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Kurzfassung

Die Diplomarbeit Pantograph Modeling for Control stellt zwei unterschiedliche echt-
zeitfähige Pantographenmodelle vor, welche hinsichtlich einer Anwendung in einer
Pantographen-Oberleitungs-Co-Simulation einerseits, und für den Pantographen Reg-
lerentwurf andererseits entwickelt wurden. Diese Modelle wurden durch eine Modell-
auf-Modell Identifikation bestimmt, wobei ein existierendes White Box Modell des
Pantographen aus [1] als Referenz herangezogen wurde. Des Weiteren sind beide Mo-
delle als lokal-lineare Neuro-Fuzzy Netzwerke in Zustandsraumkonfiguration struk-
turiert. In der ersten Herangehensweise basiert das lineare Modellnetzwerk auf para-
metrisierten mechanischen Ersatzmodellen (Dreimassenschwinger), deren Parameter
durch eine Ausgangsfehlermethode geschätzt wurden. Das erhaltene Pantographen-
modell - pantograph LLMN (surrogate) - ist physikalisch interpretierbar und enthält
strukturierte Matrizen des Zustandsraumes, welche mit Hilfe der Parameterverblen-
dung interpoliert werden. Ein alternativer Lösungsansatz war durch das Bestreben
motiviert, mögliche Synergien der Unterraummethoden der Identifikation und der
lokalen Modellnetzwerke in Hinblick auf nichtlineare Modellbildung durch deren Zu-
sammenführung zu nützen. Das dadurch erhaltene Pantographenmodell - pantograph
LLMN (n4sid) - bietet eine hohe Genauigkeit über den gesamten Betriebsbereich und
beinhaltet unstrukturierte Zustandsraum-Matrizen, wobei der Systemausgang durch
die Anwendung der Ausgangsverblendung interpoliert wird. Eine umfassended qua-
litative Analyse sowie Simulationsergebnisse aller untersuchten Modelle heben das
Potential dieser Modelle als Alternative zu globalen linearen Pantographenmodellen
in echtzeitfähigen Pantographen-Oberleitungs-Co-Simulationen sowie beim Panto-
graphen Reglerentwurf hervor.

Schlüsselwörter

Nichtlineare Modellierung, Pantograph; Echtzeitfähigkeit; lokal lineares Neuro-Fuzzy
Netzwerk; Zustandsraumdarstellung; MIMO-System; Dreimassenschwinger; Unter-
raummethoden der Identifikation; N4SID;
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Abstract

The thesis Pantograph Modeling for Control presents two different real-time ca-
pable pantograph models, intended for an application in pantograph-catenary co-
simulations and pantograph control design. These models were derived from model-
on-model identification referencing an existing nonlinear white-box pantograph model
from [1] and are both structured as local-linear neuro-fuzzy networks in state-space
configuration. In the first approach the local linear models of the model network are
based on parametrized mechanical surrogate models (three-mass oscillator), whose
parameters were identified by utilizing an output error method. The obtained pan-
tograph model - pantograph LLMN (surrogate) - can be interpreted physically and
contains structured state-space system matrices that are interpolated by utilizing the
parameter blending method. In another approach an attempt was made to incorpo-
rate the subspace identification method N4SID into the local linear model network
with the aim of exploiting the strengths of both methods in regard to nonlinear
modeling. The obtained pantograph model - pantograph LLMN (n4sid) - provides
high accuracy over the whole operating height and inherits unstructured state-space
system matrices utilizing the output blending method to generate the system output.
An extensive qualitative analysis as well as simulation results of all examined models
are provided, emphasizing these models’ potential to replace global linear pantograph
models in real-time pantograph-catenary wire co-simulations and pantograph control
design.

Keywords

Nonlinear modeling; pantograph; real-time capability; local linear neuro-fuzzy net-
work; state-space system; MIMO system; three-mass-oscillator; subspace identifica-
tion; N4SID;
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Chapter 1

Introduction

The main task of a pantograph (mechanical framework) is to establish a continuous
connection between the railway car of a electrically powered train and the overhead
(or catenary) wire (compare e.g. [27]). While performing this task, the pantograph
has to ensure that the resulting contact force stays within certain specified boundaries
to limit attrition due to frictional contact on the one hand and to limit or minimize
the inflicted stress and displacement of the overhead wire on the other hand. These
challenges should be met with the utilization of modern day feedback control schemes
and methods (model predictive control (MPC) and observer, see e.g. [12]), which
require a real-time capable pantograph-model.

This thesis is structured as follows. The first chapter Introduction gives a brief in-
troduction to the field of pantograph design and its encompassing industry. The
motivation to approach this problem field is elucidated and the problem statement
is formulated. The second chapter Pantograph Modeling, on one hand, introduces
an existing white-box model of the nonlinear pantograph (which represents a sim-
plified nonlinear model of the pantograph - reference model - and is utilized to gen-
erate reference data for the model-on-model identification of the developed mod-
els), and on the other hand lays out the specifications for the desired pantograph
model, which is a nonlinear static model (realized as a local linear model network).
The third chapter Methodologies of Nonlinear Modeling and Identification treats the
applied methodologies in the chosen approaches to this nonlinear modeling prob-
lem. The superordinated methodology i.e. the chosen model structure is a neuro-
fuzzy model implemented with local linear models in state-space form and therefore
also referred to as local linear model network in state-space configuration. In the
fourth chapter Numeric Studies of Pantograph Models a collection of simulation re-
sults of the identified pantograph models is presented, complemented with a prelim-
inary discussion and analysis of the obtained findings. The fifth and final chapter
Observations and Discussion is dedicated to an extended discussion of the developed
pantograph models, also describing some observations that were made during the
development phase. The main statements and conclusions are formulated there.
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a b

Figure 1.1: a) State-of-the-art pantograph (Product of Siemens) and b)
Scheme of a pantograph ( U.S.-Patent [2])

1.1 Motivation

A state-of-the-art pantograph can be seen in Figure 1.1a (product of Siemens).
Figure 1.1b shows a scheme of a pantograph framework (US Patent, [2]).

1.1.1 State-of-the-art Pantograph System

Some key facts about today’s pantograph system are pointed out, describing the
setting in which the problem statement will be formulated.

• Movement over a certain operating range ( 0.5[m] − 2.5[m]):

– Different kind of dynamics are occurring. On the one hand the movement
over the operating range, e.g. tunnel entrances involve a fast and large
travel in position (height). One the other hand excitation is induced from
the overhead line, depended on the traveling speed.

• Unstable mechanism (tipping between two equilibrium positions, both these
positions lie outside the operating range):

– Stabilized through an external force, i.e. coupling with overhead wire.

– In the absence of the overhead wire, the pantograph framework travels
into its uppermost position, after a critical torque Mcrit is imposed via the
pneumatic actuator.

– Comparable with a pendulum which has a torsion spring mounted to its
hinge joint. Initially in the lower equilibrium position (hanging down), the
pendulum would travel to the upper equilibrium position after reaching a
critical angle (inverse pendulum equilibrium position).

• The implemented feedback control scheme is realized via a P-controller

– A pneumatic actuator (pmax = 10 [bar]) is the single control input (ad-
justed through traveling speed).



1.1 Motivation 3

– The pneumatic system of the train, which provides the drive for the ac-
tuator (torque on the pantograph framework) is fluctuating and inert,
therefore precise actuator travel as well as high dynamic control are infea-
sible.

• Nonlinear dynamic behaviour of the referenced white-box model:

– Consists of two main components: lower framework (nonlinear system)
and pan-head (linear system) on top.

– The nonlinearity is given by the geometry of the mechanism, all modeled
springs and damping elements are linear, all bars are modeled rigid.

1.1.2 Limits in practical application of today’s pantograph
system

The limits in practical application of a state-of-the-art pantograph system are reached,
if certain disturbances are acting on the system (compare e.g. [3], [4] or [27]). Then
the optimal contact force cannot be maintained with the current feedback control
scheme (simple P-controller). Such disturbances are:

• Variation of overhead wire position (mounting).

• Variations in the track bed and impacts from the rails.

• Tunnel entrance and exit.

• Wind/turbulence or airstream (especially crucial for high speed trains).

– One crucial factor, that limits the maximum traveling speed of a passenger
train today, is that the - with higher speed in intensity growing - airstream.

– The airstream excites the overhead wire, which leads to oscillations and
high deflections from the original position.

– Therefore the primary function of the pantograph framework cannot be
fulfilled with the current implemented feedback control scheme when reach-
ing some critical velocity.

– Solving this problem could be economically advantageous, making the
railway more competitive in the market of passenger transportation (main
rival in market: passenger plane).

1.1.3 Modern-Day Feedback Control

Implementing a modern-day feedback control scheme (e.g. model predictive control
(MPC) with or without an observer) would resolve the problem of a limitation in
traveling speed due to pantograph-sided control and furthermore would minimize
wear of the pan-head and overhead wire by keeping the contact force inside a certain
band around its optimal point (maintenance costs).
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It follows a list of possible problems in implementing such a feedback control
scheme:

• Electromagnetic induction (high currents trough overhead wire) hinders use of
sensors and actuators.

• Inhospitable ambiance (outdoor use: temperature fluctuations, rain, ice, etc.).

• The state-of-the-art feedback control implementation requires very low main-
tenance.

• A failure safety solution has to be implemented (e.g. redundant systems) due
to danger to life in case of malfunction or breakdown.

• Licensing/certification/approval is juristically challenging and time consuming
and in the passenger transport market (several legislative levels: national/EU/US/...).

1.2 Problem Statement

The developed pantograph model is meant to be used as part of an online simula-
tion tool, which shall be able to simulate the dynamics of the coupled pantograph-
contact line system. A scheme thereof is depicted in Figure 1.2, which uses the
following physical quantities: contact position η, collector head position ξ, contact
force Fp and actuator torque Mpa (see Section 2.1). This Figure also illustrates how
the pantograph modeling problem is located in this superordinated problem, from
which the specifications for the pantograph model originate.

For the development of the pantograph model in this thesis, a fully nonlinear model
(given by [1]) with six degrees of freedom (DOF) is used as reference. In this model,
furthermore referred to as white-box model (WBM), all equations are derived from

Figure 1.2: Localization of the pantograph model in the superordinated
problem, which is the co-simulation of the coupled pantograph-
catenary system. The contact force Fp represents the coupling
condition.



1.2 Problem Statement 5

first principles, i.e. this model formulates the explicit equations of motion for the
two-dimensional nonlinear pantograph implementing certain simplifications (e.g. no
friction). A more detailed description of this white-box model and its validity range
can be found in Section 2.1.

Remark 1.2.1 (Disclaimer). The pantograph models developed in this thesis
are models identified from data generated by the white-box model (see Section
2.1 and [1]) and not measurements of a real-world pantograph. Therefore this
thesis has to be understood as a model-based study on the model-on-model
identified pantograph models, serving the purpose of comparing the - for these
models developed - underlying methodologies. All examinations and results are
valid only for the white-box model and are not necessarily applicable nor neces-
sarily valid for real-world pantographs. The results have to be interpreted with
a certain caution and need to be validated for each specific pantograph. The
limitation, that friction is not considered in the white-box model is especially
stressed here, because early measurements from the pantograph test-bench show
hysteresis effects, indicating a decisive impact of friction on the pantograph be-
haviour. Nevertheless the findings of this thesis yield a comprehensive insight
into the nonlinear pantograph dynamics originating form the pantograph geome-
try. Furthermore this thesis can be utilized as a guideline for the methodical and
qualitative examination of data measured from a pantograph.

The requirements for the desired pantograph model are formulated in the following
section.
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1.2.1 Pantograph Model Specifications

The pantograph model was developed considering the following specifications:

• Computational efficiency: Real-time capable model.

• Structure: Nonlinear static model realized as a local linear model net-
work (LLMN) (see Sect. 3.2, chosen as a local linear Takagi-Sugeno
neuro-fuzzy type of network) that represents the nonlinear dynamics of the
pantograph.

• Mathematical formulation: The local linear models (LLMs) shall
contain the identified linear systems in state-space form (to be able to
exploit all advantages of this form, e.g. later incorporation into an adaptive
and predictive control system using model predictive control).

LLMi = [Ai, Bi, Ci, Di] (1.1)

Ai ... Rn×n, Bi ... Rn×m, Ci ... Rq×n, Di ... Rq×m (no direct feed-through)

with n ... number of states, m ... number of inputs and q ... number of
outputs, determining the desired model as a local linear model in state-
space configuration.

• Performance: The error compared to the fully nonlinear model (reference
model) shall be held small, especially low frequencies (up to 15Hz, which
corresponds to the expected control range of the pantograph system) shall
be mapped good (match in phase and amplitude of all signals is desired).

Remark 1.2.2. The requirement for the pantograph to be modeled as a LLMN in
state-space configuration is essential to this thesis and necessary if one wants to
exploit the vast methodology of control techniques available for this type of system
description, which is the (in this case blended) state-space system. One key target of
this thesis was to examine if there is a suitable way of developing such a model (LMN
in state-space configuration) for a nonlinear problem, exemplary the pantograph.

A literature research was carried out for techniques that can be utilized to tackle this
problem statement [18, 19, 33].
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Figure 1.3: Photograph of the pantograph test bed at the Vienna University
of Technology, in cooperation with Siemens.

1.2.2 Literature Review

This thesis, as described in the in this opening chapter, focuses on incorporating the
nonlinear dynamics of the presented white-box pantograph model into a real-time
capable local linear model network specified in Section 1.2.1. This thesis is part of
a pantograph test bench project in cooperation with Siemens (see photograph in
Figure 1.3) and therefore can also be seen as an evolution of the white-box panto-
graph model derived in [1]. Further publications on this project will follow in the
near future, the pantograph test bed was introduced in [29].

In the associated literature (majority of publications) the main focus lies on solving
the superordinated problem, which is given as the co-simulation of the pantograph-
catenary system (also pantograph-overhead line system, compare with Figure 1.2).
In those publications the nonlinear dynamic of the pantograph is not of major inter-
est. Hence the subsystem pantograph is described as a global linear model and all
simulations that are carried out are limited around a certain operation point, in some
cases solely to test the principal functionality of the developed concepts regarding
the co-simulation. These global linear models of the nonlinear pantograph are most
commonly described as two-mass oscillator surrogate models (see e.g. [17], [3],
[40], [14], [4]). In [40] an attempt is made to apply non-linear fuzzy controllers to
the pantograph-catenary control problem. In [14] a comparison of different model-
ing approaches using pantograph surrogate models (two- to four-mass oscillators) in
connection with the pantograph-catenary problem is presented.

In other approaches to the same problem the pantograph is described as a multibody
model while the overhead line is described as a finite element model. A detailed de-
scription of these subsystem models and their coupling in simulation (co-simulation)
can be found in [27].



Chapter 2

Pantograph Modeling

A considerable part of this thesis is devoted to solving a nonlinear modeling problem
(with the specifications given in Section 1.2.1). As it can be read in literature (e.g.
[19, 18]) a certain state of mind is necessary to succeed in this field (see Chapter
3). To set the mood for this chapter, the principle of incompatibility as stated
informally in [44] is quoted here:

As the complexity of a system increases, our ability to make precise and
yet significant statements about its behaviour diminishes until a threshold
is reached beyond which precision and significance (or relevance) become
almost mutually exclusive characteristics. [44, page 28]

One aim of this thesis was to develop a grey-box model (see Sect. 2.2), where the
existing expert knowledge about the real-world pantograph was incorporated into
the design of the pantograph model. As a consequence of this modeling goal an
iterative design process was put in train, where expert insight, knowledge about
the purpose of the model, engineers heuristics and information in the observed data
of the white-box model were mixed. An illustration of this engineering cycle can be
found e.g. in [18, page 30, Figure 1.18]. The following sections treat the main findings
of this design process and the resulting conclusions for the desired pantograph models.

2.1 Existing Pantograph White-Box Model

This section gives a brief introduction to an existing white-box model (WBM) of
the pantograph, which was used as a reference model for this thesis. For further
information on the white-box pantograph model see [1].

Terms of the white-box model used in this thesis (in compliance with [1]):

A sketch of the white-box pantograph model can be seen in Figure 2.1. The individual
components of the pantograph and the associated terms that will be used throughout
the thesis are as following (compare [1] Chapter 2 and Figure 1.1a):

• The overhead line (generic term used by the International Union of Railways)
consists of the contact wire and a supporting catenary wire with droppers which
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connect the two wires, constructed to achieve good high speed current collection
(see e.g. [42] Figure 1) - throughout this thesis often referred to as overhead
wire or contact line.

• η ... contact position (carbon contact position as well as overhead wire posi-
tion).

• Fp ... contact force, intrinsic force acting between pan-head and contact wire.

• The collector-head consists of the pan-head and a symmetrical suspension com-
posed of sophisticated torsion springs.

• The carbon contacts are establishing the contact to the overhead wire.

• ξ ... pan-head position.

• FH ... crossbar force, intrinsic force acting between the lower framework (cross-
bar) and the collector head.

• The lower framework consists of several rods with the one on the top of the
structure referred to as crossbar.

• ζ ... crossbar position.

• The main other rods are named upper arm (bended by α), lower arm and thrust
rod.

• The lower arm an the thrust rod are connected via joints to a rigid frame.

• ϕ1 ... angle between the railcar and the lower arm.

• The pneumatic actuator mounted on that frame applies a certain torque to the
lower arm.

• Mpa ... torque acting on lower arm.

• Finally the frame is mounted onto the roof of the railcar via several outdoor
post insulators (see Figure 1.1a).

Structure of the white-box model (compare [1, Chapter 2]):

• The white-box model describes the movement of the pantograph in a plane
(two-dimensional movement).

• 6 degrees of freedom system (arbitrarily chosen), portrayed as a state vector
by equation (2.1) (see Figure 2.2).

xW BM = [ϕ1, ϕ̇1, δ, δ̇, ξ, ξ̇]. (2.1)

• The underlying equations are the equations of motion derived from first prin-
ciples.
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Figure 2.1: Sketch of the white-box pantograph model emphasizing the in-
dividual components and associated terms (compare [1, Figure
2.8].

• The nonlinearity of the white-box model is given by its geometry. Further-
more, regarding nonlinear effects it has to be mentioned, that

– the material damping incorporated into the model by introducing two
DOF δ, δ̇ and keeping all bars rigid,

– imperfect joints are not considered,

– and the friction inside the system is not considered (eventual hysteresis,
detected in pantograph test bench measurement data).

• The collector head is modeled as an one-mass-oscillator (compare [1, Section
2.2]), therefore it can be treated as a linear subsystem of the pantograph frame-
work with the identified parameters ... mC , kC and cC .

• The carbon contacts of the pan-head, which establish the physical contact to
the overhead wire, are modeled as a spring with high stiffness (compare [1,
Section 2.5]) ... kE.

Performance of the white-box model:

• High computational effort (real-time factor (RTF ) value around magnitude
102, where RTF < 1 implies real-time capability and RTF > 1 no real-time
capability, see Section 4.6).

• Therefore not applicable for real-time feedback control scheme.

• Limitations in accuracy compared to the real-world pantograph due to modeling
simplifications.



2.1 Existing Pantograph White-Box Model 11

Figure 2.2: Sketch of the white-box pantograph model with the degrees of
freedom, parameters of the collector head and internal forces.
The two inputs (contact position η and torque Mpa) are high-
lighted (compare [1, Figure 2.8]).

• The parameters (e.g. material damping) of the white-box model where opti-
mized for a certain operating point, therefore additional limitations in accuracy
are given if the white-box model is evaluated in other operating points to gen-
erate reference data.

• The training data-sets for these optimizations where taken from the test-bench,
i.e. are experimental data, therefore these signals are subject to all kind of
typical measurement errors (systematic error, random error, sampling error,
etc., comp.[1]).

Application/Implementation of the white-box model in this thesis:

• The model was used to generate data-sets for training and validation of the
LLMN model.

• Therefore the white-box model represents the reference model to verify the
performance of the pantograph LLMNs.

• Awareness has to be given to the fact, that the reference signals are already
signals of a simplified model (see above) and not experimental data from a
test-bench.

Summarizing the above matters, the white-box model from [1] is simulated with
the inputs contact position η, which acts at the top of the framework, and the
pneumatic actuator torque Mpa, which acts at the bottom, inducing the system.
These input signals were modeled as excitation signals due to expert knowledge
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Figure 2.3: Block diagram of the pantograph white-box model illustrating
its inputs and outputs. All other signals are derived from these
quantities.

(see Section 4.2), therefore generating the reference data for the development of
the pantograph LLMNs. The resulting outputs of the white-box model are the six
degrees of freedom as portrayed in equation (2.1), which were, together with the
inputs, utilized to compute all necessary signals (e.g. crossbar position ζ, see Section
2.2.1) according to the kinematics of the white-box model derived in [1, Section 2.1]
(compare with Figure 2.3). The reference data is generated using analytical relations
and therefore are reproduceable.

2.1.1 Static Examinations of the Nonlinear Pantograph

Figure 2.4 shows the dependency of the contact force Fp (force between pantograph
and overhead wire) of η (position of the overhead wire) and Mpa (momentum of the
pneumatic actuator). This nonlinear mapping of static quantities of the pantograph
was obtained by evaluating the white-box model in several operating points, varying
the two inputs contact position η and torque of the pneumatic actuator Mpa.

Discussion of Figure 2.4, nonlinear mapping of static quantities of the pantograph
white-box model

• There is no significant mapping present between the contact position η and the
contact force Fp. The contact force is nearly independent of the position of the
contact wire in relation to the roof of the railcar.

• There is a proportional mapping present between the applied torque Mpa of
the pneumatic actuator and the contact force Fp. The contact force depends
on the torque in a nearly linear fashion.

• Additionally it has to be stated that during the examinations, there was no
indication that the magnitude of the contact force influences the dynamics of
the pantograph system.

2.1.2 Global Linear Model

At this point it would be legitimate to linearize the white-box pantograph model
around an operating point (e.g. in the center of the operating range or expected
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Figure 2.4: These plots show the nonlinear mapping of static quantities of
the pantograph obtained by evaluation of the white-box model
in several operating points, with the output (contact force Fp)
depending on the inputs contact position and torque of the pneu-
matic actuator as Fp = f(η, Mpa). The value of Mpa,0 is given as
1310.9 [Nm], see Section 4.2.1.
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predominant point of operation) and use this global linear model in the coupled
pantograph-overhead line model (compare Figure 1.2).
For the global linear model, with regard to the definition of the model specifications
in Sect. 1.2, the following statements can be formulated:

• Computational efficiency: Real-time capability of this global linear model
is given (see Chap. 4).

• Structure: The linearized WBM would represent a global linear model, which
could be interpreted as a LLMN model with just one single LLM.

• Performance: The achievable performance of this simple model is quite good
and acceptable for some applications (obviously the FIT drops the further the
pantograph moves away from the selected point of linearization in the operating
range).

• Mathematical formulation: The state-space matrices of this linearized model
can be derived directly from the white-box pantograph model equations (given
by [1, equation (2.28)]).

According to the evaluation of the specifications given in Section 1.2.1 the
linearized white-box pantograph model implemented as a global linear
model is set as the default or fail save model.
This thesis however focuses on the modeling goal to achieve an increased perfor-
mance in the whole operating range by incorporating the nonlinear effects of the
pantograph in a LLMN structured model. Arguments that justify the additional
effort for this approach can be found in Section 2.1.3.

2.1.3 Dynamic Examinations of the Nonlinear Pantograph

This section aims to investigate the dynamic system behaviour of the pantograph by
carving out effects of the system’s nonlinearities (engineer’s perspective on dynamic
system behaviour), which are, as mentioned above, given by the geometry of the
pantograph. Several examinations were performed utilizing the white-box model.

Frequency Analysis (DFT)

At the beginning of this section the results of a frequency analysis of several data
sets that were generated by the white-box model will be shown and discussed. The
frequency analysis of the resulting signals (outputs of the white-box models) was
carried out by a Discrete Fourier Transformation (DFT) of the respective signals.
The following statements are relevant for the DFT:

• The sampling frequency is given by the selected sampling time as Fs = 1/Ts =
1000 [Hz].
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Figure 2.5: Discrete Fourier Transformation (DFT): pan-head velocity ξ̇
step response of the white-box model for the whole operating
range. Three modes (resonant frequencies fL, fM and fH are
detectable. The axis |y(f)|/max(y(f)) represents the normalized
power spectrum of the examined signal.

• Therefore the resulting Nyquist frequency is given as FNy = Fs/2 = 500 [Hz].

• The control range in the frequency domain (controller dynamic) is expected to
lie between 0 [Hz] and slightly above 10 [Hz], this range is of primary interest.

From these statements one can see, that the relevant frequencies lie sufficiently far
from the Nyquist frequency. The plots show the frequency shares of the DFT (co-
efficients of the Fourier transform) over the sample frequency range 0 [Hz] to 30 [Hz]
in steps given by the sampling frequency. Additionally these results are portrayed
for the whole operating range of the pantograph (0.5 [m] to 2.5 [m]). The ana-
lyzed signals are step responses (equidistant steps of the contact position η) of the
WBM for different operating points. The position signals (collector head position ξ
and pan-head position ζ) show no significant peaks in the frequency domain, which
would indicate resonant frequencies, therefore only the DFT of the velocity signals (ξ̇
in Figure 2.5 and ζ̇ in Figure 2.6) and the contact force (Fp in Figure 2.7) are depicted.

The resonant frequencies of all examined signals are collected in Table 2.1.

Conclusion:
As it can be seen from the Figures 2.5, 2.6, 2.7 and Table 2.1 the resonant frequencies
are not constant over the operating range. This observation indicates, that the dy-
namic system behaviour is changing correspondingly over the operating range and a
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Figure 2.6: Discrete Fourier Transformation (DFT): crossbar velocity ζ̇
step response of the white-box model for the whole operating
range. Three modes (resonant frequencies fL, fM and fH are
detectable. The axis |y(f)|/max(y(f)) represents the normalized
power spectrum of the examined signal.
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Figure 2.7: Discrete Fourier Transformation (DFT): contact force Fp (equ.
(3.14)) step response of the white-box model for the whole oper-
ating range. Two modes (resonant frequencies fL, fM and fH are
detectable. The axis |y(f)|/max(y(f)) represents the normalized
power spectrum of the examined signal.
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Frequencies Positions Velocities Forces

ξ ζ ξ̇ ζ̇ FH Fp

fL [Hz]

min - - 3.052 3.052 3.174 3.174
max - - 3.601 3.601 3.662 3.662

mean - - 3.256 3.264 3.325 3.332
median - - 3.235 3.235 3.235 3.296

mode - - 3.113 3.174 3.235 3.235

fM [Hz]

min - - 9.827 9.827 9.827 9.888
max - - 13.184 13.123 13.184 13.245

mean - - 12.078 12.092 12.078 12.107
median - - 12.390 12.451 12.390 12.451

mode - - - - - -

fH [Hz]

min - - 20.752 20.691 19.592 -
max - - 23.987 23.804 23.804 -

mean - - 22.369 22.332 22.429 -
median - - 22.827 22.705 22.705 -

mode - - 23.865 22.217 23.804 -

Table 2.1: Collected values and statistical averages (mean, median and
mode) of the DFT analysis of several signals of the white-box
model of the pantograph.

global linearized model will not satisfactory describe the dynamics of the pantograph.

Dynamic Behaviour of the Linearized WBM

Additionally the behaviour of the linearized white-box model over the operating
range was examined. Therefore the WBM was linearized around several operating
points according to equation [1, Section 2.4, equations (2.28)]. The continuous-time
state-space model [1, equations (2.29) and (2.30)] was then discretized by using the
MATLAB function c2d() with zero-order hold.

By examining the entries of the discrete-time system matrix A and input matrix B,
it can be stated that the entries change their values in a continuous fashion according
to the change of the operating point, around which the model was linearized. Some in
a more linear fashion, some in a more nonlinear fashion and with strongly differing
magnitudes. This continuous change of the linearised white-box model across the
operating range can also be detected in the pole-zero map of the eigenvalues of the
system matrix A, as it is depicted in Figure 2.8.

Conclusion:
Referring to the conclusion in the previous Section 2.1.3 it can be observed, that the
entries of the A and B matrix, obtained by linearizations of the white-box model
(see Section 2.1.2), vary for different operating points. As a result, also the pole
positions, due to the eigenvalues of the system matrix A, move inside the unit circle
(see Figure 2.8) following certain trajectories. Form these findings it can be stated,
that the pantograph inherits a certain nonlinearity and therefore a nonlinear modeling
problem is present. The well-behaving linearized state-space matrices would allow
implementing a control-scheme based on a gain scheduling approach (see e.g. [12,
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Figure 2.8: Pole-positioning in the Z-domain, given by the eigenvalues of the
system matrix A of the discrete-time state-space system of the
linearized white-box model for several operating points across
the operating range. The arrows indicate the movement of the
poles with increasing operating height.

page 7, Section 2.1]).

Additional Findings

Influence of the pneumatic actuator as the solely controllable input of the state of
the art pantograph:

Although the triple shown in Figure 2.4 (η, Fp and Mpa) are related in a nonlinear
fashion, there was no indication during the examinations, that the contact force or
the torque of the pneumatic actuator have an effect on the dynamic behaviour of
the pantograph. Therefore the remaining examinations are all realized with Mpa set
to an operating point at 1310.9 [Nm], which represents a realistic value identified on
the test bench in [1]. This constant signal is then superimposed with an excitation
signal by utilizing an amplitude modulated pseudo-random binary sequence (APRBS,
compare e.g. [19, Section 17.7]) resulting in about 6% deviation (∼ 75 [Nm]) form
the operating point and employing hold times from 50 [ms] to 200 [ms] (see Section
4.2).

Inference from modes or resonant frequencies fL, fM , fH to current position of the
pantograph:

In principle the potential can be recognized, that by looking e.g. at the DFT analy-
sis plots of the velocity signals of the WBM in Figure 2.5, that it would be possible
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Figure 2.9: Pantograph local linear model network (LLMN) in state-space
configuration utilizing output blending with chosen partition
variable contact position η.

to extract information about the current operating height of the pantograph from
knowledge of the position of the modes at certain operating points of a specific pan-
tograph (with a specific geometry). A scheme could be implemented based on the
distinction of cases, by examining fH (gives two possibilities of the current height:
lower or higher) and compare it with the value of fM (leaves just one possible posi-
tion) to identify the current operating position (see e.g. the depiction of the peaks
of the resonant frequencies over the operating range in the right bottom corner of
Figure 2.6).

2.2 Developed Pantograph Model

In this section the settings for the developed pantograph model are formulated.
The aim was to find a model satisfying the requirements given in Section 1.2 by
designing a local linear model network (LLMN) utilizing a local linear Takagi-
Sugeno neuro-fuzzy network in state-space configuration. The developed model
will be referred to as pantograph LLMN. An illustration of a LLMN in state-space
configuration utilizing the output blending method and the chosen inputs (contact
position η and pneumatic actuator torque Mpa) and partitioning variable (contact
position η) can be seen in Figure 2.9, where the sysi represents the state-space model
inside the i-th LLM.
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Figure 2.10: Block diagram of the pantograph LLMN model illustrating the
set input and output configuration. The inputs are the same as
for the WBM, while the outputs are chosen differently (compare
with Figure 2.3).

2.2.1 Global Inputs and Outputs of the Developed
Pantograph Model

Figure 2.10 shows the pantograph LLMN as a block diagram, with the inputs/outputs
set as the following quantities of the pantograph (see Section 2.1 for description of
the quantities):

• Pantograph LLMN inputs: contact position η, pneumatic actuator torque Mpa

uLLMN =
[

η Mpa

]T
. (2.2)

• Pantograph LLMN outputs: pan-head position ξ and velocity ξ̇, crossbar posi-
tion ζ and velocity ζ̇, crossbar force FH and contact force Fp

yLLMN =
[

ξ ξ̇ ζ ζ̇ FH Fp

]T
. (2.3)

A short discussion of the choice of inputs is required here, which are acting at the
top - position η or force Fp - and the bottom - pneumatic actuator torque Map - of
the pantograph. The following two choices would be admissible:

• η and Mpa (chosen, same input configuration as in the white-box model)

• Fp and Mpa

under the following considerations:

• Partitioning: The partition space is unambiguous if the contact position η
is chosen as partition variable, allowing to determine all nonlinear parameters
of the validity function by expert knowledge. The contact force Fp however is
unemployable as partition variable without further pre-processing of the force
signal (e.g. frequency analysis, scheduling, etc.). Somehow the scheduling
variable has to qualify the current operating height of the pantograph to make
the developed model perform satisfactory, therefore η was chosen as an input
signal and partition variable.
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• Real-World Problem: Neither η nor Fp are measurable in the current (state
of the art) implementation of the pantograph. However the measurement (e.g.
optical measurement) of the angle of the lower arm φ1 could be a possibility
for future designs, therefore a mapping of one of the positions (ζ, ξ or η) could
be realizable.

• Causality: Considering the overall model of the coupled pantograph-contact
line model (superordinated problem, see Figure 1.2), Fp as an input would be
the desired choice because of causality reasons (η is adjusting to Fp).

2.2.2 Local Linear Model Network (LLMN) Setup

What follows are the choices made for the setup of the LLMN: (for a detailed
explanation of all terms see Chapter 3 and compare [18, 19])

• A one-dimensional partition space is used.

• The contact position η(k) is set as the partition variable (see Section 2.2.1).

• Therefore the height of the contact position (operating range of the pantograph)
is set as the partition space.

• Several local linear models (LLMs) are equidistantly positioned over the oper-
ating range (centers of the according MSFs).

• Equal parameters (spread and proportionality factor kσ) for the membership
functions (MSFs) of the according LLMs are used.

• Blending or interpolation of the LLMs is realized via a membership-function
value Φ(η(k)) given by the current positioning of the partition variable (contact
position η) in the partition space, with one of these concepts:

– Blend the outputs of the LLMs to generate the global model output
(output blending method, default solution).

– Blend the system matrices of the LLMs to generate the global model
output (parameter blending method, preferred solution).

Furthermore, as a simplification, the pantograph LLMN is set to perform only one-
dimensional movements. The deviation of the crossbar position ζ in the driving
direction of the train over the operating range is depicted in [1, Figure 2.4]. As it
can be seen there, the divergence of the crossbar in driving direction is of about ±0.1
[m] over the whole operating range of 2 [m] and therefore gets neglected to further
simplify the model. Hence, as illustrated in Figure 2.11, the pantograph LLMN
describes the movement of the pantograph on a line, while the WBM describes it on
a plane.
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Figure 2.11: Comparison of the pantograph white-box model (two-
dimensional movement, see [1, Figure 2.4]) and the pantograph
LLMN (one-dimensional movement) regarding their dimension
of movement.

2.2.3 Local Linear Model (LLM) Setup

As required in in the specifications for the pantograph models (see Section 1.2),
the local linear models (LLMs) shall contain identified linear systems in state-space
formulation. In this thesis two approaches satisfying this requirement were realized.

• A parametrized mechanical surrogate model (three-mass oscillator, see Section
3.4).

• A subspace identification method named N4SID combined with model reduc-
tion method (see Section 3.5).

The main aspects of these two approaches are summarized in Table 2.2.

Remark 2.2.1 (Table 2.2). The physical quantities crossbar force FH [N] and contact
force Fp [N] are post-computed in each time-step k from the global (already blended)
output signals of the LLMs according to equations (3.15) and (3.14) (compare LLMN
output in equation (2.3)).

Remark 2.2.2 (Table 2.2). The pantograph LLMN (n4sid) was developed as an al-
ternative to the pantograph LLMN (surrogate), which is a computationally similar
fast (real-time capable) model. The pantographs producing industry provides frame-
works with different geometry, therefore a certain flexibility in the models was sought.
The development of a white-box model is time consuming and therefore expensive,
but necessary if a linearized global model is to be obtained (linearized from the first
principles around an operating point). Furthermore the white-box model will still
contain simplifications and therefore will not map the movement of the real-world
pantograph accurately. The identification of the surrogate model (three-mass oscil-
lator) is again time consuming and additionally requires good initial values for the
parameters (danger of local optima). The subspace identification methods however
work very efficiently and user friendly, identifying the model directly from a set of in-
put and output data. Disadvantageously the N4SID approach requires an additional
pre- and postprocessing of the inputs and outputs, where static values have to be
determined to set up a look-up table.
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Properties Pantograph LLMN
(surrogate)

Pantograph LLMN
(n4sid)

Physical
interpretability

given for the states and param-
eters of the state-space system

not given, modes given if state-
space system is transformed to
modal form

Uniqueness of the
state-vector

given not given

Training strategy underlying parametrized surro-
gate model identified by OE
method (cost fuction)

subspace identification of the
state-space matrices directly
from input/output data

Operating height
adjustment (offset
correction)

state-space system extended
with affine terms (see equations
(3.33)-(3.34))

preprocessing using a low-pass
filter (creating zero-mean val-
ues) and postprocessing utiliz-
ing a look-up table (static val-
ues)

LLM input-vector uLLM =
[

η Mpa

]T

LLM state-vector xsurrogate =
[

ξ ξ̇ ζ ζ̇ δM
˙δM

]T
xn4sid =

[
x1 x2 x3 x4 x5 x6

]T

LLM output-vector yLLM =
[

ξ ξ̇ ζ ζ̇

]T

Table 2.2: Outlook on the properties of the two developed pantograph mod-
els based on local linear models (LLMNs).



Chapter 3

Methodologies of Nonlinear
Modeling and Identification

This chapter is dedicated to discuss the in this thesis applied methods on the one
hand and on the other hand discusses the structure of the developed pantograph
models in detail. In Figure 3.1 an overview of the utilized methods is depicted.

3.1 Introduction

The main content of this thesis is the application of the local linear neuro-fuzzy
network methodology to a nonlinear modeling problem (i.e. the pantograph, for
distinctive features see Section 2.1), often simply referred to as local linear model
network (LLMN). This modeling approach (compare [18], [19] and [39]) consists of
the attended problem fields:

• Decomposition Method: Decomposition of the global nonlinear problem
into linear subproblems (local linear models).

• Structure: Determine the structure of the local linear neuro-fuzzy network
by specifying the validity functions (hidden layer or rule premise) and
the parametrized state-space systems of the local linear models (output
layer or rule consequent).

• Identification: Determination and/or optimization of the (validity func-
tion’s) nonlinear and (the local linear models’) linear parameters of the
model from expert knowledge and/or data.

• Blending Method: Method of how to generate a global output of the local
linear neuro-fuzzy network, by blending of the outputs or the parameters
of the local linear models.
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Figure 3.1: Overview and interplay of the applied methods which led to the
desired pantograph model. The blocks with red borders were
treated in this thesis. Additionally the superordinated problem
(coupled system) is indicated.

The remainder of this introduction gives a first idea of how these problem areas where
approached to receive the desired pantograph model, a detailed discussion is carried
out in the following sections.

The decomposition of the nonlinear problem is realized through operating regime
partitioning of a distinguished input variable to the model. The nonlinear parame-
ters of the validity functions (hidden layer/rule premise) according to this partition-
ing are fully determined by expert knowledge (no nonlinear optimization technique
was employed). This approach was possible due to the simple one dimensional par-
tition space of the pantograph’s local linear neuro-fuzzy model and the structure of
this type of model (see Section 3.3).

The structure is determined by utilizing fully determined Gaussian membership
functions (MSFs) as validity functions and MIMO discrete-time state-space systems
inside the local linear models (LLMs). This thesis follows up with two approaches
regarding the configuration of the state-space systems, namely

• a MIMO discrete-time state-space model based on a mechanical surrogate
model with identifiable parameters (see Section 3.4), and

• a MIMO discrete-time state-space model in innovation form based on the
Kalman-filter problem (see Section 3.5), received by the numerical algo-
rithm for subspace identification (N4SID) as stated in [33]).
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The surrogate model, designed as three-mass oscillator, was chosen for its capabili-
ties in physical interpretability (e.g. provides physical states, see Section 3.4). The
parameters are positioned due to the oscillator equations of motion and identified by
an output error (OE) optimization method. This approach leads to a light gray
box model, resulting in more interpretability for less performance tradeoff.

The model based on state-space matrices provided by a subspace identification method
(N4SID) was chosen with the idea to exploit the great potential of subspace methods
to derive a state-space system directly from data in a very efficient fashion (see
Section 3.5) by incorporating it into the local linear neuro-fuzzy structure. This ap-
proach leads to a dark gray box model, resulting in less interpretability for more
performance tradeoff.

