
Teaching children a programming
language with robots

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magistra

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Lisa Vittori
Matrikelnummer 9627042

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Mitwirkung: Dipl.-Ing. Lara Lammer

Wien, 01.04.2015
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Teaching children a programming
language with robots

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Magistra

in

Computer Science Management

by

Lisa Vittori
Registration Number 9627042

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Assistance: Dipl.-Ing. Lara Lammer

Vienna, 01.04.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Lisa Vittori
Hannah-Arendt-Platz 9/8, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

Robots have been considered in teaching programming, because they are are seen as a vehicle
to motivate younger students and introduce them to programming and engineering principles,
especially computational thinking (abstraction, generalization, algorithm, modularity, decom-
position and problem solving). When teaching introductory programming two main problems
are identified in the related literature and studies: One is the loss of motivation, which can be ob-
served in students not doing exercises or dropping out of computer science education or courses,
and which is also remarked by students in interviews. Second is high failure rate during exams
or failing a whole course. Qualitative analysis of the reasons shows that many students have
only surface knowledge of the relevant topics.

Educational robotics seems a good tool to counter these two problems. Therefore I devel-
oped a curriculum for introductory programming with educational robotics. Robots give the
opportunity to use constructionism or learning by making as a central didactic method. As a
leitmotiv throughout the curriculum I use the story of Sasbot - Seek-and-spot robot – which
gives the students a goal to reach. Since this goal is far away at the end of the course, I use
quick-win situations for students like challenges and small competitions to keep them motivated
through out the course. Team work is used as an explicit teaching tool. To counter the problem
of having only surface knowledge, I try to introduce every new concept with as much relation
to previous knowledge as possible, similar to the idea of anchor graphs and meaningful learn-
ing. Since the problem of designing a program is identified to be one of the most problematic
concepts by several studies, I show explicitly how to make design steps, which is additionally
supported by the tangible environment with the robots.

The concept is intended for introductory programming courses in technical high schools es-
pecially with focus on computer science. This leads to the necessity of teaching a programming
language that is actually used by companies. Due to this context, I used Botball and the pro-
gramming language C, because it allows me to focus on basic concepts like variables, functions
and loops.

The curriculum was evaluated in a case study with 45 students, who attended a programming
workshop with robots consisting of five workshop blocks with three hours each, by analyzing the
influence of the two basic problems: The motivation was evaluated with questions at different
times of the workshops regarding the ongoing interest and additional qualitative observations of
the students’ behavior during the workshop times. To analyze the knowledge gained exam-like
questions were used and solutions to the challenges and competitions during the workshops were
additionally graded. I also supplemented this with protocols of the approaches the students took
when solving a particular task.

iii

The evaluation of the workshop shows that the motivation was kept throughout the work-
shop and especially the challenges and competitions helped raising the motivational level after
a longer session of explanations. An improvement of the exam results could not be clearly
evaluated because of the differences between the workshop environment and the target context.
The indications are promising.

Contents

1 Introduction 1

2 Didactic methods and educational considerations 3
2.1 Teaching programming . 3
2.2 Teamwork and collaborative learning . 5
2.3 Didactic methods . 6
2.4 Robotics in Education . 7
2.5 Summary . 10

3 Educational robotic systems 11
3.1 Lego Mindstorms . 11
3.2 Botball . 14
3.3 Robotino . 16
3.4 Additional educational robotic systems . 18
3.5 Different approaches in educational robotics 19
3.6 Summary . 19

4 Concept 21
4.1 Context . 21
4.2 Existing curricula . 21
4.3 The Robot . 22
4.4 Basic concept . 22

5 Curriculum 29
5.1 The Beginning . 29
5.2 Program structure . 33
5.3 Function calls . 37
5.4 Introduction of the first challenges . 45
5.5 Defining functions . 48
5.6 Functions with parameters . 57
5.7 The clearance competition . 63
5.8 Using sensors . 65
5.9 Loops . 69

v

5.10 The find the spot competition . 72
5.11 Summary and outlook . 74

6 Evaluation 75
6.1 Method . 75
6.2 Results . 81
6.3 Discussion . 87

7 Conclusion 91

A Additional material 93
A.1 Running a program on the controller . 93
A.2 Sensor screen . 98

B workshop slides 99

List of Figures 123

List of Tables 127

Listings 129

Acronyms 131

Bibliography 133

vi

CHAPTER 1
Introduction

Learning a programming language is considered a difficult task and many students attending
an introductory programming course loose interest and motivation for enhancing their program-
ming skill after the first few weeks, resulting in high drop out rates. Educators around the world
face the same or similar problems [63, 74].

A reason why learning to program is considered difficult lies in the perception that pro-
gramming is also boring [31]. Experience shows that even interested students can loose their
motivation very quickly, when presented with the difficult tasks of learning a programming lan-
guage. But only highly motivated students spend the time necessary to program exercises, which
is considered a key to learn programming successfully by educators [32,37] and by the students
themselves [37, 72].

The problems with introductory programming courses are evident for some time now (cf.
[67]) and the main consequences, which are still unsolved on a large scale, are:

1. Loss of motivation in programming courses

2. High drop out or failure rates in exams

Jenkins suggests that these two problems are related because students cannot distinguish if com-
puter programming “is boring because it is difficult or difficult because it is boring [...]But they
remain adamant that it is both” [32].

Previous work shows that there is a connection between motivation and learning. Lin et. al.
show that a high intrinsic motivation is positively related to grades [41] . So all efforts to enhance
motivation should also affect the performance in exams positively. It is also stated, that failure
in tasks or exams leads to decreased motivation, so an improvement in school achievements can
lead to an enhanced motivation [20].

To counter these problems I propose the usage of a specialized curriculum using robots as
the main tool. The curriculum is based on didactic approaches which have already proven to be
successful in the problem areas especially with the focus on the usage of robots in the educational

1

environment. These approaches are analyzed in chapter 2 “Didactic methods and educational
considerations”.

As I need to choose one educational robotics system I compare the robotic systems cur-
rently used in the light of the given context and requirements for the curriculum in chapter
3 “Educational robotic systems”. The full curriculum is described in the following chapter 5
“Curriculum”.

The curriculum was evaluated in a case study with voluntary workshops for students age 13 –
15. The evaluation method and the results are presented and discussed in chapter 6 “Evaluation”
followed by a the conclusion in chapter 7 “Conclusion”.

The Appendix contains additional material for the curriculum as well as the slides used in
the evaluation workshop.

2

CHAPTER 2
Didactic methods and educational

considerations

2.1 Teaching programming

According to Kansanen the didactic triangle can be used as a tool to understand subject didactics,
especially the didactic relation between teacher and his or her influence of the study behavior
and thus the interaction between student and content (Figure 2.1) [33].

Berglund and Lister argue that most approaches in teaching programming focus only on the
content part of teaching. While the content part is indeed important, it is necessary to under-
stand that the triangle as a whole needs to be more researched. Especially the relation of the
content and the student and the relation between teacher and student are core factors to explain
motivation [12].

So to teach programming we need to keep in mind two relations who are important for the
students success:

1. The relation between student and the content, where the student needs to have a motivation
to learn the content

Teacher

Content Student

Figure 2.1: didactic relation in the didactic triangle [33]

3

2. The teachers influence on this student-content-relation allowing the teacher to induce ad-
ditional motivation.

One way for teachers to enhance motivation and promote interest is in setting reachable and
fascinating goals.

Motivation and Goals

Goals play a large role in motivation and promote self-regulated learning [78]. Campbell and
Bolker present a successful case study of how immersion into a real world problem and an
overall ongoing story line can lead to enhanced student motivation and success. But they also
underline their experienced problems with some students who had difficulties with this approach
and suggest to have a step-by-step course. [19]

Covington suggests that giving students plenty of achievements and goals they can reach
enhances the students’ motivation [20]. Roberts reports the enhancement of student involvement
and motivation due to smaller challenges and competitions throughout a computer science course
including a challenge at the beginning with Karel the Robot simulator [62].

So ideally both approaches - one big story line and small challenges and competitions
throughout the course - are included in a curriculum to accommodate the different learning
behaviors of as many students as possible.

In the curriculum I developed, I use an ongoing story of a little robot having the duty to find
lost things. The implementation of this robot behavior in a small scale is the prime motivator
for teaching new programming concepts. Additionally I use small exhibition like challenges and
competitions after two three chapters to keep the students motivated.

Knowledge presentation

Aside from the motivational factor knowledge presentation is another key factor influencing the
student-content-relationship of the didactic triangle, where the teacher has significant impact.
Cognitive research regarding programming instruction shows that learning to program bears
several difficulties which are well-known since several years. Especially “Designing a program
to solve a certain task” together with “Dividing functionality into procedures” and “Finding bugs
from my own program” are considered the most difficult parts in programming [37].

Linn and Dalbey identify three main links for an ideal chain of accomplishment when learn-
ing programming:

(a) single language features, (b) design skills, and (c) general problem solving
skills.

which are dependent on each other [43]. This means the mastery of general problem solving
skills occurs simultaneously with the mastery of design skills. This is very difficult. Linn and
Clancy therefore developed a concept, where teaching design explicitly is the key factor [42].

Several studies come to the conclusion that most students have only a surface knowledge
of programming [77]. This is equally problematic according to the chain of accomplishment
above. Additionally Bransford et. al. state that

4

To develop competence in an area of inquiry, students must: (a) have a deep foun-
dation of factual knowledge, (b) understand facts and ideas in the context of a con-
ceptual framework, and (c) organize knowledge in ways that facilitate retrieval and
application. [14]

So the language features and building blocks must be presented in a way that enables students
to link them together and build a strong network of knowledge. Mayer additionally emphasizes
the need for anchoring ideas to make the learning experience meaningful. Meaningful learning
thereby describes the process in which a new fact is associated with already present facts, so that
the new fact is absorbed in the knowledge base of the learners mind [45]. Mead et. al. present
anchor graphs showing a mean to plan the teaching of anchor concepts in a curriculum in a more
coherent way to facilitate the actual cognitive and learning theories as much as possible [48].

In the curriculum I developed, I avoid presenting stand-alone-facts. So first the curriculum
establishes a coherent image of the programming process inside the computer related to obser-
vations the students made and emphasized with systematic practice games. Then I teach the key
programming concepts with as much relation to previous known facts as possible. The path I
used is similar as the one shown with the anchor graphs.

Procedural Programming and objects first approach

To counter the problems with program design and limited understanding on the surface teaching
an “objects first approach” has become increasingly popular especially with teaching Java [35].
But shortly after a second trend has emerged that postulates going back to a procedural approach
[59]. Both approaches are debated intensively in specialized mailing lists and on conference
boards without any clear outcome. However many participants in the discussions agree, that
teaching objects first needs special considerations due to the difficulties in the approach lying in
the complexity of the object orientated concept [7, 8, 16]. In this light it is also interesting that
Mead et. al. had more difficulties in developing an anchor graph for object orientation than one
for algorithmics [48].

Since the more recent studies suggest a return to the classic method and studies about dif-
ficulties show that concepts regarding object orientation are still considered the most difficult
concepts (cf. [72]) and in the light of the above mentioned problems I favor the procedural
approach.

2.2 Teamwork and collaborative learning

Collaborative learning and teamwork can greatly assist students who struggle with programming
and are loosing interest and motivation in the subject [73]. McKinney and Denton report addi-
tionally that teamwork experiences throughout the curse lead to higher course success rates and
deeper learning as well as higher interest and having fun. [47]

But teamwork has also some downsides most of all the problem of “free riding”, where one
group member prefers not to contribute to the groups efforts. This problem leads to many follow-
up problems, mainly the “free rider” might not be able to learn the necessary topics associated

5

with the project and the workload of the rest of the team is increased [15]. This problem can be
reduced with reduction of group size [28].

In the curriculum I developed I use only small group sizes (2 – 3 students) and a special
task rotation. I divide each tasks according to standard software engineering steps (design,
implementation, test) and give one student the responsibility for one step. After each task the
responsibilities are rotated so that each student is required to contribute to the group efforts.

2.3 Didactic methods

Didactic methods have evolved over time but the foundations of most didactic methods which
are now widely used, lie several years back. When working with robots constructionism seems
the logical answer to the question which didactic method to use [4, 36, 69].

Constructivism and Constructionism

Constructionism was developed on the principle of constructivism [60]. The term constructivism
is mostly based on the work of Piaget, a psychologist for children and pedagogy. The main
differences between the constructivist approach and the dominant learning theories at that time
is that knowledge does not exist independently from the learner. Instead the learner constructs
his knowledge derived from a searching process, in which he examines, questions and analyses
tasks and experiences [6].

Although Piagets work concentrates on the internal structure and building of knowledge
consequences for education can be derived:

1. teaching is always indirect: Kids “don’t just take in what’s being said”. In-
stead, they interpret what they hear in the light of their own knowledge and
experience. They transform the input.

2. the transmission model, or conduit metaphor, of human communication won’t
do: To Piaget, knowledge is not information to be delivered at one end, and
encoded, memorized, retrieved, and applied at the other end. Instead, knowl-
edge is experience that is acquired through interaction with the world, people
and things.

3. A theory of learning that ignores resistances to learning misses the point:
Piaget shows that indeed kids have good reasons not to abandon their views
in the light of external perturbations. Conceptual change has almost a life of
its own. [2]

Ben-Ari reminds us that when applying constructivism to computer science it is essential to
remember that the students have usually no underlying model of how a computer works. So the
students need to construct their knowledge from the ground up. Since constructivism states that
misconceptions are essential for the construction of new knowledge not having a model of the
computer causes a lot of difficulties [10].

Wulff suggests the following phases of instruction when using constructivist pedagogy for
computer programming:

6

1. Initial exposure through lecture time or assigned reading

2. Brief review (especially when using assigned reading)

3. Guided practice activity

4. Individual or group programming assignment

5. Evaluation of learning achievement (not always necessary) [79]

Constructionism shares the idea of constructing knowledge with constructivism. But con-
structionism takes this approach a step further and adds the idea that constructing knowledge
happens better when the learner is engaged in “constructing a public entity”. Therefore the sim-
plest way to describe constructionism is learning-by-making. It enables learners to play around
and develop their programs in a more creative way. The learner is guided by the way the work
progresses and does not need to stick to a premade concept [54]. In such a way the focus of
constructionism arises on the individual learner rather than the development of knowledge as a
whole [2].

Stager et.al. describe eight big ideas behind the Constructionist Learning Lab which were
postulated by Seymour Papert upon creation of the Constructionist Learning Lab [68]:

• The first big idea is learning by doing. We all learn better when learning is
part of doing something we find really interesting. We learn best of all when
we use what we learn to make something we really want.

• The second big idea is technology as building material. [...]

• The third big idea is hard fun. [...]

• The fourth big idea is learning to learn. [...]

• The fifth big idea is taking time – the proper time for the job. [...]

• The sixth big idea is the biggest of all: you can’t get it right without getting it
wrong. [...]

• The seventh big idea is do unto ourselves what we do unto our students. [...]

• The eighth big idea is we are entering a digital world where knowing about
digital technology is as important as reading and writing. [...]

So using robots in a fun way to teach programming fulfill already the first three big ideas of
the constructionist learning lab. The challenges and competitions I set for motivation are there to
enhance the fun factor and additionally giving the students interesting tasks they can actually do
themselves. This leads to implementing the sixth idea because the challenges and competitions
are designed to be indeed challenging for the students and with the robots having some fault
tolerance when applying the movement commands no student will be able to fulfill a challenge
without having some problems with it.

2.4 Robotics in Education

Stager identifies five general ways how robots are used in education [69]:

7

• Robotics as a discipline

• Teaching specific S.T.E.M. concepts

• Thematic units (robots as a mean to transport knowledge for the given theme
like airports or factories)

• Curricular themes (similar to the item above is the central point a real world
problem with the enhancement of robots who can bring a solution to the prob-
lem)

• Freestyle (robots as a tool for self-expression)

Although all these fields have been reported with successful approaches, most of the available
studies have non-experimental character and therefore do not allow for quantitative analysis.
Nonetheless there are several studies showing, that the use of educational robotics can increase
academic achievement in specific STEM related areas. But there were also papers presenting no
significant increase while using robots as a teaching vehicle. Benitti identifies several aspects
mentioned in the researched papers making the usage of robots successful [11]. These are among
other things:

• Small working groups (2-3 students)

• Tasks the pupils find relevant and realistic to solve

• The role of the teacher (the attitude of the teacher towards the tools they use influence the
students perception).

In the curriculum I developed, I teach programming (a skill) via robotics using small working
groups and motivating tasks. So the first two of the mentioned success-factors correlate with the
already described actions in the curriculum to prevent problems with team work and motivation.
My personal motivation in using robots is my fascination with the huge amount of possibilities
the robots represent and the growing field of artificial intelligence. Additionally as a teacher I
am intrigued by the way students interact with the robots and the fascination of the students.

Robotics and constructionism

Although Papert developed LOGO, a programming language, as a mean to implement his con-
structionist believes in school teaching [52], teaching programming is mostly not situated in the
constructionist principles. Beynon and Roe identify two problematic issues in the construction-
ism context:

• extraneous activity – Much of the learning associated with model-building
is computer-programming specific: it is concerned with manipulating pro-
gramming language commands, procedures and parameters rather than with
developing knowledge of geometric concepts or abstract thinking strategies;

8

• planning rather than exploration – Classical programming is not conceived as
an iterative experimental process: programmers are encouraged to plan and
preconceive their application rather than to develop a model in an open-ended
fashion where its significance can emerge during the development. [13]

The appliance of robotics as a vehicle of learning to program can help circumventing these prob-
lems. It is already stated in [49] that the use of robots in an simulated laboratory environment is
a direct implementation of the constructionist idea by Papert.

The problems a robot has are easily conceivable by students, e.g. how do I make the robot
move from point A to B. Stager identified that the mean to engage students in constructionist
learning is giving them a good prompt and robots give the students the possibilities to find a field
of interest where the learning of the programming language is a byproduct [69]. Therefore the
robots give teachers the chance to devise assignments which are derived from the environment
in which the students are living and therefore it is easier to develop a meaningful goal for the
students.

It is not surprising that Petre and Price observed that the use of robots can motivate children
to face problems, which are considered difficult but fundamental to programming and engineer-
ing. They identified one motivating thought in “making it work”. [55].

In addition Sullivan identifies three aspects of robotic education that leads to students using
their thinking and science process skills used in his research:

1. the tool-rich nature of the environment

2. the immediate feedback built into the system

3. the open-ended and extended nature of student inquiry. [71]

Altin and Pedaste analyzed the didactic approaches which were used in robotics education.
Although the approaches base more or less on constructionism the concrete methodology dif-
fered. The following successful approaches were identified:

discovery learning, collaborative learning, problem solving, project-based learn-
ing, competition-based learning, and compulsory learning [5].

To implement these findings the methodologies I used in the curriculum I developed are

• collaborative learning: in building robot teams who need to solve a task, students are
prompted to discuss the themes in a group environment.

• problem solving: the challenges are problems the students need to solve with the presented
means or even through the invention or inquiry of new means.

• competition-based learning: to further the motivation for the students to deal with the
necessary concepts, competitions are a suitable impulse.

9

Teaching programming with robots

Major et.al. show that using robotics as enhancement for teaching introductory programming is
effective as exhibited in several studies. The most frequent approach is using Lego Mindstorms
NXT and Java at the university level. The paper also suggests that there is strong indication that
using an simulator as addition to the use of physical robots can provide additional benefits [44].

Black and white box approaches

Shifting from “black box” to “white box” paradigm is one of the current discussion points when
teaching robotics or with robots [3]. Resnick et. al. make a strong case for using a white box
approach as it leads students to “begin to view scientific investigation as a process in which they
can take part, day to day, creatively and pleasurably” [61]. But as Kynigos shows sometimes
compromises have to be made to enable children to engage in meaningful and challenging activ-
ities resulting in a “black-and-white-box” approach [36]. Detiskas and Alimisis give an example
in using a pre-build robot when focusing on teaching programming [23].

2.5 Summary

In my curriculum I combine constructionist elements with a story-driven approach to give the
students a meaningful starting point. The story-development and therefore the sequence of the
presented knowledge is based on the findings regarding the chain of accomplishment and the
linking of anchor concepts. To further the accessibility to the new technology I use a “black-
and-white-box” approach and teamwork together with challenges and competitions to enhance
motivation.

Before I explain the detailed concept in chapter 5 I will compare different educational robotic
systems to show which robotic system can be used with the chosen approach.

10

CHAPTER 3
Educational robotic systems

There are several educational robotics systems available. A complete overview would go beyond
the scope of this master thesis, so I will give only a brief synopsis of the most well-known
systems in literature. In addition there are several methods using a white-box approach with
a micro controller. Since the curriculum focuses on teaching programming instead of teaching
all aspects of robotics, a ready–made educational system hence a system with a black-box or a
black-and-white-box approach is preferable.

3.1 Lego Mindstorms

Lego Mindstorms is a robot system from The Lego Group a company based in Denmark [39].
Its name is derived from the Paperts book “Mindstorms: children, computers, and powerful
ideas [53]” [17]. Lego Mindstorm has three different versions, where the version identifier
relates to the version of the central controller

1. robotic command explorer - the first version of the LEGO Mindstorms controller (RCX)

2. next - the second version of the LEGO Mindstorms controller (NXT): the basis of most of
the recent research papers regarding Lego Mindstorms.

3. evolution 3 - the current version of the LEGO Mindstorms controller (EV3)

The Lego Mindstorms kit is available in a customer version or an educational set. Besides
the central controller the Lego Mindstorms kit includes

• 3 motors

• several sensors, including a touch sensor, a ultrasonic sensor and a light sensor and/or a
color sensor

• many LEGO pieces to build the mechanical part of the robot

11

Figure 3.1: Lego Mindstorms EV3 IDE

The exact contents vary from version to version but all kits include the controller, sensors, mo-
tors and building pieces. The LEGO pieces are compatible with other LEGO Systems especially
LEGO technic and can therefore be expanded easily. All components can be purchased individ-
ually.

Graphical IDE

The Lego Mindstorms controller can be programmed with a specialized integrated development
environment (IDE) which can be downloaded from the Lego Mindstorms site [39] and can be
installed on Windows and Mac OsX Systems. The basis are graphical building blocks which
are based on the visual programming language LabVIEW (cf. Figure 3.1). Instead of using the
provided IDE, there is the possibility to use an existing LabView Environment.

RobotC

RobotC is a C-based programming language with an IDE for writing and debugging programs
[64]. For the IDE a license needs to be purchased (a 10 days trial version is available) and
the only supported operation system is Windows (XP, Vista, 7 and 8). According to the LEGO
Mindstorms frequently asked questions (FAQ) RobotC is the only official supported computer
language environment aside from the graphical IDE presented above [40].

To use RobotC you need to install a corresponding firmware on the Lego Mindstorms EV3
brick. An appropriate button is included in the downloadable IDE. The basis of RobotC is the
C programming language, where the motors and sensors can be accessed by the way of control
arrays (cf. Figure 3.2) where the significant values can be written or read as integer values.

12

Figure 3.2: RobotC IDE

Teaching programming with RobotC has the advantage that the setup of the environment is
relatively easy. The language provides an application programming interface (API) to teach the
basics like variables, arrays, functions and control structures as shown above and there are some
curricula with this approach using the NXT-brick [18,26]. The main difficulties with RobotC lie
in intensive usage of arrays. Arrays are one of the most difficult subjects in early programming.
Lahtinen et. al. show that students and teachers consider arrays more difficult then parameters
and of similar complexity as other structured datatypes [37]. The teachers and students asked
by Milne and Row rank the difficulty even higher on a comparable level with variable scope and
constructors [50] .

Java with Lego Mindstorms

The programming language Java is available for the Lego Mindstorms robots through the open
source project LeJOS. LeJOS is based on the ARMv5 port of Java standard edition (SE) Em-
bedded version as stated by Oracle [51]. Since it is an open source project the preparation for
the Java virtual machine (JVM) on the Lego Mindstorms EV3 brick is relatively complicated
especially for an unexperienced user and it requires an SD card for every robot which should
run the JVM as the controller will boot from this card to replace the existing operating system
for the Lego Mindstorms EV3 brick with an operating system including Java (and excluding the
support for LabView).

To program the Lego Mindstorms robot there is a plugin available for the Eclipse IDE which
is widely used as professional IDE for Java [24]. The eclipse plugin provides a configurable
interface to the LeJOS API and to the Lego Mindstorms Controller. An example program is
shown in Figure 3.3

13

Figure 3.3: LeJOS with Eclipse

Teaching programming with LeJOS Lawhead et. al. applied Java with Lego Mindstorms
in introductory programming with the NXT brick. This curriculum focuses on object-oriented
concepts which are demonstrated with the physical objects present on the robot (e.g. the motors
and sensors) [38]. The main difficulty with the use of LeJOS aside from the complex set up is
the early use of object orientated programming techniques (c.f. section 2.1).

3.2 Botball

Botball is an educational robotics program developed by the KISS institute of practical robotic
(KIPR) and is very popular in the USA. Its goal is to engage middle and high school students in
robotics activities centered around a team-orientated tournament, which is structured in several
regional tournaments culminating in a global tournament held at the global conference on edu-
cational robotics [70]. Participating robots must be composed of parts included in a predefined
robotics kit, which can be bought directly through the botball homepage [27].

There are two different kind of botball sets: the elementary botball kit (also called junior
botball challenge robotic kit) and the full botball kit. The elementary kit contains amongst other
things:

• KIPR Link Controller (designed by KIPR)

• Starter LEGO bag - Assorted LEGO Pieces

• Motors - (2) SG-5010 Standard Motor, (2) SG-5010 Black Gear Motor

• Sensors - Light Sensor, Small Touch Sensor, Large Touch Sensor, Long Lever Sensor, ET
Sensor, (2) Small IR Sensor

• selected mechanical parts

14

Figure 3.4: KISS IDE

The full botball kit features additionally a second KIPR Link Controller, the iRobot Create
(a basic robot that is able to move around similar to a vacuum cleaner, so a robot does not have
to build from scratch) and two video cameras suitable for the vision system of the controller.

