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Abstract

Of all the theories related to the mechanical excitation of cellular activities, the alleged
effect of the fluid flow occurring in the lacunar-canalicular pore network on osteocytes is
probably the most widely accepted. However, direct experimental verification of the ac-
tual occurrence of fluid flow (in response to macroscopically applied mechanical loading
of physiologically reasonable magnitude) in these pores has never been obtained.

In this work, a multiscale modeling strategy is presented, inspired by the well-established
concept of continuum micromechanics, allowing for upscaling (or homogenization) of
the fluid flow contributions in the canalicular, lacunar, and vascular pores in terms of a
corresponding macroscopic permeability of bone tissue. The same model also allows for
proceeding the opposite way, namely for downscaling macroscopically acting pressure
gradients to the pore levels. Thus, physiologically relevant, macroscopic pressure gradi-
ents can be related straightforwardly to the correspondingly arising canalicular pressure
gradients, and, through considering the resulting pressure gradients in suitable transport
laws (as for instance the classical Poiseuille law on the canalicular level), also to related
fluid velocities.

When comparing the such computed fluid velocities (for cortical bone) with the fluid ve-
locities that were shown to efficiently excite bone cells in vitro, it turns out that the fluid
velocities according to the here presented computations are actually much lower. This
implies that, based on the multiscale model, pressure-driven fluid flow in the canalicular
pores is not likely to be a potent mechanical stimulus for osteocytes (whereas fluid flow
in the vascular pores may indeed reach the required fluid velocities and hence excite the
therein residing cells). In conclusion, the work presented in this thesis provides important,
unprecedented insights as to the observation scale-specific cellular mechanosensation in
bone.
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Kurzfassung

Unter all den Theorien, die die mechanische Zellstimulation betreffen, ist der vermeintli-
che Effekt der Flüssigkeitsströmung im Porennetzwerk aus Lakunen und Canaliculi hin-
sichtlich der Anregung von Osteozyten der in Wissenschaftskreisen oftmals anerkann-
teste. Es war bisher allerdings nicht möglich, diese Strömungen in vivo zu messen und
derart die zugrundeliegenden Hypothese zu bestätigen.

In dieser Diplomarbeit wird eine Modellierungsmethode vorgestellt, die dem Multiskalen-
Paradigma folgt und auf den Prinzipien der Kontinuumsmikromechanik aufgebaut ist.
Dieses Modell erlaubt einerseits die Berechnung (bzw. die Homogenisierung) der entspre-
chenden makroskopischen Permeabiliät von Knochengewebe, ausgehend von den Bei-
trägen (die Flüssigkeitsströmung betreffend) der canaliculären, lakunaren und vaskulären
Porenräume. Andererseits ermöglicht das Model auch eine umgekehrte Vorgehensweise,
d.h. das “Runterskalieren” (oder “Downscaling”), bei dem die Druckgradienten in den Po-
renräumen berechnet werden, ausgehend von den makroskopisch aufgebrachte Druckgra-
dienten. In weiterer Folge können durch die Berücksichtigung der so ermittelten lokalen
Druckgradienten in geeigneten Transportgesetzen (wie z.B. im Flussgesetz nach Poiseuil-
le) die Geschwindigkeiten von Flüssigkeitsströmen in den canaliculären Poren berechnet
werden.

Der Vergleich zwischen den so berechneten Flussgeschwindigkeiten (für kortikalen Kno-
chen) und den Geschwindigkeiten, die Knochenzellen in vitro stimulieren, zeigt, dass
die hier gefundenen Geschwindigkeiten viel zu niedrig sind um Zellen ausreichend zu
stimulieren. Daraus folgt, dass, laut dem hier vorgestellten Modell, die Stimulation von
Osteozyten durch Flüssigkeitsströmung vermutlich kein effektiver Mechanismus in der
Mechanobiologie von Knochengewebe ist (wohingegen die Zellen, welche sich im vas-
kulären Porenraum befinden, sehr wohl ausreichend schnellen Flüssigkeitsströmen aus-
gesetzt sind). Folglich liefert die hier präsentierte Arbeit einen entscheidenden Beitrag
zur Beleuchtung der zellulären Mechnostimulation auf unterschiedlichen Größenskalen
in Knochen.
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1. Background and motivation

1.1. Bone growth, metabolism, and adaptation

Bones are composed of a constantly evolving tissue, undergoing continuous renewal, or
even geometrical change. The underlying processes occur at specific sites selectively, the
most important of which are growth, metabolism, and adaptation:

• Bone growth is the process leading to lengthening and widening of bones, predom-
inantly during adolescence. Lengthening is achieved by ossification of hyaline car-
tilage at the epiphyseal plate, while increase of diameter is caused by appositional
growth; notably, the latter mechanism can continue after the lengthening is already
completed (Kronenberg, 2003). The thickening of a bone organ entails a reduc-
tion of tissue adjacent to the medullary cavity, combined with a material increase
beneath the periosteum (Parfitt et al., 2000).

• Bone remodeling, comprising the removal (or resorption) of bone tissue and the
subsequent deposition of new tissue (often referred to as bone formation) to “re-
fill” the cavities resulting from resorption, allows for the compositional optimiza-
tion in response to the prescribed mechanical loading (in terms of microstructural
adaptations), calcium homeostasis, and the repair of microscopically sized cracks
that are caused by local overloading (Clarke, 2008; Bilezikian et al., 2002). The
well-coordinated sequence of resorption and formation is organized in form of so-
called basic multicellular units (BMUs), as was first suggested by Frost and Thomas
(1963). In healthy bone, the net balance between resorption and formation is in
equilibrium for each BMU, but can be positive or negative in case of metabolic dis-
eases, such as osteoporosis (Raisz, 2005), osteomalacia (Frame and Parfitt, 1978),
or hyperparathyroidism (Fraser, 2009). Also atypical mechanical loading condi-
tions are known to steer bone remodeling towards bone gain or loss. For example,
during prolonged phases of disuse loading, as it may occur due to bedrest or mi-
crogravity conditions during spaceflight (Mack and Lachance, 1967; LeBlanc et al.,
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2007), resorption is increased and formation remains unchanged or decreases lead-
ing to a loss of bone mass (Robling et al., 2006), accompanied by a decrease of
calcium absorption in the bone and thus higher urinary calcium excretion values
(Smith et al., 2005).

• Bone modeling (not to be confused with remodeling) is the process leading to adap-
tation of the actual shape, and of the distribution of cortical and trabecular compart-
ments of bony organs, caused by certain diseases, such as Paget’s disease of the
bone (Roodman and Windle, 2005), or long-ranging changes of the mechanical
loading; the latter may be related to changes of physical activities, weight gain,
or growth during adolescence (Robling et al., 2006). Modeling is based on for-
mation and resorption processes, occurring isolated from each other (unlike bone
remodeling). The involved biochemical and biomechanical regulatory pathways are
believed to be very similar between bone modeling and remodeling, while reveal-
ing the exact differences between the two mechanisms is thus far an unresolved
scientific question (Dunlop et al., 2009).

Osteoclasts, osteoblasts and osteocytes are the cells which are essentially responsible for
all of these processes. Osteoclasts (deriving from hematopoietic stem cells) resorb bone,1

while osteoblasts (deriving from mesenchymal stem cells) produce bone matrix.2 The
differentiation behaviors of osteoclasts and osteoblasts are closely linked with each other:
The maturation (along various steps of differentiation) of osteoclasts from their precursor
cells requires the binding of the receptor activator of nuclear factor kappa-light-chain-
enhancer of activated B cells (RANK), which is a surface-bound receptor on osteoclasts,
to the RANK ligand (RANKL), which is expressed by cells of the osteoblastic linage
(Takahashi et al., 1988). Furthermore, osteoprotegerin (OPG), also expressed by os-
teoblasts, acts as a decoy receptor, occupying RANKL and thus inhibiting osteoclastoge-
nesis (Wan et al., 2001). The presence of the parathyroid hormone (PTH) has been shown
to increase bone turnover (Parfitt, 1976), by modulating the expression of both RANKL
and OPG (Huang et al., 2004). Additionally, the resorptive activity of osteoclasts leads
1First, osteoclasts firmly attach to the bone surface, forming a sealed interface between the cell and the
bone material. Then, the pH at the interface is strongly reduced by activation of proton pumps in the cell
membrane, which transport protons into the bone surface area. Thus, the bone mineral becomes soluable
due to the acidic environment. Furthermore, the organic matrix is degraded through secretion of acid
proteases by the osteoclasts (Buckwalter et al., 1995).

2In more detail, osteoblasts excrete osteoid, consisting mainly of collagen type I, which gets increasingly
mineralized over time, with the compound of soft collagen, hard (hydroxyapatite-type) mineral, as well as
pore spaces in-between, denoted as bone matrix. Since this mineralization process occurs very fast initially,
osteoblasts are, for simplicity, often referred to as bone-forming cells, thus withholding the intermediate
step of osteoid formation (Marie, 1998).
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to the release of transforming growth factor beta (TGFβ), which is otherwise stored in
the bone matrix, in turn regulating the differentiation behavior of osteoblasts (Bonewald
and Mundy, 1990). The most abundant cells in bone are the mechanosensitive and signal-
transmitting osteocytes (Bonewald, 2011), evolving from osteoblasts that become trapped
in the bone matrix during the bone formation process (Robling et al., 2006). They reside
in the lacunar pores and their cell processes extend into the canalicular tunnels that are
interconnected and protrude from the lacunar pores in vast numbers. Estimates based on
focused ion beam and scanning electron microscopy (Schneider et al., 2011), light mi-
croscopy (Beno et al., 2006), and confocal laser scanning microscopy (Sugawara et al.,
2011, 2005; Sharma et al., 2012) conclude that there might be 50 to 85 canaliculi per la-
cuna. The osteocytic cell processes have been suggested to be the most mechanosensitive
parts of the osteocyte, based on calcium fluorescence imaging, which allows for identify-
ing the location within the cell of the highest intracellular Ca2+ response (Thi et al., 2013).

In addition to the aforementioned three kinds of cells (i.e. osteoblasts, osteoclasts and os-
teocytes), the so-called bone lining cells cover quiescent (non-remodeling) surfaces of the
bone, and communicate with each other via gap junctions (Miller et al., 1989), while also
being connected to the osteocytic network through processes extending into the canali-
culi. Bone lining cells serve as a barrier between blood and bone, regulating the mineral
ion uptake and discharge into and out of the bone extracellular fluid (Clarke, 2008). They
evolve from osteoblasts, deposited at the surface during remodeling processes, and can
return to their osteoblastic state, due to mechanical forces or PTH exposure (Dobnig and
Turner, 1995).

1.2. Mechanosensitivity of the osteocyte

In the following, the exact response of osteocytes to mechanical loading is reviewed. The
elevation of the intracellular calcium concentration is one of the indicators of cell activity
upon stimulation by mechanical loading. In the cell’s unloaded state, the intracellular
calcium concentration is lower than the concentration in the extracellular environment,
enabled by active ion pumps that expel calcium-ions from the cell. When a cell is mechan-
ically stimulated, Ca2+-ions enter the cell’s cytoplasm through channels that are suppos-
edly activated by loading, as well as being released from reservoirs within the cell. In vitro

fluid flow stimulates the production of inositol triphosphate, which triggers the release of
Ca2+ from intracellular stores (Ajubi et al., 1999; Nollert et al., 1990). This elevation of
the intracellular calcium concentration allows the production of prostaglandins, especially
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prostaglandin E2 (PGE2), due to the increased expression of the cyclooxygenase, COX-2,
an enzyme crucial for the PGE2 production. There are many factors that increase the ex-
pression of COX-2 in bone cells, including mechanical loading and calcium (Ajubi et al.,
1999; Pilbeam et al., 2008). PGE2 plays an important role in bone remodeling, acting as a
promoter as well as an inhibitor of bone formation (Pilbeam et al., 2008). Due to PGE2’s
influence on RANK/OPG-signaling it acts as an osteoclastogenesis-promoting agent: In-
fluenced by PGE2, the expression of RANKL on osteoblasts and osteoblastic precursor
cells is increased, hence promoting the binding of RANKL to its receptor RANK, lo-
cated on osteoclast precursors, which is a prerequisite for osteoclast maturation (Robling
et al., 2006; Pilbeam et al., 2008). Furthermore, PGE2 may also suppress the expression
of OPG (Suda et al., 2004). In this context, PGE2 may be seen as a bone resorption in-
ducing agent, through the positive influence it has on the differentiation of osteoclasts.
On the other hand, PGE2 signaling plays a role in the Wnt/β-catenin pathway, also called
the canonical pathway, through crosstalk (Kamel et al., 2006), which ultimately promotes
bone formation (Pilbeam et al., 2008). The wingless gene, standardly referred to as Wnt,
is a glycoprotein modified with a lipid, and is also secreted from the cells as a response
to mechanical loading, which initiates the Wnt/β-catenin pathway by binding to trans-
membrane proteins of osteocytes and osteoblasts and causing β-catenin accumulation in
the cytoplasm, which subsequently translocates to the nucleus to affect gene transcription
there, encouraging new bone formation (Bonewald and Johnson, 2008). Another marker
of the osteocytes’ anabolic response to mechanical loading is the release of nitric ox-
ide (NO) by osteocytes, but also osteoblasts, within seconds after loading (Bakker et al.,
2001). NO is a free radical that has many functions in cell biology, for example acting as
a neurotransmitter and a vasodilator (Turner et al., 1997). In vivo studies on bone cells
show that NO behaves as an osteoblast activity-encouraging agent; blocking the produc-
tion of NO subsequently leads to a drastic decrease in new bone formation (Turner et al.,
1997; Fox and Chow, 1998).

While there is ample evidence for the mechanosensitivity of the osteocyte (as briefly
summarized in the previous paragraph), the exact nature of the triggering mechanical
stimuli is not clear to date. Proposed types of loading, sensed and translated into chem-
ical signals by osteocytes, in order to control osteoblast and osteoclast activities, include
fluid pressures acting onto osteocytes3 (Liu et al., 2010; Klein–Nulend et al., 1995b; Na-
gatomi et al., 2001, 2003), direct deformation of the cell body through bone matrix strains
(Nicolella et al., 2005), microdamage (Hazenberg et al., 2006), piezoelectric effects (Bas-

3Not only osteocytes, but apparently any type of biological cells change their behavior when sensing pres-
sure variations (Imamura et al., 1990; Nagatomi et al., 2002; Kaarniranta et al., 2003).
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sett, 1968), streaming potentials (Pienkowski and Pollack, 1983), and fluid flow-induced
shear forces acting on the cell membrane (Klein–Nulend et al., 1995c; Riddle and Don-
ahue, 2009). Remarkably, ever since the latter mechanism has been suggested in the late
1980s (Frangos et al., 1988; Klein–Nulend et al., 1995c; Frangos and Johnson, 1995),
the scientific community has readily embraced this idea; fluid flow has been used as the
preferred stimulus for studying the mechanosensitivity of osteocytes in vitro (You et al.,
2000; Bonewald, 2006; Fritton and Weinbaum, 2009), leading to a substantial amount of
respective experimental data.

