
Dissertation

Flow induced vibrations of a U-shaped belt

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Herr Ao.Univ.Prof. Dr. Herbert Steinrück
E322

Institut für Strömungsmechanik und Wärmeübertragung

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

von

Dipl. Ing. Johannes Strecha
Matrikelnummer 0626212

Heinrich-Waßmuth Straße 4/1/11, 2380 Perchtoldsdorf

Wien, im Juni 2015

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



Kurzfassung
Winderregte Schwingungen prismatischer Strukturen sind für Ingenieure und Architek-
ten von großer Bedeutung. Umströmte, aerodynamisch stumpfe Körper wie Brücken,
Maste oder Türme können durch mehrere Mechanismen zu Schwingungen angeregt wer-
den. Die vorliegende Arbeit untersucht winderregte zwei-Freiheitsgrad Schwingungen
(Flattern) eines Prismas mit U-Querschnitt mit bestimmten Aspektverhältnis.
Grundsätzlich wird das Verhalten des U-Profils mittels Computational Fluid Dynam-

ics (CFD) Simulation in einem zwei-dimensionalen Rechengebiet mit ANSYS Fluent
untersucht. Ein Turbulenzmodell wurde aufgrund zahlreicher Validierungssimulationen
ausgewählt. Um die Bewegung des U-profils zu ermöglichen wurde ein Teil des Rechen-
gitters bewegt und deformiert. Die Lösung der Bewegungsgleichung erfolgt mit einer
User defined function.
Untersuchung der Umströmung des festgehaltenen U-Profils zeigt, dass, abhängig

vom Anstellwinkel, unterschiedliche Strömungsformen vorliegen. Beide Strömungsfor-
men sind zeitlich periodisch. Der prinzipielle Unterschied betrifft die Entwicklung der
freien Scherschicht aus der sich Wirbel entweder in der Tasche des U-Profils oder dahinter
bilden. Der Vergleich mit Windkanalexperimenten zeigt, dass beide Strömungsformen
der Simulation bis zu einem gewissen Grad der Realität entsprechen.
Die Neigung des U-Profils zu sogenannten selbsterregten Schwingungen wird mit der

Methode der aerodynamischen Ableitungen untersucht. Dabei wird die Abhängigkeit
der Luftkräfte von der Bewegung des U-Profils näherungsweise durch Untersuchung der
Strömung um das zwangsbewegte Profil bestimmt.
Gekoppelte Simulationen zeigen dass das U-Profil Schwingungen in zwei Parameter-

bereichen ausführen kann. Zum einen kann die Wirbelbildung bei der jeweiligen Strö-
mungsform Schwingungen anregen. Diese sind auf ein schmales Intervall von Strömungs-
geschwindigkeiten begrenzt und hängen in ihrem Charakter stark von der Strömungsform
ab. Bei höheren Strömungsgeschwindigkeiten können, wie von der Methode der aero-
dynamischen Ableitungen angedeutet, Flatter-Schwingungen ausgeführt werden. Ein
Wirbel, der durch die Drehbewegung des Profils erzeugt wird konnte als Anregemecha-
nismus identifiziert werden. Diese Schwingungen wurden ab einer bestimmten, kritischen
Geschwindigkeit auch in Windkanalversuchen beobachtet und weisen größere Amplitu-
den auf als die zuvor erwähnten wirbelerregten Schwingungen.
Die relevanten Strömungsphänomene wurden qualitativ auch bei begrenzten Rechenka-

pazitäten erfasst. Jedoch zeigen die Windkanalexperimente auch die Grenzen der derzeit-
igen Simulationsmethodik auf. Die eingesetzten Simulationsmethoden erlauben quanti-
tative Vorhersagen nur sehr eingeschränkt.
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Abstract
Wind-induced vibrations of prismatic structures in cross-flow are of greatest importance
for engineers and architects. Aerodynamically bluff bodies such as bridge decks of sus-
pension bridges, towers or masts can be excited to vibrations by several mechanisms.
This thesis studies wind-induced flutter vibrations of a prism with U-shaped cross sec-
tion.
The investigation relies on Computational Fluid Dynamics (CFD) simulations carried

out in a two-dimensional computational domain in ANSYS Fluent. The choice of the
turbulence model is based on several validation simulations. Motion of the U-profile
was handled by deforming and moving parts of the calculation mesh. The structural
equations of motion were solved with a User-defined function.
Numerically, it was found that there are two distinct, time-periodic patterns of the

flow around the U-profile. Depending on the angle of inclination vortices either form in
the cavity of the U or behind it. Comparison with wind tunnel experiments shows that
both flow patterns have certain resemblance with the real flow.
The possibility of so-called self-excited vibrations was analysed with the method of

aerodynamic derivatives. The dependence of the aerodynamic forces on the profile mo-
tion is approximated by studying the flow around a U-profile which is forced to move.
Coupled simulations of free vibrations show that the U-profile can be excited to vibra-

tions in two different parameter regimes. Firstly, the vortex shedding under either flow
pattern can excite vibrations. These vibrations are confined to a narrow interval of flow
velocities. Their appearance depends on the flow pattern. Secondly, as was indicated
by the aerodynamic derivatives, self-excited flutter vibrations are possible at large flow
velocities. A vortex induced by a small pitching motion of the profile was identified as
excitation mechanism. These vibrations were also observed in wind tunnel experiments
for flow velocities greater than a certain critical flow velocity. Their amplitude is larger
than the amplitude of the previously mentioned vortex induced vibrations.
The qualitative nature of the vibration regimes could be captured by 2D simulations.

However, the wind tunnel experiments also highlight the limitations of the simulation
approach. The predictive power of the applied simulation methods turned out to be very
limited.
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1. Introduction

Vibrations due to fluid flow are manifold in character and impact. Standard refer-
ences cover the topics of fluid-conveying pipes, vibrations of aircraft wings, vibrations
of prismatic bodies in cross-flow, vibrations of buildings like masts, bridges or towers,
and scenarios where multiple structures are involved, such as pipe bundles, or arrays of
buildings [11, 73, 79, 80, 81].
For civil engineers, vibrations due to wind action are of great interest because of

their paramount importance for the safety and reliability of bridges, towers, masts and
so on. Events like the collapse of the Tacoma Narrows Bridge [39] or the collapse of
three cooling towers of the Ferrybridge Power Station in Ferrybridge, England [92] due
to wind caused enormous interest of engineers and scientists alike. Since these events
several approaches to determining the response of a structure to wind were followed.
Seldomly, the response of a structure can be given as a closed form solution. More
often, approximate relations, that rely on input from experiments can be employed,
such as the method of aerodynamic derivatives (see below). More recently efforts are
made to reduce the need for experiments by employing computer simulations. However,
the correct choice of numeric methods and models, especially models for turbulent flow
conditions, has to be determined.
In this thesis, flow-induced vibrations of a prismatic structure in cross flow, specifically

a tensioned belt with U-shaped cross section and a given aspect ratio are discussed. The
motivation of this investigation originates in the aerodynamic stability analysis of a
freely suspended conveyor belt. The tension of the belt has the greatest influence on its
eigenfrequencies. In contrast, the eigenfrequencies of bridge decks, towers etc. are given
by their stiffness. Therefore, the eigenfrequencies of their first bending (heaving) and
torsion (pitching) mode are not equal in general. On the other hand, the eigenfrequencies
of the tensioned belt are almost equal (see section 2.2.1). Furthermore, we will assume
that the cross section of the belt does not deform under vibration. Thus, the belt
can be abstracted as a profile with U-shaped cross section for the purpose of computer
simulations.
In a historic context, the U-profile can be seen as a simplification of the Tacoma

Narrows bridge deck. In a scholarly context, the U-profile is an extension to the often
discussed rectangular prisms and H-shaped prisms. However, the aerodynamic and aero-
elastic properties of a U-profile were the focus of only a few scientific investigations. Of
the many references to follow, the U-profile was studied in [5]. Most other studies
focus on generic bridge deck sections (trapezoids), rectangular prisms, H-shaped prisms
or scale models of real bridges with a more complex geometry. As explained in more
detail below, we expect that the cavity of the U-profile will yield interesting flow field
configurations and vortex formation patterns. Such observations have been made for the
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CHAPTER 1. INTRODUCTION

flow around H-shaped prisms and the flow over open cavities (see below, section 1.2).
The focus of the investigations are excitation mechanisms of flow induced vibrations

relevant for a tensioned belt with U-shaped profile. The flow field and flow induced
vibrations of this U-profile are studied with the help of Computational Fluid Dynamics
(CFD) simulations. Computationally inexpensive methods are employed to render para-
metric studies feasible. Wind tunnel tests are carried out to verify the validity of the
chosen approach. Thus, this work aims to extend the knowledge in the following fields:

• The aerodynamic and aero-elastic properties of structures with U-shaped cross-
section.

• The fidelity of computationally inexpensive methods to simulate bluff body flows.

• The feasibility and usefulness of coupled flow and motion simulations.

1.1. Simulation of fluid flow
Over the past years a growing set of numeric methods was developed. A vast amount of
papers describe the use of Reynolds-averaged Navier-Stokes (RANS) turbulence models
in a two-dimensional computational domain. Our own experience with this setup is
described in chapter 2. Simulations in a three-dimensional domain demand much more
computational power. Naturally, the necessary resolution in spanwise direction increases
the computational degrees of freedom drastically. Simulations are further complicated
by the unknown necessary spanwise depth of the domain and the necessary resolution.
Additionally, results published by Fröhlich and Terzi [32] discourage the use of unsteady
RANS (URANS) methods for complex three-dimensional flows. Pure Large Eddy Sim-
ulation (LES) of wall-bounded flows at high Reynolds numbers are still too expensive
to conduct. Spalart et al. [96] not only estimated the cost for the LES of an aircraft
wing, but also proposed Detached Eddy Simulation (DES) to reduce the computational
cost. The subgrid model should act as a RANS model in near-wall regions. Following
this idea many other hybrid RANS/LES formulations were proposed e.g. [94, 66, 28, 36,
104]. Note, that not every approach (in particular un-modified DES) is suitable for the
application to bluff body flow since the modified subgrid-model may have an adverse
effect on the correct prediction of the flow at shear layer re-attachment points [76].
Studies of the application of LES-related techniques to bluff-body flow are sparse in

number compared to the available RANS-based studies. Sun et al. [99] reports the use
of pure LES to simulate flow-induced vibrations of a circular cylinder and a rectangular
cylinder at Reynolds-numbers 200 and 500. Despite considerable effort he found the LES
results to be inaccurate and relates this to an inadequate resolution in near-wall regions.
Later, Bai and Qin [4] employ DES simulations on calculation meshes having 2 ·106 . . . 3 ·
106 cells. Simulation results of the flow around an airfoil, a U-shaped prism and generic
bridge deck sections are compared with wind tunnel results. The results obtained by
3D simulations were reported to be more accurate than 2D simulations. Another set of
publications revolves around the Benchmark on the Aerodynamics of a rectangular 5:1
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Cylinder (BARC) benchmark [6], targeting the flow around a 5:1 rectangular prism. Two
studies employ alternative URANS methods, namely linearisations of explicit algebraic
Reynolds stress models [60, 59]. In the latter reference a direct comparison between
simulations employing URANS and DES methods is given. It is described that the RANS
simulations predict time-periodic aerodynamic forces where DES simulations predict
seemingly chaotic time-series. Furthermore the three-dimensionality of the flow-field is
much more pronounced in DES simulations than it is in URANS simulations. Further
studies focus on the application of DES [58] and point out the influence of the spanwise
discretisation [12]. An overview of the progress within the scope of the BARC [13]
shows that many details regarding numerical methods and grid discretisations are still
unclear, and that there is no “best-practice” guideline to this day. Therefore, we limit
our efforts to simulations in a two-dimensional computational domain and desist from
making precise quantitative predictions. In a way, Fröhlich and Terzi [32] summarizes
many conclusions drawn in the above mentioned works by stating that (2D) URANS
can be more successful than RANS simulations, but that such an approach is “delicate”
and that experiments are required for validation.
Simulation studies that couple fluid flow and structural motion are described in [53]

and [5]. In the first reference, the flow around a freely vibrating circular cylinder was
studied by means of Delayed Detached Eddy Simulation (DDES) simulations. In the
second reference the flow around a circular cylinder and a rectangular prism was studied
by means of LES simulations. Both studies successfully used an iterative coupling ap-
proach, instead of solving the fluid and structure governing equations together. Yet, the
employed simulation techniques (LES and DES) are relatively expensive. Shimada and
Ishihara [93] successfully employed an URANS turbulence model to determine flutter
onset velocities of rectangular prisms with various aspect ratios by CFD simulations in
a two-dimensional computational domain.
Chapter 3 covers simulations of the flow around a stationary U-profile. Simulations

with forced motion are covered in chapter 4 and coupled simulations, where the flow-field
is solved together with the equations of motion are discussed in section 5.1.

1.2. The flow around bluff bodies
A prism with U-shaped cross-section belongs to the class of aerodynamically “bluff”
bodies which share the property that the ratio of their characteristic cross-streamwise
to streamwise lengths is of the order of unity [81]. In comparison to the flow around
streamlined bodies such as airfoils, the flow around bluff bodies has additional interesting
features.
The first to mention is the well known von Kármán vortex street, which develops due

an instability in the wake of a bluff body [11]. The shedding of vortices causes fluctuations
in the aerodynamic forces which are the subject of numerous research projects. The
overview by [77] reviews several interesting effects: The vortex shedding can synchronise
to the motion of the cylinder. The vortex shedding frequency and spanwise correlation
depend on the Reynolds number. Predicting the point of separation in the flow around
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a circular cylinder is a popular benchmark case for novel CFD codes, such as [107].
In the flow around a square prism, a bluff body more akin to the U-prism than the

circular cylinder, the points of separation are given: The flow always separates from
two corners of the prism, at least at small inclination angles. However, the flow may
re-attach at some point on the side of the square, leading to more complex dynamics
[56]. The re-attachment point is influenced by the free-stream turbulence intensity such
that for higher turbulence intensities only one stable limit cycle exists [50]. Furthermore
the local pressure distribution along the side of prismatic bodies depends greatly on
the turbulence characteristics of the oncoming flow [54, 44, 65, 101]. The first three
references report measured surface pressures on bluff bodies at different free-stream
turbulence intensities. Special attention to re-attachment points and separation bubbles
is paid. The last reference includes the effect of corner shapes which is important for
industrial applications where perfectly straight edges are uncommon.
The flow around elongated bluff bodies, such as rectangular prisms with an aspect

ratio greater than unity, is again more complex than the flow around bodies with aspect
ratios close to unity. In the latter case, vortices form behind the body by roll-up of the
free shear layer. This is called Leading Edge Vortex Shedding (LEVS). When the aspect
ratio of the body is greater than three, vortices form along the side of the prism. They
impinge on the body surface and are therefore called Impinging Leading Edge Vortices
(ILEV) [25]. Other elongated bluff bodies such as H-prisms also lead to ILEV conditions.
Moreover, it was reported that the number of vortices travelling along the surface of the
prism could be influenced by vibrating the prism [46, 47]. The travelling vortices also
give rise to Vortex Induced Vibrations (VIV) [72]. The failure of the Tacoma Narrows
bridge was could have been related to such surface vortices [8, 52, 63, 35]. Studies of
the flow over open cavities similar to the cavity of the U-profile also indicate non-trivial
flow conditions in the cavity [3, 42].
Different vortex formation patterns were also observed in the flow around short rect-

angular prisms with an aspect ratio much smaller than unity [70, 100]. The flow around
such prisms is reported to be non-periodic. There appear to be two distinct flow-patterns
characterised by the strength of the shear-layer roll-up. The flow changes intermittently
between the two patterns which is reflected in the time-dependent aerodynamic lift and
drag forces.
As it turns out the behaviour of free shear-layers will be of greatest importance in

chapter 3, where the flow around a stationary U-profile is discussed. The notion of
impinging vortices is especially important in the flow around such a body. Comparison
with wind tunnel experiments will show that the simulations are qualitatively correct,
but the real flow field is much more complex. The employed models do not allow an
extensive study of the influence of the free-stream turbulence intensity, but it is shortly
discussed by experiments. The different flow and vortex formation patterns will be of
great importance to vibrations of the U-profile in cross-flow.
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1.3. Vibrations in cross-flow
One suitable classification of flow induced vibrations is given in [74]. Relevant to this
thesis are the Instability Induced Excitation (IIE) and the Motion Induced Excitation
(MIE). In the context of bluff body flow, the former (IIE) is related to the formation
of vortices due to an instability of the wake [83] which cause fluctuating aerodynamic
forces. The latter (MIE) is also known as self-excited vibrations. Vibrations are due to
the response of the flow-field to a small motion of the body.

1.3.1. Vortex-induced vibrations
The scope of this thesis includes VIV, where an eigenmode of the structure is excited
through periodic vortex formation. Vibrations of a circular cylinder are related to the
well-known von Kármán vortex street and are extensively studied. Fundamental effects
like synchronisation of the vortex shedding to the body motion (the so-called) frequency
lock-in can be studied in this simple case [9, 34]. Thus, vortex shedding is more complex
than a forcing of an oscillator with constant frequency. Yet, prismatic bodies with non-
circular cross section may further increase the complexity of the flow. Vortices may
travel along the surface of elongated prismatic bodies [70, 25]. It will be shown that
such vortices are of great importance in the flow around a body with U-shaped cross
section. Furthermore, the existence of intermittent flow pattern change, as described in
[70, 100], which were observed in the flow around a short rectangular prism is also highly
relevant, as will be seen in chapter 3.
Apart from experimental studies and simulations, so-called wake-oscillator models

[37] are employed to study VIV. The fluctuating aerodynamic force due to the vortex
shedding is considered as additional degree of freedom. Typically, it is represented
by a Rayleigh-type or van der Pol equation. The trivial solution of these equations
is unstable. In the homogeneous case the additional variable undergoes limit cycle
oscillations. The wake oscillator equation is coupled with the equation of motion for
the body. Even very simple models are capable of describing the frequency lock-in and
hysteresis behaviour [51]. More complex phenomena like travelling waves on long cables
[30] can be described. Recently, wake oscillators were also utilised to treat vibrations of
bluff bodies like square cylinders [61], bridge decks [62] and systems with two-degree of
freedoms [4]. The analytic nature of this approach lends itself to the inclusion of non-
linear terms [78] to cover more and more complex phenomena like frequency dependent
coupling terms. However, such wake oscillators can only be considered as a model for
VIV do not describe the physics of the flow. This leaves crucial aspects, such as the
choice of free parameters or even the nature of the coupling between structure and wake
oscillator open [29]. Critics of wake oscillator models point out that there is no limit
to the inclusion of additional terms, and thus the predictability and generality is very
limited. Sarpkaya [89] even gives the advice to “make great strides to enhance the
powers of computers [and] numerical methods” and to make use of “robust codes based
on various versions of RANS and LES, which was taken to heart in chapter 5, especially
so since every new wake-oscillator formulation has to rely on inputs from experiments
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or simulations.

1.3.2. Self-excited vibrations and aerodynamic derivatives
A subclass of bluff bodies are susceptible to the second excitation mechanism noted
above, MIE. Bodies of revolution like the circular cylinder are immune to MIE since a
motion of the cylinder in cross-flow only changes the direction of the aerodynamic force
acting on it, but not its magnitude [81]. Obviously, this does not apply to the profile
with U-shaped cross-section investigated in this thesis. Compared to VIV, MIE can
occur in larger parameter intervals and lead to vibrations with larger amplitude.
One of the first observations of MIE were the so-called galloping (i.e. transverse

oscillations normal to the direction of the oncoming flow) vibrations of iced electric
transmission lines [38]. The single-degree of freedom case can be conveniently studied:
invoking the so-called quasi-steady assumption, it suffices to study the dependence of
the aerodynamic forces on the inclination angle of the body. To justify this assumption
it is required that any change of the flow-field due to a motion of the body is swept
down sufficiently fast, which is often formulated in terms of a dimensionless flow velocity
and the Strouhal number St (e.g. Blevin’s criterion [11]). A prominent example is
the study of galloping vibrations of a square cylinder [82]. In addition to the critical
flow velocity, the amplitude of limit cycles can be predicted. These astounding results
motivated many works aiming to generalize this concept for torsional or multi-degree of
freedom vibrations. However, it was shown by Nakamura and Matsukawa [71] that the
quasi-steady assumption cannot be upheld even for single degree of freedom torsional
vibrations. Other approaches are required.
Theodorsen was successful in determining the stability of aircraft wings by an analytic

method [102]. He considered aerodynamic forces that depend on the momentary position,
velocity and acceleration of the profile. The factors before these quantities became
known as aerodynamic derivatives. In the case of thin airfoils they could be computed
analytically. In the 1970s, many works focused on applying his method to bluff structures
and especially bridge decks, although they were formulated for aircraft wings and do not
include flow separation. The framework of the aerodynamic derivatives was adapted for
application to bridge decks by Scanlan and co-workers, e.g. [90, 91]. The aerodynamic
derivatives describe the influence of a small motion of the body on aerodynamic forces.
In contrast to the aforementioned quasi-steady theory, it is assumed that the small
motion and the response are harmonic. This method can be applied to more general
cases than transverse vibrations (galloping), but since it is a linear method only critical
flow velocities can be predicted.
Typically, aerodynamic derivatives are obtained by wind tunnel experiments. The

original works of Scanlan and co-workers calculated them from the structural response
after an initial excitation.
Recently, system identification techniques were employed [86, 7]. The sensitivity of

the aerodynamic derivatives and therefore of the critical flow velocities to the extraction
method is studied extensively in [87, 17]. In computer simulations, it is easily possible to
extract the aerodynamic derivatives by simulating the flow around the body performing
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forced motion. Several publications exist, e.g. [33, 41, 88, 15, 69, 75]. Here, RANS
turbulence models and a two-dimensional computational domain were used. The studies
target Reynolds-numbers (based on the length of the model profile) of Re ∼ 105. Ge
and Xiang [33] employ a finite element method and a random vortex method in addition
to a finite volume method with an unspecified RANS turbulence model. Ge and Xiang
further report that the numerically obtained eighteen aerodynamic derivatives (heave,
pitch, sway) of a H-prism differ substantially from experimental results (∼ 25 %). Huang
et al. [41] reports the use of ANSYS Fluent in conjunction with the RNG-kε turbulence
model. They used a grid topology where the cells in the vicinity of the profile are only
moved, but not distorted. The eight aerodynamic derivatives (heave, pitch) for several
generic bridge decks are calculated from simulation of the flow around the bridge deck
undergoing forced motion. “Good agreement” with experimental results is reported.
Šarkić et al. [88] reports the use of the open source CFD toolbox OpenFOAM and
the kω-SST turbulence model. “Good agreement” of the eight aerodynamic derivatives
(heave, pitch) of a generic bridge deck section with experimental results was achieved.
The turbulence model did not have an adverse effect on the accuracy of the aerodynamic
derivatives, although some weaknesses in the prediction of the flow near flow separation
points are mentioned. Brusiani et al. [15] relies on ANSYS Fluent and advocates the use
of the kω-SST turbulence model in conjunction with experiments for validation as well
as the grid topology used in [41]. It is mentioned that the position of the re-attachment
point is predicted incorrectly. Miranda et al. [69] calculate the aerodynamic derivatives
of several rectangular prisms with different aspect ratios ranging from five to twenty.
The commercial solver ANSYS Fluent and the kω and kω-SST turbulence models are
used. Miranda et al. note that “good agreement” could not be achieved and reason that
the behaviour of the shear layers is not predicted correctly in the simulations. Nieto et
al. [75] reports the use of OpenFOAM and the kω-SST turbulence model. Notably, use
of relations between the aerodynamic derivatives introduced by Tubino [103] was made.
The necessary computational effort to obtain eight aerodynamic derivatives could be
reduced by half. However, the validity of these relationships could be disputed since
Tubino [103] reported that a complete validation by experiments could not be achieved.
The aerodynamic derivatives are used to obtain critical velocities for vibration modes.

