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1 Introduction

Since the great financial crisis in 2008 the world entered a new normal. In this setting a lot
of economic rules and principles had to be reconsidered. One of the cornerstones of modern
economics is the interaction between interest rates and other economic variables. There is
a great quantity of models that use the interest rate, set by the central bank, as an input.
Before the crisis nearly nobody thought about negative interest rates, since it is natural to
assume a lower bound of 0 (as long as cash with a nominal interest of 0 is available). It was
also thought of as unlikely that this zero lower bound becomes relevant in modern developed
economies with the exception of Japan. But since 2009 everything changed and the central
banks of all major economies had to lower the benchmark interest rate to 0 or in some cases
even into negative territory (i.e. the deposit rate of the European Central Bank ECB is
currently −0.4 % [2]). The Federal Reserve System (thereafter Fed) lowered the effective
federal funds rate (thereafter EFFR) to 0− 0.25 % on 16/12/2008 [1]. Since then the EFFR
has been stuck at the zero lower bound and didn’t display any meaningful variation that
can be used to explain movements in other economic variables (see Figure 1). Furthermore
unconventional monetary policy tools like forward guidance and quantitative easing (QE)
were used. Quantitative easing are large scale asset purchases with newly created central
bank money. These purchases of mostly long dated securities were intended to reduce long
term interest rates. Forward guidance is a communication strategy by central bankers to
explain their decision to the public. The goal is to reduce uncertainty about future monetary
policy decisions. Both were used to stimulate the economy when it was stuck at the zero
lower bound. Therefore a lot of effort has been invested to construct new models where the
zero lower bound is modelled explicitly.

Figure 1: Benchmark interest rates of major central banks
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One of the most popular, conventional models deployed in the literature to link the EFFR
or the nominal short rate set by the central bank to the whole interest rate complex is the
Gaussian Affine Term Structure Model (GATSM [3]). In this model the nominal interest
rate can get negative due to the affine structure (i.e. the short rate is affine in the Gaussian
factor, see also section Affine interest rate structure models). This structure allows easy
computations and analytical solutions.
But in the real world nominal rates are bounded from below by 0 or more general a con-
stant r̄ (r̄ can be thought of as small positive or negative constant). The extended model,
first proposed by Black (1995) [7], is called shadow rate term structure model (SRTSM or
shadow rate model). In this framework the lower bound of nominal interest rate is expli-
citly modelled. The shadow rate st is introduced and the nominal short rate is given by
rt = max(r̄, st). There the shadow rate is affine in the Gaussian factors. This floor is a
non-linearity and makes an analytic solution intractable, in fact only for one factor models
the solution is known.

In my Master thesis I will take an in depth look at the model proposed by Jing Cynthia Wu
and Fan Dora Xia [5]. They propose a framework (SRTSM) how to model the short rate
in a world where the EFFR is at the zero lower bound and estimate the so called shadow
rate. They use a simple analytical approximation for bond prices that makes the model
tractable and allows easy implementation. The shadow rate can go deeply into negative
territory and captures the effects of unconventional tools. This means that the shadow rate
can be used instead of the EFFR in conventional models which relay on a short rate as input.
In fact in normal times when the zero lower bound is not active both models overlap perfectly.

I begin with briefly introducing short rate models, especially affine ones in section 2. In
section 3, I describe Kalman Filters for linear state space models and extended Kalman
filters for non-linear systems since they are used for estimation. Section 4 explains the con-
struction of the forward rates used in the SRTSM. Then the shadow rate and Gaussian affine
term structure is introduced, estimated and analysed in section 5, 6, 7 and 8.
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2 Affine interest rate structure models

Here I will formally introduce the short rate model and explain the special case of affine
short rate models. This section is based on the lecture course ”Interest rate theory” of Dr
Paul Krühner TU Vienna [3]. The model is presented in continuous time since more math-
ematical tools and theorems are available in continuous time (i.e. Girsanov’s Theorem).
This section lays out the theoretical foundation and motivation of the GATSM and SRTSM
mentioned above. The implementation of the models is in a discrete time setting, think of a
discretely sampled continuous time model due to the fact that we want to estimate them by
means of time series analysis tools. A little bit of basic knowledge about stochastic analysis
(i.e. Brownian Motion, stochastic integration and pricing measures) is a prerequisite for this
section. First we will see what a short rate model is and then extend it by a state variable.

2.1 Affine short rate model without state variable

In the whole section we assume a filtered probability space (Ω,A ,F,P ) where the Filtration
F = (Ft)t≥0 satisfies the usual conditions of completeness and right continuity (most of the
time the natural filtration Ft = σ(Ws : s ≤ t) is used). We denote by (Wt)t≥0 a d dimen-
sional standard Brownian Motion
A short rate model is a quadruple (r0, b, σ, λ) that satisfies:

• r0 ∈ R or R+

• σ, λ ∈ L (W ) with σ ∈ R1×d and λ ∈ Rd

• b ∈ L (I) with b ∈ R

• E(e
� t
0 |λs|2ds) < ∞ ∀t

where L (W ) stands for the set of progressive measurable processes ν that are integrable
with respect to Wt (i.e.

� t

0
|νs|2ds < ∞ P a.s ∀t > 0) and L (I) are the processes that are

absolute integrable (i.e.
� t

0
|νs|ds < ∞ P a.s ∀t > 0)1.

Then we define2:

• rt := r0 +
� t

0
bsds+

� t

0
σsdWs short rate

• Mt := e
� t
0 rsds bank account or numeraire

• dQ := ZdP the pricing measure Q where Zt = E (
� t

0
λsdWs) > 0

1Here | · | stands for a suitable norm.
2In the definition of rt we see that for some choices of σ (i.e. deterministic ones) the stochastic integral part

is normal distributed and nothing prevents it from becoming arbitrarily small (i.e. ∀M < 0 : P(
� t

0
σsdWs <

M) > 0 so the short rate rt can get negative, especially if for small τ > 0, rt−τ is close to zero the increment
from t− τ to t can push rt below zero.
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Where E (X)t = exp(Xt− 1
2
[X]t) is the stochastic exponential

3 of the process X and [X] is the
quadratic variation process of X. We call b drift, σ diffusion coefficient. The pricing measure
Q can be identified with λ through Girsanov’s theorem4 and we have dWQ

t := −λtdt+ dWt

is a Q standard Brownian Motion. Note that dWQ
t := −λtdt + dWt is a short notation for� t

0
dWQ

s = WQ
t = Wt −

� t

0
λsds

Further note that due to Girsanov we have different representations for the density pro-
cess of the measure change Zt if we fix a finite time horizon T ∗ < ∞:

Zt = E (

� t

0

λsdWs) = E(ZT ∗ |Ft) = (
dQ

dP
)t = (

dQ

dP
)|Ft

Next I show how the drift change of the Q Brownian motion (the density process is given by
Zt) works, using Ito’s formula5 for f(x, y) = x · y. This is done to motivate the set-up used
in GATSM and SRTSM. I will show that (WQ)t≥0 is a local Q martingale. This is equivalent

3Dolean’s stochastic exponential E (X)t of the process X is defined as the unique solution of the following
stochastic differential equation:

dY = Y dX

This can be seen with Ito’s formula for f(x) = ex (∂2f(x) = ∂f(x) = f(x)) for the 1 dimensinal
semimartingal (a process with local martingale and finite variation part) X̃t = Xt − 1

2 [X]t:

E (X)t = f(X̃t) = f(X0)+

� t

0

∂f(X̃s)dX̃s+
1

2

� t

0

∂2f(X̃s)d[X̃]s = f(X0)+

� t

0

E (X)sd(Xs−1

2
[X]s)+

1

2

� t

0

E (X)sd[X−1

2
[X]]s

using the linearity of the integrator and that [X] is a finite variation process, therefore [[X]] = 0

= f(X0) +

� t

0

E (X)sdXs − 1

2

� t

0

E (X)sd[X]s +
1

2

� t

0

E (X)sd[X]s = f(X0) +

� t

0

E (X)sdXs

Therefore we see that the stochastic exponential solves the sde d(E (X)t) = E (X)tdXt and is a local martingal
if X is a local martingal (as a stochastic integral with respect to a local martingal is a local martingal).

Together with Novikov’s condition E(e
� t
0
|λs|2ds) < ∞ ∀t we have that E (

� t

0
λsdWs) > 0 is a true martingale

with constant expectation. If X0 = 0 ⇒ f(X0) = 1 and the martingale has constant expectation 1, since

E(E (X)t) = f(X0) + E(
� t

0
E (X)sdXs) = 1 + 0, since the stochastic integral part is a true martingale and

starts at 0 for t = 0. Otherwise we can normalize the expectation to 1 and use it as the density process of a
measure change. Since it is positive wee see that the new measure is equivalent to P .

4Girsanov Theorem:
1) Let Q ∼ P then there exists λ ∈ L (W ) such that dWQ

t := −λtdt+ dWt is a Q Brownian Motion.

2) If λ ∈ L (W ) with E(e
� t
0
|λs|2ds) < ∞ ∀t then there exists a random variable Z such that:

• E(Z) = 1

• E (
� t

0
λsdWs) = E(Z|Ft) = Zt

• dQ := ZdP defines a probability measure Q ∼ P where dWQ
t := −λtdt+dWt is a Q Brownian Motion

with respect to the Filtration F

5Ito’s formula for a function f ∈ C2(Rd,R) and a d dimensional semimartingal (a process with local
martingale and finite variation part) X, see Rheinländer and Sexton [22]:

f(Xt) = f(X0) +

d�
j=1

� t

0

∂jf(Xs)dX
j
s +

1

2

d�
j=1

d�
i=1

� t

0

∂i,jf(Xs)d[X
j , Xi]s
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to (WQ
t ·Zt)t≥0 being a local P martingale. Then I use levy’s characterisation of a standard

Brownian motion to show that WQ
t is really a standard Brownian motion.

I start by showing thatWQ
t = Wt−

� t

0
λsds is a local Q martingale when using Zt for the meas-

ure change. This is accomplished by showing that WQ · Z can be written as two stochastic
integrals with respect to local martingales. Slightly abusing notation we assume (Wt)t≥0 to
be 1 dimensional you can think of an arbitrary component of the d dimensional Brownian
motion. Keep in mind that dZt = Ztd(

� t

0
λsdWs) = ZtλtdWt and dWQ

t = dWt − λtdt due to
the chain rule:

WQ
t Zt = f(WQ

t , Zt) = f(WQ
0 , Z0) +

� t

0

WQ
u dZu +

� t

0

ZudW
Q
u + [WQ

t , Zt] (1)

Since
� u

0
λsds has finite variation6 (thus we have [

� u

0
λsds, Y ] = 0 for every continuous pro-

cess Y) and the stochastic exponential Zt solves a sde (stochastic differential equation see
footnote 3) it follows ([·, ·] is bilinear):

[WQ
t , Zt] = [Wt −

� t

0

λsds, Zt] = [Wt, Zt]− [

� t

0

λsds, Zt] = [

� t

0

dWu,

� t

0

Zud(

� u

0

λsdWs)] =

using Wt =
� t

0
dWu, the chain rule d(

� u

0
λsdWs) = λudWu and [

�
AdX,

�
BdY ] =

�
A ·

Bd[X, Y ]

= [

� t

0

dWu,

� t

0

ZuλudWu] =

� t

0

Zuλud[W ]u =

� t

0

Zuλudu

Continuing from equation (1) it follows:

WQ
t Zt =

� t

0

WQ
u dZu +

� t

0

ZudW
Q
u +

� t

0

Zuλudu =

using the linearity of the stochastic integral with respect to the integrator and dWQ
t =

dWt − λtdt:

=

� t

0

WQ
u dZu +

� t

0

ZudWu −
� t

0

Zuλudu+

� t

0

Zuλudu =

� t

0

WQ
u dZu +

� t

0

ZudWu

Here we see that both integrals on the right hand side are local P martingales as they are
stochastic integrals with respect to a local martingale (Z,W are both local martingales. It
is a well known result that W is a (local) P martingale7 and Z solves the sde with respect
to the local martingale

� t

0
λsdWs , see footnote 3). Therefore we showed that WQ · Z is a

An alternative representation of Ito’s formula using the differential notation is:

df(Xt) =

d�
j=1

∂jf(Xt)dX
j
t +

1

2

d�
j=1

d�
i=1

∂i,jf(Xt)d[X
j , Xi]t

6
� u

0
λsds =

� u

0
(λs)

+ds − � u

0
(λs)

−ds where (x)+ := max(0, x) and (x)− := |min(0, x)| are the positive
and negative part of x. Therefore every Lebesgue is of finite variation since it can be written as difference
of two monotone processes. Alternativly we could argue that it is absolute continous and therefore of finite
variation.

7If a process is a martingale then it is also a local martingale.

8



local P martingale. This is equivalent to: WQ = W − �
λsds is a local Q martingale. Using

levy’s characterisation of the Brownian motion8 gives that WQ is a Q Brownian motion since
[WQ

t ] = [Wt −
�
λsds] = [Wt] = t (since

�
λsds has finite variation).

Pricing of securities:

In a short rate model the pricing measure is given. We can price any security with pay-
off C(T ) where T stands for the maturity. The price at time t is given by:

Ct = MtEQ(
C(T )

MT

|Ft)

Alternatively we could define the stochastic discount factor9 M̃t by:

M̃t :=
1

Mt

(
dQ

dP
)t = e−

� t
0 rsdsE (

� t

0

λsdWs) = e−
� t
0 rsds+

� t
0 λsdWs− 1

2

� t
0 λ�

sλsds (2)

using that for a stochastic integral the quadratic variation is given by [
� t

0
λsdWs] =

� t

0
�λ�2ds =� t

0
λ
sλsds and [W ]t = tI for a Brownian motion (λ

sλs is needed because in general λt,Wt ∈ Rd

and [
� t

0
λsdWs] = [

�d
i=1

� t

0
λi
sdW

i
s ] =

�d
i=1

� t

0
(λi

s)
2d[W ]is =

�d
i=1

� t

0
(λi

s)
2ds =

� t

0
�λ�2ds =� t

0
λ
sλsds using the fact that for a standard Brownian motion the components are independ-

ent, see also the diagonal structure of [Wt]).

Therefore using the stochastic discount factor for pricing a security with pay-off C(T) under
the real world measure P:10

Ct =
1

M̃t

EP (C(T )M̃T |Ft) =
Mt

(dQ
dP

)t
EP (C(T )

1

MT

(
dQ

dP
)T |Ft) = MtEQ(C(T )

1

MT

|Ft)

using the fact that due to Girsanov’s theorem E (
� ·
0
λsdWs) = dQ

dP · is the density process
between Q and P and Bayes Theorem for conditional expectation11.

If we denote by B(t, T ) the price of a zero coupon bond at time t that matures at time
T (i.e. B(T, T ) = 1). We have 12:

8It is equivalent for a 1 dimensional process on a filtered probability space with the natural filtration:

1. X is a Brownian motion with respect to the measure µ

2. X is a local martingale with respect to µ and [X]t = t

9A stochastic discount factor is defined as the discount factor used to discount under the real world
measure to price securities.

10Because we want the price of C(T) at any point t < T and not just t = 0 we have to compound interest
from 0 to t by multiplying with 1/M̃t, since multiplying with M̃T discounts from T to 0.

11Bayes Theorem (see Rheinländer and Sexton [22]): Let X ∈ L1(Q) be FT measurable and integrable
then:

EQ(X|Ft) =
1

(dQdP )t
EP (X(

dQ

dP
)T |Ft)

12Mt is Ft measurable.
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B(t, T ) = MtEQ(
B(T, T )

MT

|Ft) = EQ(
Mt

MT

|Ft) = EQ(e−
� T
t rsds|Ft) (3)

The integral in (1) is replaced by the sum
�n−1

j=0 rt+j (think about approximating the integral
with n+1 (n = T − t ∈ N in a discrete setting) supporting points {t, 1, ..., t+ n} which gives
n summands) in the discrete setting of the GATSM and SRTSM.

A short rate model has affine term structure (ATS) if there exist C1(R+ × R+,R) func-
tions A,C with A(T, T ) = C(T, T ) = 0 such that:

B(t, T ) = exp(−A(t, T ) + C(t, T )rt)

A short rate model is affine (for dimension d = 1) if:

• bt = β0(t) + β1(t)rt

• σ2
t = α0(t) + α1(t)rt

with α0, α1, β0, β1 ∈ C(R+,R)13. Under some technical assumptions, which are fulfilled in
our setting, affine models have affine term structure. Most of the time no distinction is made
between those two properties.