1.3. Experimental difficulties

Direct experimental confirmation of the aforementioned “fluid flow-hypothesis” is still
missing, despite the enormous efforts that have been undertaken in this respect. The
reasons for this deficit are related to the various length scale-related intricacies of the pro-
cesses under scrutiny. In particular, with the nowadays available experimental methods it
is impossible to directly measure the flow of the fluid contained in the lacunar and canalic-
ular pores in response to physiological macroscopic loading. As a remedy, the following
types of experiments have been carried out:

• In vitro tests:

Cells are exposed to a linear flow in a parallel plate flow channel (Genetos et al.,
2005; Bakker et al., 2003; Klein–Nulend et al., 1995a; Haut Donahue et al., 2003;
Kreke et al., 2005; Jacobs et al., 1998). This setup was first described by Frangos
et al. (1988), for exposing all kinds of mammalian cells to steady and pulsatile shear
stresses, in order to quantify their metabolic response. The cells are cultured on a
rectangular glass slide, and exposed to a laminar flow after making sure that the
cells are well attached to the surface, and can be observed throughout the experi-
ment with microscopic methods, predominantly utilizing fluorescence microscopy
combined with calcium imaging(Klein–Nulend et al., 1995b; Frangos et al., 1988).
However, the osteocytes are placed in a very artificial environment in these tests,
which is actually quite different to the small pore spaces they would natively in-
habit. It is also questionable whether the flow conditions that are applied in the
chambers actually resemble the conditions in vivo.
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• Bioreactor tests:

Efforts to more realistically replicate the cell’s environment have led to the devel-
opment of perfusion bioreactors, where the cells are cultured in 3D scaffolds (e.g.
titanium mesh, or scaffolds made out of ceramic, silk fibroin, gelatin, or hydroxya-
patite), thus experiencing a fluid flow within the pore spaces of the scaffold due to
the applied pressure gradients (Bancroft et al., 2002; Li et al., 2009; Sinlapabodin
et al., 2016). However, it is impossible to properly separate the various stimuli that
may occur; cells supposedly react to fluid shear stress, to hydraulic pressures, to
matrix strains, or to combinations thereof.

• Tracer tests:

Knothe Tate and Knothe (2000) were the first to propose an experiment where flu-
orescent tracer molecules are first injected into a bone specimen and then bone
cross-sections of the latter are histologically evaluated, predominantly utilizing flu-
orescence recovery after photobleaching (FRAP) microscopy, while the bone spec-
imens can optionally be subjected to mechanical loading. Modeling approaches,
based on the FRAP results, have been implemented in order to estimate the matrix
permeability and the fluid velocity caused by loading. While this semi-experimental
modality has been repeated many times, see e.g. (Wang et al., 2005; Price et al.,
2011; Zhou et al., 2008; Kwon and Frangos, 2010; Kwon et al., 2012), it is however
not clear if and how tracer transport by convection can be separated from diffusional
transport.

1.4. Objectives and structure of this thesis

The main objective of this work is to develop a mathematical model capable of estab-
lishing the (experimentally not available) bridge between two kinds of data, namely the
physiological macroscopic loading to which bone is exposed, on the one hand, and the
corresponding fluid flow velocities that can be expected to occur in the canalicular pores
of bone, on the other hand. The concept of continuum micromechanics is utilized, which
has proven to be an adequate modeling concept for hierarchically organized materials.
The such computed fluid velocities are then compared to fluid velocities that have been
shown to stimulate osteocytes in vitro. Thus, the plausibility of the fluid flow-hypothesis
can be assessed in quantitative terms, for the first time based on a modeling approach
rigorously considering the multiscale paradigm.
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Accordingly, the structure of this thesis is as follows: First, the hierarchical organiza-
tion of bone is thoroughly elucidated (see Section 2.1), based on which a suitable model
representation of bone tissue is deduced (see Sections 2.2 and 2.3). Then, a continuum
micromechanics-inspired model is developed, allowing for estimating the upscaled per-
meability of bone tissue from the local permeabilities related to the representative fluid
flow conditions in the pore spaces of bone, on the one hand, and for downscaling of
pressure gradients from the macro- to the microscale, on the other hand (see Section 3).
Numerical studies demonstrate how the aforementioned local permeabilities translate into
corresponding macroscopic ones (see Section 4.1), as well as to which extent macroscopic
pressure gradients are “felt” in the canalicular pores (see Section 4.2). Based on consider-
ing typical macroscopic loading to which long bones are subjected (see Section 5.1), the
model is employed to estimate the corresponding pore-scale fluid velocities (see Section
5.2). The results are subsequently compared to the related experimental data (see Section
5.3), and respective conclusions are drawn (see Section 6).
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2. Multiscale modeling of bone
tissue

2.1. Hierachical organization of bone

Bone is a hierarchically built-up material, made largely out of collagen, hydroxyapatite
matrix, and water, and also contains bone marrow, cells, and non-collagenous proteins.
Two different types of bony structures can be identified in bone organs: The dense and
compact cortical bone often forming the shell of bone organs, and the more loosely packed
and highly porous trabecular or cancellous bone (Gray, 1918), as seen in Figure 2.1a.
Cancellous bone lines the walls of the medullary cavity, where the bone marrow is stored,
and has a high surface area due to its inter-trabecular porosity of about 50 – 90% (Padilla
et al., 2008). Cortical bone, on the other hand, is less porous, with a vascular porosity of a
few percent in young adults (Feik et al., 1997; Stein et al., 1999; Bousson et al., 2000), see
Table 2.1, potentially increasing up to 35% in old age (Cooper et al., 2007). Figure 2.1b
shows the bone cortex shell and the loosely packed trabecular bone on the inside, with
their microstructures clearly visible with higher magnifications in Figures 2.1c and 2.1d.
Vascular pores, as the name already implies, host blood vessels in a branched structure,
the main larger branches being aligned along the bone axis called Haversian canals and
the smaller Volkmann canals, being more or less perpendicular to the Haversian canals
(Cooper et al., 2003) (experimentally obtained vascular diameters can be seen in Table
2.2). The next smaller porosity is the lacunar porosity (as seen in Figures 2.1e and 2.1f),
hosting the osteocytic cell bodies which are depicted in Figures 2.1g and 2.1h, also show-
ing their cell processes. The lacunar porosity lies within a range of 1.5 – 10% (Schneider
et al., 2007; Tommasini et al., 2012; Tai et al., 2008; Benalla et al., 2013), see Table
2.3, and the diameter of these ellipsoidal lacunar pores amounts to a few microns4 (Pala-
cio–Mancheno et al., 2014; Sugawara et al., 2005), see Table 2.4, and The even smaller,
cylindrically shaped canaliculi, forming an extensive network, hence connecting the la-

4“Microns” is a length measurement frequently used in bone-related literature; with one micron being equal
to 10-6 m.
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Figure 2.1.: Hierarchical structure of bone: a Longitudinal section of a human femur, showing dense and
loosely packed bone (Daxner et al., 2000); b Transverse section of a distal rat femur, reconstructed from
μ-CT images with trabecular bone in the center and cortical bone at the edges (Campbell and Sophocleous,
2014); c SEM image of a cross-section of cortical bone, showing single osteons with Haversian canals
and lacunar pores (small black dots) (Ambekar et al., 2012); d SEM image of trabecular structure with
single trabeculae and bone-marrow filled cavities in between (Fantner et al., 2006); e Light microscopy of a
single osteon with its central Haversian canal, and lacuanae, connected via canaliculi, arranged in lamellae
around the Haversian canal (Ardizzoni, 2001); f SEM image of single lacunar pores, wedged in the lamellae
(Ardizzoni, 2001); g Fluorescence image of an osteocyte network with dendritic processes (Kamel–ElSayed
et al., 2015); h Single osteocyte with processes, taken (Hesse et al., 2015)

cunae with each other, are a few hundred nanometers (i.e. 10-9 m) in diameter (Marotti,
1990; You et al., 2004; Lin and Xu, 2011), see Table 2.5, and exhibit a volume fraction of
around 1 – 3% (Schneider et al., 2011; Hesse et al., 2015; Benalla et al., 2013), see Table
2.6.

At even lower observation scales, further types of pore spaces can be discerned, namely
the space between the hydroxyapatite crystals (together forming the so-called extrafibril-
lar space), and the intramolecular pore space found between collagen molecules, see e.g.
(Weiner and Wagner, 1998; Katz et al., 1984; Fritsch and Hellmich, 2007; Fritsch et al.,
2009). Both intercrystalline and intermolecular pore spaces are however irrelevant for the
work presented in this thesis, and are hence neglected subsequently.
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Table 2.1.: Overview of the experimentally obtained vascular porosities fvas; VM standing for virtual mi-
croscopy, CT+μRG standing for computed tomography and micro-radiography, SR-μCT standing for syn-
chrotron radiation micro-computed tomography, and μCT standing for micro-computed tomography

Reference fvas [-] Tissue Method

Feik et al. (1997) 0.07 Human femur, male/female Digitalized
VM

Stein et al. (1999) 0.059 Human femur Digitalized
VM

Bousson et al. (2000) 0.09 Human mid-diaphysis femur, female CT+μRG

Bousson et al. (2000) 0.08 Human mid-diaphysis femur, male CT+μRG

Bousson et al. (2001) 0.09 Human mid-diaphysis femur, female CT+μRG

Bousson et al. (2001) 0.08 Human mid-diaphysis femur, male CT+μRG

Palacio–Mancheno et al. (2014) 0.048 Rat tibial mid-diaphysis μCT
0.013–0.023 Rat tibial mid-diaphysis μCT

Schneider et al. (2009) 0.0122±0.0026 Mouse (B6) mid-diaphysis SR-μCT

Schneider et al. (2007) 0.048±0.015 Mouse (C3/B6) femoral mid-diaphysis SR-μCT

Schneider et al. (2007) 0.018±0.006 Mouse (B6) femoral mid-diaphysis SR-μCT

Cooper et al. (2007) 0.0729±0.069 Human femur μCT

Cooper et al. (2003) 0.06 Human femur μCT+μRG

Renders et al. (2007) 0.0353±0.012 Human mandibular condyle μCT
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Table 2.2.: Overview of the experimentally obtained vascular pore diameters dvas; μCT standing for micro-
computed tomography, applied at different resolutions, and pQCT standing for peripheral quantitative com-
puted tomography

Reference dvas [μm] Tissue Method

Palacio–Mancheno et al. (2014) 14.7 Rat tibia mid-diaphysis μCT (res. 1 μm)

Palacio–Mancheno et al. (2014) 9.38±0.35 Rat tibia mid-diaphysis μCT (res. 4 μm)

Schneider et al. (2007) 10.3 Mouse femoral mid-diaphysis μCT (res. 3.7 μm)

Renders et al. (2007) 53±5
48±7

Human mandibular condyle μCT

Goulet et al. (2008) 35.6 – 79.6 Human tibia pQCT

Martin et al. (1998) 40 – 50 Human cortical bone μCT

Table 2.3.: Overview of the experimentally obtained lacunar porosities flac; SR-nCT standing for syn-
chrotron radiation nano-computed tomography, and μCT standing for micro-computed tomography

Reference flac [-] Tissue Method

Schneider et al. (2007) 0.013 Mouse (B6) femoral mid-diaphysis SR-μCT

Tommasini et al. (2012) 0.015 Rat femoral diaphysis SR-μCT

Benalla et al. (2013) 0.0169±0.005 Human mid-diaphysis femur μCT

Hesse et al. (2014a) 0.008±0.003 Human jaw SR-μCT

Hesse et al. (2014b) 0.013±0.007 Human jaw SR-μCT

Palacio–Mancheno et al. (2014) 0.015±0.0044 Rat tibial mid-diaphysis μCT

Tai et al. (2008) 0.09 Mouse fore limbs μCT

Table 2.4.: Overview of the experimentally obtained lacunar pore diameters dlac; CLSM standing for con-
focal laser scanning microscopy, and AFM standing for atomic force microscopy

Reference dlac [μm] Tissue Method

Sugawara et al. (2005) 2 – 5 Chick calvaria CLSM

Lin and Xu (2011) 3.86±1.02 Bovine tibia, transverse direction AFM

Lin and Xu (2011) 5.37±1.7 Bovine tibia, radial direction AFM

Vatsa et al. (2008) 7.6±1.15 Mouse (B6) fibula CLSM

11



Table 2.5.: Overview of the experimentally obtained canalicular pore diameters dcan; SEM standing for
scanning electron microscopy, TEM standing for transmission electron microscopy, CLSM standing for
confocal laser scanning microscopy, AFM standing for atomic force microscopy, and FIB/SEM standing
for focused ion beam scanning electron microscopy

Reference dcan [μm] Tissue Method

Marotti (1990) 150–550 Human tibia SEM

You et al. (2004) 259±129 Mouse female TEM

Sugawara et al. (2005) <500 Chick calvaria CLSM

Lin and Xu (2011) 426±118 Bovine tibia, transverse direction AFM

Lin and Xu (2011) 459±144 Bovine tibia, radial direction AFM

Lin and Xu (2011) 419±113 Bovine tibia, longitudinal direction AFM

Schneider et al. (2011) 95 Mouse (B6) femoral mid-diaphyis FIB/SEM

Sharma et al. (2012) 520±42 Rat tibia, cortical metaphysis, trabecular remnants CLSM

Sharma et al. (2012) 553±33 Rat tibia, cortical metaphysis, lamellar region CLSM

Table 2.6.: Overview of the experimentally obtained canalicular porosities fcan; FIB/SEM standing for fo-
cused ion beam scanning electron microscopy, SR-nCT standing for synchrotron radiation nano-computed
tomography, and μCT standing for micro-computed tomography

Reference fcan [-] Tissue Method

Schneider et al. (2011) 0.007 Mouse (B6) femoral mid-diaphysis FIB/SEM

Hesse et al. (2015) 0.02±0.008 Human jaw SR-nCT

Benalla et al. (2013) 0.0279±0.0091 Human femoral diaphysis μCT
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2.2. Introduction of representative volume elements

In the following, some fundamental rules defined in continuum micromechanics are re-
viewed, as a basis for establishing a suitable model representation for bone tissue, see Sec-
tion 2.1. In continuum micromechanics, a material is thought to be macro-homogenous,
but micro-heterogenous. Considering an arbitrary volume element hosting such material,
this volume element is representative in terms of the physical behavior of the contained
material if its characteristic length, `RVE, is “much” larger than the characteristic size of
the micro-heterogeneities, dRVE, within the RVE, i.e. `RVE � dRVE (Hill, 1963; Zaoui,
2002; Dormieux et al., 2006). In particular, `RVE must be 2 to 3 times larger than dRVE

(Drugan and Willis, 1996) in order to comply with this requirement. On the other hand,
`RVE must be considerably smaller than the characteristic length of the geometry of a
structure composed of the material defined on the RVE, L , as well as of the loading act-
ing onto such a structure, P . The requirement `RVE� {L ,P} is satisfyingly fulfilled
as long as L and P , respectively, are 5 to 10 times larger than `RVE (Kohlhauser and
Hellmich, 2013).