On the website there is a building instruction for a basic moveable robot that is used in the
provided programming curriculum and can be constructed using the elementary kit. Additionally
the Create can be used as basis for teaching programming. However, because of the abundance
of additional material available, the limits for building robots are not easily reached.

KISS IDE

The KISS IDE is designed for programming the KIPR Link Controller and uses the program-
ming language C (cf. Figure 3.4). One big advantage is the packaged simulator for the KIPR
Link Controller. It enables students to pre-test their creations before testing them with their
robot, as long as their creations are similar to the described demonstration roboter (cf. Fig-
ure 3.5).

Teaching programming with the KISS IDE The easy setup and the free software make the
botball system very accessible for teachers. The main functionalities of the robot are controllable
through basic C-functions with primitive datatypes as parameters, which makes them relatively
easy accessible for novice programmers. The main disadvantage lies in the restricted availability
in Europe with an mail-order through the web shop being the only option.

Java on the KIPR Link Controller

Although Java is advertised with the KIPR Link Controller there is currently no official technical
support for this approach. There are several reportings on the internet on how to install a Java

15

Figure 3.5: Simulator for the Link Controller

Virtual Machine based on the Virtual Machines available for the CBC and the CBCv2, the two
preceding controller generations.

3.3 Robotino

Robotino is an educational robotics system developed from Festo, a company specialized in
automation and industrial control based in Germany. Its basis is a moveable robot with an
omnidirectional drive, several integrated sensors (infrared sensors and a color camera, inductive
and optical sensors are additionally available) and an embedded personal computer (PC) to the
component object model (COM) express specification. It can be expanded with several pre-built
components like an electric gripper, a fork lift, a laser scanner or an WLAN access point [25].

Robotino is used in a special competition during Robocup and in a worldwide profession
challenge called SKILLs and is also very successful in empowering aspiring african engineers
[75].

Robotino View

The Robotino can be programmed using a graphical IDE called Robotino View. In Robotino
View programs are created using data flow charts connecting several predefined function blocks

16

Figure 3.6: Robotino View

Figure 3.7: Robotino SIM simulator

(cf. Figure 3.6). This graphical environment can be used in junction with an extra available
simulator program, robotic SIM. With this simulator you can build a virtual 3D environment for
the robot that enables students to test their program in the virtual world before applying it to the
real robot (cf. Figure 3.7)

Programming C++ or Java with the Robotino

The Robotino provides an C++ API for the Robotino and additional Java Wrappers for this API.
On Windows systems the supported development platform is Visual Studio (cf. Figure 3.8). An

17

Figure 3.8: Robotino C++ in Visual Studio [58]

additional port for linux systems is also provided.

Teaching programming with the Robotino The C++ as well as the Java API are completely
object orientated. The provided tutorials require the student to override existing classes to
achieve simple driving. Additionally arrays are also used in the introductory tutorial although
the usage of arrays can be avoided. Since objects, classes and inheritance are quite advanced
topics ((c.f. section 2.1) the usage of the Robotino in an introductory programming course is
difficult.

3.4 Additional educational robotic systems

The robotic sets mentioned above are by no means a complete listing of the available robotic
systems. Ruzzenente et. al. try to give a systematic overview for tertiary education, where they
catagorize the different robotic systems:

1. Non-versatile kits: Manipulators - e.g. Servobotics RA-02 Robotic Arm, Robot Arm
Trainer, Lynx

2. Non-versatile kits: Household Robots - e.g. Pioneer Robot 3DX, Khepera III Robot,
Hemisson, iRobot Create, MiaBot, WowWee Rovio, E-Puck

18

3. Non-versatile kits: Robotic Aircrafts - e.g. Skybotix’s Coax Helicopter, Parrot AR. Drone,
AscTec Quadrotor Pelican

4. Non-versatile kits: Humanoid Robots - e.g. Aldebaran Robotics Nao

5. Versatile kits - e.g. Boe-Bot, Stingray Robot, VEX, FischerTechnik, Qfix and the already
mentioned Lego Mindstorms [66]

3.5 Different approaches in educational robotics

There are several educational robotic systems which are designed to use a different approach to
attract younger students or students who are not initially interested in technology. As such they
only support a graphical IDE. In this category fall exemplary

• Pico cricket [65]

• Lego WeDo [34, 46]

Several other approaches do not use a prefabricated set and build a Robot around a central micro
controller. Some interesting approaches are found in following projects:

• Mattie as an educational platform which enables children to work on their first robot pro-
totype from different views and starting points [29]

• the Poppy project which tries to build an open platform for 3D printed robots around an
arduino micro controller [56]

3.6 Summary

There are several educational robotics systems available. For teaching introductory program-
ming sets making a fast simple robot construction possible are suited best, because the focus of
the curriculum lies on the software development opposing to electronics and mechanics neces-
sary for self-made robots based on a micro controller.

The goal of this work is teaching a programming language which is used on an industrial
level. For that reason a graphical environment can be an additional asset which enables the
teacher to show some concepts in a different light but the graphical programming environment
is not sufficient for the selection of a specific robotic system.

So the Lego Mindstorms set, the Botball kit and the Robotino are all candidates for the use
as fundament for an curriculum in introductory programming.

The Robotino is used as the competition set for mobile computing in a worldwide profession
challenge called SKILLs and is successfully used by the participants to solve problems close to
reality. For teaching introductory programming the Robotino is not optimal because of its price.
For usage in an introductory programming class many robots need to be available, so that the
ideal group size of two to maximum three students can be adhered to. Additionally the high

19

level concepts needed to use even simple motor movement in C++ and Java hamper the usage
for novices.

Lego Mindstorms has been used successfully with the NXT or RCX brick using different
approaches and different programming languages [18,44,76]. But unfortunately these researches
lack the avenue how to overcome the difficulties of the complex programming concepts needed
for the beginning (arrays in C, objects and static constants in Java). There are also some studies
pointing out these issues [9, 30].

The Botball kit is not affected by the above mentioned difficulties. The elementary set is
priced only slightly above the Lego Mindstorms set and the software is without any charge.
Even the full Botball set is priced well below a Robotino system and therefore better affordable
in greater quantities. Although Java has only very limited support and is hence not suitable in
a classroom context, the programming API for the language C is very low level and the first
programming concept necessary is the concept of function calls with literals, a concept being
equally necessary in any other beginning of teaching programming (eg. output commands). Ad-
ditionally the provided simulator adds to the benefits of using Botball as well as the availability
on multiple operating systems.

In our workshops we use Botball because of the easy approach to the programming concepts
in the programming language C and the possibility to for small student groups because of the
availability and affordability of the set.

20

CHAPTER 4
Concept

4.1 Context

This curriculum is aimed at teaching programming with an industrial used programming lan-
guage on an introductory level using robots as a way to enhance student participation and mo-
tivation. The target audience are students aged 13 to 18 who are interested in technology and
engineering, e.g. attending a technical high school. In this context the curriculum should cover
the goals for the accredited syllabus for software engineering in technical high schools for com-
puter science in the first year1.

Therefore the contents of the curriculum cover abstract programming concepts like variables,
function calling and defining and control structures. Moreover this means a procedural approach
is specified and objects have to be avoided.

4.2 Existing curricula

There is already a curriculum for teaching their students how to program the Botball robot. The
main goal of this curriculum is to teach enough basics to enable the students to participate in the
tournaments. This curriculum is not publicly available and is adapted and enhanced every year
to meet new requirements due to controller changes or to enhance student involvement.

Additionally there is a website based on an older version of the controller, the CBC that of-
fers an online curriculum (http://botballprogramming.org/). Since the code changes
for the new controller are minimal, most of this online course still works with the new Controller.
Still this online resource mainly purposes to teach the handling of the robot in terms of enabling
the students to drive around and working with sensors in view of the tournament. The focus lies
on explaining the functions available to access the various sensors and actors. There are some
explanations about basic programming concepts, but only briefly and not as a main goal. [21]

1Anl. 1/5 BGBl. II Nr. 300/2011 “Lehrplan der höheren Lehranstalt für Informationstechnologie” found at
https://www.ris.bka.gv.at/Dokumente/Bundesnormen/NOR40131765/NOR40131765.pdf

21

http://botballprogramming.org/

Figure 4.1: The robot build for the workshop

4.3 The Robot

The robot is derived from the original demo-bot built of Botball used in the workshops preparing
the teams for the tournament. Aside from the controller it consists of:

• 2 continuous rotation motors directly attached to the wheels

• one servo motor attached to the front (for applying a grappling arm, a bulldozer plate ...)

• one touch sensor

• one IR-distance sensor

• one reflectance sensor

• one light sensor

The sensors are all attached to the front so they can be used for navigation (figure 4.1).

4.4 Basic concept

The main curriculum is based on the concept shown in figure 4.2. The aim of the individual parts
of the concept is to enhance the motivation and offer the basis for understanding the technical
relations on a deeper level.

22

robots

tell a story

quick wins

team work

teaching
design

relating
knowledge

constructionism

Motivation Knowledge

Figure 4.2: Basic concept

As with several other available curricula the presented concept focuses on the content-
student relation of the didactic triangle. The implementation of the teacher part needs to be
adapted to the teachers using this work for themselves.

Constructionism

Using robots lays the foundation of having elements of constructionism throughout the curricu-
lum. The eight big ideas forming the Constructionist Learning lab are always central in the
curriculum design. With the robots student can develop their own approach to technology. Ad-
ditionally, students are easily capable of developing the given assignments further on their own
according to their interests.

When introducing new concepts I use steps similar to the ones Wulff suggested for using
constructivist pedagogy (cf. section 2.3):

1. Initial exposure through explanation of the new concept

2. Small guided examples (called warm-up tasks)

3. Group assignments (challenges and competitions)

4. Evaluation of the learning achievement (according to the course setup for grading)

Only the set-up of the robot requires more explanation, but with many small warm-up tasks to
get the students started before the first challenges can be issued.

To enhance constructionist elements it would be ideal to let students build their own robot,
which depends on the availability of robot kits. Having a robot for each team means the robot
kit is reserved for that team during the course period. Having a pre-build robot allows for usage
throughout several parallel courses.

23

Tell a story

It is possible to teach just one feature or concept after the other but to give the students a meaning
of what they do, it is necessary to have a leitmotif guiding the students from one concept to the
next. It may be necessary to step aside and have tasks and explanations outside this central theme
but it should deliver the main motivation for introducing a new chapter.

I encourage the students to imagine their own dream robot during the first lesson. So then I
can introduce my dream robot: “Seek-and-spot-robot” abbreviated SaSbot (in german “Suchen-
und-Entdecken-Roboter” abbreviated SuEbot). The duty of SaSbot is to seek and find my keys
or my mobile phone when I mislaid them somewhere in my apartment. Then I use SaSbot for
introducing the basic programming concepts and robot functions.

SaSbot has the advantage of being realizable with the means the students have with the
Botball system and the programming techniques. So there is no need to motivate the topics I
introduce extra and in the end the students can have their own SaSbot if they follow the curricu-
lum.

Not every student can relate to SaSbot (some students want a battle robot, some students
want a homework robot, etc.). So I encourage students to think of their own applications of the
presented techniques. Ideally the students develop their own story of what they want to do.

Quick wins

To simply follow a long term goal may be to tedious and SaSbot may not be an objective the
students find worth pursuing. So it is necessary to present them with short term achievements
they can reach after a small amount of learning units.

For the curriculum this means I present a new concept together with some simple tasks I
call “warm-up tasks” since the goal is to familiarize the students with the new concept and make
them ready for the challenge. The solution to a warm-up task will be shown and discussed
together after some time, so even students who had difficulties with this “warm-up task” will
have a workable solution. After the warm-up tasks there will be a task called challenge, because
the student teams need to find the solution for this task on their own. There will be support and
assistance from the teacher(s) present but no general solution will be presented.

To enhance the interest in these challenges some of these tasks can be chosen individually
from a pool with some of the challenges being more of an exhibition type of challenge. Some
other challenges will be issued in form of a competition. Especially the individual tasks provide
students who are struggling with programming with the opportunity to accomplish something on
their own because the tasks are designed to have wide range of difficulty levels. The competitions
on the other hand may give students an incentive to push their limits and reach for a better
solution.

Team work

Most institutions cannot afford one robot for every student. So teamwork is a necessity. But
teamwork can also be very beneficial in terms of motivation and learning, since there is always a

24

Senior	

Programmer	

Chief	
 of	

Quality	

Assurance	

Lead	

Designer	

Figure 4.3: Team positions in a 3 person team

team member who you can ask, when requiring help at a specific point. And if all team members
have no clue together there is still comfort in the fact, that they are not alone (cf. section 2.2).

But team sizes need to be small and it is necessary to make sure that all team members con-
tribute to the work. As I usually work with three student teams I divide the task of programming
into three parts derived from classical software engineering:

• Software Design

• Programming

• Testing

To enhance the importance of each part (especially of the non-programming-parts) team mem-
bers are assigned special names to encourage students to fill out the role. The three roles are:

• Lead Designer

• Senior Programmer

• Chief of Quality Assurance

After each programming task or challenge the roles should switch in a clockwise order. So the
Lead Designer becomes the Senior Programmer, the Senior Programmer becomes the Chief of
Quality Assurance and the Chief of Quality Assurance becomes the Lead Designer. So every
student needs to take part in the task.

As a second benefit this division encourages to actually make a design step before the actual
programming. Experience shows that bringing the students to make a design before starting to
code is very difficult since most students only view this as additional and unnecessary work.
With this division a student is solely responsible for the design so for this student the design is
not additional because it is his (only) contribution to a solution.

25

Testing on the other hand is more natural with tasks including robots since it is necessary to
try the program with the robot on the field. And nearly all times it is inevitable to correct the
program after the first run.

When working with teams consisting of two students I suggest combining Lead Designer
and Chief of Quality Assurance to have the coding part set apart from the other tasks.

Relations to previous knowledge

When explaining new concepts I try to emphasize the similarities to previous taught knowledge
and common patterns. This gives students the chance to memorize facts more easily and gain
a deeper understanding. Only at the very beginning when explaining the IDE and trying an
example program the concrete explanation is delayed until the next lesson. There is already
much information the students get at the first lesson and this may be to overwhelming.

This approach might take a bit longer than showing commands on a “Write this down to
make the robot do this or that” basis but I want the students to understand what they are doing.
And with constant repetition of facts and structures the sustainability of the knowledge will be
increased.

The knowledge relations are supported by figures enhancing the relations and making the
patterns of the language syntax more visible. These figures allow the students who do not like
long explanations to identify the key concepts and structures right away.

Teaching design

Designing a program from scratch is difficult even for more experienced programmers. For
novices this is even more true. So the design of a program is a step most students omit resulting
in getting lost in the assignment or having a program consisting of “spaghetti code”.

Designing a program is considered a necessary step by experienced programmers and there
is a vast toolset of graphical elements intended to help design a program (e.g. flowcharts, UML,
Nassi–Shneiderman diagrams, ...). But as experience shows students are not very inclined to
draw their designs whether on paper or with a drawing program. Therefore it is advisable to let
them write down their design as comments2. Comments are also an unpopular programming part
and because of that often omitted. So it may e possible to achieve one goal with a two-foalded
approach, i.e. using comments as design tool.

I also introduce function definition as a design tool. When thinking about steps the robot has
to follow to achieve its goal, it is natural to have these single steps written down as functions.
With introducing the definition of functions very early the students can also develop a habit of
writing functions and thinking in design steps.

It is very difficult for students to develop a complete design for the assignment. Some simply
despair at the thought of the whole assignment. So I encourage developing one step after the
other which is natural for most students. When presented with the task to let a robot go forward,
turn and go back to the starting point, many students start by simply trying the forward move-

2The idea of using comments as design tool was born at the instructor summit of the Botball 2015 season

26

ment. While encouraging this bricolage approach it is easy to talk about putting this first part of
moving forward in a separate function which can also be used for the “go back” part.

Structure of the Curriculum

Every content section consists of two parts:

1. Didactical considerations: which is intended for the teachers use and where I explain what
I am teaching and why I am teaching it this way.

2. Content for students: Here I give an example of a way how the lesson can be taught for
students. It is written like a student handout, but I focus on the approaches. So repetitive
parts are not as much included as I would include with a real student handout.

To present the concept I concentrate the work on the beginning and some key concepts. It is by
no means intended to cover a whole semester. This would exceed the timeframe of this work but
with the basic concepts covered the follow-up lessons can be developed in the same manner.

27

CHAPTER 5
Curriculum

5.1 The Beginning

Didactical considerations

For the start several explanations are necessary to build a frame, where the students can tie new
knowledge up. So the first two chapters are a bit heavy on the theoretical side, but this will help
to build the foundation for future knowledge. The goals for the students are:

• understanding of the programming process (write source code, compile, run)

• comprehending the terms source code, compiler, machine language and binary code

• getting familiar with the robot, especially with the controller

• getting familiar with the IDE

• understanding the basic structure of a program

This part builds the basis frame to which the students can anchor their further knowledge. To
loosen up the theoretical part at the beginning I work with some student activities aside from the
work with the robots to consolidate the presented knowledge and bring some fun to the theory.

As a starting point I ask the students if they have talked to their computer eventually. Nearly
everybody has done this, some times in terms of curses. This leads to the terms of binary code
and machine language and the need for compilers. To emphasize this fact the students can
program a fellow student with binary code. They are given a fixed set of instructions with a
translation in binary code.

The goal is for one student to write a program for a fellow student using binary code instruc-
tions. The fellow student has to follow the instructions he receives. Afterwards a discussion
about readability of binary code can lead to the next step: the need of translators.

29

I
command you,

do sthg ...

101000110101

011111110110

010001010011?
Figure 5.1: The computer does not understand human language

To consolidate this fact another round of “program your classmate” can be done with the
intermediate step of a programming language and a translator. After the students understands
the steps necessary to program a robot the robots can be used.

The process of compiling and running the first “Hello, world!” example-program on the
robot should be done together. Experience shows that it is difficult when doing it for the first
time, but students get accustomed to it very quickly. It is necessary to emphasize and repeat the
link between the single steps for getting the robot to work and the theory of compiling discussed
before.

Content for students

Most people have talked to their computer. But the computer did not respond as is shown in
Figure 5.1. This is no surprise because a computer understands machine language only which is
a binary code. Binary code is a way of representing numbers (e.g. tab 5.1).

0 1 0 0 0 1 0 1 = 0 · 128 + 1 · 64 + 0 · 32+
0 ·16+0 ·8+1 ·4+0 ·2+1 ·1 =
64 + 4 + 1 = 69

27 26 25 24 23 22 21 20

= 128 = 64 = 32 = 16 = 8 = 4 = 2 = 1

Table 5.1: Example for an 8-bit binary code

But a computer does not only store numbers. To store other content than numbers they need
to be encoded e.g. like characters are encoded in ASCII or unicode (table 5.2) or like colors
are encoded in RGB or CMYK. The instructions a computer can understand are also encoded in

binary code decimal number character
01000001 65 A
01100110 102 f
00100001 33 !
00110001 49 1

Table 5.2: Example for an ASCII encoding of characters

binary code.

30

I
command you,

do sthg. ...

int main()

{

 printf(

 "Hi!");

 return 0;

}

101000110101

011111110110

010001010011

101000110101

011111110110

010001010011

100101010111

000111111011

110000000100

1. Program 2. Compile 3. Run

Figure 5.2: The principle of giving a computer an instruction it understands

Group activity: program your fellow student The table 5.3 lists machine language instruc-
tions (binary code) for programing a “student robot”. Write a program for a team member or
class mate using this binary code. Then give this program to the designated student who be-
comes a student robot. The student robot has to follow the instructions step by step as written
down by you.

instruction machine language instruction
one step forward 00000001
three steps forward 00000011
turn through 90◦ 00000100
stand up 00001000
sit down 00001001

Table 5.3: Binary code for instructions

Binary code is hard to write and hard to understand for humans, but it is the native language
of computers and robots. So to improve the human-computer-relationships translators have been
invented.

Since there are no translators from natural language to machine language students still need
to learn a foreign “computer language”. This language is called programming language (like C,
C++, Java, Javascript, php, python, ...). Such a translator is called compiler and it compiles a
specific programming language to binary code for a computer (e.g. a C-compiler compiles pro-
grams written in C to machine language). So to write a program which a computer understands
there are several steps needed shown in figure 5.2.

Team activity: program your fellow student using a compiler Build teams consisting of
three students. Each team has the following members:

1. Programmer: writes down the instructions using programming language.

2. Compiler: translates the instructions to machine language. A compiler is very strict. If
a instruction has errors (like a missing letter, written with upper-case letters or a space
between a letter and a number) a compiler cannot translate this instruction

31

Figure 5.3: The KIPR link controller (picture courtesy of KIPR)

3. Robot or computer: follows the instructions it is given an thus runs the program. A robot
or computer is very strict. It can only follow the instructions it receives in binary code.

Table 5.4 shows the instructions in programming language and machine language for this activ-
ity.

instruction programming language instruction machine language instruction
one step forward step1 00000001
three steps forward step3 00000011
turn through 90◦ turn90 00000100
stand up stand 00001000
sit down sit 00001001

Table 5.4: Programming language instructions with binary code translation

Now it’s time to take the theory to the computer and to work with the IDE. The IDE is the
place where the program is written. It provides a simple “Hello, World!” program as an example.
To run this program the instructions must be compiled, so that the robot can understand them.
The part of the robot which receives the instructions and controls the motors and sensors is
called controller. The controller is thereby the equivalent of the human brain. As a mean of
communication it has a touch screen where it can write messages for the operator (5.3).

When computer and controller are connected via USB the program written in the program-
ming language C on the computer can be compiled for the robot controller. If no errors are
detected the program must be run on the controller itself. The necessary steps are:

32

I
command you,

do sthg. ...

int main()

{

 printf(

 "Hi!");

 return 0;

}

101000110101

011111110110

010001010011

101000110101

011111110110

010001010011

100101010111

000111111011

110000000100

1. Program 2. Compile 3. Run

Figure 5.4: The principle of giving a computer an instruction it understands combined with the
steps necessary on the computer and controller

1. Write a program or load an example program in the IDE on the computer.

2. Connect the robot (which needs to be turned on) with the computer via USB and select
the robot as compile target.

3. Compile the program and check if the compilation was successful (if there are no pro-
gramming errors)

4. Download the program to the robot

5. Run the program on the robot controller directly

For a detailed explanation see appendix A.1.
The relation between the steps above and the principle of giving a computer an instruction it

understands is shown in Figure 5.4.

5.2 Program structure

Didactical considerations

Now that the students know the basic steps of getting a program to run on the controller the
program itself can be examined and analyzed. The goals of this section for the students are:

• understanding the structure of the program and the main function

• understanding the structure of the printf-function call

• comprehending the terms syntax, comment, block and function

33

1

2

3

4

5

6

7

// Created on Mi. Februar 25 2015

int main()

{

 printf("Hello, World!\n");

 return 0;

}

Comment

main area of the
program

more visible

Figure 5.5: The basic structure of a program

1

2

3

4

5

6

7

// Created on Mi. Februar 25 2015

int main()

{

 printf("Hello, World!\n");

 return 0;

}

header of the
main-function

body block of the
main-function

start of
the block

end of
the block

more visible

Figure 5.6: The basic structure of the main function

• identifying syntax errors

Since the syntax of a computer program consists of several repeated structure elements it is
necessary to highlight these structure elements as soon as they appear. This enables the students
better to identify these elements later on as well, store these structures and patterns into their
brain and refer to them when needed.

To consolidate the structures presented the students should try some simple scenarios and
analyze together with the teacher the differences and the occurring structures.

Teaching syntax errors explicitly is the first step to enable students to cope with their own
errors and find solutions to them. Learning to analyze errors is a long process and the presented
activity is only the first step.

Content for students

First of all there is a difference between a comment, which is not interpreted by a computer, and
the main part of the program where the actual programming takes place (figure 5.5). The main
part itself is structured again in a header and a body block (every head needs a body to survive).
The body block is delimited with a pair of curly braces (figure 5.6). The header-body-theme will
be repeated when talking about custom functions and the control structures.

The actual instructions for the robot are placed inside of the main-function-block i.e. inside
the curly braces marking the begin and the end of this block. Instructions are also called state-
ments. The statements are usually indented to emphasize the block structure and make it more
visible. Every statement inside the block is terminated with an semicolon (figure 5.7). So the
robot gets actually two instructions:

34

1

2

3

4

5

6

7

// Created on Mi. Februar 25 2015

int main()

{

 printf("Hello, World!\n");

 return 0;

}

the instructions
= statements

indentation
to make

the block
more visible

every statement is terminated
with a semicolon ;

Figure 5.7: The area where the statements are written

1. printf("Hello, World!"); This tells the robot to write the text “Hello, World!”
on its screen (without the quotation marks).

2. return 0; This tells the robot to end the program with no errors.

Comments can also be placed inside the main part of the program. Remember they are actually
ignored by the robot. Try to run the following program on your robot (listing 5.1).

1 // Created on Mi. Februar 25 2015
2
3 int main()
4 {
5 // prints the text Hello, World!
6 printf("Hello, World!\n");
7 return 0;
8 }

Listing 5.1: Comment inside the main-function

What happens when you try writing two printf commands? What is the difference between
this program and the previous one? Try it out (listing 5.2).

SaSbot – Learning to communicate Before tackling the original assignment of SaSbot the
robot needs to be able to tell me something. The example program already shows the means
of accomplishing this – the printf-command. So all we need to know is how we utilize this
command to make the robot tell a text we want it to tell. Before listening to more theory it may
be best to just try it out.

Before you start working on your own, we need to look at possible syntax errors. Syntax
errors occur when one does not adhere to the program structure and the instruction set known
to the robot. The term syntax is generally equated with grammar since it also encompasses the
rules under which structure elements and instructions can be used. The compiler is very strict.

