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Kurzfassung
In den letzten Jahren wurden Teilchenbewegungen auf makroskopischer Ebene
beobachtet, die bislang nur aus der Quantenmechanik bekannt waren. Obgleich es
sich bei solchen Experimenten, wie sie von der Gruppe um Couder und Fort ausgeführt
wurden, um rein klassische Physik handelt, gelingt in einer Analogiebetrachtung eine
neuartige Beschreibung mikroskopischer Phänomene.

In dieser Arbeit wird mit Hilfe rein klassischer Mittel ein Modell des Boun-
cer–Walker Systems eines elementaren Teilchens konstruiert, das zugleich die alte
Idee de Broglies, des Welle-Teilchen Dualismus, widerspiegelt. Dieses Modell bein-
haltet einerseits eine mögliche Erklärung des Energieaustausches zwischen diesen
separierten Bewegungen und somit eine Begründung für die Energiequantelung wie
ursprünglich von Max Planck postuliert. Andererseits erlaubt das Modell die präzise
Ausführung der bohmschen Bewegungen in perfekter Übereinstimmung mit der
Quantenmechanik.

Zur Berechnung quantenmechanischer Teilchenbahnen im Ein- oder Mehrspalt-
system eignet sich die ballistische Diffusionsgleichung, eine spezielle Form der Dif-
fusionsgleichung mit zeitabhängiger Diffusivität. Dies macht es möglich, wie hier
gezeigt werden soll, den Zerfall eines gaußschen Wellenpakets auf elegante Weise zu
simulieren.

Mit diesen Instrumenten wird in dieser Arbeit schließlich eine Rechenvorschrift zur
Behandlung der auftretenden Ströme entwickelt, die äquivalent zur de Broglie–Bohm
Theorie bleibt. Damit lassen sich Talbot-Muster und die Talbot-Distanz für beliebige
Mehrspaltsysteme elegant reproduzieren.

Bei großen Unterschieden der Intensitäten in Doppelspaltexperimenten wird der
Strahl geringer Intensität nach außen gedrückt und trotz anfänglich senkrechter
Bewegung aus dem Spalt der Schirm seitlich von der Austrittsstelle getroffen. In
dieser Arbeit wird die seitliche Anordnung des Schirms als mögliche alternative
Messmethode untersucht.

Schließlich werden die mathematischen Simulationsverfahren, deren Limitierungen
und mögliche Erweiterungen vorgestellt. Entkoppelt von der Diffusion lässt sich die
Wirkung und somit die Phase als eine neue Quantität einer Gaußverteilung berechnen.
Für ein Mehrspaltsystem genügt es in Folge, die Phasen zu kombinieren um die
korrekte Intensitätsverteilung sowie die zugehörigen Wahrscheinlichkeitsströme zu
erhalten. Die Entkopplung erlaubt überdies die Berechnung variabler Spaltbreiten
sowie Phasenverschiebung auf einfache Weise.
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Abstract
In recent years particles’ trajectories have been observed at a macroscopic level
which had been associated with nothing but quantum mechanical theory before, even
though these experiments carried out by Couder and Fort’s group are purely classical
physics. By analogical considerations a new kind of description of microscopic
phenomena is possible.

With purely classical tools a model for a bouncer-walker system of an elementary
particle will be derived in this work which reflects the old idea of de Broglie’s particle-
wave duality. This model contains, on the one hand, a possible explanation of the
work-energy exchange between the two separated motions, thereby providing an
energy quantisation as originally postulated by Max Planck. On the other hand,
the system perfectly obeys the Bohmian-type law of motion in full accordance with
quantum mechanics.

For the calculation of elementary particles’ trajectories a ballistic diffusion equation
will be derived which is a special case of a diffusion equation with a time-dependent
diffusivity. Therewith the simulation of spreading of an elementary Gaussian is made
easy as will be shown herein.

With these tools one also accounts for Born’s rule for multi-slit systems and
develops a set of current rules that directly leads to a new formulation of the guiding
equation equivalent to the original one of the de Broglie–Bohm theory. As will be
shown in this thesis, this tool reproduces Talbot patterns and Talbot distance for an
arbitrary multi-slit system.

Moreover, the sweeper effect is shown to arise when the intensity relation of two
beams of a double-slit experiment exhibit a big difference. Then, the low-intensity
beam is pushed aside in a sense that its initial propagation straight out of the slit is
bent towards the side. A sideways screen as an alternative measurement method is
proposed.

At last, mathematical simulation tools as well as their limitations and possible
extensions are provided. Decoupled from the diffusion part the action and thus
also the phase can be calculated as a new quantity of each single Gaussian. Then,
for a multi-slit system a simple combination of these phases yields the correct
intensity distributions including the complete interference patterns as well as the
associated probability currents. The decoupling further allows for calculation of
setups comprising variable slit widths as well as phase shifting.
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Introduction
Fundamental quantum phenomena are the basis of modern technologies like in-
formation theory or cryptography, for example. Even in well settled fields like
semiconductor physics a deeper understanding is necessary, e.g., to scale circuits
down, make them more reliable, or even to replace them by newer technologies like
quantum circuits. Other topics in focus are quantum interference and quantum
coherence, but also nonlinear optical phenomena which are intensively discussed
nowadays. There are numerous possible applications of these results: Quantum
circuits, sensors, molecules, or, more related to this thesis’ field, the coherent control
of atomic motion or secure communication with entangled photons.

A macroscopic body’s motion is well understood in classical physics. At a micro-
scopic level, a particle’s motion is not yet completely understood. One may inquire
into the trajectories of these particles, as, for example, Bohm did before [BH93],
though the solutions therefore are widely spread in literature. Recently, averaged
trajectories of photons have been reported [Bli13; Koc11] which obey also the rules
of quantum mechanical theory.

A few years ago a French group around Yves Couder and Emmanuel Fort discovered
the existence of quantum-type rules at macroscopic level in practical experiments
using oil droplets bouncing on a vibrating oil bath [CF06; Edd09; For10; Pro06].
Investigations on those experiments showed that there is a kind of particle-wave
duality similar to the explanation of de Broglie [CF12; dBro60; Har13].

One aspect of this work is to adapt de Broglie’s particle-wave duality to microscopic
level in order to investigate the energy exchange so that a model for the interaction
between the particle and the wave can be specified. For simplicity, the description
is restricted to one-dimensional, nonrelativistic cases. At the beginning, a classical
particle behaves as a damped oscillator which also carries out a random motion
that is superposed to the oscillatory motion. The necessary conditions to keep both
motions alive will be shown and the energy balance will be derived. Accordingly,
these conditions are shown to enforce natural motions, i.e. moving particles, and even
accelerated ones being prevented of radiating. This adaptation has been published
in reference [Grö11b; Sch12].

Another aspect concerns the motion of those particles: While in literature [Hol82;
SM12] the quantum mechanical equations are solved, herein a different description of
a particle’s motion will be developed which also simplifies the numerical calculations
concerning the random motion carried out by the particle, its averaged motion
and also the trajectories of particles, their velocities and probability currents. By
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setting initial probability distributions right after a single slit, or even multiple
slits, the conditions of the decay of these distributions can be studied. It will be
shown that the decay obeys a ballistic diffusion which leads to an explanation of
interference effects, velocities and densities, and even to calculatory rules for the
probability distributions, and the associated probability currents. If the intensities of
two beams of a double-slit experiment provide big differences then the low-intensity
beam is swept aside, away from the high-intensity beam. It is suggested to record
the intensities at a screen perpendicular to the double-slit setup. Parts of this aspect
have already been shown in [Fus14; Grö10b; Grö12b; Grö15a; Mes13].

These two aspects are of course closely tied to each other since the particle’s
motion inherits the waves’ motion that itself influences the particle again, which has
also been referred to in further publications of our group [Grö10a; Grö11a; Grö12a;
Grö12c; Grö13; Grö14a; Grö14b; Mes12; Sch12].

A last aspect of the present work is the description of the numerical means to
simulate a particle’s motion. The mathematical background for the derivation and
calibration of simulation tools is provided. Furthermore, the limitations one is
confronted with when using these tools will be shown.

The theoretical framework presented herein has been worked out in tight coopera-
tion with all members of our group. Accordingly, this thesis contains parts of our
already published content, yet enhanced and completed to give a picture of what has
been developed so far. The numerical treatment of the second part as well as the
whole simulation procedure including programming has been worked out by myself.
The practicability of the derived framework is demonstrated herein with numerous
images obtained by these simulations.
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1. The fluid droplet picture adapted
to quantum mechanics

Inspired by the experiments of Couder and Fort’s group who show that
a macroscopic particle may both regularly oscillate in time with its
characteristic frequency and propagate irregularly in space, we distinguish
between these two types of motion and call the former bouncer and the
latter walker. We discuss this two-fold perspective of an individual
particle and discuss an analogous sub-quantum model simultaneously
characterized by regular periodic and stochastic motions, both of which
must, however, be comparable on the level of the work-energy expended
during a certain amount of time. We shall calculate the respective work-
energies for each aspect separately, afterwards they will be compared
during the same time-span.
We assume that phenomena of standard quantum mechanics like Planck’s
energy relation or the Schrödinger equation can be assessed as the prop-
erty of the vacuum combined with diffusion processes reflecting also a
stochastic nature. Thus we obtain the quantum mechanical results as an
averaged behaviour of sub-quantum processes. [Grö11b; Sch12]

1.1. The macroscopic fluid droplet
Masses and waves are well-known constitutive elements of classical physics. The idea
of the wave-particle duality had no equivalent on a macroscopic scale for a long time
until a small group of French physicists around Yves Couder [CF06; CF12; Cou05;
Cou10; Edd09; For10; Pro06] published experiments providing bouncing masses and
waves coupled tight, on the one hand, but being different objects on the other hand.
More curious is the fact that both, the waves and the bouncing masses comprised of
the same substance in those experiments,i.e. silicon oil.

Consider a coffee machine comprising a filter containing the coffee powder and a
glass pot where the finished coffee is collected at last. Every now and then a brown
coffee droplet goes down from the filter into the glass pot, falls on the surface of the
same liquid and disappears rapidly. Sometimes the droplet bounces back from that
surface for two or three times thereby leaving some waves on the surface. Everybody
knows that, however, the French scientists asked themselves how they could keep
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1.1 The macroscopic fluid droplet

the droplets bouncing for a longer time. Therefore, they replaced the static pot by a
vertically vibrating bath and the coffee by silicon oil because of its higher viscosity.
Surprisingly, the droplet kept bouncing without disappearing for a long time, even
in the order of hours or days.

Due to the vertical vibration of the bath, the characteristic acceleration thereby
being generated causes the droplet to bounce on the surface periodically. As the
droplet collides with the interface, it remains separated by a continuous air film.
Before this air film can break, the droplet lifts off again. At each successive bounce,
the droplet forms a surface wave which is thereby attenuated so that the force acting
on the droplet guides it towards the next surface point and so on. Couder and his
group then showed that by controlling the vibrating bath the droplets can be guided
along artificial paths reminiscent of quantum mechanics.

If those macroscopic experiments are able to reproduce – to a certain extent –
quantum mechanical experiments like diffraction of a single object or double-slit
interference, then at least it should be worth to investigate this mechanism peculiarly
with regard to quantum mechanical similarities. This has also been suggested by
other authors, for example by Brady and Anderson [BA14] or Richardson et al.
[Ric14]. In other words, consider the bouncing mass to be an elementary particle like
an electron or a neutron whose intrinsic oscillation generates and affects the wave-like
landscape around itself. Of course, this wave-like landscape has to be built up in an
underlying sub-structure of the vacuum, the sub-quantum medium, combined with
diffusion processes.

According to Couder’s experiments we distinguish between these two types of
motion and call them bouncer and walker, respectively. We discuss this two-fold
perspective of an individual particle and, after individual inspection, these two tools
will be compared, or coupled, respectively. We are interested in reproducing the
energy exchange and conservation between these two types of motion with respect to
well-known quantum mechanical principles. We assume that phenomena of standard
quantum mechanics like Planck’s energy relation or the Schrödinger equation can
be assessed as the emergent property of an underlying sub-structure of the vacuum
combined with diffusion processes reflecting also the stochastic parts of the zero-point
field, i.e. the zero-point fluctuations [CdlP12; dlPeñ14; Grö08; Grö09; Grö10b]. With
respect to an analogous sub-quantum model, then, this means that the zitterbewegung
is simultaneously characterized by regular periodic and stochastic motions, both
of which must, however, be comparable on the level of the work-energy expended
during a certain amount of time. We shall calculate the respective work-energies for
each aspect separately, afterwards they will be compared during the same time-span.
This will lead to requirements which have to be fulfilled by a such modelled quantum
mechanical system. Thus we obtain the quantum mechanical results as an averaged
behaviour of sub-quantum processes.
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1.2 A classical oscillator: The bouncer

1.2. A classical oscillator: The bouncer
We assume a system comprising two subsystems, the first one is a harmonic oscillator
and the second one undergoes a Brownian-type motion [Grö11b; Sch12]. To recall the
above-mentioned picture, one could consider Couder’s droplet: The droplet bounces
on a wave, thus the droplet itself represents the harmonic oscillator which, at the
same time, moves along together with a wave driven by the oscillations. Here, in a
first step, we focus on the harmonic oscillation of the first subsystem.

We can write down the following Newtonian equation of a classical forced oscillator
with friction (see any good textbook, e.g. [Dem06]) with one degree of freedom

mẍ+mω2
0x+ 2γmẋ = F0 cosωt. (1.1)

Equation (1.1) describes a forced oscillation of a mass m swinging around a centre
point along x(t). The resonant angular frequency is ω0 for the case m would swing
freely. Due to the damping/friction γ of the swinging particle, for periodic motion
there is a need for a locally independent driving force F0 cosωt.

The general solution of the inhomogeneous equation (1.1) comprises a general
solution of the homogeneous equation (the left hand side of Eq. (1.1)) plus a special
solution of the inhomogeneous equation. Accordingly, the general solution must be
of form

x(t) = r1e−γt cos(ω1t+ ϕ1) + r cos(ωt+ ϕ). (1.2)

After short calculation ω1 =
√
ω2

0 − γ2 appears as the frequency of the free damped
oscillation.

However, for t � γ−1 the amplitude r1e−γt of the first term vanishes, thus γ−1

plays the role of a relaxation time. The second term remains and represents a
stationary solution of Eq. (1.1),

x(t) = r cos(ωt+ ϕ). (1.3)

As we suppose the oscillator to be in a steady state we are only interested in the
stationary solution (1.3) further on. By substitution of (1.3) into (1.1) we find after
some calculations for the phase shift between the forced oscillation and the forcing
oscillation that

tanϕ = − 2γω
ω2

0 − ω2 , (1.4)

and for the amplitude of the forced oscillation

r(ω) = F0/m√
(ω2

0 − ω2)2 + (2γω)2
. (1.5)
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1.2 A classical oscillator: The bouncer

Next, we derive the work-energy Wbouncer of the stationary system for t � γ−1

and ω = ω0. From (1.3) we find for the kinetic energy of the harmonic oscillator that

Ekin = 1
2mẋ

2 = 1
2mω

2r2 sin2(ωt+ ϕ) (1.6)

and from (1.1) for the potential energy

Epot =
x∫

0

mω2
0x dx = 1

2mω
2
0x

2 = 1
2mω

2
0r

2 cos2(ωt+ ϕ). (1.7)

Therefore, the sum of the kinetic and the potential energy reads

E = Ekin(t) + Epot(t) = 1
2mẋ

2 + 1
2mω

2
0x

2

= 1
2mr

2
[
ω2 sin2(ωt+ ϕ) + ω2

0 cos2(ωt+ ϕ)
]

= 1
2mr

2
[
ω2 +

(
ω2

0 − ω2
)

cos2(ωt+ ϕ)
]

(1.8)

Generally, energy E oscillates for ω 6= ω0 whereas for ω = ω0 Eq. (1.8) reduces to

E
∣∣∣∣
ω→ω0

= 1
2mω

2
0r

2 = const. (1.9)

This means, the damped, forced system turns out to be stationary if it is driven at
the resonance frequency ω = ω0 of the free undamped oscillator.

For ω = ω0 we obtain the work-energy multiplying Eq. (1.1) with ẋ

mẍẋ+mω2
0xẋ = −2γmẋ2 + F0 cos(ω0t)ẋ (1.10)

which can also be written as

d
dt

(1
2mẋ

2 + 1
2mω

2
0x

2
)

= −2γmẋ2 + F0 cos(ω0t)ẋ. (1.11)

In parentheses on the left hand side one easily recognizes the sum of the kinetic and
the potential energy of Eq. (1.8) which is constant for a stationary solution (1.3),
which is why the l.h.s. of Eq. (1.11) equals zero. As Eq. (1.11) provides the power
balance of the forced oscillator, we identify the damping of −2γmẋ2 as the expended
power going off the oscillator to the bath, whereas, in turn, F0 cos(ω0t)ẋ represents
the power which is regained from the energy bath and applied back to the system.

6



1.2 A classical oscillator: The bouncer

We conclude that the driving force and the friction force have to cancel each other

F0 cos(ω0t) = 2γmẋ = −2γmω0r sin(ω0t+ ϕ). (1.12)

We get

F0 = 2γmω0r, ϕ = −π2 (1.13)

and thus

x(t) = r sin(ω0t), ẋ(t) = ω0r cos(ω0t), r = F0

2γmω0
. (1.14)

One can write down the net work-energy that is taken up by the bouncer during
each period τ = 2π

ω0
as

Wbouncer =
τ∫

0

F0 cos(ω0t)ẋ dt =
τ∫

0

2γmẋ2 dt

= 2γmω2
0r

2
τ∫

0

cos2(ω0t) dt = γmω2
0r

2τ = 2πγmω0r
2.

(1.15)

Let us recall that Wbouncer is the energy floating in one period from the energy
bath via the oscillator to friction energy. In addition, we have the constant energy
as mentioned in connection with Eq. (1.11) of the oscillator. Further on, we call this
constant energy Ebouncer, which is the energy (1.9) of the linear harmonic oscillator
whose mean energies are given by Eqs. (1.6) and (1.7) together with (1.14) by1

〈Ekin〉 = 〈Epot〉 = 1
4mω

2
0r

2, E = 〈Ekin〉+ 〈Epot〉 = mω2
0r

2

2 . (1.16)

In our work [Grö11b] we are concerned about the lowest energy of a harmonic
oscillator. From quantum mechanics we know that this lowest energy is ~ω0/2. In
order to bring this classical harmonic oscillator in a quantum mechanical context,
we request

Ebouncer := E = mω2
0r

2

2 = ~ω0

2 , (1.17)

where the symbol Ebouncer assigns the energy to the bouncer system. From Eq. (1.17)

1We shall use different symbols for mean values over space x, and mean values over time 〈x〉, if
not otherwise noted (see e.g. [Sch06]).
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1.3 Brownian motion of a particle: The walker

we immediately find that

mr2ω0 = ~. (1.18)

For the work-energy Wbouncer of Eq. (1.15) we get

Wbouncer = 2πγ~. (1.19)

In the generalized case of an N–dimensional space, we can separate each dimension
with the use of Eq. (1.3) and get for the oscillators’ amplitudes,

x1(t) = rx1 cos(ω0t+ φx1),
...

xN(t) = rxN cos(ω0t+ φxN ).
(1.20)

We obtain the work-energy during each single period τ by integrating over the N
components (1.20) and get

Wbouncer =
∫
τ

2γm(ṙ2
x1 + · · ·+ ṙ2

xN
) dt = Nγmω2

0r
2τ (1.21)

with

r2 = r2
x1 = . . . = r2

xN
. (1.22)

Assuming again (1.18), we can write down for any number N of dimensions that

Wbouncer = 2πNγ~. (1.23)

1.3. Brownian motion of a particle: The walker
After having discussed the first subsystem which fulfilled a harmonic oscillation, we
focus on the second subsystem which obeys a Brownian motion, embedded in an
environment comprising an energy bath with a white noise driving force (cf. [Cof04]).
The latter oblige the subsystem to undergo rapid and random movements due to
statistical independent kicks of random magnitude and direction.

