. Daraus resultiert eine Verall-
gemeinerung der sogenannten Hyperebenen Ungleichung für Schnittkörper,
wobei das Volumen durch ein beliebiges Maß mit einer stetigen Dichte er-
setzt wird und Schnitte von beliebigen Dimensionen n − k, 1 ≤ k < n
betrachtet werden. Dieser Teil beruht auf der gemeinsamen Arbeit mit
Koldobsky [40].

Bourgain, Brezis & Mironescu [7] haben gezeigt, dass unter geeigneter
Skalierung, die gebrochene Sobolev s-Halbnorm einer Funktion f ∈ W 1,p(Rn)
zur Sobolev Halbnorm von f konvergiert, wenn s → 1−. Ludwig [55] be-
nutzte ein Minkowski-Funktional mit der EinheitskugelK um eine anisotrope
gebrochene Sobolev s-Halbnorm von f einzuführen. Diese konvergieren,
wenn s → 1− zu der anisotropen Sobolev Halbnorm von f , die durch ein
Minkowski-Funktional, das als Einheitskugel den polaren Lp Momenten-
körper von K besitzt, definiert ist. In diesem Teil wird gezeigt, dass asym-
metrische anisotrope s-Halbnormen zu der anisotropen Sobolev Halbnorm
von f konvergieren wenn s → 1−, welche durch ein Minkowski-Funktional
mit dem polaren asymmetrischen Lp Momentenkörper von K als Einheits-
kugel definiert werden. Dieser Abschnitt basiert auf [65].

Im letzten, dritten Teil werden reellwertige, stetige, SL(n) und transla-
tionsinvariante Bewertungen auf Sobolevräumen klassifiziert.
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Abstract

This thesis consists of three parts.
In the first part, the stability of the lower dimensional Busemann-Petty

problem for arbitrary measures is shown. This further yields a generaliza-
tion of the hyperplane inequality for intersection bodies, where volume is
replaced by an arbitrary measure with even continuous density and sections
are of arbitrary dimension n − k, 1 ≤ k < n. This is based on joint work
with Koldobsky [40].

Bourgain, Brezis & Mironescu [7] showed that (with suitable scaling)
the fractional Sobolev s-seminorm of a function f ∈ W 1,p(Rn) converges
to the Sobolev seminorm of f as s → 1−. Ludwig [55] introduced the
anisotropic fractional Sobolev s-seminorms of f defined by the norm on Rn

whose unit ball is K. She showed that they converge to the anisotropic
Sobolev seminorm of f defined by the norm whose unit ball is the polar
Lp moment body of K as s → 1−. In the second part, the asymmetric
anisotropic s-seminorms are shown to converge to the anisotropic Sobolev
seminorm of f defined by the Minkowski functional of the polar asymmetric
Lp moment body of K as s→ 1−. This is based on [65].

In the third part, continuous, SL(n) and translation invariant real-
valued valuations on Sobolev spaces are classified.
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Chapter 1

Introduction

The concept of convex bodies (i.e. compact convex sets) is the main theme
throughout this thesis. In the first part, we study sections of convex
bodies. In the second part, the anisotropic Sobolev seminorm defined by the
Minkowski functional of the polar asymmetric Lp moment body of a convex
body is shown to be the limit of the asymmetric anisotropic Sobolev norm.
In the third part, the classification of real-valued valuations on Sobolev
spaces makes use of the centro-affine Hadwiger characterization theorem
for convex polytopes.

The first part of this thesis starts with Minkowski’s uniqueness theorem
for sections. It states that an origin-symmetric star body (i.e. compact sets
such that every line through the origin meets them in a line segment) in
Rn is uniquely determined by the volumes of its central hyperplane sections
in all directions (see, for example, [36, Corollary 3.9]). Does there exist a
volume comparison via central hyperplane sections? Busemann and Petty
[10] asked if given two origin-symmetric convex bodies K and L in Rn such
that

Voln−1(K ∩H) ≤ Voln−1(L ∩H)

for every central hyperplane H in Rn, does it follow that

Voln(K) ≤ Voln(L).

After more than forty years, the answer turned out to be affirmative if
n ≤ 4 and negative if n ≥ 5 (see, for example, [18,36]).

For 1 ≤ k ≤ n, an origin-symmetric star body is also uniquely deter-
mined by the volumes of all of its (n − k)-dimensional subspaces sections

1



Chapter 1. Introduction 2

(see, for example, [36, Corollary 3.10]). It is natural to ask for a volume
comparison via sections of lower dimensions. Suppose that for every (n−k)-
dimensional subspace H ⊂ Rn,

Voln−k(K ∩H) ≤ Voln−k(L ∩H).

Does it follow that
Voln(K) ≤ Voln(L)?

Bourgain and Zhang [9] provided a negative answer to this lower dimen-
sional Busemann-Petty problem when n− k > 3. However, it still remains
open in the cases of two- and three-dimensional sections.

Instead of Lebesgue measure, one can also ask for volume comparisons
via arbitrary measures. Let f be an even continuous non-negative function
on Rn, and denote by µ the measure on Rn with density f , that is, for every
compact set B ⊂ Rn, we define

µ(B) =

∫
B

f.

Zvavitch [87] gave an affirmative answer to the Busemann-Petty problem
for arbitrary measures for n ≤ 4, while the general answer is negative for
n ≥ 5.

Stability is a step further than the volume comparison. Here we ask
how the perturbations of the volumes (or measures) of sections affect the
volume comparison. Suppose that ε > 0 and for every ξ ∈ Sn−1,

gK(ξ) ≤ gL(ξ) + ε,

where gK is a volume (or measure) of sections of K. Does there exist a
constant c not dependent on ε and such that for every ε

Voln(K)
n−1
n ≤ Voln(L)

n−1
n + cε?

Koldobsky [37,38] obtained the stabilities for the Busemann-Petty problem
(for arbitrary measures). Stabilities for other geometric inequalities can be
found in [21] and references therein.

In this part, in joint work with Koldobsky [40], we establish the stability
in the affirmative case of the lower dimensional Busemann-Petty problem.
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Theorem 1.1. Let K and L be origin-symmetric star bodies in Rn, and
1 ≤ k < n. Suppose K is a generalized k-intersection body (see Chapter 2
for definitions and properties) and ε > 0. If for every (n− k)-dimensional
subspace H of Rn

Voln−k(K ∩H) ≤ Voln−k(L ∩H) + ε, (1.1)

then
Voln(K)

n−k
n ≤ Voln(L)

n−k
n + cn,k ε, (1.2)

where cn,k = |Bn
2 |(n−k)/n/|Bn−k

2 | and |Bn
2 | is the volume of the unit Euclidean

ball.

The stability of the lower dimensional Busemann-Petty problem for ar-
bitrary measures is as follows.

Theorem 1.2. Let K and L be origin-symmetric star bodies in Rn, and
1 < k < n. Suppose K is a generalized k-intersection body and ε > 0. If
for every (n− k)-dimensional subspace H of Rn

µ(K ∩H) ≤ µ(L ∩H) + ε, (1.3)

then
µ(K) ≤ µ(L) +

n

n− k
cn,kVoln(K)k/nε.

Furthermore, we apply these stability results to the slicing problem
(or hyperplane conjecture), which is one of the main open problems in the
asymptotic theory of convex bodies. It asks whether every origin-symmetric
convex body of volume 1 has a hyperplane section through the origin whose
volume is greater than an absolute constant 1/C. This problem was posed
by Bourgain [5]. The best-to-date estimate C ∼ n1/4 is due to Klartag [34],
who removed the logarithmic term from the previous estimate of Bourgain
[6]. As shown in Milman and Pajor’s famous paper [70], it is equivalent to
ask whether there exists an absolute constant C such that for every n ∈ N
and every origin-symmetric convex body K ⊂ Rn

(Voln(K))
n−k
n ≤ Ck max

H∈G(n,n−k)
Voln−k(K ∩H), (1.4)

where G(n, n−k) is the Grassmannian of (n−k)-dimensional subspaces of
Rn. We prove a generalization of this inequality to arbitrary measures for
generalized k-intersection bodies.
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Corollary 1.3. Let 1 ≤ k < n, and suppose that K is a generalized
k-intersection body in Rn. Then

µ(K) ≤ n

n− k
cn,k max

H∈G(n,n−k)
µ(K ∩H) Voln(K)k/n. (1.5)

In the second part of this thesis, we study the limit behavior of asym-
metric anisotropic fractional Sobolev norms. Let Ω be an open set in Rn.
For p ≥ 1 and 0 < s < 1, Gagliardo introduced the fractional Sobolev
spaces

W s,p(Ω) =

{
f ∈ Lp(Ω) :

|f(x)− f(y)|
|x− y|

n
p

+s
∈ Lp(Ω× Ω)

}
,

and the fractional Sobolev s-seminorm of a function f ∈ Lp(Ω)

‖f‖pW s,p(Ω) =

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+ps dxdy

(see [16]). They have found many applications in pure and applied mathe-
matics (see [8, 13,66]).

