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Abstract

Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined
systems as a basis for resource management or environmental pollution control. Due to
the lack of general information on data and model structure, and the diverse nature of
data sources, MFA results are inherently uncertain (e.g. recycling rates, flow quanti-
ties). In this work, the treatment of uncertainty in material flow modeling is analyzed.
Possible causes of uncertainty, such as uncertainty of model parameters or uncertainty
of model structure, and the according treatment methods, such as uncertainty anal-
ysis, sensitivity analysis and uncertainty treatment of model structure, are presented.
In order to address the typical drawbacks of uncertainty treatment in MFA in already
existing approaches, three studies with three methods, di�ering in problem set-ups and
objectives, are proposed in this work.
As various MFA studies rely on data about flows and stocks from di�erent sources with
varying quality, in the first study, an uncertainty analysis method, which expresses the
belief that the available data are representative for the value of interest via fuzzy sets,
is presented, specifying the possible range of values of the data. A possibilistic frame-
work for data reconciliation in MFA was developed and applied to a case study on wood
flows in Austria. The framework consists of a data characterization and a reconciliation
step. Membership functions are defined based on the collected data and data quality
assessment. Possible ranges and consistency levels (quantifying the agreement between
input data and balance constraints) are determined. The framework allows for identify-
ing problematic data and model weaknesses, and can be used to illustrate the trade-o�
between confidence in the data and the consistency levels of resulting material flows.
While reconciliation is useful in static MFA systems, the focus in dynamic MFA system
is rather on robustness of the material flow models, by defining variation ranges for
parameters rather than to capture the true range of variation. Therefore, the use of sen-
sitivity analysis in dynamic MFA studies has been on the increase. Variance based global
sensitivity analysis decomposes the variance of the model output into fractions caused
by the uncertainty or variability of input parameters. The second study investigates
interaction and time-delay e�ects of uncertain parameters on the output of an archety-
pal input-driven dynamic material flow model using variance based global sensitivity
analysis. The results show that determining the main (first order) e�ects of parame-
ter variations is often su�cient in dynamic MFA because substantial e�ects due to the
simultaneous variation of several parameters (higher order e�ects) do not appear for
classical set ups of dynamic material flow models. For models with time-varying param-
eters, time-delay e�ects of parameter variation on model outputs need to be considered,



potentially boosting the computational cost of global sensitivity analysis. Finally, the
implications of exploring the sensitivities of model outputs with respect to parameter
variations in the archetypal model are used to derive model- and goal-specific recom-
mendations on choosing appropriate sensitivity analysis methods in dynamic MFA.
When it comes to dynamic studies of uncertain model structure, sensitivity analysis may
not be su�cient. Principal examples are analyses of waste streams of building stock,
which are uncertain with respect to data and model structure. Wood constructions in
Viennese buildings serve as a case for the third study to compare di�erent modeling ap-
proaches for determining end-of-life (EOL) wood and corresponding contaminant flows
(lead, chlorine and PAH). A delayed input and a leaching stock modeling approach are
used to determine wood stocks and flows from 1950 until 2100. Cross-checking with
independent estimates and sensitivity analyses are used to evaluate the results’ plausi-
bility. Under the given data situation in the case study, the delay approach is a better
choice for historical observations of EOL wood, and for analyses on a substance level.
It has some major drawbacks for future predictions on the goods level, though, as the
durability of the high amount of historical buildings with considerably higher wood con-
tent is not reflected in the model. The wood content parameter di�ers strongly for the
building periods, and has therefore the highest influence on the results.



Author’s contribution
The results of three years of research are put together in this thesis. It builds upon three
journal articles (which can be found in the Appendix of this work):

Article I:
A fuzzy set-based approach to data reconciliation in material flow modeling

Na�a Dûubur, Owat Sunanta, and David Laner
Applied Mathematical Modelling, 43 (2016)

Article II:
Evaluating the Use of Global Sensitivity Analysis in Dynamic MFA

Na�a Dûubur, Hanno Buchner, and David Laner
Journal of Industrial Ecology, 20 (2016)

Article III:
Evaluation of modeling approaches to determine end-of-life flows associated

with buildings: a Viennese show case on wood and contaminants
Na�a Dûubur and David Laner

Journal of Industrial Ecology, under revision.

I primarily contributed to the three articles, including the problem framing, perfor-
mance of analysis, interpretation of results and drafting. David Laner has contributed
to the research design by helping me to find the right problems to develop my solution
methods. He was also involved in all steps of the three articles with important inputs,
such as productive ideas, detailed comments and critics. Owat Sunantna contributed
with detailed comments on the theoretical part of Article I. The problem of Article II
arose out of work done by Hanno Buchner. Apart from helping me to frame the problem,
he was also involved in the interpretation of the results and helped me to compare them
by applying the EASI algorithm on the problem.



Contents

1 Introduction 1
1.1 Scientific modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The meaning of models . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Material flow analysis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Description of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Causes of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Uncertainty in MFA . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Treatment of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 General methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Methods used in MFA literature . . . . . . . . . . . . . . . . . . . 9

1.4 Objectives and problem statement . . . . . . . . . . . . . . . . . . . . . . 11

2 Methodology 13
2.1 Motivation of studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A fuzzy-set based approach for data reconciliation in static material flow

modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Data quality assessment . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 The reconciliation model . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Alternative approaches on uncertainty characterization . . . . . . 20

2.3 The significance of global sensitivity analysis - a guidance for the appro-
priate usage of sensitivity analysis in dynamic MFA . . . . . . . . . . . . 21
2.3.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Observed scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 25

2.4 An evaluation on modeling structures for dynamic studies of building
stocks on a goods and substance level . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



2.4.2 Data assessment and uncertainty analysis . . . . . . . . . . . . . . 28
2.4.3 Comparison of model approaches . . . . . . . . . . . . . . . . . . 28
2.4.4 Cross-checking of model results . . . . . . . . . . . . . . . . . . . 30
2.4.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Results and Discussion 32
3.1 Fuzzy-set based data reconciliation . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Modeling structure evaluation . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Conclusions and Outlook 50

Bibliography 54

Appendix 63



List of Figures

1.1 Modeling after Rosen (1991) . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generic MFA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Wood Flow model for Austria in 2011 [Source: I] . . . . . . . . . . . . . 16
2.2 The degree of consistency – [Source: I] . . . . . . . . . . . . . . . . . . . 18
2.3 Calculation of the membership functions belonging to an internal flow

[Source: I] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Calculation of the membership functions belonging to an external flow

[Source: I] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Reduced dynamic material flow model [Source: II] . . . . . . . . . . . . . 24

3.1 Reconciled wood flow model [Source: I] . . . . . . . . . . . . . . . . . . . 33
3.2 Reduced ranges [Source: I] . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Intersected data [Source: I] . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Sensitivity indices for a constant and a linear input [Source: II] . . . . . 39
3.5 Decision scheme for selecting appropriate methods for sensitivity analysis

in dynamic MFA [Source: II] . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Flow of EOL wood from demolition and renovation activities [Source: III] 44
3.7 Lead flows in EOL wood [Source: III] . . . . . . . . . . . . . . . . . . . . 45
3.8 Chlorine flows in EOL wood [Source: III] . . . . . . . . . . . . . . . . . . 46
3.9 PAH flows in EOL wood [Source: III] . . . . . . . . . . . . . . . . . . . . 46



List of abbreviations

C&D waste Construction and demolition waste

EOL End-of-life

FAST Fourier amplitude sensitivity test

EASI E�ective algorithm for computing global sensitivity indices

LCA Life cycle assessment

MFA Material flow analysis

MMFA Mathematical material flow analysis

SFA Substance flow analysis

OAT One-at-a-time

PAH Polycyclic aromatic hydrocarbons



1 Introduction

1.1 Scientific modeling

1.1.1 The meaning of models
Taken from the work of biologist Robert Rosen (1991), the world, the subject of our
investigations, can be seen as a natural system which is governed by rules that we want
to uncover. Therefore, a set of structures is hypothesized and transformed into a formal
system or model, which is a theoretical construct building the abstract representation of
a natural system (see Figure 1.1). Models form the basis of scientific theory. Rosen states
that while the world obeys its rules which contain internal entailments, and while the
model follows some mathematical or formal rules, containing also internal entailments,
there is no entailment of the world to the model. One of the reasons for this paradox is
the fact that the proportion of the world captured by the model is an arbitrary enclosure
of an otherwise open system. However, experience has shown that even if the natural

Figure 1.1: Modeling after Rosen (1991)

system is indeed a well-defined and closed one, di�erent modelers can generate di�erent
nonequivalent descriptions of it, so that the structures are not reconcilable with one an-
other. The term equifinality, defined by Beven (1993, 2000), describes this phenomenon
of di�erent models where same observations lead to the same end. Others also refer to
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1 Introduction

this as indeterminancy. The development of laws to deal with the limited capacity of the
human mind to create a useful mapping of the world as a natural system into a formal
system of a model is a labored process of simplification, separation and identification,
making modeling a design problem. There is not a unique, true model of a natural
system. Di�erent models are adequate to address di�erent sets of scientific questions.
Which aspects of a natural system should be described in more detail and which in a
more aggregated way (cf. Saltelli et al. 2000; Saltelli et al. 2004; Saltelli et al. 2008;
Reichert 2014) depends on the purpose of the model application, on the available data,
and on the e�ort which can be put in the model development.

Models can either be used to improve our understanding of the structure and function
of a natural system or to predict future behavior in support of management. Models
to answer scientific questions can be constructed by following guidelines (based Spriet
1985, adapted by Reichert 2014): (1) Causality, meaning the model structure should
represent the relevant cause-e�ect relationships at the required level of resolution, (2)
universality, meaning that the model should be as transferable as possible from one sys-
tem to another, (3) predictive capability, meaning that the model should remain valid
for extrapolation of external influence factors for a predictive use, (4) identifiability,
meaning that the values of unknown parameters should be identifiable to an adequate
accuracy, and for predictive capability, prior knowledge about non-identifiable param-
eters should be available, (5) simplicity, meaning that the model should be as simple
as possible with the requirements formulated above, avoiding unnecessarily complicated
descriptions. Future predictions in modeling can either be made by extrapolation of
results of a model representing the major casual relationships, or by a phenomenological
model (Reichert 2014).

1.1.2 Material flow analysis

Method

An example of modeling a natural system is material flow analysis. Anthropogenic sys-
tems are defined as the habitat of mankind together with all technical and biological
processes built and driven by man, and spaces where his activities take place. The
complementary part to the anthroposphere is designated as the environment (which is
driven by nature). The anthroposphere interacts with the environment via extraction
of resources and wastes and emissions of o�-products. Based on Leontief’s input-output
table methodology to quantify mutual interrelationship among various sectors of a com-

2



1 Introduction

plex economic system (Leontief 1977), MFA has been developed in the 80s and 90s to
describe the metabolism of the anthroposphere. MFA is an analytical method for the
assessment, interpretation and description of mass balance systems (Baccini and Brun-
ner, 1991). Main publications on MFA include Baccini and Bader (1996), Brunner and
Rechberger (2004), Baccini and Brunner (2012), and van der Voet et al. (2002). The
method assesses the state and changes of flows and stocks of materials within a system
defined in space and time, connecting the sources, the pathways and intermediate sinks
of a material. If a specific substance is the focus, MFA is sometimes also referred to
as substance flow analysis (SFA). As the results can easily be compared by checking
the inputs, outputs and stocks of processes within the system through a simple mass
balance, MFA is an attractive decision support tool in resource management, waste man-
agement, environmental management, and policy assessment (Brunner and Rechberger
2004, 2014). It has been widely applied to investigate resource and recycling systems,
providing useful information regarding the patterns of resource use and loss of materials
into the environment (e.g. Gradel et al. 2004; Modaresi and Müller, 2012; Ott and
Rechberger, 2012; Zeltner et al. 1999; see also Laner et al. 2014).

General definitions are used to define MFA systems. Material is used as a term for
substances and goods. Substances are elements or compounds composed of uniform
units. Goods stand for entities of matter which have an economic value by markets.
They are made up of one or several substances. A process is a transport, transformation
or storage of materials. Stocks are parts of processes that store the mass of materials
within the analyzed system. They can stay constant, increase (accumulation of material)
or decrease (depletion of materials). Processes are linked by flows of materials, which
transport mass per time unit. Flows across system boundaries are called imports or ex-
ports. Flows that enter a process are denoted as inputs, while flows that exit a process
are outputs. Transfer coe�cients describe the partitioning of a good or a substance in
a process. The system comprises a set of material flows, stocks and processes within a
defined boundary, set in space and time (Brunner and Rechberger 2004, 2014). A sim-
ple, generic MFA model is given in Figure 1.2. The system boundaries are defined for
a specific region for a year. The model consists of the processes Production, Manufac-
turing, the Use-phase with a stock storing materials in use, and the Waste management
within the region. The flow of semi-finished products is transferred from the Production
to the Manufacturing process and the flow of products from the Manufacturing into the
Use-phase process. In the Use-phase, materials remain in stock until their lifetime is
over, and finally end up as waste flows in the Waste management. Some materials may

3



1 Introduction

Figure 1.2: Generic MFA model

be recycled, thus, there is a flow of secondary resources from the Waste management
entering the Production process again. Furthermore, there is a flow of recycled residues
from the Manufacturing going back into the Production process. Input flows across the
boundaries are the import from materials from other regions, or extractions from the
environment within the primary production, which in this example are the import of
semi-finished products in the Manufacturing, and the import of products in the Use-
phase. Output flows across the boundaries are exports of manufactured products into
other regions or emissions and residuals going into the environment. Flows, stocks and
transfer coe�cients are underlined with input data as far as it is available. Unknown
and overdetermined flow quantities are calculated through the mass balances defined by
the processes.

Classification of MFA models

Consistent and complete information is provided by MFA within the defined system
boundaries in space and time. The design of the model depends on the purpose and
general framework. MFA studies can either be static, describing a snapshot of a system
in time, or dynamic, describing the behavior of a system over a time period (Chen
and Graedel, 2012). MFA can be done on a national or regional scale (material flow
accounting, see Fischer-Kowalski et al. 2011), where material exchanges between an
economy and the natural environment are analyzed. Furthermore, MFA can be done
along an industrial supply chain to quantify and optimize the production processes of

4



1 Introduction

companies (Material flow cost accounting, see Wagner et al. 2010).
Material stocks of processes can be identified by two di�erent methods. The top-down
approach is a method which derives the stock from the net flow, i.e. the di�erence
between inflows and outflows. The other method is the bottom-up approach. This
method directly estimates the stock by summing up materials which are pertained within
the present system boundary at a certain time (Gerst et al. 2008). While static MFA
studies are rather based on bottom-up observations of the stock (o�ering a more precise
foundation for the analysis), dynamic MFA studies are usually based on a top-down
approach due to the high expenses of bottom-up studies.

Limitations

While MFA is insightful in principle, the reliability of the results has been questioned
due to data limitations and inherent uncertainties in the analysis (Danius and Burström,
2001). As MFA concerns gathering, harmonizing and analyzing data about physical
stocks and flows from various di�erent sources with varying quality, limitations of data
are unavoidable in material flow studies (cf. Chen and Graedel, 2012). Despite this,
uncertainty is often disregarded in MFA, or at best limited to a qualitative discussion of
validity of the results (e.g. Lifset et al. 2012). However, the consideration of uncertainty
is receiving increasing attention in recent years in applied studies (Laner et al. 2014).

1.2 Description of uncertainty
As already indicated in the previous chapter, a model can never perfectly represent a
natural system. Because of that, model predictions are always uncertain (Reichert 2014).
Modelers and philosophers of science have debated the issue of model indeterminacy at
length (Oreskes et al. 1994). Most of the modelers today agree that a model cannot
be validated in the sense of being proven true, but rather, they would say, it has been
extensively corroborated, meaning the model has survived a series of testing, either
formal, of internal consistency, or relative to the model’s capacity to explain the world
in a convincing way (Saltelli et al. 2008). Sources of uncertainty can either be of aleatory
or epistemic nature. Aleatory uncertainty is often also referred to as variability. It is
caused by randomness and cannot be reduced by knowledge. Epistemic uncertainty is
caused by a lack of knowledge and can be minimized through further examination (cf.
Ferson and Ginzburg 1996).
Models do often occur in highly polarized contexts, thus, uncertainty may be used
instrumentally (Saltelli 2008). Literature on how to deal with uncertainty in quantitative
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1 Introduction

risk and policy analysis is given by Morgan and Henrion (1990) and for science in policy
by Funtowicz and Ravetz (1990).

1.2.1 Causes of uncertainty

The causes of uncertainty can be non-deterministic behavior of a system (a), uncer-
tainty of model parameter values (b), uncertainty of model structure (c), uncertainty
due to external influence factors (d), and finally, uncertainty due to numerical solutions
of model equations (e) (Beck 1991, modfied by Reichert 2014).

(a) Non-deterministic behavior of a system
Non-deterministic behavior of a system is usually due to chaotic behavior rather than
due to true randomness at a macroscopic level. Chaotic behavior denotes deterministic
systems which are very sensitive to initial conditions. As the initial state of a system
can never be reproduced in full, this leads to observed non-deterministic behavior. Be-
sides this, there are also other causes of non-deterministic behavior which can be well
described by random model elements, such as aggregation errors. As chaotic behavior,
this is due to epistemic uncertainty as there is a lack of spatial resolution. Another rea-
son of non-deterministic behavior can be influence factors, which cannot be measured
and therefore, cannot be considered in a model.

(b) Uncertainty of model parameter values
The usage of model parameters can specify the essential structure of dependence in the
model. Still, there remain unknown model variables that must be adapted empirically.
Parameter estimation should not only provide the best estimates of model parameters,
but also of their uncertainty, which can be propagated in the results.

(c) Uncertainty of model structure
Structural model errors may consist of an inadequate selection of model variables and
processes, an inadequate selection of process formulations, or an inadequate formulation
of spatial and temporal resolution of a model. Such errors are not easily quantifiable.

(d) Uncertainty due to external influence factors
External influence factors describe the influence of the environment on the considered
system.

6
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(e) Uncertainty due to numerical solutions of model equations
Usually, model equations must be solved numerically. The accuracy of these numerical
solutions is usually much higher than uncertainty due to other sources, and can often be
neglected. An exception is the usage of Monte Carlo simulation techniques to calculate
probability distributions, the use of which can lead to significant errors in the results if
the number of runs is too low. Other potential causes of uncertainty can be the use of
poor numerical techniques (see Clark and Kavetski 2010).

1.2.2 Uncertainty in MFA

MFA relies on data about flows and stocks from di�erent sources with varying qual-
ity. Because of the lack of direct observations of quantities that are of interest, data
are often taken from alternative sources of even more varying qualities. Thus, MFA is
naturally confronted with model parameter uncertainty, to which degree the available
data captures the true values of the variables (flows and changes in stock) of the system
under investigation. The use of quantitative methods to handle uncertainties of model
parameter values in MFA has received increasing attention in recent years in applied
studies (e.g. Bader et al. 2011; Do-Thu et al. 2011; Gottschalk et al. 2010; Hedbrant
and Sörme 2001; Huang et al. 2007; Ott and Rechberger 2012; Bonnin et al. 2013;
Klinglmair et al. 2016; Laner et al. 2016) as well as in studies explicitly addressing
issues of uncertainty analysis in MFA (e.g. Gottschalk et al. 2010; Hedbrant and Sörme
2001 (cf. Laner et al. 2014); Laner et al. 2016; Schwab et al. 2016).
Aleatory uncertainty can be appropriately handled with concepts used for describing ob-
served frequencies of random events (frequentist approach) while epistemic uncertainty
requires concepts for dealing with the degree of belief in data or reasonable assumptions
reflecting available data (subjective approach, cf. Reichert 2014). These two types of un-
certainty are typically confused in MFA, making it di�cult to distinguish what is known
from what is assumed. In addition to that, the application of mathematical procedures
for propagating uncertainties is sometimes inconsistent with the data characterization
concept of the MFA study. The convenient assumption that uncertain quantities are
independent and normally distributed (e.g. in STAN, see Cencic and Rechberger 2008)
may lead to drawbacks, as normal distributions cannot limit the range of possible values
to only positive quantities, which are typical for MFA (Laner et al. 2014; Laner and
Cencic 2013).

Other sources that typically arise are of structural nature, related to the mathemat-
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1 Introduction

ical model, or uncertainty of external factors, due to assumed scenarios (errors due to
inappropriate use of numerical solutions of Monte Carlo techniques are unusual). Both
types of uncertainty are typically ignored in MFA.

1.3 Treatment of uncertainty

1.3.1 General methods

As already mentioned, models are simplified descriptions of reality and therefore, there
is no unique description of a natural system by a mathematical model. Which model
provides the adequate description depends on the purpose of modeling. In order to ad-
dress di�erent questions, there is a need for di�erent levels of resolution. Nevertheless,
in order to enable deriving estimates of uncertainties, any model must be based on a
solid statistical foundation (Reichert 2014). If a model is constructed, and various uncer-
tainties in the inputs are identified, it is important to discover the propagation of these
uncertainties throughout the model (for both, quantitative outputs depending on the
inputs, and decision variables depending on quantities). The modelers should be able
to obtain useful insights about the relative importance of the various assumptions, deci-
sions, uncertainties, and disagreements in the inputs to the conclusions. These insights
can be helpful to decide whether it is likely to be worthwhile to gather more information
in order to make more careful uncertainty assessments, or to redefine the model, and
which of these decisions could cause the highest reduction of uncertainty (Morgan and
Henrion, 1990).
Di�erent methods for the treatment of di�erent types of uncertainty are provided: Un-
certainty analysis is performed in order to quantify the range of possible output outcomes
(e.g. indicators), given a set of uncertain inputs. A related practice is sensitivity analy-
sis, which is the study of how uncertainty in the output can be apportioned to di�erent
sources of uncertainty in the model input. It describes how sensitive the output is to
variation of individual, or groups of, input parameters (Saltelli et al. 2008). While these
methods are based on statistics, uncertainty about the model structure can only be min-
imized by qualitative comparisons. An exception is given if uncertainty occurs only in
specific functions of a model. This can be treated with some kind of sensitivity analysis
by identifying a metamodel and treating functions as sensitive inputs and varying them
in scenarios (Morgan and Henrion, 1990). Furthermore, validation with independent
cross-check data can be useful to identify uncertainties in models.
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1.3.2 Methods used in MFA literature

Methods to deal with uncertainty in MFA range from qualitative discussions to sophis-
ticated statistical approaches. The focus of this work is put on methods which include a
mathematical treatment of uncertainty in MFA (based on calculations involving di�er-
ent types of uncertainty and not only on mapping the flows). The majority of methods
can be classified into four groups: data classification methods, uncertainty analysis ap-
proaches, sensitivity analysis approaches, and comparisons of model structures.

Data classification
There are three kinds of data classification approaches. An approach to harmonize so-
cietal data where uncertainty intervals are determined is given by Hedbrant and Sörme
(2001). Depending on the data structure and the specificity, they derived uncertainty
levels for MFA data. Asymmetric intervals are calculated by assigning uncertainty fac-
tors to each uncertainty level. Lassen and Hansen (2000) use probability distributions
to represent uncertain values and indicate the uncertainty with symmetric intervals.
Another method to classify data used in LCA is the pedigree matrix by Weidma and
Wesnaes (1996). This matrix consists of five independent data quality indicators which
are used to communicate data limitations and could be used in MFA as well (see also
Laner et al. 2014). A quantitative method based on quality indicators and information
theory ("information defects") used in MFA is presented by Schwab et al. (2016).

Uncertainty analysis
Several probability approaches to deal with uncertainty in MFA are already in use.
Cencic and Rechberger (2008) propose the widely used MFA software STAN, which is a
ready-to-use tool for doing MFA while taking into account uncertainty. Uncertain data
is specified as the mean and standard deviation of a normal distribution. Analytical
calculation of error propagation and data reconciliation for overdetermined systems are
performed with STAN. As already mentioned above, the usage of normally distributed
functions for uncertain data of non-frequentist behavior has some major limitations.
Taking into consideration the possibility that material flow data may not be normally
distributed, recent work was done by Cencic and Frühwirth (2014) to perform data rec-
onciliation of data with more general probability distributions in linear material flow sys-
tems. The study is based on Bayesian statistics. A further approach based on Bayesian
statistics is provided by Gottschalk et al. (2010). Prior probability distributions are
defined using the knowledge about model parameters, and, based on the observed data,
posteriors are derived using Monte Carlo sampling. From these posteriors, the uncer-
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tainty of a flow is estimated. The mathematical material flow analysis approach (MMFA)
by Bader et al. (2011) has similarities with a Bayesian approach. Uncertain model pa-
rameters are specified using di�erent kinds of probability density functions. In contrast
to a Bayesian setting, in this approach, the mathematical functions are fitted to the
available data. Therefore, it is also an approach on fitting the model structure. Monte
Carlo sampling is used in this approach, too, to estimate the output and calibrate the
model, as well as sensitivity analysis to identify critical parameters (Laner et al. 2014).
As aleatory and epistemic uncertainty should be distinguished and treated di�erently
(Refsgaard et al. 2007; Ferson and Ginzburg, 1996), which cannot be done with prob-
ability functions, alternative representations of uncertain quantities of epistemic nature
in environmental assessment models using interval concepts (Chevalier and Teno, 1996)
and possibility (fuzzy set) theory (Clavreul et al. 2013, Guyonnet 2012, Holtmann et al.
2005, Tan et al. 2007) were put forward. So far, in an MFA context, fuzzy reconciliation
approaches have been compared to the standard least squares approach to quantify ma-
terial flows of resource and recycling systems (in Dubois et al. 2014; Laner et al. 2015).

Sensitivity analysis
In contrast to uncertainty analysis, approaches focusing on sensitivity analysis analyze
the e�ects of parameter uncertainty or variations on the model results relatively, with-
out trying to capture the true range of variation. As this facilitates the definition of
uncertainty of parameters and the range within they may vary, and puts the focus on
evaluating the robustness of the material flow model, this type of approach has been
frequently applied to dynamic material flow models (Laner et al. 2014). The common
way to treat dynamic MFA in previous literature is local, using one-at-a-time (OAT)
analysis, where one input variable is changed while the others remain fixed in order to
see what e�ect this produces on the output (Murphy et al. 2004). The outputs are ana-
lyzed through Monte Carlo Simulation. MFA studies using local sensitivity analysis and
considering uncertain data are done by Glöser et al. (2013), Gottschalk et al. (2010),
Tsai and Krogmann (2013), Spatari et al. (2005), Zeltner et al. (1999), Ruhrberg (2006).
Such a treatment is very time-consuming if the system consists of many inputs, which
need to be observed. Further, local OAT analysis cannot account for the combined
e�ects of parameter changes so that interaction e�ects attributed to the simultaneous
variation of parameters are ignored. Whereas local sensitivity analysis methods focus on
testing di�erent perturbations of (constant or uncertain) input parameters and analyze
the specific consequences in the output, global sensitivity analysis focuses on the uncer-
tainty in the output and how it can be apportioned to di�erent sources of uncertainty in
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the inputs (Saltelli et al. 2008). Bader et al. (2011) used both, global and local sensitiv-
ity analysis to investigate an MFA model by focusing on specific stock saturation-based
scenarios. McMillan et al. (2010) present a more specific application of global sensitiv-
ity analysis to model stocks and their relationship with economic output. They used a
Fourier amplitude sensitivity test (FAST) to identify not only the main e�ects, but also
interaction e�ects of parameter variations. Buchner et al. (2015) explored the variations
in the output by applying Sobol indices for main e�ects using the e�ective algorithm for
computing global sensitivity indices (EASI, by Plischke 2010). The EASI algorithm is,
like the FAST algorithm, based on Fourier transformations.

Comparison of model structures
As already mentioned, comparisons of model structures are rare in MFA. A comparison
of model structures of the Austrian and Danish phosphorus balance systems is given by
Klinglmair et al. (2016). The di�erences in system boundaries and definition of flows
and processes are highlighted and data reconciliation is used to define a measure of model
quality. Pauliuk et al. (2013) compared three di�erent approaches of material balance
equation systems to quantify the global steel cycle. The comparisons in both studies are
done qualitatively. A comparison of a leaching stock approach and delay approach for
dynamic SFA is given in Kleijn et al. (2000). The analytical calculation of the steady
state between the mentioned two modeling approaches is given by van der Voet et al.
(2002). This study presents analytical conditions under which the calculations of the
leaching approach will produce acceptable solutions for dynamic models which should
typically be solved using the delay approach.

1.4 Objectives and problem statement
Ignoring uncertainty aspects in material flow studies has raised doubts about the relia-
bility of MFA results in the past. Precise considerations of uncertainty should therefore
receive more attention by systematically applying appropriate approaches. The consid-
eration of uncertainty in MFA should enable the use of all available information about
the system, reflecting the purpose of the study and the data quality (Laner et al. 2014).
The major problems this work should process are:

• How can uncertain MFA models be improved through a proper consideration of
uncertainty in order to represent the goal of the study best?

• Which methods of uncertainty treatment are the most e�ective in which case at
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least expenses? How can critical parameters be identified at least expenses?

• What are the limitations of existing methods for the treatment of uncertainty in
MFA?

• Which method can be recommended to perform uncertainty analysis?

• Which method can be recommended to perform sensitivity analysis?

• Which method can be recommended to analyze the uncertainty of model structure?

In order to address these problems, three cases of MFA studies are presented, di�ering
in systematic properties and modeling objectives, to show the appropriate treatment of
uncertainty in each case. The overall aim of this work is to provide decision support on
how to set up an MFA model with regard to uncertainty consideration.
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2.1 Motivation of studies

In the following section, novel possibilities are presented to deal with uncertainty in
MFA. As flows and processes of MFA studies on a plant level are typically robust com-
pared to regional studies due to data availability and structural knowledge, the focus is
put on studies on a regional level. Three studies are presented, involving all categories
of MFA uncertainty treatment that were mentioned in the previous chapter.

The first study shows a static, overdetermined MFA system with various data sources,
conversion factors and transfer coe�cients. A critical sector of the Austrian wood bal-
ance is chosen, as wood has limited data availability and imprecise information due
to the vagueness of the e�ciency of wood processing in various industries, the variety
of wood trade units and vague data on the management of the valuable waste wood
flows. Because of these various origins of inconsistencies and epistemic uncertainties,
this study is an ideal resource to present a novel approach on data reconciliation us-
ing fuzzy set theory to characterize the data, balance the model, and to perform further
gross error detection in order to evaluate the plausibility of model results. An adaptation
of the approach of Hedbrant and Sörme (2001) is used for the data assessment step in
advance. The framework allows problematic data and model weaknesses to be identified.

In contrast to the first study, the second study is dynamic, making data reconcilia-
tion di�cult and confusing. This is because the flows from every time period depend
on the flows from the previous period, so that the number of flows which would need
to be reconciled at once is large and the source flow of changes in reconciliation is not
traceable any more. The identification of critical parameters is important to get an
understanding of dynamic studies, especially if recycling loops are considered, like in
the case of various metal studies. The critical part of dynamic studies, especially metal
studies, is uncertainty on how to aggregate and classify the products in the in use stock
with regard to their lifetimes, as there are plenty of products and not all of them can
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be modeled individually. Therefore, global sensitivity analysis is evaluated on a reduced
archetypal model consisting of lifetimes and in use stocks based on the dynamic national
aluminum model. The implications of exploring the sensitivities of model outputs with
respect to main and combined parameter variations with considering also delay e�ects
are used to derive model- and goal-specific recommendations on choosing appropriate
sensitivity analysis methods in dynamic MFA.

In some cases of dynamic MFA studies the observation of critical parameters is not
su�cient as not only the parameters but also the model structure is disputable. There-
fore, the focus of the third study is on the modeling structure of the dynamic building
stock of Vienna as lifetimes of buildings vary strongly and their date of destruction or
renovation may rather be driven by economic factors than technical lifetimes. A delayed
input and a leaching stock modeling approach are used to determine wood stocks and
flows, and contaminants from the historical building stock. The longevity of buildings,
and thus, the long residence time of their potential resources in stock, may lead to an
aggregation of contaminants in the stock, which may pose quality constraints for future
recycling activities. As the substance level adds even more uncertainty to the already
highly uncertain models, cross-checking with independent estimates and sensitivity anal-
yses are used to evaluate the results’ plausibility. The knowledge is used to derive general
recommendations for waste flows of buildings on the goods together with the substance
level.

