
DIPLOMARBEIT

Machine-learning assisted track finding

in the Silicon Vertex Detector

of the Belle II experiment

ausgeführt am

Institut für Hochenergiephysik (HEPHY)
der Österreichischen Akademie der Wissenschaften (ÖAW)

unter der Leitung von

Univ.Doz. Dipl.-Ing. Dr.techn. Rudolf Frühwirth

eingereicht an der Technischen Universität Wien
Fakultät für Physik

durch

Thomas Madlener
Matrikelnummer 0926219
Schumanngasse 3/16
1180, Wien, Österreich

Wien, im Oktober 2015

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

The Standard Model of particle physics (SM) is one of the most successful and most
thoroughly tested theories of physics. However, it is not able to answer all questions
satisfactorily. One of these questions concerns CP violation, which is, according to
the Sakharov conditions for baryogenesis [1], necessary for the universe being able
to exist in its current form.
An important contribution towards understanding CP violation in the SM has

been made by the Belle experiment [2, 3], where CP violation was discovered in
the B-meson system. The Belle II experiment, successor of the Belle experiment,
plans to further investigate these phenomena. Another aim is the measurement of
rare decay processes, made possible by a forty-fold increase of the instantaneous
luminosity.
To handle the increased physics and background rate the detector has to be

upgraded accordingly. As a part of the upgrade a silicon based Vertex Detector
(VXD) is under construction. Aside from improving the vertex resolution the main
purpose of the VXD is finding and reconstructing low momentum particle tracks.
The goal of this thesis is to test the feasibility of employing machine learning
techniques to improve the current track finding algorithm of the VXD.
The current algorithm relies on the division of the VXD into small sectors. Re-

lations between these sectors can be utilized to apply different predefined cut-off
filters which allow to classify combinations of hits into either signal or background.
This allows to discard a large fraction of background hits without affecting the
efficiency. However, finding the relations between the different sectors and tuning
the different filters requires considerable computational resources.
Machine Learning has the prospect of generalizing from relatively small data sets.

The approach pursued in this thesis is to exploit the generalization capabilities by
exchanging a part of the filters together with their large number of different cut-off
values by a small number of sophisticated, machine learned filters.
Due to a major redesign of the current implementation of the tracking algorithm

only stand-alone tests for filters using combinations of three hits are possible. The
thesis can thus be regarded as a preliminary study. Nevertheless, the results are
promising and an implementation into the tracking algorithm is foreseen as the
next step once the redesign is finished.

Kurzfassung

Das Standardmodell der Teilchenphysik (SM) ist eine der erfolgreichsten und meist
getesteten Theorien der Physik. Trotzdem gibt es noch Fragen, die innerhalb des
SM nicht zufriedenstellend beantwortet werden können. Dazu zählen Fragen zum
Verständnis der CP Verletzung, die laut den Sacharov-Kriterien [1] nötig ist, damit
das Universum in seiner jetzigen From überhaupt existieren kann.
Die Entdeckung der CP Verletzung im B-Meson System durch das Belle-Experi-

ment [2, 3] hat dazu einen wichtigen Beitrag geliefert. Das Nachfolge Experiment,
Belle II, soll diese Phänomene weiter untersuchen und auch die Untersuchung sehr
seltener Zerfälle, dank einer um den Faktor 40 erhöhten Luminosität, ermöglichen.
Um die dadurch wesentlich größere Rate an Physik und Untergrund Ereignissen

zu bewältigen, muss der Detektor entsprechend aufgerüstet werden. Im Zuge dieser
Aufrüstung wird auch ein auf Siliziumsensoren basierender Vertex Detektor (VXD)
gebaut. Neben der Verbesserung der Vertex-Auflösung ist die Hauptaufgabe des
VXD das Auffinden und Rekonstruieren von Teilchenspuren mit niedrigem Impuls.
Das Ziel der vorliegenden Arbeit ist die Anwendung von Techniken des maschinellen
Lernens, um die Leistung des derzeitigen Algorithmus zur Spurfindung im VXD zu
verbessern.
Der derzeitige Algorithmus beruht auf der Einteilung des gesamten VXD in kleine

Sektoren. Beziehungen zwischen den Sektoren können genutzt werden, um verschie-
dene vordefinierte Filter anzuwenden, die es erlauben, Kombinationen von Mess-
punkten als Signal oder Untergrund zu klassifiziern. Dadurch kann ein großer An-
teil des Untergrunds verworfen werden, ohne dabei die Effizienz zu beinträchtigen.
Allerdings benötigt das Auffinden der Relationen zwischen den Sektoren und der
Grenzwerte für die Filter beträchtliche Ressourcen.
Maschinelles Lernen bietet die Chance, aus kleinen Datensätzen zu generalisieren.

Der hier verfolgte Ansatz nützt diese Generalisierungsfähigkeit aus, indem ein Teil
der Filter mit ihren vielen verschiedenen Grenzwerten durch eine kleine Zahl von
komplexen, maschinell erlernten Filtern ersetzt wird.
Da sich die derzeitige Implementierung des Algorithmus in einer größeren Um-

strukturierungsphase befindet, konnten nur unabhängige Tests mit Kombinationen
aus drei Messpunkten durchgeführt werden. Diese Arbeit kann daher als Machbar-
keitsstudie gesehen werden. Allerdings sind die Ergebnisse vielversprechend, und
eine Implementation in der Softwareumgebung von Belle II wird erfolgen, sobald
die Umstrukturierung abgeschlossen ist.

Contents

Abstract I

Kurzfassung II

1 Introduction 5

2 The Belle II Experiment 7
2.1 SuperKEKB . 7
2.2 The Belle II Detector . 8

2.2.1 VerteX Detector - VXD . 9
2.2.2 Central Drift Chamber - CDC 11
2.2.3 Particle Identification - PID 14
2.2.4 Electromagnetic Calorimeter - ECL 15
2.2.5 K-Long and Muon Detector - KLM 16

2.3 The Belle AnalysiS Framework 2 17
2.4 Track Finding in the VXD . 18

2.4.1 Track Finding Strategy . 18
2.4.2 Cellular Automaton . 19
2.4.3 (Combinatorial) Kalman Filter 20
2.4.4 The SectorMap Approach 22

3 A Short Physics Primer 25
3.1 Interactions of Charged Particles with Matter 25

3.1.1 Ionization and Excitation 25
3.1.2 Bremsstrahlung . 27
3.1.3 Multiple Scattering . 27
3.1.4 Cherenkov Radiation . 28

3.2 The Standard Model of Particle Physics 29
3.2.1 CP-Violation in the Standard Model and the CKM Matrix . 31

3.3 Physics at Belle II . 31
3.3.1 Background Sources at Belle II 32

2 Contents

4 Machine Learning Basics 35
4.1 Supervised Learning . 35

4.1.1 Overtraining . 36
4.2 Artificial Neural Networks and Multilayer Perceptrons 36

4.2.1 Components of an Artificial Neural Network 37
4.2.2 Multilayer Perceptrons . 38
4.2.3 Universal Approximation Theorem 38
4.2.4 Backpropagation Training 39
4.2.5 Limitations and Capabilities 41

4.3 Decision Trees and Boosting . 41
4.3.1 Decision Trees . 41
4.3.2 Boosting . 42

4.4 Data Selection and Processing . 45
4.4.1 Decorrelation . 45
4.4.2 Transformation to Uniform Distribution 46

5 Machine Learned Tracklet Filters 49
5.1 Chosen Approach and Goals . 49
5.2 Generating Data Sets . 50

5.2.1 Properties of Data Sets . 51
5.3 Multilayer Perceptron Classifiers . 53

5.3.1 Hidden Layer Size . 54
5.3.2 Initialization Effects . 56
5.3.3 Input Decorrelation . 58

5.4 Boosted Decision Tree Classifiers 59
5.4.1 Number of Decision Splits 59
5.4.2 Number of Trees and Tree Depth in FastBDTs 62

5.5 Comparison of Classifiers . 64
5.5.1 Classification Performance 64
5.5.2 Evaluation and Training Times 65

5.6 Detailed Performance Analysis . 66
5.6.1 Angle Dependent Performance 67
5.6.2 Momentum Dependent Performance 69
5.6.3 Charge and Particle Dependent Performance 70

5.7 Towards a Combination of Approaches 71

6 Conclusion and Outlook 75

A Appendix 77
A.1 Shortcomings of linear activation functions 77

Acknowledgments 79

Contents 3

Glossary 81

Bibliography 85

1 Introduction

Particle physics today is mainly concerned with describing the fundamental parti-
cles of our universe and the interactions between them. The current state of particle
physics, the Standard Model, has been strongly probed and no strong evidence of
an effect or particle violating its predictions has been found. However, there are
some phenomena that cannot be sufficiently explained by the Standard Model, and
new theories or extensions capable of describing these effects have been developed.
These theories have been coined as new physics (NP) or physics beyond the Stan-

dard Model (BSM), and current high energy physics experiments strive to confirm
or disprove such models. These experiments are situated at particle colliders that
accelerate particles to the energies necessary to probe predicted effects or to dis-
cover new effects. The experiments at such facilities are detectors built around the
interaction points, where the particles are brought to collision. The main purpose
of these detectors is to measure and identify the particles emerging from physics
processes occurring in the collisions. An integral part of this task is the measure-
ment of the momenta and the origins of charged particle tracks which is commonly
referred to as track and vertex reconstruction. Track reconstruction consists of
two steps that can, however, not be clearly separated: track finding and track fit-
ting. Track fitting is concerned with the actual estimation of the track parameters,
whereas track finding is concerned with finding and grouping together the hits be-
longing to tracks. Track finding can also be seen as a classification process that on
its most basic level divides hits into signal hits stemming from particle tracks and
background hits that must not be used for track reconstruction.
With the rise of computational power in recent years machine learning has been

used successfully in a wide area of applications: from pattern recognition (covering
image and speech recognition) [4, 5] to prediction and forecasting of stock market or
weather trends [6, 7] to classification tasks and physics analysis [8, 9]. In this thesis
the possibilities of applying supervised machine learning techniques to track finding
in the inner tracking system of the Belle II experiment are investigated. The inner
tracking system is a crucial part of the Belle II experiment, and a sophisticated
algorithm for track finding has been developed. The current approach is based
on dividing the sensors into small sectors and then using relations between these
sectors to filter hit combinations. This thesis describes an approach exploiting
different machine learning approaches trying to improve the current algorithm.
The current track finder and the Belle II experiment in general are outlined in

Chapter 2. Following, in Chapter 3, a brief description of the physics program

6

pursued at Belle II and a brief description of the Standard Model can be found
together with the underlying physics principles of the detector. Chapter 4 provides
an introduction to supervised machine learning and the techniques that have been
used to obtain the results. A detailed description of the learned classifiers and the
results of a preliminary study are reported in Chapter 5. Finally some conclusions
and and outlook to the next steps to be taken can be found in Chapter 6.

2 The Belle II Experiment

The Belle II experiment, the successor of the Belle experiment which was shut down
in 2010, is located at the SuperKEKB collider in Tsukuba, Japan. SuperKEKB is
a major upgrade of the KEKB collider and will have an instantaneous luminosity
that is forty times larger [10]. Belle II is designed to cope with the larger physics
and background rates to be expected at SuperKEKB. The asymmetric electron-
positron collider will be operated mainly at the Υ(4𝑆) resonance. Commissioning
is planned to start in 2016, and first data taking is planned for the year 2018 [11].
The aspects of the collider and the experiment that are relevant for this thesis will
be described briefly in Secs. 2.1 and 2.2. Further information and a more detailed
description can be found in [12].
The much higher data rate is not only a challenge for the detector hardware

and the data acquisition system, but also for the software framework that is used
for data processing. Due to the number and the extent of the modifications that
would have been necessary to adapt the Belle AnalysiS Framework (BASF) of
the Belle experiment, a complete rewrite from scratch was decided [13]. The new
framework, called BASF2, is currently under development. It is written mainly in
C++11 and the Python programming language. As the central part of the software
used by Belle II it is employed for a variety of tasks including on-line and off-line
data handling, Monte Carlo (MC) event generation, detector simulations, track
reconstruction and physics analysis. A short introduction to the basic design and
working principles of BASF2 can be found in Sec. 2.3.

2.1 SuperKEKB

SuperKEKB is an asymmetric electron–positron collider. The electrons in the high-
energy ring (HER) are accelerated to 7GeV before injection, the positrons in the
low-energy ring (LER) to 4GeV [12], resulting in a boost of the particles produced
in a collision. The resulting center of mass energy is

𝐸CMS = 2
√︀

𝐸HER𝐸LER = 10.58GeV = 𝑚ϒ(4𝑆). (2.1)

To achieve the design instantaneous luminosity of 8 · 1035 cm−2s−1 the so called
nano beam scheme will be employed, along with a doubling of the beam currents
in both rings compared to KEKB [10, 12]. The adaptions that are necessary for
the nano beam scheme give rise to increased backgrounds and to a shortened beam

8 2.2 The Belle II Detector

lifetime due to the Touschek effect (seeSec. 3.3.1). To mitigate the latter, the beam
energy of the LER is larger than it was in KEKB [12]. As a result, the asymmetry
of the beam energies is smaller, leading to a smaller Lorentz boost of 𝛽𝛾 = 0.28, as
compared to 𝛽𝛾 = 0.42 for KEKB.

KEKB SuperKEKB
𝑒+ 𝑒− 𝑒+ 𝑒−

Beam energy (GeV) 3.5 8.0 4.0 7.0
Beam current (A) 1.19 1.64 3.6 2.61
Beam lifetime (min) 150 200 10 10
inst. Luminosity (1034 cm−2s−1) 2.11 80
Vertical beta function 𝛽*

𝑦 (mm) 5.9 5.9 0.41 0.27
Beam emittance (𝜇m) 2100 300 10 20
Number of bunches 1293 2503

Table 2.1: Comparison of different machine parameters of KEKB and SuperKEKB [12,
14]. The vertical beta function is taken at the interaction point. 𝛽*

𝑦 and the beam
emittance are measures for the spatial spread of the particles in a beam.

KEKB was and SuperKEKB is currently being installed in the underground tun-
nel of the former TRISTAN storage ring [15]. The collider has a circumference of
about 3 km. There is a single interaction point (IP) at which the Belle II detector
is operated. Both beams are accelerated to their full energies by a linear acceler-
ator before they are injected into their respective rings. A schematic overview of
SuperKEKB can be found in Fig. 2.1.

2.2 The Belle II Detector

The Belle detector is currently being upgraded to Belle II in order to cope with the
increase of luminosity. The most important objectives of the upgrade program are
the following: handling the increased physics and background rates, improved radi-
ation hardness, and similar or better vertex resolution despite the smaller Lorentz
boost compared to Belle [10].
Due to the asymmetric beam energies and the resulting Lorentz boost the parti-

cles produced in a collision and their decay products tend to fly in the direction of
the electrons in the HER, which is called the forward region. Hence, the Belle II
detector has a distinct forward direction and is designed slightly asymmetrically in
order to capture as many particles as possible and to lower the material budget.
The detector is divided into several different subdetectors that are arranged radi-

ally symmetrically and cover the acceptance region 0∘ ≤ 𝜑 < 360∘ in azimuthal and
17∘ < 𝜃 < 150∘ in polar angle (Fig. 2.2). The different subdetectors serve different
purposes for tracking, vertexing and particle identification.

2 The Belle II Experiment 9

Figure 2.1: Schematic layout of the SuperKEKB [16]

The various subdetectors are described in more detail in the following subsections.
The main tracking devices are the Central Drift Chamber (CDC) and the Vertex
Detector (VXD). The latter consists of the Silicon Vertex Detector (SVD) and the
Pixel Detector (PXD), which is responsible for achieving the best possible vertex
resolution. Particle identification is done with the TOP and ARICH detectors,
which are assisted by the ECL and the KLM (see below). The latter also serves as
flux return for the almost perfectly homogeneous 1.5T magnetic field in which the
tracking detectors are immersed.

2.2.1 VerteX Detector - VXD

The VXD is a silicon based detector consisting of the PXD and the SVD. Its main
purposes are increasing the vertex resolution and finding low momentum tracks that
do not reach the CDC or other parts of the detector. To this end, a standalone
track finding algorithm for tracks originating from the IP has been developed. This
algorithm will be described briefly in section 2.4. Tracks that are found in the CDC

10 2.2 The Belle II Detector

Barrel KLMEndcap
KLM

ECL

Endcap
KLM

CDC

E
n
d
ca

p
 P

ID

PXD

SVD

TOP

Solenoid

1 2 3 4 (m)0

Figure 2.2: Cross section of the Belle II detector with differently colored subdetec-
tors [17]

are matched with the VXD tracks in order to improve their position resolution at
the production vertex.
The VXD is organized in six layers, two in the PXD and four in the SVD. Each

layer consist of so called ladders. The ladders are arranged in a windmill layout
to prevent dead regions and to increase the number of hits found per track (see
Fig. 2.4).

PiXel Detector - PXD

The PXD consists of two layers of silicon pixel detectors built using DEpleted P-
channel Field Effect Transistors (DEPFET). Placed directly outside the beam pipe
at 𝑟 = 14mm and 𝑟 = 22mm, their main purpose is to provide measurements that
make a high resolution vertex reconstruction possible [12]. To minimize multiple
scattering, the sensors are designed to be only about 75𝜇m thick. The pixel size is
roughly 50× 50𝜇m2 and 75× 50𝜇m2 [10, 12].
Due to the low power consumption of the DEPFETs, only the readout electronics,

which is located outside the acceptance region of the detector, needs active cooling.
The duration of a full readout cycle of the over eight million pixels organized in
1600 pixel rows is about 20𝜇s for an entire frame [12]. The high background rates
at the small distance from the IP lead to an estimated occupancy of about 1 %.

2 The Belle II Experiment 11

Figure 2.3: Schematic view of the arrangement of the PXD. The gray areas are the
sensitive detector areas consisting of DEPFET pixels [12].

The worst case scenario that can be handled by the readout system is an occupancy
of about 3 %.
In order to reduce the amount of data that has to be stored for each event only

so called regions of interest (ROI) will be read out from the PXD. These ROIs are
determined via an extrapolation of tracks found in the SVD and CDC by the High
Level Trigger (HLT) [17].

Silicon Vertex Detector - SVD

The SVD is a 4-layer silicon strip detector located between the PXD and the CDC,
with layer radii between 38mm and 140mm. The SVD consists of double-sided
silicon strip detectors (DSSD). To cover the whole 𝜃 acceptance range and to lower
material costs and budget, the SVD sensors are slanted with respect to the beam
axis in the forward direction [12] (see Fig. 2.4).
At 20 ns the readout time is faster by a factor of 1000 compared to the PXD.

