
Evaluating Process Modeling
Capabilities of the XVSM
Micro-Room Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Johann Binder
Matrikelnummer 0727950

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao. Univ.-Prof. Dipl.-Ing. Dr. Eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 19. April 2017
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Evaluating Process Modeling
Capabilities of the XVSM
Micro-Room Framework

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Johann Binder
Registration Number 0727950

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao. Univ.-Prof. Dipl.-Ing. Dr. Eva Kühn
Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 19. April 2017
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Johann Binder
Großmotten 5, 3542 Gföhl

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - ein-
schließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to thank several persons for their support while creating this work. Special credit
belongs to Eva Kühn and Stefan Craß for their useful and constructive recommendations during
our regular meetings. I am also particularly grateful for Evelyn Binder proof-reading the thesis.
Finally, I would like to thank my family for their support during the work.

ii

Abstract

Nowadays, several modeling tools exist for creating business processes in enterprises. Most of
them can be used by IT experts to semi-automatically create corresponding software artifacts of
the given process. However, as they comprise a lot of complexity, none of these tools is usable
by ordinary end users.

When searching for related work targeting process modeling tools for end users, only very
few approaches can be found. An evaluation of the existing papers shows that they all have
several drawbacks.

To overcome this gap, we have designed and implemented a modeling tool that is usable
by end users to model their daily life workflows such as chatting or exchanging photos with a
friend. Afterwards, a fully executable application can be created from the model automatically
that can be downloaded and shared with friends.

The abstraction of the modeling tool is more comprehensible than those of other modelers
as it uses the micro-room concept as a basis. It allows end users to think about their daily life
workflows in terms of persons performing specific actions in several rooms they can visit in
a predefined order. Additionally, the user interface of the modeling tool is kept as simple as
possible to provide proper usability.

After presenting all details of the modeling tool’s architecture, implementation and its de-
ployment, the modeling tool itself as well as the underlying micro-room concept have been
evaluated. Therefore, usability testing has been performed with the developed modeling tool
and a competing modeling tool.

The evaluation shows that the micro-room concept indeed uses a more comprehensible ab-
straction if compared to other modeling languages. It is well-suited for modeling simple collab-
orative tasks, whereas other approaches are better if very complex processes have to be modeled
or software should be specified formally. Also, the developed modeling tool is far more intuitive
than the competing ones due to the simplifications allowed by using the micro-room concept.
Finally, five key factors for creating an intuitive modeling tool in general have been derived, i.e.
required functionality, undoability, system stability, easy learnability and understandability.

iii

Kurzfassung

Heutzutage gibt es viele Modellierungs-Tools, mit denen Geschäftsprozesse in Unternehmen er-
stellt werden können. Die meisten davon werden von IT-Experten verwendet, um semi-automa-
tisch die zugehörigen Software-Artefakte zu erstellen. Da diese Modellierungs-Tools allerdings
viel Komplexität beinhalten, sind sie von einem gewöhnlichen Endanwender nicht benutzbar.

Leider existieren auch nur sehr wenige wissenschaftliche Beiträge zu anderen Modellie-
rungs-Tools, die explizit für Endanwender gedacht sind. Bei einer näheren Evaluierung dieser
Beiträge stellt sich außerdem heraus, dass sie alle einige Nachteile haben.

Um diese Lücke zu schließen, wurde in dieser Arbeit ein neues Modellierungs-Tool ge-
plant und implementiert, das von Endanwendern verwendet werden kann, um ihre alltäglichen
Arbeitsabläufe zu modellieren. Anschließend kann aus dem erstellten Modell mit nur einem ein-
zigen Klick eine voll funktionsfähige Anwendung erstellt werden, die mit Freunden geteilt und
heruntergeladen werden kann.

Damit die Abstraktion des neu entwickelten Modellierungs-Tools im Vergleich zu anderen
Modellierungs-Tools besser verständlich wird, wurde das Micro-Room-Konzept als Grundlage
verwendet. Dadurch können Endanwender ihre täglichen Arbeitsabläufe direkt in Räumen mo-
dellieren, in denen bestimmte Personen vordefinierte Tätigkeiten durchführen können und die
in einer bestimmten Reihenfolge besuchbar sind. Zusätzlich wurde die Benutzeroberfläche des
Modellierungs-Tools so einfach wie möglich gehalten, um eine möglichst gute Benutzbarkeit zu
gewährleisten.

Nach der Beschreibung aller Details zur Architektur, Implementierung und der Verwendung
des Modellierungs-Tools, wurde es selbst sowie das zugrundeliegende Micro-Room-Konzept
evaluiert. Dazu wurden Usability-Tests mit dem entwickelten und einem vergleichbaren Model-
lierungs-Tool durchgeführt.

Die Auswertung der Usability-Tests zeigt, dass die Abstraktion des Micro-Room-Konzepts
im Vergleich zu anderen Modellierungssprachen besser verständlich ist. Es ist sehr gut ge-
eignet, um einfache kollaborative Arbeitsabläufe zu modellieren, wohingegen andere Model-
lierungssprachen besser geeignet sind um komplexe Prozesse oder formale Softwarespezifika-
tionen zu modellieren. Das entwickelte Modellierungs-Tool ist aufgrund der Vereinfachungen,
die durch die Verwendung des Micro-Room-Konzepts ermöglicht wurden, wesentlich intuitiver
als das vergleichbare, ebenfalls getestete Modellierungs-Tool. Zur Erstellung eines intuitiven
Modellierungs-Tools wurden folgende fünf Schlüsselfaktoren aus den Usability-Tests abgelei-
tet: Benötigte Funktionalität, Rückgängig-Machbarkeit, Systemstabilität, leichte Erlernbarkeit
und Verständlichkeit.

iv

Contents

1 Introduction 1
1.1 Problem Description & Motivation . 1
1.2 Aim of the Work . 2
1.3 Methodology . 3
1.4 Structure of the Thesis . 3

2 Related Work 4
2.1 Popular Process Modeling Languages . 4
2.2 End-User-related Approaches . 16
2.3 Comparison . 27

3 Approach 32
3.1 Related Concepts . 32
3.2 Initial Draft . 42

4 Design 44
4.1 Evaluation of Technologies . 44
4.2 Components . 49
4.3 Modeling . 51
4.4 Provisioning . 57
4.5 Workflow Execution . 58

5 Implementation 60
5.1 Structural View . 60
5.2 XVSM Micro-Room Framework Adjustments 63
5.3 Modules . 65
5.4 Provisioning . 69
5.5 Further Problems & Solutions . 77

6 User Guide 81
6.1 Deploying the XVSM Micro-Room Modeler 81
6.2 Extending the XVSM Micro-Room Modeler 81
6.3 Using the XVSM Micro-Room Modeler . 83
6.4 Using applications created by the XVSM Micro-Room Modeler 86

v

7 Evaluation 89
7.1 Theoretical Evaluation of the XVSM Micro-Room Modeler 89
7.2 Usability Evaluation Approach . 92
7.3 Usability Evaluation Results . 97

8 Future Work 109
8.1 Realization with the Peer Model . 109
8.2 UI Improvements to the XVSM Micro-Room Modeler 110
8.3 Port Forwarding . 111
8.4 Download JRE if not Installed . 111
8.5 Publish Platform for Custom Modules . 111
8.6 UI Templates . 111
8.7 Further Modules . 112

9 Conclusion 113

References 114

Web References 120

Appendix I

vi

List of Figures

2.1 Example of an UML Activity Diagram . 7
2.2 Acceleo Eclipse Plugin . 8
2.3 Sparx Systems Enterprise Architect . 9
2.4 Precise Operational Style - Behavior View (UML Activity Diagram) 10
2.5 Precise Operational Style - Static View (UML Class Diagram) 11
2.6 Example of a BPD . 12
2.7 Signavio Process Editor . 12
2.8 Activiti Designer . 13
2.9 Activiti-generated UI for a Human Task . 14
2.10 Example of a WS-BPEL Model . 15
2.11 NetBeans BPEL Designer . 16
2.12 The ISEA Method . 17
2.13 Organizational Perspective in ISEAsy . 18
2.14 Story Creation in BPMerlin . 21
2.15 UI of the Wizard in SOA4All-Composer . 22
2.16 Form-based Web Service Composition - Example Process 23
2.17 Form-based Web Service Composition - Data Mapping 24
2.18 Web Service Composition Framework - Architecture 25
2.19 Collaborative Task Manager . 26
2.20 Comparison of Modeling Techniques . 27

3.1 XVSM P2P Communication . 33
3.2 XVSM Container . 33
3.3 XVSM Aspects . 34
3.4 Peer Model Example . 35
3.5 Micro-Room Example . 36
3.6 XVSM Micro-Room Framework Component View 38
3.7 Archive Micro-Room Modeled with the Peer Model 39
3.8 Comparison of Modeling Techniques including PM and XMRF 42
3.9 XVSM Micro-Room Modeler Draft . 43

4.1 GMF Overview . 45
4.2 GMF Modeler Example . 46
4.3 Visio with Custom Shape Library . 47

vii

4.4 Comparison of Technologies . 48
4.5 Component Diagram of the XVSM Micro-Room Modeler 50
4.6 Graphical Notation of the Provided Modules . 53
4.7 Sequence Diagram of Downloading and Sharing the Modeled Application 56
4.8 Provisioning in the XVSM Micro-Room Modeler 57
4.9 Draft of an Executable Application Created by the XVSM Micro-Room Modeler . 58

5.1 Class Diagram of the XVSM Micro-Room Modeler 62
5.2 Content of the Distribution Folder in the XVSM Micro-Room Modeler 70
5.3 A Smart Link being dragged in the XVSM Micro-Room Modeler 79

6.1 Creating a new Project in the XVSM Micro-Room Modeler 83
6.2 Configuring Groups and Members in the XVSM Micro-Room Modeler 84
6.3 Creating a Model in the XVSM Micro-Room Modeler 84
6.4 Creating an Invitation Link in the XVSM Micro-Room Modeler 85
6.5 Logging into the Created Application . 86
6.6 Using a Micro-Room in the Created Application 87

7.1 Comparison of Modeling Techniques including the XVSM Micro-Room Modeler . 90
7.2 Approach of Usability Evaluation of Business Process Modeling Tools 93
7.3 Proportion of Usability Problems found depending on the Number of Users 93
7.4 Example Item in IsoMetricsS . 96
7.5 Example Item in IsoMetricsL . 97
7.6 Accumulated Average Score for S.12, L.1, L.4, L.5, L.6 98
7.7 Average Time for all Tasks in Minutes . 99
7.8 Average Time / Task . 99
7.9 Use Cases for the Micro-Room Concept and their Naming Count 101
7.10 Preferred Usage per Tool (EQ 3) . 102
7.11 Total IsoMetrics Score per Tool . 103
7.12 Average IsoMetrics Score per Principle . 103
7.13 Total Number of Questions Asked . 104
7.14 Reasons to use the XVSM Micro-Room Modeler and their Naming Count 105
7.15 Relations between Key Factors for the XVSM Micro-Room Modeler’s Intuitiveness 106
7.16 Evaluated Tool Performance in each of the Key Factors 107

viii

List of Tables

2.1 Humanistic Business Process Modeling vs. Mechanistic Business Process Modeling 19

5.1 XVSM Micro-Room Modeler Package Structure 61
5.2 XVSM Micro-Room Modeler Resource Folder Structure 61
5.3 XVSM Micro-Room Modeler Containers . 63

6.1 Global JavaScript Variables Provided by the XVSM Micro-Room Modeler 82
6.2 JavaScript Helper Functions Provided by the XVSM Micro-Room Modeler 83

7.1 IsoMetricsS Items Related to Abstraction of the Underlying Concept 98
7.2 Most Important IsoMetricsS Items Across all Test Subjects 106
7.3 Key Factors for an Intuitive Modeling Tool Targeting End Users 107

ix

List of Listings

2.1 Web Service Composition Framework - Control Rule 25
5.1 Example of new Micro-Room Annotations in the XVSM Micro-Room Framework 64
5.2 Example of new Plugin Annotations in the XVSM Micro-Room Framework . . 64
5.3 Example Manifest of a Module JAR File . 65
5.4 JSON Structure of a parsed XVSM Micro-Room Framework Module 66
5.5 Example UI for a Module of the XVSM Micro-Room Framework 67
5.6 Content of start.bat . 70
5.7 JSON Structure of an XVSM Micro-Room Modeler Project Object 71
5.8 JSON Structure of an XVSM Micro-Room Modeler Model Object 72
5.9 JSON Structure of an XVSM Micro-Room Modeler Micro-Room Object 73
5.10 JSON Structure of an XVSM Micro-Room Modeler Plugin Object 74
5.11 Example of a XVSM Micro-Room Framework Business Logic File 75
6.1 Deployment of the XVSM Micro-Room Modeler 81

x

List of Abbreviations

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
B2B Business-to-Business
BPD Business Process Diagram
BPM Business Process Management
BPMN Business Process Model and Notation
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
DEST Destination
DOM Document Object Model
DSL Domain-specific Language
ebXML Electronic Business using Extensible Markup Language
EMF Eclipse Modeling Framework
EQ Evaluation Question
EUPM End-User-driven Process Modeling
FID Flow Identifier
FWSC Form-based Web Service Composition
GMF Graphical Modeling Framework
HBPM Humanistic Business Process Modeling
HTML Hypertext Markup Language
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
JAR Java Archive
JAXB Java Architecture for XML Binding
JRE Java Runtime Environment
LDAP Lightweight Directory Access Protocol
LPML Lightweight Process Modeling Language
MBPM Mechanistic Business Process Modeling
MVC Model View Controller
OASIS Organization for the Advancement of Structured Information Standards
OMG Object Management Group
P2P Peer-to-Peer
PC Personal Computer
PIC Peer-In-Container

xi

PM Peer Model
POC Peer-Out-Container
POJO Plain Old Java Object
REST Representational State Transfer
RQ Research Question
T Task
TTL Time-to-Live
TTS Time-to-Start
UI User Interface
UML Unified Modeling Language
UPD User Datagram Protocol
UPnP Universal Plug and Play
URI Uniform Resource Identifier
WPM Wizard-based Process Modeling
WS-BPEL Web Services - Business Process Execution Language
WS-CDL Web Services - Choreography Description Language
WSCF Web Service Composition Framework
WSDL Web Services Description Language
WYSIWYG What You See Is What You Get
XML Extensible Markup Language
XMRF XVSM Micro-Room Framework
XMRM XVSM Micro-Room Modeler
XVSM Extensible Virtual Shared Memory
XVSMP XVSM Protocol

xii

CHAPTER 1
Introduction

In this chapter we explain our motivation and the problem. Additionally, we outline the expected
results and describe the overall structure of the work.

1.1 Problem Description & Motivation

Today, processes in enterprises (e.g. purchasing, logistics or internal team coordination) are
heavily supported by IT in order to increase automation and hence decrease labor costs. There-
fore, they are modeled with special modeling techniques such as Business Process Model and
Notation (BPMN) [DDDG10] or Web Services - Business Process Execution Language (WS-
BPEL) [AAA+07].

One problem of these modeling techniques is that they require a certain level of IT knowl-
edge [LV10] and use an abstraction (i.e. modeling concepts and terminology for modeling el-
ements) that is hard to understand. However, as the affected users are the only ones that really
know their processes, they should be modeled by themselves in the first place and not by the IT
department. Since many end users usually do not have these IT-focused skills, it is likely that
they model their processes in a wrong way, hence creating unsatisfying solutions.

A second big problem of BPMN and BPEL is their insufficient tool support. Tools like the
NetBeans BPEL Designer1 or the BPMN platform Activiti2 are highly complex to use as they
offer a lot of functionality applying technical terms. That is why today often end users design the
process with a simpler modeler at first, having no automation capabilities (e.g. Signavio Process
Editor3 or Microsoft Visio4). Afterwards IT experts need to model the whole process again with
the mentioned tools to enable automation support. [ODA+09]

Since the author of the thesis works with such modeling tools himself, it is a personal concern
to overcome both of these problems.

1http://soa.netbeans.org/soa/
2http://activiti.org
3http://www.signavio.com
4http://office.microsoft.com/de-at/visio/

1

http://soa.netbeans.org/soa/
http://activiti.org
http://www.signavio.com
http://office.microsoft.com/de-at/visio/

1.2 Aim of the Work

As a consequence another way of modeling processes is developed in our contribution.
The first result is a self-developed graphical modeling tool. This tool uses a different kind of

abstraction, i.e. processes are modeled via so-called “micro-rooms”. A micro-room can be seen
as a room in which persons can perform predefined actions and that can be connected to other
micro-rooms. Also, the tool provides full automation support, i.e. it derives the whole business
logic and data layer from the model automatically. Additionally, a high focus is on usability.
Summarizing, the tool tries to overcome the two problems stated in the problem description.

As this would be a rather complex task, the Extensible Virtual Shared Memory (XVSM)
Micro-Room Framework [Bin13] is used as a basis for the modeling tool, which itself is related
to the Peer Model [KCJ+13]. In the XVSM Micro-Room Framework, functionality is encapsu-
lated within reusable self-definable rooms that can be connected with each other. Furthermore,
it already supports the business logic and data layer code generation based on such micro-room
models, including boilerplate code needed for security, privacy and replication. The framework
uses XVSM to handle these tasks, which is a shared memory usable in a Peer-to-Peer (P2P)-
based manner. Thus, by using the XVSM Micro-Room Framework, the actual workload for
developing the modeling tool is significantly reduced.

The Peer Model on the other hand is a high-level programming model that allows developers
to model the behavior, data and control flow of their components instead of implementing it. It
targets highly concurrent and distributed environments across all domains. The XVSM Micro-
Room Framework uses similar concepts like this programming model but with reduced features
and complexity. E.g. it allows only one-to-one connections between rooms and rooms cannot
be reassembled by other rooms, which would be possible with the Peer Model. The XVSM
Micro-Room Framework is used in this work because its limited and more simple feature set is
more suitable for a modeling tool targeting end users.

However, the XVSM Micro-Room Framework requires a model that is written in Extensible
Markup Language (XML) as input. As a first result of our work, the developed modeling tool
allows the graphical model to be transformed into the desired XML format directly. It is then
packaged with the XVSM Micro-Room Framework to create the executable application.

Additionally, the micro-rooms usable by the XVSM Micro-Room Framework only specify
logic that is executed on the backend. A User Interface (UI) has to be created by the user
him-/herself. Thereby, the second result of this work is to allow micro-room creators to extend
micro-rooms with UIs in the first place, so that the end users do not need to do this later on.

The third result is an evaluation of the stated modeling tool and the used micro-room concept
itself. This is done via questionnaires and usability testing.

At the end, the following Research Questions (RQ) shall be answered:

• RQ 1: How can a suitable modeling tool for the XVSM Micro-Room Framework be de-
signed and implemented?

• RQ 2: Is the abstraction used by the micro-room concept more comprehensible than those
of common process modeling languages?

2

• RQ 3: In which domains or use cases is the micro-room concept better or worse than its
competitors?

• RQ 4: Is the usability of the new modeling tool more intuitive in contrast to other modeling
tools?

• RQ 5: If so, what are the key factors for the intuitiveness of our modeling tool, or a
modeling tool for end users in general?

1.3 Methodology

At first, an evaluation of actual process modeling techniques and the corresponding tools is
performed. Then, an overview about current problems of such platforms is given, leading to the
justification of the new solution. Afterwards, an evaluation about how the XVSM Micro-Room
Modeler shall be developed has to be carried out.

After that, the architecture of the modeler has to be designed, considering all of the evaluated
problems of other modeling tools, which is followed by the implementation of the modeler.
Finally, an evaluation of the modeler and the used micro-room concept is performed. Therefore,
a usability testing of end users without special IT knowledge is done. Every user has to model
several workflows with both our approach and another modeling tool. Afterwards, each user has
to fill in a questionnaire. Both the questionnaires and our notes when observing the users are
quantized and used for creating diagrams and answering the research questions.

1.4 Structure of the Thesis

The structure of the thesis is as follows: Chapter 2 covers related work on modeling techniques
and tools, including a comparison of their problems. In Chapter 3 an initial draft and related
concepts of our approach are shown. After that, the design of our modeling tool, i.e. the XVSM
Micro-Room Modeler, is presented in Chapter 4, including technology evaluation and deci-
sions. Chapter 5 contains details about the implementation of the XVSM Micro-Room Modeler,
whereas Chapter 6 covers information about how end users and developers can actually use and
extend the tool. The methodology and results of the usability testing, comparing our solution to
others, can be found in Chapter 7. In Chapter 8 future work is outlined and Chapter 9 concludes
the thesis.

3

CHAPTER 2
Related Work

Regarding process modeling techniques several other contributions exist. In this chapter we
will first outline well-known process languages and describe their drawbacks regarding end user
modeling. Then, we will present the few end-user-specific approaches and compare all of the
approaches in a matrix.

2.1 Popular Process Modeling Languages

Before describing popular process modeling languages we need to discuss their environment.
According to [MTJ+10], there are four different types of process modeling languages:

1) Traditional process modeling languages: These languages focus on the understandability
by people. They are not formal (i.e. they cannot be interpreted by the computer) and thus
are not applicable for automated software generation. Nevertheless, they are of good use
for understanding and analyzing processes. Examples for such languages are Petri Nets
or Event Process Chains.

2) Object-oriented languages: They try to represent the world in a way both IT and domain
experts can understand. Thereby, every object-oriented language can be used for one or
more of the following four use cases according to [Iso01]: a) Understanding a problem in
the real world, b) developing an application for simulating the real world, c) developing
an application for dealing with entities of a cyber world or d) developing an application
that automates business in the real world. The last usage scenario can be seen as what
we call “automation support” in our work. The most famous language of this category is
Unified Modeling Language (UML).

3) Dynamic process modeling languages: Such languages share at least the following three
attributes: a) They cover the full spectrum of use cases (cf. object-oriented languages),
i.e. they can be used for understanding a problem by humans and for automatic execu-
tion of the process in software. b) Every dynamic process modeling language explicitly

4

defines a serialization format for model interchange - usually in XML. c) They represent
standardized languages by the industry. The two most popular dynamic process modeling
languages are BPMN and WS-BPEL.

4) Process integration languages: Languages of this type are typically used in Business-to-
Business (B2B) areas. They focus on integrating processes of various business partners.
Therefore, they establish abstract, technology-independent interfaces and data exchange
formats. Two examples for such languages are Web Services - Choreography Descrip-
tion Language (WS-CDL) and Electronic Business using Extensible Markup Language
(ebXML).

As we focus on process languages that allow automation support only, traditional process
modeling languages will not be further evaluated. Process integration languages will be skipped
as well, since they focus more on the machine-to-machine communication between different
ecosystems and not on process modeling by end users such as we plan to do.

Therefore, we will only discuss the most famous representatives of object-oriented languages
and dynamic process modeling languages, i.e. UML, BPMN and WS-BPEL, in more detail.
Additionally, we will describe the most popular of the few alternative modeling languages that
focus on the end user.

2.1.1 UML

UML is developed by the Object Management Group (OMG) and can be seen as an industry
standard in the software development process. The current version is UML 2.5.0, which was
introduced in 2015. The language itself consists of various so-called language units. Each
language unit can be used separately and focuses on a different aspect [OMG15]:

Classes: This language unit is intended for modeling classes (a “category” for objects) and their
relationships.

Components: Can be used to define components (a modular unit of software), their interfaces
and their relations to other components. Thereby, each component can be replaced by a
new one or reused in another application.

Composite Structures: While with components only external connections are modeled when
reaching a specific size (equal to a black box), composite structures are used to define the
relations of inner parts of a greater whole.

Deployments: Allow to specify on which machine which software artifact has to be deployed.
In contrast to the other language units, this one is very domain-specific.

Actions: With this language unit it is possible to declare actions which require input values on
their input pins and produce output values on their output pins. By connecting various
actions a specific behavior can be modeled.

5

Activities: Is a more detailed form of the actions language unit. Every activity contains a set of
connected actions and can itself be used by other activities to form a bigger process. It is
more like a control flow with a defined start and a defined end.

Common Behaviors: Can be used to describe the behavior of objects. Any behavior is a direct
consequence of an action called on an object.

Interactions: Models of this language unit display the sequence of interactions or messages
between systems, components or users.

State Machines: Allow to model discrete behavior via finite state-transition systems.

Use Cases: They are typically used to capture the requirements of a system by sketching which
actors (users) interact with which systems in which way.

One reason why UML is so popular today is that it fits perfectly to modern object-oriented
languages and allows to visualize every aspect of a modern application. This applies especially
for characteristics which are hidden deep inside the code and thus rather difficult to see at all
without a model, e.g. the relations of classes [SS07].

As can be seen, UML is designed for modeling many different aspects of software systems.
However, for our purpose (i.e. to model processes) only the Activities language unit is qualified.
Figure 2.1 shows what a typical activity diagram looks like.

Thereby the filled circle represents the starting point of the process and the framed circle
the end point. Actions are represented by rounded rectangles and connected with each other by
arrows. Decision nodes are modeled by diamonds whereas filled bars (fork and merge nodes))
allow to split the process into two sub processes that run in parallel and later on merge it again.

As can be seen, the process can be modeled rather straight forward. Thus, one could assume
that even end users should be able to model their own processes with only little knowledge about
UML’s structures. However, this assumption only holds if no automation support is needed.

According to Reggio et al. [RLRA12] activity diagrams can be used in five different styles
for modeling business processes:

Ultra-Light Style: This style allows the modeler to produce the activity diagram he/she likes.
There are no guidelines at all.

Light Style: In contrast to the Ultra-Light Style this style imposes some restrictions. These
mainly ensure syntactical correctness, e.g for each fork node there must be a matching
merge node and for each decision node there must exist exactly one outgoing “else” arc.
The model in Figure 2.1 corresponds to this style.

Disciplined Style: With this style the following additional elements are added to the model as
comments: participants, objects and data. These have to be used in each action. The
first action in Figure 2.1 thus could be called “CLIENT sends ORDER to EC”, where
“CLIENT” and “EC” are participants and “ORDER” is an object.

6

Figure 2.1: Example of an UML Activity Diagram [RLRA12]

Precise Conceptual Style: Instead of just defining participants, objects and data just as com-
ments, in the Precise Conceptual Style they have to be modeled in a separate class dia-
gram, the so-called static view. However, methods do not need to be modeled in the class
diagram.

Precise Operational Style: This style is equal to the Precise Conceptual Style, except that it is
more detailed. In the activity diagram, every action needs to call a method on an object
that corresponds to the class diagram.

Reggio et al. come to the conclusion that for “a model to be used as the starting point of
the (semi-)automatic generation of a BPEL implementation of a system supporting a business
process” [RLRA12] the Precise Operational Style is required. So, if an activity diagram should
provide any kind of automation support, this style is mandatory.

7

Tool Support

There are a lot of tools available for modeling UML diagrams. But when it comes to model ac-
tivity diagrams with automation support, only very few remain, since most of them only support
the automation of class diagrams.

A popular example for this restriction is Acceleo1 (cf. Figure 2.2), which is a plugin for
the popular Integrated Development Environment (IDE) Eclipse2. It allows IT experts to model
class diagrams for their object relations and generate code from these models. However, activity
diagrams are not supported and the setup of Eclipse and the Acceleo plugin are far from being
simple. The generation of code from the model is difficult as well, since it is likely that one has
to edit the templates from which the code is generated. The full process of transforming a model
to code is demonstrated in a 1.5-hour(!) video [1].

Figure 2.2: Acceleo Eclipse Plugin [1]

Another tool that also supports code generation from activity diagrams is Sparx Systems
Enterprise Architect3 (cf. Figure 2.3). Again, this tool clearly focuses on IT experts and is

1https://www.eclipse.org/acceleo/
2https://www.eclipse.org
3https://www.sparxsystems.at

8

https://www.eclipse.org/acceleo/
https://www.eclipse.org
https://www.sparxsystems.at

complex as it supports all features of UML. Also, it is rather expensive: A single-user license for
the version with business process modeling capabilities (i.e. “Business & Software Engineering
Edition - Named User License”) can be bought for 569 euro, according to [2].

Figure 2.3: Sparx Systems Enterprise Architect [3]

Analysis

After presenting the general features of the language and some modeling tools, we will now
discuss the suitability of UML regarding end user modeling.

The first problem is that for models with automation support the Precise Operational Style
is mandatory. This style demands a very detailed model of not only the behavior view (cf.
Figure 2.4) but also the static view (cf. Figure 2.5). With such models, code could be generated
automatically with various approaches such as described in [HBR00] or [GS06].

By comparing the model in Figure 2.4 to the one in Figure 2.1 it becomes clear that the
initial difficulties of activity diagrams rise significantly when automation support is needed.
Both diagrams (Figure 2.4 and Figure 2.5) focus highly on IT experts with elements like objects,
method calls and parameter lists and are thus not understandable by end users anymore. In a

9

Figure 2.4: Precise Operational Style - Behavior View (UML Activity Diagram) [RLRA12]

survey of 171 UML experts, Dobing et al. found out that indeed “the complexity of UML is a
concern” [DP06].