While this is almost trivial for single-degree of freedom cases the analysis is more involved
for coupled mode flutter because the derivatives depend on a dimensionless frequency.
A good introduction is given in [40]. Iterative approaches, that are also applied in
section 4, are described therein. Others express the frequency dependent aerodynamic
derivatives by rational functions to avoid iterations [22]. Under certain circumstances
even closed-form expressions for modal characteristics can be found [21, 20]. Some try to
avoid the frequency dependence of the aerodynamic derivatives. In analogy to airfoils, a
time-domain equivalent of the aerodynamic derivatives (the so-called indicial functions,
[10]) can be found [16, 68].
In this thesis the aerodynamic derivatives are obtained by simulating the flow around

the U-profile undergoing forced motion, described in chapter 4. Critical flow velocities
are estimated and found to depend on the forcing amplitude greatly. It is also shown
that this method yields unreliable results at low reduced velocities due to the non-linear
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interaction of profile motion and vortex formation.
The main criticism of the aerodynamic derivatives targets their linear nature. The

influence of the motion amplitudes applied when determining the derivatives is investi-
gated in [31] and [23], as well as in chapter 4 of this thesis. Diana et al. [26] discusses
possible non-linear extensions and presents results how limit cycle oscillations may occur
below the conventionally predicted critical velocity. Matsumoto et al. [64] finds that the
onset velocity of torsional flutter may be overestimated when relying on forced motion
experiments, especially if the onset velocity is at low reduced velocities. This is related
to specific vortex formation patterns not triggered by the forced motion that was applied
to determine the derivatives.

1.3.3. Aerodynamic interferences, conjoint galloping and vortex shedding
Naturally, each mode of vibration has a critical flow velocity. When the respective critical
velocities are close to each other, the structural damping influences which vibration mode
is selected [63]. A recent experimental study focusing on the interaction between vortex
shedding and galloping of a rectangular prism is described in [57].
The final set of simulation and wind tunnel results discussed in chapter 5 touches upon

the interference of VIV and self-excited vibrations. It is shown that the flow patterns
discussed earlier influence the amplitude and mode of VIV greatly. The comparison be-
tween single-degree of freedom and two-degree of freedom scenarios is used to illustrate
the dependence of the vortex formation on the profile motion. Self-excited vibrations
predicted by the aerodynamic derivatives are confirmed in experiments and simulations
to some extent. The predictive power of coupled simulations and the method of aerody-
namic derivatives is compared with experimental results.
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2. Numerical methods and wind tunnel
tests

In this chapter, numerical methods employed in the computer simulations (section 2.1)
and the wind tunnel tests are (section 2.2) are introduced. The design of the computer
simulations and wind tunnel tests is based on a mechanical model for the belt. The most
important aspects of this model, which is introduced in section 2.2.1, are:

• The ratio of the belt’s heave and pitch eigenfrequencies is equal to one.

• The cross section of the belt does not deform under vibration.

2.1. Simulations
It was chosen to employ an URANS approach in a two-dimensional computational do-
main. Thus, the fluid flow is governed by the well known Reynolds-averaged continuity
equation and the Navier-Stokes equations for incompressible flow [97]:

∂ūi
∂xi

= 0 (2.1a)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1
ρ

∂p̄

xi
+ ∂

∂xj

(
ν

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
− u′iu′j

)
, (2.1b)

i = 1, 2(, 3). Since the simulations are performed in a two-dimensional computational
domain, the averaged velocity in direction 3 is zero (ū3 ≡ 0), but it’s fluctuation, ac-
counted for by the turbulence model, is not zero (u′3 6= 0). The Einstein summation con-
vention applies, an overbar denotes a Reynolds-averaged quantity and a prime denotes
the turbulent fluctuation of a quantity. The turbulence model provides an approxima-
tion for the unknown Reynolds stress tensor (equation(2.1), red term). As turbulence
models, the realizable kε model and the kω-SST model were considered, both in the
formulation of [1]. Our aim for qualitative results and the need for tested and compu-
tationally efficient methods allows the use of a two-dimensional computational domain.
Thus, time-periodic results obtained by simulations correspond to the phase-average of
a turbulent flow with infinite spanwise correlation length [15].
Large Eddy Simulations itself were deemed too expensive in terms of computational

cost. Bruno (see [14]) carried out LES simulations of the flow around a rectangular
cylinder at a Reynolds number of magnitude 104 on a computation mesh containing
1.75 · 106 cells. He reported that a single simulation required 15 days CPU-time. It
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was estimated that about 107 cells were needed to simulate the flow around a U-profile
at a Reynolds number of magnitude Re ∼ 105, rendering parametric studies infeasible.
Cell counts ranging from 3 · 104 to ∼ 2 · 105 were used for two-dimensional simulations
employing URANS models.
According to the introductory discussion of the belt, we assume that the structure

placed in the flow is rigid. It’s center of mass and initial position is at the position
(0, 0)T. The structure has two degrees of freedom: vertical translation (y) and rotation
about it’s long axis (ϕ). It is supported by springs with a linear characteristic. The
equations of motion describing such a structure are

d
dt


y
ϕ
ẏ
ϕ̇

 =


0 0 1 0
0 0 0 1

−ky/m 0 −cy/m 0
D/IT −kϕ/IT 0 −cϕ/IT



y
ϕ
ẏ
ϕ̇

+


0
0

L/m
M/IT

 , (2.2)

where the moment M is taken around the point (0, 0)T.
The RANS equations(2.1) are solved using the CFD solver ANSYS Fluent in versions

13.0 (chapter 2.1) and later 14.5 (chapters 3 to 5). The equations of motion (2.2)
are solved using a User-defined function (UDF) written as part of this research (see
appendix B). The computation meshes were created in IcemCFD using a two-dimensional
blocking containing unstructured blocks. All meshes contained only quadrilateral cells.
In the following two subsections, several variants of the kε and the kω-SST turbulence

models together with several computational meshes will be assessed in order to choose a
suitable model for the simulations in chapters 3 to 5. The tests comprise the separation
of a boundary at a curved wall and the re-attachment of a free shear layer. The flow
separation at a curved boundary will be studied by simulating the flow around a circular
cylinder. Shear layer re-attachment will be studied by simulating the flow around a
square prism. In both cases the flow is not stationary and vortices form – as in the flow
around the U-profile. Measured data is available for both test cases.

2.1.1. Selecting the turbulence model: separation at a curved boundary
The flow around a circular cylinder is used as the first test case. The cylinder with
diameter d is placed in cross-flow with the flow velocity u∞. The time-dependent aero-
dynamic forces lift L and drag D per unit length act on the cylinder (figure 2.1). In this
section the flow at a Reynolds-number of

Re = u∞d/ν = 8 · 104 (2.3)

is considered. Two simulation studies in the same Reynolds-number regime are [55]
and [85]. The time-dependent drag coefficients

cD = D/
1
2ρu

2
∞d (2.4)
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obtained by the realizable kε turbulence model and the kω-SST turbulence model are
used for comparison.

u∞

L

D
d

α

Figure 2.1.: Sketch of the circular cylinder in uniform flow and the aerodynamic forces
lift L, drag D.

The cylinder is placed in a two-dimensional computation domain (figure 2.2). Uniform
flow velocity is prescribed at the inlet boundary which was at a distance of 8.33d to the
cylinder. Above and below the cylinder (at ±12.5d) the domain is bounded by symmetry
conditions. The outflow boundary is placed at a distance of 25d behind the cylinder.
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Domain: 11.2 k cells (coarse)
13.5 k cells (fine)

8.33d 25d

12
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d

12
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d

Figure 2.2.: Sketch of the computational domain (to scale).

Both calculation meshes were unstructured and had quadrilateral cells. The cylinder
wall was resolved by 124 elements. The coarse mesh (figure 2.3a) consisted of approxi-
mately 11200 cells. The wall-normal resolution was chosen for standard wall functions
implying that the first cell center is at a distance where the logarithmic law of the wall is
valid (y+ > 30). The fine mesh (figure 2.3b) consisted of 13500 cells and the wall-normal
resolution was chosen for enhanced wall treatment, i.e. the first cell center should lie
within the viscous sublayer (y+ ∼ 1). The enhanced wall treatment available in ANSYS
Fluent blends viscous sublayer and log-law formulations according to the actual value of
y+, promising y+ independent results [1].
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(a) Coarse version

(b) Fine version

Figure 2.3.: Section of the calculation mesh close to the cylinder.

The flow-field was time-averaged over four vortex shedding periods. The time-averaged
y+ values are shown in figure 2.4. It can be seen that the calculation meshes lead to
wall-y+ values as intended.
The time-averaged flow fields are compared in figure 2.5. Contours of the time-

averaged velocity magnitude and Root mean square (RMS) velocity magnitude are
shown. The kε at I = 1 % and µt/µ = 1 leads to almost stationary flow conditions
around the cylinder (figures 2.5a and 2.5b). As indicated by the RMS contours, vortices
form behind the cylinder. A large almost stationary wake region is behind the cylinder.
There is not much visual difference between the coarse (non-equilibrium wall functions)
and the fine (enhanced wall treatment) computation mesh.
The kω-SST turbulence model at I = 1 % and µt/µ = 1 on the fine grid predicts that

non-stationary flow conditions set in much earlier (figure 2.5c). As seen by the RMS
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(a) Coarse mesh
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(b) Fine mesh

Figure 2.4.: Time-average of the wall-y+ at Re = 8 · 104, I = 1 %, µt/µ = 1.

velocity magnitude contours, the flow is weakly unsteady already before the cylinder.
Large temporal variations of the velocity magnitude are predicted near the separation
points. The flow behind the cylinder is strongly time-dependent. The same turbulence
model in conjunction with the coarse computation mesh predicts a drastically different
flow-field. On the coarse mesh the results are visually similar to the kεmodel simulations
(figure 2.5d). The flow around the cylinder is almost stationary. The RMS contours
indicate that only the flow behind the cylinder is time-dependent.
Change of the free-stream eddy viscosity ratio to µt/µ = 10 (the upper limit for

13
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quiet ambient conditions given in [2]) does not change the result much . Again the kω-
SST turbulence model on the fine grid reports strongly time-dependent flow conditions
immediately behind the cylinder (figure 2.5e). On the coarse mesh an almost stationary
near-wake is predicted (figure 2.5f).

(a) kε, I = 1 %, µt/µ = 1, y+ ∼ 1 (b) kε, I = 1 %, µt/µ = 1, y+ ∼ 100

(c) kω-SST, I = 1 %, µt/µ = 1, y+ ∼ 1 (d) kω-SST, I = 1 %, µt/µ = 1, y+ ∼ 100

(e) kω-SST, I = 1 %, µt/µ = 10, y+ ∼ 1 (f) kω-SST, I = 1 %, µt/µ = 10, y+ ∼ 100

Figure 2.5.: Time-averaged flow-field of the flow around a circular cylinder: Contours of
the normalised velocity magnitude (black, values: 0, 0.2, . . . , 1.8) and the
normalised root mean square of the velocity magnitude (red, values: 0, 0.05,
. . . , 0.45).

The skin friction coefficients Cf ,

Cf = sign(~τw · ~u∞) τw
1
2ρu

2
∞

(2.5)

for every simulated case are shown in figure 2.6. In the stagnation point at α = 0
the skin friction coefficient is zero. It increases with α and then decreases again when α
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approaches the separation angle. The symmetry of the curves shows that the sampling
time chosen for averaging was long enough. In the skin friction coefficient curves obtained
on the coarse calculation mesh influences of the mesh can be seen at α ≈ 50°. The kε
model appears to be more sensitive to this than the kω-SST model. Nonetheless this is a
strong indication that body-fitted boundary layers have to be part of future calculation
meshes.
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C
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φ

kε-1-1 (fine)
kω-SST-1-1 (fine)
kω-SST-1-10 (fine)

kε-1-1 (coarse)
kω-SST-1-1 (coarse)
kω-SST-1-10 (coarse)

Figure 2.6.: Time-average of the signed skin friction coefficient Cf , equation (2.5)

The time-averaged separation angles obtained by the kε model on the coarse and the
fine grid are closely spaced (figure 2.7). The drag coefficient predicted by on the coarse
mesh is slightly larger than the prediction obtained on the fine mesh, cD = 1.12 and
cD = 0.93, respectively. However, the separation angle is larger on the coarse mesh than
on the fine mesh. The kω-SST model is much more sensitive to the grid resolution. For
either eddy viscosity ratio the separation angle is greater than 130° on the coarse mesh
and smaller than 100° on the fine mesh. Accordingly, the drag coefficient obtained on
the coarse mesh is smaller than on the fine mesh.
These results show the importance of a fine resolution under the kω-SST turbulence

model. Varying the free-stream eddy viscosity ratio doesn’t have a tremendous influence
on the results.

2.1.2. Selecting the turbulence model: shear layer re-attachment
Simulations of the flow around a square prism were used to further refine the turbulence
model settings. Data from [82] was used. Parkinson measured the aerodynamic forces
on a square prism for several inclination angles (see figure 2.8). at a Reynolds-number
of

Re = u∞H

ν
= 22300. (2.6)
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109.2°: kε-1-1 (fine)
106.9°: kε-1-1 (coarse)98.5°: kω-SST-1-1 (fine)

133.3°: kω-SST-1-1 (coarse)

87.2°: kω-SST-1-10 (fine)
134.5°: kω-SST-1-10 (coarse)

ϕ

u∞

Configuration Drag coefficient Separation angle
kε, I = 1 %, µt/µ = 1, y+ ∼ 1 1.12 109.2
kε, I = 1 %, µt/µ = 1, y+ ∼ 100 0.93 106.9

kω-SST, I = 1 %, µt/µ = 1, y+ ∼ 1 1.20 98.5
kω-SST, I = 1 %, µt/µ = 1, y+ ∼ 100 0.92 134.5
kω-SST, I = 1 %, µt/µ = 10, y+ ∼ 1 1.09 87.2
kω-SST, I = 1 %, µt/µ = 10, y+ ∼ 100 0.91 133.3

Figure 2.7.: Separation angle and mean drag coefficient for several simulation setups.

The oncoming flow was smooth.

ϕu∞

L

D

Fy

y
x

H

Figure 2.8.: Sketch of the inclined square prism in uniform flow and the aerodynamic
forces lift L, drag D and vertical force Fy.

Parkinson reports that the vertical force per unit length

Fy = −L cosϕ+D sinϕ = cFy ·
1
2ρu

2
∞H (2.7)

acting on the square prism has a positive slope with respect to variations of the angle of
attack around zero degrees [82]. A point of inflection in the inclination dependent vertical
force coefficient can be observed at about 8◦ inclination. A vertical force coefficient
cFy ≈ 0.6 is reached at about 13◦ inclination. For even higher inclination angles the
vertical force decreases again. The point of inflection is thought to be only visible in
low-turbulence flows [50]. Both, the point of inflection and the peak vertical force are
related to the time-dependent re-attachment of the shear layer [56]. Because of the known
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difficulties when free shear-layers in turbulent flows are involved, special attention will
be paid to the maximal vertical force coefficient and the inflection point.

Calculation mesh and model settings

The square prism is embedded in a rectangular domain (figure 2.9. Symmetry conditions
are defined at the top and bottom of the domain. They are placed at a vertical distance
of 12.5H to the prism. The velocity inlet is placed at 8.5H upstream and the outflow
is 25H downstream. A single side of the prism was discretised by 14 elements (coarse
version) or 148 elements (fine version).
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Figure 2.9.: Sketch of the computational domain (to scale).

Two different calculation meshes were used. A coarse version designed for y+ > 30
(figure 2.10a) and a fine version designed for y+ ≈ 1 (figure 2.10b). The actual y+-values
of a flow-field snapshot at ϕ = 12.7° are shown in figure 2.11.
In all simulations the inlet turbulent boundary conditions were set to I = 1% turbu-

lence intensity and a viscosity ratio (eddy viscosity over molecular viscosity) of µt/µ = 1.
This choice was based on the results of the previously described simulations of the flow
around a circular cylinder. These settings are appropriate for low-turbulence wind con-
ditions [2].
Two simulation series employing the realizable kε turbulence model and the kω-SST

turbulence model were carried out. The influence of the following settings and methods
was investigated:

• Second Order discretizations (SO).

• Enhanced Wall treatment (EWT) (two-layer approach with blending for y+ in-
sensitive solutions) [43]. Note that this setting is implied in ω-based turbulence
models.
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(a) Coarse version

(b) Fine version

Figure 2.10.: Section of the calculation mesh close to the square prism.

• (Log-law) Wall functions (WF) (first cell midpoint at 30 < y+ < 300).

• Curvature Correction (CC) of the k production terms in the kω-SST model [95].

• Low Reynolds number corrections (LR) for kω based models (unrelated to the
wall-treatment) ([106], Wilcox2006-LRN in [105]).

• Structured Grids (SG) vs. unstructured Grids.

Results

In the first simulation series kε based turbulence models were tested. Only the realizable
kε model was considered. The point of inflection was not reproduced by the simulations
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(b) Fine mesh

Figure 2.11.: Snapshot of the wall-y+ values over the dimensionless length s/H for all
sides of the square at Re = 22400, ϕ = 12.6°, I = 1 %, µt/µ = 1.

(figure 2.12). The maximum peak vertical force coefficient (see figure 2.12, series b)
was underestimated and occurred at a smaller inclination angle than in the experiments.
When log-law wall-functions were employed, the use of structured grids did not improve
the simulation results (figure 2.12 series b,d). The use of enhanced wall-treatment lead
to no substantial change of the force coefficients (series c).
The second simulation series was based on the kω-SST turbulence model. The point
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(a) Vertical force coefficient cFy plotted over the angle of attack α.

SO EWT WF CC LR SG
a Measurements, [82]
b 3 • 3
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(b) Settings of the turbulence model.

Figure 2.12.: Simulation of the flow around a square prism using the realizable kε tur-
bulence model. If not indicated otherwise, the default values for all setting
and coefficients in ANSYS Fluent 13.0 were used.

of inflection was not reproduced. The peak cFy could be reproduced better (see fig-
ure 2.13). We observed that it is very important to use second order discretisation
for all field quantities (compare configurations b,d). The use of log-law wall-functions
with the kω-SST turbulence model had a severe (negative) impact on the simulation
results (compare configurations d,g). When the Low-Reynolds number corrections and
curvature corrections were de-activated the peak vertical force could not be predicted
correctly (configuration e).
The peak vertical force (influenced mainly by the peak lift force) depends on the re-

attachment behaviour of the free shear layer above the prism. In figure 2.14 results
obtained under three different model settings are compared. The flow field, coloured
by the velocity magnitude, is shown at the time instance of maximal lift force. The
shear layer separating from the upper windward corner re-attaches slightly at the upper
leeward corner. The “strength” of the re-attachment influences the lift force. Since the
curvature correction is in effect when the streamlines are curved this setting is crucial
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in such regions. The shear layer separating from the lower windward corner does not
re-attach. The low instantaneous lift of configuration g is not due to the large values of
y+, but rather due to the insufficient resolution of the flow field (figure 2.14c).
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(a) Vertical force coefficient cFy plotted over the angle of attack α.

SO EWT WF CC LR SG
a Measurements, [82]
b • 3

c •
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e 3 •
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g 3 • 3

(b) Settings of the turbulence model.

Figure 2.13.: Simulation of the flow around a square prism using the kω-SST turbulence
model. If not indicated otherwise, the default values for all setting and
coefficients in ANSYS Fluent 13.0 were used (simulation g: version 14.5.
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(a) Configuration e (b) Configuration f

(c) Configuration g
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(d) Color
legend
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(e) Lift coefficients

Figure 2.14.: Snapshots of the flow-field obtained under different settings of the kω-SST
turbulence model at the time instance t∗ of maximum lift force, ϕ = 12.6°.
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2.1.3. Choice of the turbulence model
Good results were achieved with y+ ∼ 1, second order discretisations and Low-Reynolds
number corrections. The Low-Reynolds number corrections can be interpreted as a
crude model for laminar – turbulent transition [1], which is not desirable in our case.
Using curvature correction for URANS turbulence models improves the accuracy of the
simulations. In all subsequent simulations (chapters 3 to 5) the following simulation
setup was employed (configuration f in figure 2.13):

• second order discretisations

• Unstructured grids with a fine resolution of the wall regions

• The kω − SST turbulence model with curvature correction terms [1, 67, 95].

