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Melt the chocolate in a bain-marie. Beat the butter until smooth, then
slowly beat in the sugar, the chocolate, and egg yolks. Beat the egg
whites. Add a tablespoon of sugar and mix. Add the egg whites to the
chocolate mixture, sift the flour over it, then carefully fold it into the
mixture.
Bake until a toothpick inserted in the center comes out clean, about
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Deutsche Kurzfassung

Diese Arbeit stellt eine approximative, höchst effiziente Methode zur
Berechnung von Quantentransport-Simulationen vor. Dabei wird das
Streuproblem auf die flusstragenden und ausgewählte geschlossene
Moden, den Eigenfunktionen eines Wellenleiters, projiziert. Dadurch
reduziert sich die Systemgröße beachtlich, und Berechnungen
können sehr effizient ausgeführt werden. Der vorgestellte und
implementierte Algorithmus eignet sich im Besonderen für nicht-
separable Hamilton -operatoren, was eine Neuerung darstellt.

Wir testen unseren Algorithmus an Graphenstrukturen. Einfache
Geometrien und schwache Magnetfelder können in sehr guter
Übereinstimmung mit exakten Rechnungen beschrieben werden.
Wenn jedoch die zugrundeliegende Annahme von Fluss in eine
Richtung und Quantisierung in die anderen Richtungen verletzt ist,
lässt sich die Näherung nicht mehr anwenden.

Die Effizienz der Methode erlaubt nun die Gleichungen für einen
diskreten Satz von Energien zu koppeln. Damit kann inelastische
Elektron-Phonon Streuung an optischen Phononen modelliert werden.
In den resultierenden Transmissionskurven werden weiche Maxima
generell weiter verbreitert. Scharfe Spitzen erscheinen mehrmals,
jeweils korrespondierend zu einer Phononenkonfiguration. Minima in
der Transmission bleiben unbeeinflusst.

Diese Arbeit ist ein Schritt zum Verständnis realistischer Bedingun-
gen in Experimenten an vollständig kohärenten quantenmechanischen
Systemen.
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Abstract

In this thesis we present an approximate but highly efficient method
for quantum transport calculations. Our approach is based on
the eigenstates of the infinite waveguide, the so-called modes. By
projecting the scattering problem onto the propagating and selected
evanescent modes, we reduce the system size and improve the speed
drastically. We find and implement a numerically stable procedure
even for non-separable Hamiltonians , which has not been done
before.

We test our algorithm on graphene scattering structures. For
simple geometries and weak magnetic fields, the approximation is
in very good agreement with the exact calculations. The mode-basis
approach is not valid whenever the assumption of propagation in one
direction and quantized modes in the other direction fails.

We exploit the speed of the mode basis to couple the equations for
a discrete set of energies spaced E = ~ω apart. This serves as a model
for inelastic electron-phonon scattering on optical phonons with
frequency ω. We find that resulting transmission curves typically get
smeared out, as peaks in the transmission curve now appear multiple
times. Conversely, dips in the transmission remain unaffected.

This work is a step towards understanding the effects of realistic
experimental conditions on ideally fully coherent quantum mechanical
systems.

X I





Introduction

Consider an idealized Coulomb Blockade measurement, as sketched
in Fig. .. We contact a quantum dot with source at potential V1 and

Vg

V1 V2

x

E

Figure .: Idealized Coulomb
blockade measurement. Source and
drain are at potential V1 and V2, and
the energy levels of the quantum dot
can be tuned with Vg .

Vg

V1 V2

x

E

Figure .: In a more realistic sce-
nario, an electron may undergo inelas-
tic scattering inside the quantum dot.
At finite temperature, the occupation
of source and drain are described by
the Fermi distribution.

drain at potential V2. Whenever there is an unoccupied energy level
in the bias voltage window V1 > E > V2, an electron can traverse the
quantum dot and current is measured. The energy levels in the dot
can be shifted by changing the gate voltage Vg .

In a standard numerical simulation, the scattering matrix of
a system with Hamiltonian H is calculated via the Green ’s
function G = 1/(E −H) at fixed energy E.

In any real experiment however, we have to deal with finite
temperatures. A Fermi distribution then describes the occupation
in the source and drain. Further, an electron may undergo inelastic
scattering. One might, in a more realistic model, want to let the
electron scatter into i possible energies E′ , E, as sketched in Fig. ..
This requires solving the coupled equations for multiple energies.
Instead of a system consisting of N atomic orbitals, the system is now
of size i ·N . Is this numerically feasible? It turns out not since the
computational time for the problem goes with O

(
n3.8

)
, see Section ..

Even a moderately small system becomes unfeasible when coupling
more than i & 4 energies.

We thus have to search for a suitable approximation. The first
idea which usually comes to mind is a Taylor expansion. The
presumably small coupling between the different energies seems like
an ideal expansion parameter. The equations decouple when restricted
to first order, as shown in Appendix A. This approach however turns
out to be numerically unstable.

A projection on the flux-carrying modes reduces the system size
drastically. A few coupled equations are then not a problem any
longer. In this thesis we propose to use the mode basis approach
for approximate, but efficient, quantum transport calculations. The
mode basis is already used in a few quantum simulation codes,
see Section ., but has (to our knowledge) not been applied to
non-separable Hamiltonians (see Section .).

Outline This thesis is organized as follows. We use the preparatory
Chapter  to introduce the Landauer-Büttiker formalism,
Green ’s functions and graphene. The mode basis is defined in
Chapter , where we also give the equations to obtain reflection
and transmission coefficients. The questions “How fast is this
approximation?” and “How much of an approximation is it?” are
answered in Chapter . We exploit the potential of the mode basis
in Chapter . We model inelastic scattering at optical phonons with
energy ~ω, and couple multiple energies spaced ~ω apart.


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. Overview of mode basis approach in the literature

It is well known that quantities related to (semi-) infinite leads can
often be analytically written down in the mode basis. Usually, one
immediately transforms these quantities into the position basis. We
want to give a partial overview of few works which use the mode basis
explicitly.

In  in the paper “Towards Multi-Scale Modeling of Carbon
Nanotube Transistors” Guo et al.[] use the M circumferential modes
contributing to transport in carbon nanotubes as their basis. This
decouples the nearest neighbour tight binding Hamiltonian into
M one-dimensional problems. The mode space approach for carbon
nanotubes has since been used multiple times.

For the continuum limit/effective mass Hamiltonian , which
can, for example be used to describe silicon nanowire transistors, the
mode basis approach is well established, see “A Three-Dimensional
Quantum Simulation of Silicon Nanowire Transistors with the Effective-
Mass Approximation” by Wang et al.[] or “Quantum transport in
two- and three-dimensional nanoscale transistors: Coupled mode effects in
the nonequilibrium Green’s function formalism” by Luisier et al.[]

In a series of articles Grassi et al. [, ] apply the mode space
approach to graphene nanoribbons. They show that the (full) mode
basis decouples, under certain circumstances, into different groups.
The modes are defined as the eigenfunctions at k = 0 of a slab (or the
periodic repetition of it) in the nearest neighbour approximation.

In contrast to the above approach we use the more accurate
third-nearest neighbour Hamiltonian as starting point, and we
do not solve for all modes. A (truncated) mode basis calculation of a
non-separable tight binding Hamiltonian is (to our knowledge)
presented for the first time.

The decisive hint which finally stabilized the computation actually
came from an experimental paper, “Signatures of evanescent mode
transport in graphene” by Wiener et al.[]. This article reveals
the importance of evanescent modes in graphene. The numerical
simulation requires the inclusion of multiple evanescent modes, inAs a side remark, even the exact

calculation becomes unstable when
one projects the Green ’s functions

on the open modes at one point in the
calculation.

contrast to the continuum limit Hamiltonian .



Background

This chapter is intended as a bridge between basic quantum mechanics and the
field of quantum transport. It contains mostly textbook knowledge, but is included
for later reference and to establish naming conventions. We start with an overview
of the Landauer-Büttiker formalism in Section .. Transmission curves
inevitably contain resonances, which we discuss in Section .. In Section ., we
introduce graphene. We calculate the band structure of graphene in Section ..
Green ’s function are introduced in Section ., with special focus on their use in
quantum transport calculations.

. Landauer-Büttiker formalism

We calculate the current flowing trough a conductor. An electron gas We recapitulate the
Landauer-Büttiker formalism
by following the beautiful exposition
“Electronic Transport in Mesoscopic
Systems” by Datta []. Following
up on that, we incorporate a
transmission function which allows
coupling between different energies.
This becomes important in Chapter ,
where we describe inelastic scattering.

with density n and velocity v carries a current j = env. The density
per unit length of a single k state in a specific mode in a conductor of
length L is 1/L. Suppose this state is occupied according to a function
f +(E). The current carried by this state is

I =
e

L
vf +(E)→=

e

L

1
~
∂E

∂k
f +(E)

Summing over all +k states in the specific mode gives

As usual, we convert the sum over the
+k states into an integral∑

k

=
gL

2π

∫
dk

I =
2e
h

∫ ∞
ε
f +(E)dE

We extend this result to a multi-mode waveguide by introducing
the function M(E) =

∑
nΘ(E − εn), which counts the number of open

modes.

I =
2e
h

∫ ∞
ε
f +(E)M(E)dE

To continue, we assume the contacts to the right and left of the
conductor are held at electrochemical potentials µ1 and µ2, respectively.
Furthermore, we assume that electrons can enter the conductor
reflectionless. Since all right-propagating modes come from the left In order to support the assumption of

reflectionless contacts imagine a
waveguide which opens up into a
much larger region, the conductor.
Intuitively, all modes will be able to
enter the wider region without
significant backscattering. For a more
throughout discussion, see [].

contact, the right-propagating modes in the left lead have a potential
of µ1. Similarly, all left-propagating modes in the right lead have a
potential of µ2. In the limit of zero temperature we thus have an influx
from the left lead given by

I+
1 =

2e
h
M(E) (µ1 −µ2) .

For a device with transmission T , the outflux into lead  is then
I+
2 = T I+

1 , and the flux back into lead  is given by I−1 = (1− T )I+
1 . The

net current in the device is I+
1 − I−1 ≡ I+

2 = T I+
1 . The conductance G is

G =
I

(µ1 −µ2) / |e|
→=

2e2

h
MT (.)


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When we restore temperature effects and consider a mode-
dependent transmission function Ti(E), we have

I =
2e
h

∫ ∞
−∞

M(E)∑
i

(f +(E −µL)− f +(E −µR))Ti(E) dE.

In this thesis, we also investigate the effect of inelastic scattering by
the current carrying electrons. The transmission becomes a function
of the ingoing energy E and the outgoing energy E′, T (E,E′). We can
now compare with experiments at finite temperature and inelastic
scattering,

I =
2e
h

� ∞

−∞
dEdE′

M(E)∑
i

M(E′)∑
j

(f +(E −µL)− f +(E′ −µR))Tij (E,E
′)

The formula for Tij (E,E′) is derived in Chapter .

. Beutler-Fano resonances

The transmission curve as a function of energy of a scattering structure
is typically a complicated curve with various peaks and dips. They
can be understood with a formula put forward by Fano []. Its mainIn this section, we follow the review

paper “Fano resonances in
nanoscale structures”[] by

Miroshnichenko et al.

ingredient is the quantum interference between scattering within a
continuum of states and resonant scattering with a discrete state.

Historically, Fano considered the absorption spectra of noble
gases measured by Beutler . The direct ionization process of atoms
A by photons of energy E = hν is described by hν +A → A+ + e−.
Emission via the Auger process is another possible process. In a first
step, the atom is excited to an autoionizing state A∗, and released into
the continuum in a second step, hν +A→ A∗→ A+ + e−.

In quantum transport experiments, the infinite lead provides
the continuum of states, while the scattering structure has a set of
discrete eigenstates. To be more precise, the discrete energy levels of
the scattering structure without leads get broadened by the coupling
to the leads.

In both cases, amplitude and phase of the scattering into the
continuum typically vary slowly, but they change quickly for the
resonant process. This superposition leads to the asymmetric Fano
line shape. As formula, Fano [] introduced the scattering cross
section

σ (ε) =
(ε − q)2

ε2 + 1
,

where ε is a reduced energy ε = 2(E −EF)/Γ , with energy EF and width
Γ of the discrete state, and q a phenomenological shape parameter.

−5 0 5
0

0.5

1

ε

σ
/σ

m
ax

q=
q=
q=

Figure .: Normalized Fano profiles
for various values of the asymmetry
parameter q.

Enlightening is the decomposition given in []

q2 − 1
ε2 + 1︸ ︷︷ ︸
discrete

+
2qε
ε2 + 1︸ ︷︷ ︸
mixing

+ 1︸︷︷︸
continuum

=
(ε − q)2

ε2 + 1
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of the Fano line shape into a Lorentzian line shape of the discrete
state and the continuum.