Although ‖f‖W s,p(Ω) → ∞ as s → 1−, Bourgain, Brezis and Mironescu
showed in [7] that

lim
s→1−

(1− s) ‖f‖pW s,p(Ω) =
Kn,p

p
‖f‖pW 1,p(Ω) , (1.6)

for f ∈ W 1,p(Ω) and Ω ⊂ Rn a smooth bounded domain, where

Kn,p =
2Γ((p+ 1)/2)π(n−1)/2

Γ((n+ p)/2)

is a constant depending on n and p,

‖f‖pW 1,p =

∫
Ω

|∇f(x)|p dx

is the Sobolev seminorm of f , and ∇f : Rn → Rn denotes the Lp weak
derivative of f . Throughout this thesis, the Sobolev space on Rn with in-
dices k and p is denoted by W k,p(Rn) (see Chapter 4 for precise definitions).
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If instead of the Euclidean norm |·|, we consider an arbitrary norm ‖·‖K
with unit ball K, we obtain the anisotropic Sobolev seminorm,

‖f‖pW 1,p,K =

∫
Rn

‖∇f(x)‖pK∗ dx,

where K∗ = {v ∈ Rn : v · x ≤ 1 for all x ∈ K} is the polar body of K, and
v · x denotes the inner product between v and x. Anisotropic Sobolev
seminorms and the corresponding Sobolev inequalities attracted a lot of
attentions in recent years (see [3, 12,15,22]).

Anisotropic s-seminorms, introduced very recently by Ludwig [55], re-
flect a fine structure of the anisotropic fractional Sobolev spaces. She es-
tablished that

lim
s→1−

(1− s)
∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+ps
K

dxdy =
2

p

∫
Rn

‖∇f(x)‖pZ∗pK dx,

for f ∈ W 1,p(Rn) with compact support, where the norm associated with
Z∗pK, the polar Lp moment body of K, is defined as

‖v‖pZ∗pK =
n+ p

2

∫
K

|v · x|p dx,

for v ∈ Rn, and a convex body K ⊂ Rn. Several different other cases were
considered in [54,55,76].

In this part, by replacing the absolute value |·| by the positive part (·)+,
for x ∈ R, where (x)+ = max {0, x}, we obtain the following generalization
[65]. Note that here it is no longer required that K is origin-symmetric.
As a consequence, for K ⊂ Rn a convex body containing the origin in its
interior and x ∈ Rn,

‖x‖K = min {λ ≥ 0 : x ∈ λK}

just defines the Minkowski functional of K and no longer a norm.

Theorem 1.4. If f ∈ W 1,p(Rn) has compact support, then

lim
s→1−

(1− s)
∫
Rn

∫
Rn

(f(x)− f(y))p+
‖x− y‖n+sp

K

dxdy =
1

p

∫
Rn

‖∇f(x)‖p
Z+,∗
p K

dx,

where Z+,∗
p K is the polar asymmetric Lp moment body of K.
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For a convex body K ⊂ Rn, the polar asymmetric Lp moment body is
the unit ball of the Minkowski functional defined by

‖v‖p
Z+,∗
p K

= (n+ p)

∫
K

(v · x)p+ dx,

for v ∈ Rn, Z−p K = Z+
p (−K). For p > 1, in [48], Ludwig introduced and

characterized the two-parameter family

c1 · Z+
p K +p c2 · Z−p K

as all possible Lp analogs of moment bodies, including the symmetric case

ZpK =
1

2
· Z+

p K +p
1

2
· Z−p K,

where ‖·‖p(α·K+pβ·L)∗ = α ‖·‖pK∗ + β ‖·‖pL∗ , for α, β ≥ 0, defines the Lp
Minkowski combination. In recent years, this family of convex bodies have
found important applications within convex geometry, probability theory,
and the local theory of Banach spaces (see [18, 25, 29, 47, 48, 50, 59–64, 72–
75,84]).

The proof given in this part makes use of an asymmetric version of the
one-dimensional case of result (1.6) by Bourgain, Brezis and Mironescu and
an asymmetric decomposition of Blaschke-Petkantschin type.

In the third part of this thesis, continuous, SL(n) and translation in-
variant real-valued valuations on Sobolev spaces are classified. A function
z defined on a lattice (L,∨,∧) and taking values in an abelian semigroup
is called a valuation if

z(f ∨ g) + z(f ∧ g) = z(f) + z(g) (1.7)

for all f, g ∈ L. A function z defined on some subset M of L is called a
valuation on M if (1.7) holds whenever f, g, f ∨ g, f ∧ g ∈ M. Valuations
were a key part of Dehn’s solution of Hilbert’s Third Problem in 1901;
they are closely related to dissections and lie at the very heart of geo-
metry. Here, valuations were considered on the space of convex bodies
in Rn, denoted by Kn. Perhaps the most famous result is the Hadwiger
characterization theorem on this space which classifies all continuous and
rigid motion invariant real-valued valuations. Important later contributions
can be found in [30, 33, 67, 68]. As for recent results, we refer to [1, 2, 23–
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26, 28, 31, 32, 44, 46, 47, 49, 56, 57, 74, 75, 77–79, 84]. For later reference, we
state here a centro-affine version of the Hadwiger characterization theorem
on the space of convex polytopes containing the origin in their interiors,
which is denoted by Pn0 .

Theorem 1.5 ( [27]). A map Z : Pn0 → R is an upper semicontinuous and
SL(n) invariant valuation if and only if there exist constants c0, c1, c2 ∈ R
such that

Z(P ) = c0 + c1Voln(P ) + c2Voln(P ∗)

for all P ∈ Pn0 .

Valuations are also considered on spaces of real-valued functions. Here,
we take pointwise maximum and minimum as join and meet, respective-
ly. Two important functions associated with every convex body K in Rn

are the indicator function 1K and the support function h(K, ·), where
h(K, u) = max {u · x : x ∈ K} for every u ∈ Rn. As each of them is in
one-to-one correspondence with K, valuations on these function spaces are
often considered to be valuations on convex bodies.

Since 2010, valuations on other classical function spaces started to be
characterized. Tsang [81] characterized real-valued valuations on Lp-spaces.

Theorem A ( [81]). A functional z : Lp(Rn)→ R is a continuous trans-
lation invariant valuation if and only if there exists a continuous function
on R with the property that there exists c ≥ 0 such that |h(x)| ≤ c |x|p for
all x ∈ R and

z(f) =

∫
Rn

h ◦ f

for every f ∈ Lp(Rn).

Kone [42] generalized this characterization to Orlicz spaces. As for
valuations on Sobolev spaces, Ludwig characterized the Fisher information
matrix and the optimal Sobolev body. The additive group of real symmetric
n×n matrices is denoted by 〈Mn,+〉. An operator z : W 1,2(Rn)→ 〈Mn,+〉
is called GL(n) contravariant if for some p ∈ R,

z
(
f ◦ φ−1

)
= |detφ|p φ−tz(f)φ−1

for all f ∈ W 1,2(Rn) and φ ∈ GL(n), where detφ is the determinant
of φ and φ−t denotes the inverse of the transpose of φ. An operator
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z : W 1,2(Rn) → 〈Mn,+〉 is called affinely contravariant if it is GL(n)
contravariant, translation invariant and homogeneous (see Chapter 4 for
precise definitions).

Theorem B ( [51]). An operator z : W 1,2(Rn)→ 〈Mn,+〉, where n ≥ 3,
is a continuous and affinely contravariant valuation if and only if there is
a constant c ∈ R such that

z(f) = c

∫
Rn

∇f ⊗∇f

for every f ∈ W 1,2(Rn).

Other recent and interesting characterizations can be found in [4,11,53,
71,82,83].

In this part, we classify real-valued valuations on W 1,p(Rn). The result
regarding homogeneous valuations is stated first. Let 1 ≤ p < n within this
part. We say that a valuation is trivial if it is identically zero.

Theorem 1.6. A functional z : W 1,p(Rn)→ R is a non-trivial continuous,
SL(n) and translation invariant valuation that is homogeneous of degree q
if and only if p ≤ q ≤ np

n−p and there exists a constant c ∈ R such that

z(f) = c ‖f‖qq (1.8)

for every f ∈ W 1,p(Rn).

It is natural to consider the same characterization without the assump-
tion of homogeneity. It turns out to be more complicated and costs addi-
tional assumptions. We first fix the following notation. Let Ck(Rn) denote
the space of functions on Rn that have k times continuous partial derivatives
for a positive integer k; let BVloc(R) denote the space of functions on R that
are of locally bounded variation. We denote by Gp the class of functions g
that belong to BVloc(R) and satisfy

g(x) ∼
{
O(xp), as x→ 0;

O(x
np
n−p ), as x→∞. (1.9)

and by Bp the class of functions g that belong to Cn(R) with g(n) ∈ BVloc(R)
and xkg(k)(x) satisfying (1.9) for each integer 1 ≤ k ≤ n. Let P 1,p(Rn) be
the set of functions `P with P ∈ Pn0 that enclose pyramids of height 1 on
P (see Chapter 4 for the precise definition).
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Theorem 1.7. A functional z : W 1,p(Rn) → R is a continuous, SL(n)
and translation invariant valuation with z(0) = 0 and s 7→ z(sf) in Bp for
s ∈ R and f ∈ P 1,p(Rn) if and only if there exists a continuous function
h ∈ Gp such that

z(f) =

∫
Rn

h ◦ f,

for every f ∈ W 1,p(Rn).



Chapter 2

Stability and slicing
inequalities for intersection
bodies

The radial function of a star body K is defined by

ρK(x) = ‖x‖−1
K , x ∈ Rn.