35

1 // Created on Mi. Februar 25 2015
2
3 int main()
4 {
5 printf("Hello, World!\n");
6 printf("Hello, World!\n");
7 return 0;
8 }

Listing 5.2: Two printf commands

Figure 5.8: Syntax error in the KISS IDE (missing ; after the printf statement)

If it encounters something which is not correct it does not do the translation. Instead it points
out, where the error might be and what it guesses is the reason for the error (figure 5.8). Figures
5.9 and 5.10 show more error scenarios.

Warm-up task: error burst Try the presented scenarios together with some more on your
own and protocol the findings. Starting point is the “Hello, World!” example program (shown in
figures 5.5 to 5.7). Then effectuate the presented error and try to compile the program. Analyze
the shown error-message and write the results in the protocol shown in table 5.5. It is required
to correct the induced error after each step otherwise the previous errors will affect the error
messages. The first 3 lines are filled out as an example. The line number should show the line
number stated in the error message. Note that not all scenarios produce an error message. These
scenarios likely result in semantic errors in contrast to the syntax errors.

36

Figure 5.9: Syntax error in the KISS IDE (missing " after the Hello, World! – only one error but
many error messages)

Figure 5.10: Syntax error in the KISS IDE (printf is written with a upper case P)

Warm-up task: greetings As a first real programming exercise modify the displayed text, so
that your robot greets every team-member. As an additional challenge try to have the robot write
every greeting in a separate line.

5.3 Function calls

Didactical considerations

After the more theory loaded discussion of the program structure on a large scale the students
move on to analyze a function call. the goals of this section for the students are:

• Understanding of the structure of a function call (including parameters but without return

37

Error scenario Line no. Error message from the compiler
Delete ; at the end of line 5 6 expected ’;’ before ’return’
Delete " near the end of line 5 5 missing terminating " character

+ more
Write the p from printf in upper
case (Printf)

– undefined reference to ’Printf’

Delete the curly brace { in line 4
Delete the curly brace } in line 7
Delete one slash / in line 1
Write two slashes // at the be-
ginning of line 4
Delete the i out of the word
main in line 4 (so the line says
int man())
Add a second semicolon ; to the
end of line 5
Delete the zero 0 in line 6
Delete the entire line 6

Table 5.5: Error scenarios the students should try and record

value)

• Understanding differences between string literals and numeric literals

• Understanding sequence

• Using different functions to make the robot move.

Understanding the structure of a function call is the first step of empowering the students to
use the API documentations which enables them to write programs for their own needs. After
discussing the structure of a function call the students should reflect on their previous task of
greeting. Sequential processing of the statements is not visible to the students because all text
lines seem to appear at once. Only in the placement of the text the sequence is visible.

With highlighting the sequence with the function wait_for_milliseconds() the stu-
dents become more aware of the one after the other nature of code execution. If there is time a
brief introduction of how a processor works is recommended.

With the introduction of the motor functions driving becomes possible. This is usually the
first highlight in the course and after this point larger challenges become possible. It is also the
first task complex enough to allow thinking about the task and the solution, aka. the software
design (cf section 4.4).

When thinking about design is established, the moment is ideal to introduce the different
roles of working in a team with the robot (cf. section 4.4).

38

1

2

3

4

5

6

7

// Created on Mi. Februar 25 2015

int main()

{

 printf("Hello, World!\n");

 return 0;

}

No function (telling the program to terminate)

a function (using
an ability of the
robot)

more visible

Figure 5.11: Using a function in contrast to a structural statement

printf(“Hello, World!\n“);

name of
the function

parameter - a value used
to configure the function

opening
paranthesis

closing
paranthesis

terminating
semicolon

Figure 5.12: The structure of a function call

Content for students

SaSbot – communication theory After SaSbot can send us messages that we can read, we
need to understand how we can use SaSbot’s functions to give it instructions. For sending
something to the display the robot uses one of his functions. Functions can be imagined as
abilities of the robot in contrast to instructions used for structuring the program itself (figure
5.11). The usage of the printf-function itself follows a pattern which is common to the usage
of every function the robot has (figure 5.12). Now evaluate your previous greeting program (a
possible solution is shown in listing 5.3). Think about the following questions:

• What does the parameter-value configure?

• The computer executes the three printf-functions one after the other (= sequential). Is this
visible, when observing the output?

So let’s look at another function call (figure 5.13). It is structured just the same way as calling
of the printf-function. The only difference lies in the type of the parameter. Instead of text there
is a number and therefore there are no enclosing quotation marks (and the color is different too).
This function makes the program (not the robot!) wait for n milliseconds where n is the value
of the parameter. So when it is used between the printf-function calls the sequence nature of
program execution will be visible (listing 5.4).

Note: placing a wait_for_milliseconds call after the last printf will have no visible effect
since the program will only wait a bit before shutting down finally. After trying this program
think about the following questions:

39

1 // Created on Mi. Februar 25 2015
2 int main()
3 {
4 // Greeting of Lisa
5 printf("Hello, Lisa!\n");
6 // Greeting of Nicole
7 printf("Good day, Nicole!\n");
8 // Greeting of Andrej
9 printf("Hi, Andrej!\n");

10 // Terminating the program
11 return 0;
12 }

Listing 5.3: Greeting of three team members

wait_for_milliseconds(1500);

name of
the function

parameter - a value used
to configure the function

opening
paranthesis

closing
paranthesis

terminating
semicolon

Figure 5.13: The structure of the wait_for_milliseconds function call

• What is different when writing a number and writing a text as parameter?

• What is different between the execution of this program and the execution of the previous
program?

• What happens when you change the values of the wait_for_milliseconds parameters? Try
different ones (I suggest values less than 10000).

SaSbot – Learning to drive When you need to search for something you need to be able to
move around. So the first step for SaSbot in his quest of becoming the best seeker droid is
learning to drive around. The robot is equipped with 2 motors which are attached directly to
their correspondent wheels – one motor for one wheel (figure 5.14). There are several functions
being able to control one motor. The one which is most easy to control is mav (abbr. for move
at velocity). It turns the one specified motor with a defined velocity on (and the motor stays on
until instructed otherwise). The structure of calling this function follows the shown rules with
the exception that this function has two parameters (cf. figure 5.15):

1. the number of the motor which should be controlled

40

1 // Created on Mi. Februar 25 2015
2
3 int main()
4 {
5 // Greeting of Lisa
6 printf("Hello, Lisa!\n");
7 // wait for 1500 milliseconds
8 wait_for_milliseconds(1500);
9 // Greeting of Nicole

10 printf("Good day, Nicole!\n");
11 // wait for 1500 milliseconds
12 wait_for_milliseconds(1500);
13 // Greeting of Andrej
14 printf("Hi, Andrej!\n");
15 // Terminating the program
16 return 0;
17 }

Listing 5.4: Slow greeting of three team members

Figure 5.14: The motors of the robot (one attached to each wheel)

2. the velocity the motor uses to drive in ticks per seconds (one turn of the wheel are 1000
ticks). The maximum velocity allowed is 1000 ticks/s.

Since mav turns a motor on there is need of a command to turn a motor off again. The
appropriate function to do so is ao (abbr. for all off). This function turns all motors off. Since
there are not any configurations necessary for turning all motors off, the function does not have
any parameters at all (figure 5.16)

Designing a program

Now that all functions necessary for driving are introduced it is required to think about how these
functions need to be put together for achieving a movement for the robot. Maybe it is helpful to

41

mav(1, 700);

name of
the function

1st parameter:
the motor number

opening
paranthesis

closing
paranthesis

terminating
semicolon

2nd parameter:
the velocity

comma separates
the two parameters

Figure 5.15: The structure of the mav function call

ao();

name of
the function

opening
paranthesis

closing
paranthesis

terminating
semicolon

no parameter
(the parantheses remain)

Figure 5.16: The structure of the ao function call

ponder the following questions:

• How many motors are mounted on the robot?

• What happens if you turn only one motor on (if unsure try to walk with only one leg
moving)?

• How is it possible with the shown functions to turn two motors on?

• When is it sensible to turn the motors off again? Directly after they were started?

• What happens with a running motor if the function wait_for_milliseconds is called?

So a possible approach for moving the robot is listed below:

1. Turn both motors on

a) Start motor no. 1

b) Start motor no. 2

42

Start

Start motor no. 1

Start motor no. 2

Pause the program for 5s

Turn all motors off

End

Figure 5.17: The design of the first movement program as a flowchart

2. Pause the program for 5 seconds

3. Turn all motors off

The design is also shown as a flowchart in figure 5.17. As a first step we can write down our
program design into our program with comments (listing 5.5). Afterwards it is only a matter of

1 // First movement
2 // Created on Fr, March 6 2015
3
4 int main()
5 {
6 // Start motor no. 1
7 // Start motor no. 2
8 // Pause the program for 5 seconds
9 // Turn all motors off

10 // End the program
11 return 0;
12 }

Listing 5.5: The design of the first move program written as comments

writing the correspondent function to the comment and the program is ready to run (listing 5.6).

Warm-up task: faster and faster Try to make the robot move with different velocities in
one program. Start with a slow velocity and increase the velocity after a few seconds. You
can further increase the velocity after an additional few seconds, so that the robot moves with 3
different velocities.

43

1 // First movement
2 // Created on Fr, March 6 2015
3
4 int main()
5 {
6 // Start motor no. 1
7 mav(1, 700);
8 // Start motor no. 2
9 mav(2, 700);

10 // Pause the program for 5 seconds
11 wait_for_milliseconds(5000);
12 // Turn all motors off
13 ao();
14 // End the program
15 return 0;
16 }

Listing 5.6: The complete first move program

Figure 5.18: Different velocities per wheel let the robot drive a curve

Understanding movement

Most students will experience a slight turn when the robot moves, even if both velocities used
in the mav-function have the same value. This is due to little differences in the mechanical
construction of the chassis (e.g. mounting of the wheels) and in the abrasion of the mechanical
parts of the motors. When wheels move with different velocity you get a curve (figure 5.18).

The knowledge of this fact can be used to

1. increase the difference between the two motor velocities to make a sharp turn

2. use a small difference between the two motor velocities to compensate the mechanical
differences (when the left wheel is turning always a bit slower than the right wheel even

44

Figure 5.19: A negative number for the velocity parameter results in driving backwards

when they should go at the same velocity then increasing the velocity for the left wheel a
bit might make the robot go a straight line)

Warm-up task: turn around Let the robot turn for a full round (360◦). Since we cant work
with sensors yet the time needed for a full turn must be estimated and tried.

The mav-function allows also negative numbers for the velocity-parameter resulting in revers-
ing the movement direction. So to let the robot drive backwards you simply have to inverse the
velocity number (figure 5.19). Which direction is considered forward and which backwards is
actually dependent on the way the motors are plugged into the controller. A small LED-light
at the controller indicates which direction the motor is turning for the controller: green if the
controller thinks the motor turns forward (+) and red if the controller thinks the motor turns
backwards (–).

Warm-up task: forward-backward Let the robot go forward for a little while and then return
to your starting point without turning the robot around.

5.4 Introduction of the first challenges

Didactical considerations

All movement eventualities are introduced, so it’s time for presenting the challenges to the stu-
dents. It is beneficial if the students can think about the possible solutions of a challenge, but it
is not intended that they start coding them immediately. Instead the challenges should be coded
at the end of the next chapter (writing your own functions) since the usage of the knowledge
there will be helpful and there is no need to invent new challenges for the next chapter.

45

Figure 5.20: The scenario for challenge 1

The first three challenges require exact driving. The fourth and the fifth challenges are
appealing on a more creative level and result in a more exhibition-like presentation. It is also
possible to split these challenges and make the first three in form of a competition (without
functions) and using the fourth and fifth challenge to practice the usage of functions.

For the challenges I used mats from the Junior Botball Challenge program 1 because they are
easy to use and the challenges can be easily adapted with them. But it is also a good possibility
to draw the shapes on a flip chart paper or to use tape to line out the challenge area on the floor.

Challenge 1: Moving an object

Prerequisites (figure 5.20):

• A light object which can be moved with a slight push is placed on circle number 9

Start with your robot in the starting area. Then the robot drives to the object and moves
visibly. The object must not leave the circle: one part of the object must still touch the circle.
Afterwards the robot has to go back to the starting area. The challenge is only solved if the robot
is standing inside the starting area after it has returned.

Challenge 2: Going around obstacles

Prerequisites (figure 5.21):

• An object is placed on circle number 2

• An object is placed on circle number 9

• An object is placed between the circles 5 and 6

1https://www.juniorbotballchallenge.org

46

Figure 5.21: The scenario for challenge 2

• An object is placed between the circles 6 and 7

Start with your robot in the middle of your starting area. Then the robot drives around all
objects and returns to the center of the starting area. The robot must not leave the mat completely.
At least one wheel has to stay on the mat (if you like to enhance the challenge: both wheels have
to stay on the mat). Furthermore the robot must not move the objects (grazing is ok, as long as
the objects are not moved). The challenge is only solved if the robot is standing at the center of
the starting area after it has returned.

Challenge 3: Parking

Prerequisites (figure 5.22):

• Only the mat is necessary (if you do not have a mat, you need three areas similar to the
green, blue and yellow outlined areas on the mat)

Start with your robot in your starting area. Then the robot needs to drive to his parking place.
There are three available parking places:

• an easy green area

• a blue area of medium difficulty

• a difficult yellow area

The robot needs to park in one of the areas. When trying to park in the green area it must not
touch green solid lines. Accordingly when trying to park in the blue area, blue solid lines are a
no-no. And when parking in the yellow area, yellow solid lines are off-limits. The challenge is
solved when the robot stands in its parking place behind the correspondent dotted line (without
touching solid lines, sensors and the servo arm do not count).

47

Figure 5.22: The scenario for challenge 3

Challenge 4: Dancing on the spot

Find a music which is suitable for the dance you imagine. Then let the robot dance on the spot
(e.g. put the left wheel in front, and back again, put the right wheel in front, and back again,
move forward, move backwards, turn around, or whatever you imagine). The challenge is only
solved if the robot stands on the same spot where it has started.

Challenge 5: Dancing in a wider range

Find a music which is suitable for the dance you imagine. Then let the robot dance over an area
like with ice dancing (e.g. while driving a wide circle, the robot turns around and does some
pirouettes or whatever you imagine). The challenge is only solved if the robot stands roughly on
the same spot where it has started.

5.5 Defining functions

Didactical considerations

I introduce function definition as a mean to break down a big task in smaller more comprehensi-
ble tasks and thereby emphasizing thinking about program design. The goals of this section for
the students are:

• comprehending function definition as a mean to enhance the robots abilities

• understanding the structure of a function definition without parameters and return values

• being able to write a prototype

• using self-written functions

48

Figure 5.23: Driving a square

As experience shows motivating the students to use functions is often difficult. No program
needs functions. every program can all be written with “spaghetti-code” and several copy and
pastes. But when the usage of function is introduced as “teaching SaSbot (or your robot) new
instructions” the appreciation of it is easily understood.

To emphasize this point and as a repetition I use the square assignment as a starting point.
The resulting program is quite long with lots of repetitions. And tinkering with the mav-
parameters for driving straight or turning is tedious. But it can be shortened easily with functions
(and even more with loops later on) and this shows the advantage of it quite clearly.

When introducing function definitions it is important to relate to the known structure of the
main-function. To ease the already complicated process, I only offer one approach: working
with prototypes. With this approach no other considerations need to be made and it can easily
lead to writing your own libraries.

When covering function calls again the sameness to the already known function calls need
to be stressed.

After this section the students should work on their challenges, but it may be necessary to
discuss possible functions with them and encourage the usage of functions, since the concept is
still quite new to them.

Content for students

Warm-up task: Driving a square Program your robot for driving a square. Try to adjust the
mav-parameters so that the robot is standing in the same position as at the beginning after it
finished driving the square.

Before starting to code think about your design. Maybe the following questions can help:

• What different kind of movements are involved (driving forward, driving backward, turns
- in which direction etc.)

• What steps are necessary to complete the task

• What instructions do you have for implementing these steps

49

A first design proposal could be:

1. Drive straight for 3 seconds

2. Turn right

3. Drive straight for 3 seconds

4. Turn right

5. Drive straight for 3 seconds

6. Turn right

7. Drive straight for 3 seconds

8. Turn right

9. Turn all motors off

A more refined design could be:

1. Turn both motors on with 700 ticks per seconds

2. Pause the program for 3000 ms

3. Turn the first motor on with 1000 ticks per seconds

4. Turn the second motor off

5. Pause the program for 1450 ms

6. Turn both motors on with 700 ticks per seconds

7. Pause the program for 3000 ms

8. Turn the first motor on with 1000 ticks per seconds

9. Turn the second motor off

10. Pause the program for 1450 ms

11. Turn both motors on with 700 ticks per seconds

12. Pause the program for 3000 ms

13. Turn the first motor on with 1000 ticks per seconds

14. Turn the second motor off

15. Pause the program for 1450 ms

16. Turn both motors on with 700 ticks per seconds

50

17. Pause the program for 3000 ms

18. Turn the first motor on with 1000 ticks per seconds

19. Turn the second motor off

20. Pause the program for 1450 ms

21. Turn all motors off

As you can already see, the program will be quite long. Keep in mind that the time you need to
wait until your robot finishes its 90◦ turn may vary. The resulting program is listed below:

1 // Driving a square - first try
2 // Created on Sat, March 7 2015
3
4 int main()
5 {
6 // Turn both motors on with 700 ticks per seconds
7 mav(1, 700);
8 mav(2, 700);
9 // Pause the program for 3000 ms

10 wait_for_milliseconds(3000);
11 // Turn the first motor on with 1000 ticks per seconds
12 mav(1, 1000);
13 // Turn the second motor off
14 mav(2, 0);
15 // Pause the program for 1450 ms
16 wait_for_milliseconds(1450);
17 // Turn both motors on with 700 ticks per seconds
18 mav(1, 700);
19 mav(2, 700);
20 // Pause the program for 3000 ms
21 wait_for_milliseconds(3000);
22 // Turn the first motor on with 1000 ticks per seconds
23 mav(1, 1000);
24 // Turn the second motor off
25 mav(2, 0);
26 // Pause the program for 1450 ms
27 wait_for_milliseconds(1450);
28 // Turn both motors on with 700 ticks per seconds
29 mav(1, 700);
30 mav(2, 700);
31 // Pause the program for 3000 ms
32 wait_for_milliseconds(3000);
33 // Turn the first motor on with 1000 ticks per seconds

51

34 mav(1, 1000);
35 // Turn the second motor off
36 mav(2, 0);
37 // Pause the program for 1450 ms
38 wait_for_milliseconds(1450);
39 // Turn both motors on with 700 ticks per seconds
40 mav(1, 700);
41 mav(2, 700);
42 // Pause the program for 3000 ms
43 wait_for_milliseconds(3000);
44 // Turn the first motor on with 1000 ticks per seconds
45 mav(1, 1000);
46 // Turn the second motor off
47 mav(2, 0);
48 // Pause the program for 1450 ms
49 wait_for_milliseconds(1450);
50 // Turn all motors off
51 ao();
52 return 0;
53 }

Listing 5.7: Driving a square - first try

The simple task results in a quite long program. Think about the following questions:

• What happens if you want to make your square bigger? How often do you need to change
a value?

• What happens if you need to swap your robot, so that you need to adjust the parameters
for the mav-functions or the wait_for_milliseconds functions to keep your robot going
straight or turning the right angle? How often do you need to change a value?

It would be much easier if we can work with the first design proposal. Fortunately this is possible
by teaching the robot a new vocabulary. This is called defining a new function. To work with a
new function you need to do three steps:

1. Define what the new command is and what the robot needs to do after the main-function
– this is the actual function definition

2. Make the new function known at the beginning of the program before the main function
starts – this is called writing the prototype

3. Now you can use the new function in the same way as already predefined functions (like
mav or ao) – this is the calling of the function

52

// Driving a square - second try

// Created on Sat, March 7 2015

int main()

{

 return 0;

}

void drive_straight()

{

 // Turn both motors on

 mav(1, 700);

 mav(2, 700);

 // Pause the program for 3s

 wait_for_milliseconds(3000);

}

start of
the block

end of
the block

header of the
self-written-
function

body block of
the self-written-
function

Figure 5.24: The definition of the function drive_straight

First step: Defining the function after the main-function

To define a function you need to come up with a name for the new instruction. Since we want
to simplify the driving program we need a function which enables the robot to drive straight
forward. So a good name would be drive_straight. Note that spaces and other special
characters than underscore “_” are not allowed in a name.

Now the robot needs to know, what it has to do, when this instruction is called. So after
defining the name a set of instructions need to be specified. The overall structure of the new
function is similar to the structure of the main-function aside from starting with void. The
complete definition is shown in figure 5.24.

Second step: Writing the prototype

The job of the prototype is introducing the new function to the robot, so that the robot knows that
there is a new instruction it needs to adhere. It is written above the main-function and has the
same content as the header of the newly defined function. Other than the header of the function
the prototype ends with a semicolon (;). The process is illustrated in figure 5.25.

Third step: calling the new function

The new function can be called in the same way as already defined functions. It has no parameter
(we did not define any) so the structure of the resulting call is shown in figure 5.26. Without
calling the function the robot only has learned a new vocabulary which it does not use. To
make it go straight the new function needs to be used in the main-function. The main-function
is always the starting-point for any program. Within the main-function every function can be

53

// Driving a square - second try

// Created on Sat, March 7 2015

void drive_straight();

int main()

{

 return 0;

}

void drive_straight()

{

 // Turn both motors on

 mav(1, 700);

 mav(2, 700);

 // Pause the program for 3s

 wait_for_milliseconds(3000);

}

end of
the block

body block of
the self-written-
function

copy the header of the
function to a line above
the main-function and
add a ;

Figure 5.25: Adding the prototype to the definition of the function drive_straight

drive_straight();

name of
the function

opening
paranthesis

closing
paranthesis

terminating
semicolon

no parameter
(the parantheses remain)

Figure 5.26: The structure of calling of the function drive_straight

called as often as it is needed. Since we want to drive a square, we need to drive straightforward
four times (figure 5.27).

For completing the square a second function needs to be defined. A good name would be
turn_right. You can practice writing the function on your own and compare your results
with the listing below:

1 // Driving a square - first try
2 // Created on Sat, March 7 2015
3
4 // prototypes for the functions
5 void drive_straight();
6 void turn_right();

54

// Driving a square - second try

// Created on Sat, March 7 2015

void drive_straight();

int main()

{

 drive_straight();

 drive_straight();

 drive_straight();

 drive_straight();

 return 0;

}

void drive_straight()

{

 // Turn both motors on

 mav(1, 700);

 mav(2, 700);

 // Pause the program for 3s

 wait_for_milliseconds(3000);

}

end of
the block

body block of
the self-written-
function

the function is called for
the 1st time

the function is called for
the 2nd time

the function is called for
the 3rd time

the function is called for
the 4th time

Figure 5.27: The calling of the function drive_straight 4 times within the main-function

7
8 // starting point of the program - main-function
9 int main()

10 {
11 drive_straight(); // 1st call of drive_straight
12 turn_right(); // 1st call of turn_right
13 drive_straight(); // 2nd call of drive_straight
14 turn_right(); // 2nd call of turn_right
15 drive_straight(); // 3rd call of drive_straight
16 turn_right(); // 3rd call of turn_right
17 drive_straight(); // 4th call of drive_straight
18 turn_right(); // 4th call of turn_right
19 // Turn all motors off
20 ao();
21 return 0;
22 }
23
24 //function definitions
25 void drive_straight()
26 {

55

Figure 5.28: The robot drives a wiggly line

27 // Turn both motors on with 700 ticks per seconds
28 mav(1, 700);
29 mav(2, 700);
30 // Pause the program for 3000 ms
31 wait_for_milliseconds(3000);
32 }
33
34 void turn_right()
35 {
36 // Turn the first motor on with 1000 ticks per seconds
37 mav(1, 1000);
38 // Turn the second motor off
39 mav(2, 0);
40 // Pause the program for 1450 ms
41 wait_for_milliseconds(1450);
42 }

Listing 5.8: Driving a square - second try

The resulting program is not much shorter, but it is a lot more structured. Think again about the
following questions:

• What happens if you want to make your square bigger? How often do you need to change
a value?

• What happens if you need to swap your robot, so that you need to adjust the parameters
for the mav-functions or the wait_for_milliseconds functions to keep your robot going
straight or turning the right angle? How often do you need to change a value?

Warm-up task: going wiggly Let the robot follow a wiggly line (figure 5.28). What functions
make sense? Think about the principal movements necessary for this driving style. Implement
the program without using mav or wait_for_milliseconds in the main-function.

56

5.6 Functions with parameters

Didactical considerations

Parameters make the functions configurable. the goals of this section for the students are:

• understanding the concept of variables

• comprehending the term declarations and parameter

• understanding how parameters make functions configurable

For the usage of parameters the introduction of variables is necessary. Variables are often
explained with boxes which lead to several misconceptions [67]:

• a variable can hold more than one value

• the value is deleted when read

• confusing initial value with actual value

Especially the first two misconceptions are easily comprehensible when thinking about the box
metaphor. So I invented another concept - the magical glass jar. It needs to be a glass container
with lid to enable looking at the content without opening the lid and taking something out (to
counter the second misconception). The container needs to be magical because you cannot add
another value respectively another thing to the content already there and you cannot empty the
container. When calling the jar magical I remind the students that not everything is the same as
with real jars.

It is also advisable to give the students a technical background about how variables are
stored in RAM and how retrieving and storing information works to give the students additional
information which leads to the rules of the “magical jars”.

Content for students

SaSbot – searching the edges of the room When I want SaSbot to find something it needs to
cover a whole room for searching. For the beginning it is easier to think about searching along
the room walls. But nearly no room has a square form. If we think about an easy form, we can
assume a rectangle. But most rooms will be more complicated. So how can we drive a rectangle
form or even a more complicated form in a structured way?