2.1.4. Rigid body motion
To allow motion of the rigid body the mesh has to be adapted in some way. An approach
inspired by [5] was chosen: The domain is split into three parts. An outer, stationary
region, an annulus shaped deforming region and a circular inner region containing the
body. The mesh in the inner region around the body is displaced with the body. The
cells are not deformed, preserving eventual body fitted cells. The annulus shaped region,
containing this inner region is deformed. The deforming region connects the moving inner
region to the stationary outer region and the mesh boundaries. Thus, no re-meshing
during a simulation run and no sliding interfaces are required. In the initial state the
deforming region is a perfect annulus containing a structured mesh, figure 2.15a. A node
with the initial position (x(o)

1 , x
(o)
2 )T in the inner region is displaced according to(

x1
x2

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)(
x

(o)
1
x

(o)
2

)
+
(

0
y

)
, (2.8)

where (x1, x2)T is the new position of the node and y and ϕ are given by the equations
of motion (2.2). The deforming region has to connect the moving inner region to the
stationary outer region. The nodes are moved by the same relation as above, but the
displacement is weighted by the position of the node according to(

x1
x2

)
=
√
x2

o + y2
o −R1

R2 −R1

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x

(o)
1
x

(o)
2

)
+
(

0
y

)
, (2.9)

where R1 and R2 are the radii of the inner and outer boundaries of the annulus,
respectively. The original node coordinates can be stored as “user defined scalar” and
can be conveniently accessed during the simulation. After displacement the cells in the
deforming region are sheared and squeezed (figure 2.15b).
The mesh is moved according to the equations governing the rigid body motion (equa-

tion(2.2)). Choosing the ANSYS Fluent CFD solver implies the use of segregated (or
partitioned) solving strategies for the rigid body motion and the fluid flow. Such solving
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Stationary region

Deforming region

Rigid region

(a) Initial state

(b) Deformed state

Figure 2.15.: Mesh deformation strategy: The inner region is moved as a rigid body.
The outer region is deformed.

strategies can lead to stability and convergence issues in some parameter ranges [18].
However, the problematic parameter ranges involve scenarios where the density of fluid
and solid are very similar, e.g. blood flow in a flexible artery. Here, the fluid (air) has
a much smaller density than the structure. Thus, we are confident that a segregated
approach is suitable.
A UDF-based Runge-Kutta scheme was used to solve the equations governing the

movement of the rigid body (see appendix B). This requires knowledge of the time-
dependent aerodynamic forces “in the future” (time levels (j+0.5) and (j+1), where (j)

denotes the current time-step). The forces at time level (j+0.5) were interpolated linearly
from time levels (j) and (j+1). The forces of the latter time level need to be extrapolated
(estimated) at the beginning of a time-step (see figure 2.16).
With the ANSYS Fluent the solving strategy in figure 2.16 is possible. At the be-

ginning of a time-step t(j) the aerodynamic lift and torsional moment at the end of the
current time-step L(j) and M (j) are estimated through linear extrapolation of the past
aerodynamic forces L(j-1), L(j-2) etc. The rigid body motion is solved for the first time
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using the extrapolated forces. In some cases it may suffice to solve the rigid body motion
just once in a time-step. This is achieved by disabling the implicit update switch in the
case setup and corresponds to never going through the “Update L(j), M (j)” block in the
flow-chart. All fluid solver iterations are performed in a row until flow-field convergence
is reached. Though simple and numerically efficient, some test cases showed numeric
instabilities that lead to unrealistically large structure displacements. Therefore the im-
plicit update switch was activated to obtain an update of the aerodynamic forces that can
be used to correct the rigid body motion. Experience has shown that it is good practice
to update the aerodynamic forces every Ni-th fluid solver iteration. In the simulation
results reported in chapter 5 the setting Ni = 5 was used. Convergence is tested in two
steps: firstly, the flow-field and, secondly, the mesh motion has to converge. This yields
to the same solution that would have been obtained by a monolithic solver [1].

u(j-1), p(j-1); L(j-1), M (j-1)

Estimate L(j), M (j)

Solve rigid body motion, i = 0

Fluid solver iteration, increment i

?
i > Ni

?
Fluid solver convergence

?
Rigid body convergence

u(j), p(j); L(j), M (j)

Update L(j), M (j)

Stagger iteration

Figure 2.16.: Flow-chart showing the iterative coupling between the equation of motion
for the profile and the flow governing equations. Superscripts in parenthesis
indicate the time-step.

The influence of the implicit update was studied by using disabling the implicit update
function during a simulation run. To avoid the disturbances that were observed at the
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restart of a simulation run, the re-calculation of the rigid body position was disabled
with a software switch. The rigid body routine was still called by the solver, but it
didn’t report an updated position. One test run consisted of sixty time-steps. After
twenty-eight time-steps the position update was disabled by the software switch. In a
second simulation, started with equal initial conditions, the position update was carried
out in all time-steps. This test was carried out for a 2DoF scenario at one reduced
velocity U∗ = 14, f0,y = f0,ϕ = f0. The initial conditions are limit cycle oscillation of
the profile (section 5.1.3). The test was performed for three different time-step sizes,
∆tf0 = 7.0 · 10−4, ∆tf0 = 35 · 10−4, ∆tf0 = 70 · 10−4. The larger the time-step,
the larger the spread of the two predictions (figure 2.17). At the largest time-step
displacement prediction differences of up to ∆y/H = 4 · 10−6 and ∆ϕ = 0.3° were
observed. The difference ∆y shows a clear trend. The difference ∆ϕ oscillates. Note, that
these differences were observed after twenty-eight time-steps. During a full simulation
run at least twenty-thousand (20000) time-steps were simulated. This is clear evidence
that an update of the rigid body position during a time-step is required.
Activating implicit update causes the UDF to be called multiple times during a time-

step. At subsequent calls updated aerodynamic forces are available. The influence of
implicit on the aerodynamic forces can be seen in figure 2.18. This figure shows the
convergence of the lift coefficient during a single time-step. The implicit update was
deactivated as described above. The data in the figure was taken from the first time-
step without implicit update. Therefore the lift coefficient cL and displacement delta
∆y/H are equal in iteration zero (∆y = y − y(0), y(0) being the displacement obtained
with extrapolated aerodynamic forces). The time-step size was ∆t/f0 = 7.0 · 10−4.
The convergence of the lift coefficient is characterised by a sharp peak beginning at
iteration one. Then, the lift coefficient slowly converges to its final value. This took
sixty iterations in this case. With de-activated implicit update the rigid body position
is calculated with extrapolated aerodynamic forces and is constant throughout the time-
step. When implicit update is activate and the parameter Ni (figure 2.16 set to Ni = 5,
the displacement is updated every fifth iteration. It can be seen that the position of
the rigid body is updated according to the large peak in the lift coefficient. This first
update of the rigid body position is changed every fifth iteration until convergence is
reached. The update of the rigid body position also influences the convergence of the
lift coefficient. It can be seen that the cL convergence is slower when the implicit update
is active. After the last iteration a small difference of 1.7 · 10−8 between the updated
and non-updated solution remains. The quality of the non-updated solution is due to
the good approximation of the lift coefficient obtained by extrapolation.

2.1.5. U-profile: Mesh 1
An unstructured grid with the dimensions 24.6B× 18.4B was created (figure 2.19). The
profile is placed at a distance 7.7B after the inlet boundary condition. Around the profile
a body-fitted, structured boundary region was created (figure 2.21). The smallest cell
sizes were set in the region around the profile. The mesh resolution at the profile is
described in figure 2.20. The nodes along the walls are equidistant. The wall-normal
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Figure 2.17.: Example: Difference between a solution with and without implicit update
for several time-step sizes.

mesh is graded using the hyperbolic tangent method implemented in IcemCFD. This grid
was used for simulation of the flow around a statically inclined U-profile (section 3) or
around a U-profile performing forced motion (section 4).
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Figure 2.18.: Example: Convergence of the lift coefficient cL during a time-step; Contin-
uous line: active implicit update, dashed line: without update, Black line:
linearly extrapolated lift coefficient.
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21 cells in 0.25H ranging from 2.5 · 10−3H → 2.5 · 10−2H

Figure 2.20.: Mesh resolution at the U-profile. Node counts per boundary section indi-
cated by the numbers, Cell sizes in wall-normal direction indicated by the
blue arrow.

2.1.6. U-profile: Mesh 2
An unstructured grid with the dimensions 24.6B × 18.5B was created (figure 2.22).
The profile is placed at a distance 7.7B after the inlet boundary condition. The mesh
resolution at the profile is the same as in described in figure 2.20 except that the first
cell in wall-normal has the height 5 · 10−3H. This grid was used for coupled simulation
of the flow around a U-profile with two degrees of freedom (section 5).
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Figure 2.22.: Computational domain in which the flow around the U-profile is simulated.
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2.2. Wind tunnel experiments
The experiments were carried out at the Centre of Excellence Telč (CET) which is
located in the city of Telč, Czech republic. It has a closed-loop wind tunnel with two
closed test-sections, the “aerodynamic” section and the “climatic” section. The former
has a cross-section of 1.9 m × 1.8 m and is equipped with honeycombs to reduce the
turbulence intensity to about I = 1%. The latter has a cross-section of 2.5 m×3.9 m but
is not equipped with honeycombs [24]. Before introducing the individual wind tunnel
tests, the mechanical model of the belt is discussed.

Figure 2.24.: Schematic drawings of the wind tunnel at the CET [49].

2.2.1. Mechanical model of the belt
The following assumptions for the belt under consideration (figure 2.25) apply:

• The length of the belt l is considered to be much larger than the width of its
cross-section B: l� B.

• The width B is much larger than the thickness of the base tb: B � tb.

• The flanges of the profile do not contribute to the stiffness of the belt.

• The cross-section of the belt does not deform under vibration.

• The weight of the base is assumed to be much larger than the weight of the flanges.

Thus, the stiffness of the base with respect to bending about the horizontal axis (x1-
axis) is negligible. The influence of the flanges is of aerodynamic nature only.
The belt is tensioned by a constant force S. We assume that this force acts evenly in

the base of the cross section. Each fiber of the base with the dimensions tb×dx1 subject
to the tension s:
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s = S

tbdx1
. (2.10)

Let ϕ(x3) be the inclination of the belt’s cross section and y(x3) the vertical displace-
ment (figure 2.26). Assuming small inclination ϕ, the local vertical displacement of the
belt’s base w(x1, x2) is given by

w(x1, x3) = y(x3) + x1ϕ(x3). (2.11)

Assuming small displacements, the change of length of a fiber is given by

∆l =
∫ l

0

1
2

(
∂w

∂x3

)2
dx3, (2.12)

The potential energy per fiber due to this change of length is

Es =
∫ l

0
s tb

1
2

(
∂w

∂x3

)
dx3. (2.13)

Integration over the width of the belt yields:

ES =
∫ B/2

−B/2
s x2

2 dx2

∫ l

0

ϕ′2

2 dx3 +
∫ b/2

−b/2
s dx2

∫ l

0

y′2

2 dx3. (2.14)

Then, the equations for the local vertical displacement and the local inclination of the
belt are given by [98]:

ÿ = S

m
y′′ (2.15a)

ϕ̈ = SB2

12IT
ϕ′′, (2.15b)

B

H

t b

x2

x1

x2

x3
Flange

Base
S S

l

Figure 2.25.: Sketch of the belt.

ϕ
y

w(x1, x3)

Figure 2.26.: Displaced cross-ection of the belt.
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where an overdot and a prime denote differentiation with respect to time and the
spatial coordinate x3, respectively. Moreover, m is the mass per unit length of the belt’s
base is and IT is the mass moment of inertia per unit length:

IT = m
B2

12 . (2.16)

Assuming zero vertical displacement at both ends of the belt,

w(x1, 0) = 0, and w(x1, l) = 0, (−B/2 ≤ x1 ≤ B/2), (2.17)

it can readily be seen that the eigenfrequencies of the first modes of bending and
torsion vibrations are equal:

f0,y = f0,ϕ = f0 = 1
2l

√
S/m (2.18)

Note, that we neglected the contribution of the belt’s stiffness with respect to torsion
about the long axis (x3axis) in equation (2.15a). This is admissible if the following
relation holds:

G
Bt3b

3 � S
B2

12 , (2.19)

where G is the shear modulus and Bt3b/3 is the Saint-Venant’s torsion constant for
the base of the belt [98].

2.2.2. Particle Image Velocimetry
The PIV experiments were carried out in the aerodynamic test section. Equipment from
Dantec and Litron Lasers was used. A Dantec FlowSense EO camera was used to make
the snapshots of the flow-field. It had a resolution of 2048× 2048 px. A pulsed Nd:YAG
laser was used to illuminate the flow. The flow was seeded using a fog generator, which
was placed in the climatic test section before the fan and honeycombs, thus creating no
disturbance relevant for the flow around the model. The fog generator was activated
for a few seconds, then deactivated. Given time, the smoke dispersed, resulting in a
homogeneously seeded flow field.
The model dimensions of the model were width B = 300 mm and height H = 65 mm.

The model was 600 mm long. It was mounted in cantilever fashion on an auxiliary
plate (figure 2.27). Its front end was open to improve visibility of the flow. The laser
illuminated a vertical plane 300 mm before the plate.
The camera’s optical axis was pointing towards the center of the horizontal plate of

the model. In the sample image in Figure 2.28 the model’s cross-section is indicated
(red). The regions indicated by the blue rectangles contain shadows cast by the glued
edges of the model. Contrast there is low and the results are inaccurate. The blue
rectangles are shown in every figure showing a flow-field obtained by PIV.
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Figure 2.27.: Photo of the plexi-glass model mounted on the auxiliary plate.

Figure 2.28.: Sample image acquired during the PIV experiments.

A series of 22 double pictures at a rate of 10 Hz was recorded. The time between a
pair of images was 400µs. A flow velocity of 2.1 m/s was chosen. Given the á pos-
teriori obtained Strouhal number St = 0.133 (equation (2.20) below), approximately
4 images per vortex shedding period could be recorded. The Reynolds number is
Re = u∞B/νair = 4.3 · 104.
The images were analysed with Dantec DynamicStudio (version 3.31). The adaptive

correlation technique was chosen. A final interrogation area size of 64×64 px with three
iteration steps was set. The resulting vector field was smoothed using a 3 × 3 moving
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average filter. Smaller interrogation area sizes were tested, but introduced too much
errors.
Additionally the wake was studied with the help of a Constant Temperature Anemom-

etry (CTA) probe. The flow velocity magnitude was measured at the distance B behind
the model and 0.5H units above the top edges. These measurements were used to ob-
tain the vortex shedding frequency fvs which in turn was used to calculate the Strouhal
number St

St = Hfvs
u∞

. (2.20)

Flow velocity magnitude spectra were obtained by applying the well known Welch’s
method (e.g. the Matlab command pwelch) with a window width of eight R-flow
periods (Hamming window, overlap 0.5) to the recorded flow velocity magnitudes (sample
length 129 R-flow periods, sampling frequency approximately 230 times per period).

2.2.3. Two-degree-of-freedom test stand
The experiments on the rigid section model were also carried out in the aerodynamic
test section. The model was mounted on a special test-stand. It allowed 2DoF (heaving
and pitching) motion. The heave and pitch eigenfrequencies can be adjusted by tuning
a single spring for each mode (figure 2.29, [45]).

Watt’s linkage

auxiliary linkage

Section model

ky

kϕ

(a) Schematic of the linkage, reproduced
from [45]

(b) Photo of the test-stand with mounted
U-profile section model

Figure 2.29.: The two-degree of freedom test-stand.

The tests were carried out using a model made of balsa wood (figure 2.30, for the
physical properties see table 2.1). Ribs were installed to raise the model stiffness to an
acceptable level.
Large eigenfrequencies f0 > 5 Hz lead to strong damping of the profile motion by the

test-stand. The achieved Scruton numbers were rather large (see table 2.2). The masses
and inertial moments due to the moving parts of the test-stand were taken into account
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(a) Oblique view (b) Top view

Figure 2.30.: Photos of the balsa wood model.

Property Value
Model length 618 mm
Width of the U B = 300 mm
Height of the U H = 65 mm
Wall thickness 6 mm

Model mass per unit length m = 0.710 kg/m
Torsional moment of inertia per unit length IT = 0.0542 kg m2/m (calculated)

Number of ribs 3

Table 2.1.: Physical properties of the balsa wood model (figure 2.30) used in the rigid
section model experiments.

(for numeric values see [45]). The Scruton number Sc is defined (in accordance with
[63]) as

Scy = 2mδy/(ρH2) and (2.21)
Stϕ = 2mδϕ/(ρH4), (2.22)

where δy and δϕ are the logarithmic decrement of the heaving and pitch motion,
respectively.

2.2.4. Tensioned belt experiments
To overcome the limitations imposed by the 2DoF test-stand, mainly the large damping,
another experimental approach was employed: A belt with U-shaped cross-section (U-
belt), made of rubber with inlaid steel cables and a textile mesh, mounted in a frame,
and put under tension (see figure 2.31). The tension was adjusted until a desirable
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f0 δy δϕ Scy Scϕ
2.0 Hz 0.06 0.035 138.65 368.79
4.5 Hz 0.033 0.06 76.26 632.20
9.5 Hz 0.12 0.2 277.31 2107.35

Table 2.2.: Logarithmic decrement and Scruton numbers for the rigid section model and
several eigenfrequencies. The mass m and torsional moment of inertia IT
were scaled to a model length of 1m, and added to the respective contribu-
tion of the test-stand: m = 0.710 kg/m + 2.91 kg, IT = 0.0542 kg m2/m +
0.0155 kg m2

eigenfrequency was obtained. The sidewalls were also made of rubber to reduce the
influence of their stiffness. See table 2.3 for the physical properties of the belt.

u∞
ÿ2

ÿ1

α

S

S
H

B

L

Wind tunnel
(a) Sketch of the tensioned U-belt,

tensioned by the forces P in-
clined at an angle α > 0. The
accelerations ÿ1 and ÿ2 were
measured.

(b) Photo of the mounted
tensioned U-belt in the
wind tunnel.

Figure 2.31.: Experimental set-up for testing a tensioned U-belt.

The tests were carried out in the climatic part of the wind tunnel of the CET (dimen-
sions 2.5 m × 3.8 m) due to the size of the supporting frame. The tension was applied
with the help of two hydraulic cylinders.
The accelerations of either side of the belt were measured using capacitive, uni-axial

accelerometers (see figure 2.31). They were placed at the half length of the belt. Heav-
ing and pitching motion were reconstructed from these two signals. The belt’s mode-1
eigenfrequencies as well as the logarithmic decrement were obtained from monitoring
the decay of an initial perturbation. The heave to pitch eigenfrequency ratio was suffi-
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Property Value
Free length 2.25 m
Belt width B = 300 mm
Belt height B = 65 mm

Mass per unit length 5.43 kg/m
Torsional moment of inertia per unit length 0.190 kg m2/m (estimated)

Table 2.3.: Physical properties of the tensioned U-belt

ciently close to 1. The observed logarithmic decrements were very low, as desired (see
table 2.4). However, the Scruton number was still large due to the high mass of the belt.
Furthermore, the logarithmic decrements in table 2.4 only applied to deflection angles
smaller than 2.5°. Larger perturbations were damped stronger.

f0,y, f0,ϕ δy δϕ Scy Scϕ
13.8 Hz, 13.8 Hz 0.012 0.014 25.18 242.74
11.4 Hz, 10.8 Hz 0.021 0.029 60.85 364.11

Table 2.4.: Logarithmic decrement and corresponding Scruton numbers for two different
eigenfrequencies. Scy = 2mδy/(ρairH

2), Scϕ = 2ITδy/(ρairH
4)

Heave and pitch displacements were obtained by integrating the acceleration signals
twice in Fourier space (i.e. multiplying the spectrum by −1/ω2 and transforming back
into the time domain). To obtain valid displacement signals, the spectra were truncated
below 4 Hz. Tests involving a third accelerometer confirmed that although the belt
deforms, deformations of the cross-section are damped very strongly and decay much
faster than the belt vibrations.
The wind tunnel tests were carried out at flow velocities ranging from 3.9 m/s to the

maximum velocity of 12.8 m/s (8.0 · 104 ≤ Re ≤ 2.6 · 105).
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3. The flow around a stationary U-profile

The flow around a bluff body can take on many different forms. The U-profile promises a
particular “richness” of flow-patterns. The rectangular prism shares its outline with the
U-profile. Depending on the aspect ratio of the prism, there are several different vortex
formation patterns [25]. The flow around an H-shaped prism is also known to permit
several possible flow patterns [47]. The flow around a short rectangular prism, similar to
the flow around the windward flange of the U-profile, shows intermittent change between
two flow patterns [70, 100]. It is known from experiments that the galloping stability of
rectangular prisms does not only depend on its aspect ratio, but also on the turbulence
intensity of the oncoming flow, [19]. The H-prism shares its “open” sidewalls with the
U-profile. Influenced by the motion of the profile, vortices are shed from its windward
flanges and travel along the length of the profile, [47]. The U-profile has similarities with
both H-prism and rectangular prism, and is asymmetric, thus indicating the possibility
of interesting flow patterns.

3.1. 2D Simulation at several angles of inclination
The flow around the stationary profile was studied by means of CFD simulations in
a two-dimensional computational domain (2D-CFD) employing ANSYS Fluent version
14.5. The U-profile (height H, width B) is inclined at a constant angle ϕ (see figure 3.1.
The velocity of the oncoming flow is u∞. The simulations described in this section were
carried out at a Reynolds number of

Re = u∞B/ν = 2.45 · 105. (3.1)

At the inlet boundary a turbulence intensity of

I = 1
u∞

√
2
3k = 1 %, (3.2)

where k is the turbulent kinetic energy, and an eddy viscosity ratio of µt/µ = 1 was
specified. The kω-SST turbulence model with the setting described in section 2.1.2 was
employed. The calculation domain described in section 2.1.5 was used. The coefficients
of lift, drag and moment are given by
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cL = L/(1
2ρu

2
∞H), (3.3)

cD = D/(1
2ρu

2
∞H), (3.4)

cM = M/(1
2ρu

2
∞HB), (3.5)

respectively. L, D and M denote the aerodynamic lift, drag and torsional moment
per unit length, respectively.

B H

L

D

M

ϕ
u∞

Figure 3.1.: Sketch of the U-profile (width B, height H) in parallel flow (u∞) inclined
at an angle ϕ > 0. The aerodynamic lift L, drag D and torsional moment
M act on the profile.

At an inclination of ϕ = 1° two distinct flow patterns were observed. Both flow
patterns are time-periodic. Selection of either flow pattern is related to the initial condi-
tions of the simulation. The details of the selection mechanism and flow pattern changes
are discussed in section 3.1.3. The flow patterns are characterised by different vortex
formation patterns. One flow-pattern dubbed “R-flow” resembles the flow around a
rectangular prism (see figure 3.2,a). The other flow-pattern, dubbed “U-flow” features
a vortex travelling through the cavity of the U-profile (see figure 3.2,b). detail.