For large q, we recover the line shape of the Breit-Wigner
distribution. In this case, tunneling through the resonant state is
the dominating process. When q ≈ 1, the continuous and resonant
process are of the same strength. The Fano profile is maximally
asymmetric. For small q, the formula describes a symmetric dip, a
so-called window resonance, see Fig. ..

One can tune this parameter in an actual experiment, see for
example “Tunable Fano Resonances in Transport through Microwave
Billiards”[] by Rotter et al.: In a microwave scattering device, the
coupling of a cavity to the leads is controlled by two diaphragms. For
fully open leads, window resonances can be observed and identified
with eigenstates of the closed cavity. By closing the diaphragms, the
transition of these resonances via a Fano profile towards sharp
Lorentzian peaks which occur at eigenvalues of the close cavity
can be observed.

Let us close this section with a neat toy model given by Joe et al
in “Classical analogy of Fano resonances”[]. Consider two coupled
harmonic oscillators with frequencies ω1, ω2, damping γ1 and γ2 and
coupling v12. The first oscillator is driven. The equations of motion
read

ẍ1 +γ1ẋ1 +ω2
1x1 + v12x2 = a1eiωt ,

ẍ2 +γ2ẋ2 +ω2
2x2 + v12x1 = 0.

The stationary solution can be found with the ansatz

x1 = c1eiωt , x2 = c2eiωt .

The solutions for the amplitudes are
4 5 6 7

0.1

0.2

ω

c 1

Figure .: Amplitude c1 of a driven
harmonic oscillator with frequency
ω1 = 5.5 + 0.3i with damping γ1 =
0.1, coupled to a harmonic oscillator
with frequency ω2 = 5 and damp-
ing γ = 0.1 with coupling strength
v12 = 1.

c1 =
ω2

2 −ω2 + iγ2ω(
ω2

1 −ω2 + iγ1ω
)(
ω2

2 −ω2 + iγ2ω
)
− v2

12

a1,

c2 = − v12(
ω2

1 −ω2 + iγ1ω
)(
ω2

2 −ω2 + iγ2ω
)
− v2

12

a1.

The peaks appear close – the coupling v12 induces a small shift – to
the eigenfrequencies ω1 and ω2 . The width of the peaks is determined
by the imaginary part of the eigenfrequencies. In absence of damping,
γ2 = 0, the amplitude c1 is zero for ω = ω2. This introduces the
asymmetry in the peak near ω2 in this model, see Fig. ..

. Graphene

In this thesis we will describe electronic transport calculations with
special focus on graphene nanostructures. The carbon atoms in
graphene form a honeycomb lattice. The underlying Bravais lattice
is a hexagonal lattice. The unit cell contains two atoms, labeled as “A” For more information, see Electronic

properties of monolayer and bilayer
graphene by McCann [].

and “B”. A carbon atom has  core electrons and  valence electrons
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in the 2s, 2px, 2py , and 2pz orbitals. The former three hybridize and
form sp2 orbitals. Graphene takes its physical strength from the sigma
bonds between adjacent carbon atoms. The electronic properties are
determined by the remaining 2pz orbitals, which lie perpendicular to
the graphene plane.

. Tight Binding for Graphene

Let us calculate the band structure of graphene. In the tight-binding
model we calculate the electronic band structure of a solid using a set
of wave-functions consisting of localized atomic orbitals. The ideaThe numerical calculations in this

thesis are done in the tight binding
approximation. A physical system is

represented by a matrix, where the
basis functions are the relevant atomic
orbitals. Of interest is also the slightly

unusual band structure of graphene.
For a derivation of the tight binding

approximation, see “Solid State
Physics” by Grosso and

Parravicini , [].

one has in mind is that one describes tightly bound electrons with
occasional hopping between different sites. We write our electron
wave function Φi (r) at position r of orbital i as a linear combination
of localized orbitals φi (r −R) at various lattice points R. Bloch ’s
theorem tells us that energy eigenstates of an electron in a solid can
be written as Φk,i (r −R) = exp(ikR)Φk,i (r), where k takes on the N
values in the first Brillouin zone. This fixes the coefficients of the
linear expansion to

Φk,i (r) =
1√
N

∑
R

eikRφi (r −R) .

Since graphene has two atoms in the unit cell, each with one pz shell
which we want to include, the wavefunction is a linear combination of
the two Bloch sums corresponding to the A and B sublattices,

ψ (k,r) = αΦA (k,r) + βΦB (k,r) .

We also expect two energy bands, i = 1,2. Let us now calculate the
relevant matrix elements. We will work in the nearest neighbour
approximation. Let us normalize the states according to〈

φA(r −RA)
∣∣∣φA(r −RA)

〉
=

〈
φB(r −RB)

∣∣∣φB(r −RB)
〉

= 1.

The on-site energy is

ε2p :=
〈
φA(r −RA)

∣∣∣H ∣∣∣φA(r −RA)
〉

=
〈
φB(r −RB)

∣∣∣H ∣∣∣φB(r −RB)
〉
,

which has the same value for each lattice site. The hopping element
between RA and neighbouring atoms RB is

HAB :=
∑
RB

eik(RB−RA) 〈ΦA (r −RA) |H |ΦB (r −RB)〉

We define γ0 := −〈ΦA (r −RA) |H |ΦB (r −RB)〉. The relative position
vector δl = RB,l−RA between anA-atom and the l = 1,2,3 neighbouring
B-atoms are

δ1 =

 0

a/
√

3

 , δ2 =

 a/2

−a/(2√3)

 , δ3 =

 −a/2
−a/(2√3)

 .
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The sum over the exponential can readily be calculated:

f (k) :=
3∑
l=1

eikδl

= eikya/
√

3 + eikxa/2e−ikya/
√

3 + e−ikxa/2e−ikya/
√

3

= eikya/
√

3 + 2e−ikya/
√

3 cos(kxa/2) .

Putting it all together, we arrive at (assuming time reversal symmetry
and hence γ0 ∈<)

HAB = −γ0f (k) , HBA =H ∗AB = −γ0f
∗ (k)

The calculation for the overlap matrix proceeds similarly

SAB :=
∑
RB

eik(RB−RA) 〈ΦA (r −RA) |ΦB (r −RB)〉

=: s0f (k)

SBA = s0f
∗ (k) ,

where we have defined s0 = 〈ΦA (r −RA) |ΦB (r −RB)〉 in the second
line.

Now we are ready to calculate the energy

Ek =

〈
ψk

∣∣∣H ∣∣∣ψk〉〈
ψk

∣∣∣ψk〉
by inserting ψ(k, r) = αΦA(k, r) + βΦB(k, r) into the above equation,

Ek =

(
α2 + β2

)
ε2p −α∗βγ0f (k)−αβ∗γ0f

∗ (k)

(α2 + β2) +α∗βs0f (k)−αβ∗s0f ∗ (k)
.

In the following, we determine α and β by a variational principle.
α and β are not independent, as they
determine the norm of the vector ψ.
Out of the remaining free parameters,
it is easiest to vary with respect to α∗
and β∗.

∂Ek
∂α∗

=
αε2p − βγ0f (k)〈

ψk
∣∣∣ψk〉 +

〈
ψk

∣∣∣H ∣∣∣ψk〉〈
ψk

∣∣∣ψk〉 α + βs0f (k)〈
ψk

∣∣∣ψk〉
We now set ∂E/∂α∗ = 0, cancel the common denominator and note
that the second term contains the expression for the energy. This leads
to

αε2p − βγ0f (k) = Ek (α + βs0f (k)) .

Varying with respect to β∗ yields

βε2p −αγ0f
∗ (k) = Ek (β +αs0f

∗ (k)) .

Putting this into matrix form, we have ε2p −γ0f (k)

−γ0f
∗ (k) ε2p


αβ

 = Ek

 1 s0f (k)

s0f
∗ (k) 1


αβ

 .
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Figure .: The band structure of graphene in first nearest neighbour approxi-
mation. We magnify one of the Dirac cones. This is the energy regime we
are interested in.

We continue to solve for the energy,

det

 ε2p −Ek −(γ0 +Eks0)f (k)

−(γ0 +Eks0)f ∗ (k) ε2p −Ek

 = 0

(
Ek − ε2p

)2 − (γ0 +Eks0)2 |f (k)| = 0.

The two solutions to this equation are

Ek,± =
ε2p ±γ0 |f (k)|
1∓ s0 |f (k)| .

We plot the resulting band structure in Fig. ..
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. Green ’s functions

By the superposition principle we know that a wavefunction ψ(x′) at The computational formalism in this
thesis is based on Green ’s functions.
They describe the propagation of a
particle between certain points, and
this will ultimately lead us to the
reflection and transmission
coefficients.
This introduction is based on the
corresponding chapter in Relativistic
Quantum Mechanics by Bjorken
and Drell , [].
Though later we will work with
two-dimensional systems, this
introduction remains in the more
general three-dimensions setting.

x′ = (x′ , t′), with position x′ and time t′, can be written as the sum of
spherical outward traveling waves from all the sources at an earlier
time t. Let the source be the exact same wavefunction ψ(x) at time
t < t′ , and denote the proportionality by iG (x′ ,x) . Then we have

Θ(t′ − t)ψ(x′) = i
∫

d3xG (x′ ,x)ψ(x).

Applying (i∂t′ −H(x′)) to the above equation yields

(i∂t′ −H(x′)) (Θ(t′ − t)ψ(x′)) = (i∂t′ −H(x′))
(
i
∫

d3xG (x′ ,x)ψ(x)
)
.

Since ψ(x′) obeys the Schrödinger equation, the left hand side is
just iδ(t′ − t)ψ(x′). This is valid for all x′ , so we can formally write

(i∂t′ −H(x′))G (x′ ,x) = δ3(x′ − x)δ(t′ − t)→= δ4(x′ − x),

with the appropriate boundary condition for outward propagation, With these boundary conditions, we
have defined the retarded Green ’s
function. In Contrast, the solution for
t < t′ is called the advanced Green ’s
function, and describes anti-casual,
inward traveling solutions. Unless
stated otherwise, we will be concerned
with retarded Green ’s functions
only.

G(x′ ,x) = 0 for t′ < t.

Dyson ’s equation

Let us separate the Hamiltonian H into a free part H0 and an
interaction V , H =H0 +V ,

(i∂t′ −H0(x′)−V (x′))G (x′ ,x) = δ4(x′ − x)

(i∂t′ −H0(x′))G (x′ ,x) = δ4(x′ − x) +V (x′)G (x′ ,x)

=
∫

d4x′′ δ4(x′ − x′′)
(
δ4(x′′ − x) +V (x′′)G (x′′ ,x)

)
.

Now we can write

G(x′ ,x) = G0(x′ ,x) +
∫

d4x′′ G0(x′ ,x′′)V (x′′)G (x′′ ,x) , (.)

where G0(x′ ,x) fulfills

(i∂t′ −H0(x′))G0 (x′ ,x) = δ4(x′ − x).

This is Dyson ’s equation.

Interpretation Let us write Dyson ’s equation by recursively
replacing the Green ’s function on the right hand side,

t

x

(x, t)

(x′ , t′)V (x1, t1)

V (x̃1, t̃1)

V (x2, t2)

Figure .: Interpretation of the
Dyson equation.

G(x′ ,x) =G0(x′ ,x) +
∫

d4x1G0(x′ ,x1)V (x1)G0(x1,x)

+
�

d4x1 d4x2G0(x′ ,x2)V (x2)G0(x2,x1)V (x1)G0(x1,x) + . . .

The first term describes the unperturbed propagation, the next term
describes scattering at the potential V (x1) at (x1, t1), and the terms in
the second line describe multiple scattering.
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.. Matrix Green ’s functions

In numerical calculations we go from the continuum version to the
discretized version of these equations. We may discretize space into
a lattice of N points – the corresponding N ×N (matrix) Green ’s
function then describes the propagation between each two of these
points. We will also use a tight-binding basis, where the Green ’s
function then describes the propagation from one orbital to another
one.

The equations we derived in the last subsection remain of course
valid.

Recursive Green ’s function method

In the following we describe the recursive Green ’s function method,This is a rather intuitive derivation of
the equations of the recursive

Green ’s function method. For a
more formal derivation please note

that the equations are simple forms of
Dyson ’s equation, Eq. (.) or see

Libisch [].

which is used to obtain the Green ’s functions between the outermost
slices of a system. One possibility to obtain this matrix is to invert
(E −H)−1 = G. However, this is inefficient for large structures. It is
better to build up the structure slice by slice. In each step, we only
have to remember the Green ’s functions between the outermost
slices:

Suppose we have already calculated the Green ’s functions G11,
G12, G21 and G22 of a block and want to attach a slice, described
by H and the corresponding G33 = (E ·1−H)−1, to build up the
full scattering geometry step-by-step, see Fig. .. The interaction
Hamiltonian HI between the already calculated block and the slice
to attach is also known. The formulas for the Green ’s functions of
the new block, G̃11, G̃13, G̃31 and G̃33 are intuitively understandable
when one recalls that the Green ’s function gives the probability
amplitude to travel from one position to another and is nothing but
the propagator.