Think about the square-exercise. We used two functions to solve the problem with functions:
one for driving straight and one for the turn. How many functions do we need, when we want to
drive a rectangle pattern? How many principal movements do we have here?

There are still only two principal movements:

1. drive straight, but with different lengths

2. turn right

The drive_straight function only needs to be configurable, to enable it to go different lengths. To
make a function configurable, we need special types of variables (parameters).

57

Figure 5.29: The robot drives a rectangle

Variables

Variables can be imagined as glass jars. They have similar characteristics:

• both must exist before you can put something into it

• both can store content (closing the lid on the jar)

• both are available in different sizes and forms

• both allow viewing and checking the content just by looking

But variables have more characteristics they are like magical glass jars:

• you must know their name to find them

• you cannot empty them

• if you put something new into the variable resp. the magical jar, the previous content
disappears

• the size determines what you can store in it

• when the program ends, all variables/magical jars disappear

If you want to create a new variable (magical jar) you need to know two facts:

1. a name, which you can invent on your own (some rules need to be adhered to). It should
reflect the thing you want to store in your variable.

2. a datatype, which determines the size and the kind of values you can store in it.

So we want to vary the driving length of our robot, when it drives straight. One possibility
is to vary the time we pause the program before issuing another motor command. The time is
set in milliseconds – a number with no decimal point allowed: an integer. So for the variable we
have the two parts:

58

// Driving a rectangle

// Created on Sat, March 7 2015

int main()

{

return 0;

}

void drive_straight(int time)

{

// Turn both motors on

mav(1, 700);

 mav(2, 700);

// Pause the program for time

 wait_for_milliseconds(time);

}

a new variable named
time is created here

looking at the content
of the variable time and
using it for determining
the length of the pause

time

Figure 5.30: Declaring a parameter and using it within the function

1. name: time – since it should store a time, this name is easily understandable

2. datatype: int – int is the abbreviation of integer and it is the type of value we want to
store.

To create the variable you need to write the datatype and the name in that order:

datatype name

That means for our variable we need to write:

int time

This line creates a new variable (a new magical jar). After the creation the content is undefined,
it is simply not known what is stored in it.

Using variables as parameters

Parameters are used in functions and specified, when the function is defined. Remember the
three steps necessary to get a new function to work.

1. Define what the new command is and what the robot needs to do after the main-function
– this is the actual function definition

2. Make the new function known at the beginning of the program before the main function
starts – this is called writing the prototype

3. Now you can use the new function in the same way as already predefined functions (like
mav or ao) – this is the calling of the function

59

// Driving a rectangle

// Created on Sat, March 7 2015

void drive_straight(int time);

int main()

{

 return 0;

}

void drive_straight(int time)

{

 // Turn both motors on

 mav(1, 700);

 mav(2, 700);

 // Pause the program for time s

 wait_for_milliseconds(time);

}

copy the header of the
function to a line above
the main-function and
add a ;

time

Figure 5.31: The prototype must contain the parameter too

drive_straight(3000);

name of
the function

the value for
the time parameter

opening
paranthesis

closing
paranthesis

terminating
semicolon

Figure 5.32: The structure of calling drive_straight with parameter

To use a variable as parameter it needs to be created between the parentheses of the function
definition (first step). This causes the function to provide a new variable (= magical jar) every
time it is called. This variable must be filled when the function is called. Within the function the
variable can be read with just writing the name (figure 5.30).

The next step is to provide the program with the prototype of the new function. This is
achieved in the same way as with functions without parameters (figure 5.31).

Before moving on think about the following question:

• Look at figure 5.31: for how long will the robot drive straight?

Remember: without calling the function it just is a piece of unused vocabulary and the robot
does not drive a little bit. Even more in this state it is impossible to say how long the robot will
drive if the function is called, because the parameter-variable is still undefined and therefore we

60

// Driving a rectangle

// Created on Sat, March 7 2015

int main()

{

 drive_straight(3000);

 drive_straight(5000);

 drive_straight(3000);

 drive_straight(5000);

 return 0;

}

void drive_straight(int time)

{

 // Turn both motors on

 mav(1, 700);

 mav(2, 700);

 // Pause the program for time

 wait_for_milliseconds(time);

}

time

the value of the parameter
is copied into the parameter-
 variable, when the
 function is
 called

3000

when the value is examined for determing
the length of the pause, the actual value
of the variable is used (3000 in this case)

Figure 5.33: The structure of calling drive_straight with parameter

cannot determine how long the program must pause. For using this function we must provide
a value for our variable. This is achieved the same way as with every other function having
parameters – it must be written between the parentheses when calling it (figure 5.32)

When the function is called, the value between the parentheses will be copied into the new
variable. The value of the variable is no longer undefined. When the parameter is used to
determine the length of the pause, the actual value, which is currently stored in the variable, is
examined and used as value for the wait_for_milliseconds function (figure 5.33).

Think about the following questions :

• How often is the function drive_straight called?

• Is it always called with the same value for the parameter? Which value(s) are used?

• What does the usage of different values for the parameters mean for the driving pattern?
How does the robot drive?

• For how many seconds will the robot drive all in all?

Only the first call of the drive_straight-function is visualized in figure 5.33. Try to visualize the
following function calls in the same way for answering the questions.

The complete rectangle program including the turn_right-function is listed below:

61

1 // Driving a rectangle
2 // Created on Sat, March 7 2015
3 // prototypes for the functions
4 void drive_straight(int time);
5 void turn_right();
6
7 // starting point of the program - main-function
8 int main()
9 {

10 drive_straight(3000);
11 turn_right();
12 drive_straight(5000);
13 turn_right();
14 drive_straight(3000);
15 turn_right();
16 drive_straight(5000);
17 turn_right();
18 // Turn all motors off
19 ao();
20 return 0;
21 }
22
23 //function definitions
24 void drive_straight(int time)
25 {
26 // Turn both motors on with 700 ticks per seconds
27 mav(1, 700);
28 mav(2, 700);
29 // Pause the program for time ms
30 wait_for_milliseconds(time);
31 }
32
33 void turn_right()
34 {
35 // Turn the first motor on with 1000 ticks per seconds
36 mav(1, 1000);
37 // Turn the second motor off
38 mav(2, 0);
39 // Pause the program for 1450 ms
40 wait_for_milliseconds(1450);
41 }

Listing 5.9: Driving a rectangle

62

// Driving a rectangle

// Created on Sat, March 7 2015

int main()

{

 drive_straight(500, 3000);

 drive_straight(700, 5000);

 drive_straight(500, 3000);

 drive_straight(700, 5000);

 return 0;

}

void drive_straight(int velo, int time)

{

 // Turn both motors on

 mav(1, velo);

 mav(2, velo);

 // Pause the program for time

 wait_for_milliseconds(time);

}

time

3000

velo

500

the values of the parameters
are copied into the parameter-
variables, when the function
 is called

Figure 5.34: The structure of calling drive_straight with parameter

Warm-up task: Another way to determine the length Is there another way of determining
how far the robot is going? Hint: to go farther than before, one can either move with the same
velocity and increase the time, or ... Modify the rectangle program, so that the other way to
modify the robot’s driving distance is used.

It is also possible that a function has more than one parameter. The parameters are separated
by a comma. The order of the calling parameters determine which value is stored in which
parameter-variable (figure 5.34).

Warm-up task: Wiggly line with only one function Change the wiggly line program in a
way that only uses one function instead of two. Hint: Examine the differences between the
two functions used before. These are the starting-points for having parameters instead of fixed
values.

5.7 The clearance competition

Didactical considerations

The clearance competition is designed to practice functions with parameters in a fun way. The
goal is to remove small objects placed on the mat to clear the whole field. It is necessary to have

63

Figure 5.35: A simple tool for clearing the mat

Figure 5.36: The field of the clearing competition

objects which are easily moveable, but not as easily as ping pong balls. I used fluffy balls for
this competition.

Aside from using functions this competition has also a mechanical part, as the students need
to develop a tool for the robot to move the objects. A simple first draft is shown in figure 5.35.

It is also possible to introduce the servo-motor beforehand to add an extra challenge and
consolidate function calling.

Since students tend to write “spaghetti-code” when having time restrictions it is crucial to
have the design as a part of the winning condition and to provide enough time for preparation.

The competition

Prerequisites (figure 5.36):

• A small moveable object is placed on every number on the field

64

• Three additional objects are placed randomly wherever there is room (examples shown as
orange dots)

The robot needs to start in the starting box where no part is breaking the boundary. Clear the
field within 5 minutes. It is necessary to reach the starting box at the end of the 5 minute limit to
make every cleared object count otherwise only half of the objects count (round up). An object
counts as cleared when at least part of it touches the floor.

Winning conditions:

1. The team who cleared most objects wins

2. If two teams have cleared the same amount of objects, the team with the more efficient
code wins (referee/teacher decides – as a rule of thumb the fewer line of codes the better,
lines containing only comments, parentheses or white spaces do not count)

3. If the winner is still not determinable, the team needing less time wins

5.8 Using sensors

Didactical considerations

Using sensors requires the usage of functions with return values. So the goals for the students
are:

• being able to declare variables outside of the parameter area

• being able to store return values in a variable

• comprehending the differences between digital sensors and analog sensors

• understanding the format string and additional parameters for printf

The mav function is currently not usable in loops. Since loops are necessary when working
with sensor conditions this is a good point to introduce a new motor-function motor. It can be
used in a there-and-back-program, which is also a good repetition for functions. This assignment
can be extended in the next section to show sensor driven movement using while loops.

When working with variables I write the declaration in a separate line, to emphasize the
actual creation of the variable taking place there.

If there is time I recommend to consolidate the variable and sensor topic with doing some
calculations with the results of the analog sensors especially the distance sensor. To do this it is
necessary to explain characteristic curves and to actually measure them using the printf-function
at different distances and so obtaining the necessary values for the curve.

65

motor(1, 70);

name of
the function

1st parameter:
the motor number

opening
paranthesis

closing
paranthesis

terminating
semicolon

2nd parameter:
the percentage of

the maximum power

comma separates
the two parameters

Figure 5.37: The motor-function for use with sensors

Content for students

When working with sensors it is advised to use another function for controlling the motors. This
function is called motor. The main difference is that instead of a velocity you specify the
percentage of power to be used. As such it is dependent on the energy level of the battery. The
structure of the function call is shown in figure 5.37

Warm-up task: there and back again Make your robot drive to the end of the mat, turn
around and go back to his starting point using the new motor function. What functions make
sense? Do the functions have parameters?

SaSbot – Sensing the environment SaSbot is designed to seek things for me. To search the
environment it needs to be aware of the environment. The sensors of a robot bring this awareness
into being. What kind of sensors does SaSbot need to fulfill its designated role?

The robot we are working with has sensors belonging to one of two categories:

1. digital sensors: return either the value 0 or the value 1

2. analog sensors: return any value within the range within 0 and 1023

Working with a touch sensor

The touch sensor is a digital sensor. This means its value can be 1 (touch sensor is pressed) oder
0 (touch sensor is released). To ask the sensor which value it currently has you need to do two
things:

1. Create a variable for storing the answer from the sensor

2. Call a function which asks the sensor for its value and store its answer in the variable

To implement these two steps in your program you have to use the structure shown in figure
5.38. When running these lines of codes the following things happen (see also figure 5.39):

66

int answer;

answer = digital(15);

name of
the function

parameter:
number of the sensor

since the variable-creation
is a separate line, you need

to terminate it with a ;

create a new variable
with the name answer

the equal sign stores everything
from the right in to the variable

left from it

this variable holds the
result after the execution

Figure 5.38: How to call a function, which asks a sensor of its value

1. The variable (magical jar) is created. It has the name answer and can store integer
numbers (0 and 1 are integer numbers)

2. The sensor with the number 15 is asked what its current value is

3. The sensor answers with the current value. Let’s assume it is 0 (it could be 1 as well, but
it is easier to imagine a concrete value and we need to choose one, hence 0).

4. The equal sign takes the 0 and stores it in whatever variable (magical jar) is left of it.

5. We wrote the variable (magical jar) with the name answer left of the equal sign, so the
value 0 is stored there for further use.

The robot can tell us this value via the printf-function. For this purpose the printf-function needs
to be extended:

• A placeholder representing the value must be inserted into the text. For integer numbers
you can use %d.

• After the text the variable holding the value needs to be written as second parameter
(separate by a comma from the text)

The correspondent listing is shown in listing 5.10

1 // Printing a sensor value
2 // Created on Tue, March 8 2015
3
4 int main()

67

int answer;

answer = digital(15);

1. the variable named
answer is created

int answer;

answer = digital(15);

answer

answer

2. the sensor is
asked what its
current value is

Hello no. 15,

what‘s your

value?

3. the sensor answers

0

4. the answer is stored
via the equal sign into
the variable left of =

=0

Figure 5.39: The internal process when asking a sensor of its value

5 {
6 // Create the variable for the sensor value
7 int answer;
8 // ask sensor no. 15 for its value
9 answer = digital(15);

10 // print the value in the answer variable
11 printf("Sensor no. 15 has the value: %d\n", answer);
12 return 0;
13 }

Listing 5.10: Asking a sensor for its value

Warm-up task: try the sensor Try the program on your robot? What value does the robot
tell you its sensor has? How can you get the robot to show you another value from the sensor
(remember the touch sensor is a digital sensor and can have either 0 or 1 as its value)?

Working with other sensors

The principle of working with the other sensors is similar working with the touch sensor with the
difference that the other sensors are all analog sensors. For asking an analog sensor of its value

68

int answer;

answer = analog(1);

name of
the function

parameter:
number of the sensor

since the variable-creation
is a separate line, you need

to terminate it with a ;

create a new variable
with the name answer

the equal sign stores everything
from the right in to the variable

left from it

this variable holds the
result after the execution

Figure 5.40: How to call a function, which asks a analog sensor of its value

you need the function with the name analog, which works the same way as the digital-
function (figure 5.40)

Only when working with the distance sensor the pull-up resistor needs to be set. This can be
achieved on the sensor screen directly on the controller (cf. appendix section A.2).

Warm-up task: other sensors Ask every sensor which is currently mounted on the robot of
its value and let the robot print the results on its screen. Observe how different circumstances
affect the results (nearer or farther away from an obstacle, brighter or darker light, standing on
brighter or darker surface, ...). The sensors are mounted on the following ports:

• Distance sensor: analog sensor on port 0 (toggle pull-up)

• Reflectance sensor: analog sensor on port 1

• Light sensor: analog sensor on port 2

• Touch sensor: digital sensor on port 15

5.9 Loops

Didactical considerations

To respond to sensor inputs it is necessary to introduce loops. To keep the API simple and
comprehensible the Botball API does not use an interrupt driven sensor framework. Instead it is
necessary to implement a busy-waiting approach. The goals for the students are

• comprehending the basic principle and necessity of loops

69

start

Start both motors

Turn all motors off

end

Check the sensor if „we are there yet“

False

Is the answer „No“?
True

Figure 5.41: Driving until “we are there”

• understand the process of busy waiting

• gaining the ability to use looping-conditions

To explain loops with busy waiting I use the scene in Shrek 2, where the donkey always asks
“Are we there yet?”. This kind of construct is best solved with a post-test loop. Usually intro-
ductory programming starts with explaining the while loop because of it’s similarity with the
if-statement. Although it is easy to switch between the different loop-types for an experienced
programmer using a pre-test loop would only complicate matters for a novice.

Content for students

We drive with the robot on a time controlled basis. Since we usually want to reach a specific
location, we need to estimate the time on a try-and-error basis. Now we can use sensors to
determine the point where we want to go. For example, we can use the touch sensor to determine
if the robot has reached a wall. The principle behind this approach is similar to the “Are we there
yet?”-scene in the movie Shrek 22. The robot starts the motors (with no waiting for a time) and
then asks the sensor “Are we there yet?”. While the answer is “No” the robot needs to keep
going. This principle is shown in figure 5.41.

The instruction to have such a repetition is called loop and here we can use the do-while-
loop shown in figure 5.42. The complete listing with explanations is shown in figure 5.43. A
step-by-step sequence when executing the program is shown in the slides in appendix B.

2https://youtu.be/basofea2UEs

70

https://youtu.be/basofea2UEs

 do

 {

 answer = digital(15);

 }

 while(answer == 0);

start of
the block

end of
the block

header of the
loop
body block of
the loop
footer of the
loop

condition with a comparison
on equality termination of the loop

Figure 5.42: Structure of the do-while-loop

Warm-up task: There – ouch – and back again The robot drives until it touches the wall
and then turns to go back to its starting point.

When working with analog sensors and loops, comparison on equality is often not mean-
ingful, since it is difficult to check on a particular value in the range of 0 to 1023. Instead
comparison using greater-than or less-than-signs are more sensible. The signs which can be
used for comparison are shown in table 5.6

Operator Example Meaning
== answer == 0 answer is equal to 0
!= answer != 0 answer is not equal to 0
< answer < 100 answer is less than 100
<= answer <= 100 answer is less than or equal to 100
> answer > 100 answer is greater than 100
>= answer >= 100 answer is greater than or equal to 100

Table 5.6: Operators usable for comparison

Warm-up task: There and back again with distance sensor Modify the “There and back
again” program to use the distance sensor instead of the touch sensor.

Warm-up task: There and back again with reflectance sensor Modify the “There and back
again” program to use the reflectance sensor instead of the touch sensor. The robot shall move
between two black lines on the floor.

Warm-up task: And there was light The robot waits until the light is turned on. Then it
begins to dance and when the light goes out, it stops.

71

// Driving a square - second try

// Created on Sat, March 7 2015

void start_straight(int power);

int main()

{

 // Create a variable

 int answer;

 // Start driving

 start_straight(50);

 do

 {

 answer = digital(15);

 }

 while(answer == 0);

 // Turn all motors off

 ao();

 return 0;

}

void start_straight(int power)

{

 // Turn both motors on

 motor(1, power);

 motor(2, power);

}

do the
following ...

... while the
answer is 0

Create variables always at the
start of the block

ask the sensor of its
value and store it in
the variable answer

The motors are started without
specifying how long they will go

when the answer reaches a value unequal
to 0 the program resumes here

No duration specified

Figure 5.43: Structure of the do-while-loop

Warm-up task: point parcour Write a program to make your robot follow the points to the
last one. There are 5 points in total and the next point can be found always at a 90◦ angle right
from the last point (e.g. figure 5.44).

5.10 The find the spot competition

Didactical considerations

The goal is to find a spot within a walled area representing a room. To give the robot enough
room to maneuver and making the search challenging it is necessary to make the area big enough.

72

Figure 5.44: Field for the find the spot competition

Figure 5.45: Field for the find the spot competition

The spot should be randomly taped within the area. It is recommended to choose a color
with enough contrast to the floor, to enable a clear distinction for the reflectance sensor. The
spot itself should be big enough to allow for a search pattern with reasonable distances between
the searched lines.

When choosing the spot locations consider the search patterns used by the students and try
to balance possible disadvantages (e.g. placing the spot in the middle of the field gives a team
with a zig-zag search pattern an advantage over a team with a spiraling search pattern).

The students should be free to choose the approach and the means they want to use (e.g.
using the distance or the touch sensor for checking the boundaries).

Content for students

Prerequisites (figure 5.45):

• Border a field with at least 1,50m x 1m with walls (e.g. made of cardboard).

• Mark an area with-in the field as starting area. The starting area should be big enough to
place a robot in either direction in it.

73

• Place a spot within the field, but outside of the starting area. I recommend using tape
(black or white) so that the spot cannot get out of place when a wheel passes over it.

The robot needs to start in the starting box where no part is breaking the boundary facing
either the opposite short side or the opposite long side at a 90◦ angle. The goal is to find a spot
three times within a five minute time window for each round. The spot is the same for all teams
in each round but it is moved between the rounds. When the spot is found the robot needs to
print the text “Here is the spot” and stop.

Winning conditions:

1. The team who found the most spots wins

2. If two teams have found the same amount of spots, the team with the more efficient code
wins (referee/teacher decides – as a rule of thumb the fewer line of codes the better, lines
containing only comments, parentheses or white spaces don’t count)

3. If the winner is still not determinable, the team needing less time (the sum counts) wins

5.11 Summary and outlook

My curriculum provides an entry point for teaching introductory programming with robots based
on the concept in chapter 4. Thereby the development of SaSbot from a robot which can use
only basic movement commands to a robot using custom functions and sensors to follow a
defined search pattern is used as a guideline for introducing new programming techniques. The
following programming concepts are introduced:

• basic program structure

• function calls

• function definition

• variables as parameters

• variables for storing return-values

• post-test loops

The concepts are structured in a way, that each topic can build upon the knowledge of previous
topics leading to an enhanced sustainability of the knowledge. To complete the curriculum for a
whole semester course the following topics should be introduced next.

• decisions

• other loop-types

This enables SaSbot to follow more sophisticated search-patterns or to include line following as
a way to navigate.

This curriculum was evaluated with small adaptions at workshops held by PRIA which is
described in the next chapter.

74

CHAPTER 6
Evaluation

6.1 Method

Due to time restrictions I used a case study to evaluate my concept.

Study setup

In this case study I used workshops from schools at ISCED level 21. These schools had the
opportunity to choose a group of students who were able to attend a basic robotics workshop
in the context of the project STEMoFuture organized by the Practical robotics institute Austria
(PRIA)2 with the maximum timeframe of 15 hours. From the schools asking for a workshop I
chose two schools meeting the following requirements:

• the schools were scheduled for a Botball workshop

• the students participating were at least 13 years old

Two types of workshops were offered: a Lego Mindstorms workshop, where programming
was done with the Lego Mindstorms graphical programming environment; a Botball workshop,
where the students programmed the robots in C. The schools could choose which workshop they
wanted within the limits of availability of the robot kits and trainers. Since my concept is based
on Botball, only Botball workshops were relevant for the case study.

In Austria ISCED level 2 starts after 4 years of ISCED level 1, meaning students we had
participating in all STEMoFuture workshops were from 10 to 15 years old. My concept focuses

1according to International Standard Classification of Education (ISCED) 2011 http://www.uis.
unesco.org/Library/Pages/DocumentMorePage.aspx?docIdValue=702&docIdFld=ID&
SPSLanguage=EN

2a non-profit association with the aim to promote scientific and technical excellence in schools using robotics;
http://pria.at

75

http://www.uis.unesco.org/Library/Pages/DocumentMorePage.aspx?docIdValue=702&docIdFld=ID&SPSLanguage=EN
http://www.uis.unesco.org/Library/Pages/DocumentMorePage.aspx?docIdValue=702&docIdFld=ID&SPSLanguage=EN
http://www.uis.unesco.org/Library/Pages/DocumentMorePage.aspx?docIdValue=702&docIdFld=ID&SPSLanguage=EN
http://pria.at

on students age 13 and older, so only workshop groups with students who were at least 13 years
old could be used for the case study.

Only two schools remained who met the basic criteria mentioned above, so these two work-
shop groups were chosen from all schools participating in the STEMoFuture project. The group
I will refer to as group A was from a school only teaching ISCED level 2 with no classes in
further education levels. Several students were from families who immigrated from countries
where the main language was not German and this is one of the reasons students from that type of
school usually do not pursue making the general qualification exam for university entrance [1].

The second group of students (group B) attended a school offering classes for ISCED level
2 and ISCED level 3 including the general qualification exam for university entrance at the end.
Most students in this school came from families with German as first language and considered
attending school at ISCED level 3 and making their general qualification exam for university
entrance.

Study questions

There were two questions I wanted to evaluate:

1. Do the students maintain their initial motivation level?

2. Do the students perform better in exams than students of “traditional” introductory pro-
gramming courses based on approaches using only computers and examples based on
texts and numbers?

Therefore I developed the following evaluation strategy (cf. figure 6.1):

1. To analyze motivations two sources of evidence are be used:

• Questions (for quantitative analysis): At three times during the workshop I ask stu-
dents questions regarding their interest in the workshop itself to get an indicator of
their motivation. Since I consider the term motivation too abstract for students at
this age, I use the term interest instead of motivation. The second question I use as
an indicator will be asked at the beginning and the end of the workshop and regards
the interest for work in an technology or engineering fields.

• Direct Observation (for qualitative analysis): I observe the behavior of the students
while giving them instructions and during the times when they are required to solve
tasks. These observations are noted down in protocols after the workshops

2. To analyze the level of knowledge I use a quantitative analysis. I ask exam-like questions
to compare them with results obtained from the first exams during previous introductory
computer science courses which used Java and a “traditional” approach with computers
(not robots). To avoid having the students writing a full exam at the end I split the ques-
tions and issue one set of questions in the middle of the workshop and one set of questions
at the end of the workshop. As with real exams the questions fall in two categories:

76

ExpertiseMotivation

• trend analysis of interest in
workshop (3 times)

• trend analysis 1 interest in working
in technical area (at the beginning
and the end)

Quantitative evaluation

Direct observation
Qualitative evaluation

exam-like questions (in the middle and
at the end of the workshop)
• multiple-choice and short answer

questions
• practical questions

Quantitative evaluation

Figure 6.1: Evaluation strategy to cover motivation and expertise of the students

• Multiple choice and short answer questions: to show basic understanding and knowl-
edges

• Practical tasks: here the students need to draft a possible solution to a given task
with real programming instructions on the paper. This shows if the student is able to
solve a computing problem on his own.

Since the concept is designed for first year introductory programming in technical high schools,
thus for students who are most probably interested in programming, I also included a question
regarding specific programming interest. The answer to this question is used as a filtering cri-
teria. Only students who answer this question positively are included in the final evaluation
regarding the knowledge gained. The resulting evaluation structure in terms of the quantitative
analysis is shown in figure 6.2

The questions are issued three times during the workshop: one directly after the introduction
of the 1st workshop block before anything is taught, one evaluation sheet after the 3rd workshop
block for intermediate results and one evaluation sheet at the end of the 5th workshop block.