The faster readout and the larger distance to the IP allows the SVD to discard
more background. However, silicon strip detectors are prone to so-called ghost
hits. If more than one particle is passing the sensor during one readout frame,
the assignment of strip intersections to particle hits becomes ambiguous, leading to
ghost hits (see Fig. 2.5). To resolve this ambiguity, information from other layers
and from the PXD is used, as the probability of several ghost hits lining up to a
track is low.

2.2.2 Central Drift Chamber - CDC

The CDC, surrounding the SVD, is the largest tracking detector of Belle II . It is
a gaseous detector with an outer radius of 𝑟 = 1130mm, filled with a 50 % Helium,
50 % Ethane gas mixture. Over 55 000 sense and field wires are spanned between

12 2.2 The Belle II Detector

Figure 2.4: Geometric arrangement of the VXD into four layers of the SVD (blue barrel
parts and slanted pink parts) and two layers of the PXD (black) as seen from the side
(top) and from the forward direction (bottom). All dimensions except the angles in
mm. Adapted from [12].

Figure 2.5: Formation of ghost hits on silicon strip detectors. Three particle hits activate
strips of the sensor. All intersections of activated strips have to be considered as hit
candidates resulting in ghost hits.

2 The Belle II Experiment 13

the forward and backward end plate inside the gas volume [12]. They are organized
in wire cells where one sense wire is surrounded by field wires (see Fig. 2.6).

Figure 2.6: Organization of the field wires (purple) and the sense wires (orange) in the
CDC together with the field lines (yellow) and isochores (green dashed) [18]

Charged particles passing through the gas volume of the CDC lose energy by
ionizing gas molecules. The ions and electrons are separated by the electric field
produced by the field wires and are driven to the sense wires. The number of
the primary electrons is increased by gas amplification. The measured signal in the
sense wire is proportional to the number of collected electrons and thus proportional
to the energy loss of the incident particle in the wire cell.
The accelerations of the electrons towards the sense wires is compensated by

collisions with the gas atoms. Hence, the propagation of the electrons can be
described as a diffusion process with a nearly constant drift velocity. Thus, provided
a reference time 𝑡0, the time stamp of the wire signal can be used to calculate the
so called drift time. As the electrons quickly reach the final drift velocity, the
drift time can be used to calculate the distance between a particle’s path and the
sense wire, given a well-calibrated time-distance mapping (see Fig. 2.7). Although
every single measurement has a rather large uncertainty in the order of 150𝜇m,
the combination of many such measurements allows to achieve a spatial resolution
which is orders of magnitude smaller than the size of the wire cells. In the CDC a
typical track produces over 50 wire hits, allowing for a resolution in the 𝑥-𝑦 plane
below 100𝜇m [12].
The wires are grouped into so called superlayers, where six layers (eight layers for

the innermost superlayer) are grouped together. To allow for a measurement of the
𝑧-coordinate, the wires of some of these superlayers are slightly tilted with respect
to the beam axis (see Fig. 2.8). These superlayers are called stereo superlayers,
whereas superlayers in which the wire direction is parallel to the 𝑧-axis are called
axial superlayers. The accuracy of the 𝑧-information that can be obtained by this
setup depends on the stereo angle and is in the order of 1.3−2.2mm [12], therefore

14 2.2 The Belle II Detector

Figure 2.7: Illustration of a track in the CDC with drift lengths calculated from the drift
time and the drift velocity shown as circles around the field wires.

the CDC needs to be assisted by the VXD for a precise measurement of the 𝑧-
coordinate.

Figure 2.8: Cross section of the CDC wire organization with color coded information
on the angle between the 𝑧-axis and the wires of a superlayer: axial superlayers parallel
to the 𝑧-axis (black), stereo superlayers with positive (blue) and negative (red) stereo
angles. Adapted from [12].

Besides reconstructing tracks and measuring their momenta the CDC is also
used to gain information for particle identification via the specific energy loss of
the particle inside the gas volume [19]. The fairly simple construction allows for
fast readout electronics offering a low dead time. Furthermore the relatively low
production costs make it possible to cover a wide radial distance, which improves
the estimate of the transverse momentum 𝑝𝑇 .

2.2.3 Particle Identification - PID

The particle identification system of Belle II is based on the Cherenkov effect (see
Sec. 3.1.4). It uses different detectors for the barrel region and the forward end
cap. One of the main goals is the discrimination of pions from kaons as well as the
discrimination of other particles [12].

2 The Belle II Experiment 15

Time-of-Propagation Counter - TOP

The time-of-propagation (TOP) counter is situated immediately outside the CDC
and is responsible for particle identification in the barrel region. It consists of a
quartz radiator and combines the measured time of arrival with the Cherenkov angle
𝜃𝑐 to reconstruct a three dimensional Cherenkov image. The Cherenkov photons are
reflected internally and measured by photo multipliers (PMT) at the end surface
of the quartz bars (see Fig. 2.9). From the Cherenkov image the velocity of the
particle can be calculated, which in combination with the momentum measurement
allows to compute the likelihoods of different particle hypotheses.

Figure 2.9: Schematic cross-section of a quartz radiator in the TOP counter showing the
paths of the internally reflected photons created by different particles passing through
the counter [12].

Aerogel Ring Imaging Cherenkov Detector - ARICH

Particle identification in the forward end cap is performed with a proximity focus-
ing Aerogel Ring Imaging Cherenkov Detector (ARICH). Cherenkov photons are
produced by passing particles in an aerogel radiator. An array of position sensitive
photon detectors is placed behind an expansion volume to detect the rings that are
formed by the Cherenkov photons [12].
To reduce the spread of the ring image the aerogel radiator is split up into two

parts with different refractive indices (see Fig. 2.10). The Cherenkov angle for
each detected photon is reconstructed using the particle trajectory provided by the
CDC and the position of the photon. The velocity is estimated by combining the
Cherenkov angles of all detected photons of a given track.

2.2.4 Electromagnetic Calorimeter - ECL

Enclosing the TOP counter and the ARICH, the ECL consists of 8736 scintillating
crystals made of CsI(Tl) (caesium iodide doped with thallium), with a total weight
of 43 tons. The main purpose is the energy and position measurement of photons
and electrons, as well as the identification of electrons and 𝐾0

𝐿. The latter task is
done in conjunction with the KLM [12].

16 2.2 The Belle II Detector

Figure 2.10: Schematic side view of the proximity focusing ARICH used for particle
identification in the forward end cap of Belle II. Adapted from [12].

While electrons are absorbed in the ECL or the iron plates of the KLM, 𝐾0
𝐿 leave

traces in both detectors. By associating charged tracks to clusters in the ECL and
the KLM it is possible to discriminate between electrons and 𝐾0

𝐿. Clusters in the
ECL that cannot be associated to a charged track stem from absorbed photons
which cannot be detected by the tracking detectors.
The detection principle relies on the production of electromagnetic cascades by

the incident particles. While electrons produce these cascades directly, photons
produce them via secondary processes such as pair production or the Compton ef-
fect. The accompanying excitation of the scintillator material is dissipated through
low energy photons which are detected and amplified by photo multipliers. The
number of photons is directly dependent on the deposited energy. Hence, the PMT
signal is a measure for the energy deposition in the ECL crystal. In order to achieve
good energy resolution, a careful calibration of the device is crucial.

2.2.5 K-Long and Muon Detector - KLM

Beyond the ECL and the solenoid the KLM is responsible for the identification of
muons and the detection of𝐾0

𝐿. In the barrel region the KLM is made of a sandwich
structure of iron plates, serving as the flux return yoke, and glass electrode resistive
plate chambers (RPC). In the end caps the KLM is instrumented with scintillator
strips, as the dead-time of RPCs is too long to allow an efficient operation in regions
with high background [12].
The discrimination between muons and 𝐾0

𝐿 and other particles is based on the
penetration capabilities of muons. All particles except 𝐾0

𝐿 and muons are stopped
in the ECL or in the solenoid before they reach the KLM . Clusters in the KLM
that can be associated to a track are assumed to stem from muons, whereas clusters
that cannot be associated to a track but possibly to a cluster in the ECL are taken
as belonging to a 𝐾0

𝐿 [17].

2 The Belle II Experiment 17

2.3 The Belle AnalysiS Framework 2

Despite its name BASF2 is not only used for off-line analysis but for almost every
software task at Belle II that is run on general purpose computers instead of spe-
cialized hardware1. Several third party libraries popular in particle physics such as
EvtGen [20], Geant4 [21] and ROOT [22] are employed.
The basic building blocks of BASF2 are so-called modules. Written by developers

and users they are used to accomplish a given task within BASF2 by building a
chain of modules, a so called path, defined by steering files written in Python.
The modules share data objects via the DataStore and employ functionalities from
different libraries (see Fig. 2.11). It is possible to group modules into different paths
that are executed conditionally based on the return value of other modules.

Figure 2.11: Schematic overview over the execution of a path consisting of different
modules sharing data via the DataStore and using functionality provided by different
libraries [19].

The DataStore is one of the essential parts of BASF2, as it allows to share in-
formation between different modules. Only well defined data objects can be placed
on the DataStore, which in turn can be accessed by every module for reading and
writing. The DataStore not only takes care of managing the required resources, but
also tracks relations between data objects. These relations can be used to associate
different data objects. Once registered by one module, the relation between two
data objects can be used by another module in a later step.
Data objects are stored in the DataStore in so called StoreArrays, where every

StoreArray holds one type of data objects. However, it is possible to create more
than one StoreArray for a given type, which can then be differentiated by the name
of the StoreArray. The objects in a StoreArray have a well defined lifetime: They
exist either persistently throughout the whole execution of the path or only for one
event.
Exemplary data objects that have a lifetime of an event are, e.g., SVDCluster

and PXDCluster, which are the objects that are used for track finding in the VXD.
Although these data objects contain no information from the simulation, they are

1 e.g. readout electronics and the low level trigger

18 2.4 Track Finding in the VXD

related to the objects SVDTrueHit and the PXDTrueHit containing truth informa-
tion from simulation. With the help of these objects it is possible to analyze the
performance of the track finding algorithm.

2.4 Track Finding in the VXD

The VXD TrackFinder (VXDTF) serves as a stand-alone track finder designed
for reconstructing tracks within a broad momentum range, independently of other
detectors. However, the main purpose of the VXDTF is to find low momentum
tracks with transverse momenta as low as 𝑝𝑇 ≈ 50MeV/c [23]. As these tracks do
not leave the VXD, no external information is available2, making the VXDTF the
only option to find such tracks. The VXDTF has to cope with several requirements
and challenges [23]:

∙ Energy loss and multiple scattering have an influence on the particle trajec-
tory. Both effects are more pronounced for low momentum tracks (see Sec. 3.1).
Thus an algorithm that presupposes a perfectly circular track, for instance
conformal mapping [24], is infeasible.

∙ As the SVD has only four layers, the redundancy is low.

∙ The expected number of real tracks is about 10 per event, but there are
additional tracks from machine background.

∙ The geometry of the detector has to be incorporated as well as possible mis-
alignment of sensors.

∙ Missing hits due to detector inefficiencies have to be compensated.

∙ Ghost hits (see Fig. 2.5) increase the number of hits that have to be considered
and have to be effectively discarded.

∙ Background hits increase the occupancy and a signal to noise ratio of up to
1:10 in the SVD and up to 1:1000 in the PXD is expected.

∙ The reconstruction time budget is limited as it will be run on-line in real
time.

2.4.1 Track Finding Strategy

The core algorithm for track finding in the VXD is a combination of a cellu-
lar automaton (CA), a Kalman Filter (KF) [25] and a Hopfield neural network

2 e.g. by extrapolating tracks from the CDC into the VXD

2 The Belle II Experiment 19

(HNN) [26]. This approach allows to maintain the advantages of the Kalman Filter
for track fitting while mitigating the combinatorial problem that arises in track
finding [27].
The approach is to use the CA for track finding in conjunction with a prefiltering

done by the so called SectorMap (see Sec. 2.4.4). This first step considerably lowers
the combinatorics and produces sets of hits that are likely to form a track. The KF
uses these hits to create track candidates together with estimated track parameters.
However, these track candidates are not necessarily “clean”. This means that it is
possible that two or more track candidates share one or more hits. For further
processing a clean, non-overlapping set of tracks has to be found. To find the
optimal set of such tracks a HNN using a quality index calculated by the KF, will
be employed in the VXDTF [23]. A schematic view of the workflow can be found
in figure 2.12.

O L Segment finder - 2-hit filter
filters by distance, min&max, including virtual Segment

L Cellular Automaton
evolving states, includes TC-collector

Hopfield Network
uses QI's to find best subset among overlapping TC's

Clean
TC's

Kalman
filter

Calculates
QI's

O L Post 4-hit filter
filters by zigZag, ΔpT, ...

O L Neighbour finder - 3-hit filter
filters by angle and Δ-distance min&max, pT

O L Sector setup - 1-hit filter
filters by set of compatible sectors, allows momentum dependent setups

- Black arrows represent a schematic interpretation of the
possible number of combinations of hits at that point
- Red arrows represent high occupancy bypass strategies
- Filters marked with an O use external information
generated by simulation
- Steps marked with an L cycle through several passes

Schematic view of the low momentum track finder in Belle II

Unsorted hits from tracks, background, ghost coming from an event

Circle fit
HOB for Kalman

O L 2+1 hit filter
High occupancy bypass

(HOB)

O L 3+1 hit filter
HOB

Greedy algorithm
HOB for Hopfield

Figure 2.12: Schematic view of the workflow of the VXDTF and how the SectorMap
approach is used to reduce the number of hit combinations that have to be considered.
Adapted from [27].

2.4.2 Cellular Automaton

A cellular automaton is a "discrete dynamical system whose behavior is completely
specified in terms of a local relation" [28]. It consists of discrete cells, with each of

20 2.4 Track Finding in the VXD

these cells having a discrete state which evolves in discrete time steps depending
on the the environment or the neighborhood of the cell. By defining appropriate
rules for the cell-state evolution it is possible to use the final states to identify hit
combinations that probably belong to the same track [27].
Applied to the VXDTF the definition of a cell usually is a segment connecting

two hits with integer values as states. The state values are initialized to 0 at the
start of the CA and after that evolve by obeying the following set of rules [27]:

1. Two cells are called connected if they share a hit.

2. If two connected cells have the same state and fulfill some criteria qualifying
them as possible part of a common track, they are called neighbors.

3. Every cell having at least one neighbor on the inside with the same state
raises its state by one at the end of the current step.

4. These steps are repeated until no cell-state changes occur anymore.

This set of rules has the consequence that the final state of each cell denotes the
length of the chain of compatible cells from the inside out. Thus, higher states
indicate longer chains. By choosing cells with a high state as starting points for
collecting track candidates it is possible to significantly reduce the combinatorial
background [27].
In the VXDTF the conditions that two hits have to fulfill to be connected as well

as the conditions that have to be fulfilled by two cells to become neighbors can be
position specific. This problem is addressed by the SectorMap (see Sec. 2.4.4), which
stores different, position specific filter cuts and also allows to define a neighborhood
that is no longer dependent of the detector geometry [27].

2.4.3 (Combinatorial) Kalman Filter

One of the standard tools for event reconstruction and track fitting nowadays is
the extended Kalman Filter [25]. The Kalman Filter is a recursive version of the
least-squares method for adding measurements to a track starting from a track seed.
A track seed is a combination of hits that can either be chosen randomly or by a
suitable pre-filtering technique.
The Kalman Filter can be regarded as a statistically optimal track following

procedure in the sense that it is the best linear unbiased estimator of the parameters
describing the current state of the system [25]. While it was originally derived
for linear systems, the extended Kalman Filter can also be applied to non-linear
systems.
The Kalman Filter consists of two steps: A prediction step and an update step.

During the prediction step, information of the current state is used to predict the

2 The Belle II Experiment 21

state in the next sensor. The state consists of parameters, for instance position,
direction and curvature. In order to do propagate a state a model is required that
describes how the state evolves. In a nearly homogeneous magnetic field, such as the
one in Belle II , a helix model is used to propagate the state. The covariance matrix
of the state is propagated by linear error propagation. The actual computation of
the helix model can be done analytically or numerically, for instance by a Runge-
Kutta-method. The latter is a general numerical method for solving differential
equations, in this case the equations of motion of a charged particle in a magnetic
field
In the update step the predicted state is combined with the measurement to

form the new state (see Fig. 2.13). In this way the Kalman Filter proceeds from
one layer of the VXD to the next until no more measurements can be added or the
track quality gets too bad.

(a) measurements (b) after iteration steps

Figure 2.13: Schematic working principle of the Kalman Filter. A straight trajectory
(dashed black line) creates a hit with additional measurement error (light red) on each
layer (a). Starting from a track seed (left most purple solid arrow) an iteration step
is performed leading to a predicted state (green dashed arrows) with an extrapolation
error (light blue). Combining predicted state and measurement leads to the updated
state (purple solid arrow). Pictures provided by Tobias Schlüter.

A more robust implementation of the Kalman Filter is the Combinatorial Kalman
Filter (CKF). Instead of choosing only the best possible measurement to add to the
current state the CKF clones itself for every measurement that can be added. In
this way the effect of picking up a wrong hit can be mitigated. Nevertheless, both
the ordinary Kalman Filter and the CKF have to check all hits within a certain
window in the next layer if no suitable reduction is applied. Two reasons can be
stated why reducing the number of hits to be checked is imperative. First, the

22 2.4 Track Finding in the VXD

necessary calculations for checking a hit are complex and thus, time consuming.
Second, and more importantly, a combinatorial problem arises from the increasing
number of possible combinations of hits.

2.4.4 The SectorMap Approach

To reduce the combinatorial problem a so-called SectorMap is employed. A more
detailed description of the approach can be found in [27] and [23] where also the
implementation of the VXDTF is described briefly.
The general idea of the Sector Map is to reduce the number of hits that have

to be considered for track candidates stepwise by fast filtering techniques before
applying the slow track following algorithm of the (combinatorial) KF. In this way
the advantages of the Kalman Filter can be maintained, while the combinatorial
problem can be mitigated.
The workflow consists of several steps (see Fig. 2.12). First, the filter rules are

applied to the hits of the current event. In the next step, compatible hits are
assembled into chains that represent promising track candidates by the CA. The
CKF operates on these track candidates before they are handed to the Hopfield
Neural Network, which produces a set of clean track candidates. It has to be noted
that currently the CKF is not implemented and that a circle fit is used to estimate
the track quality.
As the name suggests, the SectorMap relies on the subdivision of sensors into

smaller sectors. The filters of increasing complexity are simple geometrical filters
with cut-offs. The division into sectors allows for a finer grained tuning of the
necessary cut-off values compared to the usage of whole sensors. Furthermore the
definition of allowed sector combinations already serves to reduce the number of
hit combinations that have to be considered.
The filtering process can be broadly classified into different steps depending on

the number of hits that are addressed by a filter:

∙ Determining compatible hits for the following steps by sorting them according
to the list of allowed sector combinations. This is essentially a one-hit-filter
without cut-off values.