The microstructure of the material contained within a representative volume element
(RVE) is typically too complex to describe in its entirety. Instead, so-called material
phases, assumed to be homogenous, are introduced. These material phases exhibit known
physical properties, such as volume fractions or mechanical properties, and a variety of
different phase morphologies can be established, thereby allowing the introduction of dif-
ferent phase shapes, and interactions between the considered material phases. Continuum
micromechanics enables the derivation of mathematical relations which reconcile these
conditions, for the eventual estimation of macroscopic (mechanical) properties valid on
the level of the RVE, based on the corresponding phase properties. This upscaling process
is often referred to as homogenization.

Homogenization can be carried out in a sequential fashion if a material phase itself ex-
hibits a heterogeneous microstructure. In this case, an RVE can be introduced within the
respective phase (Fritsch and Hellmich, 2007); the characteristic length of this new RVE,
`RVE, 2, must fulfil the requirement `RVE, 2 ≤ dRVE, while the principle of scale separation
demands that the characteristic length of the heterogeneities within the new RVE, dRVE, 2,
are considerably smaller than `RVE, 2, i.e. dRVE, 2 � `RVE, 2. This leads to a multi-step
homogenization scheme, see Figure 2.2.
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2.3. Model representation

For the development of a homogenization scheme allowing for estimation of the perme-
ability of the multi-porous bone tissue, as defined in Section 2.1, a three-scale model
representation is considered, see Figure 2.2.

Following the principle of scale separation as introduced in Section 2.2, the first RVE
contains the canalicular pores, represented as cylindrical, arbitrarily oriented inclusions,
which are interpenetrating, exhibiting a characteristic length of dcan = 100 nm, and the
impermeable extracanalicular bone matrix phase, sometimes referred to as extracellular
bone matrix. For the sake of simplicity, the extracanalicular phase is considered to be of
spherical shape. Together, these two material phases form the polycrystalline extralacu-
nar matrix which exhibits a characteristic length of `exlac = 0.5−2 μm, thereby fulfilling
`exlac� dcan.

Zooming out from the smallest observation scale considered in this work, the RVE of
extravascular material can be defined, consisting of a matrix of extralacunar material, and
spherically shaped lacunar pores. The characteristic length of this RVE lies within the
range of `exvas = 20− 30 μm, while the characteristic length of the lacunae is dlac = 10
μm (Fritsch and Hellmich, 2007; Morin and Hellmich, 2014; Scheiner et al., 2015; Fritsch
et al., 2009).

On an even larger scale of observation, macroscopic bone material can be identified at a
characteristic length of `macro = 100− 200 μm. It is comprised of vascular pores, repre-
sented as cylindrical inhomogeneities with a characteristic length of dvas = 50 μm, and the
extravascular matrix. In order to cover different types of bone tissue, such as (osteonal)
cortical and trabecular bone, as well as the transition zone in-between, i.e. endocortical
bone, two morphologies are considered. Firstly, the vascular pores are introduced with a
dominant orientation, and the extravascular bone material acts as a matrix phase hosting
the pores as inclusions. This matrix-inclusion-type morphology reflects the situation in
cortical bone, where Haversian canals mainly define the overall permeability. Secondly,
cortical bone with a more pronounced importance of Volkmann canals, as well as tra-
becular bone is considered by introducing the vascular pores as an interpenetrating pore
network in form of arbitrarily oriented inclusions, and the extravascular material modeled
as spherical inclusions in-between.

Notably, similar modeling concepts have been developed previously in the field of bone
(fluid) mechanics, e.g. to study stiffness (Hellmich et al., 2004; Fritsch and Hellmich,
2007), poroelasticity (Hellmich et al., 2009; Scheiner et al., 2015; Morin and Hellmich,
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2014; Hellmich and Ulm, 2005), viscoelasticity (Eberhardsteiner et al., 2014), strength
(Fritsch et al., 2009), and the trabecular permeability (Abdalrahman et al., 2015). All
these works included substantial experimental validation, hence underpinning the ade-
quacy of the chosen model representation.

dlac

dcan

e
3

e
2

e
1

Macroscopic RVE

Extravascular RVE

Extralacunar RVE

Vascular pores

Lacunar pores

Canalicular pores

Extravascular 

bone matrix

Extralacunar 

bone matrix

Extracanalicular 

bone matrix

!
macro

!
macro

!
exvas

!
exlac

L

dvas dvas

Figure 2.2.: Model representation based on which permeability upscaling and pressure gradient downscaling
is performed, (from top to bottom) including the RVE of macroscopic bone tissue, which can represent both
cortical bone (as indicated here) or trabecular bone (as seen in the radiograph of the coronal section of
the femur (Jacobs et al., 1994)), containing vascular pores and extravascular matrix, arranged randomly or
ordered, the RVE of extravascular bone material, containing lacunar pores and the extralacunar bone matrix,
and the RVE of extralacunar bone material, consisting of canalicular pores and extracanalicular bone matrix
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3. Development of a mathematical
strategy for permeability
upscaling and pressure gradient
downscaling

In the following, a multi-step mathematical model is presented, allowing for interpreting
the Poiseuille-type flow of pore fluid in the canalicular pores in terms of an equivalent
micro-Darcy law, and to scale the respective permeability up to the macroscopic level. At
the same time, the resulting mathematical framework allows for downscaling of pressure
gradients from the macro- to the microscale. To that end, the work of Abdalrahman
et al. (2015) served as a conceptual basis, and has been adapted according to the model
representation elaborated in Section 2.3.

3.1. Step I: From the canalicular scale to

extralacunar scale and vice versa

In the RVE of extralacunar material, two material phases can be found: canalicular pores
and extracanalicular matrix.5 As for the former, they are represented as long, cylindrical
“tubes”, mutually interconnected and interpenetrating, along which pressure gradient-
driven fluid transport may occur, whereas the latter is considered to be impermeable,
morphologically represented as a spherical material phase.

The laminar flow through one of these canalicular tubes is assumed to follow the well-
known law of Hagen (1839) and Poiseuille (1847), see also (Sutera and Skalak, 1993): A
quadratic velocity profile vcan(r,s) across the tube cross-section is triggered by a pressure
gradient along the cylinder direction s, ∂ p/∂ s, and influenced by the cylinder radius Rcan,

5In literature, the matrix that is referred to as “extracanalicular matrix” in this work, is usually termed
“extracellular matrix” or “bone ultrastructure” (Fritsch and Hellmich, 2007).
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and the dynamic fluid viscosity η ; variable r denoting the radial coordinate within the
tube cross-section. Mathematically, this law reads as

vcylinder(r,s) =−
∂ p
∂ s

(s)
R2

can
4η

(
1− r2

R2
can

)
. (3.1)

To find the mean velocity vcan(s) of the fluid in the canaliculi, the velocity distribution
vcylinder(r,s) is averaged over the cross-sectional area A of the cylinder, yielding

vcan(s) =
1
A

∫
A

vcylinder(r,s)dA

=
2

R2
can

Rcan∫
0

rvcylinder(r,s)dr .

(3.2)

Upon inserting Eq. (3.1) into Eq. (3.2), the mean fluid velocity follows as a function of the
canalicular radius, the pressure gradient along the longitudinal direction of the canalicular
tube, i.e. in the direction of the unit vector es, and the fluid viscosity:

vcan(s) =−
R2

can
8η

∂ p
∂ s

(s) . (3.3)

In order to express the mean fluid velocity in vectorial format, vcan(s) according to Eq. (3.3)
has to be multiplied by the respective unit vector, yielding

vcan(s) = vcan(s)es . (3.4)

Next, we aim to recast Eqs. (3.3) and (3.4) in form of a micro-Darcy law, as demonstrated
in (Dormieux and Kondo, 2004, 2005; Dormieux et al., 2006),6 connecting the vector of
fluid velocity with the pressure gradient on the microscopic canalicular scale through a
formal “canalicular permeability tensor”. For that purpose, an alternative expression for
vcan, is formulated in Darcy-fashion (i.e. considering incompressible fluids, and disre-

6Darcy considered experiments on the fluid flow through a vertical cylindrical column filled with sand
between two reservoirs with different hydraulic heads, H = P+γx, P being the macroscopic fluid pressure,
γ = ρg the fluid unit weight and x the coordinate in vertical direction. He concluded that the flow per cross-
section of sample is proportional to the difference in heads divided by the length of the sand column, which
can be written as a pressure head gradient. The proportionality constant in this relation is defined as the
permeability K and the flow Q is in the negative direction of the pressure gradient (Darcy, 1856):

Q = K · (−grad pmacro +ρg) . (3.5)
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garding gravitational forces),

vcan(s) =−kcan ·grad p (3.6)

where the permeability related to the canalicular pores, kcan, can be found by comparing
Eqs. (3.3) and (3.6):

kcan =
R2

can
8η

1 0 0
0 0 0
0 0 0


es,et,eu

=
R2

can
8η

es⊗ es ,

(3.7)

where symbol ⊗ denotes the dyadic product. The coordinate system defined by unit vec-
tors es,et,eu is orthogonal, with es pointing in the direction of the long cylinder axis.

Following Abdalrahman et al. (2015), the work of Dormieux and Kondo (2004) and
Dormieux et al. (2006) has been taken as a guideline for the permeability homogenization
on the extralacunar scale, where the canalicular pores mutually interact with impenetra-
ble bone matrix inclusions (which are presumably of spherical shape). In particular, it
is assumed that a macroscopic, homogenous pressure gradient, grad pexlac, acts on the
boundary of the extralacunar RVE:

∀x ∈ ∂VRVE : p(x) = grad pexlac ·x . (3.8)

The macroscopic pressure gradient, grad pexlac, can be related to the microscopic one,
grad p, by making use of Eq. (3.8), and volume and surface integral operations, yielding∫

VRVE

grad p(x)dV =VRVE grad pexlac . (3.9)

Thereby, the integration over the RVE volume VRVE was turned into a surface integral
over the boundary ∂VRVE using the Gauss (or divergence) theorem. The pressure gradient
average rule follows from rearanging Eq. (3.9):

grad pexlac =
1

VRVE

∫
VRVE

grad p(x)dV . (3.10)
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Furthermore, an average rule relating the macroscopic velocity vexlac and the microscopic
velocities v(x) needs to be established. For that purpose, mass conservation is considered:

∀x ∈V : divv(x) = 0 . (3.11)

Then, it is considered that the dissipated energy due to triggering a macro-velocity through
the macroscopic pressure gradient is equivalent to triggering of all the micro-velocities
through the microscopic pressure gradients (Abdalrahman et al., 2015), yielding∫

VRVE

v(x) ·grad p(x)dV =VRVEvexlac grad pexlac . (3.12)

Making use of the divergence theorem again, Eqs. (3.8) and (3.11) imply that the expres-
sion on the left-hand side of Eq. (3.12) can be rewritten as∫

VRVE

v(x) ·grad p(x)dV = grad pexlac

∫
VRVE

v(x)dV . (3.13)

Combining Eqs. (3.12) and (3.13) then gives access to the average rule for the velocities:

vexlac =
1

VRVE

∫
VRVE

v(x)dV . (3.14)

In order to define the direction of the canaliculi, which are considered to be randomly ori-
ented in space (see Figure 2.2 for the chosen model representation), a coordinate system
defined by unit vectors es, eϑ , and eϕ is fixed to each pore with es aligning with the longi-
tudinal direction of the canaliculi. The (Euler) angles ϑ and ϕ signify the orientation of
the local system compared to the global reference base frame (e1, e2, e3), see Figure 3.1.
With these conventions, the dependency of the fluid velocities on the local coordinates
can be specified:

vcan(ϑ ,ϕ) = vcanes(ϑ ,ϕ) , (3.15)

with vcan being the average of the tube velocity over the canalicular length,

vcan(ϑ ,ϕ) =
1

lcan

∫
lcan

v(x)es(ϑ ,ϕ)ds (3.16)
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Figure 3.1.: Cylindrically shaped inclusion, longitudinally oriented along the unit vector es, and inclined by
Euler angles ϕ and ϑ with respect to the reference base frame, (e1, e2, e3); the local base frame, defined by
the unit vectors es, eϑ , and eϕ is attached to the inclusion

Introducing the micro-Darcy law defined in Eq. (3.6) into Eq. (3.16) yields

vcan =
1

lcan

∫
lcan

[−kcan(ϑ ,ϕ)] · ∂ p
∂ s

es(ϑ ,ϕ)ds . (3.17)

Employing the velocity and pressure gradient averaging rules next, see Eqs. (3.14) and
(3.10), yields

vexlac = f̃can

2π∫
ϕ=0

π∫
ϑ=0

vcanes(ϑ ,ϕ)
sinϑ

4π
dϕdϑ , (3.18)

and

grad pexlac = f̃can

2π∫
ϕ=0

π∫
ϑ=0

∂ p
∂ s

es(ϑ ,ϕ)
sinϑ

4π
dϕdϑ +(1− f̃can)grad pexcan . (3.19)

Notably, f̃can is the volume fraction of the canalicular pores in the RVE of extralacunar
material, hence defined as the ratio of the canalicular volume, Vcan, over the total volume
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of the extralacunar material, Vexlac,

f̃can =
Vcan

Vexlac
, (3.20)

which is related to the canalicular porosity defined on the macroscopic level, fcan by

f̃can =
f̄can

1− f̄lac
=

fcan

(1− f̄lac)(1− fvas)
, (3.21)

via the lacunar porosity of the extravascular material, f̄lac, and the vascular porosity of
the macroscopic material, fvas. The average pressure gradient outside the canaliculi in the
solid matrix is grad pexcan, and the corresponding velocity vexcan is zero.