The questions are phrased as statements where the students can choose, if these statements
are applicable for themselves and if they can identify with them. I use four levels for answers to
avoid a neutral answer to encourage an explicit decision in one direction by the students (cf [22]).
They need to choose between one of the following levels with + or – symbols most students are
used to from the grading of homework (table 6.1)

The two statements regarding interest in the workshop and interest in working the field of
technology are shown in table 6.2 together with the statement regarding interest in programming
which was used only at the beginning of the workshop.

To evaluate the knowledge and the level of expertise gained during the workshop I used
several multiple choice and short answer questions covering different topics taught. Since the
students are doing these exams voluntarily, I try to limit the question to mostly one maximum
two per topic, even if a complete coverage of the knowledge taught cannot be achieved this way.

77

End of
3rd workshop block

End of
5th workshop block

comparable to the first exam in CS1 courses

Beginning of
1st workshop block

• interest in workshop • interest in workshop
• interest in work in a

technical area

• interest in
programming

multiple choice questions
• basic structure
• function calls
• defining a function
• using a self-written

function (w/o param.)
• variables

multiple choice questions
• using a variable for

return values
• function with

parameters

practical task:
write a program using a
self-written function
without parameters

practical task:
write a program using a
self-written function with
parameters

trend

filtering criteria for evaluation of

• interest in workshop
• interest in work in a

technical area
trend

Figure 6.2: The structure of the quantitative part of the evaluation

Symbol Meaning
– – not at all applicable for yourself
– rather not applicable for yourself
+ for a large part applicable for yourself

++ totally applicable for yourself

Table 6.1: Symbols used for evaluating interest statements

I also avoided asking questions whose topics are taught just on the same day without having the
possibility to consolidate.

The questions are shown in table 6.3 (The listing used for the last question is shown below).

1 void drive_straight(int time);
2
3 int main()
4 {
5 drive_straight(3000);
6 drive_straight(4000);
7 ao();
8 return 0;

78

I am interested in attending the workshop
When I finished my education I’d like to work in the field of technology
I am interested in programming (how I can issue commands, making the device
do what I want)

Table 6.2: Statements used for assessing interest levels

topic / concept question
basic program
structure

Is the following statement true: the block of the main function is closed
with a ;

function calling How is the call of a function which uses configuration parameters struc-
tured?

function defini-
tion

Is the following statement true: The prototype of a function is used to
introduce a self written function to the program. It is written before the
main-function is written.

calling of a self-
written function

Is the following statement true: A user defined function can be used
several times with in the main function.

variables

Is the following statement true: A variable can never be empty, after she
is first initialized.
What does the datatype of a variable determine (name, size, type of
value, nothing - it is only used for creating the variable, ...)?

using variables
for return values

Write the instructions for following task: Ask the analog sensor with
number 3 for his actual value and store the result of this function in a
variable.

functions with
parameters

Evaluate the following program and determine how long the robot drives
(from the beginning of the movement to the time it stands still) or if the
program is errornous (listing 6.1)

Table 6.3: Questions used in multiple-choice and short answer parts of the exams

9 }
10
11 void drive_straight(int time)
12 {
13 mav(1, 700);
14 mav(2, 700);
15 msleep(time);
16 }

Listing 6.1: Program used for evaluation of understanding of functions with parameters

79

For the practical questions I chose tasks which required the defining of a function. The first task
requires a function without parameter taught at the previous workshop day, and the second task
required a function with parameters. This topic was covered the two workshop days before the
final question was issued.

• Write a program where the robot will drive a turn two times for 3 seconds each time.
Define a new command “turn” and use this command in your main function to accomplish
the task.

• Define a new command “pirouette” where the robot rotates. The time of the rotation
should be configurable with an argument of the function pirouette. Write the new function
and a program where the new command is used for spinning the robot for 3 seconds.

Realization

Participation

Both workshops took place during school time and the students were supposed to attend. How-
ever especially in group B there was a high fluctuation in attendance level of the students re-
sulting in few students being present when the questions were issued. The students in group A
were present in a more regular way but still many students only filled out two of the three eval-
uation sheets resulting in incomplete data. Since all students who were present at the moment
the evaluation sheet was issued returned their surveys the number of evaluation sheets returned
is a good indicator for the attendance level. So less than half of the students who were initially
present filled out all 3 evaluation sheets (table 6.4).

student groups total number of students students with 3 evaluation sheets
group A 23 13
group B 22 8
total 45 21

Table 6.4: Attendance at the workshop

In group B there were also two evaluation sheets from the third evaluation date where I was
not able to match them to an intermediate or initial evaluation sheet because a student wrote two
identification codes on the evaluation sheet and the other used a pseudonym or was not present
at any of the other evaluation times. These evaluation sheets were not included in the study.

Regarding the attendance of the students the mentoring teachers told me after the workshop
blocks, that the workshop time was after school. The teachers swapped another lesson time
for this workshop which therefore took place on another time as the regular school lessons.
But some students had already other appointments (sports or private lessons) which they were
allowed to attend instead.

According to the premise that the workshop is targeted at students who show a basic interest
in computer science, only those were chosen for evaluating the knowledge gained. So from all

80

Figure 6.3: Number of students used in evaluating the expertise (students with interest in pro-
gramming and 3 evaluation sheets)

attendees at the workshops only the evaluation sheets with a rating of + or ++ in the interest
field of computer science were chosen. Since not all of the students filled out all three evaluation
sheets I had to further limit the results, so that only students who took part in all 3 evaluations
provide the basis of all further evaluations (figure 6.3). Thus, 12 students were used for the
evaluation regarding the knowledge.

So the available data base for the evaluation was severely limited. Only 27% of the students
had filled out all 3 evaluation sheets and had interest in programming according to the first
evaluation sheet, and it is the data of these students which can be used for the quantitative
evaluation of the expertise.

To enhance the informative value of the evaluation I supplemented the results gained from
the exam-like questions with a quantitative analysis of the results from the programs the students
with programming interest did for the challenges and competitions. Additionally I did a qualita-
tive evaluation of all of the programs the students created during the workshop. So the resulting
evaluation structure is shown in figure (6.4)

6.2 Results

Results regarding the motivational level

Quantitative results from the questions issued

To evaluate the results from the questions regarding interest, I counted how applicable to them-
selves the students rated the specific statements.

I asked the students about their motivation and interest in the workshop at three times during
the workshop.The numbers of each answer category the students gave are shown in figure 6.5.

As seen in the figure the interest level in the workshop was generally very high. Furthermore
the level of interest was preserved during the workshop with minor variations of one or two

81

KnowledgeMotivation

Quantitative evaluation (questionnaires)

Direct observation of motivation while
attending the workshop

Qualitative evaluation (protocols)

Quantitative evaluation (questionnaires)

Solutions to all of the tasks the students
did during the workshop

Qualitative evaluation (protocols)

grading of exam-like questions (in the
middle and at the end of the workshop)
• multiple-choice and short answer

questions
• practical questions

• trend analysis of interest in workshop (3
times)

• trend analysis 1 interest in working in
technical area (at the beginning and the
end)

grading of solutions to the challenges the
students did during the workshop

Figure 6.4: Modified evaluation strategy to enhance significance

Figure 6.5: Student interest during the workshop

students who switched their interest by one level which can also be attributed to the participants
general mood.

As a second indicator for their motivation level I asked the students if they would consider
working in the field of technology after their education. This question was asked at the beginning
of the workshop and at the end of the workshop. When analyzing the answers of the students, a
trend towards an increase in interest in pursuing a technical career can be seen (figure 6.6):

Qualitative results from the observation

At the beginning of the workshop most students of group A were highly motivated to attend
the workshop, even if technology and computer science was not their main field of interest. In
contrary a larger group of students of group B were more or less openly opposing the necessity to
attend the workshop. Due to organizational restrictions the workshop for group B was scheduled

82

Figure 6.6: Interest in pursuing a technical career at the begin and the end of the workshop

from 2 p.m. to 5 p.m. once a week and therefore it did not fit into the regular timetable of these
students.

The extensive explanations necessary for getting a robot to do something seemed to intimi-
date several students and they were a bit overwhelmed of the flood of new terms and concepts.
When the robot first started to show a text which was programmed before, interest and motiva-
tion started to rise, but some students still were not impressed.

With the start of the first driving exercise nearly all students became engaged. Even more
they started to try out different movements, questioned the fact, that the robot could not move in
a straight line, and discussed possible solutions with me, their teachers or their teammates. Some
students who had a soccer ball with them started to use it and teach their robot dribbling. This
is a good example for the potential constructionism has to increase the motivation of students
because it enables the students to connect the lessons to their own interests. Others started
asking, how they can let the robot drive backwards, a lesson planned for the next workshop unit.

The second workshop unit started with repetition of the driving lessons from the unit before
with the addition of how they can make the robot turn or go backwards. I introduced the different
team roles also on the second workshop day which was received with interest. The switching
of the roles took some additional efforts of persuasion because some students wanted to stay in
control of the programming part. But after the role switch was established it allowed students,
who were not very active during the last workshop day, to participate more intensively at the
tasks.

Driving was still fun for nearly all students, but as soon as the workshop turned to the ex-
planation of how to write functions on your own, some students lost interest again. In group B
students tended to stay focused during the explanations and asked questions regarding the un-
derstanding of the subject at hand. In group A most students just wrote down what to do without
issuing questions on their own. Both groups managed the guided task with writing a function
for turning the robot for 90 degrees and completed the task of driving a square.

The individual challenges were introduced to both groups, but the students of group A ran
out of time so the actual implementation of the challenges was done on day 3. In group B the

83

individual challenges were received with interest and most students started to work immediately
on a driving challenge. Only the girl group wanted to do the dance challenge. But two student
groups did not show interest in the challenges at first, but as the deadline drew nearer they started
working feverishly because they did not want to be the ones without something to show.

On the third workshop day some students where discouraged by the fact that the robots
tend to turn slightly left or right although both of their motors were given the same velocity
while driving. Some of these students managed to see the newly explained parameters as a
possible solution to their difficulties, with the ability to tweak the used parameters according
to their currently used robot (mostly of group B). The group roles and the switch after each
task was established, so no extra persuasion was needed on this part. For the challenges and
competitions I let the students choose their own role. This led to blurred boundaries between
the different roles. Instead of one student taking responsibility for the design, the design was
discussed among two or even all three team members. But all students of a team were already
used to contribute to the solution, so even students who were not very interested in the workshop,
accepted tasks like testing the program written by their teammates.

Since the students of group B were able to complete their individual challenges on day 2,
the ball collection competition was introduced to these students. They began the discussion of
the necessities of the new competition after the explanations immediately. Time run short so the
actual competition was postponed to day 4.

The students of group A on the other hand were not very excited about the new possibilities
and they needed more time to do the warm-up tasks with the new technology (like the day
before). But when they got the possibility to work on the individual challenges their motivation
level rose again. Most groups tried the dance challenge and with the addition that they can
choose a suitable piece of music from their mobiles nearly everybody got involved and started to
work with the robots. The show at the end of the workshop was accompanied with enthusiastic
comments from the students.

Workshop day 4 went not as planned, because both groups had their time halved due to
external circumstances. So group B continued with their ball moving competition. Due to the
shortened time the introduction of a new topic after the competition was postponed and the
students were given more time to polish their programs before the competition started. All
groups used their time well and started to work on their robots. The competition itself was a
great fun and the group which managed to get all balls but one off the map was the winner.
During the competition it was remarkable that all students cheered for the other teams and were
sympathetic when the robot missed a ball.

As group A just did their individual challenges at the last workshop day, the students were
introduced to the new ball moving competition. As the days before the opportunity to work indi-
vidually raised the spirits and motivational level. Especially the chance to work on a mechanical
part (the “bulldozer blade”) appealed to some students who were not that much interested in
programming.

In this group around three to four student teams had great difficulties with the task of the ball
moving competition and did not know where to start. So I presented a light version of the ball
moving competition as a warm-up task and all teams chose to work on this task as a first step.
Having a task which seemed to be solvable by the students raised the spirits immediately.

84

On workshop day 5 the students of group A were intensively working on their programs for
the ball moving competition. There were some students who did not want to involve themselves
at first but with the splitting of the roles established everybody had something to do. And soon
nearly all students were actively working on the problems at hand. The competition in this
group had more the spirit of a show case like with the individual challenges, because not all
student groups managed to get a working solution for the problem. But all student teams had a
robot which moved some of the balls from the field. And this was enough, so no actual ranking
was done in this group although some students did some bragging about their robot and how it
managed to push the most balls away.

Group B was introduced to using sensors at the beginning of workshop day 5. The usage
of the scene from Shrek 2 where the donkey always asked “Are we there yet?” was well re-
membered and got the interest even from the students who were not interested in explanations.
Then the students had the opportunity to program some simple tasks on their own which they
did with a professional students attitude – “we have to do it, so we are doing it”. Like on the
other workshop days participation and motivation rose at the final challenge where I laid out a
course with black dots they needed to follow. And it was exciting for the teams to look how far
the robot will follow the course and several teams managed to follow the course through to the
end.

So in a summary it was very often observable that motivation levels dropped during explana-
tions of the theoretical background. But most students were highly motivated when there were
challenges and competitions where they could work on their own. This applied to both groups
even when group A needed more time to understand the basic principles and concepts.

Results regarding the expertise gained

Results from the exams

The exam-like questions were planned similar to the first exam held in computer science courses
in the years 2011 and 2012 with half of the examination points awarded given to the examples
in step with actual practice and the other half attained from the multiple choice and short answer
questions.

But the participation in answering the exam questions could not be enforced, some students
simply did not answer the longer questions in step with actual practice because they did not feel
like doing them or they considered doing them too strenuous according to their remarks. This
was especially true in group B. So at 25% of the practical questions of the evaluation group
no answering attempt could be seen on the evaluation sheet. Additionally the answering of the
questions in step with actual practice is the part where the most studying at home is needed
according to student remarks during introductory programming courses at the technical high
school. The students attending the workshop were not supposed to study anything at home.

Because of the reasons presented above I did a grading without taking the answers for the
practical questions into account. So the grading from the exam-like questions is based only on
the multiple-choice and short-answer questions.

To get additionally results for the students performance in programming practical challenges
I graded the programs the students created for the first challenge round and the competition.

85

I chose these two programs, because no solution was presented for these programs and the
students were encouraged to work and find the solution on their own. Help was only given,
if the students had a syntax error they could not resolve on their own. To be in line with the
target group of the concept I only used the programs created by students who were interested in
programming although other students participated in the teams as well.

To get a base line to compare the results to I put a third column into the evaluation table with
results achieved at the first computer science exam during my teaching at classes at the technical
highschool TGM 3 in the years 2011 and 2012 (65 students).

So in summary I did a qualitative evaluation of three factors for comparison:

1. exam-like questions: the questions were comparable to actual held programming exams
and were graded according to school system grades (1 – 5). Only students with interest in
programming and all questions answered were taken into account (12 students).

2. solutions to programming challenges: the programs were graded according to school sys-
tem grades (1 – 5) and students with interest in programming and all challenges done were
taken for this evaluation (23 students)

3. baseline for comparing the results: Grades from the first exams in introductory program-
ming courses held in the years 2011 and 2012 (65 students)

exam-like questions programming challenges school courses
grade 1 33% 26% 11%
grade 2 17% 35% 29%
grade 3 33% 22% 28%
grade 4 17% 13% 12%
grade 5 0% 4% 20%

Table 6.5: Grading results

In Austria only grade 5 is considered failed. The other grades (1 – 4) are all considered
passed with grade 1 as best grade. So no student failed the exam according to real exam rules
and many students were above average. Only one student failed to deliver solutions who would
achieve a passing grade and again the majority students got one of the best two grades.

With the small group of students the results are not statistically significant. Therefore the
results from other sources need to be taken into account.

Qualitative results from the practical tasks and challenges

Many students used the technologies introduced in their challenges and tasks. For example
nearly all students in group B used the functions in the individual challenges issued after day
2. But two groups of students needed special encouragement to accomplish their challenge with

3Vienna Institute of Technology, Wexstraße 19-23, A-1200 Vienna, Austria; http://www.tgm.ac.at/

86

http://www.tgm.ac.at/

Figure 6.7: Overall grade results with different grading methods compared to exam results from
2011 and 2012

writing functions and not just issuing one command after the other in the main function. One of
these two groups saw the benefit right before the showing of the challenges, because they needed
to switch their robot with another one (because of low energy) and therefore they had to tweak
their motor commands to the new mechanics of the robot. With their functions in place it was
much easier done than without functions. On the other hand one group of students in group B
had a completely different approach, because they started working on a kind of function library
for the robot for different forms of movement (going forward, going backwards, turning left,
turning right ...) instead of picking a specific challenge and working on it. They later just added
them together for a dance performance of their robot.

Since group A needed more time, they tackled their challenges at the end of workshop day
3. So they had already the knowledge of how to write functions with arguments, but most of
them stayed with the one function with arguments which was introduced on the slides (driving
straight with time as argument). Most of the other movement options were programmed with
functions without arguments.

In the follow-up challenge (ball moving race) functions with arguments were used widely as
one of the win conditions was code efficiency and all students also thought about this part. In
the end code efficiency was not needed to determine the winner, since there was a clear ranking
according to the quantity of balls moved but it was very useful in bringing the students to think
about it.

The usage of variables for storing return values of functions and while loops could not be
assessed because these topics were only touched slightly. Therefore the students could not work
on the challenges on their own and there was no possibility to observe their knowledge regarding
these subjects.

6.3 Discussion

The case study in applying the curriculum in robotics workshops with students from showed
convincing results in the area of motivational problems. The questions issued show that even if

87

the concept consisted of large theoretical parts the interest in the workshop did not fade. Even
more the interest in pursuing a technical career was increased for the students who showed
interest in programming. Both results indicate that the motivational effect of using robots in
teaching programming is indeed countering the motivation loss when teaching the complicated
correlations of writing a program.

These results are reinforced by the observations made. Although some of the students lost
their interest during the explanation of the theoretical background, they could be caught with
the practical challenges with the robots. These challenges and competitions were continuously
the reason for the raise in the motivation level in both groups. In my opinion the opportunity
to develop such challenges with relative ease is the main advantage of the usage of robotics in
combination with introductory computer science. It is even easily possible to tweak the tasks
and individualize the challenge levels to the needs of the students.

Another great advantage is the possibility for students to choose their own bottom-up or top-
down approach, like the group who started with developing a movement library for the robot
before they worked on an actual challenge. The curriculum favors working from bottom up but
this example shows, that there are other approaches as well.

These facts lead to the conclusion that robots are well suited for countering motivational
problems. Nevertheless the workshop time did not cover a whole semester and so the results
show only a tendency which needs to be examined closer.

The case study showed that the outcome regarding knowledge gained and failure rates in ex-
ams could not be examined in the given evaluation setting. Because the students in the workshop
had not the same incentives in doing the exam questions as students attending an introductory
programming course at school where passing the exams is mandatory for continuing the educa-
tion, the results are in fact not comparable.

When designing the exam questions I aimed to be comparable with actual exams held after
the first few weeks in an introductory computer science course, but the questions in step with
actual practice are the questions where most learning and preparation from students is needed
especially for covering the syntax and reviewing the tasks and practical examples of the course
so far. The students in the workshops did nothing of these and so it is not surprising that they had
a lot of errors affecting the final grade. And some students, even of those who were interested in
the topic itself, simply did not bother to fill out the practical exam questions, because it was too
tedious for them to do an exam-like exercise or they were not in the mood for it.

So the data which can be derived from the exam-like questions can only give some hints.
The normal grading of the exam questions shows a large quantity of grade 4 marks, more than
usually obtained in exams covering the first half of a semester but only one student actually
failed the exam completely. But grading the two parts of the exam (multiple choice and practical)
separately shows, that the bad results are due to bad results in the practical part of the exam. In
contrast the results of the grading of the multiple choice questions were really promising and
there many students achieved the best mark and no student failed the exam.

The grading of the challenge and competition tasks indicate an increase in expertise gained
as well. One has to bear in mind that in contrast to the exam questions the students worked in
teams and they could use examples and documentation from the previous lessons and tasks. So
better results than with exams could be expected. However one team consisting of two students

88

had very low results and did not use functions at the challenge and competition and achieved
therefore only grade 5. Since one of the team members was not present at the intermediate
evaluation time and the second one filled only the first evaluation sheet, this result could be
explained with the low attendance level. But more than half of the students achieved the two
best grades, a result showing good prospects for the knowledge gained.

Again the qualitative analysis emphasizes the results from the quantitative analysis. The
usage of functions and arguments still posed difficulties at the beginning but with increasing
familiarity functions and arguments were used in a very natural and intuitive way. Designing
a program to solve certain tasks and dividing functionality into procedures are one of the most
difficult subjects in a computer science course but the robots make the solutions to these prob-
lems more natural for the students. The students are more inclined to think of the concept which
leads to the solution for themselves because they can imagine what the robot needs to do which
is not the case if they need to think of a solution for a mathematical problem.

And breaking down the problem into procedures is more intuitive too as the student team
which started to write a library shows. In my 10 years of experience with teaching computer
science courses I never had a student attempting this approach with classical teaching concepts.
But it is not clear if the knowledge gained is truly understood or if the students simply follow a
kind of a recipe.

An additional example which was not in the scope of the original evaluation was encouraging
too: a girl who stated that she is not interested in programming and pursuing a technical career
at the first evaluation point, stated at the last evaluation point, that she really is interested in
working in the field of technology. She also was rather good at the exams and would have
achieved grade 2.

In summary I think the approach of teaching introductory programming with robots was
promising because of the following points:

• Working on challenges with the robots was motivating for the students

• It was easy to individualize problems according to the capability of the students and to
avoid too frustrating or too easy challenges

• The students could imagine the steps necessary to solve a challenge and thus working on
the design of a program was natural for the students.

• The breaking down of problem into functions was more intuitive than with more classical
tasks.

• The students exam results were promising without having the students learn at home for
the exams.

But the results are not clear due to difficulties in the evaluation setup. The following prob-
lems were encountered:

• High fluctuation of student attendance.

• Taking the exam-like questions too lightly.

89

To counter these problems I propose the following changes for evaluating introductory pro-
gramming workshops:

• Preparation of the accompanying teachers: The teachers need to understand the impor-
tance of the student attendance before the workshop starts. With this information they can
prepare their students and take preventive measures. Maybe it is even possible to have the
teachers take the results of the exam-questions into account for their grading, so the exam
situation is more similar to the real exam environment.

• Additional incentives for students for taking the exams: The students can be given a cer-
tificate of attendance of the robotic course. For students who did well in the exams the
certificate can state that they completed the robotic workshop with honor or something
similar. Maybe a little giveaway can be arranged.

90

CHAPTER 7
Conclusion

The problems of introductory programming are researched quite well but there are still several
unanswered problems with concepts answering the needs of specific subdomains. The area of
educational robotics is especially well suited to answer the motivational problems, which are
affecting beginners in computer science. Additionally with robots the use of constructionism,
still one of the most prominent didactic methods, is natural and as such robots are a suitable tool
to enhance students’ learning.

In this work I developed a concept combining several methods to enhance motivation and
to allow students a better understanding of the key concepts in programming. This concept was
tested in a case study together with school teachers who volunteered for attending workshops.
The workshops covered a large part of the developed curriculum even though it was shortened
due to time restrictions.

The results of the evaluation showed that the use of robotics especially with small challenges
and competitions was very motivating for the students. An improvement of the exam-results
could not really be observed because of the differences of the evaluation set-up and the exam
setting in regular school classes. But the observations and the questions the student answered
show a promising level of knowledge gained during the workshop and are as such auspicious.

Some unanswered questions remain:

• Does the motivational effect of the robots persists over a whole semester or even longer ?

• How do students fare when undertaking the exams under real course conditions?

• Is the knowledge gained also understood on a technical level?

The answering of these questions would be an ideal starting point for future research.

91

APPENDIX A
Additional material

A.1 Running a program on the controller

After a double click on the Botball Logo starts the KISS IDE for programming the robot you
need to create a new project for your program (figure A.1). After choosing a meaningful name

Figure A.1: Selecting a new project to start

for identifying your project (figure A.2) you need to select a template and a name for your
program in the project (figure A.3). The “Hello, World!” template provides a basic structure
which is a good starting point. When clicking the OK button a very basic example program
is loaded in the IDE (figure A.4). In the next step you need to connect the controller with the
computer to compile the instructions for it. But first the controller must be powered on with the
small switch on his right side (figure A.5). Like every computer the controller needs some time
to start up. When it is finished a screen for selecting the different controller features is shown

93

Figure A.2: Naming your project

Figure A.3: Choosing a template and naming your program

(figure A.6). Then you need to connect the Micro USB port from the back side of the controller
(figure A.7) with an USB port of the computer. If this is the first time the controller is connected
with this computer it may take a bit before the computer recognizes the controller.

After the controller is connected with the computer you can start the translation process
respectively the compiling of the program with a click on the “Compile” button in the icon bar
of the IDE (figure A.8). When you first compile a new program you need to select a target
environment for which the compilation should take place. Our program needs to be compiled
for the controller connected via USB. So our target environment is listed with the computer
equivalent of USB port which is a term like /dev/tty.usbmodem.../ (figure A.9).

When no errors are encountered a success message will appear briefly in the lower left corner
of the screen. Now you can see your program on the controller in the list of programs (figure
A.10). The name shown here is the name you have given at the beginning of the process.

With a touch you can select the program you want to run and press the “Run” button on the
screen of the controller. If you have done everything correctly the example program shows the
message “Hello, world!” is shown on the controller screen (figure A.11).