If x ∈ Sn−1 then ρK(x) is the radius of K in the direction of x.
Writing the volume of K in polar coordinates, one gets

Voln(K) =
1

n

∫
Sn−1

ρnK(θ)dθ =
1

n

∫
Sn−1

‖θ‖−nK dθ. (2.1)

The spherical Radon transform R : C(Sn−1) 7→ C(Sn−1) is a linear
operator defined by

Rf(ξ) =

∫
Sn−1∩ξ⊥

f(x) dx, ξ ∈ Sn−1

for every function f ∈ C(Sn−1).
The polar formula (2.1) for the volume of a hyperplane section expresses

this volume in terms of the spherical Radon transform (see for example [36,
p.15]):

SK(ξ) = Voln−1(K ∩ ξ⊥) =
1

n− 1
R(‖ · ‖−n+1

K )(ξ). (2.2)

10
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The spherical Radon transform is self-dual (see [21, Lemma 1.3.3]): for
any functions f, g ∈ C(Sn−1)∫

Sn−1

Rf(ξ) g(ξ) dξ =

∫
Sn−1

f(ξ) Rg(ξ) dξ. (2.3)

Using self-duality, one can extend the spherical Radon transform to
measures. Let µ be a finite Borel measure on Sn−1. We define the spherical
Radon transform of µ as a functional Rµ on the space C(Sn−1) acting by

(Rµ, f) = (µ,Rf) =

∫
Sn−1

Rf(x)dµ(x).

By Riesz’s characterization of continuous linear functionals on the space
C(Sn−1), Rµ is also a finite Borel measure on Sn−1. If µ has continuous
density g, then by (2.3) the Radon transform of µ has density Rg.

The class of intersection bodies was introduced by Lutwak [58]. Let K,L
be origin-symmetric star bodies in Rn. We say that K is the intersection
body of L if the radius of K in every direction is equal to the (n − 1)-
dimensional volume of the section of L by the central hyperplane orthogonal
to this direction, i.e. for every ξ ∈ Sn−1,

ρK(ξ) = ‖ξ‖−1
K = Voln−1(L ∩ ξ⊥). (2.4)

All the bodies K that appear as intersection bodies of different star bodies
form the class of intersection bodies of star bodies.

Note that the right-hand side of (2.4) can be written in terms of the
spherical Radon transform using (2.2):

‖ξ‖−1
K =

1

n− 1

∫
Sn−1∩ξ⊥

‖θ‖−n+1
L dθ =

1

n− 1
R(‖ · ‖−n+1

L )(ξ).

It means that a star body K is the intersection body of a star body if and
only if the function ‖ · ‖−1

K is the spherical Radon transform of a continuous
positive function on Sn−1. This allows to introduce a more general class of
bodies. A star body K in Rn is called an intersection body if there exists a
finite Borel measure µ on the sphere Sn−1 so that ‖·‖−1

K = Rµ as functionals
on C(Sn−1), i.e. for every continuous function f on Sn−1,∫

Sn−1

‖x‖−1
K f(x) dx =

∫
Sn−1

Rf(x) dµ(x). (2.5)
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Intersection bodies played the crucial role in the solution of the original
Busemann-Petty problem due to the following connection found by Lutwak
[58]. If K in an origin-symmetric intersection body in Rn and L is any
origin-symmetric star body in Rn, then the inequalities SK(ξ) ≤ SL(ξ)
for all ξ ∈ Sn−1 imply that Voln(K) ≤ Voln(L), i.e. the answer to the
Busemann-Petty problem in this situation is affirmative. For more infor-
mation about intersection bodies, see [36, Chapter 4], [41], [18, Chapter 8]
and references there. In particular, every origin-symmetric convex body in
Rn, n ≤ 4 is an intersection body; see [17, 19, 86]. Also the unit ball of
any finite dimensional subspace of Lp, 0 < p ≤ 2 is an intersection body;
see [35].

Zhang in [85] introduced a generalization of intersection bodies. For
1 ≤ k ≤ n − 1, the (n − k)-dimensional spherical Radon transform is an
operator Rn−k : C(Sn−1) 7→ C(G(n, n− k)) defined by

Rn−k (f) (H) =

∫
Sn−1∩H

f(x)dx, H ∈ G(n, n− k).

Denote the image of the operator Rn−k by X:

Rn−k
(
C(Sn−1)

)
= X ⊂ C(G(n, n− k)).

Let M+(X) be the space of linear positive continuous functionals on X, i.e.
for every ν ∈M+(X) and non-negative function f ∈ X, we have ν(f) ≥ 0.

An origin-symmetric star bodyK in Rn is called a generalized k-intersection
body if there exists a functional ν ∈M+(X), so that for every f ∈ C(Sn−1),∫

Sn−1

‖x‖−kK f(x)dx = ν(Rn−k (f)).

When k = 1 we get the class of intersection bodies. It was proved by
Grinberg and Zhang [20, Lemma 6.1] that every intersection body in Rn is
a generalized k-intersection body for every k < n. More generally, as proved
later by Milman [69], if m divides k, then every generalized m-intersection
body is a generalized k-intersection body. Zhang [85] showed that the
answer to the lower dimensional Busemann-Petty problem is affirmative
if and only if every origin-symmetric convex body in Rn is a generalized
k-intersection body.

Denote by 1S ≡ 1 and 1G ≡ 1 the functions which are equal to 1
everywhere on the unit sphere Sn−1 and the Grassmannian G(n, n − k),
correspondingly. Then, Rn−k (1S) = |Sn−k−1| 1G.
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We are now ready to prove the stability in the lower dimensional Busemann-
Petty problem.

Proof of Theorem 1.1. By the polar formula for volume (2.1), for each H ∈
G(n, n− k) we have

Voln−k(K ∩H) =
1

n− k
Rn−k

(
‖·‖−n+k

K

)
(H), (2.6)

Then the inequality (1.1) can be written as

Rn−k

(
‖·‖−n+k

K

)
(H) ≤ Rn−k

(
‖·‖−n+k

L

)
(H) + (n− k)ε. (2.7)

Since K is a generalized k-intersection body, there exists µ0 ∈ M+, such
that for each ψ ∈ C (Sn−1),∫

Sn−1

‖x‖−kK ψ(x)dx = µ0(Rn−k (ψ)). (2.8)

Since µ0 is a positive functional, by (2.7) and (2.8), we have

nVoln(K) =

∫
Sn−1

‖x‖−kK ‖x‖
−n+k
K dx

= µ0

(
Rn−k

(
‖·‖−n+k

K

))
≤ µ0

(
Rn−k

(
‖·‖−n+k

L

))
+ (n− k)εµ0(1G)

:= I + II. (2.9)

Using (2.8), Hölder’s inequality and polar formula for the volume, we get

I =

∫
Sn−1

‖x‖−kK ‖x‖
−n+k
L dx

≤
(∫

Sn−1

‖x‖−nK dx

)k/n(∫
Sn−1

‖x‖−nL dx

)(n−k)/n

= nVoln(K)k/nVoln(L)(n−k)/n. (2.10)

Now, by (2.8), the well-known formula |Sn−1| = n|Bn
2 | (see [36, p. 33]) and
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Hölder’s inequality,

II = (n− k)εµ0(1G) =
(n− k)ε

|Sn−k−1|

∫
Sn−1

‖x‖−kK 1S(x) dx

≤ (n− k)ε

|Sn−k−1|

(∫
Sn−1

‖x‖−nK dx

)k/n
|Sn−1|

n−k
n

=
nk/n(n− k)|Sn−1|n−k

n

|Sn−k−1|
Voln(K)k/nε

=
n|Bn

2 |
n−k
n

|Bn−k−1
2 |

Voln(K)k/nε.

Combining this with (2.9) and (2.10), we get the result.

Remark 2.1. Note that in (1.2) cn,k < 1, which immediately follows from
the log-convexity of the gamma-function (see, for example, [39, Lemma
2.1]). Also, in the formulation of Theorem 1 in [38] the constant cn,1 was
replaced by 1, though the proof there gives the result with cn,1.

We now pass to stability for arbitrary measures. Let µ be a measure on
Rn with even continuous density f. The measure µ of a star body K can
be expressed in polar coordinates as follows:

µ(K) =

∫
K

f(x) dx =

∫
Rn

1[0,1](‖x‖K)f(x) dx

=

∫
Sn−1

(∫ ‖θ‖−1
K

0

rn−1f(rθ) dr

)
dθ. (2.11)

Similarly, we can express the volume of a section of K by an (n − k)
-dimensional subspace H of Rn as

µ(K ∩H) =

∫
H

1[0,1] (‖x‖K) f(x)dx

=

∫
Sn−1∩H

(∫ ‖θ‖−1
K

0

tn−k−1f (tθ) dt

)
dθ

= Rn−k

(∫ ‖θ‖−1
K

0

rn−k−1f(rθ) dr

)
(H), (2.12)
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where the Radon transform is applied to a function of the variable θ ∈ Sn−1.
We need the following lemma, which was also used by Zvavitch in his

proof.

Lemma 2.2. Let a, b, k ∈ R+, and α be a non-negative function on
(0,max {a, b}), such that the integral below converges. Then∫ a

0

rn−1α(r) dt− ak
∫ a

0

rn−k−1α(r) dr

≤
∫ b

0

rn−1α(r) dr − ak
∫ b

0

rn−k−1α(r) dr

Proof. The result follows from

ak
∫ b

a

rn−k−1α(r) dr ≤
∫ b

a

rn−1α(r) dr.

Proof of Theorem 1.2. Using (2.12), inequality (1.3) can be written as

Rn−k

(∫ ‖θ‖−1
K

0

rn−k−1f(rθ) dr

)
(H) (2.13)

≤ Rn−k

(∫ ‖θ‖−1
L

0

rn−k−1f(rθ) dr

)
(H) + ε, ∀H ∈ G(n, n− k).