Given the linearity of vcan(ϑ ,ϕ) with the microscopic pressure gradient in Eq. (3.17), and
the linearity of the mass balance law given in Eq. (3.11), a linear link between microscopic
and macroscopic pressure gradients can be established via pressure gradient concentration
tensors Acan (Dormieux and Kondo, 2004; Dormieux et al., 2006; Abdalrahman et al.,
2015). This pressure gradient concentration relation reads as

∂ p
∂ s

es(ϑ ,ϕ) = grad pcan(ϑ ,ϕ) = Acan(ϑ ,ϕ) ·grad pexlac , (3.22)

and, analogously,
grad pexcan = Aexcan ·grad pexlac , (3.23)

with the extracanalicular concentration tensor, Aexcan. Inserting Eq. (3.22) into Eq. (3.18),
reveals the connection between the macroscopic velocity and the macroscopic pressure
gradient, under consideration of the underlying microscopic quantities:

vexlac =
[

f̃can

2π∫
ϕ=0

π∫
ϑ=0

[−kcan(ϑ ,ϕ)] ·Acan(ϑ ,ϕ)
sinϑ

4π
dϕdϑ

]
·grad pexlac . (3.24)

so that
vexlac =−Khom

exlac ·grad pexlac . (3.25)

By inserting the microscopic permeability tensor from Eq. (3.7) into Eq. (3.22), the ho-
mogenized permeability tensor in the extralacunar space, Khom

exlac, can be written as

Khom
exlac = f̃can

2π∫
ϕ=0

π∫
ϑ=0

R2
can

8η

[
es(ϑ ,ϕ)⊗ es(ϑ ,ϕ)

]
·Acan(ϑ ,ϕ)

sinϑ

4π
dϕdϑ . (3.26)
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The next step is to further define the pressure gradient concentration tensor Acan. For that
purpose, classical continuum mechanics (Zaoui, 2002) is utilized for transport in porous
media, by adapting Eshelby’s matrix-inclusion problem (Eshelby, 1957). In particular,
the boundary condition

for x→ ∞ : p(x) = (grad pexlac)∞ ·x (3.27)

is applied to an infinite domain, hosting a cylindrical inhomogeneity (or inclusion) of
permeability kinclusion, while the surrounding matrix exhibits the isotropic permeability
Kmatrix = Kmatrix · 1, with 1 being the second-order unit tensor. The pressure gradient in
the inclusion then follows as

grad pinclusion =
[
1+P · (kinclusion−1Kmatrix)

]−1 · (grad pexlac)∞ . (3.28)

where P is the Hill or inhomogeneity tensor defined as (Dormieux and Kondo, 2005)

P =
3

∑
i=1

3

∑
j=1
− 1

4πKmatrix

∂ 2ψ

∂ξi∂ξ j
ei⊗ e j . (3.29)

The Cartesian coordinates ξi and ξ j originate from the center of the cylindrical inhomo-
geneity. When considering es, eϑ , and eϕ as base vectors, aligning with the major axis of
the cylinder, the location vectors can be written as ξξξ = ∑i=ϕ,ϑ ξiei. To derive the potential
function ψ , the Green’s function for the specific (diffusion) inclusion problem,

ψ(ξξξ ) =
∫

Vinclusion

1
ξξξ −ξξξ ′

dVξξξ ′ , (3.30)

needs to be found. It becomes apparent that the potential function only depends on the
geometry of the inclusion, so for the present case, two potential functions must be con-
sidered, one relating to the canalicular pores, and one to the extracanalicular bone matrix.

Starting with the canaliculi, the consideration of a cylindrical shape is recalled, oriented
in (ϑ ,ϕ)-direction (Abdalrahman et al., 2015):

ψcan = π
(
r2−R2

can
)
. (3.31)

After inserting the polar coordinates ξ1 = r cosα , ξ2 = r sinα and r2 = ξ 2
1 + ξ 2

2 (r, the
radial polar coordinate and α , the angular polar coordinate) into Eq. (3.31), and subse-
quently into Eq. (3.29), the inhomogeneity tensor related to the canalicular pores follows
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as

Pcan =
1

2Kmatrix

0 0 0
0 1 0
0 0 1


es,eϑ ,eϕ

. (3.32)

Alternatively, Pcan can be given in the base frame (e1,e2,e3), by applying a standard
transformation from spherical coordinates into Cartesian coordinates:

Pcan(ϑ ,ϕ) = RPcanRT , (3.33)

with

R =

sinϑ cosϕ cosϑ cosϕ −sinϕ

sinϑ sinϕ cosϑ sinϕ cosϕ

cosϑ −sinϑ 0

 . (3.34)

Eventually, the Eshelbian relation (3.28) for the canalicular inclusions can be written as

grad pcan(ϑ ,ϕ) =
∂ p
∂ s

es(ϑ ,ϕ) =

[1+Pcan(ϑ ,ϕ) · (kcan(ϑ ,ϕ)−1Kmatrix)]
−1(grad pexlac)∞ .

(3.35)

Next, a spherical inclusion is regarded, as a representation of the solid (and impermeable)
extracanalicular material phase, with Rsphere defining the radius of the inclusion. Accord-
ingly, the potential function of a sphere is considered, as suggested by Dormieux et al.
(2006), reading as

ψexcan =
2πR2

sphere

3

(
3− r2

R2
sphere

)
. (3.36)

Appropriate parametrization, namely through ψ1 = r sinα1 cosα2, ψ2 = r sinα1 sinα2,
ψ3 = r cosα2, r being the radial spherical coordinate with the corresponding longitudinal
and latitudinal angles α1 and α2, and r2 = ψ2

1 +ψ2
2 +ψ2

3 , as well as utilizing Eqs. (3.36)
and (3.29), yields the inhomogeneity tensor, Pexcan:

Pexcan =
1

3Kmatrix

1 0 0
0 1 0
0 0 1


es,eϑ ,eϕ

. (3.37)

With the solid matrix being impermeable, the Eshelbian relation (3.28) can be written as

grad pexcan = [1−Pexcan ·1Kmatrix]
−1(grad pexlac)∞ . (3.38)
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Both expressions for the microscopic gradients grad pcan and grad pexcan, see Eqs. (3.35)
and (3.38), are inserted into Eq. (3.19), in order to obtain

grad pexlac =

[
f̃can

2π∫
ϕ=0

π∫
ϑ=0

sinϑ

4π
[1+Pcan(ϑ ,ϕ) · (kcan(ϑ ,ϕ)−1Kmatrix)]

−1dϑdϕ

+(1− f̃can)[1−Pexcan ·1Kmatrix]
−1

]
· (grad pexlac)∞ .

(3.39)
Inserting Eq. (3.39) into Eq. (3.35), the pressure gradient concentration tensor related to
the canalicular pores follows as

Acan(ϑ ,ϕ) =
[
1+Pcan(ϑ ,ϕ) · (kcan(ϑ ,ϕ)−1Khom

exlac)
]−1·[

f̃can

2π∫
ϕ=0

π∫
ϑ=0

sinϑ

4π
[1+Pcan(ϑ ,ϕ) · (kcan(ϑ ,ϕ)−1Khom

exlac)]
−1dϑdϕ

+(1− f̃can)[1−Pexcan ·1Khom
exlac]

−1

]−1

.

(3.40)
Considering in Eq. (3.40) the inhomogeneity tensors according to Eqs. (3.32) and (3.37),
as well as the canalicular permeability according to Eq. (3.7) allows the derivation of

Acan(ϑ ,ϕ)

=


−3(−2cos2 ϕ cos(2ϑ)+cos(2ϕ)−7)

2( f̃can+9) −3sin(2ϕ)sin2(ϑ)

f̃can+9 −6cosϕ sinϑ cosϑ

f̃can+9

−3sin(2ϕ)sin2(ϑ)

f̃can+9
3(2sin2

ϕ cos(2ϑ)+cos(2ϕ)+7)
2( f̃can+9) −6sinϕ sinϑ cosϑ

f̃can+9

−6cosϕ sinϑ cosϑ

f̃can+9 −6sinϕ sinϑ cosϑ

f̃can+9 −3(cos(2ϑ)−3)
f̃can+9

 .

(3.41)
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Analogously, the pressure concentration tensor related to the extracanalicular matrix is
obtained:

Aexcan =
[
1−Pexcan ·1Khom

exlac)
]−1·[

f̃can

2π∫
ϕ=0

π∫
ϑ=0

sinϑ

4π
[1+Pcan(ϑ ,ϕ) · (kcan(ϑ ,ϕ)−1Khom

exlac)]
−1dϑdϕ

+(1− f̃can)[1−Pexcan ·1Khom
exlac]

−1

]−1

=
9

9+ fcan
1 .

(3.42)

The two pressure gradient concentration tensors give access, on the one hand, when in-
serting them into Eq. (3.26), to the homogenized permeability of the extralacunar matrix,
Khom

exlac = Khom
exlac ·1, with

Khom
exlac =

f̃canR2
can

4η(9+ f̃can)
, (3.43)

and, on the other hand, when inserting them into Eqs. (3.22) and (3.23), pressure gradients
in the canaliculi and in the extracanalicular matrix, reading as

grad pcan(ϑ ,ϕ) = Acan(ϑ ,ϕ) ·grad pexlac , (3.44)

and

grad pexcan = Aexcan ·grad pexlac . (3.45)

3.2. Step II: From the lacunar/extralacunar scales to

the extravascular scale and vice versa

Reiterating from Section 2.3, an RVE of extravascular bone is composed of the spherically
shaped lacunar pores which are embedded in extralacunar matrix. While the latter has
been dealt with in Section 3.1, the definition of the permeability representing the fluid
flow in the lacunar pores requires some further elaboration. For that purpose, the work
of Markov et al. (2009) is regarded. They considered spherical inclusions embedded in a
porous domain, and analyzed the pressure gradient-driven fluid flow across such a domain
by means of a Stokes analysis. The such computed fluid flow was then set equal to a quasi-
Darcy law (analogous to the strategy pursued in Section 3.1), allowing the back-analysis
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of a corresponding permeability related to the lacunar pores. In particular, Markov et al.
(2009) chose the boundary conditions concerning the continuity of the normal pressure
and the normal velocity components as suggested by Saffman (1971), himself thereby
adopting the seminal work of Beavers and Joseph (1967). Tying in with these works,
the following definition of the fluid flow velocity component, oriented tangentially to the
inclusion, vt, at the interface between the inclusion and the pore medium can be found:

vt = λ
√

Kpormat
∂vt

∂y
, (3.46)

where λ is the dimensionless, semi-empirical slip coefficient varying between 0 and 5,7

and Kpormat is the permeability of the porous matrix. According to Markov et al. (2009),
the permeability related to the lacunar inclusions, klac, embedded in the extralacunar ma-
trix, eventually follows as

klac =
R2

lac
6

(
1−4

λ

√
Khom

exlac

Rlac

)
·

1 0 0
0 1 0
0 0 1

 , (3.47)

where Rlac is the lacunar radius and Khom
exlac is the component of the isotropic, homogenized

extralacunar permeability tensor.

The aforementioned slip coefficient, λ , deserves a closer look. It was first introduced by
Beavers and Joseph (1967) and needs to be evaluated experimentally. In order to estab-
lish the boundary condition given in Eq. (3.46), they assumed that the uniform pressure
gradients in the fluid flow domain and the porous medium are the same in longitudinal di-
rection along the interface. The slip velocity vslip is defined as the difference between the
velocities in the fluid domain on the one side of the interface, vf, and the velocity on the
other side, vpores, governed by the Darcy law in the porous medium. Beavers and Joseph
(1967) stipulated that this slip velocity is proportional to the shear rate at the interface:

∂vslip

∂y

∣∣∣∣
y=0+

=
β√

Kpormat
(vf− vpores) , (3.48)

with y = 0+ indicating that the gradient is evaluated at the interface, towards the fluid
phase. Thus, a proportionality constant β is introduced, mainly defined by the surface
structure of the porous medium; β is independent of the fluid viscosity (Beavers and

7The indicated range for λ , λ ∈ [0, 5], follows from the experiments conducted by Beavers and Joseph
(1967); they measured the flow through different kinds of metallic materials with varying pore sizes.
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Joseph, 1967), but depends on the flow direction, the Reynolds number, the width of the
inclusion, and on the normal distance from the interface, y, chosen for measuring both
the Darcy velocity and the velocity in the fluid (Sahraoui and Kaviany, 1991). Further-
more, according to Beavers and Joseph (1967), β increases linearly with the porosity of
the solid material. These dependencies were verified in the flow experiments of Sahraoui
and Kaviany (1991). Saffman’s boundary condition, being an approximation of the one
considered by Beavers and Joseph (1967) for small pore sizes, also contains the afore-
mentioned proportionality coefficient, in form of λ = β−1.

Upscaling of klac and Khom
exlac to the extravascular level is done analogously to the first step,

see Section 3.1:

Khom
exvas = f̄lacklac ·Alac +(1− f̄lac)Khom

exlac ·Aexlac , (3.49)

where f̄lac is the lacunar porosity quantified in the extravascular RVE, related to the
macroscopic lacunar porosity via

f̄lac =
flac

(1− fvas)
, (3.50)

while Alac and Aexlac are the pressure gradient concentration tensors relating the extravas-
cular pressure gradient to the lacunar and extralacunar gradients. These two concentration
tensors are based on a Mori-Tanaka-type scheme (Mori and Tanaka, 1973), owing to the
matrix-inclusion type morphology of the extravascular RVE, yielding

Alac =
[
1+Plac · (klac−1Kexlac)

]−1·[
f̄lac[1+Plac · (klac−1Kexlac)]

−1 +(1− f̄lac)1
]−1

,
(3.51)

and
Aexlac =

[
f̄lac[1+Plac · (klac−1Kexlac)]

−1 +(1− f̄lac)1
]−1

. (3.52)

Thereby, the inhomogeneity tensor Plac is defined analogously to Pexcan, namely as

Plac =
1

3Khom
exlac
·

1 0 0
0 1 0
0 0 1

 . (3.53)
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Inserting Eq. (3.53) into Eqs. (3.51) and (3.52), while also considering klac according to
Eq. (3.47) and Khom

exlac according to Eq. (3.43), yields

Alac =9 fcanR2
can

/
(

18η( flac−1)Rlac

(
2λ

√
fcanR2

can
η( fcan +9)

−Rlac

)
+

fcan

(
2η( flac−1)Rlac

(
2λ

√
fcanR2

can
η( fcan +9)

−Rlac

)
+3( flac +2)R2

can

))
1 ,

(3.54)

and

Aexlac =

[
9 flac fcanR2

can

/(
18ηRlac

(
Rlac−2λ

√
fcanR2

can
η( fcan +9)

)
+

2η fcanRlac

(
Rlac−2λ

√
RcanR2

can
η( fcan +9)

)
+6 fcanR2

can

)
− flac +1

]−1

,

(3.55)

and, when inserting these expressions into Eq. (3.49),

Khom
exvas =−2Khom

exlac×(
−3 f̃can +3 f̃can f̄lac +

Rlac

Rcan
(ηλm)(18+2 f̃can +36 f̄lac +4 f̃can f̄lac)+(

Rlac

Rcan

)2

η(−9− f̃can−18 f̄lac−2 f̃can f̄lac)
)
×(

6 f̃can +3 f̃can f̄lac−
Rlac

Rcan
(ηλm)(36+4 f̃can−36 f̄lac−4 f̃can f̄lac)+(

Rlac

Rcan

)2

η(18+2 f̃can−18 f̄lac−2 f̃can f̄lac)
)−1

,

(3.56)

with factor m defined as m =
√

f̃can/[η(9+ f̃can)].