G21
G12

G11 G22

HR
HL
G33

G̃31
G̃13

G̃11 G̃33
Figure .: The full geometry is build
up step by step.

Calculation of G̃33: The possible paths G̃33 which connect two
positions in the new slice are those which existed before (G33) and
additionally all paths which cross over to the block, interact with it
and come back HRG22HL once, twice HRG22HLG33HRG22HL, . . .

G̃33 = G33 +G33HRG22HLG33 +G33HRG22HLG33HRG22HLG33 + . . .

Using (1−A)−1 = 1+A+A2 + . . ., this can be cast into a simpler form:

G̃33 = G33 · (1−HRG22HLG33)−1

=
(
G−1

33 −HRG22HL
)−1

= (E −H−HRG22HL)−1

Calculation of G̃31: The paths from position  to  are all the paths
going through the block G21, and over to the new slice, G33HR.
Additionally, we have to take the paths into account which come
back once, G33HRG22HLG33HR, twice, and even more often. Since we
already calculated all those in G̃33, we can just write

G̃31 = G̃33HRG21.
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Calculation of G̃13: By an analogous argumentation we see that

G̃13 = G12HLG̃33.

Calculation of G̃11: In addition to the paths which already existed
(G11) there are now those which pass through the new slice, HLG̃33HR.
As before, we use the new G̃33, which already contains going back and
forth between the existing block and the new slice in all orders.

G̃11 = G11 +G12HLG̃33HRG21

Modular recursive Green ’s function method

In a similar manner, we can attach a whole block to an existing block.
Once a few building blocks are computed, the modular recursive
Green ’s function method is a very efficient way to compute the
Green ’s function of various large structures. The equations are very
similar to the ones above, and are given in Section ...





Mode basis

This chapter contains a complete walk-through of the calculation of reflection-
and transmission coefficients in the mode basis. It is mostly based on the thesis
of Sanvito [], with additional improvements from Libisch []. However,
our derivation uses only a subset of all modes. In the relevant steps we take care
to argue why this is a reasonable approximation of the exact calculation. Further,
completeness in the mode basis

∑
m |m〉〈m| , 1 does not hold. Our formulation

relies on orthogonality 〈m|m′〉 = δmm′ alone.
In Section . we motivate the use of the mode basis. Eigenfunctions of an

infinite lead are calculated in Section ., which are used in Section . to define
the mode basis. In Section ., we formulate the transport problem exclusively in
blocks of a Green ’s function times an interaction Hamiltonian , since only
combinations of GHI can be represented well in the mode basis.

The reader who has an intuitive picture of modes in a confined geometry and
is not interested in the technical details is invited to jump to the next chapter,
Chapter .

. Transverse modes

In a quantum transport experiment, electrons are usually strongly We follow the book “Electronic
Transport in Mesoscopic Systems”
by Datta [].

confined in all but one directions. One can use the resulting quantiza-
tion to define transverse modes. The analogy with an electromagnetic
waveguide is very useful here. Depending on the energy of the
incoming particle, only a subset of those modes contributes to
transport.

As an example, consider a particle with parabolic dispersion in a
We start with an effective mass
equation for low-energy electrons.
One can arrive at this equation from
both the tight-binding model or the
nearly free electron model, see e.g.
[].

transverse confining potential U (y) =mω2
0y

2/2,(
(i~∇)2

2m
+U (y)

)
ψ(x,y) = Eψ(x,y).

For ψ, we make the ansatz

ψ(x,y) =
1√
L

eikxη(y),

where η(y) satisfies the equation~2k2

2m
+

(i~∂y)2

2m
+
mω2

0y
2

2m

η(y) = Eη(y)

The eigenenergies and eigenfunctions are well known and given by

y2/2

η0

η1

η2

Figure .: Transverse modes in a har-
monic potential.

E(n,k) =
~2k2

2m
+
(
n+

1
2

)
~ω0, n = 0,1,2, . . .

ηn,k(y) = e−q
2/2Hn(q), q =

√
mω0/~y,

 
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Hn(q) being the nth Hermite polynomial. We will refer to the states
indexed by n as the different (transverse) modes. We can also read
this equation in the opposite direction. For a given energy E, we can
solve this equation for k. In general, there will be number of open or
flux-carrying modes, for which k ∈R. As we increase n, at one point we
will have E < (n+ 1/2)~ω0 and k ∈ C, with non-vanishing imaginary
part,=k , 0. We will refer to these modes as closed or evanescent modes.
The solutions exp(ikx)η(y) with imaginary k will decay exponentially
into the waveguide. Finally, let us define the energy εn = E(n,k = 0), at
which the n-th mode opens, i.e. kn ∈<∀E > εn.

x

y

Figure .: Modes in a waveguide.

. Eigenfunctions of an infinite lead

The eigenfunctions of an infinite lead constitute the main ingredient
of the mode basis. They are introduced as eigenvectors of the semi-
infinite lead Hamiltonian , and their properties are discussed. We
further use this section to put forward a few new methods, such as
the use of shift-and-invert and blockwise inversion, which ensure an
efficient calculation of the mode basis. This is of special importance,
since the mode basis must be computed each time the transverse
geometry changes, see Section ..In this section, we follow the thesis of

Libisch [] and the thesis of
Sanvito []

Consider an infinite lead in x direction. Lets imagine cutting it
into stripes, and let the Hamiltonian of a single stripe be H0. The
coupling between adjacent stripes is given byHL andHR (=H†L). Then
the total Hamiltonian is of the form

H =



. . .

H0 HL
HR H0 HL

HR H0
. . .


. (.)

We can solve the eigenvalue problem HΨ = EΨ with a Bloch -wave
ansatz,

Ψ = (. . . ,ψ−∆x,ψ0,ψ∆x, . . .)
T , ψ∆x = eik∆xχ.

Inserting this into the eigenvalue problem yields(
H0 + eik∆xHL + e−ik∆xHR

)
χ = Eχ (.)(

eik∆x (H0 −E) +HR
)
χ = −e2ik∆xHLχ (.)

This can be written as a generalized eigenvalue problem by introducing
η = eik∆xχ.For example, the solutions for a

simple lattice model of width L are
χ = sin(ky y) with ky = nπ/L. The

corresponding energies in the
transverse directions are given by

Et = ~2k2
y /2m. Whatever remains for

k from the total energy goes into the
factor exp(ikx∆x). This means for

large enough energies, or kx ∈R, we
have a few eigenvalues on the unit

circle near (1,0) (for small ∆x). These
are the eigenvalues of propagating

modes in +kx and −kx. Additionally,
we will find exponentially decaying

modes on the real line for
kx ∈C,=kx , 0.

H0 −E HR
1


ηχ

 = eik∆x

−HL
1


ηχ

 (.)

which has 2N eigenvectors and 2N eigenvalues,N being the transverse
dimension of the system. We separate the eigenvectors and eigenvalues
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into left-propagating (or decaying) and right-propagating (or decaying)
modes according to the group velocity

vg =
1
~
∂E(k)
∂k

(.)

= ∂k 〈Ψ |H |Ψ 〉 (.)

= i∆x
〈
χ
∣∣∣eik∆xHL − e−ik∆xHR

∣∣∣χ〉 (.)

The eigenvalues of interest are located at different positions for
different problems in the complex plane. For the continuum limit
problem they are located around σ = (1,0), which can be seen by
expanding exp(ik∆x) ≈ 1 + ik∆x for small k around zero, see also
Fig. .. For graphene, we have to expand around the K and K ′ points,
which are located at K,K ′ = ±2π/3a so σ = ±exp(i2π/3). The graphene
lattice parameter is denoted by a. The eigenproblem has to be solved
at the K and the K ′ points, and the complete basis is attained by
adding the two sets of eigenvectors and eigenvalues. In passing, we
note that a bunch of eigenvalues lies on a closed path in the complex
plane, which stays relatively close to the unit circle, see Fig. .. These
modes, though damped with exp(ikl), still contribute to transport over
small lengths l.

Shift-and-invert We now do the standard shift-and-invert transfor-
mation to the region of interest. Our eigenvalue problem is of the
form

Ax = λMx,

0.5 1.5−0.3

0.3 <=

Figure .: Eigenvalues of the contin-
uum limit infinite lead in the com-
plex plane. We highlight the point
σ = (1,0), around which the relevant
modes for transport can be found.

−2 −1

−1

1

<

=

Figure .: Eigenvalues of the
graphene infinite lead in the com-
plex plane. We highlight the point
σ = exp(±i2π/3), around which the
relevant modes for transport can be
found.

where A and M are matrices, λ are the eigenvalues and x
eigenvectors of the problem. The eigenvalues of interest are located
near σ . Subtracting σMx from both sides yields

(A− σM)x = (λ− σ )Mx (.)

(A− σM)−1Mx =
1

λ− σ x (.)

Ãx = νx (.)

a transformed eigenvalue problem. The eigenvalues of largest
magnitude |ν| are exactly those nearest to σ in the original problem.

Arpack [], a very efficient library which computes a few
selected eigenvalues and vectors of large sparse matrices, is used to
compute the open and “least damped” closed modes.

Blockwise inversion The only thing we have to do is to supply
Arpack with the action of the matrix (A− σM)−1M on a given vector.
We can exploit the blockwise structure of the eigenproblem of the
infinite lead Eq. (.) and do a part of the inversion analytically,

H0 −E + σHL HR
1 −1σ


−1

=

 (H0 −E + σHL +HR/σ )−1 (H0 −E + σHL +HR/σ )−1HR/σ
(H0 −E + σHL +HR/σ )−1σ

(
1+ (H0 −E + σHL +HR/σ )−1HR/σ

)
/σ


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With this trick, the matrix which has to be inverted is only half theNote that only
(H0 −E + σHL +HR/σ )−1 and no
other inverse appear in the blocks.

size of the original problem. As in the mode basis the eigenfunctions
of the infinite lead have to be computed every time the transverse
geometry changes, this reduces the cost of the calculations.

.. Sorting according to the group velocity

We separate the eigenvectors χ into right- and leftmoving modes
according to their group velocities, Eq. (.),

vg = i∆x
〈
χ
∣∣∣eik∆xHL − e−ik∆xHR

∣∣∣χ〉 .
The eigenvalues of open modes, with k ∈R, lie on the unit circle, eik∆x.
The group velocity is used to discriminate between right- (vg > 0) and
left moving modes (vg < 0). Modes with eigenvalues inside the unit
circle, |exp(ik∆x)| < 1 are evanescent right moving modes, and modes
with |exp(ik∆x)| > 1 are evanescent left moving modes.

.. Phase fixing

In the next step, we fix the phases of the eigenvectors to avoid
arbitrary phase factors in the scattering matrix between different leads.
A possible way to do this is to search for the largest element in each
eigenvector, and divide off its phase from the whole vector.

.. Orthogonalization

Since the matrix Ã in Eq. (.) in the eigenproblem of the infinite
lead is in general not hermitian, the eigenvectors will (in general) not
be orthogonal. For convenience, we orthogonalize them using the
(modified) Gram-Schmidt process. Before we orthogonalize a new
vector on the already orthogonalized set of vectors, we always check
whether the new vector is linearly dependent. Checking the linear
dependence is important: By orthogonalizing an (almost) linearly
dependent vector, we may end up with a orthogonalized vector which
corresponds to a high-frequency and exponentially increasing mode,
which ultimately diminishes the numerical stability of the code. In
the continuum limit case without magnetic field for example, both
right- and left moving eigenvectors are identical, as can be seen from
the symmetry of the problem.

As of now, a vector is considered linear dependent if the RN
It is aggravating to write this, but I

urge any users of the mode basis code,
(probably mostly my future self) to

think of adjusting this value whenever
the code gives inconsistent results.

(The situation is not that bad though,
all calculations in this thesis are done

without adjusting this number.)

norm of its projection onto the already existing space is greater
than a certain threshold. A more system-adapted solution, probably
dependent on the system size, the type of the Hamiltonian and the
already existing modes would be desirable.

. Definition of the mode basis

The main building block of the mode basis are the eigenfunctions of
an infinite lead obtained by periodic continuation of a single slice
of grid points or atoms. Whenever the transverse dimension of the
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system changes, a new basis set has to be computed. Subsequently, the
matrices in the mode basis are obtained via a basis transformation
from the position basis.

As described up to now, the mode basis is the subset of open and The full mode basis consists of all the
N eigenvectors obtained through the
eigenproblem and can be obtained by
a unitary transformation of the
position basis.

weakly decaying modes of the full mode basis. This basis set however,
must be enlarged. We must ensure that all matrices A which occur in
the calculations leave the mode basisM, with modes m, invariant e.g.
m′ = Am should be inM. Thus, the mode basis should be an invariant
subspace of all matrices A. When we look at the equations, we see
that matrices which occur in the calculations are the Hamiltonian
H0 of a single slice, and the interaction Hamiltonian s HL and HR.
Additionally, there may be a potential V .