2.2 Affine short rate models with state variable

Now we can easily extend the short rate model with a state variable Xt ∈ Rn that follows a
stochastic differential equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (4)

with X0 = x0 ∈ Rn.14 Here the markovian structure is emphasized through the explicit
dependence of the drift b(t,Xt) ∈ Rn and diffusion σ(t,Xt) ∈ Rn×d of only t and Xt. Now
we define the short rate through:

rt = δ0 + δ1Xt

where δ0 ∈ R and δ1 ∈ Rn. Since we could use Ito’s Lemma to calculate the dynamics of rt
15 which would be given through a stochastic differential equation with more explicit drift
and diffusion than in the previous section. Therefore the extension with a state variable is
complete analogous to a short rate model only that the state variable drives all the dynamics

13For the general d dimensional case β0, β1 ∈ C(R+,Rd) and σ is a d × d diagonal matrix with

αl
0(t) + αl

1(t)rt l ∈ {1, ..., d} on the digonal
14Or to be more precise since dXt is just a short notation for: Xt = x0 +

� t

0
b(s,Xs)ds+

� t

0
σ(s,Xs)dWs

15f(x) := δ0 + δ�1x then ∂xf = δ�1 and ∂2
xf = 0:

rt = f(Xt) = f(X0) +

� t

0

δ�1dXs = f(X0) +

� t

0

δ�1b(s,Xs)ds+

� t

0

δ�1σ(s,Xs)dWs

We now define r0 = f(X0), b̃t = δ�1b(t,Xt) and σ̃t = δ�1σ(t,Xt) and end up with a short rate model with b̃, σ̃.

10



in the system.
Thus we call such a model affine or more accurate has the affine term structure property if
there is A ∈ C1(R+ × R+,R) and C ∈ C1(R+ × R+,Rn) with A(T, T ) = C(T, T ) = 0 such
that:

B(t, T ) = EQ(e−
� T
t rsds|Ft) = exp(−A(t, T ) + C(t, T )Xt)

Furthermore in a model with affine term structure the zero coupon yield (continuously com-
pounded) is given by:

y(t, T ) := − 1

T − t
ln(B(t, T )) =

A(t, T )

T − t
− C(t, T )

T − t
Xt

We see that it is affine in the state variable Xt.

So if we start with a state model characterised by (δ0, δ1, b, σ, λ) we get a short rate model
(r0, b̃, σ̃, λ) (see footnote 15). When this short rate model is affine (has ATS) the zero coupon
bond prices B(t, T ) are affine in the state variable. The Q dynamic of the state variable is
given by (due to the linearity of the stochastic integral with respect to the integrator):

dXt = b(t,Xt)dt+ σ(t,Xt)dWt = b(t,Xt)dt+ σ(t,Xt)(dWt + λtdt− λtdt)

= (b(t,Xt)− σ(t,Xt)λt)dt+ σ(t,Xt)dW
Q
t (5)

3 Construction of forward rates

In this section I will briefly summarize the construction of the forward rate data used in the
GATSM and SRTSM. These rates are the observations (yt)

T
t=1 in the Kalman filter problem.

This section is based on the paper ”The U.S. Treasury Yield Curve: 1961 to the Present,
Refet S. Gürkaynak, Brian Sack, and Jonathan H. Wright” [4],[14].
The basic idea is to estimate a yield curve with a fixed functional form. The bond market
is not perfectly homogeneous since the treasury does not issue a continuum (over maturity)
of bills each day and every issue of securities has different specifications (i.e. maturities,
coupon payments, liquidity, ...). We can observe only zero coupon prices for specific matur-
ities T1, ..., Tp (i.e. 1 month, 3 month, 1 year, 5 years, 10 years and many more). Therefore
we have to fit a yield curve through the yields we can observe at any given moment in the
US treasury market. Our goal is to get a yield curve for every point in time (i.e. for every
day or month we get a new yield curve) that maps the time to maturity to the yield.
We begin by deriving the link between yields and forward rates, after that we look at the
estimation of the curve.

First we re-parametrize from the notation used in the short rate model section where we
denote by B(t, T ) the price of a zero coupon bond at time t that matures at T (t ≤ T ).
These prices are observable in the market. The time to maturity is given by n := T − t.

11



Therefore we can write B(t, t+ n) and the continuously compounded yield of a zero coupon
bond with duration n is given by (compare short rate section16):

yt(n) = − ln(B(t, t+ n))

n
(6)

Forward rates:

To express the forward rate through yields we use the following investment strategy:

at t: buy one n+m zero coupon bond for B(t, t+n+m), sell B(t,t+n+m)
B(t,t+n)

n bonds for B(t, t+n)

at t+n: the n bond matures B(t+ n, t+ n) = 1 so the investor must pay B(t,t+n+m)
B(t,t+n)

at t+n+m: the n+m bond matures

The cash flows of the strategy are given by:

at t: −1B(t, t+ n+m) + B(t,t+n+m)
B(t,t+n)

B(t, t+ n) = 0

at t+n: −B(t,t+n+m)
B(t,t+n)

at t+n+m: the investor gets B(t+ n+m, t+ n+m) = 1

So basically with this strategy the investor can lock in the cash-flows of a m year bond
n years ahead. The continuous compound yield of this strategy also called the forward rate
is by given by:

ft(n,m) = − 1

m
ln(

B(t, t+ n+m)

B(t, t+ n)
) =

1

m
(− ln(B(t, t+ n+m)) + ln(B(t, t+ n))

=
1

m
(−n+m

n+m
ln(B(t, t+n+m))−−n

n
ln(B(t, t+n)) =

1

m
((m+n)yt(n+m)−nyt(n)) (7)

Equation (7) will be used for constructing the forward rates out of the yield curve. The in-
stantaneous forward rate is the limit as m goes to zero17 (recall the definition of differential
quotient).:

ft(n, 0) = lim
m→0

ft(n,m) = −∂2 ln(B(t, t+ n))

Integrating the last equation and using (6) we get:

yt(n) =
1

n

� n

0

ft(x, 0)dx

16y(t, T ) = y(t, t+ n) = − ln(B(t,t+n))
t+n−t = − ln(B(t,t+n))

n
17A standard assumption in financial mathematics is that the price of a zero coupon bond B(t, T ) is

continuous in the first argument and continuously differentiable in the second. ∂2 denotes the derivative of
a function with respect to the second argument.

12



and due to (6), it follows

B(t, t+ n) = e−nyt(n) = e−
� n
0 ft(x,0)dx (8)

Note that ft(0, 0) (the instantaneous interest rate at time t) corresponds to the short rate
introduced in the short rate section18.

Yield curve:

For estimating the yield curve we need a functional form to fit to the observed data. The
function used by Gürkaynak, Sack and Wright is an extended Nelson-Siegel function, so the
instantaneous forward curve at time t is given through19:

ft(n, 0) = β0,t + β1,te
−( n

τ1,t
)
+ β2,t(

n

τ1,t
)e

−( n
τ1,t

)
+ β3,t(

n

τ2,t
)e

−( n
τ2,t

)

using the formula from above and integrating we get the formula for the yield curve:

yt(n) = β0,t + β1,t
1− e

−( n
τ1,t

)

( n
τ1,t

)
+ β2,t(

1− e
−( n

τ1,t
)

( n
τ1,t

)
− e

−( n
τ1,t

)
) + β3,t(

1− e
−( n

τ2,t
)

( n
τ2,t

)
− e

−( n
τ2,t

)
) (9)

Gürkaynak, Sack and Wright fit the theoretical bond prices given by (8) and (9) to the
observed bond prices of a given day. This is done by minimizing the squared difference
between the theoretical and observed prices with respect to (β1,t, β2,t, β3,t, τ1,t, τ2,t). For a
fixed t we observe Bo(t, T1), ..., B

o(t, Tp) in the US treasury market and solve the following
minimization problem (ns = Ts − t):

min
β1,t,β2,t,β3,t,τ1,t,τ2,t

p�
s=1

(Bo(t, t+ ns)− e−nsyt(ns))2

where yt(n) is given by (9). Gürkaynak, Sack and Wright publish the resulting parameters
β1,t, β2,t, β3,t, τ1,t, τ2,t for every day. This means we do not need to fit but just use the pub-
lished parameters. For the GATSM and SRTSM it is sufficient to use a monthly time period,
therefore we pick out the parameters for every month end (we use a monthly grid for t).
Out of these parameters the forward rates are constructed using equation (9) and (7).

4 Gaussian affine term structure model, GATSM

4.1 The GATSM model

Next I present the standard Gaussian affine term structure model GATSM. The GATSM is a
discrete time model and you can think about it as discretely sampled continuous time model.
It is the workhorse model of affine term structure model due to its easy implementation and

18We have different pricing formulas: B(t, T ) = EQ(e−
� T
t

rsds|Ft) = EQ(e−
� T
t

fs(0,0)ds|Ft) =

e−
� T−t
0

ft(x,0)dx

19if we set β3,t = 0 we end up at the normal Nelson-Siegel yield curve.
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Figure 2: Forward rates created from Gurkaynak, Sack and Wright data set.

structure. In the next section we will extend it and derive the shadow rate term structure
model. For the GATSM and SRTSM we use a monthly time grid. This means if t goes to t
+ 1 a step of one month is made. The GATSM is given by:

rt = δ0 + δ1Xt (10)

with δ0 ∈ R, δ1 ∈ Rn. rt is the short rate (compare with rt in the Affine interest rate struc-
ture model section). The dynamics of the 3 dimensional state variable Xt ∈ R3, under the
real world measure P, are given by the following VAR(1) (compare with (4)):

Xt+1 = µ+ ρXt + Σ"t+1 (11)

with µ ∈ R3, ρ ∈ R3×3, Σ ∈ R3×3 a lower triangular and "t ∼ N(0, I). It is common know-
ledge in the financial literature that 3 state variables are sufficient and extra dimensions for
the state do not add much explanatory power to the model (see Wu and Xia [5]). Analogous
to the continuous time short rate models the Q dynamics are characterised by the stochastic
discount factor (compare with equation (2))20:

20Suppose you want to discount from T = t+ n to t, where n ∈ N. Then we have to use:

T	
i=t

M̃i = e−
�n−1

j=0 rt+j+
�n−1

j=0 λ�
t+j�t+j+1− 1

2

�n−1
j=0 λ�

t+jλt+j

14



ln M̃t+1 = −rt + λ
t"t+1 − 1

2
λ
tλt

with λt given by:

λt = λ0 + λ1Xt

with λ0 ∈ R3 and λ1 ∈ R3×3. According to Wu and Xia [5] the Q dynamics are given by
(compare with Duffee (2002)[17], [6] and (5)):

Xt+1 = µ+ ρXt + Σ("t+1 + λt − λt) = µQ + ρQXt + Σ"Qt+1 (12)

with µQ = µ− Σλ0, ρ
Q = ρ− Σλ1 and "Qt = "t + λt−1

4.2 Derivation of forward prices in the GATSM:

Next we derive a formula how the short rate or equivalently the state Xt determines the
forward rates. This formula will be used as observation equation when estimating the model
with the Kalman filter. First we need to calculate the conditional moments of the short rate
before we can derive the final formula for the forward rate.
So we solve the rt equation recursively to get a handy representation for the calcula-
tions of conditional moments. For convenience I will slightly abuse notation and write
"t=̂Σ"t ∼ N(0,ΣΣ):

rt+n = δ0 + δ1Xt+n = δ0 + δ1(µρXt+n−1 + "t+n) = δ0 + δ1µρ(µ+ ρXt+n−2 + "t+n−1) + δ1"t+n =

= ... = δ0 + δ1

n−1�
j=0

ρjµ+ δ1ρ
nXt + δ1

n−1�
j=0

ρj"t+n−j

or analogue with the Q dynamics of the state variable:

rt+n = δ0 + δ1

n−1�
j=0

(ρQ)jµQ + δ1(ρ
Q)nXt + δ1

n−1�
j=0

(ρQ)j"Qt+n−j (13)

Next we define the following quantities:

ān := δ0 + δ1

n−1�
j=0

(ρQ)jµQ

an := ān − 1

2
δ1(

n−1�
j=0

(ρQ)j)ΣΣ(
n−1�
j=0

(ρQ)j)δ1

bn := δ1(ρ
Q)n

This allows us to write rt+n = ān + bnXt + δ1
�n−1

j=0 (ρ
Q)j"Qt+n−j. Next we compute the

conditional moments of the shadow rate, for convenience we will write for the conditional

as dicount factor since M̃t discounts just one period. This can be interpreted as discretely sampled discount
factor from the continous case.
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expectation and variance, EQ
t (X) := EQ(X|Ft) and VarQt (X) := VarQ(X|Ft):

EQ
t (rt+n) = EQ

t (ān + bnXt + δ1

n−1�
j=0

(ρQ)j"Qt+n−j) = ān + bnXt + δ1

n−1�
j=0

(ρQ)jEQ
t ("

Q
t+n−j)

where we used that ān + bnXt is Ft = σ("s : ∀s ∈ N, s ≤ t) measurable with respect to the
natural Filtration generated by the "t. Furthermore since "t is i.i.d. and normal distributed
it follows EQ

t ("t+s) = EQ("t+s) = 0 ∀s ∈ N : s > 0 due to the independence. Therefore we get:

EQ
t (rt+n) = ān + bnXt (14)

Next we compute the conditional variance:

VarQt (rt+n) = VarQt (δ1
n−1�
j=0

(ρQ)j"Qt+n−j) = δ1Var
Q
t (

n−1�
j=0

(ρQ)j"Qt+n−j)δ1 =

due to the independence of the "t we get:

= δ1

n−1�
j=0

VarQt ((ρQ)j"
Q
t+n−j)δ1 = δ1

n−1�
j=0

(ρQ)jΣΣ((ρQ))jδ1 =: (σQ
n )

2

Now we want to show the following equality:

1

2
(VarQt (

n�
j=1

rt+j)− VarQt (
n−1�
j=1

rt+j)) = ān − an (15)

where the right hand side is given by ān − an = 1
2
δ1(

�n−1
j=0 (ρ

Q)j)ΣΣ(
�n−1

j=0 (ρ
Q)j)δ1.

Proof of equation (15):

First we observe that VarQt (
�n

j=1 rt+j) = VarQt (
�n

j=1 δ

1

�j−1
i=0 (ρ

Q)i"Qt+j−i) due to equation
(13). The Ft measurable terms āj + bjXt drop out since they are like constants.
Furthermore we can write:

n�
j=1

δ1

j−1�
i=0

(ρQ)i"Qt+j−i

as the sum of the entries of the following matrix:
define Aj :=

�j−1
i=0 (ρ

Q)i and collecting terms in the diagonals where the " have the same
index, we get:

n�
j=1

δ1

j−1�
i=0

(ρQ)i"Qt+j−i = δ1

n�
j=1

Aj"
Q
t+n+1−j

Using the equation above and the independence of "Qt with "Qs ∀s �= t we get:

VarQt (
n�

j=1

rt+j) = VarQt (δ1
n�

j=1

Aj"
Q
t+n+1−j) = δ1

n�
j=1

AjΣΣ
A

jδ1
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i = 0 i = 1 i = 2 . . . i = n-1

j = 1 I"Qt+1

+

j = 2 I"Qt+2 + ρQ"Qt+1

+

j = 3 I"Qt+3 + ρQ"Qt+2 + (ρQ)2"Qt+1

+ + +
...

...
...

. . .

+ +

j = n I"Qt+n + ρQ"Qt+n−1 + . . . + (ρQ)n−2"Qt+2 + (ρQ)n−1"Qt+1

Inserting the equation from above into the left hand side of (15) yields:

1

2
(VarQt (

n�
j=1

rt+j)−VarQt (
n−1�
j=1

rt+j)) =
1

2
δ1AnΣΣ

A
nδ1 =

1

2
δ1(

n−1�
j=0

(ρQ)j)ΣΣ(
n−1�
j=0

(ρQ)j)δ1 = ān−an

This is the equation (15) we wanted to show.
Now we have everything in place to derive the formula for the forward rates in the GATSM.