∙ Determining pairs of compatible hits, so called segments, by applying different
cut-off filters to all pairs of hits that pass the previous step. These so called
two-hit filters check different distances such as the distance in 3D, the distance
in the 𝑥-𝑦-plane or the 𝑧-direction.

∙ Finding compatible three-hit combinations by combining segments with their
so-called neighbors. Segments sharing a hit are checked by three-hit filters.
These filters calculate angles between the segments on different planes in the

2 The Belle II Experiment 23

coordinate system, offset in the 𝑧-direction as well as the distance of the IP
to a simplified circle fit using the three hits.

∙ After collecting chains of compatible hits that have passed previous steps with
the cellular automaton, four-hit filters are applied to rule out the remnants of
physically impossible track candidates by comparing the curvatures calculated
from the possible three-hit combinations.

The determination of the allowed sector combinations and the cut-off values for
the respective filters have to be determined in a separate step beforehand. This
“training” of the SectorMap is done by collecting sufficient amounts of data obtained
from simulated events. The cut-off values for each filter and sector combination are
determined from quantiles of the distributions of values recorded during training.
To ensure a high track finding efficiency over a wider range of track momenta,

several SectorMaps with different sector combinations and cut-off values can be
used. Each SectorMap is trained with data in the corresponding momentum range.
For track finding, a set of track candidates produced by any of the SectorMaps is
processed to find a clean set of tracks.

3 A Short Physics Primer

As the main focus of this thesis is track finding a brief overview on the interactions
of charged particles and matter will be given in Sec. 3.1. They represent the basic
physics interactions relevant for the detectors used in the Belle II detector. A special
focus will be put on the creation of electron-hole pairs in the silicon detectors of
the VXD.
The second part of this chapter provides a brief introduction to the Standard

Model of particle physics (SM) and to the physics goals pursued at Belle II . These
introductions are deliberately held short as a more detailed description [29, 30]
would go beyond the scope of this thesis. Additionally the main background sources
at Belle II are sketched.

3.1 Interactions of Charged Particles with Matter

Particles moving through matter lose energy mainly due to ionization and excitation
of atoms. The creation of electron-hole pairs in silicon detectors and the ionization
in drift chambers is an example of such processes. For electrons and for other
high energetic particles bremsstrahlung is another important energy loss mechanism
which is exploited in the electromagnetic calorimeter (see Sec. 2.2.4). Finally the
last process that will be described in more detail is Cherenkov radiation, which is
used for particle identification in the TOP and the ARICH detectors (Sec. 2.2.3).

3.1.1 Ionization and Excitation

The energy loss of heavy charged particles moving through matter is described by
the Bethe formula [31, Sec. 32]:⟨

− 𝑑𝐸

𝑑𝑥

⟩
= 𝐾𝑧2

𝑍

𝐴

1

𝛽2

[︁1

2
ln

2𝑚𝑒𝑐
2𝛽2𝛾2𝑊max

𝐼2
− 𝛽2 − 𝛿(𝛽𝛾)

2

]︁
. (3.1)

⟨−𝑑𝐸
𝑑𝑥
⟩ is the mean energy loss per unit length in units MeVg−1 cm2,𝐾 = 4𝜋𝑁𝐴𝑟

2
𝑒𝑚𝑒𝑐

2,
with 𝑁𝐴 being Avogadro’s constant, 𝑟𝑒 the classical electron radius, and𝑚𝑒 the elec-
tron mass. The energy loss depends on the charge of the incident particle 𝑧, on the
atomic number 𝑍 and the atomic mass 𝐴 of the absorber, on the particle velocity
encoded by the Lorentz factor 𝛽𝛾, on the maximum energy transfer in a single col-

26 3.1 Interactions of Charged Particles with Matter

lision 𝑊max, and on the mean excitation energy of the material 𝐼. The relativistic
rise is suppressed by the so called density effect which is accounted for by 𝛿(𝛽𝛾)/2.
The Bethe formula (Eq. 3.1) describes the mean energy loss for particles with

0.1 / 𝛽𝛾 / 1000 and is relatively independent on the incident particle mass and its
initial energy. The mean energy loss reaches a minimum at 𝛽𝛾 ≈ 3 (see Fig. 3.1).
Incident particles at this velocity are thus called minimum ionizing particles.

Muon momentum

1

10

100

S
to

p
p
in

g
 p

o
w

er
 [

M
eV

 c
m

2
/g

]

L
in

d
h

ar
d

-
S

ch
ar

ff

Bethe Radiative

Radiative
effects

reach 1%

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100

1001010.1

1000 10
4

10
5

[MeV/c]
100101

[GeV/c]
100101

[TeV/c]

Minimum
ionization

Eµc

Nuclear
losses

µ−

µ+ on Cu

Anderson-
Ziegler

Figure 3.1: Stopping power (= ⟨−𝑑𝐸
𝑑𝑥
⟩) for 𝜇+ in copper as function of 𝛽𝛾 = 𝑝/𝑀𝑐. The

vertical bands indicate boundaries between different approximations valid for different
regions of 𝛽𝛾 [31, Sec. 32].

The mass 𝑀 of the incident particle enters the Bethe formula only indirectly via
the maximum energy transfer in a single collision [31, Sec. 32]:

𝑊𝑚𝑎𝑥 =
2𝑚𝑒𝑐

2𝛽2𝛾2

1 + 2𝛾𝑚𝑒/𝑀 + (𝑚𝑒/𝑀)2
. (3.2)

For 2𝛾𝑚𝑒 ≪ 𝑀 the “low energy” approximation is applicable and Equation (3.2)
simplifies to 𝑊𝑚𝑎𝑥 = 2𝑚𝑒𝑐

2𝛽2𝛾2.
The Bethe formula is not applicable to describe the energy loss of electrons

and positrons when passing through matter, as because of their low mass some of
the assumptions used in the derivation of the Bethe formula no longer hold true.
Furthermore the identity of the incident electrons and the electrons of the absorbing
matter has to be considered in the quantum mechanical description of the scattering
process.
The energy loss of electrons and positrons is energy dependent. For low energetic

particles the main contribution to energy loss is ionization, whereas radiative losses

3 A Short Physics Primer 27

become dominant over about 10MeV. The adaptions that have to be made to the
Bethe formula are Møller scattering for 𝑒−𝑒− processes and Bhabha scattering for
𝑒−𝑒+ interactions (see Fig. 3.2).

Figure 3.2: Different contributions to the energy loss of electrons and positrons depend-
ing on their energy [31, Sec. 32].

3.1.2 Bremsstrahlung

For high-energy electrons moving through matter the energy loss is dominated by
radiative losses. One mechanism is 𝑒+𝑒− pair production and subsequent annihi-
lation of the positron, producing a high energy photon. The second mechanism
is bremsstrahlung, where the incident particles lose energy by interaction with the
Coulomb field of the matter nuclei. As bremsstrahlung is inversely proportional to
the fourth power of the particle mass its effects are negligible for all particles but
electrons. The energy loss by bremsstrahlung is dependent on the incident particle
energy and can be written as

−𝑑𝐸

𝑑𝑥
=

𝐸

𝑋0

.

Thus, the energy of high-energy electrons decreases exponentially with the radi-
ation length 𝑋0 when passing through matter. The radiation length is a measure
for (a) the mean distance over which a high-energy electron loses 1/𝑒 of its energy
and (b) 7

9
of the mean free path for pair production [31, Sec. 32].

3.1.3 Multiple Scattering

The interaction of a particle with the Coulomb field of the traversed medium not
only leads to an energy loss but also to a change of its trajectory due to many

28 3.1 Interactions of Charged Particles with Matter

small-angle scatters3 (Fig. 3.3). For many small-angle scatters the distributions
of the resulting displacement and scattering angle in a projection perpendicular to
the particle trajectory are approximately Gaussian. The standard deviation of the
distribution of the projected scattering angle according to the Highland formula [31,
Sec. 32] is given by:

𝜎𝜃 =
13.6MeV

𝛽𝑐𝑝
𝑧
√︀
𝑥/𝑋0[1 + 0.038 ln(𝑥/𝑋0)]. (3.3)

Here 𝑝 is the particle momentum, 𝛽𝑐 its velocity, 𝑧 its charge number, and 𝑥/𝑋0

the thickness of the passed medium in units of radiation lengths. The standard
deviation of the displacement in a direction perpendicular to the initial particle
direction is [31, Sec. 32]:

𝜎𝑦 =
1√
3
𝑥𝜎𝜃. (3.4)

x

splane

yplane
Ψplane

θplane

x /2

Figure 3.3: Multiple Scattering due to interactions with the Coulomb field of the tra-
versed medium [31, Sec. 32].

The Gaussian approximation is only valid if some assumptions are met: There
are no large angle scatters, and the the medium must not be too thin, as then
the central limit theorem is no longer applicable. “Hard” collisions with large angle
changes lead to tails in the Gaussian distribution, but are less frequent [31, Sec. 32].

3.1.4 Cherenkov Radiation

Although the energy loss of particles by Cherenkov radiation is negligible, the
emerging radiation can be used to determine the velocity of the incident particle [31,
Sec. 32]. Cherenkov radiation occurs when a charged particle moves through matter
at a velocity greater than the local phase velocity of light.

3 for hadronic particles strong interactions contribute to multiple scattering as well

3 A Short Physics Primer 29

If a charged particle moves through a medium, the medium gets electrically
polarized by the particles’ electric field. For particles with velocities exceeding the
local speed of light this polarization relaxes by radiation of a coherent shockwave.
The opening angle of this shockwave can easily be calculated from the particle
velocity 𝛽𝑐 and the local phase velocity of light in the medium 𝑐

𝑛
, where 𝑛 is the

refractive index. During a time interval of length 𝑡 the incident particle covers
the distance 𝛽𝑐𝑡, whereas electromagnetic waves travel as far as 𝑐

𝑛
𝑡. In order to

interfere constructively the wave fronts created along the track and the direction of
the emitted photons must form a right angle (see Fig. 3.4). Thus, the Cherenkov
angle 𝜃𝐶 can be calculated to

cos 𝜃𝐶 =
𝑐
𝑛
𝑡

𝛽𝑐𝑡
=

1

𝛽𝑛
.

Figure 3.4: Illustration of the formation of Cherenkov radiation (blue arrows) created
by an incident particle (thick arrow) with velocity 𝛽𝑐 in a non-dispersive medium.

Thus the Cherenkov angle of the emitted photons depends only on the refractive
index 𝑛 of the medium and on the incident particle velocity. Thus, in combination
with other measurements, such as the particle momentum, it can be used for particle
identification. The particle rest mass 𝑚0 is a strong discriminator for different
particle types and can be calculated directly from the particle momentum 𝑝 = 𝑚0𝛾𝑣
and its velocity 𝑣 = 𝛽𝑐.

3.2 The Standard Model of Particle Physics

The Standard Model of particle physics is one of the most successful theories in
physics. Developed in the early 1970s it has since been able to describe and predict
a variety of phenomena, including the discovery of the long missing piece in the
puzzle, the Higgs boson, in 2012 [32–34].
The SM is a field theory describing all currently known elementary particles and

the interactions among them: the strong interaction, the weak interaction and the
electromagnetic interaction. The only fundamental interaction not integrated into
the SM is gravity. Neglecting gravity is justified by the fact that its strength is
smaller by over 30 orders of magnitude compared to the other three fundamental
interactions.

30 3.2 The Standard Model of Particle Physics

The SM classifies the elementary particles into two groups: the fermions with
half-integer spin partaking in the interactions, and the gauge bosons with integer
spin mediating them. The fermions are divided into quarks and leptons. Pairs
of these are grouped together to so called generations. The bosons mediating the
strong interaction are the gluons. The weak interaction is transmitted by the 𝑍0

and the 𝑊± bosons and the electromagnetic interaction by the photons. The Higgs
boson plays a special role in the SM, as it does not convey an interaction in the
sense of the SM, and is thus not considered a gauge boson. For an overview over
the particles and interactions described by the SM see Fig. 3.5.

Figure 3.5: The elementary particles described by the Standard Model. Picture from
taken from [35].

Despite its huge success the SM has some shortcomings [29, 30]:

∙ As mentioned above, it does not include gravity and is unable to unify the
three fundamental interactions.

∙ It does not explain why there are three and only three generations of particles.

∙ The SM has 19 free parameters, the numerical values of which have to be
measured by experiments.

∙ A hierarchy problem emerges from the Higgs mechanism. The measured Higgs
mass of about 125GeV/c2 requires an unnatural fine-tuning.

∙ The CP violation described by the SM (Sec. 3.2.1) cannot explain the observed
matter-antimatter asymmetry in the universe.

3 A Short Physics Primer 31

There exist several models that try to solve these puzzles. However, current
experimental results do not allow to dismiss all of them or to pick one among them.
With the projected amount of data collected at Belle II several more stringent
constraints should be possible, and, in combination with other experiments, like
the ones at the Large Hadron Collider (LHC), physics beyond the SM hopefully
becomes accessible.

3.2.1 CP-Violation in the Standard Model and the CKM
Matrix

The strong interaction, described by quantum chromodynamics (QCD), conserves
the number of quarks of each flavour separately. The weak interactions allows for
transitions between different quark flavours, conserving only the total number of
quarks.
The quark eigenstates participating in the weak interaction are not the mass

eigenstates which appear in the SM (see Fig. 3.5). However, the eigenstates of the
weak interaction can be described as a mixture of the mass eigenstates:⎛⎝d′

s′

b′

⎞⎠ = 𝑉CKM

⎛⎝d
s
b

⎞⎠ =

⎛⎝𝑉ud 𝑉us 𝑉ub

𝑉cd 𝑉cs 𝑉cb

𝑉td 𝑉ts 𝑉tb

⎞⎠⎛⎝d
s
b

⎞⎠ . (3.5)

Here the primed quark eigenstates participate in the weak interaction, whereas
the non-primed are the mass eigenstates. The 3 × 3 unitary matrix 𝑉CKM is the
Cabibbo-Kobayashi-Maskawa matrix describing the quark mixing and CP violation
in the SM [36]. The CKM matrix can be parameterized as a rotation matrix around
three Euler angles and one additional complex phase which is responsible for CP
violation [37].

3.3 Physics at Belle II

Experiments at particle colliders can be broadly classified into two different ap-
proaches: On the one hand, the energy frontier experiments, such as the LHC
experiments at CERN, and on the other hand, the precision frontier experiments,
such as Belle II . The two approaches serve different purposes. While at the energy
frontier the direct discovery of new particles is the major goal, at the precision
frontier the signatures of new particles or processes are accessible via the precise
measurement of flavour physics at lower energies. The approach of Belle II is to
find evidence for deviations from SM predictions that can be interpreted in terms
of new physics models [12].

32 3.3 Physics at Belle II

The previous B-factory experiments Belle and BaBar were already successful in
confirming CP violation in the B meson system [2, 3], which ultimately lead to the
2008 Nobel Price for physics awarded to M. Kobayashi and T. Maskawa. One of
the main goals of Belle II is to further constrain the parameter space both of the
SM and of models extending the SM. While some deviations from SM predictions
were observed already at Belle, a larger amount of data is needed to thoroughly
investigate these effects [38]. This can be achieved at Belle II due to the much
larger instantaneous and integrated luminosity (Chapter 2).
Other important questions that are addressed by Belle II will be the search for

new CP violating phases, the search for new flavour symmetries that can explain the
CKM hierarchy, and the search for new flavour violating processes, such as lepton
flavour violation [38]. A more detailed description of the physics possibilities at
Belle II can be found in [12] and [38] and the references therein.

3.3.1 Background Sources at Belle II

The increased luminosity of SuperKEKB leads to an increased background rate
as well. The main sources of background at SuperKEKB and Belle II are the
following [12, 39–41].

Synchrotron Radiation Synchrotron radiation (SR) is created when electrons
are accelerated radially by, for example, a magnetic field. Due to SR the stored
particles lose energy in every revolution, which has to be compensated. However,
radiation causing background in the detector originates from the bending of the
electrons and positrons at the focusing magnets. As the effects scales with 𝐸2 it is
dominated by the electrons in the HER.

Beam-Gas Scattering Although the beam pipe is held at vacuum some residual
gas atoms are still present. These atoms can change the direction of beam particles
or induce energy loss by bremsstrahlung. If scattered particles hit the beam pipe
or the vacuum chamber they induce showers which create background hits in the
surrounding detectors.

Touschek Scattering Particles in a bunch exchange momentum between their
transversal and longitudinal directions. The exchange is enhanced by relativistic
effects, leading to beam particles hitting the walls of the vacuum chamber and
magnets. The induced showers can reach the detector and produce background
hits. The rate of Touschek scattering is proportional to 𝐸−3. Thus, the major
source are the positrons of the LER. The Touschek effect is the reason why the
energy of the positrons in the LER was increased to 4GeV/c.

3 A Short Physics Primer 33

Radiative Bhabha Scattering The scattering of electrons and positrons can
lead to the creation of a photon which propagates along the beam axis direction.
If this photon hits the iron of the magnets a neutron can be produced via the
giant photo-nuclear resonance mechanism. These neutrons are a major background
source in the KLM. The rate of Bhabha scattering is proportional to the luminosity,
which can be exploited to measure the luminosity.

QED Background Electron-positron pairs are produced via two-photon pro-
cesses: 𝑒+𝑒− → 𝛾𝛾 → 𝑒+𝑒−𝑒+𝑒−. The produced pairs have low momenta, rendering
this the main background source for the PXD.

Beam-Beam Interaction The particles of the colliding beams interact which
leads to changes of the trajectory of the beam particles. This is the least well
understood source of background due to its non-linear nature, and precise studies
are difficult.

4 Machine Learning Basics

The basic idea of machine learning (ML) is to avoid specifying a predefined set of
rules that are followed by a system, by having an algorithm that allows a system
to learn this set of rules by itself. One implication of this is that even large and
complicated sets of rules can be learned. But the more important consequence is
that no or little prior knowledge of these set of rules is necessary in order for them
to be learned if they actually are learnable.
Machine learning algorithms can be broadly classified into three categories [42]:

∙ supervised learning: For every training input the desired output is known.
Hence, the aim is to learn a set of rules or a general rule that maps inputs to
outputs.

∙ unsupervised learning: Only unlabeled inputs are given and the aim is
to find possibly hidden structures among these inputs and label the inputs
accordingly.