The Brownian motion of a thus characterized particle, which we call a walker, is
then described by a Langevin stochastic differential equation with velocity u = ẋ, a
time-dependent stochastic force f(t), and friction coefficient ζ (c.f. [Sch06, chapter
8.1] and [Cof04; UO30]),

mu̇ = −mζu+ f(t), t ≥ 0 (1.24)

which describes stochastic processes which we investigate for t ≥ 0 only. Since the

8



1.3 Brownian motion of a particle: The walker

force f(t) is stochastic – and hence is the velocity stochastic – one has as usual for
the averages

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = φ(t− t′), (1.25)

where φ(τ) differs noticeably from zero only for intervals τ < τc. The correlation
time τc denotes the time during which the fluctuations of the stochastic force
remain correlated2. We are only interested in the Brownian-type motion of the
particle, therefore we restrict ourselves to τ � τc that further allows us to introduce
a coefficient λ that measures the strength of the mean square deviation of the
stochastic force, such that

φ(τ) = λδ(τ). (1.26)

One solves the Langevin equation with the help of the retarded Green’s function
G(t)

Ġ+ ζG = δ(t), G(t) = Θ(t)e−ζt (1.27)

with the Heaviside step function Θ(t) =
∫ t
−∞ δ(τ) dτ . Letting

u(t = 0) = u0 (1.28)

be the initial value of the velocity, one obtains

u(t) = u0e−ζt +
∞∫

0

dτ G(t− τ)f(τ)/m

= u0e−ζt + e−ζt
t∫

0

dτ eζτf(τ)/m.
(1.29)

Using this solution and the assumptions (1.25) we find for the mean value of the
velocity3

〈u(t)〉 = 〈u0〉︸ ︷︷ ︸
=u0

e−ζt +
t∫

0

dτ e−ζ(t−τ) 〈f(τ)〉︸ ︷︷ ︸
=0

/m = u0e−ζt, (1.30)

where no average is involved over the friction terms because they are constant
2Under the precondition that the collisions of the particles undergoing a Brownian motion are

completely uncorrelated, the correlation time is roughly equal to the duration of a collision.
[Sch06]

3The mean value 〈〉 can be understood either as an average over time or an average over an
ensemble at a fixed time, 〈x(t)〉 =

∫∞
−∞ xP (x, t) dx. For a stationary process the mean value is

constant because of P (x, t) = P (x) (see e.g. [BY07; Sch06]).
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1.3 Brownian motion of a particle: The walker

describing the averaged interaction of the system with the bath. Therefore, one does
not consider the average value of u(t), but instead that of its square,

〈
u2(t)

〉
=
〈
u2

0

〉
e−2ζt + 2e−2ζt

t∫
0

dτ eζτ 〈u0f(τ)〉︸ ︷︷ ︸
=0

1
m

+ e−2ζt
t∫

0

dτ
t∫

0

dτ ′ eζ(τ+τ ′) 〈f(τ ′)f(τ)〉 1
m2

= u2
0e−2ζt + e−2ζt

t∫
0

dτ
t∫

0

dτ ′ eζ(τ+τ ′)φ(τ − τ ′) 1
m2

= u2
0e−2ζt + λ

2ζm2

(
1− e−2ζt

)
t�ζ−1
−→ λ

2ζm2

(1.31)

where the velocity u0 at t = 0 is independent of and hence uncorrelated with the
random force f(t) and hence 〈u0f(τ)〉 = 〈u0〉 〈f(τ)〉 = 0. For t � ζ−1, the term
containing u0 becomes negligible, i.e. ζ−1 then plays the role of a relaxation time.
We require that our particle attains thermal equilibrium [Grö08; Grö09] after long
times so that due to the equipartition theorem on the sub-quantum level 4 the average
value of the kinetic energy becomes

〈Ekin〉 = 1
2m

〈
u2(t)

〉
t�ζ−1
−→ λ

4ζm =: Ezp, (1.32)

with Ezp being the average kinetic energy of the zero-point field. One can define the
Ezp per degree of freedom as 5

Ezp := kT0

2 (1.33)

with k being a constant equivalent to Boltzmann’s constant kB, and T0 denotes the
vacuum temperature in our scenario in close analogy to the usual thermodynamical
formalism.

4We assume the equipartition theorem to be the same and hence borrowed from classical statistical
mechanics.

5As we are probably at a length scale where the thermodynamical laws have not yet proven
valid, we stick to formally using Ezp. Surely, Eq. (1.33) is the sub-quantum analogon to the
thermodynamical expression kBT/2, however, as for today we neither know T0 nor the constant
k – unless it should turn out as identical to kB.
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1.3 Brownian motion of a particle: The walker

Next we derive the velocity correlation function

〈u(t)u(t′)〉 =
〈
u2

0

〉
e−ζ(t+t′) + e−ζ(t+t′)

t∫
0

dτ
t′∫

0

dτ ′ eζ(τ+τ ′) 〈f(τ)f(τ ′)〉 1
m2

+ e−ζ(t+t′)

 t∫
0

dτ eζτ 〈u0f(τ)〉︸ ︷︷ ︸
=0

+
t′∫

0

dτ eζτ 〈u0f(τ)〉︸ ︷︷ ︸
=0

 1
m

= u2
0e−ζ(t+t′) + e−ζ(t+t′)

t∫
0

dτ
t′∫

0

dτ ′ eζ(τ+τ ′)δ(τ − τ ′) λ
m2

= λ

2ζm2 e−ζ|t−t′| +
(
u2

0 −
λ

2ζm2

)
e−ζ(t+t′).

(1.34)

For t, t′ � ζ−1 one can neglect the last term in (1.34). Then, one obtains the mean
square displacement of x(t) by integrating (1.34) twice, assuming x(0) = 0, which
yields 6

〈
x2(t)

〉
=

t∫
0

dτ
t∫

0

dτ ′ λ

2ζm2 e−ζ|τ−τ ′| t�ζ−1
−→ λ

ζ2m2 t = 2Dt, (1.35)

with the diffusion constant

D = λ

2ζ2m2 = 2Ezp

ζm
. (1.36)

Next, we calculate the work-energy Wwalker of the stationary system. We remind
ourselves that we have to do with a steady-state system. Due to the friction ζ, there
exists a flow of (kinetic) energy into the environment. Consequently, there must also
exist a work-energy flow back into our system of interest. Therefore, we calculate
the averaged power by multiplying Eq. (1.24) by u = ẋ and obtain an averaged
power-balance equation

m 〈ẍẋ〉 = −mζ
〈
ẋ2
〉

+ 〈f(t)ẋ〉 . (1.37)

In contrast to Eq. (1.10) we are dealing with stochastic variables and thus we are
fine with averaged values for the power-balance. Even though, we assume in close
analogy to Eq. (1.10), that the average system’s energy being constant due to a
stationary state of the system. Therefore, the terms on the right hand side of

6We stress that even if we use the same character x as for the oscillating particle, now the meaning
is different: x(t) in section 1.2 signified a deterministic harmonic displacement of mass point m
in the case of an oscillating particle (bouncer), whereas x(t) now means a stochastic random
walk variable for the particle that carries out a Brownian motion of the walker.
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1.3 Brownian motion of a particle: The walker

Eq. (1.37) providing the power balance must cancel. This yields for the duration of
time τ the net work-energy of the walker

Wwalker =
∫
τ

mζ
〈
ẋ2
〉

dt =
∫
τ

mζ
〈
u2
〉

dt. (1.38)

Here, we want to ensure that the work-energy we shall obtain is comparable with
Eq. (1.19). Therefore, we choose the basic time interval τ = 2π/ω0 of the walker-
system the same as in Eq. (1.14) of the bouncer-system. Furthermore, as we are
dealing with a walker-system that obeys a stochastic motion, we have to work with
mean values to make all fluctuating contributions negligible due to averaging over
these statistical variations.

Inserting (1.32) into (1.38), we obtain

Wwalker = τmζ
〈
u2(t)

〉
= 2τζEzp. (1.39)

The work-energy for the particle undergoing Brownian motion can thus be written
as

Wwalker = 4π
ω0
ζEzp. (1.40)

Turning now to the N -dimensional case, the average squared velocity of a particle
is 〈

u2
〉

=
〈
u2
x1

〉
+ · · ·+

〈
u2
xN

〉
, (1.41)

with equal probability for each direction,
〈
u2
x1

〉
= · · · =

〈
u2
xN

〉
= 1
N

〈
u2
〉
. (1.42)

Accordingly, the average kinetic energy of a moving particle with N degrees of
freedom becomes

E(N)
zp = 1

2m
〈
u2
〉

= NEzp (1.43)

and thus〈
u2(t)

〉
= 2N Ezp

m
. (1.44)

Again, we note that Eq. (1.44) describes an energy equipartition which, however,
here relates to the sub-quantum level, i.e. to the vacuum temperature T0. It should
thus not be confused with the equipartition theorem as discussed, e.g. with respect
to blackbody radiation and the Planck spectrum.
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1.4 The walking bouncer

With the analogical explanation as for the one-dimensional case, we find for the
work-energy of the walker in N -dimensional space

Wwalker = mζ
∫
τ

[〈
u2
x1(t)

〉
+ · · ·+

〈
u2
xN

(t)
〉]

dt = mζ
∫
τ

〈
u2(t)

〉
dt. (1.45)

Inserting (1.44), we obtain

Wwalker = τmζ
〈
u2(t)

〉
= 2τζNEzp, (1.46)

which is N times the value of the one-dimensional case in Eq. (1.40). Therefore, the
work-energy for the particle undergoing Brownian motion can be written as

Wwalker = N4π
ω0

ζEzp, (1.47)

for the general case of N degrees of freedom.

1.4. The walking bouncer
Our model of a single-particle quantum system comprises a bouncer-system and
a walker-system. So far, we have analysed these two systems independently. Now
we construct an energy exchange mechanism for our model where we assume a
continuous energy flow from the bath to the oscillator, and vice versa. Accordingly,
the walker gains its energy from the heat bath via the oscillations of the bouncer–bath
system in N dimensions: The bouncer pumps energy to and from the heat bath via
the friction γ.

In the centre of mass frame, the system is characterized by a single degree of
freedom. However, in the N -dimensional reference frame of the laboratory, the
oscillation is not fixed a priori. Rather, possible exchanges of energy will be equally
distributed in a stochastic manner. Concerning the latter, the flow of energy is on
average distributed evenly via the friction γ in all N dimensions of the laboratory
frame. It can thus also be considered as the stochastic source of the particle moving
in N dimensions, each described by the Langevin equation (1.24).

Therefore, we recognize friction in both cases, as represented by γ and ζ, respect-
ively, to generally describe the coupling between the oscillator (or particle in motion)
on the one hand, and the bath on the other hand. Moreover, and most importantly,
during that flow, the averaged coupling of the bouncer can be assumed to be exactly
identical with the coupling of the walker. For this reason we directly compare the
results of Eqs. (1.23) and (1.47),

Wbouncer = Wwalker, (1.48)
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1.4 The walking bouncer

providing

2πNγ~ = N4π
ω0

ζEzp. (1.49)

Now, our single-particle quantum model consists of two parts, each of which
possesses a certain energy, which we expressed by Eqs. (1.17) and (1.32), respectively.
Even described by two different mechanisms, the bouncer-system and the walker-
system are still two different aspects of our assumed single-particle quantum model.
Therefore, the energy E of each system must be the same, being the minimum energy
of the single particle. We derived the energies of the sub-systems as

Ebouncer = mω2
0r

2

2 = ~ω0

2 (1.50)

being the energy of the bouncer and as

Ezp = kT0

2 (1.51)

being energy of the walker, respectively. Comparing these two equations yields

~ω0

2 = kT0

2 (1.52)

and hence the zero-point energy in terms of ~ω reads as

Ezp = ~ω0

2 . (1.53)

Substituting this result into Eq. (1.49) leads directly to

γ = ζ (1.54)

which means the bouncer and the walker are coupled with the same strength to the
ZPF bath, i.e. the friction coefficient for both the bouncer and the walker is identical.

For a quantitative derivation of the friction coefficients of both the bouncer and
the walker, we introduce the action function S(x, t) such that the total energy of the
whole system is given by

Etot(x, t) = −∂S(x, t)
∂t

. (1.55)

We need to specify that a quantum system’s total energy consists of the energy
of the system of interest (i.e., the particle with frequency ω0), and of some term
representing energy throughput related to the surrounding vacuum, i.e. effectively
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1.4 The walking bouncer

some function F of the heat flow ∆Q, [Grö08]

Etot(x, t) = E(ω0,x, t) + F [∆Q(x, t)] . (1.56)

The first term in Eq. (1.56) corresponds to a particle’s energy. The second term,
being equivalent to some kinetic energy, can be recast with the aid of a fluctuating
momentum term, δp, of the particle with momentum p, by

F [∆Q(x, t)] = (δp)2

2m . (1.57)

We consider as usual the momentum p of the particle as given by

p(x, t) = ∇S(x, t) = mv, (1.58)

noting, however, that this will not be the effective particle momentum yet, due
to the additional momentum coming from the heat flow, described by momentum
fluctuation of Eq. (1.57) as

δp = δ(∇S) = ∇(δS) := mu, (1.59)

where velocity u is assumed to be the same as in the Langevin equation (1.24). Our
task is now to find an adequate expression for δp from our central assumption, i.e.,
from an underlying nonequilibrium thermodynamics. To begin, we remember the
distinction between “heat” as disordered internal energy on one hand, and mechanical
work on the other: heat as disordered energy cannot be transformed into useful work
by any means. According to Boltzmann, if a particle trajectory is changed by some
supply of heat ∆Q to the system, this heat will be spent either for the increase of
disordered internal energy, or as ordered work furnished by the system against some
constraint mechanism, [Bol66]

∆Q = ∆Einternal + ∆Wconstraints. (1.60)

Now, in order to proceed in our quest to obtain an expression for the momentum
fluctuation (1.59) from our thermodynamical approach, we can again rely on a
formula originally derived by Ludwig Boltzmann. As mentioned above, Boltzmann
considered the change of a trajectory by the application of heat ∆Q to the system.
Considering a very slow transformation, i.e., as opposed to a sudden jump, Boltzmann
derived a formula which is easily applied to the special case where the motion of the
system of interest is oscillating with some period τ = 2π/ω0. Boltzmann’s formula
for periodic systems (A.50) relates the applied heat ∆Q to a change in the action
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1.5 Conclusions and perspectives

function (A.45) S =
∫

(Ekin − V ) dt, i.e., δS = δ
∫
Ekin dt, providing7

∆Q = 2ω0δS = 2ω0 [δS(τ)− δS(0)] . (1.61)

The gradient reads as

∇Q = 2ω0∇(δS), (1.62)

with abbreviation ∇(∆Q) =: ∇Q, which leads by using (1.59) to

mu = ∇Q2ω0
. (1.63)

As the friction force in Eq. (1.24) is equal to the gradient of the heat flux,

mζu = ∇Q, (1.64)

comparison of (1.63) and (1.64) together with (1.54) provides

ζ = γ = 2ω0. (1.65)

Note that with Eqs. (1.53) and (1.65) one obtains in any one dimension the expression
for the diffusion constant (1.36) as

D = 2Ezp

ζm
= ~

2m , (1.66)

which is exactly the usual expression for D in the context of quantum mechanics.

1.5. Conclusions and perspectives
In this chapter a new type of objects has been presented obeying the laws of
Newtonian mechanics which can exhibit simultaneously particle and wave properties.
As a prerequisite, classical non-equilibrium thermodynamics has been assumed, i.e. a
mechanism of stationary energy flow, which enables a work-energy exchange between
an oscillating bouncer and a stochastically driven walker. It has been shown that such
an exchange can be derived with two classical differential equations, the Newtonian
equation and the Langevin equation, together describing the two-fold perspective
of a single particle called the walking bouncer. Each of these equations contains a
friction factor, which has been shown to be equal for both equations, on the one
hand, and responsible for the coupling and hence the characteristic feature of the
transfer, on the other hand.

Both equations used, the Newtonian and the Langevin equation, are classical
7The period τ is assumed to remain constant during a change ∆Q.
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equations leading naturally to classical solution. To build a connection to the
quantum regime, the minimum energy of a quantum oscillator has been used to
introduce energy quantisation. Once applied this step, all used attributes turned
out to be equal to the ones known from quantum mechanics, especially the diffusion
constant.

The given picture leaves open which part, the bouncer or the walker, is the
sender of the energy transfer and which one the receiver of the exchanged energy,
respectively. Certainly, one could surely find an answer for macroscopic particles
when taking a close look at Couder’s experiments. However, one should not expect
to determine thereby an adequate answer for the mechanism translated into the
language of quantum mechanics as the model presented herein should rather be
considered a toy-model hopefully giving one a clue to find a precise mathematical
description of the whole system underlying quantum mechanics. In this sense, the
derived walking bouncer should be recognized as a model for further discussions on
how an object could act as a particle and a wave simultaneously, thereby replacing
the old fashioned picture of an object that could either act as a particle or a wave,
dependent on particular circumstances.

In the following chapters we will implicitly make use of such type of a particle,
even though the zitterbewegung, modelled by the stochastic movement of the walker,
will silently disappear in the mathematical description due to averaging processes.
This also means we shall leave here the level of stochastic description and turn
towards a phenomenological approach of a particle’s behaviour, i.e. the decay of a
Gaussian distribution.
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2. Probability distributions and
velocities

Following the same idea as in section 1.1, it should be worth to investigate
the mechanism of the microscopic picture of the fluid droplet in particular
with regard to underlying processes. Also, Bohmian theory gives an
answer to this question, however, with regard to the underlying diffusion
processes, we shall in fact find a different answer: In this chapter we
shall provide a completely different view of the diffusion process which
emerges out of uncorrelated Gaussian position distributions as well as
momentum distributions, with the spreading of the resulting wave packet
being characterized as a ballistic diffusion.
By introducing a slit setup which will serve as the main environment to
our investigations further on, it is sufficient to analyse one-dimensional
distributions only. In a further step, we shall derive the ballistic diffusion
equation which allows us the complete description of the spreading wave
packet.

2.1. Outline
Based on the results derived in chapter 1, we move now towards a phenomenological
approach of a particle’s behaviour. Therefore, we assume the particles to emerge from
a source one by one propagating through a slit, and finally hitting a screen becoming
visible, or being measured there. According to our discussion in chapter 1, we model
a system in which each single particle obeys the random motion of Brownian-type.
We draw conclusion from the measurement patterns of such experiments that in
the average of a sufficiently big number of single events we can assume smooth
trajectories thereby describing the influence of an underlying diffusion process. In
order to keep things simple, we always assume an aperture with whose edges the
particle’s interaction is negligible. Furthermore, we restrict our investigations to
Gaussian-shaped probability distributions only, as this is a function class widely
used in physical theory, which reproduces all the quantum measurements considered
herein. As a result, such a smooth diffusion process will turn out to be a ballistic
diffusion1.

1The term ballistic diffusion will be defined in chapter 2.5 by Eq. (2.25).
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2.2. The constituting setup
For the following, it will be helpful to let ourselves be guided by the picture provided
by the walkers2 introduced in chapter 1.3. For also with a walker, one is confronted
with a rapidly oscillating object, which itself is guided by an environment that also
contributes some fluctuating momentum to the walker’s propagation. In fact, the
walker creates waves surrounding the particle, and the detailed structure of the wave
configurations influences the walker’s path, just as in our approach the particle, both
absorbs heat from and emits heat into its environment, which can be described in
terms of momentum fluctuations.

If we imagine the bouncing of a walker in its fluid environment, the latter will
become excited or heated up wherever the momentum fluctuations direct the particle
to. After some time span – which can be rather short, considering the very rapid
oscillations of elementary particles – a whole area of the particle’s environment will
be modified by the throughput of energy in this way. Considering the electron, for
example, the fact that it bounces roughly 1021 times per second, with each bounce
eventually providing a slight displacement from the original path’s momentum, one
can thus understand the area filling capacity of any quantum path.

Now, let us assume we have a source of identical particles, which are prepared in
such a way that each one ideally has an initial (classical) velocity v moving towards
a slit-setup containing at least one aperture. The latter is assumed to be formed with
unsharp edges to avoid diffraction effects to good approximation. This slit-setup will
be passed by one particle at a time, as usual in quantum mechanical experiments,
thereby generating a probabilistic distribution of particle locations in the course of
time which is the subject of our investigation. Therefore, our model describes the
evolution of said locations from right after the slit towards a screen (or even beyond)
which allows us to develop and explain the mechanisms of the particle’s motion.

At this point we want, however, to point out the difference to Bohmian theory
(see, e.g., Bohm and Hiley [BH93], Holland [Hol93], or Sanz and Miret-Artéz [SM12;
SM14]), which also describes the above-mentioned particle path between a slit and a
screen: The subject of our model is the description of the influence of an assumed
sub-quantum medium on the velocities along the averaged trajectories and the
probability currents3 in the domain between the slit(s) and the screen. In the mean
of a vast number of particles our description converges to Bohm’s one. As will be
shown in this chapter, we do not provide a single particle’s path as the outcome of a
single experiment because the underlying (sub-quantum) environment is of statistical
nature, similar to a classical Brownian motion. Accordingly, our model does not
predict single-particle trajectories, instead, the Bohm-type motion emerges from our
model as smoothed out motions of a vast number of single-particle’s statistical hence

2Although the fluid droplet model includes both, a bouncer and a walker, we consider it a single
system due to the tight coupling. We prefer to point out the walker facet of the duality as this
aspect suits better to ones understanding of the propagating particle.

3On the definition of probability currents see chapter 3.2.
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erratic motions.
Even if we let the particles emerge one at a time only, the local probability density

P right after the slit is assumed to be a Gaussian one. This comes along with a heat
distribution generated by the oscillating particle, with a maximum at the centre of
the aperture x0. To keep things simple, we describe the Gaussian decay as a function

x y

z

Figure 2.1.: Setting of a single-slit experiment in three dimensions with sketched
spreading on an exemplary layer

of its distance y straight ahead from the slit (cf. Fig. 2.1). Even more, we connect
the y-axis with time t by a constant velocity,

y (t) = ~kyt
m

= vyt (2.1)

with wave-vector ky in y-direction and mass m. The idea behind this constant velocity
vy is that the incident sub-quantum wave before the slit-setup can be considered a
plane wave which is cut by the slits into smaller parts continuing their propagation
with the same, hence constant, velocity vy. Any tentative propagation of the Gaussian
shape orthogonal to said straight motion, i.e. a side motion into x-direction, will be
compensated by an Ehrenfest motion later on by replacing x0 → x0 + vxt, i.e. an
additive motion of the Gaussian centre along the x-axis (cf. Fig. 2.5).

According to the chosen setup, the Gaussian shape broadens only along the x-axis.
There is no spreading along the direction of its propagation because of the assumed
steady heat flow from the particle’s origin which is usually an oven in a fixed position
far from the slit-setup in the negative y-direction. Further, there is also no spreading
in the z-direction which is also the extent of the slit. A thus assumed spreading of
a Gaussian in a plane along the z-direction is compensated by the spreading of a
neighboured plane, as sketched out in Fig. 2.2, settled directly above or below of
the current one, respectively, because of equal conditions in neighbouring plane. For
simplicity, we neglect the impact of the slit’s edges and assume for our inquest a
sufficiently large distance from the upper and lower borders, too.

All problems treated in this thesis contain a Gaussian intensity dispersion appear-
ing right behind the slit. The dispersion is assumed to be an ideal Gaussian function
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x y

z

Figure 2.2.: Setting of a single-slit experiment in three dimensions with Bohm-type
trajectories sketched on different layers

not being refracted at the slit’s edges. Furthermore, the Gaussian extends along the
whole x-direction, i.e. the Gaussian function is not cut by the slit it runs through, as
indicated in Fig. 2.1 by the left most shape not cut by the slit. Thus one does not
need to consider phase-free spaces along any light-cone-like structures which would
arise otherwise.