Finally two methods of blending are provided to receive a global output:

• Output Blending: The global output is received by blending the state-space
system outputs of the individual LLMs employing membership functions evalu-
ated in each time-step (see Section 3.6.1 and Figure 3.18). This is the common
method for blending in linear model networks and applied when using the
LLMs containing the state-space systems identified by the described subspace
method.

• Parameter Blending: Through blending of the parameters of the state-space
matrices of the individual LLMs employing membership functions evaluated in
each time step, an interpolated global model is computed in each time-step. Its
output represents the global output (see Section 3.6.2 and Figure 3.19). This
blending method is implemented with the LLMs based on the surrogate model.

3.2 Local Linear Model Network (LLMN)

This section treats the methodology of the modeling structure applied in this thesis,
namely a local linear neuro-fuzzy model based on first order Takagi-Sugeno
type local linear models in state-space configuration. This model structure
combines the methodologies of neural networks and fuzzy logic to - as described above
- construct a network that consists of a certain number of simple linear sub-models
(neurons containing LLMs) that are primarily valid in a local region of the work-
ing range of the problem. By applying this methodology of the - in the literature
also referred to as - neuro-fuzzy network type of system or neuro-fuzzy model, a
nonlinear static model of the pantograph is received. Throughout this thesis, the
applied neuro-fuzzy network type of system will be referred to either as local linear
model network (LLMN) in state-space configuration, linear model network (LMN)
or simply (desired or developed) pantograph model.

In general there exist several different types of nonlinear static models that can be
utilized to solve a nonlinear modeling problem (performance of these models depends
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Field of
Method

Method Discription Relevance for pantograph modeling

Classical
Nonlinear
Modeling

Linear Model simplest model, the nonlinearity is
discounted, the problem is linearized
around a certain operating point

compare with the linearized white-
box model (Section 2.1)

Polynomial
Model

extension of the linear model, more flexi-
ble, oscillating interpolation and extrap-
olation behaviour

Look-Up Table
Model

dominant nonlinear modeling approach
for industrial applications (real-world
implementations), low dimensional prob-
lems, low computational evaluation de-
mand, parameters are derived directly
from measurement, no parameter esti-
mation, non-differential mappings due to
linear interpolation rule can be problem-
atic in control tasks

implemented in cooperation with the
LLMN based on subspace identified
state-space systems (copes only with
zero mean signals) to level the offset (see
Section 3.5.4)

Neural
Networks

Multilayer
Perceptron
(MLP) Network

most widely applied neural network ar-
chitecture, high dimensional problems,
no interpretation capabilities, expert
knowledge cannot be incorporated

(Normalized)
Radial Basis
Function
((N)RBF)
Network

local basis functions, low and medium
dimensional problems, interpretation ca-
pabilities due to construction mecha-
nism, expert knowledge can be incorpo-
rated

Neuro-Fuzzy
Models

Singleton
Neuro-Fuzzy
Model

interpretation of grid-based basis func-
tions as membership functions, compa-
rable with NRBF networks, low dimen-
sional problems

Local Linear
(Takagi-Sugeno)
Neuro-Fuzzy
Model

linear models in the neurons, good inter-
pretation capabilities, efficient training
algorithms low to medium dimensional
problems

LOLIMOT algorithm (see Section 3.2.4),
the LLMN pantograph model is
based on this model structure (see Sec-
tion 3.2.3)

Table 3.1: Overview of possible approaches to receive a static model to a
nonlinear problem (compare [19, page 451, Chapter 15]).

on the modeling goals and is in general application specific). Table (3.1) gives an
overview of available approaches to nonlinear modeling.

In the following sections a brief introduction to neural network architecture in com-
bination with fuzzy logic is given, focusing on the similarities and differences in these
methodologies. Historically the basic principles of neuro-fuzzy models were devel-
oped independently in different disciplines, using different specific trems and names
but close links to similar model architectures. The following excursion into neural
network theory fundamentals can be seen as an attempt to on the one hand bring
some light into this at first sight confusing part of the nonlinear modeling world, and
on the other hand to give the reader the ability to comprehend why the neuro-fuzzy
network type of system was chosen as the basis for the pantograph model.

3.2.1 Neural Networks

The motivation for the introduction of artificial neural networks came from the wish
to model biological structures (e.g. brains of humans or animals) to imitate nature’s
information processing techniques, which enable learning and adaptation (e.g. to the
environment).
According to the notion in [19], a neural network model is defined as a basis function
network with the property that all its basis functions are of the same type and differ
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Figure 3.2: Scheme of a MISO neural network with one hidden layer defined
as a basis function network where all its basis functions are of
the same type (compare with equ. (3.1)).

only in their parameters. This kind of model is then referred to as artificial neural
network (ANN) or simply neural network (NN) (see Figure 3.2 for illustration).
Figure 3.2 shows a neural network with a single hidden layer. The hidden layers of a
NN each contain a certain amount of nodes/neurons, which embody basis functions

Φi of a certain type, depending on their nonlinear parameter vector θ
(nl)
i and the

input vector u. The output layer of the NN contains the output neuron which com-
monly is set as a linear combiner, therefore depending on an additional set of linear
parameters θ

(l)
i .

The hidden layer of the NN can be interpreted as the rule premise structure of a fuzzy
model, while the output layer of the NN would correspond to the rule consequent
structure of the fuzzy model (see Section 3.2.2).

According to the specific type of the hidden layer neurons’ basis functions, there are
three classes of neural network architectures presented, which are commonly applied
(all belong to the class of universal approximators):

• Multilayer perceptron (MLP) networks

• Radial basis function (RBF) and normalized radial basis function (NRBF)
networks

• Neuro-fuzzy networks (NF)

The extended basis function formulation as described in [19, page 211, equation (9.3)]
for multi-input single-output (MISO) continuous-time systems reads as follows:

ŷ =
M∑

i=0

θ
(l)
i Φi(u, θ

(nl)
i ), (3.1)

with θ
(nl)
i ... nonlinear hidden layer parameters, θ

(
i l) ... linear output layer parame-

ters and the dummy basis function Φ0(·) = 1 for the offset parameter θ
(l)
0 .
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The basis functions of these network architectures are dependent on a construction
mechanism xi, which preprocesses the inputs, and a subsequent nonlinear activation
function g(xi), which realizes the basis functions. The construction mechanisms
of these classes of networks can be divided into:

• ridge construction (MLP): projection of the input vector u onto a nonlinear

parameter vector θ
(nl)
i = [wi0, ..., wij , ..., wip]T (compare [19, page 249, equ.

(11.14)]) containing the hidden layer weights wij, with (compare [19, page 254,
equ. (11.20)])

xi =
p
∑

j=1

wijuj (3.2)

• radial construction (RBF): computation of a norm (e.g. Euclidean norm or
Mahalonobis norm) of the distance between the input vector u and the centers
vector ci of the basis functions, with (compare [19, page 265, equ. (11.33) and
(11.35)])

xi = ‖u − ci‖Σi
=

√
√
√
√
√

p
∑

j=1

(

uj − cij

σij

)2

(3.3)

• tensor product construction (NF): implementation of a certain division
strategy (e.g. operating regime decomposition) resulting in univariate functions
(depending on several nonlinear parameters) that are defined for each selected
input (z) of the input vector u, e.g. membership function (MSF, compare
Figure 3.4, equ. (3.11) and according sections).

The activation functions for the MLP network are typically chosen to be of saturation
type, e.g. sigmoid functions such as logistic function or hyperbolic tangent. Whereas
for the RBF and the NF type of networks the choice of activation functions with a
maximum at the center of the neuron (xi = 0) is aspirated, to enhance the neurons
validity around it’s positioning (local character). The basis function itself however is
then computed by (compare [19, page 264, equ. (11.35)])

Φi(u, θ
(nl)
i ) = g(xi), with g(·) ... activation function. (3.4)

A typical choice for an RBF or NF network is the Gaussian function, where the
nonlinear activation function reads as (compare [19, page 264, equ. (11.31)])

g(xi) = exp
(

−
1

2
x2

i

)

. (3.5)

Figure 3.3 shows the presented network architectures in linear model network con-
figuration, to illustrate the differences in these approaches. The obvious difference
lies in the generation of the neuron output. The conventional network structures
(MLP, RBF, compare equation (3.1)) neurons simply multiply their basis function
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with a constant term (output layer weights, wi), while the NF network (compare
equation (3.98)) provides an e.g. linear function (lin.sys.i) in each neuron, depending
on the model input u. The neurons of the NF network are called local linear models
(LLMs) and can represent different types of linear systems. This can be e.g. a linear
regression model (e.g. ARX) in polynomial form (see LOLIMOT in Section 3.2.4),
or a system of differential equations in state-space form (see developed pantograph
model as LLMN based on a three-mass oscillator).

Figure 3.4 shows the i-th neuron of a RBF network and a neuro-fuzzy model in com-
parison. Although there is a difference in the computation path of the basis functions
Φi, they both deliver the same result if Gaussians are used as activation function
in the RBF network neuron, respectively if the MSFs are set as axis-orthogonal
Gaussians and the product operator is used for the conjunction of the MSFs. This
equality can be shown with equations (3.3) and (3.5) of the RBF network and equa-
tions (3.11) and (3.10) of the NF network respectively. Otherwise a strong similarity
is still obtained (compare [11]).

Training Procedure: Parameter Optimization/Identification

The strategies for training of a neural network, i.e. identifying the network parame-
ters, are just mentioned here for the sake of completeness, because they mainly deal
with the determination of the nonlinear parameters (hidden layer weights, parame-
ters of the activation function). These nonlinear parameters (MSF, rule premise) will
be determined due to expert knowledge for the developed pantograph models and
not estimated. For further details on the topic consult e.g. [19, page 253, Section
11.2.4] for MLP network training or [19, page 269, Section 11.3.3] for RBF network
training.

For a MLP network two sets of parameters have to be determined during the train-
ing procedure, which are the nonlinear hidden layer weights and the linear output
layer weights. In any case an initialization method has to be applied to determine
the initial values of the hidden layer weights before the training can be started (e.g.
similarly scaled small values), with the limitation that they do not provide any in-
terpretation capabilities. For the training of a MLP network three strategies are
commonly applied:

• Regulated Activation Weight Neural Network (RAWN) approach, where the
nonlinear hidden layer weights are just initialized and the linear output layer
weights are estimated subsequently by a least squares technique. There exist
extensions and improvements to this approach. It is recommended for low-
dimensional problems only.

• Nonlinear optimization approach, where all weights (hidden and output) are
estimated simultaneously by a local or global optimization technique. This
represents the most common approach, which utilizes gradient-based learning
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Figure 3.3: A selection of neural network architectures - MLP top, RBF mid-
dle, NF bottom - in linear model network (LMN) representation.
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Figure 3.4: Comparison of the structure of the i-th neuron of a MISO radial
basis function network and a MISO neuro-fuzzy network, with p
inputs and M neurons (compare equations (3.3) and of the RBF
network and equations (3.11) and (3.10) of the NF network).

rules where a certain loss function is optimized according to a learning rate
(step size).

• Staggered or nested training approach, which is a combination of the two ap-
proaches presented above. Here the aim is to exploit the advantages of both
approaches by applying the nonlinear optimization only for estimating the hid-
den layer weights and staggering or nesting in the least squares optimization
of the output layer weights.

The training of a RBF network demands the determination of the parameters of
its basis function (nonlinear hidden layer weights) and a subsequent estimation of
the output layer weights, very similar to the training of a MLP network (RAWN
approach). The main difference is the geometric interpretation capability of the
nonlinear parameters which can be exploited. Commonly the positioning of the
center of the basis function is determined first, while all the other parameters are
determined subsequently. Possible approaches are:

• Random Center Placement, where the centers are randomly determined (RAWN
approach).

• Clustering for Center Placement, which is based on clustering techniques (see
e.g. [19, page 142, Section 6.2]), where groups of data are searched out of a
data set, that possess some kind of similarity. Improvement of the random
approach.
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Figure 3.5: Inference of a fuzzy system, by deriving an output fuzzy set given
the fuzzy rules and the known inputs.

• Complexity Controlled Clustering for Center Placement, where the complexity
of the underlying model is incorporated for further improvement.

• Grid-Based Center Placement, which is an alternative to the clustering based
approaches where the centers are placed on a certain grid of the input space.
Recommended for low dimensional problems only.

• Subset Selection for Center Placement, which is based on a subset selection
technique (see e.g. [19, page 67, Section 3.4]).

• Nonlinear Optimization for Center Placement, which is a straightforward non-
linear optimization of the hidden layer parameters, with good initial values due
to interpretation capabilities.

3.2.2 Fuzzy Systems

Fuzzy logic was invented as an extension to Boolean logic by allowing the assignment
of any value in the interval [0, 1] to a variable, instead of either 0 (false) or 1 (true).
This ”fuzzy” assignment of a variable was inspired by human thought patterns and
human communication, which often is based on vague and uncertain, maybe insuf-
ficient information, resulting in unprecise (fuzzy) statements. Therefore this type of
systems incorporate a great potential for interpretation, because it somehow contains
the spirit of human nature. Fuzzy systems are, as well as the neural networks, part
of the class of universal approximators (compare [15] and [41]).

The developed pantograph model is designed as a neuro-fuzzy network based on lin-
ear local models, which are realized as first order Takagi-Sugeno fuzzy systems. In
general however a neuro-fuzzy network architecture could be based on a variety of
fuzzy systems. A fuzzy system can be divided into two major parts, the rule premise
and the rule consequent (compare Figure 3.5). The output is referred to as inference
of a fuzzy system. Approximate reasoning mechanisms based on fuzzy logic were
consequently developed to cope with linguistic statements in a rule-based form (see
Figure 3.6), which will be discussed here (see example in Figure 3.6 for illustration).

In the fuzzification stage (see Figure 3.5) a nonlinear transformation of the inputs
(called linguistic variables, e.g. operating height) from a crisp value to a fuzzy value
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Figure 3.6: Example of a MIMO Takagi-Sugeno fuzzy system with two
inputs u = [η, Mpa]T and six outputs ŷ = [ξ, ξ̇, ζ, ζ̇, δM , δ̇M ]T

illustrated for the pantograph (compare Section 3.4.3).

is performed, utilizing the univariate membership functions (MSFs):

µ
i
(uj) : R1 → [0, 1], (3.6)

with i = 1, ..., M denoting the i-th of M partitions (number of linguistic terms) of
the j-th input (number of linguistic variables).
The fuzzy value is referred to as the degree of membership to an according linguistic
term (e.g. ”Low’), which is defined by its MSF µi(uj) (e.g. µ1(η)).
If there are multiple linguistic variables available in a fuzzy system, they have to be
combined using fuzzy logic operators (t-norms, e.g. AND) determining the degree of
rule fulfillment.
A fuzzy rule is then formulated by assigning certain linguistic terms of the input
fuzzy sets to an output fuzzy set. Completing this step, as mentioned above, is
setting up the inference of the fuzzy system, which is connecting the rule premise to
the rule consequent. A selection of the commonly utilized fuzzy systems is given by
the following list (these systems differ only in their rule consequent):

• linguistic fuzzy systems (Mamdani fuzzy systems): in the rule consequent
first the output activation of all rules is computed (activation) utilizing arbi-
trary output membership functions and fuzzy operators. Then these output
activations are joined (accumulation) using fuzzy operators and eventually a
crisp out value is generated by a final defuzzification step applying a certain
method (e.g. center of gravity) to the joined output MSFs. Alternativley a
fuzzy output is resulting.

• singleton fuzzy systems: simplification to linguistic fuzzy systems by using
singleton output MSFs, therefore the output fuzzy set contains constant values
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Figure 3.7: According membership functions µi(η) to the example Takagi-
Sugeno fuzzy model in Figure 3.6, defining the linguistic terms
”Low”, ”Middle” and ”High” of the linguistic variable contact
position η.

si, which determine the position of the trivial output MSF. The singleton fuzzy
output is then computed by

ŷ =

M∑

i=1
siµi(u)

M∑

i=1
µi(u)

(3.7)

• Takagi-Sugeno fuzzy systems: extension to singleton fuzzy systems where
the rule consequent does not contain fuzzy sets, but linear functions (a zero-th
order consequent would deliver again a singleton fuzzy system). The output of
a first-order Takagi-Sugeno fuzzy system is computed by

ŷ =

M∑

i=1
fi(u)µi(u)

M∑

i=1
µi(u)

(3.8)

An example for a possible first-order Takagi-Sugeno fuzzy rule could read as fol-
lows (compare Figure 3.6):

R2: IF contact position is ”Low” AND torque is ”Strong” THEN ŷ = CA2x2 + CB2u.

This example illustrates the main mechanisms that will be utilized in the local linear
model network (LLMN). The rule consequent’s output fuzzy set can be interpreted
as a local linear model (LLM) containing a state-space system. The fuzzyfication
step (determination of degree of membership utilizing a membership function) in the
rule premise can be interpreted as the (operating regime) partitioning of an input
variable using the LLMN structure.



3.2 Local Linear Model Network (LLMN) 36

Training Procedure: Parameter Optimization/Identification

Like in Section 3.2.1, the training strategies for RBF networks are also just mentioned.
For further details consult e.g. [19, page 313, Section 12.3.3].
In general the training of fuzzy models is similar that of RBF networks commonly
realized by a grid based center placement approach. It is recommended however to
determine the nonlinear premise parameters (MSF) according to prior knowledge to
keep the strengths of the fuzzy model’s transparency in regard to interpretation of
its parameters. This is also the approach taken for the development of the presented
pantograph LLMNs. If however little prior knowledge is available, the premise param-
eters can be estimated employing nonlinear local or global optimization techniques.
If absolutely no expert knowledge is present, a global nonlinear optimization method
is suggested, e.g. a genetic algorithm, to prevent ending up in a local optimum. If
however good initial values can be found, a local nonlinear optimization is the way
to go. The rule consequent parameters (linear) can be estimated by a least squares
technique subsequently to the determination of the rule premise parameters.

Another possibility provided by fuzzy models is the optimization of the rule structure
(see e.g. LOLIMOT algorithm in Section 3.2.4), where the optimal model complexity
is sought. Here the nonlinear global search methods play an important role. Finally
it has to be mentioned, that other components of a fuzzy system can be optimized as
well, e.g. the fuzzy operators or the defuzzification method. This section is ended up
by a list of possible schemes which optimize several of the discussed parts of different
type neuro-fuzzy networks (see [19, page 323, Section 12.4] for details):

• Nonlinear Local Optimization

• Nonlinear Global Optimization

• Orthogonal Least Squares Learning

• Fuzzy Rule Extraction by a Genetic Algorithm (FUREGA)

• Nested Least Squares Optimization of the Singletons

• Constrained Optimization of the Input Membership Functions

• Adaptive Spline Modeling of Observation Data (ASMOD)

3.2.3 Local Linear Neuro-Fuzzy Model

This section now treats the methodology of the implemented nonlinear modeling ar-
chitecture - a local linear neuro-fuzzy model based on local linear models
implemented as first-order Tagaki-Sugeno fuzzy systems - furthermore referred to
as local linear model network (LLMN) in state-space configuration.

This model structure is based on an neural network in the neuro-fuzzy architecture
(see Section 3.2.1 and Figure 3.3 bottom) where the fuzzy system’s rule premise
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neural networks fuzzy system linear model network (local linear neuro-
fuzzy model based on first order Takagi-Sugeno
fuzzy systems)

type of parameters
present in that part of
the structure

output layer rule consequent local linear models (e.g. in state-space system
configuration)

linear parameters

hidden layer rule premise operating regime partitioning using fuzzy logic nonlinear parameters

Table 3.2: Summary of specific terms for the presented model architectures:
neural networks, fuzzy systems and the linear model network.

and consequent methodology is incorporated into its hidden layer neurons (compare
Section 3.2.2 and Figure 3.6). In this configuration the hidden layer’s neurons now
contain both the hidden layer’s nonlinear and the output layer’s linear parameters.
The nonlinear hidden layer parameters are the nonlinear parameters of a fuzzy rule’s
premise structure, which incorporates Gaussian membership functions. The out-
put layer’s linear parameters are the linear parameters of a Takagi-Sugeno fuzzy
system’s output fuzzy set, which incorporates linear (in case of the surrogate model
partial differential) equations in state-space form. The output layer neuron simply
sums up the outputs of the individual hidden layer neurons (output blending see
Section 3.6.1.
A slightly different approach is also implemented, where the neuro-fuzzy network is
implemented parallel to a plant model, having the parameters of this plant model as
its output (parameter blending see Section 3.6.2).

Remark 3.2.1. The decomposition of the nonlinear problem into linear subproblems
is commonly done by an operating regime decomposition approach. In case of the
applied local linear neuro-fuzzy network, the incorporated fuzzy logic can lead to a
smooth partitioning of the input space (desired behaviour in this application case) if
the activation function is chosen appropriately (e.g. Gaussian function). An overview
of alternative local-linear neuro-fuzzy model architectures can be found in [18, page
3, Chapter 1], which includes a discussion of different operating regime approaches
in [18, page 5, Section 1.2]. For a detailed discussion of the applied decomposition
see Section 3.3.

Remark 3.2.2. With regard to the stability of the local linear neuro-fuzzy network in
state-space configuration, it has to be stated, that only conservative, necessary but
not sufficient conditions exist, with which the stability of a LLMN can be examined.
This topic will be further discussed in Section 3.6.3.

A summary of the specific terms of the presented model architectures can be found
in Table 3.2.

Training Procedure: Parameter Optimization/Identification

A great strength of fuzzy models is, that their defining parameters can be speci-
fied either by qualitative expert knowledge, by data-driven identification by mea-
surement data or any combination of these two extreme approaches. Therefrom a
interpretability-performance tradeoff results. Data-driven identification works
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more accurate if the model is more flexible. The flexibility however is limited to
keep the interpretability capabilities, while the expert knowledge is incorporated to
increase the performance where possible.
For the developed pantograph model the main motivation for applying this type of
systems were:

• The exploitation of expert knowledge: incorporation of expert knowledge into
the model before and during identification (engineering cycle).

• Improved understanding of the model process: interpretation of the model ob-
tained by identification, therefore additional information about the real-world
nonlinear pantograph can be extracted from the model.

Therefore the model was developed by setting all nonlinear parameters of the model
(operating regime partitioning) due to prior knowledge, while identifying the linear
parameters of the model (LLMs) in a data-driven fashion (output error optimization
method). In the first approach, additionally the linear parameters where kept as few
as possible by exploiting the expert knowledge when generating the parametrized
state-space systems (inside the LLMs, see Section 3.4). In the second approach the
implementation of subspace methods leads to an iteration-free determination of the
state-space matrices (see Section 3.5).
Finally it can be mentioned, that neuro-fuzzy network modeling is utilized in advanced-
control solutions (e.g. Fuzzy-MPC) and already applied in some industry branches
(for criteria on successful applications see [22], for an overview on successful applica-
tions see [23] and [24]). It beholds a great potential as a tool to examine nonlinear
problems and develop efficient models.

3.2.4 Local Linear Model Tree (LOLIMOT) Algorithm

An algorithm based on local-linear neuro-fuzzy models that can be used for the
identification of MISO systems is called LOLIMOT, postulated by Nelles. This al-
gorithm was utilized in a first attempt to receive the desired pantograph model and
led to certain insights and conclusions. The main findings of applying this method-
ology to the pantograph problem are presented in this section in a narrative fashion.

The Local Linear Model Tree (LOLIMOT) algorithm - as proposed by Nelles in [19,
page 365, Section 13.3.1] - is an incremental tree-construction algorithm with axis-
orthogonal input space partitioning, based on linear local models in ARX-form (see
equation (3.9)), whose parameters are identified with a local weighted least squares
algorithm from data. The premise structure is optimized by an iterative heuristic
search method. LOLIMOT starts in an outer loop with an initial model structure
(e.g. 2 LLMs equidistantly positioned on the partition space) and estimates the ac-
cording LLM parameters in an inner loop with a regression method from data. After
a certain threshold value of accuracy or iterations is reached (early stopping), the
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Figure 3.8: Input/Output configuration for the pantograph model based on
the LOLIMOT algorithm.

partition space - according to the worst performing LLM - is split in half and the
optimization of the parameters of the newly set LLMs starts and so on. For a more
detailed description see [19, 20, 21].

Definition of the autoregressive with exogenous input (ARX) model (compare e.g.
[19, page 466, equation (16.10)]):

y(k) =
B(q)

A(q)
u(k) +

1

A(q)
v(k), with v(k) . . . white noise (3.9)

The algorithm, as described by Nelles is considerably fast (no nonlinear structure
optimization, heuristic search method) and can cope with multidimensional inputs
but only single outputs (MISO systems only). This algorithm was used in a first
modeling approach to the nonlinear pantograph problem. Due to prior knowledge,
several choices like the order of the ARX-polynomials (corresponding to the amount
of DOF of the white-box model) as well as the input and output signals could be
made. In a first attempt, the identification of the whole mechanism was carried out,
using the inputs as specified in equation (2.2), but an arbitrary, eventually measur-
able variable as output like the angle of the lower bar ϕ1 as sketched in Figure 3.8.
This kind of application of the LOLIMOT algorithm employed output partioning in
an external dynamics approach with global state feedback (for further information see
[19, page 603, Fig. 20.1a]). To incorporate even more expert knowledge to the model
(to make it more white), in a second attempt a pantograph model was developed,
where the LOLIMOT algorithm was only used to identify the nonlinear part of the
pantograph (the collector head is a known linear one-mass oscillator). This early
draft of the pantograph LLMN can be seen in Figure 3.9. Additionally, to fulfill the
specifications as defined in Section 1.2.1 a further attempt was made to alter the
algorithm in a way to receive the identified LLMs in state-space system form instead
of ARX polynomials. This was realized by a conversion of the identified ARX-models
polynomials to non-minimal state-space (NMSS) systems (the system matrices are
build from the coefficients of the numerator and denominator polynomials according
to [12, page 63, Section 6.3]). These state-space systems were used to replace the
ARX-models in the local linear models before simulation.

However the simulation results where not satisfactory (see Section 4.3), because the
generated output of the model configured in the described form became unstable
(see Figure 4.6), even if the converted NMSS systems themselves where all stable
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Figure 3.9: Scheme of an early draft of the pantograph model based on the
LOLIMOT algorithm.

(see Figure 4.7). Additionally, in some cases the conversion of the ARX-polynomials
delivered unstable state-space systems, which led to an indefensible simulation per-
formance.
Another issue is that LOLIMOT is a tree-construction algorithm, where the user has
no influence on the partitioning of the selected input space. In practice the algo-
rithm tends to split the local linear models in regions where the most data points
are present in the training data set (based on the idea that more data holds more
information). This property of the algorithm is not desirable in this specific applica-
tion, because therefore the partitioning becomes dependent of the training data set
employed, while the expert knowledge of the nonlinear pantograph demands a fixed
partitioning.

Finally the states and system matrices allow no physical interpretation due to the
NMSS form of the LLMs and solely MISO systems are realizable.
At that point, with the issues described above, it came clear that the local linear
neuro-fuzzy models based on ARX-models with regression methods for estimation
are not suitable to develop a pantograph model with the specifications set in Section
1.2.1 and a different path had to be pursued.

3.3 Operating Regime Decomposition,

Partitioning

This section treats the implementation of the concept of operating regime de-
composition for the pantograph problem as the first step of constructing a local
linear neuro-fuzzy network. To reveal the idea behind the decomposition approach,
the divide-and-conquer strategy as stated in [18] is repeated here:

"A complex problem is somehow partitioned into a number of simpler
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subproblems that can be solved independently, and whose individual so-
lutions yield the solution of the original complex problem." ([18, page 4])

With other words the divide and conquer approach to a nonlinear problem requires a
decomposition into linear subproblems that are easier to solve. Therefore the whole
operating range of the nonlinear system gets partitioned (via a suitable partition
variable, e.g. contact position η) into smaller operating regimes in which the ac-
cording linear subsystems (local linear models, LLMs) are valid (determined via a
membership function). The main idea could be formulated as a term equation:

Global approximation = Interpolation of the local approximations

The key to this decomposition problem is to find a suitable quantity that character-
izes the operating range (could be high-dimensional in general, for the pantograph
problem the operating height is set as an one-dimensional partition space) and along
which the nonlinear problem can be partitioned into several operating regimes. These
operating regimes then form a complete partition of the operating range, without any
overlap. The interpretability is good as long as the number of partition variables (rule
premise and number of fuzzy rule sets, see Table 3.2) is small.

There exist two major techniques of how to determine the partitioning of the input
space, that are in general applied complementary:

• Expert knowledge.

• Nonlinear structure identification from data.

For the development of the pantograph models in this thesis, the partitioning is deter-
mined solely by expert knowledge, therefore no nonlinear structure identification
of the premise parameters is carried out (compare Section 3.2.3).

What follows is the definition of the validity functions Φi. They are chosen as ([19,
page 343, equ. (13.4)])

Φi(z(k)) =
µi(z(k))

M∑

j=1
µi(z(k))

, (3.10)

with M the number of LLMs and time step k. The activation functions µi(z(k)) =
µi(η(k)) are chosen as normalized Gaussians and are explicitly given by (compare
with [19, page 343, equ. (13.5)] for one-dimensional partition space)

µi(η(k)) = exp(−
1

2
(
(η(k) − centeri)

2)

(kσ· spreadi)2
), (3.11)

where centeri (center coordinates) and spreadi (standard deviations) are the nonlin-
ear parameters of the according weighting function µi (see Table 3.3). kσ represents
a tuning parameter introduced by [19, page 362, equ. (13.36)] for the LOLIMOT
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number of LLMs centeri spreadi kσ
1

1: LLM1 0.5 1






1
3

2: LLM2 0.75 0.5
LLM1 0.25 0.5

4: LLM4 0.875 0.25
LLM3 0.625 0.25
LLM2 0.375 0.25
LLM1 0.125 0.25

Table 3.3: Parameters of the local linear models for LLMNs with different
amount of LLMs (compare with Figure 3.12) for an equidistant
partitioning approach.

algorithm, which acts as a proportionality factor between the membership func-
tions extension and the standard deviation and therefore is closely related to the
spreadi parameter. In general the product kσspreadi determines the tradeoff be-
tween smoothness of transition between one LLM and another and the locality of each
LLMs validitiy. A small value creates step-like validity functions (non-smooth,strong
locality), while bigger values blur the area of validity until all LLMs are always valid
over the whole partition space (smooth, no locality).
Finally it can be stated, that by choosing the validity functions as described by equa-
tion (3.10), they form a partition of unity, i.e. all contributions of all LLMs sum up
to 100 [%] at each time instance, therefore

M∑

i=1

Φi(z(k)) = 1, (3.12)

which is necessary to allow proper interpretation of the validity functions.

The validity function vector can then be written as the column vector of all validity
function values of all LLMs with

Φ(z(k)) =
[

Φ1(z(k)) · · · ΦM(z(k))
]T

. (3.13)

As it can be seen from equation (3.10) the membership functions (MSFs) are set
as non-strictly local equidistantly positioned normalized Gaussians with identical
width. An illustration of such a LLMN with four LLMs is depicted in Figure 3.10.
This configuration of the premise parameters in general represents a restriction to
the neuro-fuzzy model with regard to achievable accuracy, but is executed to guaran-
tee interpretability capabilities and prevent unexpected and undesired normalization
side effects (e.g. reactivation, compare [19, page 316, Section 12.3.4]). Furthermore
it realizes smooth transitions between the LLMs.

1Proportionality factor for the weighting functions extension (steepness). Can be interpreted as an
additional tuning parameter according to Nelles LOLIMOT algorithm [19, page 365, Section
12.3.1]. In this thesis not tuned, but set to a value recommended in [19].
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Figure 3.10: The weighting functions µi(z(k)) (upper plot, denoted as WFi)
are chosen as equidistantly positioned Gaussian functions with
identical width (spreadi). The weighting functions are normal-
ized (see equation (3.10)) to receive the membership functions
Φi(z(k)) (lower plot, denoted as MSFi). Depicted for a lin-
ear local model network with 4 local linear models, where the
abscissa represents the transformed operating range (partition
space).
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Figure 3.11: Membership functions Φi(η(k)) for a local linear model network
(LLMN) with 4 local linear models (LLMs) over time steps k
of a simulation over the whole operating range (sampling time
Ts = 1 [ms]).

Alternative types of membership functions could be singleton, triangular (linear in-
terpolation) or trapezoidal shaped functions (strictly local).

In Figure 3.11 the membership functions Φi(η(k)) of a simulation of the LLMN model
with 4 LLMs over the whole operating range is shown for every time step k. The green
graph (pVar) shows the movement of the partition variable (in this case the contact
position η) for each time step, transformed to the range [0, 1]. It is clear to see how
the LLMs are valid for the global model over the simulation time according to their
membership function value. If e.g. Φi(η(k)) = 1 the associated LLMi would be 100%
valid in this time step. The validity functions can be interpreted as operating point
dependent weighting factors. Furthermore an illustration of the operating range, its
partitioning and the positioning of the local-linear models can be seen in Figure 3.12.

In this thesis simply the case of a single rule premise (operating height, one-dimensional
MSF) is treated and therefore a discussion of fuzzy logic operators (e.g. t-norms
and t-conorms) which are utilized to combine several fuzzy rules (multi-dimensional
MSFs) is obsolete. For further information on the topic consult e.g. [19, page 302,
Section 12.1.2]).

As described above the input variable u1 = η (contact position) was chosen as the
partition variable. This realization is referred to as input partitioning, where an
input signal to the LLMN is utilized to determine the activation of the LLMs. An
alternative route would be to choose an output variable as the partitioning variable,
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Figure 3.12: Illustration of the partition space (operating range/height of
the pantograph) and the equidistant positioning of the local-
linear models along this axis, with the operating points OPXY
as defined in equation (4.1).

e.g. the crossbar position ζ. In that case, referred to as output partitioning, the
selected variable (global LLMN output) is fed back to the LLMN input (global state
feedback, external dynamics approach). For further details on that matter see [19,
page 601, Chapter 20] and [19, page 603, Figure 20.1a]. Regarding stability of the
LLMN, the output partitioning approach has to be seen more critical, as introduces
all kind of issues associated with closed loop dynamics to the partitioning procedure.

3.4 Surrogate Model (Parametrized Three-Mass

Oscillator)

This section treats the configuration of the state-space models that are based on a
mechanical surrogate model of the pantograph, namely a parametrized three-mass
oscillator (a scheme thereof is depicted in Figure 3.13). This section will be opened
with an introduction to and discussion of general issues that arise in modeling using a
parametrized model structure (see Section 3.4.1). Following the equations of motion
of the three mass oscillator will be derived (see Section 3.4.2) and transcribed into a
state-space system (see Section 3.4.3). Furthermore the parameter vector (see Section
3.4.4) and the according optimization method will be defined (see Section 3.4.5).
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3.4.1 Modeling Issues with Parametrized Models

A brief introduction to some concepts and approaches to issues (mainly tradeoffs)
that arise in nonlinear modeling problems using parametrized model structures is
given here.

model complexity (compare [19, page 157, Section 7.1])
The model complexity is related to the number of parameters that the model pos-
sesses (number of parameters can be a measure for model complexity) and give the
model its flexibility. However not every parameter has the same influence on model
behaviour or is equally important (parameter sensitivity, Fisher information). The
key is to determine the optimal model complexity, where neither under-fitting nor
over-fitting is occuring. By approaching the nonlinear modeling problem by utiliz-
ing a local linear Takagi-Sugeno neuro-fuzzy model, another perspective has to
be taken into account , which is the flexibility-interpretability tradeoff. The
flexibility strengthens the models accuracy and robustness, while the interpretability
capability inherited by the model can be used to gain a posteriori knowledge about
the examined problem (e.g.: Is the model behaviour physically plausible?, compare
[18, page 52, Section 1.6]).

bias/variance tradeoff (compare [19, page 158, Section 7.2])
As mentioned above the parameter influence the model performance by giving it
flexibility. The model error can be decomposed into the bias error and the variance
error :

• bias error : Due to structural inflexibility of the model.

• variance error : Due to uncertainties in the estimated parameters.

According to that contemplation the following statements can be made:

• overfitting/overtraining: high variance error

• underfitting/undertraining: high bias error

• simple model (few parameters): high bias error but low variance error

• complex model (many parameters): low bias error but high variance error

curse of dimensionality (compare [19, page 190, Section 7.6.1])
This issue is in general relevant for high dimensional problems, which is not the case
for the models presented in this thesis (which employ a one-dimensional partition
space). This is due to the fact, that a linear increase in the input dimensionality
causes an exponential increase of the required data amount. Therefore a common
problem in nonlinear modeling is the desire to decrease the input dimensionality.
Some concepts for reducing the data amount are given by this list:

• non-reachable regions in the input space
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Figure 3.13: Scheme of the three-mass oscillator surrogate model, which rep-
resents the underlying model of the pantograph LLMN (surro-
gate).

• correlated or redundant inputs

• smooth behaving inputs require just sparse data (significantly less data neces-
sary)

• specific application demands different accuracies in different operating condi-
tions (inaccurate model behaviour might be acceptable in some regions)

This introduction into nonlinear modeling with parametrized models is concluded
with a quotation from [19, page 192, Section 7.6.1] regarding the relationship between
the curse of dimensionality and the bias/variance tradeoff :

"Each additional input makes the model more complex. Although each
additional input may provide the model with more information about the
process this does not necessarily improve the model performance. Only if
the benefit of the additional information exceeds the variance error caused
by the additional model parameters, will the overall effect of this input be
positive. Thus, discarding inputs can improve the model performance."
([19], page 192)

With regard to the developed pantograph model, the above statement was taken
into account by keeping the model as simple as possible (using a one-dimensional
partition space) and incorporating expert knowledge where possible.

3.4.2 Equations of Motion of the Three-Mass Oscillator

In Figure 3.13 a scheme of a three-mass oscillator without the influence of gravity can
be seen. The three masses mC , mH and mM are modeled as lumped masses. This
surrogate model serves as the underlying system for the local linear models (LLMs)
of the LLMN. The incorporated state-space matrices of the LLMs are derived from
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Figure 3.14: Free body diagram for the three-mass oscillator surrogate
model, determining the orientations of the cut forces.

the equations of motion of this multiple mass oscillator, while the parameters of this
mechanism represent the parameters that will be optimized in a cost function.

For the setting up the surrogate model, first the white-box model gets separated into
two parts, which are the (compare with Figure 2.1)

• collector head, identified/known one-mass oscillator, linear subsystem, and
the

• lower framework, nonlinear subsystem.

In the next step the lower framework (nonlinear) part is surrogated by a two-mass
oscillator with unknown parameters. The torque of the pneumatic actuator is ap-
plied via an additional bar, resulting in an additional force that acts on the lower of
the two masses. By coupling this two oscillators and bounding one end two a wall,
the three-mass oscillator surrogate model for the pantograph is received, which is a
linear system with 7 free parameters moving in a single dimension.