A second problem of activity diagrams has been stated by Wohed et al. [WAD+06]: “There
is no support for specifying any form of work distribution algorithm or employing varying styles
of work distribution (e.g. push vs pull, offer vs allocation).” So, the distribution capabilities are
restricted, especially in dynamic P2P environments.

The third problem of UML is the complexity of its tools. As UML clearly targets IT experts,
its tools are either based on or rather similar to IDEs and not easy to understand by end users
(cf. Figures 2.2 and 2.3). Usually, these tools also support all of UML’s language units which
makes them more complex than needed in our case.

10

Figure 2.5: Precise Operational Style - Static View (UML Class Diagram) [RLRA12]

Finally, even if all the previous problems could be ignored, the generated code will not be
helpful for the end user. It will just be a collection of empty classes which might be connected
but does not provide any functionality at all. So, even if the end user could create a valid model
and use it for code generation, he/she then would have to pass the generated code to IT experts
again, since the code template still needs to be filled with business logic.

2.1.2 BPMN

BPMN is developed by the OMG as well and is the defacto standard when it comes to business
process modeling. The current version is BPMN 2.0.2, which was released in 2013 [OMG13].
Its notation is extremely complex and thus leaves almost nothing to be desired. IT experts can
model sequences, events, messages, sub tasks and much more.

In Figure 2.6 a typical Business Process Diagram (BPD), i.e. a BPMN model, can be seen.
Again there is a starting point (circle to the left) and an end point (circle with bold line to the
right). In between, the rounded rectangles represent activities, where the plus sign indicates that
the activity is a sub-process, i.e. it is composed of a process itself. Diamonds represent gateways
which can be used to split the process into two parallel processes and to join them again.

However, this is only a very small portion of BPMN’s features. Concerning the process
modeling capabilities of BPMN it is even more powerful than UML activity diagrams regarding
to the findings of Wohed et al. [WAD+06] and Milanovic et al. [MGWD09].

Tool Support

Today, BPMN is already used by non-IT-experts for creating BPDs which are then handed over
to developers. But these models are not appropriate for automation support, since they are mod-

11

Figure 2.6: Example of a BPD [DDDG10]

eled far too informally. Therefore, developers need to heavily adapt them or even worse, com-
pletely recreate them. [ODA+09]

One of the modelers which is often used by end users to create such informal BPDs is Sig-
navio Process Editor4. As it can be seen in Figure 2.7, it is rather easy to use since it focuses on
the core elements of BPMN.

Figure 2.7: Signavio Process Editor [4]

However, one cannot model everything just with the core elements of BPMN. This is why
BPDs created by end users with the Signavio Process Editor are often not sufficient for automa-
tion support.

If one needs to create such models from scratch, the Activiti5 plugin for Eclipse is an eligible
4http://www.signavio.com
5http://activiti.org

12

http://www.signavio.com
http://activiti.org

candidate (cf. Figure 2.8). It is a Business Process Management (BPM) platform that allows
to both model and execute BPDs. Activiti supports more features of BPMN (e.g. Timers and
Service Tasks) and allows its users to execute the generated models on the fly. However, the
increased feature set comes at the cost of additional complexity. This becomes explicit when
looking at the user guide at [5], having not less than 298 pages.

Figure 2.8: Activiti Designer [6]

Analysis

Basically, we are dealing with the same problems that have already been stated with UML activ-
ity diagrams. On the one hand, the modeling language can be understood and used by end users
to create process models, but these models are too informal to enable automation support. On
the other hand, if automation support should be enabled, the models and especially the modeling
tools become far too complex to be understood by end users.

But BPMN also suffers from another problem: Due to its complexity the corresponding
modeling tools usually support only a subset of the model notation. So, even if the language is
very powerful in theory, the lack of proper modeling tools restrains this benefit again.

Also, in contrast to UML, BPMN does not provide that much data-related features. E.g. one
cannot specify the relation between data objects but only the relation of data objects to a process
activity [ZLC+12].

One advantage of Activiti is its human task support. If user input is required somewhere dur-
ing the process, a simple UI is generated automatically which is capable of asking for specified
data. An example for this UI can be seen in Figure 2.9. However, just as with UML, script tasks

13

need to be implemented by IT experts before the model can be fully used. Therefore, the end
user on his/her own cannot create and execute a model.

Figure 2.9: Activiti-generated UI for a Human Task [5]

2.1.3 WS-BPEL

WS-BPEL is a part of the WS-* specification and developed by the Organization for the Ad-
vancement of Structured Information Standards (OASIS). The current version is WS-BPEL 2.0,
which was released in 2007 [AAA+07]. In contrast to UML and BPMN, WS-BPEL focuses
more on the implementation-based part than on the modeling part. Since the beginning, WS-
BPEL models are based on XML and the specification itself does not specify any graphical
notations. It is mainly used for IT experts to implement processes that use web services and
provide well defined interfaces to other processes themselves. The big benefit of WS-BPEL is
that later on, processes implemented with WS-BPEL can be orchestrated to other, new processes
with low effort.

If we look at a WS-BPEL model in one of the proprietary graphical notations (cf. Figure
2.10), the focus on the technical aspects becomes apparent immediately. The model represents a
typical seller process, where a seller iteratively adds new items to sell in his/her auction and can
cancel auctions or bids. It can be seen that the representation of the underlying XML model is
highly dependent on the modeling tool. In this case, calls of external web services are identified
by rectangles with a small envelope and local method calls are represented by rectangles with a
small gear.

Beside this small graphical model, the IT expert needs to specify each web service or method
call with the exact name and parameters. So, there are a lot of additional specifications in the
model that are not visible at first sight.

Due to its clear target group of IT experts, WS-BPEL is one of the best technologies for
generating automated processes. Therefore, approaches like [ODA+09] exist to transform the
more user-friendly BPMN models to WS-BPEL models. However, these transformations always
encounter problems, due to the highly different model structures. BPMN supports any kind of

14

Figure 2.10: Example of a WS-BPEL Model [BEMP07]

control flow structures while BPEL supports just restricted control flow structures. Thus, one
either has to restrict the allowed source BPMN models or the resulting BPEL models are very
hard to read. [ODA+09]

Tool Support

WS-BPEL clearly aims for creating automated software systems which is why there does not
even exist a modeling tool without automation support (such as with UML or BPMN). Thus,
IDEs with BPEL support need to be used, e.g. NetBeans BPEL Designer6 which is a plugin
for the NetBeans IDE. Again, as NetBeans is an IDE, it is too complicated to be used by end
users. Especially the mapping of input to output parameters cannot be understood without any
IT background (cf. Figure 2.11).

Analysis

Regarding end-user-suitability of WS-BPEL Brahe et al. [BS07] come to the following conclu-
sion:

6http://soa.netbeans.org/soa/

15

http://soa.netbeans.org/soa/

Figure 2.11: NetBeans BPEL Designer [7]

“Although BPEL in combination with SOA affords a remarkable increase in workflow design
flexibility, we are far from a situation where ordinary workers are able to define and compose
their own local computational workflows. The technology requires the ongoing intervention of
highly trained technical specialists. And the development process requires great effort and takes
time.”

This corresponds to our findings: WS-BPEL is of great use for IT experts, especially when
it comes to reusing software components. But for the end user, it offers only very little to no
opportunities.

2.2 End-User-related Approaches

As can be seen, the popular process modeling languages and their tools are not sufficient for
end user process modeling. In [Ver04], Verner analyzed various business process modeling ap-
proaches and came to a similar result: “Unfortunately, most BPMS products have been designed
for developers, not for business analysts.”

Since none of the modeling languages presented so far came close to satisfying our needs,
we will now discuss alternative approaches in literature. However, it has to be stated that there
are only very few and also very differing projects for end user process modeling.

16

2.2.1 ISEA

In [FRS14], Front et al. propose ISEA, a participative end user modeling approach. The acronym
stands for Identification, Simulation, Evaluation and Amelioration, which describe the basic
steps of the ISEA method, illustrated in Figure 2.12.

Figure 2.12: The ISEA Method [FRS14]

First, the processes and their activities need to be elicited from the end users (Identification).
This is done via a computer-aided role-playing-game, where each end user plays him-/herself
(Simulation). In this role-playing-game, end users basically simulate their whole work day by
describing their actions and with whom they interact in a simplified graphical Domain-specific
Language (DSL). Afterwards, possible problems of the process are analyzed together under
guidance of IT experts (Evaluation) and the role-playing-game is replayed to improve the overall
process (Amelioration).

This is done for three perspectives:

Organization Perspective: In this perspective, the method is as described above. Its aim is to
elicit the activities, documents and actors of the business process from end users via an
iterative role-playing-game.

Information Perspective: This perspective is similar, except that end users now collaborate to
give details about the structure of all documents identified in the organizational perspec-

17

tive.

Interaction Perspective: Here, end users can make sketches of their UI for all activities iden-
tified in the organizational perspective.

After all three perspectives have been completed, they can be used for developing the cor-
responding application. Therefore, the Organization Perspective can be transformed to BPMN
or Bonita BPM models automatically. Bonita BPM7 is an open-source BPM and workflow suite
that allows to add automation support to the processes. The Information Perspective can be
transformed to according UML class diagrams by an IT expert and the Interaction Perspective
can be used as a basis for generating the UI by UI designers.

Tool Support

The ISEA method is aided by only one tool, i.e. ISEAsy, which allows end users to provide their
valuable information according to all three perspectives in a playful way. Figure 2.13 shows the
UI of the role-playing-game in the Organizational Perspective.

Figure 2.13: Organizational Perspective in ISEAsy [FRS14]

7http://www.bonitasoft.com

18

http://www.bonitasoft.com

As can be seen, each user creates yellow post-its which represents his/her activities. The
users then connect their activities with those of other users via arcs, thereby creating the business
process. Additionally, they can add informal documents (green circle) to every activity, which
are later described in more detail in the Information Perspective.

Analysis

In contrast to the traditional process modeling approaches, ISEA enables users to create pro-
cesses in an easy way. The DSL and the modeling tool itself are very simple, thus enabling end
users to model their processes on their own.

However, the resulting process, even if transformed to a BPMN or Bonita BPM model, does
not provide automation support. Additionally, the Information Perspective and the Interaction
Perspective do not provide any automated benefit at all, since they need to be transformed man-
ually by IT experts. Also, the whole method is heavily guided by IT experts, which we want to
avoid in our work.

2.2.2 Humanistic Business Process Modeling

The authors of [ASCP13] distinguish between Humanistic Business Process Modeling (HBPM)
and Mechanistic Business Process Modeling (MBPM). Table 2.1 shows the basic differences
between the both modeling styles:

Criteria Definition HBPM MBPM

Formalization
The stating of formal rules in a business pro-
cess specification

Low High

Detail
The level of detail in a business process spec-
ification

Low High

Agility
The capacity to adapt a business process spec-
ification to various external conditions

High Low

Operationalization
The stating of operations involved in execut-
ing a business process

Low High

Implicitness
What is implied when executing a business
process

High Low

Flexibility
The responsiveness to contextual changes
when executing a business process

High Low

Table 2.1: HBPM vs. MBPM [ASCP13]

The traditional process modeling languages presented in Section 2.1 all belong to MBPM.
In contrast to MBPM, HBPM is a “softer”, less formal way of process modeling. Generally one
could compare it to the Light Style of UML modeling as described in Section 2.1.1. Thus, at the
one hand, modeling gets more intuitive for end users, but on the other hand, automation support
can be added far more difficultly.

19

The authors of [ASCP13] created their own humanistic process modeling language based on
story composition. Therefore, instead of modeling highly technical processes, end users simply
tell their own stories. A story is composed of a sequence of scenes where each scene can be
chosen from the scene library. The scene library contains several different archetypes of scenes,
e.g. elaborating, discussing or signing a document.

Tool Support

To create the stories, the authors of [ASCP13] developed an easy-to-use tool, called BPMerlin.
In Figure 2.14 the creation of a story with BPMerlin can be seen. On the left side, all available
locations, situations, objects and document types are listed. On the right side, the actual story
can be seen, composed of ten different scenes in the example. Special attention has to be paid
to the graphical illustrations of each scene archetype, which is important for the acceptance of
creating stories by end users, according to the authors.

Analysis

Just as ISEA, HBPM significantly eases the creation of process models for end users. In contrast
to ISEA, no IT experts are needed for guidance during the creation of the stories, since they are
very informal. However, this informality is the big drawback of the approach. Similar to the
Light Style in UML modeling, HBPM cannot be used to enable automation support.

Additionally, the authors of [ASCP13] state nothing about BPMerlin being able to automat-
ically transform the stories to a traditional process modeling language such as BPMN. Thus,
adding functionality to the process gets even more difficult than in all other process modeling
languages.

2.2.3 Wizard-based Process Modeling

Another approach for end user process modeling has been presented in [LV10]. Lombardi et al.
state that “enablement of a broader user-base incl. non-savvy BUs8 has been identified as a key
requirement of the business process management of the future” and that currently “PM tools are
too complex and error-prone for average users”, both supporting our findings.

To overcome these problems Lombardi et al. proposed Wizard-based Process Modeling
(WPM), which consists of two steps. First, IT experts create descriptions of lightweight process
modeling activities, e.g. a conditional activity. All of these descriptions are then published as a
wizard-model representation to a central repository.

In the second step, end users can browse through the repository and use all the wizard-model
representations they need for creating their model. E.g. they can choose the conditional activity
and then answer questions step by step. After finishing the wizard, the corresponding part of the
model is created.

8Business Users

20

Figure 2.14: Story Creation in BPMerlin [ASCP13]

Tool Support

The authors wrote their wizards as a plugin for the SOA4All-Composer9, which is a process
modeling tool for generating models in the proprietary Lightweight Process Modeling Language

9http://soa4allcomposer.sourceforge.net

21

http://soa4allcomposer.sourceforge.net

(LPML) of SOA4All. With this process modeling language, one can compose executable pro-
cesses from web services, similar to WS-BPEL.

The big difference is that in contrast to WS-BPEL, the LPML of SOA4All uses semantically
annotated web services, thus reducing highly technical tasks like correlating input and output
parameters and allowing end users to model processes with automation support on their own.
An example of the wizard for the conditional activity in SOA4All-Composer can be seen in
Figure 2.15.

Figure 2.15: UI of the Wizard in SOA4All-Composer [8]

Analysis

Wizard-based process modeling is in some way similar to humanistic process modeling. IT
experts create reusable units for end users in the first place (cf. scenes). Then, end users use
these units to compose their process in a simpler way.

However, the big benefit of wizard-based process modeling is its integrated automation sup-
port. It uses semantically annotated web services in the background, thus the generated process
can be executed without any further guidance of IT experts in the end which is very promising.

One drawback that remains is that the abstraction of the process modeling tool is still rather
hard to understand and based on those known by traditional process modeling languages like
WS-BPEL.

22

2.2.4 Form-based Web Service Composition

A quite similar approach is Form-based Web Service Composition (FWSC) as presented in
[WPB13]. The approach relies on user-editable web services which are represented as forms.

As the previous two approaches, it is based on two steps. First, IT experts add web services to
a central repository by providing their Web Services Description Language (WSDL) and setting
a suitable icon for the service to increase user acceptance. They also need to provide human-
friendly names for all fields and default values, if applicable.

In a second step, end users choose all services needed from the repository, connect and
configure them. Thereby, the configuration is made via forms, containing one input field for
each of the parameters needed for the web service. The values for these parameters can be either
provided as static values directly or via mapping from in- or output of previous service calls.

After the end user completed the configuration a fully executable WS-BPEL model can be
generated automatically.

Tool Support

Weber et al. developed a prototype that supports their approach. An example of a simple process
generated by end users is shown in Figure 2.16.

Figure 2.16: Form-based Web Service Composition - Example Process [WPB13]

Each of the five icons has been specified by IT experts in step 1 and represents a web service.
The configuration of the services “Find News Data” and “Find Performance Data” is shown in
Figure 2.17.

The colored boxes represent all data mappings, where blue fields are unmapped and other
colors mean that there is either a data mapping or a static value assigned to the field. E.g. the
value 100 is assigned to “Rows per page” as a static value and “RIC” on the left is mapped to
“RICs to process” on the right via input to input mapping, indicated by the purple frame.

Analysis

Form-based web service composition is rather similar to wizard-based process modeling. How-
ever, form-based web service composition is closer to WS-BPEL which manifests both for IT
experts when importing web services by their WSDL in step 1 and end users when defining data
mappings between each service in step 2.

The approach enables the generation of WS-BPEL models and thus provides full automation
support. However, due to its proximity to WS-BPEL it is still rather complex for end users. Data

23

Figure 2.17: Form-based Web Service Composition - Data Mapping [WPB13]

mappings on the field level remain a rather abstract and error-prone task where end users are
likely to fail. Also, the UI for the data mapping appears to be rather unintuitive with a lot of
different colors and nested tabs.

2.2.5 Web Service Composition Framework

In [TYI05] Talib et al. present the Web Service Composition Framework (WSCF) which allows
end users to create processes via web service composition. Web service composition has been
used in the form-based web service composition approach as well, but the web service com-
position framework differs considerably from the previous approach. The architecture of the
framework is shown in Figure 2.18.

The end user (i.e. composition modeler) provides information to the UI about the process
he/she wants to model. This information is evaluated by an inference engine that extracts and
deduces relevant parts and stores it in a special format in the internal relational repository. The
WSDL analyzer reads the WSDL files of all web services required by the end user and stores
the needed data structures in the internal relational repository.

Based on this repository the transformation engine can combine the data given by the user
and the data needed for calling the web services and generate a BPEL model automatically. This
model is then verified (e.g. so that no deadlocks occur) and executed.

Now, the interesting/unique aspect of this approach is how the user provides information.
Talib et al. state: “We advocate the use of a user friendly interactive graphical interface instead
of a graphical modeling language to capture these concepts.” [TYI05] So, the user does not
need to know anything about the syntax of the underlying modeling language. Instead he/she
provides the required information in form of control rules (cf. Listing 2.1).

24

Figure 2.18: Web Service Composition Framework - Architecture [TYI05]

1 ControlRule {
2 from (activity)
3 [Condition (Boolean expression)]
4 to (activity)
5 }

Listing 2.1: Web Service Composition Framework - Control Rule

Thereby, activity needs to correspond to a name of a web service according to the pro-
vided WSDL files and the condition is optional. Unfortunately, nothing is stated about the
input format of other important information, e.g. parameters for the web services.

Tool Support

The authors of [TYI05] state that “tool development is still at its initial stage”. So currently all
the required information needs to be provided via text files.

Analysis

The basic idea of this approach, i.e. that the user does not need to model the process but simply
provides informal information, is quite interesting. However, to develop such a framework is
quite challenging and the whole complexity is translocated to the part of how the user specifies
the information and how the information is interpreted and transformed.

25

Unfortunately, the presented approach lacks details concerning these questions. Neither does
it explain how e.g. parameters are provided by users nor how the information is deduced by the
inference engine so that it can be used for generating a BPEL process. Also, without any tool
support at the moment, the approach provides no usability at all.

2.2.6 End-User-driven Process Modeling

The last approach we will analyze has been presented by Stoitsev et al. in [SSFM08] and is
called End-User-driven Process Modeling (EUPM). It concentrates on only one domain, i.e.
task management. Here, end users specify intuitive task delegation graphs which are then used
by the tool to generate BPMN models.

Tool Support

The authors of [SSFM08] developed the Collaborative Task Manager to support their approach.
The tool can be seen in Figure 2.19.

Figure 2.19: Collaborative Task Manager [SSFM08]

The Figure shows the structure of a task delegation graph, i.e. one task, consisting of multiple
sub tasks executed in a specified order. In the lower right corner one can also see that multiple
task delegation graphs can be connected to each other.

26

Based on the structure of the graph one can easily think of a transformation to a BPMN
model as the structure is quite similar.

Analysis

As can be seen in Figure 2.19, the structure of task delegation graphs is very simple, so the
approach is suitable for end users. Also, even though the approach is fairly simple, it provides
full automation support which is a rare combination.

However, the main reason for its simplicity is that it is highly tailored to the domain of task
management. Therefore, all unnecessary generalisations can be omitted, leading to a very easy
modeling notation and reduced complexity of the transformation algorithms to the corresponding
BPMN models with automation support.

2.3 Comparison

After describing all of the promising approaches in literature, we will now compare them re-
garding their suitability for end users. Therefore we introduce a list of acceptance criteria for
a decent modeling technique targeting end users. Most of the criteria are based on [MSMP11]
(Distributed Execution), [MAKS12] (Automation Support, Human Task Support, Multiple Do-
mains) and [Bin13] (Easy Deployment). Some have been deduced by us (Tool Simplicity, Com-
prehensible Abstraction), based on our findings when analyzing the approaches.

For the sake of completeness, also the popular modeling languages described in Section 2.1
have been added to the comparison, even though they do not target end users. The results of the
comparison can be seen in Figure 2.20.

Figure 2.20: Comparison of Modeling Techniques

27

In the following, we will describe the meaning of the criteria and give details about the
comparison results:

Automation Support: As this is one of our main premises, we will first deal with automation
support of the modeling technique. Thereby we mean that a created model shall be exe-
cutable and thus provide additional value in contrast to e.g. a much simpler flow diagram.
Also Münch et al. define this as one of the main requirements for a process modeling
language: “A process modeling notation should support the interpretation and execution
of the process representation by a machine.” [MAKS12]

Strictly speaking, UML does not provide full automation support. It only generates empty
classes and connects some method calls but the model itself is not executable without a lot
of additional effort. BPMN and WS-BPEL on the other hand allow full execution of their
models.

Coming to the end-user-related approaches, ISEA allows more or less automatic genera-
tion of BPMN models. However, these are not detailed enough for automation support
and thus need additional manual adaption. HBPM’s stories are easy to create, however far
too informal for allowing any automation support. WPM on the other hand enables full
automation support due to its composition of semantically annotated web services. Since
FWSC and WSCF internally generate WS-BPEL processes they provide full automation
support. Finally, EUPM generates highly specialized BPMN models that can later be
executed by an own workflow engine.

Human Task Support: If a modeled process can be executed, it also needs to provide possibil-
ities for humans to interact with it. This means, at least the modeling end user him-/herself
should be able to interact with the process at runtime via e.g. providing input or making
decisions at some stages during the automated process. In literature this is often referred
to as human task support. Münch et al. define this requirement as follows: “A notation
for process representation should account for handling decisions made by humans during
process performance” [MAKS12].

All modeling techniques that do not provide automation support will be neglected in the
following since they fail the premise of an executable process. Both BPMN and WS-
BPEL allow human tasks by User Tasks and WS-BPEL4People respectively. A User Task
provides a simple UI to the user within the BPMN process engine and waits for him/her to
fill out the specified form or click on the provided button [OMG13]. WS-BPEL4People is
an extension for WS-BPEL that introduces so-called people activities. For such a task, the
WS-BPEL execution engine requests a message from the corresponding endpoint which
could be a UI where the user is allowed to enter forms or click buttons. After the user
performed the corresponding action, a response message is sent back, thereby allowing
the process to proceed [ICK+10].

Regarding WPM, the authors state nothing about human task support, but due to its WS-
BPEL-related nature it might be addable without a lot of effort. FWSC allows the user to
provide process-instance-specific data and thus lets the user influence the process behavior

28

at runtime. The authors of WSCF give no information whether their approach supports hu-
man tasks or not. Though, as it generates a WS-BPEL process at the end, WS-HumanTask
integration might be possible with low effort. Since EUPM handles only the domain of
task management, human task support is enabled in a way that end users can e.g. change
the completion level of a task during runtime.

Distributed Execution: Beside human task support, processes modeled by end users especially
require native support for distributed execution. This means that the process is executable
not only on the end user’s machine itself but can interact with machines of other end users
as well. This is needed for many common use cases that include more than one user
and thus is a very important requirement. Meyer also states that “the execution of the
process steps is usually distributed over the devices” and that “the orchestration of these
distributed execution activities must be possible” [MSMP11].

Again, all modeling techniques that do not provide automation support at all will be ne-
glected for this criterion as they do not support the premises. In BPMN distributed process
execution is highly dependent on the underlying workflow engine, but possible. Due to
the orchestration of distributed web services, WS-BPEL is predestinated for distributed
processes.

The authors of WPM do not state anything about the support of distributed process exe-
cution, but its relation to WS-BPEL might allow this feature. FWSC and WSCF provide
support for all of WS-BPEL’s features and thus also allow distributed process execution.
Regarding EUPM, the process physically runs on one instance, however the modeling tool
allows multiple users to change the task delegation graphs.

Multiple Domains: This criterion means that the modeling technique needs to be able to model
various different domains. Its elements need to be general enough to be used indepen-
dently of the domain. Concerning this requirement, Münch et al. state that “a process
modeling notation should enable a generic representation of information in order to al-
low for process models that can describe commonalities of processes from several different
projects.” [MAKS12]

The popular process modeling languages (UML, BPMN, WS-BPEL) are all general enough
to model arbitrary scenarios of arbitrary domains. The same holds for ISEA, HBPM,
WPM, FWSC and WSCF. However, EUPM completely targets the domain of task man-
agement, thus providing no possibility to model anything else.

Tool Simplicity: This criterion directly relies to end user suitability and means that the tool
used for the modeling language has to provide a tidied up interface, needs to contain only
few interface elements and requires a clear structure. If it contains complex features, at
least user guidance via tooltips or help dialogues is mandatory. Finally, the tool has to be
understandable by end users without IT background.

The popular process modeling languages (UML, BPMN, WS-BPEL) only provide tools
designed for IT experts, often relying on IDEs and thus being far too complex for end
users to understand.

29

ISEAsy (ISEA) on the other hand is a rather simple tool, allowing end users to model
their tasks in a playful way. This also holds for BPMerlin’s (HBPM) story creation which
is very intuitive. Regardless of the more abstract BPEL-based modeling language itself,
SOA4All-Composer (WPM) provides a tidied up UI with a lot of user guidance thanks to
its wizards. The tool supporting FWSC on the other hand is quite unintuitive, having a
lot of nested tabs, configuration possibilities and no clear structure. Also the correlation
between parameters is indicated via different colors which could have been done more
intuitively, e.g. via connecting the parameters by lines. However, if compared to native
WS-BPEL tools, it is still more intuitive. WSCF provides no tool at all, meaning that the
user would have to provide his/her model by a text file which is unacceptable. Finally,
the Collaborative Task Manager used in EUPM is fairly simple, having only few interface
elements and a tidied up interface.

Comprehensible Abstraction: Beside the simplicity of the tool, the modeling language itself
needs to use an abstraction that is easily understandable by end users. Therefore, its
concepts and terminology have to rely on the real world as much as possible to reduce the
amount of explanations required, thereby lowering the entry level.

In this comparison we are considering the abstraction of models that enable automation
support as far as possible. Under this premise, UML, BPMN and WS-BPEL use an ab-
straction that is hard to understand (cf. to the precise operational style in UML, and the
detailed parameter mappings in BPMN and WS-BPEL).

ISEA allows end users to define models in their known DSL but still requires guidance by
IT experts due to the complexity of the overall process. The abstraction in HBPM can be
understood easily, due to its story-based models. Since WPM relies on a WS-BPEL-based
modeling language, its abstraction is similarly hard to understand, regardless of the good
wizard-based UI. FWSC is also heavily related to WS-BPEL, thus requiring end user to
specify parameter mappings of web services on their own, which is not possible without
IT knowledge. The model required by WSCF basically constrains to control rules which
could be done easily by end users if a tool existed. However, nothing has been stated about
how the tedious parameter mappings are provided by end users. Modeling task delegation
graphs in EUPM uses an abstraction that can be understood easily, since the notation of
these graphs has been directly deduced from the domain of task management.

Easy Deployment: This criterion is deduced from [Bin13] and means that, given that the model
has been created, the end user is able to execute the model him-/herself. So, after designing
the model, no more tasks are required, such as implementing services that are used in the
model or setting up a server for execution. Even if an approach allows easy modeling and
has full automation support, it is worthless if the end user requires IT experts to deploy
the model in order to see the impacts of different modeling decisions.

In UML the generated classes need to be filled with code and then compiled and executed,
so IT experts are required before the model can be deployed. The workflow engines using
BPMN are quite promising, as they can execute a model on the fly. However, script tasks
need to be implemented by IT experts, so easy deployment is only possible if the end user

30

does not use such tasks. Given that the end user already has a fully functional model,
WS-BPEL processes need to be compiled and deployed onto special WS-BPEL servers.
This task is not as difficult as in UML, but still too tedious and error-prone for end users.

ISEA and HBPM do not provide any kind of automation support, thus there also is not
any deployment. WPM allows deployment on the fly within SOA4All Composer whereas
FWSC does not provide any integrated deployment support and relies on third-party WS-
BPEL servers. The authors of WSCF state that their generated WS-BPEL model is for-
warded to an external execution engine, i.e. a third-party WS-BPEL server equally to
FWSC. Lastly, EUPM is a fully integrated workflow engine for task management and
allows to deploy the generated models from within the tool.

As can be seen, none of the approaches presented fulfills all requirements for a decent end-
user-related modeling technique. That is why we will present our approach in the following
chapter.

31

CHAPTER 3
Approach

In this chapter we will first discuss the related concepts used by our approach. Then, we will
describe our approach based on the requirements specified in the last chapter and outline how
each of them is fulfilled.