In our model, the sub-quantum medium is the mediator between the vacuum
energy and the particle itself. When said sub-quantum medium is excited, i.e. heated
up by the oven, it builds immediately a landscape in the oven’s surrounding which
includes the setup comprising the slit(s) and the screen. In terms of an effective
theory, the particle, once sent out by the oven, propagates on average along these
trajectories which are already embedded in said landscape. “On average” means
that the particle’s propagation is most likely as described, but in a statistical sense.
However, as discussed before, the path of a unique particle may be completely
different.

In other words, when handling the particles’ propagations, we make use of the
probabilistic view in that we cannot describe the trajectory of a single particle but
instead have a probability density P (x, t) to find the particle within the interval
[x, x + dx] at time t. Even though, quantum mechanics is already a tool to find
solutions of probability density P (x, t) for given setups, i.e. in the example before, the
outcome P (x, t) of the measurement at a screen being at a distance from a slit where
the particles passed through, it lacks a deeper level explanation of this outcome.

2.3. Orthogonality relations and fluctuations
In chapter 1 we have distinguished two velocities: The osmotic velocity u (1.59)
and the diffusive velocity v (1.58). They have already been provided in textbooks,
e.g., Holland [Hol93], however, herein we will sketch the concise path provided by
Grössing [Grö04]. Therefore, within the scope of this single chapter, we extend the
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coordinate x to it’s three-dimensional equivalent, x, in order to describe orthogonality
relations correctly.

We demand a Gaussian-shaped probability density P (x, t) to obey particular
requirements, namely the normalization (B.1) such that the integration over the
whole domain x yields 1,∫

t=const.

P (x, t) d3x = 1, (2.2)

and the continuity equation

∂P (x, t)
∂t

= −∇ · (vP (x, t)) (2.3)

with the velocity v(x, t) along the trajectory derived from a classical action function
S(x, t) by

v(x, t) = p
m

= ∇S(x, t)
m

. (2.4)

From the assumed uniqueness and differentiability of S(x, t) follows that the paths
don’t cross each other. These paths correspond to particle trajectories orthogonal to
surfaces (wave fronts) with constant action function S(x, t), as sketched in Fig. 2.3.

Figure 2.3.: Surfaces of constant action function S(x, t) representing wave fronts,
with orthogonal particle trajectory. Courtesy Gerhard Grössing [Grö04]

The example of Fig. 2.3 is but a particular one. In accordance with Huygens’
principle, another wide-spread example is given by spherical wave surfaces. Here,
the surface is initially concentrated at a point and then expands in a series of closed
surfaces, such that the motion can be compared to that of a shock wave emanating
from a “disturbing” point of a surface, i.e., as a travelling wave front (Fig. 2.4).

To emphasise the orthogonality between a particle trajectory and a wave front,
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2.3 Orthogonality relations and fluctuations

Figure 2.4.: Schematic distinction of classical Hamiltonian flow (left) and quantum
flow (right). The dotted lines in the figure on the right indicate symbolically that
the waves pictured represent only the local surroundings of a generally extending
probability field, thus illustrating that the fluctuations shown are to be seen in the
context of the whole embedding environment. Courtesy Gerhard Grössing [Grö04]

we, firstly, restrict ourselves to considering the stationary state of constant flow only,
such that the l.h.s. of Eq. (2.3) is equal to zero. Then dividing by P we get

∇ · v = −∇P
P
· v. (2.5)

In general, however, Eq. (2.5) is an expression for the non-conservation of momentum
p = mv.

Secondly, we observe that the classical, so-called Hamiltonian flow (i.e. of incom-
pressible fluids) given by

∇ · v = 0

is only obtained if the r.h.s. of Eq. (2.5) vanishes, too, i.e.

∇P
P
· v = 0. (2.6)

Thus, unless trivially ∇P = 0, the Hamiltonian flow can also be characterized by
two orthogonal vectors, the vector v = ∇S/m as of Eq. (2.4), u = ∇(δS)/m as of
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2.3 Orthogonality relations and fluctuations

Eq. (1.59) and the vector

∇P
P

=: const · u = const · ∇(δS)
m

, (2.7)

which can also be set as proportional to a velocity u. In fact, the totality of all
vectors u = ∇(δS)/m orthogonal to v represents the velocity field of the spherical
wave fronts which can be considered to permanently emanate from the particle as
Huygens waves. Using as a result from Grössing [Grö04] that

∆Q
kT

= 2ωδS
~ω

, (2.8)

where we used relations (1.52) and (1.61) which fulfil the requirement of equal kinetic
energies4 as discussed in chapter 1, we obtain the relation between the momentum
variation δp (1.59) and the probability distribution P as

δp(x, t) = mu(x, t) =: ~ku(x, t) = ∇(δS(x, t)) = −~
2
∇P (x, t)
P (x, t) , (2.9)

where ku denotes the wave vector associated to the osmotic velocity u.5 Combining
with Eq. (1.59) and using Eq. (B.15) we find for the osmotic velocity

u(x, t) = − ~
2m
∇P (x, t)
P (x, t) = − ~

2m∇ lnP (x, t). (2.10)

By setting Eqs. (2.5) and (2.7) we found an orthogonality condition for the velo-
cities v and u which, however, is valid for a classical Hamiltonian flow. Considering
additional fluctuations as discussed by the bouncer–walker model, we shall demand
less stringent requirements, namely the vanishing of Eq. (2.5) on average,6

∇ · v = −∇P
P
· v = 0, (2.11)

as shown in Fig. 2.4. The essential difference is given by a vanishing divergence of the
velocity of the probability current, ∇·v = 0, in the Hamiltonian flow, whereas in the
quantum flow the average over fluctuations and positions of the average divergence
be identical to zero (Eq. (2.11)).

4Let us here repeat the note in context with Eq. (1.33): Although we are probably at a length
scale where the thermodynamical laws have not yet proven valid, we use Eq. (1.52) as the
sub-quantum analogon to the thermodynamical expression kBT/2. However, as for today we
neither know T nor the constant k – unless it should turn out as identical to kB.

5The r.h.s. of Eq. (2.9) is readily confirmed by insertion of the r.h.s. of Eq. (2.8) into (2.9).
6The mean value (·) can be understood either as an average over space or an average over an

ensemble at a fixed position, a(x) =
∫∞
−∞ aP (x, t) dx. For a stationary process the mean value

is constant because of P (x, t) = P (t) (see e.g. [BY07; Sch06]).
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2.4 From classical phase-space distributions to quantum mechanical dispersion

The consequences on the averaging process as provided in uv = 0 (2.11) are
explicated by Grössing [Grö04] and later on by our group [Grö10b] in much deeper
detail. In the latter, we also derived quantum mechanical dispersion as a consequence
of this averaging process.

2.4. From classical phase-space distributions to
quantum mechanical dispersion

In accordance with the classical model, we shall now relate it more directly to the
walker-bouncer analogy gleaned from Couder and Fort [CF12]. For, as shown, e.g., in
Holland [Hol93] or Elze [Elz11], one can construct various forms of classical analogies
to quantum mechanical Gaussian dispersion. The two mechanisms may refer to
an early idea of de Broglie [dBro60] to model quantum behaviour by a two-fold
process, i.e. by the movement of a hypothetical point-like singularity solution of
the Schrödinger equation, and by the evolution of the usual wave function that
would provide the empirically confirmed statistical predictions. Recently, Couder
and Fort [CF12] have used this ansatz to describe the behaviour of their bouncer
droplets: On an individual level, one observes particles surrounded by circular waves
they emit through the phase-coupling with an oscillating bath, which provides, on
a statistical level, the emergent outcome in close analogy to quantum mechanical
behaviour like, e.g., diffraction or double-slit interference. [Mes13]

In the context of the double solution idea, which is related to correlations on a
statistical level between individual uncorrelated particle positions x and momenta p,
respectively, we consider the free Liouville equation for the probability distribution
function f(x, p, t) in phase-space of a mechanical system

∂f

∂t
+

3∑
i=1

pi
m

∂f

∂xi
−

3∑
i=1

∂V

∂xi

∂f

∂pi
= 0 (2.12)

with potential V and mass m. Here, we return to the one-dimensional description
which is sufficient for further investigations. Liouville’s equation (2.12) implies the
continuity equation in phase-space and has the property that precise knowledge of
initial conditions is not lost in the course of time. That is, it provides a phase-space
distribution f (x, p, t) that shows the emergence of correlations between x and p
from an initially uncorrelated product function of non-spreading (classical) Gaussian
position distributions as well as momentum distributions,

f0 (x, p) = 1
2πσ0π0

e−x
2/2σ2

0 e−p
2/2π2

0 , (2.13)

where σ0 = σ(t = 0), and π0 := mu0 are the half-widths in space and momentum,
respectively. The general solution of the free Liouville equation (2.12) for the case
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2.4 From classical phase-space distributions to quantum mechanical dispersion

where the particles in the ensemble all have an initial velocity p/m at vanishing
potential, V = 0, is

f (x, p, t) = f0(x− pt/m, p), (2.14)

inserting Eq. (2.13) reads

f (x, p, t) = 1
2πσ0mu0

e−(x−pt/m)2/2σ2
0 e−p

2/2m2u2
0 . (2.15)

The probability density in x-space is given by

P (x, t) :=
∫
f dp = 1√

2π σ(t)
e−x

2/2σ2(t) . (2.16)

whereby the integration has been carried out by completing the square of p in
Eq. (2.15). As a result, we find the variance at time t given by

σ2(t) = σ2
0 + u2

0 t
2. (2.17)

By superposition of the constant-width Gaussians with a moving centre we obtain
the spreading Gaussian distribution with variance (2.17) which obviously reflects the
fact that faster particles move further in a given time interval.7

The stochastic process described by the Langevin equation (1.24) involves mo-
mentum fluctuations δp = mu, now described by the momentum distribution in
Eq. (2.13). Therefore, in u0 as defined in Eq. (1.28) we have a connection to our
walker model. This means that u0 is related to the sub-quantum medium and hence
to the particle’s mass m revealed by the definition of the walker in Eq. (1.24). The
half-width σ0 is in turn tightly related to the slit-width as will be discussed later in
chapter 5.5. Nonetheless, the half-widths σ0 and π0 of the distribution (2.13) are
uncorrelated. On the other hand, according to the usual picture for dispersion (2.17)
there actually is an initial spread of velocities u0 = π0/m. According to the minimal
uncertainty principle8 the scale of the fluctuations of σ0 and π0 is given by ~ via

∆x∆p = σ0π0 = ~
2 . (2.18)

7We shall use the fact that the Gaussian shape remains a Gaussian in chapter 2.6 by replacing
x→ x− vxt, vx = const.

8See also Bohm and Hiley [BH93, p. 46] who point out the fact that eventually the width of
the packet corresponds to the spread of distances covered by the particles which is in turn
determined by the spread of velocities which is equal to ∆v; velocity v being well-defined in the
causal interpretation.
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2.5 Derivation of the time-dependent diffusion equation

Using π0 = mu0, the diffusion constant (1.66), D = ~/2m, and Eq. (2.18) yields

u0 = D

σ0
. (2.19)

This leads, by substituting Eq. (2.19) into (2.17), to

σ2(t) = σ2
0

(
1 + D2t2

σ4
0

)
(2.20)

which explicitly contains σ0 as an expression for the given slit which determines σ0.
The properties of the particle are yet given by the constant D = ~/2m.

2.5. Derivation of the time-dependent diffusion
equation

In section 2.4, the probability density P (x, t) is modelled Gaussian shaped. For this
class of functions we can now investigate a generalized diffusion equation with a
time-dependent diffusion coefficient (cf. [Mes12; Mes13]). Therefore, we make an
ansatz for a more general relationship of diffusion equations,

∂P

∂t
= ktα

∂2P

∂x2 , (2.21)

with factor alpha, 0 ≤ α ≤ 2, determining the type of diffusion, e.g., α = 0
reduces (2.21) to the usual heat equation (cf. [Bol10]). Factors t and k denote the
time and a constant factor, respectively. We ask for possible values of k and α.

Inserting P (x, t) of Eq. (2.16) as a known solution into Eq. (2.21) yields

Pσ̇

σ

(
x2

σ2 − 1
)

= ktα
P

σ2

(
x2

σ2 − 1
)
, (2.22)

and by integrating the simplified equation (2.22), σ̇σ = ktα, we find

σ2 = 2k t
α+1

α + 1 + c0. (2.23)

A comparison of Eq. (2.20) and (2.23) yields c0 = σ2
0, α = 1, and

k = D2

σ2
0
. (2.24)
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2.6 Spreading of the wave packet

Finally, inserting this result into Eq. (2.21) leads to

∂P

∂t
= D2t

σ2
0︸ ︷︷ ︸

Dt

∂2P

∂x2 , (2.25)

where one immediately recognizes the time-dependent diffusion coefficient

Dt(t) = D2

σ2
0
t = u2

0 t = ~2

4m2σ2
0
t, (2.26)

which, because of its linearity of time t, gives Eq. (2.25) the name ballistic diffusion
equation. This condition is only fulfilled by α = 1, which is the only possible diffusion
equation whose solution has the form (2.16).

If the diffusion depends on space, one has to deal with a diffusion coefficient
Dt(x, t), and thus

∂P

∂t
= ∂

∂x

(
Dt(x, t)

∂P

∂x

)
. (2.27)

However, this is not in the scope of this thesis, though the handling of space-dependent
diffusion equations can be found in, e.g., the textbook of John C. Strikwerda [Str04].

2.6. Spreading of the wave packet
Now we generalize the discussion of chapter 2.4 as mentioned in the footnote on
page 26 and add the displacement9 x−vt to the Gaussian distributions of Eqs. (2.15)
and (2.16). The easiest way to follow the decay in the evolution of time is to observe
a point with distance ξ(t) from the centre of the Gaussian shape (see Fig. 2.5) defined
by

ξ(t) = ξ(0)σ(t)
σ0

(2.28)

with

σ(t)
σ0

=
√

1 + D2t2

σ4
0

(2.29)

9The particle moves with velocity vy = const. which is not relevant to this one-dimensional
examination. The optional additive, constant motion along the x-axis is depicted by v for short.
Accordingly, v = vx = const., otherwise noted.
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2.6 Spreading of the wave packet

being the dispersion (2.20) of the wave packet. Due to definition (2.28) the probability

vt+ξ(t)∫
vt

P (x, t) dx (2.30)

is time-independent.
In Fig. 2.5 the spreading according to Eq. (2.28) is sketched.

0 x

t
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m

m
et

ry
lin

e

t1
t2

tk

x0

xξ0tot(t)

vt ξ(t)

xtot
ξ(0)

Figure 2.5.: Bohm-type trajectories for a quantum particle with initial Gaussian
distribution exhibiting the characteristics of ballistic diffusion

The functional relationship (2.30) is clearly valid for the particular point ξ(0) = σ0
which, substituted into (2.28), leads immediately to ξ(t) = σ(t), and hence the
evidence that this particular point follows the variance of the decaying Gaussian.
However, the relation ξ(t) ∝ σ(t) is, for all starting points ξ(0), always true as the
Gaussian remains a Gaussian but broadens during decay for all t > 0, which is
reflected in Eq. (2.30).

As the packet spreads according to Eq. (2.29), ξ(t) describes the result of the
average motion along a trajectory of a point of this packet that was initially at
ξ(0). Depending on the initial value of |ξ(0)|, i.e. the distance from x0 of the initial
centre point of the packet, said spreading happens faster or slower. In our model
picture, this is easy to understand: For a trajectory exactly at the centre of the
packet, xtot(t) = x0 + vt⇔ ξ(0) = 0, the momentum contributions from the heated
up environment on average cancel each other for symmetry reasons. However, the
further off a trajectory is from that centre, the stronger this symmetry will be broken,
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2.6 Spreading of the wave packet

i.e. leading to a position-dependent net acceleration or deceleration, respectively,
or, in effect, to the decay of the wave packet. The actual decay of the wave packet
starts, roughly spoken, at a time tk, indicated by a kink in Fig. 2.5 which is due
to the squared time-behaviour in Eq. (2.29). By dividing the trajectories at tk into
two time domains, one can see its behaviour for t� tk, where ξ(t) ∝ ξ(0) = const.,
and t� tk, where ξ(t) ∝ t – and hence ballistic: The propagations described by ξ(t)
are linear in both domains just kicked off to either side from the symmetry line (see
Fig. 2.5).

From Fig. 2.5 we find xtot(t) = x0 + vt+ ξ(t). Without loss of generality we set
x0 = 0 further on. With the use of Eq. (2.28) we obtain

xξ0
tot(t) = vt+ ξ(t) = vt+ ξ(0)σ(t)

σ0
= vt+ ξ(0)

√√√√1 + u2
0t

2

σ2
0
. (2.31)

In our model picture, xξ0
tot maps time t to the position of the smoothed out trajectories,

i.e. those averaged over a very large number of Brownian motions.
Moreover, one can now also calculate the average total velocity field of a Gaussian

wave packet as

vξ0
tot(t) = dxξ0

tot(t)
dt = v + ξ(0) u2

0t/σ
2
0√

1 + u2
0t

2/σ2
0

, (2.32)

which describes the velocity vξ0
tot of a point along a trajectory at time t.

Finally, we derive the average total acceleration field of a Gaussian wave packet is

aξ0
tot(t) = dvξ0

tot(t)
dt = ξ(0) u2

0/σ
2
0√

(1 + u2
0t

2/σ2
0)3

, (2.33)

describing the acceleration of a point along the trajectory at time t. Eqs. (2.31)
to (2.33) allow us to calculate the quantities along a trajectory only out of a given
starting point, indicated by ξ(0).

Actually we are interested in the dynamics at any given position (x, t) directly.
Using

ξ(t) = x− vt (2.34)

and Eq. (2.28) we rewrite

ξ(0) = x− vt√
1 + u2

0t
2/σ2

0

(2.35)
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2.7 Conclusions and perspectives

which leads to the generalized fields,

xtot(x, t) = x, (2.36)

vtot(x, t) = v + ξ(t) u2
0t/σ

2
0

1 + u2
0t

2/σ2
0

= v + (x− vt) u2
0t

σ2(t) , (2.37)

atot(x, t) = ξ(t) u2
0/σ

2
0

(1 + u2
0t

2/σ2
0)2 = (x− vt) u

2
0σ

2
0

σ4(t) , (2.38)

which will be used in the simulations.
Eqs. (2.31) to (2.38) provide the trajectory distributions and the velocity field of

a Gaussian wave packet as derived solely from classical physics. The trajectories
here only represent the averaged behaviour of a statistical ensemble, i.e. averaged
over many single trajectories of ballistic diffusion assuming Eq. (2.18), i.e. a relation
between the initial spatial and momentum distributions. The results are in full
accordance with quantum theory, and in particular with Bohmian trajectories (see,
for example, Holland [Hol93] or Sanz [SM08], or the figures for the Gaussian wave
packet example of von Bloh [vBlo10], which are in excellent agreement with our
Fig. 2.6). This is so despite the fact that neither a quantum mechanical wave function,
nor the Schrödinger equation, nor a guiding wave equation, nor a quantum potential
has been used yet.

Fig. 2.6 provides a graphic representation of Eq. (2.31) for an exemplary set of
trajectories. Considering the particles of a source as oscillating bouncers, they can
be shown to heat up their – generally nonlocal – environment in such a way that the
particles leaving the source are guided through the thus created thermal landscape.
In the Fig. 2.6, the classically simulated evolution of exemplary averaged trajectories
is shown.

The figures show results of simulations with coupled map lattices (cf. section 5.2.1)
of classical diffusion and a time-dependent diffusivity as given by Eq. (2.26). Two
examples are shown, with different half-widths of the initial Gaussian distribution,
respectively: space-time diagrams, providing the intensity field with time development
from bottom to top and averaged trajectories in agreement with Eq. (2.31). In
Fig. 2.6(a), the initial σ0 is half the value in Fig. 2.6(b). Note that the narrower the
Gaussian distribution is concentrated initially around the central position, the more
the thus stored heat energy tends to push trajectories apart.

2.7. Conclusions and perspectives
As a follow-up of chapter 1, the constituting single-slit setup has been introduced in
this chapter. A distant oven has been supposed to be the particle source for the later
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2.7 Conclusions and perspectives

experiment. Before a particle ever drops out of the oven and would be taken into
account, a continuously emitted energy wave, borne by the sub-quantum medium,
has been assumed to be produced by the oven. The wave itself, when reaching the
setup, has been approximated by a plane wave being cut-out and sliced when passing
the slit. Immediately after the slit, the remaining, cut wave has been assumed taking
shape of a Gaussian.

Two velocities, the osmotic velocity u and the diffusive velocity v, have been
assumed to be orthogonal on average. This kind of orthogonality – not valid for a
single event but for a vast number of events – has also been stated to be the main
difference to the Bohmian philosophy. As on average our results converge to the
Bohmian ones, the characteristic of our ansatz may be called a phenomenological
one.

From classical phase-space distribution comprising non-spreading Gaussian po-
sition and momentum distributions, the quantum mechanical dispersion has been
derived. This then has led to the time-dependent diffusion equation, or more precisely,
the ballistic diffusion equation. With these tools available, the spreading of a wave
packet could be established, founded on the ballistic diffusion equation only, which
in turn allowed for quickly performed simulations of said spreading fields.

Yet no phase relations have been required because the setup has comprised of a
single slit only. Consequently, the next step shall be expanding the setup by at least
one further slit and studying the then importantly needed phase relations.
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3. Current-based theory on
interference effects

In this chapter we investigate the phase relations due to adding one
further slit and eventually an arbitrary number of slits. By considering
both the classical and the emergent distributions’ relations as well as the
orthogonality relations between the convective and osmotic currents dis-
cussed in chapter 2, we shall derive a set of current-based rules providing
calculation recipes for both, the total intensity Ptot and the total current
Jtot in a systematic way.
As an application of these current-based rules, we shall provide simulation
results of double-slit setups and discuss the sub-quantum behaviour
according to our phenomenological approach.
In a final step, we shall extend the current-based rules to multi-slit
scenarios and discuss the Talbot effect by means of simulations based on
these rules.