Derivation of forward formula in GATSM:

Note that in a discrete setting we have (see (3) and (6)):

n·yt(n) = n

n
−ln(B(t, t+n)) = − ln(EQ

t (e
− � T

t rsds)) = − ln(EQ
t (e

− � n
0 rt+sds))=̂−ln(EQ

t (e
−�n−1

j=0 rt+j0))

The forward rate between t+n and t+n+1 is given by (see (3), (6) and (7)):

ft,n,n+1 = ft(n, n+1) = (n+1)yt(n+1)−nyt(n) = − ln(EQ
t (e

−�n
j=0 rt+j))+ln(EQ

t (e
−�n−1

j=0 rt+j)) =

using the approximation ln(E(eX)) ≈ E(X) + 1
2
Var(X)21 which is accurate for normal dis-

tributed random variables since the moment generating function of a normal variable is
E(etX) = eE(X)t+ 1

2
Var(X)t2

= − ln(e−rtEQ
t (e

−�n
j=1 rt+j))+ln(e−rtEQ

t (e
−�n−1

j=1 rt+j)) = − ln(EQ
t (e

−�n
j=1 rt+j))+ln(EQ

t (e
−�n−1

j=1 rt+j)) =

21To see this define the cumulant generating function of X by κX(t) = ln(E(etX)) = ln(Mx(t)) where

MX(t) denotes the moment generating function. We observe that ∂tκX(t)|t=0 = ∂tMX(t)
MX(t) |t=0 = E(X) and

∂2
t κX(t)|t=0 =

∂2
t MX(t)MX(t)−(∂tMX(t))2

MX(t)2 |t=0 = E(X2) − E(X)2 = Var(X) where we used that E(Xn) =

∂n
t MX(t)|t=0. Next we approximate the kumulant with a Taylor expansion of second order around the

support point t0 = 0 and get:

κX(t) ≈ κX(0) + ∂tκX(0)t+
∂2
t κX(0)

2
t2 = E(X)t+

Var(X)

2
t2

In the end it follows:

ln(E(eX)) = κX(1) ≈ E(X) +
Var(X)

2
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= −EQ
t (−

n�
j=1

rt+j)− 1

2
VarQt (−

n�
j=1

rt+j) + EQ
t (−

n−1�
j=1

rt+j) +
1

2
VarQt (−

n−1�
j=1

rt+j) =

using EQ
t (rt+n) = ān+ bnXt (14) and

1
2
(VarQt (

�n
j=1 rt+j)−VarQt (

�n−1
j=1 rt+j)) = ān− an (15)

gives:

= EQ
t (rt+n)− 1

2
(VarQt (

n�
j=1

rt+j)− VarQt (
n−1�
j=1

rt+j)) = ān + bnXt − (ān − an) (16)

Therefore we get the following formula for the forward rates in the GATSM:

ft,n,n+1 = an + bnXt (17)

4.3 Summary of GATSM

In the GATSM we have the equations (11) and (17), the others where just used to derive the
forward rate formula. I present them like they are used in the Kalman filter problem. The
transition equation is given by the dynamics of the state Xt under the real world measure P
(see (11)):

Transition equation:

Xt+1 = µ+ ρXt + Σ"t+1 (18)

with "t ∼ N(0,ΣΣ). (17) is used to derive the observation equation. We use seven different
maturities (3months, 6m, 1year, 2y, 5y, 7y, 10y) = (n1, n2, ..., n7). Due to market inefficien-
cies and pricing errors we have to modify (17) by a stochastic error term νt. The observed
forward rates are generated by the procedure described in the section 3. Putting everything
together the observation equation is given through:

Measurement/ observation equation:

f o
t = a+ bXt + νt (19)

where f o
t = (f o

t,n1,n1+1, ..., f
o
t,n7,n7+1)

 ∈ R7 is the stacked vector with the forward rates for
the seven maturities and the 7 dimensional measurement error νt ∼ N(0, ωI7), ω ∈ R+,
a = (an1 , ..., an7)

 ∈ R7 and b = (bn1 , ..., bn7)
 ∈ R7×3. As a starting point I use x0 = 0 and

P0 = diag(100, 100, 100
144

) like Wu and Xia [5].
an, ān and bn are given by:

ān := δ0 + δ1

n−1�
j=0

(ρQ)jµQ

an := ān − 1

2
δ1(

n−1�
j=0

(ρQ)j)ΣΣ(
n−1�
j=0

(ρQ)j)δ1
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bn := δ1(ρ
Q)n

5 Shadow rate term structure model, SRTSM

5.1 The SRTSM model

The shadow rate term structure model is given by the following equations. Everything is
completely analogous except for the nominal short rate that is given by:

rt = max(r̄, st) (20)

where r̄ is the lower bound (i.e. a small positive constant, for the estimation I use r̄ = 0.25).
The shadow rate is defined like the short rate in the GATSM

st = δ0 + δ1Xt (21)

with δ0 ∈ R, δ1 ∈ Rn. It follows that we have the formulas (13), (14) and (15) for the shadow
rate st since everything works out completely analogously. The dynamics of the state vari-
able Xt is given through the following VAR(1):

Xt+1 = µ+ ρXt + Σ"t+1 (22)

with "t ∼ N(0, I). Analogue to the continuous time short rate models and the GATSM the
Q dynamics are given by:

Xt+1 = µ+ ρXt + Σ("t+1 + λt − λt) = µQ + ρQXt + Σ"Qt+1 (23)

with µQ = µ− Σλ0, ρ
Q = ρ− Σλ1 and "Qt = "t + λt−1

5.2 Derivation of the forward rate formula

We notice that we have (16) for the forward rate between t+n and t+n+1 in the SRTSM
too. Since we can follow the same reasoning we used to obtain (16), only this time the
approximation is not exact. In the SRTSM the nominal short rate rt (and the sum of it) is
not normal distributed due to the maximum with r̄. Therefore we have:

f o
t,n,n+1 ≈ EQ

t (rt+n)− 1

2
(VarQt (

n�
j=1

rt+j)− VarQt (
n−1�
j=1

rt+j)) (24)

Next we calculate EQ
t (rt+n) and approximate the term with the variances. It holds that

rt+n = max(r̄, st+n) with st+n|Ft ∼ N(ān + bnXt, (σ
Q
n )

2) (under the measure Q), for con-
venience I write µn = ān + bnXt and define:

αn :=
r̄ − µn

σQ
n
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EQ
t (rt+n) = r̄EQ

t (1{st+n≤r̄}) + EQ
t (st+n1{st+n>r̄}) = r̄Φ(αn) + EQ

t (st+n1{st+n>r̄}) (25)

due to EQ
t (1{st+n≤r̄}) = Qt({st+n ≤ r̄}) = Qt({ st+n−µn

σQ
n

≤ r̄−µn

σQ
n

}) = Φ(αn) where Φ(x) denotes

the distribution function of a standard normal random variable. We write the second term
in (25) as integral and using the transformation y = x−µn

σQ
n

with dx = σQ
n dy it follows:

EQ
t (st+n1{st+n>r̄}) =

1√
2πσQ

n

� ∞

r̄

xe
−( x−µn√

2σ
Q
n

)2

dx =
1√
2π

(σQ
n

� ∞

αn

ye−
y2

2 dy + µn

� ∞

αn

e−
y2

2 dy) =

We denote the density function of a standard normal distribution by φ(x) := 1√
2π
e−

x2

2 and

observe ∂xφ(x) = −xφ(x). Using this we get:

= σQ
n

� ∞

αn

−∂yφ(y)dy+µn(1−Φ(αn)) = σQ
n (−φ(∞)+φ(αn)+µnΦ(−αn) = σQ

n φ(−αn)+µnΦ(−αn)

where we used the symmetry of the standard normal distribution 1− Φ(αn) = Φ(−αn) and
φ(αn) = φ(−αn). Therefore we continue from (25):

EQ
t (rt+n) = r̄(1−Φ(−αn)) + σQ

n φ(−αn) + µnΦ(−αn) = r̄ + σQ
n (

µn − r̄

σQ
n

Φ(−αn) + φ(−αn)) =

= r̄ + σQ
n (−αnΦ(−αn) + φ(−αn)) = r̄ + σQ

n g(−αn) (26)

with the function g(x) := xΦ(x) + φ(x).
For the second term in equation (24) we use the following approximations:

VarQt (rt+n) ≈ Qt(st+n ≥ r̄)VarQt (st+n)

CovQt (rt+j, rt+n) ≈ Qt(st+j ≥ r̄, st+n ≥ r̄)CovQt (st+j, st+n) =

using Qt(st+j ≥ r̄|st+n ≥ r̄) ≈ 1 for j ∈ {1, ..., n− 1} gives:

= Qt(st+j ≥ r̄|st+n ≥ r̄)Qt(st+n ≥ r̄)CovQt (st+j, st+n) ≈ Qt(st+n ≥ r̄)CovQt (st+j, st+n)

Wu and Xia (2016) [5] showed through simulation studies and analytic analysis that the
approximation error for the SRTSM is just a few basis points and therefore negligible.
We also need the following relation:

VarQt (
n�

j=1

rt+j) = VarQt (
n−1�
j=1

rt+j+rt+n) = VarQt (
n−1�
j=1

rt+j)+2CovQt (
n−1�
j=1

rt+j, rt+n)+VarQt (rt+n)

(27)

using equation (27) from above, it follows:

1

2
(VarQt (

n�
j=1

rt+j)− VarQt (
n−1�
j=1

rt+j)) =
1

2
(2

n−1�
j=1

CovQt (rt+j, rt+n) + VarQt (rt+n)) ≈

where we used equation (27) and (15) for the shadow rate st for the last equality below

≈ Qt(st+n ≥ r̄)
1

2
(2

n−1�
j=1

CovQt (st+j, st+n) + VarQt (st+n)) = Φ(−αn)(ān − an) (28)
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since Qt(st+n ≥ r̄) = Qt(
st+n−µn

σQ
n

≥ r̄−µn

σQ
n

) = 1− Φ( r̄−µn

σQ
n

) = Φ(−αn) with αn := r̄−µn

σQ
n

defined

as above.

Furthermore we observe that ∂xg(x) = Φ(x)22. Now everything is in place to derive the
observation equation of the SRTSM. Continuing from equation (24) using (26) and (28):23

ft,n,n+1 = r̄ + σQ
n g(−αn)− Φ(−αn)(ān − an) = r̄ + σQ

n g(
µn − r̄

σQ
n

) + Φ(
µn − r̄

σQ
n

)(an − ān) =

= r̄ + σQ
n g(

ān + bnXt − r̄

σQ
n

) + σQ
n

∂g( ān+b�nXt−r̄

σQ
n

)

∂ān
(an − ān) ≈ r̄ + σQ

n g(
an + bnXt − r̄

σQ
n

) (29)

Equation (29) is the final formula for the forward rates in the SRTSM. For a short compar-
ison of the GATSM and SRTSM we plot the function g(x) in Figure 3:

Figure 3: Plot of g(x) = x · Φ(x) + φ(x)

In Figure 3 we note that for x ≥ 2 g(x) ≈ x. Therefore if an+b�nXt−r̄

σQ
n

≥ 2 ∀t, n the SRTSM

22∂xg(x) = ∂x(xΦ(x) + φ(x)) = Φ(x) + xφ(x)− xφ(x) = Φ(x) using ∂xφ(x) = −xφ(x) once more

23Using σQ
n

∂g(
ān+b�nXt−r̄

σ
Q
n

)

∂ān
= σQ

n Φ(
ān+b�nXt−r̄

σQ
n

) 1

σQ
n

= Φ(µn−r̄

σQ
n

) and the first order Taylor approximation

around ān of h(an) := σQ
n g(

an+b�nXt−r̄

σQ
n

) ≈ σQ
n g(

ān+b�nXt−r̄

σQ
n

) +
∂σQ

n g(
ān+b�nXt−r̄

σ
Q
n

)

∂ān
(an − ān)
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equals the GATSM24. We will see empirically that this corresponds to times where the ef-
fective federal funds rate is not stuck at the lower bound.

5.3 Summary of SRTSM

Here I present the shadow rate term structure model equations. The equations (22) and
(29) are used for the implementation. The other equations especially the one with the Q
dynamics where just used to derive the forward rate formula. Like in the GATSM summary
I present the SRTSM in the form it is used for the Kalman filter. Like in the GATSM
the forward rates for the seven different maturities are used as observation. Furthermore
due to market inefficiencies, pricing errors and the approximations used in the derivation,
the forward rate formula has to be extended with a random error term νt. The transition
equation is again given by the P dynamics of Xt:

Transition equation:

Xt+1 = µ+ ρXt + Σ"t+1 (30)

Observation/ measurement equation:

f o
t = r̄ι7 +G(Xt) + νt (31)

where f o
t = (f o

t,n1,n1+1, ..., f
o
t,n7,n7+1)

 ∈ R7 is the stacked vector with the forward rates for
the seven maturities and the 7 dimensional measurement error νt ∼ N(0, ωI7), ω ∈ R+,

G(Xt) := (σQ
n1
g(

an1+b�n1
Xt−r̄

σQ
n1

), ..., σQ
n7
g(

an7+b�n7
Xt−r̄

σQ
n7

)) ∈ R7 and ι7 = (1, ..., 1) ∈ R7. As a

starting point I use x0 = 0 and P0 = diag(100, 100, 100
144

) like Wu and Xia [5].
an, ān, bn and g(x) are given by:

ān := δ0 + δ1

n−1�
j=0

(ρQ)jµQ

an := ān − 1

2
δ1(

n−1�
j=0

(ρQ)j)ΣΣ(
n−1�
j=0

(ρQ)j)δ1

bn := δ1(ρ
Q)n

g(x) := x · Φ(x) + φ(x)

where Φ(x) is the distribution function and φ(x) the density function of a standard normal
random variable. Like Wu and Xia [5] I use r̄ = 0.25 as a lower bound for the nominal short
rate in the SRTSM.

24Due to r̄+ σQ
n g(

an+b�nXt−r̄

σQ
n

) ≈ r̄+ σQ
n

an+b�nXt−r̄

σQ
n

= an + b�nXt if the argument of the function g is larger

then 2.
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6 Kalman Filters and extension

In this section I will summarize the theory behind Kalman filters. They are very popular
in the literature due to their easy and intuitive implementation. The section is based on
the books of Dan Simon, Optimal State Estimation [20] and Robert Shumway and David
Stoffer, Time series analysis and its applications [21].
First I will present the linear filter problem and then the derivation of the simple Kalman fil-
ter as minimal variance solution to the given problem. The simple Kalman filter is presented
in a discrete time setting as it is used for estimating the Gaussian affine term structure model
(GATSM). After that I introduce the extended Kalman filter for non-linear filter problems
like it appears in the shadow rate term structure model (SRTSM).

6.1 The filter problem

Here I will present the filter problem to which the Kalman filter is the optimal solution. The
objective is to estimate a non-observable n dimensional state variable xt ∈ Rn where we can
only observe noisy d dimensional measurements yt ∈ Rd that are linear transformations of
the state. The basic set-up is that we have a measurement and a transition equation. The
transition equation gives the dynamics of the state variable and the measurement equation
gives the link between observation and state.
The transitional dynamic of the state is given through the following equation:

xt+1 = µ+ Ftxt + wt (32)

where µ ∈ Rn, Ft ∈ Rn×n ∀t describes the influence of the last state on the next one and
wt ∼ N(0, Qt) is the stochastic noise term. The intercept µ is only relevant for the a priori
and a posteriori predictions since for all covariance terms the constant µ drops out.

The measurement equation is given by:

yt = c+Htxt + vt (33)

where c ∈ Rd, Ht ∈ Rd×n ∀t and the noise term vt ∼ N(0, Rt) is normal distributed. Further-
more we can demean the measurements y∗t = yt−c since the observation intercept c is known
in the filter problem. If we have a prediction for y∗t we can easily get the prediction for yt by
adding c. Therefore without loss of generality we can set c = 0. Furthermore we assume that
wt and vt are independent and therefore uncorrelated25. Out of this assumption it follows
that (vt, wt) is joint normal distributed. Another assumption we have to make is that wt

and ws are uncorrelated for t �= s and the same for the measurement noise. Furthermore
we have to know the initial distribution x0 of the state (since it is normal distributed it is
suffice to know x̂0|0 := E(x0) and P̂0|0 := E(x0x


0)− x̂0|0x̂

0|0) and the initial state is assumed
to be uncorrelated with the noise terms wt, vt. To summarize this assumption the following
holds:

E(wtw

s) = Qtδt−s (34)

E(vtvs) = Rtδt−s (35)

25If vt and wt follow a joint normal distribution, independence is equivalent to being uncorrelated.
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E(wtv

s) = 0 ∀s, t ∈ N (36)

Cov(x0v

s) = Cov(x0w


s) = 0 ∀s, t ∈ N (37)

where δt−s stands for the Kronecker delta (δt−s = 1 for t = s 0 otherwise). The goal is
to get the best estimates for the normal distributed state xt given only realisations of the
measurements y1, ..., yt.

So first we analyse the Kalman filter in a setting where we assume that the parameters
(µ, Ft, c,Ht, Rt, Qt) are known then we discuss how to estimate them if they are not known.
Furthermore for the GATSM and SRTSM we have the simplification Ft = F and Ht = H
(the second is valid only for the GATSM). The solution of the given filter problem is a re-
cursive algorithm that consists of a prediction step where xt is predicted with all information
up to time t (y1, ..., yt−1) and an update step where we update the prediction when the new
measurement yt comes in.