∙ reinforcement learning: The learning system is provided with information
in the form of a scalar reinforcement factor measuring how well the system
performs [43]. The system has to discover which action yields the highest
rewards autonomously.

Because of the particular classification problem studied in this thesis only super-
vised learning will be described in more, but still by no means exhaustive, detail.
Furthermore only a subset of Artificial Neural Networks (ANN), the so called Mul-
tilayer Perceptrons (MLP, Sec. 4.2), will be treated together with Boosted Decision
Trees (BDT, Sec. 4.3) as an alternative classifier algorithm.
This introduction is deliberately kept short and rather technical, and the reader

is provided with some references to more thorough and biologically inspired intro-
ductions [5, 42, 44–46] and some recent review articles [47–50].

4.1 Supervised Learning

Mathematically speaking supervised ML is a function approximation problem. The
aim of training is to learn some kind of mapping from inputs 𝑋 to outputs 𝑌 :

g : 𝑋 → 𝑌.

36 4.2 Artificial Neural Networks and Multilayer Perceptrons

The mapping is learned by minimizing the expectation value of a predefined loss
function (or cost function) 𝐿 for all possible values of inputs and outputs [51]. A
loss function maps the outputs of the system onto a scalar value in a way that
deviations from the desired output are penalized. For some supervised learning
algorithms the loss function has to meet certain criteria, e.g. differentiability or
convexity. A typical loss function is the quadratic loss function

𝐿Q = 𝑐
∑︁
𝑖

(𝑡𝑖 − 𝑦𝑖)
2, (4.1)

where 𝑐 is some constant usually set to 1
2
, 𝑡𝑖 is the desired output for sample 𝑖 and

𝑦𝑖 is the output produced by the system.

4.1.1 Overtraining

As during training only a subset of all possible input/output pairs is known, the
possibility arises that the expected loss is minimized on the training set, but not
on the entire set. In this case the system performs better on the training set than
on other sets, and one speaks of overtraining or overfitting.
Since one of the main goals of ML is to generalize from possibly small training

sets to larger sets, avoiding overfitting is crucial. No general best way for avoid-
ing overfitting exists. However, different approaches exist to stop training before
overfitting occurs.
Cross validation and special forms like hold out validation are commonly used

techniques. The training set is split up into two (hold out validation) or more
(cross validation) subsets and different systems are trained with all but one of
these subsets, which can then be used as a testing sample to check if a system
performs worse on it than on the subsets used for training. If the performance is
worse on the set which was not used in training it can be assumed that the system
is overtrained.
Generally speaking, if two systems perform (almost) equally after training on

a test set, the system with fewer free parameters, or casually spoken the simpler
system, is assumed to generalize better.

4.2 Artificial Neural Networks and Multilayer

Perceptrons

Inspired by and trying to resemble the data processing of the human brain, ANNs
have been proposed almost as early as the first programmable computers in the
1940s [52]. Based on the Hebbian Theory of learning [53], algorithms have been
developed to train ANNs to accomplish given tasks. According to Hebb, the effi-

4 Machine Learning Basics 37

ciency of connections between neurons in the (human) brain is increased for such
neurons that are often activated at the same time. After an initial golden time of
ANN research, it experienced a sudden decline in the late 1960s, when major draw-
backs of the then current approaches were revealed [54]. Benefiting from increasing
computing power and improved concepts, the area experienced a renaissance in the
late 1970s and 1980s, one that has been lasting until today.

4.2.1 Components of an Artificial Neural Network

ANNs consist of abstract representations of its biological counterparts, the neurons,
often calles nodes in the context of machine learning (see Fig. 4.1a), and the weights
connecting them, representing the axons, dendrites and synapses. The neural net-
work can be represented as a (directed) graph in which the neurons are the vertices
and the connections between them are the edges (see Fig. 4.1c).
The model of the neuron is completed by specifying rules on how input signals

are combined and how the combined input signals are transformed into an output
signal which is then passed to other connected neurons [45]. Most commonly the
inputs are combined by a weighted sum:

𝑧𝑗 =
∑︁
𝑖=1

𝑥𝑖𝑤𝑖𝑗. (4.2)

The weight 𝑤𝑖𝑗 represents the connection from neuron 𝑖 to neuron 𝑗 and is commonly
stored in the weight matrix 𝑊 . This matrix can be considered the memory of the
ANN, since it holds all parameters that are adjusted during training [47]. The
transformation to an output signal is done via the so-called activation function
𝑆(𝑧). The activation functions used in this thesis are (Fig. 4.1b):

∙ linear: 𝑆(𝑧) = 𝑐 · 𝑧, with 𝑐 being a constant usually set to 1

∙ tanh: 𝑆(𝑧) = tanh(𝑧), the hyperbolic tangent

∙ logsig: 𝑆(𝑧) = 1/(1 + exp(−𝑧)) = 1
2
(1 + tanh 𝑧

2
), a special case of the logistic

function

The latter two are sigmoid functions and are commonly used in MLPs. They
fulfill the conditions of the Universal Approximation Theorem (Sec. 4.2.3) and are
suitable for Backpropagation Training (Sec. 4.2.4). The linear activation function is
standardly used for the input nodes but can also be used for other nodes. However,
using only linear nodes imposes rather strict constraints on the possibilities of ANNs
(Sec. 4.2.3).
All presented activation functions have a fixed output for 𝑧 = 0. Sometimes,

however, a different value is desired for 𝑧 = 0. To overcome this limitation a

38 4.2 Artificial Neural Networks and Multilayer Perceptrons

so-called bias unit with a fixed output value of 1 and variable weight 𝑤0𝑗 is in-
troduced. Thus the combined input of a neuron results to 𝑧𝑗 =

∑︀
𝑖=0 𝑥𝑖𝑤𝑖𝑗, with

𝑥0 = 1 (see Fig. 4.1a). This allows to implement the desired output for 𝑧 = 0 and
furthermore hand over its determination to the training algorithm.

(a) (b) (c)

Figure 4.1: Model of a neuron in an ANN with a bias unit and 𝑛 inputs (a). Graph-
ical representation of different activation functions used in the thesis (b). Exemplary
representation of an ANN as directed graph.

4.2.2 Multilayer Perceptrons

One of the earliest ANN approaches were so called Multilayer Perceptrons. A MLP
is a fully connected feed-forward neural network (FFN), where the neurons are
organized in layers and every neuron in one layer is connected with all neurons in
the following layer. Thus, the information flow is unidirectional from the input
layer through one or more hidden layers to the output layer (see Fig. 4.2). The
name hidden layers is chosen because they neither receive input from, nor do they
transmit output to the environment directly.
The connections between two separate layers can be stored in separate weight

matrices. Hence, for 𝑁 layers (including input and output layers) 𝑁 − 1 weight
matrices have to be determined in the training process.

4.2.3 Universal Approximation Theorem

If the activation functions of all nodes are linear functions, the output is a com-
position of linear functions of the inputs and therefore again a linear function of
the inputs. Such a network may learn local linear approximations to non-linear
functions, but is certainly not capable of learning non-linear functions globally.

4 Machine Learning Basics 39

Figure 4.2: Schematic layout of a fully connected feed-forward neural network, a Multi-
layer Perceptron, with 𝑛 input nodes, 𝑘 hidden nodes in one hidden layer and 𝑚 output
nodes, thus implementing a mapping g : R𝑛 → R𝑚.

Replacing the activation functions in the hidden layer with non-linear ones re-
moves this restriction, turning MLPs into a powerful tool possessing an important
theoretical property: the Universal Approximation Theorem. The theorem states
that any FFN with a single hidden layer containing a sufficiently large, but finite
number of neurons is capable of approximating continuous functions to arbitrary
precision on compact subsets of R𝑁 [55, 56].
The theorem sets only mild constraints on the activation function: it has to

be bounded, non-constant and monotonically increasing. As a result even simple
ANNs are capable of representing a wide variety of functions and forming arbitrarily
shaped disjoint decision regions, if they are given appropriate parameters [57, 58].
However, the proof of the Universal Approximation Theorem is not constructive;
it does neither provide a general way of learning the weights and biases nor make
a statement on the ability of the ANN to learn them during the training process.

4.2.4 Backpropagation Training

Based on the delta rule [59] the backpropagation (BP) algorithm is one of the most
popular techniques for supervised learning of ANNs. While the delta rule is only
applicable for perceptrons consisting solely of an input and an output layer, the
backpropagation algorithm implements a generalized delta rule that allows adjust-
ment of weights in hidden layers as well. Both algorithms implement a gradient
descent on the loss surface (or error surface) generated by the loss function [59].
After initialization of all weights with small random numbers, a training step for

both algorithms consists of the following parts:

40 4.2 Artificial Neural Networks and Multilayer Perceptrons

1. Present the input samples to the ANN and propagate them through the net-
work to calculate the output of each sample.

2. With the help of the loss function calculate a so-called error signal for the
output layer.

3. Recursively determine the error signal for each layer in backward direction
(i.e. from output to input) and apply weight changes (Eq. 4.3).

4. Repeat 1.–3. until convergence or the desired performance is reached.

After presentation of one sample the change to be applied to a given weight 𝑤𝑖𝑗

according to the (generalized) delta rule reads [59]:

∆𝑤𝑖𝑗 = 𝜂𝛿𝑖𝑜𝑗, (4.3)

where 𝜂 is the learning rate that can be used to control the convergence of the
learning process, 𝛿𝑖 is the error signal encoding the deviation of the desired and the
actual output and 𝑜𝑗 is the 𝑗-th input to the node.
Obviously the error signal has to be defined differently for the output layer,

in which external information is available, and the hidden layers, in which such
information is not directly available. In output nodes the error signal is defined as

𝛿𝑖 =
𝜕𝐿

𝜕𝑦𝑖
𝑆 ′(𝑧𝑖), (4.4)

where 𝐿 is the loss function, 𝑦𝑖 is the 𝑖-th component of the output for input sample
𝑥⃗ and 𝑆 ′(𝑧𝑖) is the derivative of the activation function evaluated at 𝑧𝑖 (Eq. 4.2).
In hidden nodes the error signal reads:

𝛿𝑖 = 𝑆 ′(𝑧𝑖)
∑︁
𝑘

𝛿𝑘𝑤𝑖𝑘. (4.5)

Hence, it incorporates the error signals of all connected nodes in the succeed-
ing layer (from a signal processing point of view). Backpropagation requires the
activation function to be differentiable and monotonous [59].
Depending on the loss function as well as on the chosen learning rate 𝜂, conver-

gence to a minimum can take a rather long time. As BP implements a gradient
descent and supervised learning is a function optimization problem (Sec. 4.1), sev-
eral algorithms have been developed to speed up convergence: e.g. Scaled Conjugate
Gradient (SCG) [60], which tries to minimize the number of training steps needed
to reach a minimum by carefully choosing the direction and the step size of one
step by using second order information [60].

4 Machine Learning Basics 41

4.2.5 Limitations and Capabilities

Although ANNs are suitable tools a vast variety of tasks (Sec. 4.2.3), some draw-
backs have to be mentioned. One of the most prominent problems is that mod-
els produced by ANNs are in general not intuitively interpretable, thus rendering
them a black box for the user. While this is no real problem if the ANN has been
trained properly, it can become tedious to spot flaws. Furthermore, since even small
changes of one weight can result in an entirely different model, manual adjustment
of a trained network is almost impossible.
Due to their composition of independent neurons ANNs can be evaluated in

parallel, resulting in fast execution speeds. Nevertheless, considerable time can be
spent in training, especially with increasing numbers of neurons. However, this
is a problem not exclusive to ANNs and is generally of only minor concern, since
once trained, the parameters are fixed and evaluation time becomes the relevant
characteristic.
As mentioned before, supervised machine learning is nothing but the minimiza-

tion of a predefined loss-function (Sec. 4.1). In MLP training this is frequently
achieved by Backpropagation Training (Sec. 4.2.4) which implements a gradient
descent. As always with gradient descent, it is not guaranteed that the global
minimum is reached or that the final local minimum is sufficient for the targeted
purposes. Although reaching the global minimum is rarely required, reaching a
sufficient minimum can require several training runs with different initializations.

4.3 Decision Trees and Boosting

One of the drawbacks of ANNs is that they can only handle numerical but not
categorical data. Although categorical data can be mapped to numerical data to
be used by ANNs, such a mapping has no “natural” or canonical definition and
introduces arbitrariness into the task. Decision Trees (DT) and Boosted Decision
Trees (BDT) are capable of dealing with categorical and numerical data directly
without use of any transformation.

4.3.1 Decision Trees

DTs are a form of so called logical learning methods that classify input samples
by sorting them based on feature values or features [47]. A DT can again be
represented as a (directed acyclic) graph, where the vertices are divided into nodes
and leaves. The latter are vertices with no outgoing edges. On every node of a DT
the data is split according to the value of one feature until a leaf is reached which
is then the output of the DT (Fig. 4.3). In general this procedure is not repeated
until every training sample is correctly labeled but is instead limited to a maximum

42 4.3 Decision Trees and Boosting

number of splits or to a certain depth of the tree. A DT can be translated into a
set of rules by creating a rule for each path from the root to a leaf in the tree [61].

Figure 4.3: Exemplary decision tree labeling input based on three features, U, V and
W into three classes 𝐴,𝐵 and 𝐶.

Decision Tree Construction

Training (or constructing) a DT is done by choosing the variable that best splits
the data at the root node of the tree and repeating this procedure for every branch
of every node in a top-down manner. As constructing an optimal binary DT is a
NP-hard4 problem [62], different measures exist to heuristically determine which
variable best splits the data [61].

4.3.2 Boosting

Although DTs can be powerful classifiers, they are generally prone to overfitting. To
counteract this tendency, the depth of a DT can be limited. While this generally
avoids overfitting, it also affects the classification performance. If the depth is
limited to very shallow trees or even tree stumps5, DTs are considered to be so-
called weak learners, which by definition have to label data only slightly better than
a random labeling does. Despite this apparently major drawback it is possible to
combine several weak learners in order to form a strong learner [63]. One way of
combining trees is the boosting method.
Boosting is done by iteratively training an ensemble of weak learners and applying

weights to the training samples according to the deviation of learner output and

4 NP-hardness is a notion from complexity theory. Put simply, a solution to an NP-hard problem
can be verified quickly, however, no efficient way is known for finding a solution.

5 tree consisting of only the root node

4 Machine Learning Basics 43

desired output. While mislabeled samples gain weight, correctly labeled samples
lose weight such that the weak learners after every boosting step concentrate more
and more on samples that were misclassified by previous instances. To compensate
for the changed weights of the training samples each weak learner of the ensemble
is assigned a weight for evaluation.
Several boosting algorithms exist. However, only AdaBoost [64] and Stochastic

Gradient Boost [51] (SGB) will be briefly described here. Both algorithms share
some properties and parts of the initialization process as well. All weak learners
are assumed to be DTs and the output is assumed to be binary6 for the description
of the algorithms. The two classes are called signal and background in accordance
with the overall topic of the thesis.

Mathematical Basics

As mentioned before, supervised learning can be regarded as function approxi-
mation (Sec. 4.1). Boosting achieves this approximation by an expansion of the
form [51]

𝑔(𝑥) =
∑︁
𝑚

𝛼𝑚ℎ𝑚(𝑥), (4.6)

where the ℎ𝑚(𝑥) are the hypotheses from base learners and 𝛼𝑚 are the weights
assigned to them7. Training starts with an initial guess 𝑔0(𝑥), and the parameters
of ℎ𝑚 and 𝛼𝑚 are then determined by means of adding a new base learner to
the previously trained ensemble and choosing the optimal values for them. The
approximation after adding a new base-learner is

𝑔𝑚(𝑥) = 𝑔𝑚−1(𝑥) + 𝛼𝑚ℎ𝑚(𝑥). (4.7)

Boosting algorithms differ in the way in which they choose the optimal values for
the parameters of the base learners and 𝛼𝑚.
For the following description let 𝑁 be the total number of (training) events,

in which the 𝑖-th event consists of an input vector 𝑥⃗𝑖, a target value 𝑡𝑖 and a
corresponding weight 𝑤𝑖. The ensemble consists of 𝑀 trees, where the hypothesis
of the 𝑚-th tree is denoted by:

𝑇𝑚(𝑥⃗𝑖) =

{︃
1 if 𝑥⃗𝑖 lands on signal leaf

0 if 𝑥⃗𝑖 lands on background leaf

At the beginning, all events are weighted with 𝑤𝑖 = 1
𝑁
, 𝑖 = 1...𝑁 .

6 i.e. AdaBoost.M1
7 The parameter-dependence from [51] is dropped in this basic description

44 4.3 Decision Trees and Boosting

AdaBoost

After training a tree, its hypothesis is tested by applying it to the training events
and calculating the error8

𝑒𝑚 =

∑︀𝑁
𝑖=1 𝑤𝑖𝐼(𝑡𝑖 ̸= 𝑇𝑚(𝑥⃗𝑖))∑︀𝑁

𝑖=1 𝑤𝑖

,

where 𝐼 is the indicator function which is 1 if its argument is true and 0 otherwise.
This yields 𝑒𝑚 denoting the weighted fraction of misclassified events. The weight
for the 𝑚-th tree in the BDT is calculated as

𝛼𝑚 = 𝛽 ln
1− 𝑒𝑚
𝑒𝑚

,

where 𝛽 > 0 (𝛽 = 1 for the standard AdaBoost algorithm [8]) can be seen as a
parameter governing the learning speed. The weights are updated according to

𝑤𝑖 ← 𝑤𝑖𝑒
𝛼𝑚𝐼(𝑡𝑖 ̸=𝑇𝑚(𝑥⃗𝑖))

and afterwards renormalized such that
∑︀𝑁

𝑖=1𝑤𝑖 = 1. In this way, misclassified
events gain weight9 whereas properly labeled events lose weight in the normalization
process. The score of an event 𝑥⃗ is finally calculated as

𝑇 (𝑥⃗) =
𝑀∑︁

𝑚=1

𝛼𝑚𝑇𝑚(𝑥⃗) (4.8)

yielding a real number that can then be used to define cuts for sorting a presented
event into either signal or background. The loss function minimized by AdaBoost
is the exponential loss 𝐿𝐸 [65]:

𝐿𝐸 =
𝑁∑︁
𝑖=1

𝑒−𝐼(𝑡𝑖=𝑇 (𝑥⃗𝑖)). (4.9)

Stochastic Gradient Boosting

The optimization problem of choosing the weights 𝛼𝑚 and the parameters of a base
learner ℎ𝑚 as described in Sec. 4.3.2 is solved by Gradient Boosting by splitting
the process into two parts, that can be solved more easily [51].