3.1. Interference and emergence at a Gaussian
double-slit

In Fig. 3.1 the underlying geometry for the wave vectors in a double-slit setup
is sketched, both for the classical interference and the emergent1 case (cf. [Fus14;
Grö16b]). For illustration, we show the three-dimensional setup with two exemplary
planes emphasised. The upper one contains a sketch of the classical picture according
to wave optics, the lower one contains a simulated resulting image and trajectories
to illustrate the emergent picture. The incident wave2 is indicated by parallel wave
vectors k of a plane wave in the xz-plane propagating in y-direction as is used in
our simplified model to keep things clearly arranged. All vectors are assumed to be

1Emergence is a process whereby larger entities arise through interactions among smaller or simpler
entities such that the larger entities exhibit properties the smaller/simpler entities do not exhibit
(cf. [Wik16]). The interference pattern in Fig. 3.1 is considered to be emergent in this sense.

2To get a picture of what it is that is oscillating, we stress the walker-bouncer picture again and
consider the wave to comprise the oscillating sub-quantum medium having the properties known
from wave optics.
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3.1 Interference and emergence at a Gaussian double-slit
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φ = 0
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Figure 3.1.: Geometry of interference at a double-slit at exemplary points x1 and
x2

located in the xy-plain, i.e. they are independent of z, whereby y ∝ t as defined by
Eq. (2.1).

Let us start with the upper plain. In the classical picture the incoming wave
vector

k = 2π
λ

k̂, (3.1)

with k̂ = k/|k| being the unit vector and λ the wavelength, splits up at the Gaussian
slits3 A and B into kA and kB, both are orthogonal to the particular propagating
wave fronts. As the slits A and B act like coherent sources the resulting interference
pattern is time-independent. The respective phases for each of the beams are usually
denoted as4

ϕA(B) = kA(B) · rA(B), (3.2)

with rA(B) being a position vector from source A(B) to point x, marked as dotted

3The distribution after the slit is assumed to be an ideal Gaussian not being refracted at the slit’s
edges as explained in chapter 2.2.

4We use this notation for short,with A(B) meaning that either the left character is to be used for
the whole equation, or the character inside the parentheses. However, they must not be mixed
up, i.e. ϕA(B) = kA(B) · rA(B) means ϕA = kA · rA and ϕB = kB · rB , but ϕA 6= kB · rA etc.
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3.1 Interference and emergence at a Gaussian double-slit

lines in Fig. 3.1.
With Eq. (3.2) together with plane wave amplitudes at an arbitrary point x of the

spatio-temporal plane we aim at describing relations known from Bohmian theory
like Eqs. (3.21) and (3.22). The amplitudes

RA(B)(x) =
√
P S
A(B)(x), (3.3)

with P S(x) being an intensity distribution function of a single slit as defined in
Eq. (2.16), allow for describing the beams coming from slits A and B as

R̃(x, t) = R(x) Re
{

ei(k·r−ωt)
}

= R(x) cos(k · r− ωt) (3.4)

wherein describing R(x) thereby omitting the frequency ω is sufficient. Combining
the beams of, say, two slits by simply adding the two components leads to

R(x) = RA(x) cosϕA +RB(x) cosϕB. (3.5)

Even though Eq. (3.5) is a usual method to describe the distribution correctly, we
want to introduce in this chapter the results from the last chapters instead, namely
the ballistic diffusion and the associated velocities derived for the single slit system.

Therefore, we turn towards the lower plane, the “emergent” scenario. We have to
treat the two slits, or respective beam paths, as the sources of a flow of probability
densities which we want to express by the involved wave vectors, or equivalently5, by
the involved velocities. For this picture, we have in the foregoing chapters already
introduced the (emergent) convective velocity vi(x) and the (emergent) osmotic
velocity ui(x), both of which have its source originated in the slits A and B. However,
the impacting velocities shall be denoted with numbers 1 and 2, instead of the letters
A and B, respectively, in order to distinguish them from the classical picture. The
osmotic velocities have to fulfil the condition of being unbiased w.r.t. the convective
velocities, i.e. the orthogonality relation (2.11) for the averaged velocities, vu = 0,
since any fluctuations u = ∇(δS)/m are shifts along the surfaces of action S = const.,
as shown in Fig. 2.3.

Each point of the probability (or amplitude) landscape evolves on the spatial plane
according to the convective velocities vi(x), i = 1, 2 (exemplarily shown at x1 and x2
in Fig. 3.1). In addition, the osmotic velocity u(x) describes the dispersion 2.20 of
the Gaussian and split up into u1(x) and u2(x) dependent of the slit which causes the
respective osmotic velocity (Fig. 3.2). Since ui are orthogonal to vi, ^(vi,ui) = π

2 ,
all enclosed angles can be expressed in terms of ϕ = ^(v1,v2). As can be seen in

5For the relation between wave vectors and velocities is about equation p = mv = ~k and the
quantities used therein. See Eqs. (2.1) and (2.9).
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3.2 A set of current rules

φ
π
2 + φ
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π
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v1
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Figure 3.2.: Geometry of emergent velocities and relative phases for a two-beam
setup.

Fig. 3.2 we get

^(v1,u2) = π

2 + ϕ,

^(v2,u1) = π

2 − ϕ.
(3.6)

3.2. A set of current rules
In the following6 we shall show how the trajectories representing the paths of the
averaged velocities can be calculated with the help of a set of current rules leading
to the expressions for the total current Jtot and the total probability density Ptot at
point x.

As we have to deal with two velocities caused by the same slit, we introduce the
term channel here, i.e. we have two channels per slit. To account for the different
velocity channels i = 1, . . . , 2N , N being the number of slits, we now introduce for
general cases generalized velocity vectors wi, with

w1 := v1, w2 := u1,
w3 := v2, w4 := u2,

(3.7)

for the first (upper line) and second (lower line) channel in the case of N = 2. This
renumbering procedure will turn out as an important practical bookkeeping tool.

For the weighting procedure to be introduced next, each amplitude Ri according to
Eq. (3.3) is assumed to have its corresponding P S

i of the interference-free single-slit,
as if none of the probability distributions has interfered with any other hitherto. For

6We will omit the variable x in the argument of any vector, amplitude, probability density, and
probability current to improve readability.
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3.2 A set of current rules

the bookkeeping we apply the same nomenclature as before, i.e.

Rw1 = Rw2 = R1,
Rw3 = Rw4 = R2,

(3.8)

again, for the case of N = 2. It should be noted that any Rwi
is the amplitude of

the sub-quantum medium at point x moving with velocity wi.
Now, we apply the usual definition of a probability current, which reads

Jwi
= wiPwi

, i = 1, . . . , 4, (3.9)

wherein the index runs from 1, . . . , 2N with N being the numbers of slits. Here the
number of slits is N = 2. The general velocity vectors wi are defined in Eq. (3.7),
such that a probability current Jwi

at point x is caused by the sub-quantum medium
moving with velocity wi at that point. The total probability current is the sum over
all partial currents (3.9) which reads

Jtot =
4∑
i=1

Jwi
=

4∑
i=1

wiPwi
. (3.10)

The local intensity of a partial current is dependent on all other currents, thus the
total current composes of all partial components. This mutual dependence of a
current’s totality and its parts constitutes the essential part that leads to a convenient
set of current rules. [Grö14c; JS12a; JS12b; Wal00; WG16] Notable, this concept
uses the peculiarity of using currents as basic ingredient and not as derivation of
some elementary entity like, e.g., an elementary particle.

However, in Eqs. (3.9) and (3.10) we shall define Pwi
different from the previously

used P S
i in that we want to incorporate interference processes between the channels.

To account for that, we assume the probability density to be caused by wi under
the influence of wj. We stick herein to the theory proposed by Fussy [Fus14] but

φ

π
2 + φ

π
2 − φ

v2

u2

.

v1

u1

.
x

Figure 3.3.: Scheme for the construction of the the projections.
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3.2 A set of current rules

adapt his procedure7 to a rather straightforward scheme that works as follows: The
influencing, convective currents v1 and v2 determine the causing currents wi in such
a way that only their projection

cosϕi,j := ŵi · ŵj (3.11)

takes effect. The principle of the projection scheme is sketched in Fig. 3.3. Fur-
thermore, the causing and influencing amplitudes, Rwi

and Rwj
, respectively, both

contribute to the resulting probability density. In this spirit, we define

Pwi
= Rwi

ŵi · (v̂1R1 + v̂2R2) (3.12)

and the total intensity as

Ptot =
4∑
i=1
Pwi

=
4∑
i=1

ŵiRwi
· (v̂1R1 + v̂2R2)

= (v̂1R1 + v̂2R2)2 = Pv1 + Pv2

(3.13)

and obtain

Ptot = R2
1 +R2

2 + 2R1R2 cosϕ. (3.14)

From J = wP we get the emergent total velocity

vtot = Jtot

Ptot
=

4∑
i=1

wiPwi

4∑
i=1
Pwi

. (3.15)

Thus we obtain amplitude contributions of the total system’s wave field projected
on each channel’s amplitude at point x via Pwi

. Then, the usual symmetry, even in
the classical interference case above, between Pwi

and Rwi
is broken:

Pwi
6= R2

wi
, (3.16)

i.e. although each velocity component wi has an associated amplitude Rwi
, the partial

term Pwi
is not the mere squared amplitude any more. That is why Pwi

should
rather be referred to as relational intensity since the intensities Pwi

of Eq. (3.12) may

7In Fussy [Fus14] the procedure works by splitting up the velocities ui in two parts, right and
left, uiR and uiL, respectively, and hence associated unit vectors ûiR and ûiL that cancel each
other during the projection. This is equivalent to the procedure shown herein, however, the
argumentation is different.
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3.2 A set of current rules

assume negative values which works well for contributions to the overall probability
density Ptot (3.13) but lacks an interpretation as a probability itself.

Returning now to our previous notation of the four velocity components, vi and
ui, i = 1, 2, the partial current associated with v1 is generated by constructing the
scalar product of v̂1 with all other unit vector components which reads (see Fig.3.3)

Jv1 = v1Pv1 = v1R1v̂1 · (v̂1R1 + v̂2R2) = v1
(
R2

1 +R1R2 cosϕ
)

(3.17)

and analogously

Jv2 = v2Pv2 = v2
(
R2

2 +R1R2 cosϕ
)
. (3.18)

The same applied to currents ui leads to (see Fig.3.3)

Ju1 = u1Pu1 = u1R1û1 · (v̂1R1 + v̂2R2)

= u1R1R2 cos
(
π

2 − ϕ
)

= u1R1R2 sinϕ
(3.19)

and

Ju2 = u2Pu2 = u2R2û2 · (v̂1R1 + v̂2R2)

= u2R1R2 cos
(
π

2 + ϕ
)

= −u2R1R2 sinϕ
(3.20)

with an asymmetry in the last line which is obvious from the geometry sketched in
Fig. 3.2.

By summing up all current contributions according to Eq. (3.10) we obtain the
final expression for the total density current built from the remaining 2N = 4 velocity
components

Jtot = R2
1v1 +R2

2v2 +R1R2 (v1 + v2) cosϕ+R1R2 (u1 − u2) sinϕ. (3.21)

The total velocity vtot according to Eq. (3.15) now reads as

vtot = R2
1v1 +R2

2v2 +R1R2 (v1 + v2) cosϕ+R1R2 (u1 − u2) sinϕ
R2

1 +R2
2 + 2R1R2 cosϕ . (3.22)

The obtained total probability current field Jtot spanned by the various velocity
components vi and ui we have denoted as the path excitation field (cf. chapter 2.6,
and [Grö12b]). It is built by the sum of its partial currents, which themselves are
built by an amplitude weighted projection of the total current. Furthermore, we
observe that the superposition principle is violated for J, and, analogously for P,
in the following sense: In quantum mechanics the amplitudes of the wave function
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3.3 Double-slit interference

components have to be summed up coherently, i.e. superpositioned, in the case of
undisturbed paths, and for calculation of the probability density this sum has to
be taken as absolute value squared. In other words, the Schrödinger equation is
linear, and observation of a state is regularized by Born’s rule. In our case, all the
relevant variables, i.e. Pwi

and Jwi
, are nonlinear. Consequently, to obtain the correct

total probability density Ptot or total current Jtot, respectively, one has to take into
account all elementary, i.e. partial, contributions to the corresponding variable.

Summarizing, the shift to a new projection rule of Eq. (3.12) build the kernel for
a set of relations of current rules. It is characterized by summing up the nonlinear
partial currents, where each of the latter contains information about the total field
via the projection rule. This property is characterized in that any change in a local
field affects the total field, and vice versa.

The trajectories or streamlines, respectively, are obtained according to ẋ = vtot in
the usual way by integration. By re-inserting the expressions for convective velocities
from Eq. (2.4),

vi = ∇Si
m

, (3.23)

and diffusive velocities from Eq. (2.10) together with (B.22),

ui = − ~
m

∇Ri

Ri

, (3.24)

one immediately identifies Eq. (3.22) with the Bohmian guiding equation and
Eq. (3.21) with the quantum mechanical pendant for the probability current [BH93;
SM08].

3.3. Double-slit interference
It is straightforward to now also describe and explain quantum interference with
our approach (cf. [Grö12a; Grö12b; Grö13]). We choose a textbook scenario in the
form of the calculation of the intensity distribution and the particle trajectories in an
electron interferometer. As we are also interested in the trajectories, we refer to, and
compare our results with, the well-known work by Philippidis et al. [Phi79], albeit in
the form as presented by Holland [Hol93].

We choose similar initial situations as Holland, i.e. electrons, represented by plane
waves in the forward y-direction, from a source passing through soft-edged slits 1
and 2 in a barrier, located along the x-axis, and recorded at a screen. In our model,
we therefore note two Gaussians representing the totality of the effectively heated-up
path excitation field, one for slit 1 and one for slit 2, whose centres have the distances
+X and −X from the plane spanned by the source and the centre of the barrier
along the y-axis, respectively.
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3.3 Double-slit interference

The results according to Eq. (3.14) is shown in Fig. 3.4 which depicts the interfer-
ence of two beams emerging from Gaussian slits8. The trajectories are the flux lines
obtained by choosing a set of appropriate initial points at y = 0. The trajectories
follow a no-crossing rule9: Particles from the left slit stay on the left side and vice
versa for the right slit. This feature is explained here by a sub-quantum build-up of
kinetic (heat) energy acting as an emergent repellent along the symmetry line.

In Fig. 3.4 one can observe a basic characteristic of the averaged particle trajector-
ies, which, just because of the averaging, are identical with the Bohmian trajectories.
To fully appreciate this surprising characteristic, we remind the reader of the severe
criticism of Bohmian trajectories as put forward by Scully and others [Scu98, and
references therein]. The critics claimed that Bohmian trajectories would have to
be described as “surreal” ones because of their apparent violation of momentum
conservation. In fact, due to the no-crossing rule for Bohmian trajectories in Young’s
double-slit experiment, for example, the particles coming from, say, the right slit –
and expected at the left part of the screen if momentum conservation should hold
on the corresponding macro-level – actually arrive at the right part of the screen –
and vice versa for the other slit. In Bohmian theory, this no-crossing rule is due to
the action of the non-classical quantum potential, such that, once the existence of a
quantum potential is accepted, no contradiction arises and the trajectories may be
considered “real” instead of “surreal”.

Here we can note that in our sub-quantum approach an explanation of the no-
crossing rule is even more straightforward and actually a consequence of a detailed
microscopic momentum conservation as discussed in section 2.3 and in [Grö12b]. As
can be seen in Fig. 3.4, the trajectories are repelled from the central symmetry line.
However, in our case this is only implicitly due to a quantum potential, but actually
due to the identification of the latter with a kinetic rather than a potential energy:
As has already been stressed in [Grö09], it is the heat of the compressed vacuum that
accumulates along said symmetry line, i.e. as reservoir of outward oriented kinetic
energy, and therefore repels the trajectories. Fig. 3.4 is in full concordance with the
Bohmian interpretation (see, for example, [SM08] for comparison).

This can be shown even in greater detail. Whereas in the example of Fig. 3.4 the
small amount of dispersion is practically negligible, we now discuss in more detail
an interference scenario with significant dispersion of the two Gaussians, i.e. where
initially the two Gaussians spread independently from each other due to the action
of the diffusive velocities u1 and u2, respectively.

In Fig. 3.5, trajectories according to Eq. (3.22) for the two Gaussian slits are shown.
The interference hyperbolas for the maxima characterize the regions where the phase

8For details on how the simulations have been carried out see chapter 5.3, on the construction
of the trajectories see chapter 5.4. Initial values for all simulations are P1 = P2, σ1 = σ2,
vx,1 = vx,2 = 0, otherwise noted.

9From the assumed uniqueness and differentiability of S(x, t) follows that the paths don’t cross
each other. See section 2.3 for further explanations. However, at this stage we are discussing an
ontological point of view on how the no-crossing phenomenon can be explained.
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3.3 Double-slit interference

Figure 3.4.: Classical computer simulation of the interference pattern: Intensity
distribution with increasing intensity from white through yellow and orange, with
trajectories (red) for two Gaussian slits, and with small dispersion (evolution from
bottom to top; vx,1 = −vx,2).

difference ϕ = 2nπ, and those with the minima lie at ϕ = (2n+1)π, n = 0,±1,±2, . . .
Note in particular the kinks of trajectories moving from the centre-oriented side
of one relative maximum to cross over to join more central relative maxima. The
trajectories are in full accordance with those obtained from the Bohmian approach,
as can be seen by comparison with references [BH93; Hol93; SB09], for example. In
our classical explanation of double-slit interference, a detailed micro-causal account
of the corresponding kinematics can be given: Firstly, we note that the last term in
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3.3 Double-slit interference

Figure 3.5.: Classical computer simulation of the interference pattern: Intensity
distribution with increasing intensity from white through yellow and orange, with
trajectories (red) for two Gaussian slits, and with large dispersion (evolution from
bottom to top; vx,1 = vx,2 = 0)

Eq. (3.21), which is responsible for the genuinely quantum behaviour, is characterized
by the vector u1 − u2 which in the interference region is always oriented into the
forward direction away from the slits (Fig. 3.5). This means that said last term
is modulated by sinϕ, with the result that the term alternates between forward
directions where sinϕ > 0 and backward directions where sinϕ < 0.

Thus, in the backward cases, the trajectories coming from the relative maxima
(bright fringes) loose velocity/momentum in the forward direction and cross over
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3.3 Double-slit interference

into the area of the relative minimum (dark fringes). Alternatively, in the forward
cases, the trajectories coming from the relative minima (dark fringes) gain velo-
city/momentum in the forward direction and thus align with the other trajectories of
the bright fringes. In other words, for the areas where sinϕ < 0, part of the current
(along a relative maximum) is being removed (depletion), whereas for sinϕ > 0, parts
of currents flow together to produce a newly formed bright fringe (accumulation).
This is in accordance with an earlier description of quantum interference, where
the effects of diffusion wave fields (cf. [Man00; Man01]) were explicitly described by
alternating zones of heat accumulation or depletion, respectively [Grö09]. Towards
the central symmetry line, then, one observes heat accumulation from both sides, and
due to big momentum kicks from the central accumulation of heat energy, the forward
particle velocities’ directions align parallel to the symmetry axis. With the crossing-
over of particle trajectories being governed by the last, diffusion-related, term on the
right hand side of Eq. (3.21), one finds that for ϕ = 0 the resulting diffusive current
is zero and thus, as total result of the overall kinematics, no-crossing is possible.
Further, we note that our results are also in agreement with the experimental results
by Kocsis et al. [Koc11].

Finally, to illustrate the straightforward applicability of our model to more general
situations, i.e. as compared to the simple symmetrical scenarios of Figs. 3.4 and

Figure 3.6.: Same as Fig. 3.4, but with different initial average velocities: vx,2 =
−4vx,1. Note again the no-crossing behaviour, with the two trajectory bundles
repelling each other due to the kinetic (heat) energy along the slanted central line.

3.5, we now employ our simulation schema to cases where neither the Gaussians are
identical nor their weights. We thus study asymmetric coherent superpositions as
discussed in ref. [SM08], and in our Figs. 3.6 to 3.8 we show results in accordance
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3.3 Double-slit interference

Figure 3.7.: Same as Fig. 3.6, but with different initial spreading: σ1 = 3σ2.
Although the two partial beams altogether reflect off each other, one can clearly
observe the effect of microscopic momentum conservation: The path excitation
field of the right beam is propagated over to the micro-kinematics of the left beam,
and vice versa.

Figure 3.8.: Same as Fig. 3.7, but with different probability densities: P1 = 2P2.
Note that the emerging beam behaviour compares more with inelastic scattering
than with the elastic-type scattering of Fig. 3.7, as part of the left beam merges
with the right one.
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3.4 Entangling currents in the double-slit experiment

with the figures 4–6 of ref. [SM08]. The analysis of ref. [SM08] holds identically
in our approach, so that we here restrict ourselves to pointing out that our figures
display the following cases of varied properties for the beams emerging from the two
slits:

• different modulus of the initial velocity/momentum,

• different initial spreading,

• different weights for the probability densities.

3.4. Entangling currents in the double-slit experiment
Because of the mixing of diffusion currents from both channels, we call the following
decisive term in Jtot (3.21) the entangling current [Grö12a; Grö13; Mes13]

Je = R1R2 (u1 − u2) sinϕ = ~
m

(R1∇R2 −R2∇R1) sinϕ (3.25)

where Eq. (3.24) has been substituted.
For illustration, Figs. 3.9–3.11 show our classical computer simulations of interfer-

ence and the role of the entangling current Je in different situations. The entangling
current Je (3.25) is characterized by the difference of the diffusive velocities ui, and
is hence responsible for the nature of the process forming the interference pattern.
Fig. 3.9 shows the emerging interference pattern and the average trajectories without,
and Fig. 3.10 with an applied extra phase shift (according to Fig. 3.12(a)) at one
slit. To bring out the shifting of the interference pattern more clearly, in Fig. 3.11
we apply – mainly for didactic reasons, as it is not clear what applying the phase
to a slit in the distance means – the phase shift at much later times (according to
Fig. 3.12(b)) than in Fig. 3.10. Thereby, also a decoupling of wave and particle
behaviours becomes visible.