Separable Hamiltonian In the continuum limit problem the inter-
action Hamiltonian is a diagonal matrix HI ∝ 1 and the only
non-trivial matrix is the Hamiltonian H0 of a single slice. The
Hamiltonian commutes with the interaction Hamiltonian ,
[H0,HI ] = 0. This means the eigenvectors of the infinite lead are
identical to the eigenvectors of single slice. Trivially, each single vector
m of theM-dimensional mode basis spans a one-dimensional invariant
subspace of all the matrices (H0,HL and HR) which are needed to
build up the scattering structure (in absence of an external potential
V or varying transverse dimension). In this case, the transformation to
the mode basis even stabilizes the numerical calculation.

In a more general setting, an additional x-dependent potential lifts
the orthogonality between modes on adjacent slices. If the potential is
weak we expect by perturbation theory only weak coupling between
different modes. The modes of the unperturbed problem then still
constitute a sensible basis for the problem, but now the M equations
couple to one M ×M dimensional problem. In addition to open
modes, we can add a few closed C modes M→M +C to improve the
description of tunneling phenomena as well as coupling between the
open modes via the closed ones. In the low-energy regime we can
discard rapidly decaying high-frequency transverse modes, we just
have to add a (hopefully) few moderately damped modes. The size of
the mode basis M is still small compared to the tight-binding basis N .

For the continuum limit, one can transform all matrices into the
mode basis and calculate the transmission with Dyson ’s equation, as
given in []. However, when the Hamiltonian is non-separable,
the situation is more complex, and this direct approach is numerically
unstable.

Non-separable Hamiltonian/ Graphene The interaction Hamiltonian
for graphene for example is not a diagonal matrix, and it does not
commute with the Hamiltonian of a single slice, [H0,HI ] , 0.

We have to enlarge the mode basis to describe all physical
phenomena.

The implementation for graphene also includes the vectors H0 |m〉
and the largest eigenvectors of H0 itself. The underlying idea is that
when we apply the Hamiltonian of a single slice to the mode
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basis, the resulting vectors lie in the space spanned by H0 |m〉, thus
we include these vectors. Repeated application of H0 eventually
transforms the mode basis into the largest eigenvectors of H0 itself.

Including the vectorsHI |m〉, with I = L or R, or the eigenvectors of
HI does not improve the results in the case of graphene. Most likely
this is caused by the highly degenerate spectrum of the interaction
Hamiltonian of graphene.

Mathematically,the Green ’s function of a single slice, G0 =
1/(E −H0) contains the Hamiltonian H0 in all orders, as it is
1/E +H0/E

2 +H2
0/E

3 + . . .. This matrix is best described by its proper
eigenvectors.

The physical interpretation is that a single slice will be best
represented by the eigenvalues of H0 itself, and the eigenvectors of a
growing block will ultimately become identical to those of the infinite
lead. The setH0 |m〉 ensures a gradual transition between these sets, as
the operator H0 “pushes” the mode basis m towards its eigenvalues.

Well behaved matrices It turns out that one needs an additional trick
to make the calculation numerically stable. The invariant subspace
depends not only on the modes m, but also on the matrices A which
act on the modes. We observe that the Greens function of an infinite
lead times the interaction Hamiltonian , GLHL, and GRHR are
diagonal in the mode basis, Eqs. (.) and (.).

G21HR
G12HL

G11HR G22HL
Figure .: Greens functions times
interaction Hamiltonian of a
block.

Accordingly, in the limit nx→∞ of a very large block, the matrices
G22HL, G12HL, G11HR, and G21HR are diagonal in the mode basis. In
the following section, we re-write all the Dyson equations needed
to build up a scattering structure in terms of blocks of Green ’s
function times interaction Hamiltonian , GHI . Then, the calculation
becomes numerically stable.

. Recursive Green ’s function method; the Dyson equations
to add a single slice.

We calculate the Green ’s function by the recursive Green ’s function
method, see Section ... The equations suitable for calculations in
the mode basis are given in the following. Let us denote the leftmost
slice of the existing block by , and the rightmost slice by . The
Green ’s function which describes the propagation from the left to
the right is then called G21. The slice we want to add is denoted by  ,
see Fig. .. Additionally, we need labels for the positions 0, one slice
to the left of the existing block, and , one slice behind the new slice.
Let the transverse dimension of the system at position i = 0,1, . . .4 be
ni , and the number of modes in an infinite lead of dimension ni be mi .

We start by calculating the Green ’s function of a single slice
times the interaction Hamiltonian GHI in the position basis r, and
transform these matrices into the mode basis m,

(G33HL)m,m′ =
〈
m

∣∣∣ (E −H3)−1HL
∣∣∣m′〉

(G33HR)m,m′ =
〈
m

∣∣∣ (E −H3)−1HR
∣∣∣m′〉
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The indices m,m′ will be omitted in the following to ensure an
uncluttered notation. The matrix G33HL is a m3 ×m4 matrix, and
G33HR has dimension m3 ×m2. In a next step, we calculate

I = (1−G33HR G22HL)−1 ,

which is a m3 ×m3 matrix. Now the updated Green ’s functions times
interaction Hamiltonian G̃HI can be computed using Dyson ’s
equation:

G21HR
G12HL

G11HR G22HL

HR
HL
G33HL/R

G̃31HR
G̃13HL

G̃11HR G̃33HL
Figure .: The recursive Green ’s
function method.

G̃33HL = I G33HL
G̃31HR = I G33HR G21HL
G̃11HR = G11HR +G12HL G̃31HR
G̃13HL = G13HL G̃33HL.

The matrix G̃33HL is of dimensionm3×m4, G̃31HR has the sizem3×m0,
G̃11HR is a m1 ×m0 matrix, and G̃13HL is a m1 ×m4 matrix.

.. Modular recursive Green ’s function method; the Dyson
equations to connect two existing blocks.

Reusing blocks reduces computational time. When we have computed
a few blocks with the recursive Green ’s function method, we can
arbitrarily combine them into a final structure by the following
Dyson equations. They combine a “left” and “right” block to a new
larger block.

The leftmost slice of the left block is labeled by , and the rightmost
slice by . The edges of the right block are labeled by  and . Again,
we write all equations in terms of combinations of a Green ’s function
and an interaction Hamiltonian .

G̃12HL = G12HL (1−G33HR G22HL)−1

G̃43HR = G43HR (1−G22HL G33HR)−1

G̃11HR = G11HR + G̃12HL G33HR G21HR
G̃14HL = G̃12HL G34HL
G̃41HR = G̃43HR G21HR
G̃44HL = G44HL + G̃43HR G22HL G34HL

G21HR
G12HL

G11HR, G22HL,

G43HR
G34HL

G33HR, G44HL

G̃41HR
G̃14HL

G̃11HR G̃44HL

Figure .: The modular recursive
Green ’s function method.

Inverse Modes Since the left- (and right-) moving eigenvectors of
the infinite lead are not pairwise orthogonal, their inverse vectors 〈l|
(and 〈r |) have to be found via 〈l | l′〉 = δll′ (〈r |r ′〉 = δrr ′ ). In the position
basis, this is done by inverting the matrix consisting of all left- (right-)
moving eigenvectors. In the truncated mode basis we have to proceed
differently.

Let Lr be the ny × nleft moving matrix consisting of left moving
eigenvectors in the position (r) basis, Rr be the ny ×nright moving matrix
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consisting of right moving eigenvectors, and Mr be the ny × nmodes
matrix consisting of the mode basis vectors.

The states in the mode basis are given by Lm = M†r Lr and
Rm = M†r Rr . The inverse states are determined by 〈l′ | l〉 = δl′ l , andSince we have orthogonalized the

mode basis, the modes Lm and Rm are
(in general) not, as one would expect,
diagonal matrices in the mode basis.

〈r ′ |r〉 = δr ′r They may be obtained by computing

L′ = L
(
A−1

)†
, R′ = R

(
Ã−1

)†
, (.)

whereIn practical calculations we have to be
careful to use the same set of inverse

vectors for the whole calculation (lead,
transmission) and not to mix different

calculations

A = L†L, Ã = R†R

since now L′†L →= A−1L†L = 1, and analogously R′†R = 1. The
dimensions of L (and L′ ,R,R′) is ny × nB, where ny is the transverse
dimension of the lead, and nB is the number of left- (and right-)
moving basis vectors. There is thus a freedom in the choice of the
inverse vectors |l〉′ and |r〉′ . .

Greens function for a half-infinite lead

We calculate the surface Green ’s function GL of a semi-infinite leadThis derivation can be found in
Sanvito ’s thesis [] and was

simplified by Libisch , [].
by making use of the Dyson equation, Eq. (.). Our “unperturbed”
Green ’s function G0 is the Green ’s function of a single slice GS . The
“perturbation” V is the coupling HRGLHL to an already existing half
infinite lead GL. After we attach the slice, the total Green ’s function
is still the Green ’s function of a half infinite lead, GL.

GL GS
HL

HR

Figure .: Derivation of the sur-
face Green ’s function GL of a semi-
infinite lead. The Green ’s function
of a single slice is given by GS .

GL = GS +GSHRGLHLGL (.)

(E −H0)GLHL =HL +HR (GLHL)2 (.)

(E −H0)
∑
i |ξi〉1/βi 〈ξi | =HL +HR

∑
i |ξi〉1/β2

i 〈ξi | (.)

(β (H0 −E) +HR) |ξ〉 = −β2HL |ξ〉 (.)

In the second line, we use the definition of the Green ’s function
GS = 1/(E −H0) and further right-multiply with HL. In the third line,
we write GLHL as an eigenvalue expansion GLHL = |ξi〉1/βi 〈ξi |. ByThe eigenvectors 〈ξi | are defined via

〈ξj |ξi〉 = δij , see also Eq. (.). comparison with the eigenvalue equation for an infinite lead, Eq. (.),
we see that the eigenfunctions of the semi-infinite lead are the same as
those for an infinite lead. The physical boundary conditions restrict us
to the N eigenvalues of unit magnitude or the exponentially decaying
eigenvalues corresponding to the left-moving eigenstates |l〉, and not
the exponentially increasing right-moving eigenvalues. Thus we can
write

GLHL =
∑
l

|l〉eikl∆x 〈l| . (.)

In the calculation of the semi-infite lead extending to the right GR,
the matrices HL↔HR swap place compared to the calculation for GL
(see Eq. (.)). This results in one over the eigenvalues 1/β↔ β being
replaced by the actual eigenvalues β and one obtains

GRHR =
∑
r

|r〉e−ikr∆x 〈r | , (.)
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where |r〉 are the right-moving eigenstates and e−ikr∆x the eigenvalues.
Let us note that each eigenvalue weights the outer product of the

corresponding eigenvectors in importance. The magnitude of the
eigenvalues of low-energy modes, where k ∈ R, is . High frequency
modes, with =(k) >> ∆x are damped exponentially and can be
omitted in practice.

.. Attaching the leads

For the calculation of the Green ’s function of the system including
the right lead, we insert an additional slice between structure and
lead, and calculate its interaction to both sides.

I = (1−G33HR G22HL −G33HL GRHR)−1 ,

which is a m3×m3 matrix. Now the updated Green ’s functions G̃ can
again be computed using Dyson ’s equation:

G̃33HL = I G33HL
G̃31HR = I G33HR G21HL
G̃11HR = G11HR +G12HL G̃31HR
G̃13HL = G13HL G̃33HL.

G21HR
G12HL

G11HR,G22HL, G3HI , GRHR
Figure .: Attaching the right lead.

The equations for the left lead are similar. This time we insert the
slice  between the left lead L and the structure.

I = (1−G00HL G11HR −G00HR GLHL)−1 ,

which is a m3 ×m3 matrix. The updated Green ’s functions G̃ read

G̃00HR = I G00HR
G̃02HL = I G00HL G12HL
G̃22HL = G22HL +G21HR G̃02HL
G̃21HR = G21HR G̃00HR.

Transmission

Consider an infinite lead, where the lead Green ’s function GL fulfills We are still following Sanvito ’s
thesis [], though we depart in the
end. Sanvito ’s method requires the
introduction of an operator (the
matrix V in Eq. . in his thesis)
which is not accessible in the mode
basis. We show that transmission and
reflection coefficients can be extracted
even in the (non-complete) mode
basis.

(E −HL)GL = 1,

and the lead wavefunction ψL fulfills

(E −HL)ψL = 0.

Let us replace a part of the lead by the scattering structure and denote
byHS the difference of the Hamiltonian of the scattering structure
and the Hamiltonian of the infinite lead. The total Green ’s
function G and the wavefunction ψ now fulfill

(E −HL −HS )G = 1
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and
(E −HL −HS )ψ = 0.

Dyson ’s equation relates the two Green ’s functions,

G = (1−GLHS )−1GL,
and accordingly the wavefunctions

ψ = (1−GLHS )−1ψL.