8 This description follows the one found in [8] but is equivalent to the original of [64]
9 Since 𝑒𝑚 ≤ 1

2 by the requirement of each tree being a weak learner 𝛼𝑚 ≥ 0

4 Machine Learning Basics 45

First the base learner ℎ𝑚 is determined form a least-squares fit to the so called
pseudo residuals

𝑦𝑖𝑚 = −
[︁𝜕𝐿(𝑡𝑖, 𝑔(𝑥⃗𝑖))

𝜕𝑔(𝑥⃗𝑖)

]︁
𝑔(𝑥⃗)=𝑔𝑚−1(𝑥⃗)

. (4.10)

Then the optimal value for 𝛼𝑚 is determined via a parameter optimization by
minimizing the expected loss over the training sample after adding the previously
determined base learner.
To further improve generalization capabilities of Gradient Boosting, Stochastic

Gradient Boosting randomly draws a sample of fixed size form the training set for
each boosting step. Another technique to avoid overfitting is so called shrinkage
which modifies the update rule (Eq. 4.7) as follows:

𝑔𝑚(𝑥) = 𝑔𝑚−1(𝑥) + 𝜈𝛼𝑚ℎ𝑚(𝑥)

Here 𝜈 is called the shrinkage or learning rate and is usually set to small values
to yield the best results [66].

4.4 Data Selection and Processing

Aside from picking an algorithm, selecting the data for training has to be done with
greatest care. It has to be representative for the distribution on which the system
has to perform after training. If availability of data is only a minor concern it is
feasible to generate different sets for training and testing to check if both follow
the same distribution and to do cross or hold-out validation to avoid overtraining
(Sec. 4.1.1).
Pre- or post-processing of the data is another handle to improve the performance

of supervised machine learning systems. Common pre-processing techniques include
some form of statistical analysis to ensure the identification of the relevant features
(e.g. decorrelation) or some numerical transformations to meet the requirements
of the systems optimal performance range (e.g. normalization or transformation to
a uniform distribution) as well as identifying missing values and outliers. Post-
processing includes (among others) the determination of optimal cut values on the
system outputs for classification purposes.

4.4.1 Decorrelation

In a typical input for a machine learning system the features are correlated, implying
that some information is stored in the input features redundantly. Analyzing these
correlations can help to identify non-relevant features that can be excluded from
training. Aside from a possible performance enhancement (Chapter 5) there is

46 4.4 Data Selection and Processing

the possibility of lowering the number of necessary free parameters in a system by
applying a transformation to decorrelate the input features.
The transformation to decorrelate a random variable 𝑋 can be obtained from an

eigendecomposition of the covariance matrix [66]

Cov[𝑋] = UDU𝑇 , (4.11)

where D is a diagonal matrix containing the eigenvalues of Cov[𝑋] and U is an
orthogonal matrix whose column vectors are the eigenvectors corresponding to the
eigenvalues in D. The transformation from 𝑋 to a non-correlated variable 𝑍 reads

𝑍 = D
1
2U𝑇𝑋, (4.12)

where D
1
2 is for normalization purposes only. The covariance matrix Cov[𝑍] is

diagonal, and if normalized, unity. Hence, 𝑍 is by definition not linearly correlated.
Geometrically speaking, the transformation is a rotation of the inputs followed by
a rescaling (see Fig. 4.4)

X
2

10 20 30 40 50

X
1

10

20

30

40

50

(a) original

Z
2

10 20 30 40 50

Z
1

10

20

30

40

50

(b) decorrelated

Figure 4.4: Geometrical interpretation of decorrelation as rotation and rescaling in the
input space.

4.4.2 Transformation to Uniform Distribution

According to the Probability Integral Transformation any random variable 𝑋 can
be transformed to a random variable 𝑋 ′ having a uniform distribution given the
cumulative distribution function (CDF) 𝐹𝑋 [67] (see Fig. 4.5):

𝑋 ′ = 𝐹𝑋(𝑋) (4.13)

While this not only is a common approach in statistics when dealing with multi-
variate distributions, it furthermore allows to optimize the training and execution

4 Machine Learning Basics 47

procedures of BDTs by operating on bin numbers rather than on actual float val-
ues [19].

Figure 4.5: Transformation to a uniform distribution using the CDF. Adapted from [68]
.

5 Machine Learned Tracklet Filters

The current SectorMap approach in the VXDTF (Sec. 2.4) requires tuning a large
number of cut off values for the different filters. As this number is in the order of
106, this tuning requires considerable amounts of computational resources to gather
the necessary quantities of data. While tuning these cut off values can be seen as a
very basic machine learning approach, applying more advanced supervised machine
learning techniques (Chapter 4) to the problem has several possible benefits. These
are primarily connected to the generalization capabilities of such systems:

∙ A smaller number of needed sectors yields a smaller number of filters that
have to be tuned.

∙ The size of the required training data set can be reduced, lowering the nec-
essary amount of computational resources

∙ The number of SectorMaps needed for different momentum ranges can be
reduced.

Furthermore including signal and background in the training process potentially
yields a better separation of signal and background. The resulting lower number
of hit combinations that have to be checked in a later stage might allow for faster
execution of the track finder.

5.1 Chosen Approach and Goals

Stepping in at the two hit filter stage of the SectorMap is probably unfeasible due
the high occupancy and the highly imbalanced data. The ratio of background to
signal is very high, rendering training an efficient classifier difficult. Thus, the
approach taken in this thesis is to train a classifier that acts as a three hit filter in
the SectorMap. At this stage the data is almost balanced (see Tab. 5.1), and the
occupancy has been considerably reduced by the previous stage. Furthermore, a
third hit offers additional information which might allow for a better discrimination
between signal and background. The gained advantages can then be used to loosen
the requirements on the previous filter stage.
The main goal of the SectorMap approach is to keep as much signal as possible

while discarding as much background as possible. The measures used to assess the
different machine learning approaches against each others are defined as follows:

50 5.2 Generating Data Sets

∙ signal efficiency
𝑟 = 1− 𝛼 (5.1)

where 𝛼 is the ratio of signal samples misclassified as background. The prefix
signal will be omitted most of the time.

∙ signal-to-noise ratio (SNR)

SNR =
number of signal samples in data set

number of background samples in data set
(5.2)

∙ SNRin, the SNR in the input data set

∙ SNRout, the SNR in the data set that is labeled as signal by the classifier

SNRout =
number of signal samples classified as signal

number of background samples classified as signal
(5.3)

∙ SNR gain, the ratio of input to output SNR .

SNR gain =
SNRin

SNRout

(5.4)

The definition of the SNR gain yields a measure that is independent of the SNR in
the input data and thus allows to compare classifiers that have been trained and
tested on different data sets more easily than by just comparing the output SNR.
To discard as little signal as possible the desired efficiency of the classifiers is set

to 𝑟 ≥ 0.99 if not stated otherwise in this chapter. Hence, more than 99 % of all
signal samples have to be classified as such. This chapter addresses the standalone
performance of the machine learned three hit filters only. This allows to determine
the proper parameters of the ML classifiers like tree depth, number of boosting
steps and number of hidden nodes (Sec. 4.3 and 4.2). However, statements on how
the performance of the VXDTF is affected are limited.

5.2 Generating Data Sets

As mentioned in section 4.4, generating the training data has to be done very
carefully to ensure proper operation after training. In a later stage the framework
will allow to directly receive all three hit combinations that passed the two hit stage
of the SectorMap. At the moment, however, the VXDTF has to be “misused” to
obtain training data.
To have data that as closely as possible resembles the data that will later be

filtered by the classifier, only the two hit filters that are turned on for standard

5 Machine Learned Tracklet Filters 51

reconstruction are enabled in data generation, while all three and four hit filters
are disabled. Any combination of segments that is allowed by the SectorMap is
connected to a track candidate. No further processing (i.e. no CKF and no HNN)
is done to filter out possible background. The track candidates are afterwards split
up into tracklets containing three hits each and each of these tracklets is either
assigned a signal or a background label.
To be labeled as a signal sample, each of the three hits has to be related to the

same MCParticle10. If one or several hits are related to more than one MCParticle,
but there is one MCParticle shared by all of them, the sample is still considered
as signal sample. The term background is used as a collective in this thesis as
no discrimination between machine background and combinatorial background is
made.

5.2.1 Properties of Data Sets

For reasons of comparability all classifiers have been trained with the same train-
ing data set and afterwards tested with a test data set. The training data set is
randomly chosen from a data set in which the samples obtained from 100,000 sim-
ulated events are contained. All sample not used in the training process are used
for testing. Every sample

𝑋 = (𝑥⃗, 𝑡), 𝑥⃗ ∈ R9, 𝑡 ∈ {0, 1} (5.5)

consists of the three dimensional spatial coordinates of the three hits 𝑥⃗ and an
associated target value 𝑡 indicating if the sample is background (0) or signal (1).
Incorporating further information can readily be done if it is kept in mind that no
MC information, other than determining the target value, can be used as input,
since such information is absent in the actual experimental situation. Nevertheless
this information can and will be used in performance analysis (Sec. 5.6). The
complete data set is split into three subsets (see Tab. 5.1):

∙ consecutive set: The hits of the samples appear on consecutive layers with no
skipped or repeated layers.

∙ overlapping set: At least two hits in the sample are on the same layer. For
non-curling tracks this is only possible in the overlapping parts of the detector.

∙ skipping set: The hits in the sample ’skip’ one or more layers. The most
frequent reason for this to happen is when a particle passes an insensitive
part of the detector.

10 see Glossary for a short explanation

52 5.2 Generating Data Sets

data set # signal samples # bg samples # total samples SNR 𝜉

consecutive 1,279,539 1,680,919 2,960,458 0.7612 0.25
overlapping 180,069 337,204 517,273 0.5340 0.5
skipping 48,450 79,862 128,312 0.6066 0.75

complete 1,508,058 2,097,985 3,606,043 0.7188 0.25

Table 5.1: Number of signal and background (bg) samples in the different data sets
(training and test data sets combined) and fraction 𝜉 that is used as training set.

Since the data sets are not of the same size, different fractions 𝜉 are chosen for
randomly drawing the training sets from the complete sets. This ensures each the
training set is large enough to provide enough information for a successful training.
To ensure the resemblance of training and test data sets the distributions of each

component are compared via a Kolmogorov-Smirnov (KS) test [69] (see Fig. 5.1).

X
1

-10 0 10

F
(X

1
)

0

0.5

1

p=0.50

test set
train set

X
2

-10 0 10

F
(X

2
)

0

0.5

1

p=0.68

test set
train set

X
3

-20 0 20 40

F
(X

3
)

0

0.5

1

p=0.76

test set
train set

X
4

-20 0 20

F
(X

4
)

0

0.5

1

p=0.49

test set
train set

X
5

-20 0 20

F
(X

5
)

0

0.5

1

p=0.83

test set
train set

X
6

-50 0 50

F
(X

6
)

0

0.5

1

p=0.60

test set
train set

X
7

-20 0 20

F
(X

7
)

0

0.5

1

p=0.56

test set
train set

X
8

-20 0 20

F
(X

8
)

0

0.5

1

p=0.57

test set
train set

X
9

-50 0 50

F
(X

9
)

0

0.5

1

p=0.47

test set
train set

Figure 5.1: Comparison of the CDFs for each component of the training and the test
data set of the complete data set. The 𝑝-values are obtained from a KS test.

The original data set is highly correlated due to the filtering of the previous
two hit filter stage (see Fig. 5.2a). To decorrelate these data sets (see Sec. 4.4.1)
the transformations are determined from the training data sets and subsequently
applied to the test data sets. Due to the size of the training sets this should

5 Machine Learned Tracklet Filters 53

only yield marginal differences compared to transformations determined from the
complete sets [70].

1.00

0.14

0.98

0.14

0.97

0.14

1.00

0.09

0.97

0.09

0.96

0.09

0.14

0.09

1.00

0.14

0.10

0.98

0.14

0.09

0.98

0.98

0.14

1.00

0.13

0.99

0.14

0.97

0.10

1.00

0.09

0.99

0.09

0.14

0.09

0.98

0.13

0.09

1.00

0.13

0.09

1.00

0.97

0.14

0.99

0.13

1.00

0.14

0.96

0.09

0.99

0.09

1.00

0.09

0.14

0.09

0.98

0.14

0.09

1.00

0.14

0.09

1.00

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

(a)

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

(b)

Figure 5.2: Correlation matrix of the complete test data set before (a) and after (b)
decorrelation. Every entry that has no numerical inset has a correlation coefficient
𝜌 ≤ 0.01.

For determining the ML classifier parameters (Sec. 5.3–5.5) and for a detailed
performance analysis (Sec. 5.6) only the consecutive set will be used. All three
subsets will be used in Sec. 5.7, where possible benefits of incorporating the ML
classifiers into the SectorMap are investigated.

5.3 Multilayer Perceptron Classifiers

To train and evaluate different MLPs MATLAB [71] is used, which offers a variety
of different BP training algorithms. However, only the scaled conjugate gradient
algorithm [60] is used. Nevertheless no significant difference to other algorithms is
expected, since all BP algorithms implement a gradient descent (Sec. 4.2.4). The
parameters that are varied are the number of hidden nodes 𝑁 and the activation
function of the output node. The activation functions of all hidden neurons are fixed
to tanh and the activation functions of the input neurons are all linear (see Fig. 5.3).
The activation function of the output neuron is either logsig or linear (Sec. 4.2).
In order to limit the number of necessary training runs, the size 𝑁 of the hidden

layer is restricted to 𝑁 ∈ {10, 50, 100, 200}. As the number of necessary training
steps tends to increase with increasing numbers of adjustable weights, initialization
and decorrelation effects are only examined for 𝑁 = 50.
To avoid overtraining MATLAB uses so called Validation Stop, which is a vari-

ation of hold out validation (Sec. 4.1.1). The training data set is split into a set
which is actually used for training and a validation set, which is used to check the

54 5.3 Multilayer Perceptron Classifiers

Figure 5.3: Basic structure of the MLPs used in this section with all fixed parameters.

generalization capabilities of the MLP. Once the loss calculated from the output
of the validation set stops to decrease or starts to increase the training is stopped.
The validation set is chosen randomly from the training set and contains 15 % of
all samples in the training data set.

5.3.1 Hidden Layer Size

As mentioned in Sec. 4.2.1, the size of the hidden layer determines the amount of
information that can be stored by a MLP. In the previously described setup each
additional hidden neuron adds 9 + 1 + 1 = 11 adjustable weights: one weight for
connecting each of the 9 inputs, one bias weight and one weight for the connection
to the output. Although the computational complexity of evaluation and backprop-
agation is the same for standard backpropagation [59], a higher number of hidden
neurons implies longer training, since more parameters have to be adjusted. It is
thus desirable to find a hidden layer size with an acceptable performance while
still being small enough for reasonable training times. Furthermore restricting the
number of adjustable parameters reduces the risk of overtraining (Sec. 4.1.1).
Depending on the activation function of the outpout node the output 𝑦 of an MLP

is either limited to the interval [0, 1] (logsig) or unbounded (linear) (see Fig. 5.4).
To check if the MLP is overtrained, a KS test is performed comparing the output
distributions of the training and test data sets. Due to the continuous performance
checks during training (Sec. 5.3), no overtraining can be detected in any of the
trained MLPs, even with 𝑁 = 200 neurons in the hidden layer (see Fig. 5.4).
A well trained classifier produces an output distribution that can be easily divided

into a signal and a background region by simply defining cut values. The desired
performance is then achieved by tuning the cut value (see Fig. 5.5). At the lowest
cut value all samples are classified as signal, implying an efficiency of 1 and no

5 Machine Learned Tracklet Filters 55

y
0 0.2 0.4 0.6 0.8 1

ra
tio

0

0.1

0.2

0.3

0.4

background: p = 0.51
signal: p = 0.59

all test samples
all train samples
signal test samples
signal train samples

(a) logsig

y
-1.5 -1 -0.5 0 0.5 1

ra
tio

0

0.05

0.1

0.15

background: p = 0.22
signal: p = 0.24

all test samples
all train samples
signal test samples
signal train samples

(b) linear

Figure 5.4: Output of a MLP with 𝑁 = 200 hidden neurons with a logsig output neuron
(a) and a linear output neuron (b). The output distributions for the training and the
test data set are compared via a KS test (𝑝-value in plots).

discrimination capabilities. By increasing the cut value, the number of samples
classified as signal decreases. This leads to a decrease of the efficiency as more
and more signal samples are classified as background. However, the rejection of
background samples leads to an increase of SNRout, which reaches a maximum
at a certain point. At approximately this point the output distribution of the
signal samples reaches its maximum, whereas the tail of the output distribution
of the background samples is approximately constant. Further increasing the cut
value ultimately results in 𝑟 = 0, as all samples are being rejected by the MLP
(see Fig. 5.5). The visible fluctuations in SNRout at high cut values for the linear

classification cut
0 0.2 0.4 0.6 0.8 1

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

S
N

R
ou

t

0

2

4

6

8

10

N=10
N=50
N=100
N=200

(a) logsig

classification cut
-1 -0.5 0 0.5 1 1.5

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1
S

N
R

ou
t

0

2

4

6

8

10

N=10
N=50
N=100
N=200

(b) linear

Figure 5.5: Efficiency (solid lines, left y axis) and SNRout (dashed lines, right y axis)
depending on the classification cut used for dividing the output distribution into a signal
and a background region for different numbers of hidden neurons 𝑁 for MLPs with a
logsig output neuron (a) and a linear output neuron (b).

56 5.3 Multilayer Perceptron Classifiers

output node (see Fig. 5.5b) are due to the low occupancy of these bins and are of
no interest in this thesis since the focus is on the high efficiency range.
While the maximum SNR gain that can be achieved is in the same range for

both output nodes for all 𝑁 , the efficiency where this maximum is reached dif-
fer (see Fig. 5.5 and Fig. 5.6a). Notably the SNR gain in the high efficiency
range reaches only about a third of its maximum value for all MLPs. The MLP
with a logsig output neuron with 𝑁 = 100 hidden neurons shows the highest
value (see Fig. 5.6b). While MLPs with a linear output neuron generally perform
worse than its logsig counterparts this is reversed for the smallest hidden layer with
𝑁 = 10. However, it is not possible to rule out initialization effects. MLPs with
a logsig output neuron show better performance in the high efficiency range than
MLPs with a linear output neuron, and their efficiency is slightly more robust to
variations of the cut value.

efficiency
0 0.2 0.4 0.6 0.8 1

S
N

R
 g

ai
n

0

5

10

15

(a)

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

1

2

3

4

5
N=10
N=50
N=100
N=200

(b)

Figure 5.6: SNR gain vs. efficiency for different numbers of hidden neurons 𝑁 and
output functions: logsig (solid lines), linear (dashed lines). (a) shows the full efficiency
range, (b) shows the high efficiency range only (rectangle in (a)).