(a) R-flow pattern (b) U-flow pattern

Figure 3.2.: Pathlines of passive particles in the flow around a U-profile, coloured by
the velocity magnitude showing two different time-periodic flow-patterns.
Simulation at Re = 2.45 · 105.
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3.1.1. The R-flow pattern
The distinctive feature of the flow patterns is the curvature of the shear layer originating
from the top windward corner of the U-profile. The shear layer is stretched long and
reaches over the cavity of the U-profile. Two almost stationary vortices rest in the cavity
of the profile (figure 3.3). The first snapshot shows that the shear layer impinges on the
leeward flange. A small portion of the flow is directed into the cavity of the profile.
The major part of the flow flows into the wake behind the profile. Thus, the flow field
is similar to the flow around a rectangular prism with the same aspect ratio – hence
the name “R-flow”. Vortices are formed in the wake of the U-profile by a roll-up of the
shear layer. The vortex shedding is similar to the von Kármán vortex street behind a
rectangular cylinder. The vortices do not impinge on any part of the profile.
The aerodynamic forces under this flow pattern are almost sinusoidal in character (see

figure 3.4). Their fundamental frequency yields a Strouhal number, equation (2.20), in
the “usual” range, St(R) = 0.13 (figure 3.5). This value of the Strouhal number is used
to form the dimensionless time:

t̃ = tSt(R)u∞/H (3.6)

The fundamental frequency is related to the frequency of the formation of vortices in
the wake. The vortex formation also influences the aerodynamic forces acting on the
profile. The maximum lift force occurs when a vortex is formed by the upper shear
layer. At this time instance, the shear layer rolls up behind the leeward flange of the
U (figure 3.6a). A small part of the flow is directed into the U-cavity by the leeward
flange. A secondary vortex forms in the corner of the U-cavity, where the static pressure
is relatively low. This is a major contribution to the total lift force. The time instance
of maximum torsional moment coefficient is close to the time instance of maximum lift.
This is due to the asymmetric pressure distribution induced by the secondary vortex in
the corner of the U-cavity (figure 3.6b).
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t̃ = t̃0

bb
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Figure 3.3.: R-flow pattern: snapshots coloured by velocity magnitude and additional
vorticity magnitude contours. Some vorticity magnitude contours are high-
lighted. Simulation at ϕ = 1°, Re = 2.45 · 105. t̃0 = 153 dimensionless time
units after the simulation was started with trivial initial conditions.
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Figure 3.4.: R-flow pattern: Time-dependent aerodynamic forces. Simulation at ϕ = 1°,
Re = 2.45 · 105. St = 0.13, t̃0 = 153 dimensionless time units after the
simulation was started with trivial initial conditions. The top axis marks
the positions of the snapshots in figure 3.3.
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Figure 3.5.: Spectrum of the mean-free lift coefficient cL − c̄L under the R-flow pattern.
ĉ∗L is the Fourier coefficient, N is the number of timesteps considered in the
discrete Fourier transform.
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aa

Flow field at the leeward flange visualized by arrows (coloured by the veloc-
ity magnitude) and pressure isolines

c p

−1.5

−1.0

−0.5

0.0

0.5

1.0

bb

Contours of the pressure coefficient

Figure 3.6.: Flow-field under the R-flow pattern at the time of maximum lift (see fig-
ure 3.3,b). Field coloured by the static pressure. Arrows coloured and scaled
by the velocity magnitude. Simulation at Re = 2.45 · 105 and ϕ = 1°.
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3.1.2. The U-flow pattern
Under the U-flow pattern the vortex formation is entirely different than under the R-
flow pattern. The shear layer rolls up right behind the windward flange of the U-profile
(figure 3.7). A vortex forms in the cavity of the U (cavity-vortex). This vortex is not
stationary as it detaches from the windward flange. It travels through the cavity of the
profile. It is then swept over the leeward flange of the U-profile into the wake. This flow
pattern is predominantly observed for negative angles of inclination. The aerodynamic
forces under this flow pattern (figure 3.8) differ greatly from the R-flow aerodynamic
forces. The fundamental frequency of the aerodynamic forces is related to the vortex
formation at the windward flange of the U. When using this frequency to calculate
a Strouhal number we obtain the value St = 0.072. In dimensionless time units this
means that the period length is t̃(U) = 1.89, which is almost two times the R-flow period
length. The frequency of the wake vortex-shedding is still present in the spectrum of
the aerodynamic forces (figure 3.9). This is due to a secondary vortex forming after the
cavity vortex detached from the windward flange, but before it impinges on the leeward
flange. This secondary vortex forms behind the leeward flange (figure 3.12a). At this
instant of time the lift force has a local maximum (figure 3.8).
The maximum lift occurs when a cavity-vortex is swept over the leeward flange of the

U into the wake (see figure 3.12b). When the cavity vortex impinginges on the leeward
flange, it causes a particularly strong secondary vortex in the corner of the cavity. Very
low static pressures in the corner cause a large contribution to the total lift force. In this
instance of time the torsional moment coefficient is also very large. This is due to the
more pronounced asymmetry in the pressure distribution (figure 3.10). The magnitude
of the lift force depends sensitively on the location of the vortices, which varies slightly
from flow period to flow period. Therefore the U-flow at inclination ϕ = 1° is not strictly
periodic, but slightly modulated (figure 3.11).
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Figure 3.7.: U-flow pattern: snapshots coloured by velocity magnitude and additional
vorticity magnitude contours. Some vorticity magnitude contours are high-
lighted. Simulation at ϕ = 1°, Re = 2.45 · 105. t̃0 = 147 dimensionless time
units after the simulation was started with developed U-flow.
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Figure 3.8.: U-flow pattern: Time-dependent aerodynamic forces. Simulation at ϕ = 1°,
Re = 2.45 · 105. St = 0.135, t̃0 = 147 dimensionless time units after the
simulation was started with developed U-flow pattern. The top axis marks
the positions of the snapshots in figure 3.7.
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Figure 3.10.: Pressure contours at the time instance of maximum lift and large torsional
moment (snapshot figure 3.7,d).
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Figure 3.11.: Time-series of the lift coefficient under the U-flow pattern showing the slight
modulation. Time instances of peak lift due to cavity vortex impingement
are marked with a dot.
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Figure 3.12.: Flow-field under the U-flow pattern at the leeward flange of the U at the
time of maximum lift (a) and at a local maximum of the lift (b). Field
coloured by the static pressure. Arrows coloured and scaled by the velocity
magnitude. Simulation at Re = 2.45 · 105 and ϕ = 1°.
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3.1.3. On the initial conditions and the change of flow patterns
To prepare the study of the influence of the inclination angle (section 3.1.4) a few details
about the simulation setup have to be mentioned. The simulations were started with
trivial initial conditions at zero inclination. To set the desired angle of inclination the
mesh was rotated during the first one-hundred time-steps (roughly one seventh of a flow
period under the R-flow pattern) (see, for example, figure 3.13). The profile was held
at rest during the remainder of the simulation (120000 minus one-hundred time-steps).
Depending on the target angle of inclination, either the U-flow pattern or the R-flow
pattern would develop (example in figure 3.13: the U-flow pattern). Following this
strategy we obtained two distinct inclination intervals where either the U-flow pattern
would develop (2° ≤ ϕ ≤ 10°) or the R-flow pattern would develop (−10° ≤ ϕ ≤ 1°).

Flow time

ϕ = 2°

1°

0°

transients
decay

sampling
time

change
ϕ

transients
decay

sampling
time

U-flow pattern persists

Change to R-flow pattern

U-flow pattern

U-flow pattern

R-flow pattern

R-flow pattern

Simulation start Intermediate step Simulation end

Figure 3.13.: Scheme of the simulation strategy to test which flow pattern can be realised
at a given inclination angle: The angle of inclination during three typical
simulation runs.

To extend these intervals, another series of simulations was set up. A fully developed
flow pattern at a given angle of inclination was used as initial condition (the “interme-
diate step” in figure 3.13). Then, the profile was rotated during the course of twenty
R-flow periods to a new angle of inclination (ϕ = 1° or ϕ = ang0 in figure 3.13). Then
its position remained fixed throughout the rest of the simulation. Depending on the
initial flow pattern and the new inclination of the profile the flow pattern remained the
same or changed. Thus, it is possible to achieve both flow patterns at some inclinations
on the same calculation mesh under the same flow conditions by preparing the initial
conditions.
The change from U-flow to the R-flow pattern is an interesting phenomena and will be

important in section 5.1. Recall that under the U-flow pattern, the cavity vortex forms
right behind the windward flange of the profile (see figure 3.14a). The secondary vortex
is also swept into the wake. Before the change to the R-flow pattern occurs part of the
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secondary vortex remains in the corner of the cavity. Then, the formation of the next
cavity vortex is impeded by the remainder of the secondary vortex (see figure 3.14b and
3.14c). Finally, the cavity vortex cannot form at all. The free shear layer originating
from the top windward corner reaches over the cavity of the U (see figure 3.14d). The
R-flow pattern developed from the U-flow pattern. The secondary vortex has become
the counterclockwise rotating vortex observed under the R-flow pattern. This change
appears to be irreversible in 2D simulations. Transition from the R-flow pattern to the
U-flow pattern was only observed at large positive inclinations, ϕ > 6°.
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Figure 3.15.: Lift coefficient during the transition from U-flow to R-flow pattern. Labels
correspond to subfigures in figure 3.14, t̃0 = 7.5.
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3.1.4. Influence of the angle of inclination
When simulating the flow around an inclined U-profile, the inclination angle influences
which flow pattern can be realised. At small inclinations, ϕ ≤ 1°, only the R-flow pattern
can be realized (see figure 3.16). In the interval 2° ≤ ϕ ≤ 6° both flow patterns could
be realised by the above outlined procedure (section 3.1.3 and figure 3.13). For ϕ ≥ 10°
only the U-flow pattern is possible.
The aerodynamic forces also depend on the inclination angle. The lift coefficient has a

negative slope in the range −5° ≤ ϕ ≤ 5°. The drag coefficient has a minimum at ϕ = 0°.
It increases for ϕ ≶ 0. The fluctuation of the force coefficients also has a minimum at
ϕ = 0° (see figure 3.17).
The aerodynamic forces under the U-flow pattern follows the same trends. The mean

lift and moment coefficients are lower than under the R-flow pattern. The mean drag
coefficient is higher. The fluctuations about the mean values increase for all coefficients
(see figure 3.17).
The U-flow pattern was observed for ϕ > 1° (see figure 3.16). This minimum angle

depends on the mesh size near the U-profile. In free vibration simulations (see chapter 5)
ϕ = 0° was obtained. Before decreasing the cell sizes further, other models involved in
the simulation (specifically the turbulence model and the 2D-assumption) should be
reviewed and improved.
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CHAPTER 3. THE FLOW AROUND A STATIONARY U-PROFILE

3.2. Comparison with PIV wind tunnel tests
The available data consists of the time-periodic flow-fields under either flow patterns
obtained by 2D-CFD simulation, and flow-field snapshots obtained by PIV. Meaningful
comparison of this data requires a careful approach and will be made in two steps. First,
the time-averaged flow fields will be compared. Then snapshots of the flow field will be
discussed. Finally the influence of the inclination angle is discussed.

3.2.1. Time-averaged flow fields
As a first step the statistics of the flow-field are analysed, i.e. the time-average and
standard deviation of the flow velocity. The flow fields obtained by PIV experiments and
2D-CFD simulations are compared. Flow field statistics from PIV data were obtained
using one complete series of captured flow field snapshots, which includes estimated 9.5
flow periods under the R-flow pattern, i.e. the sampling time was 9.5 times the vortex
shedding frequency under the R-flow pattern, ts = 9.5/fvs. Statistics from simulations
were calculated using only one flow period, since the simulated flow is time-periodic.
In figure 3.18 the time-averaged flow-field is shown. Additionally, an iso-line of the

velocity magnitude standard deviation at the value 0.5 s|u|,max is marked (red), where
s|u|,max is the maximal standard deviation in the field:

s|u|,max = max
x2,x2

1
N + 1

∑
i

(|ui(x1, x2)| − |ū(x1, x2)|)2 (3.7)

Areas of large velocity standard deviation indicate regions where the flow is strongly
time-dependent. Also note the regions in figure 3.18 where the PIV result is unreliable
(blue rectangles, see section 2.2.2). In the time-averaged flow-field in figure 3.18 a single
vortical structure rotating clockwise can be seen above the leeward half of the cavity.
However, this region is also characterised by a large velocity standard deviation, indi-
cating a time-dependent flow field. These regions will be further discussed by studying
the snapshots of the flow-field. Furthermore, the evolution of the free shear layer sepa-
rating from the bottom windward corner of the profile is strongly time-dependent and,
naturally, the wake behind the profile. The maximal value of the flow velocity standard
deviation, scaled with the far-field flow velocity u∞ was s(P)

|u|,max/u∞ = 0.46.
Time-averaged simulation results of either flow pattern are shown in figure 3.19. The

time-averaged flow-field of the U-flow pattern is characterised by a single, large vortical
structure in the cavity of the profile (figure 3.19a), rotating clock-wise. This structure
is part of a time-dependent region of the flow-field, as indicated by the red standard
deviation contour at 0.5s(U)

|u|,max. In fact, it encompasses the whole cavity, as well as the
wake of the profile, owing to the formation of cavity vortices as described above. The
maximal, non-dimensional standard deviation was s(U)

|u|,max/u∞ = 0.94, including the
contribution from the turbulent kinetic energy: The variance of one velocity magnitude
is given by the sum of the variance due to coherent structures resolved by the turbulence
model, and the variance due to the turbulent fluctuations modelled by the turbulent
kinetic energy (TKE),
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Figure 3.18.: Time-averaged flow field (arrows) with an isoline of the velocity magnitude
standard deviation (red), obtained by PIV.

s2
|u| =

1
N + 1

∑
i

(|u|i − |ū|)2 + 2
3

¯TKE, (3.8)

where the summation was carried out over one flow period and ¯TKE is the time-
averaged turbulent kinetic energy.
Unlike the previously discussed flow fields the time-averaged R-flow field (figure 3.19b)

is characterised by two vortical structures in the cavity of the profile. One vortex in the
leeward half of the cavity is rotating in clockwise direction while the other vortex in
the windward half of the cavity is rotating in counter-clockwise direction. Note that
the standard-deviation iso-line at 0.5s(R)

u,max (where s(R)
v,max/u∞ = 0.57), which already

includes the contribution from the turbulent kinetic energy, encompasses only the wake
of the profile and a small region in the free shear layer above the cavity and not the two
vortical structures.
No conclusive evidence for either flow pattern can be obtained by comparing the time-

averaged flow fields. The standard deviations as seen in the PIV data indicate that the
flow-field becomes instationary well before the leeward corners of the profile (figure 3.18).
Yet, the instationary regions of the U-flow field begins right after the windward flange of
the profile. The instationary regions of the R-flow field encompass mainly the wake and
it appears that the flow in the cavity and above is almost stationary. The next section
discusses snapshots of the flow-field in the light of the already gained insights.

3.2.2. Flow-field snapshots (R-flow pattern)
First, snapshots of the R-flow pattern are discussed. Recall that the snapshots of the
R-flow pattern (figure 3.3) revealed that the two vortices in the cavity are almost station-
ary. Hence the temporal statistics previously discussed show a very small flow velocity
standard deviation. A snapshot of the flow-field under the R-flow pattern is shown in
figure 3.20. The profiles of the horizontal flow velocity component suggest that the free
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aa

U-flow pattern

bb

R-flow pattern

Figure 3.19.: Time-averaged flow field (arrows) with an isoline of the velocity magnitude
standard deviation (red), obtained by 2D-CFD Simulation.

shear layer is sensitive to small perturbations. Especially the local velocity profile at
x = −0.32B (blue, left profile in figure 3.20) resembles that of the shear layer in a
Kelvin-Helmholtz scenario. Indeed, the large values of the turbulence intensity I (esti-
mated from the turbulent kinetic energy, magenta line) indicate that many eddies are
formed in the free shear layer. These eddies are not resolved in space and time, but
accounted for through the turbulent kinetic energy. Larger vortices, present in the wake
of the profile are resolved in space and time. The clear distinction between the resolved
and modelled timescales is an implicit assumption of URANS models. Critics of URANS
methods argue that the evolution of free shear layers may depend sensitively on small
eddies and that the implied separation of timescales is not given in bluff body flows [32].
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Figure 3.20.: Snapshot of the simulated flow-field (R-flow pattern) with two u-velocity
profiles and a turbulence intensity isoline, I = 15 %.

3.2.3. Flow-field snapshots (U-flow pattern)
Recall, that the U-flow pattern revealed a strongly time-dependent flow-field in the cavity
(figure 3.19a). Indeed, a snapshot of the flow-field shows that unlike under the R-flow
pattern, the average flow-field has very little in common with a snapshot (figure 3.21).
The velocity profile (blue) shows the roll-up of the shear layer as seen in the snapshots
of the U-flow (figure 3.7). The green arrow in figure 3.21 shows the approximate path
of the vortex core. Recall that the vortex at the tip of the arrow was formed behind the
windward flange (where the green arrow begins) during the previous flow period and has
travelled towards the leeward flange. The turbulence intensity is low where the cavity
vortex forms but large between the two vortical structures, and also around the shear
layer below the profile.

Figure 3.21.: Snapshot of the simulated flow-field (U-flow pattern) with a u-velocity pro-
file and a turbulence intensity isoline, I = 15 %.

Another often stated criticism of URANS methods, especially in two-dimensional com-
putational domains, is the slow decay of vortical structures as they travel through the
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computational domain. The large turbulence intensities around the second vortex in
figure 3.21 suggest that the (three-dimensional) decay of the cavity vortex may be im-
portant in reality. Before the influence of the cavity vortices on the aerodynamic forces is
discussed, a comparison with snapshots of the flow field obtained by the PIV experiments
is given, where evidence for the cavity vortices will be given.
Some snapshots of the flow-field acquired by PIV resemble the aforementioned R-flow

patterns in a way (see figure 3.22). The shear-layer is curved weakly and reaches over
the cavity of the profile (green arrows). Vortices can be seen in the wake behind the
profile. The flow in the cavity itself does not resemble the R-flow pattern. Instead, the
orientation of the arrows suggest a three-dimensional flow-field. Despite this, the velocity
profile (blue) is similar to the profile shown in figure 3.20, locally resembling a Kelvin-
Helmholtz Scenario. In parallel shear-flows such a velocity profile could be unstable by
Fjørtoft’s criterion [27]. Indeed, a vortex of considerable size can be seen in this snapshot
to the right of the velocity profile (green arrows in figure 3.22). These vortices contribute
to the turbulent kinetic energy in the simulations of the R-flow pattern as they are not
resolved (see figure 3.20). The question is whether these vortices can take on the role of
the cavity vortex, which is observed in 2D-CFD simulations under the U-flow pattern.

Figure 3.22.: Snapshot of the flow-field (PIV), visualised by arrows and a horizontal-
velocity profile. The shear layer is curved weakly.

There is evidence that vortices can form right behind the windward flange of the
profile (see figure 3.23, green arrows). By the horizontal-velocity profile (blue) it can
be seen that a clockwise-rotating vortex is located at this position. Under the R-flow
pattern a counter-clockwise rotating vortex would be present. This vortex is not sta-
tionary, but travels through the cavity towards the leeward flange. Also in figure 3.23a
a second vortex rotating in clockwise direction can be seen at this position (green ar-
rows). Subsequent snapshots show the left vortex detaching from the windward flange
and travelling towards the leeward flange (figures 3.23b, 3.23c). Furthermore it can be
observed that many vortical structures are located below the profile. These were also
modelled as a contribution to the turbulent kinetic energy in the simulations. The last
flow field snapshot shows that the cavity vortex failed to form (figure 3.23c). Instead,
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the flow-field appears to be three-dimensional at this location.
Thus, aspects of both flow patterns were observed at the same angle of inclination

in the PIV experiments. The figures 3.22 and 3.23 show only four out of 44 recorded
flow-field snapshots. These snapshots were analysed how closely they resemble either
the U-flow or the R-flow pattern.

• It was chosen to count snapshots where vortices rotated in counter-clockwise di-
rection in the windward half of the cavity as “R-flow frame”.

• Frames where clockwise rotating vortices were located in the cavity of the profile
were considered an “U-flow frame”.

• All other frames were counted as “undecidable”.

Of 44 frames spanning 19 flow periods, 13 frames resembled the U-flow pattern by the
above described criteria. Only one was considered to represent the R-flow pattern. The
remaining 30 frames were deemed “undecidable”. These frames are mainly characterised
by small vortices forming in the free shear layer and a possibly three-dimensional flow in
the cavity (similar to figure 3.22). The two almost stationary vortices seen in 2D-CFD
simulations under the R-flow pattern (figure 3.19b) could be unstable in three dimen-
sions. Thus, the “undecidable” frames may resemble the R-flow pattern. Then, the flow
switches between the two flow patterns observed in 2D-CFD simulations. Numerically,
no intermittent change between the flow patterns was observed. Change between flow
patterns from U-flow to R-flow and back again could only be achieved by substantially
varying the inclination angle during a simulation run.

3.2.4. Influence of the angle of inclination
First, let the U-profile be positively inclined, ϕ0 = 5◦. Application of the criteria de-
scribed above lead to the following results: Of 44 available snapshots none resembled
the R-flow pattern but 26 showed features of the U-flow pattern. The remaining 18
snapshots were deemed undecidable. When positively inclined, the leeward flange of the
profile is closer to the free shear layer and influences the formation of cavity vortices
such that they appear more often. Large vortices, such as the cavity vortices are, should
be detectable downstream of the profile in its wake. Inspection of the flow velocities in
the wake behind the U-profile by means of a CTA probe showed that there is a band
of frequencies present, yielding 0.065 ≤ St(P,U) ≤ 0.083 (figure 3.24). These frequen-
cies correspond to the formation frequency of cavity vortices. They are lower than the
Strouhal number attributed to the “classical” vortex shedding St(P) = 0.133, obtained at
ϕ0 = 0◦, and also lower than the Strouhal numbers others observed in the flow around
a rectangular prisms with similar aspect ratio [58].
When the U-profile is negatively inclined, ϕ0 = −5◦, none of the 44 available snapshots

resemble either U-flow or R-flow pattern. Instead, every frame is “undecidable” by the
above described criteria. The snapshots are characterised by a very complex flow in
the cavity which appears to be non-periodic and highly three-dimensional. The shear
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Figure 3.23.: Three successive snapshots of the flow-field (PIV), visualised by arrows and
a u-velocity profile.
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layer separating from the top windward corner of the profile is still easily perturbed and
forms vortices. Yet they move above the leeward flange and do not influence the flow in
the cavity much. Inspection of the flow velocities in the wake yield a Strouhal number
St(P) = 0.133 (figure 3.25) which is numerically equal to the value of St obtained at zero
inclination ϕ0 = 0◦.