In the following, we want to find a vector |p〉 which projects
the wavefunction out of the Green ’s function of an infinite lead,
GL |p〉 = |ψL〉. Then we can show that the same vector projects the total
wavefunction |ψ〉 out of the total Green ’s function G,

|ψ〉 = (1−GLHS )−1 |ψL〉
= (1−GLHS )−1GL |p〉
= G |p〉 .

To proceed, we write the Green ’s function between the points z and
z′ in the form

Gzz′ =


∑
r |r〉eikr (z−z′) 〈ar | , z ≥ z′∑
l |l〉eikl (z−z′) 〈al | , z ≤ z′ .

The sum runs over all right- (r) or leftmoving (l) eigenvalues and
-vectors, and |ar〉 and |al〉 are still to determine. When acted on with the
projection vector |p〉, it gives a superposition of right and left moving
plane waves. Inserting this into the defining equation, (E −H)G = 1

gives, together with the Hamiltonian of an infinite lead (Eq. (.)),
the equation

(E −H0)
∑
r

|r〉〈ar | −HL
∑
r

|r〉eikr∆x 〈ar | −HR
∑
l

|l〉e−ikl∆x 〈al | = 1.

Using Eq. (.) from the infinite lead yields

HR
∑
r

|r〉e−ikr∆x 〈ar | −
∑
l

|l〉e−ikl∆x 〈al |
 = 1.

The Green ’s function has to be continuous at z = z′, so
∑
r |r〉〈ar | =∑

l |l〉〈al |. Left multiplying with 〈r ′ |, where 〈r ′ |r〉 = δrr ′ yields 〈ar ′ | =∑
l 〈r ′ |l〉〈al | . Then we have

HR
∑
r

|r〉e−ikr∆x
∑
l

〈r |l〉〈al | −
∑
l

|l〉e−ikl∆x 〈al |
 = 1

HR
∑
r

|r〉e−ikr∆x 〈r | −
∑
l

|l〉e−ikl∆x 〈l|
∑
l′
|l′〉〈al′ | = 1,
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where 〈l′ |l〉 = δll′ . We have computed the vector |al′ 〉, which is defined
by 〈al′ |al〉 = δll′ ,

|al′ 〉 =HR
∑
r

|r〉e−ikr∆x 〈r | −
∑
l

|l〉e−ikl∆x 〈l|
 |l′〉 .

Analogously, we find

|ar ′ 〉 =HR
∑
r

|r〉e−ikr∆x 〈r | −
∑
l

|l〉e−ikl∆x 〈l|
 |r ′〉 ,

where 〈ar ′ |ar〉 = δrr ′ .
The projector |p〉 we set out for is, for z ≥ z′ , just

|pr (z)〉 = |ar〉eikrz′ /
√
vr ,

since acting with it on the Green ’s function Gzz′ =
∑
r ′ |r ′〉eikr′ (z−z′) 〈ar ′ |

yields the normalized plane wave |ψ〉 = |r〉 eikr z√
vr

. We are assuming distinct k values.
For the degenerate case, please refer to
Sanvito ’s thesis[].

We also know the form of the left side of the equation |ψ〉 = G |p〉,
namely

|ψz〉 =

 eikr z√
vr
|r〉+∑

l
rlr√−vl e

iklz |l〉 z ≤ 0∑
r ′′

tr′′ r√
vr′′

eikr′′ z |r ′′〉 z ≥ 0,

where rlr is the reflection coefficient from the incoming right-
moving mode r into the outgoing left-moving mode l and tr ′′r is
the transmission coefficient from the incoming right-moving mode
r into the outgoing right-moving mode r ′′. Finally we can extract
the reflection and transmission coefficients. We use the numerically
computed G in |ψ〉 = G |p〉, and act on it with 〈r ′ | to obtain, for z ≥ 0,
the transmission

tr ′r = 〈r ′ |e−ikr′ (z2−z1)
√
vr ′√
vr
G21HR

∑
r ′′
|r ′′〉e−ikr′′∆x 〈r ′′ | −

∑
l

|l〉e−ikl∆x 〈l|
 |r〉 . (.)

At z = 0, we can extract the reflection

rlr = 〈l|
√−vl√
vr

G11HR
∑
r ′′
|r ′′〉e−ikr′′∆x 〈r ′′ | −

∑
l

|l〉e−ikl∆x 〈l|
−1

 |r〉 . (.)

If we sum over all modes, these equations are identical to those
given in Sanvito ’s thesis[].

In contrast this derivation shows that summing over all possible
modes is not necessary. The mistake we make by neglecting evanescent
modes is, as can be seen by checking the terms in Eq. (.) and
Eq. (.), only exponentially small.





Computations in the Mode basis

In Section ., we hint at the gains in efficiency which can be obtained with the
mode basis. We calculate the scattering matrix of simple building blocks of more
complicated geometries in Section .. Resonances and their effect on the mode
basis approximation are discussed in Section .. The mode basis can be used for
moderate magnetic fields, see Section ..

. Timing

The main reason to do the transformation into the mode basis is the
gain in efficiency. To get a feeling for the speed of the algorithm, we
measure the time needed to compute the transmission of a quadratic
graphene flake at fixed energy for various system sizes. The tests are
done on a notebook with an Intel Core i processor. Both calculations
are done on a single core and both use the recursive Green ’s function
method. Of course, further gains in efficiency are easily possible by
using the modular recursive Green ’s function method and parallel
computing. But since the recursive Green ’s function method on a
single core is the building block of all further methods, our test still
has its validity.

At E = 0.1eV, the mode basis is able to calculate structures which
are an order of magnitude larger than the position basis, see Fig. ..
The gains in computational speed are a direct result of the smaller
matrix sizes in the mode basis. A fit gives a computational time
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Figure .: Computational time comparison between the recursive Green ’s function method in position basis and in the
mode basis. The system is a quadratic graphene flake and the transmission is computed at E = 0.1eV

 
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t dependence on the system size n of about O(n3.9) for the exact
calculation and O(n3.8) for the mode basis. Matrix multiplications,
which go with O(n3) constitute a lower bound for all calculations.

Due to the large number of modes at E = 1eV ( open and 
in total for a size of  Å) the situation changes. Using the mode
basis, we can only calculate a system twice as large as in the position
basis in the same time (compare the two curves in Fig. .). This does
not come as a surprise, as with 386 modes we are in the range of the
exact system with ny = 400 atomic orbitals.

Why do we need so many modes? As explained in Section .,
the full modebasis consists of right- and left moving open modes,
as well as closed modes. Further we include the eigenvectors of the
Hamiltonian of a single slice as well as the action of a single slice
on the mode basis.

One might wonder why the calculation with matrices of size
 in the mode basis is slower than the exact calculation with
matrices of size . This is due to the fact that we need to solve three
eigenproblems (see the paragraph above) and that we have to do a few
basis transformations between the orbital basis (N = 1000) and the
mode basis (M = 386). These matrices are of size 1000× 386.

Figure .: Computational time
comparison between the recursive
Green ’s function method in position
basis and in the mode basis. The
system is a quadratic graphene flake
and the transmission is computed at
E = 1eV.
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In contrast, when we decrease the energy with increasing system
size, and thereby keep the number of propagating modes constant, the
computational time in the mode basis is much smaller.

We further remark that the relevant energy region for graphene-
transport calculations is near the Fermi energy and thus well below
E = 1eV.

. Building Blocks

In this section we investigate how well calculations using the
(truncated) mode basis perform for various geometries. We give
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Figure .: Transmission through a
graphene scattering structure. The
mode basis calculation (black dots)
lies on top of the exact calculation
(gray line). Transmission plus reflec-
tion (dashed line) add up to the num-
ber of open modes. Dimensions: Leads:
W = 20nm, structure: W = 10nm,
L = 10nm. The leads are described by
 modes instead of  tight binding
orbitals, and the scattering region by
 modes instead of  orbitals. Pa-
rameters in the calculation:  eigen-
values,  left and  right moving
modes,  eigenfunctions ofH0 for the
10 nm, and  eigenvalues,  left and
 right moving modes,  eigenfunc-
tions of H0 for the 20 nm.
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examples of various simple “building blocks” like a constriction or a
cavity, of a more complex scattering structure.

Tunneling The first geometry we want to test is a constriction.
Physically, the reflection originates from the position where the
transverse size decreases. Once the particle is inside the small region,
it can enter the wide region almost reflectionless. Resonances of the
small region couple strongly to the wide leads and are therefore very
broad and much less important than in a cavity.

The mode basis describes the physics astonishingly well (see
Fig. .), though only the subset of low frequency modes is used.
Transmission plus reflection should equal exactly the number of
incoming open modes. As the transformation into the truncated mode
basis is an approximation, slight inaccuracies at certain points don’t
come unexpected.

Cavity The next geometry we consider at is a cavity, . The width
of the cavity is twice the width of the leads. The current can enter the
cavity almost reflectionless, but scatters multiple times before it leaves
the cavity at either side. This results in a complicated transmission
curve (Fig. .). The mode basis again reproduces the exact calculation
in great detail, with the exception of small regions. Around these
points however, the vulnerability of the approach becomes apparent.
In these cases, the unitarity (reflection and transmission should equal
the number of open modes) provides a consistency check.

Dependence of the numerical stability in the number of modes We want
to discuss how many modes we have to include in the calculations.

When we include as many modes as we have tight-binding
orbitals, we have a unitary transformation into the mode basis and the
calculation is exact. The other extreme would be to solely include open
modes. This however, works only for a featureless waveguide without
any additional potential or changes in the transverse dimension. The
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Figure .: Transmission through a graphene scattering structure. The mode
basis (black dots) calculation agrees with the exact calculation (gray line),
see also the magnification. The unitarity (dashed line) is slightly violated, see
text. Dimensions: Leads: W = 10nm, structure: W = 20nm, L = 40nm. The
leads are described by  modes instead of  tight-binding orbitals, and the
structure by  modes instead of  tight-binding orbitals. Parameters in
the calculation: Leads:  basis vectors, and  eigenvectors of H0. Structure:
 basis vectors, and  eigenvectors of H0.

accurate description of non-trivial cases requires higher frequency
modes. But how many modes do we have to include? The more
complicated the structure is, the more modes we have to include, as
can be seen from the constriction in Fig. . and the cavity (Fig. .,
calculation with the same number of modes not shown). Though both
structures consist of a wide ( modes/ tight binding orbitals)
and a small (modes/ orbitals) region, the simpler constriction
shows perfect agreement with the exact calculation whereas the cavity
already deviates strongly at certain points.

Let us investigate the cavity more closely. Starting directly with

Why do we still have so many modes?
For graphene, we need a few

evanescent modes to stabilize the
calculation. Let us say we have  open
modes, and roughly ten closed modes.
Multiply by two to describe both left-

and right moving states, and we are at
 modes. As discussed in Section .,
we also have to include H0 |m〉, which
gives . Finally, we have to add a few
eigenfunctions of H0. We now have a

minimum of  modes, though this
number is still reduced by possible

linear dependences. With increasing
system size, we generally need to

increase the number of modes. The
ratio between system size and number

of modes however becomes better.

Fig. ., modes instead of  tight-binding orbitals for the leads
and  modes instead of  tight-binding orbitals describe the
cavity very well. Successively decreasing the number of modes used in
the calculation (see Figs. . and .) makes the calculation more and
more unstable.

Hence, no general answer on how many modes have to be included
can be given. The figures in this chapter can provide a rough guideline.



C H A P T E R  . C O M P U TAT I O N S I N T H E M O D E B A S I S  

−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

2

4

6

8

EF /eV

T
Cavity (fewer modes)

Tmb +Rmb
Texact

Tmode basis

Figure .: Transmission through a graphene scattering structure. The mode basis (black dots) calculation agrees with
the exact calculation (gray line). Since fewer modes are used, the unitarity (dashed line) is slightly violated, see text.
Dimensions: Leads: W = 10nm, structure: W = 20nm, L = 40nm. The leads are described by  modes instead of 
tight-binding orbitals, and the structure by  modes instead of  tight-binding orbitals. Parameters in the calculation:
Leads:  basis vectors, and  eigenvectors of H0. Structure:  basis vectors, and  eigenvectors of H0.

For more complex situations, we suggest to look for unitarity violations
(T +R = Nmodes) of the mode basis especially near sharp resonances
and increase the number of modes accordingly.

Two Cavities We observe that the calculation of two connected
cavities of width 20 nm and length 40 nm, , where the
constriction is 1 nm long and 10 nm wide is still stable, see Fig. ..
With this extremely short constriction we want to test cases where
tunneling through evanescent modes becomes important.

The stability of the calculation in the mode basis is not guaranteed.
At close inspection it can be seen that the agreement with the exact
calculation is not as good as for the single cavity, Fig. ..