As in the proof of Theorem 1.1, let µ0 be the positive functional associ-
ated with the generalized k-intersection body K. Applying µ0 to both sides
of (2.13) and then using (2.8), we get∫

Sn−1

‖θ‖−kK

(∫ ‖θ‖−1
K

0

rn−k−1f(rθ) dr

)
dθ (2.14)

≤
∫
Sn−1

‖θ‖−kK

(∫ ‖θ‖−1
L

0

rn−k−1f(rθ) dr

)
dθ + εµ0(1G).

Applying Lemma 2.2 with a = ‖θ‖−1
K , b = ‖θ‖−1

L and α(r) = f(rθ) and
then integrating over the sphere, we get∫ ‖θ‖−1

K

0

rn−1f(rθ) dr − ‖θ‖−kK
∫ ‖θ‖−1

K

0

rn−k−1f(rθ) dr
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≤
∫ ‖θ‖−1

L

0

rn−1f(rθ) dr − ‖θ‖−kK
∫ ‖θ‖−1

L

0

rn−k−1f(rθ) dr,

and

∫
Sn−1

(∫ ‖θ‖−1
K

0

rn−1f(rθ) dr

)
dθ (2.15)

−
∫
Sn−1

‖θ‖−kK

(∫ ‖θ‖−1
K

0

rn−k−1f(rθ) dr

)
dθ

≤
∫
Sn−1

(∫ ‖θ‖−1
L

0

rn−1f(rθ) dr

)
dθ

−
∫
Sn−1

‖θ‖−kK

(∫ ‖θ‖−1
L

0

rn−k−1f(rθ) dr

)
dθ.

Adding (2.14) and (2.15) and using (2.11) we get

µ(K) ≤ µ(L) + εµ0(1G).

As shown in the proof of Theorem 1.1,

µ0(1G) ≤ n

n− k
Voln(K)k/n,

which completes the proof.

Remark 2.3. In Theorem 1.2, in the case f ≡ 1, we get another stability
result for volume which is weaker than what is provided by Theorem 1.1.
This is the reason why we state Theorem 1.1 separately. However, for
arbitrary measures the constant in Theorem 1.2 is the best possible, as
follows from the example after Corollary 1.3.

In the case where k = 1 and K is an intersection body, the inequality
(1.4) is known for sections of arbitrary dimension with the best possible
constant. In particular, if the dimension n ≤ 4, then (1.4) is true for any
origin-symmetric convex body K. The proof is an immediate consequence of
Zhang’s connection between generalized intersection bodies and the lower
dimensional Busemann-Petty problem; apply this connection to any gene-
ralized k-intersection body K and L = Bn

2 . Then use the fact that every
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intersection body is a generalized k-intersection body for every k (see [20]
or [69]). For every fixed k, the inequality (1.4) holds for any generalized
k-intersection body.

We prove several generalizations of (1.4) using the stability results for-
mulated above. First, interchanging K and L in Theorem 1.1, we get the
following “difference” inequality, previously established in [38, Corollary 1]
in the hyperplane case.

Corollary 2.4. Let K and L be origin-symmetric star bodies in Rn, and
1 ≤ k < n. Suppose K and L are generalized k-intersection bodies, then∣∣∣Voln(K)

n−k
n − Voln(L)

n−k
n

∣∣∣
≤ cn,k max

H∈G(n,n−k)
|Voln−k(K ∩H)− Voln−k(L ∩H)| .

Putting L = ∅ in the latter inequality, we get (1.4) for any generalized
k-intersection body K.

Interchanging K and L in Theorem 1.2, we get the following inequality,
which was earlier proved for k = 1 in [37, Corollary 1].

Corollary 2.5. Let K and L be origin-symmetric star bodies in Rn, and
1 ≤ k < n. Suppose that K and L are generalized k-intersection bodies.
Then

|µ(K)− µ(L)| ≤
n

n− k
cn,k max

H
|µ(K ∩H)− µ(L ∩H)|max

{
Voln(K)k/n,Voln(L)k/n

}
,

where maximum is taken over all (n− k)-dimensional subspaces H of Rn.

Putting L = ∅, we have Corollary 1.3.
The constant in the right-hand side of (1.5) is the best possible. In

fact, let K = Bn
2 and, for every j ∈ N, let fj be a non-negative continuous

function on [0, 1] supported in (1− 1
j
, 1) and such that

∫ 1

0
fj(t)dt = 1. Let

µj be the measure on Rn with density fj(|x|2), where |x|2 is the Euclidean
norm. We have

µj(B
n
2 ) = |Sn−1|

∫ 1

0

rn−1fj(r)dr,
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where |Sn−1| = 2πn/2/Γ(n/2) is the surface area of the unit sphere in Rn.
For every H ∈ G(n, n− k),

µj(B
n
2 ∩H) = |Sn−k−1|

∫ 1

0

rn−k−1fj(r)dr.

Clearly,

lim
j→∞

∫ 1

0
rn−1fj(r)dr∫ 1

0
rn−k−1fj(r)dr

= 1.

Using |Sn−1| = n|Bn
2 |, we get

lim
j→∞

µj(B
n
2 )

maxH µj(Bn
2 ∩H) Voln(Bn

2 )k/n
=

|Sn−1|
|Sn−k−1||Bn

2 |k/n
=

n

n− k
cn,k,

which shows that the constant is asymptotically optimal.



Chapter 3

Asymmetric anisotropic
fractional Sobolev norms

This chapter is devoted to the proof of Theorem 1.4.
First, we need the asymmetric one-dimensional analogue of (1.6). For

its proof we require the following result from [7].

Lemma 3.1. Let ρ ∈ L1(Rn) and ρ ≥ 0. If f ∈ W 1,p(Rn) is compactly
supported and 1 ≤ p <∞, then∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|p
ρ(x− y)dxdy ≤ C ‖f‖pW 1,p ‖ρ‖L1

where C depends only on p and the support of f .

Let Ω ⊂ R be a bounded domain.

Proposition 3.2. If f ∈ W 1,p(Ω), then

lim
s→1−

(1− s)
∫
Ω

∫
Ω∩{x>y}

(f(x)− f(y))p+

|x− y|1+ps dxdy =
1

p

∫
Ω

(f ′(x))
p
+ dx. (3.1)

Proof. Take a sequence (ρε) of radial mollifiers, i.e. ρε(x) = ρε(|x|); ρε ≥ 0;∫∞
0
ρε(x)dx = 1; lim

ε→0

∫∞
δ
ρε(r)dr = 0 for every δ > 0. Let Fε(x, y) =

(f(x)−f(y))+
|x−y| ρ

1/p
ε (x− y), for x > y. It suffices to prove that

lim
ε→0

∫
Ω

∫
Ω∩{x>y}

Fε
p(x, y)dxdy =

∫
Ω

(f ′(x))
p
+ dx. (3.2)

19
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Indeed, as in [80], let R > max {|x− y| : x, y ∈ Ω}, ε = 1− s and

ρε(x) =
1[0,R](|x|)
Rεp

pε

|x|1−pε
.

Then one obtains (3.1) from (3.2) as desired.
By Lemma 3.1, we have, for any ε > 0 and f, g ∈ W 1,p(Ω)∣∣∣‖Fε‖Lp(Ω×Ω) − ‖Gε‖Lp(Ω×Ω)

∣∣∣ ≤ ‖Fε −Gε‖Lp(Ω×Ω) ≤ C ‖f − g‖W 1,p ,

for some constant C dependent on ε, f and g. Therefore, it suffices to
establish (3.2) for f in some dense subset of W 1,p(Ω), e.g., for f ∈ C2(Ω̄),
where Ω̄ is the closure of Ω.

Fix f ∈ C2(Ω̄). Since for t ∈ R and λ > 0, (λt)+ = λ (t)+, there exists
δ > 0, such that for y < x < y + δ and a constant c,∣∣∣∣(f(x)− f(y))p+

|x− y|p
− (f ′(y))

p
+

∣∣∣∣ ≤ c(x− y).

We have ∫
Ω∩{x>y}

(f(x)− f(y))p+
|x− y|p

ρε(x− y)dx

=

∫
Ω∩{y<x<y+δ}

(f(x)− f(y))p+
|x− y|p

ρε(x− y)dx

+

∫
Ω∩{x≥y+δ}

(f(x)− f(y))p+
|x− y|p

ρε(x− y)dx,

yet, only the former integral on the right hand side need be considered, as
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the latter vanishes. In fact, for each fixed y ∈ Ω, since∣∣∣∣∣∣
y+δ∫
y

(
(f(x)− f(y))p+
|x− y|p

− (f ′(y))
p
+

)
ρε(x− y)dx

∣∣∣∣∣∣
≤

y+δ∫
y

∣∣∣∣(f(x)− f(y))p+
|x− y|p

− (f ′(y))
p
+

∣∣∣∣ ρε(x− y)dx

≤c
y+δ∫
y

(x− y)ρε(x− y)dx

=c

δ∫
0

rρε(r)dr → 0, as ε→ 0,

we have

lim
ε→0

y+δ∫
y

(f(x)− f(y))p+
|x− y|p

ρε(x− y)dx

= (f ′(y))
p
+ lim
ε→0

y+δ∫
y

ρε(x− y)dx

= (f ′(y))
p
+ lim
ε→0

δ∫
0

ρε(r)dr

= (f ′(y))
p
+ .