With the orientations of the forces defined in the free body diagram of the three-mass
oscillator given in Figure 3.14, the following relations hold:

Fp = kE(ξ − η) (3.14)

FH = kC(ζ − ξ) + cC(ζ̇ − ξ̇) (3.15)

FL = kL(δM − ζ) + cL(δ̇M − ζ̇) (3.16)

FW = kW (−δM) + cW (−δ̇M) (3.17)

Hence the center of mass theorem for the 3 masses can be denoted by the fol-
lowing equations of motion (compare with the free body diagram of the three-mass
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oscillator in Figure 3.14):

collector head, mass mC :

ξ̈ mC = FH − Fp

ξ̈ = −
kC

mC

ξ −
cC

mC

ξ̇ +
kC

mC

ζ +
cC

mC

ζ̇ −
1

mC

Fp (3.18)

mass mH :

ζ̈ mH = FL − FH

ζ̈ =
kC

mH

ξ +
cC

mH

ξ̇ −
kC + kL

mH

ζ −
cC + cL

mH

ζ̇ +
kL

mH

δM +
cL

mH

δ̇M (3.19)

mass mM :

δ̈M mM = FW − FL +
1

rM

Mpa

δ̈M =
kL

mM

ζ +
cL

mM

ζ̇ −
kL + kW

mM

δM −
cL + cW

mM

δ̇M +
1

rMmM

Mpa (3.20)

3.4.3 Equations of Motion in State-Space Form

In this section the equations of motion of the three-mass oscillator surrogate model
are rewritten in state-space form. The chosen state vector for a single LLM is given
by

xT MO(t) =
[

ξ ξ̇ ζ ζ̇ δM δ̇M

]T
. (3.21)

From the equations of motion (compare equations (3.18), (3.19) and (3.20)) and the
definition of the state vector in equation (3.21) the system matrix AT MO is given
as

AT MO =














0 1 0 0 0 0

− (kE+kC)
mC

− cC

mC

kC

mC

cC

mC
0 0

0 0 0 1 0 0
kC

mH

cC

mH
− (kC+kL)

mH
− (cC+cL)

mH

kL

mH

cL

mH

0 0 0 0 0 1

0 0 kL

mM

cL

mM
− (kL+kW )

mM
− (cL+cW )

mM














, (3.22)

and with the chosen inputs - contact position η and torque Mpa - the resulting input
matrix BT MO is given by
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BT MO =














0 0
kE

mC
0

0 0
0 0
0 0
0 1

rM mM














. (3.23)

With the choice of the output matrix CT MO and a zero matrix DT MO (no direct
feedthrough)

CT MO =













1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1













, (3.24)

DT MO =













0 0
0 0
0 0
0 0
0 0
0 0













, (3.25)

the three-mass oscillator surrogate model state equation and output equation are
found by

ẋT MO(t) = AT MO xT MO(t) + BT MO u(t), (3.26)

ŷT MO(t) = CT MO xT MO(t) + DT MO u(t). (3.27)

This state-space system is then discretized utilizing the MATLAB command c2d()

with zero-order hold to discrete time with a sampling time of Ts = 0.001 [s] = 1 [ms]
to the form

xT MO(k + 1) = AT MO xT MO(k) + BT MO u(k), (3.28)

ŷT MO(k) = CT MO xT MO(k) + DT MO u(k). (3.29)

This state-space system can be extended with an affine term, giving it the possibility
to balance out offsets. This extension is necessary if signals are to be identified, which
do not possess a zero-mean. Therefore the affine term state-space formulation
is states as:

With the definition of the affine term state vector x0 as

xT MO,0 =
[

x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

]T
, (3.30)
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the affine term vector u0 as

uT MO,0 =
[

u0,1 u0,2

]T
(3.31)

and the affine term output vector y0 as

yT MO,0 =
[

y0,1 y0,2 y0,3 y0,4 y0,5 y0,6

]T
, (3.32)

the affine term state-space system and output equation (in discrete time) can be
stated as

xT MO(k + 1) = AT MO (xT MO(k) − xT MO,0) + BT MO (u(k) − uT MO,0) , (3.33)

ŷT MO(k) = CT MO (xT MO(k) − xT MO,0)+DT MO (u(k) − uT MO,0)+yT MO,0. (3.34)

3.4.4 Parameter Vector

The parameter vector θi for a single LLM for the surrogate model without affine
terms is given as

θi,T MO =
[

mH,i mM,i kL,i cL,i rM,i kW,i cW,i

]T
. (3.35)

The parameter vector solely for the affine terms of the surrogate model system equa-
tions as well as the parameter vector for the surrogate model with affine terms is
given by

θi,AT =
































x0,1,i

x0,2,i

x0,3,i

x0,4,i

x0,5,i

x0,6,i

u0,1,i

u0,2,i

y0,1,i

y0,2,i

y0,3,i

y0,4,i

y0,5,i

y0,6,i
































, θi,T MO =

[

θi,T MO

θi,AT

]

. (3.36)

The Parameter vector θ for a single LLM for the extended surrogate model with free
identifiable pan-head without affine terms is given as

θi,ET MO =
[

mH mM kL cL rM kW cW mC kC cC

]T
. (3.37)
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3.4.5 Output Error (OE) Optimization

The free parameters of the surrogate model (see equations (3.35) and (3.37)) are
optimized for each LLM using the MATLAB function fmincon().This MATLAB
function executes an output error optimization with the cost function given by equa-
tion (3.38) by varying the parameters between each simulation run and additionally
supports the setting of boundaries for each parameter of the parameter vector. There-
fore expert knowledge can be incorporated into the optimization process (compare
with Figure 3.13) by the following statements.

• All parameters represent physical entities that need to be greater than or equal
to zero (no negative mass, spring stiffness or damping).

• From the knowledge of the magnitude of the forces involved in the mechanism,
boundaries for the length of the lever arm rm of the pneumatic actuator torque
Mpa can be set.

• From the knowledge of the total mass of the pantograph mechanism, boundaries
for the two masses of the lower framework mH and mM can be set.

• The upper boundaries for the spring stiffness and damping factors are set to
sufficient high values, while 0 would indicate that the spring or damper has no
effect on the result.

Table 4.2 gives an overview of the set parameter constraints for the MATLAB func-
tion fmincon() for a certain identification run.

Remark 3.4.1. The typical output error methods exploit the gradient and Hessian
matrix of the loss function for the search of the optimal parameters. For the parame-
ter optimization of the pantograph LLMN (surrogate) these tasks (gradient, Hessian)
are carried out by the Matlab function fmincon() internally. Just the cost function
is handed over.

The employed cost function or optimization criterion for the output error (OE)
optimization method is given in the form

J = min
e

‖Ydata − Ŷ‖2
2 (3.38)

with Ydata and Ŷ containing the variables that are being used for optimization utiliz-
ing the Euclidean norm ‖·‖2. Additionaly the cost function can be tuned by applying
weights to those signals that are more important (e.g. contact force QFp

) or to bal-
ance out different magnitudes of variables (e.g position in 100 [m] and forces in 103

[N], see weights Qi). The optimization criterion used in most cases during the de-
velopment of the pantograph LLMN and which was used for the results shown in
Section 4.4 is given by equation (3.39).
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JT MO = Qp

(

min
e

‖ξdata − ξ̂‖2
2 + min

e
‖ζdata − ζ̂‖2

2

)

+ Qv

(

min
e

‖ξ̇data − ˆ̇ξ‖2
2 + min

e
‖ζ̇data − ˆ̇ζ‖2

2

)

+ Qf

(

min
e

‖FH,data − F̂H‖2
2 + QFp

(min
e

‖Fp,data − F̂H‖2
2)
)

(3.39)

with the weighting factors Qi set as the mean of the standard deviations of the
respective type of signals with i = p ... positions, v ... velocities, f ... forces.
QFp

is an additional weight to lay the focus of the optimization on the contact
force signal.

3.5 Subspace Identification Methods

This section is devoted to give some insight into the functionality of subspace identifi-
cation methods. The applied numerical algorithm for subspace identification (N4SID)
2 [33] as proposed by Overschee and Moor in [33] is implemented in the Math-
Works Matlab System Identification Toolbox (see e.g. the according User’s Guide
by Lennart Ljung for further information) as n4sid() and utilized for the panto-
graph LLMN (n4sid).

Beforehand it is mentioned, that the N4SID represents a superior structure imple-
menting all previous developed subspace identification methods. The Matlab func-
tion n4sid() as it is currently implemented is based on a unifying theorem proposed
in [34] which allows the interpretation of different subspace identification methods as
singular value decompositions of a weighted matrix. These are the Canonical Variate
Analysis (CVA) method (see [16]), the group of MOESP methods (see [38], [36] and
[37]) and the N4SID (see [33]). Thus throughout this thesis the term N4SID has to
be understood as a generic term or umbrella term.

The methods described here, are open-loop identification methods, suitable for the
pantograph modeling problem as it is treated in this thesis. In Section 3.5.4 a brief
discussion of issues arising with closed-loop subspace identification is carried out.

3.5.1 Introduction to Subspace Identification Methods

This subsection aims to elucidate the used terminology and discuss some basic knowl-
edge that is helpful when dealing with subspace identification methods.

2N4SID - "Numerical algorithms for Subspace State Space Identification. Read as a Californian
license plate: enforce id."[33]
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column space of A ∈ R
n×m







Orthogonal complements
in R

m

range(A) = y ∈ R
m : y = Ax for some x ∈ R

n

left null space of A ∈ R
n×m

ker(AT ) = y ∈ R
m : AT y = 0

row space of A ∈ R
n×m







Orthogonal complements
in R

n

range(AT ) = x ∈ R
n : x = AT y for some y ∈ R

m

left null space of A ∈ R
n×m

ker(A) = x ∈ R
n : Ax = 0

Table 3.4: The four fundamental subspaces of a matrix A ∈ R
n×m.

Subspaces of a Matrix and Linear Least-Squares

In general it can be stated, that a matrix A ∈ R
n×m defines a linear transformation

from the vector space R
n to the vector space R

m. Each of these two vector spaces
consists of two subspaces, thus defining the four fundamental subspaces related
to a matrix A ∈ R

n×m. Table 3.4 summarizes the mathematical definitions of the
subspaces of a matrix.

By keeping the relation of subspaces of a matrix in mind, let’s take a look at the set
of linear equations

Ax = y. (3.40)

Geometrically speaking one seeks the linear combinations of the columns of the ma-
trix A ∈ R

n×m of rank r that equal the vector y ∈ R
m, therefore a solution x ∈ R

n

only exists provided that the vector y lies in the column space of the matrix A.
If this condition is fulfilled, the set of linear equations 3.40 are called consistent,
otherwise inconsistent. To solve an inconsistent set of linear equations, the linear
least-squares problem can be utilized (compare [39, page 28, Section 2.6]):

min
x

‖Ax − y‖2
F , (3.41)

with ‖·‖F as the Frobenius norm, which in this case (y defined as a vector) is identical
to the Euclidean norm.

Figure 3.15 illustrates the linear-least squares method, where, as described above,
linear combinations of the columns of the matrix A are sought, that determine the
vector ŷ with a minimized residual e = y − ŷ. Or with other words a vector x is
sought, that minimizes the residual e. In the depicted case the vector y lies outside
the column space (plane spanned by the basis vectors vA,1 and vA,2) of the matrix
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Figure 3.15: Illustration of the solution to the linear least-sqaures problem.
The two basis vectors vA,1 and vA,2 spanning a two-dimensional
plane in the three-dimensional Euclidean space (e1, e2 and e1),
representing the column space of the matrix A. The estimated
ŷ is found as the orthogonal projection of the true y with the
minimized residual e lying in the orthogonal space of the column
space of A (compare with [39, page 30, Fig. 2.1]).

A and the minimal residual e is found lying in the orthogonal space of the column
space of matrix A. The result of applying this procedure can also be understood as
a projection of the vector y onto the plane given by the basis vectors of the column
space of matrix A.
The solution x̂ to the least-squares problem (3.41) can be found by the so-called
normal equations (compare [39, page 29, equation (2.10)])

AT Ax̂ = AT y, (3.42)

where x̂ is unique if the matrix A has full column rank n. Then AT A is square and
invertible and the estimate is found as (compare [39, page 32, equation (2.12)])

x̂ = (AT A)−1AT y. (3.43)

The matrix (AT A)−1AT is referred to as the pseudo-inverse of the matrix A. Fur-
thermore the matrix A(AT A)−1AT ∈ R

m×m yields the orthogonal projection of a
vector in R

m onto the space spanned by the columns of the matrix A. This projec-
tion is denoted by (compare [39, page 32, Section 2.6.1])

ΠA := A(AT A)−1AT , (3.44)

with the properties given in [39, page 32, Section 2.6.1].

Singular Value Decomposition

The subspaces of a matrix can be (numerically efficient) determined by the utilization
of a singular value decomposition (SVD) (see e.g. [39, page 26, Theorem 2.6]) and
an appropriate partitioning. In general every matrix A ∈ R

m×n can be decomposed
as (compare [39, page 26, Theorem 2.6])
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Figure 3.16: Illustration of the partitioning of the SVD of a matrix A ∈ R
m×n

with m > n > r = rank(A) and U1 ∈ R
m×r, U2 ∈ R

m×(m−r),
Σ1 ∈ R

r×r, V1 ∈ R
n×r and V1 ∈ R

n×(n−r), where m = 4 > n =
3 > r = 2 (compare with equation (3.46)).

A = UΣVT , (3.45)

with the orthogonal matrices U ∈ R
m×m and V ∈ R

n×n and the matrix Σ ∈ R
m×n

with the singular values on its main diagonal listed in descending order (σ1 ≥ σ2 ≥
· · · ≥ σr > σr+1 = · · · = σk = 0 where rank(A = r) and min(m.n) = k). The singu-
lar values can be utilized to determine the rank of a matrix, which is implemented
in the MATLAB System Identification Toolbox function n4sid() for automatic de-
termination of the order of the identified system. This is realized by counting the
nonzero singular values the system order n is obtained, in case where no noise is
present. If however noise is present on the system all singular values will differ from
zero, but a gap between the nth and (n + 1)th singular value should be detectable
(see [39, page 311, Figure 9.4]).

If a matrix A ∈ R
m×n has rank r, where r < m and r < n the SVD from equation

(3.45) can be partitioned to (compare [39, page 27, Section 2.5])

A =
[

U1 U2

]
[

Σ1 0
0 0

]
[

VT
1 VT

2

]

, (3.46)

with U1 ∈ R
m×r, U2 ∈ R

m×(m−r), Σ1 ∈ R
r×r, V1 ∈ R

n×r and V1 ∈ R
n×(n−r). This

partitioning of the SVD is illustrated for a matrix A ∈ R
4 with r = 2 in Figure 3.16.

From equation (3.46), Figure 3.16 and Table 3.4 it can be seen, that the columns
of the received matrices U1, U2, V1 and V2 provide orthogonal bases for all four
fundamental subspaces of a matrix A ∈ R

m×n with m > n > r = rank(A). These
results are collected in Table 3.5.

QR Factorization

The QR factorization is utilized by the subspace identification methods for improving
the numerical efficiency when estimating state-space system matrices from input and
output data.
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column space of A: range(A) = range(U1)

left null space of A: ker(AT ) = range(U2)

row space of A: range(AT ) = range(V1)

null space of A: ker(A) = range(V2)

Table 3.5: The resulting matrices U1, U2, V1 and V2 of the partitioning of
the SVD of a matrix A deliver the four fundamental subspaces of
this matrix (compare with Table 3.4, equation (3.46) and Figure
3.16).

column space of A: range(A) = range(Q1)

left null space of A: ker(AT ) = range(Q2)

row space of A: range(AT ) = range(RT
1 )

Table 3.6: The resulting matrices Q1, Q2 and R1 of the partitioning of the
QR factorization of a matrix A deliver again some of the funda-
mental subspaces of this matrix (compare with Table 3.4, equation
(3.48) and Section 3.5.1.

In general every matrix A ∈ R
m×n with m > n can be decomposed into (compare

[39, page 27, Theorem 2.6])

A = QR, (3.47)

with the orthogonal matrix Q ∈ R
m×m and the augmented upper-triangular matrix

R ∈ R
m×n (zero rows at the bottom). This procedure is referred to as QR factor-

ization (compare [39, page 27, Theorem 2.7]). As above for a matrix A ∈ R
m×n

with m > n > r = rank(A) a partitioning of the QR factorization of matrix A in
equation (3.47) can be carried out in the form (compare [39, page 27, Section 2.5])

A =
[

Q1 Q2

]
[

R1 R2

0 0

]

, (3.48)

with Q1 ∈ R
m×r, Q2 ∈ R

m×(m−r), R1 ∈ R
r×r and R2 ∈ R

r×(n−r). In analogy to the
illustrations presented in the previous section the matrices received by the partitioned
QR-decomposition can be utilized to deliver some subspaces of the matrix A, as is
summarized in Table 3.6.

Remark 3.5.1. The RQ factorization of a matrix A is related to the QR-decomposition
of the matrix AT as is shown in [39, page 28, Section 2.5].
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Kalman-Filter Problem

In general the Kalman-filter represents a computational scheme for reconstructing
the state vector x(k) of a given state-space model in a statistically optimal manner.
The well known Kalman-filter problem (see e.g. [39, page 134, Section 5.3]) is a
minimum-error variance estimation problem (compare defintions [39, page 110, Defi-
nition 4.15] and [39, page 110, Definition 4.16]). The Kalman-filter is also referred to
as the optimal-statistical-state-observer and is a member of the class of filters used
to reconstruct missing information, such as part of the state vector from measured
quantities in a state-space model.

In relation to the subspace identification methods, it can be stated that an observer is
a filter that approximates the state vector of a dynamical system from measurements
of the input and output sequences and in general requires a model of the system
under consideration (formulation of the Kalman filter problem). Furthermore by
formulating the Kalman filter problem in a recursive manner (keywords: one-step-
ahead predicted states, time update, measurement update; compare [39, page 135,
Section 5.4]), it can be interpreted as a stochastic least-squares problem. Thereby
a connection between the Kalman filter problem, a least-squares problem and, as
described above, a projection (into a subspace) is found. This mutually interpretation
possibilities are utilized in deriving the N4SID equations as described in [33] and
Section 3.5.2. For further information see [33, page 9, Chapter 4].
It is also mentioned here, that the introduction to the functionality of the subspace
methods done in Section 3.5.2 is in regard to classical subspace identification, where
the system matrices of the data generating system are identified. The N4SID ap-
proach however differs in its implementation, by first estimating the Kalman states
of the underlying system, and subsequently determining the system matrices (see
illustration in [33, page 47, Figure 1] and remarks throughout Section 3.5.2).

State-Space System Representations

The subspace identification methods are based on different forms of state-space sys-
tems, which will be briefly discussed here.

In general the stochastic (state-space) model of interest for the identification of the
pantograph is given in process form by

x̂(k + 1) = A(k)x(k) + B(k)u(k) + w(k), (3.49)

y(k) = C(k)x(k) + D(k)u(k) + v(k), (3.50)

with the matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
q×n, D ∈ R

q×m, the state vector
x ∈ R

n, the input vector u ∈ R
m, the output vector y ∈ R

q, the process noise w ∈ R
n

and the measurement noise v ∈ R
q - which both have to be white and uncorrelated

sequences - and with n the number of states, m the number of inputs and q the
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number of outputs. For this system (has to be observable) a Kalman filter can be
designed using a stochastic input denoted as a innovation sequence by

e(k) = y(k) − C(k)x̂(k|k − 1), (3.51)

which is a zero-mean white-noise sequence and independent of past input and output
data (for further information regarding the stochastic properties see [39, page 152,
Section 5.5.5]). The innovation represents the difference between the observed value
and the predicted value, therefore implementing a predictive observer based distur-
bance model. Together with the Kalman gain K (which can be obtained by solving
an algebraic Ricatti equation) the state-update and output equations can be written
as

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(k) + K(k)e(k), (3.52)

y(k) = C(k)x̂(k|k − 1) + e(k) (3.53)

which is referred to as the innovation representation of a state-space system or state-
space system in innovation form.

3.5.2 Subspace Identification

This section treats the approach of identifying linear time-invariant (LTI) state-space
models from input and output data of a dynamic system via subspace identification
methods. The content of the following sections aims to give the reader a basic
understanding of functionality of these methods and an overview of the common ap-
proaches. For further information on the presented methods and mathematical proofs
consult [39, Chapter 9], for the derivation of the n4sid equations see [33] as well as
[35]. Furthermore, as mentioned in the introduction of this Section, there exists a
unifying theorem (see [34]) showing the similarities of several subspace identification
methods. An overview of the state of the art subspace identification methods (for
open-loop and closed-loop systems) can be found in [25].

The general conception is to store the available input and output data in structured
block Hankel matrices with which the so-called data equation (see equation (3.60))
or a Kalman filter can be formulated. Then, by solving a number of simple linear-
algebra problems (SVD and QR factorization and solution of a linear least-squares
problem), it is possible to retrieve certain information of the underlying state-space
system (which generated the data) either by the column space of the observability
matrix of the data equation or the row space of the Kalman filter in a non-iterative
fashion (no nonlinear optimization required). The bottom line is, that the system
matrices of a LTI system can be retrieved up to a similarity transformation solely
from input and output data, which can be utilized to generate a pantograph LLMN
(n4sid) without any knowledge about the pantograph under investigation (see Sec-
tion 3.5.4 for a discussion of issues that arise when implementing this approach).
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The subspace identification will be explained starting with deterministic (i.e. noise-
free) systems, moving on gradually ending up with models where white process and
measurement noise is present.

The state-update and output equation of a minimal (reachable and observable) de-
terministic system are given by

x(k + 1) = Ax(k) + Bu(k), (3.54)

y(k) = Cx(k) + Du(k), (3.55)

with x(k) ∈ R
n, u(k) ∈ R

m and y(k) ∈ R
l. For the subspace ID the unknowns of

that equations are the system matrices (A, B, C and D) and the initial state vector
x(k = 0).

By inserting the the state-update equations of all time steps k from k = 0 up to
k = s − 1 with s > n into each other, the output equations of these time steps can
be written in the following formulation, giving a relationship between the input data
batch and the initial vector to the output data batch as (compare [39, page 295,
equation (9.4)])












y(0)
y(1)
y(2)

...
y(s − 1)












=












C
CA
CA2

...
CAs−1












︸ ︷︷ ︸

Os

x(0) +












D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

. . . . . .
...

CAs−2B CAs−3B · · · CB D












︸ ︷︷ ︸

Ts












u(0)
u(1)
u(2)

...
u(s − 1)












,

(3.56)
where Os is referred to as the extended observability matrix (compare [33, page
4, Section 2.1.1]).

As the underlying system is assumed to be time-invariant arbitrary time-shifts can
be employed to equation (3.56), while keeping the same matrices Os and Ts, e.g. for
a shift over k samples (compare [39, page 295, equation (9.5)]):









y(k)
y(k + 1)

...
y(k + s − 1)









= Osx(k) + Ts









u(k)
u(k + 1)

...
u(k + s − 1)









. (3.57)

If now equations (3.56) and (3.57) are combined for different time-shifts (dependent
on the availability of according data) the data equation can be defined as (compare
[39, page 296, equation (9.5)])
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







y(0) y(1) · · · y(N − 1)
y(1) y(2) · · · y(N)

...
...

. . .
...

y(s − 1) y(s) · · · y(N + s − 2)









=

= OsX0,N + Ts









u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)

...
...

. . .
...

u(s − 1) u(s) · · · u(N + s − 2)









,

(3.58)

where (compare [39, page 296, Section 9.2.1)])

Xi,N =
[

x(i) x(i + 1) · · · x(i + N − 1)
]

=
[

Aix(i) Ai+1x(i) · · · Ai+N−1x(i)
] (3.59)

with n < s < N .

Remark 3.5.2 (Equation (3.59)). Xi,N as denoted in equation (3.59) only depends on
the initial state x(0) and the system matrix A if i is set to 0.

The data equation can be denoted in compact form as (compare [39, page 296,
equation (9.7)])

Y0,s,N = OsX0,N + TsU0,s,N , (3.60)

with the known matrices Y0,s,N and U0,s,N as block Hankel matrices containing
the input and output data, the unknown matrices Os as the extended observabil-
ity matrix and the lower block triangular Toeplitz matrix Ts (compare [33, page
5, Section 2.1.1]) containing the state-space matrices of the underlying system
up to a similarity transformation, as well as the unknown initial condition x(0)
contained in the state matrix X0,N .

Subspace Identification for Autonomous Systems

By looking at an autonomous system (special case of the deterministic system) the
basic operations of the subspace identification methods can be demonstrated. The
data equation (3.60) becomes then (matrices B and D equal zero) (compare [39, page
297, equation (9.8)])

Y0,s,N = OsX0,N . (3.61)

Equation (3.61) shows, that the columns of the block Hankel matrix of the output
data Y0,s,N (as defined in equation (3.58)) are linear combinations of the columns
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of the extended observability matrix Os (as defined in equation (3.56)). To see this
compare with Section 3.5.1 equation (3.40). If additionally N ≥ s > n it can be
shown that under some mild conditions (X0,N full row rank n, minimal system, ap-
plication of Sylvester inequality, compare [39, page 297, Section 9.2.2]) the column
spaces of Y0,s,N and Os are equal. Hence by applying a SVD (see Section 3.5.1 equa-
tion (3.46)) to the matrix Y0, s, N the system matrices A and C can be determined
up to a similarity transformation (compare [39, page 298, equation (9.9)]):

Y0,s,N = UnΣnVT
n , (3.62)

with Σn ∈ R
n×n with rank(Σn) = n.

The matrix CT = CT (similarity transformation of matrix C) can now be received
from (compare [39, page 298, Section 9.2.2])

Un = OsT =









CT
CT(T−1AT)

...
CT(T−1AT)s−1









=









CT

CT AT

...
CT As−1

T









(3.63)

by taking the first l rows of Un i.e. (compare [39, page 299, Section 9.2.2])

CT = Un(1 : l, :), (3.64)

with l as the number of outputs as defined in equation (3.55). Furthermore the matrix
AT can be computed from the equality resulting from equation (3.63) as (compare
[39, page 299, equation (9.10)])

Un(1 : (s − 1)l, :) AT = Un(l + 1, sl, :), (3.65)

which due to s > n has a unique solution. Additionally the number of nonzero sin-
gular values determines the order of the underlying system, which becomes
more relevant in the presence of noise disturbance as will be shown later on.

Figure 3.17 depicts two block Hankel matrices of the output data of a state-space
system with n = 2 states and N >> s = 3 > n. Therefore, each column of the
block Hankel matrix (see e.g. equation (3.58)) can be represented by a point in
the three dimensional space, where the two trajectories represent output data sets
of simulations realized with different initial states x(0). This illustration of the
column space of the block Hankel matrix allows a geometric interpretation due
to the fact that both curves lie in the same two-dimensional subspace (a plane).
This plane therefore has to be characteristic for the matrix pair (A, C). A different
autonomous state-space system would deliver state trajectories that lie in a different
plane, therefore this visualization shows how output data (i.e. the column space of
the block Hankel matrix) contains information about the underlying system (state-
dimension n).
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Figure 3.17: Illustration of two block Hankel matrices containing the output
data of the same autonomous state-space system for two differ-
ent initial values x(0) (blue and cyan). The state trajectories
are lying in a two-dimensional subspace of a three-dimensional
ambient space, therefore revealing information of the underlying
system.

Subspace Identification for General Input Sequences

As shown in the previous section, the subspace identification aims to retrieve a matrix
whose column space is equal to the column space of the extended observability matrix
to subsequently determine the system matrices A and C of the underlying system up
to a similarity transformation. In case of the presence of a general input to the system,
this approach would suggest subtracting the term TsU0,s,N from Y0,s,N in equation
(3.60) and perform a SVD to determine A and B as shown in equations (3.64) and
(3.65). However the matrix Ts is unknown and therefore has to be estimated. This
can be done by formulating an according linear least-squares problem (compare [39,
page 301, Section 9.2.4])

min
Ts

‖Y0,s,N − TsU0,s,N‖2
F , (3.66)

which can be reformulated in analogy to equation (3.44) as the orthogonal projection
of the block Hankel matrix Y0,s,N onto the column space of the block Hankel matrix
U0,s,N utilizing a projection matrix. Thus the influence of the input on the output
can be removed in the data equation (3.60) which then can be written as (compare
[39, page 302, equation (9.17)])

Y0,s,NΠ⊥
U0,s,N

= OsX0,NΠ⊥
U0,s,N

, (3.67)

with the

orthogonal projection matrix (compare [39, page 302, equation (9.16)] and
equation (3.44))
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Π⊥
U0,s,N

= IN − UT
0,s,N (U0,s,NUT

0,s,N )−1U0,s,N , (3.68)

with the properties (compare [39, page 295, Section 9.2.4])

U0,s,NΠ⊥
U0,s,N

= 0, (3.69)

rank
(

Y0,s,NΠ⊥
U0,s,N

)

= n. (3.70)

The subspace identification can only be carried out if the input u(k) is such that
(compare with [39, page 302, Lemma 9.1], based on the definition of input sequences
that are persistently exiting of order n in [39, page 358, Definition 10.1])

rank
([

X0,NU0,s,N

])

= n + sm, (3.71)

Only then the column space of Y0,s,NΠU in equation (3.67) is contained in the column
space of the extended observability matrix and therefore the system matrices AT and
CT can be retrieved (compare [39, page 303, equation (9.19)]):

range
(

Y0,s,NΠ⊥
U0,s,N

)

= range (Os) . (3.72)

As it can be shown, the numerical efficiency of the subspace identification computa-
tion can be significantly reduced by using the following RQ factorization (see Lemma
[39, page 304, Lemma 9.2] and Theorem [39, page 305, Theorem 9.1]):

[

U0,s,N

Y0,s,N

]

=

[

R11 0 0
R21 R22 0

]





Q1

Q2

Q3




 , (3.73)

with R21 ∈ R
sm×sm and R22 ∈ R

sl×sl, Q2 ∈ R
sl×N . Applying this factorization

simplifies (computationally) the relation of the column spaces to (compare [39, page
305, equation (9.22)])

range
(

Y0,s,NΠ⊥
U0,s,N

)

= range (R22) = range (Os) . (3.74)

Applying the SVD to the term R22 retrieves the system matrices AT and CT as
shown above. Thereby the construction of the projection matrix, which is consider-
ably big and involves a matrix inversion computation, can be avoided.

Finally the matrices BT and DT as well as the initial state vector xT (0) can be
computed setting up a linear least-squares problem (see [39, page 307, equation
(9.25)]) or directly from R11 and R21 by exploiting the structure of the matrix Ts in
equation (3.56). For further information consult [38].
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Instrumental Variables

For real world problems, the requirement of a deterministic (noise-free) system is
hardly ever fulfilled. Therefore concepts to deal with noise disturbance were de-
veloped, were in the following sections all noise sequences are assumed to be ergodic
(strong law of large numbers, see [39, page 104, Section 4.3.4]) stochastic processes.
There are three cases of subspace identification utilizing instrumental variables that
will be discussed separately:

• subspace identification with measurement noise (white - MOESP, colored - PI-
MOESP)

• subspace identification with process and measurement noise (PO-MOESP)

• subspace identification with process and measurement noise based on a least-
squares problem (N4SID)

First the system equations (3.54)-(3.55) are reformulated for measurement noise
by

x(k + 1) = Ax(k) + Bu(k), (3.75)

y(k) = Cx(k) + Du(k) + v(k). (3.76)

The data equation (3.60) for measurement noise is extended to (compare [39, page
307, equation (9.28)])

Y0,s,N = OsX0,N + TsU0,s,N + V0,s,N , (3.77)

with V0,s,N the block Hankel matrix constructed for the measurement noise sequence
v(k).

The aim now is to carry out the subspace identification in the same fashion as shown
before, receiving unbiased estimates of the system matrices AT , BT , CT and DT in
the presence of measurement noise. To be able to do so, the influence of the input
U0,s,N and additionally of the measurement noise V0,s,N have to be eliminated from
equation (3.77). To remove the influence of the block Hankel matrix constructed from
the noise sequence v(k) the so called instrumental variables matrix (as proposed in
[30]) was introduced, which posses the following properties (compare [39, page 314,
equations (9.37) and (9.38)]):

Properties of the instrumental-variables matrix ZN :

lim
N→∞

1

N
Vi,s,NΠ⊥

Ui,s,N
ZT

N = 0, (3.78)

rank
(

lim
N→∞

1

N
Xi,NΠ⊥

Ui,s,N
ZT

N

)

= n. (3.79)
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Due to property (3.78) it is possible to again retrieve the system matrices of the
underlying system by multiplying the data equation (3.77) on the right first by the
projection matrix Π⊥

Ui,s,N
and then by the instrumental variables matrix ZT

N , yielding
(compare [39, page 314, Section 9.4])

lim
N→∞

1

N
Y0,s,NΠ⊥

U0,s,N
ZT

N = lim
N→∞

1

N
OsXi,NΠ⊥

U0,s,N
ZT

N . (3.80)

Because of property (3.79), the column space of the term on the left-hand side of
equation (3.80) is again contained in the column space of the extended observability
matrix Os by (compare [39, page 314, equation (9.39)])

range
(

lim
N→∞

1

N
Y0,s,NΠ⊥

U0,s,N
ZT

N

)

= range (Os) . (3.81)

In the case were measurement noise v(k) and process noise w(k) are present, the
system equations (3.54)-(3.55) have to be reformulated, utilizing the innovation form
as purposed in Section 3.5.1 by equations (3.52)-(3.53), yielding the data equation
(3.60) extended for measurement and process noise as (compare [39, page 321, equa-
tion (9.52)])

Y0,s,N = OsX0,N + TsU0,s,N + SsE0,s,N , (3.82)

where E0,s,N is a block Hankel matrix constructed from the innovation sequence e(k)
and with the weighting matrix (compare with [39, page 322, Section 9.6])

Ss =












Il 0 0 · · · 0
CK Il 0 · · · 0

CAK CK Il · · · 0
...

...
. . . . . .

...
CAs−2K CAs−3K · · · CK Il












. (3.83)

Here the innovation sequence e(k) is a white-noise sequence and K is the Kalman
gain (compare Section 3.5.1). By formulating the data equation in this way, the
properties of the instrumental variables matrix are the same as in case of subspace
identification with just measurement noise, if Vi,s,N in equation (3.78) gets replaced
with Ei,s,N .

Finally an alternative route to subspace identification as proposed in [33] for the
derviation of the N4SID method will be introduced. Here the instrumental variable
matrix ZN is utilized to derive the extended observability matrix Os by constructing
a linear-least squares problem (projection, compare [39, page 330, equation (9.63)]
and [33, page 7, Chapter 3])

[

L̂u
N L̂z

N

]

= arg min
Lu,Lz

‖Ys,s,N −
[

Lu Lz
]
[

Us,s,N

ZN

]

‖2
F , (3.84)

where (compare [39, page 330, equation (9.64)])
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lim
N→∞

L̂z
N = OsLs + Os(A − KC)s∆z (3.85)

yields the extended observability matrix Os (for details on the involved matrices
consult [39]). The data equation (3.60) can be written for this formulation for i = s
as (compare [39, page 330, equation (9.67)])

Ys,s,N = OsLsZN + TsUs,s,N + SsEs,s,N + Os(A − KC)sX0,N (3.86)

The remaining question that needs to be answered is how to choose the instrumental
variable ZN , which is not unambiguous. Therefore several subspace identification
methods were developed, which will be discussed briefly in the upcoming section.

Subspace Identification Methods

Table 3.7 and 3.8 give an overview of common subspace identification methods that
incorporate different choices of the instrumental variable Zn, acoording to the equa-
tions introduced in the previous sections.

Remark 3.5.3 (Table 3.8, subspace method N4SID). The range equation of the N4SID
method (made computationally efficient by the RQ factorization) can be used to
compute the extended observability matrix as shown before. Alternatively the matrix
Xs,N contains the state-sequence of a Kalman filter, which can also be estimated by
the SVD as

X̂s,N = Σ
1
2
n VT

n (3.87)

according to equation (3.45). Taking the path of estimating the state-sequence of a
Kalman filter also allows to determine the state-space matrices AT , BT , CT and DT

by solving the least-squares problem (compare [39, page 332, equation (9.69)])

min
AT ,BT ,C,

T
DT

‖

[

X̂s+1,N

Ys,1,N−1

]

−

[

AT BT

CT DT

] [

X̂s,N−1

Us,1,N−1

]

‖2
F , (3.88)

and was first proposed by [33]. These estimated system matrices AT , BT , CT and DT

can furthermore be used to estimate the Kalman gain of the innovation form state-
space system as defined in equation (3.52) by solving a according Riccati equation
(for further details consult [39, page 333, Section 9.6.3]).

Finally it is mentioned, that there exists a possibility to related the different ap-
proaches to subspace identification based on the formulation of the least-squares
problem in equation (3.84). By solving this problem in an alternative manner, it can
be shown (see [39, page 334, Section 9.6.4]) that the extended observability matrix
Os can be received from the SVD of a weighted matrix given by

W1

(

(Ys,s,NΠ⊥
Us,s,N

ZT
N)(ZNΠ⊥

U0,s,N
ZT

N)−1
)

W2 = UnΣnVT
n . (3.89)
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MOESP Multivariable Output-Error State-sPace method ([38])

System given by equations (3.75)-(3.76) resulting in data equation (3.77) with i = 0, white measure-
ment noise

Conditions with v(k) as an ergodic white-noise sequence with variance σ2Il that is uncorrelated with the
ergodic sequence u(k)

with u(k) as an ergodic sequence, such that condition (3.71) is satisfied.

ZN no instrumental variable necessary due to properties of the noise sequence as it is shown in
[39, page 307, Section 9.3]

RQ factorization

[

U0,s,n

Y0,s,N

]

=

[

R11 0

R21 R22

][

Q1

Q2

]

SVD lim
N→∞

1√
N

R22 =

[

Un U2

]
[√

Σ2
n + σ2In 0

0 σIsl−n

][

VT
1

VT
2

]

range(Un) = range(Os)

PI-MOESP Past Inputs Multivariable Output-Error State-sPace method ([36])

System given by equations (3.75)-(3.76) resulting in data equation (3.77) with i = s, colored mea-
surement noise

Conditions with v(k) as an ergodic noise sequence that is uncorrelated with the ergodic sequences x(j)
and u(j) for all k, j ∈ Z

with x(k) and u(k) such that the rank conditions (compare [39, page 317, equation (9.44)]
and [39, page 318, equation (9.45)])

rank

(

lim
N→∞

1
N

[

Xs,N

Us,s,N

]
[

UT
0,s,N

UT
s,s,N

]
)

= n+sm and lim
N→∞

1
N

U0,s,N UT
0,s,N

has full

rank, are satisfied

ZN the past inputs data block Hankel matrix is used with ZN = U0,s,N

RQ factorization






Us,s,n

U0,s,n

Ys,s,N




 =






R11 0 0

R21 R22 0

R31 R32 R33











Q1

Q2

Q3






SVD range

(

lim
N→∞

1√
N

R32

)

= range(Os)

Table 3.7: Subspace Identification Methods with N ≥ s > n, Part 1.
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PO-MOESP Past Outputs Multivariable Output-Error State-sPace method ([37])

System given by equations (3.52)-(3.53) resulting in data equation (3.82) with i = s, white measure-
ment noise and white process noise

Conditions with e(k) as an ergodic white-noise sequence that is uncorrelated with the ergodic sequences
x(j) and u(j) for all k, j ∈ Z

with e(k) and u(k) such that the rank conditions (compare [39, page 325, equation (9.58)]
and [39, page 326, equation (9.59)])

rank

(

lim
N→∞

1
N

[

Xs,N

Us,s,N

]
[

YT
0,s,N

UT
0,s,N

UT
s,s,N

]
)

= n + sm and

rank

(

lim
N→∞

1
N

[

X0,N

U0,2s,N

]
[

XT
0,N

UT
0,2s,N

]
)

= n + 2sm are satisfied

ZN the past input and output data block Hankel matrices are used with ZN =

[

U0,s,N Y0, s, N

]

RQ factorization








Us,s,n
[

U0,s,n

Y0,s,n

]

Ys,s,N








=






R11 0 0

R21 R22 0

R31 R32 R33











Q1

Q2

Q3






SVD range

(

lim
N→∞

1√
N

R32

)

= range(Os)

N4SID Numerical Algorithm for Subspace Identification ([33])

System given by equations (3.52)-(3.53) resulting in data equation (3.86) with i = s, white measure-
ment noise and white process noise

Conditions identical with the conditions required for the PO-MOESP method, see there

ZN the past input and output data block Hankel matrices are used with ZN =

[

U0,s,N Y0, s, N

]

RQ factorization








Us,s,n
[

U0,s,n

Y0,s,n

]

Ys,s,N








=






R11 0 0

R21 R22 0

R31 R32 R33











Q1

Q2

Q3






SVD range

(

lim
N→∞

R32R−1
22

[

U0,s,N

Y0,s,N

])

≈ range
(

OsXs,N

)
for large enough s

Table 3.8: Subspace Identification Methods with N ≥ s > n, Part 2.
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Subspace ID Method Weighting matrices

PO-MOESP W1 = Isl W2 = (ZN Π⊥
Us,s,N

ZT
N

)
1

2

N4SID W1 = Isl W2 = (ZN ZT
N

)
1

2

CVA W1 = (Ys,s,N Π⊥
Us,s,N

YT
s,s,N

)− 1

2 W2 = (ZN Π⊥
Us,s,N

ZT
N

)
1

2

Table 3.9: Weighting matrices of equation (3.89) for the weighted SVD set-
ting different approaches to subspace identification into relation.