Ferry et al. describe the mode matching technique in their
book Transport in Nanostructures[]. One “breaks up a geometry into
sections and expands stationary-state solutions in transverse modes
characterizing a particular section”. Then one matches the solution
and its derivatives across the boundary of different sections. This
procedure may cause numerical instabilities due to exponentially
growing modes. Our mode basis approach is conceptually close to
this mode matching technique, so we should be aware of a possible
breakdown for complicated geometries.
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Figure .: Transmission through a graphene scattering structure using too few modes. The mode basis (black dots)
calculation fails to reproduce the exact calculation (gray line). The unitarity (dashed line) is heavily violated, see text.
Dimensions: Leads: W = 10nm, structure: W = 20nm, L = 40nm. The leads are described by  modes instead of 
tight-binding orbitals, and the structure by  modes instead of  tight-binding orbitals. Parameters in the calculation:
Leads:  basis vectors, and  eigenvectors of H0. Structure:  basis vectors, and  eigenvectors of H0.

. Resonances

At various points in the transmission curve, resonances which are bothFor an introduction to Fano
resonances, please see Section .. asymmetric and very sharp can be observed. One of them appears

in the region around E = 0.2656eV in the cavity of length L = 40nm
and width W = 20nm, see Figs. . to .. For closer inspection, the
calculation is redone with a tighter spacing in this energy window,
see Fig. .. The characteristic Fano line shape suggests that an
interference effect between the continuum states in the leads and an
eigenstate of the cavity takes place. Since the width of the peak is
determined by its imaginary part, we conclude that this state couples
only weakly to the leads. We search for eigenstates of the (closed)
cavity at this energy and indeed find a state at E = 0.2648eV which
resembles the scattering state at E = 0.2656eV closely (not shown). As
violations in the unitarity are always accompanied by a characteristic
sharp and asymmetric line shape in the transmission curve, we
conclude that resonant scattering on states with a long lifetime
induces these numerical instabilities. Why is the description of these
states challenging? These states traverse the structure many times, or
put differently, reflect multiple times at the constrictions. Small errors
which are inevitable introduced in the mode basis approximation are
amplified.

Future work could be dedicated to an accurate description of
these resonances in the mode basis. A possible approach would be to
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Figure .: Transmission through a graphene scattering structure. The mode basis (black dots) calculation agrees with the
exact calculation (gray line). The unitarity (dashed line) is slightly violated, see text. Dimensions: Leads: W = 10nm,
structure: W = 20nm, L = 40nm, followed by W = 10nm, L = 2nm and then again W = 20nm, L = 40nm. The leads
are described by  modes instead of  tight binding orbitals, and the scattering region by  modes instead of 
orbitals. Parameters in the calculation:  eigenvalues,  left and  right moving modes,  eigenfunctions of H0 for
the 10 nm, and  eigenvalues,  left and  right moving modes,  eigenfunctions of H0 for the 20 nm.

Figure .: Resonance in the trans-
mission curve. This is the same cav-
ity and data as in Fig. ., but we
now focus on the region around E =
0.2656eV, where the unitarity (Tmb +
Rmb, dashed line) is violated in the
mode basis. This can be attributed
to an eigenstate of the cavity at E =
0.2648eV, see text. Compare also this
line shape with the coupled oscillator
model, Fig. .
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include the projection of the eigenstate on the current slice into the
mode basis.

Discrepancy in Transmission and Reflection The error in the reflection
coefficient is generally larger than in the transmission coefficient (see
especially Fig. .). A possible explanation is that the computation
of the reflection has, for a nearly ballistic device, more chance to err
than the computation of the transmission. Intuitively, one has to go
through the structure once to compute the transmission, but one has
to go back again to compute the reflection. Mathematically, twiceThis argument has to be taken with a

grain of salt, since it is not valid for
complex scattering structures, see

[].

as many matrix multiplications are used for the computation of the
Green ’s function G11, which ultimately determines the reflection, as
are used for G21, which determines the transmission, see Chapter . A
second possible explanation is that while the Green ’s function G21 is
almost diagonal in the right-moving modes, the Green ’s function
G11 has components of both right- and left moving modes. At the
moment the mode basis code orthogonalizes all right moving modes
first, and then all left moving modes. Thus more errors are introduced
into the left moving part, since the orthogonalized mode may now
overlap with exponentially increasing modes. The apparent solution
is to orthogonalize all open (and thus important) modes first, and the
closed modes afterwards. Since this is an obvious flaw in the current
implementation, the discrepancy in errors between transmission and
reflection coefficients is not investigated further but marked for future
improvements.

. Magnetic Field

The effect of a magnetic field B on a particle with charge q and velocity
v is described by the Lorentz force,

Fi = qεijkv
jBk .

Thus, a particle moving in the x-y plane under the influence of a
magnetic field in z-direction always feels a force perpendicular to its
motion. This results in circular orbits. Quantum mechanics forces theA discussion of the appearance of

Landau levels in graphene can for
example be found in Libisch ,

“Transition to Landau Levels in
graphene quantum dots”[].

quantization of these cyclotron orbits, which are then called Landau
levels.

The movement of electrons through a scattering structure is
strongly influenced when the length scale of the cyclotron orbits
approaches the system size. This is the case for strong magnetic fields
and large structures, which is in general computationally difficult.

The mode basis decouples the computational time somewhat
from the system size, as only a subset of modes is used. This makes
the mode basis a promising candidate for computations involving
magnetic fields. On the other hand, its conceptual starting point are
the quantized modes in y direction which propagate in x direction.
Under a strong field which forces the electrons into circular orbits
the separation into x and y direction becomes meaningless. We thus
cannot expect to be able to do computations with strong fields.
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Figure .: The appearance of Lan-
dau Levels in a straight waveguide.
The transmission (solid line) decreases
with increasing magnetic field. The
transverse system size is 70 nm. Pa-
rameters:  eigenvalues,  left
and  right moving modes,  eigen-
functions of H0,  modes in total.
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Straight waveguide A magnetic field in z direction pushes an electron
propagating in positive x direction through an electron waveguide a
bit “to the side” into positive y direction. The electron wavefunction
then no longer spreads through the whole structure, but occupies only
the “upper” part in y-direction – just as if the electron waveguide
would have been made narrower in y direction. In a narrower
waveguide we have fewer propagating modes for a given energy.
Hence, the transmission through an electron waveguide decreases
with increasing magnetic field, see Fig. ..

The mode basis captures this behaviour in a straight waveguide of
widthW = 70nm described by modes instead of  tight-binding
orbitals for up to B = 10T. For larger fields, the calculation fails. This
can be attributed to the recursive Green ’s function algorithm. Since
the magnetic field is introduced via Peierl ’s substitution (see [])
the single slices the geometry is build up from do not know about
the magnetic field. The eigenfunctions of an infinite waveguide are
strongly influenced by the field and hence are not a good basis set to
describe a single slice without field.

Transport through edge states More interesting than a straight
waveguide are structures like a cavity. Then we no longer have perfect
transmission, but part of the current reflects back, R , 0. Interestingly,
when the propagating states get pushed more and more towards the
edge, they feel the effects of the geometry of the structure less and
less. Once the right propagating states on the upper edge and the
left-propagating states on the lower edge have vanishing overlap,
there isn’t even a chance for an electron to scatter back. This effect is
connected to the quantum Hall effect.

For low magnetic fields, we observe the rise in transmission due to
the beginning formation of transport through edge states, Fig. ..
At fields above 5 T, the calculation in the mode basis fails. It fails
because it cannot describe changes in the transverse geometry. When
the geometry gets wider or narrower the states propagate, under the
influence of the magnetic field, along the edge in y direction.

A solution to this problem would be to calculate the region with
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Figure .: The number of modes, as
given by transmission plus reflection
(dashed line) decreases with increas-
ing magnetic field. The transmission
(solid line) generally increases due to
the formation of edge states. A cavity
of length L = 80nm and width W =
90nm in a magnetic field. The trans-
verse size of the leads is 70 nm. Pa-
rameters (For personal use)  eigen-
values,  left and  right moving
modes,  eigenfunctions of H0, 
modes (lead) and  modes (cavity)
in total.
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changing transverse size in the position basis, and transform this
block into the mode basis once the geometry doesn’t undergo any
more drastic changes. This point is marked for future work.

For moderately large fields however, we conclude that the mode
basis is useful.



Phonons

A description of phonons suitable for numerical calculations is obtained in
Section .. Phonon coupling in a straight waveguide is discussed in Section ..
To gain a better understanding of what controls phonon scattering events, we
compare with the random walk model in Section .. More complex geometries
are considered in Section .. We conclude this thesis by discussing more realistic
phonon models in Section ..

. Electron - Phonon interaction

We use the Fröhlich Hamiltonian

H =
∑
k,s

εk,sc
†
k,sck,s +

∑
q,v

~ωq,va
†
q,vaq,v +

∑
kk′qsv

δkk′qsv
(
a†−q,v + aq,v

)
c†k′ ,sck,s

to describe the electron-phonon interaction. Here, εk,s is the (undis-
turbed) energy of an electron with wave vector k and spin s, c† and
c are the electron creation and annihilation operators, ~ωq,v is the
(undisturbed) energy of a phonon with wave vector q in branch v,
a† and a are the phonon creation and annihilation operators, and δ
is the electron-phonon coupling element. Momentum conservation
k′ = k+q is enforced by the electron-phonon coupling element δkk′qsv .

Phonon model for numerical calculations Next, we motivate certain
simplifications. Let us choose a single, optical phonon branch, and
assume vanishing dispersion and a constant density of states. Then
the summation over v is fixed and also the q dependence vanishes.
Further, let us assume that the electron-phonon coupling δ is constant
and small. An electron with initial wave vector k has the chance to
excite or absorb a phonon with energy ~ω at a certain point in the
scattering structure. Their probability to scatter multiple times is
damped in powers of δ.

We discuss the possible relaxations of these stringent assumptions
in Section .. All calculations in this thesis however focus on this
heavily simplified picture. In a first step, we only want to understand
what an electron does when it has the possibility to loose or gain
energy, without putting too much information into the inelastic
scattering process itself.

Let us cast this into a form which can be used in numerical
calculations. We denote the undisturbed Hamiltonian by H0. The
matrix δ now couples H0 to the Hamiltonian H±1 which describes
the same situation, except with an additional energy ±~ω from one

 
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Figure .: Reflection and Transmis-
sion coefficients are computed for an
incoming electron at energy shift ~ω =
0eV. It can either reflect into one
of the energy sheets on the left (not
shown), or go into one of the sheets on
the right. The transmission plus the
reflection equals the number of open
modes T + R = Nmodes in the sheet
~ω = 0eV.

Phonon setup

2~ω
~ω
0

−~ω
−2~ω

2~ω
~ω
0
−~ω
−2~ω

T

phonon scattering event. In matrix form we have

H =



. . .
. . .

. . . H+~ω δ

δ H0 δ

δ H−~ω
. . .

. . .
. . .


. (.)

This of course is an infinite matrix. Assuming that the coupling δ
is weak, we can introduce a cut off at some point, which renders
the matrix finite dimensional. In this thesis we present transport
calculations through a structure described by such a Hamiltonian
with the help of a transformation into the mode basis.A Taylor expansion in powers of δ

seems to be unstable, see Appendix A. This kind of “multilayer Hamiltonian” may be used to describe
either (weakly coupled) multilayer systems, or certain interactions. For
example, one can interpret it as “few layer graphene with a potential
gradient”.

Further, it appears when one uses Floquet -theory to describe
the Hamiltonian with an additional time periodic electromagnetic
field, see [] . In this case, the additional energy ~ω comes from a

“Floquet-Bloch Theory and
Topology in Periodically Driven
Lattices” by Gómez León and

Platero [].
photon absorption process.

.. Model System

In Fig. . we show the general setup of a calculation with coupled
energy-sheets. In addition to the Hamiltonian of the scattering
structure at energy E, we do the calculation at energies spaced
multiples of a small shift ±~ω apart. These equations are coupled, so
an electron coming in at ~ω = 0eV can either reflect into one of the
energy sheets on the left or go into one of the sheets on the right (see
Fig. .). As the coupling between the individual sheets is assumed
to be small, the main contribution typically comes from the sheet at
~ω = 0eV.

The resulting transmission curve is plotted as a stacked plot
of the transmission into the individual E-sheets, see for example
Fig. .. In the lowest curve, the electron has gained the energy n~ω
(in Fig. . n = 2), and on top is the curves where the electron has lost
the energy n~ω. As it is a stacked plot, the upper curve is also the total
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Figure .: Transmission at the open-
ing of a new mode in a combined calcu-
lation of  energy sheets separated by
~ω = 0.02 eV (black triangles). The
individual transmission curves are
shown as a stacked plot and labelled by
−3~ω, . . .3~ω. The transverse system
size is 10 nm, and phonon coupling is
turned on for a length of 20 nm. Pa-
rameters:  eigenvalues,  left and
 right moving modes,  eigenfunc-
tions of H0 and the phonon coupling
parameter is δ = 0.01.
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Figure .: The Reflection coefficient
corresponding to the calculation in
Fig. .. The opening of a new mode
(black triangles) in a combined calcu-
lation of  energy sheets separated by
0.02 eV (black triangles). Shown is a
stacked plot as discussed in Fig. ..
The system size is 10 nm, and phonon
coupling is turned on for a length of
20 nm. Parameters:  eigenvalues,
 left and  right moving modes, 
eigenfunctions of H0 and the phonon
coupling parameter is δ = 0.01.