The distributions of P and Je in Fig. 3.11 are the same as in Fig. 3.9 for times
t < t1 and as in Fig. 3.10 for times t > t2, respectively, and show the effect of the
shifting of the interference fringes more clearly than Fig. 3.10. Note the radically
different behaviours of the probability density related to wave-like interference on the
one hand, and that of the average particle trajectories on the other hand. Although
the currents Je dramatically cross the central symmetry line separating the areas
of the two slits, the average particle trajectories (Fig. 3.11(a)) strictly obey the no-
crossing rule familiar from, but not restricted to, the de Broglie–Bohm interpretation.
This is a clear demonstration of the partial decoupling of wave and particle behaviour
as envisaged in our model.

As a further example, we use a similar setup as in Fig. 3.4. The graphical
result of a classical computer simulation of the interference pattern in a double-slit
experiment, including the average trajectories, with evolution from bottom to top,

47



3.4 Entangling currents in the double-slit experiment
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3.4 Entangling currents in the double-slit experiment

t

∆ϕ
t1
t2

0 3π

(a) ∆ϕ in Fig. 3.10

t

∆ϕ

t1

t2

0 5π

(b) ∆ϕ in Fig. 3.11

Figure 3.12.: Additional phase shift ∆ϕ accumulated during the time interval
between t1 and t2 at slit 1. Different phase shifts of ∆ϕ = 3π and ∆ϕ = 5π,
respectively, lead to identical distributions of P and Jtot at last.

is shown in Fig. 3.13(a). The Gaussian wave packets characterized by moderate
spreading at the same standard deviations σ move towards each other with constant
velocities vx,1 = −vx,2. In Fig. 3.13(b), we use the same double-slit arrangement as
in Fig. 3.13(a), but now include a phase shifter affecting slit 1, as sketched by the
yellow rectangle on the left hand side. The exemplary choice of ∆ϕ = π results in a
shift of the interference fringes. Comparing with Fig. 3.13(a), we recognize now a
minimum of the resulting distribution along the central symmetry line.

Comparing Figs. 3.14(a) with 3.14(b), one notes that the dramatic shift from
maxima to minima, and vice versa, as observed in the interference patterns of
Fig. 3.13(a) and Fig. 3.13(b), respectively, is essentially caused by the changes
in these entangling currents. This corresponds to a sub-quantum account of the
processes underlying quantum interference.

The result of our computer simulation of the probability current (3.21) is shown in
Fig. 3.14 corresponding to the intensity distributions of Fig. 3.13. One recognizes the
change of the maximum values of the probability current along the central symmetry
line in Fig. 3.14(b) in comparison with those of Fig. 3.14(a). Since the figures display
the one-dimensional case, the current flow is along the x-axis only. Interestingly,
at the time tr of the reversal of the trajectories, the current flow comes to a hold,
and starts again for times t > tr with reversed signs. This can be understood as a
reversal of the relative flow of heat Q2−Q1 between the two channels, since we have
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3.4 Entangling currents in the double-slit experiment
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(a) No additional phase
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(b) Same as Fig. 3.13(a), with an additional phase ∆ϕ = π at slit 1

Figure 3.13.: Classical computer simulation of the interference pattern in a double-
slit experiment; with vx,1 = −vx,2
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(a) Same setup as in Fig. 3.13(a), with arbitrary normalization and vx,1 = −vx,2
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(b) Same as Fig. 3.14(a), with an additional phase shift of ∆ϕ = π at slit 1

Figure 3.14.: Classical computer simulation of the total average entangling current
density Je in a double-slit experiment
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3.5 Multi-slit interference and the quantum Talbot effect

from (1.63) that

ui = − 1
2ωm∇Qi, (3.26)

such that the last term of Je (3.25) reads as

1
2ωm

√
P1P2∇(Q2 −Q1) sinϕ12. (3.27)

The probability current Jtot in both figures essentially only consists of its last
terms, i.e. Je (3.25), as the convective velocities vi and the osmotic velocities ui
typically differ by many orders of magnitude. In other words, the probability current
Jtot is always dominated by the quantum mechanical entangling current Je (3.25)
which is connected to the osmotic velocities, u1 and u2, and implies the existence
of strong correlations. As we have just seen, this entangling current can also be
understood as describing the heat flow between the two channels. As opposed to the
average total probability current Jtot, in the distribution of the probability density
Ptot (3.14) alone the entangling part is not explicitly visible.

The phenomenon of entanglement is thus possibly rooted in the existence of the
path excitation field. In other words, one can say that the entanglement characteristic
for two-particle interferometry is a natural consequence of the fact demonstrated
here, i.e. that already in single-particle interferometry one deals with entangling
currents, which generally are of a nonlocal nature.

3.5. Multi-slit interference and the quantum Talbot
effect

We can already infer from the three-slit device that due to the pairwise selection of
the velocity field components vi and ui, i = 1, . . . , N , N being the number of slits,
the interference effect of every higher order grating can be reduced to successive
double-slit algorithms (cf. [Fus14]). For a compact description of the N -slit case we
return to the notation (3.7) of general velocity vectors wi with

w1 := v1, w2 := u1,
w3 := v2, w4 := u2,

... ...
w2N−1 := vN , w2N := uN ,

(3.28)
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3.5 Multi-slit interference and the quantum Talbot effect

with w2i−1 := vi and w2i := ui, i = 1, . . . , N , denoting the convective and osmotic
velocities, respectively, for each slit i. Analogously, we define the amplitudes

Rw1 = Rw2 = R1,
Rw3 = Rw4 = R2,

... ...
Rw2N−1 = Rw2N = RN .

(3.29)

According to the Eqs. (3.12) to (3.10), now with a general number N of slits, the
calculation for the total probability density is straightforward, as only contributions
of the convective velocities are involved. We get

PN
tot =

2N∑
i=1
Pwi

=
2N∑
i=1

ŵiRwi
·
N∑
j=1

v̂jRj =
(

N∑
i=1

v̂iRvi

)2

=
N∑
i=1
Pvi ==

N∑
i=1

R2
i +

N∑
j=i+1

2RiRj cosϕi,j

 .
(3.30)

For the generalized current density we obtain

JNtot =
2N∑
i=1

Jwi
=

2N∑
i=1

Rwi
wi·

N∑
j=1

v̂jRvj

 , (3.31)

which leads after a short calculation to

JNtot =
N∑
i=1

R2
ivi +

N∑
j=i+1

RiRj

{
(vi + vj) cosϕi,j + (ui − uj) sinϕi,j

} (3.32)

with ϕi,j = ^(vi,vj) = ^(ui,uj) as sketched in Fig. 3.2.
From these results we can clearly see that the addition of an arbitrary number

of slits represents a simple inductive extension from the double-slit case as we had
stated in the previous section.

In well-known manner one obtains the trajectories from ẋtot = vtot = Jtot
Ptot

[SM08].
As opposed to this analytical procedure, we use our simulation tools, which are
displayed in the computer simulations of Figs. 3.15 to 3.18 for 7-, 13-, 25-, and 27-slit
setup, respectively. Already for the 7-slit case one can observe the emergence of
a repetitive short range pattern until the Fraunhofer regime10 is reached. At the
so-called Talbot distance

zT = d2/λ, (3.33)

10The patterns arise in the short range or Fresnel region, gradually disappear in the transition
region and end up in the far-field or Fraunhofer region, cf. [SM12].
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3.5 Multi-slit interference and the quantum Talbot effect
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3.5 Multi-slit interference and the quantum Talbot effect

Setup Fig. 3.15 Fig. 3.16 Fig. 3.17 Fig. 3.18

λ 1 nm 1 nm 1 nm 1 nm

d 0.53 nm 1.06 nm 1.59 nm 2.12 nm

zT 0.28 nm 1.13 nm 2.53 nm 4.5 nm

yT,7−slit 0.28 nm 1.14 nm 2.53 nm 4.52 nm

yT,N−slit 0.29 nm (N = 27) 1.13 nm (27) 2.53 nm (25) 4.49 nm (13)

Table 3.1.: Parameters for the Talbot carpet simulations

where d denotes the grating period and λ the wavelength of the incident plane wave,
the initial patterns of the 7 vertically arranged slit openings reappear with a shift of
d/2. Table 3.1 shows the results for different values of λ and d, compares them with
the observed values yT of the Talbot distance for various N -slit cases.

To explain these results, we use the parameters for neutrons according to Table 3.1:
d = 1.06 nm, λ = 1 nm, with mass mn = 1.675 · 10−27 kg. The spatial step width
is chosen as ∆x = 0.0378 nm, the time resolution is set to ∆t = 1.92 · 10−14 s.
Then, said shifted reappearance of the pattern occurs for the first time at time
step 150, i.e. at tT = 150 · ∆t = 2.88 · 10−12 s. The standard transformation into
the two-dimensional case by re-parametrizing the t-axis according to Eq. (2.1), y =
~kn∆t/mn = h∆t/(λmn), leads to the observed distance yT = htT/(λmn) = 1.14 nm,
which matches nicely with the formula of the Talbot distance zT (3.33). The observed
values for the Talbot distance yT in our discretised model agree for any N -slit setup
as expected in accordance with Eq. (3.33), which only depends on d and λ. Moreover,
we also obtain the correct results for any other choice of m or λ.

For multiples of 2zT the recurrence of the original state is observed, as it is
particularly obvious in the case of 27 slits. Due to the non-crossing of all trajectories,
as has been discussed in section 3.3, the caverns in the middle stay confined until
they are broken up by the influence of the boundary area via the light-like cone. In
the limit of an indefinitely extended grating the pattern clearly would be maintained
ad infinitum.

Since the averaged trajectories obtained with our derived current set are identified
with the Bohmian trajectories of Sanz et al. [SM07], we have thus shown that the
emerging quantum carpet for N slits constituted by characteristic repetitive patterns
can be reproduced without any quantum mechanical state function.
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3.6 Conclusions and outlook

3.6. Conclusions and outlook
It has also been shown how our model entails the existence of a path excitation field,
i.e. a field spanned by the average velocity fields v and u, respectively, where the
latter refers to diffusion processes reflecting also the stochastic parts of the zero-point
field. Then, on the basis of classical physics, the exact intensity distribution on
a screen behind a double-slit has been derived, as well as the details of the more
complicated particle current, or of the Bohmian particle trajectories, respectively.

Furthermore, general formulas for the N -slit current densities have been derived,
thus enabling us to give a micro-causal account for the kinematics of the quantum
Talbot effect. The Talbot distance could be reproduced also quantitatively in this
model.

61



4. Beam attenuation in double-slit
experiments

In this chapter we shall employ a double-slit setup with one slit’s probab-
ility density being attenuated by a huge factor. Therefore, we start with
a survey on different absorber types used in interference experiments and
discuss the resulting consequences of using these.
In a phenomenological approach we shall study the probability distri-
bution of said double-slit and show the emergence of a lateral drift of
the interference zone due to increasing attenuation factors applied to
one of the slits. This drift phenomenon, the quantum sweeper effect, will
be compared to both coherent and incoherent beams and shown to be
existing in either case.
As a result of our investigations we shall propose an advanced meas-
urement method comprising a side-screen which is oriented along the
spreading direction, i.e. the side-screen turned by an angle of 90◦ compared
to its usual position.

4.1. Outline
In the search of new, and perhaps surprising, features of quantum systems, one option
is to steadily decrease the intensity of a slit into one spatially constrained area, as
compared to a reference intensity in another, equally constrained area. For example,
one can employ the usual double-slit experiments and modify one of the two slits’
channels in such a way that the corresponding outgoing probability density is very
low compared to that of the other slit. We call a combination of such distributions
of high and low probability densities, or intensities, respectively, intensity hybrids
(cf. [Grö15a; Grö15b; Grö16a; Mes16]).

Since the 1980ies, one possibility to experimentally establish and probe such
hybrids has been through the introduction of beam attenuation techniques, as demon-
strated in the well-known papers by Rauch’s group in neutron interferometry [Rau90;
RS84]. Here, we re-visit these experiments and results from a new perspective,
and we also discuss new, previously unexpected effects. Our main result is that
in employing ever weaker channel intensities, nonlinear effects become ever more
important, which are a crucial characteristic of sub-quantum models such as the one
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4.2 Deterministic and stochastic beam attenuation

developed by our group. Whereas the intensity distributions are predicted to be the
same for the standard quantum mechanical as well as our approach, respectively,
more detailed information is available when the behaviour of average trajectories is
studied.

4.2. Deterministic and stochastic beam attenuation
4.2.1. Beam attenuation in neutron interferometry
Deterministic and stochastic beam attenuation have been studied extensively in
neutron interferometry, beginning with the work by Rauch and Summhammer in
1984 [RS84]. More recently, an interesting model of these results has been presented by
De Raedt et al. [DeR12] with the aid of event-by-event simulations, thus confirming
the possibility to describe the known results even without the use of quantum
mechanics.

In [Rau90; RS84], a beam chopper (Fig. 4.1) was used as a deterministic ab-
sorber in one arm of a two-armed interferometer, whereas for stochastic absorption
semitransparent foils of various materials were used. Despite the net effect of the same
percentage of neutrons being attenuated, the quantum mechanical formalism predicts
the following different behaviours for the two cases. Introducing the transmission
factor a as the beam’s transmission probability, in the case of a (deterministic)

Figure 4.1.: Stochastic type absorber (left and right) and deterministic type absorber
(middle). From [Sum87]
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4.2 Deterministic and stochastic beam attenuation

chopper wheel it is given by the temporal open-to-closed ratio,

a = topen

topen + tclosed
, (4.1)

whereas for a (stochastic) semitransparent material defined by its absorption cross
section, it is simply the relation of the intensity I with absorption compared to the
intensity I0 without, i.e.

a = I

I0
. (4.2)

In a quantum mechanical description the beam modulation behind the interferometer
is obtained in the following two forms. For the deterministic chopper system the
intensity Idet is, with ϕ denoting the phase difference, given by1 [RS84]

Idet ∝ (1− a) |ψ1|2 + a |ψ1 + ψ2|2 ∝ 1− a+ a
∣∣∣1 + eiϕ

∣∣∣2 = 1 + a+ 2a cosϕ,
(4.3)

whereas for stochastic beam attenuation with the semitransparent material the
intensity Isto is

Isto ∝ |ψ1 + ψ2|2 ∝∝ 1 + a+ 2
√
a cosϕ. (4.4)

Although the same number of neutrons is observed in both cases, in the first one the
contrast of the interference pattern is proportional to a, whereas in the second case
it is proportional to

√
a.

In our accounting for the just described attenuation effects, we choose the usual
double-slit scenario, primarily because this will be very useful later on when discussing
more extreme intensity hybrids.

4.2.2. Application to deterministic and stochastic beam
attenuation experiments

Let us now display some typical results from our double-slit approach, as presented
in chapter 3, to beam attenuation. We can simulate the propagation of a Gaussian
whose variance increases due to the ballistic diffusion process (see chapter 2.5). To
begin with, we consider deterministic attenuation first. Therefore, we use the ratio

1The quantum mechanical wave function ψj , for slits j = 1 or 2, is connected with the probability
density Pj and the amplitude Rj by

Pj = R2
j = |ψj |2 = ψ∗jψj

64



4.2 Deterministic and stochastic beam attenuation

a (4.1) and simulate indirectly as a combination of

1. a single-slit experiment resulting in distribution Psingle = P1 = R2
1, according

to Eq. (3.3), as slit 2 is closed during time tclosed, and

2. a double-slit experiment resulting in Pdouble = Ptot (3.14) with both slits are
opened, both beams having equal intensities, during time topen.

As the ratio of the two intensities is set to P1 = P2 the resulting distribution after
incoherent summing up reads

Pdet = (1− a)Psingle + aPdouble

= (1− a)P1 + a(P1 + P1 + 2
√
P1P1 cosϕ)

= P1 + aP1 + 2aP1 cosϕ
= P1(1 + a+ 2a cosϕ). (4.5)

Accordingly, we have in complete agreement with Eq. (4.3) that

I ∝ 1 + a+ 2a cosϕ. (4.6)

For stochastic attenuation we find with the intensity ratio a (4.2), i.e. P2 = aP1,
thus with the amplitude of the attenuated slit 2, and according to Eq. (3.14) that

Psto = P1 + P2 + 2
√
P1P2 cosϕ

= P1 + aP1 + 2
√
aP1P1 cosϕ

= P1(1 + a+ 2
√
a cosϕ). (4.7)

Again, we have complete agreement with Eq. (4.4), i.e.

I ∝ 1 + a+ 2
√
a cosϕ. (4.8)

In Fig. 4.2 we show the results of our computer simulations following Eqs. (4.5)
and (4.7), respectively, for the probability density distributions of a neutron beam for
three different values of the beam transmission factor a. The typical wavelength used
is λ = 1.8 nm (cf. [RW00]). The Gaussian slits each are 22µm wide, with their centres
being 200µm apart, and the intensity distributions are recorded on a screen located
in the forward direction at a distance of 5 m from the double-slit. Corresponding to
the different behaviours of the contrast in deterministic and stochastic attenuation,
respectively, one can see the different contributions to the overall probability density
distribution, with the differences becoming smaller and smaller with ever decreasing
transmission factor a. For consistency, we have also checked and confirmed that the
total areas below the two curves are identical, as they must be in order to represent
the same overall throughput of the number of neutrons.

65
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(c) a = 0.0025

Figure 4.2.: Simulation of probability density distributions with beam attenuation
a at slit 2, in complete accordance with standard quantum mechanics.

4.3. Phenomenology of the quantum sweeper for
coherent and incoherent beams

We assume a coherent beam in a double-slit experiment, with the intensity distribution
being recorded on a screen, and we are going to discuss a particular effect of the
stochastic attenuation of one of the two emerging Gaussians at very small transmission
factors. With the appropriate filtering of the particles going through one of the two
slits, the recorded probability density in the surroundings of the experiment will
appear differently compared to what one would normally expect. That is, if one had
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4.3 Phenomenology of the quantum sweeper for coherent and incoherent beams

a low beam intensity coming from one slit, one would expect that the contributions
from the fully open slit would become dominant until such a low counting rate from
the attenuated slit is arrived at that essentially one would have a one-slit distribution
of recorded particles on the screen. This tendency is at least clearly visible in Fig. 4.2.
One would thus expect for ever smaller values of a that the oscillatory behaviour
of the stochastic case would more and more disappear to finally merge with the
smoothed-out pattern of an essentially one-slit distribution pattern, and that no
other effects would be observed.

Interestingly, this is not exactly what one obtains at least for very low values of a
when going through the calculations and computer simulations2 with our bouncer
model. The latter encompasses, among other features, an explicit form of the velocity
field vtot (3.22) emerging from the double slit, as well as of the probability current
Jtot (3.21) associated with it. Whereas full agreement exists with the standard
quantum mechanical prediction of the probability density Ptot, viz. Eqs. (4.5) and
(4.7), respectively, the probability current Jtot exhibits an unexpected behaviour,
which we are going to discuss now.

Fig. 4.3 shows the quantum sweeper effect: A series of probability density distri-
butions plus averaged trajectories for the case that the intensity in slit 2 is gradually
diminished. We use the same model as described in section 2.6: Wave packets,
represented by plane waves in the forward y-direction, from a coherent source passing
through soft-edged slits in a barrier, located along the x-axis, and recorded at a screen
in the forward direction, i.e. parallel to the barrier. This situation is described by two
Gaussians representing the totality of the effectively heated-up path excitation field,
one for slit 1 and one for slit 2, whose centres have the same distances from the plane
spanned by the source and the centre of the barrier along the y-axis, respectively
(see Fig. 3.2).

Now, with ever lower values of the transmission factor a during beam attenuation,
one can see a steadily growing tendency for the low counting rate particles of the
attenuated beam to become swept aside. In our model, this is straightforward
to understand, because we have the analytical tools to differentiate between the
forward convective vi (3.23) and the osmotic influences of velocities ui (3.24), as
distinguishable contributions from the different slits i. Thus, it is processes of
diffusion which are seen in operation here, due to the presence of accumulated
heat, i.e. kinetic energy, primarily in the strong beam. So, in effect, we understand
Fig. 4.3 as the result of the vacuum heat sweeping aside the very low intensity
beam, with a no-crossing line3 defined by the balancing out of the diffusive momenta,
m (u1 + u2) = 0.

Importantly, for certain slit configurations and sizes of the transmission factor,

2See chapter 5 on how simulations have been practically realized.
3From the assumed uniqueness and differentiability of S(x, t) follows that the paths don’t cross

each other. See section 2.3 for further explanations. However, at this stage we are discussing an
ontological point of view on how the no-crossing phenomenon can be explained.
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4.3 Phenomenology of the quantum sweeper for coherent and incoherent beams

(a) a = 10−1 (b) a = 10−2

(c) a = 10−4 (d) a = 10−10

Figure 4.3.: The quantum sweeper effect for different transmission factors a. To
demonstrate the effect more clearly, we use the same number of trajectories for
each slit.

the sweeper effect leads to a bunching of trajectories which may become deflected
into a direction almost orthogonal to the original forward direction. In other words,
one would need much wider screens in the forward direction to register them, albeit
then weakened due to a long travelling distance. On the other hand, if one installed
a screen orthogonal to the forward screen, i.e. one that is parallel to the original
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4.3 Phenomenology of the quantum sweeper for coherent and incoherent beams

forward motion – and thus to the y-axis – one could significantly improve the contrast
and thus register the effect more clearly (see also Fig. 4.5 further below). Further,
we note that changing the distance between the two slits does not alter the effect,
but demonstrates the bunching of the low counting rate arrivals in essentially the
same narrow spatial area even more drastically. So, again, if one places a screen
orthogonally to the forward direction, one registers an increased local density of
particle arrivals in a narrow spatial area under an angle that is independent of the
slit distance.