Therefore,

lim
ε→0

∫
Ω∩{x>y}

(f(x)− f(y))p+
|x− y|p

ρε(x− y)dx = (f ′(y))
p
+ . (3.3)

Since f ∈ C2(Ω̄), there exists L > 0 is such that |f(x)− f(y)| < L |x− y|,
for every x, y ∈ Ω, then∫

Ω

|f(x)− f(y)|p

|x− y|p
ρε(x− y)dx ≤ Lp, for each y ∈ Ω. (3.4)
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Hence, for f ∈ C2(Ω), (3.2) follows by dominated convergence theorem
from (3.3) and (3.4).

Now, for u ∈ Sn−1, the Euclidean unit sphere, let [u] = {λu : λ ∈ R}
and [u]+ = {λu : λ > 0}. Denote the k-dimensional Hausdorff measure on
Rn by Hk. For f ∈ W 1,p(Rn), we denote by f̄ its precise representative
(see [14, Section 1.7.1]). We require the following result. For every u ∈
Sn−1, the precise representative f̄ is absolutely continuous on the lines
L = {x+ λu : λ ∈ R} for Hn−1-a.e. x ∈ u⊥ and its first-order (classical)
partial derivatives belong to Lp(Rn) (see [14, Section 4.9.2]). Hence, we
have for the restriction of f̄ to L,

f̄
∣∣
L
∈ W 1,p(L) (3.5)

for a.e. line L parallel to u.

Proof of Theorem 1.4. By the polar coordinate formula and Fubini’s theo-
rem, we have∫

Rn

∫
Rn

(f(x)− f(y))p+
‖x− y‖n+sp

K

dHn(x)dHn(y)

=

∫
Rn

∫
Sn−1

‖u‖−(n+ps)
K

∞∫
0

(f(y + ru)− f(y))p+
r1+sp

dH1(r)dσ(u)dHn(y)

=

∫
Sn−1

‖u‖−(n+ps)
K

∞∫
0

∫
u⊥

∫
[u]+z

(f(w + ru)− f(w))p+
r1+sp

dH1(w)dHn−1(z)dH1(r)dσ(u)

=

∫
Sn−1

‖u‖−(n+ps)
K

∫
u⊥

∫
[u]+z

∞∫
0

(f(w + ru)− f(w))p+
r1+sp

dH1(r)dH1(w)dHn−1(z)dσ(u)

=

∫
Sn−1

‖u‖−(n+ps)
K

∫
u⊥

∫
[u]+z

∫
[u]++w

(f(t)− f(w))p+

|t− w|1+sp dH1(t)dH1(w)dHn−1(z)dσ(u),

(3.6)

where σ denotes the standard surface area measure on Sn−1. By Proposition
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3.2 and (3.5), we obtain

lim
s→1−

(1− s)
∫

[u]+z

∫
[u]++w

(f(t)− f(w))p+

|t− w|1+sp dH1(t)dH1(w)

=
1

p

∫
[u]+z

(∇f(t) · u)p+ dH
1(t). (3.7)

By Fubini’s theorem and the polar coordinate formula, we get

1

p

∫
Sn−1

‖u‖−(n+p)
K

∫
u⊥

∫
[u]+z

(∇f(t) · u)p+ dH
1(t)dHn−1(z)dσ(u)

=
1

p

∫
Sn−1

∫
Rn

‖u‖−(n+p)
K (∇f(x) · u)p+ dH

n(x)dσ(u)

=
n+ p

p

∫
K

∫
Rn

(∇f(x) · y)p+ dH
n(x)dHn(y)

Using Fubini’s theorem and the definition of the asymmetric Lp moment
body of K, we obtain∫

Sn−1

‖u‖−(n+p)
K

∫
u⊥

∫
[u]+z

(∇f(t) · u)p+ dH
1(t)dHn−1(z)dσ(u)

=

∫
Rn

‖∇f(x)‖p
Z+,∗
p K

dHn(x). (3.8)

So, in particular, we have∫
Sn−1

∫
u⊥

∫
[u]+z

(∇f(t) · u)p+ dH
1(t)dHn−1(z)dσ(u)

=
n+ p

4
Kn,p

∫
Rn

|∇f(x)|p dHn(x) < +∞. (3.9)

Using the dominated convergence theorem with Lemma 3.1 and (3.9),
we obtain from (3.6), (3.7) and (3.8) that

lim
s→1−

(1− s)
∫
Rn

∫
Rn

(f(x)− f(y))p+
‖x− y‖n+sp

K

dxdy =
1

p

∫
Rn

‖∇f(x)‖p
Z+,∗
p K

dx.
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Remark 3.3. In Theorem 1.4, let g = −f and (x)− = −min {0, x} =
(−x)+, for x ∈ R. Then, we get

lim
s→1−

(1− s)
∫
Rn

∫
Rn

(f(x)− f(y))p−
‖x− y‖n+sp

K

dxdy =
1

p

∫
Rn

‖∇f(x)‖p
Z−,∗
p K

dx.



Chapter 4

Real-valued valuations on
Sobolev spaces

For p ≥ 1 and a measurable function f : Rn → R, let

‖f‖p =

(∫
Rn

|f(x)|p dx
)1/p

.

Define Lp(Rn) to be the class of measurable functions with ‖f‖p <∞ and
Lploc(Rn) to be the class of measurable functions with ‖f1K‖p <∞ for every
compact K ⊂ Rn.

A measurable function ∇f : Rn → Rn is said to be the weak gradient
of f ∈ Lp(Rn) if∫

Rn

ν(x) · ∇f(x)dx = −
∫
Rn

f(x)∇ · ν(x)dx (4.1)

for every compactly supported smooth vector field ν : Rn → Rn, where
∇ · ν = ∂ν

∂x1
+ · · · + ∂ν

∂xn
. A function f ∈ L1(Rn) is said to be of bounded

variation on Rn if there exists a finite signed vector-valued Radon measure
λ on Rn such that∫

Rn

ν(x) · ∇f(x)dx =

∫
Rn

ν(x) · dλ(x)

for every ν as mentioned before. A function f ∈ L1
loc(Rn) is said to be of

locally bounded variation on Rn if f is of bounded variation on all open
subset of Rn.

25
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The Sobolev space W 1,p(Rn) consists of all functions f ∈ Lp(Rn) whose
weak gradient belongs to Lp(Rn) as well. For each f ∈ W 1,p(Rn), we define
the Sobolev norm to be

‖f‖W 1,p(Rn) =
(
‖f‖pp + ‖∇f‖pp

)1/p

,

where ‖∇f‖p denotes the Lp norm of |∇f |. Equipped with the Sobolev

norm, the Sobolev space W 1,p(Rn) is a Banach space.

Theorem 4.1 ( [45]). Let {fi} be a sequence in W 1,p(Rn) that converges
to f ∈ W 1,p(Rn). Then, there exists a subsequence {fij} that converges to
f a.e. as j →∞.

Furthermore, for 1 ≤ p < n, W 1,p(Rn) is continuously embedded in
Lq(Rn) for all p ≤ q ≤ p∗, where p∗ = np

n−p is the Sobolev conjugate of p,
due to the Sobolev-Gagliardo-Nirenberg inequality stated as the following
theorem.

Theorem 4.2 ( [43]). Let 1 ≤ p < n. There exists a positive constant C,
depending only on p and n, such that

‖f‖p∗ ≤ C ‖∇f‖p

for all f ∈ W 1,p(Rn).

Remark 4.3. By Theorem 4.2, the expression in (1.8) is well defined.

For f, g ∈ W 1,p(Rn), we have f ∨ g, f ∧ g ∈ W 1,p(Rn) and for almost
every x ∈ Rn,

∇(f ∨ g)(x) =


∇f(x), when f(x) > g(x)
∇g(x), when f(x) < g(x)
∇f(x) = ∇g(x), when f(x) = g(x)

and

∇(f ∧ g)(x) =


∇f(x), when f(x) < g(x)
∇g(x), when f(x) > g(x)
∇f(x) = ∇g(x), when f(x) = g(x)

(see [45]). Hence (W 1,p(Rn),∨,∧) is a lattice.
Let L1,p(Rn) ⊂ W 1,p(Rn) be the space of piecewise affine functions on

Rn. Here, a function ` : Rn → R is called piecewise affine, if it is continuous
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and there exists a finite number of n-dimensional simplices 41, . . . ,4m ⊂
Rn with pairwise disjoint interiors such that the restriction of ` to each 4i

is affine and ` = 0 outside 41 ∪ · · · ∪ 4m. The simplices 41, . . . ,4m are
called a triangulation of the support of `. Let V denote the set of vertices
of this triangulation. We further have that V and the values `(v) for v ∈ V
completely determine `. Piecewise affine functions lie dense in W 1,p(Rn)
(see [43]).

For P ∈ Pn0 , define the piecewise affine function `P by requiring that
`P (0) = 1, that `P (x) = 0 for x /∈ P , and that `P is affine on each simplex
with apex at the origin and base among facets of P . Define P 1,p(Rn) ⊂
L1,p(Rn) as the set of all `P for P ∈ Pn0 . For φ ∈ GL(n), `φP = `P ◦ φ−1.
We remark that multiples and translates of `P ∈ P 1,p(Rn) correspond to
linear elements within the theory of finite elements.