3.2.5. Implications
The existence of two time-periodic flow patterns in the 2D-CFD simulations means that
the simulation effort in chapter 5 has doubled. For every parameter set two simulation
runs have to be carried out. One run starting with the U-flow pattern, the other with
the R-flow pattern. Since the PIV experiments predict intermittent change of the flow
patterns, it remains an open question whether profile motion favours one or the other
flow pattern. Unfortunately, this question can not be answered with the herein employed
numeric methods. Therefore, flow induced vibrations will be studied under either flow
pattern. By comparison with wind tunnel tests an attempt to answer the above question
will be made.
Principally, the aerodynamic derivatives (chapter 4) would also have to be calculated

twice, once for each flow pattern. However, it turns out, that under slow profile motion
the U-flow pattern changes to the R-flow pattern. Thus, the aerodynamic derivatives
will only be computed for the R-flow pattern.
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Figure 3.24.: Frequency spectrum of the flow velocity magnitude in the wake of the U-
profile at inclination ϕ = 5°.
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Figure 3.25.: Frequency spectrum of the flow velocity magnitude in the wake of the U-
profile at inclination ϕ = −5°.
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4. Aeroelastic stability by forced motion
simulations

The classical analysis for translational galloping (a so-called self-excited vibration) is
based on studying the flow around a static, rigid body, [81]. This easy approach is limited
two single-degree of freedom heave (vertical translation) vibrations. To determine the
stability of a rigid body with two (or more) degrees of freedom (here: “heave” and
“pitch”; i.e. torsional vibrations) a better model for the motion-dependent aerodynamic
forces is needed. The so-called aerodynamic derivatives provide such a model.

4.1. Aerodynamic derivatives of a U-profile
The framework of aerodynamic derivatives models motion dependent aerodynamic forces.
Scanlan, [90], was among the first to formalize the concept: The aerodynamic lift L and
moment M are considered to depend (symbolically) on the displacement and velocity of
the profile, e.g.

L = L(y, ẏ, ϕ, ϕ̇) (4.1)
M = M(y, ẏ, ϕ, ϕ̇) (4.2)

for harmonic motion with a certain frequency, such as

y = ŷ sin(2πft), or (4.3)
ϕ = ϕ̂ sin(2πft). (4.4)

Here, small amplitudes, ŷ = 0.01H or ŷ = 0.03H and ϕ̂ = 1° or ϕ̂ = 3° have been
prescribed. The frequency of the motion f can either be used to form a reduced velocity
or, more commonly, a reduced frequency:

U∗fm = u∞/(Hf) (4.5)
K = ωH/u∞ = 2πfH/u∞ (4.6)

Assuming linear dependence of these forces on a small-amplitude motion, one can
write
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L = 1
2ρu

2
∞(2B)

(
KH∗1 (K) ẏ

u∞
+KH∗2 (K)Bϕ̇

u∞
+K2H∗3 (K)ϕ+ K2H∗4 (K) y

B

)
M = 1

2ρu
2
∞(2B2)

(
KA∗1(K) ẏ

u∞
+KA∗2(K)Bϕ̇

u∞
+K2A∗3(K)ϕ + K2A∗4(K) y

B

)
.
(4.7)

This choice of coefficients is based on [48]. The aerodynamic derivatives H∗i and A∗i
depend on the reduced frequency K = ωB/u∞ of the motion.
The aerodynamic lift L and momentM respond to the forced motion at the frequency

of the forcing, but with a phase shift ψ, e.g.

L = L̂ysin(2πft+ ψL,y), (4.8)
that is the response of the aerodynamic lift to forced harmonic heaving motion with

the amplitude L̂y and the phase shift of the lift force due to a heaving motion ψL,y.
Of course vortex shedding also contributes to these forces, albeit at another frequency
(exemplary shown in figures 4.1 and 4.2).
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Figure 4.1.: Total, time-dependent lift coefficient cL and lift coefficient attributed to the
profile motion cL,y of the U-profile performing forced heave motion y =
ŷ sin(·), U∗fm = 20, ŷ = 0.01H (2D-CFD simulation).

The part of the spectrum influenced by the forced motion (red dots in the latter figure)
was used to calculate the response of the aerodynamic forces (e.g. cL,y in figure 4.1).
The vortex shedding is assumed to be independent from the forced motion.
Thus, the response of the aerodynamic forces to the forced motion is extracted. The

response amplitudes and phase shifts (e.g. L̂, ψL,y) were identified by non-linear fitting.
Plugging the harmonic motion (equations (4.3) and (4.4)) into the ansatz for the aero-
dynamic forces (equation (4.7)) and solving for the aerodynamic derivatives yields the
following equations:
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Figure 4.2.: Spectrum of the lift force under forced heaving motion ŷ = 0.03H at U∗fm =
20 (2D-CFD simulation). Red dots : the influence of the forced motion.
Blue dots : the influence of the vortex shedding .
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(4.9)

In our case, the aerodynamic derivatives shown in figure 4.3 were obtained. It was
chosen to evaluate the aerodynamic derivatives for the only for the R-flow pattern.
The lowest reduced velocity at which the aerodynamic derivatives were computed was

U∗fm = 12. At this reduced velocity another effect could be seen. In this (and only this)
case, a different flow pattern developed for ϕ̂ = 3°. The flow is similar to the U-flow.
The shedding of cavity vortices is possible through the pitching motion. This is reflected
in a great difference between the values of A∗2, A∗3 and H∗2 for either forcing amplitude.
It is our view that the aerodynamic derivatives at such low reduced velocities should

not be used to predict stability. It is very likely that non-linear mechanisms like lock-in
phenomena and vortex shedding affect the aerodynamic derivatives. Thus non-linear
mechanisms are introduced into a linear framework.
The role of the A∗4 and H∗4 derivatives is not entirely clear. According to [81] they can

be interpreted as contribution to the mass of the profile since they are scaled with K2.
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Figure 4.3.: Aerodynamic derivatives of the U-profile of chapter 3, figure 3.1 for several
reduced velocities for two forced vibration amplitudes: : ŷ/H = 0.01,
ϕ̂ = 1°, : ŷ/H = 0.03, ϕ̂ = 3°.

4.2. Determining stability using the aerodynamic derivatives
To determine aeroelastic stability of the rigid body the modelled aerodynamic forces are
plugged into the equations of motion. We introduce a state vector z, the mass matrix
M and gather the aerodynamic derivatives in matrices:

z =
(
y
ϕ

)
, (4.10)

M =
(
m 0
0 IT

)
, (4.11)

(
L
M

)
= 1

2ρu
2
∞(2B)


(
K2H∗4/B K2H∗3
K2A∗4 BK2A∗3

)
︸ ︷︷ ︸

A34(K)

z + B

u∞

(
KH∗1/B KH∗2
KA∗1 BKA∗2

)
︸ ︷︷ ︸

A12(K)

ż

 (4.12)

The state vector consists of the two degrees of freedom (translation y, rotation ϕ).
The mass matrix contains the mass m and inertial moment IT of the body.
The equations of motion for a rigid body with two degrees of freedom, supported by

linear springs take on the following form (we assume equal eigenfrequencies ω0 for both
degrees of freedom):

B2

u2
∞

(
Mz̈ + ω2

0Mz
)

= ρB3
(

A34(K)z + B

u∞
A12(K)ż

)
. (4.13)
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The difficulties stem from the dependence of the aerodynamic derivatives on the re-
duced frequency K. Two established methods to alleviate these difficulties, the so-called
p- and p-k-method (see [40]) are employed. The methods are reproduced here, as the
description in [40] is written in a more general way.
Both methods assume harmonic motion of the body,

z = z̄ exp(u∞p/B · t), (4.14)

where the dimensionless parameter p incorporates the dimensionless frequency K and
the growth rate γ (i is the imaginary unit):

p = γK + iK. (4.15)

Plugging this ansatz into equation (4.13) yields[
p2M +K2

0M− ρB3 [A34(K) + iKA12(K)]
]
z̄ = 0. (4.16)

To allow for non-trivial values of z̄ (the mode shape), the term in the brackets must
vanish. The dimensionless parameter K0, defined as

K0 = ω0B/u∞ (4.17)

is the eigenfrequency, made dimensionless in the same way as the dimensionless flutter
frequency, K (equation (4.6)). It relates to our definition of the reduced velocity U∗

(equation (5.2)) as

K0 = 1/U∗ · 2πB/H. (4.18)

4.2.1. The k-method
The k-method is a straightforward approach. Harmonic motion with constant amplitude
is prescribed by setting γ = 0 in equation (4.15). Plugging p = iK into equation (4.16)
leads to an eigenvalue problem for K2

0 :[
ρB3 [A34(K) + iKA12(K)] +K2M

]
z̄ = K2

0Mz̄. (4.19)

Generally, these eigenvalues are complex and can be interpreted as (<K0)(1 + ig),
where g is a fictitious damping required to sustain harmonic motion with constant am-
plitude.

• If g < 0 the vibration mode is damped.

Inspection shows that the fictitious damping is proportional to the amplitude of the
motion, but independent on its frequency. The damping force is

Dk = −igmω2
0 z̄ exp(iωt). (4.20)
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Note, that the often used velocity proportional damping force is proportional to the
frequency and amplitude of the motion,

D = −icω exp(iωt). (4.21)

4.2.2. The p-k method
The p-k-method does not prescribe a fictitious damping. The parameter p (equa-
tion (4.15)) may be complex. However, the influence of a growing or decaying amplitude
on the aerodynamic forces is neglected by only considering the imaginary part of p: =p
in the matrices A12 and A34 (equation (4.12)).
Values for p that admit a non-trivial solution to equation (4.16) are obtained as the

solution to a (generalized) eigenvalue problem for for p2 derived from this equation:[
ρB3 [A34(=p) + i(=p)A12(=p)]−K2

0M
]
z̄ = p2Mz̄. (4.22)

Because the terms A12 and A34 depend on K = =p an iterative approach is required.
For any given K0 an initial guess for =p is required, for example K0. Computing p
using these values yields the next guess for K, from which the next candidates for p
can be obtained. This approach eventually converges towards some value of p, which is
complex in general. Thus a combination of a real K0 and complex K is obtained for
which the bracket in equation (4.16) vanishes. The real part of p: <p = γK, contains
the information about growth or decay of the vibration.

• A negative real part of p: Rep < 0 indicates that the vibration mode is damped.

Thus, the p-k method is also an approximation since the aerodynamic influence ma-
trices A12 and A34 are evaluated at a constant amplitude of the motion. The influence of
decaying or increasing amplitude on the aerodynamic forces is not taken into account.

4.2.3. Results
It is known, that the k- and p-k-methods can yield different results, [40]. The difference
in these results has to be attributed to the different damping terms implied by both
methods. Only for the case of neutral stability, γ = g = 0 either method yields the same
frequency.
Figures 4.4 and 4.5 show the damping g or γ and the related frequency of the vibration,

respectively. Both methods predict that a mode becomes unstable at a large reduced
velocity. The predicted value of this reduced velocity appears to depend greatly on the
values of the aerodynamic derivatives. For the smaller forcing amplitude U∗c,2 = 38, while
U∗c,2 = 28. At intermediate reduced velocities, a weakly unstable mode is predicted. Its
growth rates appear to decrease for increasing forcing amplitude.
The role of the H∗4 and A∗4 derivatives is disputed among the scientific community[81],

since the aerodynamic force should not depend on the absolute value of the vertical
displacement. However, the second time derivative of the displacement under harmonic
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Figure 4.4.: The fictitious damping g (k-method) or damping ratio γ (p-k-method) for
several reduced velocities U∗ = u∞/(Hf0) and two forced motion amplitudes
ŷ/H, ϕ. : Mode 1, : Mode 2, : p-k-Method, : k-Method.

motion yields a term proportional to (2πf)2. This term also appears in the scaling of
the aerodynamic derivatives H∗4 and A∗4. Thus, these derivatives could be interpreted as
a contribution to the aerodynamic forces by the accelerations ÿ and ϕ̈ [81]. Nonetheless,
many studies omit these derivatives. Here, this approach leads to different results (fig-
ures 4.6 and 4.7). For the aerodynamic derivatives obtained at small forcing amplitudes
(ŷ/H = 0.01, ϕ̂ = 1°) one mode is unstable for all reduced velocities. Another mode
is stable for all reduced velocities. For larger forcing amplitudes (ŷ/H = 0.03, ϕ̂ = 3°)
one mode is always stable. The other mode becomes unstable at U∗ = 14.2. However,
this is due to the flow pattern influence at these low reduced velocities. In both cases
the growth rate of the unstable mode shows a more steep increase at reduced velocities
U∗ > 25. The following chapter 5 will show that vibrations indeed occur in this reduced
velocity regime.
The fictitious damping in the k-method is seen as severe restriction, [40]. Further-

more, the unstable mode at U∗ = 32 (ŷ/H = 0.01, ϕ̂ = 1°) was confirmed by numeric
integration of the linear equations of motion together with the contribution of the aerody-
namic derivatives. A detailed comparison of the stability predictions of the aerodynamic
derivatives and the fully coupled simulation results is given in chapter 5.
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at several reduced velocities for two forced motion amplitudes ŷ/H, ϕ. The
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Figure 4.6.: The fictitious damping g (k-method) or damping ratio γ (p-k-method) for
several reduced velocities U∗ = u∞/(Hf0) and two forced motion ampli-
tudes ŷ/H, ϕ when the aerodynamic derivatives A∗4 and H∗4 are omitted.
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at several reduced velocities for two forced motion amplitudes ŷ/H, ϕ when
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5. 2D Simulation of flow induced vibrations

Several excitation mechanisms for flow-induced vibrations of bluff bodies exist. These
excitation mechanisms act at different (dimensionless) reduced flow velocities. Typi-
cally, VIV be observed at low reduced velocities. Self-excited vibrations are more often
observed at large reduced velocities.
The reduced flow velocity ranges for VIV be estimated by inspection of the vortex

shedding frequencies observed in section 3. The findings in section 4 gave an indication
of the critical velocity for self-excited vibrations.
The first part of this chapter is dedicated to the simulation of free vibrations with the

CFD Software package ANSYS Fluent. The second part of this chapter discusses free
vibration wind tunnel experiments, designed to verify the simulation results.

5.1. Simulations
The flow around the U-profile was simulated using ANSYS Fluent and the same numeric
models and program settings as worked out in in chapter 2 and applied in chapter 3.
The U-profile is free to move in vertical direction y and to rotate about its long axis

(angle ϕ). Again the aspect ratio B/H = 4.62 and Re = u∞B/ν = 2.45 · 105 in every
simulation result (see figure 5.1). Details regarding the computation mesh and simulation
setup are discussed in section 2.1. Using this grid, both U-flow and R-flow patterns could
be realised at zero inclination. The respective Strouhal numbers are St(U) = 0.072 and
St(R) = 0.135.

B

H

ϕ

y

u∞

Figure 5.1.: Displaced U-profile

Unless mentioned otherwise the eigenfrequencies of heave and pitch mode are equal,

f0,y = f0,ϕ = f0. (5.1)

The far-field flow velocity u∞ is scaled to yield the reduced velocity
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U∗ = u∞/(Hf0), (5.2)

where f0 is the structural eigenfrequency. To reduce the dimension of the parameter
space it was chosen to perform the simulations without mechanical damping. The re-
duced velocity was changed by varying the stiffness in the equations of motion for the
rigid body.

5.1.1. SDoF heave vibrations
We first consider single-degree-of-freedom (SDoF) heave vibrations. Results from sec-
tions 3.1.4 and 4 indicate that the U-profile should not vibrate at large reduced velocities.
Firstly, by Den Hartog’s criterion for translational galloping [81]: The slope of the lift
coefficient at α = 0 in figure 3.16a is negative. Secondly, the direct aerodynamic deriva-
tive H1 is negative for every considered reduced velocity (see figure 4.3), also indicating
stability with respect to self-excited vibrations. Such vibrations are observed under nei-
ther U-flow nor R-flow pattern (figures 5.2a and 5.2b). Vibration amplitudes at reduced
velocities U∗ ≥ 28 are minimal. This leaves the possibility of VIV open. Such vibrations
were observed under either flow pattern.
Under the U-flow pattern, VIV observed U∗ = 14, the U-flow resonance case (see

figure 5.2a). The maximal amplitude of ŷ/H = 0.25 occurred at U∗ = 14 and vibration
amplitudes for U∗ ≶ 14 are smaller. At U∗ = 14 the structural eigenfrequency f0,y is
(almost) equal to the formation frequency of cavity vortices f (U)

vs (figure A.15). Both
heave and lift frequency spectra have a peak at f0,y/f

(U)
vs = 1 or equivalently U∗ = 14.

However, the Fourier coefficient of the lift coefficient at this frequency is not the global
maximum of the spectrum! The maximal Fourier coefficient in the spectrum is at the
double cavity vortex formation frequency which is approximately equal to the R-flow
vortex frequency, 2f (U)

vs ≈ f (R)
vs . The flow field still resembles the U-flow pattern, but the

lift force is more dominantly influenced by the secondary vortices (see figure 3.12a). The
motion of the profile due to the (cavity) vortex shedding reduced the aerodynamic forces
induced by these vortices. The fluctuation of the lift force decreases and the vibration
amplitude is bounded even without mechanical damping. After some time the profile
performs harmonic vibrations with almost constant amplitude (figure A.4).
At reduced velocities U∗ = 12 and U∗ = 16 the structural eigenfrequency f0,y and the

vortex shedding frequency for a stationary profile f (U)
vs are not equal any more. But the

U-flow pattern shows some ability to synchronise to the profile motion. At these reduced
velocities the largest Fourier coefficient of the vertical displacement ŷ∗ corresponds nei-
ther to the structural eigenfrequency, nor to the vortex shedding frequency at stationary
conditions. It lies between these two frequencies, marked by U∗ = 14 or U∗ = 16 and
f/f

(U)
vs = 1 in figures A.15 and A.16. The synchronisation does not lead to a state of

resonance again and the vibration amplitudes observed in these two cases are smaller
than for the U-flow resonance case U∗ = 14. At U∗ = 16 a slightly modulated harmonic
vibration can be observed after initial transients decayed (figure A.5). At U∗ = 12
there is some interaction of the profile motion with the secondary vortices. The Fourier
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Figure 5.2.: SDoF heave Simulation (Re = 2.45 · 105): Maximal and minimal average
peak amplitudes for several reduced velocities.

coefficients of the aerodynamic lift assume large values at the U-flow vortex shedding
frequency f (U)

vs and at 2f (U)
vs . The time-series of the heave amplitude is characterised by

fast upswings and slow decay (figure A.3).
At the reduced velocity U∗ = 10 transition to the R-flow pattern occurs. This can

be seen by the drastic change in the heave amplitudes in figure A.2 for t̃ ≶ 40. The
R-flow pattern shows a different kind of interaction between the profile motion and the
vortex shedding frequency, leading to larger amplitudes at U∗ = 10 (figure A.2), as will
be discussed below.
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While the U-flow persists at U∗ = 8, transition occurs again at the lowest studied
reduced velocity, U∗ = 7.4 (figure A.1), corresponding to the R-flow resonance case.
The flow pattern changes to a hybrid of U-flow and R-flow pattern. A stationary coun-
terclockwise rotating vortex rests in the windward half of the cavity, but the shear-layer
rolls up to form a cavity vortex on top of it (figure 5.3a). The cavity vortex travels to-
wards the leeward flange and coalesces with the vortex in the leeward half of the cavity
(figure 5.3b). Then the large cavity vortex splits in two smaller vortices. One vortex
is shed from the profile and is swept into the wake. The other vortex remains in the
leeward half of the cavity and will later coalesce with the next cavity vortex (figure 5.3c.
This is only possible due to the motion of the profile allowing the formation of the large
vortex above the cavity.
The maximal heave amplitude ŷ/H = 0.14 under the R-flow pattern occurs at U∗ = 10

and not at the presumed R-flow resonance case U∗ = 1/St(R) = 7.4 (figure 5.2a). Instead
vibration amplitudes increase from ŷ/H ≈ 0.065 at U∗ = 7.4 to ŷ/H = 0.082 at U∗ = 8
to the value reported above at U∗ = 10. At U∗ = 12 and above the heave amplitudes
assume minimal values. Inspection of the spectra (figures A.11 to A.13) shows that
there is a particular influence of the profile motion on the vortex shedding frequency. At
U∗ = 7.4, the R-flow resonance case the reduced velocity is (almost) equal to the inverse
of the Strouhal number computed with the vortex shedding frequency under stationary
conditions, U∗ = 1/St(R). Yet, the vortex shedding frequency decreased to a value of
f/f

(R)
vs ≈ 0.95! The state of resonance is not maintained due to the profile motion. It

is plausible that the vortex shedding frequency should decrease: The Strouhal number
does not scale with the width of the body, but with the width of its wake, [81] and [84]
therein. The width of the wake is increased due to the profile motion. This can be
seen by plotting the averaged horizontal-velocity profile in the wake (figure 5.5). The
horizontal flow velocity was sampled 150 times during an R-flow periods for a sampling
length of three periods at a distance 11.3B behind the profile. The wake width under
stationary conditions is smaller than at U∗ = 7.4, indicating the change in the vortex
shedding frequency. The trend continues: larger vibration amplitudes lead to lower
vortex shedding frequencies. At reduced velocities U∗ = 8.0 and U∗ = 10.0 the structural
eigenfrequency is ever closer to the vortex shedding frequency (figures A.12 and A.14),
given by the maxima of the lift Fourier coefficients. At U∗ = 10, the scaled structural
eigenfrequency f0,y/f

(R)
vs assumes the value f0,y/f

(R)
vs = u∞/HU

∗f
(R)
vs = 0.74, while

the ratio of actual vortex shedding frequency to the vortex shedding frequency under
stationary conditions is f/f (R)

vs = 0.71. For 7.4 < U∗ < 10 the eigenfrequency is larger
than the vortex shedding frequency. At reduced velocities U∗ > 10 the vortex shedding
frequency cannot decrease any further. The vortex shedding frequency assumes a value
which is closer to the stationary vortex shedding frequency and vibration amplitudes
are very low. The eigenfrequency is lower than the vortex shedding frequency. Thus,
the R-flow pattern differs from the U-flow pattern in its synchronisation abilities. The
U-flow cavity vortices synchronised easily to the profile motion, leading to a broader
interval where VIV occur (see also figure 5.4a). The R-flow vortex shedding frequency
shifts due to the profile motion, delaying the state of resonance. This can also be seen
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(a) t̃0

(b) t̃0 + 0.36

(c) t̃0 + 0.47

Figure 5.3.: Snapshots of the flow-field at U∗ = 7.4 showing the “hybrid” U-R-flow pat-
tern. t̃ = t · St(R) u∞/H.

in figure 5.4b. A similar effect has been observed for the B/H = 4 rectangular prism
[64] and the square prism [61]. Finally note, that the peculiar hybrid flow pattern also
developed at U∗ = 7.4 from R-flow initial conditions. With the findings of the previous
chapter 3 in mind, namely that the flow patterns change intermittently, it is not yet clear
which flow pattern will be selected in reality, if any, at low reduced velocities U∗ . 14.
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Figure 5.4.: Frequency corresponding to the maximal heave Fourier coefficient under
SDoF heave vibrations.
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vertical extension of the profile upstream at rest.
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5.1.2. SDoF pitch vibrations
We continue with SDoF rotational or pitch vibrations and the behaviour at low reduced
velocities. Under the U-flow pattern and at reduced velocities U∗ = 7.4 and U∗ = 8.0
excitation by secondary vortices (see figure 3.12a) occurs. The corresponding amplitudes
are small ϕ̂ < 3° (figure 5.6a). The frequency spectrum of the torsional moment shows
that the profile is excited by the secondary vortices and at roughly half the eigenfrequency
by the cavity vortices (figure A.18). The shedding of the secondary vortices is only
weakly influenced by the profile motion, as can be seen from the almost equal vibration
frequencies for U∗ = 7.4 and U∗ = 8.0 (figures A.17 and A.18, that do not follow the
eigenfrequency of the profile.
At reduced velocities U∗ = 10 to U∗ = 16 excitation by the cavity vortices occurs.