6.2 Derivation of the Kalman filter

The goal of the Kalman filter is to compute the conditional distribution of xt given the
information up to time t-1 or t, i.e. it is given the Information set Ys := (y1, ..., ys) for s =
t-1 or t respectively.
Due to the linear setup and the Gaussian assumption on the initial state and the noise
sources, it follows that the random variables (x1, ..., xt, y1, ..., yt) are jointly normal distrib-
uted. This implies that the conditional distribution xt|Ys is a normal distribution with
expectation E(xt|Ys) and variance Var(xt|Ys)

26.
Furthermore the conditional expectation is linear and thus given by the projection of xt on
the space span{1, y1, ..., ys}. The conditional variance Var(xt|Ys) is constant and equal to
the unconditional variance of the projection error xt − E(xt|Ys) (see Appendix).
For convenience we will use the following notation:

• x̂t|t = E(xt|y1, ..., yt) a posteriori estimate of xt that uses all information up to t in-
cluding t, updated state

• x̂t|t−1 = E(xt|y1, ..., yt−1) a priori estimate of xt that uses all information up to t,
predicted state

• x̃t|k = xt − x̂t|k estimation error

• Pt|t = Vart(xt − x̂t|t) = Var(xt − x̂t|t) = E(x̃t|tx̃
t|t) a posteriori error covariance matrix

or error variance of updated state estimation

• Pt|t−1 = Vart−1(xt− x̂t|t−1) = Var(xt− x̂t|t−1) = E(x̃t|t−1x̃

t|t−1) a priori error covariance

matrix or error variance of predicted state estimation

• ŷt|t−1 = Htx̂t|t−1 predicted measurement or if we incorporate the intercept ŷt|t−1 =
c+Htx̂t|t−1

26For the normal distribution it holds that the whole distribution is determined by the expectation and
variance.
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• ỹt = yt− ŷt|t−1 = yt−Htx̂t|t−1 prediction or forecast error (residuals), if we incorporate
c we have to subtract it too

• St = Var(ỹt) variance matrix of the prediction errors/ residuals

Furthermore we notice that due to the Gaussian assumption (for joint normal random vari-
ables it holds that independence is equivalent to being uncorrelated) we have E(x̃t|kx̃

t|k|y1, ..., yk) =
E(x̃t|kx̃

t|k) since the projection theorem (see Appendix and [24]) states that x̃t|k is orthogonal27

(uncorrelated) to the space span{1, y1, ..., yk} (see Theorem 1 in Appendix) we are projecting
on. Due to the normality we get the independence and can drop the condition.

To get the a priori estimate under the assumption that the a posteriori estimate of the
previous step is known we take the conditional expectation of the transition equation (31):

x̂t|t−1 = E(xt|Yt−1) = µ+ Ft−1E(xt−1|Yt−1) + E(wt−1|Yt−1) = µ+ Ft−1x̂t−1|t−1 (38)

where we used E(wt−1|Yt−1) = E(wt−1) = 0 for the last equation. This holds due to the
independence of wt to vt and itself for all lags �= 0. Since into Yt−1 enter only the vt and the
ws with s < t− 1. Completely analogously we get:

ŷt|t−1 = E(yt|Yt−1) = c+HtE(xt|Yt−1) + E(vt|Yt−1) = c+Htx̂t|t−1

Therefore it follows ỹt = yt− ŷt|t−1 = yt−Htx̂t|t−1− c. Next we want to calculate the a priori
error covariance matrix.

(xt − x̂t|t−1) = (Ft−1xt−1 + wt−1 − Ft−1x̂t−1|t−1) = (Ft−1(xt−1 − x̂t−1|t−1) + wt−1)

Therefore we get the following for the error variance:

Pt|t−1 = Cov(xt−x̂t|t−1) = Cov(Ft−1(xt−1−x̂t−1|t−1)+wt−1) = Cov(Ft−1(xt−1−x̂t−1|t−1))+Cov(wt−1) =

the last equality holds because (xt−1− x̂t−1|t−1) is uncorrelated with wt−1. In the end we get:

Pt|t−1 = Ft−1Cov(xt−1 − x̂t−1|t−1)F

t−1 +Qt = Ft−1Pt−1|t−1F


t−1 +Qt (39)

Next we calculate the variance matrix St of the residuals ỹt:

St = Var(ỹt) = Var(yt −Htx̂t|t−1) = Var(Htxt + vt −Htx̂t|t−1) =

(xt − x̂t|t−1) is uncorrelated with vt, therefore:

= Var(Ht(xt−x̂t|t−1)+vt) = Var(Ht(xt−x̂t|t−1))+Var(vt) = HtVar(xt−x̂t|t−1)H

t+Rt = HtPt|t−1H


t+Rt

The covariance between the residuals and the state are given by:

Cov(xt, ỹt) = Cov((xt−x̂t|t−1)+x̂t|t−1, yt−Htx̂t|t−1) = Cov((xt−x̂t|t−1)+x̂t|t−1, Htxt−Htx̂t|t−1+vt) =

= Cov((xt− x̂t|t−1)+ x̂t|t−1, Ht(xt− x̂t|t−1)+ vt) = Cov(xt− x̂t|t−1, Ht(xt− x̂t|t−1)) = Pt|t−1H


27With respect to < X,Y >:= E(XY ) on L2.
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where the second equality in the last equation is due to the fact that (xt − x̂t|t−1) and vt are
uncorrelated due to the assumed correlation structure and (xt − x̂t|t−1) is uncorrelated to
x̂t|t−1 due to the projection theorem. Now we calculate the posteriori expectation x̂t|t using
theorem 1 (Appendix):

x̂t|t = E(xt|y1, ..., yt) = Prspan{1,y1,...,yt}xt = Prspan{1,y1,...,yt−1}xt + Prspan{ỹt}xt =

The last equality is due to the fact that span{1, y1, ..., yt} = span{1, y1, ..., yt−1}⊕span{ỹt}28
since due to the projection theorem ỹt is orthogonal to span{1, y1, ..., yt−1}, therefore we get
the direct sum. Using that (xt, ỹt) is joint normal we can use Theorem 2 for the second term
Prspan{ỹt}xt = E(xt|ỹt).

= x̂t|t−1 +Ktỹt

where Kt = Cov(xt, ỹt)Var(ỹt)−1 = Pt|t−1H
S−1

t . The posteriori variance can also be com-
puted using Theorem 2 or using xt = xt − x̂t|t + x̂t|t = (xt − x̂t|t) + x̂t|t−1 + Ktỹt ⇔
x̃t|t−1 = xt − x̂t|t−1 = (xt − x̂t|t) +Ktỹt

Pt|t−1 = Cov(x̃t|t−1) = Cov(x− x̂t|t) +KtCov(ỹt)K 
t = Pt|t +KtStK


t

where we used that due to the projection theorem x− x̂t|t is orthogonal to ỹt. Inserting the
expression obtained for Kt and rearranging the terms gives:

Pt|t = Pt|t−1 −KtStK

t = Pt|t−1 −KtH


tPt|t−1 = (I −KtH


t)Pt|t−1

6.3 Summary of simple Kalman filter

Here I will quickly summarize what we have shown so far and describe the Kalman filter
algorithm step by step:
Given filter problem:

• xt+1 = µ+ Ftxt + wt

• yt = c+Htxt + vt

• vt ∼ N(0, Rt) and wt ∼ N(0, Qt),

• E(wtw

s) = Qtδt−s E(vtvs) = Rtδt−s and E(wtv


s) = 0 ∀s, t ∈ N

• x0 ∼ N(x̂0, P0)

• E(x0w

t) = E(x0w


t) = 0 ∀t

We initialise the algorithm with given x̂0|0 := x̂0, P0|0 := P0 then we recursively calculate:

28It is clear that span{1, y1, ..., yt−1} ⊕ span{ỹt} ⊆ span{1, y1, ..., yt} since ỹt = yt − ŷt|t−1 where ŷt|t−1 ∈
span{1, y1, ..., yt−1}. The other inclusion follows if we pick an element of span{1, y1, ..., yt} we can subtract
and ad ŷt|t−1 and then collect the terms in the right way.
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1) x̂t|t−1 = µ+ Ft−1x̂t−1|t−1

2) Pt|t−1 = Ft−1Pt−1|t−1F

t−1 +Qt

3) St = HtPt|t−1H

t +Rt

4) Kt = Pt|t−1H

tS

−1
t

5) ỹt = yt −Htx̂t|t−1 − c

6) x̂t|t = x̂t|t−1 +Ktỹt

7) Pt|t = (I −KtHt)Pt|t−1

This algorithm is easy to understand and to implement. It is called the simple Kalman filter.
In practice the filter is often initialized with x0 ∼ N(0, rI) with a suitable constant r > 0,
which corresponds to the uncertainty of the initial guess (the more uncertain the bigger r).
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6.4 Extended Kalman Filter

Now we want to solve a non-linear filter problem with an analogue algorithm. The idea is
pretty straight forward namely to linearise all non-linear functions, but in this setting we do
not know any more if the Kalman filter solution is the best (i.e. minimal variance) filter.
First I will present the non-linear filter problem and then the solution:

Extended filter problem:

• xt+1 = g(xt) + wt

• yt = f(xt) + vt

• vt ∼ N(0, Rt) and wt ∼ N(0, Qt),

• E(wtw

s) = Qtδt−s E(vtvs) = Rtδt−s and E(wtv


s) = 0 ∀s, t ∈ N

• x0 ∼ N(x̂0, P0)

where g ∈ C1(Rn,Rn) and f ∈ C1(Rn,Rd). If g and f are linear functions the extended
Kalman filter collapses to the simple one. The solution concept is to linearise the non-linear
functions with a first order taylor series approximation around the previous state. We ini-
tialize the algorithm with x̂0 =: x̂0|0, P0 =: P0|0. Then for given xt−1|t−1, Pt−1|t−1 we calculate:

Extended Kalman filter algorithm

1) x̂t|t−1 = g(x̂t−1|t−1)

2) Pt|t−1 = FtPt−1|t−1F

t +Qt

3) St = HtPt|t−1H

t +Rt

4) Kt = Pt|t−1H

tS

−1
t

5) ỹt = yt − f(x̂t|t−1)

6) x̂t|t = x̂t|t−1 +Ktỹt

7) Pt|t = (I −KtHt)Pt|t−1

with the matrices Ft =
∂g(x)
∂x

|x=x̂t−1|t−1
and Ht =

∂f(x)
∂x

|x=x̂t|t−1
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6.5 Parameter estimation of Kalman filter

So far we have assumed that all the parameters of the filter problem are known. But in our
applications specifically the Gaussian affine term structure model and the shadow rate term
structure model we face the problem that we only have the measurements (yt)

T
t=1 at hand.

So we have to estimate all the parameters of the filter problem. After we have estimated
them we want to use the state variable which is filtered with the estimated parameters to
calculate the short rate (GATSM) or the shadow rate (SRTSM). This estimation is done by
maximizing a likelihood function.
First I present the problem once again and then discuss the solution concept:

Given filter problem for GATSM:

• xt+1 = µ+ Fxt + wt

• yt = c+Hxt + vt

• vt ∼ N(0, R) and wt ∼ N(0, Q),

• E(wtw

s) = Qtδt−s E(vtvs) = Rtδt−s and E(wtv


s) = 0 ∀s, t ∈ N

• x0 ∼ N(x̂0, P0)

where the parameters are unknown and we only have (yt)
T
t=1 (i.e. for the GATSM and

SRTSM we use the forward rates from 01/01/1990 to 01/12/2013 as measurements). Note
that in this filter problem we have Rt = R, Qt = Q, Ft = F and Ht = H ∀t ∈ {1, ..., T} For
convenience we will use the following notation:

h(θ) := (µ, F, c,H,R,Q) (40)

where theta is the stacked vector with all unknown parameters (actually the initial state x0

and P0 are parameters too, but for the GATSM we do not incorporate them into h(θ) and
use x0 = 0 and P0 = rI). For a description of θ and the map h(·) see the next section 6.6.
We also write:

Yt = (y1, ..., yt)

where Yt is the information available up to time t inclusive t.

Now we observe that yt conditional on Yt−1 is normal distributed29:

yt|Yt−1 ∼ N(c+H x̂t|t−1, HPt|t−1H
 +R) = N(c+H x̂t|t−1, St) (41)

Therefore the density function is given by:

fyt|Yt−1(z|Yt−1, θ) =
1

(2π)
d
2 det(St)

1
2

exp(−1

2
(z − c−H x̂t|t−1)

S−1
t (z − c−H x̂t|t−1))

29To get the conditional moments either look to the derivation of the Kalman filter or calculate them again:
yt = c+Hxt+vt with E(yt|(Yt−1)) = c+HE(xt|(Yt−1))+E(vt|(Yt−1)) = cut+Hx̂t|t−1+E(vt) = c+Hx̂t|t−1

and Var(yt|(Yt−1)) = HVar(xt|(Yt−1))H
�+Var(vt|(Yt−1)) = HPt|t−1H

�+R due to the assumed correlation
structure and the gaussian assumption. For the extended Kalman filter the mean is replace by f(x̂t|t−1).
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Now we construct the likelihood function:

L(θ) =
T	
t=1

fyt|(Yt−1)(yt|Yt−1, θ)

Next we take the logarithm to get the log likelihood:

ln(L(θ)) =
T�
t=1

ln(fyt|(Yt−1)(yt|Yt−1, θ))

for convenience we drop the explicit dependence of the right hand side on θ

ln(L(θ)) =
T�
t=1

−d

2
ln(2π)− 1

2
ln(det(St))− 1

2
(yt − c−H x̂t|t−1)

S−1
t (yt − c−H x̂t|t−1)

Now we observe that ỹt = yt − c−H x̂t|t−1

ln(L(θ)) = −dT

2
ln(2π)− 1

2
(

T�
t=1

ln(det(St(θ))) + ỹt(θ)
S−1

t (θ)ỹt(θ)) (42)

Now we have everything in place to estimate θ with:

θ̂ = argmax
θ

ln(L(θ))

So for given θ we can evaluate the log likelihood function through running the Kalman filter
algorithm and constructing ln(L(θ)) with the residuals ỹt and the covariance matrices St.
To finish this section I will present the estimation of the parameters θ with pseudo-code
(" > 0 given tolerance):

1 guess an arbitrary θ(0)

2 run the Kalman filter algorithm for the filter problem given by (yt)
T
t=1 and θ(i) and get

(ỹt(θ
(i)), St(θ

(i))Tt=1

3 construct the log likelihood ln(L(θ(i)))

4 numerically update θ(i+1) with a suitable optimization algorithm

5 as long as ln(L(θ(i+1)))− ln(L(θ(i))) > " go to step 2

Note that the log likelihood can have multiple global maxima (this is the generic case). To
prevent this we have to make certain identification assumptions (i.e. restrictions) for θ to
prevent rotation, translation and rescaling of the parameters (see GATSM and SRTSM sec-
tion which identification assumptions are made for our specific models).
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6.6 The GATSM and SRTSM as filter problem

In the next paragraph I describe the connection between the GATSM model parameters and
the parameters used in the Kalman filter problem. So I summarize how the Kalman filter is
parametrized using θ = (µ, µQ, ρ, ρQ,Σ, ω, δ0, δ1) (Σ is a lower triangular matrix).
The GATSM:

• Xt+1 = µ+ FXt + wt corresponds to Xt+1 = µ(θ) + ρ(θ)Xt + Σ(θ)"t+1

• yt = c+Hxt + vt corresponds to f o
t = a(θ) + b(θ)Xt + νt

• "t ∼ N(0, I) and νt ∼ N(0, w(θ)I),

• E("t"s) = Iδt−s E(νtν 
s) = w(θ)Iδt−s and E("tν 

s) = E(x0w

t) = E(x0v


t) = 0 ∀s, t ∈

N

• x0 ∼ N(0, 100I)

where f o
t = (f o

t,n1,n1+1, ..., f
o
t,n7,n7+1)

 ∈ R7 is the stacked vector with the forward rates for
the seven maturities and the 7 dimensional measurement error νt ∼ N(0, ω(θ)I7), ω ∈ R+,
a = (an1 , ..., an7)

 ∈ R7 and b = (bn1 , ..., bn7)
 ∈ R7×3

Where an(θ), ān(θ) and bn(θ) are given by:

• ān(θ) := δ0 + δ1
�n−1

j=0 (ρ
Q)jµQ

• an(θ) := ān(θ)− 1
2
δ1(

�n−1
j=0 (ρ

Q)j)ΣΣ(
�n−1

j=0 (ρ
Q)j)δ1

• bn(θ)
 := δ1(ρ

Q)n

• ρ(θ) = ρ

• µ(θ) = µ

• Σ(θ) = Σ

• ω(θ) = ω

Next we repeat the task for the shadow rate model and show the parametrization of the
extended Kalman filter through θ.
The SRTSM:

• Xt+1 = µ+ FXt + wt corresponds to Xt+1 = µ(θ) + ρ(θ)Xt + Σ(θ)"t+1

• yt = G(xt) + vt corresponds to f o
t = r̄ι7 +G(Xt) + νt

• "t ∼ N(0, I) and νt ∼ N(0, w(θ)I),

• E("t"s) = Iδt−s E(νtν 
s) = w(θ)Iδt−s and E("tν 

s) = E(x0w

t) = E(x0w


t) = 0 ∀s, t ∈

N

• x0 ∼ N(0, 100I)

where G(Xt) := (σQ
n1
g(

an1+b�n1
Xt−r̄

σQ
n1

), ..., σQ
n7
g(

an7+b�n7
Xt−r̄

σQ
n7

)) ∈ R7 and ι7 = (1, ..., 1) ∈ R7. The

rest is like for the GATSM.
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7 Estimation of the shadow rate and short rate

7.1 GATSM short rate estimation

The estimation is done through maximizing the likelihood function described in the Kalman
filter section. The transition equation is given by (18) and the observation equation is given
by (19).
First we have to make identification assumptions such that the parameters θ = (µ, µQ, ρ, ρQ,Σ, ω, δ0, δ1)
become identifiable. We will restrict the parameters under the risk neutral or pricing meas-
ure Q similar to Joslin, Singleton, and Zhu (2011)[9] and Hamilton and Wu (2014)[10]. For
this we assume that Xt follows the VAR(1) given by equation (18) under the real world
measure P and also under Q. We assume fixed parameters θ. When we apply the affine
transformation X∗

t = C + D−1Xt
30 with C ∈ Rn and an invertible matrix D ∈ Rn×n it

follows:

X∗
t = C+D−1Xt = C+D−1(µQ+ρQXt−1+"Qt ) = (C+D−1µQ)+D−1ρQDD−1Xt−1+D−1Σ"Qt =

using X∗
t−1 − C = D−1Xt−1

= (C +D−1µQ)+D−1ρQD(X∗
t−1−C)+D−1Σ"Qt = (I −D−1ρQD)C +D−1µQ+ ρ̃QX∗

t−1+ "̃Qt

with ρ̃Q := D−1ρQD, "̃Qt ∼ N(0, B) and B := D−1ΣΣ(D−1). B is a symmetric covariance
matrix (positive definiteness follows from the assumption that D is regular and ΣΣ is pos-
itive definite31), therefore we can take the cholesky decomposition of B = Σ̃Σ̃. We define
µ̃Q := (I − ρ̃Q)C +D−1µQ and get the following VAR for the transformed state:

X∗
t = µ̃Q + ρ̃QX∗

t−1 + Σ̃"Qt (43)

The short rate equation is transformed too:

rt = δ0 + δ1Xt = δ0 + δ1DD−1Xt = δ0 − δ1DC + δ1DX∗
t = δ̃0 + δ̃1


Xt∗ (44)

with δ̃0 := δ0 − δ1DC and δ̃1

:= δ1D. The observation equation is transformed too:

f o
t = a+ bXt + νt = a− bDC + bDX∗

t + νt = ã+ b̃X∗
t + νt (45)

Here we see that the model given by (43), (44) and (45) is observational equivalent to the ori-
ginal one described in the summary of GATSM section. Therefore given only the observation
f o
t we can not distinguish between those models, since Xt and X∗

t can both produce the same
observations. It follows that the parameters are not identifiable (i.e. multiple global maxima
of the likelihood function). To solve this problem we set restrictions for the Q parameters
such that the transformation with C,D is unique. We set D such that ρ̃Q is in real Jordan
form (you can think of diagonalising the given matrix ρQ). Creal and Wu (2015)[13] showed
that empirical results indicate, for our set-up when estimating term structure models with

30D−1 instead of D is used to make the argument why under the identification restrictions the transform-
ation is uniquely determined easier to see.