3.1 Related Concepts

We use several concepts that need to be described first before understanding their value for our
approach.

3.1.1 XVSM

XVSM is an abbreviation for eXtensible Virtual Shared Memory and is a space-based middle-
ware of the Space Based Computing Group of the Institute of Computer Languages at TU Wien.
The Java implementation of XVSM is called Mozartspaces1, which is used in this work.

As most space-based technologies, XVSM relies on the Linda model (cf. [Gel85]). The main
goal of such tuple spaces is to decouple process communication in both time and space. This is
achieved by providing a shared space where all processes can store and read data from.

XVSM extends the decoupling of inter-process communication on the same machine to dis-
tributed P2P environments. In Figure 3.1 exemplary P2P communication in XVSM can be seen.

Each instance of XVSM is represented by one core that is a part of the distributed space.
Thereby, one to many cores can run on any peer or even on a centralized location. It is important
to note that all parts of the space can be accessed by all peers.

The squares marked with C1 to C6 indicate containers that contain entries. Each entry can
be an arbitrary type implementing the Java interface Serializable. Figure 3.2 shows the
internal structure of a container.

1http://www.mozartspaces.org

32

http://www.mozartspaces.org

Figure 3.1: XVSM P2P Communication [Dön11]

Thereby, for each entry several coordinators can be placed which contain metadata concern-
ing the accessibility of the entry. E.g. a FifoCoordinator returns entries in the same order
as they were written into the container while the RandomCoordinator returns a random en-
try. There are many more coordinators such as the TypeCoordinator, VectorCoordi-
nator, LindaCoordinator, QueryCoordinator, LifoCoordinator, LabelCo-
ordinator and the KeyCoordinator which allow to use complex access patterns easily.

Figure 3.2: XVSM Container - Internal Structure [Dön11]

When accessing the entries of a container, the following operations are possible: write,
read, take, and delete of one or more entries. If that is not sufficient, aspects can be added
to each of the operations. An aspect is a user-defined piece of code that will be executed before

33

or after an operation, depending on where the aspect is registered. The processing order of
aspects is shown in Figure 3.3.

Figure 3.3: XVSM Aspects [MKS10]

A Pre-Aspect is perfectly useful to e.g. validate data, whereas a Post-Aspect could
be used for logging successful operations. In case of errors, an aspect can either retry the current
operation later (Reschedule), cancel the operation (NotOK) or skip the operation itself while
still executing the other aspects (SKIP).

Further information about XVSM core features can be found in [Bar10], [Dön11] and [Cra10].
Beside these core features, also extended functionality is used by the XVSM Micro-Room
Framework, i.e. XVSM Security [CK12, CDJK12, CDJ+13], XVSM REST Application Pro-
gramming Interface (API) [Pro11], XVSM Persistence [Zar12] and XVSM Distributed Trans-
actions [Brü13].

XVSM Security allows to secure the access on containers based on authenticated user roles
or attributes provided by an external identity provider. Thereby, access restrictions can be set
individually per container, container operation and user/role.

More about the other features is described in [Bin13].

3.1.2 Peer Model

The Peer Model [KCJ+13] is a high-level coordination model that is based on XVSM. It is
intended for developers and targets highly concurrent and distributed environments across all
domains.

The main goal of the Peer Model is to separate coordination logic from application code in
distributed applications. Coordination logic usually relies on the same generic communication
patterns that can be created or composed of simple sub-patterns with the Peer Model, instead of
developing them over and over again in code [KCS15].

The key concepts of the Peer Model are described in the following [KCJ+13]:

Peer

A peer represents a re-usable component that can both contain internal coordination logic and
execute service functionality. This internal logic is encapsulated via two external “interfaces”,

34

i.e. the Peer-In-Container (PIC) and the Peer-Out-Container (POC). With these containers,
peers can collaborate with each other. For example, peer A gets some entries in its PIC, processes
them in its internal stage and writes them into its POC from which they are forwarded to peer
B’s PIC and so on.

Internally, application-specific logic can be called in terms of pre-defined service methods.
Also, so-called sub peers can be called which are peers themselves, thus allowing easy pattern
composition as done in [KCS15].

Technically, each peer can be uniquely addressed via its Uniform Resource Identifier (URI),
providing two separate XVSM containers (i.e. PIC and POC). Internally, a peer can provide
no logic at all (Space Peer), only coordination logic (Coordination Peer) or application-specific
logic (Application Peer).

Wiring

Figure 3.4 shows the typical structure of a peer (P1), including PIC, POC, internal logic, a
sub peer (P2) and the communication with another peer (P3). All connections between peers
and within a peer are modeled with wirings. Each wiring consists of several mandatory parts:
a name (e.g. W1), one or multiple guard links specifying on which incoming entry types the
wiring activates (e.g. R) and one or more action links defining where to put the resulting entries
of the corresponding type (e.g. T).

Figure 3.4: Peer Model Example [CJK15]

A wiring can also contain optional application-logic service calls (e.g. updateDir). Each
guard link can be extended by an optional query that tries to select entries from the PIC, which
also has to hold for the guard link to activate the wiring. Additionally, an optional count pa-
rameter defining the minimum and maximum amount of entries that should be selected can be
provided. A guard link can only activate the wiring if at least the minimum amount of entries
is available. Multiple guard links can be defined, all needing to be fulfilled for the wiring to
trigger. If one guard link cannot be fulfilled the wiring will not activate.

35

Technically, guard and action links represent XVSM container operations (read/take/write)
between PIC and internal wiring container (guard link) or internal wiring container and PIC/POC
(action link) of the same peer or between a peer and a sub peer. Input links and guards are
conceptually based on TypeCoordinators and QueryCoordinators of XVSM.

Entry

An entry contains its payload and several other key/value pairs that are described in this section.
The set of all wiring executions required to solve a task during runtime forms a flow. Hence,

a flow can be seen as a runtime instance of an executed sequence of work. Each flow can be
identified with a unique Flow Identifier (FID) which is created during runtime for the first entry
starting the flow. All entries created afterwards as logical successors of this entry will contain
the same FID. Each entry belongs to exactly one flow and a wiring only processes entries with
matching FIDs.

Each entry can also contain Time-to-Start (TTS) and a Time-to-Live (TTL) property. The
entry will only be scheduled after the TTS has expired. After the TTL has expired, the entry will
be automatically removed from the container. The Destination (DEST) property of an entry can
be used to model directed remote communication. If it is specified, the entry is injected into the
PIC of the specified peer (e.g. [DEST = P3]).

3.1.3 Micro-Room Concept

The concept of micro-rooms has first been presented in [Bin13]. Micro-rooms allow to abstract
fully-integrated software components in a way that is understandable also for end users without
IT background. The concept will be described with the help of a practical example, i.e. the
library shown in Figure 3.5.

Figure 3.5: Micro-Room Example [Bin13]

36

The basic structure of a micro-room consists of a unique name, a clearly assignable graphical
illustration, a set of room-specific properties (Room Settings), a set of actions (e.g. put)
and a set of plugins (e.g. Access Plugin).

The graphical illustration helps end users to recognize each room type right away. Each room
type can define arbitrary custom properties, in case of the library this could be e.g. the max time
for which one is allowed to borrow a book. Actions represent all interaction possibilities within
the room and can either be internal (not illustrated), incoming (e.g. put) or outgoing (e.g.
borrowBook). Finally, the base functionality of the room can be extended by plugins, which
can be placed on arbitrary room types. E.g. the Access Plugin allows to configure user-
or role-based permissions for each action whereas the Recorder Plugin allows to protocol
every call (user and timestamp) of a definable action. With the Replication Plugin it can
be configured to which users or groups the room (i.e. the contained data) should be replicated.

Each room can be connected to other rooms by connecting outgoing to incoming connections
with matching parameters. Thereby, only one-to-one connections are allowed to keep the model
simple and understandable by end users.

What makes micro-rooms and plugins special is that they are fully integrated, i.e. they are
implemented by IT experts and contain all the application logic. Each micro-room and plugin
can be created by implementing a simple Java interface respectively (cf. [Bin13]). Also, they
are very modular and extensible, as every IT expert can create their own set of micro-rooms
and plugins with very low effort. Also, in the best case, the end user itself can create his/her
functionality needed by extending a micro-room with a plugin.

End users can simply create a model of their needs by configuring and connecting several
micro-rooms. The big advantage is that the thereby created model (i.e. “scenario”) can be
executed by the corresponding runtime environment (i.e. the XVSM Micro-Room Framework)
to start up a fully executable P2P application, tailored exactly to the needs of the modeling end
user.

3.1.4 XVSM Micro-Room Framework

The XVSM Micro-Room Framework has been created in [Bin13]. It is a runtime environment
that is based on XVSM and capable of running scenarios containing micro-rooms. Its function-
ality will be explained based on the XVSM Micro-Room Framework component view shown in
Figure 3.6.

An application based on the XVSM Micro-Room Framework requires three types of input
files:

1. A Config File specifying basic settings such as name of the user, location of module
and business logic files and the URI of the central peer discovery server.

2. One or more Module Files (i.e. Java Archive (JAR) files) containing the implemen-
tation of all micro-rooms and plugins required.

3. One or more Business Logic Files (i.e. XML files) representing the micro-room
workflow models (“scenarios”) defined by the user, containing all micro-room and plugin
configurations as well as all action connections.

37

Figure 3.6: XVSM Micro-Room Framework Component View [Bin13]

These files are interpreted by the XVSM Micro-Room Framework on startup and thereby
result in a fully functional decentralized P2P application (backend). As can be seen in Figure
3.6, the XVSM Micro-Room Framework handles a lot of a P2P application’s boiler plate code,
including replication, security and peer coordination.

Communication with other peers is based on replicated XVSM container operations directly,
where each peer hosts the rooms that are replicated to him/her (cf. Replication Plugin).
The communication with the UI is handled via Representational State Transfer (REST) interface
which can be used to e.g. call actions of micro-rooms. To ease the access of these REST calls, a
simple JavaScript wrapper library has been implemented in [Bin13].

38

Relation to the Peer Model

When looking at the other concepts presented, the XVSM Micro-Room Framework can be seen
as a simplified version of the Peer Model that uses similar concepts. It has a reduced feature
set but hence also reduced complexity. The Peer Model allows developers to model processes
exactly, whereas the XVSM Micro-Room Framework hides most of the complexity by providing
a set of fully defined micro-rooms.

When comparing terminologies with the Peer Model, a micro-room can be seen as a peer and
its actions as wirings. The internals of a micro-room are not modeled with further wirings such
as in the Peer Model, but with program code provided by IT experts directly. Wirings between
micro-rooms have no guards but trigger immediately upon call.

Also there are no PIC and POC on a per-peer-basis but only one global PIC (i.e. the request
container) and one global POC (i.e. the response container) of the XVSM Micro-Room Fra-
mework itself, handling all incoming action calls and outgoing action results. The micro-rooms
select only their relevant entries by QueryCoordinators. Connections between actions are
only allowed one-to-one, compared to arbitrary wiring possibilities in the Peer Model.

Room-in-a-room usage is not possible while in the Peer Model one can re-use peers as sub-
peers in any other peer. However, in the XVSM Micro-Room Framework this drawback can be
partly overcome with plugins. They represent some kind of sub-peer that can be used within
arbitrary micro-rooms.

To outline the relation between the two concepts, Figure 3.7 shows how an Archivemicro-
room could look like in the Peer Model.

Figure 3.7: Archive Micro-Room Modeled with the Peer Model

When storing an item, it is encapsulated in an entry of type E and written to the archive
peer’s PIC. This triggers wiring W1, calling a service function that converts the entry of type
E to an entry of type I, containing an additional mapping from its internal ID (application
property provided by the XVSM Micro-Room Framework) to the source entry, e.g. via adding
a KeyCoordinator. This entry is then written back to the PIC.

39

If one wants to select an item, an entry of type S is written into the PIC. Thereby, two
local variables are set, i.e. $sid storing the ID of the item to be selected and $r containing
the requestor’s peer container. More about local variables in the Peer Model can be found in
[Küh16]. This entry triggers wiring W2 only if there is already an I entry in the PIC having the
same ID (field iid) as requested in the S entry, i.e. there is already an item in the archive with
the queried ID. Please note that the iid does not need to be known by the end user directly,
since it is encapsulated in the items that the he/she is working with in the UI. If the user selects
an item (e.g. by title or text), the internal id of the item is used as iid.

Please also note that the I entry is copied before it is taken out of the PIC, so that other
select actions of the same item ID still can trigger wiring W2. Wiring W2 then calls a service
function that strips off the previously added ID mapping and writes the entry via DEST property
to the requestor’s peer container $r.

Taking an item works exactly as selecting an item, but this time, the I entry that has to be in
the PIC already will not be copied. Thus, it will be taken out and no other select or take action
for this ID can trigger wiring W2 or W3. Also, for S and T entries there has to be defined a TTL
to avoid that they stay in the PIC forever in case there will never exist a corresponding I entry.

As can be seen, the coordination logic of micro-rooms could be modeled via the Peer
Model without problems. However, since we target end user modeling in our approach, internal
modeling of micro-rooms as would be possible with the Peer Model is not required. Moreover,
micro-rooms act as black boxes for end users to hide their internal complexity. Therefore, it is
sufficient to implement them in Java directly (one class per micro-room) in our approach.

Current Drawbacks

Currently the XVSM Micro-Room Framework encounters two main drawbacks. First, the model
required for the runtime environment needs to be specified in plain XML, which is not very
intuitive for an end user.

The second drawback is that UIs are currently neither provided by the XVSM Micro-Room
Framework itself (e.g. by automatically deriving them) nor by the module files (e.g. by including
them). Hence, the created application represents only a fully working backend, allowing no
direct interaction with the end user him-/herself.

3.1.5 Comparison to Related Work

Since the Peer Model (PM) and the XVSM Micro-Room Framework (XMRF) neither are clas-
sical modeling techniques nor target end users directly, they have not been incorporated into
the comparison shown in Figure 2.20. Nevertheless, an evaluation regarding the requirements
specified in Section 2.3 is of interest.

Automation Support: The Peer Model partly enables automation support since the coordina-
tion logic of the model could be translated to executable code automatically. However,
the logic from the called service methods needs to be implemented by IT experts after
modeling. This is similar to UML, where empty, connected classes can be generated
automatically, which still need to be extended manually. In its current state, the Peer

40

Model cannot be compared to WS-BPEL, where service endpoints exist autonomously
and can be queried and called during creation of the model. Moreover, service methods
need to exist as methods in code, i.e. they are tightly coupled to the model itself.

The XVSM Micro-Room Framework provides full automation support by providing a
proper business logic XML file using a set of available modules.

Human Task Support: Currently, no automatically generated form fields for user interaction
are available in the Peer Model. To enable user interaction with a model during runtime,
special service methods could be implemented that block the workflow until a user e.g.
enters a form value, but this is insufficient according to the criterion definition.

Similarly, the XVSM Micro-Room Framework provides no UI automatically and hence
users have no possibility to interact with the model during runtime without an IT expert
creating a proper UI.

Distributed Execution: Since the Peer Model relies on XVSM containers for exchanging en-
tries between PICs and POCs of different peers, it inherently supports distributed execu-
tion.

The XVSM Micro-Room Framework also relies on XVSM and uses containers to repli-
cate executed actions between users. Hence, each user can execute his own part of the
model and interact with the other parts without problems.

Multiple Domains: As the Peer Model is a general purpose framework for specifying arbitrary
coordination patterns, it allows to model any domain.

The XVSM Micro-Room Framework can only model what is possible with the currently
available modules (i.e. micro-rooms and plugins). However, since the framework can
be extended by custom modules very easily, it can be stated that it also allows to model
multiple domains.

Tool Simplicity: For the Peer Model, currently a modeling tool is under development but it is
not yet finished. For the XVSM Micro-Room Framework, currently no modeling tool
exists. Thereby, both fail the requirement at this moment.

Comprehensible Abstraction: The Peer Model targets IT experts and therefore its modeling
concepts are very fine-grained. I.e. the modeling user needs to deal with several techni-
cal terms such as guards, variables or queries. Hence, the Peer Model cannot fulfill this
criterion.

Currently, the XVSM Micro-Room Framework requires a business logic file in XML for-
mat as input without any tool supporting the creation of this file. Regarding this criterion,
it is therefore exactly on the same level as WSCF, which is literally “unacceptable” (cf.
Section 2.3).

Easy Deployment: Concerning the Peer Model, currently there is no easy way for end users to
automatically run their models.

41

The XVSM Micro-Room Framework on the other hand allows to execute the created mod-
els easily by simply starting up the framework which then derives the logic to execute
based on the provided model (i.e. business logic XML file).

The comparison of modeling techniques (cf. Figure 2.20), now including also both the Peer
Model and the XVSM Micro-Room Framework, is visualized in Figure 3.8.

Figure 3.8: Comparison of Modeling Techniques including PM and XMRF

3.2 Initial Draft

In [Ver04] Verner states: “What is missing is a seamless way to integrate design and develop-
ment.” In our approach, we try to achieve such a way by creating a new modeling tool meeting
all of our defined acceptance criteria, in particular: the XVSM Micro-Room Modeler.

Our aim is to create a simple and intuitive modeler with which end users can model collabo-
rative workflows based on the micro-room concept. This model can be translated by the modeler
to a business logic XML file, readable by the XVSM Micro-Room Framework, thereby fixing
the first drawback of the framework.

To fix the second drawback of the framework, UIs are added into the module files, hence
generating a fully executable application on startup. To be flexible, the end user can also upload
arbitrary module JAR files containing additional micro-room and plugin types as needed.

Finally, after completing all configuration and modeling tasks, the end user can create his/her
modeled application by clicking a single button. In the background, the model translation and
further tasks occur fully automatically, yielding an executable application based on the XVSM
Micro-Room Framework.

In Figure 3.9 an initial draft of the XVSM Micro-Room Modeler is shown. As can be seen,
the UI is very simple and intuitive. The user has the the possibility to extend the modules avail-
able and to configure all micro-rooms as within the XML business logic file (cf. [Bin13]).

42

Figure 3.9: XVSM Micro-Room Modeler Draft

The stated modeler combines the best of all end-user-related approaches discussed in Chap-
ter 2.2. The micro-rooms and plugins in the modeler use intuitive graphical illustrations to gain
acceptance by the end user such as HBPM does. As in WPM, it has building-blocks with inte-
grated automation support (i.e. micro-rooms and plugins), created by IT experts but usable by
end users. As another contribution of this work, the custom configuration properties for micro-
rooms and plugins come with reasonable default values, just like in FWSC. Finally, the XVSM
Micro-Room Framework uses an “inference engine” to deduce the logic from user input (i.e. it
interprets the generated business logic file to execute logic), similarly to WSCF.

After describing the related concepts and our approach, we will discuss its architecture in
more detail in the next chapter.

43

CHAPTER 4
Design

Based on the theoretical concepts presented in Chapter 3 we will now describe the technologies
used to realize our modeling tool as well as its general architecture.

4.1 Evaluation of Technologies

First of all it has to be defined with which technology the modeler should be implemented.
Therefore, we will define the requirements, discuss several approaches and evaluate which of
them meets the requirements best.

4.1.1 Requirements

On the basis of the acceptance criteria for a decent modeling technique targeting end users pre-
sented in Chapter 2.3 we derived the following subset of requirements for a technology of a
decent modeler targeting end users. All of these requirements directly influence the user experi-
ence of the end user.

Low Entry Level: The entry level of the modeler is defined by the amount of technical hurdles
an end user needs to overcome for accessing the modeler. Thereby, this requirement
is directly related to the technology used, e.g. because the end user needs to install an
application or a library before the modeler itself can be started.

Tool Simplicity: In contrast to the entry level, which deals with the user experience before
using the modeler, tool simplicity is related to the actual user experience when using the
modeler. Thus, the technology used should allow the modeler to be as simple as possible,
so e.g. no complex menus or technical terms should be necessary.

Easy Deployment: Converting the model to a XVSM Micro-Room Framework-compliant busi-
ness logic file and packaging it into an executable application has to be possible with the
technology used.

44

Extensibility: The XVSM Micro-Room Framework is highly extensible by simply providing
new module files in a pre-defined folder before startup. Hence, also the modeler should
allow this extensibility, i.e. it should be possible that the end user adds module files during
runtime to the modeler, thereby extending its provided modeling elements.

4.1.2 Eclipse Modeling Framework

The first technology evaluated is the Eclipse Modeling Framework (EMF)1. It is a modeling
framework that allows to create your own modeling language, based on your Domain Model.
Therefore you specify your model in terms of Ecore, which is the core meta-model of EMF.
Additionally, EMF is capable of code generation, at least in terms of Java class stubs that need
to be implemented by IT experts after creation.

In combination with the Graphical Modeling Framework (GMF)2 modelers can be created
based on these Ecore models. Figure 4.1 shows the components required to create the modeler.

Figure 4.1: GMF Overview [9]

The Graphical Definition contains all information about the graphical elements
available in the modeler, i.e. elements that can be used in the modeler pane. With the Tooling
Definition, all other UI-related aspects of the modeler can be defined, e.g. menus and tool-
bars.

In the Mapping Model, Graphical and Tooling Definitions are linked to the
Domain Model. In the Generator Model, implementation details can be defined for the

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/modeling/gmp

45

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp

generation phase. Finally, the created Diagram Plug-In can be executed by the GMF run-
time.

As can be seen, it is a rather complex task to get the modeler set up. Also, the modeler created
will be based on the Eclipse IDE, hence containing a lot of additional menus, not required for
the modeler in the first place (cf. Figure 4.2).

Figure 4.2: GMF Modeler Example [10]

To overcome this problem, a special GMF Lite Runtime [11] exists which does not contain
any toolbars and reduces the Eclipse-IDE-specific features to a minimum. Nevertheless, the
runtime has to be installed and a special launch profile has to be created and executed to launch
the modeler.

Considering code generation, the code templates can be adjusted, so that a micro-room might
be specified as a code template generating the underlying Java class. However, neither can the
model be extended during runtime, nor can the generated modeler package a fully executable
application.

4.1.3 Microsoft Visio

Microsoft Visio is another famous modeling tool that can be extended by custom elements.
When looking at the SDK documentation [12] it becomes clear that you can create a custom set

46

of elements usable in Visio easily. Also, further elements (i.e. micro-rooms) could be imported
during runtime without problems. Figure 4.3 shows Visio with a set of custom shapes available.

Figure 4.3: Visio with Custom Shape Library [13]

As can be seen, the UI is fairly simple and appropriate for end users. However, the big
drawback is that with Visio you can neither create the business logic file in the desired format
nor compose a fully executable application package.

4.1.4 Java Client Application

Another approach would be to implement the modeler completely from scratch as a client ap-
plication in an arbitrary programming language. In this case, Java is chosen due to personal
preferences. Thereby, the end user would need to download our application and the required
runtime environment in order to access our modeler.

Concerning the usability of the modeler, the creation of the business logic file from the
model, the extensibility during runtime and the packaging of the executable application, no
limitations are present.

47

4.1.5 Java/AngularJS Web Application

The modeler could also be developed as a web application directly in any suitable programming
language. As an example a Java backend could be extended with AngularJS3 on the frontend
to create a client-application-like user experience. In contrast to the client application approach,
the user does not need to download anything but can directly access the modeler with his/her
browser on any platform.

Just as with the client application, there are no limitations concerning usability, business
logic file creation, extensibility and generation of the executable application.

4.1.6 Comparison & Decision

Figure 4.4 shows the final comparison of all technologies discussed.

Figure 4.4: Comparison of Technologies

EMF looked promising at the first glance but is not suitable for our scenario. Its entry level
is too high for end users, since they need to download the GMF runtime environment, create
a specific launch profile for our plugin and execute it. Regarding tool simplicity the lite GMF
runtime environment is mandatory for end users, because the regular runtime environment is
far too complex. Nevertheless, the UI will always rely on the structure of the Eclipse IDE,
thus limiting its usability. The EMF is intended for class generation, hence the creation of the
business logic file from the model and the packaging to an executable application afterwards
is not possible. Concerning extensibility, there is no way to add new graphical elements (i.e.
micro-rooms or plugins) during runtime of the modeler.

Microsoft Viso makes it a bit easier for end users to access it. They need to install the
software and import our shapes (i.e. micro-rooms and plugins). The tool itself is designed for
end users and thus sufficient regarding this requirement. It is also extensible during runtime as
the end user can simply import new shapes at any time. However, all of these benefits come
with a main drawback: Converting the model to a business logic file and creating the executable
application is very complex and error-prone due to the proprietary modeling format and limited
documentation, hence rendering this approach useless.

3https://angularjs.org/

48

https://angularjs.org/

When creating a Java client application (e.g. in JavaFX), one is not limited in any concerns.
The modeler can be designed completely from scratch, thus allowing to build it as simple as
possible. Transformation of the created model to a business logic file and the creation of an
executable application afterwards are no problem. However, Java client applications have one
drawback: They are not accessible easy enough for end users, as they first need to download the
application and then have to install the Java Runtime Environment (JRE) for the application to
work. Also, they are only accessible on Personal Computers (PC) but not on other platforms,
such as tablets or smartphones.

Finally, a web application using Java for the backend provides all the benefits of a Java
client application if e.g. AngularJS is used for the frontend. With it a client application-like user
experience can be created. Additionally, the web application can be accessed very easily by
end users via their browsers. Thereby, they could even use a tablet or smartphone to access the
modeler which is not possible with any of the other approaches.

As can be seen, a Java/AngularJS web application suits our needs best and hence these
technologies are used to implement the modeler. Please note that regardless of the technology
used for the modeler, the generated executable application will always require a JRE installed
since it is based on the XVSM Micro-Room Framework, which itself uses Java.

4.2 Components

After defining the technologies for creating the XVSM Micro-Room Modeler, its structure is
explained by the component diagram shown in Figure 4.5.

As can be seen the modeler is separated into two parts, i.e. the Client Part (frontend)
and the Server Part (backend). The client part is executed in the browser of the model-
ing user and thus contains only Hypertext Markup Language (HTML), Cascading Style Sheets
(CSS) and JavaScript. The required JavaScript is created with AngularJS as a basis which sepa-
rates the code into controllers and services. AngularJS Controllers contain all browser-
related logic, e.g. manipulating the Document Object Model (DOM), validating user input or
listening to events such as onclick. AngularJS Services get called by controllers and
execute Asynchronous JavaScript and XML (AJAX) calls to the backend, perform error handling
and response parsing.

The backend called is implemented in Java as stated in the previous chapter. To avoid a lot
of boilerplate code, we use the Spring Boot Framework4 as a basis. It launches an embedded
Tomcat web server upon application startup which provides the REST endpoints (i.e. REST
Controllers) of the backend. These endpoints get called by the AngularJS Services.
When called, a REST Controller performs request parsing and validation and forwards data
to the corresponding Backend Service containing the business logic.

Beside other services, there are three of higher importance: The OpenAM Service is used
to communicate with the central OpenAM5 instance required for our approach. OpenAM is an
access management system that provides authentication, authorization, single sign-on and a lot
of other capabilities. In our work it is used in three places: First, when a user registers an account

4https://projects.spring.io/spring-boot/
5https://forgerock.org/openam/

49

https://projects.spring.io/spring-boot/
https://forgerock.org/openam/

Figure 4.5: Component Diagram of the XVSM Micro-Room Modeler

for the XVSM Micro-Room Modeler, his/her credentials are added to OpenAM. Second, when
logging into the modeler, the user credentials are validated against OpenAM. Third, when using
the created application based on the XVSM Micro-Room Framework, the user needs to log in
after startup. Thereby his/her account credentials are verified via OpenAM returning an access
token, which can then be used by the XVSM Micro-Room Framework to enforce all XVSM-
Security-related permissions (cf. Section 3.1.1 and [Bin13]).

Additionally, the OpenDJ Service allows to access the central OpenDJ6 instance di-
rectly. OpenDJ is an open source Lightweight Directory Access Protocol (LDAP) server that
is used by OpenAM to store user and role information. Since for XVSM Security a special
memberof attribute of the user is required for specifying his/her roles, direct access to OpenDJ
is required, as with OpenAM’s REST API this attribute cannot be set. In the XVSM Micro-

6https://forgerock.org/opendj/

50

https://forgerock.org/opendj/

Room Modeler a user has to be able to configure the other members and roles that should be
able to access parts of his/her collaborative P2P application. When doing so, these roles are
written into OpenDJ via the OpenDJ service so that they can be accessed via XVSM Security
when using the generated application later on.

Finally, the MozartSpaces Service handles all modeler-related data and stores it in a
persistent embedded MozartSpaces instance. Such data would be e.g. information about which
user has created which project, project settings and the created models themselves.

4.3 Modeling

In this section the feature set of the XVSM Micro-Room Modeler regarding modeling is de-
scribed. End users are able to register an account and log in. They can create new projects, save
them within the modeler and load them later on. For each project, a set of persons and groups is
definable upon project creation and modifiable later on. Those persons and groups are allowed
to participate in the whole collaborative workflow or parts of it.