For P ∈ Pn0 , let F1, . . . , Fm be the facets of P . For the facet Fi, let ui
be its unit outer normal vector and Ti the convex hull of Fi and the origin.
Since for x ∈ Ti,

`P (x) = − ui
h(P, ui)

· x+ 1

and
∇`P (x) = − ui

h(P, ui)
,

we have

‖`P‖pp =

∫
Rn

|`P |p dx

= p

∫ 1

0

tp−1Voln ({`P > t}) dt

= pVoln(P )

∫ 1

0

tp−1(1− t)ndt

= cp,nVoln(P ),
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where cp,n = Γ(p+1)Γ(n+1)
Γ(n+p+1)

=
(
n+p
n

)−1
, and

‖∇`P‖pp =

∫
Rn

|∇`P (x)|p dx

=
m∑
i=1

∫
Ti

∣∣∣∣ ui
h(P, ui)

∣∣∣∣p dx
=

m∑
i=1

Voln(Ti)

hp(P, ui)

=
1

n

m∑
i=1

Voln−1(Fi)h
1−p(P, ui)

=
1

n
Sp(P ),

where Sp(P ) is the Lp surface area of P .
Let z : W 1,p(Rn) → R be a functional. It is called continuous if for

every sequence fk ∈ W 1,p(Rn) with fk → f as k → ∞ with respect to the
Sobolev norm, we have |z(fk)− z(f)| → 0 as k →∞. It is called translation
invariant if z(f ◦ τ−1) = z(f) for all f ∈ W 1,p(Rn) and translations τ . It
is called homogeneous if for some q ∈ R, we have z(sf) = |s|q z(f) for all
f ∈ W 1,p(Rn) and s ∈ R. It is called SL(n) invariant if z(f ◦ φ−1) = z(f)
for all f ∈ W 1,p(Rn) and φ ∈ SL(n). Denote the derivative of the map
s 7→ z(sf) by

Dzf (s) = lim
ε→0

z ((s+ ε)f)− z(sf)

ε
,

whenever it exists.
We have the following examples of valuations on W 1,p(Rn).

Theorem 4.4. Let h ∈ Gp be a continuous function. Then, for every
f ∈ W 1,p(Rn), the functional

z(f) =

∫
Rn

h ◦ f

is a continuous, SL(n) and translation invariant valuation. Furthermore,
z(0) = 0 and the map s 7→ z(sf) belongs to Bp for every s ∈ R and
f ∈ P 1,p(Rn).
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Proof. 1. Valuation. Let f, g ∈ W 1,p(Rn) andE = {x ∈ Rn : f(x) ≥ g(x)}.
Then

z(f ∨ g) + z(f ∧ g) =

∫
Rn

h ◦ (f ∨ g) +

∫
Rn

h ◦ (f ∧ g)

=

∫
E

h ◦ (f ∨ g) +

∫
Rn\E

h ◦ (f ∨ g)

+

∫
E

h ◦ (f ∧ g) +

∫
Rn\E

h ◦ (f ∧ g)

=

∫
E

h ◦ f +

∫
Rn\E

h ◦ g +

∫
E

h ◦ g +

∫
Rn\E

h ◦ f

=

∫
Rn

h ◦ f +

∫
Rn

h ◦ g

= z(f) + z(g).

2. Continuity. Let f ∈ W 1,p(Rn) and {fi} be a sequence in W 1,p(Rn)
that converges to f . For every subsequence

{
z(fij)

}
⊂ {z(fi)}, we are

going to show that there exists a subsequence {z(fijk )} that converges to
z(f). Let {fij} be a subsequence of {fi}. Then, {fij} converges to f in
W 1,p(Rn). Thus, there exists a subsequence {fijk} ⊂ {fij} with fijk → f
a.e. as k →∞. Furthermore, since h is continuous, we obtain h◦fijk → h◦f
a.e. as k →∞. Since h satisfies (1.9), there exist δ > 0 and M1 > 0, such
that whenever |x| < δ, we have |h(x)| ≤ M1 |x|p. Let E1 = {|f | < 3δ/4}.
Since fijk → f a.e. as k → ∞, for such δ > 0, there exists N1 > 0, such
that whenever k > N1, we obtain |fijk − f | < δ/4 a.e. Thus, |fijk | < δ
a.e. on E1. Hence, for such k, |h ◦ fijk | ≤ M1|fijk |

p a.e. on E1. Since

M1

∫
E1
|fijk |

p ≤ M1‖fijk‖
p
p < ∞, by the dominated convergence theorem,

we have

lim
k→∞

∫
E1

h ◦ fijk =

∫
E1

h ◦ f.

On the other hand, there exist M0 > 0 and M2 > 0, such that whenever
|x| > M0, we obtain |h(x)| ≤ M2 |x|p

∗
. Let E2 = {|f | > 3M0/2}. Since

fijk → f a.e. as k → ∞, for such M0 > 0, there exists N2 > 0, such that
whenever k > N2, we have |fijk − f | < M0/2 a.e. Thus, |fijk | > M0 a.e. on

E2. Hence, for such k, |h ◦ fijk | ≤M2|fijk |
p∗ a.e. on E2. Since

M2

∫
E2

∣∣∣fijk ∣∣∣p∗ ≤M2

∥∥∥fijk∥∥∥p∗p∗ ≤ CM2

∥∥∥∇fijk∥∥∥p∗p <∞,
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by the dominated convergence theorem, we obtain

lim
k→∞

∫
E2

h ◦ fijk =

∫
E2

h ◦ f.

Now, let E3 = Rn \ (E1∪E2) and N = max {N1, N2}. Then, for k > N , we
have δ/2 ≤ |fijk | ≤ 2M0 a.e. on E3. Thus, for such k, since h is continuous,
there exists γ > 0, such that |h ◦ fijk | ≤ γ|fijk | a.e. on E3. Since

γ

∫
E3

∣∣∣fijk ∣∣∣ ≤ γ
∥∥∥fijk∥∥∥1

≤ γ
∥∥∥fijk∥∥∥p <∞,

again by the dominated convergence theorem, we obtain

lim
k→∞

∫
E3

h ◦ fijk =

∫
E3

h ◦ f.

3. SL(n) invariance. Let f ∈ W 1,p(Rn) and φ ∈ SL(n). Then

z(f ◦ φ−1) =

∫
Rn

h ◦ f ◦ φ−1 =

∫
Rn

h
(
f
(
φ−1x

))
dx.

By setting y = φ−1x, we obtain

z(f ◦ φ−1) =

∫
Rn

h (f(y)) dy

=

∫
Rn

h ◦ f = z(f).

4. Translation invariance. Let f ∈ W 1,p(Rn) and τ be a translation.
Then

z(f ◦ τ−1) =

∫
Rn

h ◦ f ◦ τ−1 =

∫
Rn

h
(
f
(
τ−1x

))
dx.

By setting y = τ−1x, we obtain

z(f ◦ τ−1) =

∫
Rn

h (f(y)) dy

=

∫
Rn

h ◦ f = z(f).

5. z(0) = 0 follows from the continuity of z and (1.9).
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6. Differentiability. Let `P ∈ P 1,p(Rn), where P ∈ Pn0 . Without loss
of generality, we assume s > 0. Indeed, set

he(x) =
h(x) + h(−x)

2
and ho(x) =

h(x)− h(−x)

2

for every x ∈ R, and the case s < 0 follows from

z(−s`P ) =

∫
Rn

(he + ho) ◦ (−s`P )

=

∫
Rn

(he ◦ (−s`P ) + ho ◦ (−s`P ))

=

∫
Rn

(he ◦ (s`P )− ho ◦ (s`P )) .

Since h ∈ BVloc(R), there exists a signed measure ν on R, such that h(s) =
ν([0, s)) for every s > 0 (this can be done by setting ν = 1[0,s) in (4.1)). By
the layer cake representation, we have

z(s`P ) =

∫
Rn

h ◦ (s`P )

=

∫ s

0

Voln ({s`P > t}) dν(t) = Voln(P )

∫ s

0

(
s− t
s

)n
dν(t).

In other words,

snz(s`P ) = Voln(P )

∫ s

0

(s− t)ndν(t). (4.2)

We are going to show the differentiability by induction. Let k ≥ 2 and
ψk(s) be the kth derivative of

∫ s
0

(s− t)ndν(t) with respect to s. We have

ψk(s) =
n!

(n− k)!

∫ s

0

(s− t)n−kdν(t). (4.3)

In particular, we obtain ψn(s) = n!h(s). On the other hand, differentiating
the left hand side of (4.2), we have

ψ1(s)Voln(P ) = nsn−1z(s`P ) + snDz`P (s) ‖`P‖W 1,p(Rn) .

By induction, we get

ψk(s)Voln(P ) =
k∑
j=0

(
k

j

)
n!

(n− k + j)!
sn−k+jDjz`P (s) ‖`P‖jW 1,p(Rn) . (4.4)
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In particular, we obtain

ψn(s)Voln(P ) = n!
n∑
j=0

(
n

j

)
sjDjz`P (s) ‖`P‖jW 1,p(Rn) ,

which coincides with n!Voln(P )h(s). Since h is a continuous locally BV
function, we have the desired differentiability of s 7→ z(s`P ).

7. Growth condition. First of all, by (4.2),

z(s`P ) = Voln(P )

∫ s

0

(
s− t
s

)n
dν(t)

≤ Voln(P )

∫ s

0

dν(t)

= Voln(P )h(s)

satisfies (1.9). As shown in the previous step ((4.3) and (4.4)), for every
integer 1 ≤ k ≤ n,

k∑
j=0

(
k

j

)
n!