Let us now turn to the case of incoherent beams. For, although we shall refrain
from constructing a concrete model of incoherence and implementing it in our schema,
we already have the tools of an effective theory, i.e. to describe incoherence without
the need of a specified mechanism for it. Namely, as full incoherence between
two (Gaussian or other) beams is characterized by the complete absence of the
interference term in the overall probability distribution of the system, this means
that Ptot = R2

1 +R2
2, since the interference term

R1R2 (v1 + v2) cosϕ = 0 (4.9)

vanishes. For the case cosϕ = 0, i.e. with ϕ = π
2 , Eq. (4.9) vanishes which effectively

describes the situation of two incoherent beams in the double-slit system. What
about the two interference terms in the probability current Jtot (3.21), then? Well,
the first term is identical with the vanishing (4.9), but for the second term we obtain
from entangling current (3.25) with ϕ = π

2

~
m
R1R2

(∇R2

R2
− ∇R1

R1

)
= ~
m

(R1∇R2 −R2∇R1) . (4.10)

As the distributions Ri may have long wiggly tails – summing up, after many identical
runs, to a Gaussian with no cut-off, but spreading throughout the whole domain of
the experimental setup (cf. section 2.2 and [Grö13]) – the expression (4.10) is not at
all guaranteed to vanish. In fact, a look at Fig. 4.4 shows that there is an effect even
for incoherent beams: Although the product R1R2 is negligible and therefore leads
to no interference fringes on the screen, nevertheless expression (4.10) has the effect
of bending average trajectories so as to obey the no-crossing rule well known from
our model as well as from Bohmian theory.

As was already pointed out in [SB09], or more recently, in [LS15], the resulting
trajectories of Fig. 4.4(a) can be understood as a nonlinear effect that is not usually
considered in standard quantum mechanics, but explainable in the Bohmian picture.
There, it is the structure of the velocity field which is genuinely nonlinear and
therefore allows for the emergence of the type of trajectory behaviour. However,
also in our approach, the emergence of the trajectories of Fig. 4.4 is completely
understandable as it can be traced back to the non-vanishing of expression (4.10):
The average trajectories never cross the central symmetry line in Fig. 4.4(a), a fact
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4.3 Phenomenology of the quantum sweeper for coherent and incoherent beams

(a) a = 1 (b) a = 10−8

Figure 4.4.: Double-slit experiment with completely incoherent channels. The right
hand side beam is weakened by factor a.

due to the diffusion related hot spot indicated in red-to-yellow-to-white (depicting
both interference terms of Eq. (4.10)), which represents a kinetic energy reservoir that
effectively gives particles a push in the forward direction; The intensity of Eq. (4.10)
is weakened by the factor a = 10−8 in Fig. 4.4(b), which is why it does not affect the
strong beam. However, it is sufficient for the attenuated beam to become deflected.

In sum, then, performing a double-slit experiment with incoherent beams leads
to an emergent behaviour of particle propagation which can be explained by the
effectiveness of diffusion waves with velocities ui interacting with each other, thereby
creating a hot spot where the intensity of the diffusive currents is highest and leads to
a deflection into the forward direction such that no-crossing of the average velocities
beyond the symmetry line is made possible (Fig. 4.4(a)). This is therefore in clear
contradiction to the scenario where only one slit is open for the particle to go through.
If the slits are not open simultaneously, the particles could propagate to locations
beyond the symmetry line, i.e. to locations forbidden in the case of the second slit
being open. [SB09]

As our velocity fields vi (3.23) and ui (3.24) are identical with the Bohmian and
the osmotic momentum, respectively, one can relate them also to the technique of
weak measurements. The latter have turned out [dGdG16; dGos16; Hil12; Hil16;
Lea05; Wis07] to provide said velocities as weak values, which are just given by the
real and complex parts of the quantum mechanical expression

〈r | p̂ | Ψ (t)〉
〈r | Ψ (t)〉 , (4.11)

70



4.4 The quantum mechanical description of the sweeper effect

i.e. the weak values associated with a weak measurement of the momentum operator
p̂ followed by the usual (“strong”) measurement of the position operator r̂ whose
outcome is r. In other words, in principle the trajectories for intensity hybrids
generally, and for the quantum sweeper in particular, are therefore accessible to
experimental confirmation.

In the standard quantum mechanical description of double-slit experiments with
intensity hybrids one is usually only concerned with the gradual fading out of wave-
like properties like interference fringes. However, in our model we are dealing with
diffusion-based wave-like properties throughout all magnitudes of attenuation of, e.g.,
slit 2, even in the case of incoherent beams. For here, if we observe particles coming
through slit 2 characterized by a very low intensity such as a = 10−8, one faces the
sweeper effect (Fig. 4.5).

The number n (a) of particles which we do see come through slit 2 and which
produces the distribution (red) in Fig. 4.5(a) actually is deflected from the forward
screen when slit 1 is opened, but the same number n (a) can easily be detected on the
sideways screen to the right in Fig. 4.5(b). Although the particles would eventually
also be detected on a more elongated forward screen as in Fig.4.7, the effect would
be much smaller simply due to the geometry, whereas the sideways screen setup
allows the registration with maximal contrast. In principle, for beam attenuation as
schematized in Fig. 4.5, if one employs a sideways screen, one thus obtains a different
outcome than the one expected due to standard quantum mechanical lore. According
to the latter, the beam from slit 2 should be unaffected by the situation at slit 1.
This would mean that in the unaffected scenario less than a number of n(a)

2 particles
could eventually be registered on any sideways screen parallel to the y-axis along a
wide spatial extension, whereas our result predicts that the totality of the number
n (a) of particles can be registered within a comparatively narrow spatial domain.
In Fig. 4.5(c), the vertical screen setup reveals interesting features of the probability
density distribution, accounting both for the interference and the sweeper effects.
The black line indicates the continuation of the probability density distribution for
the one-slit case, which is of course being modified once the interference effect in
the coherent case of adding an attenuated beam is allowed for. However, even in
the incoherent scenario not showing the comparatively small interference effects,
one still obtains the full sweeper effect, with a smooth transition between the two
curves in the upper and the lower parts of Fig. 4.5(c), respectively. This is due to
the non-vanishing of (4.10), i.e. a significant contribution from the diffusive terms
despite the smallness of the transmission factor a.
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(a) The two cases of the attenuation factor at the
right slit of a double slit system, i.e. a = 10−4

and a = 10−8, respectively, essentially provide
the same distribution at moderate resolution.
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(b) Same as in (a); by zooming in with a factor of
1,000 two cases are discernible: interference
phenomena for a = 10−4 (blue), vs. appar-
ently smooth behaviour for a = 10−8 (red).
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(c) Same as in (a) on a logarithmic scale. Dotted initial distributions for the cases of a = 10−4

(blue) and a = 10−8 (red), respectively, evolve into distributions clearly showing interference
phenomena which have been “swept aside” far to the right.

Figure 4.6.: The sweeper effect as described by quantum mechanics. Probability
density distribution P in a distance of 5 m from the double slit.
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a = 10−4

screen

a = 10−8

screen

−100 0 1000

x [µm]

Figure 4.7.: Probability density distributions P emanating from the double slit with
transmission factor a = 10−4 (top) and a = 10−8 (bottom) according to the red and
blue distributions in Fig. 4.6, respectively. The arrows indicate the position of the
interference zones as measured at the screen.
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4.4 The quantum mechanical description of the sweeper effect

4.4. The quantum mechanical description of the
sweeper effect

Let us now consider the stochastic attenuation discussed above in purely quantum
mechanical terms. As already mentioned, the probability density distribution is given
by Equation (4.4). A graphic representation of this distribution in a distance of 5m
from the double slit is shown in Fig. 4.6. Two cases of the attenuation factor at one of
the two slits of a double slit system are shown, i.e. a = 10−4 and a = 10−8 affecting
the right slit, respectively. As is to be expected, on a linear scale the distribution
will appear as if practically the whole intensity goes through the left un-attenuated
slit (Fig. 4.6(a)). Zooming in with a factor of 1000 as shown in Fig. 4.6(b), one
can see the faint rest of interference phenomena for the case of a = 10−4 (blue),
whereas for a = 10−8 (red) apparently smooth behaviour is seen. Still, the full
effect is best visible on the logarithmic scale shown in Fig. 4.6(c). Compared to
the dotted initial distributions for the cases of a = 10−4 (blue) and a = 10−8 (red),
respectively, the whole distribution clearly shows interference phenomena which have
been “swept aside” far to the right. The probability distribution for latter is shown
in Fig. 4.7 in which the relative positions of the red and blue arrow are the same as
in Fig. 4.6(c) indicating the positions of the detected interference zones. Thus, the
quantum sweeper effect is confirmed also via orthodox language.

The bunching together of low counting rate particles within a very narrow spatial
domain, or channel, respectively, counters naive expectations that with ever higher
beam attenuation nothing interesting may be seen any more. The reason why these
expectations are not met is given by the explicit appearance of the nonlinear structure
of the probability current Jtot (3.21) in these domains for very low values of a.

4.5. Implications
We have shown that for transmission factors below a . 10−4 in intensity hybrids, new
effects appear which are not taken into account in a naive, i.e. linear, extrapolation
of expectations based on higher-valued transmission factors. We have described the
phenomenology of these quantum sweeper effects, including the bunching together
of low counting rate particles within a very narrow spatial domain, or channel,
respectively. However, we also stress that these results are in accordance with
standard quantum mechanics, since we just used a re-labelling and re-drawing of the
constituent parts of the usual quantum mechanical probability currents. However,
concerning the explicit phenomenological appearances due to the nonlinear structure
of the probability current in the respective domains for very low values of a, our
sub-quantum model is better equipped to deal with these appearances explicitly.

With the discovery of the quantum sweeper effect on the basis of a causal approach
to quantum mechanics, we claim to have presented a first example as it was demanded
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by Rabi4. We are optimistic that through further developments, both in theory
employing sub-quantum mechanics and in weak measurement techniques capable
of probing the latter regime, more unexpected new effects can be predicted and
eventually be confirmed in experiment.

4.6. Conclusion and outlook
Summarizing, it has been shown that for transmission factors below a . 10−4 in
intensity hybrids, new effects appear which are not taken into account in a naive,
i.e. linear, extrapolation of expectations based on higher-valued transmission factors.
One describes the phenomenology of these quantum sweeper effects, including the
bunching together of low counting rate particles within a very narrow spatial domain.
It has also been stressed that these results are in accordance with standard quantum
mechanics, since just a re-labelling and re-drawing of the constituent parts of the
usual quantum mechanical probability currents has been used. The reason why the
above-mentioned naive expectations are not met is given by the explicit appearance
of the nonlinear structure of the probability current in these domains for very low
values of a. In this regard, the presented sub-quantum model is better equipped to
deal with these appearances explicitly.

4In his criticism of David Bohm’s causal interpretation of the quantum mechanical formalism,
Isidor Rabi made the following statement in the 1950ies which is still shared by quite some
researchers today: “I do not see how the causal interpretation gives us any line to work on other
than the use of the concepts of quantum theory. Every time a concept of quantum theory comes
along, you can say yes, it would do the same thing as this in the causal interpretation. But I
would like to see a situation where the thing turns around, when you predict something and we
say, yes, the quantum theory can do it too.” [Fre05]
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5. Numerical methods
In chapters 2 to 4 we have already used numerical methods to produce
distribution pictures. We shall here give a detailed explanation on how
the results have been computed. As the mathematics of said numerical
methods is rather extensive and would thus be misplaced in between the
physically oriented explanations of the last chapters, an overview on the
procedure of simulation shall be provided here. A quick overview on the
simulation setup already provided in chapters 2.2 and 3.1 will be given.
Then the practical handling of action and phase will be introduced as
well as a note on the usage of diffusion coefficients as an addition to
chapter 2.5.
A bigger part will be dedicated to finite difference procedures, especially
the two particular ones we used throughout the work, coupled map
lattices and the Crank–Nicolson’s method, as well as the respective
stability criteria.
We shall present the construction of trajectories whose representation is
not quite clear, especially in the sweeper figures of chapter 4. Finally,
we shall show how to calibrate our tools by using measurement data of
neutron double-slit experiments.

5.1. Preliminaries
5.1.1. The simulation setup
In section 2.2 the setting of a single-slit experiment has been sketched, which has
been further extended to at least a double-slit in chapter 3.1 as shown in Fig. 5.1,
comprising a three-dimensional problem with slits in the xz-plane elongated in z-
direction. Consider a Gaussian entering a slit propagating in the positive y-direction.
Its spreading in the xy-plane is essentially independent of the z-position as any
spreading into the z-direction is compensated by the spreading of a neighboured
plane. For simplicity, we neglect the impact of the slit’s top and bottom edges, thus
assuming sufficiently large slits.

The dispersion is assumed to feature an ideal Gaussian shape not being refracted at
the slit’s side edges. Furthermore, the Gaussians extends along the whole x-direction,
i.e. the Gaussian function is not cut by the slit it runs through, as indicated in
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5.1 Preliminaries

x y

z

Figure 5.1.: Setting of a double-slit experiment in three dimensions with Bohm-type
trajectories sketched on different layers

Fig. 2.1 by the left most shape not cut by the slit. Then, one does not need to
consider about phase-free spaces along any light-cone-like structures which would
arise otherwise. Right after the slit the initial probability density at a given slit
centre position x0 reads as

P (x, 0) = 1√
2πσ0

e−(x−x0)2/2σ2
0 (5.1)

at initial time t = 0 and initial standard deviation σ0. P (x, 0) (5.1) is the distribution
to start with in every single simulation. The connection between the y-axis and time
t is given by Eq. (2.1),

y (t) = ~kyt
m

. (5.2)

5.1.2. Action and phase
As soon as more slits are available in a given setup, the phase relations between
the distributions after the slits have to be considered. In order to derive the phase
relations of coherent beams, we recall the definition of the phase [Mes13]

ϕ(x, t) = S(x, t)/~ (5.3)

with the classical action function S(x, t) as defined in chapter 2.3. We identifying
the total velocity vtot(x, t) of Eq. (2.37) along a trajectory with

vtot(x, t) = ∇S(x, t)
m

. (5.4)
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5.1 Preliminaries

We assume that there is no potential and the paths described by vtot(x, t), as sketched
in Fig. 2.3, correspond to particle trajectories of free particles and thus the energy is
constant, E = const.

These presumptions then lead to the action

S(x, t) =
x∫

vt

mvtot dx′ −
t∫

0

E dt′ = m

x∫
vt

[
v + u2

0t

σ2
0 + u2

0t
2 ξ(t)

]
dx′ −

t∫
0

E dt′ (5.5)

with E being the system’s total energy and m the mass of the particle involved.
According to Fig. 2.5, the lower bound of the integral in Eq. (5.5) is set to vt being
the starting point of the diffusion which is different from zero due to velocity v
causing an angle of inclination of the incident plane wave. According to the motion in
t-direction, there is the constant component mv2

yt to be added to S(x, t) in Eq. (5.5)
which we put into Et.

As v = const. as well as E = const. we can solve both integrals, providing

S(x, t) = mvx+ mu2
0

2

[
ξ(t)
σ(t)

]2

t−mv2t− Et. (5.6)

In Eq. (5.6), the right most term depends on t only and will cancel out later.
Finally, we write the phase defined by Eq. (5.3) as

ϕ(x, t) = 1
~

mvx+ mu2
0

2

[
x− vt
σ(t)

]2

t−mv2t− Et

 . (5.7)

Expression (5.7) sticks to the coordinate system and will turn out to be very helpful
for interference calculations on a grid.

Now, if we extend the setup to a double-slit system, as sketched in Figs. 5.1 or 5.2,
we need the Gaussian shaped probability densities coming out from each slit as well
as the overall phase which is a combination of the single phases ϕ(x, t) (5.7). Since
each Gaussian has its own phase (5.7) we are free to add a phase shifter ∆ϕ(x, t) for
one of the slits of the two-slit experiment, say slit 1, which modifies ϕ1(x, t) to

ϕ′1(x, t) = S1(x, t)
~

+ ∆ϕ(x, t) (5.8)
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which yields for the phase difference

ϕ12(x, t) = ϕ2(x, t)− ϕ′1(x, t)

= m

~

[
v2(x− x02)− v1(x− x01)− (v2

2 − v2
1)t
]
−∆ϕ(x, t)

+ mt

2~

[
u2

02(x− x02 − v2t)2

σ2
2(t) − u2

01(x− x01 − v1t)2

σ2
1(t)

]
.

(5.9)

Even though the phase shifter ∆ϕ(x, t) allows for modification of x and t independ-
ently, in this work we only provide simulations with the phase shifter ∆ϕ(t) being a
function of time only, e.g. as is clearly indicated in Fig. (3.12).

5.1.3. The diffusion coefficient in computations
The two slits at positions x01 and x02 could also have different slit widths and hence
different parameters, σ01, σ1(t), u01 and σ02, σ2(t), u02, respectively, as sketched in
Fig. 5.2. Note, the phase difference ϕ12 (5.9) is at any time defined for the whole

x

t

0

tk1

tk2

x01

σ0

x02

σ0/2

Figure 5.2.: Sketch of a double-slit with two different widths and Bohm-type
trajectories (and same-widths scenario indicated by grey lines)

domain as already pointed out in section 5.1.1.
Now we take a closer look at the time t = tk of the kink (see Fig. 5.2), i.e. the

time when the wave packet changes its spreading behaviour. According to Eq. (2.28),
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σ(t)
σ0

=
√

1 + D2t2

σ4
0
, (5.10)

this is obviously when the two terms under the square root become of equal value,
which yields

1 = D2t2k
σ4

0
, (5.11)

hence the number under the square root becomes 2, thus we get σ(tk) =
√

2σ0. With
the help of Eq. (2.26) we find that

Dt = t

tk
D. (5.12)

At time t = tk the diffusion coefficient1 becomes Dt = D. For an exemplary picture,
consider the scenario depicted in Fig. 5.2 comprising two slits of different widths. We
assume the initial Gaussians passing the slits have a standard deviation according to
the respective slit widths, e.g., σ01 = σ0 and σ02 = σ0/2, respectively. The resulting
Bohm-type trajectories of the two decaying Gaussians have the properties that the
time at the kink quadruples while the spreading only doubles,

σ01 = 2σ02 =⇒ tk1 = 4tk2, (5.13)

tki being the time at which the kink arises at the respective slit i, as indicated in
Fig. 5.2 by red lines compared with the greyed-out lines for the spreading of slit 2
for the case both slits would have standard deviation σ0. According to Eq. (2.26),
the diffusion coefficients of the two slits, now different from each other and thus
indicated by Dt,i corresponding to slit i, yield

Dt,1(t) = D2t

σ2
02

6= Dt,2(t) = D2t

σ2
01
, ∀t > 0, (5.14)

which implies that one cannot compute both spread distributions in a single step, as
the associated diffusivities evolve different in time. Instead, one has to compute each
single probability distribution and combine them afterwards according to Eq. (3.14).

As an example of a double-slit setup with different slit widths which considers
also Eqs. (5.9) and (5.14) in comparison to a double-slit experiment with equal
widths. [Grö12b; Mes13]

The graphical results providing the interference patterns thereto are shown in

1Note that the diffusivity D = ~/2m is constant for all times t and has to be distinguished from
the diffusion coefficient Dt. See also section 2.5
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5.2 The finite difference method

Fig. 5.3. In Fig. 5.3(a) the maximum of the intensity is distributed along the
symmetry line exactly in the middle between the two slits, as well as in Fig. 5.3(b),
though slit 2 has doubled width. In the exemplary figures, trajectories according to
Eq. (3.14) for the two Gaussian slits are shown. For an explanation on the meaning
of these patterns, see chapter 3.3.

5.2. The finite difference method
In section 2.5 we have formulated the ballistic diffusion equation (2.25),

∂P

∂t
= D2t

σ2
0︸ ︷︷ ︸

Dt

∂2P

∂x2 , (5.15)

with diffusion constant D = ~/2m. Eq. (5.15) is valid per slit of width σ0. In a
multi-slit system Eq. (5.15) has to be evaluated once per slit and combined with
phases (5.9).

In this section we describe the evaluation procedure of P (x, t) in order to solve
Eq. (5.15) with initial value P (x, 0) given by Eq. (5.1) by means of finite difference
methods (FDM). FDMs are numerical methods for solving differential equations by
approximation with difference equations. Here, the ballistic diffusion equation (5.15)
is solved per slit on a discretised grid. As first relations, we define

t = T∆t, x = X∆x, (5.16)

with t and x denoting time and position in the physical domain while T and X
denote time and position of the simulation domain, respectively. Then we have for
the step widths

∆t = t

T
, ∆x = x

X
, (5.17)

thereby defining the scaling between the physical domain and the numerical discret-
isation.

Now, we take a closer look at two different numerical procedures to solve Eq. (5.15)
and the stability conditions of these procedures.

5.2.1. Coupled map lattices
Coupled map lattices, or short CML, are equivalent to cellular automata, though
each cell2 is represented by real values instead of integers (see Fig. 5.4). CMLs allow

2We shall use the terms “cell” and “node” synonymously. However, for CMLs or cellular automata
the term cell is more common which is associated with the idea of a space filled with some
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t

t+ 1

t+ 2

x− 1 x x+ 1

Px−1,t

Px,t

Px+1,t

Px,t+1

Px,t+2

Figure 5.4.: Neighbourhood in coupled map lattices

to inquire into dynamical processes of emergent processes and could model not only
general phenomenological aspects of our world but also directly the laws of physics
themselves. CMLs then could be a powerful tool to get a deeper understanding on
what is going on because they are information-preserving and thus retain one of the
most fundamental features of microscopic physics – namely reversibility. [TM87]

Coupled map lattices reduce macroscopic phenomena to precisely defined micro-
scopic processes which make them of prime methodological interest, but in order to
obtain such features, in general one has no choice but to implement an explicit finite
difference forward scheme, a so-called Euler scheme, respectively.