The workflow itself is modeled with a set of micro-rooms that can be connected with each
other. To create a new micro-room, it can be dragged from the panel showing all available micro-
rooms on the bottom to the central modeler pane (cf. Figure 3.9). After clicking on a micro-
room, the properties panel appears to the right, which allows to configure common properties
like its name, replication and security settings, as required by the XVSM Micro-Room Frame-
work. These cover which persons/roles are allowed to enter a room and if so, who is allowed to
perform which actions. Also, custom micro-room properties can be configured in this panel, i.e.
properties that are unique per micro-room type.

Connections can be created by dragging an action port of one micro-room to a fitting action
port of another micro-room. Thereby, fitting target actions need to have an input parameter with
a type equal to the return type of the source action. To support the end user, fitting ports will be
highlighted automatically.

Every micro-room can be extended with arbitrary plugins to enable additional functionality.
Therefore, a plugin can be dragged from the panel showing all available plugins on the bottom
to a micro-room in the central modeler pane. The plugin can be configured in the properties
panel to the right after clicking on the micro-room it is assigned to.

Additionally, every micro-room is assigned to a UI template by default. This template spec-
ifies how to render the micro-room in the created application.

To show the possibilities of the XVSM Micro-Room Modeler, a base set of micro-rooms
and plugins is provided with the modeler. It covers everything an end user needs to model the
tasks required for the usability testing of this work. Those tasks address simple collaborative
workflows ordinary end users might want to perform with their friends and are described in
Section 7.2.1.

In more detail, the implemented micro-rooms are:

Archive: Represents a room where items can be stored, selected and taken. Thereby, an item
can contain arbitrary information and/or represent a file.

51

Conference Room: A room in which all room members can chat with each other. Messages
are transmitted in realtime between all members with a guaranteed ordering (cf. XVSM
Micro-Room Framework replication based on distributed transactions [Bin13]).

Typing Room: Allows room members to write a document in a What You See Is What You Get
(WYSIWYG) editor. Currently, only one member can edit the same document at a time
but it could be extended to a fully-functional collaborative editor if required.

Mail Room: This room can be used for members to send mails across the world.

Decision Room: In the decision room, members can manually decide upon items and thereby
specify what should happen with them next, e.g. whether they should be forwarded into
another room or discarded.

Thereby items can contain arbitrary payload data and might be parameterized by the user
to define which data they should be allowed to contain. However, for the tasks in the usability
testing it is sufficient to fix the underlying payload to files, i.e. byte arrays. Also, with files,
generality remains in some form and many use cases can still be modeled.

Additionally, two plugins are implemented which allow to extend the given micro-rooms
with further functionality:

Recorder: Allows to record all calls of a specified action. Also provides an additional action to
the micro-room with which the recordings (i.e. user name and time) can be viewed.

Notifier: Can be used to notify the user if a specified action has been called, thereby causing a
page refresh of the active micro-room’s UI.

Figure 4.6 shows the graphical notation of the seven modules in the XVSM Micro-Room
Modeler.

Besides the two mentioned plugins, in the XVSM Micro-Room Framework the following
two plugins are of major importance since they are responsible for core features. Therefore they
are already included within the XVSM Micro-Room Framework itself instead of being provided
by separate module files. A micro-room could be executed without them but it would not make
much sense to do so. Therefore, in the XVSM Micro-Room Modeler both of these plugins are
always added to each room automatically and thus will not be indicated with special icons on
the corresponding micro-room. They can be configured by the end user via the micro-room’s
properties panel.

Security: Enables to configure the permissions of each action in the micro-room on a user or
group level.

Replication: Allows to specify to which other peers the actions called on the micro-room
should be replicated on a user or group level.

With these modules an end user can create e.g. the following collaborative workflows as
outlined:

52

Figure 4.6: Graphical Notation of the Provided Modules

Chatting: Use a single Conference Room shared with your friends.

Message Boards: Use a Conference Room with an alternative UI template (“Message
Board”) configurable via room properties.

File Sharing: Provide a single shared Archive.

Mailing Lists: Define a Typing Room for creating the mails, an Archive for storing them
and a Mail Room for sending them. Items flow via connections from the Typing
Room (finish document) over the Archive (store item) to the Mail Room
(send mail).

Document Editing: Specify a Typing Room for creating documents and an Archive for
storing them. Connect them with each other to store documents finished in the Typing

53

Room (finish document) into the Archive (store item) and to load docu-
ments stored in the Archive (take item) into the Typing Room (show docu-
ment) for further editing.

Task Assignment: Use one Archive per user (permitted to the corresponding user only) and
connect them to a set of Decision Rooms. By deciding upon an item of his/her own
Archive, a user can forward it to the Archive of the desired user.

Reviews: Define a Typing Room for creating documents and connect it to an Archive for
storing them. Connect the Archive (take item) to a Decision Room (decide)
that is permitted to the reviewers only. Connect its yes action to another secured Ar-
chive containing all passed documents and its no action back to the first Archive’s
store item action.

Brainstorming: Specify either a Conference Room, a Typing Room or an Archive.
With either of these rooms, users can add ideas dynamically so that other users can see
them. When using an Archive, additionally a Notifier plugin can be added so that
users immediately see new ideas of other users due to automatic page reload.

Profile Pages: Provide a Typing Room to add new text items to an Archive with an al-
ternative UI template (“Show Full Item Text”) configurable via room properties.
This template renders the full item content instead of only the title. Allow access to the
Typing Room and to the Archive’s modifying actions only to your friends.

Blogs: Use a private Typing Room for creating HTML items and store them into an Ar-
chive with an alternative UI template (“Show Full Item Text”) configurable via
room properties.

Newsfeeds: Provide a private Typing Room to write news items and store them into an
Archive with an alternative UI template (“Show Full Item Text”) configurable
via room properties.

Wikis: Define a Typing Room for creating wiki entries in HTML and store them into an
Archive. Create a connection from the Archive to the Typing room to view and
edit wiki entries. Add a Recorder plugin to the Archive’s store action to record
which user modified an wiki entry. Searching will not be possible but could be added with
new Search plugin.

Shopping Lists: Use an Archive with an alternative UI template (“Simple List”) con-
figurable via room properties. Instead of up- and downloading files, simple text entries
can be stored and viewed directly.

Wish Lists: Specify an Archive with an alternative UI template (“Simple List”) config-
urable via room properties. Instead of up- and downloading files, simple text entries can
be stored and viewed directly.

54

As can be seen, from a backend-based point-of-view, many use cases can be realized with
the same room types but only differ in their frontend presentation. Please note that even though
alternative UI templates could be specified without problems (cf. Section 5.4.5), they are not
implemented in this work as they are not required for the tasks in the usability testing. They will
be added in future work (cf. Section 8.6).

Beside the implemented modules, the following micro-rooms have been defined as well but
are not implemented in this work:

Poll Room: A simple poll room, allowing members to answer questions that have been defined
in advance.

Video Room: Allows members to stream videos between each other by e.g. using direct com-
munication over User Datagram Protocol (UPD) instead of XVSM Protocol (XVSMP).

Please note that not using XVSM as the underlying technology does not influence the
function of plugins that are applied to the room. E.g. the Security plugin will still
work since the actions themselves are registered in a secured container by the XVSM
Micro-Room Framework using XVSM Security. Also, the Replication plugin will
still work as the XVSM Micro-Room Framework internally replicates called actions via
XVSM Distributed Transactions, regardless of the technology used within the correspond-
ing action.

So e.g. a startVideo action could be called with an URI of the video as parameter.
This action can be secured and replicated without problems by using XVSM. Whether the
action internally starts a video stream using UDP or any other protocol does not matter
as its logic will be executed on each peer individually after receiving the replicated action
call.

Playground: Provides various types of games that room members can play together. The type
of game it shows could either be specified via room properties or the micro-room could
be split into separate micro-rooms, i.e. one per type.

By extending the implemented modules with the additional micro-rooms, even more use
cases could be modeled, such as:

1. Appointments

2. Online Exams

3. Video Conferences

4. Webinars

5. Gaming

As can be seen, the XVSM Micro-Room Modeler could be extended arbitrarily to support
all use cases needed by end users. Such additional module files can be uploaded to the modeler,

55

which will then be available for the corresponding user in the tree view showing all available
micro-rooms and plugins. In contrast to the previous XVSM Micro-Room Framework module
implementation, they also contain the required UI in our approach, thus forming fully integrated
building blocks.

While modeling, the end user always has the possibility to undo and redo his last actions.
Also, he/she is supported by smart micro-room connectors, only allowing to connect source
actions to compatible target actions, thereby preventing models that would lead to errors during
runtime of the generated application.

After finishing the model, the end user can create an executable application (e.g. an exe-
cutable JAR) with a single click. To invite other users to the designed collaborative workflow,
the modeling user can create a special share link to the model. When another user follows the
link, the modeler will create an executable application based on the model but customized for
the specific user. Figure 4.7 shows this essential use case in form of a sequence diagram.

Figure 4.7: Sequence Diagram of Downloading and Sharing the Modeled Application

After both users downloaded their executable JAR, they execute them, thereby launching
their local set of micro-rooms. The XVSM Micro-Room Framework replicates the state of these
rooms between the applications of both users in the background via XVSM. Hence, interactions
in a room become visible to all other users in this room.

When the created application has started up, it will show the customized UI depending on the
model created by the user. So, e.g. only those micro-room UIs that are accessible will be shown
and labels of UI elements will be adjusted to the micro-room or plugin properties specified by
the modeling user.

56

4.4 Provisioning

Provisioning is the process of generating a fully executable application from the model created
by the end user. Figure 4.8 shows which parts such an executable application (in this case in
form of an executable JAR) has to contain.

Figure 4.8: Provisioning in the XVSM Micro-Room Modeler

First of all, the created package needs to contain the XVSM Micro-Room Framework JAR
file itself. This will be executed as a runtime environment, thereby loading its configuration files
on startup. These contain config.properties defining XVSM Micro-Room Framework-
specific settings, mozartspaces.xml configuring XVSM settings needed for P2P commu-
nication and AMConfig.properties defining security-related settings. These files will not
differ much between the users and can be seen as static templates where several variables might
be replaced according to the user creating the executable application.

Additionally, the XVSM Micro-Room Framework also needs one or more business logic
files in XML format. The model created by the end user (which is stored in JSON format) is

57

transformed to exactly one such file and provided to the package. Also, all module files (i.e. the
default modules as well as all additionally uploaded modules), containing all micro-room and
plugin definitions, need to be added to the package.

Furthermore, the UI needs to be generated specifically for the end user. Thereby, the UI
(HTML, CSS, JavaScript) files provided with each micro-room or plugin are extracted from the
module file and “parameterized” with the JSON model created by the end user. Thereby, e.g.
rooms or actions not accessible by a specific user can be hidden, buttons can be customized
according to the micro-room properties defined in the model and the plugin UIs can be injected
into the micro-room UI. Please note that these client-side adjustments only increase usability
and do not enforce e.g. access restrictions to rooms or actions.

These are enforced by the XVSM Micro-Room Framework itself, which is why it commu-
nicates with the central OpenAM server. Besides that, also a central P2P discovery server is
required for initial lookup of other peers (i.e. running executable JARs of other users). The
interaction with the discovery server, as well as the replication with other executable JARs is
handled by the XVSM Micro-Room Framework. It also has to be stated that neither the Open-
AM server nor the discovery server need to be started by the end user him-/herself as they can
be provided remotely. Only the provisioned application has to be launched by the user directly.

4.5 Workflow Execution

If the executable JAR is started, it shows the generated UI to the user in his/her default browser.
A draft of such a created application is shown in Figure 4.9.

Figure 4.9: Draft of an Executable Application Created by the XVSM Micro-Room Modeler

58

As can be seen by the “Logout” link, the user has to be authenticated against the central
OpenAM server to access the application (cf. Section 4.2). Upon login, a list of all micro-
rooms available to the user is shown to the left. The first micro-room in the list is selected by
default, thereby showing its UI in the main area. In the example an Archive can be seen that
already contains several items that can be taken or removed via buttons. A click on one of these
buttons triggers the corresponding action take item and remove item of the Archive
(cf. Figure 4.6) respectively. Both of these actions could be connected to actions of other micro-
rooms.

The “Upload” and “Download” buttons allow to interact with the room directly without
triggering any connected actions. Thereby, the Archive is fully usable even if no other room
is involved, since users can exchange their files with each other via one shared Archive.

Beneath the micro-room UI itself, the UIs of all plugins of the micro-room are shown. In the
current example, the UI of a Recorder Plugin is shown, which consists only of a button to
show all currently recorded events in a pop-up.

If the take item or the remove item action of the Archive is executed and it is con-
nected to an action of another micro-room, this action will be called automatically as well. Such
connected action executions are also replicated among all other peers, based on the functionality
of the XVSM Micro-Room Framework (cf. [Bin13]).

Locally, a connected action also causes a UI transition if the user is allowed to enter the
micro-room of the target action. If he/she is not allowed, the target action simply will not be
executed and no UI transition occurs. E.g. if the take item action of the shown Archive
is connected to the show document action of the Typing Room, a click on the “Take”
button will cause a UI transition to the corresponding Typing Room automatically if the user
is allowed to enter this room. Thereby, the item taken from the Archive is shown in the
Typing Room as the names of the involved actions suggest. More details about the internal
mechanics concerning UI transitions can be found in Section 5.5.1.

A uniqueness of this approach is that there exists no defined start and end point for the
workflow. End users can start at any point that makes sense for them and follow the workflow
path as long as they like. If they require a different micro-room to achieve their current task, they
can always change to that room via the navigation panel, thus jumping around in the workflow.
Thereby the current state of the old micro-room will remain the same. The user can continue
with the work in this micro-room later by simply navigating to it again or another user could
finish his/her work in the mean time.

So, strictly speaking, our approach does not provide a workflow that is executed from the
start until the end in one go without any alterations. The users working with the created appli-
cations are more likely experiencing a collaborative working place that is guided by predefined
flows in the form of automatic UI transitions. As these flows are only guided and not enforced,
such as in other techniques, they can be iterated and adjusted on the go by jumping around
between the elements as the current situation requires. Also, the work load can be shared dy-
namically by collaborating in the different micro-rooms according to the actual environment and
work load. More about this can be found in Section 6.4.

59

CHAPTER 5
Implementation

After describing the overall design we will now discuss implementation-related details, problems
and solutions.

5.1 Structural View

First, we will outline the structure of the implementation of the XVSM Micro-Room Mode-
ler and show the most important classes, interfaces and containers.

5.1.1 Package Structure

The package structure is very similar to the component diagram discussed in Chapter 4.2. Table
5.1 shows all packages and what they contain. All packages can be found in the src/main/java
folder and are prefixed with org.xvsm.microroom.modeler.

Package Description
default Contains the main entry point of the application.
config Spring-related classes to configure security and

web settings.
controller Non-REST controllers handling general tasks, e.g.

registration and exception handling.
controller.rest All REST controllers called by AngularJS.
domain Domain objects required by the modeler.
services Contains all service classes containing the core

business logic.
services.module Contains module-related services, e.g. for parsing

or transforming.

60

services.persistence Services that persist data to external systems such
as OpenAM, OpenDJ and MozartSpaces.

services.provisioning Classes containing logic for creating the provi-
sioned executable package (cf. Section 4.4).

services.provisioning.model Plain Old Java Objects (POJO) required for
model-to-business-logic-file transformation.

services.provisioning.model
.json

POJOs for the XVSM Micro-Room Mode-
ler source model in JSON.

services.provisioning.model
.xml

POJOs for the XVSM Micro-Room Frame-
work target business logic file in XML.

util Utility classes, e.g. for validation.

Table 5.1: XVSM Micro-Room Modeler Package Structure

5.1.2 Resource Folder Structure

Beside the Java packages, also the resource folders are of importance. Table 5.2 gives an
overview of their content that can be found in the src/main/resources folder.

Package Description
default Contains configurations for the XVSM Micro-

Room Modeler itself.
distribution Folder used as a basis for each provisioned appli-

cation package (i.e. always included in the appli-
cation package). Includes configuration templates
and the XVSM Micro-Room Framework JAR.

distribution/certificates Certificate files required for secure communica-
tion with the central OpenAM server.

distribution/modules All default module files.
distribution/modules/ui UI skeleton framing all module-specific UIs.
distribution/modules/ui/css Default UI styling.
distribution/modules/ui/js Required JavaScript libraries, including

xmrf.js, allowing to access the REST endpoints
of the XVSM Micro-Room Framework.

static All static web files required by the modeler.
static/css CSS files for the AngularJS client part.
static/images Images for the AngularJS client part.
static/js AngularJS files (controllers and services).
templates Thymeleaf template HTML files for AngularJS.

Table 5.2: XVSM Micro-Room Modeler Resource Folder Structure

61

5.1.3 Classes & Interfaces

After describing where to find which parts of the XVSM Micro-Room Modeler, we will now
outline the most important classes and interfaces and their relation to each other. Figure 5.1
shows them in a class diagram.

Figure 5.1: Class Diagram of the XVSM Micro-Room Modeler

As can be seen, we follow the strict Model View Controller (MVC) layering presented in
Section 4.2. Controllers are called by the view (AngularJS JavaScript). No controller accesses
another controller but they all only access services which are responsible for manipulating the
model. Services do not access controllers but only other services. It also has to be noted that
all of the classes presented represent singletons, thus explaining why there are only one-to-one
connections and no attributes at all.

As we have three different services handling persistence, they are abstracted by the Per-
sistenceService interface. All controllers and services access the HybridService sin-
gleton, which acts as a Facade for the three concrete implementations OpenDJService,
OpenAMService and MozartspacesService to which it delegates, depending on the
method called. E.g. the checkLogin() method will be delegated to the OpenAMService
only whereas the saveUser() method will be forwarded to all three implementations.

The AppCreationService contains all the provisioning logic required and will be de-
scribed in detail in Section 5.4. With the ModuleParserService, XVSM Micro-Room

62

Framework module JAR files can be converted to JSON, so that AngularJS can interpret the
contained micro-rooms and plugins and show them in the modeler UI.

Regarding the controllers, the RegisterController is the only non-REST controller
that simply interprets a form submit and creates the corresponding user. The ShareLink-
Controller allows to create share links and can return the customized application pack-
age for a passed share link, resolving the project from the PersistenceService. The
RunController returns the application package for the current project customized to the user
currently logged in. Finally, the ModuleController provides an interface for AngularJS to
access the parsed module files in JSON format and to upload new module files to the modeler
whereas the ProjectController provides basic Create, Read, Update, Delete (CRUD)
methods for end user projects.

5.1.4 Containers

After presenting the location and the functionality of the most important classes and inter-
faces, we will outline the XVSM containers used by the MozartSpacesService to persist
modeler-specific data (cf. Table 5.3).

Container Name Description Coordinators Entry
User Used to store user information,

e.g. email and name.
Key, Query User object

Project Used to store project informa-
tion, e.g. project name, model,
members and groups.

Key, Query,
Lifo

Project object

Module Used to store custom modules
uploaded by an end user.

Label, Lifo byte[]

ShareLink Used to store correlation data for
created share links.

Key, Lifo String[]

Table 5.3: XVSM Micro-Room Modeler Containers

5.2 XVSM Micro-Room Framework Adjustments

To enable the whole feature set described in Chapter 4 the XVSM Micro-Room Framework has
to be extended by several parts.

5.2.1 New Annotations

Previously, micro-rooms and plugins could be created by simple Java classes implementing the
corresponding interfaces MicroRoom or Plugin provided by the XVSM Micro-Room Fra-
mework. For the XVSM Micro-Room Modeler this is not sufficient, as additional metadata is
required. Therefore, several new annotations have been introduced to provide the metadata.
They are parsed via reflection by the ModuleParserService in the XVSM Micro-Room

63

Modeler. An example of their usage is shown in Listing 5.1 and Listing 5.2.

1 @MicroRoom(name = "Archive", image = "/img/arc.png", ui = "/ui/arc")
2 public class Archive implements MicroRoom {
3 @Property(name = "Maximum Upload Size", defValue = "10MB")
4 private String maxUploadSize;
5
6 @Action(name = "add item", replicate = true, exposed = true)
7 public void store(Item item) {
8 ...
9 }

10
11 ...
12 }

Listing 5.1: Example of new Micro-Room Annotations in the XVSM Micro-Room Framework

1 @Plugin(name = "Recorder", image = "/images/rec.png", ui = "/ui/rec")
2 public class Recorder implements Plugin {
3 @Property(name = "Recorded action", defValue = "My Action")
4 private String targetAction;
5
6 ...
7 }

Listing 5.2: Example of new Plugin Annotations in the XVSM Micro-Room Framework

The new @MicroRoom and @Plugin annotations are placed directly on the class and
specify the name of the module and the path of the image that is shown in the modeler. Also,
they define the location of the UI folder for the module as described later in Section 5.3.3. Please
note that both the image path and the UI folder is resolved as a classpath resource and thus should
be provided under the src/main/resources directory.

The @Property annotation can be specified on a field which then is interpreted as a config-
urable micro-room or plugin property in the XVSM Micro-Room Modeler. It allows to specify
the name and the default value that should be shown in the modeler for the property. Addition-
ally, it has a configurable flag that is true by default. If it is set to false explicitly, the
property will not be configurable in the XVSM Micro-Room Modeler but only be available as
internal property within the micro-room and its UI.

Finally, the @Action annotation has to be placed on each method that should be interpreted
as an action. This annotation will not only be interpreted by the XVSM Micro-Room Mode-
ler, but also by the XVSM Micro-Room Framework. Formerly, the @Replicate annotation
marked all actions that had to be replicated to other peers (cf. [Bin13]). This annotation has
now been set to deprecated and replaced by @Action(replicate = true). Hence, the
replicate flag defines whether the action will be replicated or not and is only relevant for the
XVSM Micro-Room Framework.

On the other hand, the exposed flag indicates whether the action is an exposed or an
internal action. In the modeler, exposed actions are rendered with ports on the micro-room,

64

therefore being connectable to other micro-rooms with connections, whereas internal actions
are not. Internal actions are only defined for UI interaction, i.e. they are callable via the JS
wrapper library. If nothing is specified in the annotation, the action will neither be replicated nor
exposed. Regardless of both flags, the name of the action is shown in the modeler as well as a
possibility to define access restrictions for the action.

5.2.2 Browser Launch on Startup

To improve user experience, the XVSM Micro-Room Framework needs to show the UI gener-
ated by the XVSM Micro-Room Modeler on startup. Therefore, the XVSM Micro-Room Fra-
mework now launches the ui/index.html file in the system’s default browser after starting
up completely. This file is related to the XVSM Micro-Room Framework’s configuration direc-
tory which points to “.” by default but can be altered with a “--configDir” command line
argument.

More about UI generation by the XVSM Micro-Room Modeler will be described in Sections
5.3.3 and 5.4.5.

5.3 Modules

In this section several module-related issues in the XVSM Micro-Room Modeler are described.

5.3.1 Package Format

The package format of module files remains the same as described in [Bin13], i.e. a set of related
modules is packed together into a JAR file. In this file, a new manifest file has to be provided,
similarly to Listing 5.3.

1 name=Default
2 basePackage=org.xvsm.microroom.modules

Listing 5.3: Example Manifest of a Module JAR File

Thereby, the name is used for a root node in the tree view showing all available micro-
rooms and plugins in the XVSM Micro-Room Modeler. Beneath this root node all modules of
the module file will be listed, hence allowing end users to better distinguish between different
module suites. The basePackage will be used in the ModuleParserService to scan for
parsable classes with @MicroRoom or @Plugin annotations.

5.3.2 Parsing

When parsing a module JAR file, the ModuleParserService instantiates a new temporary
class loader for the current user. With this class loader it scans for classes with the annotations,
accesses their values via reflection and stores them in a JSON object. Afterwards, it destroys the
classloader again, as it is of no further use.

65

By this procedure, no problems occur in the XVSM Micro-Room Modeler if two users up-
load custom module JAR files with equal fully qualified class names. If all module classes were
loaded by a single class loader, negative side effects could occur. The class loader would return
the module class uploaded first, regardless if the second class with the same fully qualified name
was different or not.

The JSON result after successfully parsing a module JAR file looks as specified in Listing
5.4. It will be queried by the AngularJS client part which uses the model to render the list of
available modules.

1 {
2 "manifest": {
3 "basePackage": "org.xvsm.microroom.modules",
4 "name": "Default"
5 },
6 "microRooms": [
7 {
8 "image": "iVB ... II=",
9 "ui": "/ui/micro-rooms/archive",

10 "name": "Archive",
11 "class": "org.xvsm.microroom.modules.rooms.Archive",
12 "actions": [
13 {
14 "method": "store",
15 "parameterTypes": [
16 "org.xvsm.microroom.framework.objects.Item"
17],
18 "name": "store item",
19 "exposed": true,
20 "returnType": "void"
21 }
22],
23 "properties": [
24 {
25 "field": "maxUploadSize",
26 "name": "Maximum Upload Size",
27 "fieldType": "java.lang.String",
28 "defValue": "10MB",
29 "configurable": true
30 }
31]
32 }
33],
34 "plugins": [
35 {
36 "image": "iVB ... II=",
37 "ui": "/ui/plugins/recorder",
38 "name": "Recorder",

66

39 "class": "org.xvsm.microroom.modules.plugins.Recorder",
40 "properties": [
41 {
42 "field": "targetAction",
43 "name": "Recorded action to be recorded",
44 "fieldType": "java.lang.String",
45 "defValue": "My Action",
46 "configurable": true
47 }
48]
49 }
50]
51 }

Listing 5.4: JSON Structure of a parsed XVSM Micro-Room Framework Module

As can be seen, the created JSON structure corresponds directly to the methods, fields and
the new XVSM Micro-Room Framework annotations presented in Section 5.2.1. The images
are inlined into the model directly as Base64 encoded byte arrays, since they are not very big
(128x128 pixel). As mentioned in Section 5.2.1 the @Action(replicate) flag is indeed
only required by the XVSM Micro-Room Framework and ignored in the XVSM Micro-Room
Modeler since it is neither parsed nor stored in the JSON model.

5.3.3 Integrated UI

As described in Section 3.1.4, previously the UI for an application based on the XVSM Micro-
Room Framework had to be implemented by IT experts after the business logic files had been
created. Thereby, a special JavaScript wrapper library could be used to call actions of micro-
rooms and plugins.

To solve this problem, from now on UI files have to be added to the module JAR, so that the
XVSM Micro-Room Modeler can use them as building blocks to assemble the end user’s final
UI. Therefore, for each module a folder can be specified in which the UI files are located.

This folder has to consist of at least an index.html file. Within the file, additional re-
sources such as further HTML, CSS or JavaScript files can be included and accessed. The file
should contain the required HTML to allow the end user to properly interact with the micro-
room or plugin it represents. User actions such as clicked buttons or entered form elements can
be sent via the provided JavaScript wrapper library to the XVSM Micro-Room Framework to
call the corresponding actions. Listing 5.5 shows an example of a UI for the Archive micro-
room draft shown in Section 5.2.1.

1 <div>
2 <p>Max Upload Size:</p>
3 <form action="#">
4 <input type="button" id="sb" value="Store" />
5 </form>
6 </div>

67

7
8 <script>
9 $(document).ready(function() {

10 var prop = getProps($mr, "maxUploadSize");
11 $("#mus").html(prop);
12
13 $("#sb").click(function(e) {
14 var item = new Item([{"string":["text", "Hello!"]}]);
15 xmrf.action("Main", $mr.name, "store", msgType.

↪→ASYNC_REQRESP, item, function(retVal){
16 if(!(retVal instanceof Error)){
17 alert("Success!");
18 } else {
19 alert("Error!");
20 }
21 });
22 });
23 });
24 </script>

Listing 5.5: Example UI for a Module of the XVSM Micro-Room Framework

As can be seen, the index.html file contains simple HTML and JavaScript. When the
UI (similar to the one shown in Figure 6.6) is loaded, the maxUploadSize of the micro-
room defined by the end user is read and shown in the UI (cf. line 10 and 11). Therefore
the provided helper function getProps() is called with the $mr variable and the name of
the micro-room or plugin property to resolve (i.e. the name of the field annotated with the
@Property annotation). The $mr variable is set in the UI frame provided by the XVSM
Micro-Room Modeler and points to the currently active micro-room JSON model (cf. Section
5.4).

If the Store button is clicked, the store action of the current micro-room ($mr.name)
is called with a new “Hello!” Item (cf. line 15). The scenario name of the only scenario will
always be “Main” for applications created by the XVSM Micro-Room Modeler. The message
type to interact with the XVSM Micro-Room Framework can be chosen from the four types
specified in [Bin13]:

ONEWAY: Asynchronously write the request into the request container of the XVSM Micro-
Room Framework. Do not wait for a response from the response container.

SYNC_REQRESP: Synchronously write the request into the request container, block until a
response is available in the response container and return it from the function call. Please
note that this will cause the UI to become unresponsive since JavaScript is single-threaded.

ASYNC_REQRESP: Asynchronously write the request into the request container and call a
callback function upon an available response in the response container.

PUBSUB: Asynchronously write the request into the request container and asynchronously
fetch correlated responses from the response container and forward them to the callback

68

function until the subscription gets cancelled. Therefore, a PubSub object is returned
from the function call which allows to cancel the subscription by calling unregister().

A full reference of the provided variables and functions for UI interaction will be given in
Section 6.2.