By the choice of the nonsingular weighting matrices W1 and W2 several subspace
identification matrices can be related as can be seen in Table 3.9. There the Canon-
ical Variate Analysis (CVA) based approach to subspace identification follows the
idea, that the matrix on which the SVD is performed is obtained by an canonical
correlation analysis (see [16] and [25]). The CVA based approach is implemented in
the Matlab function n4sid() and was chosen in the majority of cases if the choice
of the weighting matrices W1 and W2 in the n4sidOptions was set to ’auto’ (auto-
matic determination). See the Matlab n4sid() documentation for further details.

3.5.3 State-Space Model with N4SID

The approach, which leads to the pantograph LLMN (n4sid), implements state-space
systems identified directly form input and output data by employing the subspace
identification method N4ISD through the MATLAB function n4sid(), where an ar-
bitrary high system order is chosen. Subsequently an order reduction achieved by
reduce() is carried out to match the dimensions of the pantograph LLMN (surro-
gate) systems. The results shown in Section 4.5 are based on a (6 × 1) state space
vector (noninterpretable), a (2 × 1) input vector (contact position η and pneumatic
actuator torque Mpa) and an (4 × 1) output vector (collector head and crossbar po-

sitions and velocities, y =
[

ξ ξ̇ ζ ζ̇
]T

. Details of the derivation of the system
matrices in this approach are discussed in the following section.

By employing the MathWorks® MATLAB function n4sid() one obtains the system
matrices AT , BT , CT , DT and KT of a state-space system in innovation representation
(compare Section 3.5.1) in discrete time as

xT (k + 1) = AT xT (k) + BT u(k) + KT eT , (3.90)

yT (k) = CT xT (k) + DT u(k) + eT (3.91)

where DT = 0 by default (no direct feedthrough) and index T indicates again the
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similarity transformed matrices. This result of n4sid() is given in form of an idss

model, which is defined as a state-space model with identifiable parameters (supports
additional functions like subreferencing). The disturbance eT is defined as described
in Section 3.5.1. For the identification of the system matrices for the pantograph
LLMN (n4sid) using n4sid(), there were three options of special interest that were
changed from their default settings (see Matlab documentation of n4sid() and
n4sidOptions()):

• InitialState = ’zero’: The initial state is fixed to zero and not treated as
an independent estimation parameter.

• DisturbanceModel = ’none’: The Kalman gain matrix is fixed to zero and
not treated as an independent estimation parameter (therefore the disturbance
model is switched off).

• Form = ’modal’: The type of canonical form is set to modal form, decreasing
the number of free parameters for estimation (the default setting ’free’ allows
all matrix entries to be estimated).

All these settings decrease the performance of the n4sid(). The first two options
were deactivated, because only the system matrices AT , BT , CT and DT are imple-
mented in the pantograph LLMN, without any disturbance model and independent
of the initial state. The choice of a modal form of the system matrix AT is done to
make the non-interpretable matrices resulting from the N4SID more similar in their
structure and therefore more compatible to each other. This is relevant in case the
parameter blending method (see Section 3.6.2) is utilized when a pantograph LLMN
(n4sid) with multiple LLMs is constructed. However through the subsequent order
reduction procedure this form gets lost, and has to be restored by a transformation
back to the modal form (realized with the Matlab function canon()) which again
weakens the performance. If instability occurs during parameter blending, the out-
put blending method (see Section 3.6.1) has to be employed.

By setting the options as described above it is also possible to reduce the order of the
identified system using the Matlab function reduce() (see Matlab documenta-
tion), which employs Hankel singular values based model reduction functions. This
function is implemented in its default setting (additive error method) and used to
receive a state-space model of order n = 6, based on the expert knowledge of the
dimension of the underlying system (DOF, see Section 2.1). This proceeding allows
the application of the N4SID with an overpowering high order (e.g. n = 100) yielding
simulation results with astonishing performance (FIT over 90[%] for zero-mean oper-
ation point data sets, see Chapter 4), while receiving a set of matrices in a dimension
matching the expert knowledge about the pantograph system and therefore keeping
the pantograph LLMN (n4sid) simple and fast from a computational point of view.

Summarizing the presented pantograph LLMN (n4sid) incorporates sets of identified
state-space matrices AT , BT , CT and DT , derived by the subsequent application of
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the Matlab functions n4sid() and reduce() on local data sets (around the center
of the LLMs), into the LLMs of the LLMN structure according to equations (3.28)
and (3.29). The dimensions are given with number of states n = 6, number of inputs
m = 2 and number of outputs q = 4, where the input and output data (sequences)
are given as

un4sid =
[

η Mpa

]T
, (3.92)

yn4sid =
[

ξ ξ̇ ζ ζ̇
]T

, (3.93)

for k = 1 . . . N .

3.5.4 Modeling Issues with Subspace ID Methods

In this section a brief discussion of some issues that arise when using the pantograph
LLMN (n4sid) based on subspace identification methods is carried out.

Primarily the identified state-space matrices provide no interpretability possibilities,
which makes the pantograph model a dark-gray model. The main advantage of
this approach however is the very efficient way of determining a working model just
by input/output data sets, which therefore can be adapted to another pantograph
geometry very quickly, yielding strong performance.

A great computational disadvantage is the incorporation of a preprocessing (low-
pass filter) and postprocessing (look-up table) to the pantograph model (makes the
model considerably slower, compare Figure 3.18 see Section 4.6). This is necessary
due to the fact, that the n4sid() algorithm can only cope with zero-mean signals.
Furthermore an online capable implementation of that approach introduces a slight
phase shift to the input signals. Subsequently, due to the input partitioning, also the
partitioning variable carries a phase shift, distorting the blending procedure, even if
the more robust output blending method is applied.

Furthermore it is mentioned here, that applying the subspace methods to closed
loop data is a topic of its own. In the case of closed loop identification the conditions
presented in the previous sections are violated and the presented methods have to
be modified. For further information consult e.g. [39, page 336, Section 9.7] or see
[6], [13], [26] and [5].

3.6 LLMN Blending Methods

This section discusses the applied blending methods of the local linear model net-
works in state-space configuration.



3.6 LLMN Blending Methods 73

As mentioned in the previous sections, the aim of this thesis is to develop a LLMN in
state-space configuration for the nonlinear pantograph. In Section 3.1 two possible
blending procedures were mentioned, that enable the LLMN to generate a global,
blended output for each of the MIMO-system’s outputs. These are the

• Parameter Blending Method, utilized for the pantograph LLMN (sur-
rogate) and the

• Output Blending Method, utilized for the pantograph LLMN (n4sid).

The underlying discrete-time state-space models for both pantograph LLMNs (sur-
rogate and n4sid) are given in the following form:

xi(k + 1) = Ai xi(k) + Bi u(k), (3.94)

ŷi(k) = Ci xi(k) + Di u(k), (3.95)

with the global (LLMN model) input given as

u(k) =
[

η(k) Mpa(k)
]T

. (3.96)

Remark 3.6.1 (Equations (3.94)-(3.95)). Index i indicates an affiliation with the local
linear model LLMi, where i = 1 ... M .

Remark 3.6.2. The contact position η is chosen as the input partition variable, hence
the one-dimensional partition space for the computation of the according validity
function is defined as

Φ(z(k)) = Φ(η(k)). (3.97)

Remark 3.6.3. For the pantograph LLMN (surrogate) the matrices Ai, Bi, Ci and
Di are given according to equations (3.22) to (3.25) (see Section 3.4.3). For the
pantograph LLMN (n4sid) these matrices are given by several identification runs
using the Matlab function n4sid() as similarity transformed matrices (see Section
3.5.3).

3.6.1 Output Blending

The output blending is the more commonly applied method, especially in connection
with LLMNs in ARX configuration. An illustration of the output blending method
implemented for the LLMN in state-space configuration can be seen in Figure 3.18.
In this case the overall output ŷ(k) of the LLMN model is realized by blending
the outputs of the respective LLMs. The system equations (3.94) and (3.95) are
evaluated at each time step k for each LLM separately providing the according local
outputs ŷi(k). The evaluation of the validity functions collected in Φ(η(k)) (see
equation 3.13) determine the interpolation of the local outputs ŷi(k), generating the
global output ŷ(k). Therefore an additional output blending equation, which is also
evaluated at each time step k, is received as (compare [19, page 342, equ. (13.3)]):
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Figure 3.18: Illustration of a LLMN structure utilizing the output blending
method, implemented for the pantograph LLMN (n4sid).

Figure 3.19: Illustration of a LLMN structure utilizing the parameter blend-
ing method, implemented for the pantograph LLMN (surro-
gate).
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ŷ(k) =
M∑

i=1

ŷi(k) Φi(z(k)) (3.98)

If the the state-space system equations (3.94) and (3.95) are inserted into the output
blending equation (3.98) it then reads as

ŷ(k) =
M∑

i=1

{Ci Ai xi(k − 1) + Ci Biu(k − 1) + Di u(k)} Φi(z(k)). (3.99)

3.6.2 Parameter Blending

In the alternative approach, utilizing the parameter blending method, the matrices of
the local state-space systems get interpolated in every time step k, again determined
by the evaluation of the according validity functions Φi(η(k)). Therefore a blended
state-space system is received for each time step k (linear time-variant system), which
delivers the global output ŷ(k). This method therefore only evaluates one state-
system in each time step and does not require an additional output blending equation.
An illustration of the parameter blending method implemented for the LLMN in
state-space configuration can be seen in Figure 3.19. The resulting state and output
equation of the blended system are given as (compare [18, page 295, equ. (12.5)] and
[19, page 342, equ. (13.3)])

x(k + 1) =

(
M∑

i=1

Ai(θi) Φi(z(k))

)

︸ ︷︷ ︸

Ā(k)

x(k) +

(
M∑

i=1

Bi(θi) Φi(z(k))

)

︸ ︷︷ ︸

B̄(k)

u(k), (3.100)

ŷ(k) =

(
M∑

i=1

Ci(θi) Φi(z(k))

)

︸ ︷︷ ︸

C̄(k)

x(k) +

(
M∑

i=1

Di(θi) Φi(z(k))

)

︸ ︷︷ ︸

D̄(k)

u(k). (3.101)

Remark 3.6.4 (Equations (3.100)-(3.101)). This type of system can be interpreted
as a linear parameter varying (LPV) system, where the validity functions Φi(η(k))
represents the time-varying parameter vector of the LPV system (compare [18, page
295, equation (12.4)]).

Remark 3.6.5 (Equations (3.100)-(3.101)). The state-space systems implemented in
the pantograph LLMN (surrogate) contain the affine terms xT MO,0, uT MO,0 and
yT MO,0 (compare equations (3.30) to (3.32)). These additional vectors also have
to be blended in every time-step (see Figure 3.19). The extension of the parameter
blending method to the extended state-space system is straight forward (compare
equations (3.33)-(3.34)), but not carried out in the equations (3.100)-(3.101) for bet-
ter readability.

Remark 3.6.6. The state-space system matrices are denoted with their dependency
of the pantograph LLMN’s (surrogate) parameter vector θi, because the parameter
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blending method is applied in that way for just that model. The general formulation
is obtained by omitting this dependency, e.g. Ai instead of Ai(θi).

Remark 3.6.7. The application of the parameter blending method to the LLMN
structure results in a single unique state-vector, which in case of the pantograph
LLMN (surrogate) is also physically interpretable.

3.6.3 Stability Considerations regarding LLMNs in
State-Space Configuration

The literature currently provides conservative stability proofs for the implemented
model structures, which are local linear models (LLMN) in state-space configura-
tion (see e.g. [7] and the following paragraph). However a stability analysis for the
presented models is not performed and subsequently stability for the pantograph
LLMNs cannot be guaranteed. To compensate for that lack of proof a discussion of
the observations gained during the development of the pantograph models regarding
their stability is carried out in Section 5.1.2. In general it can be stated, that the
systems inside the local linear models (LLMs) are modeled in such a way, that they
are all stable. According to the blending procedure and the form of the implemented
state-space systems some kind of stability preserving behaviour can be observed. Ex-
aminations on blending of different types of system matrices (controllability, jordan,
modal, etc. formulation) can be found in [28].

In general the stability analysis of neuro-fuzzy systems is mainly based on Lyapunov
stability theory, realized as numerical methods (linear matrix inequality). There
exist three popular methods which test if a Lyapunov function of a certain type can
be found for the examined system. They all represent sufficient but not necessary
conditions on the stability of the system and are listed here starting with the most
conservative function as

• the common (or global) quadratic Lyapunov functions (see [7, page 53, Section
4.2]), also referred to as Lyapunov’s direct method (see [19, page 616, Section
20.4.2]),

• the piecewise quadratic Lyapunov functions (see [7, page 58, Section 4.3], [43])
and

• the fuzzy (or nonquadratic) Lyapunov functions (see [7, page 66, Section 4.4]).

Lyapunov’s direct method (see [19, page 616, Section 20.4.2]), which represents the
most conservative approach of the three mentioned concepts, is briefly described here.
It is carried out by the search for a common (or global) quadratic Lyapunov function
which fulfills the stability condition given in equation (3.102). According to [31] and
[32, page 27, Theorem 1, equation (2.25)] a local linear neuro-fuzzy model with M
rules (LLMN with M LLMs) is guaranteed stable by fulfilling (Lyapunov stability
theorem)
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AT
i PAi − P < 0, (3.102)

for i = 1, 2, ... , M , a positive definite quadratic matrix P and the system matrices
Ai of the local linear models.

Remark 3.6.8. This stability condition follows from the local linear model structure
simply as an generalization of the stability condition of the individual LLMs state-
space systems according to Lyapunov’s direct method, where the determination of
an individual positive definite matrix Pi is sufficient to guarantee the stability of the
local model.

Remark 3.6.9. The stability condition 3.102 represents a linear matrix inequality,
which can be solved by numerical optimization very efficiently and due to the fact,
that the optimization problem is convex, finding a globally optimal solution is guar-
anteed [8]. The stability condition in equation (3.102) however is a sufficient but not
necessary condition and considerably conservative. If no quadratic Lyapunov func-
tion can be found, no statement on the stability of the LLMN can be made utilizing
this method. Further information on LMI approach can be found throughout [32].

Summarizing it has to be stated, that the topic of the stability of the pantograph
LLMNs would require further research and is only treated in this thesis by a brief
discussion of experienced phenomena in Section 5.1.2.



Chapter 4

Numeric Studies of Pantograph
Models

This chapter is devoted to present and discuss the simulation results obtained by
the developed pantograph models, and evaluate these models according to the model
specifications defined in Section 1.2.1. Therefore five different model configurations
(see Section 4.1) were trained and validated using two different types of reference
data sets (generated by the white-box model, see Section 2.1 and Section 4.2).
Before the simulation results are presented, the simulated model configurations, the
mainstays of the developed program code and the employed excitation signals will
be introduced.

4.1 Introduction

In Table 4.1 an overview of the examined pantograph LLMN configurations is given.
In Figure 4.1 the main components of the utilized program code are depicted. The
code is written in a script based form using MathWorks® Matlab® and selected
toolboxes (e.g. System Identification Toolbox™).

For all presented results of all model configurations, as well as all the reference
data sets the chosen sampling time is always set to Ts = 1 [ms] (consequentially
equidistant time steps).

4.2 Excitation Signals

In this section the excitation signals for the inputs of the developed pantograph mod-
els are discussed. The same signals were used as inputs to the white-box pantograph
model from [1] to generate the reference data sets. As mentioned in Section 2.2.1
equation (2.2) the chosen inputs are as follows.
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Examined pantograph LLMN configurations

Approach: Pantograph LLMN (surrogate) Pantograph LLMN (n4sid)

Peculiarities: State-space system with affine term
extension, see equations (3.33)-
(3.34).

Preprocessing (low pass filter) and postprocessing (look-
up table) of input/output signals, additional transfor-
mation of the identified and post-processed system ma-
trices for the approach utilizing the parameter blending
method.

Number of
LLMs:

1 LLM 4 LLMs 1 LLM 4 LLMs 4 LLMs

Blending
Method:

- Parameter
Blending (PB),
see Section 3.6.2

- Output Blend-
ing (OB), see
Section 3.6.1

Parameter
Blending (PB),
see Section 3.6.2

Training
data set:

Operation point
(OP) data set

Whole range
(WR) data set

Operation point
(OP) data set

Four operation point (OP) data sets
for local identification of the LLMs

10 [s] at OP65,
see Figure 4.3

10 [s], see Figure
4.5

42 [s] at OP65,
see Figure 4.2

42 [s] at OP25/OP45/OP65/OP85,
see e.g. Figure 4.4 and 3.12

Validation
data set:

Operation point
(OP) data set

Whole range
(WR) data set

Operation point
(OP) data set

Whole range (WR) data set

42 [s] at OP65,
similar to Fig-
ure 4.2

120 [s], similar
to Figure 4.4

42 [s] at OP65,
similar to Fig-
ure 4.2

120 [s], similar to Figure 4.4

Table 4.1: Carried out training and validation runs using five pantograph
LLMN configurations and two types of data sets.
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Figure 4.1: Main elements of the pantograph local linear model network pro-
gram code.
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• The contact position η [m], which has its operating range determined in
the interval of [0.5, 2.5] [m] due to expert knowledge, and

• the pneumatic actuator torque Mpa [Nm], which is set to an operating
point of 1310.9 [Nm] ( discussed in Section 2.1.3).

Remark 4.2.1. The abbreviation of operating points, that will be used in this section,
is given in a code like fashion, namely OPXY, where X denotes the operating height of
the contact position (for their definition see Figure 3.12) and Y denotes the magnitude
of the torque, which will be set to the previously stated OP denoted as Y = 5 in all
simulations. Exemplary:

OP65 :=
[

η = 1.75[m] Mpa = 1310.9[Nm]
]T

. (4.1)

Remark 4.2.2. For all identification runs there were two data sets generated for which
the underlying signal was of the same shape, but employed a different superimposed
noise signal (see Section 4.2.1).

Remark 4.2.3. In general, while going through the engineering cycle, the observa-
tion was made, that the identification runs resulted in good performing pantograph
LLMNs if the training data set contained about minimum 10000 samples (corre-
sponds to 10 [s] with a sampling time of Ts = 1 [ms]). For the pantograph LLMN
(surrogate) larger amounts of samples did not improve the performance significantly
in most cases, while extending the computational time required for the optimization
of the state-space system parameters. Therefore the training data was extracted
accordingly (cut out) from the available data sets (compare Figures 4.3 and 4.5) for
the training of the pantograph LLMN (surrogate).

Remark 4.2.4. The state-space matrices of the LLMs of the pantograph LLMN (n4sid)
were identified using four operation point data sets, where the OPs match the posi-
tions of the centers of the LLMs of the model network (compare Figure 3.12). The
simulation results of the pantograph LLMN (n4sid) for the whole range data set
therefore are just validation runs and not training/identification runs (compare with
Table 4.5).

4.2.1 Noise excitation

The modeled noise excitations are similar for each of the input data sets (slight
parameter variations). Two types of noise sequences were utilized to excite the input
signals (these are the expected types of excitation for the real-world pantograph due
to expert knowledge):

• Contact position η: white noise sequence
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Figure 4.2: Operation point (OP) input data set OP65 with sampling
time Ts = 1 [ms] and length 42 [s]. The contact position η (top)
and the pneumatic actuator torque Mpa (bottom) are excited
around operating point OP65 (compare equation (4.1)) and ex-
cited according to Section 4.2.1.

The employed white noise was filtered (postprocessed) using a first order low-pass
filter with the corner frequency set to 10 Hz. Therefore the pantograph is only excited
in that frequency range, which corresponds to the expected dynamic (relevant for a
future implemented control scheme). The amplitude of the white noise is adjusted
at about 4 [cm] according to the magnitude of the resulting contact force Fp, which
is expected to be around a maximum of 1000 [N] in operation.

• Pneumatic actuator torque Mpa: amplitude modulated pseudo-random binary
sequence (APRBS)

For further information on APRBS consult e.g. [19, page 570, Section 17.7]. The
superimposed APRBS noise results in a maximum deviation from the operating point
OPX5 = 1310.9 [Nm] of about 6% or ∼ 75 [Nm] over the whole simulation time. The
employed hold times of the APRBS noise are in the interval [50, 200] [ms]. These
values again were defined due to expert knowledge (gained from examinations at the
pantograph test bench).

4.2.2 Input Data Sets

The following figures (4.2, 4.3, 4.4 and 4.5) show the input sequences of the corre-
sponding two basic types of reference data sets.
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Figure 4.3: Applied training data set with length 10000 samples, extracted
from the according operation point input data set OP65 depicted
in Figure 4.2 (samples [10001, 20000]).
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Figure 4.4: Whole range input data set with sampling time Ts = 1 [ms]
and length 120 [s]. The contact position η (top) is driving the
pantograph gradually through the whole operating range (excited
according to Section 4.2.1), while the pneumatic actuator torque
Mpa (bottom) is again hold around its operating point (compare
equation (4.1), excited according to Section 4.2.1).
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Figure 4.5: Applied training data set with length 10000 samples, extracted
from the according whole range input data set depicted in Figure
4.4 (samples [25001, 35000]).

In Figure 4.2 both inputs are excited around a certain operation point (here OP65,
compare equation (4.1)) and are superimposed by their specific noise signals (see
Section 4.2.1). This type of data sets are referred to as operation point (OP)
data sets.

Figure 4.4 shows a considerably long input data set, which also drives the pantograph
models through the whole operating range. This type of data sets are referred to as
whole range (WR) data sets. A certain clearance to the operating range limits
was maintained, to avoid driving the white-box model into an area of the operating
space where the computation becomes infeasible (evaluation of the white-box model
relations no longer possible due to the pantograph geometry). Sudden, unsteady
changes in the contact position input signal like steps are ruled out, because due
to expert knowledge this is not the expected behaviour of a real-world contact line
mounting (even if special events like a tunnel entrance or exit are considered).

These input data sets were utilized as inputs to the pantograph LLMNs to identify
local linear models state-space matrices together with the corresponding output data
sets. The operation point (OP) data sets (Figure 4.2 and 4.3) where utilized to iden-
tify the state-space matrices of single LLMs, while the whole range (WR) data sets
(Figure 4.4 and 4.5) where used to identify the parameters of several LLMs of the
pantograph LLMN (surrogate). For the pantograph LLMN (n4sid) the WR data sets
only where applied for the purpose of validating the model, since all the LLMs of
that model where identified form OP data sets.
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As mentioned above, the Figures 4.3 and 4.5 depict the applied training data sets for
the pantograph LLMN (surrogate) that were applied in the following identification
runs, furthermore simply referred to as training data set. For the validation of the
received model the whole signal length was simulated (separate validation data set
with different noise excitation). The pantograph LLMN (n4sid) however was trained
on the full length operation (OP) data sets, because with that approach more data
samples deliver better identification results.

4.3 LOLIMOT algorithm with NMSS systems

Application of the existing local linear model tree (LOLIMOT) algorithm
(compare [19, page 365, Section 13.3.1] and Section 3.2.4), using the input/output
data of the pantograph white-box model (developed in [1], see Section 2.1).

The initial approach was carried out using an existing tool, which incorporated the
LOLIMOT algorithm, mainly to determine a potential success of applying a local
linear neuro-fuzzy type of network to the nonlinear pantograph modeling problem.
As stated in Section 3.2.4, the results were discarded due to the discussed short
comings of this approach in regard to the modeling goals specified in Section 1.2.1.
These short comings however were not due to performance deficiency but mainly due
to stability concerns. At this early stage the feasibility of the model was the main
interest, therefore no superordinated pantograph model was designed. For the I/O
setting of the presented results see Figure 3.8 (angle of the lower arm ϕ1 compare
Figure 2.2). Finally Figure 4.6 shows an achieved simulation result utilizing the
LOLIMOT algorithm for the sake of completeness, where the mentioned stability
issues are apparent, although all NMSS systems are stable (see Figure 4.7).

4.3.1 Performance LOLIMOT Algorithm with NMSS
systems

The FIT and the computational efficiency of the LOLIMOT based pantograph model
approach are presented in this section. Therefore the altered LOLIMOT algorithm
was applied on the training data set according to Figure 4.4 (whole range (WR)
data set). The following value is the resulting FIT of the angle of the lower bar ϕ1

according to Figure 4.6

FITLOLIMOT,ϕ1 = 88.2502[%]. (4.2)

This value is quite good in comparison to other approaches, especially considering
that the soaring of the examined signal, which occurs during the blending of the
non-minimal state-space (NMSS) systems, is included in this result. This finding
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Figure 4.6: Simulation result of an identified pantograph model by utiliza-
tion of the LOLIMOT approach consisting of 4 local linear mod-
els, where the instability in areas of blending of the, form the
identified ARX models post-constructed, NMSS systems can be
detected, see e.g. at 92 [s]. The output y is representing the
angle of the lower bar ϕ1 in [rad].
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Figure 4.7: Collected information plot containing information of the identi-
fied 4 NMSS systems of the LOLIMOT based pantograph model
with 4 LLMs, which are apparently all stable. Nevertheless in-
stability (soaring) is detectable during the simulation of this par-
ticular model, caused by the parameter blending of the NMSS
systems (compare Figure 4.6).
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also motivated the examination of more than one signal for a performance classifica-
tion as it is done from here on out (e.g. position and according velocity).

The simulation time for the examined LOLIMOT based pantograph model is mea-
sured as

tsim,LOLIMOT = 106, 66[s]. (4.3)

with the length of the data set given as tds = 120 [s]. Therefore the resulting real-time
factor (RTF) for the LOLIMOT based model is determined as

RTFLOLIMOT = tsim,LOLIMOT /tds = 0.889 < 1. (4.4)

Therefore the LOLIMOT based pantograph model would be a real-time capable
model.
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three-mass oscillator,
parameter vector θi

equ. (3.35)

mH mM kL cL rM kW cW

[5, 50] [5, 50] [0, 107] [10−3, 2 ∗ 105] [10−3, 0.6] [0, 107] [0, 2 ∗ 105]

collector head,
additional parameters
equ. (3.37)

mC kC cC

[1, 30] [10−7, 107] [10−3, 2 ∗ 105]

affine term xT MO,0 x0,i with i = 1, 2, . . . , 6






additional parameters according to equation (3.36)

[−2000, 2000]

affine term uT MO,0 u0,i with i = 1, 2

[−2000, 2000]

affine term yT MO,0 y0,i with i = 1, 2, . . . , 6

[−2000, 2000]

Table 4.2: Parameter constraints of all available parameters for the con-
straint optimization of the pantograph LLMN (surrogate).

4.4 Pantograph LLMN (surrogate)

Application of a local linear model network (LLMN) with local linear mod-
els (LLMs) consisting of parametrized MIMO discrete-time state-space systems.
The state-space systems represent mechanical surrogate models (three-mass
oscillators) whose parameters were optimized using an output-error (OE) opti-
mization method (MATLAB function fmincon()) utilizing the cost-function as
given in equation (3.39) with QFp

set to 1 and the parameter constraints of this
constrained optimization in fmincon() set as described in Table 4.2 (see Section
3.4.5).

For a detailed description of the pantograph LLMN (surrogate) see Section 3.4.

The set of parameter constrains for the constraint optimization (using Matlab func-
tion fmincon()) of the pantograph LLMN (surrogate) parameters can be found in
Table 4.2. These values were set for all training runs.

The identified parameter vectors θi (compare Section 3.4.4) from the training (using
the whole range (WR) data set) of the pantograph LLMN (surrogate) are collected
in Table 4.3. The parameter values for the pantograph LLMN (surrogate) consist-
ing of 4 LLMs were acquired by training runs starting with just 1 LLM and taking
those identified values as initial parameter vectors θi for i = 1, 2 for an training run
with the pantograph LLMN (surrogate) consisting of 2 LLMs. Those two vectors
then again were used as the initial vectors for the pantograph LLMN (surrogate)
employing 4 LLMs, by setting θ41 = θ42 = θ21 and θ43 = θ44 = θ22 respectively,
where the first index indicates the number of LLMs applied and the second index
refers to the LLMi, with a lower number i denoting a lower position in the partition
space (i.e. positioned lower with respect to the operating height, see e.g. Figure 3.12).
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Pantograph LLMN (surrogate) in affine term formulation with 4 LLMs

LLMi i = 1 . . . 4 Parameters according to affine term state-space system equations (3.33)-(3.34)

θi,T MO according
to equation (3.35)

mH [kg] mM [kg] kL [
kg

s2
] cL [

kg
s

] rM [m] kW [
kg

s2
] cW [

kg
s

]

LLM4 13.72 27.33 344.24 30.42 0.19 7999.50 2500.42

LLM3 15.20 31.41 178.05 36.42 0.03 7999.53 2500.38

LLM2 16.24 36.24 160.51 45.45 0.11 7999.22 2500.72

LLM1 16.97 44.65 155.64 51.28 0.27 7998.42 2501.77

xT MO,0,i according
to equation (3.30)

x0,1 [m] x0,2 [ m
s

] x0,3 [m] x0,4 [ m
s

] x0,5 [m] x0,6 [ m
s

]

LLM4 0.0044 2.63 -0.0009 -0.37 -0.053 0.41

LLM3 0.0034 2.02 -0.0011 -0.30 -0.035 0.15

LLM2 0.0017 1.00 -0.0005 -0.12. -0.024 -0.69

LLM1 0.0003 0.15 -0.0002 0.02 0.006 -0.53

uT MO,0,i according
to equation (3.31)

u0,1 [m] u0,2 [Nm]

LLM4 -0.67 -0.0003

LLM3 -0.60 -0.0005

LLM2 -0.33 -0.0006

LLM1 -0.11 0.0003

yT MO,0,i according
to equation (3.32)

y0,1 [m] y0,2 [ m
s

] y0,3 [m] y0,4 [ m
s

] y0,5 [m] y0,6 [ m
s

]

LLM4 0.159 -3.04 -0.096 0.75 0 0

LLM3 0.096 -2.38 -0.081 0.92 0 0

LLM2 0.036 -1.20 -0.041 0.46 0 0

LLM1 -0.009 -0.22 -0.004 0.16 0 0

Table 4.3: Identified parameters of the pantograph LLMN (surrogate)
with 4 LLMs for an identification run using the the whole range
(WR) data set (see Figure 4.5).
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The determination of the initial values was experienced as a time consuming task,
having a strong effect on the achievable results. The danger of the optimization to
get caught in a local optima was ubiquitous. A brief discussion of this process is
carried out here. Choosing an interpretable mechanical surrogate model helped in
assuming initial values corresponding to the specifications of the examined real-world
pantograph (which was modeled by the white-box model in [1]). E.g. the masses of
the surrogate oscillator mH and mM were chosen according to the masses of the bars
of the real-world pantograph. Similar was the choice of the length of the lever arm rM

in the surrogate model, keeping in mind the maximum forces that can arise in the real-
world pantograph were known. This expert knowledge of the underlying model is also
apparent in the choice of the parameter constraints in Table 4.2. The determination
of initial values for the spring stiffness and damping factors however was not that
obvious and required a trail and error approach. Therefore on the one hand the
pantograph LLMN (surrogate) as a linear model (just 1LLM) utilizing the operation
point (OP) data sets was examined for several operating points. On the other hand,
the extended pantograph LLMN (surrogate), where the parameters of the collector
head are set free for identification (compare parameter vector given by equation
(3.37)), was examined, which makes the model more flexible and subsequently helps
the optimization to converge.

Remark 4.4.1 (Table 4.3). It can be seen from Table 4.3, that the affine term pa-
rameters y0,5i

and y0,6,i, interpretable as offset correction terms for the position δM

and velocity δ̇M of the lowest mass mM of the three-mass oscillator (see Figure 3.13),
are not altered from their initial zero values. This may be due to the fact, that this
mass of the three-mass oscillator has no reference in the white-box model, and there-
fore the optimization using fmincon() is not altering these parameters. Therefore it
could be further examined if these parameters could be set to zero, and not as free
parameters.

Figure 4.8 illustrates the movement of the parameters of the pantograph LLMN
(surrogate) with 4LLMs as given in Table 4.3, where the continuous movement of
some parameters (e.g. masses mH and mM) from one LLM to another (compare
Figure 3.12) indicate a successfully converged optimization.

4.4.1 Simulation Results, Pantograph LLMN (surrogate)

This section presents the achieved simulation results of the pantograph LLMN (sur-
rogate) as plots of the LLMN output signals (compare equation 2.3) in comparison
with the white-box model reference data.

Operation point (OP) data set training, pantograph LLMN (surrogate)
with 1LLM

First the identification results of a single LLM of the pantograph LLMN (surrogate)
will be presented utilizing the operation point (OP) training data sets as exemplarily



4.4 Pantograph LLMN (surrogate) 92

1 2 3 4

14

16

m
H

 [k
g]

LLM

1 2 3 4

30
35
40
45

m
M

 [k
g]

LLM

1 2 3 4
150
200
250
300
350

k L [k
g/

s2 ]

LLM

1 2 3 4
30

40

50

c L [k
g/

s]

LLM

1 2 3 4

0.05
0.1

0.15
0.2

0.25

r M
 [m

]

LLM

1 2 3 4

7998.5

7999

7999.5

k W
 [k

g/
s2 ]

LLM

1 2 3 4

2500.5

2501

2501.5

c W
 [k

g/
s]

LLM

1 2 3 4
0

2

4

x 10
−3

x 0,
1 [m

]

LLM

1 2 3 4
0

1

2

x 0,
2 [m

/s
]

LLM

1 2 3 4

−10
−8
−6
−4
−2

x 10
−4

x 0,
3 [m

]

LLM

1 2 3 4
−0.4

−0.2

0

x 0,
4 [m

/s
]

LLM

1 2 3 4

−0.04

−0.02

0

x 0,
5 [m

]

LLM

1 2 3 4

−0.5

0

0.5

x 0,
6 [m

/s
]

LLM

1 2 3 4

−0.6

−0.4

−0.2

u 0,
1 [N

m
]

LLM

1 2 3 4
−6
−4
−2

0
2

x 10
−4

u 0,
2 [N

m
]

LLM

1 2 3 4

0
0.05

0.1
0.15

y 0,
1 [m

]

LLM

1 2 3 4
−3

−2

−1

0

y 0,
2 [m

/s
]

LLM

1 2 3 4
−0.1

−0.05

0

y 0,
3 [m

]

LLM

1 2 3 4

0.2
0.4
0.6
0.8

y 0,
4 [m

/s
]

LLM

1 2 3 4
−1

0

1

y 0,
5 [m

]

LLM

1 2 3 4
−1

0

1

y 0,
6 [m

/s
]

LLM

Figure 4.8: Illustration for the change of the parameter vector theta values
for the pantograph LLMN (surrogate) consisting of 4LLMs.
The x-axis represents the number of the LLMi with i = 1 ...
4 corresponding to Figure 3.12, while the y-axis represents the
identified parameter value (compare with Table 4.3).
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Figure 4.9: Pantograph LLMN (surrogate), 1LLM, OP65
Part of the result shown in Figure 4.10 for the contact force Fp

(upper figure) showing the maximum absolute error (lower fig-
ure), achieved with the pantograph LLMN (surrogate) consisting
of 1LLM.

depicted in Figure 4.3. A part of the validation run of the pantograph LLMN (sur-
rogate) trained by that OP data set (OP65) can be seen in Figure 4.10.

Due to the importance of the contact force Fp to this thesis (compare Section 1.2),
Figure 4.9 shows the part for the previously exhibited simulation result, where the
error of the mapping of the contact force Fp reaches its maximum. The absolute
error (where error = Fp,data − Fp,model) is additionally plotted in the lower part of the
figure. The maximum relative error is of about 26 [%].
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Figure 4.10: Pantograph LLMN (surrogate), 1LLM, OP65
Part of the result of the validation run of a pantograph LLMN
(surrogate) with 1LLM for all LLMN output signals (compare
equation (2.3)). This LLM consists of a state-space matrix
trained from the input data set depicted in Figure 4.3 using
the OE optimization of the parameter vector. The blue signals
’data’ denotes the reference data generated by the white-box
model, while the red signals ’model’ denotes the output of the
pantograph LLMN (surrogate).
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Whole range (WR) data set training, pantograph LLMN (surrogate)
with 4LLM

Figure 4.11 shows the result of a simulation run with a pantograph LLMN (surro-
gate), with 4 equidistantly positioned LLMs and affine term extended state-space
system, for the validation input data set corresponding to a training (identification
procedure) with the input data set depicted in Figure 4.5 (whole range (WR) data
set). The performance of that particular simulation run is presented in Section 4.6.
Figure 4.12 shows a zoomed out part of the same result, where the deviations from
the reference data can be seen more clearly. Especially for the velocity signals (ξ̇ and
ζ̇) the mismatch in the higher oscillations can be detected plainly (compare with the
mismatch of the modes according to fM and fH in Figures 4.16 and 4.17).

Figure 4.13 shows again the worst performing part of the previously exhibited simu-
lation result of the contact force Fp together with its absolute error over the sampling
time. This plot reveals that the slight deviations in the position signals ξ and ζ vis-
ible in Figure 4.12 can lead to strong deviations of the contact force. This happens
due to the fact of the large magnitude of the spring stiffness kE (105, given by the
white-box model, known quantity) of the collector head in equation (3.14), which
can blow up a small error of the position mapping. The maximum relative error is
of about 30 [%] for the pantograph LLMN (surrogate).

Figure 4.14 shows again a zoomed in part of the simulation result for the contact force
Fp and its absolute error, achieved with the pantograph LLMN (surrogate), where the
parameters of the collector head are set free for identification. At the same position
of the simulation run, the absolute error is about a third of the maximum expected
value (compare with Figure 4.13). The corresponding maximum relative error of this
model configuration therefore is of about 10 [%].

The last Figure 4.15 of this section shows the absolute error of the contact force Fp in
connection with the MSF values (activation of the pantograph LLMN’s (surrogate)
local linear models) for the whole range (WR) input sequence. In this plot it can
be seen, that the peaks of the contact force Fp does not stem from the blending
of the LLMs (parameter blending), but from the phase shift in the mapping of the
position signals (compare with Figure 4.13). The peaks obviously lie in sections
where primarily one LLM is active (above 97 [%]).



4.4 Pantograph LLMN (surrogate) 96

2 4 6 8 10 12

x 10
4

0.5

1

1.5

2

2.5

collector head position
val

time [samples]

ξ 
[m

]

 

 
data
model

2 4 6 8 10 12

x 10
4

0.5

1

1.5

2

2.5

   crossbar position   
val

time [samples]

ζ 
[m

]

 

 
data
model

2 4 6 8 10 12

x 10
4

−600

−400

−200

0

200

400

600

800

1000

    crossbar force     
val

time [samples]

F
H

 [N
]

 

 
data
model

2 4 6 8 10 12

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

collector head velocity
val

time [samples]

d/
dt

 ξ
 [m

/s
]

 

 
data
model

2 4 6 8 10 12

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

   crossbar velocity   
val

time [samples]

d/
dt

 ζ
 [m

/s
]

 

 
data
model

2 4 6 8 10 12

x 10
4

−600

−400

−200

0

200

400

600

800

1000

     contact force     
val

time [samples]

F
p [N

]

 

 
data
model

Figure 4.11: Pantograph LLMN (surrogate), 4LLM, WR, PB
Result of the validation run of a pantograph LLMN (surrogate)
with 4LLMs for a training with the input data set depicted
in Figure 4.5 for all LLMN output signals (compare equation
(2.3)). ’data’ denotes the reference data from the white-box
model, while ’model’ denotes the output of the pantograph
LLMN (surrogate).
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Figure 4.12: Pantograph LLMN (surrogate), 4LLM, WR, PB
Zoomed out part of the result shown in Figure 4.11 revealing the
deviations of the pantograph LLMN (surrogate) outputs from
the reference data (WBM).
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Figure 4.13: Pantograph LLMN (surrogate), 4LLM, WR, PB
Part of the result shown in Figure 4.11 for the contact force
Fp (upper figure) showing a large absolute error (lower figure),
achieved with the pantograph LLMN (surrogate).

5.06 5.08 5.1 5.12 5.14

x 10
4

−300

−200

−100

0

100

200

300

400

500

600

time [samples]

F
p [N

]

 

 
data
model

5.06 5.08 5.1 5.12 5.14

x 10
4

−250

−200

−150

−100

−50

0

50

100

150

200

time [samples]

er
ro

r 
[N

]

 

 
error

Figure 4.14: Pantograph LLMN (surrogate), 4LLM, WR, PB, addi-
tional parameters
Part of the simulation result achieved with the pantograph
LLMN (surrogate), where the parameters of the collector head
are set free for identification, for the contact force Fp showing
a smaller absolute error in comparison to Figure 4.13.
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Figure 4.15: Pantograph LLMN (surrogate), 4LLM, WR, PB
Here the whole data set for the validation of the pantograph
LLMN (surrogate) is shown, revealing peaks of the absolute
error of the contact force Fp (lower figure). The maximum error
occurs in sections where just a single LLM is active, as can be
seen from the plot of the activation of the different LLMs (MSFs,
upper figure). These peaks therefore stem from the erroneous
mapping of the position signals (compare with Figure 4.13).