31∀x ∈ Rn/{0} x�D−1ΣΣ�(D−1)�x = ((D−1)�x)�ΣΣ((D−1)�x) > 0 ↔ (D−1)�x �= 0 which is true if D−1

is invertible therefore injective (only the zero vector is projected on the zero vector) and x�ΣΣx > 0 ∀x ∈
Rn/{0}.
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three state variable Xt ∈ R3, that there is a repeated eigenvalue with geometric multiplicity
1. To identify the intercept under the measure Q we set:

0 = µ̃Q = (I −DρQD−1)C +Dµ ⇔ C = −(I −DρQD−1)−1Dµ

The inversion of (I −D−1ρQD) is possible if we assume that ρ̃Q := D−1ρQD has eigenvalues
ρQ1 and ρQ2 smaller than 132. This corresponds to the stationarity assumption of VAR theory
and is a classic assumption in time series analysis. With this identification restriction C of
the transformation is uniquely determined.

Furthermore we set the restriction δ̃1

= (1, 1, 0). Together with the restriction that ρ̃Q is in

real Jordan normal form, the matrix D is then uniquely determined. To see this, lets do a
little bit of linear algebra (For convenience I drop the suffix Q):

Given a matrix ρ ∈ R3×3 with eigenvalues ρ1, ρ2 where the second is a repeated one with geo-
metric multiplicity 1 and δ1 ∈ R3/{0} (if it is zero we would have a deterministic short rate
and therefore deterministic forward rates, furthermore we assume that δ1 is not orthogonal
to v1 and v2) I show that the equations D−1ρD = J and δ1D = (1, 1, 0) uniquely determines
the matrix D. J is the block diagonal matrix given by the Jordan normal form33:
Due to the Jordan normal form we have (see Havlicek, Lineare Algebra für Technische Math-
ematiker Theorem 8.7.7 and 8.7.10 [23]): ker{ρ−ρ1I} = span{v1}, ker{ρ−ρ2I} = span{v2}
and ker{(ρ− ρ2I)

2} = span{v2, v3} where v1, v2 are arbitrary eigenvectors for ρ1, ρ2 and v3
is an arbitrary generalized eigenvector for ρ2 (i.e. (ρ− ρ2I)

2v3 = 0 and (ρ− ρ2I)v3 �= 0 see
[23] 8.7.3). First we observe:

0 = (ρ− ρ2I)
2v3 = (ρ− ρ2I)(ρ− ρ2I)v3

Therefore 0 �= x := (ρ − ρ2I)v3 ∈ ker{ρ − ρ2I} = span{v2}. That means ∃!z ∈ R/{0} :
x = zv2 where z is uniquely determined by v3 and not free any more. Therefore we have
ρv3 = ρ2v3 + zv2.
Due to the theorem about the normal form we have the existence of at least one base
(where the basis vectors are out of the three kernels mentioned above) that transforms
the matrix ρ into Jordan normal form. We can therefore write the matrix D a priori as
D = (c1v1, c2v2, c3v2 + c4v3) with ci �= 0 for i ∈ {1, 2, 4}(otherwise the matrix D would not
be invertible). We want to have ρD = DJ (then we can multiply with D−1 from the left)
which gives the following equation:

ρD = ρ(c1v1, c2v2, c3v2 + c4v3) = (c1ρv1, c2ρv2, c3ρv2 + c4ρv3) =

= (c1ρ1v1, c2ρ2v2, c3ρ2v2 + c4(ρ2v3 + zv2)) = (c1ρ1v1, c2ρ2v2, (c3ρ2 + c4z)v2 + c4ρ2v3) =

32Note that (I − ρ̃Q) is an upper triangular matrix, therefore det(I − ρ̃Q) = (1 − ρQ1 ) · (1 − ρQ2 )
2 �= 0 if

|ρQ1 | < 1 and |ρQ2 | < 1.
33

J =

ρQ1 0 0

0 ρQ2 1

0 0 ρQ2
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!
= (c1v1, c2v2, c3v2 + c4v3)

ρ1 0 0
0 ρ2 1
0 0 ρ2

 = (c1ρ1v1, c2ρ2v2, (ρ2c3 + c2)v2 + ρ2c4v3)

The last equality is a straight forward calculation. We see that the last column of the
matrices on the right side of the two equations above must match for the equality denoted
with ! to hold. Because v2 �= 0 it follows:

c3ρ2 + c4z = ρ2c3 + c2 ⇔ c4 =
c2
z

Here we see that three degrees of freedom ci i ∈ {1, 2, 3} are left for the matrix D and it can
be written as:

D = (c1v1, c2v2, c3v2 +
c2
z
v3) = (v1, v2, v3)

c1 0 0
0 c2 c3
0 0 c2

z

 = D̃P

where P is the matrix containing the ci and D̃ = (v1, v2, v3). The last restriction δ1D =
(1, 1, 0) determines the values uniquely if we assume δ1 �= 0 (else the short rate in the ori-
ginal model would be constant) and δ1 is not orthogonal to v1 and v2 since then δ1D̃ �= 0
and the first two entries are non zero:

δ1D = δ1D̃P = (1, 1, 0)

Here we see three equations for the three parameters ci i ∈ {1, 2, 3} that determine the three
parameters uniquely under the assumptions made.

Therefore we impose the following restrictions on the Q parameters µQ = 0, Σ is a lower
triangular matrix, δ1 = (1, 1, 0) and ρQ is in Jordan form to prevent an affine transformation
of Xt (with these restrictions the transformation is uniquely determined).
Furthermore the specific choice δ1 = (1, 1, 0) can be explained a little bit more. In some
models the specific choice of δ1 and ρQ allows the state variable to be interpreted. That
means in these models we can interpret Xt as the time varying coefficients βi,t of the Nelson
Siegel yield curve. Therefore using this interpretation X1,t stands for the level, X2,t the slope
and X3,t the curvature of the yield curve. Nevertheless the specific restriction δ1 = (1, 1, 0)
is somewhat arbitrary34.
Compare with Jens H. E. Christensen, Francis X. Diebold, Glenn D. Rudebusch, [8] (page
2 and 3, especially Proposition 1), Scott Joslin, Kenneth J. Singleton, Haoxiang Zhu [9],
James D. Hamilton and Jing Cynthia Wu [10] and Jens H. E. Christensen [11].

Summarizing the identification restrictions we have:

ρQ =

ρQ1 0 0

0 ρQ2 1

0 0 ρQ2


µQ = 0, Σ a lower triangular matrix and δ1 = (1, 1, 0). So all in all we have to estimate
22 parameters θ = (µ, ρ, ρQ,Σ, ω, δ0), 3 for µ ∈ R3, 9 for ρ ∈ R3×3, 2 for ρQ ∈ R3×3, 6 for

34Also this interpretation found in the literature is for the normal Nelson-Siegel function and not the
extended one used here.
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Σ ∈ R3×3, 1 for ω ∈ R+ and 1 for δ0 ∈ R.

7.2 SRTSM shadow rate estimation

The estimation of the shadow rate in the SRTSM is realized through a non-linear filter prob-
lem (see section extended Kalman filter). The transition equation is like in the GATSM
model given by (30) and the observation equation is given by (31):

f o
t = r̄ +G(Xt) + νt (46)

where f o
t = (f o

t,n1,n1+1, ..., f
o
t,n7,n7+1)

 ∈ R7 is the stacked vector with the forward rates for
the seven maturities and the 7 dimensional measurement error νt ∼ N(0, ω2I7), ω ∈ R,
G(Xt) := (σQ

n1
g(

an1+b�n1
Xt−r̄

σQ
n1

), ..., σQ
n7
g(

an7+b�n7
Xt−r̄

σQ
n7

)) ∈ R7.

Like Wu and Xia [5] I use r̄ = 0.25 as a lower bound for the nominal short rate in the SRTSM.

7.3 Results of estimation

I have implemented the estimation procedure in R (using version 3.3.2 and the packages
vars, fields and Matrix). Basically I have implemented the Kalman filter like described in
the section Kalman Filters and extensions. For given parameters θ the log likelihood function
can be evaluated. Then I use the built into R optim() function to estimate the parameters.
The forward rate data is constructed like it is described in the section Construction of for-
ward rates using the data set published by Gürkaynak, Sack, and Wright35. The forward
rates used are plotted in Figure 2. I use the same seven maturities like Wu and Xia (2016)
[5], namely 3 months, 6 months, 1 year, 2 years, 5 years, 7 years and 10 years. The first
goal was to replicate the shadow rate estimated by Wu and Xia [5], for this I used the exact
same time interval from January 1990 to December 2013. I report the results in Table 1 and
they are almost identical to the Wu and Xia estimates36. Also the log likelihood values are
almost identical with the SRTSM giving a better fit with 855.8 compared to 755.7, the value
for the GATSM. This is due to the period at the zero lower bound where the SRTSM fits
the data better.

In Figure 4 I plot the estimated shadow rate of the SRTSM and the short rate from the
GATSM model. Furthermore I plot the effective federal funds rate.
In Figure 4 we see that in normal times, when the effective federal funds rate (i.e. effr)
set by the central bank is not at the zero lower bound (from December 2008 =̂ dashed
line to the end), the GATSM and SRTSM match each other almost perfectly. They are
also nearly identical to the effr. This is exactly what one would expect. Also the short rate

35The data set can be found here: https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
36Since I use annualized percentage forward rates I rescale fo

t with 1200. Therefore µ, δ0,Σ,
√
ω have to

be rescaled too. For an = ān − 1
2δ

�
1(
�n−1

j=0 (ρ
Q)j)ΣΣ�(

�n−1
j=0 (ρ

Q)j)�δ1 1
1200 we get the extra 1

1200 factor since
both Σ matrices have to be rescaled. This is also indicated by Wu and Xia in Table 1 where they report
their estimated parameters.
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SRTSM GATSM

δ0 13.372 11.675

0.964 -0.0026 0.345 0.968 -0.0043 0.488
ρ -0.023 0.942 1.015 -0.0231 0.933 1.0135

0.0033 0.0028 0.886 0.0029 0.0028 0.893

eig(ρ) 0.983 0.964 0.845 0.987 0.963 0.845

ρQ 0.998 0 0 0.997 0 0

0 0.950 1 0 0.950 1
0 0 0.950 0 0 0.950

µ -0.304 -0.238 0.0253 -0.229 -0.207 0.0186

0.416 0 0 0.474 0 0
Σ -0.399 0.244 0 -0.459 0.218 0

0.011 0.003 0.039 -0.017 0.0013 0.036

√
ω 0.089 0.093

loglikelihood 855.7951 755.678

Table 1: Estimated parameters for SRTSM and GATSM. ML estimation using data from
01/01/1990 to 31/12/2013. Sample size: 288 = 12 · 24.

looks nearly identical to the one estimated by Wu and Xia [5] and displayed in their Figure 4.

In Figure 5 I plot the short rate calculated with the parameters from Table 1 for the time
horizon January 1990 to January 2016. To see how the shadow rate behaves in a time when
there was hope for a monetary policy normalization. On 16/12/2015 the fed increased the
federal funds rate by 0.25 basis points for the first time since the great recession.

In Figure 5 we see that the shadow rate (red) behaves like one would expect if a rate increase
is on the horizon. On the last observation date 01/01/2016 the first rate hike can be seen.
Before, the shadow rate rushes to the zero lower bound from below. Furthermore the period
from 12/2013 onwards is not part of the dataset we used to estimate the parameters and
the model behaves, on this separate ”test-set”, like expected. This demonstrates that the
shadow rate term structure model captures the dynamics of monetary policy very well. It
underscores the usefulness and plausibility of the model. Furthermore we can see that the
short rate estimated by the GATSM turns also negative on the ”test-set” before coming
positive again with the first rate hike.

In the next plot (Figure 6) the parameters θ used to calculate the shadow rate are es-
timated by using the full data set from 01/01/1990 to 01/01/2016. This is done to compare
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Figure 4: SRTSM, GATSM short rate and effr, dashed vertical line corresponds to December
2008.

the different shadow rates. We would expect that they are similar.
In Figure 6 we compare the shadow rate of the SRTSM with different estimation data sets.
The red line is the ”old” shadow rate (see Figure 5) and the blue dashed line is the shadow
rate when the full data set is used as estimation period. Interestingly the log likelihood value
drops off to 823.5609 from 855.8. The old parameters θold estimated from the sub sample are
a good starting point for the optimization problem and the algorithm converges after a few it-
erations. The log likelihood value over the whole data set, is ln(L1990−2016(θold)) = 678.8085
lower than the previous value of 855.7951 = ln(L1990−2014(θold))

37. Furthermore the new
shadow rate (blue dashed line) displays much more extreme movements around 2015 than
the old one. The new rate goes below -4% before shooting back up to 0. All in all the two
shadow rates are similar. Nevertheless this is a disadvantage of the SRTSM since I expected
a priori that the two rates differ not so much. It indicates that the model does not work as
good in the years 2014 till 2016 as expected.

To investigate this issue further we repeat this exercise using the data period 01/01/1990
to 01/01/2017. Figure 7 shows the new shadow rate, the old one (using 1990-2014) and

37When we use the average log likelihhood by dividing through T, we get the following picture: The value
when using the old parameters and 1990 to 2014 is 2.97 = 855.79/(24 · 12). For the old θ and 1990 to 2016
we get 2.17 = 678/(26 · 12), for the new θ and 1990 to 2016 the average loh likelihood is 2.63 = 823/26 · 12.
So the picture does not change when using the average log likelihood function.
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Figure 5: SRTSM, GATSM short rate and effr.

the one using 1190-2016. Again around 2015 the new rate experiences significant volatility.
Both rates estimated from 1990-2016 and 1990-2017 look very similar but have this strange
behaviour around 2015. Furthermore we see that as the economy is exiting the zero lower
bound the shadow rate matches the effective federal funds rate almost perfectly. The log
likelihood value increases slightly to 837.4809 when using the 1990-2017 data set.

All in all the shadow rate calculated with the parameters estimated from 1990 to 2014 looks
the most plausible to me as it does not display such extreme behaviour around 2015. There-
fore I will use it for further analysis.

7.4 Robustness and diagnostics of SRTSM

In this section I test the robustness of the model and whether the model assumptions are
met. Since we assumed that the random shocks driving the system are i.i.d. sequences it
is important to check if this assumption can be verified after the estimation is performed.
By using the Kalman filter we also have implicitly assumed the assumptions of the Kalman
filter problem (see section Kalman filter and extensions). We also note that the financial
crisis caused a great shock to the system and caused a structural break (see plots below
and structural break test section). This break complicates the analysis of the GATSM and
SRTSM model since it is unclear how to decide whether the problems we detected are caused
by model inherent failures or are just caused by the structural break. To decide this issue we
compare the period 1990 to 2009 before the crisis with the period 2009 to 2016 (see Figure

38



Figure 6: SRTSM, GATSM short rate and effr, red shadow rate (old) calculated with para-
meters estimated from period 1990 to 2014, blue dashed (new) using 1990-2016 as estimation
period.