2.2 A fuzzy-set based approach for data reconciliation
in static material flow modeling

This chapter is based on Article I: "A fuzzy set-based approach to data reconciliation in
material flow modeling" by Dûubur et al. (2016). Detailed information can be found in
the article in the appendix.
The basic principle of MFA is the law of mass conservation. Therefore, the sum of inputs
needs to be equal to both the sum of outputs and potential changes in stock for every
process in the model (cf. Equation 2.1). Flows and changes in stock for each process are
the unknown variables within the system which need to be balanced by linear equations
of the form:

nÿ

i=1
fini =

mÿ

j=1
foutj + �s (2.1)
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where �s is the stock change (�s <0 if the outflow exceeds the inflow) (see Dubois et
al. 2014). In order to balance the material flows and changes in stock in the system,
data need to be collected, typically originating from various sources with di�erent data
generation methods, quality standards and reporting schemes (Laner et al. 2014). If the
number of unknown variables (= no input data available) is smaller than the number of
balance equations, inconsistencies between input data may arise given the mass balance
constraints of the model. In such cases of overdetermined systems (which are typically
of static nature), data reconciliation can be used to balance the model and to further
gross error detection in order to evaluate the plausibility of model results (Laner et al.
2015). Traditionally, data reconciliation in MFA is performed by minimizing the squares
of measurement adjustments (using the least squares method, see also Bader and Bac-
cini (1996), implemented in the widely used software STAN (Cencic and Rechberger,
2008). As already mentioned in chapter 1.3.2, Cencic and Frühwirth (2014) published a
study based on Baysian statistics to perform data reconciliation, as the usage of normal
distribution (like in STAN) may not always be the best choice of distribution. However,
in situations of vague information, the choice of specific probability density functions
cannot be justified in many cases, and fuzzy set theory has been put forward (cf. chapter
1.3.2). Possibility theory, originally introduced by Zadeh in 1965 to provide a graded
semantics to natural language statements, is a way of reasoning in the presence of un-
certainty, by expressing non-precise information with the use of membership functions
(instead of probability density functions) by means of uncertainty characterization and
quantification (Dubois and Prade, 1988). So far, in an MFA context, fuzzy reconcilia-
tion approaches have been compared to the standard least squares approach to quantify
material flows of resource and recycling systems (Dubois et al. 2014, Laner et al. 2015).
These existing applications build on linear membership functions (either triangular or
trapezoidal) to characterize the given flow variables within the reconciliation approach.
However, because given flows in MFA are often calculated by combining several data
(e.g. amount of a commodity multiplied with the concentration of the material under
investigation), the use of linear membership functions to describe flow variables is a
limitation for the translation of available information to the fuzzified flow variables (cf.
Laner et al. 2015). Therefore, the goal of this study was to develop a generalized ap-
proach to data reconciliation in a possibilistic framework based on fuzzy input data and
fuzzy balance constraints. The approach is able to rigorously deal with multiple input
data for a single flow as well as overdetermined equation systems of the material flow
model and allows for arbitrary membership functions. The benefit of the generalized
fuzzy reconciliation approach for improving the underlying material flow data and for
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evaluating the quality of the material balances is illustrated via a case study on wood
flows in Austria.

2.2.1 Case Study
The focus of the case study is on a subsystem of the Austrian wood system for one year. It
consists of five processes, namely the Sawing industry, the Boards industry, the Building
timber industry, the Furniture industry, as well as the Use-phase of wood products
containing the in use stock (see Figure 2.1). Other related processes, which are linked to

Figure 2.1: Wood Flow model for Austria in 2011 [Source: I]

the investigated system by flows, are defined to be outside of the system boundary and
the import and export flows connecting them are denoted as external flows. The flows
within the system boundary are denoted as internal flows. Various data sources were
used and the quality of the data varies significantly. Some numbers are based on rough
estimates, e.g. wood products, in which the wood content is unclear. Other sources,
such as the imports of the sawing industry which are given in National statistics, are
precise and reliable. As the system needs to have the same unit for balancing in order to
perform data reconciliation (to obey the mass conservation law), some unit conversions
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are required. Some flows are overdetermined as 2-3 sources are available, and the only
variable remaining unknown is the stock change �s in the use-phase.

2.2.2 Data quality assessment

Four levels are assumed for the quality assessment, taking into consideration reliability
of the source as well as representativeness. By means of those levels, the uncertainty
factor uf is computed for each collected data point according to the method of Hedbrant
and Sörme (2001). The uncertainty factors have a direct influence on the quantitative
uncertainty of a date as the value d

(uf ≠ 1)
2 = d, (2.2)

which defines the range of the fuzzy sets is calculated out of the uncertainty factor.

2.2.3 Fuzzy set theory

A fuzzy set is a generalized version of a classical set, where each value either belongs to
the set or not. Every fuzzy set Aú is well-defined by its membership function

›Aú : M æ [0, 1], (2.3)

mapping every value in M onto its "degree of belonging" to Aú. The interval

supp(xú) := {x œ R : ›(x) > 0} (2.4)

is called the support and

cr(xú) := {x œ R : ›(x) = 1} (2.5)

the core of the membership function. The support covers all possible values for a fuzzy
number, whereas the core represents those values with complete membership. The max-
imal value of the intersection of various membership functions ›1, ..›n : R æ [0, 1],

– = maxx{minx{›1(x), .., ›n(x)}} œ [0, 1], (2.6)

is known as the degree of consistency. An illustrative example on the maximum level
of the intersection ›ú of three membership functions ›1, ›2 and ›3 is given in Figure
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Figure 2.2: The degree of consistency – [Source: I]

2.2. Fuzzification generalizes a crisp (discrete) number and transforms it into a fuzzy
(continuous) form by determining a range of possible variation for the support and a
range of highly possible variation for the core. De-fuzzification transforms fuzzy num-
bers into crisp numbers. Fuzzification and de-fuzzification are used in interval-based
reconciliation.

2.2.4 The reconciliation model

Uncertainty characterization

The usage of an explicit function to derive uncertainty ranges guarantees a consistent
characterization because it defines a transparent relationship between uncertainty scores
and quantitative uncertainty estimates. According to the range d for each level, the pre-
viously categorized data is fuzzified for each flow in the mass balance system by defining
membership functions of either trapezoidal or triangular shape. The input data are cat-
egorized as either quantities, conversion factors, or commodity distributions to allocate
percentual shares of aggregated quantities to the flows.
Uniquely defined quantities are defined as trapezoidal functions, whereby the interval
[x ± d · x] is the core and the interval [x ± 2d · x] is the support. Conversion factors
and commodity distributions have triangular membership functions where the support
is defined in the same way and the core is just the given data point x. In order to
convert a flow to the unit of the mass balance system, or to assign a flow with the share
of a common, aggregated quantity representing several flows respectively, the quantity is
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transformed by multiplying its membership function with the function of the conversion
factor (and the one of the commodity distribution respectively). The resulting function
is usually neither trapezoidal nor triangular, but rather of a curved shape.
Overdetermined flows are treated by data fusion. This means, if one of the data sources
(or its fuzzified version) considers a value as possible, it remains possible in data fusion
(disjunctive approach, cf. Destercke 2014). Either the data are homogenous, meaning of
the same unit or without the usage of a commodity distribution, then, they are merged
together into a trapezoidal interval. Otherwise, the data points are harmonized before,
meaning that they are defined as distinct fuzzy intervals, transformed through multipli-
cations with either fuzzy intervals of conversion factors or commodity distributions, and
then merged together by summing up over the membership functions.

Balancing of the model and the data

In the end, every flow is represented by a single membership function based on the avail-
able input data. The membership functions of the input data have to comply with the
mass balance constraints given in the model. The membership functions resulting from
the balance constraints are obtained for each flow by assuming that the target flow is not
determined and inserting all other input membership functions for the flows belonging
to the same process into the balance constraint in order to calculate it. Thus, the rec-
onciled fuzzy intervals are calculated via intersection of the membership function of the
input data with the membership function(s) from the balance constraints and the degree
of consistency (–-level) is determined. Two ways of calculation can be distinguished, the
first to be treated are internal flows, and external flows in a next step. The idea of the
procedure is given in Figure 2.3 and Figure 2.4. The first example (Figure 2.3) shows the

Figure 2.3: Calculation of the membership functions belonging to an internal flow
[Source: I]

calculation of the membership functions belonging to an internal flow. On the left, the
input data membership function is calculated. The other pictures show the functions
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resulting from the two balance constraints by assuming the internal flows to be unknown
and by using fuzzy input intervals for the external flows. In the second example (Figure

Figure 2.4: Calculation of the membership functions belonging to an external flow
[Source: I]

2.4), the membership functions of an external flow are given. The left one is the input
data membership function and the right one is resulting out of the balance constraint.
To calculate this constraint function, the internal flow, which is calculated in advance,
is used, while the remaining external flow functions that are used are based on input
data.

2.2.5 Alternative approaches on uncertainty characterization

Uncertainty estimates remain subjective to some degree and thus, reconciled fuzzy ranges
could be wrong even though flow data and balance constraints are in perfect agreement
with a high degree of consistency. Being over-confident results in low consistency levels
and small fuzzy ranges, while being over-conservative results in high consistency levels
at the cost of large ranges (cf. Laner et al. 2015). In order to illustrate the trade-
o� between uncertainty ranges and consistencies, two alternative approaches on data
characterization are proposed. In the first case, the uncertainty factors are reduced,
which means more confidence in the data sources. In the second case, the treatment of
overdetermination of flows is modified by using a conjunctive approach on data fusion.
Only values that are in the uncertainty range of any source are considered (cf. Destercke
2014). The second case gives also higher weight to the actual data sources and is useful
in identifying problematic data e�ciently (through high conflict in the input data).
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2.3 The significance of global sensitivity analysis - a
guidance for the appropriate usage of sensitivity
analysis in dynamic MFA

This chapter is based on Article II: "Evaluating the Use of Global Sensitivity Analysis
in Dynamic MFA" by Dûubur et al. (2016). Detailed information can be found in the
article in the appendix.
In contrast to static MFA, where material flows are determined for one balancing period
and are therefore time independent, material stocks and flows in a dynamic material flow
model can potentially depend on all previous states of the system (Baccini and Bader,
1996). Dynamic MFA has recently become increasingly popular, with a primary focus
on the investigation of material stocks in society and associated EOL flows (cf. Laner
and Rechberger, 2016). Metals in particular have been subject to dynamic MFA because
of the large accumulated metal stocks in society and their potential value for society as
secondary raw materials (cf. Chen and Graedel 2012; Müller et al. 2014). Sensitivity
analysis is carried out to investigate the e�ect of individual assumptions and parameter
specifications on the model output by exploring the e�ects of the changes of input
parameters on the model output. Whereas local sensitivity analysis methods focus on
testing di�erent perturbations of constant or uncertain input parameters and analyze the
specific consequences in the output, global sensitivity analysis focuses on the uncertainty
in the output and how it can be apportioned to di�erent sources of uncertainty in the
inputs (Saltelli et al. 2008). The process of recalculating outcomes under alternative
assumptions to determine the impact of variables using global sensitivity analysis can be
useful to identify model inputs that cause significant uncertainty in the output in order
to increase robustness of the model and understanding of the relationships between input
and output variables (Pannell 1997). Analytical local methods using partial derivatives
are usually not useful in dynamic MFA systems, given that the model input parameters
are uncertain and the model is of unknown linearity. Derivatives are only informative
in the base point where they are computed and do not provide for an exploration of
the rest of the space of input factors, which does not matter for linear systems, but
greatly matters for nonlinear ones (Saltelli et al. 2008). Moreover, the global method of
regression analysis is typically not a useful option in this context, given that it describes
only the fraction of linearity within the model output and remains ignorant of the rest of
uncertainty or variance within the model (Saltelli et al. 2008). The usual treatment of
dynamic MFA in previous literature is local, using one-at-a-time (OAT) analysis, where
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one input variable is changed whereas the others remain fixed in order to see what e�ect
this produces on the output (Murphy et al. 2004, see also chapter 1.3.2). However, this
method is very time-consuming if the system consists of many inputs, which need to
be observed. Besides, because materials typically reside for some time in the use-phase,
input parameters of previous periods a�ect the uncertainty of the output (in use stocks,
old scrap generation) in later periods. Such time-delay e�ects are important if model
parameters vary over time, which may often be the case in reality (e.g., the share of a
material used in a specific application may not be constant over time, but vary because of
technological, legal, or socioeconomic changes). Further, OAT analysis cannot account
for the combined e�ects of parameter changes such that interaction e�ects attributed to
the simultaneous variation of parameters are ignored. Bader et al. (2011) used a kind of
global analysis to investigate a copper flow model for Switzerland by focusing on specific
stock saturation-based scenarios, and McMillan et al. (2010) used the Fourier amplitude
sensitivity test for global sensitivity analysis (cf. chapter 1.3.2). Buchner et al. (2015)
explored the variations in the total scrap output of Austrian aluminum stocks and flows
by applying global sensitivity analysis for main e�ects using the e�ective algorithm for
computing global sensitivity indices (EASI by Plischke 2010). The analysis focused on
the decomposition of the output variance with regard to parts attributable to stochastic
input variables and showed that only small parts of the total output variance could be
explained by the variation of single parameters in the same year. Therefore, it was the
aim of this study to provide guidance on how to conduct sensitivity analysis in dynamic
MFA with regard to how the interaction e�ects (attributed to simultaneous change
of several parameters) influence model results, how the time-delay e�ects (influence
of parameter values from previous periods on results of subsequent periods) influence
model results, and to find problem- and model-specific recommendations concerning
sensitivity analysis in dynamic MFA. Thereto, the state of the art of sensitivity analysis
in dynamic MFAs is reviewed and novel applications of sensitivity analysis are explored.
An archetypal dynamic material flow model is established as a highly simplified, reduced
version of the national aluminum flow model presented by Buchner et al. (2015) and
investigated using a sample-based approach of variance-based global sensitivity analysis.
The model contains the essential elements of input-driven top-down dynamic material
flow models, which are the distribution of produced materials into di�erent use sectors
and the lifetime of products (i.e., in use stocks) in these sectors (cf. Müller et al. 2014).
Based on the analyses, recommendations concerning the choice of sensitivity analysis
methods for dynamic MFA are provided.

22



2 Methodology

2.3.1 Case study

The developed archetypal model is a reduced model based on existing dynamic material
flow models for metals (Buchner et al. 2015, Pauliuk et al. 2013, Liu and Müller 2013)
focusing on the core elements of dynamic MFA, namely, the use-phase and associated
material stocks and EOL flows. The stocks and flows are modeled using an input-
driven, top-down approach. Consequently, the pre-defined material input is distributed
to three sectors with di�erent residence times, defined through Weibull functions, which
are widely used to express product lifetimes or failure rates of material components
(cf. comparison of lifetime distributions in dynamic MFA by Melo 1999). The sector
split ratios of materials and average lifetimes are uncertain and expressed as independent
normally distributed variables. The model output is old scrap, consisting of three outputs
from the three sectors of materials in stock. The model output for each time period t is
obtained by the following convolution formula:

O(t) =
3ÿ

i=1
Oi(t) =

3ÿ

i=1

tÿ

·=1
ri(·)li(t ≠ ·)I(·)d· t = {1, 2, ..., T} (2.7)

In Equation 2.7, T denotes the time range of the system observation, I(t) denotes the
input in the period t; r1(t), r2(t) and r3(t) the three sector split ratios in period t, with
the corresponding average lifetimes l1(t), l2(t) and l3(t). · is the time the material input
enters the specific sector, taking values between 1 and t. A schematic illustration is
given in Figure 2.5. The mean values of the sector-specific average lifetime probability
density functions are denoted as ml1, ml2, ml3. The variance in the old scrap is an
aggregation of the variances of the uncertainty within input parameters. The reduced
model is subsequently used to study how the total variance of the old scrap output can
be properly apportioned to the uncertainty of the varying input parameters over time
and which changes in input parameters a�ect the variance of output most in which time
period.

2.3.2 Observed scenarios

Di�erent model setups (=scenarios) are used to analyze interaction and time-delay e�ects
on the model output. In the first scenario, the counteracting e�ects of lifetime and sector
split ratio are explained by the means of the sector output O2 over time. The e�ects
of changes of time-independent parameters are explored. Because of the residence time,
the inputs enter the output sectors with delay and the changes in those parameters
can a�ect the output at any later time given that the time of outflow is random. This
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Figure 2.5: Reduced dynamic material flow model [Source: II]

scenario is important to understand the further ones. In a second scenario, the system
is tested for di�erent inputs as a model driver, a constant and a linearly growing input
(which is similar to the aluminum input in Buchner et al. 2015).
A third scenario focuses on the e�ects of time-dependent parameters. In this case, e�ects
of parameter variation on the output are accumulated and it is not possible to trace the
individual contribution of input parameters from specific previous years to the output
in a certain year. Therefore, in this scenario, the sensitivity of output in a specific
year with respect to time-dependent parameters is investigated. This represents the
frequently occurring situation in dynamic material flow modeling when current in use
stocks and old scrap flows are calculated from historical data. In order to compare time-
varying with stationary parameters, the parameters were defined to change step-wise
for three time periods. A practical example of the first sector with rising mean ratio
mr1 and simultaneously rising lifetime ml1 would be the aluminum use in vehicles (cf.
Buchner et al. 2015).
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2.3.3 Global sensitivity analysis

Variance-based sensitivity analysis is used to find out how the variance of the output
over time can be decomposed into the conditional variances caused by the input pa-
rameters from current and previous periods. The interest is not only in single, but also
interaction e�ects caused by combined e�ects of parameters p1, ..., pK on the output
Y = f(p1, ..., pK). The total variance of the output V (Y ) is an aggregated sum of all
conditional variances of the output. It can be restricted to one, or a combination of
several parameters. The normalized partitions are denoted as sensitivity indices. Three
kinds are considered (see also Saltelli et al. 2008, chapter 4) (i = 1, .., n):
First order e�ect of parameter i:

Si =
V (Y

---pi)
V (Y ) (2.8)

Total order e�ect of parameter i:

STi = 1 ≠
V (Y

---p≥i)
V (Y ) (2.9)

Higher order e�ect of parameter i:

SHi = STi ≠ Si (2.10)

V (E(Y
---pi) is the expected reduction in variance by fixing pi, and E(V

---p≥i) is the ex-
pected variance by fixing all parameters but pi. The first order e�ect Si is the impact
on the variance of the output of a parameter alone, whereas the higher order e�ect SHi

gives all combined e�ects of a parameter with other parameters, and the total order
e�ect STi is all kinds of impact on the output’s variance caused by a parameter, alone
and in combination with other parameters. As the conditional variances are normalized,
the sum of Si is smaller in general and equal to 1 if there are no interactions in the
model. In this special case, SHi = 0, so that STi is also 1. STi is in general greater than
1 (because interactions are counted multiple times).
The calculation results of these e�ects are obtained faster by a short-cut method than
one by one. This method uses a sample-based approach and is based on procedures
by Saltelli et al. (2008, chapter 4). Matrices are used to fix parameters or groups of
parameters while the rest of parameters is random in order to calculate V (E(Y

---pi),
E(V

---p≥i). Monte Carlo sampling is used to calculate the results. To evaluate the plausi-
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bility of first-order indices and to test their convergence, the results of the sample-based
approach are checked against first order indices derived using a variance decomposition
method based on Fourier Transformations, namely the EASI algorithm (Plischke 2010).
Such algorithms are suitable to determine main parameter e�ects computationally more
e�cient than the sample based approach described above.

2.4 An evaluation on modeling structures for dynamic
studies of building stocks on a goods and substance
level

This chapter is based on Article III: "Evaluation of modeling approaches to determine
end-of-life flows associated with buildings: a Viennese show case on wood and contami-
nants" by Dûubur et al. under revision. Detailed information can be found in the article
in the appendix.
The longevity of buildings and thus, the long residence time of their potential resources
in stock may lead to an aggregation of contaminants in the stock, which may pose quality
constraints for future recycling activities (Brunner 2010; Pivnenko et al. 2016). Various
dynamic MFA studies on C&D (construction and demolition) waste of the building sec-
tor have been published in the past decade. Dynamic bottom-up studies were presented
by Lichtensteiger and Baccini (2008) and Tanikawa et al. (2015). A model on the anal-
ysis of waste wood streams from buildings using a top-down approach was published by
Müller et al. (2004) which had its focus on the Swiss lowland. In the study of Müller et
al. (2006), the focus was on the dynamics of the building stock of the Netherlands, an-
alyzing and calibrating the stock with regard to the major drivers, such as population,
lifestyle (floor area per person) and material intensity. The aim was to give a future
prognosis by observing scenarios. Bergsdal et al. (2007), Sartori et al. (2008), Brattebø
et al. (2009), Sandberg et al. (2014), and Hu et al. (2010a, 2010b) adapted this model.
Based on the same idea, Pauliuk et al. (2013) propose a novel dynamic stock model
with an optimization routine to identify and priorize buildings with the highest saving
potentials. Further top-down studies are given by Huang et al. (2012), using estimations
of long-term material demand, and Gallardo et al. (2014), using a leaching approach to
observe the vulnerability of building stocks to earthquakes. The dynamics of building
stocks, and therefore also dynamics of aggregations of contaminants, are hard to analyze
since data is scarce on the input side and mostly a result of estimations not only on the
substance but also on the goods level (Kohler and Hassler, 2002). Thus, uncertainties
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arise not only on the goods level and on the substance level, but they are associated
with the driving input parameters, such as the inflow to the use-phase and the duration
in use, making the model structure uncertain. Beside the uncertainty caused by the
diversity of residential structures and building types as well as their material contents,
lifetimes of buildings vary strongly and are therefore hard to determine. Furthermore,
there are only few material flow studies on stock dynamics on the goods together with
the substance level by now. Studies on comparing stock models on the substance level
have been published by van der Voet et al. (2002) and Kleijn et al. (2000). Both studies
compare a delay approach based on lifetime considerations of the input to a leaching
approach based on a leaching share of the stock. Van der Voet et al. (2002) present
analytical conditions under which the calculations of the leaching approach will produce
acceptable solutions for dynamic models which should typically be solved using the de-
lay approach. This study was built on these two archetypal modeling approaches and
extended them to more accurate models for EOL wood flows associated with buildings
in Vienna. In the delay approach, EOL wood flows and contained contaminants (lead,
chlorine, and polycyclic aromatic hydrocarbons (PAH)) are determined based on past
wood inputs and product lifetimes (i.e. residence time of wood constructions in use). In
the leaching approach, bottom-up estimates of the wood stock in buildings at di�erent
times are combined with estimates of demolition and renovation rates to calculate the
output of wood and contaminants from the use-phase. Using the case of wood stocks and
EOL wood flows of Viennese buildings, these two modeling approaches are compared in
the present study. The goal is to investigate the data requirements of each approach and
the e�ects of inherent modeling assumptions on the resulting stocks and flows of wood
and therein contained contaminants.

2.4.1 Case study

The proposed case study for the dynamic material flow model is the wood stock in
Viennese buildings together with its demolition activities (investigated in a GIS-based
analysis by Kleemann et al. 2016). The variables of interest are on the one hand, the
amount of EOL wood flows resulting from demolition and renovation activities of build-
ings, including beams in wood (roofs, ceilings) and wood extension products (windows,
doors, floors and others). On the other hand, the substance level is considered with
respect to the quality of wood flows regarding contaminants and impurities (lead, chlo-
rine, PAH). These contaminants are chosen as they have been observed at elevated levels
in waste wood collected for recycling, i.e. directed towards particle board production
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(BMLFUW 2012). The sources of the contamination are wood preservatives on the one
hand, which were used in the past (and are nowadays forbidden), and coatings and ad-
hering particles on the other. As the amount of wood in buildings is strongly correlated
to the construction period (Kleemann et al. 2016), the amounts of wood as model input
parameters are classified according to the construction period of the respective building.
Moreover, as all contaminants have been used in applications which were forbidden in
the course of time, the substance flow variables depend on time. The model is used to
estimate the amount of EOL wood flows, and lead, chlorine and PAH in EOL wood flows
from demolition and renovation activities in Vienna over time employing all available
information on the flows and stocks of wood in the building sector.

2.4.2 Data assessment and uncertainty analysis

Uncertainty levels are assigned to the data based on the method suggested by Hedbrant
and Sörme (2001). The same four levels are assumed as in the first study and the un-
certainty range d is calculated in the same way (see chapter 2.2.2). The data is fed
into the model, where all variables are assumed to be normally distributed. Resulting
of the underlying uncertainty function, standard deviations for the density functions are
derived, whereby the standard deviations correspond to the uncertainty ranges.
In a first step, these normal distributions are assigned to the input data. Monte Carlo
simulation to calculate the output cannot be done for each parameter separately. There-
fore, the probability density functions of the types of wood categories are calculated in
advance by multiplying the wood in stock for each year with the wood content according
to the age class of the building, and dividing it into the six types (the categorization of
age classes in the building stock needs to be considered, too, in the leaching approach).
As the product of normally distributed variables is not normally distributed, a normally
distributed approximation by Ware and Lad (2003) is considered as the probability den-
sity function of the resulting shares of types of products. Then, Monte Carlo simulations
to calculate the output flows are performed on these shares, on the lead, chlorine and
PAH values per wood category and on the technical lifetimes in the delay model.

2.4.3 Comparison of model approaches

It should be emphasized that the stylized models of wood stocks and flows are used to in-
vestigate the e�ect of di�erences in the modeling approaches on the outputs, rather than
to give a highly realistic picture of the Viennese situation. This is outside of the scope
of the study, as more elaborate data mining and additional information on key input
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parameters would be required. Because demolitions of buildings are mainly carried out
when they are planned to be replaced by new buildings, and as both, demolitions and
renovations of buildings, are cost-intensive, it is assumed that the actual output of EOL
wood is externally influenced by the business cycle. Thus, the higher the turnover of the
building industry, the more is demolished and renovated, and the rest remains in a pool
of "depleted buildings" of the stock, which represents a hibernating stock in both models.
While the leaching approach reflects the actual economic situation (provided real-time
data is available), meaning that the business cycle has a direct influence on the rate
of renovations and demolitions in a specific year, the delay approach is lifetime-based,
meaning that only a very small percentage of buildings at the end of their lifetimes is
assumed to depend on the business cycle (in order to enable extensions of lifetimes).
Because PAH and lead coatings were banned in the middle of the 90s (ChemG. 1996;
cf. RIS 2016) and chlorine components have been increasingly replaced since then, it is
assumed that input from demolition wood of wood products from the middle of the 90s
(1998-) on is free of those contaminants. In order to extend the models to predict the
future development of building EOL wood flows and contaminants, the building stock
is assumed to rise annually starting from the last year of observation. Based on the
predictions of a growing population in Vienna (Statistics Austria 2014a), and on the
average number of buildings per 1000 inhabitants (Statistics Austria 2014b) (assuming
a constant per capita floor area (cf. also Statistics Austria 2014b)), the assumed growth
of the building stock is 0.38% annually.

Leaching stock approach

Every stock is classified into age categories. The output O (in tonnes of wood) is then
calculated as a leaching part of the stock for each year t, thus,

O(t) = f(t, c + r) · S(t), (2.11)

whereby f is the sine function of the business cycle that depends on the mean value c+r

of the stock (the sum is constant over time), c is the demolition and r the renovation
rate, and S the stock of building wood.

Delayed input approach

This model builds on the knowledge of newly built buildings within each decade since
1950. There is no data provided for this input. The change in stock is the net growth of
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the number of buildings in Vienna. The input is the sum of the net growth and the overall
output of each building period, which is determined through the age categories of the
stock in each period. The evolution of the initial stock (built up before 1950) is estimated
by the classification of age categories of the stock. The amount of wood in the stock
is determined based on the wood content of each product category in each construction
period. The products within a period are assigned the associated technical lifetimes.
The output Oi of waste wood of each product category i (i = 1, .., 6) is calculated as a
delayed share of input in each year t, which depends partly on the business cycle. As
the major part of Vienna’s building stock is inhabited or in use, there is a high turnover
of constructions and renovations, and therefore, a need for replacement at the end of
the technical lifetimes. Thus, the variable p, which represents the share that is not
influenced by the business cycle, is assumed to be 99%. The output of a construction
product category is

Oi(t) = pIi(t ≠ Li) + f(t, 1 ≠ p)Ii(t ≠ Li), (2.12)

whereby f is the same sine function as in the leaching approach with a mean value of
1 ≠ p, Ii is the amount of wood of product i going into the stock, and Li is the product
lifetime following a Weibull distribution (with a normally distributed mean value). The
overall output is

O(t) =
6ÿ

i=1
Oi(t) ’ t. (2.13)

The comparison of the approaches is not only done on output flows but also on the
stocks in order to analyze the di�erences in amounts, and therefore, the di�erences
within the approaches in full. The substance level is calculated by multiplying the wood
products with the respective substance concentrations in both approaches.

2.4.4 Cross-checking of model results

The results of the modeling approaches are cross-checked with independent estimates
in order to get an impression on how well the model outputs fit reported data. The
amount of waste wood is estimated based on the total amount of demolition wood in
Austria (BMLFUW 2013) taken on a per-capita share for Vienna (UN data 2013). On
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the substance level, representative contents of lead, chlorine and PAH are derived from
a study on waste wood flows in Switzerland (BUWAL 2004). These estimates are quite
uncertain, as the taken samples vary strongly for each wood product category.

2.4.5 Sensitivity analysis
Sensitivity analysis is used for the identification of critical parameters, whose variation
has the largest e�ect on the variation of the model results. This increases the under-
standing of the relationships between in- and output variables of a model. The model
outputs are analyzed for a) the impact of specific parameter perturbation (local sensi-
tivity analysis) and b) the overall distribution of the uncertainty of the output (global
sensitivity analysis, cf. Article II, chapter 2.3).
Local sensitivity analysis is performed on the critical parameters of both approaches,
which are the technical lifetimes and the demolition and renovation rate. Furthermore,
as part of the initial stock from before 1918 has far the highest wood content and there-
fore plays a major role in both modeling approaches, and as this part of the initial
stock’s actual magnitude is highly uncertain, scenarios are tested for the reallocation of
amounts of this building stock to later building periods. Other parameters which were
tested are the shares of specific building periods on their influence on the EOL substance
flows of PAH in order to find out which period influences recent outputs the most.
Global sensitivity was analyzed for the first order e�ects (without interactions with other
parameters) of the model output (EOL wood flows, substance flows) using the EASI al-
gorithm (cf. Plischke 2010). This was done for all parameters in a first step. In a next
step, the output flows (on the goods level) were also analyzed for bundled groups of
parameters used as input parameters (the shares of wood categories) which enter the
stock in each year.
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The results and major findings of the three investigations on studies are presented and
discussed in the following three sections.

3.1 Fuzzy-set based data reconciliation

3.1.1 Results

The reconciliation algorithm is applied to determine the flows of the Austrian wood
balance system. As a result of the data reconciliation procedure, the reconciled fuzzy
sets, indicating the possible range, and the consistency levels, indicating the agreement
between the given data and the mass balance constraints, are determined for each flow
in the model. The results are compared among the three approaches to characterize
the input data taking the reconciled ranges and the achieved consistency levels into
consideration.