An explicit forward scheme is characterized by the fact that solely solutions of
already elapsed time steps are sufficient to calculate the solution of the next time step.
In a coupled map lattice, then, all values of the next time step of the whole domain
are computable within a single iteration only out of values already calculated before.
The crucial point of this definition is that these upcoming values are computable in
the same iteration, these values must therefore not be part of a condition that is
itself subject to be solved before, otherwise the scheme were implicit. In this sense
coupled map lattices are completely specified, discrete dynamical systems of a local
relation, i.e. neighbourhood rules, as is the case for continuous dynamical systems
defined by partial differential equations. And hence coupled map lattices are the
discrete physicist’s concept of fields.

In order to derive the coupled map lattices’ relations we replace the differential

entities.
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5.2 The finite difference method

terms of Eq. (5.15) by discrete differences,3

∂P

∂t
→ Px,t+1 − Px,t

∆t +O(∆t2), (5.18)

∂2P

∂x2 →
Px+1,t − 2Px,t + Px−1,t

∆x2 +O(∆x2), (5.19)

using two-dimensional cells Px,t for each value P (x, t) on a discrete lattice. ∆x and
∆t being the step width in space and time, respectively. The Landau notation O
describes the limiting behaviour of the functions, both of which are here of order 2.

The resulting finite difference equation is obtained by simply substituting Eqs. (5.18)
and (5.19) into (5.15), thereby omitting the Landau notation O,

Px,t+1 − Px,t
∆t = Dx,t+1

∆x2

(
Px+1,t − 2Px,t + Px−1,t

)
, (5.20)

and in case Dt(x, t), or its pendant on the lattice Dx,t, is independent of x, then,
after reordering the equation reads as

Px,t+1 = Px,t + Dt+1∆t
∆x2

(
Px+1,t − 2Px,t + Px−1,t

)
(5.21)

with spatial variable x, time t, and initial Gaussian distribution P (x, 0) having
standard deviation σ0 at t = 0. The calculation of a cell’s value Px,t+1 (at time
t + ∆t) only depends on cell values at the previous time step t, which fulfils the
necessary condition for coupled map lattices as stated above. In Eq. (5.21) the
time-dependent diffusion coefficient Dt+1 can be calculated without any knowledge
of neighbouring cells because it only depends on time. As this diffusion coefficient
represents the underlying physical process at a given cell it is calculated in Eq. (5.21)
for the evaluated time step t+ ∆t at which Px,t+1 is evaluated, hence Dt+1 instead
of Dt.

Concerning the neighbourhood rules as local relations, a cell’s value affects only
itself and its direct neighbours in the next time step thereby defining a light-cone-like
45◦ line in the unity-sized grid of the coupled map lattice as shown in Fig. 5.4.
However, this is an impact of the construction of derivatives in the finite different
scheme as is obvious from Eqs. (5.18) and (5.19).

3To make things easily readable and taking into account that the indexed variables are only
used in this chapter, we leave the naming of the variables untouched, even though the indexed
variables define a grid comprising only natural number, i.e. x, t ∈ N, whereas non-index variables
represent physical quantities. In this chapter let us define: A variable being an index (·x, ·t)
pertains to the grid, else (x,t) it represents a physical quantity.
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5.2 The finite difference method

Stability of coupled map lattices

The solutions of finite difference schemes may provide instabilities which are related
to high-frequency oscillations. Instability is essentially a local phenomenon as at
the points where the oscillations arise the derivative of the solution is discontinuous.
Even though, the oscillations caused by the instability propagate to other regions,
which can eventually make the disturbance seem to be global in extent. Here, we
examine the conditions to be taken into consideration under which and when the
system is stable.

The stability condition for the scheme (5.21) is that∣∣∣∣∣Dt∆t
∆x2

∣∣∣∣∣ ≤ 1
2 (5.22)

be satisfied for all values of the cells in the domain of computation. The general
procedure is that one considers each of the frozen coefficient problems arising from
the scheme. The frozen coefficient problems are the constant coefficient problems
obtained by fixing the coefficients at their values attained at each point in the domain
of the computation (cf. Strikwerda [Str04]).

To fix the coefficients in Eq. (5.22) the variables ∆x and ∆t are kept constant
during the whole computation, whereas the value of Dt(t) grows with increasing
time. In order to obtain the best possible estimate with Eq. (5.22) we substitute the
maximum possible value of Dt+1, i.e.

Dt(t)→ max(Dt+1) = Dtmax+1 (5.23)

to be kept up for the sake of derivation of the stability conditions only.
Substituting Dt(t) of Eq. (5.15) into (5.22) leads to

∆t ≤ ∆x2σ2
0

2D2t
(5.24)

which reaches its minimum value in the domain at t = tmax, thereby defining
the largest allowed step width ∆tmax to ensure stability. Using these limits, i.e.
tmax = Tmax∆tmax, yields

∆tmax ≤
∆x2σ2

0
2D2tmax

= ∆x2σ2
0

2D2Tmax∆tmax
, (5.25)

∆t2max ≤
∆x2σ2

0
2D2Tmax

, (5.26)

and eventually leads to the stability condition

∆tmax ≤
∆xσ0

D
√

2Tmax
. (5.27)
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5.2 The finite difference method

While the numerator’s variables, ∆x and σ0, are solely determined by the setup
in x-direction, the denominator’s variables, D = ~/2m = const. and Tmax, the
latter is solely determined by the t-direction. If, for example, one extends the time
development, i.e. by setting

Tmax → aTmax, a > 1, (5.28)

one then has to shrink

∆tmax → ∆tmax/
√
a (5.29)

simultaneously to ensure stability.
The stability condition (5.27) turns out to be a problematic restriction on com-

putability. However, in cases with moderate spreading we obtain pretty good results
and proved the method of coupled map lattices to work fine. Nevertheless, coupled
map lattices demand explicit methods, as already stated above. As there are also
examples in this thesis where this method does not work economically usefully, we
then must employ other methods (see chapter 5.2.2).

Finally, we want to point out that, in cases where coupled map lattices are stable,
the approximation follows the exact solution at least linearly with x and t. The
complete proves can be found in textbooks, e.g. from Toffoli et al. [TM87], Schwarz
and Köckler [SK09], or Haas [Haa99].

5.2.2. Crank–Nicolson’s method
Now we investigate Crank–Nicolson’s method as an example of an implicit method.
From the viewpoint of the difference approximation the disadvantage with the
derivative of an explicit method is that the used difference quotients approximate
their associated derivatives at different positions of the domain. In order to enhance
the approximations the second derivative is replaced in the following way: Instead
of using rule (5.19) we approximate ∂2P/∂x2 by the arithmetic mean of the two
difference quotients at nodes [x, t] and [x, t + 1] at two consecutive time steps, as
shown in Fig. 5.5, and obtain for the approximations4 with respect to M [SK09]

∂2P

∂x2 = Px+1,t − 2Px,t + Px−1,t

2∆x2 + Px+1,t+1 − 2Px,t+1 + Px−1,t+1

2∆x2 +O(∆x2),
(5.30)

∂P

∂t
= Px,t+1 − Px,t

∆t +O(∆t2). (5.31)

The limiting behaviour of each function is of order 2 as indicated by the Landau
notation O. As Dt is independent of x, the resulting finite difference equation is

4We repeat here the statement of footnote 3 on page 85
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5.2 The finite difference method

t

t+ 1

x− 1 x x+ 1

Px,t

Px,t+1

M

Figure 5.5.: Lattice according to Crank–Nicolson’s method

obtained by substitution of Eqs. (5.30) and (5.31) into (5.15), thereby omitting the
Landau notation O, which reads after reordering as

−dtPx−1,t+1 +
(

2 + 2dt
)
Px,t+1 − dtPx+1,t+1

= dtPx−1,t +
(

2− 2dt
)
Px,t − dtPx+1,t

(5.32)

with

dt := Dt∆t
∆x2 (5.33)

thereby assuming the value

Dt := Dt+1/2 = Dt(t+ ∆t/2) (5.34)

at M .
A quick look at Eq. (5.32) illuminates why the scheme is implicit: The values of

the next time step cannot be calculated directly out of the former ones. Instead, a
linear equation system has first to be solved to obtain the solution. In comparison
with coupled map lattice, then, one has to put more effort into computer programs.
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5.2 The finite difference method

Stability of Crank-Nicolson’s method

We set dt (5.33) being constant in a first step, i.e. dt → d, and rewrite Eq. (5.32) as



2 + 2d −d
−d 2 + 2d −d
. . . . . . . . .

−d 2 + 2d −d
−2d 2 + 2d

pt+1

=



2− 2d d
d 2− 2d d
. . . . . . . . .

d 2− 2d d
2d 2− 2d

pt

(5.35)

or short

(2I + dJ)pt+1 = (2I− dJ)pt (5.36)

with I being the identity matrix and

J :=



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−2 2


∈ Rn,n, (5.37)

pt :=



P1,t
P2,t
P3,t

...
Pn−1,t
Pn,t


(5.38)

with n being the number of nodes in x-direction. Because of d > 0 the matrix
(2I + dJ) is diagonal dominant and regular, thus we obtain formally

pt+1 = (2I + dJ)−1(2I− dJ)pt. (5.39)

This method is absolutely stable if the absolute values of the eigenvalues λi of the
matrix (2I+dJ)−1(2I−dJ) are less than one. Because of the form of J the eigenvalues
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5.2 The finite difference method

µi are real and 0 < µi < 4 [SK09] and hence

−1 < λi = 2− dµi
2 + dµi

< 1. (5.40)

This proves Crank–Nicolson’s method absolutely stable because the value d is not
restricted. For we allow any positive values for Dt and hence any arbitrary values
d→ dt = Dt∆t/(∆x)2 (5.33) without loss of stability.

The approximation follows the exact solution at least with O(∆x2) and O(∆t2),
respectively, and converges thus 10 times faster than coupled map lattices. However,
the iteration steps must not be chosen too big because, though stability is given, the
approximation error increases ∝ O(∆x2+∆t2). The proves can be found in textbooks,
e.g. from Toffoli et al. [TM87], Schwarz and Köckler [SK09], or Haas [Haa99].

5.2.3. Comparison of the finite difference schemes
We compared two finite difference schemes and provided a short overview on ad-
vantages and restrictions in both cases. The coupled map lattices, as an example of
an explicit scheme (5.21), has its most advantageous feature definitely in its quick
and easy implementation at the cost of problematic restrictions on the step width.
For the Crank-Nicolson method, as an example of an implicit scheme (5.32), the
implementation task is rather on the expensive side because of the equations solvers
needed for, while its advantage lies in its convergence behaviour for any step width.
For an overview see Tab. (5.1).

Scheme Stable Error Comment

Coupled map lattices ∆tmax ≤
∆xσ0

D
√

2Tmax
O(∆x+ ∆t) easy to implement

Crank–Nicolson yes O(∆x2 + ∆t2) converges always

Table 5.1.: Overview on the two compared finite difference schemes.

For our simulations within this thesis we employed both coupled map lattices as
well as Crank–Nicolson’s method. For both of which we developed on a standard
personal computer using Scilab [Cam10] and recently also Julia language [Bez14],
two open source packets for numerical computation.
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5.3 The simulation procedure

5.3. The simulation procedure
The simulation procedure, which is schematically shown in Fig. 5.6, comprises the
following steps to simulate solutions according to the ballistic diffusion equation (2.25):

1. Define an initial probability distribution P as in Eq. (5.1),

2. Compute the spreading: (5.21) or (5.32),

3. Calculate the associated phase ϕ according to Eqs. (5.5) and (5.8)

4. Combine to

a) either a total probability distribution (3.14),
b) or a total probability current (3.21).

Accordingly, with this procedure we simulate intensity probabilities as well as current
distributions.

5.4. Trajectories
If one considers a particle as a walker obeying a Brownian-type motion including
the zitterbewegung, then the resulting trajectory would be erratic and thus of
little usefulness for the purpose of repeated experiments (see section 2.2 for further
explanation). Therefore, the particle’s trajectories in the pictures within this thesis
are the results of averaging of a huge number of such walkers, in the mean obeying a
Bohmian-type trajectory which is sufficiently smooth to explain repeated experiments
then. The emerging trajectories are in full accordance with those obtained from the
Bohmian approach, as can be seen by comparison with references [BH93; Dav15;
dGos16; Hol93; SB09; SM12], for example.

Accordingly, trajectories of Bohmian-type are shown, which are always computed
from the underlying probability distribution P . On some occasions the distances
between two single, adjacent trajectories differ for didactic reasons,

• as in Fig. 2.6, for example, where each two single trajectories are chosen equally
spaced, and hence the trajectories are initially equidistant,

• as in Fig. 5.3, for example, where the flux, i.e. every value ∆P , between any
two adjacent trajectories is equal and kept constant, hence the trajectories
reach their highest density around the maximum of the intensity distribution.

While the former method of displaying trajectories is mostly used for comparison
reasons with older pictures in literature, the latter one gives a better idea of properties.
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5.4 Trajectories
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5.5 Calibrating the simulation tools

In most of the pictures the same number of trajectories for each Gaussian is
used thereby resulting in well proportioned figures as long as the distributions
possess about the same intensities. However, if the relation of the intensities differ
considerable, this easy recipe fails. For example, in figures in chapter 4 the number
of trajectories are chosen to be equal for each slit thereby resulting in sweeper effects
comprising trajectories that do not provide the correct physical proportions: Thus,
if one maintained the trajectories of said sweeper-figures to enclose the same amount
of flux for both beams at the same time, and thus for the whole picture, then either
the low-intensity beam had no visible trajectories or the high-intensity beam had
too many trajectories so that one couldn’t distinguish between the single lines.

5.5. Calibrating the simulation tools
The double-slit experiment is of particular interest and therefore there is a bunch
of measured data available. In an actual experiment as sketched in Fig. 5.7, the
double-slit diffraction of neutrons has been measured [RW00; Zei88]. The typical
wavelength used is λ = 1.845 nm. The Gaussian slit width is 21.9µm and 22.5µm,
respectively with their centres being 126.3µm apart, and the intensity distributions
are recorded on a screen S4 located in the forward direction at a distance of 5 m
from the object slit S5.

In Fig. 5.8 we show the results of our computer simulations for the probability
density distributions of a neutron beam using the parameters of this experiment.

Comparing these simulations’ results with actual measurement data in Rauch
and Werner [RW00] as well as from Zeilinger et al. [Zei88] enabled us to adjust the
parameters. It turned out that there is a certain ratio between the slit width and σ0
to be maintained that is around

σ0 ≈
slit width

3

Figure 5.7.: Experimental setup. From [RW15; Zei88]
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5.5 Calibrating the simulation tools

(a) Probability distribution

(b) Intensity recorded at y = 5 m comprising the measured curve (black) from [Zei88],
and the simulation’s result (red)

Figure 5.8.: Classical computer simulation of the interference pattern for λ = 1.8 nm,
the slit width is 22µm each, with their centres being 200µm apart
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5.6 Conclusions and outlook

such that the correct shape of the intensity recorded at y = 5 m can be ensured.
Even though the curves do not perfectly fit, the result is sufficiently accurate,

taking into account, that the actual measurement did not have taken place with
idealized Gaussians but with real neutron beams. Zeilinger et al. [Zei88] carried
out in their paper how they compared the measured data with theory. In fact,
they integrated of course the whole length of the optical bench, i.e. in Fig. 5.7 this
corresponds to the paths from S3 to S4. In our model this is not possible as we
do not yet allow objects in the path. Thus, our path contains the second half of
the optical bench, i.e. in Fig. 5.7 corresponding to the paths from S2 to S4, thereby
assuming an idealized Gaussian behind S5. The scope of this thesis is to simulate a
Gaussian beam in one dimension without diffraction, therefore, modelling diffracted
Gaussians would need further investigation.

5.6. Conclusions and outlook
In this chapter, the simulation means for obtaining probability distributions as well
as density currents has been provided. Preliminarily, the setup, the phase conditions
and the diffusion coefficient for different slit widths has been discussed.

As a numerical means to solve the ballistic diffusion equation two finite different
schemes have been introduced. The first one, coupled map lattices as an example for
an explicit scheme has been shown to be beneficial for exploration of the dynamical
behaviour bringing in the advantage of easy implementation. The second one, the
implicit scheme of Crank–Nicolson has been proven to be unconditionally stable for
the cost of much more computational effort, however, it allows obtaining solutions
independent of the domain even in situations where coupled map lattices collapse.

The method of constructing trajectories which are part of the numerical procedure,
has been explained.

Finally, a calibration procedure has been provided: The comparison of measured
results from a neutron-experiment with simulated results of the same setup has
yielded the relation between the slit width and the initial half-width of the Gaussian
σ0.
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A. Classical mechanics and
Boltzmann’s relation

The equations of mechanics can be deduced from a least action principle,
where usually the varied path in configuration space always terminates
at end points representing the system configuration at the same times, t0
and t1, as the natural path.
In the following one starts with the derivation of a less constrained
δ–variation with a varied path over which an integral is evaluated that may
end at other times than the natural path, and there may be a variation
in the coordinates at the end points. By defining a relation between
heat and mechanical work one follows the thoughts of Brillouin [Bri64,
Chapter 11], and to some extent of Goldstein [Gol02], Scheck [Sch10],
Hamel [Ham67, pp.312-314], and Hand [HF98, pp.230ff] leading directly
to the Boltzmann relation of periodic motion.

A.1. The principle of least action
We consider a general problem with time-dependent holonomic constraints. With
kinetic energy T , potential energy V , time t , generalized coordinates qk and velocities
q̇k, k = 1, . . . , r (r being the remaining coordinates), we form then the Lagrangian
function

L(qk, q̇k, t) = T (qk, q̇k, t)− V (qk, t). (A.1)

We have further the momentum pk conjugate to the coordinate qk given by

pk = ∂T

∂q̇k
= ∂L

∂q̇k
, (A.2)

and Lagrange’s equation takes the form

dpk
dt = ∂L

∂qk
. (A.3)
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A.1 The principle of least action

We will study the value of the action integral

S =
∫
L dt (A.4)

during the evolution of the system.
For the δ-variation the varied path always terminates at end points representing

the system configuration at the same times, t0 and t1, as the natural path. To obtain
Lagrange’s equations of motion, it is also required that the varied path returns to
the same end points in configuration space, i.e. δqk(t0) = δqk(t1) = 0. [Bri64; Gol02]

Now, we define a less constrained δ-variation (note the bold δ-symbol) according
to Fig. A.1 with a varied path over which an integral is evaluated that may end at
other times than the natural path, i.e. the paths have different throughput times,
and there may be an additional variation in the coordinates at the end points.

R0, t0

R1, t1

na
tu

ra
l t

ra
jec

to
ry

M

R′
0, t0

P0, t0 + δt0

R′
1, t1

P1, t1 + δt1

va
rie

d
tr

aj
ec

to
ry

M
′

δqk0

δqk0

δqk1

δqk1

Figure A.1.: The δ-
variation in configuration
space, composed of a
variation in space, δqk, and,
additionally, of a variation
in time, δt.

As shown in Fig. A.1 the two usual variations, δqk in space and δt in time, lead
to the δ-variation of the space variable by the relation

δqk = δqk + (q̇k + δq̇k)δt ≈ δqk + q̇kδt (A.5)

with negligible second order correction δq̇kδt. The variation of action integral S, i.e.

δS = δ

t1∫
t0

L dt, (A.6)

is the difference of the action of the natural trajectory M from R0 to R1 and the
action of the varied trajectory M ′ from R0 to R1. Thus we can rewrite Eq. (A.6) as

δS =
t1+δt1∫
t0+δt0

L(qk + δqk) dt−
t1∫
t0

L(qk) dt (A.7)
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A.1 The principle of least action

with the Lagrangian function L along the varied trajectory in the first integral and
L along the natural trajectory in the second integral. We separate the integration
over the terminal segments R′0P0 and R′1P1 and obtain

δS =L(qk1 + δqk1)δt1︸ ︷︷ ︸
Q′1P1

−L(qk0 + δqk0)δt0︸ ︷︷ ︸
Q′0P0

+
t1∫
t0

L(qk + δqk) dt

︸ ︷︷ ︸
M ′

−
t1∫
t0

L(qk) dt

︸ ︷︷ ︸
M

=L(qk1 + δqk1)δt1 − L(qk0 + δqk0)δt0 +
t1∫
t0

δL dt. (A.8)

Here the variation in the last integral can be carried out through a parametrization
of the varied path,

δL = L(qk + δqk)− L(qk) =
∑
k

(
∂L

∂qk
δqk + ∂L

∂q̇k
δq̇k + ∂L

∂t
δt

)
, (A.9)

where the last term in the bracket vanishes because we have chosen two simultaneous
positions and hence δt = 0. We integrate the second term by parts, using the
exchange relation δ

(
d·
dt

)
= d

dt (δ·) for q̇kand obtain

∂L

∂q̇k
d
dt
(
δqk

)
= d

dt

(
∂L

∂q̇k
δqk

)
− δqk d

dt

(
∂L

∂q̇k

)
. (A.10)

Substitution of these expressions into Eq. (A.9) leads to

t1∫
t0

δL dt =
t1∫
t0

∑
k

[
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)]
δqk dt+

∑
k

∂L

∂q̇k
δqk

∣∣∣∣∣
R1

R0

. (A.11)

On account of Eqs. (A.2) and (A.3), the equation within the square brackets of the
integral disappears entirely. Now we substitute Eqs. (A.9) and (A.11) into (A.8) and
find

δS =
[
L(qk1) + δL

]
δt1 −

[
L(qk0) + δL

]
δt0 +

∑
k

∂L

∂q̇k

(
δqk − q̇kδt

)∣∣∣∣∣
R1

R0

. (A.12)

We identify L(qki ) = Li, neglect the second order terms and reorder to find our final
result as

δS = H0δt0 −H1δt1 −
∑
k

p0kδq
k
0 +

∑
k

p1kδq
k
1 . (A.13)
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A.1 The principle of least action

Here, we substituted Eq. (A.2) and introduced the Hamiltonian

Hi =
∑
k

pikq̇i
k − L(qki , q̇ki , ti). (A.14)

A.1.1. The conservative case
Along with the integral S defined in Eq. (A.4) we shall consider the abbreviated
action

F =2
∫
T dt =

∫ ∑
k

pkq̇
k dt =

∫ ∑
k

pk dqk. (A.15)

Taking into account

H =
∑
k

pkq̇
k − L = 2T − L = T + V = E. (A.16)

For conservative systems the total energy E remains constant, H0 = H1 = E, and
from (A.13) we find

δS = E(δt0 − δt1)−
∑
k

p0kδq
k
0 +

∑
k

p1kδq
k
1 . (A.17)

We reconsider Eq. (A.4) and set up the equation connecting F with action S by

S =
∫
L dt =

∫
(T − V ) dt =

∫
(2T − E) dt = F −

∫
E dt. (A.18)

We compare the values of the integrals F taken along two neighbouring trajectories,
the natural and a nearby entirely arbitrary trajectory. On the natural trajectory,
the total energy E remains constant, but this is not so on the varied trajectory. We
obtain then

δF =δS + δ
∫
E dt = δS +

∫
δE dt+ E(δt1 − δt0), (A.19)

where the last term in (A.19) is an expression for the variation at the endpoints of
the trajectory from 0 to 1. Substitution of Eq. (A.17) into (A.19) yields

δF =
∫
δE dt+

∑
k

p1kδq
k
1 −

∑
k

p0kδq
k
0 (A.20)

as a general result. A nearby trajectory, although entirely arbitrary, is only subject
to the conditions of respecting constraints [Bri64; Ham67]. Now, we investigate the
influence of a modification of such constraints.
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A.1 The principle of least action

A.1.2. Reduced constraints
We consider, again, a system of N mass points defined by their 3N position coordin-
ates. We further suppose that there exist l holonomic constraints among these points
so that there remains only

r = 3N − l (A.21)

independent degrees of freedom. We assume a conservative system characterized
by time-independent holonomic constraints, hence we can define a total energy E
remaining constant in time during the natural evolution of the system.