Notably, as will be justified by respective computations in Section 4.1, it is reasonable to
introduce the approximation Rlac

Rcan
→ ∞, in which case Eqs. (3.54) and (3.55) simplify to

Alac =
9 f̃canR2

can

3 f̃can( f̄lac +2)R2
can−2η( f̃can +9)( f̄lac−1)R2

lac
1 , (3.57)

and
Aexlac =

1
1− flac

1 ·grad pexvas , (3.58)
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yielding, when inserting these two expressions into Eq. (3.49),

Khom
exvas =

R2
can f̃can(1+2 f̄lac)

4η(9+ f̃can)(1− f̄lac)
. (3.59)

Analogously to Eqs. (3.44) and (3.45), the pressure downscaling relations on the RVE of
extralacunar bone material read as

grad plac = Alac ·grad pexvas , (3.60)

and
grad pexlac = Aexlac ·grad pexvas . (3.61)

3.3. Step III: From the vascular/extravascular scales

to the macroscopic scale and vice versa

Finally, the last step deals with establishing mathematical relations between permeabili-
ties and pressure gradients of the extravascular and vascular material, and the respective
properties on the level of macroscopic bone tissue. As indicated in Section 2.3, two
morphological situations, and their effects on the corresponding up- and downscaling re-
lations, are studied.

On the one hand, the exact same morphological situation as in the first homogenization
step, i.e. arbitrarily oriented, cylindrical (vascular) pores mutually interacting with spheri-
cally shaped, extravascular bone matrix, is considered – in the following, this morphology
is referred to as “approach A”. While the permeability of the former material phase, kvas,
is again based on equating the Poiseuille flow in the pores with a Darcy-type transport
law, see Section 3.1, leading to

kvas =
R2

vas
8η

1 0 0
0 0 0
0 0 0


es,et,eu

, (3.62)

with Rvas as the radius of the vascular pores, and η as the fluid dynamic permeability.
The permeability of the extravascular bone material, Khom

exvas, is known from the second
homogenization step, see Section 3.2, and in particular Eq. (3.59). Analogously to Khom

exvas,
compare Section 3.2, the upscaled permeability on the RVE of macroscopic bone tissue,
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Khom
macro, reads as

Khom, A
macro = fvas

2π∫
ϕ

π∫
ϑ

kvas(ϑ ,ϕ) ·AA
vas(ϑ ,ϕ)

sinϑ

4π
dϑdϕ +(1− fvas)Khom

exvas ·AA
exvas , (3.63)

with the concentration tensors AA
vas and AA

exvas defined as

AA
vas(ϑ ,ϕ) =

[
1+PA

vas(ϑ ,ϕ) · (kvas(ϑ ,ϕ)−Khom, A
macro )

]−1

·

[
fvas

2π∫
ϕ=0

π∫
ϑ=0

sinϑ

4π
[1+PA

vas(ϑ ,ϕ) · (kvas(ϑ ,ϕ)−Khom, A
macro )]−1dϑdϕ

+(1− fvas)
[
1+PA

exvas · (Khom
exvas−Khom, A

macro )
]−1
]−1

,

(3.64)
and

AA
exvas =

[
1+PA

exvas · (Khom
exvas−Khom, A

macro )

]−1

·

[
fvas

2π∫
ϕ=0

π∫
ϑ=0

sinϑ

4π
[1+PA

vas(ϑ ,ϕ) · (kvas(ϑ ,ϕ)−Khom, A
macro )]−1dϑdϕ+

(1− fvas) ·
[
1+PA

exvas · (Khom
exvas−Khom, A

macro )
]−1
]−1

.

(3.65)

PA
vas(ϑ ,ϕ) and PA

exvas in Eqs. (3.64) and (3.65) are the inhomogeneity tensors for cylin-
drical and spherical inclusions embedded in a matrix of permeability Khom, A

macro , defined
analogously to Eqs. (3.32) and (3.37). Inserting these definitions of PA

vas(ϑ ,ϕ) and PA
exvas,

as well as the definition of kvas according to Eq. (3.62) into Eqs. (3.64) and (3.65) yields

AA
vas(ϑ ,ϕ) =

AA
vas, 11(ϑ ,ϕ) AA

vas, 12(ϑ ,ϕ) AA
vas, 13(ϑ ,ϕ)

AA
vas, 21(ϑ ,ϕ) AA

vas, 22(ϑ ,ϕ) AA
vas, 23(ϑ ,ϕ)

AA
vas, 31(ϑ ,ϕ) AA

vas, 32(ϑ ,ϕ) AA
vas, 33(ϑ ,ϕ)

 , (3.66)
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with the components of AA
vas(ϑ ,ϕ) following as

AA
vas, 11(ϑ ,ϕ) =

((
−6cos2

ϕ cos(2ϑ)+3cos(2ϕ)−21
)
( f̃can(2 f̄lac +1)×(

4 fvas−9)R2
can +( f̃can +9)( f̄lac−1) fvasR2

vas

)/
(

2( f̃can +9)( f̄lac−1)( f 2
vas +9 fvas)R2

vas−

4 f̃can(2 f̄lac +1)(7 fvas−9 fvas)+27)R2
can

)
,

(3.67)

AA
vas, 12(ϑ ,ϕ) =AA

vas, 21(ϑ ,ϕ)

=
(

3sin2
ϑ sin(2ϕ)( f̃can(2 f̄lac +1)×(

4 fvas−9)R2
can +( f̃can +9)( f̄lac−1) fvasR2

vas

)/
(
( f̃can +9)( f̄lac−1)( f 2

vas +9 fvas)R2
vas−

2 f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas)+27)R2

can

)
,

(3.68)

AA
vas, 13(ϑ ,ϕ) =AA

vas, 31(ϑ ,ϕ)

=
(

3sin(2ϑ)cos(ϕ)( f̃can(2 f̄lac +1)×(
4 fvas−9)R2

can +( f̃can +9)( f̄lac−1) fvasR2
vas

)/
(
( f̃can +9)( f̄lac−1)( f 2

vas +9 fvas)R2
vas−

2 f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas)+27)R2

can

)
,

(3.69)

AA
vas, 22(ϑ ,ϕ) =

((
6sin2

ϕ cos(2ϑ)+3cos(2ϕ)+21
)
( f̃can(2 f̄lac +1)×(

4 fvas−9)R2
can +( f̃can +9)( f̄lac−1) fvasR2

vas

)/
(

2( f̃can +9)( f̄lac−1)( f 2
vas +9 fvas)R2

vas−

4 f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas)R2

can

)
,

(3.70)

AA
vas, 23(ϑ ,ϕ) =AA

vas, 32(ϑ ,ϕ)

=
(

3sin(2ϑ)sin(ϕ)( f̃can(2 f̄lac +1)×(
4 fvas−9)R2

can +( f̃can +9)( f̄lac−1) fvasR2
vas

)/
(
( f̃can +9)( f̄lac−1)( f 2

vas +9 fvas)R2
vas−

2 f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas)+27)R2

can

)
,

(3.71)
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and

AA
vas, 33(ϑ ,ϕ) =

(
(−9+3cos(2ϑ))( f̃can(2 f̄lac +1)(4 fvas−9)R2

can+

( f̃can +9)( f̄lac−1) fvasR2
vas

)/
(
( f̃can +9)( f̄lac−1)( f 2

vas +9 fvas)R2
vas−

2 f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas)+27)R2

can

)
,

(3.72)

as well as

AA
exvas =−

(
9
(
6 f̃can(2 f̄lac +1)( fvas−1)R2

can +( f̃can +9)( f̄lac−1) fvasR2
vas
))/(

2 f̃can(2 f̄lac +1)( fvas(7 fvas−9)+27)R2
can−

( f̃can +9)( f̄lac−1) fvas( fvas +9)R2
vas

)
1 .

(3.73)

Inserting furthermore the definitions of AA
vas(ϑ ,ϕ) and AA

exvas according to Eqs. (3.66) –
(3.73) into Eq. (3.63) yields the following expression for Khom, A

macro :

Khom, A
macro =

(
54 f̃ 2

can(2 f̄lac +1)2( fvas−1)2R4
can

( f̃can +9)( f̄lac−1)
+( f̃can +9)( f̄lac−1) f 2

vasR
4
vas+

f̃can(2 f̄lac +1)(13 f 2
vas−18 fvas)R2

canR2
vas

)
/(

4η( f̃can +9)( f̄lac−1)( f 2
vas +9 fvas)R2

vas−

8η f̃can(2 f̄lac +1)(7 f 2
vas−9 fvas +27)R2

can

)
1 .

(3.74)

Furthermore, two pressure downscaling relations are obtained; one relating the macro-
scopic pressure gradient to the pressure gradient in the vascular pores,

grad pA
vas = AA

vas(ϑ ,ϕ) ·grad pmacro , (3.75)

and one relating the macroscopic pressure gradient to the pressure gradient arriving in the
extravascular bone material,

grad pA
exvas = AA

exvas ·grad pmacro . (3.76)
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On the other hand, the second morphological scenario considered in this work comprises
vascular pores oriented in the direction of the main anatomical axis as it occurs in long
bones, with the extravascular bone material acting as a matrix phase hosting the pores in
form of inclusions, see Section 2.3 – in the following this morphology is referred to as
“approach B”. The corresponding homogenized macroscopic permeability tensor reads as

Khom,B
macro = fvaskvas ·AB

vas +(1− fvas)Khom
exvas ·AB

exvas , (3.77)

with the pressure gradient concentration tensors AB
vas and AB

exvas defined as

AB
vas =

(
1+PB

vas · (kvas−Khom
exvas)

)−1×[
fvas
(
1+PB

vas · (kvas−Khom
exvas)

)−1
+(1− fvas) ·1

]−1
,

(3.78)

and

AB
exvas =

[
fvas
(
1+PB

vas · (kvas−Khom
exvas)

)−1
+(1− fvas) ·1

]−1
, (3.79)

where PB
vas is the inhomogeneity tensor of a cylindrical inclusion, embedded in a ma-

trix of permeability Khom
exvas, see Eq. (3.32). Considering the latter definition, as well as

kvas according to Eq. (3.62), and Khom
exvas according to Eq. (3.59), in Eqs. (3.78) and (3.79),

yields

AB
vas =

1 0 0
0 2

fvas+1 0

0 0 2
fvas+1

 , (3.80)

and

AB
exvas =

1 0 0
0 1

fvas+1 0

0 0 1
fvas+1

 . (3.81)

Insertion of these definitions of AB
vas and AB

exvas into Eq. (3.77) gives access to the perme-
ability tensor of macroscopic homogenized bone tissue,

Khom, B
macro = Khom, B

macro, les⊗ es +Khom, B
macro, tet⊗ et +Khom, B

macro, t ,eu⊗ eu (3.82)

with the longitudinal permeability, Khom, B
macro, l, reading as

Khom, B
macro, l =

2 f̃canR2
can(2 f̄lac +1)( fvas−1)+ fvasR2

vas(9+ f̃can)( f̄lac−1)
8η(9+ f̃can)( f̄lac−1)

, (3.83)
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and with the permeability in transverse direction, Khom, B
macro, t, reading as

Khom, B
macro, t =

f̃canR2
can(2 f̄lac +1)( fvas−1)

(36η +4η f̃can)( f̄lac−1)( fvas +1)
. (3.84)

The respective downscaling relations for the pressure gradients follow as

grad pB
vas = AB

vas ·grad pmacro , (3.85)

and

grad pB
exvas = AB

exvas ·grad pmacro . (3.86)
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4. Model evaluation

This section is devoted to presenting how the multiscale model presented in Section 3 can
be numerically evaluated. First, the focus is on permeability upscaling, from the level
of single canaliculi to the level of macroscopic bone tissue, see Section 4.1. Then, it is
shown how the same model can be used to also downscale macroscopically applied pres-
sure gradients to the scale of canalicular pores, see Section 4.2.

For the subsequently presented simulations, physiologically reasonable ranges of bone
porosities on all covered hierarchical levels have been considered. While the hence rele-
vant canalicular, lacunar, and vascular porosities have already been discussed thoroughly
in Section 2.1, see Tables 2.1, 2.3, and 2.6, the aforementioned ranges are, for the sake of
clarity, briefly summarized below:

• The canalicular porosity, fcan, has been identified to amount to 0.007 in murine
mid-diaphysial femurs, based on focused ion beam scanning electron microscopy
(Schneider et al., 2011); to 0.02 in the human mandible, based on synchrotron radi-
ation nano-computed tomography scanning (Hesse et al., 2015); and to 0.03 in the
human diaphysial femur, based on micro-computed tomography scanning (Benalla
et al., 2013). However, it must be taken into account that the model requires f̃can as
input, i.e. the canalicular porosities quantified on the RVE of extralacunar bone ma-
terial, see Eq. (3.21). For example, when considering an average lacunar porosity of
f̄lac = 0.059, and an average vascular porosity of fvas = 0.075, fcan = 0.007 relates
to f̃can = 0.008. In the following, a canalicular porosity range of [0.005, 0.03] is
considered for fcan, see Table 2.6.

• The lacunar porosity, flac, has been evaluated to be 0.013 for the murine femoral
mid-diaphysis (Schneider et al., 2007), around 0.02 for the human femoral mid-
diaphysis (Benalla et al., 2013), and 0.015 for rat diaphysial bone (Tommasini
et al., 2012; Palacio–Mancheno et al., 2014) by means of μCT, especially utilizing
synchrotron-radiation (SR-μCT) (Hesse et al., 2014a,b). In other studies, however,
such as by Tai et al. (2008), much higher porosities of around 0.09 were measured,
utilizing scanning electron microscopy in back-scattered mode on murine bone, see
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Table 2.3. Considering, as explained above, the difference between flac and f̄lac (i.e.
the lacunar porosity quantified on the RVE of macroscopic tissue and on the RVE
of extravascular material respectively), see Eq. (3.50), the lacunar porosity range in
the following, is [0.01, 0.1] for flac.