5.3.2 Initialization Effects

As with every gradient descent method, the starting point strongly influences the
minimum that can be reached. Hence, different random initializations, representing
different starting points, are expected to yield different MLPs. A second source of
randomness, the drawing of the validation samples from the training set, is con-
sidered to be part of the random initialization. The effects of differently initialized
MLP classifiers are investigated with a fixed hidden layer size of 𝑁 = 50 and four
different initializations.
Comparing the efficiency and SNRout that can be reached by applying different

classification cuts reveals that initialization effects have a considerable influence

5 Machine Learned Tracklet Filters 57

on the performance. Especially for MLPs with a logsig output neuron the BP
training reaches minima that yield MLP classifiers with a large performance spread.
Although MLPs with a linear output neuron as well show a spread in performance
for different initializations it is more confined compared to MLPs with a logsig
output neuron (see Fig. 5.7).

classification cut
0 0.2 0.4 0.6 0.8 1

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

S
N

R
ou

t

0

2

4

6

8

10

(a) logsig

classification cut
-1 -0.5 0 0.5 1 1.5

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

S
N

R
ou

t

0

2

4

6

8

10

(b) linear

Figure 5.7: Efficiency (solid lines, left y axis) and SNRout (dashed lines, right y axis)
depending on the cut value for different initializations for MLPs with 𝑁 = 50 and a
logsig (a) and a linear (b) output neuron.

These findings hold for the high efficiency range as well. While the achieved
SNR gain at an efficiency of 𝑟 = 0.99 is in the range of ≈ 2− 2.8 for MLPs with a
logsig output neuron, the region covered by MLPs with a linear output neuron is
confined to ≈ 2.2− 2.5 (see Fig. 5.8). Notably the best performing MLP performs
almost as well as MLPs with 𝑁 = 100 or 𝑁 = 200 that have been tested previously
in section 5.3.1 (see Fig. 5.6b).

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

1

1.5

2

2.5

3

3.5

4
logsig
linear

Figure 5.8: SNR gain vs. efficiency for different initializations for MLPs with 𝑁 = 50
and logsig (solid lines) or linear (dashed lines) output neurons.

58 5.3 Multilayer Perceptron Classifiers

These results imply that finding the best performing MLP requires training with
different initializations. Moreover, finding a suitable hidden layer size requires
multiple trainings with different initializations for every number of hidden neurons
to make comparisons viable.

5.3.3 Input Decorrelation

Although MLPs are in general able to handle correlated data, decorrelating the
input data can alleviate the task of learning an appropriate mapping. To test the
effects on the performance, MLPs with 𝑁 = 50 hidden neurons have been trained
with decorrelated input data. Furthermore initialization effects were studied by
repeating the trainings with three different initializations.
Concerning the initialization effects the MLPs with a logsig output neuron still

show more variation than the ones with a linear output neuron. However, compared
to the original data (Sec. 5.3.2) they are reduced. More importantly, a considerable
improvement can be seen in the achievable SNRout for all tested initializations and
output neurons (see Fig. 5.9).

classification cut
0 0.2 0.4 0.6 0.8 1

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

S
N

R
ou

t

0

3

6

9

12

15

(a) logsig

classification cut
-1 -0.5 0 0.5 1 1.5

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

S
N

R
ou

t
0

3

6

9

12

15

(b) linear

Figure 5.9: Efficiency (solid lines, left y axis) and SNRout (dashed lines, right y axis)
depending on the cut value for different MLPs with 𝑁 = 50 which have been trained
with decorrelated data with a logsig (a) and a linear (b) output neuron.

Compared to the MLPs trained with the original (non-decorrelated) data, the
SNR gain that can be reached at an efficiency of 𝑟 = 0.99 is enhanced by a factor
of about 1.5–1.7 for both kinds of output neurons (see Fig. 5.10b). Considering
that decorrelating data is a computationally rather cheap operation, these results
show that data decorrelation can be a powerful tool to enhance the classification
capabilities of MLP classifiers. This can in turn be used to reduce the size of the
hidden layer needed to accomplish a given performance.

5 Machine Learned Tracklet Filters 59

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

1

2

3

4

5

6
logsig
linear

(a)

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

1

2

3

4

5

6
logsig
linear

(b)

Figure 5.10: (a) SNR gain vs. efficiency for different initializations for MLPs with
𝑁 = 50 trained with decorrelated data and logsig (solid lines) and linear (dashed
lines) output neurons. (b) Comparison of the best performing MLPs from (a) (solid
lines) and Fig. 5.8 (dashed lines)

5.4 Boosted Decision Tree Classifiers

To investigate the performance of BDTs two different boosting algorithms (Sec. 4.3.2)
and parameters like depth of the DTs or number of splits in the DTs are assessed
in two different approaches. BDTs employing AdaBoost are trained and evaluated
with MATLAB which offers an easy to use implementation [72], whereas Stochastic
Gradient Boosting is tested with the so called FastBDT implementation [19] that
is part of the BASF2 externals. It provides an interface to ROOT::TMVA [73] but
can also be used in a standalone version. Effects of different numbers of decision
splits are examined with AdaBoost whereas effects of different tree depths are in-
vestigated with the FastBDT . If not stated otherwise, BDT always refers to the
AdaBoost version, while FastBDT refers to the implementation of SGB in BASF2
in this section.

5.4.1 Number of Decision Splits

Due to long training times the number of decision splits 𝑆 that are tested are limited
to 𝑆 ∈ {10, 20, 50}, and the learning rate is fixed to 𝛽 = 1 (Sec. 4.3.2). Besides the
number of decision splits in one tree, the number of trained trees in the ensemble
𝑁𝐵 determines the performance of a BDT. The MATLAB implementation allows
to choose the number of boosting steps to use for the evaluation after the training.
Thus, it does not have to be chosen before training. However, to keep training
times at an acceptable level, the maximum number is fixed to 𝑁𝐵 = 2000 for the
following tests.

60 5.4 Boosted Decision Tree Classifiers

To check at which number of boosting steps overtraining starts, the misclassi-
fication rate of the BDT evaluated on the test set is plotted against 𝑁𝐵. The
misclassification rate is defined as the ratio of the number of samples that are mis-
classified to the number of samples that are classified correctly. The number of
boosting steps where the misclassification rate starts to increase marks the onset
of overfitting. This procedure differs from the Validation Stop (Sec. 5.3) approach
only in the chosen validation set.
The misclassification rate monotonously decreases for all tested 𝑆, both for BDTs

trained with original and decorrelated data implying that no trained BDTs is over-
fitting. However, plateaus of increasing length appear with increasing numbers of
boosting steps (see Fig. 5.11). This indicates that further improvements require
increasing numbers of additional boosting steps. BDTs with higher numbers of
decision splits perform better and reach an “acceptable” level at lower 𝑁𝐵. Posi-
tive effects on the performance due to decorrelating the input data are observed in
accordance to the findings for MLPs (Sec. 5.3.3).

N
B

0 500 1000 1500 2000

m
is

cl
as

si
fic

at
io

n
ra

te

0.05

0.1

0.15

0.2

0.25

0.3

0.35
S = 10
S = 20
S = 50
S = 10, decorr.
S = 20, decorr.
S = 50, decorr.

Figure 5.11: Misclassification rate vs. number of boosting steps 𝑁𝐵 for BDTs with trees
with different numbers of decision splits 𝑆 trained with AdaBoost.

A crosscheck to exclude overtraining is performed by comparing the output distri-
butions of the BDTs for the training and test data sets via a KS test (see Fig. 5.12).
The 𝑝-values for 𝑁𝐵 = 2000 are substantially lower compared to the 𝑝-values ob-
tained for the output distributions for MLP classifiers (see Fig. 5.4), however over-
training can still be excluded at a 5 % significance level.
The output distribution of signal samples has its mode around 𝑦 ≈ 1. It features

a very long tail reaching far into the negative numbers. The background output
distribution is rather broad, featuring a tail into the negative numbers as well, but
also reaching into the signal region quite prominently (see Fig. 5.12). Nevertheless
a separation of signal and background maintaining a high efficiency is possible. As
the tail of the signal distribution contains only a small fraction of all signal samples
discarding a large fraction of background samples is possible.
The SNR gain at 𝑟 = 0.99 that can be achieved with BDTs trained with original

data spans from ≈ 2.1 for 𝑆 = 10 to ≈ 3.1 for 𝑆 = 50. Training with decor-

5 Machine Learned Tracklet Filters 61

y
-8 -6 -4 -2 0 2

ra
tio

0

0.05

0.1

0.15

background: p = 0.14
signal: p = 0.05

all test samples
all train samples
signal test samples
signal train samples

(a) 𝑆 = 20, 𝑁𝐵 = 2000

y
-8 -6 -4 -2 0 2

ra
tio

0

0.05

0.1

0.15

background: p = 0.53
signal: p = 0.08

all test samples
all train samples
signal test samples
signal train samples

(b) 𝑆 = 50, 𝑁𝐵 = 2000

Figure 5.12: Output of a BDT trained with AdaBoost on original data with different
numbers of decision splits 𝑆 and 2000 boosting steps. The output distributions for the
training and the test data set are compared via a KS test.

related data yields a SNR gain between ≈ 3.1 for 𝑆 = 10 and ≈ 5 for 𝑆 = 50
(see Fig. 5.13b). Hence, the additional gain achieved by decorrelating is compa-
rable to the MLP classifiers (Sec. 5.3.3). In contrast to the latter the maximum
SNR gain is considerably larger for decorrelated data for BDTs although it is only
achievable at very low efficiencies (see Fig. 5.13a).

efficiency
0 0.2 0.4 0.6 0.8 1

S
N

R
 g

ai
n

0

10

20

30

40
S = 10
S = 20
S = 50
S = 10, decorr.
S = 20, decorr.
S = 50, decorr.

(a)

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

1

2

3

4

5

6

7

(b)

Figure 5.13: SNR gain vs. efficiency for BDTs with different numbers of decision splits
𝑆 and 𝑁𝐵 = 2000 boosting steps. (a) full efficiency range and (b) high efficiency range
(rectangle in (a)).

62 5.4 Boosted Decision Tree Classifiers

5.4.2 Number of Trees and Tree Depth in FastBDTs

The implementation of the FastBDT works with a fixed number of trees. Thus,
the number of boosting steps that are tested are 𝑁𝐵 ∈ {100, 500, 1000, 2000}. The
range of tree depths that is investigated is 𝐷 ∈ {2, 3, 4, 5, 6}, and the shrinkage
parameter is fixed to 𝜈 = 0.1. The fraction of the subset that is drawn randomly
from the training set for the training of each tree is set to 0.5. Unlike for MLP
classifiers these random effects are negligible. To check if a FastBDT classifier is
overfitting, the output distributions of training and test set are compared via a KS
test.
The output of a FastBDT is confined to the interval 𝑦 ∈ [0, 1]. The separation of

signal and background output distribution gets better with larger 𝐷 and 𝑁𝐵. The
mode of the background distribution tends towards 𝑦 = 0 and its tail gets narrower
with increasing 𝐷 and 𝑁𝐵, whereas the signal distribution forms its maximum
somewhere around 𝑦 ≈ 0.75−0.9, showing a tail to smaller numbers with decreasing
width with increasing 𝐷 and 𝑁𝐵 (see Fig. 5.14). Decorrelating the input data does
not significantly change these distributions, however, it helps to achieve a better
separation for smaller 𝐷 and 𝑁𝐵 already.

y
0 0.2 0.4 0.6 0.8 1

ra
tio

0

0.02

0.04

0.06

0.08

0.1

background: p = 0.63
signal: p = 0.06

all test samples
all train samples
signal test samples
signal train samples

(a) 𝐷 = 2, 𝑁𝐵 = 100 original data

y
0 0.2 0.4 0.6 0.8 1

ra
tio

0

0.1

0.2

0.3

0.4

background: p = 0.00
signal: p = 0.00

all test samples
all train samples
signal test samples
signal train samples

(b) 𝐷 = 6, 𝑁𝐵 = 2000 decorrelatd data

Figure 5.14: Output distributions of different FastBDT classifiers. A FastBDT with a
small number of very shallow trees shows no real clustering of signal or background (a).

Checking the 𝑝 values of KS tests comparing the output distributions of the train-
ing and the test data sets reveals that almost all FastBDT classifiers with 𝐷 ≥ 4
and 𝑁𝐵 ≥ 500 are overtrained, regardless of the preprocessing of the input data
(see Fig. 5.15). Checking the high efficiency range reveals the effects of overtraining
on the performance of FastBDT classifiers. Although the achievable SNR gain at
𝑟 = 0.99 increases with increasing 𝐷 and 𝑁𝐵 for the training and the test data set,
the difference between the two set gets larger (see Fig. 5.16).
Nevertheless the performance of the best FastBDT classifiers exceeds the perfor-

mance of the previously discussed BDTs trained with AdaBoost (Sec. 5.4.1) and

5 Machine Learned Tracklet Filters 63

D
 =

 2

D
 =

 3

D
 =

 4

D
 =

 5

D
 =

 6

p
va

lu
es

0

0.1

0.2

0.3

0.4

0.5
N

B
 = 100

N
B
 = 500

N
B
 = 1000

N
B
 = 2000

orig.
decorr.

Figure 5.15: 𝑝 values of KS test comparing the output distributions for the training and
the test data set for different parameters of FastBDT classifiers. ’+’ trained on original
data, ’×’ trained on decorrelated data.

MLPs (Sec. 5.3). The SNR gain that can be achieved by FastBDTs when trained
with decorrelated input data reaches up to approx. 7.4 for 𝐷 = 6 and 𝑁𝐵 = 2000
(see Fig. 5.16b).

D
 =

 2

D
 =

 3

D
 =

 4

D
 =

 5

D
 =

 6

S
N

R
 g

ai
n

1

2

3

4

5

6

7
N

B
 = 100

N
B
 = 500

N
B
 = 1000

N
B
 = 2000

training
test

(a) original data

D
 =

 2

D
 =

 3

D
 =

 4

D
 =

 5

D
 =

 6

S
N

R
 g

ai
n

0

2

4

6

8

10

12
N

B
 = 100

N
B
 = 500

N
B
 = 1000

N
B
 = 2000

training
test

(b) decorrelated data

Figure 5.16: Comparison of achievable SNR gain at an efficiency of 𝑟 = 0.99 for dif-
ferent parameters of FastBDT classifiers for the training ’∘’ and the test ’×’ data
set. The classification cuts to determine 𝑟 = 0.99 have been determined on each set
independently.

This overtraining scenario has some major implications on the extended training
process. To ensure a given efficiency the classification cut can not be determined
from the output distribution of the training set. While determining these cuts from
the test data set imposes no practical problems, the original purpose of the test set
is compromised as it has to be used in the training process.

64 5.5 Comparison of Classifiers

5.5 Comparison of Classifiers

Apart from the classification performance, evaluation time is a crucial aspect in
online track finding. Thus, the latter has to be considered as well to choose an ap-
propriate classifier. To allow for an easier decision this section compiles the results
of previously described classifiers (Sec. 5.3 and Sec. 5.4) into a global compari-
son and provides additional information on training and evaluation times for each
category.
To reduce information to a digestible amount only the performance of certain

classifiers of each category will be compared. These classifiers along with their
specifics are:

∙ MLP linear: 𝑁 = 50, linear output neuron

∙ MLP logsig: 𝑁 = 50, logsig output neuron

∙ BDT: 𝑆 = 50, 𝑁𝐵 = 2000, AdaBoost

∙ FastBDT: 𝐷 = 6, 𝑁𝐵 = 2000, SGB

The comparison is done for both the original and the decorrelated data to illus-
trate the effects on the performance of decorrelating the input data. Initialization
effects for MLPs are neglected however, and only the initialization leading to the
best performance on the test set is chosen for the comparison.

5.5.1 Classification Performance

Directly comparing the different classifiers shows that the FastBDT classifier achieves
the highest SNR gain at 𝑟 = 0.99 for training with both decorrelated and original
input data. All classifiers profit from decorrelating the input data before training,
achieving approx. 1.3− 1.6 larger SNR gains (see Tab. 5.2 and Fig. 5.17).

original decorrelated
MLP logsig 2.67 4.05
MLP linear 2.41 3.10
BDT 3.11 4.91
FastBDT 4.73 7.40

Table 5.2: SNR gains at 𝑟 = 0.99 for the presented classifiers with different preprocessing
of the input data.

5 Machine Learned Tracklet Filters 65

efficiency
0.98 0.985 0.99 0.995 1

S
N

R
 g

ai
n

2

4

6

8

10
MLP logsig
MLP linear
BDT
FastBDT
original
decorr.

Figure 5.17: SNR gain vs. efficiency for different ML classifiers in the high efficiency
range. Solid lines: classifier trained on original data, dashed lines: classifier trained on
decorrelated data.

5.5.2 Evaluation and Training Times

Decorrelating the input data has no effect on computation times. Thus, evaluation
times are only affected by the additional transformation that has to be applied
to every input. Considering that it is only a relatively cheap multiplication of
a constant matrix and a vector, no real restrictions are expected in online track
finding. Hence, this transformation is neglected in this discussion. Training times
are only affected indirectly by a possibly smaller number of necessary training or
boosting steps.
Since only very few BDTs have been trained, not enough data points are present

to make a reliable statement on training and evaluation times. Although more
MLPs have been trained, training times are highly dependent on the random initial-
ization. Hence, only approximate orders of magnitude and trends will be stated for
these times. The MLP classifiers exhibit the lowest evaluation times and are faster
by an approximate factor of 50 compared to the FastBDT classifiers (see Tab. 5.3).
However, the times for MLPs were obtained from MATLAB and a direct compar-
ison to an implementation in BASF2 is probably unfeasible. Nevertheless MLPs
are the fastest classifiers, since their evaluation requires merely two matrix-vector
multiplications. Such an operation can easily be parallelized.

classifier
time [𝜇s/sample]

training evaluation
MLP logsig, linear ∼ (2− 4) · 103 ≈ 2.1− 2.4

BDT ∼ 104 ∼ 103

FastBDT ≈ 500− 600 ≈ 100− 120

Table 5.3: Comparison of training and evaluation times per presented sample for the
presented classifiers.

66 5.6 Detailed Performance Analysis

The number of trained FastBDTs is large enough to allow a statistical evaluation
of training and evaluation times. Neglecting overhead, training times are about
three times longer as evaluation times. The time 𝜏 a FastBDT needs to classify a
sample depends on the number of boosting steps 𝑁𝐵 and the tree depth 𝐷 and can
be calculated to (see Fig. 5.18):

𝜏 = 0.013 ·𝑁𝐵 ·𝐷𝜇s.