5.4 Provisioning

A very important part of the implementation is provisioning, i.e. creating a fully executable
application from the model designed by the end user. The required parts of the application pack-
age have already been described in Section 4.4. In this chapter we will describe how the actual
implementation works. Therefore, we will outline the tasks performed by the AppCreation-
Service step-by-step in the following Sections.

5.4.1 Derive from Template

First of all, the static files included in the modeler’s src/main/resources/distribu-
tion folder are extracted to a new temporary directory which will be referred to as “working
directory” from now on. The general folder structure of the distribution folder has already been
described in Section 5.1.2. Figure 5.2 shows the detailed contents of the folder which are used
as a template for the following steps.

In the certificates folder certificates required for Hypertext Transfer Protocol Secure
(HTTPS) communication with the OpenAM server are located. The default-modules.jar
file contains the module implementations including their UIs as described in Section 5.3.

All required CSS files for the default layout specified in the index.html file are located in
the ui/css folder whereas the ui/js folder contains all required JavaScript libraries. Beside
a date formatting library and several jQuery1 libraries, the xmrf.js file is of major importance.
It represents the JavaScript wrapper library providing helper functions for the UI to interact with
the XVSM Micro-Room Framework, which has been used in Section 5.3.3.

The index.html file is the main UI file that will be shown to the end user. It provides
a login dialog that verifies the end user via OpenAM and shows a generic UI with a navigation
panel to the left and a placeholder for the currently navigated micro-room in the main area, fol-
lowed by a placeholder for all plugins of the micro-room (cf. Figure 4.9). With the menu.html
file the generic navigation panel and the logic to navigate between rooms is realized. Internally
this works by injecting the required micro-room and plugin UIs into the index.html file on
predefined positions.

The config.properties file configures the XVSM Micro-Room Framework and spec-
ifies properties like the location of the modules and business logic files, the own peer user name
or the P2P discovery server location. The mozartspaces.xml file configures e.g. the ports
of the internally used XVSM instance. Both configuration files contain template variables that
will be replaced in a later step, e.g. to inject the actual user name or port.

1https://jquery.com/

69

https://jquery.com/

Figure 5.2: Content of the Distribution Folder in the XVSM Micro-Room Modeler

Finally, the xmrf.jar contains the fully executable XVSM Micro-Room Framework that
will be launched via the start.bat file. To demonstrate its simplicity, the full content of the
start.bat file is shown in Listing 5.6.

1 java -jar xmrf.jar

Listing 5.6: Content of start.bat

5.4.2 Adding Custom Modules

After extracting the template to the working directory, all modules that have been uploaded
by the end user via the XVSM Micro-Room Modeler need to be added to the working direc-
tory as well. Therefore, they are read from the Module container (cf. Section 5.1.4) by the
ModuleParserService and written to JAR files into the working-directory’s modules
folder.

70

5.4.3 Parsing the JSON Project

The project created by the end user with the XVSM Micro-Room Modeler, including the de-
signed model, is stored in JSON format in the client part. The JSON format of the project is
shown in Listing 5.7.

1 {
2 "name": "test",
3 "ownerEmail": "alice@test.com",
4 "groups": [
5 {
6 "name": "Editor",
7 "ownerEmail": "alice@test.com",
8 "projectName": "test",
9 "members": [

10 "alice@test.com"
11]
12 }
13],
14 "members": [
15 {
16 "name": "Alice",
17 "email": "alice@test.com",
18 "memberOf": [/* group objects */]
19 }
20],
21 "model": {/* model object */}
22 }

Listing 5.7: JSON Structure of an XVSM Micro-Room Modeler Project Object

As can be seen, the model contains the basic project-specific settings such as project name
(line 2) and project owner (line 3). Also, the created project members (line 14) and groups (line
4) are included, where each group is defined uniquely by the combination of its own name (line
6), the project name (line 8) and the owner of the project in which it is contained (line 7).

Users can be added to the project and assigned to groups at will, but will only be able to use
the created software after registering an account in the XVSM Micro-Room Modeler. Please
note that groups represent discrete entities that can exist on their own and should be usable
anywhere, not only if embedded in the project context. They have a composite unique identifier
as stated to clearly delimit each group from the other. Thus, the ownerEmail field in line 7 is
not redundant to the one in line 3 as it might seem at first glance. Moreover, it is a mandatory
part of the group’s composite unique identifier to keep the group entity usable even if separated
from the project context. Since in plain JSON there is no simple possibility to reference other
objects, group objects containing only the composite key (and no members property) are used
for defining the memberOf property for each member (line 18).

The designed model itself can be found under the model (line 21) property and is of the
form shown in Listing 5.8.

71

1 {
2 "cells": [
3 {
4 "type": "devs.MicroRoom",
5 "inPorts": ["store item"],
6 "outPorts": [],
7 "size": {
8 "width": 200,
9 "height": 200

10 },
11 "ports": {/* graphical representation of ports */},
12 "position": {
13 "x": 535,
14 "y": 80
15 },
16 "angle": 0,
17 "mr": { /* micro-room object */ },
18 "id": "5076f78a-7a50-4730-9e52-973b5c5bcc6f",
19 "z": 1,
20 "attrs": {}
21 },
22 {
23 "type": "link",
24 "source": {
25 "id": "826981a4-d42e-4771-b602-ec4ec9f12c10",
26 "port": "finish document"
27 },
28 "target": {
29 "id": "5076f78a-7a50-4730-9e52-973b5c5bcc6f",
30 "port": "store item"
31 },
32 "router": {
33 "name": "manhattan"
34 },
35 "connector": {
36 "name": "rounded"
37 },
38 "id": "c4c5e1c2-9adc-440e-8a93-393fb2999c03",
39 "z": 6,
40 "attrs": {
41 ".marker-target": {
42 "d": "M 10 0 L 0 5 L 10 10 z"
43 }
44 }
45 } /* more cells here*/
46]
47 }

Listing 5.8: JSON Structure of an XVSM Micro-Room Modeler Model Object

72

The model contains an array of cells, i.e. micro-room wrapper objects (line 4) or links
between them (line 23). A micro-room wrapper object contains all properties required to store
its graphical representation in the model, e.g. its position (line 12), width (line 8), height (line
9), rotation (line 16) and stack order in case elements overlap (line 19). inPorts (line 5) and
outPorts (line 6) are equal to the exposed actions of the micro-room and indicate the ports to
be rendered. More details about their graphical representation is stored in the ports property
(line 11), e.g. shape, color, position, connectability and so on.

A link contains the source (line 24) and target (line 28) room references (note the equal id
values (line 18 and 29) and the source (line 26) and target (line 30) ports (i.e. action names).
Additionally, rendering information about the link itself is specified (line 33), e.g. manhattan
route calculation (cf. [BBL83] for more information), rounded corners (line 36) and the exact
path of the link on the modeler pane (line 42).

So far we have only covered all properties regarding rendering of the model. The configu-
ration itself is stored in a micro-room object in the mr property (line 17) within the micro-room
wrapper object. Its structure is shown in Listing 5.9.

1 {
2 "image": "iVB ... II=",
3 "ui": "/ui/micro-rooms/archive",
4 "name": "My Archive",
5 "class": "org.xvsm.microroom.modules.rooms.Archive",
6 "actions": [
7 {
8 "method": "store",
9 "parameterTypes": [

10 "org.xvsm.microroom.framework.objects.Item"
11],
12 "name": "store item",
13 "exposed": true,
14 "returnType": "void",
15 "permissions": [
16 "$all"
17]
18 }
19],
20 "properties": [
21 {
22 "field": "maxUploadSize",
23 "name": "Maximum Upload Size",
24 "fieldType": "java.lang.String",
25 "defValue": "10MB",
26 "configurable": true,
27 "value": "5MB"
28 }
29],
30 "type": "Archive",

73

31 "roomCount": "$all",
32 "navigableBy": [
33 "role.editor"
34],
35 "plugins": [/* plugin objects */]
36 }

Listing 5.9: JSON Structure of an XVSM Micro-Room Modeler Micro-Room Object

The shown Listing is similar to the micro-room JSON structure created from the module
JAR files (cf. Listing 5.4) but extended by several properties. One of these is the permission
property to define which members or groups should be allowed to execute the corresponding
action (line 15). In contrast to the JSON created from the module JAR, we now also have the
configured values of all custom micro-room properties (line 27). The roomCount property
(line 31) defines the creation strategy of the micro-room (cf. [Bin13]), which can be either “one
for all”, “one per group” or “one per member”. With the navigableBy property (line 32),
the end user configures which groups or members are allowed to enter this room. Unauthorized
users will not see the micro-room in their UI and will not be able to execute any actions in the
XVSM Micro-Room Framework due to XVSM Security constraints.

The plugins of the room are defined in the plugins property (line 35). The structure of a
plugin is specified in Listing 5.10.

1 {
2 "image": "iVB ... II=",
3 "ui": "/ui/plugins/recorder",
4 "name": "Recorder",
5 "class": "org.xvsm.microroom.modules.plugins.Recorder",
6 "properties": [
7 {
8 "field": "targetAction",
9 "name": "Action to be recorded",

10 "fieldType": "java.lang.String",
11 "defValue": "My Action Name",
12 "configurable": true,
13 "value": "store"
14 }
15],
16 "type": "Recorder"
17 }

Listing 5.10: JSON Structure of an XVSM Micro-Room Modeler Plugin Object

As the micro-room JSON structure, also the plugin JSON structure is equal to the plugin
JSON structure created from the module JARs (cf. Listing 5.4). Again, the value property
(line 13) is the relevant new part configured by the end user.

74

When creating the executable application, all the shown JSON objects need to be parsed
into Java objects for further use. Therefore, they are mapped with Jackson2 to the corresponding
POJOs. The created Java objects are equal to the JSON model regarding their structure and
hence will not be discussed in further detail.

5.4.4 Transformation to Business Logic XML File

Now that the whole project is available as Java objects, the business logic XML file required as
input for the XVSM Micro-Room Framework has to be derived. The desired target format of a
business logic file is defined in a XML schema in [Bin13]. An example is shown in Listing 5.11.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <scenario>
3 <rooms>
4 <room name="My Storage" type="org.xvsm.microroom.modules.rooms.

↪→Storage" generateFor="$all" maxUploadSize="5MB">
5 <owner>alice@test.com</owner>
6 <plugins>
7 <plugin type="org.xvsm.microroom.modules.plugins.Recorder">
8 <property key="targetAction" value="store" />
9 </plugin>

10 <plugin type="org.xvsm.microroom.modules.plugins.Replication">
11 <property key="replicateTo" value="role.alice@test.com/test/

↪→editor"/>
12 </plugin>
13 <plugin type="org.xvsm.microroom.modules.plugins.Access">
14 <property key="store" value="role.alice@test.com/test/all" />
15 </plugin>
16 </plugins>
17 </room>
18 <room name="My Mail Room" type="org.xvsm.microroom.modules.rooms.

↪→MailRoom" generateFor="$all" />
19 </rooms>
20 <connections>
21 <connection>
22 <from roomName="My Mail Room" actionName="finish" />
23 <to roomName="My Storage" actionName="store" />
24 </connection>
25 </connections>
26 </scenario>

Listing 5.11: Example of a XVSM Micro-Room Framework Business Logic File

As can be seen, the structure is relatively simple and can be mapped quite easily from the
JSON model (more specifically from the mapped Java model with the same structure) as this has
been designed with the structure of the XML file already in mind.

2https://github.com/FasterXML/jackson

75

https://github.com/FasterXML/jackson

Each of the micro-room objects in JSON is mapped to exactly one room element in XML
(line 4). Its attributes, i.e. name, type, generateFor (roomCount in JSON) and all
custom properties can be extracted from the micro-room JSON object directly (formally more
correctly from the Java object created from the JSON object). Every plugin of the micro-room
in JSON is mapped to one plugin element in XML (line 7). Their properties are mapped to
property elements where field in JSON is key in XML and value in JSON is value in
XML.

Special handling is required for the navigableBy and the action permissions proper-
ties in JSON. navigableBy is mapped to the Replication plugin provided by the XVSM
Micro-Room Framework itself. Its value is set as the value of the replicateTo key in XML
(line 11), thereby defining to which peers the micro-room will be replicated. Internally, this en-
forces a hard access restriction, as the room will not even exist on all other peers, thereby being
completely inaccessible.

The permissions property of each action is defined as a property element within
the Access plugin provided by the XVSM Micro-Room Framework. Thereby, the method
property in JSON is mapped to the key property in XML and the permissions property in
JSON is mapped to the value property in XML (line 14).

Please note that all group-specific values such as $all or role.editor are replaced
by the unique group identifier for the corresponding group during translation. The unique
group identifier consists of the project owner email address, the project name and the group
name within the project. This prevents naming collisions in the central OpenAM server due
to same group names in different projects of different users. So, e.g. $all is mapped to
role.alice@test.com/test/all and role.editor is mapped to role.alice@
test.com/test/editor.

Technically, the mapping of the JSON model to the XML business logic file works with
simple assignments from the JSON POJOs to the XML POJOs, followed by a serialization with
Java Architecture for XML Binding (JAXB)3. The generated business logic XML file is then
written to business-logic/Main.xml within the working directory.

5.4.5 Creating UI Files

After deriving the business logic file, the customized UI files have to be created. Therefore, the
contents of each UI folder of all modules are extracted to a sub folder equal to the fully qualified
class name of the module in the ui directory of the working directory. So e.g. for the Archive
micro-room, a ui/org.xvsm.microroom.modules.rooms.Archive/index.html
file would exist in the working directory after the operation. This step is required since the UI
files need to be accessible directly on the file system by the browser and cannot be accessed
within the JAR files.

As a side note, additional UI templates for a module could be added with ease, e.g. by
defining each of them in a separate sub folder when creating the module. Then they could be
used at this point instead of the mentioned index.html file.

3https://jaxb.java.net

76

https://jaxb.java.net

Customization of the UI according to the user happens on startup via JavaScript. After
login, the UI frame provided by the XVSM Micro-Room Modeler (i.e. the index.html in the
ui directory) will scan the JSON model for all micro-rooms with a navigableBy property
matching our user or his/her roles. The accessible micro-rooms will be shown in the navigation
panel to the left and are stored in a global $navi variable which holds a micro-room name
to micro-room object mapping. Later on, clicking onto one of the micro-room links or calling
navigate() with a micro-room name will use this mapping to view the desired micro-room.
Also, when calling this function, the global $mr variable is set to the navigated micro-room so
that the UI of a micro-room can always rely on having access to its own configuration by simply
using $mr.

5.4.6 Replacing Template Variables

Now that all files are in place in the working directory, all that is left is to replace the template
variables in the files copied from the distribution directory. Those template variables are
in the form of ${variableName} and occur in the index.html, mozartspaces.xml
and config.properties file.

In index.html, by replacing the template variables, the project name and the email of the
user for whom the application is created are set. Also the model itself is injected into a global
$model variable. Hence, each module UI has full access to the whole underlying model.

In the mozartspaces.xml file, the XVSMP port (for direct P2P communication with
other peers) and the HTTP port (for communication between UI and XVSM Micro-Room Fra-
mework) are injected via template variables. To enable end users to launch multiple instances of
created applications at the same time, those ports are randomized upon each creation.

Finally, in the config.properties file the peer name (i.e. user email) is set, which is
used to uniquely identify the current peer.

5.4.7 Creating the Zip File

Now that all files are in place in the working directory, it is packaged into a self-executable ZIP
file that can be downloaded. More about starting up the created application will be described in
Section 6.4.

5.5 Further Problems & Solutions

In this chapter, further interesting problems & pitfalls of the XVSM Micro-Room Modeler are
described, including the implemented solution.

5.5.1 Workflow Navigation

In the created application, the workflow defined in the model is mapped as follows: If from
within the UI a micro-room action is called (e.g. via button click) that is connected to another
action, the XVSM Micro-Room Framework executes the target action with an input parameter
equal to the return value of the source action (cf. [Bin13]).

77

After both actions have completed execution, the return value of the source action is returned
to the calling UI function, including a special redirect parameter. This parameter contains
the micro-room name to which should be redirected and will be removed from the response
by the XVSM Micro-Room Framework JavaScript wrapper library automatically, before it is
passed further on to the calling UI function.

If the library detects such a parameter, it calls the provided navigate() function with the
micro-room name, thereby triggering a UI transition to this room and aborting the calling UI
function’s logic.

If no parameter is present or the user is not allowed to access the target room, the calling
UI function returns normally and receives the return value of the called source action. Hence,
for the calling UI function it appears as if no connection existed at all. Please note that for the
message type ONEWAY (cf. Section 5.3.3) no redirects will be executed due to its design in
which no responses are read at all.

It explicitly has to be stated that while the execution of connected actions are replicated
within the XVSM Micro-Room Framework to other peers as designed, redirects in the UI are not
replicated. First of all, the redirect parameter is stripped off by the ReplicationMan-
ager in the XVSM Micro-Room Framework, thereby the second peer will not know anything
about the UI transition. However, even if such a parameter was present, the UI of the second
peer will not be waiting for the response of the replicated action, so no automatic redirect could
ever happen.

5.5.2 Group Assignment of Non-existent Users

When a user is assigned to a group in the XVSM Micro-Room Modeler, two actions are per-
formed in OpenDJ: First, the memberof attribute of the user’s people LDAP entry is ex-
tended by e.g. cn=alice@test.com/test/editor. Second, a new uniqueMember
attribute of the groups LDAP entry is added containing e.g. uid=alice@test.com,
ou=people, dc=opensso, dc=java, dc=net. This causes no problems as long as
all users already have a corresponding people LDAP entry.

Now, what happens if e.g. Alice defines a project that contains Bob, but Bob is not registered
yet, hence having no people LDAP entry? In this case, nothing is changed in LDAP but the
group membership is only stored in the embedded MozartSpaces instance of the XVSM Micro-
Room Modeler. If Bob registers his account later, on registration MozartSpaces is queried for
all occurrences of Bob in all groups of all projects of all users. For each of these groups, the
two LDAP operations described are performed, thereby creating a consistent state, required for
XVSM Security to correctly process Bob’s permissions in all projects.

5.5.3 Auto-Saving

As the XVSM Micro-Room Modeler is a web application, it could happen that a user refreshes
the page or closes the browser tab unintentionally. Therefore, auto-save functionality should be
provided to avoid the thereby caused loss of all unsaved changes of the currently edited project.

This is realized by storing the whole JSON object of the currently active project as a string
in the browser’s session storage every five seconds. When loading the page, it is first checked

78

whether a project is stored in the session storage. If so, it will be restored automatically, thus
avoiding data loss.

5.5.4 Undo & Redo

To increase the usability of the XVSM Micro-Room Modeler, undo and redo functionality have
to be implemented.

Therefore, on each user event in the model (i.e. adding, moving or deleting elements such as
micro-rooms, plugins and connections or changing properties of micro-rooms and plugins) an
undo event is recorded. Technically, simply a snapshot of the current model object (cf. Listing
5.8) is pushed onto a global undo stack before the action is executed.

Now, when the user clicks on the “undo” button, the current model object is pushed onto
a global redo stack. Then, the last element is popped from the undo stack and the model is
replaced with the previous version. As the model object does not only contain all properties but
also the graphical representation, the user will see his/her last change being reverted in either the
properties pane or the graph.

The end user can then redo the version undone or further undo his/her changes until the
redo or undo stack is empty correspondingly. If the user performs an action beside undoing or
redoing, the redo stack will be emptied.

5.5.5 Smart Links

Further usability improvements are enabled by providing so-called “smart links”. Such links
can only be connected to target ports suiting to the source port. In terminology of a micro-room
model, a source action can only be connected to a target action that takes a parameter of the
type of the source actions return value. Otherwise, a connection will not be possible within the
XVSM Micro-Room Modeler, which is a valuable feature, as such connections would lead to
runtime errors in the created application.

Figure 5.3 shows how available target ports are highlighted in the implementation. The
usability is even increased as the links are “magnetic” to such ports, automatically connecting to
them when the link is dragged near them.

Figure 5.3: A Smart Link being dragged in the XVSM Micro-Room Modeler

79

Internally, JointJS4 is used for modeling the diagram. It allows to realize this feature by
using the validateConnection function that can be specified for the whole graph. In it,
one can decide for the currently dragged link which ports should be connectable and which not
without a lot of effort. More information about this and similar code examples can be found
in [14]. Regarding the arrangement of links, built-in manhattan routing of JointJS is used, which
is described in more detail in [15].

5.5.6 Link Sharing

Finally, when sharing a link, it has to be ensured that the accessing user is allowed to download
an executable package for the corresponding project. Therefore, the ShareLinkController
checks whether the user is a member of the project before it generates the executable application
package. If the user is not a member, he/she will see a corresponding error message.

4http://www.jointjs.com

80

http://www.jointjs.com

CHAPTER 6
User Guide

After describing the approach, the architecture and various implementation details of the XVSM
Micro-Room Modeler, we will now discuss how it is used. Therefore, the following chapter will
cover how the modeler itself can be deployed, how IT experts can extend it, how end users can
use it to create their applications and finally, how these applications can be deployed and used.

6.1 Deploying the XVSM Micro-Room Modeler

Deploying the XVSM Micro-Room Modeler itself is relatively easy since it is an executable fat-
JAR created via Spring Boot. As only prerequisite a JRE 8 has to be installed on the machine.
Then, the JAR can be executed by calling the command shown in Listing 6.1.

1 java -jar XVSM-Micro-Room-Modeler-1.0-SNAPSHOT
↪→--openAMUrl=http://your.server.com:8080/openam2
↪→--openAMUserId=amAdmin --openAMPassword=pwdAmAdmin
↪→--openDJUrl=your.server.com --openDJPort=1389
↪→--openDJUsername="Directory Manager" --openDJPassword=pwdOpenDj

Listing 6.1: Deployment of the XVSM Micro-Room Modeler

The additional parameters are required to configure the OpenAM and OpenDJ servers to use.
These servers are used by the modeler to handle login and to persist users, groups and project
members (cf. Section 5.1.3). Please note that it is completely sufficient to deploy the modeler
only once on a server that can be reached by all end users. The end user him-/herself does not
need to deploy the modeler.

6.2 Extending the XVSM Micro-Room Modeler

The XVSM Micro-Room Modeler can be extended with functionality (i.e. new micro-rooms
and plugins) at runtime by uploading new module files in the modeler UI. Such module files can

81

be created by any IT expert as follows:
First, the logic of the micro-rooms and plugins has to be specified by implementing the

corresponding Java interfaces provided by the XVSM Micro-Room Framework as described in
Section 5.2.1. Thereby, each micro-room and plugin is represented by a single Java file, con-
taining simple annotations that configure which fields should be properties and which methods
should be actions. Internally, it is recommended (but not required) to use XVSM containers for
storing data as the XVSM Micro-Room Framework can then replicate it across peers automati-
cally. Also XVSM aspects could be used such as described in Section 3.1.1.

Then, UI files for the micro-rooms and plugins need to be created, such as stated in Section
5.3.3. It is sufficient to provide a single HTML file for each micro-room and plugin that contains
JavaScript calls to interact with the actions specified in the corresponding module. Therefore, the
XVSM Micro-Room Framework JavaScript wrapper library can be used since it will be included
in each created application by the modeler automatically. More information about this library
and how actions are called can be found in Section 5.3.3 and [Bin13].

Beside the interaction capabilities provided by the XVSM Micro-Room Framework wrapper
library, the XVSM Micro-Room Modeler itself also adds functionality that can be used within
each UI file. First of all, the modeler injects several global variables that can be used (cf. table
6.1).

Global variable Description
$email Email of the logged in user (i.e. the one that runs the

created application).
$ownerEmail Email of the project creator.
$projectName Name of the project.
$model The complete JSON model created by the project owner,

containing all information such as described in Listing
5.8.

$navi A map containing micro-room name to micro-room ob-
ject mappings.

$isRedirect Is true if the current page initialization has been trig-
gered by a redirect parameter coming from the
XVSM Micro-Room Framework such as described in
Section 5.5.1.

$mr Contains the current (i.e. the one related to the UI)
micro-room object such as defined in Listing 5.9.

Table 6.1: Global JavaScript Variables Provided by the XVSM Micro-Room Modeler

Furthermore, the XVSM Micro-Room Modeler provides some helper functions that can be
of use within the UI files (cf. Table 6.2).

Finally, the module manifest has to be added as shown in Section 5.3.1. It includes the name
of the module collection and its unique namespace. After everything is in place, the files simply
need to be packaged as a JAR file, which then can be distributed to the end users. Therefore, an

82

Helper functions Description
navigate(roomName) Replaces the current micro-room UI with the UI of an-

other micro-room, i.e. navigates to another micro-room
UI.

getPlugin(pluginName) Retrieves a plugin (cf. Listing 5.10) by name.
getProps(mr, propName) Extracts the property value of a given micro-room.

Table 6.2: JavaScript Helper Functions Provided by the XVSM Micro-Room Modeler

own platform might be created in the future (cf. Section 8.5). Each end user can then upload the
module files he/she requires to the XVSM Micro-Room Modeler directly via its UI.

6.3 Using the XVSM Micro-Room Modeler

As the XVSM Micro-Room Modeler has been designed with usability in mind, it is relatively
easy to use. After registering an account and logging in, a user can create a new project that
requires not more than a name (cf. Figure 6.1).

Figure 6.1: Creating a new Project in the XVSM Micro-Room Modeler

Once the project name has been entered, the user is directly forwarded to the groups and
members management dialog. With this dialog, all members and groups can be created that
should collaborate in the workflow to be designed. Based on these groups and members, room
and action permissions can be configured later on.

As can be seen in Figure 6.2, members can be defined on the left while groups are defined
on the upper right. When selecting a group (green background color), members can be assigned
to the group via drag and drop or by checking the checkbox of the desired members and clicking
the “>” button. Members of a group are then shown in the lower right area.

83

Figure 6.2: Configuring Groups and Members in the XVSM Micro-Room Modeler

Now, the model itself can be created. Figure 6.3 shows all features of the XVSM Micro-
Room Modeler at a glance.

Figure 6.3: Creating a Model in the XVSM Micro-Room Modeler

84

In the menu at the top, projects can be created, loaded and saved (from/to the XVSM Mi-
cro-Room Modeler backend, i.e. XVSM containers). Every action can be un- and redone (cf.
Section 5.5.4) and the groups and members dialog previously described can be opened again.

On the left, all available micro-rooms and plugins are shown in a tree view, where the root
node is equal to the name of the module file in its manifest file (cf. Section 5.3.1). By
clicking on the Add custom module button, a custom module JAR file can be uploaded,
immediately extending the module tree with the new micro-rooms and plugins (cf. Hello
World micro-room and plugin).

From the module tree, micro-rooms can be dragged anywhere into the modeling area while
plugins can be dragged onto any micro-room placed in the modeling area. Each of the actions
of a micro-room can be connected to a suitable other one (cf. smart links described in Section
5.5.5) by dragging a connection from the source port of the room to the target port of the other
room. Also, micro-rooms and connections can be moved around anywhere in the model.

If a micro-room is selected via a single click, the properties pane appears in the right of the
modeler. It allows to configure all generic micro-room settings, i.e. name, number of rooms,
permission to enter and permission to access a specific action. Beside that, all room-specific
properties can be set via text fields (e.g. Maximum Upload Size) and plugins that are as-
signed to the micro-room are also configured with this pane (e.g. Recorder plugin).

When the model is created as desired, it can be saved and shared with other project members.
Therefore, a special invitation link can be created by clicking on the Share button (cf. Figure
6.4).

Figure 6.4: Creating an Invitation Link in the XVSM Micro-Room Modeler

Please note that the link will always be created relatively to the modeler’s URI and is only
localhost:8080 in the screenshot because it has been deployed locally in this case. This
link can be sent to all members. After opening it, they will need to log in and can then download

85

their customized application, based on the designed model (cf. Section 4.3). If they are not
members of the project, they will see an error message (cf. Section 5.5.6). The user’s own
customized application can be downloaded and executed by clicking on the Run button.

6.4 Using applications created by the XVSM Micro-Room Modeler

After downloading the customized application, it can be executed by double clicking it. Then, it
will extract its contents and launch the start.bat file, thereby starting up the XVSM Micro-
Room Framework. As soon as the XVSM Micro-Room Framework has fully initialized, it will
open the start page (i.e. ui/index.html) in the system’s default browser (cf. Section 5.2.2).

On the start page, the user has to log in with the same credentials as in the XVSM Micro-
Room Modeler (cf. Figure 6.5). The username cannot be altered in the shown input field as this
application is customized for exactly this user (i.e. alice@test.com). Please also note that
the UI files are indeed accessed directly from the file system without any web server in place.

Figure 6.5: Logging into the Created Application

In the background, an authentication token is retrieved from OpenAM that is used to au-
thenticate all action calls against the XVSM Security constraints of the XVSM Micro-Room
Framework. After logging in, the first micro-room modeled and accessible by the user is shown
(cf. Figure 6.6). On the left, a list of all accessible micro-rooms can be seen and navigated to at
any time (cf. Section 5.5.1).