• The vascular porosity, fvas, has been identified to amount to 0.06 – 0.09 in the hu-
man femoral mid-diaphysis by means of computed tomography and micro-
radiography (Bousson et al., 2000, 2001; Cooper et al., 2003, 2007), to 0.06 – 0.07
by means of digitalized virtual microscopy also measured in the human femur (Feik
et al., 1997; Stein et al., 1999), and to 0.01 – 0.05 in murine bone by means of syn-
chrotron radiation micro-computed tomography (Schneider et al., 2007, 2009), see
Table 2.1. Thus, a porosity range of [0.05, 0.1] is considered for fvas in the follow-
ing.

Furthermore, the up- and downscaling relations derived in Section 3 explicitly contain the
vascular and canalicular radii. Referring to Tables 2.2 and 2.5, the following ranges are
considered as physiologically reasonable:

• Based on scanning electron microscopy and transmission electron microscopy (Marotti,
1990; You et al., 2004), canalicular diameters of 150 to 400 nm have been identi-
fied, while atomic force microscopy has suggested a range of 400 to 500 nm (Lin
and Xu, 2011), see Table 2.5. Hence, in the following, a canalicular diameter range
of [150, 500 ] nm is considered.

• By means of μCT, vascular radii of 5 – 7 μm were measured for rodent bones on
the one hand, while values of 35 – 80 μm (Martin et al., 1998; Renders et al., 2007;
Goulet et al., 2008) were found for human bones on the other hand. Accordingly, a
range of [10, 80] μm is considered for dvas.

Additionally, the derived mathematical (upscaling and downscaling) relations are gov-
erned by the dynamic viscosity of the pore fluid, η , see for example Eqs. (3.43), (3.59),
(3.60), (3.74), (3.83), and (3.84). It is well known that the dynamic viscosity of bulk
water amounts to ηbulkwater = 0.001 Pa s – this value has been used frequently in both
experimental and theoretical studies, related to the movement of fluid in the lacunar-
canalicular pore system of bone (Gururaja et al., 2005; Weinbaum et al., 1994; Gardinier
et al., 2010). However, it should be noted that water is a polarized fluid, and as such
changes its transport behavior when adjacent to electrically charged surfaces (such as
the hydroxyapatite crystals, building up extracanalicular bone material). In fact, so-called
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structured, or ice-type water (of “liquid crystalline” nature) forms, leading to a higher vis-
cosity and a lower diffusivity in the affected regions, referred to as “surface zone” (Hen-
niker, 1949), or “exclusion zone” (Pollack, 2013), must be considered as compared to the
undisturbed bulk state. The thickness of this zone ranges from some hundred microm-
eters up to a few millimetres (Ichikawa et al., 2002; Pivonka et al., 2004), as evidenced
by several different experimental modalities, see Abdalrahman et al. (2015) for a brief
overview. Moreover, Ichikawa et al. (2000, 2002) quantified by means of molecular dy-
namics studies (on water molecules which are surrounded by clay-type mineral surfaces)
that the viscosity in structured water increases on average by a factor of approximately
7. Hence, given that the pore fluid in bone tissue is quite similar to water, it is assumed
that the dynamic viscosity of the fluid contained in all considered pore spaces amounts to
ηbonepores = 7ηbulkwater = 0.007 Pa s.

4.1. Permeability upscaling

4.1.1. Extralacunar permeability

Evaluating Eq. (3.43) for varying underlying parameters shows how Khom
exlac is quantita-

tively influenced by them. First, the canalicular porosity fcan and the canalicular radius
Rcan are held constant, at fcan = 0.02 and Rcan = 100 nm, while the pore fluid viscosity
is varied between 0.001 Pa s (which is the viscosity of bulk water) and 0.01 Pa s(related,
for example, to the effect of water layering). It turns out that this tenfold increase of
the viscosity leads, as expected, to a corresponding reduction of the extralacunar perme-
ability Khom

exlac by factor 10, from Khom
exlac = 6.3× 10−15 m2/ (Pa s) for η = 0.001 Pa s to

Khom
exlac = 6.3×10−16 m2/ (Pa s) for η = 0.01 Pa s, see Figure 4.1(a).

In a second study, the pore fluid viscosity is held constant at η = 0.007 Pa s, while fcan

is varied between 0.005 and 0.03, and Rcan between 75 and 250 nm, in order to elucidate
how Khom

exlac changes within the experimentally relevant, physiologically meaningful range
of fcan and Rcan. Within this considered range, Khom

exlac apparently increases not quite, but
almost linearly with increasing fcan, while increasing Rcan leads to an exponential increase
of Khom

exlac, see Figure 4.1(b).
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Figure 4.1.: (a) Effect of varying pore fluid viscosity on the extralacunar permeability Khom
exlac (while con-

sidering fcan = 0.02 and Rcan = 100 nm); (b) the dependence of Khom
exlac on the canalicular porosity fcan and

radius Rcan (while considering η = 0.007 Pa s)

4.1.2. Extravascular permeability

The mathematical expression derived for homogenizing the permeability on the level of
extravascular bone material, i.e. Eq. (3.56), contains the semi-empirical coefficient λ ,
0≤ λ ≤ 5, see Section 3.2. Before studying the influence of other parameters, the impor-
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tance of λ in the present context is first elucidated. For that purpose, Eq. (3.56) is numer-
ically evaluated, thereby considering fcan = 0.02, flac = 0.1, Rcan = 100 nm, Rlac = 5 μm,
and η = 0.007 Pa s, see Figure 4.2. Obviously, within the relevant λ -range, the influence
of λ on Khom

exvas is negligible – increasing λ from 0 to 5 implies an increase of Khom
exvas by only

2.43%. Furthermore, it has been argued in Section 3.2 that λ can be eliminated from the
permeability relation if Rlac >> Rcan, or, in other words, if Rlac

Rcan
→ ∞, eventually leading

to Eq. (3.59). In the following, this simplifying assumption is corroborated. In particular,
Eq. (3.56) is evaluated for Rlac

Rcan
∈ [5, 103] and for λ ∈ [0, 5], while considering fcan = 0.02,

flac = 0.1, and η = 0.007 Pa s. The results of this analysis unambiguously show that
for ratios Rlac

Rcan
in the physiologically relevant range, i.e. between [101, 102], the influence

of this ratio on Khom
exvas is negligible, hence setting Rlac

Rcan
→ ∞ in Eq. (3.56) is justified, see

Figure 4.3. The latter conclusion has also been confirmed in the work of Markov et al.
(2009), who could show that for setting Rlac

Rcan
→ ∞ the condition Rlac >>

√
Khom

exlac must be
satisfied – this is actually the case for the RVE of extravascular bone material.

Hence, for further analysis of Khom
exvas, Eq. (3.59) is utlized. According to this equation,

Khom
exlac is governed by the porosities fcan and fvas, by the canalicular radius Rcan, as well

as by the pore fluid viscosity. While the latter is held constant at η = 0.007 Pa s,
the first study related to the behavior of Khom

exlac comprises varying porosities, between
fcan ∈ [0.005, 0.03] and flac ∈ [0.01, 0.1], revealing that within the studied porosity ranges,
Khom

exlac increases with increasing porosities almost linearly, see Figure 4.4(a). Increasing
the porosities, beyond experimentally motivated upper limits, would show that the depen-
dencies of Khom

exlac on fcan and flac are actually non-linear (not shown here).

Furthermore, the structure of Eq. (3.59) readily suggests that Rcan has a major influence
on Khom

exvas. This dependence is illustrated by varying Rcan between [75, 250] nm, while
considering fcan = 0.02 and flac = 0.1, see Figure 4.4(b).
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Figure 4.2.: Influence of λ on the homogenized extravascular permeability Khom
exvas, for λ within a range of 0

to 5 (while considering fcan = 0.02, flac = 0.1, Rcan = 100 nm, Rlac = 5 μm, η = 0.007 Pa s)
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Figure 4.3.: Dependence of the homogenized extravascular permeability Khom
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η = 0.007 Pa s)
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As for validation of the obtained extravascular permeabilities, corresponding values from
literature are considered, see Table 4.1. In these studies, the porosity was consistently
derived in intrinsic format. Hence, the homogenized, Darcy-type permeability, resulting
from Eq. (3.59) must be multiplied by the pore fluid viscosity, κhom

exvas =Khom
exvas ·η . The such

obtained intrinsic permeabilities agree well with the range given in the studies summa-
rized in Table 4.1. It is however striking that the results of the present study are actually
on the higher end of the range of the permeabilities given in Table 4.1. The reason for
this is that in the present study the cell processes contained in the canaliculi are neglected,
as opposed to some of the considered works, e.g. (Weinbaum et al., 1994; Zhang et al.,
1998; Smit et al., 2002; Beno et al., 2006; Lemaire et al., 2008), who do take this effect
into account.
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Table 4.1.: Values for the extravascular intrinsic permeability, based on combinations of experimental data
and theoretical analysis

Reference κexvas [m2] Method Direction

Gururaja et al. (2005) 6.7×10−18 FE of lacunar flow, adapted from
Weinbaum et al. (1994), without cell
process

Axial

Gururaja et al. (2005) 7.5×10−18 FE of lacunar flow, adapted from
Weinbaum et al. (1994), with cell process

Axial

Gururaja et al. (2005) 6.7×10−21 FE of lacunar flow, adapted from
Weinbaum et al. (1994), with+without cell
process

Radial

Weinbaum et al. (1994) 10−22−10−19 Ultrastructure model with cell process

Beno et al. (2006) 10−22−10−19 FE with μstructure measurements,
adapted from Weinbaum et al. (1994)

Radial

Lemaire et al. (2008) 5.9×10−18

−2×10−17
Adapted from Weinbaum et al. (1994)

Gailani et al. (2009) 5×10−25

−8×10−24
Poroelastic model and stress-relaxation
testing on bovine bone

Gardinier et al. (2010) 2.8×10−23 Rapid compaction of canine bone and
recording of intramedullary pressure

Interestingly, the homogenized permeability of extravascular bone material, Khom
exvas, see

Eq. (3.59), is exactly the same as the effective permeability found by Markov et al. (2009)
for a porous medium with spherical inclusions by utilizing the Maxwell-Garnett equation
which was originally derived for the electromagnetic behavior of a double-porous medium
(Garnett, 1904), according to following equation:

Khom
exvas = Khom

exlac
2Khom

exlac + klac +2 f̄lac(klac−Khom
exlac)

2Khom
exlac + klac−2 f̄lac(klac−Kexlac)

. (4.1)

Inserting Khom
exlac according to Eqs. (3.43) and klac according to (3.47) would yield Eq. (3.56).

4.1.3. Macroscopic permeability

As for the RVE of macroscopic bone tissue, two morphological concepts are pursued in
this work. Eq. (3.74) relates to approach A, defining the isotropic permeability due to
arbitrarily oriented, interpenetrating vascular pores, while Eq. (3.83) and (3.84), defining
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the longitudinal and transversal components of the macroscopic permeability tensor, re-
late to approach B, representing vascular pores oriented predominantly along the main
anatomical axis of long bones. However, it turns out that the two transversal components
are by around six orders of magnitude smaller than the longitudinal component, due to
which they are deemed irrelevant and presentation of the respective plots is omitted. In
the following, the results of evaluating Eqs. (3.74) and (3.83) for varying porosities are
presented. In particular, fcan was varied within a range of [0.005, 0.03], flac within a
range of [0.01, 0.1], and fvas within a range of [0.02, 0.1], see Figures 4.5. Notably, the
permeability results of approach A closely correspond to previously published values for
the macroscopic cortical permeability found in experimental and modeling approaches,
such as (Rouhana et al., 1981; Dillaman et al., 1991; Zhang et al., 1998; Malachanne
et al., 2008). Moreover, it becomes apparent that for both approaches A and B the effects
of fcan and flac are negligible, whereas increasing fvas has a decisive influence on Khom, A

macro

and Khom, B
macro . Hence, on the macroscopic level, the permeability is essentially only driven

by the vascular pores, and the permeability on the extravascular matrix does not play a
role. It is furthermore striking that, in the studied range of fvas, Khom, B

macro, l is around 4.5
times the value of Khom, A

macro .

Interestingly, the introduction of the so-called specific surface, SV, which can readily be
linked to the vascular radius by

Rvas =
2 fvas

SV
, (4.2)

into Eqs. (3.74) and (3.83) yields a Kozeny-Carman-type relation for Khom, A
macro and Khom, B

macro, l,
see also Abdalrahman et al. (2015). This means that the macroscopic homogenized per-
meability exhibits asymptotic behavior, tending towards infinity for fvas = 1. The specific
surface of bone tissue can be introduced empirically, as a function of fvas, see e.g (Martin
et al., 1998; Lerebours et al., 2015b).
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Figure 4.5.: The macroscopic permeabilities Khom, A
macro and Khom, B

macro, l for varying fcan, flac, and fvas, (while
considering Rcan = 100 nm, Rvas = 25 μm); (a) and (b) for fcan ∈ [0.005, 0.03] while flac = 0.1 and fvas =
0.07; (c) and (d) for flac ∈ [0.01, 0.1] while fcan = 0.02 and fvas = 0.07; and (e) and (f) for fvas ∈ [0.02, 0.1]
while fcan = 0.02 and flac = 0.1
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4.2. Pressure gradient downscaling

As already pointed out earlier, the mathematical framework derived in Section 3 can not
only be used for permeability upscaling (as demonstrated in Section 4.1), but also for
downscaling pressure gradients from the macroscopic scale to the scale of the canalicular
pores. In the following, for the sake of demonstration, the downscaling relations given
in Eqs. (3.44), (3.61), (3.76), and (3.86) are numerically evaluated sequentially. Hence
Eqs. (3.76) and (3.86), respectively, are employed to downscale macroscopic pressure gra-
dients to the level of the extravascular bone material. The resulting pressure gradient is
inserted into Eq. (3.61) to downscale it to the level of extralacunar bone material. Finally,
the pressure gradient occurring in the extralacunar bone material is inserted into Eq. (3.44)
to obtain the sought-after pressure gradient in the canalicular pores, grad pcan(ϑ ,ϕ). Since
it has been established that fluid flow in the canalicular pores presumably occurs in longi-
tudinal direction only, the longitudinal contribution of grad pcan(ϑ ,ϕ) is computed:

grad pcan,s(ϑ ,ϕ) = es(ϑ ,ϕ) ·grad pcan(ϑ ,ϕ) , (4.3)

with
es(ϑ ,ϕ) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)T . (4.4)

Furthermore, the influence of the orientation of the macroscopic pressure gradients is
studied. For that purpose, the following macroscopic pressure gradients are consid-
ered: grad pmacro = (1 0 0)T MPa/mm, grad pmacro = (0 1 0)T MPa/mm, and grad pmacro =

(0 0 1)T MPa/mm. Then, considering a specific configuration of the three RVEs, the
direction-dependence of the canalicular pressure gradient in response to a certain macro-
scopic pressure gradient can be investigated. Prescribing fcan = 0.02, flac = 0.1, fvas =

0.07, Rcan = 100 nm, Rvas = 50 μm, and η = 0.007 Pa s leads to the canalicular pressure
gradients shown in Figure 4.6. As expected, the maximum canalicular pressure gradient
occurs in the canaliculi which are oriented in direction of the macroscopic pressure gra-
dient.