Comparison of consistency levels and reconciled fuzzy ranges

The result of the initial approach (=base case) is given in Figure 3.1. The reconciled fuzzy
ranges of each flow are marked in the trapezoids. The core is listed in the upper part and
the support in the lower part of each trapezoid. The de-fuzzified value (arithmetic mean
of the core in this case) defines the thickness of the flows, and the color scale denotes
the consistency level for each flow (grey flows are calculation results). The results of the
alternative data characterization approaches are depicted in Figure 3.2 (reduced ranges)
and Figure 3.3 (intersected data). The color scale highlights that the consistency levels
decline for both alternative approaches, consistently for the reduced ranges and with less
discrepancy for the intersected data approach (with exception of the intersected flows
f19 (semi-finished products for the building industry), f4 (and sawmill by-products for
pellets), which have the lowest consistency levels).
All flows related to only one process are linearly dependent and share the same level

of consistency (as indicated by the colors in the figures). The high consistency levels in
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Figure 3.1: Reconciled wood flow model [Source: I]

Figure 3.2: Reduced ranges [Source: I]
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Figure 3.3: Intersected data [Source: I]

the base case indicate a good agreement between the fuzzy ranges. Reducing the ranges
causes a reduction of the consistency levels of approximately 24% of the sawing industry
process and 19% for the building industry process (the ones with the lowest consistency
levels). Comparing the intersected data approach to the base case, there is only a
significant change for the building industry, with a 20% lower consistency level. This is
due to the fact that the changes in the reconciliation steps are only caused by narrower
fuzzy intervals of the overdetermined intersected data (which have the lowest consistency
levels by far). This confirms a trade-o� between the uncertainty characterization and
the consistency levels, because the levels decrease when more trust is given to the input
data.
Comparing the figures, it can also be observed that each approach gives slightly di�erent
results for the reconciled fuzzy ranges. The fused data points lead to enlarged fuzzy input
intervals in the base case and in the reduced ranges approach, which leaves a margin
for the balance constraints. The reconciled ranges of f19 (the building industry flow),
and f4 (the sawmill by-products flow for pellets), are increasing for the base case and
reduced ranges, but decreasing for the intersected data approach. The diverse e�ects
in the intersected data approach are caused by the uncertainty characterization for
overdetermined flows with heterogenous conversion factors and commodity distributions.
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Detection of weaknesses

In contrast to all other flows, the fuzzy ranges for the semi-finished products for the
building industry (f19) are greatly di�erent for all approaches. It is also the flow with
the lowest consistency level in the intersected data approach. This is caused by the
high conflict in input data. The values of the two transformed data points of this flow
are so far o� each other that at least one of them must be substantially flawed. It
is di�cult to identify which one, as the uncertainty factors for both data points are
relatively high. Therefore, f19 is treated as a free variable in a next reconciliation step
(see Article I) in order to get a better understanding of the magnitude of the flow.
The data point which is closer to the de-fuzzified value of the result is chosen as only
data point, and the reconciliation is iterated by ignoring the other data point in the
uncertainty characterization. Thus, the consistency level of the building industry is
raised to 1, indicating perfect agreement.

3.1.2 Discussion
Reconciliation algorithm

The fact that the output of the developed approach contains not only the reconciled flows
and their resulting uncertainty, but also information about their consistency within the
model, is the main added value of the developed approach in contrast to other reconcilia-
tion methods. A recommendation for consistency level benchmarks is given in Table 3.1.
This indicates the agreement of the data for a flow within the model. –-levels above 0.9
stand for excellent agreement. It is assumed that –-levels above 0.5 are acceptable while
all values below indicate poor agreement. In the latter case, the data (or the model) is
in need of an update.

The existing Linear programming method for reconciliation under fuzzy constraints

Table 3.1: Recommendation for consistency level benchmarks [Source: I]
– agreement

>0.9 excellent

>0.7 good

>0.5 fair

0.5-0 poor

from literature (Dubois et al. 2014, Laner et al. 2015) is only applicable to member-
ship functions of triangular or trapezoidal shape. However, as most of the flows result
from multiplications with conversion factors or commodity distributions, the resulting
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membership functions are rather of a curved shape. Thus, using a linear program, the
results are inaccurate, as the intersection points may be shifted. This can lead to big
deviations of membership functions through error propagation (cf. Laner et al. 2015).
The generalization to common membership functions is a main innovation of the devel-
oped approach. In the resolution of this study, precision up to the second digit after the
comma can be expected.

E�ect of uncertainty characterization

How can a system with no or poor agreement be updated to get a feasible solution or a
solution with higher consistencies? The conflict may appear through uncertainty ranges
which are defined too narrow. If a very low level of consistency cannot be increased
by an appropriate enlargement of uncertainty ranges, the first step should be a check
of input data for potentially erroneous data sources related to the problematic flows or
processes respectively. Full reliability of the model is assumed, since the constraints are
fixed and not uncertain. If it is not possible to improve the input data in order to rise
the consistency level in an appropriate way, the balance system (i.e. the model) should
be critically reconsidered with respect to correctness and completeness. This iterative
way of improving data and model is typical for the procedure of doing an MFA (cf.
Brunner and Rechberger 2004, Laner et al. 2014).
The trade-o� between uncertainty ranges and consistency levels provides a better under-
standing of the way the data should be characterized. The highly conservative charac-
terization of uncertainty in the base case leads to large ranges and excellent consistencies
which is not really representative if the data quality is considered. Besides, the scope
of the flow ranges leaves a lot of margin in the reconciliation process. In the present
case study on Austrian wood flows, the preferred uncertainty characterization approach
is the reduced ranges approach. While all fuzzy ranges become more precise, the loss in
consistency is modest compared to the base case.
Larger, more complicated balance systems with similar data quality assessments should
be treated by using the base case. The intersection method points out the weaknesses
within the wood flow system. The lowest degree of consistency is almost zero, which
means that the wood flow model is untenable and in need for changes. In the case of
f19, no update of the system leads to reconciled ranges close to the value obtained by
ignoring the variable. As relatively many overdetermined flows are faced for these (and
especially also larger) wood flow systems, this approach would require a lot of rework to
obtain acceptable consistencies according to Table 3.1. This is not worthwhile, as the
gain in information through the reconciled values of this method is not so high.
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Comparison to existing fuzzy-based reconciliation approaches

In order to validate the model, it was cross-checked using a linear uncertainty charac-
terization with the leximin approach using fuzzy linear programming by Dubois et al.
(2014). The application on the Australian copper system, overtaken from van Beers,
van Berkel and Graedel 2005, allows the usage of the linear program as each of the flows
is uniformly defined by a triangular membership function. Except for some di�erences
in the system’s assumptions, it was possible to reproduce the results of the leximin
approach with the presented algorithm. It should be clarified again that linear program-
ming is only applicable to such simple cases with triangular or trapezoidal membership
functions, and leads to imprecise results if multiplications are considered. In such cases,
a generalized approach, as the one presented here, is needed. Besides, the iterations of
reconciliation in the leximin approach are very time consuming (flows with lowest con-
sistencies are always fixed in each iteration step during the reconciliation process). The
reconciliation method presented in this study o�ers a more practical approach, since
it consists of only two reconciliation steps. As the internal flows are attached to all
processes and therefore their reconciliation a�ects all other flows in the next step, it is
natural to reconcile them in the first step.

3.2 Global sensitivity analysis

3.2.1 Results

The results are analyzed for the three distinct model setups, presenting the major find-
ings with regard to the importance of lifetime and sector split ratio for a single output,
multiple outputs (=total output) and the consideration of time-varying parameters.
Each scenario is tested with regard to time-delayed and interaction e�ects.

Importance of lifetime and sector split ratio on a single output

The relationship between the sector split ratio of the output and its lifetime follow the
same patterns for the first and the total order indices for each sector: the e�ects are
reverse. The duration of the growth period, the saturation period and the degeneration
period of the output are influenced by the mean value of the average lifetime, while the
sector split ratio is responsible for the amount of output. As long as the flow volume is
increasing and the in use stocks are growing (growth period), the uncertainty in average
lifetimes is more important than in situations where in use stocks are closer to saturation
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or decreasing, and EOL flows also follow a decreasing trend (saturation period). For the
latter kind of situations, the uncertainty associated with sector-split ratios comes to
the fore. The higher order indices become smaller with an increasing number of Monte
Carlo samples and are negligible at 100,000 sampling runs. The results of the first order
e�ects are compared to results obtained by using the EASI algorithm, which are almost
identical, validating that there are no higher e�ects.

Sensitivity Analysis of the total output

The dynamic system was tested for a constant input and a linearly increasing input over
time. The latter has been chosen to resemble typical trends in metal consumption in
industrialized countries and is exemplarily based on the increase of aluminum consump-
tion in Austria (see Buchner et al. 2015). Figure 3.4 denotes the curve progression of
these inputs, the corresponding outputs and sensitivity indices. The constant case shows
that all lifetimes are influent in the unstable phase of introduction and the sector split
ratios are influent in the stable phase when the output is saturated. The same holds
for linearly increasing input, the influencing parameters are the mean average values of
lifetimes in the introduction phase and the mean values of the sector split ratios in the
saturation phase. The introduction phase is the period of non-linear behavior of output,
thus, the function derivative of the output is growing. The saturation phase is the pe-
riod where the rate between output and input is practically constant; here, the function
derivative of the output is also constant. While e�ects overlap during the constant input
case, the annually growing input and, consequently, also growing output stretches the
e�ects over time.
The higher order indices are small but still present after 300,000 Monte Carlo runs. As
we know that the single output in the previous scenario has no higher order e�ects and
the outputs are independent, this means that the higher order e�ects converge towards
zero for each case. This is again validated by the EASI algorithm which shows that
there are no significant higher order e�ects.

Parameter e�ects on the output of a specific year

The first order e�ects show again the same behavior as the total order e�ects for both
time-varying and stationary parameters. The higher order e�ects converge to zero with
an increasing number of simulation runs. The e�ects are tested for the output at the
end of the observation period (year 50). Obviously, the e�ects of the sector-split ratios
of sectors with shorter lifetimes appear close to the year of output 50, whereas the
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Figure 3.4: Sensitivity indices for a constant and a linear input [Source: II]
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parameters related to outputs in earlier modeling periods are more important for the
output of year 50. The shorter the lifetime, the higher is the concentrated e�ect in one
period. The changes of parameters over time a�ect the behavior of sensitivities and lead
to nonlinear e�ects in output dynamics.

3.2.2 Discussion

Reduced dynamic material flow model

The computational e�ort required of this variance based method to detect such sensitiv-
ity indices is very high, especially if the parameters are observed over a long period of
time. This analysis indicates that in such general dynamic MFA cases of combinations
of sector split ratios and lifetime functions, higher order indices are not expected to be
significant and can be neglected. Therefore, in these cases more e�cient algorithms ana-
lyzing first order e�ects, such as the EASI algorithm, can be used, and large numbers of
input parameters (like time variations of parameters for each year in this example) can
easily be dealt with. However, there are specific circumstances, when higher order e�ects
may become relevant for sensitivity analysis in dynamic MFA. For instance, this could
be the case for very small material flows, which are distributed into more flows at a later
stage of the model. An example would be the material flow out of a very small use sector,
which is subsequently directed to a sorting and upgrading plant producing secondary
raw materials. Higher order e�ects may be relevant for this secondary raw material flow
because the probability density function for the respective sector split is located close to
zero, and several other parameters are multiplied with the sector split ratio to calculate
the flow of interest. In general, significant parameter interaction e�ects on the model
output may be expected if the output is the product of several variables, and (at least)
one of the variables is defined in a way that zero lies within the set of probable parameter
realizations. It holds that the more often zero is attained within the set of outcomes of
the final output, the higher the interaction e�ects. A similar relationship may be given
for emission flows with low emission factors. In classical cases, when the observed model
output is not a product of many factors with at least one frequently taking zero val-
ues, the variation of the output can be explained through the first order e�ects over time.

Due to the use (duration) of products the e�ects of parameters related to inputs to
the use-phase have a delayed e�ect on the EOL flows and therefore the sensitivity in-
dices of the parameter values also need to be considered with regard to the delay. In
most cases the modeler is interested in finding out which parameters a�ect the model
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output for a specific year (e.g. current in use stocks or old scrap generation). For
time-varying parameters it holds that every change of their probability density function
(in our example, the mean value) needs to be considered as a new variable. Here, the
appearance of the e�ects of a sector split ratio and the corresponding lifetime can be
approximated by subtracting the average lifetime of the year of observed output. Thus,
for short average lifetimes it holds that the sector split ratios and their corresponding av-
erage lifetimes can be neglected in early periods, while for very long lifetimes, the sector
split ratios and their corresponding lifetimes are practically negligible in the years close
to the output. Thus, the number of parameters can be reduced to potentially important
ones. Otherwise, for instance in the case of annually changing parameter values, the
computational cost of the sample based approach for sensitivity analysis could become
very high. The comparison of stationary and time-varying parameters for a specific year
of output shows that the global sensitivity results can di�er. If time-varying parameters
are treated as stationary in a variance based sensitivity analysis approach and thus their
relative variance is also treated as stationary, the variance of the output is apportioned
inconsistently with the actual parameter evolution. In particular, such an allocation is
wrong if the parameters vary greatly in size over time.

Recommended Practice for Sensitivity analysis in dynamic material flow analysis

When it comes to sensitivity analysis in dynamic MFA, it boils down to the question
of which sensitivity analysis approach is appropriate given the model structure and
the output of interest. Considering the previous treatment of sensitivity analysis in
dynamic MFA, this approach can expand the classification of sensitivity analysis in two
important dimensions: On the one hand, time-delay e�ects of varying input parameters
over the years when in use stocks are considered and, on the other hand, the observation
of interaction e�ects if dependencies are given (multiplications are done) with values
for which the probability density function attains the value zero with high probability
(especially if a lot of other parameters depend on this value). Based on the findings of
the sensitivity analysis of the archetypal dynamic material flow model and the review of
the current state of the art of sensitivity analysis in dynamic MFA (see chapter 1.3.2),
a recommended practice for sensitivity analysis in dynamic MFA is put forward. The
corresponding, hierarchically ordered decision chart with the features of the observed
model assumptions and the appropriate sensitivity analysis approach is shown in Figure
3.5. For systems which do not consider multiplications with parameters for which the
probability density function attains zero, a variance based Fast Fourier Transformation
algorithm (like EASI) can be used because it is su�cient to determine first order indices
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Figure 3.5: Decision scheme for selecting appropriate methods for sensitivity analysis in
dynamic MFA [Source: II]
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(main parameter e�ects), while cases which may have higher order e�ects can be solved
with the variance based sampling method or with other methods proposed by Saltelli
et al. (2009) which are more time e�cient. Saltelli et al. 2009 proposes Jansen’s
estimator (Jansen 1999), radial sampling, and a quasi-random number method as the
best estimators and as faster alternatives to the sample based approach for exploring
higher order e�ects. The choice of method ultimately depends on the goal and scope
of the analysis: Is it important to observe the whole system and every output of each
time period or is it su�cient to explore the total e�ects on one output over one or two
specific time periods? In the latter case, the variance based sampling method presented
in this article is an appropriate choice.

3.3 Modeling structure evaluation

3.3.1 Results

The results of the comparison of the EOL wood flows and stocks, as well as for the
substance flows are presented from a historical perspective together with cross-checks
and future scenarios. Furthermore, the results are checked for the critical parameters.

Comparison of EOL wood flows and stocks

A comparison on EOL wood flow ranges (from demolition and renovation) between the
leaching and delay approach together with cross-check data and its standard deviation
(in the whiskers) is shown in Figure 3.6. The results are shown as mean values (black
lines) together with the range of one standard deviation (i.e. 68% of the model results
are contained in this range; indicated by grey area). The peak of the delay model is
mainly caused by the dominating amount of roofs built before 1918 and ceilings and
the high amount of floors from 1977-1997. Compared to these amounts of wood, the
rest is of subordinate importance. Although the number of buildings in Vienna is rising
in the future prognosis, the share of wood in buildings is remarkably lower from the
end of the 20th century on than it was in the beginning of the century. The peaks of
the highest amounts of EOL wood are shifted for the two approaches. The reason are
the high amounts of roofs built before 1918 leaving the stock 120 years later in the
delay approach. In contrast to that, the main driver in the leaching approach is rather
the size of the historical building stock, the roofs remain present for a longer period.
The cross-checking value for waste wood and its standard deviation lie between the two
model results, whereby the result of the mean value of the delay approach is very close
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Figure 3.6: Flow of EOL wood from demolition and renovation activities [Source: III]

(and the range within the standard deviation) and the mean value result of the leaching
approach far above this value. A comparison of the stock of the models reveals that not
only the output flows are far higher in the leaching approach, but also the stock size is
considerably higher. A major reason is that the technical lifetimes may be too short with
regard to the initial stock. Very old wood components tend to be of better quality as
they are made of solid wood in general, in contrast to present wood components, which
mostly contain wood composites. Doubling these initial lifetimes in the delay approach
leads to a stock size similar to the stock size in the leaching approach (see results in
Article III).

Comparison of substance flows

In Figure 3.7, the comparison of lead in EOL wood flows is shown for the two approaches
(mean values and ranges), in Figure 3.8, the comparison of chlorine, and the comparison
of PAH in Figure 3.9. All substance flows show a similar behavior to the flow on the goods
level in the leaching approach. This is due to the fact that the shares of the products
over a period are aggregated. The contaminants lead, chlorine and PAH don‘t appear
after 1996 or are replaced in wood products after 1996 respectively. Therefore, the flows
are decreasing faster than the EOL wood flows. However, non-negligible values can still
be found even after one century in the leaching approach. The highest amount of lead
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and chlorine can be found in wood from before 1918 (lead from windows and chlorine
from ceilings), leading to high amounts at the beginning of the flow observations for both
approaches. The share of this period is slightly shrinking in the leaching approach for
both substance flows. There is almost no PAH in historical buildings from before 1918,
which is reflected in the results of both approaches. The lead flow reaches another slight

Figure 3.7: Lead flows in EOL wood [Source: III]

peak in the delay approach, resulting again from the high concentration of lead and the
high share of windows input in the period 1946-1976. Windows have the highest amount
of lead since lead was used for plastic coatings and color pigments. The comparison
with the cross-checking data value shows that both models substantially overestimate
the mean value (which may also be partly due to the high uncertainty of the estimate),
but the range of the lead flow of the delay model lies within the range of the standard
deviation. Ceilings and roofs from 1919-1945 have a slight impact on the chlorine flows
observable in the delay approach. Chlorine was used as a hardener component in glue
which was used for beams in wood. The cross-checking value of the average chlorine
amount lies between both models, and is close to the result of the delay model. The
growth of the PAH flow in the end of the 20st century in the leaching approach is
caused by the rising amount of floors from 1919 on reaching their end of life. PAH from
creosote was often used to stick parquet, but also as a preservative on windows. In
the delay approach, the highest PAH flow value is mainly caused by the high amount
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Figure 3.8: Chlorine flows in EOL wood [Source: III]

Figure 3.9: PAH flows in EOL wood [Source: III]
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of floors from 1977-1997, and the high amount of floors and windows from 1945-1977.
The amounts of PAH in other wood products are negligible. The cross-checking mean
value for PAH is slightly underestimated by both approaches (both ranges lie within the
standard deviation, though). One reason could be other PAH sources, e.g. roof tiles
which partly adhere to the wood.

Results of sensitivity analysis

Local sensitivity analysis
Perturbations on the lifetimes in the delay approach and demolition and renovation rate
in the leaching approach behave linearly with regard to the EOL output flows. Thus,
in the delay approach, an increase in lifetimes goes hand in hand with an increase in
the material stock as well as a decrease in output flows. Outputs from the leaching ap-
proach change directly proportional to changes in demolition and renovation rates. The
e�ect of considering fewer buildings from before 1918 and therefore more of all other
periods, is tested on the goods level. In both approaches, the reallocation of buildings
into periods after 1918 leads to a drastic decrease of EOL wood flows. Historical e�ects
of substance applications on current periods are tested on the example of PAH for the
year 2010. PAH aggregations from the initial periods have the highest e�ect on the
PAH output flow in the leaching approach, while the amount of PAH from 1977-1997
has the highest e�ect in the delay approach. This result is more reliable because for the
leaching approach, the consideration that buildings from the initial stock are renovated
with PAH-free wood is ignored, leading to an overestimation of PAH values from these
periods.

Global sensitivity analysis
The first order e�ects are negligible for both modeling approaches, meaning that the un-
certainty of the output is mostly determined by interactions of the parameters. There-
fore, the uncertainty of the main e�ects of the bundled shares of wood constructions
is analyzed. In the leaching approach, EOL wood flows are mainly sensitive towards
the share of roofs and ceilings in buildings from before 1918. Because the wood con-
tent of modern buildings is relatively low and mainly constituted by floors, the share of
floors becomes the most important model parameter during later model periods. The
EOL wood flows in the delay approach have similar sensitivities. In a next step, the
substance level of contaminants from EOL wood is considered. PAH flows are mainly
sensitive to the floor parameters in both approaches from 1980 on, as floors are not only
the main constructions in modern buildings but also have very high concentrations of
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PAH. Chlorine flows are mainly sensitive to the share of ceilings in both approaches,
as the concentration of chlorine in ceilings is tenfold higher as for all other wood con-
structions, and as the share of ceilings built before 1918 (the period with the highest
wood content) is high. As for the lead flows, the concentration of lead in windows is
tenfold higher than for every other wood construction, the share of windows is the main
sensitive parameter for the lead flows in both approaches.

3.3.2 Discussion

Analysis of the EOL wood flows on goods and substance level

As the largest flow of EOL wood is related to roofs and ceilings from initial periods
before 1918, and as in the future, the amounts of EOL wood will decrease because
of the low share of wood in modern buildings, the peak of wood amounts which can
be used as secondary resources is rather in current periods and won’t play such an
important role in the future. More pronounced downwards trends can be observed for
the (banned) substance flows. However, the amounts of the contaminants still deplete
slowly. Consequently, the contaminants are expected to still be present in low levels in
EOL wood during the next 50 years.

Comparison of modeling approaches

EOL wood flows
A major drawback of the leaching approach, and main contributor to uncertainty in the
results is that the demolition and renovation rate are always taken with regard to the
whole aggregated stock to calculate the output flows, ignoring the age of the buildings,
and leading to highly overestimated amounts of waste wood. However, this drawback
is of little importance for the future estimations of the amount of EOL wood under the
scenario assumption that the buildings in future periods will have the same wood content
as nowadays (cf. results in van der Voet et al. 2002). In the delay approach, the input
in the building period is unknown and an uncertain assumption. Together with the fact
that technical lifetimes are not always representative for the demolition/renovation of
buildings (particularly, for the initial stock of buildings), this approach is very uncertain
from a fitting of model and data perspective under the given circumstances. However,
with respect to EOL wood flows, the delay approach appears to result in more plausible
estimates. The highest share of waste wood in Vienna originates from buildings before
1918 which will be renovated with the same amounts of wood and which will remain
in stock. A shortcoming of the delay approach is that this is not accounted for, which
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leads to a potential underestimation of future EOL wood flows.

Substance flows
The problem of taking a leaching share of the aggregated stock as an output is propa-
gated from the goods level to the substance level in the leaching approach. Therefore,
for chlorine and lead flows, the mean values of the approach results in drastically higher
estimates than the cross-checking mean values. From a future perspective, even more
inconsistencies arise on the substance level. As lead, chlorine and PAH were forbidden
in 1996, buildings from earlier periods will also be free of contaminants after renova-
tions. This is ignored by the leaching approach, leading to overestimated amounts of
contaminants until the end of the modeling period. The substance flows may be slightly
underestimated by the delay approach, as the wood containing the substances often re-
sides longer in stock than the technical lifetimes (cf. initial lifetimes of EOL wood flows).
However, the cross-checking with data on substance flows in waste wood shows that (at
present) the estimated amounts of substances lie within plausible ranges. From a future
perspective, this approach is reasonable, as all amounts of contaminants appearing after
1996 are only delayed outputs from previous periods. After renovations where all wood
constructions have been replaced, even old buildings will be free of these contaminants.
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Scientific contributions to uncertainty treatment in MFA

The systematic investigation of material flows and stock of anthropogenic systems through
MFA allows a new view on the anthroposphere. MFA can link anthropogenic activities
with resource consumption and environmental loadings, and is a powerful tool for policy
decision support in the fields of resource e�ciency, urban planning and environmental
protection (Brunner and Rechberger, 2014). As the problems addressed by MFA gain
in importance now and will become even more important in the future, a rigorous con-
sideration of uncertainty in material flow models is needed. In this work, the major
limitations of uncertainty treatment in MFA studies are analyzed and novel approaches
to deal with these limitations are explored in three studies, di�ering in problem formu-
lations, critical assumptions and objectives.

In the first study, a general possibilistic framework for data reconciliation is presented
and applied to a case study on wood flows in Austria. Compared to existing approaches
for data reconciliation under fuzzy constraints, the developed framework is generally
applicable, as it does not require triangular or trapezoidal membership functions. It can
handle any kind of membership functions which results from the data characterization
step. Therefore, the presented approach leaves little space for arbitrariness and input
manipulation, as the only input needed are the collected data points and an evaluation
of the data quality, allowing for more transparent and consistent balancing of the data
within the material flow model. Applying the developed framework to wood flows in
Austria, weaknesses in the database and the setup of the model could be identified. The
model results consist of the possible ranges and the consistency levels of each material
flow. The latter quantify the degree of agreement between the input data and the mass
balance constraints of the model. Based on the investigation of three data character-
ization alternatives, it was possible to show a trade-o� between the confidence in the
data (i.e. the more confidence, the narrower intervals) and the resulting flow consis-
tency levels. Exploring this trade-o� provides a possibility to analyze the relationship
between data characterization and the quality of data reconciliation, because the con-
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fidence in the data is directly linked to their agreement in the balancing model. This
provides a basis for assessing MFA results from the perspective of data reconciliation:
Poor agreement in the model does not justify high confidence in the data and vice versa.
As material flow modeling is an iterative procedure, the developed framework allows for
optimizing uncertainty characterization with respect to the consistency of the material
flow model.

The second study is of dynamic nature and deals with the identification of critical
parameters through global sensitivity analysis and the question, which sensitivity ap-
proach is appropriate, given the model structure and output of interest. The analysis of
the archetypal dynamic material flow model (which is a typical part of dynamic MFA
studies; in particular, studies on metals) focused on two dimensions and showed that for
classical dynamic model set ups, higher order e�ects do not contribute significantly to
the sensitivity of the results. Furthermore, the study showed that EOL flows are sen-
sitive with respect to variations in lifetimes during unstable periods of output whereas
variations in sector split have the dominant e�ect on EOL flows during stable periods.
Another important analysis step which is drawn from the study is that time-dependent
variables need to be checked for delayed e�ects of previous periods by treating them
as separate variables for each significant period of change. A reduction can be made
by neglecting parameter values in periods, which are too far o� the observed year of
output (i.e. if the output in a specific year is of interest for the analysis). Based on
the findings of the sensitivity analysis of the archetypal dynamic material flow model
and the current state of the art of sensitivity analysis in dynamic MFA, a recommended
practice for sensitivity analysis in dynamic MFA is put forward.

The third study deals with dynamic MFA studies of uncertain model structure, which
are exemplarily investigated via the building stock, as buildings di�er strongly in life-
times. It is unclear if the main drivers are the technical lifetimes of buildings, or the
business cycle of the building industry. This lack of information on the structure has a
great impact on the amount of EOL flows leaving the building stock. A lifetime-based
delay approach and an economy-based leaching approach are presented. It can be con-
cluded that, for historical observations and their influence on current periods, the delay
approach is a better choice than the leaching approach. Furthermore, the delay approach
is also more representative on the substance level. These recommendations can be trans-
ferred to other dynamic analyses of building waste flows on a goods and a substance
level under similar assumptions, particularly if forbidden contaminants are traced back,
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and their influence on future periods is of interest. Although the delay approach is based
on a lot of assumptions, and the input of buildings has to be derived from incomplete
data, the results are more reliable than those of the leaching approach, which is ignorant
towards the diversity of the building stock (cf. van der Voet et al. 2002). The leaching
approach assumes that all buildings in stock have the same likelihood to be demolished
or renovated, as renovations and demolitions are always considered for the aggregated
stock. However, buildings built 50 years ago are more likely to be demolished or reno-
vated than buildings built 20 years ago with half of the wood content. Overall, the most
critical parameters in both approaches are related to the wood content of buildings,
which may di�er extremely from one period to another. In order to get more realistic
results using the leaching approach, the model would need to be extended so that the
leaching part is not taken from the aggregated stock but is time-dependent, making such
a study very resource and data intensive. However, this would be irrelevant in cases of
a highly homogenous building stock. For studies which analyze EOL flows associated
with buildings of very similar material intensity, the leaching approach is an adequate
and easily applicable method, provided that reliable data on renovation and demolition
activities (over time) are available.

The findings of these studies can be used both for guidance on how to conduct a mod-
eling approach and how to analyze the uncertainties within this approach, but also as
a framework on how to set up the consideration of uncertainties in di�erent, already
given MFA studies, as the case studies represent the typical critical core sections of
MFA studies.

Outlook on future research agenda

This work serves as a contribution to the treatment of uncertainty in MFA. However, as
we considered only reduced studies, some questions and extensions still remain on the
agenda of future research.

1. How should stock dynamics and recycling loops be treated in the fuzzy set-based
approach to data reconciliation?
In future, the generalized framework should be applied to more complex (but still
static) MFA systems considering these problems in order to validate its practicality.
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2. Considering dynamic material flow models, they will gain in complexity in the
future, due to the consideration of various material quality layers (e.g. Buchner
et al. 2015) or the requirement of closed mass balances applied to the model (e.g.
Pivnenko et al. 2016). How should sensitivity analysis be used in these upcoming
model set-ups?
Because higher order e�ects are expected to become more prominent in such mod-
els, the investigation of parameter interaction e�ects and parameter dependencies
(e.g. Mara et al. 2015) should become a major field for extending the use of sen-
sitivity analysis in dynamic MFA.

3. When it comes to the uncertainty of model structure of dynamic studies on the
building stock, recommendations were given, preferring the delay approach for
studies with di�ering wood contents, and the consideration of substance levels.
How can this approach be improved to give a more realistic picture of the amounts
of EOL flows?
The delay approach should be adapted to consider the persistent share of historical
buildings in the stock. This is especially important for MFA studies of European
cities. The e�ect of the choice of lifetimes (such as the lifetimes of the historic
stock) can also be adapted by modification of external parameters which extend
the duration in stock by leaving the buildings in a depleted pool, such as the e�ect
of the business cycle on building demolition and renovation in this study. However,
the consideration was purely didactic, because of a lack of data to derive meaningful
parameter value estimates for the share which depends on this parameter in the
delay approach. Therefore, future studies should consider such e�ects based on
historic data and economic models.
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a b s t r a c t 
Material flow analysis is used to quantify the material turnover of a defined system, re- 
lying on data about flows and stocks from different sources with varying quality. In this 
study, the belief that the available data are representative for the value of interest is ex- 
pressed via fuzzy sets, specifying the possible range of values of the data. A possibilistic 
framework for data reconciliation in MFA was developed and applied to a case study on 
wood flows in Austria. The framework consists of a data characterisation and a reconcilia- 
tion step. Membership functions are defined based on the collected data and data quality 
assessment. Possible ranges and consistency levels (quantifying the agreement between in- 
put data and balance constraints) are determined. The framework allows problematic data 
and model weaknesses to be identified and can be used to illustrate the trade-off between 
confidence in the data and the consistency levels of resulting material flows. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 
Material flow analysis (MFA) is a tool to quantify the flows and stocks of materials in arbitrarily complex systems [1] . 