(n− k + j)!
sn−k+jDjz`P (s) ‖`P‖jW 1,p(Rn)

=
n!

(n− k)!
Voln(P )

∫ s

0

(s− t)n−kdν(t)

i.e.
k∑
j=0

(
k

j

)
n!

(n− k + j)!
sjDjz`P (s) ‖`P‖jW 1,p(Rn)

=
n!

(n− k)!
Voln(P )

∫ s

0

(
s− t
s

)n−k
dν(t)

≤ n!

(n− k)!
Voln(P )h(s)

also satisfies (1.9).

4.1 The characterization of homogeneous

valuations

First, we need the following reduction similar to [52, Lemma 8]. We include
the proof for the sake of completeness.
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Lemma 4.5. Let z1, z2 : L1,p(Rn) → R be continuous and translation
invariant valuations satisfying z1(0) = z2(0) = 0. If z1(sf) = z2(sf) for all
s ∈ R and f ∈ P 1,p(Rn), then

z1(f) = z2(f) (4.5)

for all f ∈ L1,p(Rn).

Proof. We first make the following reduction steps for (4.5).
1. Non-negative f ∈ L1,p(Rn). Since z1 and z2 are valuations satisfy-

ing z1(0) = z2(0) = 0, we have for i = 1, 2,

zi(f ∨ 0) + zi(f ∧ 0) = zi(f) + zi(0) = zi(f).

For i = 1, 2, let

zei (f) =
zi(f) + zi(−f)

2
, zoi (f) =

zi(f)− zi(−f)

2

and hence zi(f) = zei (f) + zoi (f) for all f ∈ L1,p(Rn). Therefore, we have

zei (f ∧ 0) = zei (−((−f) ∧ 0)) = zei ((−f) ∧ 0)

and
zoi (f ∧ 0) = zoi (−((−f) ∧ 0)) = −zoi ((−f) ∧ 0) .

Thus, it suffices to show that (4.5) holds for all non-negative f ∈ L1,p(Rn).
2. f ∈ L1,p(Rn) where the values f(v) are distinct for v ∈ V

with f(v) > 0. Let f not vanish identically and S be the triangulation of
the support of f in n-dimensional simplices, such that f

∣∣
4 is affine for each

simplex 4 ∈ S. Denote by V the (finite) set of vertices of S. Note that f is
determined by its value on V . Since there always exists an approximation
of f by g ∈ L1,p(Rn) where the values g(v) are distinct for v ∈ V with
g(v) > 0, by continuity of z1 and z2, we have the reduction.

3. f ∈ L1,p(Rn) that are concave on their supports. Let f1, . . . , fm ∈
L1,p(Rn) non-negative and concave on their supports such that

f = f1 ∨ · · · ∨ fm. (4.6)

For i = 1, 2, by the inclusion-exclusion principle, we obtain

zi(f) = zi(f1 ∨ · · · ∨ fm) =
∑
J

(−1)|J |−1zi(fJ),
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where J is a non-empty subset of {1, . . . ,m} and

fJ = fj1 ∧ · · · ∧ fjk

for J = {j1, . . . , jk}. Indeed, such representation in (4.6) exists. We de-
termine fi’s by their value on V . Set fi(v) = f(v) on the vertices v of the
simplex 4i of S. Choose a polytope Pi containing 4i and set fi(v) = 0
on the vertices v of Pi. Then (4.6) holds, if Pi’s are chosen suitably small.
The reduction follows since the meet of concave functions is still concave.

4. f ∈ L1,p(Rn) such that F is not singular. Given a function
f ∈ L1,p(Rn). Let F ⊂ Rn+1 be the compact polytope bounded by the
graph of f and the hyperplane {xn+1 = 0}. We say F is singular if F has n
facet hyperplanes that intersect in a line L parallel to {xn+1 = 0} but not
contained in {xn+1 = 0}. Similar to the second step, by continuity of z1 and
z2, it suffices to show (4.5) for f ∈ L1,p(Rn) such that F is not singular.

Let a function f satisfying reduction steps 1-4 be given. Denote by p̄
the vertex of F with the largest xn+1-coordinate. We are now going to
show (4.5) by induction on the number m of facet hyperplanes of F that
are not passing through p̄. In the case m = 1, a scaled translate of f is
in P 1,p(Rn). Since z1 and z2 are translation invariant, (4.5) holds. Let
m ≥ 2. Let p0 = (x0, f(x0)) be a vertex of F with minimal xn+1-coordinate
and H1, . . . , Hj be the facet hyperplanes of F through p0 which do not
contain p̄. Notice that there exists at least one such hyperplane. Write
F̄ as the polytope bounded by the intersection of all facet hyperplanes of
F other than H1, . . . , Hj. Since F is not singular, F̄ is bounded. Thus,
there exists an f ∈ L1,p(Rn) that corresponds to F . Note that F̄ has at
most (m − 1) facet hyperplanes not containing p̄. Let H̄1, . . . , H̄i be the
facet hyperplanes of F̄ that contain p0. Choose hyperplanes H̄i+1, . . . , H̄k

also containing p0 such that the hyperplanes H̄1, . . . , H̄k and {xn+1 = 0}
enclose a pyramid with apex at p0 that is contained in F̄ and has x0 in its
base with H̄1, . . . , H̄i among its facet hyperplanes. Therefore, there exists
a piecewise affine function ` corresponding to this pyramid. Moreover, a
scaled translate of ` is in P 1,p(Rn). We also obtain that a scaled translate
of ¯̀ = f ∧ ` is in P 1,p(Rn). To summarize, scaled translates of ¯̀ and `
are in P 1,p(Rn), the polytope F̄ has at most (m− 1) facet hyperplanes not
containing p̄, and

f ∨ ` = f̄ and f ∧ ` = ¯̀.
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Applying valuations z1 and z2, we have for i = 1, 2,

zi(f) + zi(`) = zi(f̄) + zi(¯̀).

Thus, the induction hypotheses yields the desired result.

The classification will also make use of the following elementary fact.

Remark 4.6. Let f and g be functions on R. If f(x) ∼ o (g(x)h(x)) as
x→ 0, for each function h on R with limx→0 h(x) =∞, then

f(x) ∼ O(g(x)) as x→ 0.

This can be seen by the following simple argument. Suppose
∣∣f(x)

/
g(x)

∣∣→
∞ as x → 0. Let h =

√∣∣f/g∣∣. It is clear that h(x) → ∞ as x → 0. But
now ∣∣f(x)

/
(g(x)h(x))

∣∣ =
√∣∣f(x)

/
g(x)

∣∣ = h(x)→∞ as x→ 0,

which yields a contradiction. The similar argument also works for the limit
x→∞.

Lemma 4.7. Let z : L1,p(Rn)→ R be a continuous, SL(n) and translation
invariant valuation with z(0) = 0. Then there exists a continuous function
c : R→ R satisfying (1.9) such that

z(s`P ) = c(s)Voln(P ),

for every s ∈ R and `P ∈ P 1,p(Rn).

Proof. Similar to the proof of Lemma 5 in [52]. Define the functional
Z : Pn0 → R by setting

Z(P ) = z(s`P ),

for every s ∈ R and `P ∈ P 1,p(Rn). If `P , `Q ∈ P 1,p(Rn) are such that
`P ∨ `Q ∈ P 1,p(Rn), then `P ∨ `Q = `P∪Q and `P ∧ `Q = `P∩Q. Since z is a
valuation on L1,p(Rn), it follows for P,Q, P ∪Q ∈ Pn0 that

Z(P ) + Z(Q) = z(s`P ) + z(s`Q)

= z(s(`P ∨ `Q)) + z(s(`P ∧ `Q))

= Z(P ∪Q) + Z(P ∩Q).
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Thus, Z : Pn0 → R is a valuation.
By Theorem 1.5, there exist c0, c1, c2 ∈ R now depending on s such that

z(s`P ) = c0(s) + c1(s)Voln(P ) + c2(s)Voln(P ∗), (4.7)

for all s ∈ R and `P ∈ P 1,p(Rn). We now investigate the behavior of these
constants by studying valuations on different s`P ’s and their translations,
for s ∈ R.

We start with c0 and c2.
Example 1. Let P ∈ Pn0 . Take translations τ1, . . . , τk, such that the

φiP ’s are pairwise disjoint, where φiP = τi (P/k
i). Consider the function

fk = s (`φ1P ∨ · · · ∨ `φkP ), s ∈ R. Then, we have

‖fk‖pp = |s|p
k∑
i=1

∫
φiP

`pφiP = |s|p
k∑
i=1

∫
φiP

(
`P
(
φ−1
i x
))p

dx

= |s|p
k∑
i=1

k−in
∫
P

`pP = |s|p ‖`P‖pp
k∑
i=1

k−in → 0 as k →∞.

Further,

‖∇fk‖pp = |s|p
k∑
i=1

∫
φiP

|∇`φiP |
p = |s|p

k∑
i=1

∫
φiP

∣∣∇ (`P ◦ φ−1
i

)∣∣p
= |s|p

k∑
i=1

∫
φiP

∣∣φ−ti ∇`P (φ−1
i x
)∣∣p dx

= |s|p
k∑
i=1

kip
∫
φiP

∣∣∇`P (φ−1
i x
)∣∣p dx

= |s|p
k∑
i=1

k−i(n−p) ‖∇`P‖pp → 0 as k →∞.