In addition, it is interesting to study the effect of the porosities on the microscopically
resulting pressure gradients, in the typical ranges as described at the beginning of Section
4. Considering a macroscopic pressure gradient of grad pmacro = (0 0 1)T MPa/mm in
Figure 4.7. Obviously, within the considered porosity ranges, the influence of fcan is of
minor importance, whereas max(grad pcan,s), i.e. the maximum pressure gradient occur-
ring along all possible pore orientations, increases more significantly with increasing flac

and with decreasing fvas. In any case, variations within the considered porosity ranges do
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not lead to substantial changes in the corresponding pressure gradients in the canalicular
pores.

Furthermore, it is striking that arbitrarily oriented, interpenetrating vascular pores (ap-
proach A) induce much higher canalicular pressure gradients than vascular pores oriented
along the main anatomical axis (approach B). Clearly, these results do not change when
considering a differently oriented macroscopic pressure gradient; what changes is merely
the direction at which the maximum canalicular pressure gradients occur.

Of course, the downscaling relations that have been used so far to compute the canalic-
ular pore pressure gradients in response to a macroscopically prescribed one can also
be employed to estimate the pressure gradients in material phases discernible on the
observation scales in-between, see Figure 4.9 for the pressure gradients occurring in
the extravascular bone material, and Figure 4.10 for the pressure gradients occurring
in the extralacunar bone material, both related to a macroscopic pressure gradient of
grad pmacro = (0 0 1)T MPa/mm. The aforementioned figures reveal that for approach A,
i.e for arbitrarily oriented vascular pores, a non-negligible porosity-dependence is only
observed for the effect of grad pexlacon flac, whereas for approach B, i.e. for the vascular
pores oriented in direction of the main anatomical axis, grad pexvas is sensitive to changes
of fvas, and grad pexlac is sensitive to changes of both fvas and fcan.
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Figure 4.6.: Downscaled canalicular pressure gradient in longitudinal direction of the arbitrarily oreinted
canaliculi, grad pcan,s(ϑ ,ϕ), for arbitrairly oriented vascular pores, see (a), (c) and (e), as well as for vascular
pores oriented in the main anatomical direction, see (b), (d), and (f); (a) and (b) relate to a macroscopic
pressure gradient of grad pmacro = (1 0 0)T MPa/mm, (b) and (c) relate to grad pmacro = (0 1 0)T MPa/mm,
and (e) and (f) relate to grad pmacro = (0 0 1)T MPa/mm, see (e) and (f)
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Figure 4.7.: Dependence of the maximum canalicular pressure gradient in pore direction, max(grad pcan,s)
for grad pmacro = (001)T MPa/mm, on the porosities fcan, flac, and fvas; for fvas = 0.05, see (a) and (b),
fvas = 0.075, see (c) and (d), and fvas = 0.1, see (e) and (f); in all studies fcan is varied between [0.005, 0.03]
and flac between [0.01, 0.1], while Rcan = 100 nm and Rvas = 50 μm; (a), (c), and (e) relate to arbitrarily
oriented vascular pores (approach A), while (b), (d), and (f) relate to vascular pores oriented in direction of
the main anatomical axis (approach B)
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Figure 4.8.: dependence of the maximum canalicular pressure gradient in pore direction for arbitrarily
oriented vascular pores, max(grad pA

can,s) for grad pmacro = (001)T MPa/mm, on the radii Rcan and Rvas; for
fvas = 0.05, see (a), fvas = 0.075, see (b), and fvas = 0.1, see (c); in all studies Rcan is varied between
[75, 200] nm and Rvas between [10, 60] μm, while fcan = 0.03 and flac = 0.1
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Figure 4.9.: Dependence of the downscaled extravascular pressure gradients grad pexvas for a macroscopic
pressure gradient of grad pmacro = (0 0 1)T MPa/mm, for arbitrairly oriented vascular pores, see (a), (c)
and (e) as well as for vascular pores oriented in the main anatomical direction, see (b), (d), and (f), on
fvas ∈ [0.05, 0.1], while considering fcan = 0.02, flac = 0.1, see (a) and (b), depending on flac ∈ [0.01, 0.1],
while fcan = 0.02, fvas = 0.07, see (c) and (d), and depending on fcan ∈ [0.005, 0.03], while flac = 0.1,
fvas = 0.07, see (e) and (f) (while considering Rcan = 100 nm, Rvas = 50 μm)
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Figure 4.10.: Dependence of the downscaled extralacunar pressure gradients grad pexlac for a macroscopic
pressure gradient of grad pmacro = (0 0 1)T MPa/mm, for arbitrairly oriented vascular pores, see (a), (c)
and (e) as well as for vascular pores oriented in the main anatomical direction, see (b), (d), and (f), on
fvas ∈ [0.05, 0.1], while considering fcan = 0.02, flac = 0.1, see (a) and (b), depending on flac ∈ [0.01, 0.1],
while fcan = 0.02, fvas = 0.07, see (c) and (d), and depending on fcan ∈ [0.005, 0.03], while flac = 0.1,
fvas = 0.07, see (e) and (f) (while considering Rcan = 100 nm, Rvas = 50 μm)

51



5. Assessment of the capacity of
canalicular fluid flow as stimulus
of osteocyte activities in cortical
bone

This section is finally devoted to addressing the fundamental question of this thesis,
namely whether the fluid flow occurring in the canalicular pores of bone is a potent stimu-
lus, effectively mediating the activities of osteocytes. For simplicity and for conciseness,
the focus is thereby on cortical bone, whereas the analysis presented subsequently could
be similarly carried out for trabecular bone.

5.1. Estimation of a physiologically relevant

macroscopic pressure gradient

Based on gait analysis (Forner–Cordero et al., 2006), strain gauge measurements (Cordey
and Gautier, 1999), and mathematical modeling (Duda et al., 1997), a (compressive) nor-
mal force of N = −700 N, and a bending moment of M = 50 Nm were identified to
represent physiological loading conditions to which a human femur is typically subjected
(Lerebours et al., 2015a). Assuming that in the long, median part of a femur (i.e., the vas-

tus intermedius), the organ structure somewhat resembles an annular beam, see Figure 5.1,
it seems reasonable to utilize the well-established concept of beam theory for translating
the aforementioned compressive force and bending moment into a corresponding distri-
bution of mechanical stress.
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Figure 5.1.: The midshaft of a
long bone is approximated as a
hollow cylinder with an inner
Ri and an outer radius Ro, ex-
posed to an axial loading N and
a bending moment My.

The classical equation defining the stress distribution in the cross-section of an Euler-
Bernoulli beam due to combined axial and bending loading reads as (Timoshenko, 1953;
Gere and Timoshenko, 1997; Mang and Hofstetter, 2004)

σxx(y,z) =
N
A
+

My

Iy
z−Mz

Iz
y . (5.1)

where σxx(y,z) is the normal stress component in x-direction (i.e. the main anatomical
axis if the beam is considered to represent a long bone), N is the normal force, My and
Mz, respectively, are the bending moments with respect to the y- and z-axes, Iy and Iz,
respectively, are the moments of inertia (or second moment of area) with respect to the
y- and z-axes, respectively, and x, y, and z are the coordinates of a Cartesian coordinate
system whose origin is located at the centroid of the cross-section. The shape of the
cross-section implies that

Ix = Iz = I =
A
4
(
R2

o +R2
i
)

(5.2)

with Ri and Ro being the inner and outer radii of the annular beam – hence, Ri defines
the medullary cavity of the organ – and A is the cross-sectional area, A = (R2

o−R2
i )π .

Eq. (5.1) is now evaluated while considering that N = −700 N, My = M = 50 Nm, and
Mz = 0. Further taking into account that Ri = 5.05 mm and Ro = 14.2 mm (Liu et al.,
2017; Huang et al., 2012), then leads to

σxx[MPa] =−1.30+1.60×103 · z . (5.3)

For translating σxx(z) into a corresponding pressure distribution, the hydrostatic part of
the related stress tensor is considered:

pmacro(z) =−
1
3

tr(σ(x)) =−1
3

σxx(z) (5.4)
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In further consequence,

grad pmacro =

 0
0

−533.3


ex,ey,ez

, (5.5)

given in MPa/mm, follows.

5.2. Estimation of fluid velocities typically

occurring in the canalicular pores

In the following, the fluid flow occurring in the canalicular pores will be estimated based
on the downscaling relations that were derived in Section 3 and discussed in terms of
numerical evaluation in Section 4.2, considering macroscopic pressure gradients found
in Section 5.1 as input quality. Combining the aforementioned downscaling relation, the
subsequently presented numerical results are based on the following two equations:

vA
can(ϑ ,ϕ) =−kcan(ϑ ,ϕ) ·Acan(ϑ ,ϕ) ·Aexlac ·AA

exvas ·grad pmacro , (5.6)

and
vB

can(ϑ ,ϕ) =−kcan(ϑ ,ϕ) ·Acan(ϑ ,ϕ) ·Aexlac ·AB
exvas ·grad pmacro , (5.7)

The component of interest is the flow along the canalicular longitudinal axis, requiring the
calculation of the longitudinal component of the canalicular velocity vector, according to

vA
can,s(ϑ ,ϕ) = es(ϑ ,ϕ) ·vA

can(ϑ ,ϕ) (5.8)

and
vB

can,s(ϑ ,ϕ) = es(ϑ ,ϕ) ·vB
can(ϑ ,ϕ) , (5.9)

where the maximum velocities, max(vA
can, s) and max(vB

can, s), are obtained for canaliculi
arranged parallel to the macroscopic pressure gradient.

Subsequently, several numerical studies are presented, illustrating the effects of variations
in fcan, flac, fvas, Rcan, and Rvas on the resulting velocities, thereby considering the ranges
of these parameters that have been justified to be physiologically meaningful in Section 4,
namely fcan ∈ [0.005, 0.03], flac ∈ [0.01, 0.1], fvas ∈ [0.05, 0.1], Rcan ∈ [75, 200] nm, and
Rvas ∈ [10, 60] μm, see Figures 5.2, 5.3 and 5.4.
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Figure 5.2.: Dependence of the maximum canalicular velocities max(vA
can,s) and max(vB

can,s) on the porosities
flac in a range of 0.01 – 0.1, and fcan in a range of 0.005 – 0.03 for arbitrarily oriented vascular pores, see
(a), (c), and (e), and for longitudinally oriented vascular pores (b), (e), and (f), considering fvas = 0.05, see
(a) and (b), fvas = 0.075, see (c) and (d), and fvas = 0.1, see (e) and (f), (while considering Rcan = 100 nm
and Rvas = 50 μm)
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Figure 5.3.: Dependence of the maximum canalicular velocities max(vA
can,s) on the radii Rvas ranging be-

tween 10 – 60 μm, and Rcan ranging between 75 – 200 nm, for arbitrarily oriented vascular pores, con-
sidering fvas = 0.05, see (a), for fvas = 0.075, see (b), and for fvas = 0.1, see (c) (while fcan = 0.02 and
flac = 0.1)
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Figure 5.4.: Dependence of the maximum canalicular velocities max(vB
can,s) on the radius Rcan ranging

between 75 – 200 nm, for longitudinally oriented vascular pores, considering fvas = 0.05, see (a), and for
fvas = 0.1, see (b) (while considering fcan = 0.02 and flac = 0.1)
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Figure 5.5.: Dependence of the mean canalicular velocities mean(vA
can,s) and mean(vB

can,s) on the porosities
flac in a range of 0.01 – 0.1, and fcan in a range of 0.005 – 0.03 for arbitrarily oriented vascular pores, see
(a), (c), and (e), and for longitudinally oriented vascular pores (b), (e), and (f), considering fvas = 0.05, see
(a) and (b), fvas = 0.075, see (c) and (d), and fvas = 0.1, see (e) and (f), (while considering Rcan = 100 nm
and Rvas = 50 μm)
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Figure 5.6.: Dependence of the mean canalicular velocities mean(vA
can,s) on the radii Rcan ranging between

75 – 200 nm, and Rvas ranging between 10 – 60 μm, for randomly oriented vascular pores, considering
fvas = 0.05, see (a), fvas = 0.075, see (b), and fvas = 0.1, see (c) (while considering fcan = 0.02 and flac =
0.1)
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Figure 5.7.: Dependence of the mean canalicular velocities mean(vB
can,s) on the radius Rcan ranging between

75 – 200 nm, for longitudinally oriented vascular pores, considering fvas = 0.05, see (a), fvas = 0.075, and
fvas = 0.1, see (c) (while considering fcan = 0.02 and flac = 0.1)
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5.3. Comparison of model predictions and

experimental data

A large number of experiments have been performed in order to verify the so-called “fluid
flow-hypothesis”, which is based on the assumption that the shear forces acting on cell
body and cell processes of osteocytes resulting from the flow of the surrounding pore
fluid lead to excitation of the cell. For example, parallel plate setups described by by
Klein–Nulend et al. (1995b) and originally by Frangos et al. (1988) have been utilized
in many studies, showing that shear forces of around 0.01 to 3 Pa prompt an increased
ATP production in the cell (Vaughan et al., 2014; Genetos et al., 2005; Smalt et al., 1997),
higher levels of prostaglandin (Bakker et al., 2003; Klein–Nulend et al., 1995a; Haut Don-
ahue et al., 2003), and elevated levels of intracellular calcium ions (Haut Donahue et al.,
2003). The cells are usually cultured in a monolayer and firmly attached to a glass slide
before they are placed in the flow channel, which has two fluid reservoirs on either end,
one higher than the other; thus the flow is driven by gravity, while a constant pressure
head is maintained by a pump that drives the fluid back up from the lower reservoir to
the higher one. The shear forces that were exerted on either osteoblasts or osteocytes in
the 2D flow chamber experiments varied between 0.01 Pa (Smalt et al., 1997) and 2 Pa
(Jacobs et al., 1998), depending on the experimental geometry and the viscosity of the
utilized fluid. In many studies (Frangos et al., 1988; Genetos et al., 2005; Bakker et al.,
2003; Klein–Nulend et al., 1995a; Haut Donahue et al., 2003; Kreke et al., 2005; Jacobs
et al., 1998), the shear force acting onto the cell wall was estimated by means of