13, 14).
First I start by considering the robustness of the shadow rate with respect to different lower
bounds r̄. For this I now consider the lower bound as an additional parameter, that means
for the parameter estimation I use θ̃ := (θ, r̄) ∈ R23 as new argument for the log likelihood
function ln(L(θ̃))38. If the model is robust with respect to the lower bound the new shadow

rate calculated with the new estimated parameters ˆ̃θ := argmax ln(L(θ̃)) should not differ
to much from the old one. The estimation is performed exactly like before using the optim()
function built into R. The log likelihood value increases to 865 from 855. In Figure 8 we see
the result. The two rates differ when the economy is at the zero lower bound but overall
they are quite similar. The estimated lower floor is 0.186 and the rest of the parameters are
very similar to the old ones. To summarize, this exercise validated the shadow rate once
more.

Next we will test for the assumptions of the Kalman filter. In particular we will test whether
the standardized residuals (i.e. prediction errors) are uncorrelated. Under the assumptions
made for the Kalman filter it follows that the residuals ỹt are uncorrelated, see Simon (2006)
[20] and the variance matrix is given by St. For the whole section I use standardized residuals

38I also analysed how the model performs when we consider the starting values of the Kalman filter as
parameters. Doing this the fit improves a little bit (the loglikelihood increases to 880) but overall the picture
stays the same and the shadow rate is very similar to the shadow rate estimated by using θ̃. Therefore I do
not report them.
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Figure 7: SRTSM, GATSM short rate and effr, red shadow rate (old) calculated with para-
meters estimated from period 1990 to 2014, blue dashed (new) using 1990-2017 as estimation
period, red dashed line using 1990-2016.

where I rescale the residuals to unit variance by dividing through the square root of the diag-

onal entries (i.e. (ỹit)
∗ = ỹit√

Si,i
t

). The standardized residuals should be white noise under the

Kalman filter assumptions since they have constant variance and zero autocorrelation. So we
will use the Ljung–Box test39. This is a well known test statistic and is implemented in R.
The basic idea is that we test whether the autocorrelation function (γX(k) := Cor(Xt+k, Xt))
is zero up to a certain lag l. The H0 : γ(1) = ... = γ(l) = 0 vs that at least one is different
from zero. The p values are reported in Table 2.

In Table 2 we see that almost all p values are below any conventional significance level, there-
fore we would reject the null hypothesis that the residuals are uncorrelated. Furthermore
we note that the p values for the first components are basically zero. The other components
have a little bit higher values especially for lower lags. This corresponds to the residual plots
below where the first three components have the highest autocorrelation.
In Figure 9 I present a residual plot of the standardized residuals to check whether it can be
plausibly assumed that they are uncorrelated. For the whole section I omit component seven
of the residuals from the plots due to spacing problems. This causes no loss of information

39The Box tests are often used when testing VAR residuals since then under the H0 the true distribution
(χ2

l if l stands for the lags) of the test statistic is known. Such a result is not known for Kalman filter
residuals and maybe, we would have to adjust the degrees of freedom. Nevertheless they offer an additional
piece of information together with the residual plots to decide if the residuals are uncorrelated. I use the
univariate test for each of the seven components of the residuals to get a better picture.
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Figure 8: red old shadow rate with r̄ = 0.25, blue shadow rate where r̄ is estimated too.

since this component looks the most white from all (compare with Box tests).

In Figure 9 we see that the standardized residuals of component four and higher look pretty
white. In the first three pictures some kind of pattern is visible especially after the crisis.
To decide the question whether the standardized residuals are uncorrelated, we take a look at
the empirical autocorrelation function. The acfs of the components are plotted in Figure 10.
In Figure 10 we see that the autocorrelation functions are mostly not significantly different
from zero except for component 1, 2 and 3 (for 4 it is hard to decide).

The plots and Box tests both show the tendency that the lower components have a high
autocorrelation and from component 4 upwards the correlation declines. Next I asses the
puzzle seen in the previous section, namely that the SRTSM does not perform as good in
the period 2014 to 2016 as hoped. In Figure 11 we see the standardized residuals for the
period 1990 to 2016.

In Figure 11 we see the same picture as before. The higher the component the better the
whiteness performance. For the first two some kind of pattern around the year 2015 (the
last tick on the x-axis) is visible. So lets zoom into the period after the financial crisis. This
is done in Figure 12.

In Figure 12 it can be seen that the first two components seem to be biased to the down-
side, too smooth and do not fluctuate evenly around zero, therefore they do not look white.
The others look reasonable. It seems that the SRTSM model has some problems fitting the
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component lag 1 lag 2 lag 3 lag 4 lag5
1 7.598861e-05 2.117552e-05 7.749173e-05 2.322880e-04 4.623978e-04
2 1.090389e-07 2.244133e-09 1.843051e-09 4.633161e-09 5.984615e-09
3 3.528866e-06 5.264108e-06 1.310856e-05 3.456039e-05 9.283425e-05
4 0.001047801 0.004595805 0.01140794 0.01200308 5.575401e-03
5 0.0902211 0.01134887 0.002870362 0.002774384 4.840084e-03
6 0.4910506 0.0006260142 0.0001278134 9.979575e-05 2.127457e-04
7 0.09884328 0.008566805 0.001600062 0.003160873 5.165244e-03

Table 2: p values for Ljung Box test for different lags and the seven components of the
residuals from 1990 to 2016.

period around 2015, this corresponds to what we have seen in the previous section. As the
log likelihood value (as a measure for the goodness of fit) using the period 1990 to 2016 is
lower than the value when using 1990 to 201440. As a last check I plot the autocorrelation
function of the sub period 2009 to 2016 in Figure 13. There the problem with the first two
components is clearly visible for the other components it is hard to decide but I would rate
them as reasonably uncorrelated.

Next I compare Figure 13 with the estimated acfs of the period 1990 to 2009 (see Figure
14). The acfs in Figure 14 look very similar to the ones using the whole 1990 to 2016 period.
The picture is again the same, the first components are correlated and for the others it is
not perfectly clear but I would rate them as uncorrelated.
As a last check whether the autocorrelations of the residuals are caused by model inherent
assumption failures or the shock caused by the crisis I repeat the Box test for the sub period
1990 to 2009. The p values are reported in Table 3.

component lag 1 lag 2 lag 3 lag 4 lag5
1 7.025634e-04 3.490061e-04 1.156762e-03 3.066124e-03 5.888361e-03
2 2.067576e-06 1.629812e-07 2.154518e-07 5.666318e-07 9.463505e-07
3 9.848393e-06 2.009416e-05 6.190157e-05 1.589858e-04 3.945461e-04
4 7.233482e-04 3.278539e-03 9.507216e-03 0.01152262 9.513611e-03
5 0.2225635 0.04829925 0.0649086 0.105199 0.1764296
6 0.664045 7.006002e-03 0.02832123 9.979575e-05 0.05228086
7 0.3055402 0.3928057 0.5993025 0.6233401 0.6891777

Table 3: p values for Ljung Box test for different lags and the seven components of the
residuals from 1990 to 2009.

In Table 3 we see that the p values of component one to four are below all conventional
significance levels therefore the H0 is rejected even when using the sub period 1990 to 2009.
For the remaining components we get a different picture than for the whole period. The p
values for the components four and higher are above the 1% and 5% significance level and
most are also above the 10% level. This corresponds well to the acf and residual plots where
these components seem to have a low autocorrelation. We can conclude that the picture
improved when looking at the sub period 1990 to 2009. Nevertheless the model assumptions

40The picture does not change much if I use the parameters estimated from the period 1990 to 2016.
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Figure 9: Residual plot of the first 6 components. Red dashed line are naive confidence inter-
vals using the mean + Φ−1(0.9) and mean - Φ−1(0.1) where Φ stands for the standard normal
distribution function. The vertical dashed line represents the financial crisis (01/01/2009).
The parameters for the SRTSM are estimated from the 1990 to 2014 are used.

seem to be violated and it can not reasonably be assumed that the noise processes wt and vt
of the state space models are i.i.d processes. So one part of the correlation can be attributed
to the shock caused by the crisis the other part is model inherent. This means that the
estimation of the SRTSM with the Kalman filter is based on false assumptions that are not
met in reality. This could be a new direction for further research. Especially how to incor-
porate the observed autocorrelation in the residuals into the filter and find an estimation
procedure where the assumptions are not in conflict with reality.

Further I present the residuals of the GATSM model for the period 1990 to 2016 in Figure
15. There we see a similar picture as before. The first 3 components show some kind of
pattern and the others look reasonably uncorrelated. Further we note that the volatility of
the standardized residuals (especially of the first two components) of the GATSM after the
crisis seem to be lower and fluctuate more evenly around zero than the one from the SRTSM.
This would point to a better fit for the GATSM in this period. Nevertheless we have to keep
in mind that the fit (log likelihood) for the GATSM is lower than the fit for the SRTSM
(see also mean squared error analysis below). One part of this puzzle can be explained when
looking at the standard deviations. In the GATSM the variance of the residual components
is constant over the whole period whereas the variance for the SRTSM drops off after the
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Figure 10: Plot of the autocorrelation function of the first 6 components of the residuals.
Data from 1990 to 2016 and the parameters for the SRTSM estimated from the 1990 to 2014
period are used.

crisis41. For the GATSM, the period after the crisis, gets standardized by a variance that is
to big. This explains one part of the low volatility of the GATSM residuals after the crisis.
The different variances are plotted in Figure 1642. When I analysed the GATSM residuals
with the Box test the picture matches the one for the SRTSM, so I do not report them. For
the whole period the p values are across the board below all significance levels. When using
the sub period 1990 to 2009 the first three components have low p values and the others
behave like in the SRTSM above.

Last I analyse the SRTSM when using 1990 to 2009 as estimation and 2009 to 2016 as
validation period. Interestingly when I consider the lower bound r̄ as parameter for the
optimization the SRTSM estimated from 1990 to 2009 matches the GATSM estimated from
1990 to 2014 almost perfectly even on the validation set 2014 to 2016. In the left plot of
Figure 17 we see that the shadow rate produced by the SRTSM estimated from 1990 to
2009 matches the short rate of the GATSM estimated from 1990 to 2014. This effect is due
to the fact that in this period a lower floor of r̄ = −7.7 is estimated for the SRTSM and

41The mean variance of the SRTSM equals the constant variance of the GATSM.
42In Figure 16 the first entry for t = 1 is not plotted since it would distort the picture due to the large

entries caused by the initialization.
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Figure 11: Residual plot of the first 6 components. Here the period 1990 to 2016 is used in
conjunction with the parameters estimated from 1990 to 2014.

the other parameters are very similar to the GATSM parameters estimated from the 1990
to 2014 period. When I estimate the SRTSM from 1990 to 2009 with a fixed lower floor
of 0.25 the shadow rate and parameters are very similar to the shadow rate of the SRTSM
estimated from 1990 to 2014. This can be seen in Figure 17 in the right plot. There we
see that the two shadow rates are very similar. Furthermore the standardized residual plots
and the acfs of the two SRTSM models display the same picture and are very similar. The
standardized residuals of the lower components (1 ,2, 3) have a high autocorrelation and the
others have a lower autocorrelation. Therefore I do not report them since they contain no
new information.

Furthermore I compare the baseline GATSM and SRTSM, both with the parameters estim-
ated from the period 1990 to 2014, using the mean squared error (i.e. the mean of the raw,
non standardized squared residuals MSEi = 1

t1−t0

�t1
t=t0

(ỹit)
2, thereafter MSE). The results

are reported in Table 4. In Table 4 we see that the SRTSM performs a bit better than
the GATSM over all periods (interestingly for the first component the GATSM performs
better), but the differences are not dramatic. The picture matches the one obtained by the
log likelihood value where the SRTSM performs also better than the GATSM. Note that
in the period 1990 to 2009 the GATSM and SRTSM match each other, this corresponds to
what we have seen so far.
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Figure 12: Residual plot of the first 6 components. Here the period 2009 to 2016 is plotted
with the parameters estimated from 1990 to 2014.

To summarize the diagnostics section I conclude that in all models and periods the lower
components corresponding to short maturities display an autocorrelation that is significantly
different from zero. The other components can reasonably be assumed to be uncorrelated.
So the model assumptions are violated and the question how to incorporate a non zero
correlation structure into the model and estimation is an interesting question for further
investigation.

8 Analysis of shadow rate. Factor augmented vector

auto regression FAVAR

Now we have estimated the so-called shadow rate using the SRTSM. Next we want to analyse
if this rate can replace the effective federal funds rate in various models. Specifically we want
to know whether the interaction of the shadow rate with other macroeconomic variables is
consistent with the link between effr and the variables in normal times. We have seen so far
that in normal times when the economy is not stuck at the zero lower bound the shadow rate
mirrors the effr almost perfectly, therefore the interactions between the rate and economic
variables in normal times is like one would expect. The remaining question is whether there
is meaningful information in the shadow rate when it is below zero and does not match the
effr. This question is analysed using a factor augmented vector auto regression (FAVAR).
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Figure 13: Plot of the autocorrelation function of the first 6 components of the residuals
between 2009 and 2016. Using the parameters for the SRTSM estimated from the period
1990 to 2014.

First I will briefly summarize the FAVAR and then present the results. The FAVAR analysis
section is mostly based on Wu and Xia [5] and Ben S. Bernanke, Jean Boivin, Piotr Eliasz
(2005) [16] who proposed the FAVAR approach to measure the interactions between monet-
ary policy and macroeconomic variables.

8.1 Summary of factor FAVAR

Here I will recap the FAVAR framework used to analyse whether the variation in the shadow
rate contains meaningful information when the economy is stuck at zero lower bound. The
FAVAR is very similar to normal VAR analysis. The basic idea is that in a normal vector
auto regression set-up we focus on a few important macroeconomic variables together with
the interest rate. Then we estimate the model and make certain identification assumptions
to identify the monetary policy shocks (i.e. recursiveness assumption, that policy shocks
only have a contemporaneous impact on the interest rate). When the shocks are identified
the impulse response functions are used to assess the link between monetary policy and the
economy.
The criticism with this approach is that due to the focus on a few important macroeconomic
variables the model is far too narrow to capture what is going on in the economy.
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Figure 14: Plot of the autocorrelation function of the first 6 components between 1990 and
2009. Using the parameters for the SRTSM estimated from the period 1990 to 2014.

Therefore the factor augmented VAR is used. The idea is to take a large set of economic
variables, extract the first three principal components (i.e. factors) of the data set and use
these 3 factors together with the shadow rate in a VAR. Before estimating the VAR model
the influence of the interest rate on the factors is removed using a simple OLS estimation
technique. Furthermore we determine the loadings of the factors on the macroeconomic vari-
ables. This is done to gain insight into the impact of the shadow rate on each macroeconomic
variable even though the variable is not incorporated in the VAR model. So we use a kind of
dimensionality reduction to summarize the information contained in a large data set Yt by
a low dimensional vector xt. We denote the shadow rate or policy rate by st. For the whole
FAVAR analysis a time horizon of 1960 to 2014 is used. Therefore the rate st is constructed
using the effr from 01/01/1960 to 01/01/2009 and afterwards the shadow rate, estimated in
the previous section is used43.
The FAVAR is summarized by three equations. The VAR uses 13 lags due to the monthly
observation frequency44 and is rewritten into a regression model, given by:

43This is done since we have estimated the shadow rate only from 1990 onwards but since the economy
was far away from the zero lower bound between 1960 and 1990 the shadow rate would match the effr in
this period.

44With the AIC information criterion we would select 14 lags using the VARselect function in R.
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Figure 15: Residual plot of GATSM. First 6 components of the residuals between 1990 and
2016. Using the parameters for the GATSM estimated from 1990 to 2014.

�
xt

st

�
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�
µx

µs

�
+ ρm

�
Xt−1

St−1

�
+ Σm

�
"mt
"MP
t

�
,

�
"mt
"MP
t

�
∼ N(0, I) (47)

where xt ∈ R3 are the macro factors, st ∈ R the shadow rate, µx ∈ R3, µs ∈ R the intercepts,
Xt := (x

t, ..., x

t−12)

 ∈ R13·3 the lagged factors, St := (st, ..., st−12)
 ∈ R13 the lagged rates,

Σm ∈ R4×4 the lower triangular matrix and ρm ∈ R4×13·4 (the subscript m just stands for
macro). For the identification of the monetary policy shocks "MP

t the recursiveness assump-
tion is made meaning that we take Σm as lower triangular. This means that only the shadow
rate st reacts immediately on a monetary policy shock "MP

t .