The excitation in this reduced velocity regime occurs mainly at the vortex shedding
frequency. The cavity vortex formation frequency under profile motion does not assume
larger values than the stationary formation frequency, for example at U∗ = 12 (see
figure A.20). At U∗ = 12 significant vibration amplitudes (ϕ̂ ≈ 4°, figure 5.6a) can be
observed. At U∗ = 14 even larger amplitudes occur: ϕ̂ ≈ 11°. Starting from stationary
conditions the pitch vibrations reach these large amplitudes quickly, in about ten U-flow
periods (figure A.6). Now, the cavity vortex formation frequency is influenced by the
profile motion. Due to the large pitch angles the vortex formation slows down (see the
frequency spectrum in figure A.20). The fluctuation of the moment coefficient under
pitch motion at U∗ = 14 is much greater than in the stationary case (figure 5.7a).
At U∗ = 16, vibration amplitudes and moment coefficient fluctuations increase once
more. The vortex formation frequency is even lower than at U∗ = 14, resulting in very
large amplitudes. Note the difference to the SDoF heave case, where the cavity vortex
formation frequency near U∗ = 14 was always close to the eigenfrequency. The heaving
motion allowed the cavity vortices to be swept faster or slower towards the leeward flange
of the profile. In case of pitch motion the cavity vortices are only slowed down due to
large pitch angles.
At U∗ ≥ 18 the cavity vortices can no longer adapt to the profile motion. The

flow pattern changes to the R-flow pattern. This process is not reversible (in our 2D
simulations) and thus the results at these reduced velocities are identical to the results
of the R-flow simulations described below.
Under the R-flow pattern and the R-flow resonance case U∗ = 7.4 vibration ampli-

tudes are unexpectedly low ϕ̂ = 0.4° (figure 5.6b). Again, the profile motion influences
the vortex shedding frequency. Contrasting the influence of a heaving motion, the vortex
shedding frequency increases due to pitching motion. At U∗ = 8 it can be seen that
the vortex shedding frequency assumes a larger value than in the stationary case (fig-
ure A.19). The profile responds at this frequency, but vibration amplitudes remain low
throughout U∗ = 12.0. At this reduced velocity the vortex shedding frequency assumes
the same value as in the stationary case (figure A.21). Again the profile responds to
this excitation at the vortex shedding frequency and not at eigenfrequency, which is
much lower than the vortex shedding frequency at this reduced velocity. The moment
coefficient fluctuation is not larger than in the stationary case for U∗ < 12 (figure 5.7b).

84



CHAPTER 5. 2D SIMULATION OF FLOW INDUCED VIBRATIONS

 0

 5

 10

 15

 20

 25

 30

 35

 5  10  15  20  25  30

φ
, i

n 
°

U*

(a) U-flow pattern

 0
 1
 2
 3
 4
 5
 6
 7
 8

 5  10  15  20  25  30

φ
, i

n 
°

U*

(b) R-flow pattern

Figure 5.6.: SDoF pitch Simulation (Re = 2.45 · 105): Maximal and minimal average
peak amplitudes for several reduced velocities.

At U∗ = 14 a different excitation mechanism comes into play. Although the moment
coefficient fluctuations do not increase, the profile responds at eigenfrequency rather than
at vortex shedding frequency. A new contribution to the moment coefficient can be seen
in the frequency spectrum (figure A.22). It is mere coincidence that this contribution is
at the half vortex shedding frequency. This contribution does not exist at lower reduced
velocities (figure A.20). At larger reduced velocities it deviates from the half vortex
shedding frequency (figure A.23). The excitation mechanism is clearly only possible
under profile motion. Therefore it does not belong to the class of instability-induced
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Figure 5.7.: Amplification of the torsional moment fluctuation at several reduced veloc-
ities.

excitations (IIE in [74], such as VIV) but to the class of motion induced excitations
(MIE in [74]). A first understanding of this excitation mechanism is gained by the
time-series of the torsional moment (figure 5.8). Compared to the stationary case, the
torsional moment is now modulated with the frequency 1/2f (R)

vs , yet the simulation still
shows a time-periodic flow-field. The modulation is such that two successive peaks have
an increased amplitude. They are followed by two peaks with lesser amplitude. The
profile responds with pitch vibrations with an amplitude of ϕ̂ ≈ 1° (figure 5.9). The
phase between pitching motion and the torsional moment is such that a large negative
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peak of the moment precedes a negative peak of the pitch angle. Two snapshots at a
large and small negative peak are shown in figure 5.10. In both cases a vortex detaches
from the upper leeward corner of the profile. The more interesting region of the flow-field
is the smooth side of the profile. At the large negative peak of the torsional moment
a small vortex (red line in figure 5.10b) can be seen below the profile. This vortex is
not present at the smaller negative peak of the torsional moment (figure 5.10a). This
small vortex influences the surface pressures and is responsible for the magnitude of the
negative moment peak. Consider the surface pressures in figure 5.11, where the surface
pressures for the horizontal parts of the profile, the top part of the sidewalls and the base,
and the bottom part of the base, are compared at the time-instances of large and small
negative peak of the torsional moment. The surface pressures acting on the top parts is
almost the same in both cases. The pressures acting on the bottom part of the profile
are influenced by the presence of the small vortex. Thus the small vortex influences the
torsional moment. Considering the phase between moment and pitch angle (figure 5.9) it
can be seen that the vortex responsible for the large negative moment peak forms when
the profile is rotating in clockwise direction. When the profile is rotating in counter-
clockwise direction a negative peak with smaller magnitude is present. This vortex is
therefore closely related to the motion of the profile and in accordance with [64] will be
called motion induced vortex in the following.
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Figure 5.8.: Time-series of the mean-free moment coefficient cM − c̄M under the R-flow
pattern, compared for the stationary case and U∗ = 14 (R-flow pattern,
SDoF pitch).

For U∗ > 14 the moment fluctuations and vibration amplitudes due to the motion
induced vortex increase. The upswing behaviour is also different to the upswing under
VIV: Figure A.7 shows that the pitch amplitudes are initially influenced by the vortex
shedding. Then, the amplitudes increase exponentially, but with a smaller time con-
stant. The upswing is much slower than under U-flow VIV. The vibration amplitudes
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at U∗ = 14 (R-flow pattern, SDoF pitch).

(a) t̃0 + 0.34

(b) t̃0 + 1.45

Figure 5.10.: Snapshots of the vorticity contour at U∗ = 14 (R-flow pattern, SDoF pitch)

saturate at ϕ̂ ≈ 5°. At large reduced velocities U∗ ≥ 28 the yet unknown saturation
mechanism is no longer at work and vibration amplitudes increase to such values that
the simulation fails (ϕ̂ > 60°). This is reflected to some extent in by the aerodynamic
derivatives. The direct aerodynamic derivative A2 is positive and increases in magni-
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Figure 5.11.: Snapshots of the surface pressures acting on the horizontal sides of the
U-beam.

tude with the reduced velocity. Additionally it can be observed that the magnitude of
A2 decreases when the amplitude of the forcing by which the aerodynamic derivatives
were determined is increased. Although this could be interpreted as the action of some
saturation mechanism, this thought should not be pursued because of the linear nature
of the method of aerodynamic derivatives.
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Figure 5.12.: Frequency corresponding to the maximal pitch Fourier coefficient under
SDoF pitch vibrations.
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5.1.3. 2DoF flutter vibrations
We now consider 2DoF flutter vibrations and will discuss whether 2DoF flutter vibrations
appear as mere superposition of the SDoF cases or whether new behaviour arises. We
begin with the observations under the U-flow pattern at low reduced velocities. At
U∗ = 7.4 and U∗ = 8.0 excitation by secondary vortices (figure 3.12a) occurs as observed
in the SDoF pitch case (figure A.18). A different behaviour can be seen at 10 < U∗ = 14:
pitch-dominated vibrations due to the cavity vortices set in. The heave motion does not
contribute much to the vibration (figure A.8). At U∗ = 14, after the upswing phase,
vibrations with an almost constant amplitude of ϕ̂ = 10.7° and ŷ/H0.06 are reached.
Note, that a rotation of ϕ̂ = 10.7° displaces the windward corners of the profile by the
distance B/2 · sin ϕ̂ = 0.43H in the vertical direction.
Thus, the contribution of the heave motion is not essential. As in the SDoF pitch

case, the profile does not respond at eigenfrequency, but at the cavity vortex formation
frequency (figure 5.14a). Again, the motion of the profile causes a decrease of this
frequency. At the reduced velocity U∗ = 16.0 transition to the R-flow pattern occurs,
at a lower reduced velocity than under SDoF pitch conditions. Flow pattern transition
was observed for all reduced velocities U∗ ≥ 16 and the results are equivalent to the
corresponding R-flow cases described below.
Under the R-flow pattern a different mode of vibration occurs. Starting from U∗ = 7.4

vibrations set in at moderate amplitudes ŷ/H = 0.07 and ϕ̂ = 2.5° (see figure 5.13b).
The amplitudes increase until U∗ = 14 where ŷ/H = 0.22 and ϕ̂ = 5.2°. In this
regime (7.4 < U∗ < 16) the profile vibrates at eigenfrequency (figure 5.14b). In contrast
to the 2DoF U-flow case heave and pitch motion are of equal magnitude (figure A.9).
Pitch vibrations with ϕ̂ = 5.2° displace the windward edge vertically by the distance
B/2 · sin ϕ̂ = 0.21H. Recall, that heave and pitch motion decreased and increased the
vortex shedding frequency, respectively (figures 5.4b, 5.12). The opposing influences of
heave and pitch motion on the vortex shedding frequency combine to enable VIV with
larger amplitudes.
The frequency spectra of the aerodynamic forces and the displacements at U∗ = 10

(figure A.24) show that despite some “noise” in the lift spectrum the vortex shedding
occurs at its eigenfrequency f0. At U∗ = 14 (figure A.25) vortex shedding occurs at the
original vortex shedding frequency again. The combined heave and lift motion extended
the reduced velocity range where vortex induced vibrations occurred. Note that these
vibrations are not due to the motion induced vortex observed in the SDoF pitch case.
At the time-instance of minimal torsional moment no such vortex can be seen in the
flow-field (figure 5.15). The combined heaving and pitching motion also diminishes the
influence of the motion induced vortex at reduced velocities 14 ≤ U∗ ≤ 28. Only minimal
vibration amplitudes can be observed in this reduced velocity interval (figure 5.13b).
While pitch vibration amplitudes at U∗ = 28 in the SDoF pitch case were already
extremely large, they remain very small in the 2DoF case at the same reduced velocity.
Vibrations with very large amplitudes set in at U∗ = 32 (figure A.10). Again the sim-

ulation run ended prematurely due to the extremely large grid displacement. Note, that
after an initial transient phase almost exponential amplitude growth can be observed.
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Figure 5.13.: 2DoF simulation (Re = 2.45 · 105): Maximal and minimal average peak
amplitudes for several reduced velocities.

The aerodynamic derivatives, obtained with forced vibration amplitudes of ŷ/H = 0.03,
ϕ̂ = 3° predict an unstable mode at U∗ = 32 (figure 4.4). This mode has the dimen-
sionless frequency K = ωB/u∞ = 0.61, while the dimensionless frequency observed in
the simulation is K = 0.77. Note that both values are not equal to the dimensionless
eigenfrequency K0 = 2πB

HU∗ = 0.91, but smaller. The phase ψ/2π between heave and pitch
is 0.69 in the simulations and 0.64 in the prediction by the aerodynamic derivatives. The
growth rates of heave and pitch motion are not equal in the simulations. Neither growth
rate coincides with the predicted value. The aerodynamic derivatives offer no easily un-
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Figure 5.14.: Frequency corresponding to the maximal heave or pitch Fourier coefficient
in case of 2DoF vibrations.

derstandable explanation for the small amplitudes for reduced velocities U∗ . 28, and
why extreme amplitudes already occur at U∗ = 28 without a heave degree of freedom
(i.e. in the SDoF pitch case). Yet the reason for the small observed vibration amplitudes
is related to the heave motion that renders the motion induced vortex ineffective.
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Figure 5.15.: Snapshot of the vorticity magnitude under the R-flow pattern at U∗ = 14
at the time-instance of minimal torsional moment.
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5.2. Rigid section model experiments
Experiments to verify the simulation results were performed following two different ap-
proaches. Firstly, a rigid section model with U-shaped cross section was tested with
the 2DoF test-stand described in section 2.2.3). The relatively low flow velocities at
U∗ = 7.4 in conjunction with the sometimes large damping of the test stand rendered
this approach suitable for large reduced velocities and testing self-excite vibrations. Sec-
ondly, a deformable belt was tested as described in section 2.2.4. VIV were studied with
this experimental setup.

5.2.1. Verifying the critical velocity for self-excited vibrations
Here, we present the results of tests at three different test-stand eigenfrequencies aimed
at verifying the critical velocity for flutter vibrations. Heave and pitch eigenfrequency
were tuned to the same value, thus f0,y = f0,ϕ = f0. At lower reduced velocities,
U∗ ≤ 15, no vibrations could be observed (figure 5.16). Increasing the flow velocity did
not lead to large vibrations until U∗ > 28. Here, pronounced vibrations were observed at
eigenfrequencies f0 = 2.0 Hz and f0 = 4.5 Hz. A large-amplitude limit cycle was reached.
At the eigenfrequency f0 = 4.5 Hz small vibrations were already recorded for U∗ . 28.
These vibrations were intermittent in character. It is not entirely clear whether they
were the result of an interaction between model deformation (at approximately 20 Hz)
and the approach to the critical velocity or a response to the turbulence in the flow. At
the test-stand eigenfrequency f0 = 9.5 Hz the reduced velocity U∗ = 28 was not reached,
but vibrations with small amplitude were also observed at U∗ ≈ 25.
Although the critical reduced velocity coincides with one obtained by simulations,

there are some difficulties when comparing with predictions by the aerodynamic deriva-
tives. It is not clear to which extent the mechanical properties of the test-stand should
be included in the mass matrix M in equation (4.16), and how the eigenmodes of the
test-stand together with the model really look like. The phase ψ/2π between heave and
pitch is not equal for the displacements obtained with the test-stand eigenfrequencies
f0 = 2.0 Hz and f0 = 4.5 Hz. It is also not equal to the phase predicted by the simulations
(see page 92).

5.2.2. Verifying vibrations at low reduced velocities
To achieve reduced velocities 7 < U∗ < 14 at larger flow velocities, the eigenfrequency
of the test-stand was increased substantially. Unfortunately, this also increased the
damping properties (see table 2.2).
At low reduced velocities U∗ > 7 heave vibrations could be observed (see figure 5.17).

The heave dominated motion indicates VIV observed under the R-flow pattern. Yet vi-
bration amplitudes decreased for U∗ > 7, as opposed to the 2DoF case, where vibrations
continued to U∗ = 10. Vibrations with small amplitude were recorded for reduced veloc-
ities up to U∗ = 16. At larger reduced velocities intermittent vibrations with increasing
amplitude occurred. The data in figure 5.17 was low-pass filtered with a 5th order But-
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Figure 5.16.: Free vibration tests in the wind tunnel: Dimensionless displacements y/H
and angle ϕ for several reduced velocities. The upper and lower lines
correspond to the minimum and maximum average peaks.

terworth filter (cutoff frequency 15 Hz) to discern between model and test-stand motion.
Most notably pitch vibrations at U∗ ≈ 11 with ϕ̂ = 0.4° at the model eigenfrequency
are not displayed.
Several other tests at test-stand eigenfrequency 6.5 Hz with “imperfections” (eigen-

frequency ratio not equal to one, initial angle of inclination different from zero) were
carried out. The aim was to test whether vibrations at low reduced velocities could be
observed under slightly altered conditions. However, this was not the case.
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Figure 5.17.: Free vibration tests in the wind tunnel: Dimensionless displacements y/H
and angle ϕ for several reduced velocities at a test-stand eigenfrequency of
9.5 Hz.

5.3. Tensioned belt experiments
The experiments on the tensioned belt were carried out to investigate the behaviour of
the U-shaped profile at low reduced velocities under low damping conditions. Due to the
limited wind tunnel flow velocity investigations at large reduced velocities (e.g. U∗ > 28)
could not be performed with this model. Tests at two different tunings (eigenfrequencies
f0,ϕ = 13.8 Hz and f0,ϕ = 10.8 Hz) were carried out.
For the eigenfrequency f0,ϕ = 13.8 Hz a sharp increase of pitch amplitudes at U∗ = 14

was observed (see figure 5.18a). This may correspond to vortex induced vibrations under
the U-flow pattern, as seen in the the simulations. Since the wind tunnel was operated
at almost maximum power at U∗ = 14, reduced velocities U∗ > 14 were not investigated
at this tuning. Instead, the eigenfrequency was lowered by reducing the tension in the
belt (f0,ϕ = 10.8 Hz. For reduced velocities up to U∗ = 12 comparable behaviour was
observed (see figure 5.18b). The sharp increase at U∗ = 14 could not be reproduced.
Instead, for U∗ . 17 intermittent pitch vibrations occurred. At U∗ ≈ 18, where the
wind tunnel was operated at maximum power (97%) the minimum average peaks also
increased, indicating perpetual instead of intermittent vibrations. Possible reasons for
this discrepancy are the frequency ratio in case of the lower eigenfrequency, which is
f0,y/f0,ϕ = 1.06 instead of f0,y/f0,ϕ = 1 as in the first case. Secondly the damping,
represented by the logarithmic decrements in table 2.4, is slightly larger for the lower
eigenfrequency. Unfortunately these properties appeared to depend sensitively on the
tension of the individual cables in the belt.
Another possibility to influence the flow pattern is the angle of inclination (see sec-

tion 3.1.4). Vibrations at the lower eigenfrequency and the angles ϕ0 = 5° and ϕ0 = −5°
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were investigated.
At positive inclination it can be reasoned that U-flow vortices play a more important

role. Indeed, pitch dominant vibrations set in at U∗ ≈ 14 (see figure 5.19). The heaving
amplitudes also increase from this velocity onwards. At negative inclinations vibration
amplitudes are much smaller. Only a slight increase for growing reduced velocities can
be observed. This behaviour is a direct consequence of the flow pattern: Vortices shed
behind the windward flange do not come close enough to the leeward flange to excite
vibrations.
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Figure 5.18.: Mode-1 Heave y/H and pitch ϕ motion of a tensioned belt at zero inclina-
tion for several reduced velocities U∗ = u∞/Hf0,ϕ.
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Figure 5.19.: Mode-1 Heave y/H and pitch ϕmotion of a tensioned belt at f0,ϕ = 10.8 Hz
for several reduced velocities U∗ = u∞/Hf0,ϕ.
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6. Conclusions

Flow induced vibrations of a U-shaped belt or prism at Reynolds numbers Re ∼ 105

were studied with the help of 2D-CFD simulations and wind tunnel experiments. After
taking the available time and resources into account it was chosen to employ unsteady
RANS simulations in a two-dimensional computational domain. This choice made it
possible to perform several simulation series with limited computational power. Most
computations were performed in parallel and using 4 CPU cores, and finished within a
few days wall clock time. Thus, many insights about the flow around this particular
profile and the vibration excitation mechanisms could be gained.

6.1. The flow around a stationary profile
The simulations show two different flow patterns, the U-flow and R-flow pattern, which
were found to exist under the same boundary conditions.

• Under the U-flow pattern, the shear layer originating from the top windward corner
rolls up in the cavity of the U. The cavity vortex forms. It travels to the leeward
flange of the U, from where it is swept into the wake of the profile.

• Under the R-flow pattern, the free shear layer is weakly curved and reaches towards
the wake of the profile. Large vortices form behind the profile.

• PIV wind tunnel experiments showed that the flow patterns change intermittently.
This was not captured by our simulations.

The two flow patterns correspond to similar vortex formation patterns observed in
the flow around a rectangular prism or an H-prism. The R-flow pattern is also known
as LEVS regime in rectangular-prism flows. The U-flow pattern is similar to the ILEV
regime, [25]. The vortices forming at the leading edge of a rectangular prism impinge on
its sidewalls. The aspect ratio of the prism influences whether the ILEV or LEVS regime
forms [25]. A rectangular prism with an aspect ratio of B/H = 4.65 (as the U-profile
under consideration) is in the ILEV regime, but close to the LEVS-regime.
The flow around an H-prism admits several flow patterns. Kubo and Hirata, [46],

reported several possible ILEV regimes with different numbers of vortices travelling
along the sides of an H-prism (aspect ratio B/H = 10). The number of travelling
vortices could be influenced by forced motion of the prism. Here, no more than one
vortex travelling through the cavity could be observed.
Two intermittently changing flow patterns can also be observed in the flow around

a short rectangular prism (B/H=1/5). Again, the flow patterns are related to a weak
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or strong shear layer roll-up. This was reported by Tamura and Itoh [100] by simu-
lations, explaining wind tunnel tests by Nakamura and Matsukawa [70]. Promising,
modern methods for simulating turbulent flows exist. Published results indicate that
3D URANS simulations of the flow around bluff bodies tend to yield solutions that are
two-dimensional in character [32]. It is stated that the implicit assumption of time-scales
required for the success of URANS simulations does not hold when simulating bluff body
flows. The largest vortices in the wake evolve on time-scales that are much larger than
the time scales of the turbulent fluctuations. But the development of the important free
shear layers, and therefore ultimately also the largest vortices, depends on much smaller
time-scales which cannot be resolved by URANS simulations. Thus, it can be easily
understood how the assumptions implied by the URANS model lead to the notions of
the U-flow and R-flow pattern, as they can be discerned by the behaviour of the free
shear layer above the cavity.
There are many recent studies reporting simulation of bluff body flows using LES-like

techniques [5, 58] or blending RANS and LES approaches [104]. However, successful
these simulations were, there is no established scale resolving turbulence model available
at present. A recent review of the simulation effort in the BARC benchmark (flow around
a rectangular prism with an aspect ratio of B/H = 5) [13] highlighted this by finding
that four research groups reported a total of sixteen different different time and spanwise
averaged flow fields in the year 2011. All but two of these were 3D LES simulations.