0.18 0.2 0.22 0.24 0.26 0.28 0.3

0

0.5

1

NNNN

EF /eV

R

Mode opening – Reflection

E-sheets

transmission. Features in the individual transmission curves appear
generally earlier in the lower curves, and later in the upper curves,
and the total transmission is then smoothed out.

. Mode Opening

We look at the effect of a mode opening in a waveguide. We combine
 energy sheets separated by ~ω = 0.02eV in a calculation. The
transmission of an incoming electron to the  sheets with the energy
differences between −3~ω, . . . ,3~ω is computed, see Fig. ..

The main contribution to the transmission far away from a mode
opening comes from the sheet at ~ω = 0eV into itself, see for example
the region around E = 0.2eV in Fig. .. There is also an important
contribution into the sheets “above” and “below” in energy ±~ω, and
a small contribution into sheets  and . The coupling into sheet  and
sheet  is (equally) small, and almost negligible.
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Figure .: Transmission at the open-
ing of a new mode in a combined calcu-
lation of  energy sheets separated by
~ω = 0.02 eV. This is the same data
as in Fig. ., but an additional axis
is introduced to separate the energy
sheets. With increasing energy (labeled
by EF /eV), the mode opens. The trans-
mission into the individual sheets (la-
beled by ~ω/0.02eV) changes accord-
ingly, see text. Smooth curves connect
the energy sheets at equal energies.
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At ≈ E = 0.22eV a new mode opens up for the sheet at ~ω = 0eV.
At this point, the mode is already open in the sheets with addition
energy +1~ω,+2~ω,+3~ω, and we can see transmission into all of
these sheets.We remark that we do not plot the

transmission from the closed mode in
sheet  just below E = 0.22eV into

the already open modes in the sheets
+1~ω,+2~ω,+3~ω.

At ≈ E = 0.24eV, the second mode opens for the sheet with
E = E0−1~ω. The energy at which this happens is exactly ~ω = 0.02eV
above the energy of the mode opening of sheet . We observe a slight
drop in transmission leading up to this point. At little higher energy,
the transmission into sheet −1~ω becomes the main contribution for a
short energy range.

These features can be attributed to the large dwell time of the new
mode. The new mode has a high transverse momentum component,Pierrat et al. investigate the dwell

time of a wave through complex
structures, but also through a clean

waveguide in “Invariance property
of wave scattering through

disordered media”[].

but only a small component into the propagating direction; it travels
only slowly through the waveguide. This increases the chance of
phonon scattering, and effectively increases the phonon coupling
parameter. This shifts a significant part of the transmission into the
newly open mode. Right before this mode opens we have a very similar
situation, except that the mode doesn’t propagate, but it decays into
the waveguide. An electron has now the chance to scatter into this
decaying mode. This mode in turn has a relatively strong coupling
to left-moving modes, so the electron may scatter back, which leads
to a small increase in the reflection. Inspection of the reflection
curve Fig. . supports this argument. The main contribution to the
reflection is from the energy sheet where the mode opening occurs.

At further multiples of ~ω = 0.02eV the mode opens in the other
sheets and we can again observe a slight drop in the total transmission,
followed by an increase in the transmission into this sheet, before
everything stabilizes.

For visualization purposes, we introduce an additional axis for
the individual sheets separated by ~ω in Fig. .. The distinct mode
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openings can be well identified. Further, the transmission into the
different energy sheets from the incoming sheet at ~ω = 0 resemble a
Gaussian . This point is further elaborated in Section ..

.. Phonon coupling in a perfect waveguide

Once we understand what happens at a mode opening, we can
interpret the transmission through a perfect waveguide with phonons
over a larger energy range, Fig. .. At the mode openings, we can
recognize the behaviour discussed in the last section. Far away from
the mode openings, the transmission into the individual sheets
stabilizes and the largest contribution stems from the sheet ~ω = 0

Figure .: The transmission through
a perfect waveguide as a combined cal-
culation of  energy sheets separated
by 0.02 eV. Shown is a stacked plot
as discussed in Fig. .. The system
size is 10 nm, and phonon coupling is
turned on for a length of 20 nm. Pa-
rameters:  eigenvalues,  left and
 right moving modes,  eigenfunc-
tions of H0 and the phonon coupling
parameter is δ = 0.01.
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. Random Walk model

Let us investigate the approximately Gaussian spread into energy
levels more closely. We fit a Gaussian to the transmission into the
different energy sheets and obtain good agreement, see Fig. .. How
can we understand this?

The random walk is a simple model for the transmission into the
different energy sheets. Electron-phonon scattering may occur at each
point in the geometry. The probability of such an event is by Fermi ’s
golden rule the matrix element - the phonon coupling strength δ
times the overlap between the initial and final wavefunctions squared,

p = |δ|2
∣∣∣〈ψi |ψf 〉∣∣∣2. The overlap depends on the transverse k vectors

of the two wavefunction, ky(E) and ky(E ± ~ω). Let us assume that
the overlap does not change considerably at the order of ~ω in E,〈
ψ(E − ~ω)

∣∣∣ψ(E)
〉 ≈ 〈

ψ(E)
∣∣∣ψ(E + ~ω)

〉
. Finally we assume a constant

density of states at the order of ~ω in E. In this approximation, the
probabilities to absorb or excite a phonon at each step is equal to p,
and the probability to undergo no scattering is 1− 2p.

The probability for a path with N steps through the structure,
where a phonon is excited n+ and absorbed n− times, and n0 times no
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Figure .: The approximately Gaus-
sian spread of an incoming electron
with 0~ω into different energy lev-
els separated by ±~ω. The random
walk model (see Section .) provides
a simple picture for this behaviour.
The data is the energy point at E =
0.216667eV from the plot in Fig. .
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phonon scattering occurs, is given by the multinomial distribution

f (n+,n−,n0;N ) =
N !

n+!n−!n0!
pn++n−(1− 2p)n0 .

The probability to end up with m excited phonons after N steps canIn this step, we are neglecting possible
interference terms. be obtained by summing over all paths with n+ −n− =m,

f (m) =
imax∑
i

f (m+ i, i,N −m− 2i;N ) ,

where imax = (N −m)/2, which is the situation where a phonon is
excited or absorbed in each step and n0 = 0. After rearranging terms,
the sum can be written as the Gaussian hypergeometric function
2F1,

f (m) =
N !

(N −m)!m!
pm(1− 2p)N−m2F1

(
(m−N )/2, (m−N + 1)/2,m+ 1,4p2/(1− 2p)2

)
. (.)

The correctness of the model can be checked by fitting the
probability p of the random walk model to calculations with the
Green ’s function method for various values of δ. According to the
model, the probability should, following Fermi ’s golden rule, be
proportional to the square of δ, p ∝ δ. To this end, we calculate theWe have to do a fit on the full

calculation to obtain the
proportionality between p and δ2.

transmission through a waveguide of width W = 10nm at  energies
around E = 0.2eV with coupling turned on for 20 nm, and coupling
strengths between δ = 0.001 and δ = 0.01. For larger coupling strength,
a larger contribution to the total transmission comes from energy-
sheets with ~ω , 0, see Fig. .. The spread into the different energy
values obtained with the random walk model, Eq. (.), is in good
agreement with the full calculation Fig. .. Deviations from the
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Figure .: Transmission into the individual E-sheets
for a waveguide of W = 10nm at  energies around
E = 0.2eV with coupling turned on for 20 nm, and
coupling between δ = 0.001 and δ = 0.01. A smooth
curve connects the data points at equal energies.

Figure .: Fit of the scattering probability p (black
points) as determined to the random walk model
Eq. (.) to the full calculation. The probability for
a scattering event in the random walk model is propor-
tional to the square of the phonon coupling δ in the
mode basis calculation, p ∝ δ2. (dashed line)

model (see Fig. .) do not come as a surprise, as the random walk
model does not take varying overlap 〈ψ(E)|ψ(E′)〉, the finite number of
energy sheets, interference effects as well as paths which traverse the
structure in other than N steps (via multiple reflections) into account.

The good agreement with the calculation in the mode basis
suggests that the random walk model is an interesting candidate for
Monte-Carlo simulations that include phonon scattering “by hand”.

. Building Blocks

.. Constriction, with phonons

We go to more complex structures and calculate the transmission
through a constriction with phonons, Fig. .. Eigenstates of the
constriction couple strongly to the wide leads and are very broad.
By close inspection of the data we observe that the transmission
into the sheets with additional energy +3~ω, . . .+ ~ω rises before the
transmission in the sheet ~ω = 0eV rises. Therefore peaks or dips
appear sooner (later) in the sheets with +n~ω (+n~ω). In contrast to
the exact calculation (Fig. .) features in the total transmission get
smeared out. However, these smooth peaks do not appear ~ω spaced
apart in the individual transmission curves, but much closer in energy.
This is because the phonon scattering can occur at any point in the
structure which leads to a continuous increase in transmission.
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Figure .: The plot shows the tunneling though a constriction in a combined calculation of  energy sheets separated by
0.02 eV. Shown is a stacked plot as discussed in Fig. .. The exact calculation is shown in Fig. .. The leads have a width
of 20 nm, and the constriction has a width of 10 nm. Phonon coupling is turned on 10 nm before the constriction and
turned off 10 nm after the constriction. Parameters:  eigenvalues,  left and  right moving modes,  eigenfunctions
of H0 for the constriction,  eigenvalues,  left and  right moving modes,  eigenfunctions of H0 for the leads, and
the phonon coupling parameter is δ = 0.01.

.. Cavity, with phonons, sharp peaks

The transmission curve of a large cavity (W = 50nm and length L =
40nm) with small leads (W = 10nm) at low energies is comparatively
easy to interpret, see Fig. .. Eigenstate of the cavity, which couple
weakly to the leads show up as sharp resonances in the transmission
curve. We observe Broad peaks, sharp Breit-Wigner resonances
and window resonances.For an introduction to Fano

resonances, see Section . Let us discuss the effect of phonon scattering on the transmission
curve. Broad features get smeared out, as already discussed for the
constriction. In this calculation, we observe a large peak between
E = 0.172eV and E = 0.189eV. The transmission into the sheet with
energy shift ~ω = 0.005eV begins to rise exactly 0.005eV earlier,A dip in the total transmission at

E = 0.172eV superposes the rise into
the lower energy sheet. It is therefore a

bit harder to discern.

and the transmission into sheet with energy ~ω = −0.005eV rises
0.005eV later. (The arrows in Fig. . point to the discussed features).
This results in a slightly decreased transmission compared to the
calculation without phonons.

Tunneling via weakly coupled eigenstates of the cavity results
in sharp Breit-Wigner resonances. We observe a distinct sharp
peak at E = 0.104eV, and due to resonance in the corresponding
phonon-sheet, a smaller peak at E = 0.109eV. We also observe a
rise in transmission into the sheet with δE = ~ω at E = 0.104eV.
When transport via such an eigenstate takes place, its longevity
enhances the chance of phonon scattering. This leads to an increase
in the transmission into the neighbouring energy sheets, while
the total transmission is unaffected. At certain points, however
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Figure .: Transmission through a cavity of width W = 50nm and length L = 40nm, the leads are W = 10nm wide.
Shown is a stacked plot as discussed in Fig. .. Phonon coupling between the  energy sheets separated by ~ω = 0.005eV
is turned on 20nm before the cavity and turned off 40nm after it. Black triangles indicate the positions of mode openings
in the W = 50nm wide region. Parameters: The phonon coupling is δ = −0.001. We use  eigenvalues for the leads,
 right- and left moving basis vectors, and  eigenvectors for H0. For the cavity,  eigenvalues,  right- and left
moving basis vectors, and  eigenvectors for H0.

(see E = 0.104eV, or E = 0.1605eV in Fig. .), we observe only a
contribution of the sheet with the additional energy ~ω. A possible
explanation is that though coupling to the state −~ω lower in energy
exists, it is not a propagating state and doesn’t contribute to the
transmission.

Window resonances result from destructive interference with
eigenstates of the cavity. Phonon coupling does not change the form or
depth of these dips. Due to the destructive interference, the incoming In this discussion, we are talking

about the scattering matrix of the
cavity alone. Whenever we include
large parts of the leads, inelastic
scattering may already occur there. In
that case, the electron has a different
energy when entering the structure.
Then, dips appear multiple times.

electron never really enters the cavity and never has a chance to
scatter on a phonon. Further, the window resonance does not appear
at the characteristic energy shifts at multiples of ~ω = 0.005eV. This
is because the electron-phonon scattering may occur at any position in
the structure, thus the electron appears at any position in the sheets
shifted in energy. This lifts the destructive interference.