4.4.2 Frequency Analysis, Pantograph LLMN (surrogate)

This section treats a frequency analysis of the pantograph LLMN (surrogate), real-
ized by a discrete Fourier transformation (DFT) of the estimated output signals of
the pantograph model. These transformed signals are compared with the white-box
model reference data for several operation point input data sets. The selected
signals are the pan-head velocity ξ̇ (see Figure 4.16), the crossbar velocity ζ̇ (see
Figure 4.17) and the contact force Fp (see Figure 4.18). The results of the white-box
model are colored blue and cyan, while the results of the pantograph LLMN (surro-
gate) are shown in red and magenta, respectively for two different noise excitations in
each of the four selected operating points: OP25, OP45, OP65 and OP85 (compare
equation 4.1 and Figure 3.12).

These plots indicate, that the pantograph LLMN (surrogate) is not able to map the
second resonant frequency fM (compare Section 2.1.3 and Table 2.1) according to
the white-box model reference data. This particular frequency is strongly represented
in the velocity signals (ξ̇ see Figure 4.16 and ζ̇ see Figure 4.17) and weakly in the
contact force signal Fp (see Figure 4.18). This resonant frequency fM at about 12.2
[Hz] is originating from the collector head suspension (and therefore also strongly
represented in the crossbar force signal FH). By examining the pantograph LLMN
(surrogate), where the parameters of the collector head are set free for identification
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Figure 4.16: DFT of the pan-head velocity ξ̇ for several identification runs
with operation point (OP) input data sets spread over the op-
erating range. Blue and cyan represent white-box model ref-
erence DFT data for two different excitation signals in each
operating point, while red and magenta represent the according
DFT data of the pantograph LLMN (surrogate). The axis
|y(f)|/max(y(f)) represents the normalized power spectrum of
the examined signal.
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Figure 4.17: DFT of the crossbar velocity ζ̇ for several identification runs
with operation point (OP) input data sets spread over the op-
erating range. Blue and cyan represent white-box model ref-
erence DFT data for two different excitation signals in each
operating point, while red and magenta represent the according
DFT data of the pantograph LLMN (surrogate). The axis
|y(f)|/max(y(f)) represents the normalized power spectrum of
the examined signal.
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Figure 4.18: DFT of the contact force Fp for several simulation runs with
operation point (OP) input data sets spread over the operat-
ing range. Blue and cyan represent white-box model reference
DFT data for two different excitation signals in each operat-
ing point, while red and magenta represent the with according
DFT data of the pantograph LLMN (surrogate). The axis
|y(f)|/max(y(f)) represents the normalized power spectrum of
the examined signal.

(compare Section 3.4.4), the mode at fM is successfully mappable. However the ref-
erence data (received by the white-box model) was generated by using the exact same
values for mC , kC and cC as they were set for the pantograph LLMN (surrogate).
Therefore it has to be assumed that the better mapping of the resonant frequency
fM with the collector head parameters set as free parameters is only due to the en-
hanced flexibility (10 parameters instead on 7) of the pantograph LLMN (surrogate).
By taking a look at the state-space equations of the three-mass oscillator in Section
3.4, it can be stated that the free parameters of the surrogate model have no direct
influence on the collector head position ξ nor velocity ξ̇. These signals can only be
altered through the coupling of the states over time. For a further discussion of
that issue see Section 5.1.1.

Furthermore the DFT plots reveal, that the highest resonant frequency fH of the
white-box model at about 22.4 [Hz] is not at all mapped by the pantograph LLMN
(surrogate). This result will be examined further by taking a look at the positioning
of the Eigenvalues of the state-space systems of the different LLMs, which will be
discussed in the following section.

Summarizing this section, it can be stated that the presented results give an alterna-
tive view on the phase shift of the mapped signals, that was discussed in the previous
section, originating form an inability to map the modes of the underlying white-box
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Figure 4.19: Pole positions of the parametrized state-space matrices of the
pantograph LLMN (surrogate) with 4 LLMs, trained by
the whole range input data set (training data set as shown in
Figure 4.5). A continuous movement of the poles between LLM1

(blue), LLM2 (red), LLM3 (black) and LLM4 (green) can be
detected.

model correctly.

4.4.3 Stability Analysis, Pantograph LLMN (surrogate)

Figure 4.19 shows the pole positioning of the identified state-space systems of the
pantograph LLMN (surrogate) with 4 LLMs in the Z-plane. It can be stated, that
all state-space systems are stable, as all their poles lie inside the unit circle. Fur-
thermore it can be seen, that there are two conjugated complex pole pairs and two
real poles present in every of the four state-space systems, according to their system
orders (n = 6). Currently there exists no stability proof for LLMN in state-space
configuration where the parameter blending method is applied. Therefore no guar-
antee for stability in regions between the operation points in which the LLMs are
centered can be given (transients). For further discussion on the topic see Section
3.6.3 and Section 5.1.2.
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4.5 Pantograph LLMN (n4sid)

Application of a local linear model network (LLMN) with local linear mod-
els (LLM) consisting of MIMO discrete-time state-space systems including a pre-
and postprocessing of the input and output signals. The state-space systems
are received by a subspace identification method (utilization of the Mat-
lab functions n4sid(), reduce() and canon(), see Section 3.5) applied on in-
put/output reference data of the pantograph white-box model. The considered
signals for the subspace identification are both inputs (contact position η and
pneumatic actuator torque Mpa) as well as four output signals (positions ξ and
ζ and velocities ξ̇ and ζ̇).

Remark 4.5.1. The pantograph LLMN (n4sid) requires the use of a low-pass filter
and a look-up table for simulation, which is applied instead of the affine term exten-
sion as described for the pantograph LLMN (surrogate) to correct the static offsets
in the signals (see e.g. Figure 3.19 for illustration). The implementation of this pre-
processing of the input signals (low-pass filtering) and postprocessing of the output
signals (look-up table) in the pantograph LLMN (n4sid) is necessary due to the fact,
that the prior identified state-space matrices (using the Matlab function n4sid(),
see Section 3.5) only can cope with zero-mean signals. Unless otherwise stated, the
presented results of the pantograph LLMN (n4sid) were achieved utilizing the output
blending method (see Section 3.6.1).

Remark 4.5.2. The corner frequency of the implemented low-pass filter is set for all
presented results to fC = 0.25 [Hz]. The corner frequency of the low-pass filter can
be seen as an additional tuning parameter for the pantograph LLMN (n4sid). In
case that fC is set to a low value, e.g. 0.1 [Hz] (corresponding to 10 [s] delay), the
activation of a LLM allocated for the current operating height gets delayed if the
pantograph travels through the operating range. Consequently, due to the faulty
blending procedure during transitions, the accuracy during simulation is worsened.
In case that fC us set to a higher value, e.g. 1 [Hz] (corresponding to 1 [s] delay),
a certain amount of noise is captured by the low-pass filtered signal. Subsequently
the input signal of the LLMs (which is given as the true unfiltered input subtracted
by the low-pass filtered signal) becomes distorted, leading to worse accuracy in the
simulation results.

The illustration of a case study in Figure 4.20 is showing the FIT values for the signals
ξ, ξ̇, ζ, ζ̇, FH and Fp, simulated for several N4SID identified systems (various system
orders from n = 6 up to n = 50) as well as for subsequently reduced systems (system
order n = 6). In each case a training and validation data set using preprocessed
(zero mean) operating point data sets (see Section 4.2) was evaluated, where the
state-space matrices were identified first on the training data set (T) and validated
on the validation data set (V). Additionally these tasks were carried out vice versa,
hence the denotation OP25TV and OP25VT. The color code indicates good or bad
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zeta 0 0 0 0 0 11,4696809 16,0065072 -7,40446263 47,2199819 64,1245133 74,2699201 58,4324865 86,5526278 86,7326611 94,4680852 92,390294 85,9485787 89,3740396 92,1201003 94,8795095 96,5192865 95,5428684 95,2764379 95,8324841 97,085932 97,3760398 97,2633134 97,1609179 96,8423356 97,4656369 96,923336 96,8586888 97,0171319 96,0658678 96,8413576 97,0981176 96,960164 97,4338548 97,2469831 97,4151843 97,2279446

pzeta 0 0 0 0 0 8,05355433 12,3297469 0,83428357 44,2603059 64,8068359 74,9328955 61,4070631 90,0630075 87,4025648 92,9256649 92,4455744 87,5950376 90,6181709 90,9964428 94,9641349 95,9975587 95,1223932 94,8522931 95,3427903 96,6035873 96,9122179 96,8125165 96,7862144 96,54613 96,882969 96,5879559 96,6903828 96,6611886 96,3420414 96,3587191 96,6519902 96,5474561 96,6901431 96,7856065 96,7485968 96,7125788

F_p 0 0 0 0 0 6,99899512 11,74722 -13,405438 44,0417717 62,7016595 73,4465751 57,9969497 81,6015647 83,8983678 92,5882829 91,5931059 86,0132713 89,192975 91,4564995 94,1302741 96,2580426 95,2564215 95,0124541 95,5686368 96,7145459 96,9477571 96,8572265 96,7507134 96,3852922 96,9322779 96,5515261 96,4706781 96,5977864 95,6014082 96,5947509 96,7446432 96,5452811 97,0417206 96,8657537 96,9083409 96,8166502

FIT VAL RED xi 0 0 0 0 0 15,3418473 19,2177282 -5,32038099 48,1865537 65,032202 74,0328318 59,5699569 80,2103407 83,4032292 91,2291895 91,4301044 86,9072268 89,7140011 92,3899798 95,2951038 96,410813 95,1044417 94,8155417 95,4604518 96,7647463 97,1930555 97,2554861 97,159947 96,5947761 97,228291 96,9468661 96,7913756 96,9669398 96,3264005 97,3645956 97,3410961 97,1632244 97,5624844 97,3344095 97,3908558 97,3704865

pxi 0 0 0 0 0 6,97062581 9,56422881 0,92873405 47,933243 69,689002 67,9834187 57,3160553 71,2388919 67,6399869 78,4049322 84,2150472 84,1925891 89,7375049 90,6123898 93,3339087 93,8763331 92,8677695 92,6343122 92,884041 93,9807554 94,2813146 94,3810096 94,3673436 94,1187532 94,2840297 94,2758037 94,2676701 94,2382204 94,4042297 94,3813286 94,4410859 94,1704734 94,421233 94,365992 94,2902354 94,3654782

zeta 0 0 0 0 0 12,4421641 16,5425531 -8,76965084 46,0269843 63,0575101 72,5577443 55,8441503 83,7510247 86,0827808 93,1042743 91,6056942 86,0462331 89,1066228 92,3287327 95,7291205 96,3465581 94,9208724 94,5700531 95,2852094 96,8984218 97,4904445 97,5551874 97,461353 96,8592008 97,6278828 97,1707326 97,0301192 97,2516019 96,6571889 97,558487 97,6274419 97,4971248 97,8747917 97,6295698 97,7883019 97,7181778

pzeta 0 0 0 0 0 8,52292194 13,499406 0,70548236 43,1279085 63,424358 73,4134988 56,4669879 87,0905556 86,1811934 90,6861397 91,2202722 85,8756596 89,4544533 91,0319342 95,389205 95,5805458 94,2091236 93,7439386 94,4981533 96,1589578 96,7422057 96,8094385 96,7911612 96,3746546 96,7749503 96,562011 96,6037788 96,6500318 96,6008954 96,7348718 96,8671128 96,7713919 96,8376271 96,8621437 96,8174958 96,8896411

F_p 0 0 0 0 0 7,9192375 12,1349457 -14,554602 43,6436836 61,9663151 71,756097 56,0251544 78,4752341 81,9480669 90,4601873 90,6787179 85,759286 88,8121511 91,7227528 94,8825906 96,0961223 94,6752117 94,3609817 95,0624359 96,4810876 96,9469498 97,0148541 96,9109385 96,2962148 96,9852747 96,6791751 96,5100517 96,7010089 96,0043087 97,1335301 97,1079702 96,9145031 97,3487692 97,1006973 97,1620927 97,1399375

6 ->

OP85TV 20150323_V01_OP85TV_O6to50_R6_DS

order

ORDER 0 0 0 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 6,53973479 1,3772633 84,4517947 87,3973076 73,6655328 -96,3961005 71,838746 90,5472497 82,161006 78,8726363 80,055882 94,9938825 94,7596331 83,8880333 88,4386385 85,780262 91,3589826 95,3471787 77,2131215 92,4390997 93,0937598 95,6371886 92,2160277 95,2361613 94,7301192 94,9635453 94,0471247 94,9311391 95,5937224 95,8489649 94,5222325 96,144249 95,8790677 92,7738912 95,5849193 96,3539779 95,6367194 95,6688922 95,9577477 96,0375402 96,0737733 96,0469367 95,8229654 96,1557817 96,7676694

pxi 0 0 0 0 0 6,27005047 4,9700858 67,8726434 71,6353784 73,2727025 61,1924866 73,4216076 87,0720749 80,5132324 77,2550903 78,0635813 89,4426635 91,4788302 81,0944406 86,84225 84,3304611 90,3359064 93,7690831 77,0811409 86,5339623 90,3344033 93,4330285 91,5589022 93,5910603 93,5438454 94,1501257 93,2857353 92,9153581 94,0149954 94,0081783 93,3912118 94,2226464 93,9918873 92,0187204 93,9330009 94,5775164 94,1934465 94,2212652 94,3625337 94,441576 94,4820078 94,4606724 94,3039344 94,5641316 94,9725948

zeta 0 0 0 0 0 4,59390056 -1,04716786 86,3875157 89,5079873 73,2256938 -101,650181 71,5852031 90,9208113 80,3352469 78,4244781 79,5098798 95,4018201 94,9338442 83,832888 88,4815572 85,5975374 91,1881198 95,3871391 76,733315 92,9896081 93,1922521 95,7341794 92,1022127 95,360827 94,770884 95,0260735 94,0749544 95,124196 95,6464167 95,9656955 94,5705693 96,3306465 96,0181256 92,7381927 95,7353502 96,5222291 95,6809851 95,719932 96,0531226 96,157614 96,1756213 96,1546311 95,9838919 96,3108872 96,9360016

pzeta 0 0 0 0 0 4,88285125 3,17711074 88,0329599 90,0283619 76,4599541 82,3362549 75,2242756 91,4283401 81,6151831 78,6029316 80,3332474 94,9880681 94,4961612 83,4288553 87,6964376 84,1379438 90,3517566 95,0190836 76,365308 92,6405103 92,9379562 95,3445172 91,6690929 94,9223622 94,2986767 95,2972002 93,9864606 94,6342471 95,2635869 95,5535651 94,4342588 95,9274826 95,6058437 92,5641081 95,4830953 96,0698965 95,2027065 95,2470806 95,5662594 95,6631491 95,6793611 95,6577669 95,6311333 95,9259906 96,6349942

F_p 0 0 0 0 0 4,04577547 -1,25445503 84,0368955 87,0610085 72,9628054 -101,636872 71,0872713 90,2950058 81,6849778 78,3088589 79,5236791 94,8602957 94,6197955 83,4580903 88,130127 85,4008125 91,1283996 95,2230195 76,6050605 92,2373394 92,9094688 95,5207683 92,0083148 95,1090397 94,589494 94,829149 93,888274 94,7958781 95,4761422 95,7381957 94,3760599 96,0413594 95,7691018 92,5810646 95,4671042 96,2566849 95,5202865 95,5533179 95,8498814 95,9318031 95,9690031 95,9414504 95,7115025 96,0531999 96,6814156

FIT VAL xi 0 0 0 0 0 6,48282887 2,31447469 77,1261318 82,237615 56,2115004 -95,073425 52,5251935 85,6698285 72,9804055 65,4575774 65,9925767 94,473571 93,5616544 75,509367 84,7618228 80,924667 88,0095643 95,265556 70,507301 91,1798753 91,8823108 95,7776579 89,54028 94,5487231 93,5678746 93,6329773 92,6675402 94,0870707 95,2289325 94,2703696 91,3741255 94,8564415 94,6966443 89,0278175 93,7563786 95,4141283 94,9074991 95,0117843 95,4296823 94,9736472 95,6797748 95,6849836 94,2444544 94,6096913 96,0509948

pxi 0 0 0 0 0 3,48707506 3,49360409 58,6847065 64,1785242 56,8630535 38,1995951 55,1367711 82,9916429 72,1434368 65,5181953 64,8606938 87,4533514 89,5239026 73,7713704 83,8857127 80,3060213 87,7647189 93,192186 69,760823 85,531526 89,0456886 92,8816845 88,8197251 92,5652142 91,8715098 92,6249805 91,5440295 91,365577 93,3370341 92,1927812 90,4237049 92,6549209 92,4596449 88,4362625 91,9935215 93,2510292 92,9739126 93,0619156 93,2982586 93,0314253 93,4885779 93,4803492 92,5061178 92,8133713 93,6721736

zeta 0 0 0 0 0 2,60299471 -2,21909031 78,2439712 83,8538119 54,1440338 -104,115715 50,4658907 85,5457659 70,6150297 63,8728448 64,234807 94,9072486 93,5539507 74,6022834 84,2660465 80,0341964 87,3802165 95,1825808 69,2299773 91,3686554 91,7025683 95,7502274 89,0514773 94,501889 93,3510264 93,4888633 92,4405175 94,0849918 95,2605079 94,2036536 91,1103829 94,8786802 94,6460913 88,624009 93,7015509 95,4450345 94,7552655 94,8835244 95,3727021 94,922468 95,6490678 95,6700688 94,2121289 94,5904466 96,1434478

pzeta 0 0 0 0 0 1,97652976 1,00411121 78,8396662 83,4402806 54,8483055 66,8911142 51,3374714 85,4049334 69,443088 61,4845583 62,7664991 94,157043 92,4932358 72,3875088 83,7167791 78,3668043 86,7764757 94,9972083 66,6622745 90,887093 91,2870853 95,2044357 87,9373092 93,8303613 92,2057482 93,4780841 91,6850917 92,8398868 94,9969659 93,3768002 90,4753561 94,0618668 93,7949249 87,8063715 93,0092704 94,6437424 93,8602326 94,0445126 94,5404437 94,0532285 94,8057216 94,7981294 93,4571693 93,8072505 95,3777247

F_p 0 0 0 0 0 -0,1835044 -4,648998 75,4955774 80,9714306 53,0900551 -108,979154 49,1409713 84,648308 71,0543248 62,9952349 63,5683715 94,0796218 93,1026995 73,7635622 83,6755755 79,5648897 87,154831 94,9280631 68,404926 90,5511363 91,3036446 95,47667 88,7946631 94,1601311 93,1093631 93,1791067 92,1448488 93,66557 94,8888289 93,8619352 90,7592335 94,489785 94,3185967 88,2456699 93,3113046 95,0872263 94,5444822 94,6562013 95,1038891 94,6153457 95,3718093 95,3773894 93,8341727 94,2254454 95,7694916

FIT TRAIN RE xi 0 0 0 0 0 6,53973479 1,82787353 84,1238909 85,0892071 75,0340124 -95,7036572 72,3091507 86,948413 83,4618804 78,2766968 67,2926567 91,6857611 93,2821605 84,9186594 87,7110178 84,3792941 89,4089415 95,4071998 79,4071453 91,6453337 92,9621238 95,1623747 90,0938934 95,3114668 93,9759848 94,1453645 93,1585463 91,5343764 95,3898307 95,4448323 94,7647815 95,972183 95,593288 92,8558244 95,0054583 96,2676677 94,9745883 95,2340428 95,6873667 95,3968562 95,9425934 95,240619 95,341978 95,8817877 96,4928195

pxi 0 0 0 0 0 6,27005047 4,80274839 67,4572067 68,1220716 70,6944692 57,7985767 72,6331043 81,7932276 80,8124861 77,9231672 67,3144675 83,5452911 89,5479509 81,4737615 87,0458056 84,2001393 89,0600426 93,6132456 76,9229636 86,6061724 90,4371404 92,6708222 89,9935485 92,9678097 92,860239 93,5234004 92,6052081 91,5820378 93,4530905 93,5450148 92,8157603 93,4522594 93,5232755 90,8131205 93,0696944 93,9428989 93,3489813 93,6558329 93,6257801 93,3669343 93,9128153 93,7292026 93,4441009 93,7825641 94,3022941

zeta 0 0 0 0 0 4,59390056 -0,55739703 84,58358 87,3762577 73,9318227 -100,888382 71,2392205 87,0723354 82,4846942 77,6398971 61,3185747 92,4572709 93,8231146 84,8056951 88,2160161 83,8565912 89,2536451 95,4778354 79,9049449 92,2497364 92,8997053 95,2772442 89,9471119 95,4134093 94,0305188 94,1847622 93,2004594 92,0342665 95,407972 95,6277196 94,8364795 96,0332716 95,6478982 92,826537 95,1209776 96,2989405 94,9383149 95,2224882 95,6684477 95,5402881 95,9629674 95,3130444 95,4205576 96,0844464 96,6619173

pzeta 0 0 0 0 0 4,88285125 2,82083739 87,0383777 87,9524536 77,30589 83,167332 75,1296878 87,9165287 80,3272761 77,92966 70,3027038 92,2480915 93,5270255 82,8479565 87,6810221 83,8732555 89,3217083 94,7184059 75,9147042 92,5021619 92,515187 94,3641258 90,3200661 95,028728 93,6555544 94,8969594 93,3763138 92,7428147 94,7659795 95,0972331 94,3879668 95,2922211 95,0420353 91,7712187 94,8675632 95,7373666 94,5201223 94,826632 94,9718322 94,9618741 95,2453882 94,9597487 95,0678737 95,6278781 96,3364321

F_p 0 0 0 0 0 4,04577547 -0,79182041 83,7002417 84,691317 74,3678025 -100,925951 71,5702286 86,6001353 83,0205656 77,6970169 66,419871 91,4638981 93,102897 84,5162183 87,38309 83,9624602 89,1263223 95,2846423 78,8576311 91,4223919 92,7743202 95,0332841 89,8295519 95,1863547 93,8152357 93,9891353 92,9759841 91,3084737 95,2668097 95,3232791 94,6250813 95,8647019 95,4756962 92,6651842 94,8721804 96,1680716 94,8404866 95,1068647 95,5722854 95,2740227 95,8343227 95,1136163 95,21768 95,7718944 96,3992315

FIT VAL RED xi 0 0 0 0 0 6,48282887 3,55509112 76,5802506 79,1266438 58,1631739 -93,9195249 53,5739495 80,9503302 76,1718564 64,1722514 45,6716117 89,8690417 91,5516935 77,7593032 84,5626851 77,9111983 85,4612987 94,8432431 73,2184056 90,9121059 91,0178768 94,6057333 87,1129254 94,0727137 92,3696665 93,2173769 91,5069965 90,8451422 94,3520574 94,2348701 92,4295361 95,330288 94,6630397 89,6590833 94,0319828 95,59488 94,0281712 94,2678449 94,7461435 94,6872428 95,2073076 94,7176097 94,3328364 95,0872429 96,8406076

pxi 0 0 0 0 0 3,48707506 3,17403047 58,2748452 60,1069388 53,9731322 34,7890233 53,8541029 76,3340249 74,1030355 65,6828219 55,5654631 80,1697602 87,224394 74,4206376 83,6572169 79,5043755 85,6809688 92,718479 71,0086103 85,4279066 88,5637744 91,270846 86,6583375 92,1389685 90,8914995 91,7396568 90,4688087 88,9277874 92,2615856 91,796672 89,9153057 91,7611501 91,9084076 87,1762039 91,0511217 92,6872083 91,9356248 92,3906006 92,3730003 91,8286818 92,8055957 92,4991373 91,6376047 92,1225166 93,2702914

zeta 0 0 0 0 0 2,60299471 -0,8192876 76,0659633 80,8314555 55,6192226 -102,032637 50,3303601 80,4797083 74,6251231 62,2453802 36,8542439 90,9455321 91,9492461 76,9155405 83,799725 76,4296357 84,8359023 94,8505352 68,4583845 90,6993673 90,2139544 94,1451222 86,480245 94,13733 92,0996804 93,0956533 91,241989 90,9343445 94,466917 94,2380246 92,2766 95,2719304 94,5392025 89,3050042 94,0223619 95,5507801 93,7989321 94,0780169 94,5112163 94,6724259 95,0680816 94,6364248 94,3123678 95,199823 97,0259285

pzeta 0 0 0 0 0 1,97652976 0,15998927 77,4328806 80,2415507 56,4354934 68,2792437 51,0970848 80,576001 67,7747113 59,5455904 48,1148111 90,9101738 91,3725096 71,9636723 82,9578124 77,2256825 85,5895755 94,3149895 68,0936573 90,2335826 90,334994 94,0732042 86,2198559 93,8845706 91,4804947 93,1559117 90,947118 90,2580848 94,4198188 93,2134023 90,9995572 94,0217581 93,6683619 87,2307797 92,9991695 94,5591993 93,3787321 93,6937312 93,9677753 93,6681196 94,509133 94,1064683 93,1999375 94,1410399 96,0371641

F_p 0 0 0 0 0 -0,1835044 -3,31994474 74,9107834 77,6386951 55,1808529 -107,742999 50,2644875 79,5923823 74,473277 61,618285 41,7988348 89,1468605 90,9494594 76,1738843 83,4622424 76,3366071 84,4249133 94,4756458 71,3092906 90,2642791 90,3775898 94,2212052 86,1942755 93,6501895 91,8257413 92,7338804 90,9015763 90,1925419 93,9494461 93,8239052 91,8898787 94,9974095 94,2825966 88,9219352 93,6065551 95,2808628 93,6024719 93,8592306 94,3716245 94,308525 94,8656625 94,3410566 93,928855 94,737039 96,6153916

6 ->

OP65VT 20150330_V01_OP65VT_O6to40_50_R6_DS

order

ORDER 0 0 0 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 13,3095831 42,529235 52,7697167 86,6972681 77,7691285 88,3685895 90,4402884 93,016958 91,0514008 75,880723 60,9371218 92,9366646 96,5077615 97,2537324 95,3149108 95,7318578 96,9071785 97,5244464 97,4579419 97,4568704 97,3990819 97,3917246 97,4541557 97,5291525 97,5655269 97,6067268 97,6004578 97,5459383 97,5314026 97,597658 97,6079707 97,6142345 97,6180539 97,614715 97,6153067 97,6008919

pxi 0 0 0 0 0 1,88717315 22,9432958 31,2032522 69,3190975 61,5698848 76,314447 82,3442468 84,4012048 89,449382 59,3567696 29,4559016 89,9880142 93,4109609 94,2921217 93,5810659 93,8719527 94,4912003 94,7370053 94,712189 94,722197 94,7005021 94,690353 94,7096312 94,7301202 94,7385775 94,7443749 94,7579788 94,7349666 94,741685 94,7554372 94,7584689 94,7568689 94,7620127 94,7647888 94,7715645 94,7715329

zeta 0 0 0 0 0 10,2114279 41,2995709 53,3564453 88,7254283 79,1114059 89,8585284 91,1332261 94,184877 90,7975155 78,549961 63,2363628 92,7122773 96,4715267 97,3107271 95,3490013 95,7895914 97,0891019 97,793307 97,7177816 97,7116074 97,6461722 97,6387008 97,7106823 97,7976359 97,8381104 97,8854846 97,8746652 97,8120952 97,7961112 97,8733837 97,8826322 97,8872457 97,8826056 97,8757363 97,8819274 97,869384

pzeta 0 0 0 0 0 2,51202639 32,883932 47,729296 87,419868 78,2399416 88,8018559 90,2444431 93,9534208 90,3477688 77,7921325 60,0368285 92,1322683 95,5880524 96,5076555 94,950291 95,3445674 96,5677282 97,1892349 97,1242013 97,1168679 97,0530458 97,0435736 97,0957308 97,1613178 97,189617 97,2268655 97,2479305 97,1872596 97,1931611 97,2351188 97,2443231 97,2471516 97,2454405 97,2462332 97,251737 97,2154294

F_p 0 0 0 0 0 6,05667144 37,7209713 48,8182179 85,5843015 75,9091935 87,3954532 89,6404798 92,4327252 90,3027206 73,8627954 57,668945 92,345714 96,2155851 97,0239673 94,9229351 95,3747657 96,6484191 97,3173304 97,2452619 97,2441007 97,1814774 97,1735045 97,2411589 97,3224302 97,3618479 97,4064948 97,3997013 97,3406204 97,3248686 97,3966672 97,4078428 97,4146306 97,4187696 97,4151513 97,4157925 97,4001717

FIT VAL xi 0 0 0 0 0 16,7066409 43,6007262 52,7886287 85,2373355 77,2592862 87,5422154 90,1268736 92,3044634 91,5649079 74,4524148 55,6257952 93,1705811 96,489697 97,1195825 95,4211352 95,7767822 96,7792372 97,296075 97,2407701 97,2328616 97,1876962 97,1864343 97,2406392 97,3089606 97,3420811 97,3795849 97,378029 97,3274933 97,3160533 97,3720824 97,3870817 97,3971695 97,4051263 97,4036095 97,3989889 97,369658

pxi 0 0 0 0 0 3,29986617 19,8002944 24,7818824 63,2346673 55,9904928 71,9079661 79,6930629 81,7668735 90,1780966 50,6734665 2,60844525 89,2449221 92,2890835 93,1137465 93,0256735 93,1787282 93,5668936 93,7366129 93,7157372 93,6932026 93,6952368 93,7057822 93,7260842 93,7569208 93,771728 93,7862937 93,7972362 93,7724501 93,7865643 93,7924151 93,8086347 93,8164889 93,8080487 93,8062358 93,8156675 93,7679842

zeta 0 0 0 0 0 12,7468731 41,9764038 54,8816058 89,3100316 79,9392295 90,3054357 91,5323301 94,3372791 91,2266355 79,1620078 63,8748142 93,1048769 96,752501 97,5018147 95,5579037 95,9626237 97,1700977 97,8374647 97,7640097 97,7559885 97,691261 97,6849166 97,7539926 97,8417408 97,8839906 97,9349869 97,9287049 97,8643653 97,8479322 97,9251497 97,9373745 97,9432112 97,9453281 97,9408965 97,9425449 97,9206181

pzeta 0 0 0 0 0 3,01952063 31,3126161 47,5271988 87,2711726 78,5193939 88,8089525 90,2625519 94,019062 90,722332 77,8865353 59,5121366 92,368772 95,6536642 96,508987 94,9407939 95,2902883 96,4620902 97,0779215 97,0115664 97,0011397 96,9328855 96,9260804 96,9782119 97,0488847 97,0822337 97,1276295 97,1455614 97,0766054 97,08286 97,1292276 97,1433715 97,1497757 97,155034 97,1557496 97,1588564 97,1172014

F_p 0 0 0 0 0 4,9565429 35,6445457 46,128575 83,1547835 74,0512799 85,7848101 88,7340831 91,2188629 90,3749792 70,8484465 49,3659773 92,2071628 95,9945026 96,7132453 94,7752001 95,1810178 96,324888 96,9146354 96,8515287 96,8425046 96,7909678 96,7895278 96,8513793 96,9293387 96,9671315 97,0099259 97,0081506 96,9504858 96,9374321 97,0013651 97,0184803 97,0299912 97,0390704 97,0373397 97,0320673 96,9985987

FIT TRAIN RE xi 0 0 0 0 0 13,3095831 45,6438328 58,1773158 85,9304429 80,787458 89,6444606 90,8536398 93,991436 92,0619478 61,6618727 35,8231954 90,5224372 95,9410238 96,7954744 94,5354348 95,6439762 96,8791438 97,5956752 97,569894 97,4544971 97,4844351 97,5134463 97,4422724 97,5886389 97,6061356 97,526228 97,5734071 97,4724583 97,5590221 97,522488 97,5472129 97,4908934 97,5444382 97,524793 97,5165544 97,5786085

pxi 0 0 0 0 0 1,88717315 13,3020683 26,9701443 67,5084519 45,8514858 74,2941267 81,1395452 83,0827492 88,3455176 41,7165737 2,5642521 87,1397679 92,7395191 93,6698816 93,4005648 93,8020568 94,2792918 94,3952101 94,4166906 94,4409488 94,4200186 94,3793132 94,387945 94,3976007 94,3858959 94,358555 94,341556 94,3210906 94,4239142 94,3799178 94,3631447 94,4153197 94,3077793 94,3907765 94,3917973 94,3890167

zeta 0 0 0 0 0 10,2114279 46,0801177 58,5741997 87,6825119 84,0455546 91,2293154 91,3825222 96,0076695 91,9438909 62,2780755 36,537221 90,3446305 96,1038241 96,896758 94,6368498 95,7716817 97,0908521 97,8436134 97,8296339 97,7011724 97,7645956 97,7784295 97,6906102 97,8403974 97,8604645 97,7490471 97,8138683 97,7017345 97,7996543 97,7525051 97,780855 97,6866806 97,7918047 97,7537889 97,7336142 97,8337743

pzeta 0 0 0 0 0 2,51202639 38,5955915 53,2295606 86,1225098 78,8416443 89,689597 90,0877077 95,2853915 91,0414529 61,8991664 36,0543006 90,0247544 95,3190772 96,2445593 94,9129992 95,6656139 96,7195358 97,1499455 97,1453508 97,1397749 97,0897764 97,0887082 97,1097616 97,152192 97,1360997 97,1078373 97,0765151 96,9904939 97,0546011 97,0863523 97,0879791 97,1225915 97,0275859 97,0543574 97,0917322 97,1503811

F_p 0 0 0 0 0 6,05667144 41,0961504 54,6782412 84,7533202 79,18005 88,7780694 90,088414 93,4887324 91,3978145 58,4543318 30,4538742 89,7295015 95,6014315 96,5273693 94,0782446 95,2795316 96,6180388 97,3945185 97,3665804 97,2415288 97,2739715 97,30541 97,2282813 97,3868936 97,4058541 97,3192611 97,3703873 97,2609928 97,3547989 97,3152082 97,3420017 97,2809702 97,3389949 97,317706 97,3087782 97,376024

FIT VAL RED xi 0 0 0 0 0 16,7066409 46,7642462 58,4770658 84,7316445 80,0786088 88,6801851 90,5071957 93,1985191 92,51639 59,5335949 29,1403669 90,6793465 95,9118611 96,6696463 94,4671721 95,5074641 96,6497763 97,3214591 97,3023512 97,1869832 97,2139495 97,2485387 97,1774072 97,3296044 97,3427328 97,2739485 97,329101 97,2295937 97,3134675 97,2836105 97,3113774 97,2601838 97,3236279 97,3081511 97,291385 97,3201233

pxi 0 0 0 0 0 3,29986617 9,58087493 22,1653828 62,6097963 45,8226776 71,2760489 79,1632521 80,856768 88,8633788 38,1739806 -16,0290948 86,9092292 91,6094678 92,4987131 92,8303716 92,9921959 93,2789096 93,3427407 93,3687663 93,3648786 93,3610221 93,3432213 93,353454 93,3824286 93,3699176 93,3552665 93,3487769 93,3277599 93,4309373 93,3846339 93,3793539 93,4340205 93,3268558 93,3999886 93,4031785 93,3418579

zeta 0 0 0 0 0 12,7468731 47,0886802 60,2399772 88,1642893 84,7223033 91,4670133 91,7052324 96,1630088 92,376262 60,7325589 32,8046735 90,6096854 96,3330444 97,0833372 94,672855 95,7876732 97,0990803 97,8680569 97,8562504 97,7326077 97,7793361 97,8010347 97,7153244 97,8791335 97,8881647 97,7891242 97,8625184 97,7482927 97,8370642 97,8109576 97,8378131 97,7431912 97,8573843 97,8222443 97,8016072 97,8834178

pzeta 0 0 0 0 0 3,01952063 37,7618246 53,3316576 85,8826523 77,5101878 89,1667216 89,809553 95,1865051 91,1858987 61,2159955 32,7200573 90,2881695 95,3454149 96,2827465 94,8480057 95,5113595 96,5607834 97,0328365 97,0271731 97,0195618 96,9523792 96,9619534 96,9829131 97,0477239 97,0240621 97,0097489 96,9928796 96,8949122 96,9482156 97,0027736 97,0074948 97,0359107 96,9680861 96,9896887 97,0236299 97,0617152

F_p 0 0 0 0 0 4,9565429 39,2543398 52,6194734 82,5777552 77,2683211 87,0833119 89,1680568 92,2390421 91,4606857 53,8250459 19,1442802 89,3644927 95,335152 96,1998371 93,6866624 94,8737072 96,1771641 96,9436005 96,921797 96,7901542 96,8209245 96,8603932 96,7792272 96,9528947 96,9678752 96,8893876 96,9523203 96,8387757 96,9344814 96,9004126 96,9320965 96,8736811 96,9460751 96,9284151 96,9092839 96,9420762

6 ->

OP65TV 20150323_V01_OP65TV_O6to50_R6_DS

order

ORDER 0 0 0 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 8,56080041 39,4774815 49,7425786 28,2396285 62,7828359 65,2198488 82,3205336 90,7822905 87,8144052 88,9292941 85,7987361 65,2647982 92,1423824 93,1437413 96,3997528 96,7070556 97,0225351 97,3209885 97,4045651 97,3996837 97,1398373 95,3845459 96,2521671 96,435557 97,3586003 97,4166557 97,3807321 97,4408739 97,4331251 97,3786086 97,4158476 97,412482 97,4208505 97,41888 97,3986706 97,415065 97,3913674 97,4123268 97,4356291 97,4458998 97,4426862 97,4453146 97,4406886 97,4324654 97,4331872

pxi 0 0 0 0 0 1,26710726 14,1269729 24,5365049 22,2750738 65,437224 54,3139292 78,7814309 75,5969363 71,2276308 79,186218 86,3389077 68,3664959 85,4460858 89,6823728 93,2776554 93,5415257 93,7031315 93,8560456 93,8765387 93,8555567 93,7636619 93,0653729 93,3990636 93,5642743 93,8547601 93,8789215 93,8679003 93,8910295 93,8924735 93,8885673 93,8504332 93,8863932 93,8915184 93,8847846 93,8653387 93,90681 93,8932822 93,9006237 93,912123 93,9264538 93,9271351 93,926643 93,9117357 93,9143516 93,8972134

zeta 0 0 0 0 0 5,22154936 36,5019427 49,3454521 23,8344239 60,4265881 64,3888788 81,8786442 94,7609615 91,1063431 89,9231632 84,8825626 63,2575541 92,3708071 92,893778 96,5568053 96,9711526 97,3756135 97,821405 97,9388358 97,9461138 97,5807172 95,3740234 96,4569272 96,6274776 97,9266147 97,9857945 97,9175613 97,9982642 97,9859839 97,9177363 97,9880172 97,968191 97,9771912 97,9812326 97,9795859 97,9586653 97,9301822 97,9565339 97,9840262 97,9896042 97,9896528 97,992456 97,9912946 97,9548069 97,9757626

pzeta 0 0 0 0 0 -1,91806392 31,1116037 44,9601602 18,0967814 58,8581187 60,5575945 80,9296975 93,2833709 89,5037939 89,1128496 84,4239076 61,3575551 90,6943759 91,2261428 95,5645236 96,0736284 96,5384565 97,0578235 97,1816467 97,198827 96,7584171 94,6982746 95,5484238 95,9039096 97,1662829 97,2216782 97,1541928 97,2152795 97,2054609 97,1480899 97,2517776 97,2206 97,2313585 97,2386923 97,2447036 97,1866769 97,1526147 97,1739268 97,2098775 97,2290788 97,2300234 97,2193465 97,2144649 97,2055054 97,1676945

F_p 0 0 0 0 0 -4,18465247 31,0414178 42,737338 18,2371521 57,59524 60,3719414 79,8562425 89,4974599 86,1158894 87,3861795 83,8192619 60,4231561 91,0471312 92,1880667 95,8979245 96,2480613 96,6075146 96,9475686 97,0427947 97,0372329 96,7411672 94,7412107 95,7297672 95,9387193 96,990423 97,0565706 97,0156397 97,0841645 97,0753356 97,0132202 97,0556498 97,0518152 97,0613501 97,0591049 97,0360787 97,0547582 97,0277575 97,0516384 97,0781886 97,0898909 97,0862294 97,0892242 97,0839534 97,074584 97,0754064