In the shown micro-room Document Archive one can see that several actions are pos-
sible. The Upload and Download buttons call internal actions (i.e. they are not exposed
as described in Section 5.2.1), allowing users to upload or download files into/from the archive.
Therefore, these actions are not connectible in the modeler, as can be seen in Figure 6.3.

The defined customized property Maximum Upload Size is used when uploading files
and is shown as information below the action buttons. Please also note the Show History

86

Figure 6.6: Using a Micro-Room in the Created Application

button on the bottom. It is not located in the actual UI area of the micro-room but beneath it
in the plugin UI area (cf. Section 5.4.1). Here, all UIs of plugins are shown that have been
assigned to the micro-room. In the example, the Recorder plugin records all calls of the
remove and take item action, i.e. Remove button clicks. These recordings can then be
shown by clicking on the Show History button provided by the plugin UI.

The Select and Remove buttons are directly related to the connected actions defined
in the model (cf. Figure 6.3). Hence, if the Select button is clicked, the select item
action of the Document Archive is called with the selected item. Within the XVSM Micro-
Room Framework, this item will be forwarded to the show document action of the Writing
Place and a redirect parameter will be returned to the UI, navigating it to the Writing
Place. On load of the writing place, the current item to be shown will be loaded from the
XVSM Micro-Room Framework, being exactly the item from the Document Archive, set
just moments before.

From a user’s perspective, none of these background processes will be visible. For him/her,
it appears as if he/she simply takes the item from one room into the other. When switching to an-
other room without following the flow, the currently selected item will remain in the Writing
Place until he/she navigates to it again or replaces it by selecting another document from the
Document Archive.

A very important fact is that all micro-room UIs are designed in a way so that they can

87

be used completely standalone, i.e. without any connections at all. E.g. the Archive can
be used to up- and download files, thereby allowing file exchange with other members due to
the automatic replication in the background. A Typing Room can be used to create HTML
together with a WYSIWYG editor and the Mail Room allows to create and send mails to
arbitrary persons. With the Decision Room, one can import an item and a second person
can decide what to do with it, while a Conference Room allows to chat with all members in
realtime.

All of this functionality can be used standalone but at the same time could be connected to
actions of other micro-rooms. E.g. the items from other rooms can be stored into the Archive
or the Archive can provide items for other rooms itself. Items can be sent to predefined
users directly by passing them to the Mail Room and edited if they are passed to the Typing
Room. A simple form of flow control can be achieved by sending items to a Decision Room
where a user decides about the further destination of the item.

To sum things up, an application created with the XVSM Micro-Room Modeler can be used
in various ways to achieve very different goals. End users can realize simple collaborative tasks
like chatting or file exchange and at the same time create workflow-like scenarios containing
multiple steps that can be performed by different users.

88

CHAPTER 7
Evaluation

In this chapter, the evaluation of our work is performed. Therefore, first the modeler itself
is evaluated on a theoretical basis. Then the general approach for the usability evaluation is
outlined, followed by the results of the evaluation.

7.1 Theoretical Evaluation of the XVSM Micro-Room Modeler

First of all, we will answer research question 1: “How can a suitable modeling tool for the
XVSM Micro-Room Framework be designed and implemented?”

In Chapters 4-6, we made several decisions to create a suitable modeler for the XVSM Mi-
cro-Room Framework. To evaluate whether they were expedient or not, the requirements for a
decent modeling technique specified in Section 2.3 will be taken as a basis. In the following,
each of the requirements will be evaluated regarding its fulfillment by the final implementation
of XVSM Micro-Room Modeler.

Automation Support: Since the XVSM Micro-Room Modeler now allows end users to create
a model just like any other modeling tool instead of writing XML files, the first drawback
of the XVSM Micro-Room Framework, failing this criterion, is effectively fixed. The
created model (i.e. business logic file) can be executed with the XVSM Micro-Room
Framework automatically.

Human Task Support: The second drawback of the XVSM Micro-Room Framework is over-
come by providing UIs with the module files, which has been enabled by our work (cf.
Section 5.3.3). Hence, IT experts deliver corresponding UIs with their micro-room im-
plementations, thus allowing end users to interact with their created workflow via these
UIs.

Distributed Execution: This criterion is inherently fulfilled as the XVSM Micro-Room Fra-
mework is based on XVSM and heavily focuses on shared P2P workflows where multiple
users all run their own instance of the created application.

89

Multiple Domains: To allow arbitrary domains to be modeled, end users can upload custom
module files to the XVSM Micro-Room Modeler, thus extending its feature set (cf. Sec-
tion 6.3). The problem of end users themselves not being able to create such module
files could be solved by IT experts creating various module suites that are published on a
platform in the Internet, where end users could choose those they need (cf. Section 8.5).

Tool Simplicity: The simplicity of the tool correlates directly with the simplicity of the used
micro-room concept itself as well as the reduced feature set of the XVSM Micro-Room
Framework if compared to e.g. the Peer Model, UML or BPMN. Additionally, great effort
is taken to keep the modeler as simple as possible. The fulfillment of this requirement can
be directly concluded by looking at the results of research question 4 (cf. Section 7.3.3).

Comprehensible Abstraction: To ensure that the abstraction of the modeling tool is easily
understandable, we use the micro-room concept which has been designed for exactly this
case in the first place. The justification of this assumption is done by answering research
question 2 (cf. Section 7.3.1).

Easy Deployment: Finally, to enable end users to deploy and execute their applications as sim-
ple as possible, our modeling tool creates the whole executable application via a single
click. The end user is then prompted to download it and can start it via double-click. Ad-
ditionally the XVSM Micro-Room Modeler provides a possibility to “share” the model,
i.e. send a link to a friend who can then download his/her customized executable applica-
tion to join the specified collaborative workflow. Details about these features have been
described in Sections 4.4 and 5.4.

As can be seen, the XVSM Micro-Room Modeler (XMRM) fulfills all of the requirements
initially defined for creating a decent modeler targeting end users. Similar to Figure 2.20, Figure
7.1 shows the comparison of all evaluated modeling techniques, but this time including the
XVSM Micro-Room Modeler.

Figure 7.1: Comparison of Modeling Techniques including the XVSM Micro-Room Modeler

90

Besides these main requirements, also other factors are of importance, such as performance
and security.

7.1.1 Performance

Concerning the performance of the XVSM Micro-Room Modeler, no evaluation has been made.
However, since it is a standard Spring Boot web application that is accessed via REST, other
available performance benchmarks can be used as a reference. In [16] the author tested various
microservice frameworks by simulating 200 users making 1000 requests each, both writing and
reading. He comes to the conclusion that Spring Boot with an embedded Tomcat (i.e. exactly
the technology used for the XVSM Micro-Room Modeler) is capable of serving 814 requests
per second, which is only 8.3% less than the best result of the evaluation.

When looking at the XVSM Micro-Room Modeler, this means that 814 REST calls from
end users could be made simultaneously per second. It has to be noted that such calls are
only made for specific actions such as creating, saving and loading a project, adding custom
modules, creating the executable application and creating the invitation link. Hence, it becomes
obvious that 814 of such action calls per second would require a lot of simultaneously logged in
users. Considering that a user spends most of the time by actually creating the model and not
by executing one of the mentioned actions, it is estimated that an ordinary end user performs
on average 1 of those actions per 20 seconds. Thereby, the XVSM Micro-Room Modeler could
serve more than 16,000 simultaneously logged in users, which is far more than enough.

Regarding the created applications, performance is directly related to the performance of
the underlying XVSM Micro-Room Framework. In [Bin13] the performance of the XVSM Mi-
cro-Room Framework has already been evaluated. Thereby, it has been found that the XVSM
Micro-Room Framework can handle up to 100 simultaneous outgoing replication commands
per second without any delay. E.g. a user of an executable application created by the XVSM
Micro-Room Modeler could click 5 times on a button performing an action in the XVSM Mi-
cro-Room Framework that is replicated to 20 other users currently online without any delay. If
more simultaneous outgoing replication commands are necessary because more users are online
at the same time or more actions are executed simultaneously, the actions will be replicated with
a delay.

This limitation is caused by poor performance of the underlying Paxos Commit protocol used
for the distributed transactions across all peers. However, as in our work we are dealing with
simple collaborative workflows between only few simultaneously online friends, this limitation
is not of big concern. It is true that “the limit of 100 transaction participants per second is
sufficient for common small- to mid-scale scenarios” [Bin13].

7.1.2 Security

The security of the XVSM Micro-Room Modeler is ensured by Spring Security1. It restricts
access to all pages except the login and the registration page to verified OpenAM users. A
model is only accessible by the creator of the model, hence no harmful manipulations of other

1https://projects.spring.io/spring-security/

91

https://projects.spring.io/spring-security/

users are possible. The invitation link usable by others only allows to download the executable
application. Thereby, it is ensured that only users that are part of the model are allowed to
download it (cf. Section 5.5.6).

Concerning the the created applications, their security is tightly depending on the security
concept of the underlying XVSM Micro-Room Framework, such as described in [Bin13]. Ba-
sically, interaction between created applications of several users happens via replicated actions.
Every time a user triggers an action (that should be replicated), it is replicated to all other users
currently online. Users who start their application later on will receive the full history of repli-
cated actions they missed upon startup.

A user could try to manipulate these actions, e.g. by sending fake replicated actions to other
users in which he/she calls an action that he/she has no permissions to according to the model.
To prevent this, all replicated actions received are validated against the central OpenAM server
via XVSM Security. If a replicated action is not permitted, it will not get executed on the remote
user’s application.

Another possibility would be that the user changes the model or specific JAR files of the
created application before startup to e.g. allow him-/herself access to all micro-rooms. The user
would then have access to his local set of micro-rooms but will not see any data since he/she
does not receive any replicated actions. The reason for this is that the replication targets are
derived from the model on the sending side, where the model is still unmanipulated.

7.2 Usability Evaluation Approach

To answer research questions 2-5, a usability evaluation has been performed. Details about the
specific approach are outlined in the following.

At the first glance, regarding evaluation of BPM languages and tools, a lot of related work
exists. In [SC14] Shitkova analyzed and compared 62 papers published between 2005 and 2013
dealing with usability evaluation of BPM languages and tools. She comes to the conclusion that
“the number of thorough usability studies in BPM is still quite small” and that “mostly these
solid studies are conducted for BPM languages, but not for BPM tools”.

Nevertheless, we try to evaluate both our language and our tool to answer the research ques-
tions stated in Section 1.2. Our approach is based on [ESJK11], [SRDS00] and [SK15]. The
basic procedure relies on the approach of usability evaluation of BPM tools (cf. Figure 7.2)
presented in [ESJK11].

In contrast to the approach we skip the heuristic evaluation and the improvement of identified
shortcomings. These will be resolved in the future (cf. Section 8.2). Also, we do not iterate the
process several times but only perform it once. So our approach consists of a usability testing,
followed by questionnaires and the evaluation of the results.

As in [SRDS00] we perform the usability testing with two products of similar functionality,
i.e. the XVSM Micro-Room Modeler and Signavio Process Editor (cf. Section 2.1.2) and give
each of the users a short theoretical introduction about each tool. Like Scheller and Kühn in
[SK15] we capture each user session on video, hence allowing detailed analysis of usability
problems afterwards. E.g. the time a user required for modeling a task can be measured, as well
as at which parts of the UI they required help or at which tasks they completely gave up.

92

Figure 7.2: Approach of Usability Evaluation of Business Process Modeling Tools [ESJK11]

According to [Jor08] several evaluation methods are available during usability testing. These
are think-aloud protocol, video analysis, input protocols, eye tracking, logfile recording, inter-
views and observation. Beside video analysis, we also use think-aloud protocol (i.e. end users
describing what they think when performing a task), observation and partial interviews (several
questions as specified in Section 7.2.1).

Regarding the number of users to test, Eiffinger et al. state that at least 5-6 users should
perform the usability testing [ESJK11]. Lewis calculated via binomial distributions that five to
eight users are enough to discover 85% of all usability problems available [Lew06]. Nielsen
developed a mathematical model from various user evaluations, describing the percentage of
available problems found, depending on the number of users [NL93]. Curves of this model can
be seen in Figure 7.3, where λ represents the probability of finding an average usability problem
by an average user in a single evaluation.

Figure 7.3: Proportion of Usability Problems Found Depending on the Number of Users [NL93]

93

According to Nielsen, “the typical value of λ is 31%, averaged across a large number of
projects we studied” [17], hence, 5 test users would lead to about 85% of all problems found.

Based on the literature provided we use 10 test users for our usability testing. According
to Figure 7.3 this leads to approximately 95% of all usability problems found when assuming λ
being 31%.

In the following sections, more about the setup of the usability testing and the questionnaire
used will be outlined.

7.2.1 Usability Testing Set-Up

The usability testing is performed as follows: First, the user is shortly informed about the capa-
bilities of the XVSM Micro-Room Modeler, i.e. modeling collaborative applications by coarse-
grained building blocks and execute them by a single click. Then, the user is questioned for
which use cases he/she might need such a tool, before even seeing the XVSM Micro-Room
Modeler for the first time.

After that, the user models the following Tasks (T) with the basic set of micro-rooms pro-
vided in the XVSM Micro-Room Modeler (cf. Section 4.3) and explains everything he/she
thinks:

• T 1: Chat with your friends Alice and Bob in a global chat room.

• T 2: Chat with your friends Alice and Bob in a private chat room. Chat with your co-
workers Carol and Dave in another private chat room.

• T 3: Exchange files with Alice.

• T 4: Create documents together and exchange them with your friends Alice and Bob.

• T 5: Compose and send mails to a mailing list (list@mail.com) cooperatively with Alice
and Bob.

• T 6: Log who sent mails to the mailing list.

• T 7: Editors (Alice and you) compose mails together and store them while publishers
(Bob and you) can choose and send them to the mailing list.

• T 8: Publishers can reject mails to the editors.

While executing the tasks, the user is recorded on video with the integrated camera of the
testing notebook using Free2X Webcam Recorder2. The user’s screen is recorded at the same
time with Free2X Screen Video Recorder3. If the user cannot solve a task he/she can either
ask for help or abort the task. Both of these actions are recorded, as well as the task execution
time. Also, special attention is on detecting where users have difficulties with the current terms,
explanations and abstractions.

2http://www.free2x.com/webcam-recorder/
3http://www.free2x.com/screen-video-recorder/

94

http://www.free2x.com/webcam-recorder/
http://www.free2x.com/screen-video-recorder/

After all tasks have been completed, the user has to fill out a questionnaire concerning usabil-
ity of the XVSM Micro-Room Modeler (cf. Section 7.2.2). Then, he/she is asked the question
from the beginning again, i.e. for which use cases he/she might need such a tool. An execution
of the created models would not benefit to answer any of the research questions of this work
and hence is not performed. Also, the overall procedure already takes about 2 to 2.5 hours and
should not be extended unnecessarily.

Now, the same tasks defined above have to be modeled with the Signavio Process Editor, a
BPMN modeling tool. Thereby, large abstractions are allowed, e.g. users may define coarse-
grained activities like “create document” or “send mail” without specifying any further detailed
sub-processes. Again, the execution time for each task is recorded, as well as when the user
asks for help or aborts a task. Afterwards, the same questionnaire has to be filled out as with the
XVSM Micro-Room Modeler.

It might be that working with the first modeling tool might influence the way subjects try to
solve tasks with the second modeling tool, i.e. they might try to solve them in the same way. To
avoid biasing the results into our favor, 5 subjects use the XVSM Micro-Room Modeler first and
the other 5 subjects use the Signavio Process Editor first. Also, those 5 subjects do not receive
any information about the XVSM Micro-Room Modeler or the micro-room concept until they
finished modeling all tasks with the Signavio Process Editor and answered the corresponding
questionnaire.

Finally, the following set of Evaluation Questions (EQ) are asked as they are valuable for
our research questions:

• EQ 1: Did you have problems to understand the micro-room concept?

• EQ 2: Did you find it more or less familiar than the second approach?

• EQ 3: For which problems would you use the first tool, for which the second?

• EQ 4: Which tool did you find easier to use and why?

The whole process has been transformed to an evaluation sheet that is used by the evaluator
during the usability testing.

7.2.2 Questionnaire

The questionnaire used is based on the official ISO 9241/10 standard [Deu95], defining princi-
ples of designing UI dialogs. Currently, there are two main questionnaires available that rely on
these principles: ISONORM [18] and IsoMetrics [Ged99].

In [Fig09], Figl evaluates both questionnaires via user testing. The results of the evaluation
state that IsoMetrics is slightly better when it comes to expressiveness of the users’ thoughts
as well as total time required to answer all questions. Hamborg compares IsoMetrics to other
user evaluation methods such as think-aloud protocol, video recording or heuristic evaluation
in [Ham02]. He comes to the conclusion that with IsoMetrics, 3 to 5 times more notes will
be recorded regarding usability problems than with the other approaches. Thus, he states that

95

IsoMetrics is the most effective method for usability testing. Based on these findings, we choose
IsoMetrics in our work.

IsoMetrics contains a total of 75 items (i.e. statements about the evaluated software) dis-
tributed among the seven dialog principles defined in [Deu95]:

1. Suitability for the task: The user can realize his/her task effectively and efficiently. Only
those parts of the software are shown that are required to perform the task.

2. Self descriptiveness: Every step is understandable and intuitive. In case of errors, imme-
diate feedback and support is provided.

3. Controllability: The user is in charge of the start, direction and speed of the actions he/she
performs.

4. Conformity with user expectations: The dialog is consistent and takes the user’s knowl-
edge into account. General conventions are considered.

5. Error tolerance: In case of errors, no or only minimal additional effort is required to reach
the former goal.

6. Suitability for individualisation: The system allows customization regarding the task as
well as the individual preferences and capabilities of the user.

7. Suitability for learning: The effort for learning is as low as possible. The user is accom-
panied through all stages of knowledge until fully understanding the dialog.

There are two version of IsoMetrics, i.e. IsoMetricsL and IsoMetricsS . IsoMetricsS is the
short version of the questionnaire consisting of only 8 pages. Thereby, each item can be an-
swered by selecting the level of agreement from 1 (predominantly disagree) to 5 (predominantly
agree). Additionally, it is possible to select “No opinion”. Figure 7.4 shows an example.

Figure 7.4: Example Item in IsoMetricsS [GHW98]

IsoMetricsL on the other hand is the long version, having a total of 78 pages. Beside the
answering possibilities of IsoMetricsS , users can also specify the importance of the item for
themselves from 1 (unimportant) to 5 (important). Furthermore, an example justifying the an-
swer should be given for each item. An example item can be seen in Figure 7.5.

96

Figure 7.5: Example Item in IsoMetricsL [GHW98]

Due to the large number of pages of IsoMetricsL, we use IsoMetricsS . However, we adjust it
slightly, also allowing users to specify the importance of each item by writing the corresponding
number from 1 (unimportant) to 5 (important) to the right of the item. The full questionnaire
can be seen in the appendix of this work.

7.3 Usability Evaluation Results

In this section we will present our findings based on the usability evaluation approach described
in Section 7.2 with a target group of 10 subjects. Out of these subjects, 4 were male and 6 were
female. All of them were end users without IT knowledge and their age varied from 25 to 40.

The recorded data was accumulated via Microsoft Excel to perform data analysis and to
generate graphs. In the following we will use the data to answer each of the remaining four
research questions independently.

7.3.1 RQ 2: Abstraction of the Micro-Room Concept

Research question 2 is answered in this section: ‘Is the abstraction used by the micro-room
concept more comprehensible than those of common process modeling languages? ”

To achieve this, several aspects are considered. In the questionnaire, the items shown in
Table 7.1 target the underlying concept (i.e. the micro-room concept or BPMN) of the tool
under evaluation.

97

Index Item
S.12 The terms and concepts used in the software are clear and unambiguous.
L.1 I needed a long time to learn how to use the software.
L.4 So far I have not had any problems in learning the rules for communicating with the

software.
L.5 I was able to use the software right from the beginning by myself, without having

to ask coworkers for help.
L.6 I feel encouraged by the software to try out new system functions by trial and error.

Table 7.1: IsoMetricsS Items Related to Abstraction of the Underlying Concept

When accumulating the average score for each of these items, it can be seen in Figure 7.6
that the XVSM Micro-Room Modeler achieved with 20.1 points twice as much as the Signavio
Process Editor with 10 points. Both could have reached a maximum of 25 points (5 items with
a maximum of 5 points per item). Please note that the points of item L.1 have been inverted
since it is negatively formulated. More about this can be read in Section 7.3.3.

Figure 7.6: Accumulated Average Score for S.12, L.1, L.4, L.5, L.6

Besides that, the comparison of the time to complete all tasks allows to draw conclusions
about the comprehensibility of the abstraction used. It can be argued that a more comprehensible
abstraction reduces the time to perform the tasks, since the subject requires less thinking, has to
ask fewer questions and can avoid time-consuming trial and error.

Before looking at the details, please note that special attention has been paid to not bias
the results regarding time taken. Therefore, every subject got about one minute time to make
proper progress before the evaluator interrupted and gave a hint. This also holds for subjects
that asked for help immediately. They ought to at least try to find the UI elements they needed
instead of letting the evaluator explain everything. Therefore, the individual frustration levels of
the test subjects could be neutralized and have been converted into more objective “one minute
penalties” instead.

Figure 7.7 shows the total average time taken for a test subject to finish all tasks as specified
in minutes.

98

Figure 7.7: Average Time for all Tasks in Minutes

It can be seen that the test subjects needed about a third longer to model all tasks in the Sig-
navio Process Editor when compared to the XVSM Micro-Room Modeler. The difference can
be further evaluated when looking at the concrete durations for modeling each task separately.
These numbers are shown in Figure 7.8.

Figure 7.8: Average Time / Task

All tasks except task 6 and task 8 could be completed about one to two minutes faster with
the XVSM Micro-Room Modeler when compared to the Signavio Process Editor. This can be
explained when looking at how these tasks are modeled with the XVSM Micro-Room Modeler.

Task 6 introduces the Plugin concept, which has not been explained by the evaluator be-
forehand. Hence, test subjects were struggling and trying to solve the task with micro-rooms
before either discovering the Recorder Plugin themselves (6 subjects) or asking the evalu-
ator (4 subjects). It can be stated, that the Plugin concept is not as easy to understand for end
users as the micro-rooms and needs special explanation to not confuse them.

Task 8 requires to use a new room (i.e. Decision Room) which takes the test subjects
not significantly longer than in the previous tasks, hence indicating no direct problem in the
underlying concept. The equal time taken in both tools can be explained more likely by looking
at the Signavio Process Editor part. Here, subjects simply added a new “reject mail to editors”

99

task or modeled the decision itself with a “decide about mail” task having two outgoing edges,
hence creating very informal models.

Tasks 3 and 4 took significantly shorter to model with the XVSM Micro-Room Modeler,
indicating that the abstraction was especially easy to understand for these tasks. When looking
at the tasks, task 3 introduces the Archive, hence end users seem to correctly interpret what
they can do in this room at first glance, i.e. store and take out files.

Task 4 introduces the possibility to connect micro-rooms with each other, thereby creating
workflows. Here, all of the subjects wanted to connect both rooms required (i.e. Typing Room
and Archive), thereby indicating no problem with the micro-room concept itself. However,
half of them failed to do so because of the implementation of the modeler and needed help by
the evaluator, pointing them to try dragging a port (i.e. an action) of a micro-room instead of
e.g. trying to drop the micro-rooms on each other to connect them (3 subjects). This explains
the slightly increased time taken in contrast to the other tasks. Nevertheless, task 4 could be
modeled still a lot faster with the XVSM Micro-Room Modeler than with the Signavio Process
Editor. Hence, it can be concluded that the concept of connecting rooms itself is understandable
by end users.

Finally, we use EQ 1 and EQ 2 as well to answer this research question. When looking at
EQ 1, seven of ten subjects answered that they had no problems at all to understand the micro-
room concept. One subject stated that she understood the concept except for plugins, another
one stated that he did not understand it completely until seeing and using the XVSM Micro-
Room Modeler. One subject did not understand the concept, stating that it was too abstract for
her to use. Regarding EQ 2, nine subjects answered that the micro-room concept was more
familiar, while one subject preferred Signavio Process Editor’s underlying BPMN.

After looking at all results, it can be clearly stated that the micro-room concept indeed uses
a more comprehensible abstraction than common process modeling languages (represented by
BPMN). First, the average score of all items regarding the underlying concept of the modeling
tool is higher for the XVSM Micro-Room Modeler than for Signavio Process Editor. Second,
tasks could be modeled significantly faster with the XVSM Micro-Room Modeler, thereby in-
dicating that the underlying concept was easier to understand. Third, when looking at the tasks
individually, subjects demonstrated that they understood what they were doing. Finally, nine of
ten subjects state that they understood the concept (EQ 1) and that they find it more familiar
than the the other approach (EQ 2).

7.3.2 RQ 3: Use Cases suiting the Micro-Room Concept

This section will answer research question 3: “In which domains or use cases is the micro-room
concept better or worse than its competitors?”

It can be stated that the micro-room concept directly targets end users whereas BPMN tar-
gets business users. So, from a theoretical point of view, we can deduce that the micro-room
concept has been designed to model simple, collaborative interaction scenarios that can continue
endlessly, while BPMN is predestinated for more complex processes with a defined start and end
point.

100

To verify whether these assumptions hold, all subjects were asked for which use cases they
would use a tool like the XVSM Micro-Room Modeler. The answers and their naming count can
be seen in Figure 7.9. Interestingly, three of the top five use cases mentioned (i.e. Chatting,
Document Reviews and File Sharing) were already thought of by the author of the
work and can already be modeled with the XVSM Micro-Room Modeler. Many of the other use
cases have already been thought of in Section 4.3.

Figure 7.9: Use Cases for the Micro-Room Concept and their Naming Count

What they all have in common is that they cover simple collaborative tasks that end users
face regularly in their daily life. When looking at the answers of EQ 3, this finding becomes
prevalent. Figure 7.10 shows the answers of all ten subjects for which problems they would use
which tool.

101

Figure 7.10: Preferred Usage per Tool (EQ 3)

The results clearly state the suitability of the XVSM Micro-Room Modeler and its under-
lying micro-room concept for simple collaborative tasks, such as the use cases listed in Figure
7.9. Half of the subjects could not imagine any problem where they would use Signavio Process
Editor and its underlying BPMN. Three of them could think of more complex tasks that would
be difficult to model with the micro-room concept due to its limitations (e.g. only one-to-one
connections between micro-room actions). Two subjects concluded that this kind of software
might only be useful to specify software for software developers, as the evaluator initially told
them this was the main purpose of Signavio Process Editor.

Summarizing the findings concerning research question 3, the micro-room concept is bet-
ter suited for modeling simple collaborative tasks out of the life of ordinary end users. Such
tasks range from chatting, file exchange, document reviews, shared shopping lists, appointment
finding and event planning over polls, photo sharing, project organization to travel planning,
debt management and housework organization. When it comes to more complex tasks, such as
e.g. logistics workflows or highly technical specifications of software for software developers,
clearly other modeling approaches such as BPMN are better suited than the micro-room concept.

7.3.3 RQ 4: Usability of the XVSM Micro-Room Modeler

Now, research question 4 is discussed in further detail: “Is the usability of the new modeling
tool more intuitive in contrast to other modeling tools?”

To compare the usability of both tools under test, first of all, the IsoMetrics questionnaire
is evaluated as specified by the authors in [GHW98]. Therefore, all items answered with “no
opinion” are set to median (i.e. 3 points) and all answers to negatively formulated items are
transformed by r′i = 6− ri points. Afterwards, all points are summarized across all subjects for
each tool. The final scores are shown in Figure 7.11.

As can be seen, the XVSM Micro-Room Modeler clearly outperforms the Signavio Process
Editor concerning overall usability by more than 25%. When looking at the seven dialog princi-

102

Figure 7.11: Total IsoMetrics Score per Tool

ples of the IsoMetrics questionnaire separately, we can further evaluate this result. Figure 7.12
shows the average points per dialog principle across all users per tool. A maximum of 5 points
could be reached for each principle, meaning that all subjects answered all items of the principle
with 5 points for the tool. Additionally, the average score per item can be seen, i.e. 3.64 for the
XVSM Micro-Room Modeler and 2.89 for Signavio Process Editor.

Figure 7.12: Average IsoMetrics Score per Principle

The XVSM Micro-Room Modeler outperforms the Signavio Process Editor in every single
dialog principle. Most important is the almost twice as big score in Learnability, which
indicates that the XVSM Micro-Room Modeler has a very flat learning curve and can be under-
stood by end users without a lot of documentation, i.e. it is “intuitive”. Task Suitability
directly shows that the XVSM Micro-Room Modeler is better suited for the given tasks (i.e. end

103

user related simple collaborative tasks) than the Signavio Process Editor (cf. research question
2).

Comparing the scores of Individualisation, the score of the XVSM Micro-Room
Modeler is significantly lower than in all other principles. There are two reasons for this: First,
the XVSM Micro-Room Modeler has been implemented as a prototype, hence no individual-
isation capabilities such as customizable menus, hotkeys or panels have been added, as these
clearly do not belong to the core functionality. Second, as stated in Section 4.1.1, the tool to
be implemented should be as simple as possible. Therefore, individualisation logic would be
counterproductive as it adds more elements to the UI that might confuse the user.