τ =
6Qη

bh2 , (5.10)

relating the cell wall shear force τ to the average volumetric flow rate in the channel
Q, with h · b being the channel cross-sectional area, and η the dynamic fluid viscosity.
However, the equation above is based on the assumption of steady laminar flow, and can
thus be only applied to a very limited amount of cases in vitro and is not likely to apply
to in vivo conditions (Scheiner et al., 2015). It should also be mentioned that most of
the considered studies utilized a fluid viscosity of η = 0.001 Pa s. However, the actual
viscosity of bone pore fluid is expected to be higher than that, by around factor 7, see the
respective discussion at the beginning of Section 4. Hence, the reliability and adequacy
of experimentally obtained shear forces is rather questionable.
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Table 5.1.: Values for the fluid velocity v that have been shown to stimulate bone cells in vitro

Reference Experiment v [μm/s] Results

Genetos et al. (2005) Steady laminar fluid flow on
osteoblasts in flow channel
for 5 minutes

44 ·103 Increase of ATP production
in 1st minute of stimulation

Haut Donahue et al. (2003) Oscillating fluid flow on
osteoblasts, with different
viscosities, flow rates and
peak shear stresses

107 ·103

26.8 ·103

68.5 ·103

Increased intracellular Ca2+

concentration and
prostaglandin

Smalt et al. (1997) Osteoblasts in flow channel
with varying steady flow
rates and experiments with
increased viscosity

200
660
132 ·103

NO and PGE2 production,
especially high for higher
viscosity

Kreke et al. (2005) Steady laminar flow on
bone marrow stromal cells

7.5 ·103 Osteoblastic cell
differentiation

Jacobs et al. (1998) Osteoblasts in parallel flow
chamber; constant,
oscillating, and pulsed flow

107 ·103 Increased intracellular Ca2+;
response lowest for
oscillating, decrease for
higher frequency

Bakker et al. (2001) Pulsating fluid flow in flow
chamber on osteoblasts

27.8 ·103

45.8 ·103

87.5 ·103

NO and PGE2 production

Sinlapabodin et al. (2016) Perfusion bioreactor with
osteoblast precursor cells,
30 or 60 min steady flow

434
1.30 ·103

2.17 ·103

Osteogenic differentiation

Li et al. (2009) hBMSCs in perfusion
bioreactor with different
flow rates and varying shear
stresses by adapting fluid
viscosity; fluid dynamics
simulation for shear stress

430
870
1.30 ·103

Increased osteoblast
differentiation, especially
for the highest shear stress
(0.015 Pa) and the lowest
mass transport (3 ml

min )

Bancroft et al. (2002) Long-term fluid perfusion
of 3D scaffold seeded with
marrow stromal osteoblasts

18.5
61.7
185

Enhanced matrix deposition

For the above-mentioned reasons, only directly measured fluid flow velocities are con-
sidered in the following, see the overview presented in Table 5.1. Besides osteocytes (or
osteocyte-type cells), this overview includes other kinds of cells occurring in bone as

62



well.8 Thereby, the effects of the fluid velocities acting on these cells in vitro include
indications of immediate anabolic activity such as ATP, nitric oxide and prostaglandins
(Bonewald, 2006). Nitric oxide, a short-lived radical, is not only produced by osteocytes,
but also by osteoblasts in response to mechanical loading in order to promote bone for-
mation and suppress resorption by suppressing osteoclastogenisis via OPG and RANK-L
signaling (Smalt et al., 1997; Tan et al., 2007). The type-E prostaglandins, especially
prostaglandin E2, that are produced by mechanical loading have been shown to promote
as well as suppress bone resorption and formation (Pilbeam et al., 2008; Bonewald and
Johnson, 2008; Kamel et al., 2006). PGE2 production is enabled by the entrance of Ca2+

into the osteocyte, possibly through mechanosensitive channels (Ajubi et al., 1999).

As seen in Table 5.1, the experimentally used fluid velocities are much (by orders of mag-
nitude) higher than most of the canalicular velocities that were computed by means of the
multiscale model presented in this work, see Section 5.2, irrespective of the considered
parameter variations. The only effective “amplifier” of the canalicular fluid flow seems
to be the radius of the canaliculi, although it should be noted that not even the maximum
fluid flow velocities related to the maximum canalicular radii reach the velocities which
turned out to be required to stimulate cells in vitro, see Figures 5.2, 5.3 and in particular
5.4; and this is even more true for the average velocities, being the arithmetic mean over
all possible pore orientations, see Figures 5.6 – 5.7. One important contributor to this out-
come is certainly the effect of water layering which effectively reduces the permeability
of bone tissue and thus leads to a decreased canalicular flow velocity by a factor 7; relat-
ing to an increase of the viscosity from η = 0.001 Pa s to η = 0.007 Pa s.

Recalling the initially posed key question of this thesis, these results imply that, at least
for the bone configurations studied in this work, the pressure gradient-induced fluid flow
in the canalicular pores fails to be a potent stimulus for osteocyte activities. However,
several situations are conceivable in which the here computed velocities may be substan-
tially exceeded; for example when considering areas subjected to much higher bending
moments; when considering areas of porosity heterogeneities (i.e. when the composition
of the bone tissue further increases the loading-induced pressure gradients); and of course

8Notably, osteoblasts are more easiely isolated than osteocytes, and a number of relevant lineages are avail-
able. Hence, osteoblasts are often considered to be experimentally favorable, as compared to osteocytes.
However, even though osteocytes and osteoblasts are from the same lineage, there are differences between
the two cell types in response to mechanical stimulation (Bonewald and Johnson, 2008; Lu et al., 2012).
Higher levels of shear stress are required to prompt a release of PGE2 in osteoblasts compared to osteocytes
(1.6 Pa versus 0.2 Pa) (Kamel et al., 2010). On the other hand, it was shown that the calcium response to
shear stress was higher in osteoblasts in the range of 1.2 – 2.4 Pa compared to osteocytes and the authors
attributed this difference to the lower degree of focal adhesion on the glass slide of osteocytes, compared
to osteoblasts (Kamioka et al., 2006)
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when considering, instead of the canalicular pores, the vascular pores, where, due to the
much larger pore dimensions, the fluid velocities can be expected to be much higher as
well.

Hence, the bottomline of this work is that, according to the computations presented in the
previous sections, pressure gradient-driven fluid flow in the pore spaces of bone cannot be
considered to occur in all of the here studied bone pore spaces at the required magnitude
(especially not in the canalicular pores where it had been assumed that fluid flow effec-
tively acts on the there residing cell processes of osteocytes). However, under certain,
physiologically still reasonable loading conditions, sufficiently large pressure gradients
may develop, especially in the large pore spaces of bone. Hence osteoblasts, osteoclasts,
and bone lining cells, all of which are located in the vascular pore space, may indeed
experience excitation by fluid flow.
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6. Summary and concluding
remarks

In this thesis, a multiscale model of bone tissue has been presented, allowing for upscal-
ing the permeability of single canalicular pores up to the macroscopic level. This model
can also be utilized for scaling macroscopically applied mechanical loading down to the
correspondingly arising pressure gradients in canalicular (and also lacunar and vascular)
pores, where they drive Poiseuille-type flow of the pore fluid. This way, besides also
studying the various, composition- and morphology-related influences on the upscaled
(or homogenized) permeability, the important question was addressed whether physio-
logically relevant macroscopic loading conditions are able to provoke canalicular pressure
gradients that are capable of effectively stimulating the activities of osteocytes (whose cell
processes are located in the canaliculi). For that purpose, the computed fluid velocities
were compared with the fluid velocities that could be shown experimentally to induce
cellular activities.

Focusing in this work on cortical bone, the answer, according to the here presented cal-
culations, to the aforementioned question must be “no” (or at least “rather not”) – the
computed fluid velocities were much smaller than the ones used in the mentioned in vitro

experiments, see Section 5.3 for details. However, it should be stressed that these results
do not imply the complete non-relevance of fluid flow in the context of mechanical cell
stimulation. Reiterating from Section 5.3, several scenarios are conceivable, leading to
canalicular fluid velocities much higher than the ones computed here; such as significant
porosity gradients (implying also higher pressure gradients), impact-type loading condi-
tions (causing larger bending moments), or consideration of the vascular pores (where the
larger pore dimensions lead to larger fluid velocities) instead of canalicular pores.

As far as future work is concerned, several possibilities for improving the relevance of the
conclusions listed above should be mentioned, including

• Explicit consideration of the cell processes in the fluid flow model, as the cell pro-
cesses may have a non-negligible influence of the fluid flow conditions;
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• Basing the computations on the three-dimensional distribution of stress occurring
in the bone tissue under physiological loading conditions, in order to thoroughly
study the effects of macroscopic stress heterogeneities on the canalicular fluid flow;
and

• Conducting in vitro fluid flow tests using much lower fluid velocities (i.e. in the
range of the here computed ones), in order to observe their effects in terms of cell
excitation.

66



Appendix A.

Nomenclature

Abbreviations

AFM atomic force microscopy
ATP adenosine triphosphate
BMU basic multicellular unit
can canalicular
CLSM confocal scanning laser microscopy
COX-2 cyclooxigenase-2
CT computed tomography
excan extracanalicular
exlac extralacunar
exvas extravascular
FIB focussed ion beam
FRAP fluorescence recovery after photobleach
hom homogenized
lac lacunar
macro macroscopic
max maximum value
mean mean value
nCT nano-computed tomography
NO nitric oxide
OPG osteoprotegerin
PGE2 prostaglandin E2

PTH parathyroid hormone

RANK receptor activator of nuclear factor kappa-light-chain-enhancer of activated B
cells
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RANK L receptor activator of nuclear factor kappa-light-chain-enhancer of activated B
cells ligand

RVE representative volume element
SEM scanning electron microscopy
SR synchrotron radiation
TEM transmission electron microscopy
TGFβ transforming growth factor β
vas vascular
VM virtual microscopy
Wnt wingless gene
μCT micro-computed tomography
μRG micro-radiography

Latin symbols

A cross-sectional area
Acan pressure gradient concentration tensor for canalicular pores
Aexcan pressure gradient concentration tensor for extracanalicular material

AA
exvas pressure gradient concentration tensor for extravascular material, considering

randomly oriented vascular pores

AB
exvas pressure gradient concentration tensor for extravascular material, considering

longitudinally oriented vascular pores

Aexlac pressure gradient concentration tensor for extralacunar material
Alac pressure gradient concentration tensor for lacunar pores

AA
vas pressure gradient concentration tensor for vascular pores, considering ran-

domly oriented vascular pores

AB
vas pressure gradient concentration tensor for vascular pores, considering longitu-

dinally oriented vascular pores

dcan characteristic length of canalicular inclusions
dlac characteristic length of lacunar inclusions
dvas characteristic length of vascular inclusions
dRVE characteristic pore size of RVE
ei unit vector in Cartesian base frame i = 1,2,3
f̃can volume fraction of canalicular pores measured in the extralacunar RVE
f̄can volume fraction of canalicular pores measured in the extravascular RVE
fcan volume fraction of canalicular pores measured in the macroscopic RVE
f̄lac volume fraction of lacunar pores measured in the extravascular RVE
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flac volume fraction of lacunar pores measured in the macroscopic RVE
fvas volume fraction of vascular pores measured in the macroscopic RVE
g free-fall acceleration
Iy moment of inertia with respect to the y-axis
Iz moment of inertia with respect to the z-axis
K permeability tensor
kcan permeability tensor of canalicular pore space
kcan components of the permeability tensor of canalicular pore space
klac permeability tensor of lacunar pore space
klac components of the permeability tensor of lacunar pore space
kvas permeability tensor of vascular pore space
kvas components of the permeability tensor of vascular pore space
Khom

exlac homogenized permeability tensor of extralacunar material
Khom

exlac components of the homogenized permeability tensor of extralacunar material
Khom

exvas homogenized permeability tensor of extravascular material
Khom

exvas components of the homogenized permeability tensor of extravascular material

Khom, A
macro homogenized permeability tensor of macroscopic material, considering ran-

domly organized vascular pores

Khom, A
macro components of the homogenized permeability tensor of macroscopic material,

considering randomly organized vascular pores

Khom, B
macro homogenized permeability tensor of macroscopic material, considering longi-

tudinally oriented vascular pores

Khom, B
macro components of the homogenized permeability tensor of macroscopic material,

considering longitudinally oriented vascular pores

`RVE characteristic length of the RVE
`exlac characteristic length of the extralacunar RVE
`exvas characteristic length of the extravascular RVE
`macro characteristic length of the macroscopic RVE
L characteristic length of the structure containing the material phases
M bending moment
N normal force

P characteristic length of the loading of the structure containing the material
phases

pcan canalicular pore pressure
pA

can canalicular pore pressure for arbitrarily oriented vascular pores
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pB
can canalicular pore pressure for longitudinally oriented vascular pores

pexcan extracanalicular pore pressure
pexlac extralacunar pore pressure
pexvas extravascular pore pressure
plac lacunar pore pressure
pvas vascular pore pressure
pmacro macroscopic pressure
P inhomogeneity tensor
Pcan inhomogeneity tensor for canalicular pores
Pexcan inhomogeneity tensor for extracanalicular material
Plac inhomogeneity tensor for lacunar pores
Pexlac inhomogeneity tensor for extralacunar material
Pvas inhomogeneity tensor for vascular pores
Pvas inhomogeneity tensor for extravascular material
Q flow vector
R rotational matrix
Rcan canalicular pore pressure
Rlac lacunar radius
Rvas vascular radius
Ro average radius of the femur
Ri average radius of the femoral medullary cavity
vcan velocity vector in the canalicular pores
vcan component of velocity vector in the canalicular pores
vA

can velocity vector in the canalicular pores for arbitrarily oriented vascular pores

vA
can,s component of velocity vector in the canalicular pores for arbitrarily oriented

vascular pores in longitudinal direction of the canaliculus

vB
can velocity vector in the canalicular pores for longitudinally oriented vascular

pores

vB
can,s component of velocity vector in the canalicular pores for longitudinally ori-

ented vascular pores in longitudinal direction of the canaliculus

vexlac velocity vector in the extralacunar material
vexlac component of the velocity vector in the extralacunar material
vexvas velocity vector in the extravascular material
vexvas component of the velocity vector in the extravascular material
x location vector
1 2nd order identity tensor
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Greek symbols

α angular polar coordinate
β inverse slip coefficient
γ fluid unit weight
η dynamic viscosity of fluid
ϑ Eulerian angle in Euklidean space
κ intrinsic permeability
λ slip coefficient
ξξξ location vector
ξi component of location vector, i=ϕ ,ϑ
ϕ Eulerian angle in Euklidean space
ψ potential function
ρ fluid density
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