FIT VAL xi 0 0 0 0 0 6,10865352 36,9799801 48,5370921 24,513808 61,3132696 63,4989113 82,4117042 91,7133194 88,6868258 89,2590964 85,6274127 63,9556873 91,7566525 92,5057284 96,1137926 96,4332905 96,7572873 97,2097741 97,3488882 97,4431377 96,8655634 95,1805435 95,6997718 95,914258 97,3076055 97,4413497 97,5513941 97,5218461 97,5686886 97,5997978 97,4910055 97,5561375 97,5458696 97,532459 97,5140401 97,5872619 97,5968509 97,5888146 97,5642389 97,532177 97,5256318 97,5481739 97,5546529 97,3765298 97,5705394

pxi 0 0 0 0 0 0,7209281 13,0451949 27,5277382 18,0743372 61,6961037 52,2757047 79,2718041 78,1244605 73,68042 80,3967749 85,798612 64,9312302 85,9824793 90,3473485 94,2801705 94,4069541 94,5671924 94,7835232 94,8795241 94,9510706 94,6619461 93,7714248 93,9732512 94,2015479 94,8518707 94,9002041 94,9554691 94,9055572 94,9167829 94,9350253 94,8818274 94,8527802 94,8514364 94,8624623 94,8980942 94,8810193 94,8816847 94,8610774 94,8454902 94,8366792 94,8345401 94,8358287 94,8220235 94,7572749 94,8085805

zeta 0 0 0 0 0 3,75108856 35,6190679 47,8311451 21,9320432 59,5467964 63,3774456 82,0403775 94,5591495 90,9749243 90,1893195 85,1248887 62,4115353 91,6694117 92,1818565 96,0577246 96,4642508 96,8315284 97,3780415 97,530894 97,6403809 96,9714228 95,0914334 95,6856164 95,8897412 97,5096267 97,6575577 97,7853711 97,7481667 97,8080287 97,856623 97,722173 97,8125182 97,7979118 97,7808773 97,7624637 97,8459791 97,861913 97,8531006 97,8196961 97,7749192 97,7699613 97,7995768 97,8126353 97,5789995 97,8331264

pzeta 0 0 0 0 0 -1,44183465 31,4312847 44,2165836 17,8482542 58,7793858 61,5238359 81,6084464 93,9055884 89,8973171 89,7067247 84,9888763 60,7561762 90,4904088 91,0980172 95,3669721 95,8294617 96,2129888 96,7854809 96,922002 97,021117 96,3421466 94,7028988 95,0442941 95,3879942 96,9019161 97,0406292 97,1349003 97,1089966 97,1607036 97,1975228 97,1195386 97,1838919 97,1732254 97,1612066 97,1522153 97,1843274 97,1895112 97,1830014 97,1678151 97,1449519 97,1411949 97,154397 97,1578513 96,9772143 97,1402523

F_p 0 0 0 0 0 -0,20653375 32,7412164 45,0756666 19,4365623 58,7111773 61,0438266 81,2287051 91,1559524 87,9258951 88,5366569 84,660704 61,5313256 91,2022001 92,0016593 95,852404 96,1933916 96,5391805 97,0221018 97,1705729 97,2711616 96,6547393 94,856384 95,410536 95,6394486 97,1265135 97,2692533 97,3866994 97,355164 97,4051572 97,4383588 97,3222491 97,3917619 97,3808033 97,3664907 97,3468329 97,4249797 97,4352136 97,4266368 97,4004082 97,3661898 97,3592044 97,3832626 97,3901774 97,2000737 97,4071325

FIT TRAIN RE xi 0 0 0 0 0 8,56080041 26,4629313 58,9704932 18,3341479 61,9957517 58,7620819 85,9465119 90,3802726 85,8458951 88,4840678 84,0522976 63,5929474 89,151186 91,4914896 95,6012588 96,5442193 96,589084 96,9765596 97,2081757 97,352989 96,6407734 95,4961412 94,944447 96,9799353 97,2981742 97,6407378 97,3681095 97,3513591 97,4751707 97,4426584 97,4164087 97,4133479 97,4306265 97,3891971 97,3403848 97,3706906 97,3488659 97,3988371 97,375074 97,3622547 97,4122937 97,4211279 97,4365229 97,2568064 97,4365073

pxi 0 0 0 0 0 1,26710726 14,5670133 19,2509907 6,53981016 65,6239896 24,816625 72,8748095 74,676749 69,6900496 77,3036598 85,2975046 67,7241553 82,5315744 87,8632255 92,3730032 93,2049484 93,1434218 93,4860331 93,4408757 93,5233654 93,2968812 92,977091 92,5328767 93,7423522 93,6213246 93,6236402 93,4935696 93,4756199 93,5826536 93,5329665 93,558976 93,5512295 93,5863857 93,5771327 93,5481897 93,5293766 93,4901613 93,5361682 93,4910061 93,5741142 93,5860597 93,5997441 93,537473 93,5750873 93,4996265

zeta 0 0 0 0 0 5,22154936 21,202953 60,6431605 9,57667372 58,8372575 55,209772 86,6290925 94,4875499 90,402973 88,7064872 83,1443505 62,0769823 89,3905394 91,5585988 95,7341908 96,645989 96,8215379 97,4309839 97,6869225 97,9095982 96,9878997 95,435414 94,8712798 97,0392174 97,8183779 98,1347198 97,8962195 97,852672 98,0148857 97,9891652 97,977828 98,0003022 97,9531197 97,9494087 97,8925823 97,9235429 97,8994866 97,9545359 97,9154365 97,9128476 97,9492629 97,976074 97,959127 97,7333849 97,983883

pzeta 0 0 0 0 0 -1,91806392 20,2555662 56,6441352 4,6787655 56,9789895 49,4740775 83,1055582 92,6950942 88,8953737 88,3249955 83,2131531 60,7188851 88,6419041 90,5053778 95,0892753 95,8259869 96,0933441 96,8287691 96,8937136 97,0337009 96,2997282 94,4115499 94,0458669 95,7674522 97,0219245 97,1079099 97,0837634 97,0805562 97,1683517 97,1555545 97,1303102 97,1730772 97,1713901 97,1680869 97,1541928 97,143311 97,1385365 97,1536891 97,1352735 97,1540461 97,1389011 97,1594792 97,150647 97,0357763 97,1079921

F_p 0 0 0 0 0 -4,18465247 16,2128061 53,2515057 6,95097439 56,6984465 53,0140445 83,9876357 89,0394059 83,8729942 86,8788944 81,8293922 58,5182707 87,6390003 90,3055122 94,9881306 96,0625278 96,113646 96,5551308 96,8190311 96,9840296 96,1725403 94,868361 94,2397677 96,5589769 96,9215743 97,3118869 97,0012577 96,9821725 97,1232419 97,0861978 97,0562892 97,0528018 97,0724888 97,0252847 96,9696685 97,0041986 96,9793318 97,0362683 97,0091929 96,9945868 97,0516006 97,0616662 97,079207 96,8744403 97,0791892

FIT VAL RED xi 0 0 0 0 0 6,10865352 24,4887494 58,1212313 15,6519833 60,2792154 56,8142152 87,2120087 91,3547725 87,1676978 88,681322 84,2731132 63,0545971 89,0736577 91,0748367 95,3463112 96,3493051 96,3475976 96,8353886 97,1165179 97,368333 96,3995807 95,259893 94,7096723 96,7079084 97,252167 97,6752842 97,4789723 97,3839419 97,5885769 97,6264019 97,4522317 97,5138153 97,5132828 97,4631002 97,4157315 97,4814515 97,4963746 97,5274923 97,4513763 97,4161504 97,4511371 97,4868865 97,5128539 97,1749584 97,5230431

pxi 0 0 0 0 0 0,7209281 15,7507583 20,2289909 -2,38044118 61,2459858 21,1127159 75,8552017 77,0034401 72,2997397 78,752744 84,4368493 64,3648125 83,084313 88,8785384 93,553258 94,1894328 94,1433639 94,5294815 94,5292773 94,6803902 94,2541875 93,6586552 93,0492565 94,5531763 94,6808831 94,714926 94,6640858 94,5806538 94,6965166 94,6709467 94,6732734 94,5978063 94,640858 94,6450548 94,6631818 94,602365 94,5863622 94,602543 94,509334 94,5828385 94,5851901 94,6043312 94,5436594 94,5167213 94,5252205

zeta 0 0 0 0 0 3,75108856 21,5233031 59,2554954 10,2026886 58,2898537 55,0035707 88,569093 94,3182059 90,5599235 89,2478819 83,6861926 61,8174364 89,1410296 91,018683 95,2491113 96,2757807 96,3561344 96,9615821 97,2349354 97,5433973 96,4106252 95,0941303 94,5202824 96,4080987 97,4085816 97,8007887 97,6563787 97,5172536 97,7783483 97,8307349 97,6450349 97,7552933 97,6885861 97,6686761 97,5913462 97,6946524 97,7083146 97,7462027 97,6443352 97,6229661 97,6443396 97,7059617 97,6917387 97,3178377 97,7406857

pzeta 0 0 0 0 0 -1,44183465 20,604905 56,5142483 8,37368265 57,1444629 51,4497592 86,8737114 93,6217543 89,9434611 88,9460068 83,6685933 60,3511044 88,6497796 90,4156792 94,8728346 95,5964497 95,7183309 96,4949346 96,5482235 96,777627 95,8583705 94,5807312 93,6332862 95,5480906 96,7294325 96,8707923 96,9831992 96,8736113 97,0475897 97,1104958 96,9133714 97,0398824 97,0245417 97,0035807 96,9722968 97,0346952 97,0615033 97,0587767 96,979766 96,9833414 96,9554552 97,0081001 96,9946714 96,7448897 96,9773741

F_p 0 0 0 0 0 -0,20653375 19,4098182 55,3044406 9,97868598 57,607572 53,9095139 86,3518809 90,7732894 86,3045895 87,920021 83,2153136 60,5696275 88,3387454 90,474525 95,0333013 96,1037573 96,1019349 96,622535 96,9225732 97,1913255 96,1574144 94,9410706 94,3538418 96,4864804 97,0673461 97,5189224 97,3094065 97,2079843 97,4263832 97,4667523 97,2808673 97,3465931 97,3460248 97,2924668 97,241912 97,3120525 97,3279793 97,36119 97,2799543 97,2423592 97,2796991 97,317853 97,3455669 96,9849445 97,3564415

6 ->

OP55TV 20150323_V01_OP55TV_O6to50_R6_DS

order

ORDER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 8,8910584 7,74028036 12,4906674 33,4552978 48,9237315 96,8037253 42,9003398 70,2793746 90,9588561 88,7012166 90,0751753 93,5256703 96,207496 95,2326405 92,7014011 91,9774755 93,7534144 97,0122738 96,955252 95,4833253 97,6877258 97,1247217 97,6451022 97,6994523 97,3855431 97,2318547 97,1496897 97,5778419 97,0207449 96,8478845 97,0522613 97,3165247 97,3753061 97,6707228 97,9009101 97,8335468 97,7659874 96,6183628 96,8563699 97,0155802 97,5710802 97,6838313 97,7401338 97,7460019 97,7373845

pxi 0 0 0 0 0 4,4796765 2,28978531 5,19767193 21,2061232 35,2554951 93,543916 26,7968924 60,9147662 87,8757388 86,1869933 87,4188685 91,8891465 93,4196352 93,8279897 91,09929 89,4296386 92,5320479 94,6304843 94,7903034 93,7517248 95,1268796 94,8296857 95,1100975 95,1531864 95,0277002 94,9169222 94,8460866 95,1330184 94,7959555 94,6412384 94,7788888 94,9389481 94,9788383 95,1460026 95,233837 95,2155527 95,232846 94,6921555 94,7928669 94,8968646 95,2049094 95,2358864 95,2466464 95,2247801 95,2180033

zeta 0 0 0 0 0 4,61479493 4,20477592 8,8627917 33,1636771 47,6131538 96,7228771 39,7195069 69,7715411 90,8682865 88,4100913 89,8638804 93,408438 96,137334 95,0959939 92,3833102 91,668729 93,4788448 97,0753009 96,9892173 95,4867775 97,847679 97,1890761 97,8051374 97,8658184 97,4986352 97,3181743 97,2322608 97,7818893 97,1385455 96,9088421 97,1342219 97,4323558 97,4994429 97,8428082 98,1255213 98,0405719 97,9511183 96,6237635 96,8844949 97,0672693 97,7137286 97,8532166 97,9190257 97,9293266 97,9203821

pzeta 0 0 0 0 0 3,05649483 2,57117029 4,75113038 28,1980032 41,4980981 96,3784564 35,7673077 68,5031796 90,3527369 87,0774355 88,5622449 92,7638867 95,7088353 94,7270731 92,1014252 91,2930832 93,1124094 96,5571235 96,5454951 94,9657923 97,2907906 96,6804208 97,2800788 97,3299855 96,9931668 96,8518026 96,755449 97,3458056 96,7394823 96,3704364 96,6080521 96,898888 96,9639604 97,3111442 97,5555383 97,4826761 97,4347342 96,3122826 96,5188093 96,6963347 97,2809553 97,3798586 97,4097091 97,3999794 97,3878847

F_p 0 0 0 0 0 -2,83886044 -4,13779664 1,22418407 24,8879284 42,3478623 96,3922174 35,5489826 66,4529607 89,7948443 87,2465426 88,797393 92,6921257 95,719226 94,6188617 91,7617352 90,9446069 92,949191 96,6276158 96,5632526 94,9018212 97,3900295 96,7545409 97,3419183 97,4032658 97,048942 96,8754668 96,7827234 97,2659986 96,6371775 96,442062 96,6727516 96,9710378 97,0373871 97,3708375 97,6306605 97,5546245 97,4783671 96,1829903 96,4516398 96,6313479 97,2583663 97,3856337 97,4491849 97,4558085 97,4460817

FIT VAL xi 0 0 0 0 0 9,90647917 8,66681716 14,0771034 36,560125 55,8686303 96,3744964 49,7411571 72,3306407 91,5377606 89,9036791 91,0404454 94,2799501 96,3924673 95,4406142 93,2326266 92,4138819 93,9313792 97,1776543 96,9736299 95,387794 97,501374 96,9093422 97,4266743 97,4654585 97,2024678 97,0804759 97,0363945 97,5492032 97,4011889 96,8380202 96,9527485 97,1557671 97,1989741 97,3773082 97,3896043 97,4569019 97,0685371 95,6124825 95,9681086 96,1849804 96,8763099 97,100519 97,2599725 97,3585766 97,3633029

pxi 0 0 0 0 0 4,50012676 3,29397012 6,14751343 18,3221501 35,5249399 92,8697558 28,5632469 59,1263573 86,5954899 86,3907703 87,4627528 92,0807098 92,4963853 93,631279 91,3663359 89,5414952 92,5888689 94,4143107 94,4081273 93,6010396 94,6083272 94,3078004 94,5945285 94,6272509 94,5126263 94,403672 94,3581357 94,7165625 94,6152854 94,2437594 94,3096268 94,4172939 94,4451422 94,554679 94,5709474 94,6008764 94,5193265 93,7950901 93,9353962 94,067708 94,4588247 94,5333324 94,5898905 94,6033913 94,6027183

zeta 0 0 0 0 0 5,18428978 4,72456385 10,1951786 39,6596844 55,6799532 96,247571 47,4390073 73,1730073 91,7629931 89,6743151 90,9197289 94,2465104 96,4395689 95,3392782 92,9699071 92,2232269 93,638361 97,3630657 97,0952651 95,3901075 97,7631149 97,03773 97,6782849 97,7235686 97,4040132 97,2498234 97,2060445 97,8945565 97,6906932 96,9868961 97,127001 97,3690779 97,4200291 97,631384 97,6587218 97,7339378 97,2582938 95,5769052 95,966617 96,214814 97,0209173 97,2954082 97,4824251 97,6053768 97,6143956

pzeta 0 0 0 0 0 1,63496032 2,31570601 4,71974252 31,717658 48,0468783 95,7617451 43,9642046 70,9972014 91,0683031 88,2804036 89,515583 93,5988819 95,8909248 94,6501126 92,2413002 91,3061355 92,8954078 96,6523055 96,4715495 94,858658 97,1422014 96,3311119 97,0910211 97,1367566 96,7856106 96,6527195 96,596949 97,4739842 97,3217385 96,2730215 96,4417706 96,7082419 96,7681498 97,0426688 97,1457062 97,1749026 96,8223635 95,2083527 95,4885163 95,7495326 96,6137802 96,841796 96,9779923 97,0517965 97,04882

F_p 0 0 0 0 0 -4,78535906 -6,22717671 0,06538223 26,2147819 48,6719869 95,783274 41,545287 67,8185099 90,1577962 88,2572398 89,5793822 93,3471633 95,8041754 94,6971006 92,1290493 91,1767894 92,9417498 96,7174054 96,4801101 94,6356668 97,093915 96,4053388 97,0070338 97,0521427 96,7462653 96,6043798 96,5531099 97,1495439 96,9773925 96,3223861 96,4558235 96,6919489 96,7422018 96,9496175 96,9639188 97,0421908 96,5904941 94,896996 95,3106152 95,562853 96,3669197 96,6276913 96,8131474 96,9278313 96,9333282

FIT TRAIN RE xi 0 0 0 0 0 8,8910584 7,98103443 10,2746453 39,8650616 45,9961078 95,7269851 43,1750728 71,784814 91,130108 86,0371358 89,2572709 92,8684272 97,3399867 94,7160186 92,4259129 90,4883937 92,6383394 96,7540223 97,1446943 95,7406695 97,4537101 96,5455156 97,2944276 97,5283742 98,2823035 97,103463 97,0271714 97,2987998 96,9892771 96,5918272 96,9575336 97,1063845 97,0709339 97,5928323 97,4999453 98,009628 97,824834 97,0221374 96,8240487 96,9060878 97,6414698 97,5118874 97,4264406 97,6522231 97,587144

pxi 0 0 0 0 0 4,4796765 2,27319983 5,53164081 19,8325988 28,8430428 91,5605701 23,5797543 58,3130838 87,7979874 84,4844059 86,9486387 91,3950992 92,3723755 93,5156051 90,8886539 88,7182738 92,0431114 94,2561887 94,5556939 93,44294 94,7419901 94,276695 94,5667889 94,7452406 94,7125725 94,6435342 94,6235847 94,6346498 94,5399613 94,432658 94,5698916 94,7339308 94,631027 94,8809087 94,7495262 94,8652468 94,8208842 94,1203423 94,2188887 94,3144138 94,7965446 94,6887134 94,7230538 94,8863898 94,9421206

zeta 0 0 0 0 0 4,61479493 4,48508896 6,16491814 36,2658999 43,9229593 95,6546434 39,7761987 71,2067509 91,1744617 87,085961 89,6399723 92,8671053 96,8409363 94,5361968 92,0349071 89,9483128 92,3528304 96,7604692 96,9897045 95,6270733 97,6134535 96,5278659 97,4349455 97,6282435 98,3301047 97,0904934 97,0319992 97,4259078 97,1244877 96,5776536 96,9607687 97,1154418 97,1126464 97,6246244 97,7280274 98,1400087 98,1190519 97,0359865 96,8433649 96,9260372 97,765011 97,6077418 97,5050104 97,7741514 97,7702884

pzeta 0 0 0 0 0 3,05649483 2,83932333 4,7240449 31,0405293 36,015578 95,3560205 34,152735 69,7446256 90,6540428 85,5896606 88,1556337 92,1966904 96,653001 94,2986082 91,8807453 90,0176387 92,3163296 96,2116511 96,478776 95,9635188 97,0182008 96,0966552 96,7953962 97,0321923 97,2165745 96,5799826 96,5161489 96,966772 96,6812345 96,116813 96,3963424 96,6997595 96,5789627 97,1066395 97,2886783 97,2425558 97,3250537 96,2054792 96,2694171 96,3782752 97,0811506 96,9807005 96,9979285 97,1582784 97,2291975

F_p 0 0 0 0 0 -2,83886044 -3,86604644 -1,27714222 32,1229241 39,0433185 95,1768512 35,8590863 68,1522195 89,9881443 84,2394718 87,8741867 91,9502652 96,9975205 94,0357267 91,4507789 89,2638117 91,6905545 96,3361154 96,7770848 95,1922975 97,1258853 96,1007643 96,9460958 97,2101621 98,0611569 96,7305453 96,6444314 96,9510308 96,6016583 96,1530383 96,565828 96,7338429 96,6938281 97,2829189 97,178073 97,7533754 97,5447899 96,6387493 96,4151574 96,5077588 97,3378183 97,1915526 97,0951049 97,3499561 97,2764982

FIT VAL RED xi 0 0 0 0 0 9,90647917 9,059283 12,2994011 44,4749675 53,2674725 95,4213487 50,1769531 74,3930792 91,6168553 87,5298834 90,374325 93,6910464 97,3814465 94,9278796 93,0564544 90,9160361 92,9362478 96,8696169 97,2077947 95,5545375 97,2538828 96,3408819 97,1082434 97,3118514 97,9753787 96,9230258 96,8741157 97,2634677 97,229674 96,4800652 96,7887556 96,8381513 96,8625109 97,2650092 96,9797394 97,6327979 97,0755585 95,9107443 95,7647807 96,0599939 96,9699824 97,0840018 97,0598546 97,2612077 97,1537858

pxi 0 0 0 0 0 4,50012676 3,28740639 6,61542193 17,2746456 30,4471078 90,8479132 24,3437343 56,4126592 86,5145234 83,8248332 86,5784586 91,1607063 92,0725712 93,310285 91,3497153 88,533163 91,974405 93,9338963 94,2142269 93,5144772 94,1783746 93,6378839 93,9652496 94,1799771 94,3286621 94,0736419 94,0801684 94,114016 94,2590109 93,9293132 94,0219395 94,1249078 94,0019068 94,2478684 94,0518682 94,2014942 94,0821365 93,0998071 93,2236953 93,4263413 94,005903 93,9678024 94,0515316 94,2281346 94,2936805

zeta 0 0 0 0 0 5,18428978 5,19956899 7,97813032 43,3346067 52,1214891 95,3900091 47,5647222 74,9355958 92,0810777 88,0379244 90,402854 93,6971824 97,0956957 94,7618112 92,6895374 90,410382 92,6131653 96,9687873 97,0597853 95,485523 97,5042835 96,3749762 97,3397957 97,4884683 98,0027474 96,9447063 96,9207187 97,4970771 97,5217553 96,5160187 96,8396685 96,9086877 96,9630514 97,3496351 97,259415 97,8037346 97,3692345 95,8745668 95,7408524 96,0650737 97,1065291 97,2321903 97,194542 97,4319052 97,388798

pzeta 0 0 0 0 0 1,63496032 2,62531711 5,0007124 35,5345461 42,6272813 94,8960596 42,201951 72,7527189 91,3616484 86,6052167 89,000996 92,9804548 96,9517889 94,3028479 92,2641792 90,1529636 92,3081057 96,3459567 96,4814191 95,781144 96,9398052 95,8090778 96,665914 96,9049669 97,1935426 96,4628916 96,4429564 97,1587748 97,122813 96,1199111 96,3473815 96,677963 96,4679759 96,9667725 97,0277799 97,098973 96,6676071 94,9583394 95,1107846 95,4619358 96,4590429 96,5973232 96,7025632 96,8815693 96,9915025

F_p 0 0 0 0 0 -4,78535906 -5,77071021 -2,00221566 35,4203231 45,64665 94,6746934 42,0521497 70,2172768 90,2497891 85,4963416 88,8046355 92,6622252 96,9544306 94,1007528 91,9241483 89,4346851 91,7843391 96,3591353 96,7524609 94,8296018 96,8060647 95,7441778 96,6366754 96,8734864 97,6452172 96,4212538 96,3643678 96,8172126 96,7779081 95,9060582 96,2650877 96,3225386 96,3508705 96,8190056 96,4872158 97,2467707 96,5986605 95,2438963 95,07413 95,4174845 96,4758677 96,6084806 96,5803957 96,8145841 96,6896445

6 ->

OP45VT 20150330_V01_OP45VT_O6to40_50_R6_DS

order

ORDER 0 0 0 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 16,3057508 3,33453463 37,0112882 74,3632702 85,2935176 81,7296762 79,6014224 81,2805857 88,3082646 83,6743576 85,8081149 85,7016959 84,4854413 81,1471994 89,0430981 97,0861863 75,2668911 93,7305465 96,4308669 96,7850041 97,0322604 97,0432798 97,0520545 97,1849531 97,087503 97,1625556 97,1328891 97,0104493 96,9166592 97,0909158 97,0589584 97,0668809 97,1750052 97,225239 97,2163429 97,4106841

pxi 0 0 0 0 0 2,37020487 7,06087736 10,8893623 59,1823566 68,0808946 70,0939301 80,5237129 81,0985108 73,848396 81,9800026 82,4441097 85,3292098 81,7981138 81,6765701 87,7979936 93,1032823 78,216302 91,6166522 93,0848002 93,2201846 93,3232782 93,3392758 93,3465614 93,3839423 93,3375574 93,3802293 93,3759172 93,3435278 93,3010299 93,3555048 93,3282662 93,3385818 93,364773 93,3717946 93,3700685 93,4734663

zeta 0 0 0 0 0 12,6013931 4,46259607 37,1293936 75,3378512 88,5826766 82,6927544 77,8719949 79,8437669 90,6667633 83,0522135 85,3541675 84,6871277 83,8835855 79,9212296 88,5692394 97,7862034 73,5515588 93,4815342 96,6709257 97,1537988 97,5063222 97,5256954 97,5342274 97,7469699 97,6307247 97,7413352 97,7023436 97,5391328 97,4144224 97,6508456 97,6128093 97,6207217 97,771603 97,8422375 97,8317082 98,1212817

pzeta 0 0 0 0 0 2,89423914 4,70267262 34,3202621 69,6417174 86,2535902 81,306945 76,3299225 76,2487523 88,7838233 81,8324216 84,5903235 81,9783095 81,2998568 77,1674722 86,7105674 96,2798056 71,1986755 91,9588368 95,2471675 95,7254897 96,0534991 96,06867 96,0749537 96,2834355 96,2717033 96,3359231 96,3176125 96,2071187 96,1179232 96,2739144 96,2499551 96,2329374 96,3209351 96,3627108 96,3670917 96,5902602

F_p 0 0 0 0 0 5,70551676 -8,90855932 29,0334989 71,1162689 83,4308788 79,4156617 77,0178555 78,9096919 86,8274564 81,6066453 84,0106521 83,8907547 82,5204562 78,7594117 87,6553597 96,7171394 72,1343373 92,9364934 95,9788209 96,3778111 96,6563835 96,6687986 96,6786846 96,8284154 96,7186228 96,8031811 96,7697572 96,6318099 96,5261409 96,7224679 96,6864629 96,6953889 96,8172076 96,8738036 96,8637809 97,0827362

FIT VAL xi 0 0 0 0 0 18,5561701 3,18470399 38,1730931 75,4120584 85,6066609 82,3935167 80,461304 82,1557295 88,5771422 84,1848449 86,1276736 86,4163747 85,1789607 81,9335688 89,363065 96,9645735 76,5942435 94,1226377 96,5605519 96,8418363 97,019322 97,0221791 97,0309167 97,0978236 96,9294201 96,9927199 96,9432698 96,804246 96,7098278 96,8895702 96,864085 96,8815621 96,9946859 97,0505426 97,0402273 97,2273704

pxi 0 0 0 0 0 2,5699565 6,50432891 11,843932 59,6902537 68,7327123 70,8183326 80,4777668 81,4690619 73,7314974 82,3322337 82,5985505 85,4583475 81,3497243 81,4775599 87,447285 92,6992296 78,3999878 91,5333264 92,8586172 92,9777505 93,0651013 93,0821625 93,0949342 93,1191742 93,040093 93,0935666 93,0824958 93,038242 92,9946881 93,0591669 93,0335686 93,0529943 93,0812936 93,0888454 93,0852881 93,1928024

zeta 0 0 0 0 0 14,7849236 4,49229579 38,4250905 76,2892812 88,6875039 83,1985613 78,75123 80,7117419 90,8155839 83,4284242 85,5221165 85,432281 84,5828523 80,697819 88,9002335 97,7114872 74,8622116 93,9463916 96,8955235 97,2952654 97,5569721 97,5631752 97,5687588 97,6817002 97,4538815 97,5426691 97,4719083 97,2848946 97,1592746 97,4016182 97,3730833 97,3933126 97,551871 97,6309421 97,6189143 97,891101

pzeta 0 0 0 0 0 3,28609296 4,52029543 35,5505785 70,0912317 86,4440138 81,7497826 76,8437177 76,7412096 88,8855991 82,1835636 84,7385913 82,4714206 81,5516324 77,3600696 86,7579886 96,2793696 71,6881178 92,3191379 95,4678408 95,8997445 96,1744835 96,1843359 96,1896459 96,3392099 96,2351285 96,2891803 96,2439348 96,0982266 95,9972672 96,1733607 96,1537774 96,1463579 96,2502205 96,2979651 96,3018859 96,533149

F_p 0 0 0 0 0 5,56483539 -12,2585766 28,310909 71,4899666 83,3107388 79,5850569 77,3446315 79,3093396 86,75505 81,6621249 83,9148597 84,2496124 82,814815 79,0517414 87,6663375 96,4803841 72,8607254 93,185123 96,0119159 96,3380687 96,5438656 96,5471785 96,5573098 96,6348893 96,4396232 96,5130202 96,4556821 96,2944822 96,1850032 96,3934168 96,3638664 96,3841313 96,5152997 96,5800664 96,5681056 96,7851005

FIT TRAIN RE xi 0 0 0 0 0 16,3057508 2,83961397 35,1758637 73,6513015 87,5726214 87,2789738 79,0406522 81,2453303 91,0314983 86,4638932 89,203811 84,544227 82,7345639 75,238448 86,473735 96,7529188 75,3817229 92,9139782 95,9963881 96,0499166 96,6560815 96,4878273 96,9316493 96,9241243 97,1381218 97,3236494 97,0271867 97,156794 97,1748892 97,5223516 97,2370104 97,2735818 97,1657975 97,1301348 97,3456752 97,4706207

pxi 0 0 0 0 0 2,37020487 6,5862371 9,41390329 58,6535255 66,0308169 65,8181291 79,5822365 79,6477438 66,7774569 80,980656 79,3222473 84,3430763 81,659327 79,2463579 87,6602994 92,9124882 77,6739629 91,1707287 92,6449259 92,6517094 92,9416754 92,8401773 93,0681222 93,0498408 93,093349 93,1136608 93,1483182 93,1137591 93,1543095 92,652238 92,9839518 93,1427837 93,0992099 93,175847 93,1175855 93,2606956

zeta 0 0 0 0 0 12,6013931 4,20028843 38,1585009 74,1097161 90,9417876 89,3313603 77,1363501 79,8762502 95,2342298 86,0207483 90,7401488 83,1965521 82,5827428 74,3924484 86,0568118 97,3563129 73,5128217 92,5301682 96,1346691 96,2999754 97,0432335 96,9085028 97,3448246 97,50695 97,811037 97,9867001 97,6505767 97,8125958 97,7759218 98,2311827 97,8874202 97,9425753 97,7956063 97,8396691 98,0082862 98,1678302

pzeta 0 0 0 0 0 2,89423914 3,33017591 31,0062959 68,4980695 88,208726 86,6358816 75,8438725 75,6056327 91,2640685 85,6948075 89,7138301 80,6468218 80,3198954 73,6023979 85,8970797 95,9708758 69,8924043 91,4881945 94,9299145 95,1929913 95,8015409 95,5326876 95,91466 96,0390362 96,3652514 96,4343839 96,4919677 96,3552231 96,3520824 96,3361318 96,4466963 96,4113532 96,4281098 96,4326368 96,486388 96,6378822

F_p 0 0 0 0 0 5,70551676 -9,46616379 26,9656101 70,3141264 85,9986408 85,6678016 76,3860613 78,8699713 89,8955992 84,7494875 87,8364275 82,5866874 80,5478227 72,1022917 84,7605757 96,3416621 72,263713 92,0165032 95,4893136 95,5496217 96,23256 96,0429957 96,5430296 96,5345515 96,7756527 96,9846782 96,6506672 96,7966898 96,8170769 97,2085468 96,887066 96,9282692 96,8068336 96,7666541 97,0094937 97,150264

FIT VAL RED xi 0 0 0 0 0 18,5561701 2,34158287 36,4246956 74,578013 87,9267891 87,9770734 79,9207879 82,2328977 91,2878887 86,5852433 88,9464627 85,2878628 83,3123771 75,7916611 86,6228348 96,7449944 76,8758837 93,3146436 96,1953809 96,221453 96,7313243 96,5985016 96,9831017 96,9402244 97,0252914 97,2064892 96,8633911 96,9642571 96,9602236 97,4506286 97,1066599 97,1073206 97,0326588 96,9886758 97,2026754 97,3030474

pxi 0 0 0 0 0 2,5699565 6,14342038 10,0237865 59,1321114 66,4296761 66,0038332 79,4251343 79,8990223 66,1212249 81,1190684 79,2898418 84,2500579 81,4133238 78,7767159 87,4103683 92,5058716 77,8185427 91,0002501 92,3643294 92,3802396 92,6317816 92,5359614 92,7714198 92,7266634 92,7502654 92,78762 92,8294111 92,7721304 92,8083863 92,389798 92,6456474 92,8147518 92,7636028 92,8272823 92,8244269 92,9844916

zeta 0 0 0 0 0 14,7849236 3,9292345 39,5461442 74,899208 90,930544 89,281692 78,0257487 80,862106 95,6292328 86,0309585 90,6579298 83,9669568 83,1558426 74,981242 86,1984331 97,4401888 75,0615404 92,9722028 96,4082704 96,5434455 97,188044 97,0964759 97,4625914 97,5856499 97,7000886 97,8599256 97,4473237 97,5750669 97,5093718 98,1527919 97,738309 97,739569 97,6436656 97,6835779 97,8229691 97,9398731

pzeta 0 0 0 0 0 3,28609296 2,66875773 31,8569164 68,8719303 88,4046066 86,7236992 76,3847112 76,084678 91,6405341 85,8244395 89,647625 80,864443 80,2708181 73,3039905 85,7792444 96,0925011 70,2430937 91,8095615 95,1872574 95,4220965 95,9638745 95,6960167 96,0471078 96,142419 96,3792326 96,4420492 96,4582636 96,2924392 96,2463177 96,3582511 96,4407297 96,3597077 96,4158626 96,4140771 96,4640831 96,608607

F_p 0 0 0 0 0 5,56483539 -13,2361863 26,2836197 70,5228802 86,0009572 86,0592625 76,7178962 79,3988172 89,8981953 84,4454177 87,1832818 82,9410883 80,6504873 71,9301208 84,4890055 96,2257793 73,1872907 92,2482436 95,5884954 95,6187263 96,2099286 96,0559191 96,5018677 96,452151 96,5507872 96,7608884 96,3630618 96,4800172 96,4753403 97,0439712 96,6451351 96,6459012 96,5593298 96,508331 96,7564663 96,8728489

6 ->

OP45TV 20150323_V01_OP45TV_O6to50_R6_DS

order

ORDER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 20,0750923 10,3826411 19,6804329 45,8197274 70,8119568 57,9810023 49,9240273 86,4696757 85,6855721 91,4555664 89,0383626 91,99032 93,427062 93,833543 95,7536795 96,3700199 94,3078964 95,5675098 94,8769094 95,953391 96,2568971 96,3727288 96,9058931 97,2154102 97,3539652 97,3571262 97,3639259 97,4109919 97,4330854 97,3560551 97,2213359 97,0205534 97,1280374 97,1755306 96,293521 96,613266 97,290312 97,3858384 97,3940614 97,3601697 97,3541033 97,3603567 97,3633641 97,3449216 97,349971

pxi 0 0 0 0 0 6,36891044 6,36857455 8,8371346 54,5595531 62,1986952 58,3596226 50,0065735 83,9814048 61,5059309 87,8153857 87,2375993 89,2949025 91,1021592 91,800056 92,7670555 93,3593699 92,6120195 93,210491 92,8641364 93,3599096 93,4786323 93,528335 93,6569238 93,7866348 93,8238766 93,8231508 93,8191722 93,8151478 93,836334 93,8282809 93,7850036 93,7453578 93,7826024 93,7681604 93,4770257 93,5229497 93,7561016 93,7715717 93,7478293 93,7731295 93,7740765 93,7766429 93,7869053 93,7426307 93,7454608

zeta 0 0 0 0 0 16,6005194 4,70679952 16,0141216 59,5316697 70,1288538 55,579735 46,122828 85,8882702 90,6901388 91,2039153 88,4166918 91,6963959 93,1892187 93,6185385 95,8223961 96,615127 94,2488699 95,6894847 94,8756717 96,1316789 96,4889359 96,6292516 97,248391 97,7012908 97,9040721 97,9043868 97,9113781 97,9761474 98,0145984 97,9049282 97,7285802 97,4757004 97,6090007 97,664262 96,543377 96,9352887 97,8530915 97,9815299 97,9947484 97,9445259 97,9388477 97,9503373 97,9554616 97,9446911 97,9487378

pzeta 0 0 0 0 0 7,19451671 2,19117562 11,4154371 55,3990555 67,1243137 51,4923721 40,5316456 84,415348 87,3872916 89,3497997 86,3213529 89,9985468 91,7438757 92,270368 94,5968943 95,7177082 93,5021869 94,9188631 94,0767886 95,2704632 95,5874083 95,7235359 96,1672764 96,5658301 96,7046111 96,7044447 96,7057353 96,7693278 96,8090352 96,7600287 96,6436279 96,4560232 96,5751352 96,5721026 95,7657588 95,9920632 96,718052 96,8065091 96,813899 96,7615282 96,7576425 96,7784332 96,7864599 96,783362 96,7889571

F_p 0 0 0 0 0 9,45900625 -1,52085205 9,01192593 38,6231919 66,935033 52,3997973 43,2726485 84,6725001 83,7842474 90,3206456 87,5823749 90,9264283 92,5540066 93,0144787 95,1896588 95,8878651 93,5518384 94,978761 94,196431 95,4158971 95,7597166 95,8909338 96,4949161 96,8455449 97,0025036 97,0060845 97,0137873 97,067105 97,092133 97,0048712 96,8522577 96,6248062 96,7465668 96,8003683 95,8012051 96,1634205 96,9303957 97,0386104 97,0479256 97,0095322 97,00266 97,0097441 97,0131509 96,9922588 96,9979789

FIT VAL xi 0 0 0 0 0 18,388664 9,35054529 18,1657021 41,9519298 69,3116127 56,9732442 48,5613541 85,488885 84,6015282 90,5375374 88,0011213 91,0694722 92,6460183 93,0679755 95,1805879 96,1498719 94,3786662 95,728162 94,9813462 96,1266976 96,4341627 96,5478597 97,0710586 97,3287653 97,4108024 97,3659308 97,3479652 97,3612781 97,3870526 97,4075151 97,3222437 97,1480538 97,2582266 97,2924248 96,470908 96,543374 97,2749204 97,4274761 97,457356 97,4262289 97,4149738 97,4270141 97,4267084 97,409463 97,4233665

pxi 0 0 0 0 0 5,70711245 6,2910045 8,54592444 52,1853974 60,4425499 58,3948085 50,3749095 83,6455565 60,2617116 87,5486112 86,9258366 88,8576774 90,6174855 91,2863356 92,3352295 92,9590253 92,5750283 93,146079 92,8117449 93,2999587 93,3960716 93,44056 93,5405485 93,6606181 93,6863162 93,6811547 93,675883 93,6680197 93,6895456 93,7085482 93,6873644 93,6756685 93,7095984 93,6936143 93,4760404 93,4478857 93,6797759 93,7055881 93,6711419 93,6396086 93,6225591 93,6345909 93,6449235 93,5898906 93,6253249

zeta 0 0 0 0 0 15,391277 4,21463835 14,9484626 56,8698797 68,9356469 54,691343 44,8900242 84,8331146 89,8986946 90,2666995 87,3290714 90,7640377 92,4140415 92,8468867 95,2595496 96,5002184 94,4079895 95,9754397 95,0842151 96,4436201 96,8212806 96,9647782 97,5997949 98,0073359 98,1304947 98,0503091 98,0146591 98,0245937 98,0676997 98,1146682 98,0077745 97,7779648 97,922647 97,9587526 96,8496359 96,9091372 97,923368 98,1521464 98,2139919 98,1918854 98,1862858 98,2059747 98,2064938 98,202028 98,206946

pzeta 0 0 0 0 0 6,63897663 2,29589796 11,1291551 52,7760763 66,0705063 51,3081605 39,9601201 83,4768743 86,3720568 88,6318303 85,5158603 89,2694774 91,0868704 91,6067526 94,0693533 95,4711288 93,618196 95,1063478 94,2367548 95,4732907 95,7858441 95,9193854 96,3303089 96,6591371 96,7266176 96,6753496 96,646113 96,6701635 96,7102593 96,7655535 96,7078519 96,5602131 96,6731923 96,6595819 95,9319915 95,8726913 96,6338271 96,7814153 96,8187684 96,7839881 96,782283 96,8071969 96,8124057 96,8152934 96,821095