D
2 3 4 5 6

tim
e

[
7

s/
sa

m
pl

e
"N

B
]

0

0.1

0.2

0.3

0.4
t
train

(D) = 0.038 D + 0.052

t
eval

(D) = 0.013 D - 0.018

Figure 5.18: Training and evaluation times per sample and tree vs. tree depth for
different parameters of a FastBDT with a linear fit to the data.

All of the above times have been taken by first collecting all samples and then
presenting them to the classifiers. As only the presentation of the samples to the
classifiers is timed, possible overhead is not considered. However, already this first
estimate rules out BDTs for online track finding. The question whether FastB-
DTs are able to compensate their slower evaluation times by a better classification
performance compared to MLPs remains open at this point.

5.6 Detailed Performance Analysis

The previous analysis in Sec. 5.3–5.5 compared the “overall” performance of the
different classifiers only. While this allowed to easily compare different classifiers,
a more detailed analysis has the prospect of revealing possible weak spots and of
anticipating if the approach actually holds benefits ready compared to the current
one.
All trained classifiers exhibit the same qualitative characteristics if the classi-

fication cut is determined to yield an overall efficiency of 𝑟 = 0.99. The main
difference is the ratio of rejected background. Thus, only the FastBDT with 𝐷 = 6
and 𝑁𝐵 = 2000, which shows the best overall performance (Sec. 5.5), will be used
for presenting the following results.

5 Machine Learned Tracklet Filters 67

5.6.1 Angle Dependent Performance

To determine the spherical coordinates (𝜃, 𝜑) used in this discussion the innermost
hit of a sample is used. While this is a reasonable choice to determine 𝜃, it is
somewhat arbitrary for 𝜑. Nevertheless it provides an unambiguous definition.

Performance in bins of 𝜃

The distribution of samples in 𝜃 shows a maximum at small 𝜃 values. This indicates
that more track candidates are found in the forward direction of the detector, which
is expected due to the asymmetry of the colliding beams (Sec. 2.1). However, most
of these samples are background. Setting a classification cut such that the overall
efficiency is 𝑟 = 0.99, allows to discard the majority of the background while keeping
almost all signal in the 𝜃-acceptance range of the detector (see Fig. 5.19)

3 [°]
20 40 60 80 100 120 140 160

nu
m

be
r

of
 s

am
pl

es
 /

bi
n

#10 5

0

1

2

3

4
input all
output all
input signal
output signal

Figure 5.19: Distribution of classifier inputs and outputs in bins of 𝜃 for a classification
cut that ensures an overall efficiency 𝑟 = 0.99. The vertical black lines indicate the
acceptance boundaries of the detector (Sec. 2.2).

Only at the very edges, close to the acceptance boundaries, the efficiency drops
below 0.99. However, 𝑟 ≥ 0.95 can be achieved with this global classification cut
(see Fig. 5.20b). The SNRin is small at the edges, but is almost constant with a
value between 1.5 and 2 for 40∘ . 𝜃 . 135∘. The same holds for the SNRout reaching
values between approx. 5.8 and 7.5 in the same range of 𝜃. Since there is more
background to reject at the borders of the detector (see Fig. 5.19), the SNR gain
reaches its largest values there, peaking at around 30 for 𝜃 ≈ 18∘ (see Fig. 5.20b).
It is possible to set individual cuts for every bin to reach 𝑟 = 0.99 in every

bin. This results in lower SNRout at the edges, since a looser cut is required to
reach the desired efficiency. For 40∘ . 𝜃 . 135∘ higher SNRout can be achieved,
since the cuts can be made stricter here (see Fig. 5.20a). While the SNR gain is not
greatly affected by setting individual cuts for each bin in this middle range, it drops
considerably at low values of 𝜃 (see Fig. 5.20b). Although the highest values are

68 5.6 Detailed Performance Analysis

3 [°]
20 40 60 80 100 120 140 160

S
N

R

0

2

4

6

8

10
output, global cut output, individual cuts input

(a)

3 [°]
20 40 60 80 100 120 140 160

S
N

R
 g

ai
n

0

30

60
global cut
individual cuts

3 [°]
20 40 60 80 100 120 140 160

r

0.6

0.8

1

(b)

Figure 5.20: Comparison of SNR in input and output for a global classification cut and
individual cuts for each bin (see text) (a). Comparison of achievable SNR gain for a
global cut and individual cuts for each bin (b, top). Efficiency 𝑟 for a global cut with
overall efficiency 𝑟 = 0.99 (b, bottom). The vertical black lines indicate the official
detector boundaries (Sec. 2.2).

still reached there, the overall SNR gain drops from 7.4 with a global classification
cut (see Tab. 5.2) to 5.9 with individual cuts in each bin. This degradation can be
traced back to the high occupancy of the bins with small 𝜃.

Performance in bins of 𝜑

Naively a flat distribution of samples in 𝜑 would be expected. However, the distri-
bution shows a broad peak around 𝜑 ≈ 30∘ (see Fig. 5.21). The peak consists of
background only and stems from the background simulation. This can be verified
by using a particle gun with uniform angular distributions as simulation input.
Comparing the distributions of simulations with and without added background
reveals that the peak is not caused by wrongly tuned filters in the SectorMap, but
actually by the added physics background.
The distribution of signal samples is almost flat, with dips at the overlapping

parts of the detector. As all the samples that appear in the overlapping part of
the detector are filtered out, this agrees with the expectation. Setting a global
classification that ensures 𝑟 = 0.99 results in an almost flat output distribution and
a good background rejection in general (see Fig. 5.21). The efficiency is 𝑟 ≥ 0.98
for the whole range of 𝜑 with a tendency to smaller values for the 𝜑-values with
higher background ratios in the input (see Fig. 5.22b). The SNRout varies between
approx. 4.5 and 6.5 and shows the same tendency to smaller values as the efficiency
and the SNRin (see Fig. 5.22a). However, the SNR gain is increased in this 𝜑 range
(see Fig. 5.22b), simply due to a lower SNRin.

5 Machine Learned Tracklet Filters 69

? [°]
-150 -100 -50 0 50 100 150

nu
m

be
r

of
 s

am
pl

es
 /

bi
n

#10 4

0

1

2

3

4

5

6
input all
output all
input signal
output signal

Figure 5.21: Distribution of classifier inputs and outputs in bins of 𝜑 for a classification
cut that ensures overall 𝑟 = 0.99.

Choosing individual cuts for each bin to have 𝑟 = 0.99 in each bin has no signif-
icant effect. The SNRout and, as a consequence, the SNR gain, is increased in bins
with 𝑟 > 0.99 and decreased in bins with 𝑟 < 0.99. However, since the cuts have
to be adjusted only slightly, the overall SNR gain hardly changes (see Fig. 5.22).

? [°]
-150 -100 -50 0 50 100 150

S
N

R

0

2

4

6

8
output, global cut output, individual cuts input

(a)

? [°]
-150 -100 -50 0 50 100 150

S
N

R
 g

ai
n

0

10

20
global cut
individual cuts

? [°]
-150 -100 -50 0 50 100 150

r

0.98

0.99

1

(b)

Figure 5.22: Comparison of SNR in input and output for a global classification cut and
individual cuts for each bin (see text) (a). Comparison of achievable SNR gain for a
global cut and individual cuts for each bin (b, top). Efficiency 𝑟 for a global cut with
overall efficiency 𝑟 = 0.99 (b, bottom).

5.6.2 Momentum Dependent Performance

No MC information is available for background samples. Thus, only signal samples
are used subsequently and only statements about the efficiency are possible.

70 5.6 Detailed Performance Analysis

As the VXD track finder is targeted at finding tracks over a wide momentum
range, including low momenta down to 50 MeV, high efficiency is desired also
for the latter. While setting individual cuts in different regions of the detector
is the essence of the SectorMap approach, MC information dependent cuts are
inadmissible. Hence, the classification cut is set to ensure 𝑟 = 0.99 in the overall
performance, and the efficiency depending on 𝑝 and 𝑝𝑇 is checked.
In the test set the lowest values are roughly 10MeV/c for both 𝑝 and 𝑝𝑇 , and

the highest values reach up to 𝑝 ≈ 7GeV/c and 𝑝𝑇 ≈ 5.5GeV/c. The sample
distributions have their maximum around 𝑝𝑇 ≈ 400MeV/c and 𝑝 ≈ 500MeV/c
(see Fig. 5.23). The efficiency is stable at 𝑟 ≥ 0.99 in the high momentum range
and drops below 0.99 at 𝑝 ≈ 220MeV/c and 𝑝𝑇 ≈ 160MeV/c. However, it remains
above 0.9 for 𝑝 & 60MeV/c and 𝑝𝑇 & 45MeV/c before dropping even further
(see Fig. 5.23).

MeV/c
10 50 100 500 1000 5000

nu
m

be
rs

 o
f s

am
pl

es
 /

bi
n

#10 4

0

2

4

6

8

10

12

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

p
T

p

Figure 5.23: Distribution of signal samples (bars, left axis) and efficiency (right axis)
depending on 𝑝 and 𝑝𝑇 .

Although only roughly 1–2% of all signal samples have 𝑝 < 60MeV/c or 𝑝𝑇 <
45MeV/c, about 20 % are in a momentum range where 𝑟 < 0.99. Setting a global
classification cut that results in 𝑟 ≥ 0.99 in every bin of 𝑝 and 𝑝𝑇 results in an
overall SNR gain of 6.2 and 5.7 respectively, compared to a value of 7.4 with an
overall efficiency of 𝑟 = 0.99 (see Tab. 5.2).

5.6.3 Charge and Particle Dependent Performance

From all particles produced in a collision and their decay products only few types
actually reach the tracking volume before decaying; furthermore, only charged par-
ticles can be detected by the silicon detectors in the SVD. These particles are:
electrons, positrons, muons, the charged pions and kaons as well as protons and
anti-protons.
Multiple scattering and energy loss (Sec. 3.1) have the largest influence on how

well a particle can be detected and tracked in the detector. Other properties like the

5 Machine Learned Tracklet Filters 71

charge or the lifetime have further influence on this. A shorter lifetimes implies less
traversed detector layers. Thus, less measurements are available for track finding
and track fitting.
Apart from electrons, positrons and protons all particles have efficiencies 𝑟 & 0.99

if a global classification cut is set with overall 𝑟 = 0.99. However, the efficiency
never drops below 0.95 for any particle (see Fig. 5.24). The lower efficiencies of the
𝑒− and the 𝑒+ are related to their low mass and their likelihood of being secondary
particles. The latter is also the source of the reduced efficiency for protons. The
SectorMap is tuned to detect particles originating from the interaction point. Thus,
secondary particles with decay vertices inside the detector volume naturally suffer
from a lower detection efficiency.

e+ e-
7

+
7

-
:

+
:

- K+ K- p+ p -

nu
m

be
r

of
 s

am
pl

es
 /

P
ID

#10 5

0

1

2

3

4

ef
fic

ie
nc

y
0.95

0.96

0.97

0.98

0.99

1
original
decorr.

Figure 5.24: Efficiency (’×’ and ’+’) reached with a classification cut that ensures an
overall efficiency of 𝑟 = 0.99 and number of samples for different particles that occurred
in the SVD in the simulated events. 𝑝− denotes the antiproton 𝑝.

Combining all positively, resp. all negatively charged particles reveals that pos-
itively charged particles have a lower efficiency than negatively charged particles.
The effect can be found independently of decorrelating the input data. The reason
for the better performance for tracklets from negative particles can probably be
linked to the detector performing differently for oppositely charged particles [74].
However, since the deviation is only marginal, choosing a slightly looser cut results
in the desired efficiency of 𝑟 = 0.99 without changing the achievable SNR gain
significantly.

5.7 Towards a Combination of Approaches

Until now the SectorMap approach has only been used to reduce the amount of
input data for the ML classifiers. However, possible benefits of further exploitation
of the SectorMap are likely to emerge. Two possible approaches are investigated
and compared to the previously described approach: 1) one global ML classifier is

72 5.7 Towards a Combination of Approaches

used but the classification cut varies with the sector combination. 2) different ML
classifiers are trained for different sector combinations.
As a first step both approaches are compared to a global ML classifier trained

on the whole data set with a global classification cut. Since the full SectorMap
information is not available for these standalone tests, the data set is split into
three subsets according to table 5.1. The classification cuts for the first approach
are determined such that 𝑟 = 0.99 in every subset individually.
Compared to the global approach with only one global classification cut, individ-

ual cuts for the different subsets show only minor changes. The slight degradation
of the output SNR compared to the global cut is due to the imbalanced number of
samples in the subsets (see Tab. 5.1). While the largest subset, the consecutive set,
surpasses 𝑟 = 0.99 only slightly, the other two subsets, overlapping and skipping,
reach only 𝑟 ≈ 0.97. The stricter cut that can be chosen on the consecutive set
cannot compensate the worse background rejection that is necessary to increase
the efficiency in the other two sets sufficiently. However, training different classi-
fiers on the three different subsets significantly improves background rejection while
ensuring the desired efficiency (see Fig. 5.25).

N
B

500 1000 2000 500 1000 2000

S
N

R
ou

t

0

2

4

6

8

!A
D=6D=3

global
ind. cuts
ind. class.
orig.
decorr

Figure 5.25: Comparison of SNRout for different approaches (see text) utilizing more
of the information available from the SectorMap. The used ML classifiers are different
FastBDTs with different data preprocessing (’×’ decorrelated, ’+’ original input data).

Although splitting the detector into only three regions is far from utilizing all
available information, some conclusions still can be drawn. First of all, train-
ing different classifiers for different sector combinations significantly improves the
performance. Defining different cuts for different sector combinations affects the
performance only weakly. Both approaches share the prospect of having a finer
control over the achieved efficiencies compared to a classifier with one global cut.
Determining individual cut values for the different sector combinations can be

achieved rather easily and imposes no additional overhead to the training and data
collection scheme. On the other hand, having different classifiers for different sector
combinations requires the development of an appropriate scheme for training and

5 Machine Learned Tracklet Filters 73

data collection. However. only an implementation into the SectorMap approach is
able to reveal how serious the impact of these drawbacks actually is.

6 Conclusion and Outlook

In the thesis presented here the general feasibility of employing supervised machine
learning techniques to track finding in the Belle II Silicon Vertex Detector have
been investigated. Using machine learned classifiers to filter three-hit combinations
in the SectorMap has shown some promising results.
Due to the prefiltering of the SectorMap the inputs to the classifiers are highly

correlated. It has been shown that preprocessing the input data by applying a
transformation to linearly decorrelate the inputs is able to improve the perfor-
mance of the tested classifiers significantly. Given that this transformation is a
computationally rather cheap operation and can in principle be even incorporated
into a MLP classifier, the implementation of a decorrelation step seems mandatory
to achieve the desired results.
Testing the angle dependent performance of the classifiers has not revealed any

weak spots. The investigation of the momentum dependent performance shows
that a high efficiency can be obtained even for low momenta. Moreover, the de-
sired efficiency of 𝑟 = 0.99 can be reached with only a slight degradation of the
classification performance. Thus, it is reasonable to expect that the performance of
the current VXD track finding algorithm can be improved for the low momentum
range by using machine learning techniques.
To test how the SectorMap approach and the machine learned filters approach

can be combined, the performance of one global classifier has been compared to two
possible approaches that might be able to exploit the advantages of both: specific
cuts and individual classifiers for different regions of the detector. Both approaches
allow for a finer grained control over the efficiency throughout the detector com-
pared to using only one global cut. While specific cuts can easily be implemented
into the current track finder, they show only minor differences to the performance
of the global classifier. However, using as few as three different individual classifiers
improves the performance significantly. Thus, it might be possible to exchange the
large number of simple filters that are currently in place by a small number of
sophisticated machine-learned filters.
Nevertheless it has to be stated that these results were not obtained with an

implementation into the current track finder and have thus to be treated with
caution. First of all, it is not guaranteed that the way the samples for training and
testing were obtained actually reflects the situation that is encountered in track
finding. Second, it is not clear how the obtained results translate into the tracking
performance. However, a direct comparison of the performance of the current track

76

finder and the machine-learned filters was not possible because of a major redesign
of the former’s implementation.
Thus, the logical next step is an implementation into the framework once the

redesign is finished. Once this implementation is done it will be possible to draw
conclusions on how the results of this thesis translate into tracking performance.
Furthermore only an implementation is able to reveal how the time constraints
posed by the requirement of on-line track finding influence the choice of the appro-
priate classifying technique.

A Appendix

A.1 Shortcomings of linear activation functions

Consider a network consisting of 𝑚 input neurons (with an arbitrary activation
function 𝑆𝑖𝑛(𝑧)), 𝑛 neurons in on hidden layer with linear activation functions
𝑆(𝑧) = 𝑧, and an arbitrary number of output neurons with an arbitrary activation
function 𝑆𝑜𝑢𝑡(𝑧).
Given an input vector 𝑥⃗ ∈ R𝑚 the outputs of the 𝑖-th input neuron 𝑎𝑖 = 𝑆𝑖𝑛(𝑥𝑖),

hence the outputs of the hidden neurons is

ℎ𝑘 =
𝑚∑︁
𝑖=1

𝑤𝑖𝑘𝑎𝑖, 𝑘 = 1...𝑛, (A.1)

where 𝑤𝑖𝑘 are the weights connecting the 𝑚 input neurons with the 𝑛 hidden layers.
The output value of a neuron in the output layer 𝑜 can now be expressed as

𝑜 = 𝑆𝑜𝑢𝑡(
𝑛∑︁

𝑘=1

𝑤𝑘𝑜ℎ𝑘) = 𝑆𝑜𝑢𝑡(
𝑛∑︁

𝑘=1

𝑤𝑘𝑜

𝑚∑︁
𝑖=1

𝑤𝑖𝑘𝑎𝑖). (A.2)

The hidden linear neurons are now easily removed by connecting the inputs
directly to the output 𝑜 with the new weights

𝑤𝑖𝑜 = 𝑤𝑘𝑜

𝑛∑︁
𝑘=1

𝑤𝑖𝑘 (A.3)

resulting in an output value of

𝑜 = 𝑆𝑜𝑢𝑡(
𝑚∑︁
𝑖=1

𝑤𝑖𝑜𝑎𝑖), (A.4)

which is equivalent to the original network containing the hidden neurons.