94

Figure A.4: The KISS IDE with the “Hello, World!” example program

Figure A.5: The KIPR link controller from the right (picture courtesy of KIPR)

Figure A.6: Start screen of the KIPR link controller

95

Figure A.7: The back side of the KIPR link controller (picture courtesy of KIPR)

Figure A.8: Starting the compiling with the “Compile” button

Figure A.9: Selecting the via USB connected controller

Figure A.10: Showing all available programs on the controller

96

Figure A.11: Running the first example program

97

A.2 Sensor screen

On the sensor screen you can see the current values of all sensors. To reach it touch the sensor
button at the home screen (figure A.12). The sensor screen is also used for setting the status of
the pull-up resistor. Some sensors like the distance sensor need the pull-up status deactivated. To
achieve this simply touch the “Toggle Pull-up” button on the screen when the sensor in question
is selected, so that the corresponding up arrow vanishes (e.g pull-up deactivated at sensor 0 –
figure A.13).

Figure A.12: Selecting the Sensor List

Figure A.13: Deactivating the Pull-up

98

APPENDIX B
workshop slides

The following slides were used in the evaluation workshops held for PRIA. As such they rep-
resent an adapted version of the presented curriculum. The workshops were held for Austrian
students age 13+ and therefore the slides are written in german.

99

Den Roboter
programmieren

Umgang mit dem
Botball-System

  Spaß haben
  Lernen
  am Wettkampf

teilnehmen
  Von KIPR

Das Botball-System

www.pria.at 2

  Programmieren =
Befehle geben
  Wem geben wir

Befehle?
  Dem Controller

  Entspricht dem
Gehirn des
Roboters

Was bedeutet programmieren?

www.pria.at 3

  Problem:
der Controller versteht keine Umgangssprache
  Der Controller versteht nur Binärcode (bzw.

Maschinensprache)

Was bedeutet programmieren?

www.pria.at 4

  Übersetzungsprogramme = Compiler
  NICHT von Umgangssprache in Binärcode
  Nur von Programmiersprachen (C, C++, Java,

php, Python) in Binärcode

Übersetzer = Compiler

www.pria.at 5

  Teamarbeit: 1 Programmierer, 1 Compiler und 1
Roboter mit Controller

  Der Programmierer überlegt sich, was sein
Roboter tun soll

  Dann schreibt er ein Programm für den Roboter
  Die erlaubten Programmier-Befehle sind auf dem

Arbeitsblatt aufgelistet (= engl. Befehle)

  Der Compiler übersetzt die engl. Programmier-
Befehle in Robotersprache (= dt. Befehle)

  Der Roboter führt die deutschen Befehle aus

Programmiere einen Menschen

www.pria.at 6

  Gab es Probleme
  beim Programmieren?

  beim Übersetzen?

  beim Ausführen?

Review

www.pria.at 7

  Zum Programmieren gibt es
Entwicklungsumgebungen

  engl. Integrated Development Environment
= IDE

  Für das Botball-System gibt es die
KISS-IDE
  Die IDE kann mit einem Doppelklick

gestartet werden.

Entwicklungsumgebung starten

www.pria.at 8

100

  Programme werden in Projekten
organisiert
  Für ein neues Programm muss zuerst ein

neues Projekt angelegt werden

Neues Projekt

www.pria.at 9

  Für das Projekt muss ein sinnvoller Name
vergeben werden

Projektname vergeben

www.pria.at 10

  Für das Programm muss eine Vorlage
gewählt werden und ein weiterer Name
vergeben werden

  Das kann der gleiche wie vorhin sein

Programmvorlage wählen

www.pria.at 11

Das erste Programm

www.pria.at 12

  Den Controller starten
  kleiner schwarzer

Schiebeschalter
rechts

  Warten bis der
Controller gestartet ist.

Den Roboter aktivieren

www.pria.at 13

  Verbinde den Controller
mittels USB-Cabel mit dem
Computer

  Am Controller Micro-USB
verwenden

  Starte das Kompilieren mit
dem Compile-Button

Das Programm kompilieren

www.pria.at 14

  Auswählen, für welche Maschine der
Binärcode erzeugt wird.

Ziel wählen

www.pria.at 15

  Übersetzungsvorgang erfolgreich?

Erfolgreich?

www.pria.at 16

101

  Die Programme, die am Controller zum
Ausführen bereit sind anzeigen

Auf dem Roboter ausführen

www.pria.at 17

  Das richtige Programm aus der Liste
wählen (antippen)
  Auf „Run“ tippen

Auf dem Roboter ausführen

www.pria.at 18

Zusammenfassung

www.pria.at 19

Suchen & Entdecken

Roboter
SuE-bot

Lernen zu
Kommunizieren

Mensch-Roboter-
Interaktion

Das Beispiel-Programm analysieren

www.pria.at 21

1
2
3
4
5
6
7

// Created on Mi. Februar 25 2015

int main()
{
 printf("Hello, World!\n");
 return 0;
}

Kommentar

Hauptbereich

des Programms – ���
main-Funktion

Das Beispiel-Programm analysieren

www.pria.at 22

1
2
3
4
5
6
7

// Created on Mi. Februar 25 2015

int main()
{
 printf("Hello, World!\n");
 return 0;
}

Kopfzeile der���
main-Funktion

Körper-Block ���
der���
main-Funktion

Die geschwungen Klammern {} ���
bilden die Begrenzung des Blocks

Das Beispiel-Programm analysieren

www.pria.at 23

1
2
3
4
5
6
7

// Created on Mi. Februar 25 2015

int main()
{
 printf("Hello, World!\n");
 return 0;
}

Befehle = ���
Anweisungen

Anweisung einen ���
Text anzuzeigen

Anweisung das Programm���
zu beenden

Alle Anweisungen werden ���
mit einem ; abgeschlossen

Fehler

www.pria.at 24

  Es kann leicht passieren einen Fehler zu machen

102

Noch mehr Fehler

www.pria.at 25

Bei mehreren Fehlern zunächst!
nur den ersten ausbessern!

Groß- und Kleinschreibung!
sind wichtig!!

  Was hat das Beispiel-Programm bewirkt?
  Wenn du nicht sicher bist, probiere es noch

einmal aus.

  Was musst du ändern, damit der Roboter
dich begrüßt?

  Probiere es aus!

  Was musst du ändern, damit der Roboter
jedes Team-Mitglied in einer eigenen Zeile
begrüßt?

  Ausprobieren!

Einen eigenen Gruß anzeigen

www.pria.at 26

Einen einzelnen Gruß anzeigen

www.pria.at 27

1
2
3
4
5
6
7

// Created on Mi. Februar 4 2015

int main()
{
 printf("Guten Morgen, Lisa!\n");
 return 0;
}

Mehrere Grüße anzeigen

www.pria.at 28

1
2
3
4
5
6
7
8
9

// Created on Mi. Februar 4 2015

int main()
{
 printf("Guten Morgen, Lisa!\n");
 printf("Hallo, Timon!\n");
 printf("Servus, Andrej!\n");
 return 0;
}

  Was könnte das \n am Ende bewirken?
  Der Computer führt einen Befehl nach

dem anderen aus. Ist das auch
erkennbar?

Review

www.pria.at 29

Funktionen,
Funktionen, ...

Jetzt kommt Bewegung
ins Spiel

Funktionen

www.pria.at 31

  Funktion
  eine Fähigkeit, die der Roboter hat

  kann über Parameter gesteuert werden

1
2
3
4
5
6
7

// Created on Mi. Februar 25 2015

int main()
{
 printf("Hello, World!\n");
 return 0;
}

Eine Funktion einen ���
Text anzuzeigen

Keine Funktion – keine Fähigkeit des���
Roboters, sondern etwas, das den ���
Programm-Ablauf steuert

Die printf-Funktion

www.pria.at 32

printf("Hello, World!\n"); !

Der Name der ���
Funktion

Diese Klammer öffnet ���
den Parameter-Bereich

Ein Parameter, damit ���
man die Funktion

konfigurieren kann

Diese Klammer schließt

den Parameter-Bereich

schließt die

Verwendung

der���
Funktion ab

103

Noch eine Funktion

www.pria.at 33

wait_for_milliseconds(1500); !

Der Name der ���
Funktion

Diese Klammer öffnet

den Parameter-Bereich

Ein Parameter, damit ���
man die Funktion

konfigurieren kann

Diese Klammer schließt

den Parameter-Bereich

schließt die

Verwendung

der���
Funktion ab

Ausprobieren

www.pria.at 34

1
2
3
4
5
6
7
8
9

10
11

// Created on Mi. Februar 4 2015

int main()
{
 printf("Guten Morgen, Lisa!\n");
 wait_for_milliseconds(1500);
 printf("Hallo, Timon!\n");
 wait_for_milliseconds(1500);
 printf("Grüß Dich, Andrej!\n");
 return 0;
}

  Was macht das Programm nun anders?
  Was könnte daher die Aufgabe der

Funktion wait_for_milliseconds
sein?
  Was passiert, wenn man die Parameter-

Zahl verändert, z.B. auf 100 oder 5000?
  Ausprobieren!

Review

www.pria.at 35

SuE-bot
Lernen zu

Fahren
Navigation

Endlich Bewegung!

www.pria.at 37

  Der Roboter hat 2 Motoren
  Ein Motor für das linke Rad

  Ein Motor für das rechte Rad

Auf die Plätze, fertig, los...

www.pria.at 38

  Funktion für das Einschalten eines Motors:

mav(1, 700);
Der Name der ���

Funktion (Abk. für
 move at velocity)

Der 1. Parameter:

gibt die Nummer ���
des Motors an,���

der eingeschaltet ���
wird

Der 2. Parameter: ���
gibt die Geschwindigkeit

in Ticks / s an, mit der

dieser Motor einge-

schaltet wird

(1 Umdrehung ≈���
1000 Ticks)

trennt 1. und���
2. Parameter

Wer einschaltet muss auch ...

www.pria.at 39

  Funktion für das Ausschalten eines Motors:

ao();
Der Name der ���
Funktion (Abk.
 für all off)

Diese Funktion hat keinen ���
Parameter, trotzdem muss���

man die Klammern schreiben

  Welche Schritte sind nun notwendig, um
den Roboter für eine Sekunde vorwärts
fahren zu lassen, und dann stehen zu
bleiben.
  Zur Erinnerung: es gibt folgende

Funktionen:
  Wartepause (für eine gewisse Zeit)

  Einen Motor starten

  Alle Motoren ausschalten

Programm entwerfen

www.pria.at 40

104

  Wie viele Motoren hat der Roboter?
  Was passiert, wenn man nur einen Motor

einschaltet?
  Wer mag kann es ausprobieren, in dem er

versucht mit nur einem Fuß zu gehen, und
den anderen nicht zu bewegen

  Wie kann man 2 Motoren einschalten?
  Was passiert mit einem eingeschalteten

Motor, wenn das Programm auf
Wartepause geht?

Überlegungen

www.pria.at 41

Entwurf

1.  Beide Motoren
starten

1.  Ersten Motor
starten

2.  Zweiten Motor
starten

2.  Wartepause für 1s
3.  Alle Motoren

ausschalten

www.pria.at 42

Start

Ersten Motor starten

Zweiten Motor starten

Wartepause für 1s

Alle Motoren ausschalten

Ende

Umsetzung im Programm

// Die erste Bewegung
// Created on Fr, März 6 2015

int main()
{
 // Ersten Motor starten
 // Zweiten Motor starten
 // Wartepause für 1s
 // Alle Motoren ausschalten
 // Programm beenden  
 return 0;
}

www.pria.at 43

// Die erste Bewegung
// Created on Fr, März 6 2015

int main()
{
 // Ersten Motor starten
 mav(1, 700);
 // Zweiten Motor starten
 mav(2, 700);
 // Wartepause für 1s
 wait_for_milliseconds(1000);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

  Achtung!
  Den Roboter zuerst abstecken
  Dann auf den Boden oder den Game-

Table setzen
  Erst dann „Run“ antippen

Ausprobieren!

www.pria.at 44

  Ändere nun dein Programm so um, dass
der Roboter

  zuerst 1 s eher schneller fährt

  dann 2 s eher langsamer (nur halb so
schnell)

  und dann wieder ½ s ganz schnell

Verschiedene Geschwindigkeiten

www.pria.at 45

Entwurf

1.  Ersten Motor mit
700 T/s starten

2.  Zweiten Motor mit
700 T/s starten

3.  Wartepause für 1 s
4.  Ersten Motor mit

350 T/s starten
5.  Zweiten Motor mit

350 T/s starten

6.  Wartepause für 2 s
7.  Ersten Motor mit

1000 T/s starten
8.  Zweiten Motor mit

1000 T/s starten
9.  Wartepause für ½ s
10. Alle Motoren

ausschalten

www.pria.at 46

Entwurf-Grafik

www.pria.at 47

Start

1. Motor mit 700 T/s starten

2. Motor mit 700 T/s starten

Wartepause für 1 s

Alle Motoren ausschalten

Ende

1. Motor mit 350 T/s starten

2. Motor mit 350 T/s starten

Wartepause für 2 s

1. Motor mit 1000 T/s starten

2. Motor mit 1000 T/s starten

Wartepause für 1/2 s

Umsetzung im Programm - 1

www.pria.at 48

// 3 Geschwindigkeiten
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 700 T/s starten
 // 2. Motor mit 700 T/s starten
 // Wartepause für 1 s
 // 1. Motor mit 350 T/s starten
 // 2. Motor mit 350 T/s starten
 // Wartepause für 2 s
 // 1. Motor mit 1000 T/s starten
 // 2. Motor mit 1000 T/s starten
 // Wartepause für 0,5 s
 // Alle Motoren
 // Programm beenden
 return 0;
}

105

Umsetzung im Programm

www.pria.at 49

// 3 Geschwindigkeiten
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 700 T/s starten
 mav(2, 700);
 // Wartepause für 1 s
 wait_for_milliseconds(1000);
 // 1. Motor mit 350 T/s starten
 mav(1, 350);
 // 2. Motor mit 350 T/s starten
 mav(2, 350);

 // Wartepause für 2 s
 wait_for_milliseconds(2000);
 // 1. Motor mit 1000 T/s starten
 mav(1, 1000);
 // 2. Motor mit 1000 T/s starten
 mav(2, 1000);
 // Wartepause für 0,5 s
 wait_for_milliseconds(500);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

Zusammenfassung

www.pria.at 50

  Das Verwenden von Funktionen funktioniert
immer nach dem gleichen Aufbau:
Funktionsname(Parameter);
  Funktionen ohne Parameter, z.B:
ao();
  Funktionen mit einem Parameter, z.B:
wait_for_milliseconds(1000);
  Funktionen mit mehreren Parametern, z.B:
mav(1, 700);

106

Noch mehr
Bewegung

Mechanische Überlegungen

Wiederholung

www.pria.at 2

  Mit Funktionen kann man Fähigkeiten des
Roboters verwenden
  Starten eines Motors:
mav(1, 700);
  Das Programm für eine Anzahl an ms pausieren:
wait_for_milliseconds(1000);
  Alle Motoren ausschalten:
ao();

SuE-bot
Wer suchen

will muss
besser fahren

  Bis jetzt:
positive Geschwindigkeit
è vorwärts fahren

  Für andere Richtung
è Vorzeichen umdrehen

  Das bedeutet:
negative Geschwindigkeit �
è rückwärts fahren

z.B:
mav(1, -500);

Rückwärts fahren

www.pria.at 4

  Lass den Roboter 3 s nach vor fahren und
dann ohne umzudrehen wieder in seine
ursprüngliche Position zurück kehren.

Hin und wieder zurück

www.pria.at 5

Entwurf

www.pria.at 6

1.  Ersten Motor mit 700 T/s
starten

2.  Zweiten Motor mit 700
T/s starten

3.  Wartepause 3 s
4.  Ersten Motor mit -700 T/

s starten
5.  Zweiten Motor mit -700

T/s starten
6.  Wartepause 3 s
7.  Alle Motoren ausschalten

Start

1. Motor mit 700 T/s starten

2. Motor mit 700 T/s starten

Wartepause für 3 s

Alle Motoren ausschalten

Ende

1. Motor mit -700 T/s starten

2. Motor mit -700 T/s starten

Wartepause für 3 s

Umsetzung im Programm

www.pria.at 7

// Hin und wieder zurück
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 700 T/s starten
 // 2. Motor mit 700 T/s starten
 // Wartepause für 3 s
 // 1. Motor mit -700 T/s starten
 // 2. Motor mit -700 T/s starten
 // Wartepause für 3 s
 // Alle Motoren ausschalten
 // Programm beenden
 return 0;
}

// Hin und wieder zurück
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 700 T/s starten
 mav(2, 700);
 // Wartepause für 3 s
 wait_for_milliseconds(3000);
 // 1. Motor mit -700 T/s starten
 mav(1, -700);
 // 2. Motor mit -700 T/s starten
 mav(2, -700);
 // Wartepause für 3 s
 wait_for_milliseconds(3000);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

Bewegung genauer betrachtet

www.pria.at 8

  Geradeaus fahren kann schwierig sein:
  Die Motoren sind nicht genau gleich

  Die Räder sind nicht genau gleich ausgerichtet

  Ein Rad könnte fester angeschraubt sein, als das
andere

  Was passiert, wenn ein Rad schneller fährt, als
das andere?

107

Kurven fahren

www.pria.at 9

  Erstelle ein neues Programm, das den
Roboter eine Drehung vollführen lässt.
  Wenn der Roboter wieder an der gleichen

Stelle angekommen ist, dann soll er
stehen bleiben

  Hinweis: derzeit kann der Roboter noch
nicht erkennen, wann er stehen bleiben
soll. D.h. ihr müsst einfach ausprobieren,
wie lange er braucht.

Round and round and round

www.pria.at 10

Entwurf

www.pria.at 11

1.  Ersten Motor mit
1000 T/s starten

2.  Zweiten Motor mit
100 T/s starten

3.  Wartepause ? s
(ausprobieren)

4.  Alle Motoren
ausschalten

Start

1. Motor mit 1000 T/s starten

2. Motor mit 100 T/s starten

Wartepause für ein paar s

Alle Motoren ausschalten

Ende

Umsetzung im Programm

www.pria.at 12

// Eine Umdrehung
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 1000 T/s starten
 // 2. Motor mit 100 T/s starten
 // Wartepause für ein paar s
 // Alle Motoren ausschalten
 // Programm beenden
 return 0;
}

// Eine Umdrehung
// Created on Fr. März 6 2015

int main(){
 // 1. Motor mit 1000 T/s starten
 mav(1, 1000);
 // 2. Motor mit 100 T/s starten
 mav(2, 100);
 // Wartepause für ein paar s
 wait_for_milliseconds(6000);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

Die genaue Zahl kann für jeden ���
ein bisschen anders sein

SuE-bot
Dem

Roboter
neue Befehle

beibringen

  Versuche, den Roboter so zu
programmieren, dass er ein Quadrat fährt.

Quadrat

www.pria.at 14

Entwurf

www.pria.at 15

1.  Beide Motoren mit 700 T/s starten

2.  Wartepause für 3 s

3.  Ersten Motor für 700 T/s starten

4.  Zweiten Motor für 0 T/s starten

5.  Wartepause für 2s

6.  Beide Motoren mit 700 T/s starten

7.  Wartepause für 3 s

8.  Ersten Motor für 700 T/s starten

9.  Zweiten Motor für 0 T/s starten

10.  Wartepause für 2s

11.  Beide Motoren mit 700 T/s starten

12.  Wartepause für 3 s

13.  Ersten Motor für 700 T/s starten

14.  Zweiten Motor für 0 T/s starten

15.  Wartepause für 2s

16.  Beide Motoren mit 700 T/s starten

17.  Wartepause für 3 s

18.  Ersten Motor für 700 T/s starten

19.  Zweiten Motor für 0 T/s starten

20.  Wartepause für 2s

21.  Alle Motoren ausschalten

Umsetzung im Programm

www.pria.at 16

// Fährt ein Quadrat
// Created on Sa. März 7 2015

int main()
{
 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);

 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
 // 1. Motor mit 700 T/s starten
 mav(1, 700);
 // 2. Motor mit 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

108

Eigene Funktionen

www.pria.at 17

  Man kann auch eigene Funktionen definieren
  Ähnlich zu Makros
  Vorgehensweise:

1.   Nach der main-Funktion: Funktionsdefinition =
Funktion schreiben und mit Inhalt füllen

2.   Vor der main-Funktion: Prototypen schreiben =
Funktion bekannt machen

3.   Innerhalb der main-Funktion: Funktionsaufruf =
Funktion verwenden

  1. Schritt: Funktion definieren

  Nach der main-Funktion (ganz am Ende der Datei)

  Name vergeben und Inhalt schreiben

Funktion gerade_fahren

www.pria.at 18

void gerade_fahren()
{
 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

Kopfzeile der���
eigenen

Funktion

Körper-Block ���
der eigenen ���
Funktion

Die geschwungen Klammern {} ���
bilden die Begrenzung des Blocks

  2. Schritt: Prototyp
definieren

  Vor der main-Funktion

  Macht die Funktion im
ganzen Programm
bekannt

  Besteht nur aus der
Kopfzeile + ;

// Created on Sa. März 7 2015
void gerade_fahren();

int main()
{
 return 0;
}

void gerade_fahren()
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

Funktion gerade_fahren

www.pria.at 19

Kopieren und

; hinzufügen

  3. Schritt: Funktionsaufruf

  Verwenden der Funktion innerhalb der main-
Funktion

  Genauso, wie bei den anderen Funktionen

Funktion gerade_fahren

www.pria.at 20

gerade_fahren(); !

Der Name der ���
Funktion

Diese Klammer öffnet

den Parameter-Bereich

Diese Funktion hat keinen ���
Parameter, trotzdem muss���

man die Klammern schreiben

Diese Klammer schließt

den Parameter-Bereich

schließt die

Verwendung der���

Funktion ab

// Created on Sa. März 7 2015
void gerade_fahren();

int main()
{
 gerade_fahren();
 gerade_fahren();
 gerade_fahren();
 gerade_fahren();
 ao();
 return 0;
}

void gerade_fahren()
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

Funktion gerade_fahren

www.pria.at 21

  Versuche nach dem gleichen Prinzip eine
Funktion mit dem Namen nach_rechts zu
schreiben
  Verwende diese Funktion dann im

Roboter-Programm für das Quadrat, so
dass in der main-Funktion nur noch die
Funktionen gerade_fahren, nach_rechts
und ao verwendet werden .

Funktion nach_rechts

www.pria.at 22

Umsetzung im Programm

www.pria.at 23

// Fährt ein Quadrat
// Created on Sa. März 7 2015
void gerade_fahren();
void nach_rechts();

int main()
{
 gerade_fahren();
 nach_rechts();
 gerade_fahren();
 nach_rechts();
 gerade_fahren();
 nach_rechts();
 gerade_fahren();
 nach_rechts();
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_fahren()
{
 // Motoren m. 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

void nach_rechts()
{
 // 1. Motor m. 700 T/s starten
 mav(1, 700);
 // 2. Motor m. 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
}

  Lass den Roboter eine Schlangenlinie fahren

  In der main-Funktion sollen bis auf ao() keine
Motor- oder Warte-Funktionen vorkommen,
sondern nur selbst geschriebene Funktionen

  Welche Funktionen wären sinnvoll?

Schlangenlinien

www.pria.at 24

109

Überlegungen

  Prinzipieller Ablauf:
  Bogen nach links
  Bogen nach rechts
  Bogen nach links
  Bogen nach rechts
  ... so oft man will

  Damit sind 2 Funktionen sinnvoll:
bogen_nach_links
bogen_nach_rechts

www.pria.at 25

Umsetzung im Programm

www.pria.at 26

// Fährt eine Schlangenlinie
// Created on Sa. März 7 2015
void bogen_nach_links();
void bogen_nach_rechts();

int main()
{
 bogen_nach_links();
 bogen_nach_rechts();
 bogen_nach_links();
 bogen_nach_rechts();
 bogen_nach_links();
 bogen_nach_rechts();
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void bogen_nach_links()
{
 // 1. Motor m. 700 T/s starten
 mav(1, 700);
 // 2. Motor m. 300 T/s starten
 mav(2, 300);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

void bogen_nach_rechts()
{
 // 1. Motor m. 300 T/s starten
 mav(1, 300);
 // 2. Motor m. 700 T/s starten
 mav(2, 700);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

  Jedes Team sucht sich aus den
Herausforderungen eine aus
  Diese Herausforderung versucht ihr dann

möglichst selbständig zu meistern.
  Wenn ihr eine Herausforderung

gemeistert habt, könnt ihr euch noch eine
weitere Herausforderung aussuchen
  Die Herausforderungen sind

unterschiedlich komplex. Sucht euch die
aus, die euch gefällt.

Herausforderungen

www.pria.at 27

  Fahre bis zum Hindernis vor und verschiebe es
ein bisschen.

  Das Hindernis darf den Kreis nicht ganz
verlassen

  Kehre anschließend wieder zur Startzone zurück

1 – Verschiebe das Hindernis

www.pria.at 28

  Lass den Roboter auf der aufgelegten Matte in
jede der 3 Parkzonen einparken (grün, blau, gelb).

  Wenn der Roboter in die blaue Parkzone einparkt,
dann darf er keine blauen Linien überfahren, bei
der grünen Parkzone keine grünen Linien und bei
der gelben Parkzone keine gelben Linie

2 – Einparken

www.pria.at 29

  Umfahre die aufgestellten Hindernisse
außen ohne sie zu berühren und
umzustoßen. Bleibe aber trotzdem mit
zumindest einem Rad auf der Matte.
  Kehre anschließend wieder zur Startzone

zurück

3 – Drumherum

www.pria.at 30

  Lass deinen Roboter nach einer selbst
gewählten Choreografie tanzen

  Z.B. links vor, rechts vor, beide vor uuuund
zurück, ...