F_p 0 0 0 0 0 9,96246648 -0,00881887 9,71648417 35,9585895 66,1431017 52,5308229 43,2504228 83,9906431 83,0116686 89,5605582 86,7622625 90,1474142 91,8867353 92,3522587 94,6829938 95,7523544 93,7982754 95,2871038 94,4631808 95,7267873 96,0659976 96,1914335 96,7686516 97,052966 97,1434732 97,0939687 97,0741482 97,0888357 97,1172714 97,1398465 97,045771 96,8535965 96,9751444 97,0128734 96,1065368 96,1864847 96,9935618 97,1618685 97,1948334 97,1604925 97,1480753 97,1613588 97,1610215 97,1419955 97,1573346

FIT TRAIN RE xi 0 0 0 0 0 20,0750923 9,27122616 20,064407 40,8053258 75,4385263 61,4215133 52,4377649 83,3130529 82,6359199 91,3441827 88,5995451 91,81763 93,4020193 93,6623665 95,5353175 96,7354743 94,3270268 96,1134644 95,510502 97,2396338 96,1316267 97,0205789 97,4386326 97,4910408 97,5904797 97,4831382 97,4562213 97,3873915 97,4712644 97,462572 97,4374815 97,4144259 97,5627156 97,3937651 96,2256072 96,5329326 97,1526479 97,351639 97,4208775 97,3916181 97,4251841 97,4471758 97,3979301 97,3903953 97,2493453

pxi 0 0 0 0 0 6,36891044 6,17471697 7,41048586 48,9871345 56,321043 56,3947681 45,5183176 78,2655445 57,2065928 85,7386151 86,0287312 88,5278021 90,5653939 91,2747525 91,9888879 92,933095 92,5277393 92,9802178 92,6993202 93,1799297 93,264391 93,2590393 93,3787895 93,3936895 93,2472301 93,4250717 93,3977851 93,3754297 93,4805528 93,3946277 93,464736 93,3594596 93,4228278 93,4545116 93,3046568 93,1744278 93,5055524 93,4231706 93,3789935 93,4530831 93,4452528 93,558626 93,5307288 93,4605186 93,4755507

zeta 0 0 0 0 0 16,6005194 3,87285305 13,1719598 60,3084602 75,699451 59,5737313 48,5418407 82,7589821 84,8277704 91,282984 88,1366092 91,5920363 93,1825317 93,4279866 95,6772427 97,0682181 94,2287058 96,2840717 95,5449432 97,500626 96,3799433 97,4246083 97,9372603 98,0710034 98,1085507 98,0869365 98,0075871 97,9124393 97,9765776 98,0748123 97,9647358 97,9219017 98,1628149 97,9043616 96,4761942 96,8461619 97,7039689 97,9143702 98,0260087 97,9795161 98,0745599 98,0612518 98,0146 97,9986092 97,9499236

pzeta 0 0 0 0 0 7,19451671 1,83006629 11,5049279 54,8124208 71,3054154 52,6518739 39,7595227 81,4431632 82,7275709 89,4263152 86,0299865 89,8739507 91,5714745 92,1047003 94,3210713 95,8892803 93,8861915 95,6494733 94,860017 95,9605161 95,7553529 96,3443462 96,5684572 96,7960946 96,7760449 96,7951198 96,7434063 96,7326905 96,7544595 96,8354523 96,8046095 96,739077 96,8350759 96,7755782 95,8431221 95,7284253 96,6295053 96,7380359 96,7948441 96,8231134 96,8293572 96,8445331 96,8485143 96,8384166 96,8540338

F_p 0 0 0 0 0 9,45900625 -2,77989154 9,4469017 32,9427486 72,1761301 56,2972967 46,1202752 81,0965966 80,3295229 90,1944673 87,085271 90,7308006 92,5256376 92,8205656 94,9422927 96,3018612 93,5735098 95,5972324 94,9141811 96,8729861 95,6178072 96,6248351 97,0984171 97,1577864 97,2704334 97,1488342 97,118342 97,0403698 97,1353831 97,1255362 97,097113 97,0709951 97,2389815 97,04759 95,7242706 96,0724168 96,7744462 96,9998685 97,0783036 97,0451578 97,0831823 97,1080951 97,0523082 97,0437726 96,8839875

FIT VAL RED xi 0 0 0 0 0 18,388664 8,37215643 18,2559467 36,6413371 72,9433139 59,8866268 51,1200468 82,5645303 81,3577632 90,4322377 87,7273067 90,8775251 92,6082222 93,0038108 94,949399 96,4167172 94,4891327 96,3197509 95,6515503 97,2559187 96,3684268 97,1934224 97,5558898 97,5134179 97,4951518 97,416216 97,339434 97,2382406 97,3389525 97,4058229 97,489437 97,4896103 97,6088022 97,4647376 96,4074407 96,3521494 97,0821027 97,2882551 97,365061 97,34982 97,3772342 97,4454544 97,3801227 97,3543574 97,2493522

pxi 0 0 0 0 0 5,70711245 6,27403127 7,24573424 47,6501875 56,7798168 56,9713237 46,8230062 78,6848095 56,3969251 86,0049459 86,003735 88,2019144 90,179537 90,9398791 91,7745866 92,6857744 92,5334462 92,9620057 92,6728224 93,1596707 93,260375 93,2269756 93,3430665 93,3493736 93,1981063 93,3880495 93,3587133 93,3279387 93,4189788 93,3662669 93,4677071 93,3882197 93,4291774 93,4734029 93,3128829 93,085853 93,4882897 93,4159118 93,3642938 93,3837439 93,3598215 93,4829716 93,4476479 93,3818808 93,4282608

zeta 0 0 0 0 0 15,391277 3,48477896 12,27547 57,0120197 73,3849841 58,2163424 47,3356509 81,9168786 83,8763601 90,3318919 87,1675192 90,6291616 92,3830189 92,7427091 95,0917388 96,847429 94,5120434 96,6740389 95,8159318 97,5986135 96,7874982 97,8243553 98,2639552 98,2777739 98,1272722 98,1326613 97,971386 97,8205926 97,9089735 98,1279555 98,1927005 98,1922715 98,3911984 98,1537117 96,7930948 96,6764987 97,6949116 97,9205139 98,0535134 98,059561 98,1515773 98,2098827 98,1365775 98,0891755 98,0829612

pzeta 0 0 0 0 0 6,63897663 1,72203939 11,4843317 51,5027491 69,6180932 52,6208836 39,5689946 80,630905 81,5257788 88,689119 85,3713103 89,202499 90,9995597 91,5327116 93,8335384 95,6305861 94,0105678 95,8480795 95,038514 96,1593565 95,9598721 96,5228298 96,6911268 96,7923716 96,6415566 96,6683577 96,5845297 96,5203777 96,5609556 96,7169637 96,8046005 96,7566148 96,8329726 96,8020912 95,9939065 95,4859972 96,4764282 96,586147 96,6563179 96,7164243 96,7206159 96,7859253 96,767775 96,7404655 96,7786982

F_p 0 0 0 0 0 9,96246648 -1,08822431 9,81604636 30,0996894 70,1497684 55,745006 46,0732951 80,764355 79,4329917 89,4443865 86,4601772 89,9356489 91,8450368 92,2814691 94,4279352 96,0467508 93,9201473 95,939773 95,2025821 96,9725981 95,9934746 96,9036492 97,3035406 97,2566836 97,2365316 97,1494458 97,0647362 96,9530948 97,064205 97,1379796 97,2302267 97,2304179 97,3619161 97,2029772 96,0365165 95,9755165 96,780836 97,0082732 97,0930092 97,0761946 97,1064392 97,1817029 97,1096259 97,0812004 96,9653536

6 ->

OP25VT 20150327_V01_OP25VT_O6to40_50_R6_DS

order

ORDER 0 0 0 0 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 19,0604756 20,8559958 0,13150599 22,0047273 34,1055597 45,3162927 41,7317565 23,2678801 73,9802545 -24,0922753 69,7518512 75,0156459 -46,931775 7,38238469 66,9514801 93,150743 94,2709407 96,3820381 96,2939591 95,3465787 92,85989 91,4044603 91,7234918 92,901494 96,0762877 94,3588695 93,7700731 93,161614 94,0381004 95,6280407 95,8116249 96,0707169 95,8729181 96,0054773 96,1285641 95,6508148

pxi 0 0 0 0 0 4,01489604 12,90585 2,24030476 32,8926149 26,1419581 46,1883798 41,9770131 25,6921457 56,4277132 47,5076055 70,8222117 66,4061895 51,5427571 30,5207338 68,3045667 88,404217 90,0123235 91,1148175 91,1387374 90,7194694 89,5670328 88,694124 88,990087 89,5612086 90,8598751 90,0689814 89,6945679 89,4334571 89,8102464 90,8720523 90,8645268 90,8941274 90,8202618 90,8534113 90,837686 90,7854773

zeta 0 0 0 0 0 15,4979169 17,764661 -4,73842975 25,7132524 31,225907 41,9684975 37,980032 24,8432265 75,1721321 -34,3141628 67,8595685 74,5913758 -59,6443922 -0,29281152 64,7683621 93,510341 94,6376026 97,3357535 97,1832444 95,9044861 92,851034 91,1612268 91,5496919 92,8919173 96,8723277 94,7074284 93,9865353 93,2488996 94,2322153 96,2386329 96,4915598 96,9205108 96,6407929 96,8347512 97,0336647 96,2827813

pzeta 0 0 0 0 0 4,24433127 11,6003293 3,04873442 23,8992786 28,5858528 41,9456906 36,2244254 22,8026454 70,1682044 32,6337833 67,7615534 72,0410654 46,4970926 13,0178108 64,8190879 91,3354491 92,6747502 94,2676646 94,1991657 93,4999962 91,2633677 89,7456266 90,2788409 91,2044896 94,0325722 92,6801997 92,0501757 91,5251228 91,969043 93,7498092 93,8815329 94,0395646 93,9440912 94,0164623 94,0717279 93,6336327

F_p 0 0 0 0 0 9,13580408 11,151488 -12,1142047 12,441075 26,0256917 38,6110664 34,5870002 13,8591136 70,7897561 -39,3082662 66,0428728 71,9521054 -64,9483079 -3,97423515 62,8991249 92,3108983 93,5684528 95,9384096 95,8395305 94,7759839 91,9843815 90,3504893 90,7086399 92,0310868 95,5951685 93,6671633 93,0061697 92,3231023 93,307062 95,0919583 95,2980532 95,5889146 95,3668621 95,5156755 95,653855 95,1175249

FIT VAL xi 0 0 0 0 0 16,2917216 17,909024 0,21902721 20,2893214 31,897328 43,451728 38,8513968 21,7689411 72,7660213 -47,9016361 66,694023 72,8536976 -48,6994351 -11,1288306 63,1715478 93,3364505 94,4662739 97,0186257 96,7556507 95,70769 92,7391703 91,0579288 91,4743767 92,8143909 96,636304 94,4570109 93,7393067 93,0228115 93,7095647 95,8265468 96,0637065 96,4364787 96,1677762 96,353991 96,5279744 95,7615261

pxi 0 0 0 0 0 4,95542311 13,1506433 3,49193079 31,7916594 25,9886747 45,2598759 41,2540621 25,4852603 59,4317216 48,2162146 65,8124622 63,4634873 49,6631246 32,1540073 67,0406652 90,3370186 91,7589408 92,9966933 92,9152874 92,5021802 90,9352204 89,7938013 90,1698537 90,925057 92,8025042 91,931019 91,4682802 91,0684046 91,360168 92,6291402 92,6612249 92,7974381 92,7057935 92,7629907 92,801588 92,4933054

zeta 0 0 0 0 0 13,5500193 16,3837321 -3,1738262 23,0949697 29,5513064 40,673418 35,7265185 22,8070109 73,6733966 -57,0699923 65,0773748 72,8394077 -58,5518819 -18,2023773 61,1877211 93,4067422 94,5826973 97,6384212 97,271846 95,9744243 92,5852737 90,7336643 91,2033923 92,6683312 97,0925671 94,5154568 93,7001402 92,8948786 93,6307438 96,092083 96,3784875 96,8699154 96,5329676 96,7679356 96,9939489 96,0253538

pzeta 0 0 0 0 0 4,94458482 11,4497049 3,70867118 22,9619088 27,6123635 40,7187565 35,6038242 22,2120748 70,7618382 37,7203565 64,653978 69,9683941 44,6487149 18,3107008 61,9968161 91,9313432 93,2181497 95,1663501 94,9564154 94,2024549 91,5469769 89,8562222 90,4114676 91,5352591 94,9016084 93,1956724 92,4675929 91,7894399 92,1388292 94,3394126 94,4902456 94,7321808 94,583022 94,6971913 94,8060845 94,1243814

F_p 0 0 0 0 0 8,0196623 9,7967867 -9,64133712 12,4123053 25,1674161 37,8636229 32,8086866 14,0381411 70,0747572 -62,5172885 63,4027235 70,1710976 -63,393926 -22,1105912 59,532157 92,677958 93,9194306 96,7240061 96,4350438 95,2835235 92,0216545 90,1742725 90,6318739 92,1043084 96,3039033 93,9092523 93,1206245 92,3333252 93,0879433 95,4141257 95,6747216 96,0843313 95,7890755 95,9936921 96,1848685 95,3426797

FIT TRAIN RE xi 0 0 0 0 0 19,0604756 23,5880254 -8,17443534 -5,23387497 29,5125655 50,6712536 33,5815922 31,1143477 61,4115876 -26,1434238 72,6122776 80,3522958 -46,9611357 2,48333889 65,0254987 92,1953879 94,5863327 96,2012596 96,1999209 95,4021649 93,3529012 91,720314 92,1017082 93,1050452 96,084805 94,812581 94,0026784 93,8405955 94,3863027 95,9410599 96,2033571 96,0520563 96,1781213 96,4216809 96,3140143 95,5681338

pxi 0 0 0 0 0 4,01489604 11,8006916 3,55404617 16,8558075 21,2368263 44,9981145 35,9570858 29,6624566 44,6453731 45,3582291 68,8066654 62,9966199 42,2786781 29,7504135 67,7883976 87,5969484 89,8566448 90,623483 91,0593477 90,5582094 89,2910683 88,2616428 88,6329396 89,1833143 90,6723701 90,0290214 89,5203925 89,3279217 89,9997742 90,6945057 90,5106614 90,8649574 90,8141894 90,7116557 90,7874296 90,8236035

zeta 0 0 0 0 0 15,4979169 21,4650248 -10,7311114 -3,62405946 23,7537009 48,0741559 27,6629037 38,5027324 58,5213304 -36,5465776 71,1437045 80,1051106 -58,5897336 -5,16754475 63,0460512 92,1231164 95,0095368 97,0126192 97,1343113 96,0244539 93,4641411 91,513149 92,1402349 93,0440636 96,7965378 95,3657026 94,273327 94,0615871 94,5294 96,9158413 97,1639683 97,0389335 97,0878529 97,1577574 97,3232355 96,4128604

pzeta 0 0 0 0 0 4,24433127 13,7393333 2,99891678 4,78658229 24,2788445 45,5839777 30,4125558 27,623118 58,7880754 32,7481866 68,5106583 74,2923517 39,7048247 12,2988443 63,7963251 90,6343195 92,6998192 94,0023088 94,2348314 93,5285732 91,1018775 89,4393494 90,1976804 90,9864562 93,7939879 92,9476661 92,0033554 91,6636426 92,5553412 94,0590791 94,1544061 94,1538597 94,0842398 94,1695403 94,1823471 93,928821

F_p 0 0 0 0 0 9,13580408 14,2185146 -21,4386069 -18,1374798 20,869512 44,6226438 25,4374761 22,6677022 56,6799399 -41,6109232 69,2540401 77,9431265 -64,9812688 -9,4739939 60,7369828 91,2383992 93,9225177 95,7354642 95,7339614 94,838386 92,5378449 90,7050725 91,1332326 92,2595972 95,6047303 94,1765082 93,2672966 93,0853395 93,6979604 95,4433594 95,7378189 95,567966 95,7094888 95,9829133 95,8620448 95,0247057

FIT VAL RED xi 0 0 0 0 0 16,2917216 20,650981 -6,23783264 -3,95275291 27,7444574 47,5402942 32,2001812 31,8565946 60,2209176 -47,9554732 70,382778 79,7323957 -44,4336055 -12,7623298 61,4720332 92,246186 94,8390225 96,6887043 96,6961699 95,797759 93,2383704 91,3975501 92,0533101 92,9679138 96,4828446 95,0896157 93,9893008 93,7485933 94,2328657 96,3480525 96,7620369 96,5042472 96,580159 96,9867403 96,844534 95,7892383

pxi 0 0 0 0 0 4,95542311 11,7401426 4,79558045 13,9737041 22,90697 43,8897928 37,4863056 29,6379006 48,1157853 46,7062961 65,3347888 60,477997 41,5898108 31,2856501 67,0149851 89,3274721 91,629847 92,4003912 92,8450862 92,341586 90,7494142 89,437979 89,8646371 90,5688643 92,5699626 91,8880904 91,3455946 90,9749331 91,5973708 92,3983269 92,2494776 92,767813 92,7138909 92,617363 92,7518622 92,5532399

zeta 0 0 0 0 0 13,5500193 19,6234357 -7,83524908 -2,59632099 23,2967809 45,7663815 27,0454494 34,9025467 58,0915805 -57,0976009 69,2012601 79,830284 -53,0788118 -19,7984705 59,6423963 92,0437207 94,9816652 97,1964334 97,2669483 96,1095344 93,1006804 91,0593131 91,9008862 92,7932934 96,863476 95,305459 93,9795551 93,7121683 94,1432034 96,9556181 97,3771907 97,0863105 97,0863532 97,3137433 97,430091 96,2834922

pzeta 0 0 0 0 0 4,94458482 13,6660488 2,23620844 3,6341883 23,3097585 43,8361131 30,0300322 26,186315 59,7713087 37,9412173 65,8304418 73,9331317 37,6717687 17,4502104 61,2003422 91,1382851 93,3054147 94,8915636 95,0124391 94,2615811 91,4729083 89,7397833 90,5871767 91,4355493 94,6405691 93,5351521 92,4946584 92,0658646 92,7958672 94,8096295 94,9689165 94,921218 94,7914365 95,0042735 95,0298416 94,4970705

F_p 0 0 0 0 0 8,0196623 12,8097041 -16,7362644 -14,2253729 20,6041585 42,3562216 25,5001973 25,1226574 56,2899453 -62,5764458 67,4560016 77,7295493 -58,7065468 -23,905513 57,6646962 91,4799534 94,3290142 96,3614818 96,3696851 95,3824932 92,5701856 90,5474552 91,2680175 92,2730025 96,135279 94,6043711 93,395323 93,1308287 93,662957 95,9871668 96,4420611 96,1587966 96,24221 96,6889697 96,5327106 95,3731304

6 ->

OP25TV 20150323_V01_OP25TV_O6to50_R6_DS

order

ORDER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIT TRAIN xi 0 0 0 0 0 6,52413644 10,1095239 3,41931345 14,000378 13,339684 12,0431223 11,7855686 9,03517237 33,100709 39,5167785 51,9362362 41,4395615 33,3764313 45,0226796 55,4677827 91,3780287 91,825858 91,6428138 92,150487 90,8944914 89,3710755 85,7362614 77,4708235 83,1983907 89,9702056 93,2674384 93,9448416 94,5691821 95,2033591 95,1403612 95,1187637 95,2175304 95,4540069 95,1136106 94,4652306 94,5884117 94,701075 95,304347 95,9132178 96,0550838 96,2418136 96,2949466 96,2488351 96,2147688 96,1997433

pxi 0 0 0 0 0 0,88709755 5,64689605 1,51882252 14,1811096 6,57042203 13,148042 19,5657741 17,9177655 40,2625437 49,4576308 54,0394315 49,9121069 45,0773531 53,6735882 62,2511767 86,3643745 86,162364 86,1452506 86,2164902 85,4650612 84,6682807 82,4491297 76,2419229 79,702664 84,8633741 87,2789715 87,9099643 88,6440073 89,4101679 90,002219 90,331379 90,4206716 90,5941396 90,5807495 90,2971783 90,4134015 90,4436056 89,2861532 90,5700432 90,8170466 91,4814093 91,7368208 91,7170828 91,7624841 91,8351881

zeta 0 0 0 0 0 5,01420243 7,35844915 0,69966864 10,553127 11,1145926 8,06703244 7,09988398 11,4300252 30,2145741 35,7337991 49,9927642 37,9720146 29,3368929 41,6887952 52,7151519 91,9838585 92,5053501 92,2203179 92,9159304 91,3554125 89,565241 85,4962814 76,7167887 83,136101 90,5009369 94,2268888 95,0211145 95,7286484 96,4503401 96,1225925 95,959325 96,069511 96,3537623 95,8436395 95,0210903 95,1706115 95,3207294 96,4264434 96,9355518 97,151475 97,1861384 97,151445 97,1052546 97,0351811 96,9849326

pzeta 0 0 0 0 0 0,99712916 4,87267744 2,30074896 8,67543241 3,76848543 8,66980805 10,0272044 14,2557 28,6908981 35,8238358 48,279162 36,8365008 30,0249865 41,7061093 52,3935774 89,7495091 90,2069474 90,0921702 90,5051967 89,2897344 87,7611821 84,031843 75,1101903 81,0900403 88,1376511 91,4548372 92,1867088 92,9291477 93,5254065 93,585505 93,5947487 93,6740567 93,8341806 93,5758986 93,0575441 93,1849072 93,2726024 93,5124669 94,1469049 94,2747196 94,4916739 94,5853761 94,5559508 94,5141072 94,4984575

F_p 0 0 0 0 0 0,99826176 4,79560131 -2,29010446 8,91646531 8,21671404 6,84350537 6,57072626 3,6577389 29,1459224 35,9412812 49,0949216 37,9777305 29,4379441 41,7726664 52,8352374 90,8683363 91,3426393 91,1487744 91,6864589 90,3562144 88,7427411 84,8930531 76,1389994 82,2051548 89,377289 92,8694395 93,5868877 94,2481365 94,9198031 94,8530811 94,8302068 94,9348122 95,1852681 94,8247491 94,1380398 94,2685029 94,3878262 95,026761 95,6716255 95,821878 96,0196464 96,0759205 96,027083 95,9910029 95,9750892

FIT VAL xi 0 0 0 0 0 5,64325965 7,82340268 2,89187109 13,638721 12,4331262 10,9660333 9,84154917 10,3177975 34,3047517 42,1027044 55,6913446 42,7907033 33,4926542 47,453903 58,1467771 92,890839 92,6077683 92,3833886 92,929311 91,6080512 90,1729942 86,9893667 79,8422195 83,8589792 90,3711463 93,7387056 94,6382181 95,5391668 96,1689025 96,4764994 96,5220388 96,6031051 96,772225 96,5666431 96,1271448 96,1833418 96,28758 96,759317 96,8281866 96,7137916 96,7449783 96,6404543 96,6079073 96,6918348 96,734403

pxi 0 0 0 0 0 -0,11948413 4,0426859 0,60140828 10,9633604 3,89543191 11,3379133 14,5070978 -9,30458299 38,1993431 46,7150332 52,4220827 44,3241521 39,9427026 48,8287012 58,8255455 89,0337468 89,410534 89,616859 90,0086519 89,4082583 88,4962648 85,9840781 79,5430815 83,7842244 89,2788267 91,8887363 92,527509 93,0860624 93,490117 93,6056945 93,5509478 93,5595909 93,573371 93,4144195 93,1973561 93,2516504 93,3073878 92,4326318 92,4478566 92,1156451 92,3393503 91,9250771 91,8528403 92,1340531 92,3047287

zeta 0 0 0 0 0 4,69922622 6,03490935 1,17444682 11,4590361 11,234003 8,32924433 6,79636328 12,2784657 32,8705966 39,9687365 54,3407146 40,8471857 31,1321344 45,6418643 56,732302 93,1638397 92,7040452 92,4033533 93,0334103 91,5634596 90,0132145 86,6473311 79,2684379 83,397859 90,2550506 93,8124557 94,7987137 95,7966838 96,5008632 96,8787968 96,9363316 97,0326193 97,2396779 96,9987594 96,4681412 96,5466249 96,6647583 97,3690461 97,5084546 97,4929418 97,4838639 97,4539685 97,4520054 97,4811517 97,490823

pzeta 0 0 0 0 0 0,37954966 5,22118765 2,11503429 9,20073185 3,97211552 10,0566243 10,178215 11,9307687 32,1505565 39,8612627 49,6651494 37,3762077 31,7562154 42,6641809 53,8173954 92,0135421 91,6130303 91,3383374 91,8864226 90,4811066 89,0149373 85,6216927 77,7604808 83,1960762 89,6306755 93,0062999 93,841883 94,4615371 95,1845567 95,5244094 95,5571326 95,6160516 95,7137462 95,5389601 95,1768015 95,2474676 95,3329735 95,5359643 95,6220477 95,4887351 95,5501305 95,4694895 95,4465507 95,5134235 95,5511815

F_p 0 0 0 0 0 3,39448886 5,62659046 0,57752742 11,5805032 10,3461758 8,84411833 7,69283472 8,18043335 32,7390601 40,7228587 54,6353521 41,4272544 31,9076081 46,2015905 57,149304 92,7214089 92,4315919 92,2018646 92,7607977 91,4080489 89,9387906 86,6792889 79,3618063 83,4742959 90,1416653 93,5894824 94,5104327 95,4328533 96,0775973 96,392525 96,4391498 96,5221482 96,6952986 96,4848171 96,0348444 96,0923808 96,1991032 96,682083 96,7525939 96,6354726 96,6674025 96,5603874 96,5270648 96,6129925 96,6565752

FIT TRAIN RE xi 0 0 0 0 0 6,52413644 10,6549987 3,85519509 12,3488198 13,4690221 4,49815995 3,60821505 -0,468235 19,8025954 38,961921 49,5270457 41,7164432 37,249466 42,4849985 52,9045767 90,5418073 91,342476 90,7239139 90,2854464 89,4093473 88,8260321 82,1056168 75,6186559 81,3749465 88,9488561 92,5003016 93,9764186 95,2618785 95,6723082 95,5874302 94,9577982 95,7772255 96,0574755 96,4648311 94,8972609 95,1082044 95,6865407 94,7897397 95,1570336 95,7320809 95,9125393 96,3049846 96,0858148 96,4207015 96,1232491

pxi 0 0 0 0 0 0,88709755 5,58319177 0,97365207 12,4165568 6,46996403 7,23942793 13,9342253 0,74246086 28,6610876 49,4686274 50,5580126 48,5963514 45,813401 52,8944756 60,6183896 86,2961366 86,0107882 85,9991728 85,9035255 85,1862084 84,4073711 81,4896945 75,9201159 79,4741916 84,5852175 86,9934272 87,7931816 88,5071333 88,9614905 89,9349258 90,1903396 90,2071917 90,5344952 90,3136497 90,3139723 90,2657585 90,3738833 89,2795194 90,3432227 90,5842052 91,1736154 91,1462432 91,1410201 91,326711 91,4098585

zeta 0 0 0 0 0 5,01420243 8,05766991 1,07775711 8,78162022 11,2111443 2,00768316 -1,06460452 4,98842995 26,0085318 35,3368942 47,9851743 42,103571 33,5692857 38,7654236 48,5063723 91,0281893 91,6102708 90,9165289 90,628103 89,5210314 88,624998 80,5412175 74,390492 80,7828212 88,8515362 93,2815303 95,2940953 96,5511117 96,9073346 96,8577326 95,9456119 97,2023736 97,1343422 97,2412794 95,8225603 95,8496219 96,782839 95,9643813 96,0294645 96,7458837 96,7658763 97,0965756 96,9533418 97,132019 96,8940647

pzeta 0 0 0 0 0 0,99712916 5,06987762 2,19959572 6,46576921 3,78383617 5,62798186 7,34444973 6,33901583 17,570558 36,6420141 46,0282921 35,4528255 31,9497593 42,6746053 51,3888669 89,8332062 89,5176428 89,4659599 89,3166937 88,4110502 87,3336807 82,2444678 74,6471261 80,2044081 87,1057262 90,557955 91,8699317 92,7023573 93,3665618 93,6035068 93,5224327 93,9605125 93,8691388 93,7863933 93,4552012 93,7067258 93,8426315 93,5027039 93,6694979 94,0710197 94,1849018 94,3039944 94,2526928 94,285553 94,3408042

F_p 0 0 0 0 0 0,99826176 5,3733221 -1,82845544 7,16727438 8,35369801 -1,14748138 -2,09003584 -6,40746737 15,0616838 35,3536229 46,5433105 38,2709802 33,5399353 39,0849691 50,1205061 89,9826813 90,8306819 90,1755532 89,7111655 88,7832753 88,1654771 81,0477809 74,1773399 80,2739167 88,2955619 92,056953 93,6203314 94,9817819 95,4164744 95,3265788 94,6597258 95,527594 95,8244111 96,2558477 94,5956098 94,8190233 95,4315483 94,4817324 94,8707391 95,4797807 95,6709069 96,0865518 95,8544257 96,2091094 95,8940729

FIT VAL RED xi 0 0 0 0 0 5,64325965 8,71387264 2,48767674 11,7728687 12,6524182 3,50628045 3,8384787 0,16879972 16,4839909 41,6565636 55,088757 44,3857437 37,5512497 46,0708683 56,7589295 91,8224339 92,6839021 90,9637109 90,3404307 89,1804397 89,9061712 85,4143615 76,3710733 80,2620131 89,7020033 92,162564 93,9524233 95,9389449 95,7506322 96,5812717 96,201143 96,6836837 96,9943147 96,8203899 96,3071907 96,3284408 96,698248 96,099019 96,1977967 96,2589204 96,3579061 96,4056293 96,2616762 96,7288004 96,4616472

pxi 0 0 0 0 0 -0,11948413 3,75792554 0,30071135 8,55957085 3,98981388 8,21811775 5,82490176 -24,84521 24,9173393 47,5345656 48,1603665 45,0200094 42,9029087 50,7063243 58,459342 87,9239732 88,5338937 88,8216833 88,5782353 88,3713897 88,1481455 84,2275071 78,4242368 82,4053041 88,4451843 90,9970539 92,0596743 92,7501962 92,0933489 93,3229061 93,2529509 92,8938791 93,3257568 91,9514514 92,9855475 92,6582645 92,6682834 92,2014906 92,1529208 91,6463986 91,9617886 91,1764195 91,1654519 91,6608176 91,8132781

zeta 0 0 0 0 0 4,69922622 7,02647927 0,55560729 9,21786652 11,4998877 1,87662793 0,85493981 8,58945022 27,2878693 39,7243478 53,9603053 44,2237419 35,5108231 44,1402275 54,680795 92,0121335 92,3669482 90,8264369 90,5626079 89,1650892 89,7936432 84,7342283 75,1225738 79,5678203 89,35347 92,5378015 94,8658651 96,3620346 96,0690386 97,1398527 96,7472819 97,4937721 97,5272833 97,0075158 96,8949562 96,801725 97,38679 96,7915029 96,8868543 96,9263507 97,0106832 97,0883092 97,0595159 97,3868034 97,1358503

pzeta 0 0 0 0 0 0,37954966 5,56984657 2,33341123 6,60912058 3,98843591 5,70482396 6,51813636 2,18078305 21,9347482 40,758489 49,0347867 38,2926584 36,9728442 46,1174124 54,1646451 91,9258359 90,8721323 90,2997346 90,1509137 89,2031063 88,8492196 83,7059716 76,5420334 81,4514779 88,6195747 92,0700093 93,3487418 94,1867989 94,5730903 95,5119555 95,4513502 95,609372 95,6377587 94,8537932 95,4493905 95,5086964 95,5801841 95,4017344 95,1561151 95,105539 95,1133022 94,9613427 94,9867574 95,1639827 95,2302928

F_p 0 0 0 0 0 3,39448886 6,53828267 0,16370005 9,67018268 10,5706942 1,20657978 1,54669519 -2,21044195 14,4935834 40,2660851 54,0184032 43,0603088 36,0629307 44,7855944 55,7283804 91,6275408 92,5095401 90,7483523 90,1102176 88,9225809 89,6656085 85,0667471 75,8079334 79,7916046 89,4565748 91,9757772 93,8082935 95,8421592 95,6493585 96,4997943 96,1106062 96,6046471 96,9226813 96,7446114 96,2191812 96,2409378 96,6195585 96,0060483 96,1071802 96,1697606 96,2711053 96,319966 96,172582 96,650839 96,3773189

6 ->

Figure 4.20: Illustration of a case study is showing the FIT values for the
signals ξ, ξ̇, ζ, ζ̇, FH and Fp. Color code: red = 0 [%], yellow
= 50 [%] and green = 100 [%] of FIT, while the areas in grey
were not examined. The results were obtained with the pan-
tograph LLMN (n4sid) consisting of 1 LLM with varying
system orders.

FIT with the legend: red = 0 [%], yellow = 50 [%] and green = 100 [%] of FIT. It
can be seen that the order reduction is not compromising the performance (loss of
about 1 [%] in FIT) and that the identification performance result is dependent of
the operating height (this effect is originating either from the nonlinear geometry of
the pantograph or the given estimated white-box models parameters determined in
[1], see Section 2.1).

Remark 4.5.3 (Figure 4.20). During the application of the Matlab function n4sid()

it was observed, that the initial value of the identified data set can have a strong
impact on the resulting FIT of the simulation, using the identified matrices. This
effect can be recognized in Figure 4.20, where e.g. for the OP45TV data set, the FIT
drops (yellow coloring) at system order n = 17, although the performance was already
good (dark green) for the identification with one order less. Therefore it can be stated
that some combinations of initial values and system orders are not delivering the
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Figure 4.21: Pantograph LLMN (n4sid), 1LLM, OP65
Part of the result shown in Figure 4.22 for the contact force Fp

(upper figure) showing a comparably small absolute error (lower
figure), achieved with the pantograph LLMN (n4sid) consisting
of 1LLM.

result that corresponds to the potential of this method. It is suggested, that always
multiple identification runs are performed with different parts of the considered data
set before any conclusions are drawn.

4.5.1 Simulation Results, Pantograph LLMN (n4sid)

This section presents the achieved simulation results of the pantograph LLMN (n4sid)
as plots of the LLMN output signals (compare equation 2.3) in comparison with the
white-box model reference data.

Operation point (OP) data set training, pantograph LLMN (n4sid) with
1LLM

The Figure 4.22 shows a part of the mapping of the output signals for an validation
run using the n4sid() subspace ID method on an operation point (OP) data
set as it can be seen in Figure 4.2 (OP65). This simulation result was achieved by
the pantograph LLMN (n4sid) as describe above. The absolute error for the contact
force Fp depicted in Figure 4.21 is considerably smaller than the one obtained with
the pantograph LLMN (surrogate).
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Figure 4.22: Pantograph LLMN (n4sid), 1LLM, OP65
Part of the result of the validation run of a pantograph LLMN
(n4sid) with 1LLM for all LLMN output signals (compare equa-
tion (2.3)). This LLM consists of a state-space matrix identi-
fied from the reference data set depicted in Figure 4.2 using
the N4SID method (CVA). The blue signals ’data’ denotes the
reference data generated by the white-box model, while the red
signals ’model’ denotes the output of the pantograph LLMN
(n4sid).
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Whole range (WR) data set training, pantograph LLMN (surrogate)
with 4LLM

The results of the simulation using the whole range (WR) data set (Figure 4.4)
are depicted in Figure 4.23. Figure 4.24 shows a close up of a certain part of that same
result. The pantograph LLMN (n4sid) consisting of 4LLMs was utilized to receive
these results. The state-space matrices inside the LLMs were identified prior using
the N4SID method (CVA) on 4 equidistantly positioned operating points, which were
OP25, OP45, OP65 and OP85 as shown in Figure 3.12.

The next plot in Figure 4.25 shows a part of the same result just for the contact force
Fp and its absolute deviation form the reference signal (absolute error). This is again
the part of the simulation result where the pantograph model is performing worst in
regard to the mapping of the contact force Fp. The corresponding maximum relative
error of this model configuration therefore is of about 22.5 [%].

When taking a look at the whole simulation result in Figure 4.26, where additionally
the activation of the different local linear models (MSFs, degree of membership) is
depicted, it becomes obvious that the peaks of the absolute error (ringing, soaring
up) stem from the blending procedure (output blending in this case). This phenom-
ena was not detectable for the parameter blended pantograph LLMN (surrogate),
compare Figure 4.15.

Remark 4.5.4 (Figure 4.26). In comparison to the same plot of the pantograph LLMN
(surrogate) (see Figure 4.15), the peaks of the contact force error signal can be clearly
detected during the (output) blending of two local linear models.

Remark 4.5.5 (Figure 4.26). As mentioned earlier, the preprocessing of the input
signals (low pass filtering) introduces a phase shift to the partition variable which
subsequently distorts the blending procedure. The offset error of the contact force
error, where the error signal is not oscillating around the zero-axis, stem most likely
from the distorted (delayed) blending procedure. E.g. at position 45 [s] (45000
[samples]) this phenomena is clearly visible.

This subsection is completed by presenting a result of pantograph LLMN (n4sid)
validation run, where the parameter blending method was applied. To achieve
the results shown in Figure 4.28, an additional processing step for the state-space
matrices was carried out. These matrices are received by the Matlab function
n4sid() in canonical form and very high order, and a subsequent order reduction
using reduce() and a transformation back to the lost canonical form as described
before. The Matlab function canon() however does not consider the arrangement
of the Eigenvectors inside the AT matrix nor the setting of sings in the BT and CT

matrices. Therefore additionally all the state-space matrices (AT , BT and CT ) where
examined regarding the positioning of the modes inside the matrices. By yet another
application of a transformation matrix, which only changes signs in the BT and CT

matrices, the state-space systems of the different LLMs were made more compatible.
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Figure 4.23: Pantograph LLMN (n4sid), 4LLM, WR, OB
Simulation result (validation) of the pantograph LLMN (n4sid)
with 4 LLMs for the whole range (WR) data set (compare 4.4)
for all LLMN output signals (compare equation (2.3)). The blue
signals ’data’ denotes the reference data generated by the white-
box model, while the red signals ’model’ denotes the output of
the pantograph LLMN (n4sid).
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Figure 4.24: Pantograph LLMN (n4sid), 4LLM, WR, OB
Part of the result shown in Figure 4.23. This plot reveals that
the signal is mapped right if it is located around an operating
point, but becomes biased as soon as the blending between two
LLMs occurs. This occurs due to the fact of the low-pass fil-
tering of the partition variable, which therefore carries a slight
phase shift.
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Figure 4.25: Pantograph LLMN (n4sid), 4LLM, WR, OB
Part of the result shown in Figure 4.23 for the contact force Fp

(upper figure) and the absolute error (lower figure), achieved
with the pantograph LLMN (n4sid) consisting of 4LLMs.
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Figure 4.26: Pantograph LLMN (n4sid), 4LLM, WR, OB
Simulation with validation whole range data set revealing peaks
of the absolute error of the contact force Fp (lower figure). A
strong correlation between the interpolation of the local models
and peaks of the contact force error is at hand, as it can be seen
from the plot of the activation of the different LLMs (MSFs,
upper figure).