Thus, fk → 0 in W 1,p(Rn) as k →∞.
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By translation invariance of z and (4.7), we have

z(fk) =
k∑
i=1

z(s`P/ki) =
k∑
i=1

(
c0(s) +

c1(s)

kin
Voln(P ) + c2(s)kinVoln(P ∗)

)

= kc0(s) + c1(s)Voln(P )
k∑
i=1

k−in

+c2(s)Voln(P ∗)
k∑
i=1

kin → 0 as k →∞.

Therefore, c2(s) has to vanish, as the geometric series diverges, as well as
c0(s), for every s ∈ R.

Now, let’s further determine c1 by two different examples.
Example 2. For each function f with limx→0 f(x) = ∞, let P ∈ Pn0

and Pk = P (kp/f(1/k))
1
n , for k = 1, 2, . . .. Then, we have

‖`Pk
/k‖pp = cn,pk

−pVoln(Pk) = cn,pVoln(P )/f(1/k)→ 0 as k →∞,

‖∇`Pk
/k‖pp =

1

n
k−pSp(Pk) =

1

n
Sp(P )k−

p2

n (f(1/k))
p−n
n → 0 as k →∞.

Thus, `Pk
/k → 0 in W 1,p(Rn) as k →∞.

By (4.7), we obtain

z (`Pk
/k) = c1(1/k)kpVoln(P )/f(1/k)→ 0 as k →∞.

Therefore, c1(1/k) ∼ o (f(1/k)/kp) as k → ∞. Similarly, considering
−`Pk

/k, we obtain the same estimate as x→ 0−. Hence, c1(x) ∼ o(xpf(x))
as x→ 0. It follows that c1(x) ∼ O(xp) as x→ 0 via Remark 4.6.

Example 3. For each function f with limx→∞ f(x) = ∞, let P ∈ Pn0
and Pk = P

/ (
kp
∗
f(k)

) 1
n , for k = 1, 2, . . .. Then, we have

‖k`Pk
‖pp = cn,pk

pVoln(Pk) = cn,pk
p−p∗ (f(k))−1 Voln(P )→ 0 as k →∞,

‖∇k`Pk
‖pp =

1

n
kpSp(Pk) =

1

n
Sp(P ) (f(k))

p−n
n → 0 as k →∞.

Thus, k`Pk
→ 0 in W 1,p(Rn) as k →∞.

By (4.7), we obtain

z (k`Pk
) = c1 (k) k−p

∗
(f(k))−1 Voln(P )→ 0 as k →∞.
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Therefore, c1 (k) ∼ o(kp
∗
f(k)) as k → ∞. Similarly, considering −k`Pk

,
we obtain the same estimate as x → −∞. Hence, c1(x) ∼ o

(
xp
∗
f(x)

)
as

x→∞. It follows that c1(x) ∼ O(xp
∗
) as x→∞ via Remark 4.6.

Now, we are ready to proof the result on homogeneous valuations.

Proof of Theorem 1.6. In the light of Lemma 4.5, it suffices to consider the
case f = s`P for every s ∈ R and `P ∈ P 1,p(Rn). In this case, due to
Lemma 4.7, there exists a continuous function c : R → R satisfying (1.9)
such that

z(s`P ) = c(s)Voln(P ) (4.8)

for every s ∈ R and `P ∈ P 1,p(Rn). On the other hand, by homogeneity,
there exists a constant c ∈ R such that

z(s`P ) = c |s|q Voln(P ) (4.9)

for every s ∈ R and `P ∈ P 1,p(Rn). Formulas (4.8) and (4.9) yield

c(s) = c |s|q (4.10)

for every s ∈ R.
For q < p or q > p∗, since c(s) satisfies (1.9), which is impossible with

the expression (4.10), we have c = 0. It follows that z(s`P ) = 0 for every
s ∈ R and `P ∈ P 1,p(Rn).

For p ≤ q ≤ p∗, set c̃ =
(
n+q
q

)
c. By properties of the beta and the

gamma function and the layer cake representation, we have

c(s) = c̃ |s|q
(
n+ q

q

)−1

= c̃q |s|q Γ(q)Γ(n+ 1)

Γ(n+ q + 1)

= c̃q |s|q
∫ 1

0

tq−1(1− t)ndt

= c̃q

∫ 1

0

(|s| t)q−1(1− t)nd |s| t

= c̃q

∫ |s|
0

tq−1

(
|s| − t
|s|

)n
dt.
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Thus,

c(s)Voln(P ) = c̃q

∫ |s|
0

tq−1Voln ({|s| `P > t}) dt

= c̃

∫
Rn

(|s| `P (x))qdx

= c̃ ‖s`P‖qq .

4.2 A more general characterization

We finish the proof of Theorem 1.7 by the following crucial representation.

Lemma 4.8. Let the functional z : L1,p(Rn) → R satisfy z(0) = 0 and
let s 7→ z(sf) belong to Bp for s ∈ R and `P ∈ P 1,p(Rn). If there exists a
continuous function c : R→ R satisfying (1.9) such that

z(s`P ) = c(s)Voln(P ),

for every s ∈ R and `P ∈ P 1,p(Rn), then there exists a continuous function
h ∈ Gp such that

z(s`P ) =

∫
Rn

h ◦ (s`P ).

Proof. It suffices to consider the case s > 0. Since there exists a continuous
function c : R→ R satisfying (1.9), such that

z(s`P ) = c(s)Voln(P ),

we have
Dz`P (s) = c′(s)Voln(P ).

It follows that c(s) is continuously differentiable in the usual sense. Hence
c(s) ∈ Cn(R), due to s 7→ z(sf) belongs to Cn(R) for every s ∈ R and
f ∈ P 1,p(Rn). Moreover,

Dαz`P (s) = c(α)(s)Voln(P ), (4.11)

for every non-negative integer α ≤ n, and c(n) ∈ BVloc(R).
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Now, let

h(s) =
n∑
j=0

1

j!

(
n

j

)
sjc(j)(s). (4.12)

We show by induction that there exists a signed measure ν on R such that

c(s) =

∫ s

0

(
s− t
s

)n
dν(t).

Since c ∈ Cn(R) and c(n) ∈ BVloc(R), there exists a signed measure ν on R
such that h(s) = ν([0, s)) for every s ≥ 0. Let h1(s) =

∫ s
0
h(x)dx. Then,

by Fubini theorem, we obtain

h1(s) =

∫ s

0

∫ x

0

dν(t)dx

=

∫ s

0

∫ s

t

dxdν(t)

=

∫ s

0

(s− t)dν(t).

Let k ≥ 2 and hk(s) =
∫ s

0
hk−1(x)dx. Assume hk(x) = 1

k!

∫ x
0

(x − t)kdν(t).
Again, by Fubini theorem, we have

hk+1(s) =
1

k!

∫ s

0

∫ x

0

(x− t)kdν(t)dx

=
1

k!

∫ s

0

∫ s

t

(x− t)kdxdν(t)

=
1

(k + 1)!

∫ s

0

(s− t)k+1dν(t).

Thus, in particular, we have

hn(s) =
1

n!

∫ s

0

(s− t)ndν(t).
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On the other hand, by (4.12), we have

h(x) = c(x) +
1

n!
xnc(n)(x) +

n−1∑
j=1

1

j!

((
n− 1

j

)
+

(
n− 1

j − 1

))
xjc(j)(x)

=
n−1∑
j=0

1

j!

(
n− 1

j

)
xjc(j)(x) +

n−1∑
j=0

1

(j + 1)!

(
n− 1

j

)
xj+1c(j+1)(x)

=
n−1∑
j=0

1

(j + 1)!

(
n− 1

j

)(
xj+1c(j)(x)

)′
.

Hence,

h1(s) =

∫ s

0

h(x)dx =
n−1∑
j=0

1

(j + 1)!

(
n− 1

j

)
sj+1c(j)(s).

Assume that hk(x) =
∑n−k

j=0
1

(j+k)!

(
n−k
j

)
xj+kc(j)(x). Similarly, we obtain

hk(x) =
1

k!
xkc(x) +

1

n!
xnc(n−k)(x)

+
n−k−1∑
j=1

1

(j + k)!

((
n− k − 1

j

)
+

(
n− k − 1

j − 1

))
xj+kc(j)(x)

=
n−k−1∑
j=0

1

(j + k)!

(
n− k − 1

j

)
xj+kc(j)(x)

+
n−k−1∑
j=0

1

(j + k + 1)!

(
n− k − 1

j

)
xj+k+1c(j+1)(x)

=
n−k−1∑
j=0

1

(j + k + 1)!

(
n− k − 1

j

)(
xj+k+1c(j)(x)

)′
.

It follows that

hk+1(s) =

∫ s

0

hk(x)dx =

n−(k+1)∑
j=0

1

(j + k + 1)!

(
n− (k + 1)

j

)
sj+k+1c(j)(s).
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Thus, in particular, we have hn(s) = 1
n!
snc(s). Therefore, by the layer cake

representation, we have

z(s`P ) = c(s)Voln(P ) =

∫ s

0

(
s− t
s

)n
Voln(P )dν(t)

=

∫ s

0

Voln ({s`P > t}) dν(t)

=

∫
Rn

h ◦ (s`P ).

Furthermore, for fixed P ∈ Pn0 ,

skDkz`P (s) ‖`P‖kW 1,p(Rn) = skc(k)(s)Voln(P )

satisfies (1.9) for every integer 0 ≤ k ≤ n. Therefore, as defined in (4.12),
h also satisfies (1.9).
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