6.2. Aeroelastic stability by forced motion simulations
The critical reduced velocity for flutter vibrations of the U-profile was estimated by the
method of aerodynamic derivatives. A critical velocity close to U∗ = 32, where 2D-
CFD simulations predicted flutter vibrations, was obtained. However, the exact value is
sensitive to changes of the aerodynamic derivatives. At low reduced velocities influences
of the flow-pattern were deemed too important. Due to the inherent nonlinearities, these
could not be captured reliably with such methods. To sum up:

• Plausible results were obtained by employing the method of aerodynamic deriva-
tives in conjunction with 2D URANS simulations.

6.3. 2D Simulation of flow induced vibrations
The vibration simulations share the same limitations as the simulations of the flow
around the stationary profile. Each SDoF or 2DoF configuration had to be simulated
twice to account for each flow pattern. Bearing in mind, that the flow pattern change
is also influenced by the motion of the profile it is an open question which flow pattern
is relevant at which reduced velocity. The observed flow induced vibration phenomena
can be roughly split into the following two regimes:

• At reduced velocities smaller than 16 (U∗ < 16) the excitation is due to vortices
forming in the wake or the cavity vortices.
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• At larger reduced velocities, U∗ > 16 excitation due to the motion induced vortex
is relevant.

The vibrations due to the motion induced vortex could be reproduced by wind tunnel
experiments (section 5.2). An indication that vibrations due to cavity vortices exist
could be achieved by the tensioned belt experiments (section 5.3).
An experimental study of flow induced SDoF vibrations of a B/H = 4 rectangular

prism is [64]. Therein, our SDoF heave and pitch results are confirmed qualitatively.
SDoF heave vibrations are confined to one reduced velocity interval. Two unstable
regimes for SDoF pitch vibrations were observed. Furthermore, Matsumoto et al. [64]
reason that the vortices travelling along the side of the profile (“surface vortices”) are
the cause for the observed vibrations at low reduced velocities, U∗ < 10. The main
difference to the present results is that the cavity vortices (the analogue to the surface
vortices) lead to larger vibration amplitudes and can excite vibrations in a broader range
of reduced velocities. In another publication, Matsumoto et al. [63] describe two different
excitation mechanisms for vibrations of a Tacoma narrows bridge scale model. These
two excitation mechanisms correspond to vibration excitation due to the cavity vortex
and the motion induced vortex.

6.3.1. Unique aspects of this thesis
The investigation of excitation mechanisms of a tensioned belt with U-shaped cross-
section at low reduced velocities by coupled CFD simulations is unique to this thesis.
Despite remarkable progress in the development of turbulence models and a vast increase
in the available computer power in the last years, this investigation could not have been
carried out with scale resolving turbulence models. The demand of computational power
of such simulations and the required time to fine-tune these turbulence models render
this endeavour impossible today. Surely, future research will lead to better turbulence
models and more efficient numeric schemes to revisit the findings presented herein. The
headstone for further investigations is laid.
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A. Simulation data
Displacements: SDoF heave, U ∗ = 7.4, U-flow pattern
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Figure A.1.: Time-series of the dimensionless heave y/H and the lift coefficient cL at U∗ = 7.4; Simu-
lation at Re = 2.45 · 105 under the U-flow pattern.

Displacements: SDoF heave, U ∗ = 10.0, U-flow pattern
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Figure A.2.: Time-series of the dimensionless heave y/H and the lift coefficient cL at U∗ = 10.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.
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Displacements: SDoF heave, U ∗ = 12.0, U-flow pattern
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Figure A.3.: Time-series of the dimensionless heave y/H and the lift coefficient cL at U∗ = 12.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.

Displacements: SDoF heave, U ∗ = 14.0, U-flow pattern
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Figure A.4.: Time-series of the dimensionless heave y/H and the lift coefficient cL at U∗ = 14.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.
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Displacements: SDoF heave, U ∗ = 16.0, U-flow pattern
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Figure A.5.: Time-series of the dimensionless heave y/H and the lift coefficient cL at U∗ = 16.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.

Displacements: SDoF pitch, U ∗ = 14.0, U-flow pattern
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Figure A.6.: Time-series of the pitch angle ϕ and the moment coefficient cM at U∗ = 14.0; Simulation
at Re = 2.45 · 105 under the U-flow pattern.
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Displacements: SDoF pitch, U ∗ = 18.0, R-flow pattern
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Figure A.7.: Time-series of the pitch angle ϕ and the moment coefficient cM at U∗ = 18.0; Simulation
at Re = 2.45 · 105 under the R-flow pattern.
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Displacements: 2DoF, U ∗ = 14.0, U-flow pattern
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Figure A.8.: Simulation at Re = 2.45 · 105 under the U-flow pattern, U∗ = 14.0.
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Displacements: 2DoF, U ∗ = 14.0, R-flow pattern
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Figure A.9.: Simulation at Re = 2.45 · 105 under the R-flow pattern, U∗ = 14.0.

109



APPENDIX A. SIMULATION DATA

Displacements: 2DoF, U ∗ = 32.0, R-flow pattern
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Figure A.10.: Simulation at Re = 2.45 · 105 under the R-flow pattern, U∗ = 32.0.
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Spectra: SDoF heave, U ∗ = 7.4, U-flow pattern
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Figure A.11.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 7.4;
Simulation at Re = 2.45 · 105 under the U-flow pattern.

Spectra: SDoF heave, U ∗ = 8.0, R-flow pattern
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Figure A.12.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 8.0;
Simulation at Re = 2.45 · 105 under the R-flow pattern.
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Spectra: SDoF heave, U ∗ = 10.0, U-flow pattern
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Figure A.13.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 10.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.

Spectra: SDoF heave, U ∗ = 10.0, R-flow pattern
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Figure A.14.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 10.0;
Simulation at Re = 2.45 · 105 under the R-flow pattern.
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Spectra: SDoF heave, U ∗ = 14.0, U-flow pattern
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Figure A.15.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 14.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.

Spectra: SDoF heave, U ∗ = 16.0, U-flow pattern
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Figure A.16.: Frequency spectra of the dimensionless heave y/H and the lift coefficient cL at U∗ = 16.0;
Simulation at Re = 2.45 · 105 under the U-flow pattern.
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Spectra: SDoF pitch, U ∗ = 7.4, U-flow pattern
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Figure A.17.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 7.4; Simulation
at Re = 2.45 · 105 under the U-flow pattern.

Spectra: SDoF pitch, U ∗ = 8.0, U-flow pattern
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Figure A.18.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 8.0; Simulation
at Re = 2.45 · 105 under the U-flow pattern.
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Spectra: SDoF pitch, U ∗ = 8.0, R-flow pattern
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Figure A.19.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 8.0; Simulation
at Re = 2.45 · 105 under the R-flow pattern.

Spectra: SDoF pitch, U ∗ = 12.0, U-flow pattern
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Figure A.20.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 12.0; Simulation
at Re = 2.45 · 105 under the U-flow pattern.
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Spectra: SDoF pitch, U ∗ = 12.0, R-flow pattern
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Figure A.21.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 12.0; Simulation
at Re = 2.45 · 105 under the R-flow pattern.

Spectra: SDoF pitch, U ∗ = 14.0, U-flow pattern
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Figure A.22.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 14.0; Simulation
at Re = 2.45 · 105 under the U-flow pattern.
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Spectra: SDoF pitch, U ∗ = 18.0, R-flow pattern
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Figure A.23.: Frequency spectra of the pitch ϕ and the moment coefficient cM at U∗ = 18.0; Simulation
at Re = 2.45 · 105 under the R-flow pattern.
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Spectra: 2DoF, U ∗ = 10.0, R-flow pattern
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Figure A.24.: Frequency spectra of the heave y, the lift coefficient cL, the pitch ϕ and the moment
coefficient cM at U∗ = 10.0. Simulation at Re = 2.45 · 105 under the R-flow pattern.
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Spectra: 2DoF, U ∗ = 14.0, R-flow pattern
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ŷ *
/H

N

f/fvs
(U)

Lift
Heave

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3
 0

 0.005

 0.01

 0.015

 0.02

 0.025
U=14.0
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Figure A.25.: Frequency spectra of the heave y, the lift coefficient cL, the pitch ϕ and the moment
coefficient cM at U∗ = 14.0. Simulation at Re = 2.45 · 105 under the R-flow pattern.
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B. Rigid body solver
#de f i n e VERSION "0 .2 . 0 −15 .0 "

#inc lude " udf . h "
/∗ #inc lude " ui−he lper−f un c t i on s . h " ∗/

#inc lude " s tdboo l . h "
#inc lude " s t d i o . h "
#inc lude " s t d l i b . h "
#inc lude " d l f c n . h "
#inc lude " s t r i n g . h "
#inc lude " un i s td . h "
#inc lude " pthread . h "
#inc lude "math . h "

/∗ Debug ∗/
#inc lude " sys / types . h "

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Function Prototypes
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

void ∗ solve_motion ( void ∗ arg ) ;
void _globa l_in i t ( ) ;
#i f RP_HOST
void rk4part ( double ∗ , double ∗ , double , double , double ) ;
#end i f
#i f RP_NODE
void ca l c_ f o r c e s ( ) ;
#end i f

void read_rp_real ( double ∗ , char ∗) ;
void read_rp_int ( i n t ∗ , char ∗) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Global v a r i ab l e d e c l a r a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

/∗ g r id cons tant s ∗/
double r1 , r2 ;

/∗ mode s e l e c t i o n ∗/
i n t mode [ ] = {1 , 1 , 1 , 1} ;
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/∗ host and node g l oba l v a r i ab l e d e c l a r a t i o n s ∗/
bool s ta te , mutex_in i t i a l i z ed = f a l s e ;
i n t rk4done , nZones=2;
i n t zone_id=0;
double z_0 [ 4 ] , z_1 [ 4 ] ;
pthread_mutex_t mutex ;
/∗ Debug ∗/
/∗ pid_t pid ; ∗/

/∗ aerodynamic f o r c e s ∗/
double l1 , d1 , m1;

/∗ node g l oba l v a r i ab l e d e c l a r a t i o n s ∗/
#i f RP_NODE
#end i f

/∗ host g l oba l v a r i ab l e d e c l a r a t i o n s ∗/
#i f RP_HOST

double de lta_t ;
double lm1 , dm1, mm1, l0 , d0 , m0;

/∗ Parameters , s e t by i n i t i a l i z e r ∗/
double k , c , m, kT , cT , IT ;

i n t extrap_order ;
i n t do_rblog=0;
FILE ∗ rb log ;

char ∗rp_mode , ∗ l og f i l ename , rp_buf fer [ 1 6 ] ;

double y_accel=0, phi_acce l =0;

/∗ ex t e rna l l i b r a r y ( f o r c ed motion ) vars ∗/
void ∗ fmotion_handle ;
void (∗ fmot ion_funct ion ) ( double , int , double ∗ , double ∗)=NULL;
void (∗ fmot ion_defau l t_rotat ion ) ( double , double , int , double , int , →

99K double ∗ , double ∗)=NULL;

/∗ ex t e rna l l i b r a r y ( f o r c ed motion ) parameters ∗/
double fmotion_default_rotat ion_phi1 =0.0 , →

99K fmot ion_default_rotat ion_phi2 =0.0 ;
i n t fmot ion_defau l t_rotat ion_tsteps=1;

#end i f

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−− Global i n i t i a l i z a t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

DEFINE_EXECUTE_AFTER_DATA( g loba l_ in i t , l ibname ) {
_globa l_in i t ( ) ;

}

void _globa l_in i t ( ) {

#i f RP_HOST
in t l i b r b_ i n i t s t a t e =0;

char ∗ fmot ion_error=NULL, fmotion_libname [ 2 5 6 ] , fmotion_funcname [ 2 5 6 ] ,
∗ fname_sep , fmotion_l ibpath [ 2 5 6 ] ;

#end i f

#i f RP_HOST
Message ( "−−−␣ l i b r i g i dbody : ␣This ␣ i s ␣ i s ␣ l i b r i g i dbody ␣ ve r s i on ␣%s\n" , →

99K VERSION) ;
#end i f

i f ( ! mutex_in i t i a l i z ed ) {
pthread_mutex_init(&mutex , NULL) ;
mutex_in i t i a l i z ed =true ;

}

rk4done = 0 ;
s t a t e = f a l s e ;

#i f RP_HOST
/∗ s e t s a f e d e f au l t va lue s ∗/
lm1 = 0 ; dm1 = 0 ; mm1 = 0 ;
l 0 = 0 ; d0 = 0 ; m0 = 0 ;
l 1 = 0 ; d1 = 0 ; m1 = 0 ;
z_0 [ 0 ] = 0 ; z_0 [ 1 ] = 0 ; z_0 [ 2 ] = 0 ; z_0 [ 3 ] = 0 ;
z_1 [ 0 ] = 0 ; z_1 [ 1 ] = 0 ; z_1 [ 2 ] = 0 ; z_1 [ 3 ] = 0 ;

/∗ load parameters ∗/
read_rp_real(&k , " r i g idbody /k " ) ;
read_rp_real(&c , " r i g idbody /c " ) ;
read_rp_real(&m, " r ig idbody /m" ) ;
read_rp_real(&kT, " r ig idbody /kt " ) ;
read_rp_real(&cT , " r i g idbody / ct " ) ;
read_rp_real(&IT , " r i g idbody / i t " ) ;

read_rp_real(&lm1 , " r i g idbody /lm1 " ) ;
read_rp_real(&dm1, " r i g idbody /dm1" ) ;
read_rp_real(&mm1, " r ig idbody /mm1" ) ;
read_rp_int(&zone_id , " r i g idbody /zone_id " ) ;

/∗ r e cove r r i g i d body s t a t e ∗/
read_rp_real(&z_0 [ 0 ] , " r i g idbody /z0_0 " ) ;
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read_rp_real(&z_0 [ 1 ] , " r i g idbody /z0_1 " ) ;
read_rp_real(&z_0 [ 2 ] , " r i g idbody /z0_2 " ) ;
read_rp_real(&z_0 [ 3 ] , " r i g idbody /z0_3 " ) ;

/∗ read g r id cons tant s ∗/
read_rp_real(&r1 , " r i g idbody / g r id / r1 " ) ;
read_rp_real(&r2 , " r i g idbody / g r id / r2 " ) ;

memcpy(z_1 , z_0 , 4∗ s i z e o f ( double ) ) ;

read_rp_int(&do_rblog , " r i g idbody / log " ) ;
l o g f i l e name = RP_Get_String ( " r i g idbody / l og f i l e name " ) ;

read_rp_int(&extrap_order , " r i g idbody / extrap_order " ) ;

rp_mode = RP_Get_String ( " r ig idbody /mode" ) ;
s p r i n t f ( rp_buffer , "%.7 s " , rp_mode) ;
i f ( strcmp ( " heave " , rp_mode)==0) {

Message ( "−−−␣ l i b r i g i dbody : ␣Mode␣ \" heave \" ␣ s e l e c t e d \n " ) ;
mode [ 2 ] = 0 ; mode [ 3 ] = 0 ;

}
e l s e i f ( strcmp ( " p i t ch " , rp_mode)==0) {

mode [ 0 ] = 0 ; mode [ 1 ] = 0 ;
Message ( "−−−␣ l i b r i g i dbody : ␣Mode␣ \" p i t ch \" ␣ s e l e c t e d \n " ) ;

}
e l s e i f ( strcmp ( " forced−" , rp_buf fer )==0) {

mode [ 1 ]=0 ; mode [ 3 ]=0 ;
Message ( "−−−␣ l i b r i g i dbody : ␣Mode␣ \" f o r c ed \" ␣ s e l e c t e d \n " ) ;

fname_sep = s t r r c h r ( rp_mode , ( i n t ) ’− ’ ) ;
∗ fname_sep=’ \0 ’ ; /∗ <Pfusch> ∗/

s t r cpy ( fmotion_libname , &rp_mode [ 7 ] ) ;
fmot ion_l ibpath [0 ]= ’ \0 ’ ;
s t r c a t ( fmotion_libpath , " . / l i b r i g i dbody / forced−motion/ " ) ;
s t r c a t ( fmotion_libpath , fmotion_libname ) ;
s t r c a t ( fmotion_libpath , " . so " ) ;
s t r cpy ( fmotion_funcname , fname_sep+s i z e o f ( char ) ) ;

∗ fname_sep=’− ’ ; /∗ </Pfusch> ∗/
Message ( "−−−␣ l i b r i g i dbody : ␣Using␣ func t i on ␣\"%s \" ␣ in ␣ l i b r a r y ␣→

99K \"%s \ " . \ n " , fmotion_funcname , fmotion_l ibpath ) ;

/∗ open ex t e rna l l i b r a r y ∗/
fmotion_handle = dlopen ( fmotion_libpath , RTLD_NOW) ;

i f ( ! fmotion_handle ) {
Message ( "−−−␣ l i b r i g i dbody : ␣Could␣not␣open␣ forced−motion␣→

99K l i b r a r y \n " ) ;
l i b r b_ i n i t s t a t e++;

}
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d l e r r o r ( ) ;

/∗ s e t forced−motion func t i on po in t e r ∗/
/∗ I n i t i a l i z e d e f au l t forced−motion func t i on s ∗/
i f ( strcmp ( fmotion_libname , " d e f au l t " )==0) {

i f ( strcmp ( fmotion_funcname , " r o t a t i on " )==0) {
fmot ion_defau l t_rotat ion=dlsym ( fmotion_handle , fmotion_funcname ) ;
i f ( RP_Variable_Exists_P ( " r ig idbody / forced−motion/ t s t e p s " ) )

fmot ion_defau l t_rotat ion_tsteps = →
99K RP_Get_Integer ( " r i g idbody / forced−motion/ t s t e p s " ) ;

e l s e {
Message ( "−−−␣ l i b r i g i dbody : ␣The␣ f o r c ed ␣motion␣parameter ␣→

99K ‘ t s t e p s ’ ␣ f o r ␣ the ␣ func t i on ␣ ‘ r o t a t i on ’ ␣ i s ␣miss ing \n " ) ;
l i b r b_ i n i t s t a t e++;

}

i f ( RP_Variable_Exists_P ( " r ig idbody / forced−motion/phi1 " ) )
fmot ion_default_rotat ion_phi1 = →

99K RP_Get_Real( " r i g idbody / forced−motion/phi1 " ) ;
e l s e {

Message ( "−−−␣ l i b r i g i dbody : ␣The␣ f o r c ed ␣motion␣parameter ␣ ‘ phi1 ’ ␣→
99K f o r ␣ the ␣ func t i on ␣ ‘ r o t a t i on ’ ␣ i s ␣miss ing \n " ) ;

l i b r b_ i n i t s t a t e++;
}

i f ( RP_Variable_Exists_P ( " r ig idbody / forced−motion/phi2 " ) )
fmot ion_default_rotat ion_phi2 = →

99K RP_Get_Real( " r i g idbody / forced−motion/phi2 " ) ;
e l s e {

Message ( "−−−␣ l i b r i g i dbody : ␣The␣ f o r c ed ␣motion␣parameter ␣ ‘ phi2 ’ ␣→
99K f o r ␣ the ␣ func t i on ␣ ‘ r o t a t i on ’ ␣ i s ␣miss ing \n " ) ;

l i b r b_ i n i t s t a t e++;
}

Message ( "−−−␣ l i b r i g i dbody : ␣Forced␣ r o t a t i on ␣ from␣%.3 fdeg ␣ to ␣→
99K %.3 fdeg ␣ during ␣ the ␣ f i r s t ␣%i ␣ s t ep s ␣ w i l l ␣be␣ c a r r i e d ␣out . \ n " ,

fmotion_default_rotat ion_phi1 ,
fmotion_default_rotat ion_phi2 ,
fmot ion_defau l t_rotat ion_tsteps ) ;

}
e l s e

Message ( "−−−␣ l i b r i g i dbody : ␣The␣ f o r c ed ␣motion␣ func t i on ␣%s␣ i s ␣not␣→
99K part ␣ o f ␣ the ␣ ‘ d e f au l t ’ ␣ l i b r a r y \n " , fmotion_funcname ) ;

}
e l s e

fmot ion_funct ion = dlsym ( fmotion_handle , fmotion_funcname ) ;
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i f ( ( fmot ion_error=d l e r r o r ( ) ) != NULL) {
Message ( "−−−␣ l i b r i g i dbody : ␣Could␣not␣open␣ forced−motion␣→

99K f unc t i on \n " ) ;
l i b r b_ i n i t s t a t e++;

}
}
e l s e {

Message ( "−−−␣ l i b r i g i dbody : ␣ Fal lback ␣mode␣ \"2 dof / f l u t t e r \" ␣→
99K s e l e c t e d \n " ) ;

}

#end i f

host_to_node_int_1 ( zone_id ) ;
host_to_node_real ( z_0 , 4) ;
host_to_node_real ( z_1 , 4) ;
host_to_node_real_2 ( r1 , r2 ) ;

/∗ compute cur rent f o r c e s ∗/
#i f RP_NODE

ca l c_ fo r c e s ( ) ;
#end i f

node_to_host_real_3 ( l1 , d1 , m1) ;

#i f RP_HOST
l0 = l1 ; d0 = d1 ; m0 = m1;

#end i f

#i f RP_HOST
Message ( "−−−␣ l i b r i g i dbody : ␣Global ␣ i n i t ␣ complete \n " ) ;

i f ( l i b r b_ i n i t s t a t e ) {
Message ( "−−−␣ l i b r i g i dbody : ␣There␣were␣ e r r o r s . \ n " ) ;

}
#end i f

}

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Grid motion udf with rk4 s o l v e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

DEFINE_GRID_MOTION( r ig id_inner , domain , dt , time , dtime )
{

/∗ node l o c a l v a r i a b l e s ∗/
#i f RP_NODE

Thread ∗ t f = DT_THREAD( dt ) ;
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double NV_VEC(dx ) , NV_VEC(x ) , NV_VEC(x_o) ;
double phi , y ;
face_t f ;
Node ∗v ;
i n t n ;

#end i f

/∗ node and host l o c a l v a r i a b l e s ∗/
pthread_t pt ;

/∗ host l o c a l v a r i a b l e s ∗/

#i f RP_NODE
SET_DEFORMING_THREAD_FLAG(THREAD_T0( t f ) ) ;

#end i f

pthread_create ( &pt , NULL, solve_motion , NULL) ;
pthread_join ( pt , NULL) ;

/∗ s e t new phi ∗/
#i f RP_NODE

y = z_1 [ 0 ] ;
phi = z_1 [ 2 ] ;

begin_f_loop ( f , t f )
{

f_node_loop ( f , t f , n )
{

v = F_NODE( f , t f , n ) ;
NV_V(x , =, NODE_COORD(v ) ) ;

i f (NODE_POS_NEED_UPDATE (v ) )
{

/∗ r e cove r o r i g i n a l node p o s i t i o n s ∗/
x_o [ 0 ] = N_UDMI(v , 0 ) ;
x_o [ 1 ] = N_UDMI(v , 1 ) ;