MFA has been widely applied to investigate resource and recycling systems, providing useful information regarding the 
patterns of resource use and emissions to the environment (e.g. Chen and Graedel [2] , Müller et al. [3] ). The material flow 
model consists of processes which are connected via flows [1] . The basic principle of MFA is the law of mass conservation. 
Therefore, the sum of inputs needs to be equal to both the sum of outputs and potential changes in stock for every process 
in the model (cf. Eq. (1) ). Flows and changes in stock for each process are the unknown variables within the system which 
need to be balanced by linear equations of the form: 

n ∑ 
i =1 f in i = m ∑ 

j=1 f out j + !s, (1) 
where !s is the stock change ( !s < 0 if the outflow exceeds the inflow) [4] . In order to balance the material flows and 
changes in stock in the system, data needs to be collected. These data typically originate from various sources with different 
data generation methods, quality standards and reporting schemes (cf. Laner et al. [5] ). Thus, MFA is naturally confronted 
with uncertainty to the extent that the available data captures the true values of the variables (flows and changes in stock) 
of the system under investigation. Therefore, if the number of unknown variables ( = no input data available) is smaller 
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than the number of balance equations, inconsistencies between input data may arise given the mass balance constraints of 
the model. In such cases of overdetermined systems, data reconciliation can be used to balance the model and to further 
gross error detection in order to evaluate the plausibility of model results [6] . Data reconciliation in MFA is traditionally 
performed by minimising the squares of measurement adjustments (using the least squares method) [7] . This approach is 
implemented in the widely used MFA software STAN, which is a ready-to-use tool for doing MFA while taking into account 
uncertainty [8] , and in combination with gross error detection, it is a well established approach in process engineering 
for identifying and eliminating errors in flow data of mass and energy balance systems [9,10] . Taking into consideration 
the possibility that material flow data may not be normally distributed, recent work was done by Cencic and Frühwirth 
[11] based on Bayesian statistics to perform data reconciliation of data with more general probability distributions in linear 
material flow systems. However, as the choice of specific probability density functions cannot often be justified in situations 
of vague information, alternative representations of uncertain quantities of an epistemic nature in environmental assessment 
models using possibility and fuzzy set theory were put forward (e.g. Chevalier and Teno [12] , Benetto et al. [13] , Clavreul 
et al. [14] , Holtmann et al. [15] , Tan et al. [16] ). Possibility theory is a way of reasoning in the presence of uncertainty 
by expressing non-precise information with the use of membership functions (instead of probability density functions) by 
means of uncertainty characterisation and quantification [17] . So far, in a MFA context, fuzzy reconciliation approaches have 
been compared to the standard least squares approach to quantify material flows of resource and recycling systems [4,6] . 
These existing applications build on linear membership functions (either triangular or trapezoidal) to characterise the given 
flow variables within the reconciliation approach. However, because given flows in MFA are often calculated by combining 
several data (e.g. amount of a commodity multiplied with the concentration of the material under investigation), the use of 
linear membership functions to describe flow variables represents a limitation for the translation of available information 
to the fuzzified flow variables (cf. Laner et al. [6] ). Therefore, it is the goal of this work to develop a generalised approach 
to data reconciliation in a possibilistic framework based on fuzzy input data and fuzzy balance constraints. The approach is 
able to rigorously deal with multiple input data for a single flow as well as overdetermined equation systems of the material 
flow model and allows for arbitrary membership functions. The benefit of the generalised fuzzy reconciliation approach to 
improving the underlying material flow data and to evaluating the quality of the material balances is illustrated via a case 
study on wood flows in Austria. 

The paper is organised as follows: Section 2 presents the proposed framework, which is the key part of the paper, 
together with its application and related work on fuzzy sets and data assessment. In Section 2.1 , a brief overview of fuzzy set 
theory and its application to data reconciliation problems is provided. In Section 2.2 , the case study on wood flows in Austria 
is introduced and the data quality assessment and uncertainty characterisation procedures are described. The developed 
reconciliation approach is presented after that in Section 2.3 , consisting of an uncertainty characterisation and a balancing of 
model and data step. Two alternative approaches to uncertainty characterisation are presented for comparison in Section 2.4 . 
Calculations and results are presented in Section 3 . Section 4 discusses the developed reconciliation approach with respect 
to those sensitive characterisation steps and in the light of other reconciliation methods. In Section 5 , conclusions on the 
use of the generalised framework for reconciling fuzzy data in MFA are provided and an outlook on future research is given. 
2. Related work and proposed framework 
2.1. Fuzzy set theory 

Introduced by Zadeh in 1965, possibility theory was initially invented to provide a graded semantics to natural language 
statements [18] . However, the usage of this theory was extended to several domains dealing with imprecise data [17] . A 
fuzzy set is a generalised version of a classical set, where each value either belongs to the set or not. Every fuzzy set A ∗ is 
well-defined by its membership function: 

ξA ∗ : M → [0 , 1] , (2) 
mapping every value in M onto its “degree of belonging” to A ∗. Unlike the indicator function of a classical set, for which the 
function value is either 0 or 1, the image of the membership function is the whole interval between 0 and 1. We focus on 
a special case of fuzzy sets with M = R , called fuzzy numbers. It is always possible to apply the δ-cut method for a fuzzy 
number x ∗, which means that, by definition, for every value δ ∈ (0, 1] the δ-cut: 

C δ(x ∗) := { x ∈ R : ξ (x ) ≥ δ} % = ∅ , (3) 
is a compact interval in R . The interval 

supp(x ∗) := { x ∈ R : ξ (x ) > 0 } , (4) 
is called the support and 

cr(x ∗) := { x ∈ R : ξ (x ) = 1 } , (5) 
the core of the membership function. The support covers all possible values for a fuzzy number, whereas the core represents 
those values with complete membership. Every membership function of a fuzzy number is uniquely defined by its family of 
δ-cuts, which are nested intervals, and the degree of membership ξ ( x ) for an arbitrary x ∈ R is given by the largest δ ∈ [0,1] 
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Fig. 1. The degree of consistency α is the maximum level of the intersection ξ ∗ of the membership functions ξ 1 , ξ 2 and ξ 3 . (For interpretation of the 
references to colour in this figure, the reader is referred to the web version of this article). 
with x ∈ C δ . When dealing with computer programs, a sufficient number of δ-cuts is needed to describe a fuzzy number. 
The union of membership functions is defined as the maximum of them for each value on the x -axis, and the intersection 
as the minimum. The maximal value of the intersection of the membership functions ξ1 , , . . . , ξn : R → [0 , 1] , 

α = max x { min x { ξ1 (x ) , . . . , ξn (x ) }} ∈ [0 , 1] , (6) 
is known as the degree of consistency. 

An illustrative example is given in Fig. 1 . Three membership functions are considered, given by intervals of the form [a, 
b, c, d], where [a, d] denotes the support and [b,c] the core. ξ 1 = [1, 2, 5, 6] and ξ 2 = [3, 4, 7, 8] are trapezoidal and ξ 3 = 
[3, 5.5, 9] has legs of a curved shape and its peak in 5.5 (b = c). The intersection of those three functions has a curved and 
a linear leg ( ξ ∗ = [3, 5.2, 6], highlighted in red). The peak is attained in 5.2. The degree of consistency of the intersection 
is 0.75 as this is the maximal function value ( α = ξ ∗

max = ξ ∗(5 . 2) ). Operations on fuzzy numbers such as union and inter- 
section, addition, multiplication and subtraction can be treated separately by operating on the intervals of each delta cut 
[19] . Fuzzification generalises a crisp (discrete) number and transforms it into a fuzzy (continuous) form by determining a 
range of possible variation for the support and a range of highly possible variation for the core. De-fuzzification transforms 
fuzzy numbers into crisp numbers. Fuzzification and de-fuzzification are used in interval-based reconciliation. The method 
for de-fuzzification is arbitrary and there exist several approaches, like using the centroid of the membership function as 
the de-fuzzified value. In this paper, the arithmetic mean of the core is used. 
2.2. Case study on Austrian wood flows 

Wood is a renewable resource with many different applications. Material uses of wood as construction materials, in 
furniture or in other products conserve the resource and therefore (potentially) enable another use of wood at the end 
of the product lifetime, either via energy recovery or material recycling. However, only vague information is available on 
the efficiency of wood processing in various industries and the management of waste wood flows. In addition, the variety 
of wood trade units (such as solid cubic meters [ m 3 s ], cubic meters [ m 3 ], metric tonnes [Mg], metric tonnes of dry mass 
[Mg dry matter], heating value [MJ], or pieces [pcs]) pose an additional challenge for balancing wood flows. Due to the 
challenges with respect to data availability and imprecise information, wood represents an ideal resource for testing the 
fuzzy reconciliation method. The focus of the case study is on a subsystem of the Austrian wood system for the year 2011. 
In order to validate the approach, we concentrate on five processes, namely the Sawing industry, the Boards industry, the 
Building timber industry and the Furniture industry as well as the Use-phase of wood products containing the in-use stock 
(see Fig. 2 ). 

All other related processes, which are linked to the investigated system by flows, are defined to be outside of the system 
boundary and regarded as import and export flows of the system ( = external flows). The flows within the system boundary 
are denoted as internal flows. There are no recycling loops considered in this subsystem. The major interest of the case 
study is in wood flows; historic stocks of wood are not investigated. Detailed information on the case study can be found 
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Fig. 2. Wood Flow model for Austria in 2011. 
in the Supporting Information (SI) (SI-1). Assuming that there is no uncertainty attached to the model equations, the flow 
and stock change variables are forced to comply with the five mass balance constraints given by the processes considered 
in the model (cf. Fig. 2 ): 
1. Sawing industry: f 1 + f 2 = f 3 + f 4 + f 5 + f 6 + f 7 + f 8 + f 9 + f 10 
2. Boards industry: f 8 + f 13 + f 14 + f 15 = f 11 + f 12 + f 16 + f 17 + f 18 
3. Building timber industry: f 9 + f 16 + f 19 = f 20 + f 21 + f 22 
4. Furniture industry: f 10 + f 17 + f 18 = f 24 + f 25 + f 26 
5. Use: f 21 + f 26 + f 27 + f 28 + f 29 = f 30 + f 31 + !s 

Various data sources were used. Among others, these include data from Austrian national statistics [20] , UN Comtrade 
import and export statistics [21] , the national logging report [22] as well as data published by the industries, e.g. the Aus- 
trian paper industry [23] . Detailed information about the data sources can be found in the SI (SI-2 Tables 1 –3 ). In most 
cases, one value is found to describe a certain flow ( = uniquely defined flows); for some flows, 2 or 3 sources of infor- 
mation were available ( = overdetermined flows). The quality of the data varies significantly. Some numbers are based on 
rough estimates, e.g. wood products, where the wood content is unclear. Other sources, such as the imports for the saw- 
ing industry, are precise and reliable. As the system needs to have the same unit for balancing in order to perform data 
reconciliation (to obey the mass conservation law), some unit conversions are required. In this work, we use tonnes of dry 
wood, which describes the wood content only and is therefore subject to mass conservation (i.e. fluctuations in water con- 
tents can be disregarded in the balancing). The collected data are shown in Tables 2 –5 . These data were used to describe 
the flows within the constructed system. The only variable remaining unknown is the stock change !s in the use-phase. 
This means that only constraints (1)–(4) can be used for data reconciliation, because constraint 5 is needed to calculate !s . 
Hence, the flows 27–31 are entirely determined by the input data membership functions. !s is an unknown variable which 
is calculated through constraint (5). 
2.2.1. Data quality assessment 

The collection and aggregation of the data are essential parts of MFA. The quality of the data varies a lot and needs to be 
categorised. Four levels are assumed for the data quality assessment, taking reliability of the source as well as representa- 
tiveness into consideration. Level 1 stands for relatively precise data based on official statistics and level 4 represents rough 
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Table 1 
Classification of data. 

Level Source/reliability Representativeness Example u f 
1 National statistics office/ National data Data on imported 1.09 

independent institutions wood from National 
cooperation plattform 

1 Research studies Numerous measurements Water content of 1.09 
of quantity of interest waste paper from 

Statistics Austria 
2 Statistics from interest National data Data on imported 1.20 

groups or associations semi-finished boards 
from the annual report 
of Austrian industries 

2 Research studies Estimated measurements Average conversion 1.20 
or measurements not fully factor of all types of 
representative for the roundwood given by 
quantity of interest the Austrian energy 

agency ( m 3 s to tonnes) 
3 Expert estimates Data based on aggregation Data on wood import 1.44 

of expert estimates in semi-fin. products 
aggregated by Aus- 
trian energy agency 

3 Research studies Measurements of limited Average water content 1.44 
representativeness in waste wood based 

on water content of 
roundwood given by 
the Austrian energy 
agency 

4 Rough estimates or Speculative estimates on Estimated wood cont- 1.98 
educated guesses aggregations based on ent of imported semi- 

scarce information fin. products for 
furniture based on 
trade statistics data 

Source: Based on Laner et al. [6] , adapted from Hedbrant and Sörme [24] . 
estimates. Apart from that, intermediate level values are also possible. The classification according to the levels is shown in 
Table 1 [6,24] . 
2.2.2. Characterisation of uncertainty 

By means of those levels, the uncertainty factor u f is computed for each collected data point according to a method by 
Hedbrant and Sörme [24] by assuming a continuous function. A comparison between linear and exponential uncertainty 
factor functions can be found in Laner et al. [6] . In this approach, an exponentially growing function: 

u f = 1 + ae bl , (7) 
is assumed, whereby a, b > 0 are fitting parameters and l is the level. Parameter a controls the shift of the exponential 
curve on the y -axis and b can either stretch or compress the curve [24] . The uncertainty factors have a direct influence on 
the quantitative uncertainty of data. The value d is obtained by the formula (c.f. [24] ): 

(u f − 1) 
2 = d, (8) 

which is later on used to define a range. 
2.3. The reconciliation model 
2.3.1. Approach for uncertainty characterisation in the model 

The usage of an explicit function to derive uncertainty ranges guarantees for a consistent characterisation because it 
defines a transparent relationship between uncertainty scores and quantitative uncertainty estimates. Further information 
on the internal consistency of uncertainty characterisation can be found in Laner et al. [6] . However, the definition of the 
parameter values is subjective [25] . In this approach, a = 0 . 04 and b = 0 . 8 are chosen to fit the model in an appropriate 
way in order to end up with feasible solutions. The uncertainty range for data with level 1 is d = 4 . 5% of the original 
value, for level 2, d = 9 . 9% , for level 3, d = 22 . 0% , and level 4, d = 49 . 1% . According to this range, the categorised data is 
fuzzified for each flow and stock change in the mass balance system by defining membership functions of either trapezoidal 
or triangular shape. Input data is divided into 3 groups: quantities, conversion factors for differing units, and commodity 
distributions to allocate percental shares of aggregated quantities to the flows and changes in stock. For simplification, we 
use the notification flows for both flows and changes in stock for the time being. 
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Table 2 
Data on quantities used to establish the wood balance (sources: SI-2 Table 1). 

f Origin Destination Commodity Dimension Value in mio Level 
1 forest sawing ind. round wood m 3 s 11.797 1 
2 import sawing ind. round wood m 3 s 5.360 1 
3a sawing ind. export sawwood m 3 5.716 1 
3b sawing ind. export sawwood m 3 5.591 1 
4a sawing ind. pellet ind. by-products m 3 s 1.793 2 
4b sawing ind. pellet ind. by-products t fresh mass 0.900 1.5 
4c sawing ind. pellet ind. by-products t dry matter 0.567 1.5 
5 sawing ind. paper ind. by-products m 3 s 2.904 1 
6 sawing ind. other w. proc. sawwood m 3 3.934 (11%) a 1 
7 sawind ind. thermal use bark, off-cuts m 3 s 3.251 2.5 
8a sawing ind. boards ind. by-products m 3 s 1.985 1.5 
8b sawing ind. boards ind. by-products m 3 s 2.0 0 0 1.5 
9 sawing ind. building ind. sawwood m 3 3.934 (78%) a 1 
10 sawing ind. furniture ind. sawwood m 3 3.934 (11%) a 1 
11a boards ind. export boards m 3 2.600 2.5 
11b boards ind. export boards m 3 2.400 2.5 
12 boards other w. proc. boards m 3 0.400 (9%) a 2 
13a import boards semi-fin. prod. m 3 s 1.017 1.5 
13b import boards semi-fin. prod. m 3 s 0.950 2 
14a ind. wood boards ind. ind. wood m 3 s 0.914 1.5 
14b ind. wood boards ind. ind. wood m 3 s 0.900 2 
15 waste wood boards ind. waste wood t fresh mass 0.280 2 
16 boards ind. building ind. boards m 3 0.400 (35%) a 2 
17 boards ind. furniture ind. boards m 3 0.400 (56%) a 2 
18 boards ind. thermal use by-products m 3 s 0.374 2 
19a import building ind. semi-fin. prod. m 3 s 2.814 (78%) a 3 
19b import building ind. semi-fin. prod. t dry matter 0.144 3 
20 building ind. export products t dry matter 0.854 3 
21 building ind. use products t dry matter 1.854 3.5 
22 building ind. thermal use by-products m 3 3.934 (9.72%) a 1 
23a import furniture semi-fin. prod. m 3 s 2.814 (11%) a 3 
23b import furniture semi-fin. prod. t dry matter 0.030 4 
24 furniture ind. export products t dry matter 0.063 3.5 
25 furniture ind. thermal use by-products m 3 3.934 (2.16%) a 1 
26 furniture ind. use products m 3 0.667 2 
27 import use products t dry matter 3.278 3 
28 paper ind. use products t fresh mass 2.200 1 
29 other w. proc. use products t dry matter 0.100 4 
30 use waste wood waste wood t fresh mass 0.775 2.5 
31 use waste paper waste paper t fresh mass 1.434 1 
a Data and the related levels refer to the original aggregated values; the actual flows are obtained by 

using the commodity distributions in brackets. 
Table 3 
Data on conversion factors to translate m 3 and m 3 s into tonnes of dry matter (sources: 
SI-2 Table 2 ). 

Flows Commodity Conversion factor Unit Level 
f1, f2, f3, f6, f9, f10 roundwood 0.417 t / m 3 s 2 
f7 bark 0.393 t / m 3 s 2 
f7, f8, f13, f22, f25 off-cuts 0.417 t / m 3 s 2 
f5, f8, f13 sawdust 0.450 t / m 3 s 2 
f11, f12, f16, f17 boards 0.690 t / m 3 2.5 
f14 industrial wood 0.417 t / m 3 s 2 
f11, f12, f16, f17 chipboard 0.500–0.650 t / m 3 2 
f11, f12, f16, f17 mdf-board 0.800 t / m 3 2 
f19, f23, f26 spruce wood 0.430 t / m 3 s 3 
f4 by-products in pellets 0.391 t / m 3 s 3 
f18 swarf 0.450 t / m 3 s 3 

Uniquely defined flows. Quantities are intuitively assigned trapezoidal membership functions. In general, if exactly one 
quantity is considered for a flow, the core of the membership function is defined by the interval [ x ± d · x ] and the support 
by [ x ± 2 d · x ]. Conversion factors and commodity distributions have triangular membership functions. The support is 
defined in the same way and the core is just the given data point x . In some cases, it makes more sense to define the 
membership functions in an asymmetrical way, e.g. for sawwood from the forest (see f1, Table 2 ) where excess lengths 
are considered. In order to convert a flow to the unit of the mass balance system or, respectively, to assign a flow with 



470 N. Džubur et al. / Applied Mathematical Modelling 43 (2017) 464–480 
Table 4 
Data on conversion factors to translate tonnes of fresh mass (t fm) into tonnes of dry matter (t dm) 
(sources: SI-2 Table 2 ). 

Flows Commodity Conversion factor Water content (%) Unit Level 
f4 by-products in pellets 0.920 8 t dm/t fm 2 
f15, f30 waste wood 0.650 35 t dm/t fm 3 
f28 paper 0.900 10 t dm/t fm 2 
f31 waste paper 0.910 9 t dm/t fm 1 

Table 5 
Data on commodity distributions into different processes (sources: SI-2 
Table 3 ). 

Commodity Origin Destination Fraction (%) Level 
boards boards ind. building ind. 35.00 3 

furniture ind. 56.00 
other w. proc. 9.00 

sawwood sawind ind. building ind. 78.00 3 
import 
sawind ind. furniture 11.00 
import 
sawind ind. other w. proc. 11.00 

by-products furniture ind. thermal use 2.16 4 
building ind. thermal use 9.72 

Table 6 
Comparison of α-levels for the processes. 

Process Base case Reduced Intersected 
Sawing ind. 0.94 0.72 0.92 
Boards ind. 1 0.81 1 
Building ind. 0.97 0.74 0.77 
Furniture ind. 1 0.99 1 

the share of a common, aggregated quantity representing several flows, the quantity is transformed by multiplying its 
membership function by the function of the conversion factor (respectively, the one of the commodity distribution). The 
resulting function is usually neither trapezoidal nor triangular but rather of a curved shape. 
Overdetermined flows. Overdetermined flows are treated by data fusion. To be precise, they are treated by a disjunctive 
approach to data fusion. This means that if one of the data sources (or its fuzzified version) regards a value as possible, it 
remains possible in data fusion [26] . Two scenarios are possible: a) data are homogeneous or b) data are given in different 
units or they do not relate to the same flow (i.e. the actual quantity of interest needs to be derived from aggregated data). 

In the first scenario, the data points are merged into one trapezoidal membership function. For data which differ by less 
than 1 level (which is always the case in the present model), the arithmetic mean of data points is defined as the midpoint 
m of the core and support. Furthermore, the level is also defined as the arithmetic mean of the levels of the original data. 
The resulting uncertainty factor ( u f ) is calculated out of the uncertainty function given in (7). In analogy to the uniquely 
defined flows, the core of the trapezoidal function is given by the interval [ m ± d · m ] and the support by [ m ± 2 d · m ]. 
If the data differ by more than 1 level, the focus is put on the more reliable data source by defining m as a weighted sum 
by taking the inverse of the uncertainty factors as weights (analogically, for the common uncertainty level). Again, in some 
cases, the membership function is slightly modified (but still trapezoidal) according to the context. If the data are not in the 
right unit, in the next step, multiplications are performed with the determined membership function so that it fits in the 
balance system. 

In the second scenario, data needs to be harmonised before the final membership function can be identified for a flow. 
Heterogeneous data points are defined as distinct fuzzy intervals. Then, transformation is done by multiplying the fuzzy 
interval related to the original unit or quantity value by the membership function of either the corresponding conversion 
factor or commodity distribution or both. In the end, different membership functions of different shapes describe the same 
flow. By definition of the algorithm, they are merged together by summing up over the membership functions, normalising 
this sum (by dividing every value by the maximum), as this is a required assumption for the definition of fuzzy numbers 
and intervals, and taking the convex hull of this normalised sum. The resulting function can be a rather unusual, but con- 
vex shape (convexity is another required condition). Two alternative ways to deal with the fuzzification of input data are 
presented in Section 2.4 . 
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Fig. 3. This example shows the calculation of the membership functions belonging to an internal flow. On the left, the input data membership function is 
calculated. The other pictures show the functions resulting from the two balance constraints by assuming the internal flows to be unknown and by using 
fuzzy input intervals for the external flows. 

Fig. 4. In this example, the membership functions of an external flow are given. The left one is the input data membership function and the right one 
results out of the balance constraint. To calculate this constraint function, the internal flow resulting from step 1 is used while the remaining external flow 
functions used are based on input data. 
2.3.2. Balancing of the model and data 

In the end, every flow is represented by a single membership function based on the available input data. The membership 
functions of the input data have to comply with the mass balance constraints given in the model. The membership functions 
resulting from the balance constraints are obtained for each flow by assuming that the target flow is not determined and 
inserting all other input membership functions for the flows belonging to the same process into the balance constraint 
in order to calculate it. Thus, the reconciled fuzzy intervals are calculated via intersection of the membership function 
of the input data with the membership function(s) from the balance constraints. The reconciliation procedure consists of 
three major steps. An example of the case study’s reconciliation steps is given in the SI (SI-3). The documentation of the 
reconciliation algorithm developed in Matlab can be found in the SI (SI-6). 
• Step 1: 

In the first step, the membership functions resulting from the balance constraints are calculated for each internal flow 
(connecting processes within the system). Those functions are intersected with the membership function from the input 
data for each internal flow, and the degree of consistency α of the intersection of the three competing functions is 
calculated. An example of the three membership functions which are considered for an internal flow is given in Fig. 3 . 
As the intersection function is only defined up to the maximal function value α, α is converted to a fuzzy interval by 
taking the interval on the level of α and keeping it fixed up to 1: 

C δ = C δ∗ , (9) 
∀ δ ≥ δ∗ : δ∗ := max x { min x { ξinput (x ) , ξconstraint i (x ) , ξconstraint j (x ) }} , 

whereby i and j denote the processes which are connected by the flow. These extended functions are taken for further 
calculation in step 2. However, the basic intersection function and the level of α are also saved for step 3. 

• Step 2: 
The fuzzy intervals for the internal flows are fixed. Then, the balance constraints are updated by inserting the internal 
flows as input variables. Now, the membership functions for all external flows are calculated using the updated balance 
constraints (one constraint per flow). Analogous to step 1, each of them is intersected with the membership function 
from the input data and the level of consistency is determined. Fig. 4 shows the membership functions of this step on 
the example already given in Fig. 3 

• Step 3: 
The intersected functions within the system are normalised to 1 in order to obtain the fuzzy interval for each flow. The 
degree of consistency α is saved for each flow. As a result, the global consistency level is calculated, which is the minimal 
degree α of all flows under consideration. 
Each process is described through one balance constraint. Thus, all flows which are only attached to one process (external 

flows) are linearly dependent. Therefore, the consistency levels are the same for those flows. The property does not hold for 
internal flows as they are described by two balance constraints, on the one hand, and calculated in advance, on the other. 
The relationships among the consistency levels of the flows are used to identify which ones are in poor agreement with 
the system. The global level of consistency is rather an indicator of the conflicts within the whole model or an indicator of 
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model quality. A very low level of consistency could reveal wrong assumptions in the setup of the balance system. If the 
value is 0, there exists a flow with no intersection and, therefore, no solution at all. In the latter case, the system has to be 
updated. 
2.4. Alternative approaches to uncertainty characterisation 

Uncertainty estimates always remain subjective to some degree. Reconciled fuzzy ranges could be wrong even though 
flow data and balance constraints are in perfect agreement with high α-levels. It is assumed that the consistency of the 
model depends on the degree of uncertainty so that α-levels and, particularly, the global level of consistency can be adjusted 
by modifying the uncertainty factors attached to the data. Thus, being over-confident results in low consistency levels and 
small fuzzy ranges while being over-conservative results in high consistency levels at the cost of large ranges (c.f. Laner 
et al. [25] ). In order to illustrate the trade-off between uncertainty ranges and consistencies, two alternative approaches to 
data characterisation are proposed. In the first approach, the uncertainty factors are reduced, which means more confidence 
in the data sources. In the second approach, the treatment of overdetermination of flows is modified by using a conjunctive 
approach to data fusion. Only values which are in the uncertainty range of any source are considered (c.f. Destercke [26] ). 
The second approach also gives greater weight to the actual data sources and is useful in identifying problematic data 
efficiently (through high conflict in the input data). 
2.4.1. Reduction of uncertainty ranges 

In the first approach, the fitting parameter b of the uncertainty function in (7) is halved from b = 0.8 to b = 0.4. Thus, 
the uncertainty range d gets smaller, which results in narrower membership functions. This effect leads to higher conflict in 
the reconciliation step and, therefore, to lower degrees of consistency. 
2.4.2. Intersection of input data 

The second approach differs from the basic approach only for the flows with competing input data. In contrast to the 
disjunctive approach on data fusion, this modification makes every value impossible which is not part of all the membership 
functions defined for a flow. This means that instead of considering all possible values, only values which are not impossible 
are considered. First, competing data points are transformed to membership functions according to their uncertainty ranges. 
If the data points are homogeneous (i.e. in the same unit), the intersection of them is taken, α is saved and the function is 
normalised to 1 in order to get a membership function. The function is then multiplied by a conversion factor if it is not 
already in the system’s unit. In the scenario of heterogeneous data points, the membership functions are first transformed, 
then intersected, and finally normalised. The final degree of consistency of a flow is defined as the product of the degree 
of consistency from the intersection of the input data (data characterisation) and the degree of consistency from the recon- 
ciliation process. This is done because the result should reflect both impacts, conflict in the input data and conflict in the 
reconciliation step. The basic and the reduced ranges approach don’t reflect the conflict in overdetermined input data for 
a flow. The definition of the final degree of consistency as a product is tenable if it is assumed that in the basic and re- 
duced ranges approach, the degree of consistency of the data characterisation step is 1. As the membership functions of the 
overdetermined flows become narrower, there is more conflict in the reconciliation, resulting in lower levels of consistency. 
Besides, because the consistency levels for the overdetermined flows are 1 at the maximum in the intersection step (in the 
case of perfect agreement), the levels are considerably lower than those defined in the initial approach ( = base case). Two 
examples of the treatment of overdetermined data for the approaches presented are given in Figs. 5 and 6 . 
3. Calculation and results 

The reconciliation algorithm is applied to determine the flows of the Austrian wood flow system. An interpretation of the 
results of the reconciled wood flow model in the base case can be found in the SI (SI-4). The results are compared among 
the three approaches to characterise the input data taking the reconciled ranges and the achieved consistency levels into 
consideration. De-fuzzified values are used to derive statements about the wood flows. The fuzzy intervals are transformed 
to crisp values by taking the arithmetic mean of the core interval as the de-fuzzified value. 
3.1. Comparison of approaches on uncertainty characterisation 

The results of the alternative data characterisation approaches are depicted in Figs. 8 and 9 . The core is listed in the 
upper part and the support in the lower part of each flow trapezoid. The de-fuzzified value indicates the thickness of 
the flows. The colour scale denotes the level of consistency for each flow. The scale ranges from purple, indicating very 
low consistency, to dark blue, which stands for perfect agreement. Grey denotes the flows which are not affected by the 
reconciliation process. These belong to the use-process only as the process has one degree of freedom, because the change 
of stock is not given by input data, i.e. a calculation result. The colour scale highlights that the α-levels consistently decline 
for the reduced ranges case compared to the base case, as all flows noticeably change the colour to either light blue from 
navy (e.g. the boards industry) or to purple from turquoise (e.g. the sawing industry). The same consistency rule with less 
discrepancy on the colour scale holds for the intersected data approach in comparison to the base case with the exception 
of the intersected flows, which have the lowest consistency levels (e.g. flow 19 or flow 4, shown in purple). 
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Fig. 5. This example shows flow 11 of the Austrian wood flow model for the different approaches on data characterisation data for homogeneous data 
points. The given data points A and B are in the same unit. They are first merged together and then converted in the system’s unit. 
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Fig. 6. This example shows flow 23 where two heterogeneous data points are given. In order to assign them to the flow, A needs to be converted into the 
system’s unit and transformed in the right proportion first. Then, they can be merged together. 

3.1.1. Comparison of consistency levels 
As indicated by different colours in the figures, all flows related to only one process are linearly dependent and share the 

same level of consistency. The degrees of consistency of the processes are given in Table 7 . The α-levels for the processes 
are quite high for the base case, the global level of consistency, which is the level of the sawing industry process (0.94) 
indicating very good agreement between the fuzzy ranges. Reducing the ranges causes a reduction in the consistency levels 
of the sawing industry process of approximately 24%, and a further 19% for the building timber industry process. Those are 
the processes with the lowest consistency levels. However, comparing the intersected data approach to the base case, there 
is only a significant change for the building timber industry, with a 20% lower consistency level. This is due to the fact 
that the changes in the reconciliation step are caused only by the narrower fuzzy intervals of the overdetermined data. The 
α-levels for internal and overdetermined flows are given in Table 8 . 

The intersected data approach has the lowest α-levels for the overdetermined flows with heterogeneous data points 
(flow 4, 19 and 23). The relative change in the internal flow consistency levels to the base case is less than 26% in any of 
the alternative approaches. Thus, reducing the ranges of the input data by halving the fitting parameter b in the exponent of 
the uncertainty factor function reduces the consistency of the flows on average to around 18%. Although the relative change 
in the global level of consistency for the intersected data approach is almost 93%, most of the levels for the flows remain 
the same and thus, the average change is only 9%. This confirms the trade-off between uncertainty characterisation and 
consistency levels because the levels decrease when more trust is given to the input data. 
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Fig. 7. Reconciled wood flow model. 
Table 7 
α-levels for internal & for overdetermined flows. 