Besides looking at the scores of IsoMetrics, also other metrics can be compared. Of all
80 tasks performed by the ten subjects per tool, zero have been aborted when modeling with
the XVSM Micro-Room Modeler while three have been aborted when modeling with the Sig-
navio Process Editor. Additionally, the number of questions asked during the usability testings is
informative. In Figure 7.13 the overall number of questions asked by all ten subjects are shown.

Figure 7.13: Total Number of Questions Asked

It becomes apparent that the XVSM Micro-Room Modeler is far easier to use than the Sig-
navio Process Editor when looking at the number of questions asked. This also corresponds to
the high Learnability score of the XVSM Micro-Room Modeler shown in Figure 7.12.

Finally, also EQ 4 can be used to answer this research question. Here, nine of ten subjects
stated that they would use the XVSM Micro-Room Modeler rather than the Signavio Process Ed-
itor while one subject found the Signavio Process Editor less abstract. This is comprehensible,
because the subject was allowed to model the BPMN models in a very simple informal way. If
formally correct BPMN models were demanded, none of the subjects would have been able to
solve the tasks with the Signavio Process Editor.

Covering up the results for research question 4, the XVSM Micro-Room Modeler clearly
outperforms the Signavio Process Editor concerning usability. Not only does it reach 25% more
points in the overall IsoMetrics score, but also does it achieve a higher score in each of the seven
dialog principles separately. When looking at the number of aborted tasks (0 vs. 3) and the
number of questions asked (54 vs. 105), the findings are further acknowledged. Finally, asking
the test subjects directly about their opinion, nine of ten users state that the XVSM Micro-Room
Modeler is more usable than the Signavio Process Editor.

104

7.3.4 RQ 5: Key Factors of a Modeling Tool for End Users

The last research question to be answered is as follows: “If so, what are the key factors for the
intuitiveness of our modeling tool, or a modeling tool for end users in general? “

In contrast to research question 1, which has been argued on a theoretically defined set of
requirements, the aim of this question is to find key factors empirically. Regarding the first part
of the question, we can use EQ 4 to answer it. Figure 7.14 shows the main reasons stated by
the test subjects why they would choose the XVSM Micro-Room Modeler over the Signavio
Process Editor for modeling their tasks.

Figure 7.14: Reasons to use the XVSM Micro-Room Modeler and their Naming Count

Based on these answers, we can derive the key factors for the intuitiveness of our modeling
tool and put them into relation to each other. Due to the micro-room concept, the modeling
tool is more task-specific and allows an easier naming than the general-purpose BPMN. Also, it
enables the modeler to be reduced to its essentials, which itself is mandatory for a clear UI.

The micro-room concept only allows one connection type in contrast to Signavio Process
Editor, where five different connection types exist. This benefits the UI to be reduced to its
essentials and also allows to provide smart links. All of the mentioned key factors contribute
to the XVSM Micro-Room Modeler being self-explaining, which itself is the reason for the
modeler’s intuitiveness. Figure 7.15 summarizes the described relations between the key factors
for the XVSM Micro-Room Modeler’s intuitiveness.

Thereby, the term “intuitive” has been explained by a subject as follows: “I knew what I had
to do and what each element was meant to do.” This ultimately can be reached by providing a
self-explaining UI, which itself is depending on several other factors that all basically source in
the micro-room concept. One subject put it in a nutshell by stating: “I can imagine what I am
doing a lot easier with rooms and people.”

Considering the second part of the research question, we use the IsoMetrics questionnaire
to identify the most important usability items for the subjects. As described in Section 7.2.2 we

105

Figure 7.15: Relations between Key Factors for the XVSM Micro-Room Modeler’s Intuitiveness

extended the IsoMetricsS questionnaire by allowing users to specify the importance of each item
from 1 (unimportant) to 5 (important). The ten most important items are shown in Table 7.2 as
well as their average importance across all subjects.

Index Item Average Points
A.4 The functions implemented in the software support me in per-

forming my work.
4.7

A.3 The software lets me completely perform entire work routines. 4.3
A.10 The software is well suited to the requirements of my work. 4.2
F.3 If I make a mistake while completing a form, I can easily restore

everything to its previous state.
4.2

F.7 No system errors (e.g. crashes) occur when I work with the
software.

4.2

L.1 I needed a long time to learn how to use the software. 4.2
S.12 The terms and concepts used in the software are clear and un-

ambiguous.
4.1

F.2 Even if I make a mistake, the information(e.g. data, text, and
graphics) which I have just entered is not lost.

4.1

F.8 If I make a mistake while performing a task, I can easily undo
the last operation.

4.1

F.9 I have never made an entry that caused a software error (e.g. a
system/program crash or an undefined dialog state).

4.1

Table 7.2: Most Important IsoMetricsS Items Across all Test Subjects

Effinger et al. state that “the ISO criteria self-descriptiveness, suitability for learning and er-
ror tolerance are highly relevant” for novice users of business process modeling tools [ESJK11].
According to our findings, this holds true except for some very fundamental requirements to the
software (i.e. items A.4, A.3 and A.10). These items form the newly defined key factor

106

“Required Functionality”. All other items come from one of the three Sections stated above.
Items F.3 and F.8 can be combined to the key factor “Undoability”, while F.7, F.2 and

F.9 reassemble to “System Stability”. L.1 is transformed to “Easy Learnability” and S.12 to
“Understandability”.

Finally, Table 7.3 summarizes our derived key factors for an intuitive modeling tool targeting
end users.

Key Factor Description
Required Functionality The modeler contains all functionality needed by end users to

achieve their goal, but not more.
Undoability Every action in the modeler can be undone easily.
System Stability No error causes data loss or the modeler to crash.
Easy Learnability Handling of the modeler can be learned easily.
Understandability The terms and concepts used by the modeler are clear.

Table 7.3: Key Factors for an Intuitive Modeling Tool Targeting End Users

The performance of the XVSM Micro-Room Modeler and the Signavio Process Editor in
these key factors can be evaluated by summarizing the points of the underlying items of the
questionnaire and dividing them by the number of items. Figure 7.16 shows the results.

Figure 7.16: Evaluated Tool Performance in each of the Key Factors

It can be seen that the XVSM Micro-Room Modeler reaches a decent score of more than
3.5 points in each of the key factors whereas the Signavio Process Editor does so only for key
factors “Undoability” and “System Stability”. Regarding the key factors “Required Function-
ality” and “Understandability” it cannot compete with the XVSM Micro-Room Modeler and
trails by more than 1.5 points in these categories respectively. Special focus has to be set on
“Easy Learnability”, where the XVSM Micro-Room Modeler outperforms the Signavio Process

107

Editor significantly by scoring 4.7 of a maximum of 5 points whereas the Signavio Process Edi-
tor only reaches 1.8 points.

Concluding research question 5, it has been shown that the micro-room concept is the basis
for the intuitiveness of the developed modeling tool. Besides the key factors identified for the
XVSM Micro-Room Modeler, a list of five more key factors has been derived from the impor-
tance ranking of items across all test subjects. These key factors should be considered when
developing a modeling tool targeting end users.

108

CHAPTER 8
Future Work

In this chapter, remaining problems are discussed and it is outlined how they could be solved in
the future.

8.1 Realization with the Peer Model

After evaluating the XVSM Micro-Room Modeler in Chapter 7 it becomes apparent that the
micro-room concept is very useful for creating a tool with which end users can create their
own applications. We realized the modeler by using the XVSM Micro-Room Framework in our
work, but since it uses similar concepts like the Peer Model (cf. Section 3.1.4), the modeler
could also be based on the Peer Model directly.

To achieve this, two approaches exist: First, one could re-implement the whole modeler
from scratch with the Peer Model and also build all modules with the Peer Model directly. This
causes more effort but completely removes the dependency on the XVSM Micro-Room Frame-
work. Fortunately, a lot of groundwork for this approach has already be done in [Csu14] where
the author developed a Peer Model monitoring tool. Based on this work, a full featured Peer
Model modeling tool might be implemented that can then be simplified in a second version to
the feature set required by the micro-room concept.

In the second approach, custom modules could be created with the Peer Model directly and
used within the existing XVSM Micro-Room Modeler. This is possible, since the XVSM Micro-
Room Framework does not limit how micro-rooms and plugins work internally, as long as they
implement the given Java interfaces (cf. Section 5.2.1). Hence, a micro-room could internally
start up a whole Peer Model runtime environment without problems.

This approach could also be simplified by creating a general-purpose peer micro-room in
the first place that represents a peer of the Peer Model, containing all required structures, e.g.
PIC and POC. It could then read all input from an incoming micro-room action and put it into
its internal PIC. The peer model that should be executed internally could be configured via room
properties (e.g. a file name). After executing the internal workflow, the results from the internal
POC could be forwarded to the outgoing micro-room action.

109

Thereby, multiple such peer micro-rooms could be connected via their micro-room actions
to create the corresponding workflow. It has to be noted that this approach also has several
drawbacks. First, the XVSM Micro-Room Modeler limits the Peer Model to the use of only
one to one connections, i.e. strict sequential flows. Also, the UI would have to be customized
via room properties such as the Peer Model to use (e.g. by specifying a HTML file), which is
tedious. Finally, a general-purpose peer micro-room is not intuitive for end users and hence
could only be used for testing purposes.

8.2 UI Improvements to the XVSM Micro-Room Modeler

Based on the usability tests described in Chapter 7, some usability problems of the XVSM Mi-
cro-Room Modeler became apparent that should be improved in the future. First of all, the
groups and members dialog should be simplified as most users struggled to correctly assign
persons to groups. Therefore, the list with all members of a group should be placed in the
middle between persons (left) and groups (right) instead of beneath the groups list. Also, there
will be a clear information such as “This group has currently no members.” if the selected group
has no members.

Some users thought that they were already included in each group and did not create a person
entry for themselves. This has been designed intentionally for the case that a person wants to
model an application for others only, not including him-/herself. As this is only a corner case
and end users want to create models for themselves most of the time, an entry for the modeling
user him-/herself should be added automatically upon project creation.

In the usability testing, end users tried to guess which module has which functionality only
from its name and icon. Surprisingly, they did succeed most of the time but if more modules are
added this might not be the case anymore. Therefore, each module should include a description
that will be shown as tooltip, giving clear information about the modules capabilities in one
or two sentences. Technically, the description can be added to the MicroRoom and Plugin
annotations as additional field (cf. Section 5.2.1).

Furthermore, the values of the action permission dropdown fields could adjust automatically
to the selected members allowed to enter the room. So, instead of still showing “All persons”, a
action permission dropdown field should be set to “Alice, Bob” automatically, if those two have
been selected to be the only persons allowed to enter the room.

Finally, a short step-by-step guided tour should be started upon first login in the XVSM
Micro-Room Modeler. It should quickly explain all elements by short descriptions and has to
take less than one minute to complete. Thereby, problems with understanding plugins or how to
connect micro-rooms with each other can be circumvented. It could be implemented with the
help of given libraries such as Intro.js1.

1http://introjs.com

110

http://introjs.com

8.3 Port Forwarding

A problem that has already been stated in [Bin13] and still remains is that the XVSM peer
instances connect directly to each other via XVSMP. Hence, if end users operate behind routers
or firewalls (which they will certainly do), they need to configure a port forwarding to allow
incoming traffic to their local XVSM peer instance.

This is a big drawback right now, effectively preventing the use of the XVSM Micro-Room
Modeler on a larger scale. To overcome the problem, Universal Plug and Play (UPnP) support
could be added to XVSM. Thereby, it could automatically configure port forwarding for the
required XVSMP connection in the end user’s router without him/her even knowing it. Fortu-
nately, several Java libraries exist that provide UPnP support (e.g. Cling2). Hence, only little
effort is required to implement this feature.

8.4 Download JRE if not Installed

Right now, if the end user does not have a JRE installed, the created application will not start up.
To overcome this problem, the XVSM Micro-Room Framework JAR file that is packaged in the
executable ZIP archive could be transformed, e.g. by using packr3. Packr allows to pack the JAR
and a simplified JRE, containing only those classes required by the JAR, into an executable file.
Another approach would be to use tools like launch4j4 to create an executable wrapper around
the XVSM Micro-Room Framework JAR file. This wrapper searches for the specified JRE on
the system and if none is found it allows to easily install it upon execution.

8.5 Publish Platform for Custom Modules

As stated in Section 7.1, a platform in the Internet should be set up where IT experts can upload
module files, i.e. suites targeting specific use cases. End users could then download those
module files they need and use them in the XVSM Micro-Room Modeler. To further improve
usability, the publish platform could be directly integrated into the XVSM Micro-Room Mo-
deler, such that end users could choose from all module suites directly instead of down- and
uploading the files.

8.6 UI Templates

Referencing Section 4.3, support for different UI templates for each micro-room could be pro-
vided. A UI template defines how the micro-room should be rendered in the created executable
application. By allowing different UIs per micro-room type, their flexibility can be increased
even further, e.g. by rendering a Conference Room in form of a live chat with one UI tem-
plate or in form of a message board with another UI template.

2https://github.com/4thline/cling
3https://github.com/libgdx/packr
4http://launch4j.sourceforge.net

111

https://github.com/4thline/cling
https://github.com/libgdx/packr
http://launch4j.sourceforge.net

This feature can be realized as stated in Section 5.4.5. Inside the micro-room’s UI folder, a
special sub folder (e.g. templates) has to be defined. Per UI template a sub folder named
according to the UI template has to be provided within this folder. Within each of these folders
an index.html file has to be specified that implements the UI. The available sub folders in the
templates folder (i.e. all available UI templates), can be parsed by the ParserService
when the module is loaded and rendered by the XVSM Micro-Room Modeler in the micro-
room’s property pane (e.g. in form of a dropdown element).

For example, a Conference Room uses the ui/org.xvsm.microroom.modules.
rooms.Conference Room/index.html file as its default template. Additionally, the file
ui/org.xvsm.microroom.modules.rooms.Conference Room/templates/
Message Board/index.html could be provided as the “Message Board” UI template.

8.7 Further Modules

Finally, additional modules should be implemented to further increase the XVSM Micro-Room
Modeler’s feature set. Based on the use cases stated by the test subjects in Section 7.3.2 and those
already outlined in Section 5.3, modules can be created and uploaded to the publish platform.

112

CHAPTER 9
Conclusion

The main goal of this thesis was to create a modeling tool with which end users can create col-
laborative applications by themselves. Therefore, related work has been researched for classical
process modeling techniques and process modeling tools targeting end users. It has been found
that currently no other tool exists for the specified requirements.

Hence, the XVSM Micro-Room Modeler has been designed and implemented, laying a spe-
cial focus on providing good usability and hiding complex tasks like module support and provi-
sioning. To achieve this, it makes use of the XVSM Micro-Room Framework and its underlying
micro-room concept. Thereby, end users can create simple collaborative workflows by creating
rooms that provide a predefined set of actions. Those rooms can be connected with each other,
extended by plugins and configured regarding security. After creating the model, it can be trans-
formed into a fully executable P2P application with a single click. Friends can be invited to
download their customized application to collaborate according to the modeled workflow.

Evaluation has shown that the XVSM Micro-Room Framework fulfills all of the require-
ments for a decent modeling technique targeting end users. Additionally, it and its dynamically
generated applications provide a proper level of performance and security. Another finding was
that the micro-room concept indeed uses an abstraction that is more comprehensible than those
of classical modeling languages. Also, it has been justified that the micro-room concept is best
suited for modeling simple collaborative tasks whereas it is not suited to create complex work-
flows or formal software specifications. It has been found that the usability of the developed
XVSM Micro-Room Framework outperforms those of competing modeling tools significantly.
Additionally, the key factors for the intuitiveness of our modeling tool have been derived which
basically all are achieved by using the micro-room concept. Finally, the key factors of a mod-
eling tool for end users in general have been outlined, i.e. “Required Functionality”, “Undoa-
bility”, “System Stability”, “Easy Learnability” and “Understandability”. It has been found that
the XVSM Micro-Room Modeler accomplishes all of these factors satisfyingly.

113

References

[AAA+07] Alexandre Alves, Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron
Goland, Neelakantan Kartha, Sterling, Dieter König, Vinkesh Mehta, Satish
Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu. Web Services Business
Process Execution Language Version 2.0, 2007.

[ASCP13] Pedro Antunes, David Simíes, Luis Carriço, and José A. Pino. An End-user Ap-
proach to Business Process Modeling. J. Netw. Comput. Appl., 36(6):1466–1479,
November 2013.

[Bar10] Martin-Stefan Barisits. Design and Implementation of the next Generation XVSM
Framework – Operations, Coordination and Transactions. Master’s thesis, Vienna
University of Technology, 2010.

[BBL83] Brenda S. Baker, Sandeep N. Bhatt, and Frank Thomson Leighton. An Approxi-
mation Algorithm for Manhattan Routing. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, STOC ’83, pages 477–486, New York,
NY, USA, 1983. ACM.

[BEMP07] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring Business Pro-
cesses with Queries. In Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB ’07, pages 603–614. VLDB Endowment, 2007.

[Bin13] Johann Binder. Introducing the XVSM Micro-Room Framework – Creating a Pri-
vacy Preserving Peer-to-Peer Online Social Network in a Declarative Way. Mas-
ter’s thesis, Vienna University of Technology, 2013.

[Brü13] Andreas Brückl. Relaxed non-blocking Distributed Transactions for the eXtensible
Virtual Shared Memory. Master’s thesis, Vienna University of Technology, 2013.

[BS07] Steen Brahe and Kjeld Schmidt. The Story of a Working Workflow Management
System. In Proceedings of the 2007 International ACM Conference on Supporting
Group Work, GROUP ’07, pages 249–258, New York, NY, USA, 2007. ACM.

[CDJ+13] Stefan Craß, Tobias Dönz, Gerson Joskowicz, Eva Kühn, and Alexander Marek.
Securing a Space-Based Service Architecture with Coordination-Driven Access
Control. Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications (JoWUA), 4(1):76–97, 2013.

114

[CDJK12] Stefan Craß, Tobias Dönz, Gerson Joskowicz, and Eva Kühn. A Coordination-
Driven Authorization Framework for Space Containers. In Proceedings of the
2012 Seventh International Conference on Availability, Reliability and Security,
ARES ’12, pages 133–142, Washington, DC, USA, 2012.

[CJK15] Stefan Craß, Gerson Joskowicz, and Eva Kühn. A Decentralized Access Control
Model for Dynamic Collaboration of Autonomous Peers. In Security and Privacy
in Communication Networks - 11th International Conference, SecureComm 2015,
Dallas, TX, USA, October 26-29, 2015, Revised Selected Papers, pages 519–537,
2015.

[CK12] Stefan Craß and Eva Kühn. A Coordination-based Access Control Model for
Space-based Computing. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC ’12, pages 1560–1562, New York, NY, USA, 2012.

[Cra10] Stefan Craß. A Formal Model of the Extensible Virtual Shared Memory (XVSM)
and its Implementation in Haskell – Design and Specification. Master’s thesis,
Vienna University of Technology, 2010.

[Csu14] Maximilian Alexander Csuk. Developing an Interactive, Visual Monitoring Soft-
ware for the Peer Model Approach. Master’s thesis, Vienna University of Tech-
nology, 2014.

[DDDG10] Gero Decker, Remco Dijkman, Marlon Dumas, and Luciano García-Bañuelos. The
Business Process Modeling Notation. In Arthur H. M. Hofstede, Wil M. P. Aalst,
Michael Adams, and Nick Russell, editors, Modern Business Process Automation,
chapter 13, pages 347–368. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[Deu95] Deutsches Institut für Normung. DIN En ISO 9241 Ergonomische Anforderungen
für Bürotätigkeiten mit Bildschirmgeräten Teil 10: Grundsätze der Dialoggestal-
tung (ISO 9241-10), Deutsche Fassung, 1995.

[Dön11] Tobias Dönz. Design and Implementation of the next Generation XVSM Frame-
work – Runtime, Protocol and API. Master’s thesis, Vienna University of Tech-
nology, 2011.

[DP06] Brian Dobing and Jeffrey Parsons. How UML is Used. Commun. ACM, 49(5):109–
113, May 2006.

[ESJK11] Philip Effinger, Sandra Seiz, Nicole Jogsch, and Eberhard Karls. Evaluating single
features in usability tests for business process modeling tools. In In Proceedings
of the Informatics 2011 conference (Berlin, Germany), 2011.

[Fig09] Kathrin Figl. Usability-Fragebögen im Vergleich. In Tagungsband Mensch &
Computer, Berlin, September 2009. Oldenbourg.

115

[FRS14] Agnès Front, Dominique Rieu, and Marco Santórum. A Participative End-User
Modeling Approach for Business Process Requirements. In BMMDS/EMMSAD,
pages 33–47, 2014.

[Ged99] G. Gediga. The IsoMetrics usability inventory: an operationalization of ISO 9241-
10 supporting summative and formative evaluation of software systems. Behaviour
and Information Technology, 18(3):151–164, May 1999.

[Gel85] David Gelernter. Generative Communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

[GHW98] Günther Gediga, KC Hamborg, and Heinz Willumeit. The IsoMetrics Manual
(Osnabrücker Schriftenreihe Software-Ergonomie Nr. 7). Osnabrück: Universität
Osnabrück, Fachbereich Humanwissenschaften, pages 73–84, 1998.

[GS06] Ralf Gitzel and Michael Schwind. Experiences with Hierarchy-based Code Gener-
ation in the J2EE Context. In Proceedings of the 4th International Symposium on
Principles and Practice of Programming in Java, PPPJ ’06, pages 216–223, New
York, NY, USA, 2006. ACM.

[Ham02] Kai-Christoph Hamborg. Gestaltungsunterstützende Evaluation von Software: Zur
Effektivität und Effizienz des IsoMetricsL Verfahrens. In Mensch & Computer
2002: Vom interaktiven Werkzeug zu kooperativen Arbeits- und Lernwelten, Ham-
burg, Germany, September 2-5, 2002, pages 303–312, 2002.

[HBR00] William Harrison, Charles Barton, and Mukund Raghavachari. Mapping UML
Designs to Java. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’00, pages 178–187, New York, NY, USA, 2000. ACM.

[ICK+10] Dave Ings, Luc Clement, Dieter König, Vinkesh Mehta, Ralf Mueller, Ravi Ran-
gaswamy, Michael Rowley, and Ivana Trickovic. WS-BPEL Extension for People
(BPEL4People) Specification Version 1.1. OASIS Committee Specification, Au-
gust 2010.

[Iso01] Sadahiro Isoda. Object-oriented real-world modeling revisited. Journal of Systems
and Software, 59(2):153–162, 2001.

[Jor08] Philipp Jordan. Selection of an appropriate Usability Evaluation Method. Project.
Department of Design Engineering, University of Stuttgart, Stuttgart, Germany,
2008.

[KCJ+13] Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas
Scheller. Peer-Based Programming Model for Coordination Patterns. In Rocco
De Nicola and Christine Julien, editors, 15th International Conference on Coordi-
nation Models and Languages (COORDINATION), held as part of the 8th Inter-
national Federated Conference on Distributed Computing Techniques (DisCoTec),

116

volume 7890 of Lecture Notes in Computer Science, pages 121–135, Florence,
Italy, June 3-5 2013. Springer.

[KCS15] Eva Kühn, Stefan Craß, and Gerald Schermann. Extending a Peer-Based Coordi-
nation Model with Composable Design Patterns. 2015 23rd Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (PDP),
00, 2015.

[Küh16] Eva Kühn. Reusable Coordination Components: Reliable Development of Coop-
erative Information Systems. International Journal of Cooperative Information
Systems (Elsevier), 25(4), 2016.

[Lew06] James R. Lewis. Sample Sizes for Usability Tests: Mostly Math, Not Magic.
interactions, 13(6):29–33, November 2006.

[LV10] Jean-Philippe Lombardi and Jürgen Vogel. Wizard-based Process Modeling for
Business Users. In Proceedings of the International Conference on Advanced Vi-
sual Interfaces, AVI ’10, pages 406–406, New York, NY, USA, 2010. ACM.

[MAKS12] Jürgen Münch, Ove Armbrust, Martin Kowalczyk, and Martin Soto. Software
Process Definition and Management. Springer Publishing Company, Incorporated,
2012.

[MGWD09] Milan Milanovic, Dragan Gasevic, Gerd Wagner, and Vladan Devedzic. Modeling
service orchestrations with a rule-enhanced business process language. In Patrick
Martin, Anatol W. Kark, and Darlene A. Stewart, editors, CASCON, pages 70–85.
ACM, 2009.

[MKS10] Richard Mordinyi, Eva Kühn, and Alexander Schatten. Space-Based Architectures
As Abstraction Layer for Distributed Business Applications. In Proceedings of
the 2010 International Conference on Complex, Intelligent and Software Intensive
Systems, CISIS ’10, pages 47–53, Washington, DC, USA, 2010.

[MSMP11] Sonja Meyer, Klaus Sperner, Carsten Magerkurth, and Jacques Pasquier. Towards
Modeling Real-world Aware Business Processes. In Proceedings of the Second
International Workshop on Web of Things, WoT ’11, pages 8:1–8:6, New York,
NY, USA, 2011. ACM.

[MTJ+10] Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Éric Lefebvre, Lamia Elabed, and
Ghizlane El Boussaidi. Business Process Modeling Languages: Sorting Through
the Alphabet Soup. ACM Comput. Surv., 43(1):4:1–4:56, 2010.

[NL93] Jakob Nielsen and Thomas K. Landauer. A Mathematical Model of the Finding of
Usability Problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems, CHI ’93, pages 206–213, New York,
NY, USA, 1993. ACM.

117

[ODA+09] Chun Ouyang, Marlon Dumas, Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofst-
ede, and Jan Mendling. From Business Process Models to Process-oriented Soft-
ware Systems. ACM Trans. Softw. Eng. Methodol., 19(1):2:1–2:37, 2009.

[OMG13] OMG. Business Process Model and Notation (BPMN) Version 2.0.2, December
2013.

[OMG15] OMG. Unified Modeling Language (UML), Version 2.5.0, March 2015.

[Pro11] Christian Proinger. Design and Implementation of a REST-Interface for
Mozartspaces. Bachelor Thesis, Vienna University of Technology, 2011.

[RLRA12] Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Egidio Astesiano. Business
Process Modelling: Five Styles and a Method to Choose the Most Suitable One. In
Proceedings of the Second Edition of the International Workshop on Experiences
and Empirical Studies in Software Modelling, EESSMod ’12, pages 8:1–8:6, New
York, NY, USA, 2012. ACM.

[SC14] Maria Shitkova and Leonardo Campus. On the usability of business process mod-
elling tools-a review and future research directions. In EMISA, pages 117–130,
2014.

[SK15] Thomas Scheller and Eva Kühn. Automated Measurement of API Usability. Inf.
Softw. Technol., 61(C):145–162, May 2015.

[SRDS00] Alistair G. Sutcliffe, Michele Ryan, Ann Doubleday, and Mark V. Springett. Model
mismatch analysis: Towards a deeper explanation of users’ usability problems.
Behaviour & IT, 19(1):43–55, 2000.

[SS07] Martin Soukup and Jiri Soukup. The Popularity Cycle of Graphical Tools, UML,
and Libraries of Associations. In Companion to the 22Nd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems and Applications Companion,
OOPSLA ’07, pages 753–756, New York, NY, USA, 2007. ACM.

[SSFM08] Todor Stoitsev, Stefan Scheidl, Felix Flentge, and Max Mühlhäuser. From Personal
Task Management to End-User Driven Business Process Modeling. In Marlon
Dumas, Manfred Reichert, and Ming-Chien Shan, editors, BPM, volume 5240 of
Lecture Notes in Computer Science, pages 84–99. Springer, 2008.

[TYI05] Muhammad Adeel Talib, Zongkai Yang, and Qazi Mudassir Ilyas. A Framework
Towards Web Services Composition Modeling and Execution. In Proceedings of
the IEEE EEE05 International Workshop on Business Services Networks, BSN
’05, pages 4–4, Piscataway, NJ, USA, 2005. IEEE Press.

[Ver04] Laury Verner. BPM: The Promise and the Challenge. Queue, 2(1):82–91, 2004.

118

[WAD+06] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. Hofstede,
and Nick Russell. On the Suitability of BPMN for Business Process Modelling.
In Schahram Dustdar, Jose Luiz Fiadeiro, and Amit P. Sheth, editors, Business
Process Management, volume 4102 of Lecture Notes in Computer Science, pages
161–176. Springer, 2006.

[WPB13] Ingo Weber, Hye-Young Paik, and Boualem Benatallah. Form-Based Web Service
Composition for Domain Experts. ACM Trans. Web, 8(1):2:1–2:40, December
2013.

[Zar12] Jan Zarnikov. Energy-efficient Persistence for Extensible Virtual Shared Memory
on the Android Operating System. Master’s thesis, Vienna University of Technol-
ogy, 2012.

[ZLC+12] Liping Zhao, Keletso Letsholo, Erol-Valeriu Chioasca, Sandra Sampaio, and Pe-
dro Sampaio. Can Business Process Modeling Bridge the Gap Between Business
and Information Systems? In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC ’12, pages 1723–1724, New York, NY, USA, 2012.
ACM.