The macro factors are created by estimating the first three principal components45 of the

45PCA (see Johnson and Wichern (2013)[25]): Given a dataset Y := (Y m
t )Tt=1 ∈ Rn×T . We assume

that y ∈ Rn ∼ N(µ,B) and that the dataset consists of T realisation of this random variable. First we
demean all the variables involved, so without loss of generality y ∼ N(0, B). We want to approximate y
by a linear combination of k factors (i.e. principal components pc, k << n). This means we approximate
y by W’pc, were pc is a k dimensional random vector and W ∈ Rk×n. Without loss of generality we may
assume that WW � = Ik. The goodness of this approximation is measured by the mean squared error.
Thus we want to minimize E((y − W �pc)�(y − W �pc)). For given W the optimal chocie for the factors pc
is pc = (WW �)−1Wy = Wy and ŷ = W �pc = W �Wy (compare with OLS estimation). The MSE for this
choice is given by:
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Figure 16: Plot of S1,1
t of GATSM and SRTSM.

high dimensional macro data set Y := (Y m
t )2014t=1960 with Y m

t ∈ R97, that means we use a bal-

E(�y −W �pc�2) = E((y −W �Wy)�(y −W �Wy)) = E(y�y − 2y�W �Wy + y�W �WW �Wy) =

using the constraint WW � = I, it follows

= E(y�y)− E(y�W �Wy)

Here we see that minimizing the reconstruction error is equivalent to maximizing the sum of the variance of
the components of Wy = pc since the first term in the last equation does not depend on W and is therefore
a constant in the optimization with respect to W. For simplicity we assume k = 1 (Wy ∈ R) and derive the
first principal component. Using the Lagrangian function L(W,λ) = E((Wy)2)− λ(WW � − 1) it follows:

∂L(W,λ)

∂W
= 2E(Wyy�)− 2λW � = 0 ∈ Rn

using (Wy)y = y(Wy) = yy�W � ∈ Rn since Wy is a scalar for which a = a� holds.

E(yy�)W � = λW �

There we see an eigenvalue problem of the variance matrix of y (since y is demeaned) and using the saddle-
point characterisation of the Lagrangian function we have to maximize with respect to λ since we started
by minimizing the MSE. Therefore we see that for k = 1 W is the eigenvector to the highest eigenvalue of
the variance matrix of y. For general dimensions it can be shown that the rows of W are the first k eigen-
vectors to the k highest eigenvalues [25]. To calculate them the unknown true variance matrix B = E(yy�)
is replaced by the empirical variance matrix B̂ = 1

T Y Y �. After calculating the first k eigenvectors of B̂ and
putting them together in W, the principal components are given by pct = WYt. Often either the principal
components pc are normalized to unit variance or the whole data set Y is demeaned and normalized (B̂ is
then the correlation matrix) before doing the pca.
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Figure 17: Plot of short rates obtained by the SRTSM and GATSM when using different
estimation periods.

anced panel of 97 macroeconomic variables. The data set is from the Global Insight Basic
Economics data base and is the same data set used by Wu and Xia [5]. After estimating the
first three principal components pct ∈ R3 of Y, we remove the influence of the rate st (take
the part that is orthogonal to the rate see Bernanke [16]).
This is done by estimating the following linear regression model:

pct = bpcpc
∗
t + bsst + νpc

t (48)

that is estimated by OLS. Where pc∗t are the first three principal components of as subset of
the data set Y . This subset is denoted by Y ∗ ∈ Rl×T with l < 97 and represents slow moving
variables. That means they do not react fast to the policy rate (i.e. Consumer price index
CPI, Unemployment rate, Consumption expenditures, Industrial production, ...) in contrast
to fast moving ones like various interest and exchange rates. The list of the variables used
and which data transformations are applied to ensure stationarity can be found in the Online
Appendix to Wu and Xia ”Measuring the Macroeconomic Impact of Monetary Policy at the
Zero Lower Bound” 46. There you can also see which variables are considered slow moving.
The macro factors for the VAR are then given by: xt = pct− b̂sst. We remove the influence of

46Can be found on the internet: https://sites.google.com/site/jingcynthiawu/ or
http://faculty.chicagobooth.edu/jing.wu/
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component 1 2 3 4 5 6 7 mean MSE
MSE

GATSM 1990-2016 0.043 0.069 0.097 0.110 0.100 0.092 0.119 0.090
SRTSM 1990-2016 0.043 0.067 0.093 0.111 0.096 0.091 0.110 0.087

GATSM 2009-2016 0.010 0.021 0.039 0.058 0.133 0.122 0.216 0.086
SRTSM 2009-2016 0.013 0.016 0.0254 0.065 0.120 0.121 0.186 0.078

GATSM 2014-2016 0.009 0.045 0.062 0.039 0.111 0.053 0.358 0.097
SRTSM 2014-2016 0.021 0.027 0.024 0.041 0.073 0.053 0.261 0.071

GATSM 1990-2009 0.056 0.086 0.119 0.129 0.090 0.084 0.089 0.093
SRTSM 1990-2009 0.056 0.086 0.119 0.129 0.091 0.084 0.089 0.093

Table 4: Comparison SRTSM and GATSM with parameters estimated from 1990 to 2014
period. MSE for different periods.

the policy rate from the factors because we want to study the effect of the policy rate in the
VAR model where it is explicitly incorporated. Therefore to identify the influence correctly
the macro factors should represent all forces, except for the policy rate, active in the economy.

After the macro factors xt are created we estimate the following linear regression model:

Y m
t = am + bxxt + bsst + νm

t (49)

this is done to get the loadings b̂x ∈ R97×3 and b̂s ∈ R97×1 of the macro factors and policy
rate on the panel of macroeconomic variables Y m

t . With these loadings we can construct an
impulse response function for all 97 variables and not only the factors used in the VAR. The
estimation of (49) is done with 97 OLS estimations for each Y m,i

t i ∈ {1, ..., 97}47. If Y m,i
t is

part of the slow moving variables we set b̂is = 0.

The impulse response functions for all macroeconomic variables are given by:

ΨMP,i
j =

∂Y m,i
t+j

∂"MP
t

= b̂ix
∂xt+j

∂"MP
t

+ b̂is
∂st+j

∂"MP
t

where
∂xt+j

∂�MP
t

and
∂st+j

∂�MP
t

are the standard impulse response functions generated by the VAR

model. Since we are only interested in the influence of monetary policy shocks and do not
know how to interpret the macro factors xt we state the impulse response function only for
the influence of "MP

t .
The impact of monetary policy after the financial crisis on the variable Y m,i

t can be charac-

47For this I standardize the variables Y m,i
t ∀i ∈ {1, ..., 97} by demeaning and normalizing to unit variance.

Therefore the loads reported in Figure 8 are between -1 and 1. They match the ones reported by Wu and
Xia up to a scaling factor.
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terised through48

t�
τ=t0

ΨMP,i
t−τ "MP

τ (50)

8.2 Results FAVAR

In this section the results for the FAVAR are reported. I have implemented the factor aug-
mented vector auto regression like described above. In Figure 18 I plot the loadings bx and
bs obtained by the regression of equation (49). They match the ones reported by Wu and
Xia [5] almost perfectly up to a rescaling factor49

In Figure 18 it can bee seen that that the first macro factor (xt,1) loads most heavily on
the real activity measures (index 1 to 60, various industrial production indices, labour force,
consumption and housing starts measures), the second factor loads most heavily on the price
level indices (index 80 to 95), and the third loads on unemployment measures (index 19 to
30) and price measures (index 80 to 95). The short rate loads mostly on the various in-
terest rate related macro variables (index 60 to 70), this is per design since we set b̂is = 0
for the slow moving macro variables (real activity measures 1 to 46 and price measures 80
to 96). The ordering of the variables is according to the online appendix published by Wu
and Xia [5] (Can be found on the internet: https://sites.google.com/site/jingcynthiawu/ or
http://faculty.chicagobooth.edu/jing.wu/). There you also see which indices correspond to
slow moving variables. To keep the analysis tractable we focus on six different macro vari-
ables in the data set, namely the shadow rate, industrial production, consumer price index,
capacity utilization, unemployment rate and housing starts.
Furthermore I report a summary of the 97 R2 (coefficient of determination) values of the 97

48Since in a VAR(p) model we have a(B)Yt = Σ�t with � ∼ N(0, I) and a(B) := (I − A1B − ...− ApB
p)

where B stands for the backshift operator (Bnxt = xt−n ∀n ∈ N) and the matrices Ai are the coefficients for
lag i, if a(B) is invertible (corresponding to Y being stationary) we have (t > t0, t− j = τ ∈ {t, ...,−∞}):

Yt = a−1(B)Σ�t =

∞�
j=0

ΦjΣ�t−j =

∞�
j=0

Ψj�t−j =

t�
τ=−∞

Ψt−τ �τ =

t0−1�
τ=−∞

Ψt−τ �τ +

t�
τ=t0

Ψt−τ �τ

with Ψj = ΦjΣ where Σ is the cholesky decomposition of the covariance matrix Ω = ΣΣ� of Σ�. This means
we use the orthoganalized impulse response function Ψ which corresponds to the recursiveness assumption
to identify monetary policy shocks. The second sum on the right side stands for the influence of shocks after
t0. If we pick out the monetary policy shocks we get (49).
The impulse responses Φ are calculated by a comparison of coefficients of the right and left side of
a−1(B)a(B) = I with (a−1(B) = (Φ0 + Φ1B + Φ2B

2 + ...) and a(B) = (I − A1B − ... − ApB
p). We

get Φ0 = I, Φs =
�p

j=1 AjΦs−j(putting Φs = 0 for s < 0).

After we obtained the estimates Âi for the coefficients by OLS, we can calulate the estimated impulse
response functions Φ̂s by the formula given above. Then they are orthogonalized using the cholesky decom-
position Σ̂ of the estimated covariance matrix Ω̂ = 1

T

�T
t=0 ûtû

�
t = Σ̂Σ̂� where ût are the estimated residuals

obtained by OLS.
The confidence bands are bootstrapped using a recursive scheme: To produce a new draw of (Yt)

T
t=1 we take

a random permutation π of the set {1, ...T} and set Y ∗
t =

�p
j=1 ÂjY

∗
t−j + ûπ(t) ∀t where the first starting

values are given by the original time series (Y ∗
t = Yt for t ∈ {1, ..., p}). With this procedure a large number

of new draws is generated from which the confidence intervals are generated.
49This could be due to numeric problems or that the principal components are differently normalized or

calculated.
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Figure 18: loadings bx and bs on the macro variable Yt, obtained by regression of equation
(49), dashed lines indicate the different categories of the macro variables (i.e. real output,
employment, price measures) using the same ordering as Wu and Xia [5].

OLS estimations in Table 5 to get a feeling how well the three macro factors xt ∈ R3 and
the shadow rate st ∈ R describe the full macro data set Y m

t . 35% of the R2 are greater than
0.6, 50% are greater than 0.5. Only 24% of them are lower than 0.2 and the average R2 over
the 97 regressions is 0.45700.

min 1 quantile median mean 3 quantile max

0.00493 0.22910 0.49440 0.45700 0.66770 0.99400

Table 5: Summary statistics of the 97 R2 values of (49).

In Figure 19 I plot the R2 values:

To summarize, the four variables (x
t, st)

 ∈ R4 explain on average about halve the vari-
ation of the large macroeconomic panel Yt. Furthermore the variables Y m,i

t with i ∈
{11, 12} ∪ {55, ...62} ∪ {74, ..., 79} and some other are not captured well by the regression
(index 11,12 correspond to industrial production of Oil&Gas and residential utilities, 55 to
62 are real inventories, stock price indices and foreign exchange rates, 74 to 79 are money
and credit quantity aggregates). Therefore we can conclude that the four regressors used
summarize the economy quite well apart for the above mentioned sectors. This is quite good
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Figure 19: R2 for the 97 macro variables of equation (49).

when you think that we reduced the dimension from 97 to 4.

Next I follow Wu and Xia [5] and look at how the macro economic variables would have
evolved when the monetary policy shocks since the financial crisis are shut off. Practically
this is implemented by subtracting the influence of monetary policy on the variable Y m,i

t

given by (50). This is done to get the picture what would have happened if the central bank
did nothing in the aftermath of the great recession. By comparing how the variables evolved
with how they would have behaved when the MP shocks are turned off, we get an indication
of impact of the measures taken by central banks after the crisis.
Furthermore we make the thought experiment how the macro variables would have behaved
if the central banks were forced to hold the shadow rate at the zero lower bound. This is
done by calculating the shocks needed to hold the policy rate steadily at the lower bound
r̄ = 0.25 and then using these shocks and equation (50)50 to create an alternative trajectory
of the macro variables Y m

t . This experiment is plotted in Figure 20.

In Figure 20 we see that the shadow rate with turned off MP shocks (red dashed line in
top-left plot, counter-factual 1 shadow rate) first goes below the shadow rate (black line)
before crossing it around the beginning of 2011. After that the counter-factual 1 rate stays
above the actual shadow rate. On average the counter-factual 1 rate is 0.15% higher than the

50This is done by calculating new policy shocks �̃MP
t such that the new policy rate s̃t =

st−
�t

τ=t0
ΨMP,i

t−τ �̃MP
τ = st0+j −

�j+1
k=1 Ψ

MP,i
j−k+1�̃

MP
k+t0−1 = 0.25 = r̄ (k = τ − t0+1 ∈ {1, ..., t− t0+1 = j+1})

∀t = t0 + j ≥ t0 for the i ∈ {1, ..., 97} such that Y m,i
t = st. This I have done recursivly. For t = t0 we get

�̃MP
t0 =

st0−r̄

ΨMP,i
0

. For the rest we calculate (t = t0 + j):

�̃MP
t =

st0+j − r̄ −�j
k=1 Ψ

MP,i
j−k+1�̃

MP
k+t0−1

ΨMP,i
0
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Figure 20: black normal trajectories. red dashed trajectories with turned of monetary policy
influence (counter-factual 1), blue dashed line trajectories with shocks that keep the policy
rate at the lower bound (counter-factual 2).

actual shadow rate. This indicates that the monetary policy actions after the financial crisis
lowered the shadow rate. This is what one would expect given that central banks used a lot
of unprecedented tools, like quantitative easing and forward guidance, to loosen monetary
policy and give the economy a boost.
Somewhat counter-intuitively the counter-factual 1 rate undershoots the actual shadow rate
from the start of 2009 to 2011. This can be attributed to the temporary structural break
caused by the financial crisis. Maybe the shock of the great recession to the system we try
to model was so great that the system needs some time to stabilize and therefore the results
immediately after the crisis are not really meaningful. Another interpretation of this under-
shooting is that the central banks were first caught by surprise by the severity of the financial
crisis. And even though they loosened monetary policy a lot in the aftermath of the crisis it
was not enough and they actually tightened monetary policy compared to what the market
expected or needed. (The shadow rate and the MP shocks are calculated using the forward
rates that are observed in the real world markets (through the zero coupon yields). After
the crisis an extremely strong risk off move occurred in the markets pushing yields of secure
bonds (US government bonds) lower. So they are relative to what the market expected or
needed, therefore we could say that monetary policy was too tight in the aftermath of the
financial crisis. Some economists also share this view. The most prominent one is the noble
price winner Paul Krugman). Compared to the findings of Wu and Xia [5] in their Figure
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6 my Figure 20 is extremely similar, confirming their findings. At the beginning of 2014
the actual shadow rate was -2.133% and the counter-factual 1 rate was at -0.649%. This
confirms that the central banks succeeded in lowering monetary policy conditions through
unconventional policy tools since without the MP shocks the rate would have been 1.484%
=−0.649− (−2.133)% higher.
Furthermore we see that per construction the counter-factual 2 rate (blue dashed line) stays
at 0.25. Next we analyse the remaining 5 pictures of Figure 18. We see that the counter-
factual 1 trajectories match the actual trajectories relatively closely like in Wu and Xia.
Looking at industrial production where first the counter-factual 1 is above the actual and
after 2013 it is a little bit below the actual path. Compared to the counter-factual 2 tra-
jectory the actual industrial production index is much higher. When looking at the CPI
plot we see the price puzzle that the counter-factual 2 CPI path is higher than the actual
one. This is strange since the shocks needed to push the shadow rate to the lower bound
can be interpreted as restrictive monetary policy that should according to theory reduce
inflation and therefore the growth of CPI. But this counter-intuitive result is also present in
Wu and Xia [5] and other related literature51. The pattern that emerges when comparing
counter-factual 1 and actual is that at the start of our observation period (2009 to 2011)
the counter-factual 1 displays looser monetary conditions therefore the paths for it are in
the beginning a bit better and after 2013 a bit worse than the actual (i.e. counter-factual 1
unemployment rate being lower in the beginning and then higher, or utilization first higher
than lower). This pattern is closely related to the fact that the counter-factual 1 rate first
undershoots the actual before getting higher.
For the other three variables the picture matches the one found for industrial production.
Actual and counter-factual 1 closely match each other and the counter-factual 2 paths being
worse from an economic viewpoint (i.e. lower capacity utilization, higher unemployment and
lower housing starts).