Acknowledgments

The list of people that have contributed in helping me finish this thesis is long
and I probably will not be able to get it complete here. However, I would like to
particularly mention a few that played an important role.
First of all, I would like to thank Jochen Schieck, Rudolf Frühwirth, and

Christoph Schwanda for offering me the opportunity to do my thesis on such an
interesting project like the Belle II experiment. With their untiring support and
guidance they helped me to complete this thesis.
I would like to emphasize the great support I experienced from Rudolf Früh-

wirth. He left none of my numerous questions unanswered and with his calm nature
guided me and my work through some patches of rough water that came along in
the process.
Many thanks I would like to bring out for my office neighbor and person in

charge for the implementation of the VXDTF, Jakob Lettenbichler. Despite his
own very full agenda, he patiently introduced me to BASF2 until I was able to
walk on my own feet before he encountered with me in many fruitful discussions,
providing me with new approaches to many problems.
I owe a thank you as well to all of the Institute of High Energy Physics of the

Austrian Academy of Sciences. You made this year an inspiring journey and never
have I regretted to have chosen the path of high energy physics.
Another thank you is appropriate for the tracking group of the Belle II collabora-

tion for their kindness and swiftness in answering any software or tracking related
questions.
Transitioning to a more personal level, I would like to thank all of my fellow

students at the TU Wien. You have indisputably made the last six years of my
physics studies an unforgettable time. For productive discussions about physics
and life in general but also for the probably most unproductive but funniest lunch
breaks, I would like to thank: Philipp Moser, Lukas Semmelrock, Wolfgang

Moser, Jakob Fellinger, Matthias Müllner, Andreas Renner and Willi

Grosinger – just to name a few.
A special thanks to a member of this group I would like to transmit to Johannes

Brandstetter, for assisting me with great personal advice whenever I needed it.
I would like to thank as well Harald Triebnig, Laurin Schwarzmann and

especially my best friend Matthias Köb for balancing the scales of live towards
things outside the physics world, for providing me with honest opinions and advice
and for making my years of study in Vienna one of the best times of my life.

80

And finally, the ones with the possibly largest share towards my success so far,
my family: Thank You Mama, Thank You Däta, Thank You Sarah, Thank
You Christoph. For your everlasting support in every area of life, for being always
prepared for a more or less sudden visit and in general just for being there whenever
I need you.

Thank You!

Glossary

ANN Artificial Neural Networks

ARICH Aerogel Ring Imaging Cherenkov Detector, see Sec. 2.2.3

BASF Belle AnalysiS Framework

BASF2 Belle AnalysiS Framework 2, Software used at Belle II, see Sec. 2.3

barn unit of area used to measure cross sections, 1 b = 10−24 cm2

BDT Boosted Decision Trees, see Sec. 4.3

BP Backpropagation, algorithm for training MLPs, see Sec. 4.2.4

BSM Physics Beyond the Standard Model, see NP

Belle Physics experiment at KEKB

Belle II Physics experiment at SuperKEKB

C++11 version of the C++ programming language, a general-purpose program-
ming language widely spread in high energy physics

C Charge conjugation, exchanges particles with anti-particles

CA Cellular Automaton, see Sec. 2.4.2

CDC Central Drift Chamber, see Sec. 2.2.2

CDF Cumulative Distribution Function

CERN European Organization for Nuclear Research, Geneva

CKF Combinatorial Kalman Filter, a numerically more robust version of the KF

CKM matrix Cabibbo-Kobayashi-Maskawa matrix

CMS Center of Mass System

CP Combination of charge conjugation and subsequent parity transformation

CPT Combination of charge conjugation, parity transformation and time reversal.
This is the only symmetry that is observed to be exact in the SM.

DEPFET DEpleted P-channel Field Effect Transistors

DSSD Double Sided Silicon Strip Detectors

82

DT Decision Trees, see Sec. 4.3.1

ECL Electromagnetic Calorimeter, see Sec. 2.2.4

EvtGen Library for event generation used for MC simulation of B-meson decays
in BASF2 [20]

FFN Feedforward Neural Network

Geant4 Library for simulating the passage of particles through matter [21]

HER High Energy Ring

HLT High Level Trigger

HNN Hopfield Neural Network

instantaneous luminosity L is a number that measures a particle accelerators
ability to produce a required number of interactions 𝑅. It connects the rate of
events 𝑑𝑅/𝑑𝑡 with the cross section of a given process 𝜎𝑝, 𝑑𝑅/𝑑𝑡 = 𝐿 · 𝜎𝑝

integrated luminosity is the time integral of the instantaneous luminosity
∫︀
𝐿𝑑𝑡

and a measure for the amount of data collected by an experiment. It is usually
measured in inverse barn. It can be used to calculate the expected number of mea-
surements of a process given its cross section. If the process has a cross section
𝜎𝑝 = 1 fb and the integrated luminosity is 1 fb−1 (on average) one event has been
collected for this process

IP Interaction Point

IR Interaction Region

KEK Kō Eneruḡı Kasokuki Kenkyū Kikō, The High Energy Accelerator Research
Organization. A national organization operating the largest particle physics labo-
ratory in Japan.

KEKB Collider used in the Belle experiment, located at the KEK facility in
Tsukuba, Japan

KF Kalman Filter, a linear and locally linear estimator, equivalent to to the global
least squares method, see Sec. 2.4.3

KLM K-Long and Muon Detector, see Sec. 2.2.5

KS test Kolmogornov-Smirnov test, statistical test for deciding if two samples are
drawn from the same distribution

LER Low Energy Ring

LHC Large Hadron Collider, particle accelerator at CERN

Luminosity Measure for the expected rate of events per time, see also instanta-
neous and integrated luminosity

Glossary 83

MC Monte Carlo, a method for simulating random processes using pseudo-random
numbers

MCParticle a simulation object in BASF2 that holds information from the MC
simulation which can be used to calibrate and test different parts of the software

ML Machine Learning

MLP Multilayer Perceptrons, see Sec. 4.2.2

NP New Physics, term coined for subsuming different theories that try to explain
phenomena that cannot be described by the SM

P Parity Transformation: 𝑃 : 𝑥⃗→ −𝑥⃗

PID Particle Identification or Particle Identity

PMT Photo Multiplier

PXD PiXel Detector, see Sec. 2.2.1

Particle Gun Software tool to generate particles with predefined properties at
any given position in the detector simulation. Can be used to produce clean events
with any desired properties.

Python general-purpose programming language, see http://www.python.org

QCD Quantum Chromodynamics, the theory describing the strong interaction

QED Quantum Electrodynamics, the relativistic quantum field theory of electro-
dynamics

QI Quality Index

ROI Region(s) of Interest

ROOT Library for data analysis heavily used in particle physics, developed at
CERN [22]

RPC Resistive Plate Chamber

SCG Scaled Conjugate Gradient, algorithm for solving systems of linear equations
numerically

SGB Stochastic Gradient Boosting, algorithm for building an ensemble of DTs,
see Sec. 4.3.2

SM Standard Model of Particle Physics

SNR Signal-to-Noise Ratio

SR Synchrotron Radiaton

SVD Silicon Vertex Detector, see Sec. 2.2.1

http://www.python.org

84

SuperKEKB major upgrade of the KEKB B-Factory, collider used in the Belle II
experiment

T Time Reversal, 𝑇 : 𝑡→ −𝑡

TC Track Candidate

TOP Time of Flight Propagation Counter, see Sec. 2.2.3

tracklet Part of a particle track containing only a small number of hits

TRISTAN Particle accelerator experiment, predecessor of KEKB

vertex Origin of a particle trajectory

VXD VerteX Detector, see Sec. 2.2.1

VXDTF VXD Track Finder, see Sec. 2.4

Bibliography

[1] A. D. Sakharov. Violation of CP Invariance, c Asymmetry, and Baryon Asym-
metry of the Universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967).

[2] K. Abe et al. Measurement of time dependent CP violating asymmetries in B0
→ phi K0(s), K+ K- K0(s), and eta-prime K0(s) decays. Phys. Rev. Lett. 91,
261602 (2003).

[3] K. Abe et al. Observation of Large CP Violation in the Neutral B Meson
System. Phys. Rev. Lett. 87, 091802 (2001).

[4] L. Deng and X. Li. Machine learning paradigms for speech recognition: An
overview. IEEE Transactions on Audio, Speech, and Language Processing 21,
1060 (2013).

[5] C. M. Bishop. Pattern recognition and machine learning. Springer (2006).

[6] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural
networks: The state of the art. International Journal of Forecasting 14, 35
(1998).

[7] M. Gardner and S. Dorling. Artificial neural networks (the multilayer
perceptron)-a review of applications in the atmospheric sciences. Atmospheric
Environment 32, 2627 (1998).

[8] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor. Boosted
decision trees as an alternative to artificial neural networks for particle iden-
tification. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 543, 577
(2005).

[9] X. Chen and L. Xia. Search for Flavor Changing Neutral Current in 𝑡 →
𝐻𝑐,𝐻 → 𝜏𝜏 Decay at the LHC. arXiv:1509.08149 [hep-ph] (2015).

[10] C. Schwanda. SuperKEKB machine and Belle II detector status. Nuclear
Physics B - Proceedings Supplements 209, 70 (2010). Proceedings of the Third
Workshop on Theory, Phenomenology and Experiments in Heavy Flavour
Physics.

86 BIBLIOGRAPHY

[11] J. P. Wiechczynski. The Belle II experiment at the SuperKEKB collider. In
EPS HEP 2015, Vienna (2015).

[12] T. Abe, I. Adachi, K. Adamczyk, S. Ahn, H. Aihara, K. Akai, M. Aloi, L. An-
dricek, K. Aoki, Y. Arai, and et al. Belle II Technical Design Report. ArXiv
e-prints (2010).

[13] A. Moll. The Software Framework of the Belle II Experiment. Journal of
Physics: Conference Series 331, 032024 (2011).

[14] A. Abashian et al. The Belle detector. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 479, 117 (2002). Detectors for Asymmetric B-factories.

[15] S. Kurokawa and E. Kikutani. Overview of the KEKB accelerators. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 499, 1 (2003). KEK-B: The
KEK B-factory.

[16] online (retrieved: Sep 2015). http://belle2.desy.de/sites2009/site_belle2/content/
e103206/e103207/SuperKEKB:BelleII.jpg.

[17] C. Pulvermacher. dE/dx particle identification and pixel detector data reduc-
tion for the Belle II experiment. Master’s thesis, KIT (2012). KIT, Diplomar-
beit, 2012.

[18] KEK High energy accelerator research organization. New
electronics tested for Belle II central drift chamber.
http://www2.kek.jp/proffice/archives/feature/2010/pdf/BelleIICDCDesign.pdf
(2010).

[19] T. Keck. The Full Event Interpretation for Belle II. Ms, Karlsruher Insti-
tut für Technologie (KIT) (2014). Karlsruher Institut für Technologie (KIT),
Masterarbeit, 2014.

[20] A. Ryd, D. Lange, N. Kuznetsova, S. Versille, M. Rotondo, D. P. Kirkby,
F. K. Wuerthwein, and A. Ishikawa. EvtGen: A Monte Carlo Generator for
B-Physics (2005).

[21] S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth.
A506, 250 (2003).

[22] I. Antcheva et al. ROOT - A C++ framework for petabyte data storage, sta-
tistical analysis and visualization. Computer Physics Communications 180,
2499 (2009).

BIBLIOGRAPHY 87

[23] J. Lettenbichler. Pattern recognition in the Silicon Vertex Detector of the Belle
II experiment. Masters thesis, University of Vienna, Austria (2012).

[24] A. Strandlie and R. Frühwirth. Track and vertex reconstruction: From classical
to adaptive methods. Review of Modern Physics 82 (2010).

[25] R. Frühwirth. Application of Kalman filtering to track and vertex fitting. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 262, 444 (1987).

[26] R. Frühwirth. Selection of optimal subsets of tracks with a feed-back neural
network. Computer Physics Communications 78, 23 (1993).

[27] R. Frühwirth, R. Glattauer, J. Lettenbichler, W. Mitaroff, and M. Nadler.
Track finding in silicon trackers with a small number of layers. Nucl. Instrum.
Meth. A732, 95 (2013).

[28] T. Toffoli and N. Margolus. Cellular automata machines: a new environment
for modeling. MIT press (1987).

[29] W. N. Cottingham and G. D. A. An Introduction to the Standard Model of
Particle Physics. Cambridge University Press, Cambridge, UK, 2 edn. (2007).

[30] C. Burgess and G. Moore. The standard model: A primer. Cambridge Univer-
sity Press (2006).

[31] K. A. Olive et al. Review of Particle Physics. Chin. Phys. C38, 090001 (2014).

[32] S. Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012).

[33] G. Aad et al. Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1
(2012).

[34] J. Ellis and T. You. Updated Global Analysis of Higgs Couplings. JHEP 06,
103 (2013).

[35] online (retrieved: Sep. 2015) https://sciencenode.org/spotlight/go-particle-
quest-first-cern-hackfest.php (2012).

[36] M. Kobayashi and T. Maskawa. CP Violation in the Renormalizable Theory
of Weak Interaction. Prog. Theor. Phys. 49, 652 (1973).

[37] A. J. Bevan, B. Golob, T. Mannel, S. Prell, B. D. Yabsley, H. Aihara, F. Anulli,
N. Arnaud, T. Aushev, M. Beneke, and et al. The Physics of the 𝐵 Factories.
European Physical Journal C 74, 3026 (2014).

88 BIBLIOGRAPHY

[38] T. Aushev et al. Physics at Super B Factory. arXiv:1002.5012 [hep-ex] (2010).

[39] S. Sugihara. Background Estimation at SuperKEKB by machine study (2010).
Belle II internal note.

[40] L. Piilonen. Touschek Background in the Barrel KLM (2011). Belle II internal
note.

[41] E. Nedelkovska. Estimation of the two-photon QED background at Belle II
(2011). Belle II internal note.

[42] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edn. (2003).

[43] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, vol. 1.
MIT press Cambridge (1998).

[44] D. W. Patterson. Artificial Neural Networks: Theory and Applications. Pren-
tice Hall (1996).

[45] R. Callan. The Essence of Neural Networks. Prentice Hall Europe (1999).

[46] L. Breiman, J. H. Friedman, C. J. Stone, and R. Olsen. Classification and
Regression Trees (Wadsworth Statistics/Probability). Chapman and Hall/CRC,
1 edn. (1984).

[47] S. Kotsiantis. Supervised Machine Learning: A Review of Classification Tech-
niques. Informatica 31, 249 (2007).

[48] R. Caruana and A. Niculescu-Mizil. An Empirical Comparison of Supervised
Learning Algorithms. In Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, pp. 161–168. ACM, New York, NY, USA (2006).

[49] R. Lippmann. An introduction to computing with neural nets. ASSP Magazine,
IEEE 4, 4 (1987).

[50] R. Lippmann. Pattern classification using neural networks. Communications
Magazine, IEEE 27, 47 (1989).

[51] J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis 38, 367 (2002). Nonlinear Methods and Data Mining.

[52] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics 5, 115 (1943).

[53] D. O. Hebb. The Organization of behavior: A neuropsychologichal approach.
Wiley, New York (1949).

BIBLIOGRAPHY 89

[54] M. Minsky and P. Seymour. Perceptrons. MIT press (1969).

[55] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems 2, 303 (1989).

[56] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks 2, 359 (1989).

[57] G.-B. Huang, Y.-Q. Chen, and H. Babri. Classification ability of single hidden
layer feedforward neural networks. Neural Networks, IEEE Transactions on
11, 799 (2000).

[58] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neu-
ral Networks 4, 251 (1991).

[59] D. E. Rumelhart, G. E. Hinton, and W. R.J. Learning Internal Representations
by Error Propagation. In D. E. Rumelhart and J. McClelland (editors), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1.
MIT Press, Cambridge, MA (1986).

[60] M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6, 525 (1993).

[61] S. K. Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. Data mining and knowledge discovery 2, 345 (1998).

[62] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters 5, 15 (1976).

[63] R. Schapire. The strength of weak learnability. Machine Learning 5, 197 (1990).

[64] Y. Freund, R. E. Schapire et al. Experiments with a new boosting algorithm.
In ICML, vol. 96, pp. 148–156 (1996).

[65] R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using Confidence-
rated Predictions. In Machine Learning, pp. 80–91 (1999).

[66] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. New York: Springer (2009).

[67] Y. Dodge. The Oxford dictionary of statistical terms. Oxford University Press,
Oxford New York (2003).

[68] S. Neubauer. Search for 𝐵 → 𝐾(*)𝜈𝜈 Decays Using a New Probabilistic Full Re-
construction Method. Ph.D. thesis, Karlsruher Institut für Technologie (KIT)
(2011).

90 BIBLIOGRAPHY

[69] F. J. Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of
the American statistical Association 46, 68 (1951).

[70] R. Frühwirth. Private Conversation (2015).

[71] MATLAB and Neural Network Toolbox Release 2015a. Natick, Massachusetts,
United States, The MathWorks, Inc.

[72] MATLAB and Statistics and Machine Learning Toolbox Release 2015a. Natick,
Massachusetts, United States, The MathWorks, Inc.

[73] A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis.
arXiv:physics/0703039 (2007).

[74] M. Heck. Private Conversation (2015).

	Abstract
	Kurzfassung
	Introduction
	The Belle II Experiment
	SuperKEKB
	The Belle II Detector
	VerteX Detector - VXD
	Central Drift Chamber - CDC
	Particle Identification - PID
	Electromagnetic Calorimeter - ECL
	K-Long and Muon Detector - KLM

	The Belle AnalysiS Framework 2
	Track Finding in the VXD
	Track Finding Strategy
	Cellular Automaton
	(Combinatorial) Kalman Filter
	The SectorMap Approach

	A Short Physics Primer
	Interactions of Charged Particles with Matter
	Ionization and Excitation
	Bremsstrahlung
	Multiple Scattering
	Cherenkov Radiation

	The Standard Model of Particle Physics
	CP-Violation in the Standard Model and the CKM Matrix

	Physics at Belle II
	Background Sources at Belle II

	Machine Learning Basics
	Supervised Learning
	Overtraining

	Artificial Neural Networks and Multilayer Perceptrons
	Components of an Artificial Neural Network
	Multilayer Perceptrons
	Universal Approximation Theorem
	Backpropagation Training
	Limitations and Capabilities

	Decision Trees and Boosting
	Decision Trees
	Boosting

	Data Selection and Processing
	Decorrelation
	Transformation to Uniform Distribution

	Machine Learned Tracklet Filters
	Chosen Approach and Goals
	Generating Data Sets
	Properties of Data Sets

	Multilayer Perceptron Classifiers
	Hidden Layer Size
	Initialization Effects
	Input Decorrelation

	Boosted Decision Tree Classifiers
	Number of Decision Splits
	Number of Trees and Tree Depth in FastBDTs

	Comparison of Classifiers
	Classification Performance
	Evaluation and Training Times

	Detailed Performance Analysis
	Angle Dependent Performance
	Momentum Dependent Performance
	Charge and Particle Dependent Performance

	Towards a Combination of Approaches

	Conclusion and Outlook
	Appendix
	Shortcomings of linear activation functions

	Acknowledgments
	Glossary
	Bibliography