119

Web References

[1] Marco Di Natale. Code generation using Acceleo. https://www.youtube.com/
watch?v=42jkrOWA9RE. Accessed: 2017-03-20.

[2] Sparx Systems Europe. What is the pricing of my Enterprise Architect Edition?
https://www.sparxsystems.eu/enterprisearchitect/ea-pricing-
purchasing/. Accessed: 2017-03-20.

[3] Sparx Systems Europe. Sparx Systems Enterprise Architect. http://idownload.ws/
software/large/enterprise-architect-for-uml-2-1-9527.jpg. Ac-
cessed: 2017-03-20.

[4] Signavio. Signavio Process Editor. http://donar.messe.de/exhibitor/
cebit/2017/J358799/gallery-868x0-342915.jpg. Accessed: 2017-03-20.

[5] Activiti. Activiti User Guide. http://activiti.org/userguide/index.html.
Accessed: 2017-03-20.

[6] Activiti. Activiti Designer. https://3.bp.blogspot.com/-1fitO3hjZcY/Tf-
vpniW7yI/AAAAAAAAAPE/MAfNAtpONaQ/s1600/Screenshot-Activiti+-
+MyProcess.activiti+%2528BPMNdiagram%2529+-+Eclipse+SDK+.png.
Accessed: 2017-03-20.

[7] NetBeans. Enterprise Service Oriented Architecture Project Home. https://soa.
netbeans.org/soa/. Accessed: 2017-03-20.

[8] SOA4AllProject. BPM using SOA4All. https://www.youtube.com/watch?v=
ZpBPqDv5rss. Accessed: 2017-03-20.

[9] Eclipse. Overview of GMF. http://wiki.eclipse.org/images/5/59/
Overview.png. Accessed: 2017-03-20.

[10] Eclipse. GMF modeler example. http://wiki.eclipse.org/images/c/c0/
Basic_mindmap.png. Accessed: 2017-03-20.

[11] Eclipse. GMF Lite Runtime. http://wiki.eclipse.org/Graphical_
Modeling_Framework/Tutorial/Part_4#Exploring_the_Lite_
Runtime. Accessed: 2017-03-20.

120

https://www.youtube.com/watch?v=42jkrOWA9RE
https://www.youtube.com/watch?v=42jkrOWA9RE
https://www.sparxsystems.eu/enterprisearchitect/ea-pricing-purchasing/
https://www.sparxsystems.eu/enterprisearchitect/ea-pricing-purchasing/
http://idownload.ws/software/large/enterprise-architect-for-uml-2-1-9527.jpg
http://idownload.ws/software/large/enterprise-architect-for-uml-2-1-9527.jpg
http://donar.messe.de/exhibitor/cebit/2017/J358799/gallery-868x0-342915.jpg
http://donar.messe.de/exhibitor/cebit/2017/J358799/gallery-868x0-342915.jpg
http://activiti.org/userguide/index.html
https://3.bp.blogspot.com/-1fitO3hjZcY/Tf-vpniW7yI/AAAAAAAAAPE/MAfNAtpONaQ/s1600/Screenshot-Activiti+-+MyProcess.activiti+%2528BPMNdiagram%2529+-+Eclipse+SDK+.png
https://3.bp.blogspot.com/-1fitO3hjZcY/Tf-vpniW7yI/AAAAAAAAAPE/MAfNAtpONaQ/s1600/Screenshot-Activiti+-+MyProcess.activiti+%2528BPMNdiagram%2529+-+Eclipse+SDK+.png
https://3.bp.blogspot.com/-1fitO3hjZcY/Tf-vpniW7yI/AAAAAAAAAPE/MAfNAtpONaQ/s1600/Screenshot-Activiti+-+MyProcess.activiti+%2528BPMNdiagram%2529+-+Eclipse+SDK+.png
https://soa.netbeans.org/soa/
https://soa.netbeans.org/soa/
https://www.youtube.com/watch?v=ZpBPqDv5rss
https://www.youtube.com/watch?v=ZpBPqDv5rss
http://wiki.eclipse.org/images/5/59/Overview.png
http://wiki.eclipse.org/images/5/59/Overview.png
http://wiki.eclipse.org/images/c/c0/Basic_mindmap.png
http://wiki.eclipse.org/images/c/c0/Basic_mindmap.png
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_4#Exploring_the_Lite_Runtime
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_4#Exploring_the_Lite_Runtime
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_4#Exploring_the_Lite_Runtime

[12] Microsoft. Welcome to the Visio SDK. http://msdn.microsoft.com/en-us/
library/office/ff758690.aspx. Accessed: 2017-03-20.

[13] Sawyoo. Photos of Visio Flowchart Examples. http://www.sawyoo.com/
postpic/2015/03/visio-process-flowchart-examples_206703.png.
Accessed: 2017-03-20.

[14] JointJS. Working with Ports. http://resources.jointjs.com/tutorials/
joint/tutorials/ports.html. Accessed: 2017-03-20.

[15] JointJS. API Documentation. http://resources.jointjs.com/docs/
jointjs/v1.0/joint.html#dia.Link.prototype.presentation. Ac-
cessed: 2017-03-20.

[16] Cdelmas. Performance of Microservice Frameworks. https://cdelmas.github.
io/2016/06/20/Performance-of-Microservices-frameworks.html.
Accessed: 2017-03-20.

[17] Nielsen Norman Group. Why You Only Need to Test with 5 Users. https:
//www.nngroup.com/articles/why-you-only-need-to-test-with-5-
users/. Accessed: 2017-03-20.

[18] Prof. Dr. Jochen Prümper. Fragebogen ISONORM. http://www.ergo-online.
de/site.aspx?url=html/software/verfahren_zur_beurteilung_
der/fragebogen_isonorm_online.htm. Accessed: 2017-03-20.

121

http://msdn.microsoft.com/en-us/library/office/ff758690.aspx
http://msdn.microsoft.com/en-us/library/office/ff758690.aspx
http://www.sawyoo.com/postpic/2015/03/visio-process-flowchart-examples_206703.png
http://www.sawyoo.com/postpic/2015/03/visio-process-flowchart-examples_206703.png
http://resources.jointjs.com/tutorials/joint/tutorials/ports.html
http://resources.jointjs.com/tutorials/joint/tutorials/ports.html
http://resources.jointjs.com/docs/jointjs/v1.0/joint.html#dia.Link.prototype.presentation
http://resources.jointjs.com/docs/jointjs/v1.0/joint.html#dia.Link.prototype.presentation
https://cdelmas.github.io/2016/06/20/Performance-of-Microservices-frameworks.html
https://cdelmas.github.io/2016/06/20/Performance-of-Microservices-frameworks.html
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.ergo-online.de/site.aspx?url=html/software/verfahren_zur_beurteilung_der/fragebogen_isonorm_online.htm
http://www.ergo-online.de/site.aspx?url=html/software/verfahren_zur_beurteilung_der/fragebogen_isonorm_online.htm
http://www.ergo-online.de/site.aspx?url=html/software/verfahren_zur_beurteilung_der/fragebogen_isonorm_online.htm

APPENDIX A
IsoMetricss

I

,VR0HWULFV6

4XHVWLRQQDLUH
IRU�WKH�HYDOXDWLRQ�RI�JUDSKLFDO�XVHU�LQWHUIDFHV

EDVHG�RQ�,62��������

�VKRUW�YHUVLRQ�

&RS\ULJKW��E\�+HLQ]�:LOOXPHLW�������������.�&��+DPERUJ��*��*HGLJD��������������

$OO�ULJKWV�UHVHUYHG�LQFOXGLQJ�WKH�ULJKW�RI�UHSURGXFWLRQ�LQ�ZKROH�RU�LQ�SDUW�LQ�DQ\�IRUP�

9HUVLRQ������H 2FWREHU�����

&RQWDFW�

8QLYHUVLWlW�2VQDEU�FN

)DFKEHUHLFK�3V\FKRORJLH

6HPLQDUVWU����

'���������2VQDEU�FN

*HUPDQ\

HPDLO��LVRPHWULF#OXFH�SV\FKR�XQL�RVQDEUXHFN�GH

II

IsoMetrics6

$ERXW�WKH�TXHVWLRQQDLUH�
,VR0HWULFV

'HDU�VWXG\�SDUWLFLSDQW�

7KH�SXUSRVH�RI�WKLV�TXHVWLRQQDLUH�LV�WR�DVVHVV�WKH�XVDELOLW\�RI�VRIWZDUH�SURGXFWV��%\
FRPSOHWLQJ�LW��\RX�DUH�HQDEOLQJ�XV�WR�LGHQWLI\�DQG�UHPHG\�DQ\�VKRUWFRPLQJV��ZLWK�WKH�DLP�RI
HQKDQFLQJ�LWV�XVHU�IULHQGOLQHVV�

7KH�TXHVWLRQQDLUH�FRQWDLQV�VWDWHPHQWV�DERXW�WKH�XVHU�IULHQGOLQHVV�RI�VRIWZDUH�SURGXFWV��3OHDVH
LQGLFDWH�WKH�H[WHQW�WR�ZKLFK�\RX�DJUHH�RU�GLVDJUHH�ZLWK�HDFK�RI�WKHVH�VWDWHPHQWV��PDNLQJ�XVH
RI�WKH�VFDOH�SURYLGHG�LQ�HDFK�FDVH��+HUH�LV�DQ�H[DPSOH�

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[GLDORJXH�SULQFLSOH � � � � �
1R

RSLQLRQ

�

&RPSXWHUV�DUH�XVHIXO�ZRUN�DLGV� �;

,I�\RX�WKLQN�WKH�VWDWHPHQW��&RPSXWHUV�DUH�XVHIXO�ZRUN�DLGV��LV�WUXH��WKHQ�PDUN�FROXPQ�����IRU
�3UHGRPLQDQWO\�DJUHH���DV�VKRZQ��ZLWK�DQ�;���,I�\RX�ILQG�\RX�FDQQRW�DJUHH�ZLWK�WKLV
VWDWHPHQW��WKHQ�PDUN�FROXPQ�����IRU���3UHGRPLQDQWO\�GLVDJUHH���<RX�FDQ�DOVR�LQGLFDWH
YDULRXV�GHJUHHV�RI�DJUHHPHQW�EHWZHHQ�WKHVH�WZR�SROHV�E\�PDUNLQJ�WKH�FRUUHVSRQGLQJ�QXPEHUV
�FROXPQ���RU�����,I�IRU�VRPH�UHDVRQ�\RX�FDQQRW�RU�GR�QRW�ZLVK�WR�UHSO\��\RX�VKRXOG�PDUN�WKH
ODVW�FROXPQ��QR�RSLQLRQ��ZLWK�DQ�;�

7KDQN�\RX�YHU\�PXFK�IRU�\RXU�FRRSHUDWLRQ�

III

IsoMetrics6

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[VXLWDELOLW\�IRU�WKH�WDVN � � � � �
1R

RSLQLRQ

$��

7KH�VRIWZDUH�IRUFHV�PH�WR�SHUIRUP�WDVNV�WKDW�DUH�QRW�UHODWHG�WR
P\�DFWXDO�ZRUN�

$��

7KH�VRIWZDUH�OHWV�PH�FRPSOHWHO\�SHUIRUP�HQWLUH�ZRUN�URXWLQHV�

$��

7KH�IXQFWLRQV�LPSOHPHQWHG�LQ�WKH�VRIWZDUH�VXSSRUW�PH�LQ
SHUIRUPLQJ�P\�ZRUN�

$��

7KH�ZD\�LQ�ZKLFK�GDWD�LV�HQWHUHG�LV�VXLWHG�WR�WKH�WDVNV�,�ZDQW�WR
SHUIRUP�ZLWK�WKH�VRIWZDUH�

$��

,�SHUFHLYH�WKH�DUUDQJHPHQW�RI�WKH�ILHOGV�RQ�VFUHHQ�DV�VHQVLEOH
IRU�WKH�ZRUN�,�GR�ZLWK�WKH�VRIWZDUH�

$��

7RR�PDQ\�GLIIHUHQW�VWHSV�QHHG�WR�EH�SHUIRUPHG�WR�GHDO�ZLWK�D
JLYHQ�WDVN�

$��

7KH�ZD\�LQ�ZKLFK�GDWD�LV�RXWSXW�LV�VXLWHG�WR�WKH�WDVNV�,�ZDQW�WR
SHUIRUP�ZLWK�WKH�VRIWZDUH�

$���

7KH�VRIWZDUH�LV�ZHOO�VXLWHG�WR�WKH�UHTXLUHPHQWV�RI�P\�ZRUN�

$���

,Q�D�JLYHQ�VFUHHQ��,�ILQG�DOO�RI�WKH�LQIRUPDWLRQ�,�QHHG�LQ�WKDW
VLWXDWLRQ�

$���

7KH�WHUPLQRORJ\�XVHG�LQ�WKH�VRIWZDUH�UHIOHFWV�WKDW�RI�P\�ZRUN
HQYLURQPHQW�

$���

7KH�VRIWZDUH�SURYLGHV�PH�ZLWK�D�UHSHDW�IXQFWLRQ�IRU�ZRUN�VWHSV
WKDW�PXVW�EH�SHUIRUPHG�VHYHUDO�WLPHV�LQ�VXFFHVVLRQ�

$���

,�FDQ�HDVLO\�DGDSW�WKH�VRIWZDUH�IRU�SHUIRUPLQJ�QHZ�WDVNV�

$���

7KH�LPSRUWDQW�FRPPDQGV�UHTXLUHG�WR�SHUIRUP�P\�ZRUN�DUH
HDV\�WR�ILQG

$���

,�DP�DEOH�WR�DGMXVW�WKH�SUHVHQWDWLRQ�RI�UHVXOWV��RQ�WKH�VFUHHQ��WR
SULQWHU��SORWWHU�HWF���WR�P\�YDULRXV�ZRUN�UHTXLUHPHQWV�

$���

7KH�SUHVHQWDWLRQ�RI�WKH�LQIRUPDWLRQ�RQ�WKH�VFUHHQ�VXSSRUWV�PH
LQ�SHUIRUPLQJ�P\�ZRUN�

IV

IsoMetricsS

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[VHOI�GHVFULSWLYHQHVV � � � � �
1R

RSLQLRQ

6��

,�FDQ�FDOO�XS�VSHFLILF�H[SODQDWLRQV�IRU�WKH�XVH�RI�WKH�V\VWHP��LI
QHFHVVDU\�

6��

,�XQGHUVWDQG�LPPHGLDWHO\�ZKDW�LV�PHDQW�E\�WKH�PHVVDJHV
GLVSOD\HG�E\�WKH�VRIWZDUH

6��

,W�LV�HDV\�WR�UHWULHYH�LQIRUPDWLRQ�DERXW�D�FHUWDLQ�HQWU\�ILHOG�
6��

:KHQ�PHQX�LWHPV�DUH�QRW�DYDLODEOH�LQ�FHUWDLQ�VLWXDWLRQV��WKLV
IDFW�LV�YLVXDOO\�FRPPXQLFDWHG�WR�PH�

6��

,I�,�ZDQW��WKH�VRIWZDUH�ZLOO�GLVSOD\�QRW�RQO\�JHQHUDO
H[SODQDWLRQV�EXW�DOVR�FRQFUHWH�H[DPSOHV�WR�LOOXVWUDWH�SRLQWV�

6��

7KH�H[SODQDWLRQV�WKH�VRIWZDUH�JLYHV�PH�FOHDUO\�UHIHU�WR�WKH
VSHFLILF�VLWXDWLRQV�LQ�ZKLFK�WKH\�DUH�RXWSXW�

6��

,I�,�ZDQW��WKH�VRIWZDUH�GLVSOD\V�EDVLF�LQIRUPDWLRQ�DERXW
FRQFHSWXDO�DVSHFWV�RI�WKH�SURJUDP�

6���

7KH�VRIWZDUH�SURYLGHV�PH�ZLWK�HQRXJK�LQIRUPDWLRQ�DERXW
ZKLFK�HQWULHV�DUH�SHUPLWWHG�LQ�D�SDUWLFXODU�VLWXDWLRQ�

6���

,�FDQ�WHOO�VWUDLJKW�DZD\�ZKLFK�IXQFWLRQV�DUH�LQYRNHG�E\�WKH
YDULRXV�PHQX�LWHPV�

6���

7KH�WHUPV�DQG�FRQFHSWV�XVHG�LQ�WKH�VRIWZDUH�DUH�FOHDU�DQG
XQDPELJXRXV�

6��� 7KH�VRIWZDUH�DOZD\V�YLVXDOO\�PDUNV�WKH�FXUUHQW�HQWU\�ORFDWLRQ
�H�J��E\�D�KLJKOLJKW��D�FRQWUDVWLQJ�FRORU��D�EOLQNLQJ�FXUVRU��HWF���

6��� ,�FDQ�HDVLO\�WHOO�WKH�GLIIHUHQFH�DPRQJ�IHHGEDFN�PHVVDJHV�
UHTXHVWV�WR�FRQILUP�LQSXWV�RU�FRPPDQGV��ZDUQLQJV��DQG�HUURU
PHVVDJHV�

V

IsoMetricsS

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[FRQWUROODELOLW\ � � � � �
1R

RSLQLRQ

7��

7KH�SRVVLELOLWLHV�IRU�QDYLJDWLQJ�ZLWKLQ�WKH�VRIWZDUH�DUH
DGHTXDWH�

7��

7KH�VRIWZDUH�PDNHV�LW�HDV\�IRU�PH�WR�VZLWFK�EHWZHHQ�GLIIHUHQW
PHQX�OHYHOV�

7��

7KH�VRIWZDUH�OHWV�PH�UHWXUQ�GLUHFWO\�WR�WKH�PDLQ�PHQX�IURP�DQ\
VFUHHQ�

7��

,�FDQ�LQWHUUXSW�DQ\�GLDORJ�DW�DQ\�WLPH�

7��

,W�LV�DOZD\V�HDV\�IRU�PH�WR�HYRNH�WKRVH�V\VWHP�SURFHGXUHV�WKDW
DUH�QHFHVVDU\�IRU�P\�DFWXDO�ZRUN�

7��

,W
V�HDV\�IRU�PH�WR�PRYH�EDFN�DQG�IRUWK�EHWZHHQ�GLIIHUHQW
VFUHHQV�

7��

7KH�VRIWZDUH�DOORZV�PH�WR�LQWHUUXSW�IXQFWLRQV�DW�DQ\�SRLQW�
HYHQ�LI�LW�LV�ZDLWLQJ�IRU�PH�WR�PDNH�DQ�HQWU\�

7���

7KH�QDYLJDWLRQ�IDFLOLWLHV�RI�WKH�VRIWZDUH�VXSSRUW�RSWLPDO�XVDJH
RI�WKH�V\VWHP�IXQFWLRQDOLW\�

7���

,Q�RUGHU�WR�SHUIRUP�P\�WDVNV��WKH�VRIWZDUH�UHTXLUHV�PH�WR
SHUIRUP�D�IL[HG�VHTXHQFH�RI�VWHSV�

7���

:KHQ�VHOHFWLQJ�PHQX�LWHPV��,�FDQ�VSHHG�WKLQJV�XS�E\�GLUHFWO\
HQWHULQJ�D�OHWWHU�RU�D�FRPPDQG�FRGH�

7���

,W�LV�DOZD\V�SRVVLEOH�WR�DERUW�D�UXQQLQJ�SURFHGXUH�PDQXDOO\�

VI

IsoMetricsS

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[FRQIRUPLW\�ZLWK�XVHU�H[SHFWDWLRQV � � � � �
1R

RSLQLRQ

(��

7KH�VRIWZDUH�LV�LQFRQVLVWHQWO\�GHVLJQHG��WKXV�PDNLQJ�LW�PRUH
GLIILFXOW�IRU�PH�WR�GR�P\�ZRUN�

(��

,�FDQ�DQWLFLSDWH�ZKLFK�VFUHHQ�ZLOO�DSSHDU�QH[W�LQ�D�SURFHVVLQJ
VHTXHQFH�

(��

I have no difficulty in predicting how long the software
will need to perform a given task.

(��

7KH�GHVLJQDWLRQV�DUH�XVHG�FRQVLVWHQWO\�LQ�DOO�SDUWV�RI�WKH
VRIWZDUH�,�DP�IDPLOLDU�ZLWK�

(��

,�ILQG�WKDW�WKH�VDPH�IXQFWLRQ�NH\V�DUH�XVHG�WKURXJKRXW�WKH
SURJUDP�IRU�WKH�VDPH�IXQFWLRQV�

(��

:KHQ�H[HFXWLQJ�IXQFWLRQV��,�KDYH�WKH�IHHOLQJ�WKDW�WKH�UHVXOWV�DUH
SUHGLFWDEOH�

(�� 0\�LPSUHVVLRQ�LV�WKDW�WKH�VDPH�SRVVLELOLWLHV�DUH�FRQVLVWHQWO\
DYDLODEOH�IRU�PRYLQJ�ZLWKLQ�DQG�EHWZHHQ�GLIIHUHQW�SDUWV�RI�WKH
VRIWZDUH�

(��

7KH�PHVVDJHV�RXWSXW�E\�WKH�VRIWZDUH�DOZD\V�DSSHDU�LQ�WKH�VDPH
VFUHHQ�ORFDWLRQ�

VII

IsoMetricsS

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[HUURU�WROHUDQFH � � � � �
1R

RSLQLRQ

)��

:KHQ�ZRUNLQJ�ZLWK�WKH�VRIWZDUH��HYHQ�VPDOO�PLVWDNHV�KDYH
VRPHWLPHV�KDG�VHULRXV�FRQVHTXHQFHV�

)��

(YHQ�LI�,�PDNH�D�PLVWDNH��WKH�LQIRUPDWLRQ��H�J��GDWD��WH[W��DQG
JUDSKLFV��ZKLFK�,�KDYH�MXVW�HQWHUHG�LV�QRW�ORVW�

)��

If I make a mistake while completing a form, I can easily
restore everything to its previous state.

)�� :KHQ�,�DWWHPSW�WR�SHUIRUP�D�GHVWUXFWLYH�RSHUDWLRQ��H�J�
GHOHWLRQ�RI�GDWD�HWF����,�DP�DOZD\V�ILUVW�SURPSWHG�WR�FRQILUP�WKH
DFWLRQ�

)��

0\�LPSUHVVLRQ�LV�WKDW�YHU\�OLWWOH�HIIRUW�LV�LQYROYHG�LQ�FRUUHFWLQJ
PLVWDNHV�

)��

:KHQ�,�PDNH�HQWULHV��WKH\�DUH�ILUVW�FKHFNHG�IRU�FRUUHFWQHVV
EHIRUH�IXUWKHU�SURFHVVLQJ�LV�LQLWLDWHG�

)��

1R�V\VWHP�HUURUV��H�J��FUDVKHV��RFFXU�ZKHQ�,�ZRUN�ZLWK�WKH
VRIWZDUH�

)��

If I make a mistake while performing a task, I can easily
undo the last operation.

)��

,�KDYH�QHYHU�PDGH�DQ�HQWU\�WKDW�FDXVHG�D�VRIWZDUH�HUURU��H�J��D
V\VWHP�SURJUDP�FUDVK�RU�DQ�XQGHILQHG�GLDORJ�VWDWH��

)��� 7KH�VRIWZDUH�LQFOXGHV�VDIHW\�IHDWXUHV�WR�KHOS�SUHYHQW
XQLQWHQGHG�DFWLRQV��H�J��FULWLFDO�NH\V�VSDFHG�ZHOO�DSDUW�
KLJKOLJKWV��GHVLJQDWLRQV�WKDW�DUH�QRW�HDVLO\�FRQIXVHG��

)���

7KH�VRIWZDUH�SURYLGHV�PH�ZLWK�XVHIXO�LQIRUPDWLRQ�RQ�KRZ�WR
UHFRYHU�IURP�HUURU�VLWXDWLRQV�

)���

,�SHUFHLYH�WKH�HUURU�PHVVDJHV�DV�KHOSIXO�

)���

,Q�VRPH�VLWXDWLRQV�WKH�VRIWZDUH�ZDLWV�WRR�ORQJ�EHIRUH�FDOOLQJ
DWWHQWLRQ�WR�ZURQJ�HQWULHV�

)���

7KH�VRIWZDUH�ZDUQV�PH�DERXW�SRWHQWLDO�SUREOHP�VLWXDWLRQV�
)���

7KH�VRIWZDUH�OHWV�PH�NHHS�WKH�RULJLQDO�GDWD�HYHQ�DIWHU�LW�KDV
EHHQ�FKDQJHG�

VIII

IsoMetricsS

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[VXLWDELOLW\�IRU�LQGLYLGXDOL]DWLRQ � � � � �
1R

RSLQLRQ

,��

7KH�VRIWZDUH�OHWV�PH�DGDSW�IRUPV��VFUHHQV�DQG�PHQXHV�WR�VXLW
P\�LQGLYLGXDO�SUHIHUHQFHV�

,��

7KH�VRIWZDUH�FDQ�EH�HDVLO\�DGDSWHG�WR�VXLW�P\�RZQ�OHYHO�RI
NQRZOHGJH�DQG�VNLOO�

,��

,�DP�DEOH�WR�DGMXVW�WKH�DPRXQW�RI�LQIRUPDWLRQ��GDWD��WH[W�
JUDSKLFV��HWF���GLVSOD\HG�RQ�VFUHHQ�WR�P\�QHHGV�

,��

7KH�VRIWZDUH�OHWV�PH�FKDQJH�WKH�QDPHV�RI�FRPPDQGV��REMHFWV
DQG�DFWLRQV�WR�VXLW�P\�SHUVRQDO�YRFDEXODU\�

,��

,�FDQ�DGMXVW�WKH�DWWULEXWHV��H�J��VSHHG��RI�WKH�LQSXW�GHYLFHV��H�J�
PRXVH��NH\ERDUG��WR�VXLW�P\�LQGLYLGXDO�QHHGV�

,���

,�FDQ�DGMXVW�WKH�VRIWZDUH
V�UHVSRQVH�WLPHV�WR�P\�RZQ�SHUVRQDO
ZRUNLQJ�VSHHG�

3UH�

GRPLQDQWO\

GLVDJUHH

6R���VR

3UH�

GRPLQDQWO\

DJUHH

,QGH[VXLWDELOLW\�IRU�OHDUQLQJ � � � � �
1R

RSLQLRQ

/��

,�QHHGHG�D�ORQJ�WLPH�WR�OHDUQ�KRZ�WR�XVH�WKH�VRIWZDUH�

/��

,W�LV�HDV\�IRU�PH�WR�UHOHDUQ�KRZ�WR�XVH�WKH�VRIWZDUH�DIWHU�D
OHQJWK\�LQWHUUXSWLRQ�

/��

7KH�H[SODQDWLRQV�SURYLGHG�KHOS�PH�XQGHUVWDQG�WKH�VRIWZDUH�VR
WKDW�,�EHFRPH�PRUH�DQG�PRUH�VNLOOHG�DW�XVLQJ�LW�

/��

6R�IDU�,�KDYH�QRW�KDG�DQ\�SUREOHPV�LQ�OHDUQLQJ�WKH�UXOHV�IRU
FRPPXQLFDWLQJ�ZLWK�WKH�VRIWZDUH��L�H��GDWD�HQWU\�

/��

,�ZDV�DEOH�WR�XVH�WKH�VRIWZDUH�ULJKW�IURP�WKH�EHJLQQLQJ�E\
P\VHOI��ZLWKRXW�KDYLQJ�WR�DVN�FRZRUNHUV�IRU�KHOS�

/��

,�IHHO�HQFRXUDJHG�E\�WKH�VRIWZDUH�WR�WU\�RXW�QHZ�V\VWHP
IXQFWLRQV�E\�WULDO�DQG�HUURU�

/��

,Q�RUGHU�WR�XVH�WKH�VRIWZDUH�SURSHUO\��,�PXVW�UHPHPEHU�D�JUHDW
PDQ\�GHWDLOV�

/��

,�ILQG�LW�HDV\�WR�XVH�WKH�FRPPDQGV�

IX

	List of Listings
	Introduction
	Problem Description & Motivation
	Aim of the Work
	Methodology
	Structure of the Thesis

	Related Work
	Popular Process Modeling Languages
	End-User-related Approaches
	Comparison

	Approach
	Related Concepts
	Initial Draft

	Design
	Evaluation of Technologies
	Components
	Modeling
	Provisioning
	Workflow Execution

	Implementation
	Structural View
	XVSM Micro-Room FrameworkAdjustments
	Modules
	Provisioning
	Further Problems & Solutions

	User Guide
	Deploying the XVSM Micro-Room Modeler
	Extending the XVSM Micro-Room Modeler
	Using the XVSM Micro-Room Modeler
	Using applications created by the XVSM Micro-Room Modeler

	Evaluation
	Theoretical Evaluation of the XVSM Micro-Room Modeler
	Usability Evaluation Approach
	Usability Evaluation Results

	Future Work
	Realization with the Peer Model
	UI Improvements to the XVSM Micro-Room Modeler
	Port Forwarding
	Download JRE if not Installed
	Publish Platform for Custom Modules
	UI Templates
	Further Modules

	Conclusion
	References
	Web References
	Appendix
	IsoMetricss