  Der Roboter soll am Schluss wieder in der
Startposition stehen

4 – Tanz auf der Stelle

www.pria.at 31

  Lass deinen Roboter ähnlich wie beim
Eistanzen mit einer selbst gewählten
Choreografie auf einer Fläche tanzen

  z.B. in dem er einen Kreis fährt und dabei
sich dazwischen immer wieder umdreht,
ein Stück rückwärts fährt und dann wieder
eine Pirouette dreht und wieder vorwärts
fährt

  Der Roboter soll am Schluss wieder ca. in
der Startposition stehen

5 – Tanz auf der Fläche

www.pria.at 32

110

  Wie ist es euch bei den
Herausforderungen gegangen?
  Wo habt ihr die größten Schwierigkeiten

gehabt?

Review

www.pria.at 33

Zusammenfassung

www.pria.at 34

  Negative Geschwindigkeit è rückwärts fahren 
mav(1, -700);  
mav(2, -700);
  Ein Motor schneller als der andere è Kurve  
mav(1, 700);  
mav(2, 0);
  Weitere Funktionen für das Fahren:
wait_for_milliseconds(1000);  
ao();

  Überlege dir folgendes für deinen
Traumroboter:

  Muss sich dein Traumroboter bewegen? Wenn
ja welche Bewegungen müsste er machen
können? Geradeaus fahren, umdrehen, eine
Kurve, ...?
Wenn nein, fällt dir vielleicht ein anderer
Roboter ein, den du gerne hättest, der sich
bewegen müsste. Welche Bewegungen
müsste dieser Roboter machen können?

  Beschreibe einen Bewegungsablauf für einen
deiner Traumroboter.

Hausübung

www.pria.at 35

  Wie müsste Sue-Bot fahren, damit sie ein
ganzes Zimmer absuchen kann?

Sue-Bot Suchmuster

www.pria.at 36

111

Struktur in
das Chaos

Besser Sprache
verstehen

Wiederholung

www.pria.at 2

  Negative Geschwindigkeit è rückwärts fahren 
mav(1, -700);  
mav(2, -700);
  Ein Motor schneller als der andere è Kurve  
mav(1, 700);  
mav(2, 0);
  Weitere Funktionen für das Fahren:
wait_for_milliseconds(1000);  
ao();

  Was müsste am Quadrat-Programm
geändert werden, damit ein Rechteck
abgefahren wird?
  Wie viele Funktionen sind da sinnvoll?

Rechteck

www.pria.at 3

Konfigurierbare Funktionen

www.pria.at 4

  Funktionen können durch Parameter
konfigurierbar gemacht werden
  Parameter werden zwischen die Klammern

geschrieben.
  Damit man für eigene Funktionen Parameter

einsetzen kann braucht man Variablen.

Was sind Variablen

www.pria.at 5

  Variablen sind Behälter, in denen Sachen
gespeichert werden können, wie z.B.
Marmeladengläser:

  muss existieren, bevor man etwas hinein
gibt

  kann Inhalte aufnehmen und speichern
(Deckel zu)

  gibt es in verschiedenen Größen und
Formen

  erlauben es den Inhalt anzusehen und zu
überprüfen

Magische Marmeladengläser

www.pria.at 6

  Variablen sind allerdings nicht so wie
normale Marmeladengläser: sie sind
magisch

  Sie können nur über ihren Namen gefunden
werden

  Inhalt kann nicht hinausgenommen werden

  Wenn etwas neues hineingegeben wird,
verschwindet das alte

  Die Größe bestimmt die Art des Inhalts

  Wenn das Programm endet, dann
verschwinden alle Marmeladengläser
(manche auch früher)

Erzeugen von Variablen

www.pria.at 7

  Um eine Variable (= ein magisches
Marmeladenglas) zu erzeugen braucht man

  Einen Namen (selbst aussuchen, Sonderzeichen
und Leerzeichen verboten!)

  Die Größe (und damit die Art des Inhalts)
z.B: int (ist die passende Größe für ganze Zahlen)

int zeit
erzeugt eine Variable für ganze
Zahlen mit dem Namen zeit

zeit

  Eine Variable kann als Parameter beim Definieren
(Schreiben) einer Funktion verwendet werden

  Dann muss die Variable innerhalb der Klammern ()
erzeugt werden

Funktion mit Parameter definieren

www.pria.at 8

void gerade_fahren(int zeit)
{
 // Beide Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

Die Variable���
wird erzeugt

Nachschauen, was in der Variablen ���
drin ist und als Zeitdauer verwenden

zeit

112

  Der Prototyp muss
auch den Parameter
enthalten

  Er muss immer gleich
wie die Kopfzeile der
Funktion sein + ;

// Created on Sa. März 7 2015
void gerade_fahren(int zeit);

int main()
{
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

Prototyp für Funktion mit Parameter

www.pria.at 9

Kopieren und

; hinzufügen

Funktion mit Parameter aufrufen

www.pria.at 10

  Die Variable (das Marmeladenglas) wird gefüllt, wenn die
Funktion verwendet wird.

  D.h. man muss beim Verwenden der Funktion einen
passenden Inhalt angeben

  Genauso wie bei anderen Funktionen mit Parameter

gerade_fahren(3000); !

Der Name der ���
Funktion

Diese Klammer öffnet

den Parameter-Bereich

Diese Funktion hat eine���
ganze Zahl als Parameter, ���
die für die Zeitdauer steht

Diese Klammer schließt

den Parameter-Bereich

schließt die

Verwendung der���

Funktion ab

// Created on Sa. März 7 2015
void gerade_fahren(int zeit);

int main()
{
 gerade_fahren(3000);
 gerade_fahren(5000);
 gerade_fahren(3000);
 gerade_fahren(5000);
 ao();
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

Funktion gerade_fahren

www.pria.at 11

Parameterwerte genauer betrachtet

www.pria.at 12

int main()
{
 gerade_fahren(3000);
 gerade_fahren(5000);
 gerade_fahren(3000);
 gerade_fahren(5000);
 ao();
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

zeit

3000!
Der Parameterwert beim���
Aufruf wird in die

Parametervariable gefüllt

Nachsehen, was in der Variablen drinnen ���
steht und als Zeitdauer verwenden

Parameterwerte genauer betrachtet

www.pria.at 13

int main()
{
 gerade_fahren(3000);
 gerade_fahren(5000);
 gerade_fahren(3000);
 gerade_fahren(5000);
 ao();
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

zeit

5000!
Der Parameterwert beim���
Aufruf wird in die

Parametervariable gefüllt

Nachsehen, was in der Variablen drinnen ���
steht und als Zeitdauer verwenden

Parameterwerte genauer betrachtet

www.pria.at 14

int main()
{
 gerade_fahren(3000);
 gerade_fahren(5000);
 gerade_fahren(3000);
 gerade_fahren(5000);
 ao();
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

zeit

3000!
Der Parameterwert beim���
Aufruf wird in die

Parametervariable gefüllt

Nachsehen, was in der Variablen drinnen ���
steht und als Zeitdauer verwenden

Parameterwerte genauer betrachtet

www.pria.at 15

int main()
{
 gerade_fahren(3000);
 gerade_fahren(5000);
 gerade_fahren(3000);
 gerade_fahren(5000);
 ao();
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren mit 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

zeit

5000!
Der Parameterwert beim���
Aufruf wird in die

Parametervariable gefüllt

Nachsehen, was in der Variablen drinnen ���
steht und als Zeitdauer verwenden

Vollständiges Rechteck-Programm

www.pria.at 16

// Fährt ein Quadrat
// Created on Sa. März 7 2015
void gerade_fahren(int zeit);
void nach_rechts();

int main()
{
 gerade_fahren(3000);
 nach_rechts();
 gerade_fahren(5000);
 nach_rechts();
 gerade_fahren(3000);
 nach_rechts();
 gerade_fahren(5000);
 nach_rechts();
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_fahren(int zeit)
{
 // Motoren m. 700 T/s starten
 mav(1, 700);
 mav(2, 700);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

void nach_rechts()
{
 // 1. Motor m. 700 T/s starten
 mav(1, 700);
 // 2. Motor m. 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
}

113

  Gibt es noch ein andere Möglichkeit, eine
konfigurierbare Funktion für
unterschiedlich lange Strecken zu
schreiben?

  Hinweis: um einen längeren Weg als zuvor
zu gehen, kann ich mir entweder mit
gleicher Geschwindigkeit mehr Zeit lassen,
oder ...

Varianten?

www.pria.at 17

Anderer Parameter

www.pria.at 18

// Fährt ein Quadrat
// Created on Sa. März 7 2015
void gerade_fahren(int geschwind);
void nach_rechts();

int main()
{
 gerade_fahren(500);
 nach_rechts();
 gerade_fahren(800);
 nach_rechts();
 gerade_fahren(500);
 nach_rechts();
 gerade_fahren(800);
 nach_rechts();
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_fahren(int geschwind)
{
 // Motoren m. geschwind starten
 mav(1, geschwind);
 mav(2, geschwind);
 // Wartepause für 3 ms
 wait_for_milliseconds(3000);
}

void nach_rechts()
{
 // 1. Motor m. 700 T/s starten
 mav(1, 700);
 // 2. Motor m. 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
}

Mehrere Parameter

www.pria.at 19

  Eine Funktion kann auch mehrere Parameter haben

  Dafür müssen auch mehrere Variablen erzeugt werden

  Die Parameter werden durch einen Beistrich getrennt

void gerade_fahren(int geschwind, int zeit)
{
 // Beide Motoren mit geschwind T/s starten
 mav(1, geschwind);
 mav(2, geschwind);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

int main()
{
 gerade_fahren(500, 2000);
 gerade_fahren(800, 3000);
 gerade_fahren(500, 2000);
 gerade_fahren(800, 3000);
 ao();
 return 0;
}

void gerade_fahren(int geschwind, int zeit)
{
 // Motoren mit geschwind T/s starten
 mav(1, geschwind);
 mav(2, geschwind);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

Mehrere Parameterwerte

www.pria.at 20

zeit

2000!
Die Reihenfolge bestimmt,

welche Variable welchen

Wert erhält

Nachschauen, was in der Variablen ���
drinnen steht und verwenden

geschwind

500!

Zwei Parameter

www.pria.at 21

// Fährt ein Quadrat
// Created on Sa. März 7 2015
void gerade_fahren(int geschwind,
 int zeit);
void nach_rechts();

int main()
{
 gerade_fahren(500, 2000);
 nach_rechts();
 gerade_fahren(800, 3000);
 nach_rechts();
 gerade_fahren(500, 2000);
 nach_rechts();
 gerade_fahren(800, 3000);
 nach_rechts();
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_fahren(int geschwind,
 int zeit)
{
 // Motoren m. geschwind starten
 mav(1, geschwind);
 mav(2, geschwind);
 // Wartepause für 3 ms
 wait_for_milliseconds(zeit);
}

void nach_rechts()
{
 // 1. Motor m. 700 T/s starten
 mav(1, 700);
 // 2. Motor m. 0 T/s starten
 mav(2, 0);
 // Wartepause für 2s
 wait_for_milliseconds(2000);
}

  Versuche dein Schlangenlinien-Programm so zu
ändern, dass nur noch eine einzige Funktion
bogen_fahren vorkommt, die je nach Parameter
entweder nach links oder nach rechts fährt.

  Hinweis: Schau nach in was sich die beiden
Funktionen unterscheiden. Das sind dann gute
Ausgangspunkte für Parameter

Schlangenlinien

www.pria.at 22

Umsetzung im Programm

www.pria.at 23

// Fährt eine Schlangenlinie
// Created on Sa. März 7 2015
void bogen_fahren(int geschwind1,
 int geschwind2);

int main()
{
 bogen_fahren(700, 300);
 bogen_fahren(300, 700);
 bogen_fahren(700, 300);
 bogen_fahren(300, 700);
 bogen_fahren(700, 300);
 bogen_fahren(300, 700);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void bogen_fahren(int geschwind1,
 int geschwind2)
{
 // 1. Motor m. geschwind1
 mav(1, geschwind1);
 // 2. Motor m. geschwind2
 mav(2, geschwind2);
 // Wartepause für 3s
 wait_for_milliseconds(3000);
}

  Ändere dein Herausforderungsprogramm
so, dass es Funktionen verwendet. (Wenn
du möchtest kannst du auch eine neue
Herausforderung machen)

  Besser als mein Code

  Schneller und besser (kürzer) als ein
anderes Team

  Choreographie erweitern, so dass der
Roboter Tanzbegriffe versteht, pirouette,

Herausforderungen mit Funktionen

www.pria.at 24

114

  Schreibe ein Programm, mit Hilfe von
Funktionen, so dass SuE-Bot die ganze
Fläche abfahren kann, um etwas zu
suchen

SuE-Bot - Suchmuster

www.pria.at 25

Zusammenfassung

www.pria.at 26

  Mit Hilfe von 3 Schritten kann man Funktionen
selber schreiben:

  Funktion nach der main-Funktion definieren mit
void Funktionsname()  
{  
 Inhalt
}
  Prototypen vor die main-Funktion kopieren (; nicht

vergessen)
  Funktion innerhalb der main-Funktion verwenden

(genauso wie bereits vorhandene Funktionen)

Zusammenfassung

www.pria.at 27

  Variablen sind Gefäße zum Speichern von Inhalt
  Sie werden mit ihrer Größe (int) und dem Namen erzeugt
  Variablen können verwendet, um Funktionen

konfigurierbar zu machen. Sie werden dann Parameter
genannt

  Parameter werden zwischen die Klammern in den
Parameterbereich einer Funktion geschrieben

  Eine Funktion kann mehrere Parameter haben
  Wenn ein oder mehrere Parameter bei einer Funktion

definiert wurden, dann muss man sie auch bei der
Verwendung angeben

  Überlege dir folgendes für deinen
Traumroboter:

  Welche Funktionen könntest du für deinen
Roboter schreiben?

  Wären das nur Bewegungsfunktionen oder
sind auch andere Funktionen sinnvoll?

Hausübung

www.pria.at 28

115

Arbeiten
mit dem Arm
Bewegen des Servo-Motors

Ziel: Aufräumen

www.pria.at 2

Eine Schaufel bauen

www.pria.at 3

Servo-Motor steuern

www.pria.at 4

Servo-Motor
  Kann keine volle Umdrehung machen

  Wird auf eine Winkelposition eingestellt

  Nur Werte zwischen 900 und 1360 verwenden!

  Standardposition:
1024

0!

1024!

2047!

1900!150!

Servo-Funktionen

www.pria.at 5

  Einstellen der Winkelposition (zw. 900 und 1360):

set_servo_position(1, 1000);

Der Name der ���
Funktion)

Der 1. Parameter:

gibt die Nummer ���
des Motors an,���

der eingeschaltet ���
wird

Der 2. Parameter: ���
gibt die Position an, ���

auf die der Servo-Motor���
eingestellt wird

Servo-Funktionen

www.pria.at 6

Servo-Motoren aktivieren

Servo-Motoren deaktivieren

enable_servos();

disable_servos();

Nicht in einem Schritt

www.pria.at 7

  Achtung!
  Nicht auf einmal von ganz oben nach ganz

unten!
  Bei schnellen Bewegungen schießen sie gerne

über das Ziel hinaus

  Schrittweise annähern

// Created on Do Apr 16 2015

int main()
{

set_servo_position(1, 900);
enable_servos();
wait_for_milliseconds(1000);
set_servo_position(1, 1100);
wait_for_milliseconds(1000);
set_servo_position(1, 1300);
wait_for_milliseconds(1000);
set_servo_position(1, 1350);
wait_for_milliseconds(1000);
return 0;

}

Beispiel

www.pria.at 8

116

  Überlege dir ein Programm, das den
Roboter winken lässt (den Arm hinauf und
hinunter bewegt)

  Welche Funktionen sind für dieses
Programm sinnvoll

  Was müsste man tun, damit das Winken
nicht so ruckartig erfolgt

Winken

www.pria.at 9

Entwurf

  Damit sich der Arm auf und ab bewegt,
sind 2 Funktionen sinnvoll

  hinauf ... Für das Hinauf-Bewegen des
Armes

  hinunter ... Für das Hinunter-Bewegen des
Armes

  Damit er sich möglichst ruhig bewegt,
müsste man den Servo in ganz kleinen
Schritten bewegen.

www.pria.at 10

Programm

www.pria.at 11

// Created on Mo Apr 20 2015
void hinauf();
void hinunter();

int main()
{

set_servo_position(1, 1000);
enable_servos();
hinauf();
hinunter();
hinauf();
hinunter();
disable_servos();
return 0;

}

void hinauf()
{

set_servo_position(1, 1300);
wait_for_milliseconds(300);
set_servo_position(1, 1200);
wait_for_milliseconds(300);
set_servo_position(1, 1100);
wait_for_milliseconds(300);
set_servo_position(1, 1000);
wait_for_milliseconds(300);
set_servo_position(1, 900);

}
void hinunter()
{

set_servo_position(1, 900);
wait_for_milliseconds(300);
set_servo_position(1, 1000);
wait_for_milliseconds(300);
set_servo_position(1, 1100);
wait_for_milliseconds(300);
set_servo_position(1, 1200);
wait_for_milliseconds(300);
set_servo_position(1, 1300);

}

  Starte so in der Startbox, dass kein Teil des
Roboters über die Begrenzungslinie
hinausragt.

  Räume innerhalb von 5 Minuten alle Poms
vom Feld herunter, so dass zumindest ein
Teil des Poms den Boden berührt

  Kehre innerhalb der 5 Minuten zur Startbox
zurück.

  Ist der Roboter am Ende nicht in der
Startbox, so zählt nur die Hälfte der Poms

Feld räumen

www.pria.at 12

  Auf jedem
Zahlenfeld
ein Pom
  3 Poms

werden in
den freien
Bereichen
fallen
gelassen

Wettbewerb - Spielfeld

www.pria.at 13

1.  Jedes Pom, das zumindest zum Teil den
Boden berührt, bringt einen Siegpunkt, Das
Team mit den meisten Siegpunkten gewinnt.

2.  Bei Gleichstand nach 1. wird der
Programmcode gewertet. Je weniger Zeilen
desto besser (Leerzeilen, return 0; Zeilen die
nur Kommentare enthalten bzw. Zeilen die
nur { oder } enthalten zählen nicht).

3.  Bei Gleichstand nach 1. + 2. gewinnt das
Team, dessen Roboter die kürzeste Zeit
gebraucht hat.

Wettbewerb - Siegbedingungen

www.pria.at 14

117

Die Umwelt
wahrnehmen

Arbeiten mit Sensoren

Wiederholung

www.pria.at 2

  Mit Hilfe von 3 Schritten kann man Funktionen
selber schreiben:

  Funktion nach der main-Funktion definieren mit
void Funktionsname()  
{  
 Inhalt
}
  Prototypen vor die main-Funktion kopieren (; nicht

vergessen)
  Funktion innerhalb der main-Funktion verwenden

(genauso wie bereits vorhandene Funktionen)

Wiederholung

www.pria.at 3

  Variablen sind Gefäße zum Speichern von Inhalt
  Sie werden mit ihrer Größe (int) und dem Namen erzeugt

  Variablen können verwendet, um Funktionen
konfigurierbar zu machen. Sie werden dann Parameter
genannt

  Parameter werden zwischen die Klammern in den
Parameterbereich einer Funktion geschrieben

  Eine Funktion kann mehrere Parameter haben

  Wenn ein oder mehrere Parameter bei einer Funktion
definiert wurden, dann muss man sie auch bei der
Verwendung angeben

Eine andere Motor-Funktion

www.pria.at 4

motor(0, 70);
Der Name der ���

Funktion

Der 1. Parameter:

gibt die Nummer ���
des Motors an,���

der eingeschaltet ���
wird

Der 2. Parameter: ���
gibt die Motorleistung

in % der Maximalleistung

an (d.h. max. 100)

trennt 1. und���
2. Parameter

  Schreibe ein Programm, das bis mit der
neuen motor-Funktion zum Ende der
Matte fährt und dann umdrehen und
wieder zurück

  Welche Funktionen sind sinnvoll?

  Haben die Funktionen Parameter?

Hin und wieder zurück

www.pria.at 5

Entwurf

  Eine Funktion gerade_fahren mit 2
Parametern ist am flexibelsten

1.  Parameter: für die Geschwindigkeit
geschwind

2.  Parameter: für die Zeitdauer zeit

  Eine 2. Funktion für das Umdrehen

www.pria.at 6

Umsetzung im Programm

www.pria.at 7

// Hin und wieder zurück
// Created on Mo. März 9 2015
void gerade_fahren( 
 int geschwind, int zeit);
void umdrehen();

int main()
{
 gerade_fahren(70, 6000);
 umdrehen();
 gerade_fahren(70, 6000);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_fahren( 
 int geschwind, int zeit)
{
 // Motoren starten
 motor(1, geschwind);
 motor(2, geschwind);
 // Wartepause für zeit ms
 wait_for_milliseconds(zeit);
}

void umdrehen()
{
 // 1. Motor m. 70% starten
 motor(1, 70);
 // 2. Motor m. -70% starten
 motor(2, -70);
 // Wartepause für 1,4 s
 wait_for_milliseconds(1400);
}

  Wie lange mussten die Motoren vor
fahren, bis der Roboter das Ende der
Matte erreicht hatten?
  Wie bist du auf diesen Wert gekommen?

Review

www.pria.at 8

118

SuE-bot
Endlich
kann ich

was „sehen“

Erkennen von Sachen

www.pria.at 10

  Der Roboter kann seine Umgebung wahrnehmen
  Dazu bedient er sich seiner Sensoren
  Die Sensoren sind mit dem Controller verbunden
  Auf Anfrage liefern sie einen Wert

  Digitalsensoren: 0 oder 1

  Analogsensoren: von 0 bis 1023

  Achtung! Die Sensoren arbeiten nicht mit der
mav-Funktion zusammen

Berührungssensor

www.pria.at 11

  Gehört zu den Digital-Sensoren
  Entweder gedrückt: 1

  Oder nicht gedrückt: 0

  Sensorwert abfragen:
  Eine Variable zum Speichern des Ergebnis

erzeugen

  Die Funktion zum Abfragen des Sensors aufrufen
und das Ergebnis in die Variable füllen

int ergebnis;
ergebnis = digital(15);

Abfragen eines Digitalsensors

www.pria.at 12

Erzeugt eine Variable

 Das Erstellen der Variable

wird mit ; abgeschlossen

Die Nummer des Sensors,

der abgefragt wird���

(wo er angesteckt ist)

Name der Funktion ���
zum Abfragen von

Digitalsensoren

Füllt das, was rechts

heraus kommt, in die

Variable, die links steht

In diese Variable

wird das Ergebnis

gefüllt

Der Ablauf genauer betrachtet

www.pria.at 13

int ergebnis;
ergebnis = digital(15);

1. Eine leere Variable���
erzeugen

ergebnis

2. Den Sensor Nr. 15
fragen, was aktuell

sein Wert ist

Hallo Nr. 15,
welchen Wert hast

 du gerade?!

3. Der Sensor���
antwortet

0!

ergebnis

4. Mit Hilfe von = ���
die Antwort in die ���

Variable füllen

= !0!
ergebnis

Das Ergebnis ausgeben

www.pria.at 14

  Mit Hilfe der printf-Funktion kann das, was in
einer Variablen steht ausgegeben werden.

int ergebnis;
ergebnis = digital(15);
printf("Antwort: %d", ergebnis);

Im Ausgabetext kommt

noch noch ein Platzhalter

für den Inhalt der

Variablen dazu

Hier wird nachgesehen, was

in der Variablen enthalten ist.
Dieser Wert wird statt dem���

Platzhalter eingesetzt

// Created on Mo. März 9 2015

int main()
{
 // Variable ergebnis erzeugen
 int ergebnis;
 // Digitalsensor Nr. 15 abfragen
 ergebnis = digital(15);
 // Inhalt von ergebnis ausgeben
 printf("Antwort: %d", ergebnis);
 // Programm beenden
 return 0;
}

Das ganze Programm

www.pria.at 15

  Was wird ausgegeben, wenn das
Programm gestartet wird?
  Wie kann man einen 1er vom Programm

anzeigen lassen?

Review

www.pria.at 16

119

Hin bis man ansteht

www.pria.at 17

  Ausgangspunkt: Hin- und wieder zurück
  Keine Steuerung über die Zeit mehr

void gerade_start(int geschwind);

int main()
{
 gerade_start(50);

 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_start(int geschwind)
{
 // Motoren m. geschwind starten
 motor(1, geschwind);
 motor(2, geschwind);
}

wie lange?

https://www.youtube.com/watch?v=L1L4SWh0Nxw&t=14!

Etwas immer wieder machen

www.pria.at 18

Start

Beide Motoren starten

Alle Motoren ausschalten

Ende

Antwort für „Sind wir schon da?“ erfragen

Stimmt nicht

Antwort ist „Nein“?
Stimmt

void gerade_start(int geschwind);

int main()
{
 // Variable antwort erzeugen
 int antwort;

 gerade_start(50);

 antwort = digital(15);

 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_start(int geschwind)
{
 // Motoren m. geschwind starten
 motor(1, geschwind);
 motor(2, geschwind);
}

Das soll immer wieder

geschehen, solange die���
Antwort „noch nicht da“ ist

Frage: „Sind wir schon da?“

www.pria.at 19

Variablen immer ganz

am Anfang erzeugen

void gerade_start(int geschwind);

int main()
{
 // Variable antwort erzeugen
 int antwort;
 gerade_start(50);

 do
 {
 antwort = digital(15);
 }
 while(antwort == 0);

 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}

void gerade_start(int geschwind)
{
 // Motoren m. geschwind starten
 motor(1, geschwind);
 motor(2, geschwind);
}

Solange die Antwort „Nein“ ist

www.pria.at 20

mach das Folgende ...