4.5 Pantograph LLMN (n4sid) 111

2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

time [samples]

de
gr

ee
 o

f m
em

be
rs

hi
p 

[−
]

 

 
pVar
pVar

LPF

MSF
1

MSF
2

MSF
3

MSF
4

2 4 6 8 10 12

x 10
4

−300

−200

−100

0

100

200

300

time [samples]

er
ro

r 
[N

] −
 a

bs
ol

ut
e,

 c
on

ta
ct

 fo
rc

e 
F p

 

 
error

Figure 4.27: Pantograph LLMN (n4sid), 4LLM, WR, PB
Simulation with validation whole range data set revealing peaks
of the absolute error of the contact force Fp (lower figure) with
a plot of the activation of the different LLMs (MSFs, upper fig-
ure). The offset in the error signal stem from the preprocessing
procedure (LPF).

This additional step however hardly can be implemented in an automated fashion
(was realized manually for the presented LLMN (n4sid)). The result shown in Figure
4.28 should demonstrate the best achieved performance during this thesis using the
parameter blending method of neuro-fuzzy networks in connection with a subspace
identification method.

Additionally in Figure 4.27 again the absolute error of the contact force Fp for the
whole simulation result together with the activation of the different local linear mod-
els (MSFs, degree of membership) is depicted.

Remark 4.5.6 (Figure 4.27). In comparison with the pantograph LLMN (n4sid) where
the output blending method was implemented (see Figure 4.26), a different result is
obtained with the same pantograph LLMN (n4sid) in parameter blending configura-
tion. The absolute error seems to be smaller in magnitude of the ringing (soaring up)
which stems from the blending procedure, but is significantly larger in cases where
several LLMs are passed through in a considerably short period. E.g. the absolute
error of the contact force Fpis larger at position 31 [s] (31000 [samples]) compared
to the result shown in Figure 4.26. Also the offset error, most likely stemming from
the preprocessing of the partition variable, displays a different behaviour, e.g. at
position 31 [s] (31000 [samples]) there is a positive offset compared with the negative
offset visible in Figure 4.26.
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Figure 4.28: Pantograph LLMN (n4sid), 4LLM, WR, PB
Simulation of the LLMN model (n4sid) with 4 LLMs using the
whole range data set. This results were achieved using the pa-
rameter blending method (see Section 3.6.2) performing an ad-
ditional transformation of the by a subspace method identified
state-space matrices inside the LLMs.
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Figure 4.29: DFT of the pan-head velocity ξ̇ for several simulation runs
with operation point input data sets over the operating range.
Blue and cyan represents white-box model reference DFT data
for two different excitation signals in each operating point, while
red and magenta represent the with according DFT data of the
pantograph LLMN (n4sid). The axis |y(f)|/max(y(f)) rep-
resents the normalized power spectrum of the examined signal.

4.5.2 Frequency Analysis, Pantograph LLMN (n4sid)

This section treats the frequency analysis, realized by a discrete Fourier transfor-
mation (DFT), of the pantograph LLMN (n4sid) in comparison to white-box model
reference data for operation point (OP) input data sets. The selected signals
are the pan-head velocity ξ̇ (see Figure 4.29), the crossbar velocity ζ̇ (see Figure
4.30) and the contact force Fp (see Figure 4.31). The results of the white-box model
reference data are colored blue and cyan, while the results of the pantograph LLMN
(n4sid) are shown in red and magenta, respectively for two different noise excitations
in each of the four selected operating points: OP25, OP45, OP65 and OP85 (compare
equation 4.1 and Figure 3.12).

These plots indicate, that the pantograph LLMN (n4sid) is, in contrast to the panto-
graph LLMN (surrogate), able to map all the resonant frequencies that are detected
in the white-box model reference data. This result also leads to considerable better
results concerning the FIT values, as can be seen in Section 4.6. Again the position-
ing of the Eigenvalues of the implemented state-space matrices has an effect on the
mapping of the modes, which will be treated in the following section.
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Figure 4.30: DFT of the crossbar velocity ζ̇ for several simulation runs
with operation point input data sets over the operating range.
Blue and cyan represents white-box model reference DFT data
for two different excitation signals in each operating point, while
red and magenta represent the with according DFT data of the
pantograph LLMN (n4sid). The axis |y(f)|/max(y(f)) rep-
resents the normalized power spectrum of the examined signal.
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Figure 4.31: DFT of the contact force Fp for several simulation runs with
operation point input data sets over the operating range. Blue
and cyan represents white-box model reference DFT data for
two different excitation signals in each operating point, while
red and magenta represent the with according DFT data of the
pantograph LLMN (n4sid). The axis |y(f)|/max(y(f)) rep-
resents the normalized power spectrum of the examined signal.
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Figure 4.32: Positioning of Eigenvalues of the discrete-time system matrix A
of the N4SID based LLM state-space systems in the Z-domain
for several LLMS (operating points). Again for this approach, a
continuous movement of the poles over the operating range can
be observed, even for different realizations (noise sequences).
These are the pole positions of a pantograph LLMN (n4sid)
with 4LLMs.

4.5.3 Stability Analysis, Pantograph LLMN (n4sid)

Figure 4.32 shows the positioning of the poles on the Z-plane for the pantograph
LLMN (n4sid). The poles depicted are those of state-space system matrices identified
from several operation point (OP) data sets. Again it is mentioned here, that two
different noise sequences were used to generate different input signals for each of the
four operating points OP25, OP45, OP65 and OP85. All the received state-space
systems are stable, but as mentioned before there exists currently no stability proof
for LLMN in state-space configuration where the output blending method is applied.
Therefore no guarantee for stability in regions between the operation points in which
the LLMs are centered can be given (transients). For further discussion on the topic
see Section 3.6.3 and Section 5.1.2.
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Computational Efficiency

Data sets Pantograph
WBM

Pantograph LLMN
(surrogate)

Pantograph LLMN
(n4sid)

tds [s] tds [s] 1 tsim [s] 2 RTF [−] tsim [s] RTF [−] tsim [s] RTF [−]

OP65, T: 42 10 11429.49 272.13 1.35 0.135 27.96 0.666

OP65, V: 42 10807.28 257.32 5.52 0.132 27.85 0.663

WR, T: 120 10 30830.91 256.92 1.85 0.185 83, 27 0.694

WR, V: 120 28811.58 240.97 20.56 0.171 83.45 0.695

Table 4.4: Comparison of results regarding the computational efficiency
(real-time capability) of the two developed pantograph LLMNs
and the reference data generating white-box model, where RTF
stands for real-time factor with RTF = tds/tsim. T indicates the
training, V the validation data set.

4.6 Computational Efficiency and FIT

In this section the computational efficiency and the performance (FIT) of the two
developed models is compared according to the specifications in Section 1.2.1. Table
4.4 summarizes the results in regard to the computational efficiency of the to panto-
graph models for different input data sets. Table 4.5 summarizes the FIT of the two
pantograph models for different input data sets according to Section 4.2.2.

Remark 4.6.1 (Table 4.4). As it can be seen in Table 4.4 the pantograph LLMN
(surrogate) and the pantograph LLMN (n4sid) are both real-time capable models
(RTF< 1), both considerably faster than the white-box model.

Remark 4.6.2 (Table 4.4). The values presented for the whole range (WR) data sets
were obtained using the pantograph LLMNs with 4 LLMs. In case of the panto-
graph LLMN (n4sid) the results for the configuration employing the output blending
method are depicted.

Remark 4.6.3 (Table 4.4). The real-time factors (RTFs) of the pantograph LLMN
(n4sid) are considerably worse than those of the pantograph LLMN (surrogate).
This is first due to the different implemented blending methods: using the parameter
blending method only requires the simulation of a single blended state-space system
(compare Figure 3.19), while the utilization of the output blending method demands

1Lengths of training data sets for the pantograph LLMN (surrogate) only (compare Section 4.2.2).
2These values correspond to: OP65T ≈ 3.2 [h], OP65V ≈ 3.0 [h], WRT ≈ 8.6 [h]) and WRV

≈ 8.0 [h].
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the simulation of as many state-space systems as there are local linear models (LLMs)
present in the local linear model network (LLMN) (compare Figure 3.18). The sec-
ond more decisive reason for the slower pantograph LLMN (n4sid) is definetly the
implementation of the low-pass filter and a look-up table (pre- and postprocessing of
I/O signals). A linear interpolation of the values inside the look-up table is carried
out in every time-step, at the price of a high computational effort.

Remark 4.6.4 (Table 4.4). The simulation using matrices derived by a linearization
of the relations from the white-box model in a certain operating point delivers sim-
ilar results in regard to the computational efficiency as they are presented for the
pantograph LLMN (surrogate). A global linear model derived in such way can be
considered as a real-time capable model.

Remark 4.6.5 (Table 4.5). Due to magnitude of the spring stiffness kE (modeled
contact to overhead line, taken from the white-box model [1]), small errors in the
position signals are resulting in a big error of the contact force signal Fp, as can be
seen by taking a look at equation (3.14).

Remark 4.6.6 (Table 4.5). It has to be mentioned, that for computing these FIT
values only the last 75 [%] of the data points of the according signals where consid-
ered, to rule out any influence on the result by some transient phenomena due to
unfavourable initial values.

Remark 4.6.7 (Table 4.5). In general these results are acceptable in regard to the
contact force Fp, considering that the pantograph was moved through the whole
operating range under considerable excitation and shows no signs of instability.

Remark 4.6.8 (Table 4.5). It can be observed from Table 4.5 that the FIT values of
the simulations using the whole range (WR) input data set considering the position
signals (collector head position ξ and crossbar position ζ) are considerably better
than the FIT values of the simulations operation point (OP) input data set. It has
to be mentioned, that due to the computation of the FIT values, which represent a
comparison of the mapped signal with the mean of the reference signal, the results
for the OP and WR data set based simulations are not directly comparable in regard
to the position signals. It has to be recognized that the OP data sets are realized at a
constant operating height only exited by noise, therefore the deviations resulting from
phase shifts diminish the computed FIT. In case of the WR data set, the movement
of the pantograph over several meters has much more impact on the FIT value than
the small deviations resulting from noise excitation (about 10 [cm]).
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FIT

Model
configura-
tion
→

Pantograph LLMN (surrogate) Pantograph LLMN (n4sid)

affine term extension LPF and LUT

1 LLM 4 LLMs 1 LLM 4 LLMs

- PB - OB PB

OP data set WR data set OP data set WR data set

Signal ↓ T in [%] V in [%] T in [%] V in [%] T in [%] V in [%] V in [%] V in [%]

Panhead
position ξ

59.62 67.57 98.67 98.28 92.48 91.52 99.12 99.15

Panhead
velocity ξ̇

-43.56 -30.40 30.37 -14.81 90.64 90.22 61.08 64.57

Crossbar
position ζ

89.56 91.14 99.54 99.16 92.19 91.31 99.07 99.02

Crossbar
velocity ζ̇

50.43 60.48 83.67 61.74 91.27 90.57 76.63 77.91

Crossbar
force FH

-60.44 -47.93 29.26 -28.83 91.01 90.85 68.54 49.46

Contact
force Fp

54.69 64.86 77.56 63.33 91.41 90.81 81.33 81.78

Table 4.5: Comparison of results regarding the FIT of the two developed
pantograph LLMNs in their respective configurations, with OP
for operation point data set and WR for whole range data set ac-
cording to Section 4.2.2. ’T’ stands for Training data set (training
data sets according to Figures 4.3 and 4.5 for (surrogate)) and ’V’
stands for Validation data set. For the meaning of the denoted
data signals (positions, velocities and forces) see Figure 2.2.
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Figure 4.33: Pole positioning of the state-space systems of the linear local
models of the pantograph LLMNs (surrogate and n4sid) in com-
parison with the poles of the - in the according operation points
- linearized white-box model.

4.7 Comparison of the Pole-Positions

At the end of this chapter Figure 4.33 shows the pole positions in the Z-plane of the
pantograph LLMN (surrogate), the pantograph LLMN (n4sid) and - in comparison
- the pole positions of the linearized white-box model for the respective operating
points (OP25, OP45, OP65 and OP85) according to the positioning of the local linear
models of the pantograph LLMNs (see e.g. Figure 3.12).

Remark 4.7.1 (Figure 4.33). In Figure 4.33 it becomes obvious, that the pantograph
LLMN (n4sid) identified matrices are representing the examined white-box model
better with regard to the oscillation capabilities. The pantograph LLMN (surrogate)
identified two real poles instead of an additional conjugated complex pole pair. This
inability to map the modes of the reference data correctly could also be seen in the
presented DFT plots.
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Figure 4.34: Linearized white-box pantograph model in operating
point OP45, global linear model, WR
Part of the simulation result showing the contact force Fp (upper
figure) and its absolute error (lower figure), achieved with the
linearized white-box pantograph model.

4.8 Comparision of the Examined Pantograph

Models

First this section delivers some results of a global linearized model, based on a state-
space system obtained form the linearization of the pantograph white-box model at
a certain operating point (here operation point OP45, see equation (4.1)). In Figure
4.34 the mapping of the contact force Fp of the global linear pantograph model is
depicted together with its absolute error. The corresponding maximum relative error
of this model configuration therefore is of about 35 [%].

Remark 4.8.1. To achieve the presented results utilizing the linearized white-box
pantograph model, the resulting output signals were postprocessed to eliminated the
appearing offset error. This offset error is due to the fact, that the linearization of the
white-box pantograph model only delivers the state-space system matrices Alin,OP 45,
Blin,OP 45, Clin,OP 45 and Dlin,OP 45, and therefore this model is not able to cope with
movements of the signals out of the linearized operating point (no affine terms). The
postprocessing is realized as a simple subtraction of the offset from the reference
data which is computed after the simulation is finished (for an online adaptation,
the low-pass filter and look-up table approach introduced for the pantograph LLMN
(n4sid) would be a possible realization which is not carried out here).

Table 4.6 gives the comparison of the FIT of the contact force Fp for the linearized
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Comparison FIT contact force Fp

Pantograph
model
configuration

Linearized
white-box

pantograph model

Pantograph LLMN
(surrogate)

Pantograph LLMN
(n4sid)

Pantograph LLMN
(n4sid)

post processing affine term extension LPF and LUT LPF and LUT

global linear 4 LLM 4 LLM 4 LLM

- PB OB PB

Data set WR, V in [%] WR, V in [%] WR, V in [%] WR, V in [%]

Contact force Fp 53.06 63.33 81.33 81.78

Table 4.6: Comparison of results regarding the FIT of the contact force Fp.
The results of the global linear model (lineraized white-box pan-
tograph model at operating point OP45) are compared with the
two developed pantograph LLMNs in their respective configura-
tions. The results represent the best achievable FIT for the whole
range (WR) validation (V) data set (compare Section 4.2.2).

white-box pantograph model and the pantograph LLMNs, for the whole range data
set only for the validation runs. These FIT results represent the best achievable
performance of these models for the desired application case.
To round off this chapter a boxplot is presented in Figure 4.35, showing the FIT of
the contact force Fp of the examined pantograph models for twelve different whole
range validation signals (similar to the data set shown in Figure 4.4, with different
slew rates, noise excitations and with a length of 70 [sec]). For these results three
different realizations of the presented models were simulated, which were received as
follows:

• Linearized white-box model, global linear model:

– M11: Linearized around operating point OP45 (previously examined model).

– M12: Linearized around operating point OP55.

– M13: Linearized around operating point OP65.

• LLMN (surrogate), 4 LLMs, parameter blending:

– M21: Identified from the training data set presented in Section 4.2 Figure
4.5 (previously examined model).

– M22: Identified form a training data set with the same shape as given in
Section 4.2 Figure 4.5, but with a different noise excitation for both input
signals. The identified parameters of model M21 were used as the starting
values for the identification of this model.
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– M23: Identified form a training data set with the same shape as given in
Section 4.2 Figure 4.5, but with a different noise excitation for both input
signals. The identified parameters of model M21 were used as the starting
values for the identification of this model.

• LLMN (n4sid), 4 LLMs, output blending:

– M31: Identified from four operation point data sets, as exemplary can be
seen in Section 4.2 Figure 4.3 (previously examined model).

– M32: Identified in the same fashion as model M21, but from according
data sets with a different noise excitation for both input signals.

– M33: Identified in the same fashion as model M21, but from according
data sets with a different noise excitation for both input signals.

• LLMN (n4sid), 4 LLMs, additional manual transformation of the state-space
matrices, parameter blending:

– M41: Manually adapted model M31 with better compatibility of the state-
space matrices (previously examined model).

The motivation of this plot is to give the reader a lead of the general performance that
can be expected from the developed pantograph models. Additionally this figure can
also serve as an indication to the variation of the underlying identification procedures
(parameter estimation, n4sid).

Remark 4.8.2 (Figure 4.35). The results of the global linear models (first three from
the left) mainly differ in the variance of the achievable FIT of the contact force Fp.
In general this figure shows, that the three pantograph models deliver significant
differing results, where the performance of the pantograph LLMNs is apparently
better than the global linear alternative, when mapping of the contact force over the
whole operating range is of interest.
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Figure 4.35: Boxplot giving a comparison of all examined pantograph models
and the variation due to their underlying identification proce-
dures. It shows the FIT of the contact force for twelve different
validation signals in percent on the ordinate and the different
models on the abscissa (see Section 4.8).



Chapter 5

Observations and Discussion

This chapter describes some observations made during the development of the panto-
graph models and discusses the results of this thesis with regard to the goals defined
by the specifications in Section 1.2.1. At the end of this chapter, the main findings
will be summarized in a conclusion from a methodical and a practical point of view.

5.1 Observations

This section, as announced, describes some phenomena that were encountered during
the development of the pantograph models. First the pantograph LLMN’s (surro-
gate) parameter sensitivity will be examined utilizing the Fisher Information Matrix,
followed by a discussion concerning the stability and robustness of the developed
models. An outlook on further research and suggestions for possible improvements
of the models will be given at the end of this section.

5.1.1 Pantograph LLMN (surrogate), Parameter Influence
and Fisher Information

To illustrate the influence of the parameter vector on the output of the pantograph
LLMN (surrogate), Table 5.1 shows again the allocation of the parameters in the
state-space system matrices as defined in the equations (3.22) and (3.23), where
the free parameters according to Section 3.4.4 equation (3.35) are highlighted. The
additional parameters stemming from the affine term formulation (3.33)-(3.34) are
neglected in this illustration, because they are utilized to correct a static offset and
do not influence the dynamic of the three-mass oscillator surrogate model.

From that illustration it can be recognized, that the first seven parameters of each
parameter vector θi do not have any direct influence on the states that represent
positions as well as the output signal collector head velocity ξ̇. Therefore no direct
influence on that part of the three-mass oscillator, that represents the collector head
is given. This is due to the fact that the output matrix C is defined as an eye matrix
and the direct feed-through matrix D as a zero matrix (i.e. states are outputs, com-
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Parameter Allocation for the pantograph LLMN (surrogate)

θ = [ mH mM kL cL rM kW cW ]

A =
















0 1 0 0 0 0















−
(kE+kC )

mC
−

cC

mC

kC

mC

cC

mC
0 0

0 0 0 1 0 0

kC

mH

cC

mH
−

(kC + kL )

mH
−

(cC + cL )

mH

kL

mH

cL

mH

0 0 0 0 0 1

0 0
kL

mM

cL

mM
−

( kL + kW )

mM
−

( cL + cW )

mM

B =













0 0












kE

mC
0

0 0

0 0

0 0

0 1
mM rM

Table 5.1: Allocation of the first seven free parameters of the parameter vec-
tor θ (compare Section 3.4.4) in the system (A) and input matrix
(B) of the pantograph LLMN (surrogate) state-space systems.



5.1 Observations 126

Fisher Information Matrix (FIM) for the pantograph LLMN (surrogate)

Parameters

Outputs mH mM kL cL rM kW cW

ξ − − − − − − −

ξ̇ − − − − − − −

ζ − − − − − − −

ζ̇ 14 − 10 12 − − −

δM − − − − − − −

˙δM − 2 −2 0 4 −1 1

x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

ξ 7 0 1 −6 −11 −12

ξ̇ 7 6 7 0 −5 −6

ζ 0 −7 7 0 −4 −6

ζ̇ 6 0 6 6 2 1

δM −18 −25 −17 −18 −5 −11

˙δM −11 −17 −10 −11 −6 −4

u0,1 u0,2

ξ 0 −20

ξ̇ 6 −14

ζ −8 −14

ζ̇ −1 −7

δM −26 −19

˙δM −18 −12

y0,1 y0,2 y0,3 y0,4 y0,5 y0,6

ξ 6 − − − − −

ξ̇ − 5 − − − −

ζ − − 6 − − −

ζ̇ − − − 6 − −

δM − − − − −5 −

˙δM − − − − − −5

Table 5.2: Exponents of the entries of the FIM for all parameters of the pan-
tograph LLMN (surrogate) with 4LLMs (compare Section 4.4),
where ’−’ indicates no parameter sensitivity on the correspond-
ing output.
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pare Section 3.4). By looking at the entries of the Fisher information matrix given
in Table 4.5, this phenomenon becomes more obvious.

The Fisher Information Matrix (FIM), as defined in [9], delivers a measure or insight
of how much of an impact a certain parameter has on a certain output. The results
of the FIM as they are presented in Table 5.2 are based on the partial derivative of
the model output with respect to the according model parameter, without taking the
dependence of the state vector on the past values into account (coupling over time).

However the parameter sensitivity Ψ(k) is computed for the identified pantograph
LLMN (surrogate) with 4 LLMs (compare Section 4.4) for each output and parameter
separately (MIMO system) in each time step and subsequently the FIM for a certain
simulation (whole range WR data set in this case) is obtained as

I =
1

σ2

N∑

k=1

ΨT (k)Ψ(k), (5.1)

with the variance σ of the according output. The parameter sensitivity vector Ψ(k)
is given as the partial derivation of the parameter dependent terms when equation
(3.100) is inserted into equation (3.101) (taking the parameter blending into account)
as

Ψ(k) =
∂ŷ(k)

∂θ
= C̄(k)

(
M∑

i=1

∂Ai

∂θi

Φi(η(k))

)

(x(k − 1) − x̄0(k))

− C̄(k)Ā(k)

(
M∑

i=1

∂x0,i

∂θi

Φi(η(k))

)

+ C̄(k)

(
M∑

i=1

∂Bi

∂θi

Φi(η(k))

)

(u(k − 1) − ū0(k))

− C̄(k)B̄(k)

(
M∑

i=1

∂u0,i

∂θi

Φi(η(k))

)

− C̄(k)

(
M∑

i=1

∂x0,i

∂θi

Φi(η(k))

)

+

(
M∑

i=1

∂y0,i

∂θi

Φi(η(k))

)

(5.2)

which gets evaluated at each time step (solely partial derivative considered).

Remark 5.1.1 (Equation 5.2). The derivation of the output matrix Ci is a zero matrix
for every parameter, while the direct feed-through matrix D is defined as a zero
matrix.

Remark 5.1.2 (Equation 5.2). The matrices and vectors Ā(k), B̄(k), C̄(k), x̄0(k)
and ū0(k) represent in terms of better readability the blended matrices and vectors

evaluated at each time step, e.g. Ā(k) =

(
M∑

i=1
Ai(θi) Φi(η(k))

)

, where k is the
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current time step, M the number of LLMs and the contact position η the one-
dimensional partition variable. Compare with denotation in Section 3.6.2 equations
(3.100)-(3.101).

Remark 5.1.3. For further research and an evaluation of the coupling of the states over
the past values can be realized by an Fisher information matrix in output error (OE)
configuration (see e.g. [10, page 254, Section 3.2]). There the FIM IOE has to be
computed recursively by taking the parameter sensitivity vector’s total derivation of
the model output with respect to the parameter vector into account. This evaluation
is not carried out in this thesis. The computation of the parameter sensitivity is then
given as

ΨOE(k) =
dŷ(k)

dθ
. (5.3)

However the received values of the FIM in Table 5.2 show a strong influence of some
parameters on the crossbar velocity ζ̇ and just a weak influence on the velocity δ̇M

of the third mass mM of the oscillator, which is not represented in the white-box
model. From the FIM values concerning the additional affine term parameters, it
can be recognized that they mainly influence the upper two masses mC and mH ,
which describing the movement of the collector head and the crossbar and also have
very weak influence on the lowest mass mM .

5.1.2 Stability Considerations

A short discussion regarding the stability of the developed pantograph models is
carried out here. As mentioned earlier (see Section 3.6.3), there are currently no
stability tests available for the combination of the applied methods (LLMN in state-
space configuration). It is mentioned here, that on the one hand throughout the
development of the two presented models no issues regarding instability during the
blending of the LLMs was witnessed, when implementing the one-dimensional input
space partitioning. This behaviour stems seemingly from the consistent structure of
the state-space systems inside the LLMs, where physically interpretable parameters
of similar magnitude were blended. Additionally all the local state-space systems
inside the LLMs were modeled stable. Therefore some kind of stability preserving
behaviour can be attested to this particular model.
On the other hand, the goal of applying the parameter blending method to the N4SID
based pantograph LLMN could not be reached with a high level of satisfaction, as
still signs of soaring can be detected in Figure 4.28. Although all possibilities of mak-
ing the identified matrices as compatible and similar in their structure as possible,
by exploiting the canonical representation of the state-space system (modal form).

5.1.3 Discussion on Model Simplifications

The white box model is designed in such a way, that the input contact position η at
the top of the pantograph acts like a solid wall, realizing a forced oscillation of the
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pantograph. Furthermore the connection between the pantograph and the overhead
line is as described in Section 2.1 modeled by a spring element, therefore enables the
model to map positive and negative values of the contact force Fp. This is not cor-
responding to the behaviour of a real-world pantograph, where the pan-head would
lift off the contact line instead of realizing a negative contact force. This case is not
considered in the white-box model nor in the pantograph LLMNs, because in this
approaches solely the dynamic of the pantograph was of interest. At points where the
pantograph lifts off the contact line, the models do not map the considered signals
correctly.

The white box model and subsequently the developed pantograph LLMN models do
not consider any friction effects, which are apparent in early pantograph test bench
measurement data (hysteresis effects). It is expected that the mapping of real-world
pantograph data will suffer in accuracy from that model simplification.

5.1.4 Subspace Identification using N4SID

The results of the case study presented in Section 4.5 Figure 4.20 show, that the
Matlab function n4sid(), with the estimation of the initial value and the distur-
bance model switched off (see Section 3.5.3), has great difficulties identifying suitable
state-space system matrices AT , BT , CT and DT if the system order is chosen as
n = 6. This is an interesting result, considering that the system dimension of the
underlying system is known to be of that order (see Section 2.1). It shows further-
more that if the subspace identified systems get reduced by the Matlab function
reduce() to that order, the achievable simulation results are nearly as good (loss
of about 1 [%] of FIT) as the ones of an arbitrary higher order system. Therefore
it can be observed, that in the chosen configuration (initial values and disturbance
model switched off), the N4SID requires a significant higher order system to identify
the matrices of the underlying system (up to a similarity transformation, see Section
3.5) accurately. Furthermore the case study in Figure 4.20 indicates that this phe-
nomenon depends on the operating height of the pantograph. E.g. the identifications
in the lower region (OP25, compare (4.1)) require a significant larger system dimen-
sion than the ones carried out with other operation point data sets. For example the
identification run in OP65 shows good results with the system order n = 13 of the
N4SID system, while in OP25 the same performance regarding the FIT can be first
achieved with an system order of n = 21.

Remark 5.1.4. As mentioned earlier (see Remark of Figure 4.20 in Section 4.5) the
choice of the initial value, i.e. using another part of the training data set for iden-
tification, also alters the performance of the N4SID. So it is mentioned here, that
the results presented in this case study for a certain operating point were all realized
with exactly the same part of the utilized data sets, i.e. the case study does not show
the effects of a variation of the initial values, but only of the system order.
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5.1.5 Potential Improvements, Further Research

The local linear model network was chosen for its strengths in interpretation capabil-
ities and improving the developed models with regard to accuracy could be achieved
by altering the structure of the LLMN. Furthermore another network structure could
be chosen (e.g. a RBF network), but these efforts may however diminish physical
interpretability of the model which is counterproductive if the aim is to gain knowl-
edge about the underlying process.

The positioning and validity region of the MSF parameters center and spread could
be fine tuned according to the mapping of the static values in Figure 2.4, especially
at the upper and lower end of the partition space. The optimization of these pa-
rameters, which is referred to as Splitting Ratio Optimization as discussed in [19,
page 376, Section 13.3.4], could yield promising results for simple model structures
with few rules, which is the case for the pantograph model. It should be possible
to alter the splitting ratio, with adapting widths of the validity functions (danger
of normalization side effects), due to expert knowledge by studying the edge regions
of the contact position (input) as depicted in Figure 2.4. Furthermore simply more
than 4 LLMs could be implemented, i.e. a finer grid partitioning could be carried out.

Special attention could be given to the proportionality factor kσ (see Section 3.3),
which is often used as a tuning parameter and is simply set to frac13 in this thesis
according to the recommendation in [19, page 365, equ. (13.37)] (rule of thumb).
However as discussed in [19, page 374, Section 13.3.3] the smoothness optimization
(nonlinear optimization of the proportionality factor kσ) in general does not yield sat-
isfactory results. Summarizing this is due to the observation that when using a global
optimization approach for this parameter, it tends to become bigger, while when us-
ing a local optimization approach the smoothness parameter is resulting close to zero,
comparable to the effects in the optimization of the rule premise and consequent pa-
rameters for fuzzy systems (bias/variance tradeoff, model flexibility/interpretability
tradeoff).

The local linear neuro-fuzzy model can cope with a arbitrary dimensional partition
space, so incorporating another signal (input, fed back output) to the partition space
would be realizable. This would create LLMs which are positioned in a multidimen-
sional partition space, where new rule sets that consider additional information could
be defined. For this multidimensional partition space there exist e.g. axis-orthogonal
or axis-oblique (hinging hyperplanes see e.g. [19, page 438, Section 14.8.1]) decom-
position algorithms that provide great freedom from a modeling point of view. The
obvious disadvantages are on the one hand the increasing impact of the curse of
dimensionality and on the other hand the vanishing interpretability capabilities (hy-
perplanes). In case of the nonlinear pantograph with the given specifications (see
Section 1.2.1) no vast improvement is expected. This is due to the fact, that the
pantograph model is defined in this thesis as a one-dimensional model and all the
available signals - positions, velocities and forces - are connected inside the state-
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SWOT analysis for the developed pantograph LLMNs

Strengths Interpretability capabilities, computational speed (real-time capable models), abil-
ity to map the nonlinear behaviour of the pantograph white-box model

Weaknesses Mapping accuracy (errors in magnitude and phase), variance-error: remaining
uncertainty due to data-driven identification (danger of weak local optima)

Opportunities Further structure optimization possible, real-time-capable pantograph model ap-
plicable for the pantograph-catenary co-simulationm in connection with a modern
day control scheme, possible online adaptation of the identification to develop a
nonlinear dynamic model, utilizable for pantograph controller design

Threats No guarantee for stability of the pantograph LLMN (surrogate) and (n4sid), there-
fore unexpected loss of stability cannot be precluded

Table 5.3: SWOT analysis of the developed pantograph LLMNs.

space system. Possibly such a model would yield a higher accuracy, but in this thesis
the advantages of the simpler model (faster, better interpretability) yield the better
deal.

5.2 Discussion

The final section concludes this diploma thesis by summarizing the presented findings
for the pantograph local linear model networks. First an evaluation of the developed
pantograph LLMNs is carried out utilizing the instrument referred to as SWOT
analysis, see Table 5.3, known from enterprise and project analysis. Furthermore
a confrontation of the two pantograph LLMNs (surrogate and n4sid), crossing out
their specific advantages and disadvantages is given in Table 5.4.

The aim was to identify a real-time capable pantograph model based on a specified
structure. This basic pantograph model should then be used as a static model for
further implementation in a superordinated problem, a co-simulation or a control
problem (controller design), where the interaction and coupling with a overhead line
is of primary interest. This thesis provides two different configurations of such pan-
tograph models with differing properties (interpretability, performance) that show
promising behaviour over the defined operating range of the nonlinear pantograph
(in regard to stability and accuracy). Therefore these models are qualified to be
utilized in further tasks (co-simulation and control problems).

An intense analysis of an existing white-box model was carried out in this thesis,
on the one hand supplying information of the nonlinear pantograph dynamics, and
on the other hand providing a stencil for approaching pantograph modeling in gen-
eral. This acquired knowledge can be used as basis for a different modeling approach.
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Confrontation of the developed pantograph LLMNs

Pantograph LLMN (surrogate) Pantograph LLMN (n4sid)

Advantages High amount of expert knowledge can be
incorporated (system structure)

Only input-output data is needed (train-
ing data set), nearly no prior knowledge
required (system structure)

Physical interpretability of parame-
ters/states of the model

State-space systems are computed directly
from input/output data

Disadvantages Tediously Output-error optimization with
possible unidentifiable parameters and
danger of ending up in a weak local op-
tima

Identified system matrices can only cope
with zero-meaned signals, therefore a look-
up table in connection with a low-pass fil-
ter has to be incorporated as a quasi affine
term, which is bad for the computational
speed

No state consistency given over the LLMs

No interpretability capabilities of the
state-space system matrices nor state vec-
tor

Table 5.4: Confrontation of the developed pantograph LLMNs revealing spe-
cific advantages and disadvantages of the different approaches.

5.3 Main Statements, Conclusion

The conclusion of this thesis will be formulated in two parts, on the one hand outlin-
ing the findings from a methodical point of view and on the other hand from an
practical point of view. Again the fact is stressed here, that this thesis examined
an existing white-box model of the nonlinear pantograph and therefore represents
a model based study. Drawing conclusions to the behaviour of a real-world panto-
graph should be done cautiously (e.g. recognizing that due to the simplifications of
the white-box model no influence of friction on the mechanism is considered).

The main goal of this thesis was the application of a local linear model network (local
linear neuro-fuzzy system) in state-space configuration to the nonlinear pantograph
modeling problem, implementing one-dimensional input partitioning in combination
with a parameter or output blending method and therefore creating a real-time capa-
ble pantograph model. Two types of models were developed, one based on a mechan-
ical surrogate model (three-mass oscillator) and one based on subspace identification
methods (N4SID) incorporating different blending methods (parameter respectively
output blending). The offset correction was realized either using the affine term
state-space formulation (case surrogate) or a low-pass filter in combination with a
look-up table respectively (case n4sid).
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5.3.1 Conclusion from a methodical point of view (scientist)

Ad pantograph LLMN (surrogate): The incorporation of expert knowledge for the
design of the pantograph LLMN (surrogate) based on a mechanical surrogate model
(three-mass oscillator) was carried out extensively as envisioned. The interpretation
capabilities of this model are seen as its primary strength, whereas the performance
with regard to the achievable accuracy is seen as its primary weakness. Especially
the inability to identify a suitable parameter set which would give the model the
ability to map the Eigenmodes detected in the white-box model data correctly in
the applied model configuration has to be lined out as a main draw back. At this
point it is not conclusive, if such a parameter set exists for this type of model (i.e. if
a global optimum exists), or if the model structure is not appropriate for the prob-
lem. It can however be stated, that the optimization is vulnerable of reaching a local
optima and sensitive to the initial values of the parameter vector (starting point).
Furthermore it can be stated, that on the one hand the collector head model (linear
one-mass oscillator) is modeled identical for the white-box model and the pantograph
LLMN (surrogate) and on the other hand the three masses of the surrogate model
theoretical provide the ability to map three modes. The allocation of the poles of
the pantograph LLMN (surrogate) system matrices in comparison with the linearized
white-box model underline a different dynamic behaviour.

Ad pantograph LLMN (n4sid): Concerning the applied methodologies for this model
it has to be stated, that the endeavor of implementing an open-loop subspace identifi-
cation method (N4SID) into a local-linear modeling structure still provides questions
but also potential. It was shown, that a stable and smooth parameter blending
procedure can be realized, if the identified state-space matrices are transformed to
modal form, where additional awareness is given to the positioning of the modes and
corresponding signs is given. The automation of this task however is not solved by
this thesis and will need further attention and research. Furthermore the training
or identification process, when the subspace identification is utilized, was realized
through somewhat a grid-based approach. Therefore in its current implementation
the pantograph LLMN (surrogate) cannot be directly identified for multiple LLMs
automatically. Another issue is the experienced seemingly arbitrary performance of
subspace identified models due to the lack of the estimation of an initial value (pos-
sible in general, but not appropriate for the given modeling problem). However, the
achievable mapping accuracy of a nonlinear mechanism utilizing the LLMN based on
subspace identification methods is impressive.

5.3.2 Conclusion from a practical point of view (engineer)

The conclusion from a practical point of view is formulated as an evaluation of the
developed pantograph models with regard to the specifications defined in Section
1.2.1.
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Computational efficiency

Both developed pantograph LLMNs (surrogate and n4sid) are distinct real-time ca-
pable models as documented in Table 4.4. The pantograph LLMN (n4sid) is due to
the applied preprocessing of the input signals and postprocessing of the output sig-
nals, which is carried out in every time-step, significantly slower than the pantograph
LLMN (surrogate).

Structure

Both developed pantograph LLMNs (surrogate and n4sid) are realized as local linear
model networks, consisting of an arbitrary amount of local linear models (LLMs).
The validity region for those LLMs is chosen equidistant over the operating height
and they are blended via an one-dimensional partitioning variable (contact position
η) utilizing either the parameter blending method (pantograph LLMN (surrogate)) or
the output blending method (pantograph LLMN (n4sid)), therefore providing strong
capabilities for physical interpretation.

Mathematical formulation

Both developed pantograph LLMNs (surrogate and n4sid) contain state-space sys-
tems in their respective LLMs with a system order of n = 6.

Ad pantograph LLMN (surrogate): In case of the pantograph LLMN (surrogate)
these systems are given by the state-space formulation of the equations of motion
of a parametrized three-mass oscillator, whose parameters where determined with
an output error optimization method utilizing the reference data of the pantograph
white-box model. To cope with occurring offset values in the positions, the state-
space systems are extended by affine terms. Due to the parameter blending method,
uniqueness of the state-vector is given. The blended system, as well as the state-
vector are physically interpretable.

Ad pantograph LLMN (n4sid): In case of the pantograph LLMN (n4sid), the state-
space systems are reduced state-space systems, originally identified by the application
of the subspace identification method N4SID on input/output data of the pantograph
white-box model. To cope with occurring offset values in the positions, a preprocess-
ing of the inputs and a postprocessing of the outputs is carried out in every time
step. Due to the applied output blending method, no uniqueness of the state-vector
is given. The systems and states are not physically interpretable, but similar in their
structure due to the manipulations of the identified system matrices.

Performance

For a detailed comparison of the developed models mapping performance and accu-
racy consult Sections 4.4.1 and 4.5.1, as well as Table 4.5 and especially Figure 4.35.
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Ad pantograph LLMN (surrogate): As documented the strength of this pantograph
model lies in its physical interpretability, where all system matrices as well as the
state vector of the blended state-space system (obtained by the implementation of
the parameter blending method) correspond to physical quantities. The inability
of identifying the modes (resonant frequencies) of the pantograph white-box model
(reference model) has to be seen as the main drawback of this approach implement-
ing the described model structure (surrogate model as a three-mass oscillator). This
shortcoming is detectable by comparing the positioning of the poles of the utilized
state-space systems as well as the frequency analysis to the output signals to those
of the pantograph white-box model. However due to its outstanding computational
speed and its satisfactory accuracy in mapping the contact force Fp over the whole
operating range, the pantograph LLMN (surrogate) could seen as an alternative to
a global linear model.

Ad pantograph LLMN (n4sid): The approach of incorporating a subspace identifi-
cation method into a local linear model structure can be seen as a success. The
pantograph model is identifiable with considerably little effort, provided the required
measurements are available. Due to this property, the model could be utilized for the
examination of different pantograph geometries. The subspace modeling approach
still withholds some potential, on the one hand in the structure of the identified
matrices (compatibility) and on the other hand in the training process of the pan-
tograph LLMN (n4sid), i.e. automatic identification of a multiple LLM LLMN or
even online adaptation. The presented solution utilizing a low-pass filter and look-up
table is costly both in regard to the effort necessary for an identification of the model
and to the computational speed of the identified model. Nevertheless the already
achieved accuracy over the whole operating range of the pantograph LLMN (n4sid)
is impressive.
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