Flow Base case Reduced Intersected 
3 0.94 0.72 0.92 
4 0.94 0.72 0.26 
8 1 0.79 1 
9 0.97 0.72 0.77 
10 1 0.79 1 
11 1 0.81 1 
13 1 0.81 1 
14 1 0.81 1 
16 0.97 0.82 0.77 
17 1 0.99 1 
19 0.97 0.74 0.07 
23 1 0.99 0.36 

3.1.2. Comparison of reconciled fuzzy ranges 
Considering Figs. 7 –9 , it can also be observed that each approach gives slightly different results for the reconciled fuzzy 

ranges. In contrast to all other flows, the fuzzy ranges for f19 are greatly different. They vary from [0.08,0.55,1.16,2.51] in the 
base case to [0.37,1.13,1.14,1.55] in the reduced ranges approach, and [0.16,0.20,0.21,0.21] for the intersected data approach. 
The changes in reconciliation results of the de-fuzzified flow values for the base case as well as for the two alternative 
approaches in comparison to the original data points are given in Table 9 . The original data points are transformed by crisp 
multiplications with the data points given for conversion factors and commodity distributions. If a flow is overdetermined, 
the arithmetic mean of the data points is used as the original value. The flows f4, f8, f10 and f19 share the particular fea- 
ture in that the direction of the changes in the mass flow in comparison to the input data is different for the three different 
approaches. While the reconciled value of f4 increases for the base case and the reduced ranges, it declines for the inter- 
sected data approach. The same trend holds for f19, which is also a heterogeneously overdetermined flow. Conversely, flows 
f8 and f10, which are both internal flows and therefore restricted through two balance constraints, decrease for the base 
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Fig. 8. Reduced ranges. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article). 
case and the reduced ranges (apart from f10, which doesn’t change in the base case) and increase for the intersected data 
approach. The diverse effect on f4 and f19 is caused by the uncertainty characterisation for overdetermined, heterogeneous 
flows. The fused data points lead to enlarged fuzzy input intervals in the base case and reduced ranges approach, which 
leaves a margin for the balance constraints. Thus, the balance constraints have a higher impact on those two approaches, 
causing increasing values in both approaches. In contrast to that, the constricted narrow fuzzy input ranges for the f4 and 
f19 have a higher impact than the constraints for the intersected data approach, leading to decreasing values (c.f. Table 9 ). 
The internal flows f8 and f10 are attached to the sawing industry process and therefore depend on f4. According to the 
balance constraint for this process, an increase in the value of f4 leads to an increase in the values of f8 and f10, and vice 
versa. This follows the effects shown in Table 9 . The fact that the changes in the internal flow f9, affected by both f4 (sawing 
industry) and f19 (building timber industry), do not differ in sign is because the fuzzy ranges of the input and the balance 
constraints are far broader than those of f8 or f10. The effect of the narrow ranges of both f4 and f19 in the intersected data 
approach is strong enough to have a positive reconciliation effect on f9. However, the broad ranges of f4 and f19 for the 
base case and reduced ranges approach allow a broad range for the fuzzy solution of f9 so that their influence is negligible. 
3.1.3. Detection of weaknesses 

The foreign import of semi-finished building industry products f19 has the lowest global α-level in the intersected data 
approach, with 0.07. Moreover, this flow is also the one with the largest relative changes in the reconciled fuzzy ranges 
when comparing the different approaches (59.3% in the base case, 109.3% for the reduced ranges approach and −63% in 
the intersected data approach). This is caused by high conflict in the input data for f19. The values of the transformed data 
points f19a and f19b are so far off each other that at least one of them must be substantially flawed. It is difficult to ascertain 
which one because the uncertainty factors of both data points are relatively high. In order to get a better understanding of 
the magnitude of this flow, the wood flow model is tested without these data points for the base case by treating f19 as 
a free variable. The resulting de-fuzzified value is 1.52 Mio t, which is closer to the input data of f19a = 0.944 Mio t than 
to f19b = 0.44 Mio t. Therefore, f19b is ignored in the next step and the system for the base case is again reconciled by 
considering only f19a as an input date for this flow. The reconciled, de-fuzzified value is then 0.94 Mio t, i.e. f19 remains 
almost unchanged after the reconciliation step. Although the global level of consistency is the same as the initial result, the 
α-level of the building industry can be raised to 1 so that all processes except for the sawing industry (unchanged with α = 
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Fig. 9. Intersected data. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article). 
0.94) have perfect consistency with α = 1. Both of the de-fuzzified values for f19 (without considering the data for f19 and 
by considering f19a only) would be covered by the reconciled fuzzy intervals for f19 in the base case and reduced ranges 
approach, but not in the intersected data approach (where 0.21 Mio t is the maximal possible value). 
4. Discussion 
4.1. Reconciliation algorithm 

The fact that the output of the developed approach contains not only the reconciled flows and their resulting uncertainty 
but also information about their consistency within the model is the main added value of the developed approach in con- 
trast to other reconciliation methods. A recommendation for consistency level benchmarks is given in Table 9 . This indicates 
the agreement of the data for a flow within the model and is also a benchmark for the global degree of consistency. α- 
levels above 0.9 stand for excellent agreement. It is assumed that α-levels beyond 0.5 are acceptable while all values below 
indicate poor agreement. In the latter case, the data (or the model) is in need of an update. 

The existing Linear programming method for reconciliation under fuzzy constraints is only applicable to membership 
functions of triangular or trapezoidal shape. However, as most of the flows result from multiplications with conversion 
factors or commodity distributions, the resulting membership functions are rather of a curved shape. Thus, using a linear 
program, the results are inaccurate as the intersection points may be shifted. This can lead to big deviations of membership 
functions through error propagation (cf. Laner et al. [6] ). The generalisation to common membership functions is a main 
innovation of the developed approach. The required number of δ-cuts (approximating a continuous function) in order to get 
reliable results depends on the magnitude of the data values considered. The number of observed digits ν1 plus significant 
decimal digits ν2 determines the amount of δ-cuts N = 10 ν1 + ν2 −1 . As single-figured numbers with two digits are considered 
for the Austrian wood flows, the membership functions are split into 100 δ-cuts and the x -axis is observed up to the 3rd 
decimal place (and rounded afterwards), so that errors lie within a 10 −3 × 10 −2 -square unit. Thus, precision up to the second 
digit can be assumed. 
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Table 8 
Comparison of the changes in the reconciled, de-fuzzified flow values relative to the crisp input data (transformations done without 
fuzzification) and of the change relative to the total contribution to changes (the sum of all absolute changes) due to reconciliation. 

Flow Input Base case Reduced Intersected 
Crisp Total contribu- Relative Total contribu- Relative Total contribu- Relative 

tion to changes (%) change (%) tion to changes (%) change (%) tion to changes (%) change (%) 
f1 4.91 15 .4 5 .3 20 .3 10 11 .7 7 .1 
f2 2.24 3 2 .2 5 .4 5 .8 4 5 .4 
f3 2.36 −2 .4 −1 .7 −4 .1 −4 .2 −3 .7 −4 .7 
f4 0.7 4 .7 11 .4 0 .8 2 .9 −2 .3 −10 
f5 1.31 −0 .6 −0 .8 −2 .9 −5 .3 −2 .3 −5 .3 
f6 0.18 0 0 −3 .7 −50 0 0 
f7 1.32 −14 .8 −18 .9 −6 .2 −11 .4 −10 .3 −23 .5 
f8 0.86 −2 .4 −4 .7 −3 .3 −9 .3 0 .3 1 .2 
f9 1.28 0 0 2 .1 3 .9 7 .3 17 .2 
f10 0.18 0 0 −0 .4 −5 .6 0 .3 5 .6 
f11 1.73 −16 −15 .6 −11 .2 −15 .6 −6 .3 −11 
f12 0.03 0 0 0 0 0 0 
f13 0.43 0 0 1 .7 9 .3 1 7 
f14 0.38 0 0 0 .8 5 .3 0 0 
f15 0.18 0 0 0 .4 5 .6 0 0 
f16 0.1 0 0 0 .4 10 1 30 
f17 0.15 0 .6 6 .7 0 0 0 .3 6 .7 
f18 0.17 0 0 −0 .4 −5 .9 0 0 
f19 0.54 18 .9 59 .3 24 .5 109 .3 −11 .7 −63 
f20 0.85 0 0 −2 .5 −7 .1 −7 .3 −25 .9 
f21 1.85 −18 .9 −17 .3 −7 .5 −9 .7 −24 .7 −40 
f22 0.16 0 0 −0 .4 −6 .3 −1 .3 −25 
f23 0.08 −2 .4 −50 −0 .8 −25 −1 −37 .5 
f24 0.06 0 0 0 0 0 0 
f25 0.04 0 0 0 0 0 0 
f26 0.29 0 0 0 0 0 0 

Table 9 
Recommendation for consistency level bench- 
marks 

α Agreement 
> 0.9 Excellent 
> 0.7 Good 
> 0.5 Fair 
0.5–0 Poor 

4.2. Effect of uncertainty characterisation 
How can a system with no or poor agreement be updated to get a feasible solution or a solution with higher consisten- 

cies? The problem may be due to uncertainty ranges which are defined too narrowly. If a very low level of global consistency 
cannot be increased by an appropriate enlargement of uncertainty ranges, the first step should be to check input data for 
potentially erroneous data sources related to the problematic flows or processes, respectively. Full reliability of the model 
is assumed since the constraints are fixed and not uncertain. A poor global α is also an indicator of problems arising with 
respect to the consistency of the balance system’s assumptions. If it is not possible to improve the input data in order to 
rise global α in an appropriate way, the balance system (i.e. the model) should be critically reconsidered with respect to 
correctness and completeness. This iterative way of improving data and model is typical for the procedure of doing an MFA 
(cf. Brunner and Rechberger [1] , Laner et al. [5] ). 

Considering the Austrian wood flows, the three different approaches on uncertainty characterisation result in widely 
varying consistency levels. The trade-off between uncertainty ranges and consistency levels provides a better understanding 
of the way the data should be characterised. The highly conservative characterisation of uncertainty in the base case leads 
to large ranges and excellent consistencies, which is not really representative if the data quality is considered. Besides, the 
scope of the flow ranges leaves a lot of leeway in the reconciliation process. In the present case study on wood flows, 
the preferred uncertainty characterisation approach is the reduced ranges approach. While all fuzzy ranges become more 
precise, the loss in consistency is modest compared to the base case. According to the global degree of consistency, the 
system can still be referred to as good and therefore reliable as well as coherent, but not optimal, which also confirms the 
impression from model construction and data collection. Larger, more complicated balance systems with similar data quality 
assessments should be treated by using the base case. The intersected data approach points out the weaknesses within the 



N. Džubur et al. / Applied Mathematical Modelling 43 (2017) 464–480 479 
wood flow system. The global degree of consistency is almost zero, which means that the wood flow model is untenable 
and in need of change. This is true for flow 19 as can be seen in Section 3.2.3. However, no update of the system would lead 
to errors in the reconciliation results of the intersected data approach. This can be seen on the instance of f19, where the 
de-fuzzified values, which result from ignoring f19 and also from ignoring the obviously wrong data point f19b, are outside 
of the range of the reconciled fuzzy interval of the intersected data approach. As relatively many overdetermined flows are 
considered for these (and especially also larger) wood flow systems, this approach requires a lot of revision and adaption to 
obtain acceptable consistencies according to Table 9 . This is not worthwhile in this simple, five-process case study because 
the gain in information through the reconciled values of this approach is not so high. A comparison of the base case and 
reduced ranges approach with the updated systems (e.g. for f19) lead to no significant changes in the fuzzy ranges of the 
flows through reconciliation. 
4.3. Comparison to existing fuzzy-based approaches 

The reconciliation approach developed in this work was analysed by comparing it to the lexmin approach with fuzzy 
linear programming used by Dubois et al. [4] . Furthermore, the reconciliation approach to the case study on Austrian wood 
flows was compared to the standard least squares approach using the software STAN [8] , as was done by Dubois et al. 
[4] in order to validate the leximin approach (see Fig. 1 and Table 4 of SI-5 in the SI). The application to the Australian 
copper system, taken over from van Beers, van Berkel and Graedel [27] allows the usage of the linear program as each 
of the flows is uniformly defined by a triangular membership function. In this reconciliation approach, all flows belonging 
to the process with the lowest degree of consistency are fixed to the singletons attained in the core of the membership 
functions. Then, the reconciliation step is updated with the next higher α-level. The step is repeated until all flows are 
fixed to singletons. Except for some differences in the system’s assumptions, it was possible to reproduce the results of the 
leximin approach with the algorithm presented because for linear problems of such symmetrical shape, there exists only one 
optimal solution. However, in a more general case, more weight would be given to the flows with the lowest consistencies 
by using the leximin approach. It should be reiterated that linear programming is only applicable to simple case studies 
with triangular or trapezoidal membership functions and leads to imprecise results if multiplication is considered and a 
generalised approach is needed. The multiplication of trapezoidal functions results in a distribution with curved legs instead 
of straight ones, leading to error propagation in the reconciliation step when linearised instead of curved fuzzy sets are 
intersected (see SI of Laner et al. [6] ). As membership functions need to be cut into slices in order to perform reconciliation 
in the general case, it is very time consuming to always fix the flow intervals with the lowest consistencies and iterate the 
procedure until all of them are fixed. The method presented in this paper offers a more practical approach since it consists 
of only two reconciliation steps. As the internal flows are attached to all processes and, therefore, their reconciliation affects 
all other flows in the next step, it is natural to reconcile them in the first step. 
5. Conclusions 

In this study, a general possibilistic framework for data reconciliation in MFA was presented and applied to a case study 
on wood flows in Austria. The framework consists of a data characterisation step and a reconciliation step. Uncertain in- 
put data are expressed via functions indicating the degree of membership of values within possible intervals. Compared 
to existing approaches for data reconciliation under fuzzy constraints, the developed framework is generally applicable as 
it does not require triangular or trapezoidal membership functions. It can handle any kind of membership function which 
results from the data characterisation step. Therefore, the approach presented leaves little space for arbitrariness and input 
manipulation, as the only input needed are the collected data points and an evaluation of the data quality, allowing for 
more transparent and consistent balancing of the data within the material flow model. By applying the developed frame- 
work to wood flows in Austria, weaknesses in the database and the setup of the model could be identified (e.g. the data 
basis concerning semi-finished wood product imports (flow 19) was found to be problematic). The model results consist of 
the possible ranges and the consistency levels of each material flow. The latter quantify the degree of agreement between 
the input data and the mass balance constraints of the model. Based on the investigation of three data characterisation 
alternatives, it was possible to show a trade-off between the confidence in the data (i.e. the more confidence, the narrower 
the intervals) and the resulting flow consistency levels. Exploring this trade-off provides a means to analyse the relationship 
between data characterisation and the quality of data reconciliation because the confidence in the data is directly linked 
to their agreement in the balancing model. This provides a basis for assessing MFA results from the perspective of data 
reconciliation: Poor agreement in the model does not justify high confidence in the data and vice versa. As material flow 
modeling is an iterative procedure, the framework developed allows for optimising uncertainty characterisation with respect 
to the consistency of the material flow model. 

In the future, the generalised framework should be applied to more complicated MFA systems to validate its practicality 
for material flow models, including recycling loops and stock dynamics. 
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1 SI-l:Explanation of the wood flow model 

The following explanation serves for a better understancling of the case study 
on woocl flows in Austria: 
Raw \voocl, >vhich is processecl in the smving inclustry, is either importecl 
from abroad or taken from Austrian forests. Sawwood is then exportecl or 
sold, among othcr woocl proccssing inclustrics, to thc furniturc and builcling 
inclustry. Anothcr important material, dcaling '.Vith a compctitivc markct, 
is thc vast amount of incurrcd sawmill by-proclucts. It is sold to thc boarcls 
industry, a.s wcll as to thc papcr and pellet industry. Boards arc cithcr sold to 
thc building timbcr, furnitnrc and othcr industrics or cxport.cd. Asidc from 
by-products from thc sawing industry, ])()ard production rclics 011 imports 
of by-products, industrial wood, a.nd waste >vood. Customers of the boards 
industry are the building and the furniturn industry, the production rnsidues 
are incinerated. \Vithin the domestic sawwood a.nd boards, there are also 
imported semi-finished products used in the building and in the furniture in­
clustry. I3oth inclustries sell proclucts clomestically ancl abroa.cl. Jlurthermore, 
for both inclustries incurring by-products from the production process are 
used thermaJly. The use-process includes all woocl products which are either 
clomestically manufacturecl or importecl in the year 2011. The historic stock 
represents in-use \Vood products in Austria (not considered in this stucly). 
\Vaste -vvoocl and paper a.re the products lea.ving the system. 

2 SI-2: Data sources for the Austrian wood 
flow model 

Thc following Tablcs show thc da.ta sourccs for thc flmv quantitics , convcrsion 
factors and cormnodity distributions which wcre uscd in thc Austrian wood 
flows ca.sc st.udy. If t.wo sourccs are givcn for a. flow, thC' first is thc onc which 
was found and thc sccond onc ·was givcn as a rcfcrcncc by thc first sourcc. 
The fül\VS f6,f9.flü a.nd f22.f25 in Table SI-1 denote the same a.ggregated 
qua.ntity. This qua.ntity is partit.ioned with the cornrnodity distributions for 
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sawvwod (f6,f9,f10) and for by~products (f22,f25) given in Table SI-:3. The 
fiows f12J1G and fl7 denote also the same aggregated quantity: partitioned 
'vith the commoclity clistribution for boarcls (Table SI-3). 
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Table 1: Quantities 

Flow [ Sourcc 

f1 :\ emesthoty, Aust rian Energy Agency r8J , HElVI 
f 2 :\ emesthoty, Austrian Energy Agency r8J, FHP rs1 
f3a :\ emesthoty, Austrian Energy Agency [8], FHP [5] 
f3b \Voocl Inclustry Report [16], Statisitics Austria [12] 
4a :\ emesthoty, Austrian Energy Agency [8], FHP [5] 
4b ProPellets Austria [9] 
4c Statisitics Austria [11] 
5 :\crnesthoty, Aust rian Encrgy Agcncy [8j, Paper Industry Austria [14j 
6 :\ernesthoty, Aust rian Energy Agency 181, FHP 151 
7 :\ emesthoty, Aust rian Energy Agency r8J, fHP rs1 
8a :\ emesthoty, Aust rian Energy Agency r8J, FHP rs1 
8b \Voocl lnclustry Report [16] 
9 :\ emesthoty, Austrian Energy Agency [8], FIIP [5] 
10 :\ emesthoty, Austrian Encrgy Agcncy [8], FHP [5] 
ll a Schwarzbauer , Institute for l\farkcting & Inuovation ,BOKU [10] 
llb Schwarzbauer , Institute for Marketing & Innovation, BOKC [lOj 
12 Sd nvarzba.uer, Institute for Marketing & Innovat ion, BOKC [Hlj 
13a :\ ernesthoty, Austrian Energy Agency 181, FHP 151 
13b \Vood lndustry Report 1161 
14a :\ emesthoty, Austrian Energy Agency r8J, FHP rs1 
14b Paper lndustry Austria r14J 
13 \Vindsperger , Institute for Indust rial Ecology, Austria [15] 
16 Schwarzbauer , Institute for Marketing & Innovation, BOKC [Hl] 
17 Schwarzbauer , Institute for Marketing & Innovation, BOKC [10] 
18 :\ crnesthoty, Austrian Encrgy Agcncy [8j, FHP [5j 
19a. :\ernesthoty, Austrian Energy Agency [8j, FHP [5j 
19b Cl\ Corntrade 1131 
20 Cl\ Comtrade [13] 
21 Statisitics Austria, [11] 
22 :\ em est h oty, A ustrian Energy Agency [8], FHP [5] 
23a. :\ emesthoty, Austrian Encrgy Agcncy [8], FHP [5] 
23b l~l\ Comtrade [13] 
24 l~l\ Corntrade [13] 
25 :\ crnesthoty, Austrian Encrgy Agcncy [8j, FHP [5j 
26 \Vindsperger , Institute for Industrial Ecology, Austria 1151 
27 Paper lndustry Austria. ri4] j 

28 Paper lndustry Austria r14J " 
29 Statisi Lies A ustria [11] 
30 vVindsp erger , Institute for Industrial Ecology, Austria [15] 
31 Paper Industry Austria [14] 



Table 2: Conversion factors 
Commodity 1 Source 

rournhvood 1\ crncsthoty, Austrian Encrgy Agcncy [8], FHP [5] 
bark 1\ ernesthoty, Austrian Energy Agency 181, FHP löl 
off-cuts 1\ emesthoty, Austrian Energy Agency 181, f<HP 1.)1 
sawdust 1\ emesthoty, Austrian Energy Agency [8], FHP [;)] 
boards Egger, AusLrian Boards Company [4] 
incl ustrial 'voocl I\ emesthoty, Austrian Energy Agency [8], FHP [ö] 
chipboard \Vindspcrgcr, Institute for Industrial Ecology, Austria [15] 
.MD F -l)()ard \Vindspcrgcr, Institute for Industrial Ecology, Austria l15j 
spruce wood \Vindsperger , Institute for Industrial Ecology, Austria ll5j 
by-products in pellets ProPellets Austria 191 
s\varf 1\ emesthoty, Austrian Energy Agency [8], FHP [5] 
by-products in pcllcts 1\ crncsthoty, Austrian Encrgy Agcncy [8], FHP [5] 
vvaste wood 1\ ernesthoty, Austrian Energy Agency [8], FHP [öj 
pa.per Paper Industry Austria 1141 
waste paper Kalt, Austrian Energy Agency [7], Statistics Austria [12] 

Ta.ble 3: cornrnoclity clistributions 

Commodity Sourcc 

boards Brandstätt.er, Austrian Sodety for \Voocl Research [1], 
saw>voocl \Vinclsperger, Institute for Industrial Ecology, Austria [1 5] 
by-products Brandstätt.er, Austrian Society for \Vood Research [1], 



3 Sl-3:Example on balancing of n1odel and data 

The followillg example Oll 8 alld fll Oll from the case study Oll Austriall >vood 
fiows is presented in order to explain the reconciliatioll steps in the halanc­
ing 01' moclel ancl clata. The inLernal flows are reconcilecl in Lhe first step or 
the balancing of moclel ancl clata. Thus, f8 is calculated in a first step out 
of the intersection of the input data membership function ancl the balance 
constraints mcmbcrship functions. Thc ovcrclctcrmincd, homogcncous input 
clata mcmbcrship function is calculatccl accorcling to thc prcscntcd sccnario 
on unccrtainty chara.ctcrisation ( c.f. Figurc 2 for fl 1 of thc manuscript). 
Thc othcr two mcmbcrship functions rcsult out of thc balancc constra.ints of 
thc smving industry proccss 'vith thc input fimvs for fl-f7 and f9,f10 and thc 
boards indnstry proccss with thc input fiows fll-f18 (sec Equation 1 and 2 
frorn the case study in the manuscript). The intersection of the three rnern­
bership functions is calculated on the analogy to the exa.mple given in 2 .1 in 
the rnanuscript (cf. Figure 1 in the rnanuscript). 
As the external fimvs are calculated in the second reconciliation step, fll is 
calculated hereafter. This calculation of the input memhership function for 
fl 1 is given in Figure 5 of the manuscript. This function is intersectecl with 
the membership function of the halance constraint from the boards inclustry 
process. This means; that f8 and f12-f18 are usecl to calculate fll , \Vhereby 
the input membership function are usecl for f12-f18 and the result of the rec­
onciliation in t.he IirsL step for f8. 
I3oth fimvs have an consistency level of 1 after the first two steps. There­
fore; their normalisa.tion in the third step ends up in the same membership 
functions. 

4 SI-4:Results of the reconciled wood flow model 
in the base case 

Thc following rcsnlts shmv thc intcrprctat.ion of thc rcconcilcd model in thc 
casc st.udy. Thc rcconcilcd fuzzy intcrvals for thc Austrian wood balancc 
resulting frorn the rnodel in the initial approa.ch (-base case) are shown in 
Figure 7. Considering the de-fuzzfied va.lues; the result.s indicat.e t.hat 5.17 
l\Eo tonnes of round timber from domestic forests are nsed in t.he s;nving 
industry in 2011. :'viore than 30% of the total amount of round timher that 
goes into the ~awing industry is importecl from a.hroacl. The largest fraction 
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of output of the smving industry is exported sasvwood (almost :30%) to other 
countries, followed by an enormous amount of sawmill by-proclucts going 
into the paper industry (16.5%) and saw\vood used for the building industry 
(abouL 16%). Almost 84% ol" t.he procluced boards are exported: only a 
small fraction goes to the national industries. 46%.i of 'vood proclucts are 
importecl to Austria. The paper industry has the highest domestic production 
(and almost 28% of thc total production from inland and abroad)) followcd 
by the building timber inclustry ( making up 21 % of thc total prod uction). 
Conccrning thc data quality~ thcrc cxist rclativcly prccisc clata sources for thc 
sawing industry proccss. The data on the boar<ls industry proccss arc also 
rcla.tivcly tena.blc. On thc othcr ha.nd, thcrc a.rc scarcc rcliablc data a.vailablc 
for thc building and furniturc industry. Thc unrclia.blc data makc it difficult 
to qua.ntify 'vood fünvs to the use-phase. 

5 SI-5: Comparison to the reconciliation re­
sults with STAN 

The results of the hrnzy-set basecl approach on the Austrian wood tlow moclel 
are compared to a standard least squares approach using the software STA!'\ 
[2]. The STA>J reconciliation results are given in Figure 1. The arithmetic 
mean value of the fiow clata (multiplicatecl with the arithmetic mean value 
of Lhe conversion factor if conversion is needed) is used as Lhe mean value 
of the normal distribution of the fiows. The standarcl cleviation is assumed 
to be 10% of this mean in each case like in the comparison of the leximin 
approach \Vith fuzzy linear programming to thc STAK approach in Dubois 
et al 2014 [3]. A comparison of the STAN results to thc rcsults obtained 
by thc fuzzy-sct approach is givcn in Tablc 4. Thc highcst relative changcs 
arc obscrvcd for f1 9 an<l f23, thc ftows for which thc alternative approachcs 
havc thc highcst relative changcs and low alpha-lcvds) too (sec Tablc 7 and 
Tablc 8 in thc manuscript) . Thc dctcction of thc \vca.kncsscs of this ftows 
in thc balancing would rcmain uncxplorcd using thc least squa.rcs approa.ch, 
as their reconciled values (f19-0.54 a.nd f23-0.08) are almost the sa.me as 
the crisp input values (which are f19=0. :S4 and f23=0.08, see Table 8 in the 
manuscript). 
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Table 4: Comparümn of the results on the Austrian wood fünvs from the fuzzy 
set approach (base case) and the least squares approach using the sofhvare 
STAN. 

flow basc casc STA~ rcl. changc 
fl 5.15 5.71 -9.5%. 
f 2 2.29 2AO -'1.6% 
f 3 2.32 2.17 6.9% 
f 4 0.78 0.68 14.1% 
f 5 1.30 1.25 4.0% 
f6 0.18 0.18 0.6 % 
f 7 1.07 1.26 -15.0% 
f 8 0.82 0.90 -8.6% 
f9 1.28 1.49 -14.3% 
flO 0.18 0.17 3.3% 
fll 1.46 1.48 -1.27% 
fl2 0.03 0.02 20.2% 
f13 0.43 0.44 -2.7%„ 
fl4 0.38 0.39 -2.5% 
fl 5 0.18 0.18 -1.5% 
fl 6 0.10 0.10 4.5% 
fl 7 0.16 0.15 8.'1% 
fl S 0.17 0.17 2.67% 
fl 9 0.86 Ü.;)9 45.2% 
f20 0.85 0.73 15.7% 
f21 1.53 1.29 18.5% 
f22 0.16 0.1 6 2.7% 
f2 3 0.04 0.08 -50.6% 
f24 0.06 0.06 -5.6%. 
f25 0.04 0.04 -0.6%. 
f26 0.29 0.30 -3.0% 
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R E S E A R C H A N D A N A LYS I S

Evaluating the Use of Global Sensitivity
Analysis in Dynamic MFA
Nađa Džubur, Hanno Buchner, and David Laner

Summary

Dynamic material flow analysis (MFA) provides information about material usage over
time and consequent changes in material stocks and flows. In order to understand the
effect of limited data quality and model assumptions on MFA results, the use of sensitivity
analysis methods in dynamic MFA studies has been on the increase. So far, sensitivity analysis
in dynamic MFA has been conducted by means of a one-at-a-time method, which tests
parameter perturbations individually and observes the outcomes on output. In contrast
to that, variance-based global sensitivity analysis decomposes the variance of the model
output into fractions caused by the uncertainty or variability of input parameters. The
present study investigates interaction and time-delay effects of uncertain parameters on
the output of an archetypal input-driven dynamic material flow model using variance-
based global sensitivity analysis. The results show that determining the main (first-order)
effects of parameter variations is often sufficient in dynamic MFA because substantial effects
attributed to the simultaneous variation of several parameters (higher-order effects) do
not appear for classical setups of dynamic material flow models. For models with time-
varying parameters, time-delay effects of parameter variation on model outputs need to
be considered, potentially boosting the computational cost of global sensitivity analysis.
Finally, the implications of exploring the sensitivities of model outputs with respect to
parameter variations in the archetypical model are used to derive model- and goal-specific
recommendations on choosing appropriate sensitivity analysis methods in dynamic MFA.

Keywords:

industrial ecology
material flow analysis (MFA)
parameter uncertainty
sensitivity indices
system dynamics
variance-based sensitivity analysis

Supporting information is linked
to this article on the JIE website

Introduction

Material flow analysis (MFA) is a tool to quantify the flows
and stocks of materials in arbitrarily complex systems. Dynamic
MFA is a frequently used method to assess past, present, and fu-
ture stocks and flows of materials in the anthroposphere (Müller
et al. 2014). In contrast to static MFA, where material flows are
determined for one balancing period and are therefore time
independent, material stocks and flows in a dynamic material
flow model can potentially depend on all previous states of the
system (Baccini and Bader 1996). Recently, dynamic MFA has
become increasingly popular, with a primary focus on the inves-
tigation of material stocks in society and associated end-of-life
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(EoL) flows (cf. Laner and Rechberger 2016). Metals, in partic-
ular, have been subject to dynamic MFA because of the large
accumulated metal stocks in society and their potential value
for society as secondary raw materials (cf. Chen and Graedel
2012; Müller et al. 2014).

Given that models represent a simplification of the real
metabolic system and because of data limitations in terms of
quality and quantity, uncertainty is inherent to material flow
analysis (MFA) (Laner et al. 2014). Therefore, uncertainty is
a basic aspect of material flow modelling and needs to be ex-
plicitly considered to reduce uncertainties and inconsistencies
as far as possible, thereby allowing for reliable decision support
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(Gottschalk et al. 2010; Laner et al. 2015). With respect to
dynamic MFAs, the in-use stocks and EoL material flows are
typically estimated according to a top-down approach (i.e., ac-
counting of the net flows into or out of the stock over time),
where substantial uncertainty exists concerning model param-
eters such as average product lifetimes or historical material-
use patterns. Thus, the importance of model calibration and
plausibility checks based on independent bottom-up estimates
to increase the confidence in dynamic MFA results has been
emphasized (Müller et al. 2014; Buchner et al. 2015a).