To summarize Figure 20 we can say that the counter factual 1 is very similar to the actual
path but in the end (2013 onwards) behaves like expected (i.e. lower industrial production,
utilization, housing starts and higher unemployment rate) but the differences are relatively
minor. When comparing the actual to the counter factual 2 paths the picture is clearer, the
counter-factual 2 trajectories are worse from an economic viewpoint (lower industrial pro-
duction, capacity utilization, unemployment rate, housing starts and higher unemployment).
So all in all using both thought experiments we can conclude that monetary policy after the
crisis achieved its goal of supporting the economy. Nevertheless for both the CPI price puzzle
emerges, namely that restrictive MP actions increased the CPI instead of reducing it.

Next we look at the Impulse response functions (the entries of the matrices Ψs). This is
a standard time series analysis tool that can help answer the question what happens if the
central bank loosens monetary policy through a -0.25 MP shock. It is plotted in Figure 21.

In Figure 21 we see that all the variables except CPI react as expected. A monetary policy
shock of -0.25 decreases the policy rate, CPI and Unemployment rate and increases the in-
dustrial production capacity utilization and housing starts. Apart from CPI this is exactly
what is expected. The effects are strongest in the first year and then slowly die off. The

51Examples include Sims (1992)[18] and Eichenbaum (1992)[19].
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Figure 21: Impulse response functions for the VAR given by (47) with 90% confidence bands.

graphic matches the one reported by Wu and Xia quite well except for some rescaling.
Last but not least we compare the impulse response function to the impulse response func-
tion generated when using only a sub sample. The sub sample is the time period when the
economy is at the zero lower bound from 01/01/2009 forward. The sub sample has only 59
observations, so we can not fit a VAR(13) model since the number of parameters to be estim-
ated would be to big for the small sample to allow a good estimation. Therefore I compare
the full sample impulse response to the ones generated when fitting a VAR(1) model to the
sub sample. We expect them to be similar since the hypothesis is that the shadow rate can
replace the effr when it is stuck at the zero lower bound. We have seen that the full sample
model impulse response functions behaves like expected. If the sub sample one look similar
that is a further validation of the shadow rate.

In Figure 22 we see that both are similar except for CPI, there the sub sample one behaves
a little bit strange shooting up first before coming down again. But overall they are qualit-
atively the same confirming the hypothesis that the economy interacts with the shadow rate
like the effr interacts with it in normal times.
As a last test I compare the impulse response functions of a VAR(1) model using 1990 to
2009 with a VAR(1) model using 2009 to 2013. In the first model the economy is away from
the zero lower bound, therefore this model represents the normal dynamics between effr and
the economy. In the second model the economy is at the zero lower bound and we want
to see that the interactions between the shadow rate and the economy represented by the
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Figure 22: Impulse response functions for the VAR given by (47) with 90% confidence bands:
blue VAR(13) using the full sample 1960-2014, red VAR(1) using sub sample 2009-2014.

impulse response function are similar to model 1.

In Figure 23 we see that the two impulse response functions behave very similar confirming
that the shadow rate can replace the effr in economic models.
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Figure 23: blue VAR(1) using the sample 2009-2014, red VAR(1) using sample 1960-2009.
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8.3 Structural break test

In this section we are interested whether the great financial crisis in 2008 was a permanent
or temporary structural break. That means we use a statistical test to look if the influence
of the policy rate on the macro factors before and after the financial crisis is significantly
different. This is done by analysing a new slightly extended VAR model and comparing it
with the restricted VAR model. A likelihood ratio test is used, the H0 : θ ∈ Θ0 ⊆ Θ and
corresponding H1 : θ ∈ Θc

0:

λ :=
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=

L(θ̂R)

L(θ̂U)

where L(θ) stands for the likelihood function and θ̂R for the estimated (using the maximum
likelihood technique) parameters under the restriction H0. θ̂U is the unrestricted estimator.
The test statistic is then given by:

D = −2 ln(λ) = 2(ln(L(θU))− ln(L(θR))) ≈ χ2
dU−dR

The statistic is asymptotic chi-squared distributed with dU − dR degrees of freedom where
dU and dR stand for the degrees of freedom in the unrestricted and restricted model. For
a VAR model we can simplify further since we assume that the residuals are i.i.d. normal
distributed, therefore the likelihood, with the same reasoning of the conditional distribution
as in the section Parameter estimation of Kalman filter52, is given by:

ln(L(θ̂)) = −dT

2
ln(2π)− T

2
(ln(det(Ω̂))− 1

2

T�
t=1

û
tΩ̂

−1ût (51)

where ût ∈ Rd (d stands for the dimension of the VAR) are the residuals of the VAR and
Ω̂ = 1

T

�T
t=1 ûtû


t. The last term can be rewritten since for a scalar a = tr(a) holds:

T�
t=1

û
tΩ̂

−1ût = tr(
T�
t=1

û
tΩ̂

−1ût) = tr(
T�
t=1

Ω̂−1ûtû

t) =

using the linearity and A,B ∈ Rn×m tr(AB) = tr(BA) of the trace operator.

= tr(Ω̂−1

T�
t=1

ûtû

t) = tr(Ω̂−1Ω̂T ) = tr(TId) = dT

Therefore we can write the log likelihood for a VAR model as:

ln(L(θ̂)) = −dT

2
ln(2π)− T

2
(ln(det(Ω̂)) +

Td

2
(52)

Inserting (52) into the formula for the test statistic D gives (using that for a VAR(p) model
the actual number of residuals is T-p, the model invariant term −dT

2
ln(2π) + Td

2
drops out

because of the difference):

D = (T − p)(ln(det(Σ̂RΣ̂

R))− ln(det(Σ̂U Σ̂


U))) ≈ χ2

dU−dR

52In a VAR(p) model xt = ρm1 xt−1 + ... + ρmp xt−p + �t with �t ∼ N(0,Σm(Σm)�) an i.i.d sequence. It
holds xt|(xt−1, ..., xt−p) ∼ N(

�p
j=1 ρ

m
j xt−j ,Σ

m(Σm)�) due to the gaussian i.i.d assumption. Using the same
reasoning as in the section Parameter estimation of Kalman filter we obtain (50) as log likelihood function
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where Σ̂U Σ̂

U is the estimated covariance matrix of the unrestricted model and Σ̂RΣ̂


R the

one from the restricted.
We use this test for the model given by (47), where we alter the first block corresponding to
the macro factors xt to:

xt = µx + ρxxXt−1 + 1{t<t0}ρ
xs
1 St−1 + 1{t0<t<t1}ρ

xs
2 St−1 + 1{t>t1}ρ

xs
3 St−1 + Σxx"mt (53)

where t0=̂12/2007 and t1=̂06/2009. That means we split the time horizon into three parts,
before, during and after the financial crisis. We want to test whether the influence of the
shadow rate before and after the crisis on the macro factors is the same. We split into three
periods because we acknowledge that we can not explain the financial crisis with this model
and therefore the crisis period from 12/2007 to 06/2009 is a structural break. The question
is whether it is a temporary or permanent break.
Therefore H0 : ρxs1 = ρxs3 ∈ R3×13. The modified VAR is estimated per OLS for each equa-
tion and the residuals are computed to estimate the covariance matrix. This is done for the
restricted and unrestricted model. Using the above described test statistic which is asymp-
totic χ2

39 distributed since the difference between the numbers of parameters in the model is
3 · 13 = 39 (the unrestricted model has one ρxs3 ∈ R3×13 matrix more, or general 3 · p when
p denotes the number of lags).
If the test does not reject the H0 it is a further justification for the shadow rate model. Since
before the financial crisis the shadow rate equals the effective federal funds rate and after the
crisis the two diverge. But if the influence on the macro factors is not significantly different
in both periods, we can conclude that the shadow rate captures the monetary policy stance
well. Even in times when the effr is at the zero lower bound and most of the policy is carried
out through unconventional monetary policy the shadow rate captures this. In Table 6 I
report the p values of this test for different lags53:

lag p value lag p value

3 0.04154977 10 0.92539736
4 0.29012416 11 0.70899096
5 0.46468712 12 0.47018998
6 0.48923964 13 0.62886946
7 0.74532115 14 0.51387952
8 0.76192240 15 0.56650534
9 0.77858223

Table 6: p values for structural break test for different lags for H0 : ρxs1 = ρxs3 using the
shadow rate st

We see that the H0 does not get rejected for lags ≥ 4 since the p values are greater than
any conventional significance level. Therefore we can conclude that no permanent structural
break occurred when using the shadow rate. At least for lags greater 4 but since the ob-
servation frequency is monthly it is reasonable to only look at models with more lags since

53Wu and Xia [5] use a slightly different test statistic because they use (T-k) where k is the number of
regressors on the right hand side of (43). Values in Table 2 are calculated based on this method.
But simply using the number of lags p does not change the picture they match the p values quite well and
the two methods never contradict (meaning one rejects while the other does not) each other.
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it takes more than four months until the interest rate translates into the broader economy
represented by the macro factors xt. Most economist think that monetary policy needs at
least 6 months to gain its full effect on the real economy.

Next we repeat this exercise but instead of the shadow rate st we use the effective fed-
eral funds rate (before 2009 it holds st = effrt). We expect to detect a structural break using
this set up, since after the financial crisis the effr is stuck at zero lower bound and does not
display much variation. The p values for all lags up to 15 are zero54 and I report them in
Table 7. Therefore the H0 is rejected for all lags considered. We conclude that using the effr
the financial crisis can be considered as permanent structural break. This indicates that the
shadow rate has meaningful information in it and that it captures also the unconventional
monetary policy actions. Also the hypothesis that the shadow rate can replace the effr as
input for economic models is validated.

lag 3 4 5 6 7 8 9 10 11 12 13 14 15
p value 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: p values for structural break test for different lags for H0 : ρxs1 = ρxs3 using the
effective federal funds rate rt

As a last check I also test the H0 : ρ
xs
1 = ρxs2 = ρxs3 using the likelihood ratio test. With this

hypothesis the test statistic is asymptotic chisquared distributed with 3 ·13 ·2 = 78 (or more
general 3 ·p ·2 where p stands for the lag) degrees of freedom since in the unrestricted model
we have two more matrices with dimension 3 · p. The p values are reported in Table 8.

lag p value lag p value

3 6.508374e-04 10 2.407974e-09
4 3.826035e-03 11 0
5 1.478694e-03 12 0
6 1.730426e-04 13 0
7 2.411632e-05 14 0
8 1.671907e-05 15 0
9 8.783583e-08

Table 8: p values for structural break test for different lags for H0 : ρxs1 = ρxs2 = ρxs3 using
the shadow rate st

In Table 8 we see that the H0 is below all conventional significance levels for all lags. There-
fore the null hypothesis gets rejected, meaning that a structural break occurred.
To summarize, the test showed the financial crisis caused a structural break. When using the
shadow rate it is just a temporary structural break and the influence of the shadow rate on
the economy before and after the crisis is not significantly different. When using the effective
federal funds rate the crisis is a permanent structural break meaning that the interactions

54The p values for both procedures are basically the same, see previous footnote
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between the effective federal funds rate and the economy before and after is significantly
different.

9 Summary

In this master’s thesis I have analysed the shadow rate term structure model (SRTSM) that
was recently proposed in the literature (Wu and Xia, 2016 [5]). I can confirm their findings
and even extend them a little bit. Furthermore I analysed and summarized all the math-
ematical concepts used by the SRTSM in this thesis. The SRTSM allows us to estimate the
so-called shadow rate from observed bond price data. The shadow rate matches the effective
federal funds rate (effr) set by the central bank (i.e. fed) in normal times when the effr is
away from the zero lower bound. But when the economy is at the zero lower bound the
shadow rate can go negative and displays a lot of variation. Therefore the hope is that the
shadow rate can capture the monetary policy conditions better than the effr. Since the effr
is basically constant at the zero lower bound and has no meaningful variation in it that can
explain other variables.

One interpretation would be that most of the monetary policy was conducted with uncon-
ventional tools like forward guidance and quantitative easing and the shadow rate captures
these effects well. Whereas the effr is constant and does not contain information about
unconventional policy. This means that there is much more information in the variation of
the shadow rate than in that of the effr. This hypothesis is confirmed by means of a factor
augmented vector auto regression analysis. Consistent with Wu and Xia my thesis clearly
shows that the economy interacts with the shadow rate like the effr, even in times when
the economy is stuck at the zero lower bound. That means researchers can simply use the
shadow rate instead of the effr as input for economic models.

I also analysed the robustness of the model by varying the estimation period. My find-
ings show that the shadow rate can be considered to be relatively robust with respect to
different lower floors. Furthermore I tested for the model assumptions of the Kalman filter,
especially if the noise processes of the state space model are i.i.d processes. My result demon-
strate that this assumption is not met. It is open for further investigation how to extend
the model and estimation with a non zero autocorrelation function. Furthermore I have to
mention that different estimation periods for the parameters used in calculating the shadow
rate, result in quite different shadow rates. Nevertheless all the rates behave qualitatively
similar only some display more extreme moves (when the estimation period contains data of
2015).

Furthermore I looked at the behaviour of the shadow rate when the economy exits the
zero lower bound. On 16/12/2015 the fed hiked rates by 0.25% for the first time since the
financial crisis. The shadow rate reacts to this like expected. In the year up to the first rate
hike it rushes back to the zero lower bound and matches the effr since.

All in all the analysis showed that the shadow rate can replace the effective federal funds
rate as input for economic models.
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11 Appendix

In the Appendix I present some theorems used for the derivation of the Kalman filter, they
are based on the book of Shumway and Stoffer [21] and Meise and Vogt [24] (projection
theorem).

Projection theorem:
Let H be an Hilbert space and M ⊆ H a closed subspace. Then for each x ∈ H there exists
a unique decomposition:

x = x̂+ û

where x̂ ∈ M and û ⊥ M . x̂ is called the orthogonal projection of x on M. Furthermore x̂ is
the best approximation of x by an element out of M:

�x− x̂� < �x− x̃� ∀x̃ ∈ M, x̃ �= x̂

In the following we use the projection theorem on L2. L2(Ω,A , P ) is the space of square
integrable random variables55 with the scalar product < X, Y >:= E(XY ).

Furthermore we denote the projection of x ∈ L2 on a closed subspace M of L2 by PrMx. For
the following theorems we define (for given random vectors y1, ..., yn) Yn := span{1, y1, ..., yn}

55with the equivalence relation x ∼ y ⇔ P (x = y) = 1
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(all linear combinations) and M(Yn) := {z ∈ L2 : z = f(y1, ..., yn) with f measurable}

Theorem 1: If (x, y1, ..., yn) is multivariate Gaussian, then:

E(x|y1, ..., yn) = Prspan{1,y1,...,yn}x

The proof of theorem 1 is based on the projection theorem and the principle that the error
made with the best prediction is orthogonal (with respect to < X, Y >:= E(XY )) on the
space we are projecting on.

Proof:

The conditional expectation E(x|y1, ..., yn) := PrM(Yn)x is defined as projection on the space
M(Yn) that is the space of all random variables in L2 that can be written as measurable
functions of y1, ..., yn. Therefore we have due to the projection theorem that the projection
is unique and the following holds:

E((x− E(x|y1, ..., yn))w) = 0 ∀w ∈ M(Y )

Next we show that x̂ = PrYnx is that element. We have from the projection theorem:

E((x− x̂)z) = 0 ∀z ∈ Yn

Due to yi ∈ Yn and the normality assumption we get that x− x̂ is uncorrelated with yi and
therefore independent. Also 1 ∈ Yn gives E(x− x̂) = 0. Therefore:

E((x− x̂)w) = E(x− x̂)E(w) = 0 ∀w ∈ M(Y )

since x− x̂ is independent to f(y1, ..., yn) for all measurable functions. Due to the fact that
independence is not compromised by measurable functions.

Theorem 2: If (y, x) ∈ Rn+m is multivariate normal distributed. The following holds:

E(x|y) = E(x) + Cov(x, y)Var(y)−1(y − E(y))

Var(x|y) = Var(x)− Cov(x, y)Var(y)−1Cov(x, y)

Proof:

First we demean all variables involved. We use the theorem 1 and have E(x|y) = PrYnx = βy
and we know from the projection theorem:

E((x− βy)y) = 0 ⇔ E(xy) = βE(yy)

Therefore it follows β = E(xy)E(yy)−1 = Cov(x, y)Var(y)−1 since we demeaned the vari-
ables. Therefore it follows the first statement E(x|y) = Cov(x, y)Var(y)−1y for the demeaned
variables. If we reverse the demeaning we get the first statement (just insert y = y − E(y)
and x = x− E(x) in the last equation by slightly abusing notation).
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The second statement follows due to:

Var(x|y) = Var(x− E(x|y)|y) = Var(x− E(x|y))
Note that the error term x−E(x|y) is orthogonal to the y. The normality gives the independ-
ence, so we can drop the condition. Last we insert the first expression for the conditional
expectation.

Var(x|y) = Var(x− Cov(x, y)Var(y)−1y)

Using Var(y − x) = Var(y)− 2Cov(y, x) + Var(x) gives the result.
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