/∗ new coord d e l t a s ∗/
dx [ 0 ] = cos ( phi ) ∗x_o[0]− s i n ( phi ) ∗x_o [ 1 ] ;
dx [ 1 ] = s i n ( phi ) ∗x_o[0 ]+ cos ( phi ) ∗x_o[1 ]+y ;

/∗ update node coords ∗/
NV_V(NODE_COORD(v ) , =, dx ) ;
NODE_POS_UPDATED(v ) ;

}
}

}
end_f_loop ( f , t f ) ;

#end i f
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}

DEFINE_GRID_MOTION( deforming , domain , dt , time , dtime )
{

/∗ node and host l o c a l v a r i a b l e s ∗/
pthread_t pt ;

/∗ node l o c a l v a r i a b l e s ∗/
#i f RP_NODE

Thread ∗ t f = DT_THREAD( dt ) ;
double NV_VEC(dx ) , NV_VEC(x ) , NV_VEC(x_o) ;
double phi , y ;
double R, s ;
face_t f ;
Node ∗v ;
i n t n ;

#end i f

/∗ s o l v e equat ions o f motion ∗/
pthread_create(&pt , NULL, solve_motion , NULL) ;
pthread_join ( pt , NULL) ;

#i f RP_NODE
/∗ s e t new phi ∗/
y = z_1 [ 0 ] ;
phi = z_1 [ 2 ] ;

SET_DEFORMING_THREAD_FLAG(THREAD_T0( t f ) ) ;

begin_f_loop ( f , t f )
{

f_node_loop ( f , t f , n )
{

v = F_NODE( f , t f , n ) ;
NV_V(x , =, NODE_COORD(v ) ) ;

i f (NODE_POS_NEED_UPDATE (v ) )
{

/∗ r e cove r o r i g i n a l node p o s i t i o n s ∗/
x_o [ 0 ] = N_UDMI(v , 0 ) ;
x_o [ 1 ] = N_UDMI(v , 1 ) ;

/∗ c a l c u l a t e rad iu s o f c e l l and weight ing f a c t o r ∗/
R = NV_MAG(x_o) ;
i f (R < ( r1+1.0e−5) )

s = 1 . 0 ;
e l s e i f (R > ( r2−1.0e−5) )

s = 0 . 0 ;
e l s e

s = ( r2−R) /( r2−r1 ) ;
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/∗ new coord d e l t a s ∗/
dx [ 0 ] = cos ( phi ) ∗x_o[0]− s i n ( phi ) ∗x_o [ 1 ] ;
dx [ 1 ] = s i n ( phi ) ∗x_o[0 ]+ cos ( phi ) ∗x_o[1 ]+y ;

dx [ 0 ] = s ∗dx [ 0 ] + (1− s ) ∗x_o [ 0 ] ;
dx [ 1 ] = s ∗dx [ 1 ] + (1− s ) ∗x_o [ 1 ] ;

/∗ update node coords ∗/
NV_V(NODE_COORD(v ) , =, dx ) ;
NODE_POS_UPDATED(v ) ;

}
}

}

end_f_loop ( f , t f ) ;

#end i f
}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− End o f t imestep a c t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

DEFINE_EXECUTE_AT_END( end_of_timestep ) {
s t a t e = f a l s e ;
rk4done = 0 ;
/∗ recompute and s h i f t aerodynamic f o r c e s ∗/

#i f RP_NODE
ca l c_ fo r c e s ( ) ;

#end i f
node_to_host_real_3 ( l1 , d1 , m1) ;

#i f RP_HOST
lm1 = l0 ; dm1 = d0 ; mm1 = m0;
l 0 = l1 ; d0 = d1 ; m0 = m1;

#end i f

/∗ s h i f t r i g i d body s t a t e ∗/
memcpy(z_0 , z_1 , 4∗ s i z e o f ( double ) ) ;

/∗ l og s t a t e ∗/
#i f RP_HOST

i f ( do_rblog==1) {
rb log = fopen ( log f i l ename , " a " ) ;
f p r i n t f ( rblog , "%.8g␣%g␣%g␣%g␣%g␣%g␣%g␣%g␣%g␣%g\n" , CURRENT_TIME, →

99K l0 , d0 , m0, z_0 [ 0 ] , z_0 [ 1 ] , y_accel , z_0 [ 2 ] , z_0 [ 3 ] , →
99K phi_acce l ) ;
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f c l o s e ( rb log ) ;
}

#end i f

}

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Solve the equat ions o f motion ( he lpe r func t i on )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

void ∗ solve_motion ( void ∗ arg ) {

pthread_mutex_lock(&mutex ) ;

i f ( rk4done >0) {
/∗ Debug ∗/

/∗ #i f RP_HOST ∗/
/∗ pid = getp id ( ) ; ∗/
/∗ Message ( " pid : %d , FAST ex i t \n " , pid ) ; ∗/
/∗ #end i f ∗/

++rk4done ;
i f ( rk4done==nZones )

rk4done=0;

pthread_mutex_unlock(&mutex ) ;
r e turn NULL;

}

/∗ Host l o c a l v a r i a b l e s ∗/
#i f RP_HOST

/∗ Runge kutta he lpe r v a r i a b l e s ∗/
double l_05 , m_05, d_05 ;
double zdot_h [ 4 ] , z_h [ 4 ] ;
i n t i ;

#end i f

/∗ Node l o c a l v a r i a b l e s ∗/
#i f RP_NODE
#end i f

/∗ update va lue s f o r aerodynamic f o r c e s i f we need to ∗/
/∗ change t h i s u n t i l xxx when ca l c_ f o r c e s i s reimplemented ∗/

#i f RP_NODE
i f ( s t a t e ) {

ca l c_ f o r c e s ( ) ; /∗ s e t s m1, l1 , d1 ONLY on the compute nodes ! ∗/
}
e l s e

s t a t e = true ;
#end i f

129



APPENDIX B. RIGID BODY SOLVER

/∗ make m1, l1 , d1 a v a i l a b l e on the host ∗/
node_to_host_real_3 (m1, l1 , d1 ) ;

#i f RP_HOST

/∗ t rack 1 : s o l v e motion (RK4) ∗/

i f ( ! ( fmot ion_funct ion | | fmot ion_defau l t_rotat ion ) ) {
/∗ get aerodynamic f o r c e s f o r the end o f the cur rent t imestep

( est imat ion , only nece s sa ry f o r the f i r s t execut ion in a →
99K t imestep ) ∗/

i f ( ! s t a t e ) {
delta_t = CURRENT_TIMESTEP;
/∗FIXME: When the s imu la t i on i s r e s t a r t e d with a d i f f e r e n t →

99K time−s tep the ex t r apo l a t i on i s c a r r i e d out wrongly . Only →
99K r e l e van t without imp l i c i t update , though . ∗/

l 1 = l0 + ( ( double ) extrap_order ) ∗( l0−lm1 ) ; /∗ ca s t nece s sa ry ? ∗/
d1 = d0 + ( ( double ) extrap_order ) ∗(d0−dm1) ;
m1 = m0 + ( ( double ) extrap_order ) ∗(m0−mm1) ;
s t a t e = true ;

}
/∗ e l s e { ∗/
/∗ double interr_y = m∗y_accel + k∗z_1 [ 0 ] − l 1 ; ∗/
/∗ double in te r r_ph i = IT∗phi_acce l + kT∗z_1 [ 2 ] − m1 − d1∗z_1 [ 0 ] ; →

99K ∗/

/∗ Message ( "\ nPrevious i n t e g r a t i o n er ror , y : %g , phi : →
99K %g\n " , interr_y , in te r r_ph i ) ; ∗/

/∗ } ∗/
/∗ xxx ∗/

/∗ prepare runge kutta he lpe r v a r i a b l e s ∗/
l_05 = 0 . 5∗ ( l 0+l 1 ) ;
d_05 = 0 .5∗ ( d0+d1 ) ;
m_05 = 0 .5∗ (m0+m1) ;

/∗ runge kutta 4 s o l u t i o n ∗/
/∗ s tage 1 ∗/
rk4part ( zdot_h , z_0 , l0 , d0 , m0) ;
f o r ( i =0; i <4; ++i ) {

z_h [ i ] = z_0 [ i ]+delta_t /2∗zdot_h [ i ] ;
z_1 [ i ] = zdot_h [ i ] ;

}

/∗ s tage 2 ∗/
rk4part ( zdot_h , z_h , l_05 , d_05 , m_05) ;
f o r ( i =0; i <4; ++i ) {

z_h [ i ] = z_0 [ i ]+delta_t /2∗zdot_h [ i ] ;
z_1 [ i ] += 2∗zdot_h [ i ] ;
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}

/∗ s tage 3 ∗/
rk4part ( zdot_h , z_h , l_05 , d_05 , m_05) ;
f o r ( i =0; i <4; ++i ) {

z_h [ i ] = z_0 [ i ]+delta_t ∗zdot_h [ i ] ;
z_1 [ i ] += 2∗zdot_h [ i ] ;

}

/∗ s tage 4 ∗/
rk4part ( zdot_h , z_h , l1 , d1 , m1) ;
f o r ( i =0; i <4; ++i ) {

z_1 [ i ] += zdot_h [ i ] ;
z_1 [ i ] /= 6 ;

}

y_accel=mode [ 0 ] ∗ z_1 [ 1 ] ;
phi_acce l=mode [ 2 ] ∗ z_1 [ 3 ] ;

f o r ( i =0; i <4; ++i ) {
z_1 [ i ] ∗= delta_t ;
z_1 [ i ] += z_0 [ i ] ;
z_1 [ i ] ∗= mode [ i ] ;

}
}
/∗ t rack 2 : motion p r e s c r i b ed by ex t e rna l l i b r a r y ∗/
e l s e {

i f ( fmot ion_funct ion )
(∗ fmot ion_funct ion ) (CURRENT_TIME, N_TIME, &z_1 [ 0 ] , &z_1 [ 2 ] ) ;

e l s e i f ( fmot ion_defau l t_rotat ion )
(∗ fmot ion_defau l t_rotat ion ) ( fmotion_default_rotat ion_phi1 ,

fmotion_default_rotat ion_phi2 ,
fmot ion_defau l t_rotat ion_tsteps ,
CURRENT_TIME, N_TIME, &z_1 [ 0 ] , →

99K &z_1 [ 2 ] ) ;
}

#end i f

/∗ unlock mutex be f o r e synchron i za t i on ∗/
++rk4done ;
pthread_mutex_unlock(&mutex ) ;

host_to_node_real ( z_1 , 4) ;

#i f RP_HOST
Message ( " l i f t : ␣%.16g , ␣drag : ␣%.16g , ␣moment : ␣%.16g\ ndisp : ␣%.16g , ␣→

99K l i n_ve l : ␣%.16g\ nangle : ␣%.16g , ␣ang_vel : ␣%.16g\n" , l1 , d1 , m1, →
99K z_1 [ 0 ] , z_1 [ 1 ] , z_1 [ 2 ]∗180/3 . 1 41 , z_1 [ 3 ]∗180/3 . 1 4 1 ) ;

/∗ Debug ∗/
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/∗ Message ( " Timestep : %d , I t e r a t i o n : %d " , N_TIME, N_ITER) ; ∗/
#end i f

/∗ Debug ∗/
/∗ pid = getp id ( ) ; ∗/
/∗ Message ( " pid : %d , NORMAL ex i t \n " , pid ) ; ∗/

return NULL;
}

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Runge Kutta 4 he lpe r func t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

#i f RP_HOST
void rk4part ( double ∗ zdot_h , double ∗ z_0 , double l , double d , double →

99K mt) {
zdot_h [ 0 ] = z_0 [ 1 ] ;
zdot_h [ 1 ] = −k/m∗z_0 [ 0 ] − c/m∗z_0 [ 1 ] + l /m;
zdot_h [ 2 ] = z_0 [ 3 ] ;
zdot_h [ 3 ] = d∗z_0 [ 0 ] / IT − kT/IT∗z_0 [ 2 ] − cT/IT∗z_0 [ 3 ] + mt/IT ;

}
#end i f

#i f RP_NODE
/∗ This could be sub s t i t u t ed with a func t i on that updates the g l oba l →

99K f o r c e s f o r a l l p r o c e s s e s i f nece s sa ry ∗/
void ca l c_ f o r c e s ( ) {

Domain ∗dom;
Thread∗ t f ;
i n t domain_id=1;
face_t f ;
double NV_VEC( fArea ) , NV_VEC( fNormal ) , NV_VEC( fCentro id ) , →

99K NV_VEC( fTangent i a l ) ;
double f_p , tau [ 2 ] ;

l 1 = 0 ;
d1 = 0 ;
m1 = 0 ;

dom = Get_Domain( domain_id ) ;
t f = Lookup_Thread (dom, zone_id ) ;

begin_f_loop ( f , t f ) {
i f (PRINCIPAL_FACE_P( f , t f ) ) {

f_p = F_P( f , t f ) ;
tau [ 0 ] = F_STORAGE_R_N3V( f , t f ,SV_WALL_SHEAR) [ 0 ] ; /∗ _N3V i s →

99K nece s sa ry here , NV_V & _NV didn ’ t work ∗/
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tau [ 1 ] = F_STORAGE_R_N3V( f , t f ,SV_WALL_SHEAR) [ 1 ] ;

F_AREA( fArea , f , t f ) ;
NV_V( fNormal , =, fArea ) ;
NV_S( fNormal , /=, NV_MAG( fArea ) ) ;
fTangent i a l [0]=− fNormal [ 1 ] ;
fTangent i a l [1 ]= fNormal [ 0 ] ;

F_CENTROID( fCentro id , f , t f ) ;

/∗ Careful , s i gn convent ions from Fluent apply ∗/
/∗ Output checked aga in s t f o r c e r epo r t s ∗/
/∗ Moment about the po int (0 , 0 ) ∗/
m1 −= (NV_DOT( fTangent ia l , fCentro id ) ) ∗(NV_MAG( fArea ) ) ∗ f_p + →

99K (NV_DOT( fNormal , fCentro id ) ) ∗(NV_DOT( fTangent ia l , tau ) ) ;
l 1 += NV_MAG( fArea ) ∗ f_p∗ fNormal [ 1 ] − tau [ 1 ] ;
d1 += NV_MAG( fArea ) ∗ f_p∗ fNormal [ 0 ] − tau [ 0 ] ;

}
} end_f_loop ( f , t f ) ;

m1 = PRF_GRSUM1(m1) ;
l 1 = PRF_GRSUM1( l 1 ) ;
d1 = PRF_GRSUM1(d1 ) ;

}
#end i f

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Aux i l i a ry and Debug func t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

DEFINE_ON_DEMAND( displayparams ) {
pid_t pid = getp id ( ) ;

Message ( " pid : ␣%d , ␣zone_id : ␣%d\n" , pid , zone_id ) ;
Message ( " pid : ␣%d , ␣ r1 : ␣%g\n" , pid , r1 ) ;
Message ( " pid : ␣%d , ␣ r2 : ␣%g\n" , pid , r2 ) ;
Message ( " pid : ␣%d , ␣z0_0 : ␣%g\n" , pid , z_0 [ 0 ] ) ;
Message ( " pid : ␣%d , ␣z0_1 : ␣%g\n" , pid , z_0 [ 1 ] ) ;
Message ( " pid : ␣%d , ␣z0_2 : ␣%g\n" , pid , z_0 [ 2 ] ) ;
Message ( " pid : ␣%d , ␣z0_3 : ␣%g\n" , pid , z_0 [ 3 ] ) ;

#i f RP_HOST
Message ( " Host : ␣ pid : ␣%d , ␣lm1 : ␣%g\n" , pid , lm1 ) ;
Message ( " Host : ␣ pid : ␣%d , ␣dm1 : ␣%g\n" , pid , dm1) ;
Message ( " Host : ␣ pid : ␣%d , ␣mm1: ␣%g\n" , pid , mm1) ;
Message ( " Host : ␣ pid : ␣%d , ␣ l 0 : ␣%g\n" , pid , l 0 ) ;
Message ( " Host : ␣ pid : ␣%d , ␣d0 : ␣%g\n" , pid , d0 ) ;
Message ( " Host : ␣ pid : ␣%d , ␣m0: ␣%g\n" , pid , m0) ;
Message ( " Host : ␣ pid : ␣%d , ␣k : ␣%g\n" , pid , k ) ;
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Message ( " Host : ␣ pid : ␣%d , ␣c : ␣%g\n" , pid , c ) ;
Message ( " Host : ␣ pid : ␣%d , ␣m: ␣%g\n" , pid , m) ;
Message ( " Host : ␣ pid : ␣%d , ␣kT : ␣%g\n" , pid , kT) ;
Message ( " Host : ␣ pid : ␣%d , ␣cT : ␣%g\n" , pid , cT) ;
Message ( " Host : ␣ pid : ␣%d , ␣IT : ␣%g\n" , pid , IT ) ;
Message ( " Host : ␣ pid : ␣%d , ␣ l og : ␣%d\n" , pid , do_rblog ) ;
Message ( " Host : ␣ pid : ␣%d , ␣ extrap_order : ␣%d\n" , pid , extrap_order ) ;
Message ( " Host : ␣ pid : ␣%d , ␣zone_id : ␣%d\n" , pid , zone_id ) ;
Message ( " Host : ␣ pid : ␣%d , ␣ l o g f i l e name : ␣%s \n" , pid , l o g f i l e name ) ;
Message ( " Host : ␣ pid : ␣%d , ␣rp_mode : ␣%s \n " , pid , rp_mode) ;
Message ( " Host : ␣ pid : ␣%d , ␣mode : ␣[%d,%d,%d,%d ] \ n " , pid , mode [ 0 ] , →

99K mode [ 1 ] , mode [ 2 ] , mode [ 3 ] ) ;
#end i f
}

DEFINE_ON_DEMAND( save_prev_forces ) {

#i f RP_NODE
ca l c_ fo r c e s ( ) ;

#end i f
node_to_host_real_3 ( l1 , d1 , m1) ;

#i f RP_HOST
RP_Set_Real ( " r i g idbody /lm1 " , l 1 ) ;
RP_Set_Real ( " r i g idbody /dm1" , d1 ) ;
RP_Set_Real ( " r i g idbody /mm1" , m1) ;

Message ( " Previous ␣Timestep␣ f o r c e s ␣ s e t \n " ) ;
Message ( "Run␣one␣more␣ t imestep ␣and␣ save ␣data␣ to ␣ c r e a t e ␣ proper ␣→

99K i n i t i a l i z e d ␣ case \n " ) ;
#end i f

}

DEFINE_ON_DEMAND( save_rbstate ) {
#i f RP_HOST

RP_Set_Real ( " r i g idbody /lm1 " , lm1 ) ;
RP_Set_Real ( " r i g idbody /dm1" , dm1) ;
RP_Set_Real ( " r i g idbody /mm1" , mm1) ;

RP_Set_Real ( " r i g idbody /z0_0 " , z_0 [ 0 ] ) ;
RP_Set_Real ( " r i g idbody /z0_1 " , z_0 [ 1 ] ) ;
RP_Set_Real ( " r i g idbody /z0_2 " , z_0 [ 2 ] ) ;
RP_Set_Real ( " r i g idbody /z0_3 " , z_0 [ 3 ] ) ;

Message ( " Rigid ␣body␣ s t a t e ␣ saved , ␣ save ␣ case ␣and␣data␣now .\ n " ) ;
#end i f
}

DEFINE_ON_DEMAND(manual_global_init ) {
_globa l_in i t ( ) ;
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}

DEFINE_ON_DEMAND( show_forces ) {
#i f RP_NODE

ca l c_ fo r c e s ( ) ;
#end i f

node_to_host_real_3 ( l1 , d1 , m1) ;

#i f RP_HOST
Message ( " L i f t : ␣%g , ␣Drag : ␣%g , ␣Moment : ␣%g\n" , l1 , d1 , m1) ;

#end i f
}

DEFINE_ON_DEMAND( i n i t i a l i z e _ g r i d ) {
#i f RP_NODE

Domain ∗dom = Get_Domain (1 ) ;
Thread ∗ t ;
c e l l_ t c ;
i n t n ;
Node ∗v ;

thread_loop_c ( t , dom) {
begin_c_loop ( c , t ) {

c_node_loop ( c , t , n ) {
v = C_NODE( c , t , n ) ;
N_UDMI(v , 0 ) = NODE_X(v ) ;
N_UDMI(v , 1 ) = NODE_Y(v ) ;

}
} end_c_loop ( c , t ) ;

}
#end i f

#i f RP_HOST
Message ( " User−de f ined ␣memory␣ l o c a t i o n s ␣0␣and␣1␣ i n i t i a l i z e d ␣with␣→

99K o r i g i n a l ␣x␣and␣y␣ va lue s . \ n " ) ;
#end i f
}

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Helper f unc t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

void read_rp_real ( double ∗ res , char ∗name) {
/∗ va r i ab l e_ex i s t s doesn ’ t know my de f ined v a r i a b l e s ∗/
/∗ i f ( RP_Variable_Exists_P (name) ) ∗/

#i f RP_HOST
∗ r e s = RP_Get_Real(name) ;

#end i f
/∗ #i f RP_NODE ∗/
/∗ e l s e ∗/
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/∗ Message ( " Node : Warning , v a r i a b l e %s undef ined \n " , name) ; ∗/
/∗ #end i f ∗/
/∗ #i f RP_HOST ∗/
/∗ e l s e ∗/
/∗ Message ( " Host : Warning , v a r i ab l e %s undef ined \n " , name) ; ∗/
/∗ #end i f ∗/
}

void read_rp_int ( i n t ∗ res , char ∗name) {
/∗ i f ( RP_Variable_Exists_P (name) ) ∗/

#i f RP_HOST
∗ r e s = RP_Get_Integer (name) ;

#end i f
/∗ #i f RP_NODE ∗/
/∗ e l s e ∗/
/∗ Message ( " Node : Warning , v a r i a b l e %s undef ined \n " , name) ; ∗/
/∗ #end i f ∗/
/∗ #i f RP_HOST ∗/
/∗ e l s e ∗/
/∗ Message ( " Host : Warning , v a r i ab l e %s undef ined \n " , name) ; ∗/
/∗ #end i f ∗/
}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Exit a c t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

DEFINE_EXECUTE_AT_EXIT( cleanup ) {
#i f RP_HOST

i f ( fmotion_handle )
d l c l o s e ( fmotion_handle ) ;

Message ( " l i b r i g i dbody : ␣Cleanup␣complete , ␣ e x i t i n g . \ n " ) ;
#end i f
}
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