Sensitivity analysis is carried out to investigate the effect
of individual assumptions and parameter specifications on the
model output by exploring the effects of the changes of input
parameters on the model output. Whereas local sensitivity anal-
ysis methods focus on testing different perturbations of constant
or uncertain input parameters and analyze the specific conse-
quences in the output, global sensitivity analysis (GSA) focuses
on the uncertainty in the output and how it can be apportioned
to different sources of uncertainty in the inputs (Saltelli et al.
2008). The process of recalculating outcomes under alternative
assumptions to determine the impact of variables using GSA
can be useful to identify model inputs that cause significant
uncertainty in the output in order to increase robustness of the
model and understanding of the relationships between input
and output variables (Pannell 1997). Analytical local methods
using partial derivatives are usually not useful in dynamic MFA
systems given that the model input parameters are uncertain
and the model of unknown linearity. Derivatives are only in-
formative in the base point where they are computed and do
not provide for an exploration of the rest of the space of input
factors, which does not matter for linear systems, but greatly
matters for nonlinear ones (Saltelli et al. 2008). Moreover, the
global method of regression analysis is typically not a useful
option in this context given that it describes only the fraction
of linearity within the model output and remains ignorant of
the rest of uncertainty or variance within the model (Saltelli
et al. 2008). The common way to treat dynamic MFA in pre-
vious literature is local, using one-at-a-time (OAT) analysis,
where one input variable is changed whereas the others remain
fixed in order to see what effect this produces on the output
(Murphy et al. 2004). This is very time-consuming if the system
consists of many inputs, which need to be observed. Parameter
redundancy tests, like the elementary effect test (Morris 1991;
Campolongo et al. 2007), can be used to reduce the number
of parameters by detecting and excluding those of negligible
influence, thereby reducing the input space to be observed. Be-
sides, because materials typically reside for some time in the
use phase, input parameters of previous periods affect the un-
certainty of the output (in-use stocks, old scrap generation) in
later periods. Such time-delay effects are important if model pa-
rameters vary over time, which may often be the case in reality
(e.g., the share of a material used in a specific application may
not be constant over time, but vary because of technological,
legal, or socioeconomic changes). Further, OAT analysis can-
not account for the combined effects of parameter changes such
that interaction effects attributed to the simultaneous variation

of parameters are ignored. The standard deviations obtained
from the elementary effects test can be used to detect non-
monotonic behavior, indicating possible interactions (Garcia
Sanchez et al. 2014; Andrianandraina et al. 2015). Because
nonlinearities can only be suspected to be interactions (Andri-
anandraina et al. 2015), further analyses are required also in
this case.

Buchner and colleagues (2015a) analyzed the system of
Austrian aluminium flows for almost 50 years with time-varying
parameters by using variance-based global sensitivity analysis.
The analysis focused on the decomposition of the output vari-
ance with regard to parts attributable to stochastic input vari-
ables and showed that only small parts of the total output vari-
ance could be explained by the variation of single parameters
in the same year. Thus, more-comprehensive sensitivity anal-
ysis approaches are required to investigate the importance of
parameter interaction and time-delay effects on the variation
of the model outputs.

It is the aim of this study to provide guidance on how to
conduct sensitivity analysis in dynamic MFA with regard to the
following aspects:

i) How do interaction effects (attributed to simultaneous
change of several parameters) influence model results?

ii) How do time-delay effects (influence of parameter values
from previous periods on results of subsequent periods)
influence model results?

iii) Which problem- and- model-specific recommendations
can be given concerning sensitivity analysis in dynamic
MFA?

Thereto, the state of the art of sensitivity analysis in dynamic
MFAs is reviewed and novel applications of sensitivity analysis
are explored. An archetypal dynamic material flow model is es-
tablished as a highly simplified, reduced version of the national
aluminium flow model presented by Buchner and colleagues
(2015a) and investigated using a sample-based approach of
variance-based GSA. The model contains the essential ele-
ments of input-driven top-down dynamic material flow models,
which are the distribution of produced materials into different
use sectors and the lifetime of products (i.e., in-use stocks) in
these sectors (cf. Müller et al. 2014). Based on the analyses,
recommendations concerning the choice of sensitivity analysis
methods for dynamic MFA are provided.

Sensitivity Analysis in Dynamic Material
Flow Analysis

During the last decade, several studies on dynamic MFA
considering sensitivity analyses to deal with scenarios or un-
certainties within models have been published (see table 1).
The first question arising in sensitivity analysis of dynamic
MFA is whether the system observation is local or global. Lo-
cal sensitivity analysis (LSA) aims to highlight changes of the
output attributed to certain parameters’ perturbations. LSA is
mostly an OAT treatment of sensitivity, meaning that single
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Table 1 Classification of previous treatment of sensitivity analysis dynamic MFA (based on the review study by Müller et al. 2014)

Classification

Local SA nominal (1.) Local SA uncertain (2.) Global SA (3.)
Dahlström et al. 2004 Zeltner et al. 1999 McMillan et al. 2010
Müller et al. 2006 Spatari et al. 2005 Bader et al. 2011
Geyer et al. 2007 Ruhrberg 2006 Buchner et al. 2015a
Cheah et al. 2009 Gottschalk et al. 2010
Hirato et al. 2009 Bader et al. 2011
Chen et al. 2010 Glöser et al. 2013
Daigo et al. 2010
Liu et al. 2011
Müller et al. 2011
Chen et al. 2012
Marwede and Reller 2012
Matsuno et al. 2012
Liu and Müller 2013a, 2013b
Pauliuk et al. 2013a, 2013b

Note: SA = sensitivity analysis.

parameters are tested individually for their sensitivities, but
also groups of parameters can be tested together for their sen-
sitivities. There are also local sensitivity analyses that consider
parameters as uncertain. Whereas LSA tries to explain the im-
pacts by changing model parameters, GSA starts the analysis
from the uncertainty in the output. GSA looks for the highest
variations of the output by exploring the whole space of input
parameters. Hence, in contrast to LSA, GSA always considers
uncertain input parameters. Overall, the treatment of sensi-
tivity analysis in dynamic MFA can be categorized into three
groups:

(1) LSA with nominal parameters (LSAn), testing the per-
turbations of single parameters on the output and com-
paring them to the baseline scenario.

(2) LSA with uncertain parameters (LSAu), observing the
impact of the parameters’ uncertainty on the uncertainty
of the output.

(3) GSA, explaining how the whole uncertainty of an output
can be apportioned to different sources of uncertainties
in the input parameters (Saltelli et al. 2008).

LSAn and LSAu use specific, previously determined input
parameters to analyze the model output, which are either of gen-
eral relevance or specifically interesting because of the expert’s
knowledge of the system. Although parameter uncertainty may
be treated within the dynamic model, LSAn ignores the issue
when testing the sensitivities by representing the parameters as
nominal values. The usual uncertainty treatment in LSAu and
GSA is by expressing input parameters as probability density
functions.

Most dynamic MFA studies use LSAn by arbitrarily choosing
specific parameters, which are changed one at a time and the
outcome is compared to the baseline result. Examples for OAT
analysis applied to dynamic metal flow models on national and
global levels are given in table 1.

So far, only a few dynamic MFAs (on metals) apply LSAu,
where the sensitivities of the outputs are analyzed through
Monte Carlo Simulation (see also table S1 of the supporting
information available on the Journal’s website). Finally, GSA
has hardly been used in dynamic MFAs, with a few notable
exceptions.

Bader and colleagues (2011) used a kind of GSA to in-
vestigate a copper flow model for Switzerland by focusing on
specific stock saturation-based scenarios as the output variation
is caused to the extent of 95% by stock saturation. McMillan
and colleagues (2010) present a more-specific application of
GSA (cf. Müller et al. 2014) to a model on U.S. aluminium
stocks and their relationship with economic output. They used
a Fourier amplitude sensitivity test (FAST) to identify not only
the main, but also interaction effects of parameter variations.
However, a limitation of FAST is that it is prone to systematic
deviations from the analytical values (bias), which may be at-
tributed to interference problems (Saltelli and Bolado 1998),
and is therefore only useful to determine main effects (Saltelli
et al. 2008). Buchner and colleagues (2015a) explored the varia-
tions in the total scrap output of Austrian aluminium stocks and
flows by applying Sobol indices for main effects using the effec-
tive algorithm for computing global sensitivity indices (EASI)
algorithm (Plischke 2010). The EASI algorithm is, like the
FAST algorithm, based on Fourier transformations. However,
the application of GSA in Buchner and colleagues (2015a)
showed that only small parts of the total variance of old scrap
generation could be explained by the variation of single param-
eters in the same year. Because lifetime functions define the
lifetime of materials in in-use stocks, they lead to delayed ef-
fects of input parameters on EoL flows. Therefore, in the case
of time-varying parameters, sensitivity analysis needs to explic-
itly account for changes in parameter values over time. Further,
the role of interaction effects between parameters on models
in dynamic MFAs needs to be illuminated because no stud-
ies on such effects in dynamic material flow models have been
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performed so far (see table S1 of the supporting information on
the Web).

In contrast to dynamic MFA studies, sensitivity analysis
dealing with time-varying input parameters, as well as inter-
action effects between parameters, has been applied to the
(mathematically) related field of dynamic input-output mod-
els. For instance, Ramdani and colleagues (2006) analyzed sen-
sitivities not only for parameters of the same year, but also
for past input parameter values using an analytical nonstation-
ary approach for GSA. With respect to parameter interaction
patterns, Tøndel and colleagues (2011) presented a hierarchi-
cal multivariate regression-based sensitivity analysis avoiding
the assumption of parameter independency by clustering input
parameters into groups. Both the consideration of the mem-
ory effects of previous periods (Ramdani et al. 2006) and the
analysis of the total variations of the output, taking into ac-
count parameter interactions (Tøndel et al. 2011), are modeling
assumptions that should not be ignored in dynamic MFA.

Materials and Methods

Archetypal Dynamic Material Flow Model

Based on existing dynamic material flow models for metals
(Buchner et al. 2015a; Liu and Müller 2013a; Pauliuk et al.
2013b), an archetypal model (=reduced model) focusing on
the core element of dynamic MFA, namely, the use phase
and associated material stocks and EoL flows (cf. Müller et al.
2014), is developed. Material stocks and flows are modeled us-
ing an input-driven, top-down approach. Consequently, the
predefined material input is distributed to three use sectors with
different residence times. The fraction of obsolete material per
year of use is defined using Weibull functions, which are widely
used to express product lifetimes or failure rates of material
components (a comparison on lifetime distribution functions in
dynamic MFA is given in Melo [1999]). The sector-split ratios
and the average lifetimes are uncertain and expressed as inde-
pendent normally distributed variables with a relative standard
deviation of 10%. The model output of interest is the old scrap
flow (output from the use phase), where the total output O(t)
consists of EoL flows from sector 1 O1(t), sector 2 O2(t), and
sector 3 O3(t) (see figure 1 and equation 1). The model output
for each time period t is obtained by the following convolution
formula:

O (t) =
3∑

i =1

Oi (t)

=
3∑

i =1

t∑

τ=0

ri (τ ) l i (t − τ ) I (τ ) d τ t = {1, 2, . . . , T}

(1)

In equation (1), T denotes the time range of the system ob-
servation, I(t) denotes the input in the period t, r1(t), r2(t),
and r3(t) the three sector split ratios in period t, with the

corresponding average lifetimes l1(t), l2(t) and l3(t). τ is the
time the material input enters the specific sector, taking values
between 1 and t. The mean values of the probability density
functions of the sector split ratio parameters are denoted as mr1,
mr2, and mr3 and the means of the average lifetime probability
density functions as ml1, ml2, and ml3.

The Weibull probability density function is described in
equation (2) as a function of τ (time of input entering use)
and two model parameters (the average lifetime li and the scale
parameter z).

wbl pd f (τ | l i , z) = z
l i

(
τ

l i

)z−1

e−
(

τ
l i

)z

τ = {1, 2, . . . , t} , i = {1, 2, 3} .

(2)

The normally distributed average lifetimes l1l2,l3 character-
ize scale parameters, and z is responsible for the shape of the
Weibull probability density function. Here, z = 3 is used in
accord with Buchner and colleagues (2015a) (based on Chen
et al. [2012], Dahlström et al. [2004], Liu and Müller [2013a],
and Melo [1999]).

The variance in the old scrap is an aggregation of the vari-
ances of the uncertainty within input parameters. The reduced
model is subsequently used to study how the total variance of
the old scrap output (EoL material flow) can be properly ap-
portioned into the uncertainty of the varying input parameters
over time and which changes in input parameters affect the
variance of output most in which time period.

Scenario Analysis

Different model setups (=scenarios) are used to analyze
interaction and time-delay effects on the model output (see
table 2). In scenario 1, the counteracting effects of lifetime and
sector split ratio are explained by means of the sector output
O2. This scenario is important in order to understand further
ones. Scenario 2 expands the analysis to the full system output
by observing all lifetime and sector split ratio effects at once
and comparing this for a linear and a constant input over time.
For both scenarios, the parameters are stationary over time.
In scenario 3, the parameter effects are observed for a specific
year of output whereby time-varying parameters are compared
to stationary ones. This is under the assumption that input is
constant over time. The allocation of the scenarios with regard
to the main drivers is given in table 2.

Effect of Time-Independent Parameters on the Output
Over Time
In this case, the effects of changes in time-independent pa-

rameters (i.e., constant over time) on the outputs are explored
throughout the modeling period T = 50 years in scenario 2
(and T = 100 years for relationship analyses in scenario 1) to
investigate time-delay effects of parameters’ variations on the
output. The mean values for the sector split ratios and the cor-
responding mean values of the average lifetimes are given in
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Figure 1 Schematic illustration of the reduced dynamic material flow model, consisting of three in-use sectors with specific lifetimes. The
input (I) is split into the use sectors according to the split ratios r1, r2, and r3 and the sector-specific mean average lifetimes given by ml1, ml2,
and ml3; O denotes output.

table 2. Because of the residence time of materials in use, the
inputs of the three sectors enter the total output with a time
delay. Therefore, changes in those inputs can affect the output
at any later time given that the time of outflow is random. In
scenario 2, the system is tested for different inputs as a model
driver, for a constant input and a linearly growing input (see
table 2), which is similar to the aluminium input growth in
Buchner and colleagues (2015a).

Effect of Time-Dependent Parameters on the Output of a
Specific Year
In the case of time-independent parameters, effects of pa-

rameter variation on the output are accumulated and it is not
possible to trace the individual contribution of input param-
eters from specific previous years to the output in a certain
year. Therefore, the next step is to investigate the sensitivity
of output in a specific year with respect to time-dependent pa-
rameters (i.e., different values for different time periods). This
represents a frequently occurring situation in dynamic material
flow modeling when current in-use stocks and old scrap flows are
calculated from historical data. The effects of previous parame-
ters were tested for the output in year 50 in scenario 3. In order
to compare time varying with stationary parameters, parameters
were defined for three time periods. During these periods, the
parameter values remain constant, leading to step-wise changes
and resulting in 18 input variables in total. The first period de-
notes the value of the parameters during years 1 to 16 of input.

In this phase, both versions have the same parameter values,
which are the ones assumed before (see table 2). Whereas for
the stationary case the parameters were redrawn with the same
mean values for the other two periods, the time-varying param-
eters rise or fall in two steps, in the second period during years
17 to 33 and the third period from year 34 to observed year of
output (which is 50). The changes in sector split parameters
sum up to 1 in each of the three periods. The material input per
year is given for 50 years (see table 2). A practical example for
the first sector, where the mean ratio mr1 rises and, simultane-
ously, the lifetime rises, would be the aluminium use in vehicles
(cf. Buchner et al. 2015b).

Variance-Based Sensitivity Analysis

We use variance-based sensitivity analysis to find out
how the variance of the output over time can be decomposed
into the conditional variances caused by the input parameters
from the current and previous periods. We are interested not
only in the single effects, but also in the interaction effects orig-
inating from combined effects of input parameters p1, . . . , pk

on the output Y = f(p1, . . . , pK).
The total or unconditional variance of the output V(Y) is an

aggregated sum of all conditional variances of the output. How-
ever, it can be restricted to one or combinations of parameters.
The normalized partitions of these conditional variances are
denoted as sensitivity indices. Three kinds of sensitivity indices
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Table 2 Scenario overview about the scenario motivation, input definition, observed output, and chosen mean parameter values

are considered (Saltelli et al. 2008, chapter 4) (equations 3, 4,
and 5):

Si = V(E(Y|pi))
V(Y)

First order effect of parameter i (3)

STi = 1 − V ((Y|p∼i))
V (Y)

Total order effect of parameter i (4)

SHi = STi − Si Higher order effect of parameter i (i = 1,.., n)

(5)

The nominator in equation (3), V(E(Y|pi)), is the expected
reduction in variance that would be obtained by fixing pi.
Because the total variance can be decomposed, it holds that
V(E(Y|pi)) + E(V(Y|pi)) = V(Y) (Saltelli et al. 2008, chap-
ter 4). In equation (4), E(V(Y|p!i)) is the expected variance
that would be left by fixing all factors but pi. This holds because
V(E(Y|p!i)) is the expected reduction in variance obtained by
varying all factors but pi and V(E(Y|p!i)) + E(V(Y|p!i)) =
V(Y) (Saltelli et al. 2008 chapter 4 2009).

The first order effect Si given in equation (3) is the impact
on the variance of the output of a parameter alone, whereas the
higher-order effect SHi in equation (5) gives all the combined
effects of a parameter with other parameters. The total-order

effect STi (equation (5)) is all kinds of impact on the output’s
variance caused by a parameter, alone and in combination with
other parameters. As the conditional variances are normalized,
they sum up to 1. Thus, the sum of Si is smaller than 1 in
general. The sum of Si is equal to 1 if there are no interaction
effects in the model, which means that SHi is equal to 0. In this
case, the sum of STi is also 1. In general, the sum of the STi

is greater than 1 because potentially present interaction effects
are counted multiple times.

To obtain the conditional variances, random drawings are
needed to estimate the inner expectation E(Y|pi) for a fixed
value of each input variable pi, and then different values of pi

to estimate the outer variance V((E(Y|pi)). Single, combined,
and total effects of each year were calculated using Monte Carlo
simulations. However, the results can be obtained by a faster
short-cut method than doing this for each variable one by one
by using a sample-based approach.

Sample-Based Approach
The sample-based computation, based on the procedures

presented by Saltelli and colleagues (2008 chapter 4), was con-
ducted as follows:

First, a X = (N, 2k) matrix of random number drawings of
the input variables (p1, . . . , pk) is generated, where k denotes
the number of parameters and N the order of magnitude, thus
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the number of Monte Carlo samples. Two matrices A and B of
the size (N,k) are defined and each of them contains half of the
sample. Next, for each input variable i = 1, . . . ,k, a matrix Ci

is defined, which contains all columns of B except for the ith
column Xi, which is taken from A.

A =





x1
1 x1

2 . . . x1
i . . . x1

k

...
. . . x2

i

...

x N
1 · · · x N

i x N
k





B =





x1
k+1 x1

k+2 . . . x1
k+i . . . x1

2k

...
. . . x2

k+i

...

x N
k+1 · · · x N

k+i x N
2k





Ci =





x1
k+1 x1

k+2 . . . x1
i . . . x1

2k

...
. . . x2

i

...

x N
k+1 · · · x N

i x N
2k



 i = 1, . . . , k

Then, the N×1- outputs are computed for the three input
matrices, ya = f(A), yb = f(B), yCi = f(Ci).

The first- and total-order indices are then computed as fol-
lows in equation (6) and equation (7):

Si = V (E (Y|Xi))
V (Y)

= ya ∗ yCi − f 2
o

ya ∗ ya − f 2
o

=
( 1

n

) ∑N
i =1 y j

a yc
j
i − f 2

o( 1
N

) ∑N
i =1 (y j

a )̂2 − f 2
o

. (6)

STi = 1 − V (E (Y|X∼i))
V (Y)

= 1 − yb ∗ yCi − f 2
o

ya ∗ ya − f 2
o

= 1 −
( 1

n

) ∑N
i =1 y j

b yc
j
i − f 2

o( 1
N

) ∑N
i =1 (y j

a )̂2 − f 2
o

. (7)

with f 2
0 = ( 1

N

N∑
j =1

y j
a )2.

Picking out one of the scalar products of the different matrix-
outputs ya ∗ yCi , all factors of the output Y computed from the
inputs from A are resampled, except for the values in column
Xi (the drawn samples of parameter pi), which remain fixed.
Hence, if Xi is noninfluential, then high and low values of ya

and yCi are randomly associated so that they balance out. If Xi

is influential, high values of ya are then multiplied with high
values of yCi and low ones of ya with low ones of yCi , which
increases the resulting scalar product. The same idea holds for
the product of the first-order effects of non-Xi yb ∗ yCi (Saltelli
et al. 2008, chapter 4).

The resulting first-order indices of the sample-based ap-
proach (see equation 6) are checked against first-order indices
Si derived using variance decomposition methods based on
Fourier transformations. Such algorithms are suitable to de-
termine main parameter effects computationally more efficient
than the sample-based approach described above. In this study,

the EASI algorithm (Plischke 2010), which belongs to the class
of FAST Fourier transformations, is used for evaluating the plau-
sibility of first-order indices and testing their convergence (see
section S2 in the supporting information on the Web).

Results

The results section consists of three subsections dealing with
the major findings related to the analysis of three distinct model
setups (=scenarios).

Scenario 1: Importance of Lifetime and Sector Split
Ratio for Output O2

The relationship between the sector split ratio of the out-
put and its lifetime follows the same pattern for the first- and
total-order indices of each sector: The effects are reverse (see
figure 2 for O2 with the sector split ratio r2 and average lifetime
l2). The time duration of the growth period, the saturation pe-
riod, and the degeneration period of the output are influenced
by the mean value of the average lifetime, whereas the sector
split ratio is responsible for the amount of output. At the be-
ginning, in the growth phase of output, l2 is significant and r2 is
negligible. This is to be expected because the variation of aver-
age lifetime has the sole relevance in terms of the variation of
output when almost all input is still kept in stock and the output
is low. In the growth phase of output, the average lifetime effect
falls whereas the effect of the sector split ratio rises. The sector
split ratio is most sensitive to the output during the saturation
phase of the output and the average lifetime plays no role in
this phase. This is because the effect of the lifetime variations
is canceled out through the constant supply of input, that is,
higher average lifetime in one year and a lower average lifetime
in the following might even out. However, the change in the
variation of the sector split ratio would completely change the
variation of the output in full. With decreasing output in the
degeneration phase, the average lifetime grows and becomes
significant again and the importance of the sector split ratio
decreases. This is because the less output is given, the more
important becomes the time the output flow of a sector enters
the output. The higher-order indices become smaller with an
increasing number of Monte Carlo samples and are negligible
at 100,000 sampling runs. The results of the first-order effects
are compared to results obtained by using the EASI algorithm,
which are almost identical (see figure S1 of the supporting in-
formation on the Web). Besides, for the EASI algorithm, the
first-order indices sum up to 1, proofing that there are no higher-
order effects.

With respect to dynamic MFA practice, this means that as
long as EoL flow volumes are increasing (and the in-use stocks
are growing), the uncertainty in average lifetimes is more im-
portant than in situations where in-use stocks are closer to
saturation or decreasing (and EoL flows also follow a decreasing
trend). For the latter kind of situation, the uncertainty asso-
ciated with sector split ratios comes to the fore when we are
interested in determining the EoL flows.
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Figure 2 Sensitivity indices for O2 =
Pt

τ=0 r2(τ )l 2(t − τ )I (τ )dτ . with mr2 = 0.3 and ml2 = 10: (a) material input to and output from
sector 2, (b) first-order, (c) higher-order, and (d) total-order indices for the sector split ratio and average lifetime of sector 2.
Note: t/yr is tonnes/year, r is split ratio and l is lifetime.

Scenario 2: Sensitivity Analysis of the Total Output O

The dynamic system was tested for a constant input over
50 years and a linearly increasing input over time. The latter
has been chosen to resemble typical trends in metal consump-
tion in industrialized countries and is exemplarily based on the
increase of aluminium consumption in Austria (see Buchner
et al. 2015a). Figure 3 denotes the curve progression of these in-
puts, the corresponding outputs, and sensitivity indices. When
it comes to the order of the most important first- and total-order
indices during the period of output, almost all input variations
show the same result: In the introduction phase of the out-
put, the shortest average lifetime with ml3 = 5y is dominant.
Then, during the growth phase, the middle average lifetime with
ml2 = 10y dominates all others, and, finally, the longest one
with ml3 = 20y is the most important one. At the beginning
of the saturation phase of the output (peak phase for the linear
input), the highest sector split ratio with mr1 = 0.5 becomes
significant. Although the effects overlap during the constant
input case, the annually growing input and, consequently, also
growing output stretches the effects over time.

The constant case shows that all lifetimes are influent in the
unstable phase of introduction and the sector split ratios are

influent in the stable phase when the output is saturated. The
same holds for the linear case; the influencing parameters are the
mean average values of lifetimes in the introduction phase and
the mean values of the sector split ratios in the saturation phase.
The introduction phase is the period of nonlinear behavior of
output; thus, the function derivative of the output is growing.
The saturation phase is the period where the rate between
output and input is practically constant; here, the function
derivative of the output is also constant.

The results in figure 3 are obtained after 300,000 Monte
Carlo simulation runs. The higher-order indices vary between
–0.3 and 0.3 (data not shown). However, negative results are
impossible because of mathematical definition and they would
vanish with a higher number of simulation runs, which was
computationally too expensive in this case. Through computa-
tions with a lower number of simulation runs and by observing
the sectors individually (cf. scenario 1), it can be seen that the
higher-order indices converge toward zero for each case. The
results of the first-order effects were compared to the results ob-
tained by the EASI algorithm (see figure S2 of the supporting
information on the Web, showing the first-order effects of the
same scenario calculated with the EASI algorithm), showing
that there are no significant higher-order effects.
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Figure 3 Sensitivity indices for a constant (left column) and a linear (right column) input: illustration of the (a) constant and (b) linearly
growing material input and corresponding outputs, (c), (d) the first- and (e), (f) total-order indices for T = 50 years of observation.
Note: t/yr is tonnes/year, r is split ratio, and l is lifetime.

Scenario 3: Parameter Effects on the Output
of a Specific Year

The first-order effects show again the same behavior as the
total-order effects for both time-varying and stationary param-
eters. The higher-order effects converge to zero with an in-
creasing number of simulation runs (as can also be seen by
the comparison of the first-order effects to those obtained by
the EASI algorithm in table S2 of the supporting information
on the Web). The effects of the time-varying and stationary
parameters over three periods on the output of year 50 are
given in table 3. As can be seen in the right bottom corner of
table 3a and table 3b, all effects over the three periodical

changes sum up to approximately 1 in both cases, meaning
that the output variances are fully explained by the first-order
indices. All sector split ratios and their corresponding average
lifetimes show up at around the same period of time (which is
already observed in scenarios 1 and 2). For example, it can be
seen that l1 has the strongest effect in period 2 in both cases.
At the same time, r1 reaches its peak (although the effect is far
less than the one of l1). Obviously, the effects of the sector split
ratios of sectors with shorter lifetimes (O2, O3) appear close to
the year of output 50, whereas the parameters related to O1 in
earlier modeling periods are more important for the output of
year 50.

Džubur et al., Global Sensitivity Analysis in Dynamic MFA 9
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Table 3 First-order indices of the stationary and time-varying parameters for the output in year 50

a) Sta!onary parameters 

First order indices r1 r2 r3 l1 l2 l3  parameters 

Period 1 0.010 0.007 0.005 0.023 0.014 0.009 0.068

Period 2 0.038 0.011 0.011 0.113 0.025 0.012 0.209

Period 3 0.030 0.068 0.083 0.113 0.173 0.311 0.776

 periods 0.078 0.086 0.098 0.248 0.212 0.332 1.052

b) Time-varying parameters 

First order indices r1 r2 r3 l1 l2 l3  parameters 

Period 1 0.004 0.004 0.004 0.068 0.004 0.004 0.088

Period 2 0.043 0.004 0.004 0.168 0.004 0.004 0.226

Period 3 0.024 0.143 0.021 0.024 0.422 0.062 0.696

∑ periods 0.071 0.151 0.029 0.260 0.430 0.070 1.010

∑

∑

∑

Note: The three periods denote the step-wise changes of parameter values. Period 1: 1 to 16 years; period 2: 17 to 33 years; and period 3: 34 to 50 years.
Shades of gray highlight the importance of the parameters in the periods (the darker, the more important).

In both cases, the effects of the first period are negligible
given that the average lifetimes (20, 10, and 5 for both) are too
short to have an effect on the output in year 50. During years
17 to 33, l1, the longest average lifetime has the highest and,
together with r1, the dominant effect on the output. Given that
a mean average lifetime of ml1 = 30 in the time-varying case
has the highest effect directly in the middle of period 2, this
effect is considerably higher than in the stationary case with
ml1 = 20, where the effect is shifted toward the end of period 2
and overlaps with period 3. The shorter the lifetime, the higher
is the concentrated effect in one period. This is obvious for
period 3, which captures almost 80% of all effects in the sta-
tionary case and almost 70% in the time-varying case. Whereas
in the stationary case, l3 is the most important parameter (ml3 =
5), l3 is unimportant in the time-varying case, because ml3 = 10
in period 2 is too short a lifetime to significantly affect the out-
put whereas ml3 = 15 in period 3 is too long to be an important
driver. Apart from that, the sector split ratio of O3 also de-
creases to mr3 = 0.1 (mr3 = 0.2 in the stationary case) in period
3. In contrast to that, the effect of l2 is doubled in the time-
varying parameters case. Here, ml2 shrinks to 5 in the last period
(ml2 = 10 in the stationary case). Because the other average
lifetimes do not affect the output directly in this period, this
makes l2 the most important parameter in this case (and r2 in
period 2 the most important sector split ratio). This example
shows that changes of parameters over time affect the behavior
of sensitivities and lead to nonlinear effects in output dynamics.

Discussion

Reduced Dynamic Material Flow Model

The Sample-Based Approach and Higher-Order Effects
The variance-based sampling method for global sensitivity

in dynamic MFA provides a tool to detect not only the main

effects, but also interaction effects of the parameters on the
variation of output over the periods of observation. The compu-
tational effort required of this variance-based method to detect
such sensitivity indices is very high, especially if the parame-
ters are observed over a long period of time. Assuming that N
denotes the number of Monte Carlo simulation (MCS) runs
and k the number of parameters, 2N simulations are needed for
computing the outputs of the matrices A and B (ya and yb) and
kN simulations are needed to compute the k versions of the
output of C (yc). Because all outputs are observed for T years,
the cost of the analysis is m = T(k+2)N (cf. Saltelli et al. 2009).
In terms of applying the reduced dynamic material flow model,
this cost would be 800N for the full system sensitivity analysis.

The patterns of parameter sensitivity in the dynamic sys-
tems are already apparent after N = 100,000 MCS runs (m =
80 million). Although the rankings of the first (and total) order
indices remain the same, there are still important, observable
changes within the sensitivity indices until N = 300,000 runs
(calculation time is 3 times higher than for N = 100,000 runs)
with m = 240 million.

The higher the number of Monte Carlo runs, the smaller
the higher-order indices. Thus, the sensitivity of the model is
already fully determined through the first-order indices. This
analysis indicates that in such general dynamic MFA cases
of combinations of sector split ratios and lifetime functions,
higher-order indices are not expected to be significant and can
be neglected. Therefore, in these cases, more-efficient algo-
rithms analyzing first-order effects, such as the EASI algorithm,
can be used and large numbers of input parameters (like time
variations of parameters for each year in this example) can be
easily dealt with.

However, there are specific circumstances when higher-
order effects may become relevant for sensitivity analysis in
dynamic MFA. In such a case, the first-order indices of the
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parameters do not sum up to unity. For instance, this could be
the case for very small material flows, which are distributed into
more flows at a later stage of the model. An example would
be the material flow out of a very small use sector, which is
subsequently directed to a sorting and upgrading plant pro-
ducing secondary raw materials. Higher-order effects may be
relevant for this secondary raw material flow because the prob-
ability density function for the respective sector split is lo-
cated close to zero and several other parameters are multiplied
with the sector split ratio to calculate the flow of interest (see
figure S3 of the supporting information on the Web). In general,
significant parameter interaction effects on the model output
may be expected if the output is the product of several variables
and (at least) one of the variables is defined in a way that zero
lies within the set of probable parameter realizations. It holds
that the more often zero is attained within the set of outcomes
of the final output, the higher the interaction effects. This is
attributed to the fact that if a product has a factor equal to zero,
the product becomes zero. A similar relationship may be given
for emission flows with low emission factors (see section S3
in the supporting information on the Web). In classical cases,
when the observed model output is not a product of many fac-
tors with at least one frequently taking zero values, the variation
of the output can be explained through the first-order effects
over time.