... solange antwort gleich 0 ist

Wiederholen genauer betrachtet

www.pria.at 21

  Schleife: Programmstruktur fürs Wiederholen

do
{
 antwort = digital(15);
}
while(antwort == 0);

Kopfzeile der���
Schleife

Körper-Block

der Schleife

Fußzeile der���
Schleife

Beginn

d. Blocks

Ende

d. Blocks

; beendet die ���
Schleifenstruktur

Vergleich mit „stimmt“
oder „stimmt nicht“

als Antwort

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 22

Eine leere���
Variable ���
erzeugen

antwort

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 23

Die Motoren starten ���
(die Variable ist noch immer da)

antwort

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 24

Beginn der Schleifenstruktur���
(die Variable ist noch immer da)

antwort

120

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 25

Den Berührungssensor fragen,

welchen Wert er gerade hat

antwort

Hallo Nr. 15,
welchen Wert hast

 du gerade?!0!

0!

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 26

Bei der Variablen antwort

nachschauen, welcher Wert ���

gespeichert ist.

antwort

0!
Ist die Zahl in antwort gleich 0?

„Ja, stimmt“

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 27

Beginn der Schleifenstruktur���
(die Variable ist noch immer da)

antwort

0!

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 28

Den Berührungssensor fragen,

welchen Wert er gerade hat

antwort

Hallo Nr. 15,
welchen Wert hast

 du gerade?!0!

0!

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 29

Bei der Variablen antwort

nachschauen, welcher Wert ���

gespeichert ist.

antwort

0!
Ist die Zahl in antwort gleich 0?

„Ja, stimmt“

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

Der Ablauf genauer betrachtet

www.pria.at 30

Beginn der Schleifenstruktur���
(die Variable ist noch immer da)

antwort

0!

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 31

Den Berührungssensor fragen,

welchen Wert er gerade hat

antwort

Hallo Nr. 15,
welchen Wert hast

 du gerade?!1!

1!

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 32

Bei der Variablen antwort

nachschauen, welcher Wert ���

gespeichert ist.

antwort

1!
Ist die Zahl in antwort gleich 0?

„Nein, stimmt nicht“

121

int antwort;
gerade_start(700);

do
{
 antwort = digital(15);
}
while(antwort == 0);

// Alle Motoren ausschalten
ao();

Der Ablauf genauer betrachtet

www.pria.at 33

Die Schleifenstruktur ist zu ���
Ende. Das Programm macht ���

danach weiter

antwort

1!

  Modifiziere dein Hin-Und-Wieder-Zurück-
Programm so, dass dein Roboter
zwischen 2 Hindernissen Hin und Her
fährt.

  Wenn du an einer Wand angekommen bist,
muss der Roboter noch ein Stück zurück
fahren, bevor er sich umdreht. So hat er
genug Platz zum Umdrehen

Zwischen 2 Wänden

www.pria.at 34

Umsetzung im Programm

www.pria.at 35

void kurz_zurueck();
void umdrehen();
void bis_zum_anschlag(int geschwind);

int main()
{
 bis_zum_anschlag(50);
 kurz_zurueck();
 umdrehen();
 bis_zum_anschlag(50);
 // Alle Motoren ausschalten
 ao();
 // Programm beenden
 return 0;
}
void kurz_zurueck()
{
 // Beide Motoren mit 50% starten
 motor(1, 50);
 motor(2, 50);
 // Wartepause für 0,5 s

wait_for_milliseconds(500);
}

void umdrehen()
{
 // 1. Motor m. 70% starten
 motor(1, 70);
 // 2. Motor m. -70% starten
 motor(2, -70);
 // Wartepause für 4 s
 wait_for_milliseconds(1400);
}
void bis_zum_anschlag(int geschwind)
{

 // Variable antwort erzeugen
 int antwort;
 // Motoren m. geschwind starten
 motor(1, geschwind);
 motor(2, geschwind);
 do // mache das folgende
 {
 // Digitalsensor Nr. 15 fragen
 antwort = digital(15);
 } // solange anwort gleich 0 ist
 while(antwort == 0);
}

  Lass deinen Roboter in die grüne Garage
finden, wobei die Garage nun durch
Wände begrenzt ist
  Lass deinen Roboter in die blaue Garage

finden, wobei die Garage nun durch
Wände begrenzt ist
  Lass deinen Roboter in die gelbe Garage

finden, wobei die Garage nun durch
Wände begrenzt ist

Parcour abfahren

www.pria.at 36

  Ändere (oder schreibe) ein Sue-Bot-
Programm, dass das ganze Zimmer
absucht

SuE-Bot - Suchen

www.pria.at 37

122

List of Figures

2.1 didactic relation in the didactic triangle [33] . 3

3.1 Lego Mindstorms EV3 IDE . 12
3.2 RobotC IDE . 13
3.3 LeJOS with Eclipse . 14
3.4 KISS IDE . 15
3.5 Simulator for the Link Controller . 16
3.6 Robotino View . 17
3.7 Robotino SIM simulator . 17
3.8 Robotino C++ in Visual Studio [58] . 18

4.1 The robot build for the workshop . 22
4.2 Basic concept . 23
4.3 Team positions in a 3 person team . 25

5.1 The computer does not understand human language 30
5.2 The principle of giving a computer an instruction it understands 31
5.3 The KIPR link controller (picture courtesy of KIPR) 32
5.4 The principle of giving a computer an instruction it understands combined with the

steps necessary on the computer and controller 33
5.5 The basic structure of a program . 34
5.6 The basic structure of the main function . 34
5.7 The area where the statements are written . 35
5.8 Syntax error in the KISS IDE (missing ; after the printf statement) 36
5.9 Syntax error in the KISS IDE (missing " after the Hello, World! – only one error but

many error messages) . 37
5.10 Syntax error in the KISS IDE (printf is written with a upper case P) 37
5.11 Using a function in contrast to a structural statement 39
5.12 The structure of a function call . 39
5.13 The structure of the wait_for_milliseconds function call 40
5.14 The motors of the robot (one attached to each wheel) 41
5.15 The structure of the mav function call . 42
5.16 The structure of the ao function call . 42
5.17 The design of the first movement program as a flowchart 43

123

5.18 Different velocities per wheel let the robot drive a curve 44
5.19 A negative number for the velocity parameter results in driving backwards 45
5.20 The scenario for challenge 1 . 46
5.21 The scenario for challenge 2 . 47
5.22 The scenario for challenge 3 . 48
5.23 Driving a square . 49
5.24 The definition of the function drive_straight . 53
5.25 Adding the prototype to the definition of the function drive_straight 54
5.26 The structure of calling of the function drive_straight 54
5.27 The calling of the function drive_straight 4 times within the main-function 55
5.28 The robot drives a wiggly line . 56
5.29 The robot drives a rectangle . 58
5.30 Declaring a parameter and using it within the function 59
5.31 The prototype must contain the parameter too . 60
5.32 The structure of calling drive_straight with parameter 60
5.33 The structure of calling drive_straight with parameter 61
5.34 The structure of calling drive_straight with parameter 63
5.35 A simple tool for clearing the mat . 64
5.36 The field of the clearing competition . 64
5.37 The motor-function for use with sensors . 66
5.38 How to call a function, which asks a sensor of its value 67
5.39 The internal process when asking a sensor of its value 68
5.40 How to call a function, which asks a analog sensor of its value 69
5.41 Driving until “we are there” . 70
5.42 Structure of the do-while-loop . 71
5.43 Structure of the do-while-loop . 72
5.44 Field for the find the spot competition . 73
5.45 Field for the find the spot competition . 73

6.1 Evaluation strategy to cover motivation and expertise of the students 77
6.2 The structure of the quantitative part of the evaluation 78
6.3 Number of students used in evaluating the expertise (students with interest in pro-

gramming and 3 evaluation sheets) . 81
6.4 Modified evaluation strategy to enhance significance 82
6.5 Student interest during the workshop . 82
6.6 Interest in pursuing a technical career at the begin and the end of the workshop . . 83
6.7 Overall grade results with different grading methods compared to exam results from

2011 and 2012 . 87

A.1 Selecting a new project to start . 93
A.2 Naming your project . 94
A.3 Choosing a template and naming your program 94
A.4 The KISS IDE with the “Hello, World!” example program 95
A.5 The KIPR link controller from the right (picture courtesy of KIPR) 95

124

A.6 Start screen of the KIPR link controller . 95
A.7 The back side of the KIPR link controller (picture courtesy of KIPR) 96
A.8 Starting the compiling with the “Compile” button 96
A.9 Selecting the via USB connected controller . 96
A.10 Showing all available programs on the controller 96
A.11 Running the first example program . 97
A.12 Selecting the Sensor List . 98
A.13 Deactivating the Pull-up . 98

125

List of Tables

5.1 Example for an 8-bit binary code . 30
5.2 Example for an ASCII encoding of characters . 30
5.3 Binary code for instructions . 31
5.4 Programming language instructions with binary code translation 32
5.5 Error scenarios the students should try and record 38
5.6 Operators usable for comparison . 71

6.1 Symbols used for evaluating interest statements 78
6.2 Statements used for assessing interest levels . 79
6.3 Questions used in multiple-choice and short answer parts of the exams 79
6.4 Attendance at the workshop . 80
6.5 Grading results . 86

127

Listings

5.1 Comment inside the main-function . 35
5.2 Two printf commands . 36
5.3 Greeting of three team members . 40
5.4 Slow greeting of three team members . 41
5.5 The design of the first move program written as comments 43
5.6 The complete first move program . 44
5.7 Driving a square - first try . 51
5.8 Driving a square - second try . 54
5.9 Driving a rectangle . 62
5.10 Asking a sensor for its value . 67
6.1 Program used for evaluation of understanding of functions with parameters . . 78

129

Acronyms

API application programming interface. 12, 20

COM component object model. 16

EV3 evolution 3 - the current version of the LEGO Mindstorms controller. 11

FAQ frequently asked questions. 12

IDE integrated development environment. 12, 13, 15, 16, 19, 26, 29, 32, 123

JVM Java virtual machine. 13

KIPR KISS institute of practical robotic. 14, 15

NXT next - the second version of the LEGO Mindstorms controller. 11, 12, 19

PC personal computer. 16

PRIA Practical robotics institute Austria. 75

RCX robotic command explorer - the first version of the LEGO Mindstorms controller. 11, 19

SE standard edition. 13

131

Bibliography

[1] Education in figures 2013/14 - key indicators and analyses. Statistik Austria, 4 2015.

[2] Edith Ackermann. Piaget’s constructivism, papert’s constructionism: What’s the differ-
ence. Future of learning group publication, 5(3):438, 2001.

[3] Dimitris Alimisis. Educational robotics: Open questions and new challenges. Themes in
Science and Technology Education, 6(1):pp–63, 2013.

[4] Dimitris Alimisis and Chronis Kynigos. Constructionism and robotics in education.
Teacher Education on Robotic-Enhanced Constructivist Pedagogical Methods, pages 11–
26, 2009.

[5] Heilo Altin and Margus Pedaste. Learning approaches to applying robotics in science
education. Journal of baltic science education, 12(3):365–377, 2013.

[6] James M Applefield, Richard Huber, and Mahnaz Moallem. Constructivism in theory and
practice: Toward a better understanding. The High School Journal, pages 35–53, 2000.

[7] Owen Astrachan, Kim Bruce, Elliot Koffman, Michael Kölling, and Stuart Reges. Re-
solved: Objects early has failed. In Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’05, pages 451–452, New York, NY, USA, 2005.
ACM.

[8] Frances Bailie, Mary Courtney, Keitha Murray, Robert Schiaffino, and Sylvester Tuohy.
Objects first - does it work? J. Comput. Sci. Coll., 19(2):303–305, December 2003.

[9] David J. Barnes. Teaching introductory java through lego mindstorms models. In Proceed-
ings of the 33rd SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’02, pages 147–151, New York, NY, USA, 2002. ACM.

[10] Mordechai Ben-Ari. Constructivism in computer science education. In Proceedings of
the Twenty-ninth SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’98, pages 257–261, New York, NY, USA, 1998. ACM.

[11] Fabiane Barreto Vavassori Benitti. Exploring the educational potential of robotics in
schools: A systematic review. Computers & Education, 58(3):978 – 988, 2012.

133

[12] Anders Berglund and Raymond Lister. Introductory programming and the didactic triangle.
In Proceedings of the Twelfth Australasian Conference on Computing Education - Volume
103, ACE ’10, pages 35–44, Darlinghurst, Australia, Australia, 2010. Australian Computer
Society, Inc.

[13] M. Beynon and C. Roe. Computer support for constructionism in context. In Advanced
Learning Technologies, 2004. Proceedings. IEEE International Conference on, pages 216–
220, Aug 2004.

[14] John D. Bransford, Ann L. Brown, Rodney R. Cocking, M. Suzanne Donovan, and
James W. Pellegrino, editors. How People Learn: Brain, Mind, Experience, and School:
Expanded Edition. National Academies Press, 2000.

[15] Charles M Brooks and Janice L Ammons. Free riding in group projects and the effects of
timing, frequency, and specificity of criteria in peer assessments. Journal of Education for
Business, 78(5):268–272, 2003.

[16] Kim B. Bruce. Controversy on how to teach cs 1: A discussion on the sigcse-members
mailing list. In Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, ITiCSE-WGR ’04, pages 29–34, New York, NY, USA, 2004.
ACM.

[17] Jim Bumgardner. The origins of mindstorms. Wired, 03 2007.

[18] David T Butterworth. Teaching c/c++ programming with lego mindstorms. In Proc. 3rd
Int. Conf. on Robotics in Education (RiE 2012), Prague, Czech Republic, pages 61–65,
2012.

[19] W. Campbell and E. Bolker. Teaching programming by immersion, reading and writing. In
Frontiers in Education, 2002. FIE 2002. 32nd Annual, volume 1, pages T4G–23–T4G–28
vol.1, 2002.

[20] Martin V. Covington. Goal theory, motivation, and school achievement: An integrative
review. Annual Review of Psychology, 51(1):171–200, 2000. PMID: 10751969.

[21] Azi Crawford. Botball programming. http://botballprogramming.org/.

[22] R. Czaja and J. Blair. Designing Surveys: A Guide to Decisions and Procedures. Research
Methods and Statistics Series. SAGE Publications, 2005.

[23] Nikolaos Detsikas and Dimitris Alimisis. Status and trends in educational robotics world-
wide with special consideration of educational experiences from greek schools. In Pro-
ceedings of the International Conference on Informatics in Schools: Situation, Evolution
and Perspectives, pages 1–12, 2011.

[24] eclipse foundation. eclipse.org. https://www.eclipse.org.

134

http://botballprogramming.org/
https://www.eclipse.org

[25] Festo. Festo - education and research robots: Robotino.
http://www.festo-didactic.com/us-en/products/
education-and-research-robots-robotino/, 2014.

[26] Sergey Filippov, Alexander L Fradkov, and Boris Andrievsky. Teaching of robotics and
control jointly in the university and in the high school based on lego mindstorms nxt. In
Actes 18th IFAC World Congress, Milan (Italie), pages 9824–9829, 2011.

[27] KISS Institute for Practical Robotics. Botball educational robotics program. http://
www.botball.org/, 2014.

[28] Sonia M Goltz, Amy B Hietapelto, Roger W Reinsch, and Sharon K Tyrell. Teaching team-
work and problem solving concurrently. Journal of Management Education, 32(5):541–
562, 2008.

[29] Matthias Hirschmanner, Lara Lammer, and Markus Vincze. Mattie: A simple educational
platform for children to realize their first robot prototype. In Proceedings of the 14th
International Conference on Interaction Design and Children, IDC ’15, pages 367–370,
New York, NY, USA, 2015. ACM.

[30] A.J. Hirst, J. Johnson, M. Petre, B.A. Price, and M. Richards. What is the best program-
ming environment/language for teaching robotics using lego mindstorms? Artificial Life
and Robotics, 7(3):124–131, 2003.

[31] Tony Jenkins. The motivation of students of programming. In Proceedings of the 6th
Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE
’01, pages 53–56, New York, NY, USA, 2001. ACM.

[32] Tony Jenkins. On the difficulties of learning to program. In Proceedings of the 3rd Annual
Conference on the Teaching of Programming, 2002.

[33] Pertti Kansanen and Matti Meri. The didactic relation in the teaching-studying-learning
process. Didaktik/Fachdidaktik as Science (-s) of the Teaching profession, 2(1):107–116,
1999.

[34] ElizabethR. Kazakoff, Amanda Sullivan, and MarinaU. Bers. The effect of a classroom-
based intensive robotics and programming workshop on sequencing ability in early child-
hood. Early Childhood Education Journal, 41(4):245–255, 2013.

[35] Michael Kölling and John Rosenberg. Guidelines for teaching object orientation with java.
In Proceedings of the 6th Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’01, pages 33–36, New York, NY, USA, 2001. ACM.

[36] Chronis Kynigos. Black-and-white-box perspectives to distributed control and construc-
tionism in learning with robotics. In Proceedings of SIMPAR workshops, pages 1–9, 2008.

135

http://www.festo-didactic.com/us-en/products/education-and-research-robots-robotino/
http://www.festo-didactic.com/us-en/products/education-and-research-robots-robotino/
http://www.botball.org/
http://www.botball.org/

[37] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties of
novice programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE ’05, pages 14–18, New York,
NY, USA, 2005. ACM.

[38] Pamela B. Lawhead, Michaele E. Duncan, Constance G. Bland, Michael Goldweber,
Madeleine Schep, David J. Barnes, and Ralph G. Hollingsworth. A road map for teaching
introductory programming using lego© mindstorms robots. In Working Group Re-
ports from ITiCSE on Innovation and Technology in Computer Science Education, ITiCSE-
WGR ’02, pages 191–201, New York, NY, USA, 2002. ACM.

[39] Lego. Home - mindstorms lego.com. http://mindstorms.lego.com.

[40] Lego. Lego mindstorms support. http://www.lego.com/en-us/mindstorms/
support.

[41] Yi-Guang Lin, Wilbert J McKeachie, and Yung Che Kim. College student intrinsic and/or
extrinsic motivation and learning. Learning and Individual Differences, 13(3):251 – 258,
2001.

[42] Marcia C. Linn and Michael J. Clancy. The case for case studies of programming problems.
Commun. ACM, 35(3):121–132, March 1992.

[43] Marcia C. Linn and John Dalbey. Studying the Novice Programmer, chapter 4. Cognitive
consequences of Programming Instruction. Lawrence Erlbaum Associates, 1989.

[44] L. Major, T. Kyriacou, and O.P. Brereton. Systematic literature review: teaching novices
programming using robots. Software, IET, 6(6):502–513, Dec 2012.

[45] Richard E. Mayer. Studying the Novice Programmer, chapter 7. The Psychology of How
Novices Learn Computer Programming. Lawrence Erlbaum Associates, 1989.

[46] Karolina Mayerová. Pilot activities: Lego wedo at primary school. In Proceedings of 3rd
International Workshop Teaching Robotics, Teaching with Robotics, pages 32–39, 2012.

[47] Dawn McKinney and Leo F. Denton. Developing collaborative skills early in the cs cur-
riculum in a laboratory environment. In Proceedings of the 37th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’06, pages 138–142, New York, NY, USA,
2006. ACM.

[48] Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St. Clair, and
Lynda Thomas. A cognitive approach to identifying measurable milestones for program-
ming skill acquisition. In Working Group Reports on ITiCSE on Innovation and Technology
in Computer Science Education, ITiCSE-WGR ’06, pages 182–194, New York, NY, USA,
2006. ACM.

[49] Orazio Miglino, Henrik Hautop Lund, and Maurizio Cardaci. Robotics as an educational
tool. Journal of Interactive Learning Research, 10(1):25–47, 1999.

136

http://mindstorms.lego.com
http://www.lego.com/en-us/mindstorms/support
http://www.lego.com/en-us/mindstorms/support

[50] Iain Milne and Glenn Rowe. Difficulties in learning and teaching programming - views of
students and tutors. Education and Information Technologies, 7(1):55–66, 2002.

[51] Oracle. Java for lego mindstorms ev3. http://www.oracle.com/technetwork/
java/embedded/downloads/javase/javaseemeddedev3-1982511.
html.

[52] Seymour Papert. Teaching children thinking*. Programmed Learning and Educational
Technology, 9(5):245–255*, 1972.

[53] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc., New York, NY, USA, 1980.

[54] Seymour Papert and Idit Harel. Situating constructionism. Constructionism, 36:1–11,
1991.

[55] Marian Petre and Blaine Price. Using robotics to motivate ‘back door’ learning. Education
and Information Technologies, 9(2):147–158, 2004.

[56] Poppy-team. Poppy project. https://www.poppy-project.org/, 2015.

[57] Ralph T. Putnam, D. Sleeman, Juliet A. Baxter, and Laiani K. Kuspa. Studying the Novice
Programmer, chapter 15. A Summary of Misconceptions of High School Basic Program-
mers. Lawrence Erlbaum Associates, 1989.

[58] REC-GmbH. Robotino documentation. http://doc.openrobotino.org/
documentation/OpenRobotinoApiHowTo/HTML/index.html, 2010.

[59] Stuart Reges. Back to basics in cs1 and cs2. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’06, pages 293–297, New York, NY,
USA, 2006. ACM.

[60] Mitchel Resnick. Distributed constructionism. In Proceedings of the 1996 International
Conference on Learning Sciences, ICLS ’96, pages 280–284. International Society of the
Learning Sciences, 1996.

[61] Mitchel Resnick, Robbie Berg, and Michael Eisenberg. Beyond black boxes: Bringing
transparency and aesthetics back to scientific investigation. Journal of the Learning Sci-
ences, 9(1):7–30, 2000.

[62] Eric Roberts. Strategies for encouraging individual achievement in introductory computer
science courses. In Proceedings of the Thirty-first SIGCSE Technical Symposium on Com-
puter Science Education, SIGCSE ’00, pages 295–299, New York, NY, USA, 2000. ACM.

[63] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13(2):137–172, 2003.

[64] ROBOTC.NET. Robotc.net: Home of the best robot programming language for educa-
tional robotics. http://www.robotc.net.

137

http://www.oracle.com/technetwork/java/embedded/downloads/javase/javaseemeddedev3-1982511.html
http://www.oracle.com/technetwork/java/embedded/downloads/javase/javaseemeddedev3-1982511.html
http://www.oracle.com/technetwork/java/embedded/downloads/javase/javaseemeddedev3-1982511.html
https://www.poppy-project.org/
http://doc.openrobotino.org/documentation/OpenRobotinoApiHowTo/HTML/index.html
http://doc.openrobotino.org/documentation/OpenRobotinoApiHowTo/HTML/index.html
http://www.robotc.net

[65] Natalie Rusk, Mitchel Resnick, Robbie Berg, and Margaret Pezalla-Granlund. New path-
ways into robotics: Strategies for broadening participation. Journal of Science Education
and Technology, 17(1):59–69, 2008.

[66] Marco Ruzzenente, Moreno Koo, Katherine Nielsen, Lorenzo Grespan, and Paolo Fiorini.
A review of robotics kits for tertiary education. In Proceedings of International Workshop
Teaching Robotics Teaching with Robotics: Integrating Robotics in School Curriculum,
pages 153–162, 2012.

[67] Elliot Soloway and James C. Spohrer, editors. Studying the Novice Programmer. Lawrence
Erlbaum Associates, 1989.

[68] Gary Stager. Papertian constructionism and the design of productive contexts for learning.
Proceedings of EuroLogo 2005, 2005.

[69] Gary S. Stager. A constructionist approach to teaching with robotics. Proceedings for
Constructionism 2010, 2010.

[70] Cathryne Stein. Botball: Autonomous students engineering autonomous robots. In Pro-
ceedings of the ASEE Conference, 2002.

[71] Florence R. Sullivan. Robotics and science literacy: Thinking skills, science process skills
and systems understanding. Journal of Research in Science Teaching, 45(3):373–394,
2008.

[72] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. Learning difficulties in program-
ming courses: Undergraduates’ perspective and perception. In Computer Technology and
Development, 2009. ICCTD ’09. International Conference on, volume 1, pages 42–46,
Nov 2009.

[73] Donna Teague and Paul Roe. Collaborative learning: Towards a solution for novice pro-
grammers. In Proceedings of the Tenth Conference on Australasian Computing Education
- Volume 78, ACE ’08, pages 147–153, Darlinghurst, Australia, Australia, 2008. Australian
Computer Society, Inc.

[74] Christopher Watson and Frederick W.B. Li. Failure rates in introductory programming
revisited. In Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education, ITiCSE ’14, pages 39–44, New York, NY, USA, 2014. ACM.

[75] H. Weinert and D. Pensky. Mobile robotics in education and student engineering competi-
tions. In AFRICON, 2011, pages 1–5, Sept 2011.

[76] A.B. Williams. The qualitative impact of using lego mindstorms robots to teach computer
engineering. Education, IEEE Transactions on, 46(1):206–, Feb 2003.

[77] Leon E. Winslow. Programming pedagogy - a psychological overview. SIGCSE Bull.,
28(3):17–22, September 1996.

138

[78] Christopher A. Wolters, Shirley L. Yu, and Paul R. Pintrich. The relation between goal ori-
entation and students’ motivational beliefs and self-regulated learning. Learning and Indi-
vidual Differences, 8(3):211 – 238, 1996. Special Issue: A Symposium on Self-Regulated
Learning.

[79] Tom Wulf. Constructivist approaches for teaching computer programming. In Proceedings
of the 6th Conference on Information Technology Education, SIGITE ’05, pages 245–248,
New York, NY, USA, 2005. ACM.

139

	Introduction
	Didactic methods and educational considerations
	Teaching programming
	Teamwork and collaborative learning
	Didactic methods
	Robotics in Education
	Summary

	Educational robotic systems
	Lego Mindstorms
	Botball
	Robotino
	Additional educational robotic systems
	Different approaches in educational robotics
	Summary

	Concept
	Context
	Existing curricula
	The Robot
	Basic concept

	Curriculum
	The Beginning
	Program structure
	Function calls
	Introduction of the first challenges
	Defining functions
	Functions with parameters
	The clearance competition
	Using sensors
	Loops
	The find the spot competition
	Summary and outlook

	Evaluation
	Method
	Results
	Discussion

	Conclusion
	Additional material
	Running a program on the controller
	Sensor screen

	workshop slides
	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