Cavity, with phonons

We compute the transmission through a cavity of width W = 20nm,
L = 40nm, with leads of width W = 10nm, (the same as in Fig. .)
with additional phonon coupling, see Fig. .. The transmission
curve shows many resonances of various shapes. At the individual
resonances, one can observe the behaviour discussed in the last
paragraphs. Peaks appear at the characteristic energy shifts at
multiples of ~ω = 0.01eV. Thus, peaks larger than ~ω get smeared
out, and peaks with a width smaller than ~ω appear multiple times.
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Figure .: Transmission through a graphene scattering structure with following dimensions: Leads: W = 10nm,
structure: W = 20nm, L = 40nm. The computation combines  energy sheets separated by ~ω = 0.01eV. Parameters
in the calculation:  eigenvalues,  left and  right moving modes,  eigenfunctions of H0 for the 10 nm, and 
eigenvalues,  left and  right moving modes,  eigenfunctions of H0 for the 20 nm. Phonon Coupling is turned on
10nm before the cavity and turned off 10nm after the cavity. The coupling strength is δ = −0.003.

Dips due to reflection are not changed by phonon coupling.

.. Barrier

One of the most striking effects of inelastic scattering can be observed
when considering a potential barrier with potential V . We choose a
rather wide barrier, see Fig. ., to suppress tunneling completely.A short barrier is considered in

Fig. .. The oscillations in the
transmission curve for a wide barrier

(Fig. .) and the monotonic
increase for a short barrier (Fig. .)
are well-known, see e.g. “Solid State

Physics” by Grosso and
Parravicini [].

Consequently the transmission in the calculation without inelastic
scattering begins to rise when the incoming particle has enough
energy E > V to pass over the barrier.

In contrast we already observe non-vanishing transmission in the
otherwise forbidden region several ~ω below V . This happens when
the incoming particle gains additional energy by means of inelastic
scattering and can therefore traverse the barrier.

At close inspection one can observe that the peaks appear ~ω
spaced apart, see arrows in Fig. .. Particularly, each of the multiple
peaks can be traced down to its proper energy sheet.Due to the stacked plot, it may look as

if some peaks appear in multiple
energy sheets, but one really has to

consider the difference between
adjacent sheets.

Short barrier, Tunneling.

Tunneling is important in very short barriers, see Fig. .. We
observe that (in our model) inelastic scattering does not change the
transmission curve at all. This is due to the almost perfectly linear rise
in transmission through the short barrier (see also []) and that in
our model gaining and loosing energy are equally probable. Hence,
everything which is lost in transmission by scattering into states with
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Figure .: Potential barrier in the countinuum limit. Leads: width W =
 lattice points, Barrier: W =  lattice points, length L =  lattice
points and V = 0.05eV.  energies separated by ~ω = 0.0025eV are coupled.
The phonon coupling leads to transmission in the otherwise forbidden region,
marked with an arrow. Parameters in the calculation:  eigenvalues and 
modes. Phonon coupling δ = 0.001.

Figure .: Transmission through
a potential barrier in the contin-
uum limit. The transmission with
phonon coupling (black line) is iden-
tical to the transmission curve with-
out phonons (gray line, overlaps one
black line) Leads: width W =  lat-
tice points, Barrier: W =  lattice
points, length L =  lattice points and
V = 0.05eV.  energies separated by
~ω = 0.0025eV are coupled. Param-
eters in the calculation:  eigenval-
ues and  modes. Phonon coupling
δ = 0.001.
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Figure .: Potential barrier in the countinuum limit. Resonant tunneling can be observed at low energies E < V (gray
curve). Phonon coupling leads to a series of peaks around the resonat energy (black curves). Leads: width W =  lattice
points, Barrier W =  lattice points, length L =  lattice points and E = 0.05eV, then  lattice points and again a
barrier of length L =  lattice points and V = 0.05eV.  energies separated by ~ω = 0.001eV are coupled. Parameters
in the calculation:  eigenvalues and  modes. Phonon coupling δ = 0.0005 and 0.001.

lower energy is balanced by the enhanced transmission of states with
higher energy.

We do though observe very small dips due to mode openings in
the sheet with additional energy ~ω. This was already discussed in
Section ..
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Double barrier, Resonant tunneling.

We conclude this section with resonant tunneling through a double
barrier, see Fig. .. The barrier height is V = 0.05eV. For lower
energies E < V the transmission is generally zero except at certain
resonant energies. Phonon coupling leads to peaks in the transmission
when the energy E equals a resonant energy, and also when the
resonance can be reached by excitation or absorption of a phonon,
E ± ~ω.

We further observe a curious phenomenon at strong phonon
coupling and small phonon spacing. With increasing phonon
coupling, the peak at the original resonant energy vanishes (see
coupling δ = 0.001 in Fig. .). The peaks corresponding to one
phonon scattering event are enhanced. It is most likely related to
the long dwell time of the resonant state, which increases the chance
of a phonon scattering event. No clear explanation can be given
at the moment, but it probably is an interference phenomenon.
At even higher phonon coupling (see δ = 0.0015 in Fig. .) the
most prominent peaks correspond to two scattering events. At close
inspection, the width of the resonance is larger than the phonon
spacing ~ω, and therefore the dwell time of the states corresponding
to phonon scattering is still slightly enhanced.

A check for this argument provides a further calculation (not
shown) with larger spacing ~ω = 0.002eV and correspondingly larger
coupling δ = 0.002. Now the state with additional ±~ω is away from This coupling is effectively of the same

strength as δ = 0.0015 for
~ω = 0.001eV in the sense that now
the spread into the individual energy
sheets away from resonances is
approximately equal.

resonance and constitutes the largest contribution.

Energy renormalization

Let us consider a two-level system with weak coupling and energies
spaced ~ω apart or, in our phonon-picture, the situation where we
can excite exactly one phonon. The asymmetry in this setup lets us
observe energy renormalization, see Fig. .. Through the mutual
interaction, the states at resonant energies Er and Er − ~ω repel each
other, as predicted by perturbation theory. They are further apart
when the interaction is stronger.

. Towards a more realistic phonon model

Up to now, we have implemented phonon coupling via a single
constant denoted by δ, see Eq. (.). It is possible to include more
physical information by making this parameter dependent on the
electron energy, the phonon energy, or on the position in the crystal.

Density of States The probability p for electron-phonon scattering is
proportional to the phonon-density of states D(~ω). One can include
this information into an effective coupling constant, δ = δ(~ω). We
have shown in the section on the random walk model, Section ., that
the scattering probability is, by Fermi ’s golden rule, proportional
to the square of the coupling parameter p ∝ δ2. Thus, an effective
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Figure .: Potential barrier in the countinuum limit. The energy renormalization due to the phonon interaction shifts
the levels (black curve) away from the resonant energies without phonons (gray curve). Leads: width W =  lattice
points, Barrier W =  lattice points, length L =  lattice points and E = 0.05eV, then  lattice points and again a
barrier of length L =  lattice points and E = 0.05eV.  energies separated by ~ω = 0.001eV are coupled. Parameters
in the calculation:  eigenvalues and  modes. Phonon coupling δ = 0.001 and 0.001.
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coupling parameter which describes these phase space effects would
be δ̃ = δ

√
D(~ω).

Interference and Decoherence The calculation, as described by the
Hamiltonain in Eq. (.) is fully coherent. Decoherence by
phonons is introduced by summing over the total transmissions into
the individual energy sheets, Ttotal = . . .+ T−1~ω + T0~ω + T+1~ω + . . ..

Realistically, every phonon scattering event randomizes the phase
∆φ of the scattering electron, δ̃ = δexpi∆φ. This can be implemented
by averaging over various realizations of a system, where a (small)
random phase ∆φ is assigned to the coupling constant δ at each
point. An approximation to this is to neglect the y-dependence of the
random phase. Then the matrix 1δexpi∆φ(x) is still proportional to
unity and calculations are much more efficient since one does not have
to do the costly matrix inversions at every slice.





Conclusion & Outlook

We have shown (Chapter ) that the mode basis is in most cases a
fast and accurate approximation of the exact calculation. Especially
for a non-separable Hamiltonian the stability of the mode basis
depends crucially on which modes are included (Section .). Future
work will especially focus on the problems with resonant eigenstates
and strong magnetic fields. Solving individual “difficult” parts of the
geometry featuring e.g. point defects in the position basis can improve
accuracy without strongly affecting execution speed.

The current proof of concept implementation already reveals many
non-trivial effects of electron-phonon interaction. Sharp peaks in
the original transmission curve appear multiple times, broad peaks
become smeared out. By contrast, dips remain unaffected (Section .).
A very important short term goal is to parallelize and modularize
the mode basis code. This is of interest for the expensive coupled
calculations which describe inelastic scattering. From the number of
required modes in our calculations and the performance of the fully
modular and parallel code in the position basis we extrapolate that
we will be able to couple up to  phonon excitations for graphene
and up to  for the continuum limit Hamiltonian . More realistic
models than the current single optical phonon branch can then be
implemented.

 





Things that do not work

AIn our quest to describe transport at multiple energies at once, we first tried to
exploit the small coupling between different energies and use a Taylor expansion
in the coupling parameter. We elaborate on this idea in the following section.
However, the first order Taylor expansion turns out to be numerically unstable,
assumedly because the small errors introduced in each step lead to over-coupling
into exponentially increasing modes. A higher order Taylor expansion already
couples all matrix elements and we gain no computational advantage compared to
the exact calculation.

This section is included for
completeness, and probably mostly of
relevance for someone who tries to
implement similar ideas.

A. Expansion in Phonon Coupling

We computed the exact equations of the recursive Green ’s function
method in Section ... The first order Taylor expansion in the
coupling parameter δ of Eq. (.) can be obtained as follows.

First, we calculate the diagonal blocks without phonon interactions

G̃33,Diag ≈
(
E −H−H†IG22,DiagHI

)−1

We then invert the Hamiltonian of the new slice in first order in δ.
This can be done without inverting the full matrix. We thereby obtain
a tri-diagonal matrix G̃33,TriDiag. Phonon coupling is then incorporated
by expanding Dyson ’s equation in first order,

G̃33 ≈ G̃33,Diag +G33,TriDiagH†IG22HIG33,TriDiag

−G33,DiagH†IG22,DiagHIG33,Diag.

In this equation, the diagonal term G33,DiagH†IG22,DiagHIG33,Diag has
to be subtracted form the full G33,TriDiagH†IG22HIG33,TriDiag, since
the diagonal terms are already contained in the exact G̃33,Diag. The
Green ’s functions G̃31 and G̃13 can now easily be computed. Again,
we keep only the largest parts by multiplying only with the (block)
tri-diagonal part of G̃33,

G̃31 ≈ G̃33,TriDiagH†IG21

G̃13 ≈ G12HI G̃33,TriDiag.

The Green ’s function G11 cannot be obtained from a Taylor ex-
pansion in first order. The suggested solution is to do the computation
from both sides, since G33 can be obtained easily.

This procedure is unfortunately unstable.

A. Alternative: Phonon Coupling over HI

As an alternative, we can introduce the coupling via the interaction
Hamiltonian HI . This has the advantage, that in the limit of the

 
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Green ’s function G22 of the existing block being equal the one with
one slice attached G33 (thus, in the limit of a semi-infinite lead) almost
all paths are included: The paths not included are those going from
the new slice to the existing block, back to the new slice, back to the
exisiting block, and back to the new slice and thereby undergoing two
or more phonon scattering events (see equations).

Phonon Coupling over HI decouples the equations for G̃33. We
write down all the paths which connect back to the new slice:

G̃ii33 = Gii33 +Gii33H†IGii22HIGii33

+Gii33δ
†
(
G(i+1)i

22 +G(i−1)i
22

)
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)
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Figure A.: Phonon coupling via the
interaction Hamiltonian. Different
layers correspond to different phonon
numbers. The interaction between the
layers is described by the interaction
matrix δ. For a general block, there will

be non-zero off-diagonal elements Gij22

The upper indices in this expression specify the phonon number.
G̃ii33 for example is the updated Greens function from position 
with i phonons to position  with i phonons. These terms do not
describe multiphoton excitation between the existing block and the
new slice. The full series can be written as a fraction(

G̃ii33

)−1
=E −H−H†IGii22HI
− δ†

(
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)
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The off-diagonal elements are the paths which start at position  with i
phonons and come back with j phonons. With the help of the diagonal
elements we can compute the off-diagonal elements

G̃ij33 = G̃ii33H†IGij22HI G̃
jj
33 + G̃ii33δ

†
(
G(i+1)j

22 +G(i−1)j
22

)
HI G̃jj33

+ G̃ii33H†I
(
Gi(j+1)

22 +Gi(j−1)
22

)
δG̃jj33

The Green ’s function G̃ij31 and G̃ij13 are obtained by

G̃ij31 = G̃ii33

(
H†IGij22 + δ†

(
G(i+1)j

22 +G(i−1)j
22

))
,

G̃ij13 =
(
Gij22HI +

(
Gi(j+1)

22 +Gi(j−1)
22

)
δ
)
G̃jj33.

Unfortunately, this is still unstable.
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