Time-Dependent Parameters and Delayed Effects
The effects of parameters related to inputs to the use phase

have a delayed effect on the EoL flows attributed to the use
(duration) of materials. Thus, the sensitivity indices of the pa-
rameter values also need to be considered with regard to the
delay. We showed how sensitivity indices of a set of parameters
in the first periods spread over time. However, in most cases,
the modeler is interested in finding out which parameters af-
fect the model output for a specific year (e.g., current in-use
stocks or old scrap generation). The period of parameter spec-
ification needs to be considered if they are time varying. For
time-varying parameters, it holds that every change of their
probability density function (in our example, the mean value)
needs to be considered as a new variable. Here, the appear-
ance of the effects of a sector split ratio and the corresponding
lifetime can be approximated by subtracting the average life-
time of the year of observed output. Thus, for short average
lifetimes, it holds that the sector split ratios parameters and
their corresponding average lifetimes can be neglected in early
periods whereas for very long lifetimes, the sector split ratios
and their corresponding lifetimes are practically negligible in
the years close to the output. Thus, the number of parameters
can be reduced to potentially important ones. Otherwise, for in-
stance, in the case of annually changing parameter values, the
computational cost of the sample-based approach for sensitivity
analysis could become very high. The comparison of stationary
and time-varying parameters for a specific year of output shows
that the global sensitivity results can differ. If time-varying pa-
rameters are treated as stationary in a variance-based sensitivity
analysis approach and thus their relative variance is also treated

as stationary, the variance of the output is apportioned inconsis-
tently with the actual parameter evolution. In particular, such
an allocation is wrong if the parameters vary greatly in size over
time.

Recommended Practice for Sensitivity Analysis
in Dynamic Material Flow Analysis

When it comes to sensitivity analysis in dynamic MFA, it
boils down to the question of which sensitivity analysis ap-
proach is appropriate given the model structure and the output
of interest.

Considering the previous treatment of sensitivity analysis in
dynamic MFA, this approach can expand the classification of
sensitivity analysis in two important dimensions: On the one
hand, time-delay effects of varying input parameters over the
years when in-use stocks are considered and, on the other hand,
the observation of interaction effects if dependencies are given
(multiplications are done) with values for which the probability
density function attains the value zero with high probability
(especially if a lot of other parameters depend on this value).
The analysis of the dynamic material flow model in this study
focused on these two dimensions and showed that:r For classical dynamic model set ups, higher-order effects

do not contribute significantly to the sensitivity of the
results.r EoL flows are sensitive with respect to variations in life-
times during unstable periods of output, whereas varia-
tions in sector split have the dominant effect on EoL
flows during stable periods.r Time-dependent variables need to be checked for de-
layed effects of previous periods by treating them as sep-
arate variables for each significant period of change. A
reduction can be made by neglecting parameter values in
periods, which are too far off the observed year of output
(i.e., if the output in a specific year is of interest for the
analysis).

Based on the findings of the sensitivity analysis of the
archetypical dynamic material flow model and the review of
the current state of the art of sensitivity analysis in dynamic
MFA (see section Sensitivity Analysis in Dynamic Material Flow
Analysis), a recommended practice for sensitivity analysis in dy-
namic MFA is put forward. The corresponding, hierarchically
ordered decision chart with the features of the observed model
assumptions and the appropriate sensitivity analysis approach
is shown in figure 4.

For systems that do not consider multiplications with pa-
rameters for which the probability density function attains zero,
a variance-based FAST Fourier transformation algorithm can
be used because it is sufficient to determine first-order indices
(main parameter effects).

Cases that may have higher-order effects can be solved with
the variance-based sampling method or with other methods
proposed by Saltelli and colleagues (2009), which are more
time efficient. Saltelli and colleagues (2009) proposes Jansen’s
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Are you interested in
all parameter effects the
output is sensitive to?

Local sensitivity analysis,
e.g. One-at-a-time analysis

Is parameter uncertainty
considered via probability

density functions?

Parameter redundancy test
Local sensitivity analysis 

(OAT, in groups)

no

seyon

yes

Do the parameters
vary over time?

Are multiplications with very
small parameters taking zero

values an issue?

seyon

Are multiplications with
very small parameters taking

zero values an issue?

Global sensitivity analysis 
FAST methods (e.g. EASI) 
with time-varying parameter

consideration

seyon

Global  sensitivity analysis  
with variance-based sampling

method with time-varying
parameter consideration

Global sensitivity analysis 
FAST methods (e.g. EASI)
considering the parameters

as stationary

seyon

Global  sensitivity analysis
with variance-based sampling

method considering the
parameters as stationary

Figure 4 Decision scheme for selecting appropriate methods for sensitivity analysis in dynamic material flow analysis. OAT = one-at-a-
time; FAST = Fourier amplitude sensitivity test; EASI = effective algorithm for computing global sensitivity indices.

estimator (Jansen 1999), radial sampling, and a quasi-random
number method as the best estimators and as faster alternatives
to the sample-based approach for exploring higher-order effects.
The choice of method ultimately depends on the goal and scope
of the analysis: Is it important to observe the whole system and
every output of each time period or is it sufficient to explore
the total effects on one output over one or two specific time
periods? In the latter case, the variance-based sampling method
presented in this article is an appropriate choice.

Dynamic material flow models will gain in complexity in the
future attributed to the consideration of various material quality
layers (e.g. Buchner et al. 2015b) or the requirement of closed
mass balances applied to the model (i.e., recycled material flows
have to [exactly] correspond with the quantities used in sec-
ondary production). Because higher-order effects are expected
to become more prominent in such models, the investigation of
parameter interaction effects and parameter dependencies (e.g.,
Mara et al. 2015) will become a major field for extending the
use of sensitivity analysis in dynamic MFA.
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Džubur et al., Global Sensitivity Analysis in Dynamic MFA 13



R E S E A R C H A N D A N A LYS I S

Saltelli, A., K. Chan, and E. M. Scott. 2009. Sensitivity analysis. New
York: Wiley.

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D.
Gatelli, M. Saisana, and S. Tarantola. 2008. Global sensitivity
analysis: The primer. New York: Wiley.

Spatari, S., M. Bertram, R. B. Gordon, K. Henderson, and T. E. Graedel.
2005. Twentieth century copper stocks and flows in North
America: A dynamic analysis. Ecological Economics 54(1): 37–
51.

Tøndel, K., U. Indahl, A. Gjuvsland, J. O. Vik, P. Hunter, S. Omholt,
and H. Martens. 2011. Hierarchical cluster-based partial least
squares regression (HC-PLSR) is an efficient tool for metamod-
elling of nonlinear dynamic models. BMC Systems Biology 5: 90.

Zeltner, C., H. P. Bader, R. Scheidegger, and P. Baccini. 1999. Sus-
tainable metal management exemplified by copper in the USA.
Regional Environmental Change 1(1): 31–46.

About the Authors
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S-2 

Section S1: Treatment of sensitivity analysis in dynamic MFA according to different attributes 
of parameters 

Based on a review study by Müller et al. (2014), the use of sensitivity analysis in dynamic MFA is 
highlighted in Table S1. 

Table S1: Use of sensitivity analysis in dynamic MFA metal studies (cf. Müller et al. 2014) with regard 
to different parameter attributes, including the most sophisticated studies with regard to sensitivity 
analysis 

Study Type of 
model 

Case 
study 

Class Treatment of 
parameter 
uncertainty 

Parameter  
interactions  

Stationary/time-
varying 
parameters 

Bader et al. 
2011  

bottom-up  copper  LSAu 
+GSA 

stochastic 
(PDFs 
through 
Gaussian 
error 
propagation) 

not 
considered 

stationary 

Buchner et 
al. 2015  

top-down aluminium  GSA stochastic 
(PDFs) 

not 
considered 

time-varying 

Cheah et 
al. 2009  

top-down  aluminium LSAn none not 
considered 

stationary 

Davis et al. 
2007  

top-down  iron and 
steel  

LSAn none considered stationary 

Glöser  et 
al. 2013  

top-down  copper  LSAu stochastic 
(PDFs) 

not 
considered 

stationary 

Gottschalk 
et al. 2009  

top-down  nano-
TiO2 
particles 

LSAu stochastic 
(PDFs) 

not 
considered 

stationary 

McMillan 
et al. 2010  

top-down  aluminium  GSA stochastic 
(PDFs) 

considered stationary 

Spatari et 
al. 2005  

top-down  copper LSAu uncertainty 
ranges 
 (for average 
lifetimes) 

not 
considered 

stationary 
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Section S2: Results of first order indices of Scenario 1, 2 and 3 using the EASI algorithm 

The EASI algorithm by Plischke (2010) estimates first order sensitivity indices by using Fast Fourier 
Transformations. The first order results of the scenarios using the sample based approach in section 4 
were compared to results obtained by calculating the same scenarios with the EASI algorithm. 

 

 

 

 

 

 

 

 

Figure S1: Scenario 1: First order sensitivity indices indices for  Oଶ = ∑ rଶ(τ)lଶ(t − τ)I(τ)dτ୲
தୀ଴  with 

mr2=0.3 and ml2=10 for the sector split ratio and average lifetime of sector 2 calculated with the EASI 
algorithm. 

The differences to the first order indices calculated with the sample based approach (see Figure 2) 
compared to the first order indices obtained by the EASI algorithm in Figure S-1 in the beginning and 
the end of the time of observation, when output is very small, result of calculation differences. 

 

 

 

Figure S2: Scenario 2: Sensitivity indices for a constant (a) and a linear (b) input: Illustration of the first 
order indices for T=50 years of observation using the EASI algorithm. 
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Table S2: Scenario 3: The first order indices of the stationary (a) and time-varying (b) parameters for 
the output in year 50 calculated with the EASI algorithm. The three periods denote the stepwise changes 
of parameter values. Period 1: 1-16 years, Period 2: 17-33 years and Period 3: 34-50 years. 

a) Stationary parameters       

First order indices r1 r2 r3 l1 l2 l3 Ʃ  Parameters 

Period 1 0.016 0.015 0.015 0.025 0.017 0.017 0.105 

Period 2 0.049 0.018 0.016 0.154 0.021 0.019 0.277 

Period 3 0.045 0.066 0.060 0.154 0.184 0.202 0.711 

Ʃ  Periods 0.109 0.099 0.091 0.333 0.222 0.238 1.093 

        

b) Time-varying parameters       

First order indices r1 r2 r3 l1 l2 l3 Ʃ  Parameters 

Period 1 0.025 0.018 0.018 0.028 0.018 0.015 0.121 

Period 2 0.115 0.017 0.018 0.227 0.018 0.023 0.418 

Period 3 0.029 0.118 0.026 0.053 0.400 0.040 0.666 

Ʃ  Periods 0.168 0.153 0.062 0.308 0.436 0.078 1.205 

 

The calculation results in Table S2 show the same pattern as the sample based approach. However, the 
numbers are not exactly the same due to the Monte Carlo sampling. 
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Section S3: Example on higher order effects for a secondary raw material output flow 

The following example is a dynamic MFA study, where higher order effects need to be considered in 
the sensitivity analysis: The output flow is secondary raw material out of a sorting and upgrading plant. 
A very small use sector with a mean sector split ratio of mr1=0.05 and absolute standard deviation of 
r1=0.05 (the average lifetime has a mean of mt1=20 with t1=4) is considered. A fraction so of this 
sector (mso=0.2, so=0.1) is sent to the sorting and upgrading plant and a fraction se (mse=0.8, se=0.1) 
of the latter is used as secondary raw material, see (1). 

 Oୱୣୡ_୰ୟ୵_୫ୟ୲(t) = so ∗ se ∗ ∑ rଵ(τ)lଵ(t − τ)I(τ)dτ              t = {1,2, … , T = 50}୲
தୀ଴    

The results in Figure S3 show that higher order effects appear for the secondary raw material output. 
Their sum varies between 1.9 in the first year and decreases to 0.36 in year 50. While output is growing, 
the lifetime has the highest first and total order effects and the higher order effects are the highest, as 
there is no compensation from previous periods and their effects on the output. In the saturation phase, 
the lifetime effect is balanced out through previous periods. The sector split ratio gets dominant, 
followed by the sorting fraction so, which are the parameters attaining zero in their ranges. During the 
saturation phase, they tend to a constant combined effect on the output, while the other parameters are 
negligible. 

A similar relationship as constructed above could apply to emissions into environmental media, which 
can be determined via emission factors and are often very small (close to zero) as well as highly 
uncertain. Thus, higher order effects might also play a role in situations when dynamic MFA is used to 
investigate environmental pollution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Sensitivity indices for a secondary raw material output: Illustration of (a) the input and 
output, (b) the first order, (c) higher order and (d) total order indices.  
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Summary 

Dynamic material flow analysis (MFA) enables forecasts of secondary raw material potentials 
of waste volumes in future periods by assessing past, present, and future stocks and  flows  of  
materials in the anthroposphere. Analyses of waste streams of buildings stocks are uncertain 
with respect to data and model structure. Wood constructions in Viennese buildings serve as 
a case study to compare different modeling approaches for determining end-of-life (EOL) 
wood and corresponding contaminant flows (lead, chlorine, and PAH). A delayed input and a 
leaching stock modeling approach are used to determine wood stocks and flows from 1950 
until 2100. Cross-checking with independent estimates and sensitivity analyses are used to 
evaluate the results’  plausibility. Under the given data situation in the present case study, 
the delay approach is a better choice for historical observations of EOL wood and for 
analyses at a substance level. It has some major drawbacks for future predictions at the 
goods level, though, as the durability of a large number of historical buildings with 
considerably higher wood content is not reflected in the model. The wood content 
parameter differs strongly for the building periods and has therefore the highest influence 
on the results. Based on this knowledge, general recommendations can be derived for 
analyses on waste flows of buildings at a goods and substance level. 

Keywords 

Building stock modeling, end-of-life wood, contaminants, dynamic MFA/SFA, uncertainty 
analysis 
 

  



<heading level 1> Introduction 

Dynamic material flow analysis (MFA) aims to quantify material flows and stocks over time. 
Historic development patterns of material stocks and flows are often used to create 
scenarios to estimate potentials of resources for the years and decades to come (Müller 
2006). Using anthropogenic resources as secondary raw materials reduces the extraction of 
primary raw materials, which makes recycling a key strategy in promoting resource efficient 
economies (European Commission 2011). Apart from substituting primary raw materials, 
recycling is often beneficial also from an environmental perspective (Huang et al. 2015). 
Therefore, recycling has gained more and more popularity in the recent decades and there 
are various initiatives pointing out the potential value of secondary raw materials. Major 
waste streams, and thus potential secondary raw materials in urban areas, result from the 
demolition of buildings (Kleemann et al. 2016a). By now, waste generation from C&D 
(=construction & demolition and renovation) activities are major contributors to society’s 
total waste flows and the magnitude of C&D waste is expected to further increase over the 
next few decades (Bergsdal et al. 2007).  However, the longevity of buildings and thus the 
long residence time of their potential resources in stock may lead to an aggregation of 
contaminants in the stock, which may pose quality constraints for future recycling activities 
(Brunner 2010, Pivnenko et al., 2016).    

The dynamics of building stocks, and therefore also the dynamics of aggregations of 
contaminants, are hard to analyze since data is scarce on the input side and is mostly a result 
of estimations, not only with regard to the substance but also with respect to the goods level 
(Kohler and Hassler, 2002). Thus, uncertainties arise not only at the goods level and at the 
substance level, but are also associated with the driving input parameters, such as the inflow 
to the use phase and the duration in use. Beside the uncertainty caused by the diversity of 
residential structures and building types as well as their material contents, lifetimes of 
buildings vary strongly and are therefore hard to determine. Furthermore, there are only a 
few material flow studies on stock dynamics on the goods together with the substance level 
by now. Studies on comparing structures of stock models at the substance level have been 
published by van der Voet et al. (2002) and Kleijn et al. (2000). Both studies compare a delay 
approach based on lifetime considerations of the input to a leaching approach based on a 
leaching share of the stock. While van der Voet et al. (2002) present analytical conditions 
under which the calculations of the leaching approach will produce acceptable solutions for 
dynamic models, which should typically be solved using the delay approach, Kleijn et al. 
(2000) show preliminary versions of the approaches using signal processing for the 
estimation of emissions.  In the present article, we build on these two archetypal modeling 
approaches and extend them to more accurate models for EOL wood flows associated with 
buildings in Vienna. 

In the delay approach, EOL wood flows and contaminants contained therein (lead, chlorine, 
and polycyclic aromatic hydrocarbons (PAH)) are determined based on past wood inputs and 
product lifetimes (i.e. residence time of wood constructions in use). In the leaching 
approach, bottom-up estimates of the wood stock in buildings at different times are 
combined with estimates of demolition and renovation rates to calculate the output of wood 
and contaminants from the use phase.  These two modeling approaches are compared in the 
present study using the case of wood stocks and end-of-life wood flows of Viennese 
buildings. The goal is to investigate the data requirements of each approach and the effects 



of inherent modeling assumptions on the resulting stocks and flows of wood and the 
contaminants contained therein (Pb, Cl, PAH).   

The article is organized as follows: In Section 2, a categorized literature review of dynamic 
MFA studies modeling construction and demolition waste of buildings is presented. In 
section 3, the case study, which is analysed from both a historical perspective and a 
projected demand scenario, is presented at the goods and substance level. The section 
contains the uncertainty assessment of the underlying data, the treatment of uncertainty, 
the description of the modeling approaches, the investigation of the cross-checking of the 
results and, finally, sensitivity analysis with regard to its critical factors. The calculation 
results are presented and explained in section 4. Section 5 contains a discussion of the 
results and highlights major findings regarding the explanatory power of each approach and 
the recommendations which can be derived from the comparison of the approaches. 
Conclusions are presented in section 6. 

<heading level 1> Building waste in dynamic MFA 

Various dynamic MFA studies on C&D waste of the building sector have been published in 
the past decade. Dynamic MFA studies are differentiated between top-down studies (mass 
balance-driven, derivation of stock out of time series) and bottom-up studies (consist of 
summing up the amount of material contained in all relevant products in the various sectors, 
see Laner & Rechberger, 2016). The modeling approaches used in bottom-up studies are 
based on accounting. The methods used in top-down studies are further differentiated in 
input-driven (driven by the input in the stock) and stock-driven (driven by service units 
provided by the in-use stock) approaches (cf. Müller et al. 2014). Furthermore, the modeling 
approach can either be a delay approach (based on lifetime functions) or a leaching 
approach (based on fractions of the presented stock, see van der Voet et al. 2010). 
A bottom-up study was presented by Lichtensteiger and Baccini in 2008 by combining 
architectural know-how and geoscience approaches to explore stocks of buildings and 
material contents. In 2015, Tanikawa et al. published a bottom-up study by mapping the 
building material stock of Japan in great detail, including the incorporation of the know-how 
of previous studies. In contrast to the study by Tanikawa et al., we use the term “top-down”  
related to the method of determining the stock, which designates the distinction of sectors in the 
stock and is characterized by splitting the total input into different sector inputs. 

Most top-down studies  which focus on the building sector rather than on specific goods 
(where the building sector is included) are driven by stocks and calibrated with existing data 
since continuous time series data are hardly available and hard to estimate. Consequently, 
an input-driven approach is highly uncertain. A model on the analysis of waste wood streams 
from buildings was published by Müller et al. (2004) focusing on timber management in 
general. In the paper of Müller et al. (2006), the focus was on the dynamics of the building 
stock of the Netherlands. In that paper, they analyzed and calibrated the stock with regard 
to the major drivers, such as population, lifestyle (floor area per person) and material 
intensity. The aim was to give a future prognosis by observing scenarios. Bergsdal et al. 
(2007), Sartori et al. (2008), Brattebo et al. (2009), and Sandberg et al. (2014) adapted this 
model to analyze  the  behavior  of  Norway’s  dwelling  stock (cf. also Augiseau et al. 2016). 
Based on the same idea, Pauliuk et al. (2013) proposed a model with an optimization routine 
to identify buildings with the highest saving potentials. Also Hu et al. (2010a) adapted this 
generic model to analyze the building stock of Beijing. In Hu et al. 2010b, the model was 



used for China and extended to incorporate reflection on urban and rural relationships. Also 
Huang et al. (2012) modelled the dynamic building stock of China based on this generic 
model. Miatto et al. (2017) presented a comparison of lifespan assumptions for different 
input-driven top-down case studies. 

The studies mentioned used a delay approach by considering the specific lifetimes of 
dwellings. Schneider and Rubli (2007) adapted a leaching approach to a dynamic MFA study 
on the building stock of Zürich. Together with a detailed MFA, scenario analysis of changes 
of the building stock and input and output flows over time are presented depending on 
exogenous factors. Gallardo et al. (2014) used the leaching approach presented by Kleijn et 
al. (2000) to implement a dynamic model of the building stock of Chile to observe the 
vulnerability of the building stock to earthquakes. A categorization of all those studies with 
regard to the main modeling assumptions can be found in Table 1.  

Table 1: Literature on dynamic MFA studies of C&D waste 

Authors City/State, 
time span 

Method Modeling 
approach 

Focus 

Müller et al. 
(2004) 

Swiss lowland 
region,  
1900-2100 

Top-down, 
stock-driven 

Delay Analysis of wood and energy flows of the 
timber management, including building 
waste wood; calibrated until 1997 and 
continued using scenarios 

Müller et al. 
(2006) 

The 
Netherlands, 
1900-2100 

Top-down, 
stock-driven 

Delay Analysis of stock dynamic behavior of C&D 
waste based on scenarios 

Bergsdal et al. 
(2007) 

Norway,  
1900-2100 

top-down, 
stock-driven 

Delay Analysis of stock dynamic behavior of the 
environmental metabolism, including 
scenario analysis based on the generic 
model by Müller et al. 2006 

Sartori et al. 
(2008) 

Norway, 1900-
2100 
 

top-down, 
stock-driven 

Delay Analysis of renovation activities for energy 
savings based on the model by Müller et 
al. 2006; scenarios and comparisons to 
test input uncertainties 

Brattebo et al. 
(2009) 

Norway, 1900-
2100 

top-down, 
stock-driven 

Delay Generic model based on Müller et al., 
2006, is used for quantification of the 
material and energy metabolism and its 
corresponding economic and 
environmental suitability for analyzing 
building and road bridge stocks 

Sandberg et al. 
(2014) 

Norway, 1900-
2050 

top-down, 
stock-driven 

Delay Model, based on Müller et al. 2006, is 
used to give insights into what segments 
of the dwelling stock that are expected to 
be exposed to renovation in the future. 

Pauliuk et al. 
(2013) 

Norway, 2010-
2060 

Top-down, 
stock-driven 

Delay Novel dynamic stock model with 
optimization routine to identify and 
prioritize buildings with the highest saving 
potentials 

Hu et al. 
(2010a) 

Bejing (China), 
1900-2100 

Top-down, 
stock-driven 

Delay Recommendations on C&D waste 
management based on scenarios of the 
generic model by Müller et al. 2006 

Hu et al. 
(2010b) 

China,  
1900-2100 

Top-down, 
stock- driven 

Delay Analysis of the stock dynamic behavior 
and scenario analysis based on the generic 
model by Müller et al. 2006, extended 
with reflections on urban and rural 
relationships 



Huang et al. 
(2012) 

China, 
 1950-2050 

Top-down, 
stock-driven 

Delay Estimations of the long-term material 
demand and environmental impacts 

Miatto et al. 
(2017) 

Japan, US, UK,  
1950-2000 

Top-down,  
input-driven 

Delay Investigation into lifetime distributions 
and uncertainties about stock 
accumulations, comparisons for three 
cities 

Gallardo et al. 
(2014) 

Chile,  
1950-2100 

Top-down, 
stock-driven 

Leaching Dynamic modeling of the building stock 
using a quantitative assessment method 
to observe the vulnerability of the building 
stock to earthquakes 

Tanikawa et al. 
(2015) 

Japan,  
1945-2010 

Bottom-up  Approach 
based on 
accounting 

Review of the state of art of material stock 
research and presentation of a project on 
mapping construction material stocks 

Lichtensteiger 
& Baccini 
(2008) 

Switzerland, 
1900-2000 

Bottom-up Approach 
based on 
accounting 

MFA in combination with architectural 
know how and approaches inspired by 
geosciences are used to explore urban 
stocks in buildings, the combination of 
material contents, and scenario analyses 
to explore future trends 

Schneider & 
Rubli (2007) 

Zürich 
(Switzerland), 
1995-2050 

Top-down, 
stock-driven 

Leaching MFA and scenario analysis of changes in 
the building stock and in input and output 
flows over time depending on exogenous 
factors 

 

<heading level 1> Material and Methods 

<heading level 2> Case study on EOL wood flows from buildings in Vienna at the material and 
substance level 

The proposed case study for the dynamic MFA material flow model examines the wood 
stock in Viennese buildings together with its demolition activities that has been investigated 
in a GIS-based analysis by Kleemann et al. (2016b). The variables of interest are, on the one 
hand, the amount of EOL wood flows resulting from the demolition and renovation of 
buildings, including beams in wood (roofs, ceilings) and wood extension products (windows, 
doors, floors and others). On the other hand, the substance level is considered with regard 
to the quality of wood flows in terms of contaminants and impurities (lead, chlorine, PAH). 
These contaminants are chosen as they have been observed at elevated levels in waste 
wood collected for recycling, i.e. directed towards particle board production (BMLFUW, 
2012). The sources of the contaminants are wood preservatives which were used in the past 
(and are nowadays forbidden), on the one hand, and coatings and adhering particles, on the 
other. As the amount of wood in buildings is strongly correlated to the construction period 
(Kleemann et al. 2016b), the amounts of wood as model input parameters are classified 
according to the construction period of the respective building. Moreover, as all 
contaminants have been used in applications that were forbidden in the course of time, the 
substance flow variables depend on time. The model is used to estimate the amount of EOL 
wood flows, and lead, chlorine and PAH in EOL wood flows from demolition and renovation 
activities in Vienna over time employing all available information on the flows and stocks of 
wood in the building sector.  

<heading level 2> Data and uncertainty analysis 



The following section presents the data used to estimate the flows of EOL wood and of the 
selected substances. A classification of the data with respect to its uncertainty can be found 
in Table 2. The measurement unit of the input data and the results are metric tonnes. 
Uncertainty levels are assigned to the data based on the method suggested by Hedbrant and 
Sörme (2001). In this study, 4 levels of uncertainty are differentiated, whereby level 1 
represents national stastistics or independent research studies, with  level  4 indicating 
rough estimates ((see also Laner et al 2015 (uncertainty concepts) and Dzubur et al. 2016 
(uncertainty characterization)). The data is fed into the model, all variables of which are 
assumed to be normally distributed. Standard deviations for the densitiy functions are 
derived from results obtained from the underlying uncertainty function. Level 1 has a 
standard deviation of 4.5%; for level 2, it is 9.9%, for level 3, 22%, and for level 4 it is 49.1%. 

  



Table 2: Classification of data (Abbreviations:  UL…  uncertainty  level)   

Type of data Amount of data (year/period) Source UL 
1.Building 
stock of 
Vienna 

Year Number of buildings 
1951 72948    
1961 79034    
1971 96209    
1981 134321  
1991 153693  
2001 168167  
2011 164746  

 

National Statistics 
Austria, 2011 

1 

2.Categorizati
on of age 
classes of 
building stock 
of Vienna  

Share of age 
class/year -1918 

1919-
1945 

1946-
1976 

1977-
1997 

1998 
- 

1950-1959 0.79                     0.16 0.05 0.00 0.00 

1960-1969 0.71 0.15 0.14 0.00 0.00 

1970-1979 0.58 0.12 0.27 0.00 0.00 

1980-1989 0.42 0.09 0.30 0.20 0.00 

1990-1999 0.37 0.08 0.26 0.30 0.00 
2000-2009 0.33 0.07 0.24 0.27 0.09 
2010-2020 0.34 0.07 0.24 0.25 0.12 

 

Kleemann et al. 2016b 
(2010-2020) 
Rough Estimates 
(1950-2010) 

4 

3.Wood 
contents for 
age classes 
(tonnes) per 
building for 
each 
construction 
period  

Period Tonnes/ building 
-1918 99.6  
1919-1945 35.1  
1946-1976 24.5  
1977-1996 18.2  
1997- 12.7  

 

Kleemann et al. 2016b 2 

4.Shares of 
wood 
products in 
buildings of 
different time 
periods  

Share  
-1918 

1919-
1945 

1946-
1976 

1977-
1997 

Windows 0.067 0 0.1 0 
Doors 0.04 0 0.17 0.06 
Roofs 0.5 0.695 0.11 0 
Floors 0.013 0.07 0.22 0.92 
Ceilings 0.31 0.007 0 0.02 
Other wood 
products 

0.03 0.043 0.367 0 
 

Kleemann et al. 2016b 3 

5.Lead, 
chlorine and 
PAH values for 
each wood 
product (same 
as above) 

Amount (mg/tonnes 
wood) Lead  Chlorine 

PAH 

Windows 29390100 550000 35800 
Doors 2676700 620000 15300 
Roofs 19100 329800 2000 
Floors 1300 495000 33200 
Ceilings 1600   5121000 300 
Other wood products 389300 622200 2300 

 

Environmental 
Institute of Vorarlberg 
1999; 
BUWAL Switzerland 
2004 

3 

6.Demolition 
rate 

0.3%   
(value for 2013; assumed to be constant over time) 

Kleemann et al. 2016b 
Stäubli et al. 2010 

2 

7.Renovation 
rate 

1.1%   (2009-2012 ; assumed to be constant over time) IIBW 2012 2 

8.Technical 
lifetimes of 
wood 

Product Lifetime (in years) 
Windows 50  

SwissBauCo 2009; 
IIEMB 2006; 
Reis 2012 

2.5 



products in 
buildings  

Doors 50  
Roofs 120  
Floors 50  
Ceilings 60  
Other wood products 40 

 

 

<heading level 2> Treatment of Uncertainty 

In a first step, normal distributions with mean values according to the respective sources and 
standard deviations according to their uncertainty level are assigned to the various input 
data (see Table2).  The building stock is multiplied with the content of wood according to the 
age class of the building and divided into the 6 types of wood categories in a next step. The 
categorization of the building stock needs to be considered for the leaching approach. In 
order to get the shares of the wood of buildings resulting as a product of these variables 
(data type 1.-4. in Table 2),  an approximation of the product of the normally distributed 
probability density functions is used.  As the product of normally distributed functions is not 
normally distributed, we consider a normally distributed approximation where the mean of 
the product of 𝑁(𝜇ଵ, 𝜎ଵ  ଶ),𝑁(𝜇ଶ, 𝜎ଶ  ଶ)  is the product of the means 𝜇ଵ𝜇ଶ of the normally 
distributed variables 𝜇ଵ, 𝜇ଶ and the standard deviation is approximately 
ඥ𝜎ଵଶ𝜎ଶଶ + 𝜇ଵଶ𝜎ଶଶ + 𝜇ଶଶ𝜎ଵଶ    (Ware & Lad, 2003). In the leaching stock approach, mulitplications 
are done with the densitiy functions of the demolition and renovation rate (following a 
cyclical pattern, see next section), for which the densitiy functions are summed up at first. 
Monte Carlo simulation runs are performed on these final shares. Furthermore, lead, 
chlorine and PAH values per wood product category (6. in Table 2) are assumed to be 
normally distributed and Monte Carlo simulation runs are performed on them. In the delay 
model, the technical lifetimes for the building wood products are calculated in an analagous 
manner to that of the Monte Carlo simulation.  

<heading level 2> Modeling Approaches & Assumptions 

It should be emphasized that stylized models of wood stocks and flows associated with 
Viennese buildings are used to investigate the effect of differences in the modeling 
approaches on the outputs rather than to give a highly realistic picture of the Viennese 
situation. For the latter, more elaborate data mining and additional information on key input 
parameters (e.g. specific lifetime functions, analysis of the variation of demolition and 
renovation rates over time for Vienna, etc.) would be required. However, this is outside the 
scope of the present study.  