We find

E = T + V = const., L = T − V = 2T − E (A.22)

for the natural motion of the conservative system, the usual Lagrangian L referring
only to the visible coordinates q1, . . . , qr. Now, we allow for a variation of constraints
and we will use the asterisk ∗ to indicate the overall quantities containing the
independent coordinates qr+1, qr+2, . . . , q3N . So as not to give useless complication
to the equations, we take it, that the forces guaranteeing the constraints are derived
from a potential energy V ∗ by

V ∗ =
3N∑

k=r+1
Ak(qk)2 (A.23)

with very large positive coefficients Ak thereby guaranteeing very small qks. This form
corresponds to the hypothesis that the constraints are realized by very rigid elastic
systems. A small displacement qk brings into action a very great force −2Akqk which
opposes this change. The coordinates qr+1, qr+2, . . . , q3N then remain practically
constant, their corresponding velocities q̇k vanish; the corresponding momenta pk
however will not always vanish due to their dependence on q̇ki , i = 1, . . . , l = 3N − r.

The kinetic energy T is unchanged in the natural motion, for, all the velocities
qr+1, qr+2, . . . , q3N of the hidden coordinates are practically constant (and zero) for
this trajectory and hence pkq̇k ≈ 0 for k = r + 1, . . . , 2N . With these definitions we
find the total energy as

E∗ = E + V ∗, (A.24)

including a new term coming from the new potential energy V ∗. The complete
Lagrangian function reads

L∗ = T − V − V ∗ = L− V ∗ (A.25)

with L being the usual Lagrangian referring only to the visible coordinates q1, . . . , qr.
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A.2 A thermodynamical analogy

Note that E∗and L∗ in Eqs. (A.24) and (A.25) are related to the natural trajectory.
On a varied trajectory, the kinetic energy T ∗ changes. In this case we write

2T ∗ = 2T +
3N∑

k=r+1
pkq̇

k, (A.26)

and

F ∗ = F +
3N∑

k=r+1

∫
pkq̇

k dt = F +
3N∑

k=r+1

∫
pk dqk. (A.27)

We can thus apply Eq. (A.20) to our system with the quantities marked with asterisks
and we obtain

δF ∗ =
∫
δE∗ dt+

3N∑
k=1

p1kδq
k
1 −

3N∑
k=1

p0kδq
k
0 , (A.28)

indicating visible and hidden coordinates, whereas Eq. (A.20) contained only the r
visible coordinates. Equation (A.15) must also hold for the constraints, thus

δF ∗ = δ
∫

2T ∗ dt = δF+δ
∫ 3N∑

k=r+1
pk dqk = δF+

∫
δ

3N∑
k=r+1

pk dqk+
3N∑

k=r+1
pkδq

k

∣∣∣∣∣∣
1

0

.

(A.29)

Returning now to the quantities without asterisks we get by substituting Eq. (A.29)
into (A.28) that

δF =
∫ δE + δV ∗ − δ

3N∑
k=r+1

pkq̇
k

 dt+
r∑

k=1
p1kδq

k
1 −

r∑
k=1

p0kδq
k
0 (A.30)

because the term ∑3N
k=r+1 p1kδq

k
1 −

∑3N
k=r+1 p0kδq

k
0 cancels.

A.2. A thermodynamical analogy
To carve out the thermodynamical analogy we suppose a given physical state R0R1
represented by a first trajectory as shown in Fig. A.2. Suppose we wish to make a
transition of state R0R1, characterized by different pressure, volume, and temperature,
into state P0P1, represented by another trajectory. These two trajectories correspond
to different constant values of the coordinates qr+1, . . . , q3N , called the macroscopic
coordinates in the thermodynamical sense.

We must have special forces that are capable of acting on all the molecules, and
these forces supply work. The work supplied by these forces will be equivalent to

101



A.2 A thermodynamical analogy

the heat supplied to the system. If in this transition the volume is changed, external
work will be done against the forces which cause the constraints δW = δV ∗.

R0, t0

R1, t1
sta

te
R
0
R
1

P0

P1

st
at

e
P
0
P
1

R, t

M

δqk0

δqk1

ηk Figure A.2.: A very slow
transformation from a phys-
ical state R0R1 to the phys-
ical state P0P1 leads to
Boltzmann’s formula.

The heat supplied to the system will, on the one hand, increase the total internal
energy E and, on the other hand, furnish the external work W . We have then

δQ = δE + δW = δE + δV ∗ (A.31)

which is the heat supplied to the system (δQ), the increase of disordered internal en-
ergy (δE) and the ordered work furnished by the system against constraint mechanism
(δW = δV ∗) according to Boltzmann [Bol66] (see also [Grö08; Grö09]).

We assume a continuous and gradual transition from the trajectory R0R1, charac-
terized by certain constant values of qr+1, . . . , q3N , to the trajectory P0P1, character-
ized by values of the coordinates qk + δqk, that starts at time t0 and ends at time
t1, represented by the path R0MP1. At time t the ratio of change between the two
states is represented by the segment RM given as

ηk = t− t0
t1 − t0

δqk. (A.32)

In a time dt, the change is

dηk = dt
t1 − t0

δqk. (A.33)

The heat furnished to the system in the time dt to bring about the change is

d(δQ) = dt
t1 − t0

δQ. (A.34)
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The work done by the system is then

d(δV ∗) = dt
t1 − t0

δV ∗ (A.35)

where the definitions are exactly those used before, δQ and δV ∗ being the quantities
defined for a sudden jump and d(δQ), d(δV ∗) being the same quantities for an
infinitesimal transformation.

The total supply of heat ∆Q given to the system during time t1 − t0 of the
transformation with the use of (A.31) reads

∆Q =
t1∫
t0

d(δQ) = 1
t1 − t0

t1∫
t0

δQ dt = 1
t1 − t0

t1∫
t0

(δE + δV ∗) dt. (A.36)

To compare this result with integral (A.30) we make the hypothesis that the varied
motion keeps the values of the hidden coordinates qr+1 . . . q3N constant and very small.
Under those circumstances the velocities q̇k, k = r + 1, . . . , 3N , would vanish in the
varied motion as it does in the natural motion, and the term

δ
3N∑

k=r+1
pkq̇

k = 0 (A.37)

disappears in Eq. (A.30). Therefore, we find a general form of Boltzmann’s formula
by substitution of Eq. (A.30) into (A.36) as

∆Q = 1
t1 − t0

δF −
r∑

k=1
pkδq

k

∣∣∣∣∣
t1+δt1

t0+δt0

 . (A.38)

A.2.1. Periodic motions
At that point, we move one step further and close the trajectories of Fig. A.2 which
yields a periodic configuration as provided in Fig. A.3. In this special case the two
points R0 and R1 coincide, as well as the two points P0, P1 of the varied trajectory.
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R0 R1

P0 P1

τ

τ + dτ state P0P1

state R0R1

δqk1δqk0

Figure A.3.: The
δ–variation adapted
to periodic motion with
each start point, R0 and
P0, connected to its corres-
ponding end point, R1 and
P1, respectively.

The δqki are equal, and also the momenta pik,

δqk0 = δqk1 , p0k = p1k. (A.39)

We apply these relations to Eq. (A.38) where the sum disappears. We then find for
a cyclic motion with period τ = t1 − t0 = 2π/ω that

∆Q = 1
τ

2δ

τ∫
0

T dt. (A.40)

Suppose that we could make a canonical transformation (c.f. [Gol02; HF98]) from
variables p, q to a different, but still canonical, set of variables I, ψ, whereby in terms
of the new variables the new Hamiltonian lacks any dependence on ψ, i.e. H = H(I).
Because H is constant in this periodic system and depends only on I, I itself must
be a constant of the motion, thus

İ = −∂H
∂ψ

= 0, ψ̇ = ∂H

∂I
= const. (A.41)

The variable ψ must increase linearly with the time

ω(I) ≡ ψ̇ = ∂H

∂I
, ψ = ω(t− t0). (A.42)

Here, I is the action variable which plays the role of a momentum, while ψ is the
coordinate conjugate to I and is called the angle variable.

With the use of an appropriate type-F1 generating function, W̃ (q, ψ), which is a
function of both old and new coordinate variables. Since the motion is periodic in p,
q, then the motion must also be periodic in ψ, so W̃ (q, ψ) is a periodic function of ψ.
We have then

dW̃ = p dq − I dψ (A.43)
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and integration over a single period of the motion, q returns to its original value,
while ψ advances by the amount of one period, 2π,∮

dW̃ = 0 =
∮
p dq −

∮
I dψ. (A.44)

Because I is a constant, it can be taken out of the integral. With the integral∮
dψ = 2π we get

I = 1
2π

∮
p dq. (A.45)

Comparing this result with Eq. (A.15), one recognizes immediately the identity of
I with the abbreviated action F , since

∮
p dq =

τ∫
0

pq̇ dt =
τ∫

0

2T dt = F (A.46)

and hence

δF = 2
τ∫

0

δT dt. (A.47)

On the other hand, for the special case that the period τ remains constant1 during
the transition, i.e. δτ = 0, Boltzmann [Bol66] has shown that the heat supplied to
the system then splits up into two equal parts, heat and work energy, respectively,
expressed by

δQ = 2δE, δL = δE. (A.48)

Now, this formulation is equivalent with the vanishing of the variation of the potential
energy V , i.e. δV = 0, and hence the variation of the action due to the change from
the natural to the varied trajectory reads as

δS = δ

τ∫
0

(T − V ) dt =
τ∫

0

δT dt, (A.49)

which leads by substitution of Eq. (A.45) into (A.40) to [Grö08; Grö09]

∆Q = ωδF = 2ωδS. (A.50)

1Due to the definition of the bold-faced δ-variation (A.5), δqk ≈ δqk + q̇kδt, the rightmost term
containing δt = 0 vanishes and reduces the variation to a standard variation, δ → δ.
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B. Mathematical relations

B.1. Random variables
Let X be a random variable. If the values x which X can assume are continuously
distributed, we define the probability density of the random variable to be P (x).
This means that P (x) dx is the probability that X assumes a value in the interval
[x, x+ dx]. The total probability must be one, i.e. P (x) is normalized to one:∫

P (x) dx = 1. (B.1)

The mean value of X is defined by

X =
∫
xP (x) dx. (B.2)

Now let F (X) be a function of the random variable X; we call F (X) a random
function. Its mean value is defined corresponding to Eq. (B.2) by

F (X) =
∫
F (x)P (x) dx. (B.3)

By default, we shall use different symbols for mean values over space x, and mean
values over time 〈x〉, if not otherwise noted (see any good textbook, e.g. [Sch06;
WH06]).

Let us consider continuous probability densities on the real line, i.e. in one
dimension, with or without explicit time dependence: P ∈ L1(R);

∫
R P (x)dx = 1.

Then we can define the expectation value (mean value) by

µ := x =
∫
xP (x)dx, (B.4)

and the variance by

σ2 := (x− x)2 =
∫

(x− µ)2P (x)dx. (B.5)

The standard deviation σ equals the square root of the variance.
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B.2. Vectors and fields
The following is an overview on often used identities in Cartesian vector calculus
(see any good Textbook, e.g., [Pre10]).

Let’s start with the nabla operator

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (B.6)

which is of vector type. eu denotes the unit vector in u-direction. If needed, brackets
have to be set in order to define the scope of the operator, e.g.,

∇ (fg) = (∇f) g + f∇g, (B.7)
∇ (f · g) = (∇⊗ f) · g + (∇⊗ g) · f , (B.8)
∇⊗ (fg) = (∇f)⊗ g + f∇⊗ g. (B.9)

In Eqs. (B.7)–(B.9) the nabla operator applies on a product of terms, the result is of
vector type or tensor type as in Eq. (B.9), respectively.

Tab. B.1 shows elementary nabla operations in Cartesian coordinates.
Finally, we mention some frequently used rules in one variable, denoting the

derivative by prime:

(fg)′ = f ′g + fg′ (B.10)(
f

g

)′
= f ′g − fg′

g2 (B.11)

(f(g))′ = f ′(g)g′ (B.12)∫
f ′g = fg −

∫
fg′ (B.13)∫ f ′

f
= ln |f | (B.14)

The result of integration over (B.10) yields Eq. (B.13). Eq. (B.14) can also be
achieved by substituing f → ln f and g → f into (B.12).

B.3. Entropic functionals
Now we derive some practical identities. These identities hold true on general
information theoretic grounds and are thus not bound to quantum mechanical issues.
Symbols being used are scalars f and vectors f in Cartesian coordinates (cf. [Gar08]).
Starting with

∇ ln f = ∇f
f

(B.15)
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∇f = ex∂xf + ey∂yf + ez∂zf

∇ · f = ∂xfx + ∂yfy + ∂zfz

∇× f = ex(∂yfz − ∂zfy) + ey(∂zfx − ∂xfz) + ez(∂xfy − ∂yfx)

∇2f = ∂2
xf + ∂2

yf + ∂2
zf

∇(f + g) = ∇f +∇g

∇ · (f + g) = ∇ · f +∇ · g

∇× (f + g) = ∇× f +∇× g

∇(fg) = f∇g + g∇f

∇ · (fg) = f∇ · g + g · ∇f

∇× (fg) = f∇× g + (∇f)× g

∇(f · g) = f · ∇g + g · ∇f + f × (∇× g) + g× (∇× f)

∇ · (f × g) = g · (∇× f)− f · (∇× g)

∇× (f × g) = f ∇ · g− g∇ · f + g · ∇f − f · ∇g

∇ · (∇f) = ∇2f = ∆f

∇× (∇f) = 0

∇ · (∇× f) = 0

∇× (∇× f) = ∇(∇ · f)−∇2f

Table B.1.: Elementary nabla calculus; Cartesian coordinates x, y, z; f and g
denote scalar fields, f and g denote vector fields.

which is a special case of Eq. (B.12) and hence analogue to (B.14). Next,

∇2 ln f = ∇ · (∇ ln f) (B.16)

= ∇ ·
(
∇f
f

)
(B.17)

= f∇2f − (∇f)2

f 2 (B.18)

= ∇
2f

f
−
(
∇f
f

)2

, (B.19)
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and thus, reordered, we obtain

∇2f

f
= ∇2 ln f +

(
∇f
f

)2

. (B.20)

Obviously, Eq. (B.11) has been used in (B.18). Substitution of f = √g into (B.20)
leads to

∇2√g
√
g

= ∇2g1/2

g1/2

= ∇2 ln g1/2 +
(
∇ ln g1/2

)2
(B.21)

= 1
2∇

2 ln g + 1
4 (∇ ln g)2 ,

and

∇f
f

=
∇√g
√
g

= ∇ ln√g = 1
2∇ ln g

= 1
2
∇g
g
.

(B.22)

For further calculations we make use of the above introduced probability function
P which leads us from (B.15) to

∇ lnP = ∇P
P

=
∫
P
∇P
P

dx

=
∫
∇P dx = P

∣∣∣∣∣
∞

−∞
= 0 .

(B.23)

Note that P (−∞) = 0 and P (∞) = 0 must hold since the integral over R equals a
finite value, namely 1. Further, from (B.20) we obtain

∇2P

P
= ∇2 lnP +

(∇P
P

)2
(B.24)

=
∫
P
∇2P

P
dx =

∫
∇2P dx (B.25)

=
∫
∇ · ∇P dx = ∇P

∣∣∣∣∣
∞

−∞
= 0. (B.26)

For P we must demand that any derivative of P must vanish at its limits, i.e.
lim

x→±∞
∇nP (x) = 0, n ≥ 0, otherwise we have

∫∞
−∞∇nP (x) dx 6= 0 that leads us to at

least one further integral from −∞ to −∞ which therefore cannot be finite.
As (B.26) is the value of the l.h.s. of (B.24), the r.h.s. of (B.24) must also vanish.
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By considering Eq. (B.15) we obtain

−∇2 lnP = (∇ lnP )2 =
(∇P
P

)2
. (B.27)

The mean value of Eq. (B.21) can hence be obtained by

∇2
√
P√
P

= 1
2∇

2 lnP + 1
4(∇ lnP )2 (B.28)

= 1
4∇

2 lnP = −1
4

(∇P
P

)2
. (B.29)
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Hauptsatzes der Wärmetheorie’. Wien. Ber. 53 (1866), 195–200.

[Bri64] Brillouin, L. Tensors in Mechanics and Elasticity. New York, NY:
Academic Press, 1964.

[BY07] Burgdörfer, J. and Yoshida, S. Statistical Physics II. Vienna University
of Technology: Skriptum, 2007.

[Cam10] Campbell, S. L., Chancelier, J.-P. and Nikoukhah, R. Modeling and
simulation in Scilab/Scicos with ScicosLab 4.4. 2nd ed. OCLC:
602828704. New York, NY: Springer, 2010.

[CdlP12] Cetto, A. M. and de la Peña, L. ‘Quantization as an emergent
phenomenon due to matter-zeropoint field interaction’. J. Phys.: Conf.
Ser. 361 No. 1 (2012), 012013. doi:
10.1088/1742-6596/361/1/012013.

[CF06] Couder, Y. and Fort, E. ‘Single-particle diffraction and interference at a
macroscopic scale’. Phys. Rev. Lett. 97 (2006), 154101. doi:
10.1103/PhysRevLett.97.154101.

111

http://arxiv.org/abs/1401.4356
http://arxiv.org/abs/1401.4356
http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1411.1607
https://doi.org/10.1088/1367-2630/15/7/073022
http://arxiv.org/abs/1304.1276
https://doi.org/10.1063/1.3355199
https://doi.org/10.1088/1742-6596/361/1/012013
https://doi.org/10.1103/PhysRevLett.97.154101


Bibliography

[CF12] Couder, Y. and Fort, E. ‘Probabilities and trajectories in a classical
wave-particle duality’. J. Phys.: Conf. Ser. 361 No. 1 (2012), 012001.
doi: 10.1088/1742-6596/361/1/012001.

[Cof04] Coffey, W. T., Kalmykov, Y. P. and Waldron, J. T. The Langevin
Equation: With Applications to Stochastic Problems in Physics,
Chemistry and Electrical Engineering. 2nd ed. Vol. 14. World Scientific
series in contemporary chemical physics. Singapore: World Scientific,
2004.

[Cou05] Couder, Y., Protière, S., Fort, E. and Boudaoud, A. ‘Dynamical
phenomena: Walking and orbiting droplets’. Nature 437 (2005),
208–208. doi: 10.1038/437208a.

[Cou10] Couder, Y., Boudaoud, A., Protière, S. and Fort, E. ‘Walking droplets,
a form of wave-particle duality at macroscopic scale?’ Europhys. News
41 No. 1 (2010), 5. doi: 10.1051/epn/2010101.

[Dav15] Davidovic, M., Sanz, A. S. and Bozic, M. ‘Description of classical and
quantum interference in view of the concept of flow line’. J. Russ. Laser
Res. 36 No. 4 (2015), 329–342. doi: 10.1007/s10946-015-9507-y.
arXiv: 1508.05194 [quant-ph].

[dBro60] De Broglie, L. V. P. R. Non-Linear Wave Mechanics: A Causal
Interpretation. Amsterdam: Elsevier, 1960.
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[Grö08] Grössing, G. ‘The vacuum fluctuation theorem: Exact Schrödinger
equation via nonequilibrium thermodynamics’. Phys. Lett. A 372 No.
25 (2008), 4556–4563. doi: 10.1016/j.physleta.2008.05.007. arXiv:
0711.4954 [quant-ph].
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Grössing, G., Fussy, S., Mesa Pascasio, J. and Schwabl, H. ‘The quantum as an
emergent system’. J. Phys.: Conf. Ser. EmerQuM11, 11–13 November 2011,
Vienna, Austria 361 (2012), 012008. doi: 10.1088/1742-6596/361/1/012008.
arXiv: 1205.3393 [quant-ph].
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