Because demolitions of buildings are mainly carried out when they are planned to be 
replaced by new buildings, and as both demolitions and renovations of buildings are cost-
intensive, it is assumed that the actual output of EOL wood is externally influenced by the 
business cycle. Thus, the higher the turnover of the building industry, the more there is to be 
demolished and renovated, with the rest remaining in  a  pool  of  “depleted  buildings”  of  the  
stock, which represents a hibernating stock in both models. While the leaching approach 
reflects the current economic situation (provided real-time data is available), meaning that 
the business cycle has a direct influence on the rate of renovations and demolitions in a 



specific year, the delay approach is lifetime-based, meaning that only a very small 
percentage of buildings at the end of their lifetimes is assumed to depend on the business 
cycle (in order to enable extensions of lifetimes). The amplitude of the business cycle and its 
approximate behaviour are based on the investment in construction activities data from the 
Austrian Institute of Economic Research (WIFO Economic Data Service, 2016). All formulas 
used for the modelling approaches and assumptions are presented in SI-1 of the Supporting 
Information (=SI). 

Because PAH and lead coatings were banned in the middle of the 90s (ChemG, 1996; see RIS, 
2016) and chlorine components have been increasingly replaced since then, it is assumed 
that input from demolition wood of wood products from the middle of the 90s (1998-) on is 
free of those contaminants. 

In order to extend the models to predict the future development of building EOL wood flows 
and contaminants from 2020 on, the building stock is assumed to rise by 0.38% annually,  
starting with the initial stock value in 2011. This assumption is based on the prediction of a 
growing Viennese population (Statistik Austria, 2014a) and the average number of buildings 
per 1000 inhabitants (Statistik, Austria, 2014b), assuming a constant per capita floor area (cf. 
also Statistik Austria, 2014b). 

<heading level 3> Leaching stock approach 

The data of the building stock is given for the first year of each decade. Every stock is 
classified into age categories. The demoliton rate and the renovation rate are summed up. 
This sum is assumed to be constant over time. The behaviour  of the business cycle is 
assumed to be cyclical with a period of 20 years. The output O (in tonnes of wood) is then 
calculated as a leaching part of the stock for each year t, thus,  

𝑂(𝑡) = 𝑓(𝑡, 𝑐 + 𝑟) ∗ 𝑆(𝑡),        Equation (1) 
 

whereby f is the sine function of the business cycle which depends on the mean value c+r of 
the stock, c is the demolition and r the renovation rate, and S the stock of building wood (for 
more detailed information see also SI-1 a),c)).  

<heading level 3> Delayed input approach 

This model builds on the knowledge of newly built buildings within each decade since 1950. 
There is no data provided for this input. The change in stock is the net growth of the number 
of buildings in Vienna. The input is the sum of the net growth and the overall output of each 
building period, which is determined by means of the age categories of the stock in each 
period (the difference of buildings in stock of each age category between two decades, see 
SI -1 b)). Due to a lack of higher temporal resolution, the changes are split equally over each 
period of 10 years. The evolution of the initial stock (built up before 1950) is estimated with 
the aid of the classification of age categories of the stock. This initial stock is split into 
buildings from the past up to 1918 and buildings from 1919-1945. The amount of wood in 
the stock is determined based on the wood content of each product category in each 
construction period. The products within a period are assigned the associated technical 
lifetimes. The output Oi of waste wood of each product category i (i=1,..,6) is calculated as a 



delayed share of input in each year t, which depends partly on the business cycle (with a 
share of (1-p)). As  the  major  part  of  Vienna’s  building  stock  is  inhabited  or  in  use, there is a 
high turnover of constructions and renovations and therefore, a need for replacement at the 
end of the technical lifetimes. Thus, the variable p, which represents the share which is not 
influenced by the buisness cycle, is assumed to be 99%. The output of a construction product 
category is  

𝑂௜(𝑡) = 𝑝𝐼௜(𝑡 − 𝐿௜) + 𝑓(𝑡, 1 − 𝑝)𝐼௜(𝑡 − 𝐿௜),     Equation (2) 

whereby f is the same sine function as in the leaching approach with a mean value of 1-
p=1%, Ii is the amount of wood of product i going into the stock, and Li is the product lifetime 
following a Weibull distribution (with a normally distributed mean value). The overall output 
is  

𝑂(𝑡) = ∑ 𝑂௜(𝑡)଺
௜ୀଵ         Equation (3) 

for each year (see also SI-1 b),c)). 

The comparison of the approaches is not only done on output flows but also on the stocks in 
order to analyze the differences in amounts and therefore, the differences within the 
approaches in full. The substance level is calculated by mulitplying the wood products with 
the respective substance concentrations in both approaches (cf. SI-1). 

<heading level 2> Cross-checking of model results 

The results of the modeling approaches are cross-checked with independent estimates in 
order to get an impression on how well the model outputs fit the data values. The amount of 
waste wood is estimated to be 64,650 tonnes in 2013, which is the per-capita share for 
Vienna (UN data, 2013) of the total amount of demolition wood in Austria (BMLFUW, 2013). 
The uncertainty level of this cross-checking value is 2, thus, the standard deviation is 9.9%. 
On the substance level, representative contents of lead, chlorine and PAH are derived from a 
study on waste wood flows in Switzerland (Buwal,2004). These estimates are quite uncertain 
as the samples taken vary strongly for each wood product category. The substance 
concentrations, given by mean and standard deviation, are then multiplied with the amount 
of waste wood in Vienna to determine the substance flows in the year 2013. This results in 
an estimated amount of PAH in Viennese waste wood of 1.1 tonnes per year with a standard 
deviation of approximately 20% of the mean value (numerical approximation, see Treatment 
of Uncertainty). The amount for lead is 31.6 tonnes/yr, varying with a standard deviation of 
205% (with the minimal value of 0) and the amount of chlorine is 49.9 tonnes/yr with a 
standard deviation of 204.5% of the mean (again, restricted to positive values). 

<heading level 2> Sensitivity Analysis of model parameters 

Sensitivity analysis is used for the identification of critical parameters, whose variation has 
the largest effect on the variation of the model results. This increases the understanding of 
the relationships between input and output variables of a model. The model outputs are 
analyzed for a) the impact of specific parameter perturbation (local sensitivity analysis) and 
b) the overall distribution of the uncertainty of the output (global sensitivity analysis, cf. 
Dzubur et al. 2016). 



<heading level 3> Local sensitivity analysis of the input parameters 

While demolition and renovation rates are critical parameters in the leaching approach, the 
lifetimes are the respective counterparts in the delay approach. Both are tested for minor 
and major perturbations. 

As the share of initial stock up to 1918 has the far highest wood content and therefore plays 
a major role in both modeling approaches, and as its actual magnitude is highly uncertain, 
scenarios are tested for the reallocation of amounts of this building stock to later building 
periods. The results are analyzed for the EOL wood flows. 

The effects of shares of specific building periods are tested for their influence on the EOL 
substance flows of PAH in order to find out which period influences recent outputs (with a 
focus on 2010) the most. 

<heading level 3> Global sensitivity analysis of the overall systems of EOL wood and  contaminants 

In a first step, all parameters are tested for their first order effects (effects without 
interactions with other parameters) on the model output (EOL wood flows, substance flows) 
using the EASI algorithm (cf. Plischke et al. 2010). In a next step, the output flows (at the 
goods level) are also analyzed for bundled groups of parameters as input parameters, the 
shares of wood categories, which enter the stock in each year. Detailed information can be 
found in SI-3 in the SI.  

<heading level 1> Results 
<heading level 2> Comparison of EOL wood flows and stocks 

 

Fig 1: Flows of EOL wood from demolition and renovation activities for leaching and delay approach 
(mean values indicated by black lines, range of ± one standard deviation indicated by grey shaded 
area) and cross-checked with data from 2013 (black dot) and its standard deviation in the whiskers. 

In Figure 1, a comparison of EOL wood flows (from demolition and renovation) between the leaching 
and the delay approach is shown. The results are shown as mean values (black lines) together with 
the range of one standard deviation (i.e. 68% of the model results are contained in this range).  



The delay model reaches its peak around 2020. This peak is mainly caused by the dominating number 
of roofs up to 1918 but also by the large number of floors from 1977-1997. Compared to these 
amounts of wood, the rest is of secondary importance. Although the number of houses in Vienna is 
rising, the share of wood in houses is remarkably lower from the end of the 20th century on than it 
was in the beginning of that century (see Table 2, 3.). The peaks in the outputs of the delay and 
leaching approach are shifted. The reason is the large number of roofs  up to 1918, leaving the stock 
about 120 years later in the delay approach. In contrast to that, the output in the leaching approach 
is rather driven by the size of the historical building stock. Although the number of buildings is rising 
in the future prognosis, the amount of EOL wood is slightly shrinking in total as the number of 
buildings with high wood-concentrations is shrinking in the stock.  

While the influence of the business cycle can slightly be seen in the fluctuations of the leaching 
approach in the future prognosis, these fluctuations are not observable in the delay model. The 
reason for the minor importance of the business cycle in the delay approach is that only 1% of 
buildings at the end-of-life are affected by the business cycle, whereas the remaining 99% generate 
output as defined by the lifetime functions.  

From Figure 1 it is apparent that the cross-checking value for waste wood lies between both model 
approaches but only the range of the flow of the delay approach is within the standard deviation. 
Whereas the mean of the EOL output of the delay approach is relatively close, the EOL wood flows of 
the leaching approach are far above this value. 

 

Figure 2: Comparison of wood in stock (only mean values shown) for the leaching approach, delay 
approach and a scenario with changes in the initial stock of the delay approach 

A comparison of the stock size of building wood is given in Figure 2 (for the mean values of the 
results). It can be seen that in the leaching approach, not only are the ouput flows far higher than in 
the delay approach (cf. Figure 1), but the stock size is also more than 1,000,000 tonnes higher at the 
beginning of the modeling period and more than double the amount at the end. A major reason is 
that the technical lifetimes may be too short with regard to the initial stock (up to 1918, 1919-46). 
Very old wood components tend to be of better quality as they are made of solid wood in general, in 
contrast to present wood components, which mostly contain wood composites.Therefore, a scenario 
with doubled lifetimes for the initial stock is tested for the delay approach.  It can be seen that this 
scenario leads to a larger stock size (for about 500,000 tonnes) than the leaching approach at the 



beginning period of observation, but also falls below the leaching approach thoughout the modeling 
period as the lifetimes of the subsequent buildings in stock are shorter than those of the initial stock.   

<heading level 2> Comparison of substance flows 

The contaminants lead,  chlorine  and  PAH  don’t  appear, or respectively, are replaced in wood 
products after 1996. Thus, the last input of substances is given in the 90s decade in the delay 
approach, and the last share of age class with contaminant input considered in the leaching 
approach is 1977-1997. In Figure 3, the comparison of lead in EOL wood flows (means and ranges) is 
shown for the two approaches. The comparison of chlorine is shown in Figure 4 and the comparison 
of PAH in Figure 5. All substance flows show a similar behavior to the flow at the goods level in the 
leaching approach. This is due to the fact that the shares of the products over a period are 
aggregated. Each output flow consists of a part of each period of input so that the flow of lead is 
balanced and not concentrated for a specific year or product, and thus it depends mostly on the 
input of goods. As there is no input on the substance level after 1996, the flows decrease faster than 
the EOL wood flows. However, non-negligible values can still be found even after one century in the 
leaching approach. The substance flows in the delay approach show slightly shifted peaks compared 
to the EOL wood flows. Furthermore, the substance flows decrease drastically after 2020 and are 
negligible from 2050 on according to this approach.  

The highest amount of lead and chlorine can be found in wood from the period up to 1918(lead from 
windows and chlorine from ceilings), leading to high amounts at the beginning of the flow 
observations for both approaches. The share of this period shrinks slightly in the leaching approach 
for both substance flows.  There is almost no PAH in buildings up to 1918, which is reflected in the 
results of both approaches. 

 

Fig 3: Lead flows in EOL wood (mean values and standard deviation ranges) and data cross-check for 
lead in waste wood, including standard deviation (in the whiskers) 

The lead flow reaches another slight peak in the delay approach resulting again from the high 
concentration of lead and the high share of windows input in the period 1946-1976 (see Figure 3). 
Windows have the highest amount of lead since lead was used for plastic coatings and color 
pigments. The comparison with the cross-checking data value shows that the mean values of both 
models substantially overestimate the mean value (factor 2.5 to 7.5). However, due to the high 



uncertainty of the independent estimate for lead in EOL wood, the range of the lead flow calculated 
by the delay model (including 68% of the results) lies within the  standard  deviation’s range. 

 

Fig 4: Chlorine flows in EOL wood (means and ranges) and data cross-check for lead in waste wood 
(black dot), including standard deviation (designated by the whiskers) 

Ceilings and roofs from 1919-1945 have a slight impact on the chlorine flows observable in the delay 
approach (see Figure 4). Chlorine was used as a hardener component in glue that was used for beams 
in wood. The cross-checking value of the average chlorine amount lies between both models, and is 
close to the result of the delay model. 

 

Fig 5: PAH flows in EOL wood (mean values and standard deviation ranges) and data cross-check for 
lead in waste wood (black dot), including standard deviation (designated by the whiskers) 

The growth of the PAH flow at the end of the 20st century in the leaching approach is caused by the 
rising number of floors from 1919 on reaching their end of life (see Figure 5). PAH from creosote was 
often used to attach parquet, but also as a preservative on windows. In the delay approach, the 
highest PAH flow value is mainly caused by the high number of floors from 1977-1997, and the high 
number of floors and windows from 1945-1977, which are all aggregated in the output flow between 



2020 and 2030. The amounts of PAH in other wood products are negligible. The cross-checking mean 
value for PAH is slightly underestimated by both approaches. However, the ranges of both 
approaches lie within the standard deviation of the cross-checking value. 

<heading level 2> Results of sensitivity analysis 

<heading level 3>Local sensitivity analysis of the input parameters 

Perturbations on the lifetimes in the delay approach and demolition and renovation rates in the 
leaching approach behave linearly with regard to the EOL output flows (see Figure SI-2.1 a) and b) in 
the SI). Thus, in the delay approach, an increase in lifetimes goes hand in hand with an increase in the 
material stock as well as a decrease in output flows (at least as long as the stock is still growing). 
Outputs from the leaching approach change directly proportional to changes in demolition and 
renovation rates.  

The effect of considering fewer buildings from the period up to 1918 and therefore, more from all 
other periods, is tested at the goods level. In both approaches, the reallocation of buildings into 
periods after 1918 leads to a drastic decrease of EOL wood flows (see Figure SI-2.2 a) and b) in the 
SI).  

Historical effects of substance applications on current periods are tested on the example of PAH for 
the year 2010 (see Figure SI-2.3 a) and b) in the SI). It can be seen that PAH aggregations from the 
initial periods (up to 1918 and 1919-1945) have the highest effect on the PAH output flow in the 
leaching approach, followed by the effects from 1977-1997. For the delay approach, the amount of 
PAH from 1977-1997 has the highest effect by far, while the amounts of PAH from the initial stock 
are negligible. This result is more reliable because for the leaching approach, the consideration that 
buildings from the period up to 1918 and 1919-1945 are renovated with PAH-free wood is ignored, 
leading to an overestimation of PAH values from these periods.  

<heading level 3> Global sensitivity analysis  

By testing the EOL wood flows at the goods level using the EASI algorithm, it can be observed that all 
first order effects make up less than 10% for both modeling approaches, meaning that the 
uncertainty of the output is mostly determined by interactions of the parameters. Therefore, the 
uncertainty of the main effects of the bundled shares of wood constructions is analyzed. In a next 
step, the substance level of contaminants from EOL wood is considered. The detailed results and 
further information can be found in SI-3 in the SI. 

In the leaching approach, EOL wood flows are mainly sensitive to the share of roofs followed by 
ceilings in buildings from the period up to 1918. Because the wood content of modern buildings is 
relatively low and mainly constituted by floors, the share of floors becomes the most important 
model parameter during later model periods (after the end of the 20th century). The EOL wood flows 
in the delay approach have similar sensitivities. Ceilings up to 1918 make up the most sensitive 
parameter until 1990, when roofs from the same period become the most important parameter. The 
sensitivity impact of the share of floors on EOL flows rises within the same time period as in the 
leaching approach by the end of the 20th century. 

PAH flows are mainly sensitive to the floor parameters in both approaches from 1980 on as floors are 
not only the main constructions in modern buildings but also have very high concentrations of PAH. 
The small share of windows up to 1918 also has high concentrations of PAH. The PAH flow until 1980 
is sensitive to this share in the leaching approach while this share is already irrelevant in the period 
of observation in the delay approach.  



Chlorine flows are mainly sensitive to the share of ceilings in both approaches as the concentration of 
chlorine in ceilings is tenfold higher than for all other wood constructions and as the share of ceilings 
up to 1918 is high.  

As for the lead flows, the concentration of lead in windows is tenfold higher than for every other 
wood construction, and the share of windows is the most sensitive parameter for the lead flows in 
both approaches.  

<heading level 1> Discussion  
<heading level 2> Analysis of EOL wood flows on goods and substance level 

The largest flow of EOL wood is related to the roofs and ceilings from buildings up to 1918. From a 
future perspective, we see that the amounts of waste wood will decrease although the number of 
buildings is on the rise. This is because of the low share of wood in modern Viennese buildings; 
mostly only floors are made of wood nowadays. This means that the peak in wood amounts which 
can be used as secondary resources is rather in the current  period  and  won’t  play  such  an  important  
role in the future. 

More pronounced downward trends can be observed for the substance flows due to bans and 
replacements from 1996 on. However, although the peaks have already been reached, the amounts 
of contaminants deplete slowly. Consequently, lead, chlorine and PAH are expected to still be 
present in low levels in EOL wood over the next 50 years. 

<heading level 2> Comparison of modeling approaches 

<heading level 3>EOL wood flows 

Leaching approach:  

On the data level, poor information about the categorization of the building stock into different time 
periods causes a lot of uncertainty. However, this is not the main contributor to the big difference to 
the cross-check value. The uncertainty factor of the demolition and renovation rate is low. A major 
drawback of the approach is that the demolition and renovation rate are always taken with regard to 
the whole aggregated stock to calculate the output flows, ignoring the age of the buildings, and 
leading to highly overestimated amounts of waste wood (cf. also results on structure of stock in van 
der Voet et al. 2002). However, this drawback is of little importance for the future estimations of the 
amount of EOL wood under the scenario assumption that buildings in future periods will have the 
same wood content as nowadays.  

Delay approach:  

The input of buildings per period is unknown. It is calculated through the sum of change in stock each 
decade and the difference between buildings of each building period per decade. As already 
mentioned for the leaching approach, the categorization shares in building periods are uncertain 
parameters. Together with the fact that technical lifetimes are not always representative for the 
demolition/renovation of buildings (particularly, for the initial stock of buildings), this approach is 
very uncertain from a fitting of model and data perspective under the given circumstances. Lifetimes 
of buildings up to 1918 are supposedly too short, which has a particularly pronounced effect on the 
wood stock estimates (cf. delay scenario in Figure 2). However, with respect to EOL wood flows, the 
delay approach appears to result in more plausible estimates (cf. cross-check with waste wood in 
2013 in Figure 1). The highest share of waste wood in Vienna originates from buildings up to 1918, 
which will be renovated with the same amounts of wood and which will remain stock. A shortcoming 



of the delay approach is that this is not accounted for, which leads to a potential underestimation of 
future EOL wood flows. 

<heading level 3>Substance flows 

Leaching approach: 

For lead flows, the approach results in drastically higher estimates than the cross-checking values. 
The range of the result for chlorine is within the range of the standard deviation, but only because of 
the large uncertainty of the cross-checking value. Only for PAH flows does the mean value of the 
results lie close to the mean of the cross-checking value.. The problem from the goods level (through 
taking a leaching share of the aggregated stock as an output) is propagated. From a future 
perspective, even more inconsistencies arise at the substance level. As PAH, lead and chlorine were 
forbidden in 1996, buildings from earlier periods will also be free of contaminants after renovations. 
This is ignored by the leaching approach, leading to overestimated amounts of contaminants until 
the end of the modeling period. 

Delay approach: 

The substance flows may be slightly underestimated by the delay approach as the wood containing 
the substances often resides longer in stock than the technical lifetimes (cf. initial lifetimes of EOL 
wood flows). However, the cross-checking with data on substance flows in waste wood shows that 
(at present) the estimated amounts of substances lie within plausible ranges. From a future 
perspective, this approach is reasonable as all amounts of contaminants appearing after 1996 are 
only delayed outputs from previous periods. After renovations, where all wood constructions have 
been replaced, even old buildings will be free of these contaminants.  

<heading level 1> Conclusions 

For historical observations of EOL wood and its influence on current periods, the delay approach is a 
better choice than the leaching approach. Furthermore, the delay approach is also more 
representative at the substance level. For future predictions at the goods level, the delay approach 
should be adapted to consider the persistent share of historical buildings in the stock. These 
recommendations can be transferred to other dynamic analyses of building waste flows at a goods 
and a substance level under similar assumptions, particularly if forbidden contaminants are traced 
back and their influence on future periods is of interest. 

Although the lifetime-driven delay approach is based on a lot of assumptions and the input of 
buildings has to be derived from incomplete data based on building census and assumptions about 
the building stock categorization, the results are more reliable than those of the leaching approach. 
Despite the fact that the use of the available data (data on building stocks, construction and 
demolition rates) to define the input to the leaching approach requires fewer assumptions, this 
modeling approach neglects the importance of diversity of the building stock (cf. van der Voet et al. 
2002). The leaching approach assumes that all buildings in stock have the same likelihood of being 
demolished or renovated since renovations and demolitions are always considered for the 
aggregated stock. However, buildings from 1946-1976 are more likely to be demolished or renovated 
than buildings from 1997 onwards, which contain half of the wood content.  

Overall, the most critical parameters in both approaches are related to the wood contents in 
buildings, which may differ extremely from one period to another. In order to get more realistic 
results using the leaching approach, the model would need to be extended so that the leaching part 
is not taken from the aggregated stock but is instead time-dependent, making such a study very 



resource and data intensive. However, this would be irrelevant in cases of a highly homogenous 
building stock. For studies which analyze EOL flows associated with buildings of very similar material 
intensity, the leaching approach is an adequate and easily applicable method, provided that reliable 
data on renovation and demolition activities (over time) are available.  

The effect of the choice of lifetimes in the delay approach (such as the lifetimes of the historic stock 
in this case study) can also be adapted by modification of external parameters which extend the 
duration in stock by leaving the buildings in a depleted pool. For this case study, an extension 
parameter was introduced to consider the effect of the business cycle on building demolition and 
renovation. However, the consideration was purely didactic owing to a lack of data to derive 
meaningful parameter value estimates for the share which depends on this parameter in the delay 
approach.  Therefore, future studies should consider such effects based on historic data and 
economic models. 
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SI-1: Formulas for Modelling Approaches and Assumptions 

The following section contains calculation steps which are done in the modelling approaches in a 
formalized way. While section a) and b) contain only the assumptions made in the respective 
approach, c) contains the assumptions which are valid for both approaches. 

a) Leaching stock approach: 

O(t) = f(t, c + r)S(t)……………………..………………….…...…Total EOL wood flow output per year t (1) 

Oୱ୳ୠ(t) =  f(t, c + r)Sୱ୳ୠ(t)………………………..…….….....Total Substance flow output per year t (2) 

S(t) = bs(t)σ σ a(t, j)cont(j)cat(j, i)
଺
୧ୀଵ

ହ
୨ୀଵ ………………….….….….……EOL wood stock per year t (3) 

Sୱ୳ୠ(t) =  bs(t)σ σ a(t, j)cont(j)cat(j, i)
଺
୧ୀଵ

ହ
୨ୀଵ sub(i, t).................Substance stock per year t (4) 

c, r א [0,1]………………………………………………………….....…..….......demolition rate, renovation rate (5) 

b) Delayed input approach:     

O(t) = σ O୧(t)
଺
୧ୀଵ ……………………………….……….…..........….Total EOL wood flow output per year t (6) 

Oୱ୳ୠ(t) = σ O୧ୱ୳ୠ(t)
଺
୧ୀଵ ………………………….………….……...Total Substance flow output per year t (7) 

O୧(t) = pI୧(tെ L୧) + f(t, 1 െ p)I୧(t െ L୧)………....Output flow of each product category i=1,.,6 (8) 

O୧ୱ୳ୠ(t) = pI୧౩౫ౘ(t െ L୧) + f(t, 1 െ p)I୧ୱ୳ୠ(tെ L୧)…….Substance flow output of each product (9) 

I୧(t) = bi(t)σ ɖ୑୨(t)cont(j)cat(j, i)
଺
୨ୀଵ ………………….….....Input flow of each product category (10) 

I୧౩౫ౘ(t) = bi(t)σ ɖ୑୨(t)cont(j)cat(j, i)sub(i, t)
଺
୨ୀଵ ….….Substance input flow of each product (11) 

bi(t) = ɁS(t) + bo(t)………………………………………………......Input of buildings in stock per year t (12) 

ɁS(t) = S(t െ 1) െ S(t)…………………………….…..................…..Change in building stock per year (13) 

bo(t) = σ [a(t, j)bs(t) െ a(t + 1, j)bs(t + 1)]௝|௧בெೕ ……….….Output of building stock per year (14) 

߯ெ௝(ݐ) = ൜1, ݐ א ௝ܯ
0, ݐ ב  ௝..Characteristic function of the set Mj identifying the building period of t (15)ܯ

M୨ = {t פ t is in the time period j}………...Set of years t which belong to time period j,  j=1..,5 (16) 

L୧ א N………………………………………………… ………………….Lifetimes of product categories i, i=1,..,6 (17) 

p א [0,1]…………………………….….share of buildings which do not depend on the business cycle (18) 

c) Assumptions made in both approaches: 

f(t, d) = 0.0005sin(
஠
ଵ଴ t) + d, f: N × R ՜ R……...Business cycle function per affected share d (19) 

bs: N ՜ R..….. …………………………………………………..…………………..……... Building stock per year t (20) 

a: N × N ՜ [0,1]………………….……  …Categorization of age classes j of building stock per year t (21) 

cont: N ՜ R……………………………………… .…Wood contents for age classes per building j, j=1,..,5 (22) 

cat: N × N ՜ [0,1]............. ..Shares of wood products i in buildings of different time periods j (23) 

 sub: N × N ՜ R……….……….…....….substance value per product category i per year t, i=1,..,6  (23) 
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SI-2: Local sensitivity analysis of EOL wood and substance flows 

The sensitivity of the model outputs is tested by changing specific parameters one-at-a-time.  The 
models were tested for the critical parameters renovation and demolition rate in the leaching 
approach and lifetimes in the delay approach. The results are given in 2.1. Furthermore, the EOL 
wood flows were tested for the crititcal categorization of wood stock parameters and the substance 
flows for the age of buildings which influence the output flows in current periods. The results are 
given in 2.2. and 2.3. 

SI-2.1: Testing of renovation & demolition rate /lifetimes on EOL wood flows 

Both, lifetimes and renovation plus demolition rate, show a linear behaviour with regard to the EOL 
wood output flows. Thus, changing the parameters changes the output flows in a linear way. Outputs 
from the leaching approach change directly proportional to changes in demolition and renovation 
rates, while outputs in the delay approach change indirectly proportional. An increase in lifetimes 
increases the material stock and decreases the output flows. The results of doubling the renovation 
and demolition rate and doubling the lifetimes are given in Figure SI-2.1.As it can be seen, doubling 
the renovation and demolition rate doubles the amount of output, while doubling the lifetimes 
halves the amount of output. 

 

Figure SI-2.1: EOL wood flows for doubled renovation and demolition rate for the leaching approach 
(a), and doubled lifetimes for the delay approach (b). 

 

SI-2.2: Testing of reallocation of wood stock on EOL wood flows 

As the share of buildings –1918 is the highest in the Viennese building stock in for each period and as 
the wood amount per building is far higher than for each other period (see data in the manuscript), it 
is tested for sensitivity for the historical output until 2010. For the leaching approach, the share of 
stock of –1918 is decreased for 20% and this 20% are reallocated equally to all other periods in stock. 
For the delay approach, the initial share of 70 000 buildings containing 83% of buildings –1918 and 
17% of 1919-1946, is redistributed to 50% each. The results are given in Figure SI-2.2. As it can be 
seen, this causes significant differences for both approaches. 
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Figure SI-2.2: EOL wood flows for reallocated amounts of building stock for the leaching approach (a) 
and the delay approach (b). 

 

SI-2.3: Testing of sensitivity of age of buildings on PAH flows 

Here, the PAH output flows are tested for sensitivity with regard to input shares of the age periods 
(initial stock of -1918 and 1919-1945,1946-1976 and 1977-97) of the building stock. Each scenario 
leaves out one of the input shares. The results are given in Figure SI-2.3. It can be seen that in 2010, 
the most important contribution to the PAH output flows is given by the initial share of stock in the 
leaching approach and by the 1977-97 stock in the delay approach. 

 

Figure SI-2.3: Share of building scenarios on the PAH output in the leaching approach (a) and the 
delay approach (b). 
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SI-3: Global sensitivity analysis of EOL wood and substance flows 

The uncertainty of the model output is tested for its proportions of uncertain inputs. The analysis is 
done by using the EASI algorithm to find the sensitivity indices of first order (=without interactions 
with other parameters). 

SI-3.1: Testing shares of wood inputs per building period on EOL wood flows 

The sum of first order indices for the EOL wood output flow is less than 10% in both approaches, 
meaning that both models depend only on correlation effects of the parameters. Therefore, 
parameters were bundled to independent shares of input for each decade and the shares were 
tested for their first order indices.  

In the leaching approach (see Table SI-3.1 a), the category of roofs has the main impact with in each 
year (slightly shrinking from almost 1960 on).The impact of ceilings varies around 20%. From the year 
1990 on, the effect of floors is rising because the wood content of modern buildings is mainly given 
through floors. Some analogies can be observed for the observation of shares in the delay approach 
(see Table SI-3.1 b). Ceilings from -1918 (with technical lifetimes of 60 years) have the highest effect 
until 1990. From 1990 on, roofs -1918 (with technical lifetimes of 120 years) are dominant.  Floors 
have an rising effect from 1980 on and they share is dominant in 2020.  

 

a) Leaching 1950 1960 1970 1980 1990 2000 2010 2020 

Windows 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 

Roofs 0.73 0.78 0.73 0.67 0.62 0.61 0.60 0.60 

Doors 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 

Floors 0.01 0.01 0.01 0.08 0.14 0.17 0.18 0.18 

Other wood products 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 

Ceilings 0.23 0.20 0.22 0.20 0.19 0.18 0.19 0.19 

         b) Delay 1950 1960 1970 1980 1990 2000 2010 2020 

Windows 0.10 0.08 0.07 0.05 0.05 0.05 0.07 0.09 

Roofs 0.10 0.11 0.18 0.27 0.36 0.39 0.38 0.33 

Doors 0.08 0.06 0.06 0.05 0.05 0.05 0.06 0.07 

Floors 0.11 0.12 0.18 0.23 0.32 0.33 0.35 0.37 

Other wood products 0.09 0.06 0.06 0.05 0.05 0.05 0.06 0.07 

Ceilings 0.50 0.58 0.63 0.48 0.25 0.10 0.08 0.09 

 

Table SI-3.1: Shares of first order indices for each decade for the leaching (a) and delay approach (b). 
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SI-3.2: Testing the input parameters on PAH, chlorine and lead flows 

In a next step, parameters were tested for their first order indices of the output flows on a substance 
level. In these cases, there are high first order effects of the substance parameters. As the amounts 
of contaminants per product category are the only parameters with first order effects, all other 
parameters are ignored in the Figures in SI-3.2.  It can be seen that for PAH flows, windows dominate 
the leaching approach until 1980, after that, floors have the highest first order indices. For the delay 
approach, we see that PAH amounts in floors have always the highest first order indices while the 
others are negligible. For the chlorine flows, chlorine amounts in ceilings have the only first order 
effects in the leaching approach, while in the delay approach, the amounts in ceilings are rather 
minor but the only effects of relevance until 2000. After 2000, chlorine in floors has the highest first 
order indices in the delay approach. Considering the lead amounts, we see that the only first order 
effects are given by floors in both approaches.  

 

Figure SI 3.2. First order indices for PAH output flows in the leaching (a) and delay (b) approach, for 
chlorine flows (leaching ( c) and delay (d)), and for lead flows ( leaching (e) and delay (f)). 
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